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Abstract

This thesis investigates the effectiveness of dynamic alert systems tailored to drivers’ cog-
nitive states in automated driving environments, focusing on enhancing takeover readiness
during critical transitions. Utilizing a large-scale immersive driving simulation, the study
evaluated drivers’ response times and physiological measures when reacting to various alert
intensities and the presence of a secondary typing task.

The experiment revealed that dynamic alerts significantly improved response times and
takeover performance, especially in high-distraction scenarios. Drivers responded more
effectively when alerts were adjusted to their cognitive load, with strong alerts resulting in
the fastest reaction times under distracted conditions. On average, dynamic alerts reduced
response times by approximately 1.75 seconds compared to static alerts. Additionally,
higher lateral accelerations were observed under strong alerts, indicating more decisive
maneuvering.

Self-rated attention-capturing scores were notably higher with dynamic alerts, particularly
under strong alert conditions and in the presence of secondary tasks. The ANOVA re-
sults showed significant improvements in attention capturing and overall alert effectiveness
when dynamic alerts were employed, demonstrating the robust design’s ability to capture
attention and enhance driver responsiveness. The study confirmed that adaptive alert de-
signs, which adjust based on the driver’s cognitive state, can markedly enhance overall
driving experience and safety. Participants reported higher levels of confidence with dy-
namic alerts, especially in scenarios involving secondary tasks. Despite the strong alerts,
annoyance levels remained low, indicating that dynamic alerts are effective without causing
undue stress.

These results underscore the potential of using adaptive systems to improve safety and
efficiency in automated driving, advocating for a more nuanced approach to system alerts
that considers the variable cognitive states of drivers. Future research should validate
these findings with on-road studies, explore a broader range of alert modalities, and refine
physiological monitoring techniques to further enhance adaptive alert systems.
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Chapter 1

Introduction

1.1 Automated Driving System (ADS)

Advancements in the automotive industry have made significant progress over the years.
As there are stronger regulations for road safety and increased market demands for com-
fort, autonomous driving opens up multiple potential areas for research and development,
as it not only promises both aspects, but many more [1]. Progress in developing a fully
autonomous vehicle starts with improving partially automated systems where the involve-
ment of the driver remains intact. Therefore, not only the aspects of driver performance
but also the driving experience in advanced automated systems are important to address.

According to the Society of Automotive Engineers (SAE), a vehicle with Automated Driv-
ing System (ADS) can be classified into five levels, ranging from simple driver assistance
systems, such as automatic emergency braking, to fully automated systems where the ve-
hicle fully drives itself and handles all driving tasks. In terms of driver responsibility, it is
defined that at levels 2 (partial driving automation) or less, the driver is required to drive
at all times whereas the ADS should only be perceived as an assistant. With a higher
level of automation, the need for driver input is significantly less, ranging from level-3 au-
tomation where the driver is only required to drive when necessary to where driver input
is never needed to safely drive for level-5 automation [2]. However, in level-2 automation
with advanced ADS, such as highway assist or Autopilot (AP) feature, most driving tasks
are fully handled by automation systems that can include adaptive cruise control Adaptive
Cruise Control (ACC), lane tracking, and auto braking. With a much lower workload of
the driving task required when cruising on a highway, the driver could be over-trusting
in the automation and become drowsy or lose a good vigilance level to maintain the safe
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driving cognitive state. For instance, the driver may shift to non-driving tasks, such as
reading or texting. In case of emergency or unexpected events, the automation system
may not safely handle the situation on its own, and it becomes critical to ensure safety
by transitioning the driving task from automation to manual driving by humans. This
process often involves a ”Takeover Request” (TOR) or alert used for prompting the driver
to intervene and resume manual driving. Therefore, it is important to consider the alert
design for the best possible transition outcome.

1.2 Takeover Request (TOR)

The concept of a TOR is activated as a warning signal when the Advanced Driver Assistance
Systems (ADAS) reaches its safety confidence limit, which can occur due to various factors
when the situation becomes too intricate for the vehicle to manage independently [3]. While
a level 2 vehicle appears proficient in handling driving tasks on a highway or addressing
straightforward hazards, it may struggle when faced with more complicated scenarios,
such as an unforeseen road closure or sudden road hazard, where the automation system
may not fully grasp the dynamic surroundings. TOR plays a critical role in involving the
human driver to react safely to such situations. The primary goals of developing TOR
are to improve driver performance and ensure a secure and seamless transition during
maneuvers. Engaging the driver’s attention poses a challenge, particularly when dealing
with different cognitive states of drivers. The key considerations in TOR design revolve
around determining the optimal timing for alerts and the most effective means through
which the system should notify the driver.

1.2.1 Interface Design for Alert in Automated Driving

The primary goal of alerts is to convey unexpected or potential hazards detected by the
system to the human operator. The Human-Machine Interface (HMI) enables the system
to communicate this message to the operator using various methods. In the context of
autonomous driving, common alerting modalities include auditory signals (such as tones
and verbal messages)[4], [5], visual cues (such as lights, icons, and animations) [6], [7],
and haptic feedback (such as vibrations and object movements) [8], [9]. These modalities
are essential for ensuring that drivers can respond promptly and accurately to takeover
requests. However, some researchers contend that no universally superior set of TOR
modalities can be universally applied, given the dynamic nature of situations and individual
preferences. Studies [10] explore how driver states, particularly drowsiness and distraction,
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affect responses to multimodal alarms. Their findings suggest that adaptive alarm systems,
which adjust modalities and intensities based on the driver’s state, can improve reaction
times and situational awareness during takeover requests in autonomous vehicles. The
effectiveness of alerts is heavily influenced by how well the machine communicates with
the user and how the user perceives the message. The significance of alert designs in HMI
varies depending on the specific situation and system. Insufficient alerting for TOR in
autonomous driving could lead to unsafe transitions that jeopardize the well-being of the
driver or other road users.

1.2.2 Adaptive Driver Support Design

Each person brings a unique set of experiences, skills, and preferences. Additionally, in-
corporating intermittent thoughts and different states of mind, different people performing
similar tasks will vary in perceptions and established procedures that shape different re-
sponses and outcomes [7]. Recent studies [5], [8], [11] suggest the need for adaptive alert
systems that account for pre-warning or current driver’s cognitive states. In the context
of the autonomous driving takeover process, individual cognitive states could significantly
affect performance when a driver transitions from a supervisory role to actively engaging in
the driving task. The importance of this study revolves around the impact of these factors
on the takeover process and how systems can be tailored to align with the individual and
recurring cognitive state to improve alert efficiency.

1.3 Objectives and Hypotheses

The objective of this thesis is to explore the design of dynamic alert levels that are adapted
to the cognitive state of the driver to optimize the performance of the takeover and the
driving experience. There will be a comparison between a single type of alert and dynamic
alert in different cognitive states of the driver when using AP on the highway. The effect of
the secondary task on takeover reactions and performance will also be investigated using
driving behavior, physiological data, and qualitative measures in each alert design.

It is hypothesized that dynamic alert intensity that varies depending on the driver’s cogni-
tive state enhances the driving experience while maintaining takeover quality. Specifically:

• H1: Dynamic alert systems, which adjust alert intensity based on the driver’s cogni-
tive state, will result in enhances the driving experience while having better or similar
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response times and quality of takeover performance compared to static (single) alert
systems.

• H2: Drivers will perceive dynamic alerts as more effective and less annoying com-
pared to static alerts, particularly in scenarios involving high cognitive load or dis-
traction.

These hypotheses aim to compare the efficacy of static and dynamic alert systems in
enhancing driver performance and safety.

4



Chapter 2

Literature Review

2.1 TOR in Automated Driving

In Level 2 ADS, which are not fully equipped for all road conditions, driver intervention is
often necessary to assist in both urgent and non-urgent driving tasks. Current automated
vehicles are equipped with safety features that prompt the driver to refocus on the driving
task. Numerous studies have explored the effects of various TOR methods and factors
on the handover process. This review will address key aspects to enhance understanding
of TOR. Generally, TOR initiation begins when the system recognizes its limitations and
seeks to transfer control from automated to manual driving before these limits are reached
to prevent hazardous situations. Although drivers are expected to be fully attentive and
prepared for takeover, real-life scenarios often differ, as distractions from secondary tasks
or drowsiness can lead to delayed responses or inadequate handover, both mentally and
ergonomically. Researchers have faced challenges in identifying optimal solutions for such
situations. Many studies have been conducted in simulated environments to control exter-
nal influences and mitigate unknown risks, while some have tested Level 2 ADS on actual
roads.

2.1.1 TOR Alert Timing

Situational factors such as TOR lead time, the frequency of takeover requests, and the type
of scenario (static vs. dynamic obstacles) significantly influenced takeover criticality. When
traveling at speed, timing becomes a critical factor, especially in TOR situations. The
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timing, determined by the distance to a predefined system limitation, such as a construction
site ahead, and the vehicle’s current condition like speed and trajectory, can be defined
as the time to collision (TTC) in seconds (s). It is important that the TOR is issued
before TCC, but how long before is the main factor that researchers have discussed. In
early studies, Gold et al. compared different predefined times to find the optimal time
for TOR situations [12], but some others argue that there is no single TOR timing that
suits all driving situations when considering the varieties in road conditions and individual
factors such as type of trajectory and TOR performance [3]. Shorter TOR lead times and
dynamic obstacles were associated with higher takeover criticality, suggesting that drivers
need more time to respond effectively in more complex or sudden scenarios [13].

2.1.2 Takeover Performance

The safety and quality with which a driver handles the control transition from the automa-
tion system is referred to as takeover performance. Several aspects of takeover performance
are measured to assess the proper transfer of vehicle control, which typically occurs when a
driver reaches and manipulates the steering wheel or uses the brake pedal to avoid a hazard.
Reaction time and the time margin to a collision are key metrics compared across various
designs of the TOR process measured in seconds; studies have shown that the longest time
margin may not always be the best time allotted to the driver.[14] Longitudinal and lateral
acceleration measures, in g or m/s, are used in experiments as indicators of a safe takeover,
with less acceleration generally being safer.[14] In simulated environments, where driving
scenarios can be more severe, the number of collisions is also counted to determine the
success of the takeover.[3]

2.2 In-Vehicle Warning System

The modern vehicle is equipped with a HMI that allows the system to communicate with
the driver through various modes of communication. These can include auditory signals
through vehicle speakers [15], tactile or haptic feedback on the steering wheel [16], and vi-
sualizations on the vehicle cluster or display [17], [18]. These modalities can be designed to
function individually (unimodal) or in combination (multimodal). When a vehicle requires
handover, it communicates with the driver through these channels to facilitate a successful
takeover process. The amount of information and how it is delivered to the driver are
critical factors considered in the design of these modalities, as explored in several studies
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[19]. Research by Seppelt and Lee focused on dynamic feedback mechanisms that are de-
signed to keep the driver engaged, particularly in the context of semi-automated driving
systems. Their study underscores the importance of feedback systems that adapt based
on the driver’s level of engagement and the vehicle’s operational status. Such dynamic
systems are essential to ensure that drivers are not only aware but also prepared to take
control of the vehicle in situations where automation may fail. The study supports the
development of feedback that responds to the user’s state and external conditions, thereby
enhancing safety and effectiveness in automated driving systems [20].

Specifically for the design of HMI in TOR situations, a comprehensive review of the lit-
erature examines how advanced in-vehicle HMIs convey additional semantic information
from driving automation systems to drivers [21]. The focus is on the transfer of control
in automated driving, particularly just before, during, and immediately after a TOR. The
paper categorizes this additional semantic information into three main areas: enhancing
mode awareness, enhancing situation awareness, and assisting takeover maneuvers. This
information helps drivers understand the vehicle’s current status, the surrounding traffic
conditions, and the actions they may need to undertake. Advanced HMIs are crucial for
delivering contextually rich and timely information, aiding drivers in making informed de-
cisions during critical phases of driving automation. This is particularly important during
the transition from automated driving to manual control, where there is a risk of drivers
being ”out of the loop” in terms of engagement and situational awareness. The review
identifies gaps in current studies, such as the limited exploration of the cognitive impacts
of HMI on driver behavior during TOR, and suggests areas for further research. It em-
phasizes the need for HMIs that can adaptively deliver information tailored to the driving
context and driver state to enhance both safety and the driver experience.

2.2.1 Alert Modalities

Auditory Alerts

Auditory alerts are a common modality in driving contexts, known for their ability to
rapidly capture attention. Studies have shown that auditory alerts can be highly effective
in prompting driver responses during TORs. For example, [12] found that auditory alerts
led to faster reaction times compared to visual alerts in high-autonomy driving scenarios.
However, the effectiveness of auditory alerts can be influenced by factors such as volume,
pitch, and the presence of other auditory stimuli in the vehicle’s environment. Gonzalez
et al. investigated how auditory alert on different levels of pulse rate and loudness affects
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the urgency and annoyance perception of drivers, they found that perceived urgency and
annoyance proportionally increase when either pulse rate or loudness levels increase [22].

Not only alert sound is presented in actual driving, Šabić et al. suggested that the design
of auditory alert should also consider the level of background noises, e.g., traffic noise,
music, engine, and external warning sounds, for an appropriate loudness to ensure to
capture driver’s attention. They presented the advantage of having adaptive loudness of
auditory alert which resulted in [23], despite the mixed results, the approach reflects a
significant step towards creating more intelligent and responsive in-vehicle alert systems
that enhance user experience and safety by maintaining the intelligibility of critical alerts
without increasing annoyance.

Visual Alerts

Visual alerts leverage the driver’s visual field to signal the need for a takeover. While
effective in providing detailed information, their efficacy can be diminished if the driver’s
visual attention is not on the display or if the visual stimuli are too subtle. Lees et, al.
emphasize the importance of visual alert design, noting that conspicuousness and clarity
are crucial to ensure that drivers can quickly interpret and act on the information presented
[6], [24].

Visual warnings can potentially reduce the likelihood of accidents involving young drivers,
especially in complex driving environments where latent hazards are present, as conducted
to investigate the effectiveness of visual warnings on the hazard anticipation and mitigation
abilities of young drivers using head-up displays (HUD), it was concluded that the alerts
effectively increased the likelihood of drivers glancing toward latent pedestrian and vehicle
hazards, allowing the potential benefits of integrating advanced visual warning systems
into vehicles to support young drivers [18], [25].

Tactile Alerts

Tactile alerts, or haptic feedback, offer a distinct advantage by engaging the sense of touch,
which is less likely to be overloaded compared to auditory and visual senses. Haptic steering
wheels, for example, can provide immediate and intuitive cues for drivers to take control.
Multiple studies demonstrate that tactile alerts can be effective. Gomes et al. presented
an approach to enhance driver situation awareness upon TOR through continuous-time
feedback using a device called the Adaptive Tactile Device (ATD) through the steering
wheel or driver’s seat, with the aim of improving the transitional phase where the driver

8



takes over from the automated system by providing force haptic feedback that adjusts
to the driving conditions, it resulted in improved reaction time during TOR events [26].
However, studies by Geitner et al. found that tactile alerts alone were responded by drivers
significantly slower than others and also significantly induced more alarm startling when
combined with auditory alerts.[27].

Multimodal Alerts

Multimodal alerts refer to the combination of two or more monomodal alerts together to
represent the same alert message, combining multiple alert modalities can capitalize on
the strengths of each to ensure that drivers receive an unambiguous takeover request. The
combination of auditory, visual, or tactile cues can send information to different sensory
channels, resulting in less number of missed warnings or false responses from the driver [27],
[28]. Geitner et al. suggested that combining all three modalities would enhance attention
capturing which reduces false responses and reduces reaction times when prompted timely
[27]. Zhang and Tan conducted a study to compare two unimodal (visual and auditory),
three bimodal (visual-auditory, visual-tactile, auditory-tactile), and one trimodal (visual-
auditory-tactile), the results highlighted the potential of combining alert modalities, the key
finding was significant improvement in driver reaction times, trust and satisfaction ratings
for multimodal warnings compared to unimodal. Interestingly, warnings that included
tactile signals, despite increasing physiological arousal, also heightened user annoyance
[29].

When a driver is under the influence of a different cognitive load. Han and Ju proposed an
advanced alarm method tailored to the driver’s state in autonomous vehicles, focusing on
the reaction of drivers in drowsy and distracted states to various alarm modalities. The
study emphasizes the importance of multimodal alarms (visual and auditory) and examines
the effectiveness of these alarms through a driving simulation with 38 participants. The
results indicate that drivers show different response patterns based on their cognitive state,
with auditory alarms having a significant impact on alerting drivers [10]. Also, findings in
a study conducted by Van der Heiden et al. agreed that multimodal alerts can effectively
capture the driver’s attention, especially when engaged in cognitively demanding tasks [5].

2.2.2 Alert Urgency and Intensity

There is a fundamental relationship between perceived urgency and the signal’s intensity
that is determined by the frequency, wavelength, pace, duration, etc. Higher frequency
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and/or decreased interval between sound pulses can be perceived as increasingly urgent
[30], but this also proportions to annoyance [22], [31]–[33]. This also applies to other types
of monomodalities [34] and in a combination of modalities such as auditory-tactile and
visual-tactile alert systems, perceived urgency should be an appropriate level of urgency
as the literature suggested that high urgency warnings should be used for a critical driving
task. Therefore, signal urgency is important to consider in the design for TOR [35]–[37].
The modalities of the signal involving visual cues are perceived as more urgent in the signal,
while the tactile modality is rated as more annoying in one of the studies [35].

In the study by Roche and Brandenburg (2018), alert urgency and intensity were measured
using subjective unidimensional 8-point rating scales. Participants rated the perceived
criticality of the driving situation and the urgency of TOR on scales ranging from 0 (not
critical/not urgent) to 7 (very critical/very urgent). Additionally, the visual TORs were
designed to vary in urgency by using different wordings: ”Please take over soon” for low
urgency and ”Danger: Take over now” for high urgency [36].

2.2.3 Dynamic Interface for Vehicle Warning System

Considering the aspects of safety and user experience in the design of a vehicle warning
system, the most effective alert design created in one research may not be the best appli-
cation in all use cases when taking into account driver preference and concurrent cognitive
states. The adaptive alert concept has been researched for its effectiveness as dynamic
levels of alert by varying alert intensities Seppelt et al. studied dynamic feedback to keep
drivers in the loop, resulting in increasing proactive responses to incidents, and also found
that a visual-auditory interface performed the best compared to a unimodal interface.[20]
These studies collectively underscore the importance of developing dynamic alert systems
that are sensitive to changes in environmental conditions and user states.

2.3 Cognitive Ergonomics Influencing Takeover Per-

formance

In high-level ADS, the vehicle assumes more responsibility for managing traffic and vehicle
control, thereby reducing the driver’s workload. However, human errors remain a significant
concern because the driver must be prepared to retake control of the vehicle at any moment.
The behavior of drivers in partially or highly automated vehicles is expected to differ
significantly from that in manual driving. Despite Level 2 automation still requiring a high
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level of driver attention to respond to system requests in both urgent and normal situations,
drivers often lose focus due to distractions, drowsiness, or engagement in non-driving tasks.
This presents a major safety concern as ADS advances but has not yet reached the level
of full autonomy. Consequently, it is crucial to understand how cognitive ergonomics
influence takeover performance in such systems. Several researchers are investigating the
interplay between human factors and automated driving to enhance system design. Their
goal is to improve driver performance and address safety issues. These studies aim to
identify strategies to keep drivers engaged and ready to take over when necessary, thereby
mitigating the risks associated with reduced vigilance and increased workload during partial
automation.

2.3.1 Situation Awareness (SA)

Introduced in aviation psychology in the 1980s in order to explain human errors related
to the operator’s ability to achieve and maintain a current understanding of a dynamic
situation, then later applied to many other areas. Mica Endsley defined SA into three
levels “(1) the perception of the elements in the environment within a volume of time and
space, (2) the comprehension of their meaning and ’the projection of their status shortly’
and their dependence that the higher levels rely on the success of the lower levels of SA [38].
Based on the assumption of Endley’s framework, in the driving context, Matthews et al.
introduced the SA model for driving to improve understanding of the driving behavior that
driving is directed towards three types of goals: strategic, tactical, and operational [39].
These goals are said to define the information driver needed to decide to achieve the goal.
Moreover, as the tasks and goals are different between several types of tasks, different levels
of SA also differ in each one. They believe that strategic goals, such as route planning,
require a stronger projection SA than tactical or operational driving goals to project the
future state. On the other hand, perception and comprehension are likely to be more
crucial in selecting the most adequate operation in the current situation than projection.
SA can be interpreted as a state of knowledge of the operator’s mental representation
of the current situation where researchers continue to find ways to measure, one of the
methods is called SAGAT (Situation Awareness Global Assessment Technique) introduced
by Endsley in 1988 [40], in which applied to the driving context, the driver will be asked
questions about the driving state and the environment. During automated driving, the
driver may also engage in non-driving tasks, such as using a cell phone, and a decrease in
SA may lead to declines in driving performance [41]. In the context of automation systems,
Baumann et al. identified key challenges posed by automation, such as the reduction in
driver vigilance and engagement, which could compromise the driver’s ability to swiftly re-
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assume control when necessary. They discussed various levels of driving automation, from
no automation to full automation, and the corresponding shifts in the role of the driver
from active participant to supervisor. Crucially, the paper stresses the need for systems
that provide adequate feedback on automation states and behaviors to mitigate negative
effects on human performance and enhance situation comprehension. This is essential to
ensure that drivers are not only kept in the loop but are also prepared to takeover control
effectively, maintaining both safety and operational efficiency in increasingly automated
vehicles [42].

2.3.2 Mental Workload and Distraction

Driving automation reduces the driver’s workload as the responsibility of the driving task
is transferred to the vehicle. As the vehicle’s capability advances, it handles more of this
workload. However, higher levels of automation correlate with decreased driver attention,
resulting in distractions and off-road glances.[1] Instead of maintaining eye fixation on the
road, drivers in highly automated vehicles are more likely to engage in secondary tasks
or NDRT, shifting their focus to non-driving activities. This transition from low to high
workload, especially in automated settings, can detrimentally affect situational awareness.
Drivers may not be fully aware or prepared to take control in critical situations if they
are engaged in NDRT that draws their attention away from driving [43]. Studies investi-
gated the impact of NDRT on cognitive workload in automated driving using the Twenty
Questions Task, which can significantly distract drivers enough to impair their ability to
promptly respond to unexpected driving conditions or emergencies, resulting in poorer
takeover performance in terms of reaction time and performance [43], [44]. Therefore, it is
important to design appropriate human-machine interaction strategies that support cog-
nitive processes and driver performance in situational awareness to avoid or minimize the
potential negatives of automation.

In autonomous driving contexts, distractions impact drivers’ mental workload and reduce
their engagement and safety perception, which is especially problematic in automated driv-
ing settings where the driver’s readiness to takeover is crucial. Usually, distractions lead to
longer durations of off-road glances, which significantly impair the driver’s ability to quickly
comprehend the traffic situation [45]. The typical distractions is engaging in NDRT, such as
adjusting temperature controls or texting, not only increases mental and physical demands
but also extends the time taken for drivers to respond to takeover requests in autonomous
vehicles. This delay could potentially lead to safety risks during urgent maneuvering sce-
narios. It is recommended that the design of in-vehicle technologies consider the cognitive
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load they impose. For instance, the complexity of tasks that drivers are required to per-
form should be minimized to reduce the frequency of long off-road glances [46]. Enhanced
driver monitoring systems could help in managing the transition of control in autonomous
vehicles by assessing the driver’s state of attention and readiness to takeover.

2.3.3 Cognitive States

The cognitive state refers to the mental conditions under which a person operates, encom-
passing aspects such as attention, awareness, and workload management. In the context of
driving, particularly with advanced vehicular technologies, the cognitive state significantly
influences how drivers interact with both manual and automated systems. Studies indicate
that while automated driving systems can alleviate the cognitive load by managing routine
tasks, they may also impair a driver’s situational awareness and readiness to take control
during emergencies, especially if the driver is engaged in NDRT. Furthermore, variations
in cognitive load, whether due to overreliance on automation or distractions from non-
driving activities, affect drivers’ physiological responses, such as blink patterns and heart
rate. These responses can be indicative of their engagement and stress levels. Thus, main-
taining an optimal cognitive state is crucial for ensuring safety and effective interaction
with vehicle automation.[44]

Choe et al. explored how drivers’ attentional states are influenced by task demands and
individual cognitive capacities. The study employed NDRT (visual and auditory) during
driving simulations to manipulate drivers’ attentional states and analyzed the effects on
driving behaviors and eye movement patterns. Furthermore, individual cognitive capacities
were directly measured using various tasks (e.g., simple reaction time, n-back tasks) to
examine their interaction with task demands on driving performance. The study found
that task demands and cognitive capacities significantly affected driving behaviors and
physiological responses, indicating the potential for tailored driver assistance based on
individual cognitive profiles [47]. Melnicuk et al. similarly investigated the effects of
cognitive load on drivers’ state and task performance during transitions from automated
to manual driving using the ”N-Back” task to manipulate cognitive load while measuring
physiological responses and driving performance metrics. The results indicated that higher
levels of cognitive load during automated driving impair the driver’s ability to regain
manual control effectively. Specifically, lateral control of the vehicle and stabilization times
were adversely affected by higher cognitive loads.

Over the recent years, emerging research on the automated cognitive state classification
systems for driver monitoring systems has been in focus, SAE International has identified
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various cognitive states of a driver in terms of assessing cognitive distractions, including
concentration, mild distraction, and severe distraction. These states served as a basis for
the automated detection system. The research aimed to explore the concept of providing
varying alerts based on the driver’s cognitive state [48]. To effectively detect driver cog-
nitive states, the development of robust, real-time cognitive state monitoring systems is
essential for enhancing road safety by providing timely alerts or interventions to distracted
drivers, particularly in complex driving environments where the cognitive load is variable
and unpredictable. Recent research achieved reliable detection accuracy by leveraging ma-
chine learning techniques, employing classifiers like Random Forest, Decision Trees, and
Support Vector Machines to analyze data from eye-tracking, physiological signals, and ve-
hicle kinematics [47], [49]. This indicates the need for research in dynamic HMI design to
efficiently utilize the most data available to maximize road safety.
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Chapter 3

Methodology and Procedures

3.1 Introduction

This study explores how the TOR alert design, customized to match the cognitive state
of drivers, examines how TOR alerts affect driver responses depending on their presumed
cognitive states in focused attention state or distraction state induced by secondary tasks
while driving. The experiment is designed to help investigate the impact of varying alert
levels on takeover actions, situational awareness, alert perception, and user satisfaction
using different auditory and visual TORmodalities with distinct perceived levels of urgency.
Experiments were carried out in a driving simulator environment with a tailored visual
driver dashboard and alert configurations based on assigned secondary tasks to analyze
the influence of dynamic TOR alert levels in automated driving systems concerning the
driver’s cognitive condition.

3.2 Methodological Assumptions

In this study, assumptions are made to simplify the classification of the driver’s cognitive
state into two categories: a concentrated state, where driving without a secondary task
allows for heightened mental resources and focused attention on the driving task, and a
distracted cognitive state, where NDRT is incorporated during the drive to increase mental
and physical demands, the cognitive state and secondary task matching is based on the
experiments in recent papers related to distracted cognitive states in drivers. [10], [48],
[50]. However, this study does not account for differences in individual workload levels

15



associated with the secondary task. Additionally, it is assumed that alerts will always
be issued when a road hazard is encountered, without false positives. Furthermore, it is
presumed that all participants, regardless of their driving experience, are equally equipped
to complete the driving task in a highway scenario using lane tracing assist (autopilot
feature).

3.3 Experimental Research Design

This study, approved by the Research Ethics Board at the University of Waterloo (REB
45254), employs an immersive driving simulator to replicate close-to-reality driving scenar-
ios. Using a between-subject experimental design, the study investigates the differences
between dynamic and single alerts across four diverse highway driving scenarios with coun-
terbalanced sequences. Forty participants were randomly assigned to one of two experi-
mental conditions: a dynamic alert group or a single (static) alert group.

3.3.1 Participants

Participants were recruited from University of Waterloo students and alumni, and publicly
through the university’s recruitment website. Inclusion criteria included having at least
an Ontario G2 driver’s license or equivalent with at least one year of driving experience
and being free from any medical conditions that could affect driving ability. Participants
were screened for eligibility prior to the experiment. Forty-one participants with an age
range of 18 to 54 years with an average of five years of driving experience completed the
experiments.

3.3.2 Apparatus

Driving Simulator

The experiment was conducted using a high-fidelity driving simulator at the Autonomous
Vehicle Research and Intelligence Laboratory (AVRIL) of the University of Waterloo. A
customized driver dashboard was designed to enhance the driving visualizations for the
experiment. Detailed information about the driving simulator setup can be found in Ap-
pendix A.1.
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• Driving Instruments: VI-Grade’s STATIC driving simulator utilizes the cockpit of
a 2018 Chevrolet Traverse, equipped with an active seat and active 5-point seat belts
that offer haptic feedback determined by the vehicle dynamics calculations. Steering
wheel, throttle, and brake pedals from the original equipment manufacturer (OEM)
that are similar to a real vehicle.

• Simulation Displays: A 278-degree screen is used to create an immersive driving
environment by incorporating screens that mimic the driver’s dashboard, side mirrors,
and rear-view mirrors.

• Sound Interface and System: A 5.1 surround sound set-up that uses speakers
within a vehicle to deliver environmental, vehicle, and alert sounds.

• Driver Assist Features: Level-2 autonomous driving system including ACC fea-
ture that can be activated and adjusted at any time with a speed greater than 30
km/h with the ability to follow the leading vehicle’s speed, the ACC target speed is
adjustable using the plus (+) or minus (-) buttons on the gear knob. The AP that
offers the lane tracing feature can be activated while the ACC is active; this feature
keeps the vehicle in the center of any lane on the highway at any speed; however, it
does not mitigate any collision or make a lane change.

• Driving Controls and Feedback: Steering wheel with angle mode providing forces
to return the steering wheel to a zero angle after rotation. Buttons on the steering
wheel to control the simulation and toggle AP mode with physical buttons on the
gear knob to change gear and adjust the target speed for cruise control. The indicator
lever can be used to signal and disable AP; however, only visual feedback is displayed
on the dashboard without the indicator sound. All ADS features are deactivated once
the brake pedal is used. Important controls that mismatch from the real-world vehicle
include the input of steering wheel angle and feedback, which is disabled in AP mode,
and ACC controls, which are located at the gear knob, due to the limitation of the
hardware system.

Physiological Measurements

• Eye Tracker: The Ergoneers eye tracker was used on all participants with or without
eyeglasses, the device recorded first-person view with videos (with the resolution of
1920 x 1080 pixels at 30 frames per second) of eye movement for pupil detection to
determine eye movement (with binocular eye cameras tracking resolution of 648 x 488
pixels at 60 Hz). The device weighs 52 g with connection wires routing behind the
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(a) Smartphone device used with eye-tracking marker. (b) Screenshot of the typing task with example paragraph.

Figure 3.1: Typing task setup of with smartphone with eye tracking marker (left), and the screenshot of the typing task with
touchscreen keyboard (right).

driver seat’s headrest. Area of Interest (AOI) management using automated marker
detection within the Ergoneers D-Lab software.

• Heart Rate (HR) Monitor: The Empatica E4 Heart Rate Monitor wristband
was used to collect heart rate at 1 Hz on the participant’s wrist of the non-dominant
hand. The E4 uses photoplethysmography (PPG) to detect Blood Volume Pulse
(BVP) and derive HR and Inter-Beat Interval (IBI) time series. The device outputs
raw BVP data sampled at 64 Hz and utilizes this data to automatically generate HR
and IBI measurements. Despite its capabilities, the E4 can experience significant
missing IBI data due to movement or baseline shifts in the BVP signal, which may
affect short-term heart rate variability metrics [51], [52].

Device for NDRT

An Android phone with a 6.1-inch touchscreen display was used as a NDRT during the
autonomous driving simulation. Participants engaged with the Typing Speed Test applica-
tion in word practice mode, which randomly selected words for the user to type, as shown in

18



Figure 3.1. The application displayed a single word at a time, which the participants were
required to type as quickly and accurately as possible on the phone’s virtual keyboard.
This task was designed to simulate a realistic distraction, thereby creating a distracted
cognitive state similar to real-world driving conditions where drivers might engage with
their phones. Engaging in this secondary task aimed to replicate the cognitive load and
attentional shift experienced during actual driving distractions. More information related
to the device used for the typing task, including an example paragraph of the typing task,
can be found in Section A.1.3.

3.3.3 Driving Scenarios

Participants were allowed 10-15 minutes to familiarize themselves with the driving and
control maneuvers of the simulator on the same highway condition as the actual scenarios
with guidelines on AP controls and ADS limitations. Each participant performed four
driving scenarios in the simulation in highway conditions with the target speed between
110-120 km/h, each consisted of one TOR event issued for the participant to regain manual
control with constant TOR locations based on 100% alert accuracy upon road hazards. Two
sets of TOR alert settings were assigned conditionally according to the subject group, and
a secondary task was assigned that varies mild or strong alert settings.

Participants were given control over the start button, the ACC, and the AP and were
advised to activate the AP to the greatest extent possible based on their evaluations of
the safety and limitations of the system. Approximately halfway through the third and
fourth scenarios, participants were asked to perform a secondary task while maintaining
the priority of the driving task and be ready for any TOR. After driving for approximately
5-7 minutes, depending on the cruising speed before the TOR event, participants were
alerted by TOR to resume manual driving and then asked to stop the simulation shortly
after mitigating the hazard.

All driving situations also included background noise from the simulated engine and the
surrounding environment with a maximum volume of 70 dB. After each scenario, partici-
pants were asked to complete post-scenario questionnaires related to alert effectiveness and
situation awareness. Each driving scenario lasts approximately 5-8 minutes with conditions
shown in Figure A.2 with details as follows:
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Scenario 1 (S1): Road closure due to construction on two left lanes

• Hazard Condition: Static Distance with warning signs every 50m starting at 300m
before the construction zone on a straight road, driving in good visibility condition.

• Ego Vehicle Driving Lane: 2nd lane from the left (left lane for passing)

• TOR Alert location: 300m before crash

• TTC threshold at 110-120 km/h: 8-9 seconds

• Condition to Mitigate Hazard: Stop before crash and/or steer to the 3rd lane.

• Scenario Order: 1st or 4th scenario

Scenario 2 (S2): Emergency stop for an animal on the road in low visibility

• Hazard Condition: Static distance for to stop due to animal (moose) moving in
perpendicular to the straight road, visible at 350m, driving in fog condition with
400m visibility. The leading vehicle starts full braking 200m before the crash (then
fully stops at 20m before the crash).

• Ego Vehicle Driving Lane: 2nd lane from the left (left lane for passing)

• TOR Alert location: 250m before crash into the leading car, 300m before hitting
the animal

• TTC threshold at 110-120 km/h: 8-9 seconds

• Condition to Mitigate Hazard: Full stop before crash

• Scenario Order: 2nd or 3rd scenario

Scenario 3 (S3): Slower vehicle suddenly changing lanes from the right, emerg-
ing from the blind spot

• Hazard Condition: Large truck driving on the 3rd lane at 90 km/h on a straight
road, cutting off to the ego vehicle’s lane at 40m in front of the ego vehicle with left
signaling, driving in good visibility condition.

• Ego Vehicle Driving Lane: 2nd lane from the left (left lane for passing)
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• TOR Alert location: 40m behind the merging truck (longitudinal distance)

• TTC threshold at 110-120 km/h: 6-8 seconds

• Condition to Mitigate Hazard: Slow down to less than 90 km/h or steer to the
1st (left) lane

• Scenario Order: 2nd or 3rd scenario

Scenario 4 (S4): Pulled over vehicles merging onto the right lane behind blind
curved road

• Hazard Condition: Pulled over and cop vehicles merging with a visible light signal
at 260m started moving shortly before the alert, moving at 5-10 km/h and acceler-
ating, driving in good visibility condition.

• Ego Vehicle Driving Lane: 4th lane (right lane, allowing to pass on the right).

• TOR Alert location: 250m before merging location

• TTC threshold at 110-120 km/h: 7-8 seconds

• Condition to Mitigate Hazard: Stop before crash and/or steer to the 3rd lane

• Scenario Order: 1st or 4th scenario

3.3.4 Driver Dashboard Designs

The instrumental cluster was designed using the VI-Grade ADAS dashboard (Figure 3.3a)
as a reference which incorporated the icon components that were derived from ADAS icons
in a Chevrolet vehicle [53]. The dashboard includes a digital speedometer with an ACC
status indicator and a target speed on the left side of the dashboard, a current gear on the
right, a vehicle-road display in the middle for visual lane departure warnings, and an angle-
tracking steering wheel icon. Utility lights include turn signals, autopilot status, and active
automatic emergency brake (AEB) features located at the top. The use of color in normal
driving mode utilizes light color (HEX #24FACB) highlights and white icons to indicate
inactive automation, for instance, a white steering wheel icon to indicate manual steering
mode as shown in Figure 3.2a similar to the existing design. Active automation features
are presented with corresponding icons changed to green color (HEX #32D74B) with a

21



(a) Dashboard in manual mode (b) Dashboard in Autopilot (AP) mode

Figure 3.2: Example of visual dashboard design

visual message to inform about the activated feature, furthermore, the overall dashboard
highlight color changes to green color only when AP feature is activated. The green color
was designed based on GM’s Super Cruise[54] active autopilot status as shown in Figure
3.3b.

3.3.5 TOR Alert Designs

Both TOR alert designs consist of visual messages appearing on the dashboard and a
nonverbal sound alert broadcast through surround speakers in the vehicle. The visual
message components were reused from the existing VI-Dashboard component that imitates
the GM dashboard warning message design, it was modified to display a warning message
for 8 seconds using bold and red fonts for the action message along with a white message
for short alert reasons. In addition, the red hands icon (HEX #FF5F5F) flashes over the
steering wheel icon on the steering wheel during TOR with a frequency of 4 Hz. However,
the dashboard color remains green to indicate active autopilot until the driver takes over
to resume manual control. The same designs were used for the single and dynamic alert
groups of participants and did not include graphic illustrations for specific TOR scenarios
on the dashboard. The comparison between mild and strong alert can be found in 3.1

Mild Alert Design

Mild alert visual messages include white text above stating ”Potential takeover required”
with a red action message stating ”STAY VIGILANT!” as an indirect action message aimed
at getting the driver’s attention to the surroundings. A short low-to-high-pitched auditory
alert plays for 0.5 seconds when the visual message starts to appear on the dashboard and
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(a) VI-Grade’s original ADAS dashboard design (with lane keep warn-
ing) [53]

(b) GM’s active Super Cruise design [54] (c) GM’s TOR alert design [54]

Figure 3.3: Referenced visual dashboard design.

(a) Mild alert message (b) Strong alert message

Figure 3.4: Example pop-up alert designs on dashboard.
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shows for 8 seconds or until the driver takes over. The Fast Fourier Transform (FFT) spec-
trum and spectrogram are illustrated in Figure ?? and ?? respectively. The spectrogram
delineates that the mild alert sound has high intensity in brief pulses at frequencies of 400
Hz and 600 Hz, occurring within a duration of 0.2 seconds with the maximum alert volume
at 85 dB.

Strong Alert Design

Strong Alert visual messages include white text stating ”Unexpected Event Detected” with
a red action message stating ”TAKE CONTROL!” aiming to advise the driver to takeover
immediately. Three cycles of ascending pitch tones, each enduring 0.4 seconds, featuring
prominent frequencies at 380, 480, 750, and 950 Hz, continue for a total of 1.2 seconds at a
volume capped at 90 dB. According to the spectrogram in Figure ??, the sound spectrum
exhibits increased intensity and extended duration across various frequencies, suggesting a
more robust sound profile compared to the mild alert.

Alert Perception Test

An alert perception test was created to validate the urgency perception of the alert in a
controlled environment without traffic using an identical simulation environment as the
scenarios. Following the fourth scenario, thirty participants were asked to take the alert
perception test. Fifteen participants in the dynamic alert group were presented with both
types of alert in a random sequence, while participants in the single alert group were first
shown the exposed type and followed by the other alert type. Short questions related to
perceived urgency and annoyance were asked immediately after each alert was presented.

3.3.6 Independent Variable(s)

• TOR Alert Intensity Design: This study utilizes two alert designs, categorized as
mild and strong. The ’single alert’ group receives a consistent alert type, either mild
or strong, regardless of their cognitive state. The ’dynamic alert’ group receives alerts
tailored to their cognitive state: mild alerts are issued when the driver is presumed
to be fully attentive (without a secondary task), and strong alerts are issued when
the driver is presumed to be distracted (engaged in a secondary task). This design
tests the hypothesis that dynamic alerts, which adjust based on the driver’s cognitive
state, enhance driving experience and takeover performance.
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• Presumed Cognitive State:Drivers are classified into two cognitive states: con-
centrated and distracted. Concentrated states are assumed in scenarios without a
secondary task, allowing the driver to focus fully on driving. Distracted states are
assumed when the driver engages in a secondary task, potentially impairing their fo-
cus on driving. This categorization tests the hypothesis that drivers’ cognitive states
affect their response to different alert intensities.

3.3.7 Dependent Variable(s)

• Takeover Performance: This is assessed by measuring the driver’s reaction times
and the quality of maneuvers during takeover incidents, with metrics such as ac-
celeration and distance from potential hazards recorded. These measures provide
empirical evidence to support or refute the hypothesis concerning the effectiveness of
dynamic versus single alerts in varying cognitive states.

• Alert Perception and Satisfaction: Drivers’ satisfaction with and perception
of the alert system are evaluated through post-experiment questionnaires. This as-
sessment helped determine whether the alert intensity was perceived as too strong,
appropriate, or insufficient in different cognitive states to directly test the hypothesis
on alert perception in different cognitive states.

3.3.8 Controlled Variable(s)

• Driving Simulator Configuration: Ensure consistent simulator settings across
all experimental sessions, including visual design and resolution, simulator hardware
including simulation controls, and software version of ACC and AP.

• Driving Scenarios and TOR Timing: Four driving scenarios were exposed to
all participants on the same four-lane highway condition, the order of the scenarios
being counterbalanced between scenarios 1 and 4, and scenarios 2 and 3. Variations
in road conditions, traffic density, and environmental factors are controlled to be
similar for each scenario. TOR alerts were set to be issued based on the location
that was timed to be similar across all scenarios, whereas the alert trigger locations
were placed at the relevant location to the incident.

• TOR Modalities: The two multimodal TOR alert designs were presented using
auditory and visual modalities as recommended in related studies to reduce reac-
tion time with lower alert startle [27], [29]. Auditory alerts were delivered using the
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vehicle’s built-in sound system, and alert messages were visually displayed on the
dashboard in front of the driver. Alerts involving both auditory and visual compo-
nents were exclusively used for TOR alerts. In addition, the dashboard displayed
other visual messages, such as activating or deactivating ACC or AP features. To re-
duce the cognitive load associated with signal detection, each TOR alert was designed
to always warn the driver of the predicted incident in each scenario.

• Driving Lane and ACC Target Speed: A consistent lane use and speed control
minimize variations in driving behavior not related to cognitive state or alert design.
Participants were directed to use a designated lane with an ACC target speed ranging
from 110 to 120 km/h to control similar driving duration in each scenario and the
time to collision threshold.

• Non-driving-related Secondary Task and Workload Level: The introduction
of a typing task as a controlled secondary task simulates increased cognitive load,
facilitating the examination of its effect on the efficiency of different alert intensities.
Participants were asked to perform a typing task on the touch screen phone as a
secondary task approximately halfway through each scenario for the third and fourth
scenarios. The complexity of the tasks will be similar for all experiments, which is
to type as the appearing word and continue to the next word using the spacebar. By
performing a secondary task while driving, the driver is assumed to have a higher
workload with a lower vigilance level on the road than merely performing a driving
task due to increasing off-road glance and occupied physical workload [1], [45], [55].

3.3.9 Data Collection

• Demographics and screening: Forty-one participants aged between 18-54 years
old with at least an Ontario G2 driver’s license or equivalent and one year of driving
experience. The age groups of the participants consisted of 72.5% of 18-24 years
(avg. 4.1 years of driving experience), 25% of 24-34 years (avg. 7.9 years of driving
experience, and 2.5% of 45-54 years (avg. 38 years of driving experience).

• Pre-study questionnaires: Participants were asked to complete questions on their
experience with ADS, a self-assessment questionnaire on driving behavior, and the
Short Motion Sickness Susceptibility Questionnaire (Short-MSSQ) before the exper-
iment. Short-MSSQ was used to inform registered participants who are at risk of
experiencing simulator sickness. Most participants were familiar with ADS features
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(a) Participants’ experience with ADS features. (b) Level of ADS usage in daily lives.

Figure 3.5: Driver assistance features familiarity of the participants.

where 35.7% of them use ADS all the time, with over 68% having used ACC and
lane-keep assist (LKA) features, as shown in Figure 3.5.

• Quantitative measures: Data obtained from the driving simulation on speed, ac-
celerations, driving maneuvers (throttle, brake, steering, indicators, and AP control),
and calculated response times in relation to the alert trigger were gathered in CSV
format for each specific scenario at 1000 Hz sampling rate.

• Eye Tracker: Participants’ eye movements with video recordings in first-person
view were collected for eye tracking to calculate gaze movements during driving in
each scenario. The eye tracker was calibrated at the beginning of the experiment for
each participant.

• Heart Rate and Electrodermal Activities: Participants were asked to wear the
heart rate monitor device on their non-dominant wrist to minimize interference with
the secondary task throughout the study. The HR data was collected at a 64 Hz
sampling rate.

• Post-Scenario Questionnaires: After each scenario, participants completed brief
questionnaires to assess different aspects of the TOR alerts. These evaluations in-
cluded attention-capturing, timing relevance of TOR alerts, assistance in understand-
ing the takeover situation, alert comprehension, confidence in takeover abilities, level
of alert-induced annoyance, and overall satisfaction with the alert design, all rated on
a 5-point Likert scale. The questionnaire mentioned is located in Appendix Section
A.2.
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Chapter 4

Results and Discussion

This chapter delves into the analysis and discussions regarding the outcomes of the exper-
iments using simulation data to assess takeover performance, eye tracking data to gauge
the duration of glances at various stages of the takeover process, and qualitative analysis
of alert effectiveness and perceptions from post-scenario questionnaires. The results of
certain participants in the experiment were omitted due to no alerts because of the system
or incomplete data during the scenario. Additionally, all heart rate data were deemed
unreliable because they were inconsistent and undetectable when there were movements
on the wrist to which the device was attached while driving. It is important to note that
data omission due to pre-takeover actions may cause missing data, particularly in scenario
1 where the TOR was triggered by the presence of a construction zone. This preemptive
takeover by participants resulted in a lack of relevant data for analysis in some instances.

4.1 Experiment Results and Data Analysis

4.1.1 Analysis of Quantitative Results

To analyze the simulation data, driver reactions were extracted using a Simulink model
that derives driver response following the TOR as braking, steering, and using indicators
in each scenario. Simulated driving measures related to speed, acceleration, and AP toggle
control were included in the analysis to determine takeover performance. Data from each
scenario were correlated with the assigned group and secondary task for comparison. As
shown in Figure 4.1, the mean cruising velocities while under AP control prior to TOR
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were 116.15 km/h (SD = 4.32) in Scenario 1, 113.87 km/h (SD = 7.45) in Scenario 2,
116.92 km/h (SD = 3.27) in Scenario 3, and 115.45 km/h (SD = 4.60).

Participants were allowed to control the AP based on their judgment of safety, resulting in
deactivation of the AP preceding TOR incidents in 22.22% of 144 instances, as shown in
Figure 4.2. The timing of the takeover depended on the nature of the driving scenario. The
rate of takeover before TOR was higher in scenarios with static incident distance, leading
to 60.61% (20 of 33 sessions) of drivers deactivating the AP before the alert in Scenario
1, where the construction zone was visible more than 500 m ahead of the alert at 300
m. The rate of takeover before the onset of TOR was lower in situations where incidents
were more difficult to detect: 15.79% (6 of 38 sessions), 13.89% (5 of 36 sessions), and
2.70% (1 of 37 sessions) in Scenarios 2, 3, and 4, respectively. Some drivers were observed
to take control before receiving an alert due to the actions of surrounding AI vehicles
or driving conditions unrelated to the designed incidents. To conduct a comprehensive
takeover analysis within the scope of this study, it was imperative to exclude certain data
from the driving sessions. Specifically, this entailed removing instances wherein drivers
transitioned to manual control before the initiation of the TOR, as well as any incomplete
data resulting from data collection anomalies, such as instances where a TOR was not
issued due to system errors. It is important to note that data omission due to pre-takeover
actions may cause missing data, particularly in Scenario 1 where the TOR was triggered
by the presence of a construction zone.

Takeover Reactions Times

The measurement of driver reaction times was calculated based on the time stamp of
the issued TOR across three distinct types of reactions needed for takeover: braking,
turn signaling, and steering, whereas the first reaction indicates the takeover time (fastest
response to takeover). Table 4.1 displays the average takeover times for each scenario,
covering 41 participants and omitting instances where the driver regained manual control
prior to the TOR. The overall average takeover time was 2.85 seconds (SD = 1.88) in the
Construction Zone Scenario (S1), 4.32 seconds (SD = 1.28) in the Animal on the Road
Scenario (S2), 2.04 seconds (SD = 1.10) in the Blind Spot Lane Change Scenario (S3),
and 3.59 seconds (SD = 1.70) in the Pulled Over Vehicle Merging Scenario (S4). When
contrasting the mean response durations across scenarios with and without NDRT, it was
observed that, in certain instances, prolonged average takeover times were evident in the
absence of secondary tasks. Notably, in the Construction Zone Scenario (S1), average
reaction times without NDRT were 5.29 seconds (compared to 2.35 seconds when engaging
in typing activities) during mild alerts, while in the Pulled Over Vehicle Merging Scenario
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Average Takeover Time (second)
All Scenarios Scenario 1 (n: 12) Scenario 2 (n: 31) Scenario 3 (n: 31) Scenario 4 (n: 34)

Alert Type Group Measure
Average Average No Task Typing Average No Task Typing Average No Task Typing Average No Task Typing

Average 4.15 5.29 5.29 5.29 5.29 1.79 1.79 4.62 4.62
5th %iles 1.31 4.47 4.47 3.70 3.70 0.60 0.60 1.58 1.58
95th %iles 6.85 5.77 5.77 6.85 6.85 3.74 3.74 8.16 8.16

Dynamic

SD 1.98 0.58 0.58 1.04 1.04 0.96 0.96 2.02 2.02
Average 3.28 2.35 2.35 4.32 3.98 4.60 1.82 1.83 1.82 3.63 4.50 2.33
5th %iles 1.06 1.72 1.72 1.81 1.81 3.87 0.81 0.81 1.06 1.24 1.44 1.24
95th %iles 5.70 2.99 2.99 5.70 5.13 5.70 3.74 3.74 2.45 5.99 5.99 2.75

Single

SD 1.57 0.52 0.52 1.04 1.32 0.60 0.93 1.13 0.58 1.63 1.50 0.63
Average 3.65 3.82 5.29 2.35 4.75 4.82 4.60 1.81 1.80 1.82 4.00 4.56 2.33
5th %iles 1.06 1.72 4.47 1.72 1.81 1.81 3.87 0.60 0.60 1.06 1.24 1.44 1.24
95th %iles 5.99 5.77 5.77 2.99 6.85 6.85 5.70 3.74 3.74 2.45 8.16 8.16 2.75

Mild Alert

All Groups

SD 1.81 1.57 0.58 0.52 1.14 1.31 0.60 0.95 1.03 0.58 1.85 1.78 0.63
Average 2.83 2.25 2.25 3.35 3.35 2.22 2.22 3.22 3.22
5th %iles 0.78 0.89 0.89 1.60 1.60 0.70 0.70 0.78 0.78
95th %iles 5.41 5.52 5.52 4.91 4.91 4.99 4.99 5.41 5.41

Dynamic

SD 1.48 1.90 1.90 1.25 1.25 1.23 1.23 1.41 1.41
Average 3.05 1.13 1.13 4.44 4.27 4.58 2.21 2.30 2.11 3.21 4.08 2.16
5th %iles 0.86 0.86 0.86 3.27 3.31 3.27 1.03 1.26 1.03 0.79 3.39 0.79
95th %iles 5.99 1.40 1.40 6.19 5.09 6.19 4.10 3.70 4.10 5.99 5.99 4.15

Single

SD 1.57 0.27 0.27 0.95 0.74 1.07 1.07 0.93 1.18 1.53 0.93 1.44
Average 2.92 1.88 1.13 2.25 3.85 4.27 3.74 2.22 2.30 2.19 3.22 4.08 3.00
5th %iles 0.79 0.86 0.86 0.89 1.60 3.31 1.60 0.70 1.26 0.70 0.78 3.39 0.78
95th %iles 5.41 5.52 1.40 5.52 6.19 5.09 6.19 4.99 3.70 4.99 5.41 5.99 5.41

Strong Alert

All Groups

SD 1.52 1.65 0.27 1.90 1.25 0.74 1.33 1.16 0.93 1.22 1.45 0.93 1.48
Average 3.27 2.85 3.63 2.29 4.32 4.70 4.00 2.04 1.94 2.13 3.59 4.45 2.85
5th %iles 0.86 0.86 0.86 0.89 1.77 1.81 1.60 0.70 0.60 0.70 0.79 1.44 0.78
95th %iles 5.90 5.77 5.77 5.52 6.19 6.85 5.70 4.10 3.74 4.99 5.99 8.16 5.41

Overall All Groups

SD 1.71 1.88 2.10 1.48 1.28 1.23 1.22 1.10 1.03 1.14 1.70 1.63 1.37

Table 4.1: Average takeover time in seconds after TOR in each scenario separated by alert type (Mild and Strong) with 5th
and 95th percentiles. Color coding indicates longer duration in red and shorter duration in green, based on the median values
of average reaction time. Note: Missing data in single groups was caused by omitted data from takeover before TOR.

Figure 4.2: This pie chart illustrates the percentage of total cases with a distinct count of participants who decided to
takeover before the takeover request (TOR) (orange) or takeover after TOR (blue). The data is segmented by scenario and
task condition, providing a comprehensive view of the participants’ takeover decisions across different contexts.
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(S4), the overall average reaction time was 4.45 seconds (compared to 2.85 seconds when
typing). However, in the Construction Zone Scenario (S1) under heightened alertness, it
was observed that the average response time shortened when participants were not engaged
in a secondary task, with a recorded duration of 1.13 seconds (SD = 0.27) compared to
2.25 seconds (SD = 1.90) during typing. On average, strong alerts were found to induce
faster reactions in the Construction Zone Scenario (S1; M = 1.88 seconds, SD = 1.65), the
Animal on the Road Scenario (S2; M = 3.85 seconds, SD = 1.25), and the Pulled Over
Vehicle Merging Scenario (S4; M = 3.22 seconds, SD = 1.45) when compared to mild alerts
in the Construction Zone Scenario (S1; M = 3.82 seconds, SD = 1.57), the Animal on the
Road Scenario (S2; M = 4.75 seconds, SD = 1.14), and the Pulled Over Vehicle Merging
Scenario (S4; M = 4.00 seconds, SD = 1.85).

Comparing the average takeover times of each participant with and without NDRT, signif-
icantly faster takeover responses were observed in all scenarios with NDRT (0.316 seconds
in the Construction Zone Scenario (S1), 1.177 seconds in the Animal on the Road Scenario
(S2), 0.672 seconds in the Blind Spot Lane Change Scenario (S3), and 1.559 seconds in
the Pulled Over Vehicle Merging Scenario (S4)), t = -2.94, p = .0058. Furthermore, when
analyzing among the participant groups, the dynamic group had the strongest significance
in response time reduction with an average of 1.749 seconds faster, t = -2.82, p = .0117,
while there was no significant difference among participants in the single group: an average
of 0.380 seconds faster, t = -1.33, p = .2195 in the mild alert group, and an average of
0.276 seconds faster, t = -0.29, p = .7810 in the strong alert group.

The analysis of reaction times during takeover is illustrated in Figure 4.4 and summarized
in Table 4.1. Notably, drivers responded an average of 1.179 seconds faster when presented
with strong alerts across all groups. It was observed that engaging in a typing task generally
led to faster reaction times in all groups, except in the single alert group during the
Construction Zone Scenario (S1) and the mild alert group in the Animal on the Road
Scenario (S2), as detailed in Figure 4.4. Furthermore, in the dynamic group, drivers
reacted significantly faster by an average of 1.749 seconds when responding to strong alerts
during typing tasks, compared to a modest improvement of 0.309 seconds among drivers
in the single alert groups, with the most pronounced difference noted in the Animal on the
Road Scenario (S2).

Analysis of the type and timing of the first response revealed that braking was the predomi-
nant initial reaction across scenarios, regardless of secondary task involvement, as depicted
in 4.3. The use of turn signals was the next most frequent response. However, there was no
significant difference in the takeover times among reaction types. Exceptionally quick re-
actions (within 1 second) occurred under strong alert conditions in the Construction Zone
Scenario (S1) without a secondary task and in the Blind Spot Lane Change Scenario (S3)
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Group Reaction Type T-Statistic p-Value
Dynamic Indicator 1.04 0.32
Dynamic Steering -2.89 0.013*
Dynamic Braking -2.16 0.05*
Single Indicator -2.01 0.079.
Single Steering -0.6 0.558
Single Braking -2.04 0.059.

Table 4.2: Paired T-test (ttest rel in scipystats Python library) on the differences in reaction times of takeover maneuvers
(using indicator, braking, and steering) in all scenarios with and without NDRT across the dynamic and single groups.

with typing. Conversely, very delayed reactions (exceeding 6 seconds) were recorded in the
Construction Zone Scenario (S1) with mild alerts. There were no significant performance
differences between the dynamic and single alert groups when averaged across all scenarios.
Notably, reaction times were reduced in the Blind Spot Lane Change (S3) and Pulled Over
Vehicle Merging (S4) Scenarios when drivers were engaged with their phones, except for
the Blind Spot Lane Change Scenario (S3). However, slower reactions were observed with
mild alerts when no secondary task was present. Regarding safety margins, mild alerts
were more effective at maintaining safer distances from hazards in scenarios without sec-
ondary tasks, whereas the strongest safety performance was observed with strong alerts in
scenarios involving typing tasks.

When comparing the difference in reaction times between the scenarios with no secondary
task and the scenarios with NDRT within the same participant groups, faster response
times were observed in general except for the Construction Zone Scenario (S1) where the
response time is much slower for the strong alert group. Noticeably faster response times
were observed among participants in the dynamic alert group that alerts changed to strong
alert design in all scenarios compared to the single alert groups as shown in Figure 4.4.
The largest difference was found in the Animal on the Road Scenario (S2) with over 2
seconds faster on average for the strong alerts in the dynamic group in Scenarios 2 and 4.
There were no significant differences when comparing within the single groups. However,
as mentioned, reaction times were significantly faster when comparing the secondary task
with typing, using ANOVA, resulting in F = 6.25, p = .014 for braking reactions and F
= 9.12, p = .003 for steering reactions. By comparing the differences in reaction times
between the no-task and typing scenarios among the dynamic and single groups using
paired t-test, as shown in Table 4.2, steering and braking were significantly faster with a
p-value of .013 and .05 respectively, with marginally close to significant in braking (p =
.066) among participants in the dynamic group.
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Scenario Metric Factor Sum of Squares F-value p-value
1 (Construction Zone) Min Front Distance Design 4352.00 2.37 .129
1 (Construction Zone) Min Front Distance Secondary Task 3943.00 2.15 .149
1 (Construction Zone) Min Front Distance Group 9486.00 5.17 .027*
1 (Construction Zone) Max Brake Acceleration Design 0.0042 0.20 .655
1 (Construction Zone) Max Brake Acceleration Secondary Task 0.0090 0.44 .511
1 (Construction Zone) Max Brake Acceleration Group 0.0404 1.98 .170
1 (Construction Zone) Max Lateral Acc. Neg Design 0.0092 1.85 .180
1 (Construction Zone) Max Lateral Acc. Neg Secondary Task 0.0111 2.24 .141
1 (Construction Zone) Max Lateral Acc. Neg Group 0.0105 2.12 .152
1 (Construction Zone) Max Lateral Acc. Pos Design 0.0007 0.16 .691
1 (Construction Zone) Max Lateral Acc. Pos Secondary Task 0.0001 0.02 .879
1 (Construction Zone) Max Lateral Acc. Pos Group 0.0010 0.22 .645
2 (Animal on Road) Min Front Distance Design 2930.30 2.86 .094.
2 (Animal on Road) Min Front Distance Secondary Task 1136.67 1.11 .295
2 (Animal on Road) Min Front Distance Group 2349.84 2.30 .134
2 (Animal on Road) Max Brake Acceleration Design 0.0765 1.85 .177
2 (Animal on Road) Max Brake Acceleration Secondary Task 0.0027 0.07 .800
2 (Animal on Road) Max Brake Acceleration Group 0.0018 0.04 .834
2 (Animal on Road) Max Lateral Acc. Neg Design 0.0074 2.19 .143
2 (Animal on Road) Max Lateral Acc. Neg Secondary Task 0.0148 4.38 .040*
2 (Animal on Road) Max Lateral Acc. Neg Group 0.0057 1.69 .198
2 (Animal on Road) Max Lateral Acc. Pos Design 0.0200 16.21 .0001***
2 (Animal on Road) Max Lateral Acc. Pos Secondary Task 0.0246 20.35 .00002***
2 (Animal on Road) Max Lateral Acc. Pos Group 0.0000 0.00 .994
3 (Blind Spot Lane Change) Min Front Distance Design 6885.51 2.02 .160
3 (Blind Spot Lane Change) Min Front Distance Secondary Task 305.08 0.09 .766
3 (Blind Spot Lane Change) Min Front Distance Group 18.59 0.01 .941
3 (Blind Spot Lane Change) Max Brake Acceleration Design 0.0961 2.81 .099
3 (Blind Spot Lane Change) Max Brake Acceleration Secondary Task 0.0315 0.92 .342
3 (Blind Spot Lane Change) Max Brake Acceleration Group 0.0094 0.27 .603
3 (Blind Spot Lane Change) Max Lateral Acc. Neg Design 0.0068 2.04 .158
3 (Blind Spot Lane Change) Max Lateral Acc. Neg Secondary Task 0.0003 0.09 .763
3 (Blind Spot Lane Change) Max Lateral Acc. Neg Group 0.0491 14.65 .0003***
3 (Blind Spot Lane Change) Max Lateral Acc. Pos Design 0.0005 0.09 .766
3 (Blind Spot Lane Change) Max Lateral Acc. Pos Secondary Task 0.0007 0.13 .716
3 (Blind Spot Lane Change) Max Lateral Acc. Pos Group 0.0471 9.05 .0039**
4 (Pulled Over Vehicle) Min Front Distance Design 753.22 0.26 .609
4 (Pulled Over Vehicle) Min Front Distance Secondary Task 3686.84 1.29 .259
4 (Pulled Over Vehicle) Min Front Distance Group 2038.55 0.71 .401
4 (Pulled Over Vehicle) Max Brake Acceleration Design 0.0448 1.22 .274
4 (Pulled Over Vehicle) Max Brake Acceleration Secondary Task 0.0024 0.07 .800
4 (Pulled Over Vehicle) Max Brake Acceleration Group 0.1242 3.37 .071.
4 (Pulled Over Vehicle) Max Lateral Acc. Neg Design 0.1516 11.81 .001***
4 (Pulled Over Vehicle) Max Lateral Acc. Neg Secondary Task 0.0183 1.43 .236
4 (Pulled Over Vehicle) Max Lateral Acc. Neg Group 0.0127 0.99 .324
4 (Pulled Over Vehicle) Max Lateral Acc. Pos Design 0.0280 5.79 .019*
4 (Pulled Over Vehicle) Max Lateral Acc. Pos Secondary Task 0.0052 1.08 .303
4 (Pulled Over Vehicle) Max Lateral Acc. Pos Group 0.0005 0.11 .738

Table 4.3: Type II ANOVA analysis (using ols model in statsmodels Python library) of takeover safety metric interactions on
group (dynamic vs. single), alert design (mild vs. strong), and secondary task (no NDRT vs. with NDRT) for each scenario
(degrees of freedom = 1).
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Figure 4.5: Average braking measures during the 0-3 seconds after takeover in each scenario. The graph presents two key
metrics: the percentage of brake requests and the average braking acceleration (g). Each scenario is analyzed under different
alert conditions (Mild and Strong) and secondary task conditions (No task and Typing), allowing for a comprehensive
comparison of braking behavior across varying conditions.

Takeover Safety Analysis

Safe takeover is indicated by how hard the brake is applied, the lateral accelerations, and
the use of an indicator on a change of direction [3]. The average of the measures focuses
on the time range of 1-8 seconds after TOR which was determined based on the rounded
average takeover time with a 90% confidence interval. As observed, six collisions occurred
during the takeover in the Animal on the Road Scenario (S2) and the Pulled Over Vehicle
Merging Scenario (S4) combined. The dynamic group experienced two frontal collisions in
Scenario 2, one frontal collision and a rear-end collision after lane change in Scenario 4,
characterized by mild alerts with average collision times after takeover of 7.24 seconds and
4.53 seconds respectively. Additionally, within Scenario 4, the dynamic group experienced
one collision marked by a strong alert at 1.55 seconds post-takeover while the single group
encountered another collision also following the strong alert after 2.68 seconds resuming
control.
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Figure 4.6: Average braking measures during the 1-8 seconds after takeover in each scenario. The graph presents two key
metrics: the percentage of brake requests and the average braking acceleration (g). Each scenario is analyzed under different
alert conditions (Mild and Strong) and secondary task conditions (No task and Typing), allowing for a comprehensive
comparison of braking behavior across varying conditions.
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• Braking

Harsh braking indicates a more dangerous takeover because this may cause rear-ended
accidents on the road. This study investigates how hard the driver brakes in percent
and the acceleration of the braking to determine the safety of the takeover. In this
study, the brake is the main control for disabling ACC and AP to gain manual control.
Additionally, all takeover scenarios include hazards in the front. The analysis of the
use of brakes in the first three seconds after the alert shows that harsher brakes were
used in the Blind Spot Lane Change Scenario (S3) with a secondary task in single
alert groups (-0.22 g) and in the Construction Zone Scenario (S1) in the dynamic
group (-0.14 g) as shown in Figure 4.5. Overall, the highest brake accelerations were
observed in the Animal on the Road Scenario (S2) with a mild alert as 0.61 (SD =
0.26) g without NDRT and 0.60 (SD = 0.005) g while typing. In all situations, the
strong alerts led to faster and slightly more intense braking in the initial 3 seconds
following the alert compared to the mild alerts. However, a more extended braking
period was observed in the Animal on the Road Scenario (S2) and the Pulled Over
Vehicle Merging Scenario (S4) after the takeover request, as illustrated in Figure 4.6.

The minimum front distances were measured to analyze risky takeovers. However,
across all scenarios, none of the factors, including design, secondary task, or group,
showed a significant effect on minimum front distance or maximum brake accelera-
tion. This consistency across scenarios suggests that these specific categorical dis-
tinctions in the experiment do not influence the intensity of braking behavior under
the conditions tested.

• Steering

Steering angle velocities can be used to analyze fast steering turns during the takeover,
while lateral accelerations can be used to measure how hard the vehicle turns. Fast
steering velocities and high lateral accelerations during takeover can cause unsta-
ble steering, which could lead to unsafe situations. Figure 4.7 shows how drivers
mitigated road hazards using steering in each scenario. In the Construction Zone
Scenario (S1), there were fewer instances of quick steering maneuvers, whereas in
the other scenarios, particularly in the Pulled Over Vehicle Merging Scenario (S4)
where a car pulled over was merging from the right shoulder, most drivers turned
left. In the Blind Spot Lane Change Scenario (S3), there were strong alerts on both
the left and right sides as evidenced by rapid steering turns (0.341 and 0.4613 rad/s
respectively).

According to Table 4.3, higher lateral accelerations were significantly influenced by
alert design, particularly noted in scenarios involving mild alerts. Specifically, during
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the Pulled Over Vehicle Merging Scenario (Scenario 4), the most pronounced lateral
accelerations were observed. In this scenario, the mean lateral acceleration for the
single group was notably higher at -0.164 g compared to -0.103 g for the dynamic
group, indicating a considerable effect of group categorization on the response to mild
alerts. Furthermore, significant differences were also identified in the Blind Spot Lane
Change Scenario (Scenario 3). In this scenario, the dynamic group exhibited greater
lateral acceleration when turning left, reaching a mean of 0.121 g, with this finding
being statistically significant (p < 0.001, degrees of freedom = 1). Additionally, the
mild alert design was found to influence stronger right lateral acceleration in scenar-
ios involving animals on the road, highlighting how alert intensity can differentially
impact driver responses based on the nature of the alert and the immediate driving
context.

4.1.2 Physiological Response during Takeover

Eye movement data was collected simultaneously with video footage of the front part of
the vehicle. Unfortunately, out of the total 160 eye-tracking sessions, 107 were deemed
usable for analysis, with 15 sessions being excluded due to incomplete data, and sessions in
which participants disabled AP before alerts were also excluded from the takeover analysis,
which is boiled down to a total of 107 sessions as 13, 31, 29, and 34 sessions for Scenario
1, 2, 3, and 4 respectively.

The analysis of the HR data reveals significant inconsistencies during the periods of TOR
events for all participants, as shown in Figure 4.8. Although the HR data was recorded
at a frequency of 1 Hz using the Empatica E4 wristband, the HR data during the short
takeover periods (10-20 seconds) exhibits a smoothing effect. This effect is markedly dif-
ferent from the more variable HR patterns observed during regular driving intervals before
TOR events. The smoothing is often followed by a sudden drop in heart rate, suggesting
potential inaccuracies or artifacts in the data during these critical periods. Such discrep-
ancies indicate that the HR data collected during takeover events may not reliably reflect
the participants’ physiological responses. After carefully analyzing each participant’s data,
it was determined that the heart rate data recorded during these takeover periods should
be excluded from the final analysis to ensure the reliability of the study’s conclusions
when comparing between alert types or scenarios. However, general trends suggested an
increased HR shortly after TOR compared to HR during cruising in all participants.

In eye movement analysis, the takeover process was segmented into three parts, 20 s before
the TOR, between the TOR and the first response (takeover period), and post-takeover
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until the hazard situation was mitigated. Area of Interest (AOI) were segmented using
automated marker detection with manual area tracking when eye movements were not
found in the front-view footage, usually when the phone was being used. The AOI included
a road, dashboard, phone, and mirrors. Glance and AOI attention ratio calculations were
performed to analyze driver behavior during the takeover.

Pre-Alert AOI Attention Ratio

During the experiment, drivers were asked to type on the phone as much as possible when
they felt it was safe enough to do so to replicate the realistic typing task in the real world.
According to the attention ratio in Figures 4.9 and 4.10, the most attention was highest
on the road when there was no secondary task; however, when typing (a secondary task),
the attention of drivers to the road decreased substantially, observations indicated similar
phone usage with an average 34% attention ratio that reduced road attention to less than
half before alerts, which is expected as they were engaged with their phones. Interestingly,
the road attention in the typing condition with strong alerts is still quite high, indicating
that these alerts may have been effective in capturing the driver’s attention even during a
distracting task.

During Takeover AOI Attention Ratio (from alert to the first response)

During the takeover period among drivers in scenarios without NDRT, increased attention
on the road following the strong alert in all conditions, indicating that drivers were refo-
cusing on driving in response to the alerts, while dashboard attention had an increase in
attention ratio, suggesting that drivers were looking at the dashboard possibly to get more
information about the alert or the situation on the road. The single alert groups, whether
under mild or strong alert conditions, show an increase in road attention, but the strong
alert condition seems to elicit slightly more focused attention on the road compared to
the mild condition. This is especially noticeable in scenarios with a secondary task, where
strong alerts appear to be more effective in redirecting attention.

Post-Takeover AOI Attention Ratio (from the first response until the hazard
is mitigated)

After taking control, the dynamic group maintains high road attention in all scenarios,
indicating that the previous variability in alerts may have established a heightened sense
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of caution or vigilance. Similarly, single-alert groups maintain high attention on the road
after the takeover. However, there is a notable increase in mirror checking in the strong
alert conditions, suggesting that the intensity of the alert may prompt more thorough
post-takeover checks.

4.1.3 Qualitative Insights

In this comprehensive analysis, we delve into the dynamics among various experimental
groups (’Exp Group’), alert designs (’Design’), and the transitions between scenarios with
and without secondary tasks, specifically focusing on attention capturing, understanding,
SA comprehension, TOR timing, confidence, annoyance, and alert design satisfaction. The
summary of the results and statistical analysis, including Type II ANOVA and the group,
alert design, and cognitive state interactions on each metric, are shown in Table 4.4 and
4.5 respectively.

Attention Capturing

Attention-capturing scores gauge how much participants felt that alerts grabbed their
attention during the TOR. Dynamic groups with mild alerts and no secondary task (con-
centrated state) reported an initial mean score of 3.59 (SD = 0.98). Introducing a stronger
alert in this group significantly enhanced the scores to 4.28 (SD = 0.88), indicating better
alert effectiveness. In single groups, transitioning from a concentrated state (no task, M =
4.07, SD = 0.99) to a distracted state (typing, M = 4.67, SD = 0.62) within a mild alert
group demonstrated a notable increase in attention capturing. This trend was consistent
under strong alerts, where the mean score remained high at about 4.38, irrespective of the
presence of a secondary task, highlighting the robust design’s ability to capture attention.
The ANOVA showed a significant effect, F = 8.32, p = .004, when accompanied by the
NDRT.

TOR Timing

Although all the TORs were issued as designed at the same timing across all groups
and designs in each scenario, the perception of well-timed alerts was generally better in
individual groups than in dynamic groups. For instance, single groups without NDRT
(concentrated state) recorded a mean TOR timing of 4.00 (SD = 1.11), which increased to
4.33 (SD = 0.90) in the third and fourth scenarios. This suggests that cognitive engagement
with a secondary task (distracted state) might enhance responsiveness.
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Metric Factor(s) Sum of Squares Df F-value P-value
Group 1.68 1 2.2 0.141
Design 2.34 1 3.07 0.083.
Secondary Task 6.65 1 8.71 0.004**
Group:Design 1.09 1 1.43 0.234
Group:Secondary Task 0.21 1 0.28 0.598

Alert Effectiveness

Design:Secondary Task 1.24 1 1.62 0.206
Group 1.91 1 1.4 0.24
Design 0.03 1 0.02 0.891
Secondary Task 1.64 1 1.2 0.276
Group:Design 1.8 1 1.32 0.253
Group:Secondary Task 0.3 1 0.22 0.639

TOR Timing

Design:Secondary Task 0.91 1 0.67 0.417
Group 0.01 1 0.02 0.897
Design 5.5 1 6.81 0.01**
Secondary Task 1.37 1 1.7 0.195
Group:Design 0.09 1 0.11 0.74
Group:Secondary Task 0 1 0 0.959

Understandability

Design:Secondary Task 0.42 1 0.52 0.473
Group 5.53 1 12.15 0.001***
Design 1.3 1 2.67 0.105
Secondary Task 0 1 0 0.966
Group:Design 0.05 1 0.11 0.742
Group:Secondary Task 0 1 0 0.965

Confidence

Design:Secondary Task 0.42 1 0.47 0.494
Group 0.23 1 0.72 0.398
Design 0.45 1 1.41 0.238
Secondary Task 1.19 1 3.69 0.057.
Group:Design 0.37 1 1.15 0.285
Group:Secondary Task 0.15 1 0.48 0.491

Annoyance

Design:Secondary Task 0.27 1 0.84 0.362
Group 0.91 1 0.92 0.34
Design 4.74 1 4.76 0.031*
Secondary Task 5.76 1 5.79 0.018*
Group:Design 1.53 1 1.54 0.218
Group:Secondary Task 1.22 1 1.22 0.272

Satisfaction Overall

Design:Secondary Task 0.66 1 0.67 0.416

Table 4.5: Type II ANOVA results for various surveyed aspects (using ols model in statsmodels Python library), examining
the influence of the experimental group (dynamic vs. single), alert design (mild vs. strong), secondary task (no NDRT
vs. with NDRT), and their interactions on metrics such as alert effectiveness, TOR timing, understandability, confidence,
annoyance, and overall satisfaction. Significance levels are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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Understandability and SA Comprehension

Scores for understandability remained high across all groups and conditions, with some
significance in better understanding upon strong alerts (p = .01), peaking in single groups
under strong alerts without secondary tasks (M = 4.44, SD = 0.81). However, the abilities
of drivers to comprehend the takeover situation measured as comprehension scores were
more variable, typically decreasing in scenarios that involved secondary tasks (distracted
state), particularly under strong alerts where the mean shifted from higher without tasks
to 1.92 (SD = 1.04) with tasks. However, improvements in comprehension scores were
observed only in the dynamic group.

Confidence

Confidence levels surged notably in scenarios involving secondary tasks (distracted state)
in the third and fourth scenarios, particularly within the dynamic group, where confidence
increased from a mean of 3.03 to 3.93 (SD = 0.85) with a highly significant difference, p
= .001. This suggests that experiencing the alerts multiple times may boost participants’
confidence in their understanding and reactions, but dynamic alerts could enhance this
effect. The ANOVA showed this change to be statistically significant, F = 12.97, p = .001.

Annoyance

Annoyance levels remained consistently low across all settings, though there was a slight
increase in the single group under mild alerts when a secondary task (distracted state)
was added, from a mean of 1.36 to 1.53. Other groups experienced a decrease in an-
noyance levels, particularly in the dynamic group, where it decreased from 2.14 to 1.34.
Generally, lower annoyance levels were reported with the strong alert design, although it
was not statistically significant according to the ANOVA results. This could be explained
by findings from [33], [56] that indicate a strong link between increased urgency levels in
alerts and perceived appropriateness in situations requiring high urgency to reflect critical
circumstances.

Alert Design Satisfaction

Overall satisfaction with the alert design was generally higher in scenarios involving strong
alerts, whether or not tasks were present. This trend was evident in both dynamic (stable
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mean: 4.00, SD = 0.89) and single groups (mean improvement from 4.07, SD = 0.80),
reinforcing the effectiveness of strong alert designs in maintaining user satisfaction even
with increased task complexity. The ANOVA indicated significant improvements, F =
5.67, p = .018, when the participants were assigned a secondary task (distracted state).

Participants generally rated the strong alert as more effective, understandable, and com-
prehensible than the mild alert, especially in the dynamic group. While drivers felt more
confident in single groups, it was observed that dynamic alerts were found less annoying
in the dynamic group, especially with the strong alert.

The ANOVA findings from the survey data reveal several significant insights into how
participants perceive various aspects of the alert system based on the experimental group
(Dynamic vs. Single) and the alert design (Strong vs. Mild). Notably, ”Alert Effec-
tiveness” and ”Confidence” show significant differences between the experimental groups,
indicating that participants’ group assignments have a notable impact on how effective and
confidence-inspiring they find the alerts. Furthermore, ”Understandability” and ”Alert De-
sign Satisfaction” are significantly influenced by the alert design (p-value < 0.05), suggest-
ing that the strength of the alert plays a crucial role in how understandable and satisfying
participants find the alert system. Additionally, significant interaction effects between the
group and the design were observed in ”Alert Effectiveness” and ”Satisfaction Overall,”
indicating that the impact of the alert design varies depending on the experimental group.
However, aspects like ”Timing,” ”SA Comprehension,” and ”Annoyance” did not exhibit
strong significant differences based on these factors, suggesting a more uniform perception
across different conditions for these aspects. In general, the ANOVA results highlight the
nuanced ways in which different elements of the alert system influence user perceptions
and underscore the importance of considering both individual and contextual factors in
the design and evaluation of the alert system.

Post-Experiment: Alert Perception Test

The alert perception test was designed to help validate how the alerts were perceived by
30 participants in random order. As illustrated in Figure 4.13, the average ratings suggest
that strong alerts are perceived as slightly more urgent than mild alerts, but the difference
is not statistically significant, p = .46, while the annoyance ratings are identical on average
between mild and strong alerts, supported by a p-value of 1.0, indicating no significant
difference. When analyzing the perceived urgency and annoyance based on participant
groups, there is also no statistically significant difference between the groups, as indicated
by p-values of .15 and .18, respectively. More than half of the participants preferred the
strong alert over the mild alert design.
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Figure 4.13: Perceived urgency and annoyance of mild and strong alerts (top) and overall alert preference (bottom). The
top section illustrates participants’ perception of alert urgency and annoyance for both mild and strong alerts, depicted as
a distribution of ratings with bubble size representing the percentage of participants who selected each rating. The bottom
section shows the overall preference distribution among participants, indicating a higher preference for strong alerts.
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4.2 Discussions

4.2.1 Takeover Reactions and Performance

When we look at how drivers react to different types of warnings in automated driving,
stronger warnings help drivers take control faster in most cases, this is especially true
when drivers are distracted which was in contrast to findings in Melnicuk et al. [43].
Interestingly, how drivers respond to these warnings also depends on how predictable the
situation is, they might not react as quickly.

The differences in reaction times between the dynamic and single groups highlight key in-
sights into driver responsiveness under varied conditions. The dynamic group consistently
demonstrated quicker responses, especially under strong alerts and while multitasking with
typing. This group’s reaction time improved by an average of 1.749 seconds, suggesting
a high adaptability to demanding driving scenarios. In contrast, the single group showed
minimal changes in reaction time, with reductions being modest and not statistically signif-
icant, indicating less responsiveness to alert intensity and secondary tasks. These findings
aligned with the advantages of dynamic alerts as discussed in [10], [15], indicating that a
faster response time was associated with the dynamic alerts.

When cruising on a highway in autonomous driving mode during the study, unlike real car
control, the driver only had the option to use the AP toggle button or turning signals to
access steering control, or to use the brake pedal to disable all automated driving features.
As shown in Figure 4.4, braking was the most frequently used method for taking over in
all situations. Similar findings were also documented in [3], with braking being employed
in 67% of takeover maneuvers. When looking closer at how drivers respond, we find that
strong warnings make them act more quickly and decisively. It seems that these urgent
warnings refocus the driver’s attention on driving, leading to faster braking and steering.
An interesting observation in any of the first scenarios of some participants indicated that
when drivers experienced the TOR for the first time, there were signs of confusion or
difficulty in trying to take over manual control, although they felt comfortable driving in
the trial scenario, similar findings were reported by Kim and Yang that takeover reactions
could also be influenced by different takeover scenarios [3].

By tracking where drivers look, we learn about what grabs their attention. Eye movements
in distracted drivers showed a growing tendency for off-road glances, yet reaction times, in
general, remained unimpeded, aligning with findings in other studies [45], [57] that found
no general correlation between lower off-road glances and quicker responses to the sudden
takeover request. From the result, it was found that when drivers are distracted from the
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road or busy with something else, they quickly look back at the road upon receiving a
strong warning which could cut through distractions and help drivers focus on the road
again.

4.2.2 Alert Perception

Attention Capturing

The results indicated that alert intensity was perceived as more effective when partici-
pants were engaged in a typing task compared to when no task was present. Specifically,
attention-capturing scores were significantly higher in typing scenarios across both mild
and strong alerts. This suggests that alerts need to be more pronounced or intense to cap-
ture attention effectively in multitasking environments. The increase in attention-capturing
scores from no-task scenarios to typing scenarios, particularly under mild alerts, supports
the hypothesis that cognitive load influences alert perception, making participants poten-
tially more responsive to alerts when engaged in a secondary task.

Confidence Levels

Confidence levels increased significantly when participants transitioned from no task to
typing tasks, particularly with the dynamic alerts. This increase might indicate that
the higher cognitive load during typing tasks requires and consequently elicits a stronger
alert to maintain or enhance confidence in task management. This can be interpreted
as participants perceiving the alert intensity as appropriate or sufficient under increased
cognitive demands.

Annoyance Levels

Despite the variations in alert intensity and cognitive load, annoyance levels remained
consistently low, suggesting that the intensity of the alerts was not perceived as excessive.
This is critical as it indicates that even with stronger alerts necessitated by higher cognitive
states, the alert design did not cross the threshold of being perceived as too intrusive or
bothersome. However, this contradicts the second hypothesis that the level of annoyance
is higher with a strong alert.
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4.2.3 Scenario and Alert Designs

Managing all variables in a driving experiment is complex, particularly when a secondary
task is involved, as it is challenging to regulate the level of mental and physical distractions
experienced by each individual while driving. In an open-goal typing task where partici-
pants were encouraged to prioritize driving, they tended to be more attentive to the road.
Consequently, more than half of the participants disengaged the AP and resumed manual
control before the Takeover Request (TOR) in Scenario 1, suggesting room for improve-
ment in this scenario. Despite expectations of an early takeover rate in Scenario 1 due to
traffic signs, eye-tracking data focusing on attention AOI revealed that participants were
still using their phones up to 20 seconds before the TOR, underscoring the authenticity
of distracted driving scenarios. The duration of the driving scenarios, lasting between 6-8
minutes, aimed to mirror the cognitive state of highway cruising and minimize the im-
pact of alerts from previous scenarios; however, this duration may inadvertently shift the
cognitive focus from concentration to drowsiness in some drivers, potentially influencing
reaction times in scenarios without a secondary task.

To summarize, a dynamic alert was perceived differently when investigating the reaction
time, as the stronger the alert gets, the more effective in grabbing attention and reducing
reaction time when drivers are distracted, which means, when it comes to safety, a stronger
alert would be preferred in most cases; however, it still depends on individual preference
of how they perceive alert, as well as how urgent or harmful the situation is.
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Chapter 5

Conclusion

5.1 Summary

With the emerging technology of autonomous driving, it is very important to understand
how humans and machines can work together in the most efficient ways, especially during
crucial situations in which lives depend on it. This study aims to investigate the potential
benefits of a user-centered design approach using dynamic alert designs which can vary the
intensity based on the cognitive state to optimize how the driver perceives the alert and
prioritizing thoughts for the best possible outcome.

The key results of this study are summarized as follows:

• Reaction Times: Dynamic alerts resulted in significantly faster reaction times com-
pared to single alerts. On average, strong alerts produced faster responses (M = 2.22
s, SD = 1.03) compared to mild alerts (M = 3.65 s, SD = 1.81), with p < 0.01.

• Accelerations: Higher lateral accelerations were observed under strong alerts, es-
pecially in dynamic groups. The greatest values were recorded during strong alerts
in the Construction Zone Scenario (S1), indicating more aggressive maneuvering.

• Physiological Stats: Heart rate data collected during takeover events were found
to be unreliable due to motion artifacts. However, general trends indicated an in-
creased heart rate shortly after TORs compared to cruising periods. Eye-tracking
data showed variations in attention to different areas of interest (AOI) before, dur-
ing, and after the takeover. Participants spent more time looking at the road and
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dashboard during takeovers in the absence of secondary tasks, while attention was
more divided with secondary tasks.

• Attention Capturing: Dynamic alerts significantly improved attention-capturing
scores, especially under stronger alert conditions and involving NDRT (e.g., typing).
This improvement was supported by ANOVA results showing a significant effect, F
= 8.32, p = 0.004.

• TOR Timing: Single groups showed a slight better perception of well-timed alerts
compared to dynamic groups in self-rated timing on TOR, suggesting that cognitive
engagement with secondary tasks might enhance alert responsiveness.

• Alert Understandability and SA Comprehension: Strong alerts significantly
performed better to be understood by users scores (p = 0.01), particularly in single
groups without secondary tasks. However, SA comprehension scores varied, typically
decreasing in scenarios involving secondary tasks under strong alerts, while improve-
ments were observed only in the dynamic group.

• Confidence: Confidence levels surged notably in dynamic groups with secondary
tasks, indicating that experiencing dynamic alerts multiple times boosts driver con-
fidence. This change was statistically significant, F = 12.97, p = 0.001.

• Annoyance: Annoyance levels remained consistently low, with slight increases in
single groups under mild alerts with secondary tasks. Dynamic alerts were generally
found to be less annoying, particularly under strong alert conditions.

• Overall Satisfaction: Satisfaction with alert design was higher in scenarios involv-
ing strong alerts, reinforcing the effectiveness of strong alert designs in maintaining
user satisfaction despite increased task complexity (F = 5.67, p = 0.018).

What we observed in this study was that changing the alert to be more intense can help
the driver in the dynamic group to react faster when distracted compared to only using
the strong or mild alert alone in all situations; this suggests that the perception of the
alert varied when the alert changed, even if the alert was intended to convey the same
information for a takeover. Dynamic alerts, which adjust their intensity based on the
situation or the driver’s level of engagement, could be the key to maintaining optimal
driver awareness, regardless of what is happening inside or outside the vehicle. When
investigating the physiological response, all designs in this study gave a similar result in
the driver’s area of attention during the takeover.
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Self-rating scores reinforce the analysis of driver reactions. There was a clear preference for
strong alerts, which participants perceived as more effective. Importantly, this preference
does not translate into increased annoyance in stronger alerts as hypothesized. Neverthe-
less, if we take into account the occurrence of repeated alarms, which was not covered in
this study, solely with the strong alert with auditory, it could result in increased levels of
annoyance [58], thus posing a potential research inquiry in the autonomous driving setting.
Concerning the statistical analysis of the self-rating scores, the results indicated that en-
gaging in a secondary task might heighten drivers’ sensitivity to external stimuli, making
them more receptive to alerts. Moreover, high scores for understandability emphasize the
importance of clear and direct alerts in effectively conveying information, which is essen-
tial for safe takeover maneuvers. Furthermore, the significant rise in confidence within
the dynamic group, where alerts were tailored based on the cognitive state of the driver,
suggests that dynamic alerts are particularly effective in boosting driver confidence. This
could be due to the adaptive nature of the alerts, which might better align with the drivers’
perceived needs and expectations during different driving conditions.

Overall, the results support the hypothesis that the intensity of alerts needs to be stronger
in multitasking environments to be perceived as effective. This supports the theory that
cognitive load can conceal or weaken the perceived intensity of sensory inputs, necessitating
stronger signals to reach the same level of awareness as in less challenging circumstances.

5.2 Limitations, Recommendations, and Future Re-

search Directions

Sample Size and Diversity

The study involved 41 participants, but this sample size may not be sufficient to generalize
the findings to a broader population. Although the participants’ ages varied, the sample
was skewed towards younger individuals. This skewness could impact the generalizability
of the results across all age groups. Future studies should strive for a larger and more
balanced sample to ensure the findings are representative of different demographics.

Experience Level

While all participants held at least an Ontario G2 driver’s license or equivalent, their levels
of driving experience and familiarity with advanced driver assistance systems (ADAS)
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varied. Such variability could influence the results, as more experienced drivers might
respond differently to take-over requests compared to less experienced drivers. Future
research should consider stratifying participants based on their driving experience and
familiarity with ADAS to better understand how these factors affect driver responses.

Alert and Scenario Design

The study did not incorporate false positive alerts, which could have provided a more
comprehensive understanding of takeover reactions. Including scenarios where alerts are
triggered without an imminent need for a takeover could offer a more nuanced view of
driver alertness and response strategies. Furthermore, more noticeable differences between
strong and mild alerts may result in a clearer pattern in driver behavior. Overall driving
scenarios could be shorter to avoid inducing drowsiness in drivers in the scenarios without
secondary tasks, which could help maintain a concentrated cognitive state.

Future studies could benefit from experimenting with more distinct variations in the inten-
sity and modality of alerts, including verbal auditory alerts or tactile alerts, between the
strong and mild categories. This approach would help better understand their effectiveness
across different cognitive loads. Additionally, research should explore the impact of alert
intensity in multitasking environments to confirm the hypothesis that stronger alerts are
necessary in such settings to maintain driver awareness. Furthermore, integrating false
positive alerts into the experimental design could offer deeper insights into how drivers
respond when no immediate takeover is necessary. This would enhance understanding of
driver alertness and help refine alert systems to minimize potential distractions or overre-
actions.

Cognitive State and Secondary Task

This study classifies the driver’s cognitive state into two broad categories: a concentrated
state and a distracted state, based on the presence of a NDRT. While this simplification fa-
cilitates the experimental design and aligns with recent research [10], [48], [50], it does not
capture the nuances of individual differences in cognitive load and task handling capabili-
ties, which can significantly affect driver behavior and alert responsiveness. Additionally,
the study presumes uniform response capabilities among participants, disregarding varia-
tions in driving experience and personal aptitude for multitasking in an autopilot-supported
highway scenario.

The choice of selecting texting as a secondary task was made due to the limitation where an
in-vehicle touchscreen was not available. The use of the phone as a secondary task lacked
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stringent controls, leading to variations in the way participants engaged with the device.
The timing of phone usage in relation to the TOR alert was not standardized, potentially
affecting the consistency of our findings related to driver distraction. More standardized
secondary tasks may help to maintain a similar level of distraction among drivers.

To mitigate the variations in how participants engage with secondary tasks, future research
should standardize these activities with a specific goal for the secondary task based on the
individual capability to maintain a similar workload level. This would help maintain a
consistent level of distraction across participants and provide a clearer picture of how
secondary tasks impact driver response to alerts.

Investigating the influence of various cognitive states on the quality and speed of driver
takeover actions will shed light on the intricate dynamics between human cognitive pro-
cesses and autonomous vehicle control mechanisms. Future studies should incorporate a
more nuanced classification of cognitive states, perhaps by utilizing real-time monitoring
tools that can measure physiological and neurological indicators of stress, attention, and
workload. This could enable a dynamic adjustment of alert types and intensities based on
real-time assessment rather than preset conditions. To effectively tailor alerts and inter-
ventions, long-term monitoring of driver behavior and cognitive state through in-vehicle
systems could be instrumental. These systems would benefit from machine learning algo-
rithms capable of learning and adapting to individual driver patterns over time.

Physiological Measures

The eye-tracking technology, while insightful, had its limitations. Limited viewing angles
and sub-optimal lighting conditions led to periods where tracking data was not available,
potentially interfering with the data analysis of drivers’ visual focus during critical mo-
ments. Most participants felt uncomfortable after wearing the eye tracker for a long period
due to a non-adjustable headband, which could obstruct the driving in-vehicle eye tracking
system and would be ideal for monitoring eye movements in the car cockpit. Moreover,
the data obtained from the heart rate monitors during the takeover events was found to
be unreliable for analysis, thus limiting our ability to incorporate physiological responses
to alerts and takeover events.

While the average heart rate data collected during cruising periods were generally reliable,
significant challenges were encountered during Takeover Request (TOR) scenarios. These
challenges primarily arose due to the increased physical movements required for vehicle
control, such as steering and manipulating other controls, which introduced substantial
noise in the heart rate measurements captured by photoplethysmographic (PPG) sensors.
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This interference was particularly problematic during TORs, where precise heart rate mea-
surements are critical for assessing physiological responses to different alert types. The
analysis of the HR data revealed significant inconsistencies during TOR events, leading to
the exclusion of HR data from all participants and limiting the physiological insights into
the drivers’ cognitive states and stress levels during the takeover process. Several studies
[51], [52] have reported that the E4 device experiences significant missing IBI data due to
movements, likely contributing to the observed data smoothing during TOR events. This
highlights the need to account for wearable device limitations in dynamic environments.
Additionally, analyzing electrodermal activity (EDA) could be useful for future research
to provide a more comprehensive understanding of physiological responses during TOR
events. However, this analysis was not within the scope of the current study.

The TOR periods, lasting only 5 to 15 seconds, are crucial yet brief windows during
which accurate physiological data is essential to understanding driver responses. The short
duration means that any inaccuracies in heart rate measurement during these moments
can disproportionately impact the interpretation of how alert types influence driver stress
and arousal levels. This limitation is noted in similar studies, where motion artifacts
significantly affect the accuracy of physiological measurements obtained from wearable
sensors during physical activities [52]. For example, Ravindran et al. (2022) discuss how
physical movements can lead to interpolated or estimated heart rate readings that may
not accurately reflect the true physiological state [51].

Given this context, the potential for inaccurate interpretations of physiological responses
during these critical moments is a significant concern. This study’s findings regarding
physiological responses to alerts must, therefore, be considered with caution. Future re-
search should focus on employing more robust physiological monitoring technologies that
can withstand the rigors of active driving tasks or explore alternative methods less prone
to such errors. Enhancements in sensor technology or data processing techniques that can
more effectively isolate true physiological signals from noise induced by movement could
greatly improve the accuracy of findings in similar scenarios.

Driving Simulation

• Hardware: In this study, the simulation setup had its drawbacks, with an inactive
steering wheel during autopilot mode and counter-intuitive icons on the steering
wheel due to limited controls available, which could cause confusion and affect the
realism of the driving experience. Furthermore, due to limitations of hardware that
only allow angle-mode steering configuration with autopilot, resulting in low torque
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feedback when steering, most participants found it challenging and needed some time
to get used to the sensitive steering wheel.

• Simulator Sickness: Immersive simulation caused simulator sickness in some par-
ticipants. The chance of getting motion sickness could be optimized by increasing
screen frame rates and using scenarios with fewer turns.

• Software: The simulation software encountered issues with skipped TOR alerts
due to high computer processing load, leading to data loss and imbalance in re-
sults. Furthermore, the driving scenario editor lacked flexibility with non-removable
components such as traffic signs and a scarcity of usable road signs that align with
real-world driving scenarios.

• NPC driving behavior: The behavior of vehicles of non-player characters (NPC)
within the simulation occasionally triggered false alarms, contributing to unnatural
driving responses, particularly on curved roads where repeated braking was observed.

• ACC and AP Features: The ACC and AP systems were not perfect and exhibited
rough handling when the target vehicle was detected in curved lanes, potentially
influencing unnecessary takeover and trust level in the automated system, which
may affect the outcome.

• Simulation Realism: The high-fidelity driving simulator used in this study, while
advanced, may not perfectly replicate real-world driving conditions. Responses in a
simulated environment can differ from those in actual driving, especially regarding
stress and urgency levels. Therefore, the simulator findings may not fully capture
the complexities and nuances of real driving experiences. Future research should
validate these results with on-road studies to ensure applicability in real-world con-
texts. Additionally, while the scenarios in this study are designed to be realistic,
they might not fully capture the complexity and unpredictability of real-world driv-
ing. The frequency and nature of TORs should be more varied and spontaneous to
better reflect actual driving conditions. Future research should incorporate a wider
range of scenarios to enhance the realism and applicability of the findings.

Refining the simulation setup is crucial for creating a more realistic and engaging driving
experience. Enhancements could include active steering feedback during autopilot modes,
high frame rate scenarios to reduce simulator sickness, and more flexible scenario edit-
ing software that allows for better replication of real-world driving conditions. Real-time
classification and analysis of driver cognitive states through advanced monitoring systems
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could enhance the development of adaptive alert systems tailored to the driver’s current
state, potentially improving the evaluation of the adaptive alert system.
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Appendix A

Experiment

A.1 Apparatus

A.1.1 Simulation Hardware

This study utilized a VI-Grade STATIC driving simulator with vehicle shell and equipment
based on a 2018 Chevrolet Traverse with screens as mirrors, shown in A.1. The Adaptive
Cruise Control (ACC) and autopilot logic were based on VI-WorldSim Offline example
Simulink logic with modifications to integrate with the online simulation system.

Figure A.1: Hardware setup of VI-Grade STATIC DriveSim system, from outside vehicle (left), and inside the cockpit (right)
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure A.2: Example of VI-WorldSim Scenarios before hazard in each scenario with ego vehicle (black SUV)
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A.1.2 Simulation Software

All scenarios used in this study were created using VI-WorldSim Studio with trigger logic
to simulate road hazards in each scenario. An example of the hazard in each scenario can
be identified in Figure A.2. The dynamic takeover incidents in Scenario 2, 3, and 4 were
based on the trigger scripts activated by the ego vehicle while static hazard was used in
Scenario 1. All TOR alerts were based on the trigger script activated by the ego vehicle.

A.1.3 Smartphone for the Typing Task

In this study, the NDRT was depicted as a typing task on the phone to simulate distracted
driving conditions. The device used was the Samsung Galaxy S10 (SM-G973F) with the
Android 12 operating system as shown in Figure 3.1a, equipped with dark-theme Gboard
touchscreen keyboard in English (US) QWERTY layout with haptic and popup feedback
on keypress. Participants were asked to perform the task based on the Word Practice
module in the Typing Speed Test mobile app (v7.9) by ASWDC, Computer Engineering
Department at Darshan University [72] as shown in Figure 3.1b with varied word lengths.
The hardware was also attached with an eye-tracking marker to its right.

Following is the example of 50-word paragraph from the Word Practice in the Typing
Speed Test app:

“wrangle barrage especially silent ceramic drove outlove institute throve above pummels
learn warranty advocate column connected roaring engineer immerges mammey recherche
humble portrait quantity carbonic checker correct fritz kiaugh climax audio indicate wetproof
wheeze kinase retrieval northern matchup thirty kurgan kvases kickshaw landing putoff the-
ory unlikely triac clarion separate somatic knickers wicket from rimmed”

A.2 Questionnaires

A.2.1 Pre-Study Questionnaire

Pre-study questionnaires consist of questions regarding experience and questions regarding
driving behavior.

• How familiar are you with driver assistance or autonomous driving technology?
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– I am not familiar with it.

– I’m aware of it, but I haven’t utilized any driver assistance features before.

– I have utilized driver assistance features in the past, but I don’t use them reg-
ularly.

– I occasionally make use of driver assistance features while driving.

– I regularly utilize driver assistance features whenever possible.

• Which driver-assistive technologies have you encountered or used?

– Adaptive cruise control (ACC)

– Lane-keeping assist (LKA)

– Automatic emergency braking (AEB)

– Parking Assist

– Automatic parking assist

– Blind-spot monitoring

– Collision warning system

– Traffic sign recognition

– Driver attention monitoring

– Cross-traffic alert

– Self-driving cars (Autonomous Level 2 or above)

A.2.2 Motion Sickness Questionnaire (Short-MSSQ)

MMSQ was used to evaluate the likelihood of a participant getting motion sickness during
the study so that the researcher could provide any notice or suggestions before the exper-
iment session. Two sections of questions ask about their experience, before the age of 12
and in the last 10 years, if they ever felt sick or nauseated in the following conditions:

• Cars

• Buses

• Yrains
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• Sircrafts

• Small boats

• Ships

• Swings or roundabouts in playgrounds

• Big Dippers or Funfair Rides

• Immersive simulator, e.g., 3D/4D, driving/flight simulator

With 4 scales ranging from never felt sick, rarely felt sick, sometimes felt sick, and fre-
quently felt sick. An option was also given if the condition was not applicable or never
experienced.

A.2.3 Post-Scenario Questionnaire

Immediately after each scenario, the participants were provided with the post-scenario
questionnaire. Questions can be found in A.4, where the alert perception section only
appeared after the late scenario.
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