
Unsupervised Losses for
Clustering and Segmentation of Images:

Theories & Optimization Algorithms

by

Zhongwen Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Zhongwen Zhang 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner: Dr. Dale Schuurmans
Professor, Department of Computing Science
University of Alberta

Supervisor(s): Dr. Yuri Boykov
Professor, School of Computer Science
University of Waterloo

Internal Members: Dr. Olga Veksler
Professor, School of Computer Science
University of Waterloo

Dr. Yaoliang Yu
Associate Professor, School of Computer Science
University of Waterloo

Internal-External Member: Dr. Paul Fieguth
Professor, Department of Systems Design Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contribu-
tions included in the thesis. This is a true copy of the thesis, including any required final revisions,
as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

I hereby declare that I am the sole author of Chapter 1 and 6.

Chapter 2 is based on part of the manuscript co-authored with Yuri Boykov. I am the first
author and main contributor. Yuri Boykov provided the supervision and contributed to the design
and analysis of the methods and experiments. I conducted all the experiments.

Chapter 3 is based on a manuscript co-authored with Yuri Boykov. All authors contributed
equally to the paper.

Chapter 4 is based on a manuscript co-authored with Yuri Boykov. I am the first author and
main contributor of the paper. Yuri Boykov provided the supervision and contributed to the design
and analysis of the methods and experiments. I conducted all the experiments.

Chapter 5 based on published material [233] co-authored with Dmitrii Marin, Maria Drangova,
and Yuri Boykov. Maria Drangova provided the data of high-resolution micro-CT images while
the other two authors provided supervision and contributed to the design and analysis of the
methods and experiments. I am the first author and the main contributor of [233] and conducted
all the experiments.

iv

Abstract

Unsupervised losses are common for tasks with limited human annotations. In clustering, they
are used to group data without any labels. In semi-supervised or weakly-supervised learning, they
are applied to the unannotated part of the training data. In self-supervised settings, they are used
for representation learning. They appear in diverse forms enforcing different prior knowledge.
However, formulating and optimizing such losses poses challenges. Firstly, translating prior
knowledge into mathematical formulations can be non-trivial. Secondly, the properties of standard
losses may not be obvious across different tasks. Thirdly, standard optimization algorithms may
not work effectively or efficiently, thus requiring the development of customized algorithms.

This thesis addresses several related classification and segmentation problems in computer
vision, using unsupervised image- or pixel-level losses under a shortage of labels. First, we
focus on the entropy-based decisiveness as a standard unsupervised loss for softmax models.
While discussing it in the context of clustering, we prove that it leads to margin maximization,
typically associated with supervised learning. In the context of weakly-supervised semantic
segmentation, we combine decisiveness with the standard pairwise regularizer, the Potts model.
We study the conceptual and empirical properties of different relaxations of the latter. For both
clustering and segmentation problems, we provide new self-labeling optimization algorithms
for the corresponding unsupervised losses. Unlike related prior work, we use soft hidden labels
that can represent the estimated class uncertainty. Training network models with such soft
pseudo-labels motivates a new form of cross-entropy maximizing the probability of “collision”
between the predicted and estimated classes. The proposed losses and algorithms achieve the
state-of-the-art on standard benchmarks. The thesis also introduces new geometrically motivated
unsupervised losses for estimating thin structures, e.g. complex vasculature trees at near-capillary
resolution in 3D medical data.

v

Acknowledgments

I would like to express my deepest gratitude to Yuri Boykov, my supervisor, for his endless
support, guidance, and invaluable mentorship throughout the entirety of my doctoral journey. He
always squeezed his time to have fruitful discussions with me when I was stuck. He showed me
the correct way to do research and his passion for the research. I am thankful to him for helping
me shape my good taste in scientific research. His philosophy towards simplicity now become
my philosophy of doing research. He also taught me not to give up even in the darkest hours. He
encouraged me a lot when the papers got rejected many times and his recognition of the work
I have done gave me confidence about myself. I am also grateful for his caring and financial
support during this long journey.

I would like to thank my committee members, Prof. Dale Schuurmans, Prof. Olga Veksler,
Porf. Yaoliang Yu and Prof. Alexander Wong for their valuable and insightful feedback.

I would like to thank my coauthors Dmitrii Marin and Xingye Fan. They are also my best
friends. I enjoyed all the good times and interesting discussions during the hiking in the spectacular
Rocky Mountains with Dmitrii. Thanks to him for giving me both advice for the research and the
camping skills. I also enjoyed all the good times and interesting discussions on lots of different
topics with Xingye.

I also thank my colleagues, especially Dr. Juwei Lu, Dr. XinXin Zuo, and Dr. Chuan Guo,
during my internship at Huawei. They helped widen my horizons and helped me better understand
lots of new concepts in a different field than my expertise. I am grateful to Dr. Juwei Lu for
encouraging me to be more open to different types of research topics. They gave me lots of
support and offered me an opportunity to continue working there.

I thank all my friends, especially Xiaoyuan Hou, Xingye Fan, Xiyang Feng, Mengqi Lu,
Kunxun Qian, Dmitrii Marin and Zhuowei Zhang, who showed me caring and gave me support
and suggestions during the time I felt down and sad. They are the kindest, and the most lovely
people I have ever met, and I am lucky to have them in my world.

I thank my parents and grandparents who supported me all along the way. They showed me
what love is and are always there for me. They always tell me to follow my own heart and choose
for myself. I am very lucky to have them as my family.

I thank Canada for allowing me to study on this beautiful continent.

vi

Dedication

This is dedicated to my parents and grandparents for their endless love and suppport.

vii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgments vi

Dedication vii

List of Figures xii

List of Tables xxi

1 Introduction: annotation shortage in vision 1

1.1 Image classification . 1

1.1.1 Supervised classification . 2

1.1.2 Towards unsupervised classification . 4

1.1.3 K-means, GMM, and entropy clustering 5

1.2 Image segmentation . 8

1.2.1 Low-level segmentation with Potts model 8

viii

1.2.2 Semantic segmentation with neural networks 13

1.2.3 From pixel-wise ground-truth to weak supervisions 16

1.3 Thin structure in medical data . 20

1.3.1 Difficulties in medical image labeling 21

1.3.2 Unsupervised vessel segmentation methods 21

1.4 Motivation and contributions . 25

1.4.1 Theory and algorithms for entropy-based clustering 26

1.4.2 Potts relaxation and weakly-supervised semantic segmentation 26

1.4.3 Unsupervised vessel tree estimation with confluence 26

2 Soft self-labeling for softmax models 27

2.1 ADM splitting for clustering and segmentation losses 28

2.1.1 Our self-labeling loss in clustering . 28

2.1.2 Our self-labeling loss in segmentation 29

2.2 Cross-entropy functions for soft pseudo-labels 30

2.2.1 Standard and reverse cross-entropy . 32

2.2.2 Collision cross-entropy . 32

3 Entropy-based clustering 36

3.1 Introduction . 36

3.1.1 Discriminative entropy clustering basics 37

3.1.2 Model complexity and representation learning 39

3.1.3 Regularized entropy clustering . 40

3.1.4 Self-labeling methods for entropy clustering 41

3.1.5 Summary of our contributions . 43

3.2 Linear entropy clustering . 43

3.2.1 Relation to K-means . 43

3.2.2 Margin maximization . 48

ix

3.3 Our self-labeling loss and optimization algorithms 66

3.3.1 Self-labeling surrogate loss formulation 66

3.3.2 EM algorithm for optimizing y with HRCE 66

3.3.3 EM algorithm for optimizing y with HCCE 69

3.3.4 Discussion . 76

3.4 Experimental results . 77

3.4.1 Effect of α in Renyi entropies for clustering 78

3.4.2 Clustering with fixed features . 78

3.4.3 Joint clustering and feature learning . 78

3.4.4 Semi-supervised classification . 81

4 Potts relaxations and weakly-supervised semantic segmentation 82

4.1 Introduction . 82

4.1.1 Scribble-supervised segmentation . 83

4.1.2 Self-labeling and hard pseudo-labels . 85

4.1.3 Motivation and contributions . 86

4.2 Second-order relaxations of the Potts model . 87

4.3 Optimization algorithms . 89

4.4 Experimental results . 90

4.4.1 Experimental settings . 90

4.4.2 Comparison of Potts relaxations . 92

4.4.3 Comparison of cross-entropy terms . 93

4.4.4 Comparison of neighborhood systems 93

4.4.5 Soft self-labeling vs. hard self-labeling vs. gradient descent 95

4.4.6 Comparison to SOTA . 95

x

5 Confluence prior for unsupervised vessel tree estimation 99

5.1 Introduction . 99

5.1.1 Unsupervised vasculature estimation methods 99

5.1.2 Motivation and contributions . 103

5.2 Confluence of Oriented Curves . 104

5.3 Confluent Tubular Graphs . 105

5.3.1 Confluent flow-extrapolating arcs . 106

5.3.2 Confluence and co-circularity . 109

5.3.3 Confluent tree reconstruction algorithm 112

5.4 Experimental results . 113

5.4.1 Validation Measures . 113

5.4.2 Synthetic Data with Ground Truth . 115

5.4.3 CRF Regularization Neighborhood . 116

5.4.4 High Resolution Microscopy CT . 117

6 Conclusions and future work 121

References 123

xi

List of Figures

1.1 K-means vs. GMM vs. entropy (decisiveness and fairness) clustering - binary
example (K = 2) for 2D (M = 2) data {Xi} comparing generative and discrim-
inative methods with different parametric complexity: (a) K-means µk ∈ R2,
(b) GMM µk ∈ R2 and Σk ∈ R2×2 and (c) entropy clustering (see Chapter 3)
based on a linear classifier parameterized by K-columns matrix v where linear
discriminants vk ∈ R2+1 include the bias. Red and green colors in (a), (b) and (c)
illustrate the decision regions over X ∈ R2 produced by the corresponding deci-
sion functions for optimal parameters: (a) linear decision boundary (b) quadratic
decision boundary and (c) linear classifier. The decision function in (a) is hard,
and is soft in (b) and (c), see the white region near the decision boundary. The
optimal results in (a) and (b) are analyzed in Section 1.1.3. The optimal result in
(c) requires a margin maximization term ∥v∥2, see Section 3.2.2. 6

1.2 (Interactive) image segmentation. (a) is the original image to be segmented into
the foreground of the llama and background as shown in (d). (b) shows the brush
strokes indicating the foreground and background. (c) shows the log-likelihood
ratio for all pixels using the model estimated from the stroke region via the
maximum likelihood estimation principle. (e) is the result of simple thresholding.
Due to the independent treatment of each pixel, the result in (e) is very noisy.
Methods, such as [26], exploit relation between pixels to produce a smooth result
as in (f). 9

1.3 Estimated density function for foreground and background based on the pixels
inside the brush strokes. 10

xii

1.4 Synthetic segmentation example for grid and dense Potts models: (a) intensi-
ties I(x) on 1D image. The cost of segments St = {x|x < t} with different
discontinuity points t according to (b) nearest-neighbor (grid) Potts and (c) larger-
neighborhood (dense) Potts. The latter gives a smoother cost function, but its
fatter minimum may complicate discontinuity localization as shown in Figure 1.10.
Figure from [142, 140]. 13

1.5 The transformation from a classification network to a fully convolutional network
(FCN) by changing the last three fully connected layers into convolutional layers.
The resulting network (at the bottom) can be applied to images of any size,
which makes the architecture suitable for (coarse) semantic segmentation tasks.
Each rectangular block represents an intermediate feature map, with two spatial
dimensions and one feature dimension. The spatial dimensions are determined
by the input and convolution kernel size, while the numbers below the blocks
indicate the feature dimensionality. It is implicitly assumed that each consecutive
pair of blocks contains a convolution layer, activation layer, and pooling layer if
needed. The relative size of the blocks reflects downsampling along the spatial
dimensions (due to convolution strides and/or max-pooling) and an increase in
feature dimension (due to more convolutions within a single convolution layer).
Figure from [134]. 14

1.6 The encoder-decoder architecture of deeplabV3+ framework [42]. As shown in
Figure 1.5, the output map has a much lower resolution compared to the original
image. The decoder part upsamples the feature map to the original resolution to
get fine-detailed segmentation output. DCNN represents the deep CNN model
and Atrous Conv is a type of convolution supporting a larger receptive field with
the same number of parameters as the original convolutional kernel. The rate of
atrous convolution determines the spacing between the kernel elements during
convolution, controlling how many pixels in the input feature map are skipped
when applying the convolution operation. The stack of blocks in the encoder
part represents the concatenation of feature maps using the Atrous convolution
with different rates. In the decoder part, the low-level features from the first
several layers are concatenated with the high-level features from later ones to
better capture both the fine details and semantic information. 16

1.7 The illustration of multiple instance learning (MIL). The colorful solid circles
represent different molecules and big black circles represent different drugs. The
letters “Y” and “N” are the labels indicating whether a certain drug works or
not. The goal is to find the molecules that make the drug work based on the test
information. 17

xiii

1.8 A multi-label illustration of MIL. Each image is given a tag containing the objects
present in the image. The goal is to find correspondence between labels and
objects in the image. For example, it can be inferred that the grass should
correspond to the region of green pixels. 18

1.9 Scribbles on the image. Different categories correspond to different colors of the
scribbles. Figure from [206]. 19

1.10 Low-level segmentation example for grid (b) and dense (c) Potts models for image
with scribbles (a). Grid Potts gives smoother segment boundaries with better edge
alignment, while dense Potts often gives noisy boundaries. Figure from [142]. . . 20

1.11 Visualization (Maximum Intensity Projection) of the raw volumetric data obtained
from a mouse heart by micro computer tomography (micro-CT). The data is
provided by Maria Drangova from the Robarts Research Institute in London,
Canada. 23

1.12 Whole tree reconstruction: (a) undirected tubular graph is built using K-nearest
neighbor (KNN). Graph edges represent distances, geodesics, or other symmetric
(undirected) properties. MST reconstruction quality (b) depends on the graph
construction (nodes, neighborhoods, edge weights). 24

2.1 Cross-entropy functions: standard (2.7), reverse (2.8), and collision (2.9). 31

2.2 Robustness to label uncertainty: forward Shannon cross-entropy (2.7) vs. reverse
Shannon cross-entropy (2.8) vs. collision cross-entropy (2.9). The test uses
ResNet-18 architecture on fully-supervised Natural Scene dataset [154] where
we corrupted some labels. The horizontal axis shows the percentage η of training
images where the correct ground truth labels were replaced by a random label.
All losses trained the model using soft target distributions ŷ = η ∗ u+ (1− η) ∗ y
representing the mixture of one-hot distribution y for the observed corrupt label
and the uniform distribution u, as recommended in [151]. ŷ is interpreted as
the posterior distribution of the unknown true label given corrupted one-hot y.
The vertical axis shows the test accuracy. Training with the reverse and collision
cross-entropy is robust to much higher levels of label uncertainty. 34

xiv

3.1 Entropy clustering vs. K-means - binary example (K = 2) for 2D data {Xi}
comparing two linear methods of similar parametric complexity: (a) K-means
µk ∈ R2 and (b) entropy clustering (3.5) with a linear model (3.3) defined by
K-column matrix v = [vk] with linear discriminants vk ∈ R2+1 (incl. bias).
Red and green colors in (a) and (b) illustrate decision/prediction functions,
kµ(X) := argmink ∥X − µk∥ and σv(X) := σ(v⊤X), corresponding to the
optimal parameters µ and v minimizing two losses: (a) compactness or variance
of clusters

∑
i ∥Xi − µki∥2 where ki = kµ(Xi), and (b) decisiveness and fairness

H(σ)−H(σ̄), see (3.5), where σi = σ(v⊤Xi). Color transparency in (b) visual-
izes “soft” decisions σ(v⊤X); the linear boundary “blur” is proportional to 1

∥v∥ .
Unlike low-variance (a), the optimal clusters in (b) have the maximum margin
among all fair/balanced solutions, assuming “infinitesimal” norm regularization
∥v∥2 discussed in Section 3.2.2. 38

3.2 Model regularization is required: (a) arbitrarily complex model (3.4) can create
any random clusters of the input {Xi} despite the linear partitioning in the space
of deep features fw(X). Self-augmentation loss (3.7) regularizes the clusters
(b), as well as the mapping f . Indeed, similar inputs {X,X ′} are mapped to
features equidistant from the decision boundary. Stronger forms of isometry
can be enforced by contrastive losses [47, 188, 193, 44], particularly if negative
pairs are also available. In general, model regularization with domain-specific
constraints or augmentation is important for the quality of clustering. 41

3.3 Global & local minima: linear regularized entropy clustering (rEC) versus soft
K-means (sKM). For both losses, global optima (a) and (d) are consistent for
all γ ∈ (0, 0.00001]. Variations in the optimal loss values are negligible. sKM
is nearly identical to hard K-means for such γ; it softens only for larger γ, see
Figure 3.4. The local minimum for sKM (c) is obtained by Lloyd’s algorithm
initialized at (a). Vice-versa, gradient descent for rEC converges to (a) from (c).
The same “cross-check” works for (b) and (d). Local minima for rEC (a,b) are
balanced clusterings with (locally) maximum margins. In contrast, local minima
for sKM (c,d) are orthogonal bisectors for the cluster centers. K-means ignores
the margins. 46

xv

3.4 Global minima for various γ: linear regularized entropy clustering (rEC) versus
soft K-means (sKM). As γ → 0, both approaches converge to hard, but different,
clusters. Optimal/low-variance sKM clusters are consistent for all γ. In contrast,
rEC produces max-margin clusters for small γ and changes the solution for larger
γ4. The latter reduces norm ∥v∥ implying a wider “indecisiveness” zone around
the linear decision boundary. Due to the decisiveness term in (3.5), entropy
clustering finds the boundary minimizing the overlap between the data and such
“softness” zone, explaining the result for γ4. 47

3.5 Renyi entropy [176] of order α: assuming K = 2 the plots above show Rα(σ)
in (3.16) for binary distributions σ = (ς, 1− ς) as functions of scalar ς ∈ [0, 1].
Shannon entropy (3.19) is a special case corresponding to α = 1. 51

3.6 Margins: both examples (a) and (b) use distinct colors for classifiers partitioning
the data differently. (a) Point colors show given true labeling y. Green classifiers
v ∈ Vy are consistent with y and produce only non-negative margins dvX(y) ≥ 0
in (3.25). Yellow classifier vc ̸∈ Vy has inconsistent labeling yvc ̸= y. It
has negative (cyan) margins dvc

X (y) < 0 at incorrectly classified points. In
clustering (b), any classifier (green or yellow) produces only non-negative margins
dvX(y

v) ≡ dvX ≥ 0 in (3.29) w.r.t. its labeling/clustering yv. 55

3.7 Renyi entropies Rα(σ) and their supervised counterparts Rα(σ | y): assuming
K = 2 the plots above visualize these functions defined in (3.16)-(3.18) and
(3.32) for binary distributions σ = (ς, 1− ς) ∈ ∆2 plotted over interval ς ∈ [0, 1] 56

3.8 Multi-label clustering: K-means vs. entropy clustering. Consistently with Theo-
rem 4, loss (3.14) produces max-margin clustering, as in Definitions 3-4, satisfy-
ing the fairness. 62

3.9 Supervised loss Rα(σ | y): extending Figure 3.7(b) to K = 3. Three colored
areas of probability simplex ∆3 in (a) mark predictions σ with different hard-max
labels yσ. Assuming y = 2, the blue region in (b) shows where supervised losses
Rα(σ | y) in (3.39) and (3.40) are consistent with entropy Rα(σ). Loss (3.39) is
constant lnK in all gray regions. It is discontinuous at the blue/gray boundary,
except in the center. The continuous variant (3.40) is constant lnK only in the
light gray region. For σ in the dark gray area, it is defined by the entropy Rα(p)
at the closest point p in the blue region. 63

xvi

3.10 Balance vs margin size for loss (3.14). The data is generated from two Gaussian
distributions. The cardinalities are equal in the leftmost column, with 200 points in
each Gaussian. In the other three columns, the cardinality of one of the Gaussian
blobs is gradually reduced to 50. The rows show two local minima for each
example and the corresponding loss values. The lower loss value is highlighted in
boldface font. Note that loss (3.14) favors the clustering balance (fairness) over
the maximum margin only in the last column. 65

3.11 “Forward” vs “reverse”: KL-divergence. Assuming binary classification K = 2,
probability distributions σ or σ̄ are represented as points on [0,1]. The solid
curves illustrate the forward KL-divergence KL(u∥ȳ) for average pseudo-labels
ȳ in (3.42), though the same points could be made with average predictions σ̄
instead of ȳ. We show two examples of volumetric prior u1 = (0.9, 0.1) (blue)
and u2 = (0.5, 0.5) (red). The reverse KL-divergence KL(σ̄∥u) (dashed curves),
commonly representing fairness in prior work, tolerates extremely unbalanced
clustering, i.e. the end points of the interval [0,1]. 67

3.12 Loss (3.42) for two different update strategies for y. These plots are generated
with a linear classifier on MNIST. We use the same initialization and run both
strategies for 50 epochs. Note that once-per-epoch updates (corresponding to the
gray curve) achieve 52% accuracy, while once-per-batch updates (corresponding
to the yellow curve) achieve 63%. 70

3.13 Collision Cross Entropy - M step (3.53): the sum
∑

k yk is a positive, continuous,
convex, and monotonically decreasing function of x on the specified interval (a).
In case σmin > σmax

1+λu⊤S
(b), one can further restrict the search interval for x. The

fact that
∑

k yk ≥ 1 for x = σmin follows from an argument similar to the one
below (3.52) showing that

∑
k yk ≤ 1 for x = σmax. 73

4.1 Second-order Potts relaxations in Tables 4.1 and 4.2: interaction potentials P for
pairs of predictions (σi, σj) in (4.4) or pseudo-labels (yi, yj) in (2.6) are illustrated
for K = 2 when each prediction σi or label yi, i.e. distribution in ∆2, can be
represented by a single scalar as (x, 1− x). The contour maps are iso-levels of
P ((xi, 1− xi), (xj, 1− xj)) over domain (xi, xj) ∈ [0, 1]2. The 3D plots above
illustrate the potentials P as functions over pairs of “logits” (li, lj) ∈ R2 where
each scalar logit li defines binary distribution (xi, 1− xi) for xi =

1
1+e−2li

∈ [0, 1]. 88

xvii

4.2 Examples of "moves" for neighboring pixels {i, j} ∈ N . Their (soft) pseudo-
labels yi and yj are illustrated on the probability simplex ∆K for K = 3. In (a)
both pixels i and j are inside a region/object changing its label from A to B. In
(b) pixels i and j are on the boundary between two regions/objects; one is fixed to
class A and the other changes from class C to B. 89

4.3 Illustration of the difference among Potts relaxations. The visualization of soft
pseudo-labels uses the convex combination of RGB colors for each class weighted
by pseudo-label itself. 91

4.4 Comparison of cross-entropy terms. 93

4.5 Pseudo-labels generated from given network predictions using different neighbor-
hoods. 94

4.6 Comparison of different methods using Potts relaxations. The architecture is
DeeplabV3+ with the backbone MobileNetV2. 96

5.1 Synthetic example: (a) raw 3D data with blue & green reconstructed trees, see
also zoom-ins (b,c). The blue tree (a,b) is an MST on a geodesic tubular graph.
The green tree (a,c), is a minimum arborescence on a directed confluent tubular
graph, see section 5.3. 100

5.2 Low-level vessel estimation: True centerline is black. Blue voxels in (a) are local
maxima of some tubularity measure [70, 122, 211, 71] in the direction orthogonal
to the estimated centerline tangents (red). Regularization [161, 143] can estimate
subpixel centerline points (b) and oriented tangents [232] (red flow field). 101

5.3 Examples of standard geodesic tubular graphs for vascular image data: A graph
from [213] in (a) uses (purple) nodes connected by undirected edges correspond-
ing to shortest paths (geodesics) w.r.t. tubularity-based Riemanninian metric. Al-
ternatively, (b) shows graphs where (blue) nodes correspond to densely-sampled
voxels along the vessels [232]. Here the edges correspond to nearest neighbors
(KNN) weighted by length of some spline interpolation. In both cases (a) and (b),
near- or sub-voxel vessels have sparsely sampled bifurcations. 102

5.4 Confluence for oriented curves α and β. 104

xviii

5.5 Examples of directed flow-extrapolating circular arcs: (a) flow c̆ 1pq extrapolated
by confluent arc c̆pq from p to q is consistent with the local flow estimate l̄q = c̆ 0q∗
at point q as the angle between two vectors is small. Flow extrapolation from q to
p in (b) requires another circular arc c̆qp that belongs to a different circle defined
by tangent l̄q. Two arcs c̆pq and c̆qp are not even co-planar if tangents l̄p and l̄q
are not. The extrapolated flow c̆ 1qp is also consistent with the local flow estimate
l̄p = c̆ 0p∗ at p, so that the reverse arc c̆qp in (b) is confluent as well. In (c) the local
flow estimate l̄p at p is flipped and arc c̆qp becomes non-confluent since the angle
between c̆ 1qp and l̄p = c̆ 0p∗ is large. Note that arc c̆pq in (c) differs from (a) but it
must be non-confluent as well, see Theorem 6. 105

5.6 Typical tree reconstruction examples for standard geodesic (a) and our confluent
(b) tubular graphs. Arc weights are represented via thickness (yellow). The data is
a (representative) crop with near-capillary vessels at a periphery of large volumes,
e.g. Figure 5.1, 5.13. Sub-voxel vessels have bifurcations sparsely sampled by
tubular graph nodes, as in Figure 5.3. MST (blue) on geodesic graph “short-cuts"
most bifurcations. Minimum arborescence (green) on a directed tubular graph
with confluent arcs (b), see section 5.3.1, reconstructs flow-consistent bifurcations. 108

5.7 Illustration for (5.7). O is the center of the circle. ē is a unit vector along pq. . . . 110

5.8 Two circles given by p,q, c̆0pq and c̆0qp. Vectors in red are co-planar with the red
circle while those in maroon are co-planar with the maroon circle. 111

5.9 Quantitative comparison. Our methods are denoted by MArb and GridArb.
GridMST is the best result from [232]. 115

5.10 Median branching angular error for our methods (GridArb and MArb from sec-
tion 5.3) outperform all competitors (NMS-MST and GridMST [232]) 116

5.11 (Quasi) ROC curves evaluating accuracy of the neighborhoods N used for flow
pattern estimation, as in [232]. We compare anisotropic KNNs and standard 26-
grid connectivity (see gray dot). Evaluation is done based on synthetic data with
ground truth where correct connectivity is available. “ar" stands for the aspect
ratio and the number denotes the square of the aspect ratio. “grid26" represent
the regular 26 neighbors on grid. We select “ar10” with 4 anisotropic nearest
neighbourhood (ANN) connectivity system. 118

xix

5.12 Typical tree reconstruction examples for standard (a) and our confluent (b,c) tubu-
lar graphs. (a) White vectors represent CRF-based flow pattern estimates [232]
using 26-grid regularization neighborhood N . In case of thin sub-voxel vessels,
such N has gaps creating inconsistent flow pattern for isolated small branches
(yellow box) lacking bifurcations used by divergence prior to disambiguate ori-
entations. (a) Undirected geodesic tubular graph with large KNN easily bridges
such gaps ignoring (inconsistent) flow directions and produces topologically valid
vessel MST (blue), even though bifurcations are not accurate. (b) Directed conflu-
ent tubular graph is sensitive to flow pattern errors. Minimum arborescence on
this graph produces accurate bifurcations, but flow orientation errors (yellow box)
lead to wrong topology. (c) CRF-based flow pattern estimator [232] with modified
anisotropic KNN systemN addresses the gaps at thin vessels. This improves flow
orientations (white vectors in yellow box) and resolves confluent tubular graph
artifacts producing trees with accurate both topology and bifurcations. 119

5.13 Real data micro-CT volume and vessel centerline reconstruction (green) obtained
by our method and (blue) by [232]. To reduce clutter we show the result of Frangi
et al. filter [70] instead of raw input data. The real data zoom-in is at the top left. 120

xx

List of Tables

3.1 Our EM algorithm vs Newton’s methods [107]. 69

3.2 Comparison of our EM algorithm to Projected Gradient Descent (PGD). η is the step size.
For K = 2, η1 ∼ η3 are 1, 10 and 20 respectively. For K = 20 and K = 200, η1 ∼ η3
are 0.1, 1 and 5 respectively. Higher step size leads to divergence of PGD. 71

3.3 Effects of different α in Renyi entropy as the decisiveness term. 78

3.4 Comparison of different methods using fixed features. The numbers are the
average accuracy and the standard deviation over 6 trials. ⋆: our “batch version"
implementation of their method. 79

3.5 Quantitative results of accuracy for unsupervised clustering methods with VGG4.
We only use the 20 coarse categories for CIFAR100 following [102]. 79

3.6 Quantitative comparison using network ResNet-18. 80

3.7 Quatitative comparison using ResNet-50 on ImageNet-100 subset [216]. 80

3.8 Quantitative results for semi-supervised classification on STL10 and CIFAR10
using ResNet18. The numbers 0.1, 0.05 and 0.01 correspond to different ratio
of labels used for supervision. “Only seeds” means we only use standard cross-
entropy loss on seeds for training. 81

4.1 Second-order Potts relaxations, see Figure4.1(a,b,c) 87

4.2 Log-based Potts relaxations, see Figure4.1(d,e,f) 88

4.3 Comparison of Potts relaxations with self-labeling. mIoUs on validation set are
shown here. 92

4.4 Summary of comparisons. “∗” stands for the reproduced results from their code
repository. 95

xxi

4.5 Comparison to SOTA methods (without CRF postprocessing) on scribble-supervised
segmentation. The numbers are mIoU on the validation dataset of Pascal VOC
2012 and use full-length scribble. The backbone is ResNet101 unless stated
otherwise. V2: deeplabV2. V3+: deeplabV3+. N : neighborhood. “∗”: repro-
duced results. GD: gradient descent. SL: self-labeling. “no pretrain” means the
segmentation network is not pretrained using cross-entropy on scribbles. 97

4.6 Comparison to SOTA methods (without CRF postprocessing) on segmentation
with block-scribble supervision. The numbers are mIoU on the validation dataset
of cityscapes [49] and ADE20k [235] and use 50% of full annotations for super-
vision following [129]. The backbone is ResNet101. “∗”: reproduced results. All
methods are trained in a single-stage fashion. 98

5.1 The summary of comparison between different methods. 114

xxii

Chapter 1

Introduction: annotation shortage in vision

Computer vision aims to enable computers to understand visual content like human beings. Data-
driven methods have proven to be effective for both understanding [58, 182, 134, 90, 147] and
generation tasks [172, 177]. However, the amount of data needed is huge. While the generation
tasks do not require human annotations, understanding tasks do. For example, the ImageNet
dataset [182] for image classification contains nearly 15 million images with labels, which requires
massive manual work. While simply labeling images may still sound manageable to some people,
consider more complex forms of annotations, such as precise pixel-wise masks for segmentation
tasks [66, 131, 49]. To alleviate the annotation issue, this thesis is focused on the study of the
unsupervised losses with corresponding optimization algorithms in three different problems.
We will start from image-level classification in Section 1.1 and then move on to the pixel-level
classification, i.e. segmentation, for natural images in Section 1.2 and for medical images of
vessels in Section 1.3. In Section 1.4, we summarize the issues and introduce our contributions.

1.1 Image classification

Image classification is a fundamental task in computer vision aimed at automatically categorizing
images into predefined classes or categories. It is important for various problems such as facial
recognition [167, 223], image segmentation [134, 147], medical image analysis [132], autonomous
driving [126], etc. The classification task is formulated as a mapping function h : X → Y , where
X is the input space of images and Y is the set of all possible class labels. We often decompose it
into two parts. One maps the image to the feature space, f : X → F . The other is a classifier
function, g : F → Y , which is usually chosen to be as simple as possible, say a linear classifier.

1

Hence, the label for a given image x is given by

h(x) ≡ g(f(x)) (1.1)

1.1.1 Supervised classification

To solve the classification problem, one can either explicitly construct the mapping functions or
search for the functions from some hypothesis space. If we learn the oracle behind a specific
classification task by carefully looking at samples and summarizing the rules, we can give an
explicit formulation for h. However, this does not usually work well in the real world. Just
consider the image classification task. It is not easy to understand why we make the decision.

Learning-based methods employ algorithms to explore the hypothesis space in search of a
model that fits the data. It’s important to note that the hypothesis space is still manually defined,
often guided by the principle of Occam’s razor to ensure good generalization. Examples of
classification methods include KNN [68], decision tree [195], logistic regression [95], support
vector machine (SVM) [50], and neural networks [124]. These methods can be applied to the
raw input directly or to some fixed features. The methods to extract features usually refer to
hand-engineered methods such as HOG [54], Harris Corner Detector [87], SIFT [136] and SURF
[11].

Among the classification methods mentioned above, neural networks stand out as a very pow-
erful tool, probably due to their hierarchical structure to better extract the features. Also, they can
approximate any functions [94] and are scalable. The progression of neural network architectures
has advanced from basic Multi-Layer Perceptrons (MLP) to Convolutional Neural Networks
(CNN) such as VGG [192], ResNet [90], MobileNet [96], and more recently, transformers like
ViT [62]. Typically it consists of many layers in a sequential order and is highly non-linear. In
classification tasks, the final layer is often a linear classifier. The linear model is a special case
when f(X) = X . Typical “deep” representation f(X) significantly changes the dimensions of
the input X . It is convenient to assume that M always represents the dimensions of the linear
head input so that (homogeneous) matrix v ∈ R(M+1)×K where K is the number of classes. To
optimize these parameters, loss functions and corresponding optimization algorithms are needed.
As follows, we first review some losses that have maximum margin property. In Chapter 3, we
will extend such property to a family of unsupervised losses.

Margin maximization losses Here we will review two important types of classification losses,
i.e. hinge loss and cross-entropy loss. For simplicity, we focus on the binary case while the

2

multi-class extension will be given at the end. We also assume the features are fixed and linearly
separable so that the maximum margin can be well-defined.

The minimization problem using hinge loss is defined as:

min
v

1

N

∑
i

max(0, 1− yi · v⊤f(Xi)) (1.2)

where i is the index of the sample, N is the total number of samples in the training set, f(Xi) ∈
RM is the feature, and yi ∈ {−1, 1} is the ground-truth label. For shortness, v⊤ includes the bias
assuming the “homogeneous” representation of f(Xi). To minimize (1.2), max(0, 1−yi·v⊤f(Xi))
should be zero for all samples due to linear separability assumed above. However, the minimum
is not unique, and actually, there is an infinite number of equivalent minima. Squared L2 norm is
a common prior/regularization, and the addition of such regularization induces a unique solution
with

min
v

1

N

∑
i

max(0, 1− yi · v⊤f(Xi)) + λ∥v∥22 (1.3)

an intriguing geometric property, i.e. maximum margin [217]. Note that 2
∥v∥2 (excluding the bias

in the norm!) is the margin width for the formulation in (1.3). Consistent with the intuition of
generalization, such margin maximization makes the decision boundary as far from the nearest
samples on both sides as possible. In (1.3), a small λ will induce the maximum margin solution.
Value of λ larger than a certain threshold will make v too small so that 1− yi · v⊤f(Xi) can be
larger than 0 for some Xi. Then the margin is violated. As for the non-linearly separable case, λ
controls the level of trade-off between margin violation and its width.

Logistic regression is also known for maximum margin property [179]. It uses cross-entropy
loss on top of the sigmoid operator which maps the logits (−v⊤f(Xi), v⊤fw(Xi)) to 2-class
probabilities forming a categorial distribution (1

1+ev
⊤fw(Xi)

, 1

1+e−v⊤fw(Xi)
) often interpreted as a

posterior. Note that we should also turn the yi into a distribution, e.g. ([yi = −1], [yi = 1]) where
[·] is the Iverson bracket. Then the minimization problem using the cross-entropy is defined as:

min
v

1

N

∑
i

−[yi = −1] ln
1

1 + ev⊤f(Xi)
− [yi = 1] ln

1

1 + e−v⊤f(Xi)
(1.4)

The cross-entropy loss (1.4) is differentiable and thus amenable to standard gradient descent. Also,
a nice property of using cross-entropy loss on top of the sigmoid is the convexity. In many places,
such loss is also interpreted as negative log-likelihood (NLL) although NLL is usually reserved
for the density estimation with generative modeling. Minimization of this loss will not only lead

3

to an infinite number of solutions but also result in an infinitely large norm of v. Therefore, the
squared L2 regularization is also needed1.

min
v

1

N

∑
i

−[yi = −1] ln
1

1 + ev⊤f(Xi)
− [yi = 1] ln

1

1 + e−v⊤f(Xi)
+ λ∥v∥22 (1.5)

Different from (1.3), the λ in (1.5) needs to be infinitesimally small to induce the margin maxi-
mization phenomenon. Intuitively, when λ approaches the zero, the norm of v goes to infinity
and − ln 1

1+e−yi·v⊤f(Xi)
= ln(1 + e−yi·v⊤f(Xi)) will vanish quickly enough to concentrate on the

samples nearest to the decision boundary. More rigid mathematical analysis can be found in [179].

We also give the formulations for both the hinge loss (1.6) and the cross-entropy loss (1.7)
under multi-class cases where yi ∈ {1, 2, ..., K}. Interested readers can refer to [179] for a
detailed description of the margin maximization in multi-class classification.

min
v

1

N

∑
i

∑
j ̸=yi

max(0, 1− (vyi − vj)
⊤f(Xi)) + λ∥v∥2F (1.6)

The ∥ · ∥F is the Frobenius norm. To define the multi-class cross-entropy loss, we need to
extend the sigmoid to the softmax operator, i.e. σ : RK → ∆K , mapping K classifier outputs
lk := (v⊤f(Xi))

k ∈ R to K-class probabilities σk = exp lk∑
c exp lc

forming a categorical distribution
σ = (σ1, . . . , σK) ∈ ∆K where

∆K := {(p1, . . . , pK) ∈ RK | pk ≥ 0,
∑

pk = 1}.

Then the minimization problem with multi-class cross-entropy loss can be defined as:

min
v

1

N

∑
i

∑
k

−[yi = k] ln
ev

⊤
yi
f(Xi)∑

c e
v⊤
c f(Xi)

+ λ∥v∥2F (1.7)

1.1.2 Towards unsupervised classification

Learning-based methods often demand substantial labeled data to perform effectively in the
real world. The pursuit of larger datasets aims to improve the generalization. However, the
labeling process is costly, let alone datasets surpassing millions of images. Even with parallel
labeling efforts from many people, ensuring consistency across annotators remains challenging.

1Certain optimization algorithms such as gradient descent can lead to maximum margin [196] without explicit
regularization.

4

Consequently, this motivates unsupervised approaches for the unlabelled data. Methods that
employ both labeled and unlabelled data try to combine the best aspects of both worlds.

The rationale behind unsupervised learning lies in its capacity to reduce economic costs
while improving generalization by using extensive data. However, unlike supervised learning,
which has a clear objective, i.e. minimizing the empirical risk, unsupervised learning does not.
Generally, it aims to distill meaningful information from data, but it lacks a clear definition of
what is meaningful. Despite its name, unsupervised learning still requires manual determination
of what to extract. For example, the class label represents one form of meaningful information
agreed upon by us all. Recently, there has been a popular line of work focused on so-called
self-supervised learning, using priors from the engineer to learn good compact representations
[92, 43, 81, 88]. Note that the priors for unsupervised methods are very different from those for
supervised learning. In supervised learning, the need for priors diminishes with an increase in the
sample size. However, in unsupervised learning, the results are heavily influenced by the prior
regardless of data volume [189].

Depending on the modeling type, unsupervised learning can be grouped into generative
methods and discriminative ones. The following section will give a review of them.

1.1.3 K-means, GMM, and entropy clustering

We start from two basic generative methods: K-means and GMM. Generative methods basically
mean modeling the data density. Why is density estimation useful for classification? Because
the density function could delineate distinct clusters, wherein samples within each cluster are
connected through regions of high density and each cluster is considered as a class. Naturally, the
choice of the density model is crucial2. We will use simple examples in Figure 1.1 to illustrate
this and show the potential advantage of the discriminative method, e.g. entropy clustering which
will be discussed in more detail in Chapter 3.

We start with the most basic K-means. The loss can formulated as:

LKM(S, µ) =
K∑
k=1

∑
i∈Sk

∥Xi − µk∥2 (1.8)

where ∥ · ∥2 is the squared L2 norm, S = (S1, ..., Sk) represents the categorical subsets and
µ = (µ1, ..., µK) represents the centers of each cluster. To understand how K-means is related to

2While there are non-parametric models such as [100, 190], we are focused on the parametric ones here, because
non-parametric methods, although versatile, can encounter scalability issues when applied to large datasets.

5

Generative clustering Discriminative clustering

(a)K-means (b)GMM (c) entropy clustering
Θ(K ×M) Θ(K ×M2) Θ(K ×M)

Figure 1.1: K-means vs. GMM vs. entropy (decisiveness and fairness) clustering - binary example
(K = 2) for 2D (M = 2) data {Xi} comparing generative and discriminative methods with
different parametric complexity: (a) K-means µk ∈ R2, (b) GMM µk ∈ R2 and Σk ∈ R2×2 and
(c) entropy clustering (see Chapter 3) based on a linear classifier parameterized by K-columns
matrix v where linear discriminants vk ∈ R2+1 include the bias. Red and green colors in (a),
(b) and (c) illustrate the decision regions over X ∈ R2 produced by the corresponding decision
functions for optimal parameters: (a) linear decision boundary (b) quadratic decision boundary
and (c) linear classifier. The decision function in (a) is hard, and is soft in (b) and (c), see the
white region near the decision boundary. The optimal results in (a) and (b) are analyzed in Section
1.1.3. The optimal result in (c) requires a margin maximization term ∥v∥2, see Section 3.2.2.

6

density estimation, we should reformulate the loss as follows:

LSNLL(S, µ) = −
K∑
k=1

∑
i∈Sk

lnP (Xi | µk) + const (1.9)

where P (Xi | µk) = N (Xi | µk, σ
2I), the isotropic Gaussian distribution. From (1.9), K-means

loss can be seen as the sum of NLLs. Each component is represented as an isotropic Gaussian
distribution, hence the K-means loss aims at finding clusters of blob-like shape. In Figure 1.1
(a), the shape of data clusters is elongated, resulting in the failure of K-means. The optimization
algorithm, i.e. Lloyd’s algorithm, [133], is block-coordinate descent where S and µ alternate
being optimized given the other is fixed. Two steps both have closed-form solutions:

Si = argmin
k
∥Xi − µk∥2 (1.10)

µk =

∑
i∈Sk Xi

|Sk|
(1.11)

where | · | is the cardinality. Also note that the decision boundary between each two clusters is
linear, as illustrated in Figure 1.1 (a), because the squared data terms will cancel out, leaving the
decision boundary in a linear form.

Obviously, to correctly separate the two clusters in Figure 1.1, the density function should not
be limited to isotropic Gaussian density. The Gaussian Mixture Model (GMM) offers flexibility
by estimating the covariance matrices. The GMM method uses a mixture of Gaussian models to
estimate the density. The number of Gaussian components is usually the number of clusters if we
could get such information in any way. Then the NLL loss is:

LGMM(θ) = −
∑
i

ln
∑
k

ρkP (Xi|µk,Σk) (1.12)

where θ represents all the parameters to estimate, ρk represents the proportion of the component
k, and Σk is the covariance matrix. As shown in Figure 1.1 (b), we can get two clusters correctly
separated now. Note that the decision boundary is not linear anymore because the quadratic data
term can not cancel out due to different covariance matrices. Clearly, increasing the complexity of
the density function can solve the problem but it introduces more parameters to estimate and the
algorithm to optimize the loss also becomes more complicated, which limits its scalability. The
expectation-maximization (EM) algorithm [16] introduces auxiliary variables to decompose the
optimization problem into easier ones.

7

In Chapter 3, we focus on an alternative discriminative group of clustering methods. Unlike
generative methods working with density functions, the clustering losses in Chapter 3 are directly
defined over the output of posterior models, as in [30]

Lec = H(σ) − H(σ) (1.13)

where σ ∈ ∆K is softmax, which is a typical probabilistic output of neural networks. Such losses
commonly use entropy function, e.g. Shannon’s entropy H above. The bar operator indicates
averaging over data points, see Chapter 3 for more details. We refer to this group of methods as
discriminative entropy clustering. Figure 1.1 (c) shows the optimal result of unsupervised loss
(1.13) for linear classifier model σ(v⊤X). The parameter complexity of this clustering method is
the same as K-means, but it finds good linear decision boundaries ignoring complex data density
models in GMM.

1.2 Image segmentation

Image classification operates at the image level, providing a single label for the entire image.
However, images often contain multiple different objects. To precisely localize and delineate these
objects, pixel-level classification is needed. Image segmentation aims to partition image pixels into
non-overlapping sub-regions corresponding to some predefined categories. In the next section, we
will first introduce the classic interactive image segmentation problem, which relies on low-level
cues such as color intensity. We will then move on to fully-supervised semantic segmentation and
its weakly-supervised counterpart, where we will see how the low-level segmentation techniques
can help.

1.2.1 Low-level segmentation with Potts model

Image segmentation is a classic problem in computer vision. It aims at grouping pixels into
different subsets. To begin with, we look at a classic binary segmentation example as shown
in Figure 1.2. Assume we are given an image I where each pixel p ∈ Ω has intensity Ip. The
segmentation task is to partition the pixels into two groups, i.e. foreground and background.
In other words, we need to give each pixel a label Sp ∈ {0, 1}. There are exponentially large
numbers of partitions, so constraints are needed. In Figure 1.2 (b), we use strokes to roughly mark
the foreground and background regions. Using the pixels inside the stroke area, we can estimate
the so-called appearance model for each class like Figure 1.3. Since this is the density estimation,
we can use the GMM discussed in Section 1.1.3. Given the appearance model, the simplest way

8

(a) image from [180] (b) brush strokes (c) log-likelihood ratio

(d) ground-truth (e) threshold (f) graph cut [26]

Figure 1.2: (Interactive) image segmentation. (a) is the original image to be segmented into the
foreground of the llama and background as shown in (d). (b) shows the brush strokes indicating
the foreground and background. (c) shows the log-likelihood ratio for all pixels using the model
estimated from the stroke region via the maximum likelihood estimation principle. (e) is the result
of simple thresholding. Due to the independent treatment of each pixel, the result in (e) is very
noisy. Methods, such as [26], exploit relation between pixels to produce a smooth result as in (f).

9

Figure 1.3: Estimated density function for foreground and background based on the pixels inside
the brush strokes.

to determine the class of each pixel is thresholding based on the log-likelihood ratio. The formula
is given as (1.14) and such ratio is shown for each pixel in Figure 1.2 (c).

gp = − ln
P (Ip | θfg)
P (Ip | θbg)

(1.14)

If gp < 0, then Sp = 1 (we usually designate 1 to the foreground region). Otherwise, Sp = 0.
Such thresholding can also be formulated into a minimization problem where the objective is
given by:

E(S) =
∑
p∈Ω

gp · Sp (1.15)

Motivated by physics, such objectives are often called energies. The result is shown in Figure 1.2
(e), and obviously it is very noisy due to the overlapping of the appearance model. The following
energy [73], extending (1.15), accounts for the number of labeling discontinuities:

E(S) =
∑
p∈Ω

gp · Sp︸ ︷︷ ︸
data/unary term

+ λ
∑

(p,q)∈N

wpq[Sp ̸= Sq]︸ ︷︷ ︸
smoothness/pairwise term

(1.16)

where λ is the relative weight between the two terms, N represents the neighborhood system
and each discontinuity is often weighted by wpq = exp(−β∥Ip − Iq∥2) based on color difference

and β−1 =
∑

(p,q)∈N ∥Ip−Iq∥2

|N | . Consequently, the solution with more discontinuities like Figure 1.2
(e) will be assigned a much higher energy value while the cleaner result in (f) gives a lower
energy value. Essentially, we introduced a bias towards "smooth" solutions, and the level of
the smoothness is based on the value of λ. Since the weights wpq impose a lower penalty if the
boundary is highly contrasted, the energy (1.16) also promotes edge alignment. In Bayesian

10

statistics, approaches like (1.16) correspond to a maximum a posteriori probability (MAP) estimate
for parameter S [73], where the prior distribution corresponds to the pairwise term. In the literature,
they are called Markov Random Field (MRF) regularization [73] or Conditional Random Field
(CRF) regularization [121]. Note that (1.16) is formulated for binary case, where the model is
called Ising model [144], and it can be easily extended to the multi-label case:

E(S) =
∑
p∈Ω

∑
l∈L

ul
pS

l
p + λ

∑
(p,q)∈N

wpq[Sp ̸= Sq] (1.17)

where L = {1, 2, ..., K}, ul
p is the unary potential, Sl

p = [Sp = l] is an indicator and wpq > 0.
This model is called the Potts model, which is a generalization of the Ising model and a special
case (second-order) of the general MRF/CRF regularization. As mentioned above, the pairwise
term uses a predefined neighborhood system to enforce the pairwise constraints. Why does the
neighborhood system need such emphasis? As follows, we will show that different neighborhood
system leads to very different properties and optimization algorithms for the Potts model.

(Grid) Potts model The typical Potts model uses the simplest 4-grid (up, left, down, right)
neighborhood system. With such a grid neighborhood, the Potts model can be interpreted as an
approximation of the length of the boundary between segments:∑

(p,q)∈N

[Sp ̸= Sq] ≈
∑
l∈L

|Sl| (1.18)

where Sl is the set of the points on the boundary of segment Sl. Boykov and Kolmogorov [24]
established this relation by using the Cauchy-Crofton formula from integral geometry that relates
the length of a curve with the number of its intersections by a random line. Consequently, such
type of Potts model prefers shorter boundary, which is known as the shrinking bias. Intuitively,
the bias is towards the blob-like shapes. As for long and thin structures like blood vessels, we
need some other regularization, such as curvature [93, 199, 55, 185, 198, 186, 91, 27, 157, 153],
which will be discussed in Section 1.3.

The incorporation of pairwise terms induces better objective function, but the optimization
becomes more complex than the simple thresholding. Various algorithms are proposed for energy
minimization using the grid Potts model. When |L| = 2, the energy (1.16) can be globally
optimized via efficient graph cuts algorithm [26, 114, 85]. In fact, any second-order/pairwise
set function that is submodular can be globally optimized in polynomial time via graph cuts
[86, 168, 19, 114], and the Ising model is just a special case of binary submodular energies. Here
the submodularity and set function are the concepts in combinatorial optimization and are also
useful in information theory, game theory, graph theory, and related fields [135]. In the multi-label

11

case, i.e. |L| > 2, the problem becomes NP-hard. Different types of approximation algorithms
are proposed. For instance, the alpha-expansion [25] algorithm is introduced for a broad range of
pairwise energies, leading to various extensions such as label costs [56], auxiliary cuts [12], local
submodular approximations [77], and PBO [204]. Several general-purpose approximate pairwise
optimization methods have also been proposed, including LBP [164], TRW-S [113], QPBO [18].
For a comprehensive review and comparison, please refer to [202, 105]. Additionally, Geman and
Geman [73] employed a (probabilistic) Monte Carlo Markov Chain (MCMC) [17] approach to
optimize energy, using the Gibbs sampler with the annealing strategy.

Besides the discrete optimization, different relaxations can be used for continuous optimization.
In particular, the Potts model [Sp ̸= Sq] can be relaxed to

• total variation (TV) relaxation: ∑
l

|Sl
p − Sl

q|

• quadratic relaxation: ∑
l

∥Sl
p − Sl

q∥2

• bilinear relaxation: ∑
l

Sl
p(1− Sl

q) + Sl
q(1− Sl

p)

where
∑

l S
l
p = 1 and Sl

p > 0 for all p ∈ Ω. Here, the TV and quadratic relaxation are convex
so the global optimum can be found. The quadratic formulation is smooth and thus supports the
standard gradient descent algorithm while a closed-form solution exists and is related to random
walker [1, 78] or label propagation [239, 236, 14]. Although the subgradient descent algorithm
can be applied to the TV formulation, it usually leads to slow convergence. Chambolle and Pock
[32] use the general primal-dual technique to develop a faster algorithm that supports parallel
implementation on GPU. The bilinear relaxation is not convex but is tight [174]. Here tightness
means that the optimization of the energy using the relaxation formulation leads to the same
minimal value as the original discrete problem. Additionally, the probabilistic approach can still
be used for continuous optimization, such as mean-field approximation in the variational inference
[17].

Dense Potts model Grid Potts model assumes independence from the non-neighboring pixels,
i.e. the Markov effect, which makes the evaluation and (approximate) inference in such models
tractable [140]. The dense Potts model links the non-neighboring pixels and pushes this to the

12

(a) 1D image (b) grid Potts (c) dense Potts

Figure 1.4: Synthetic segmentation example for grid and dense Potts models: (a) intensities I(x)
on 1D image. The cost of segments St = {x|x < t} with different discontinuity points t according
to (b) nearest-neighbor (grid) Potts and (c) larger-neighborhood (dense) Potts. The latter gives
a smoother cost function, but its fatter minimum may complicate discontinuity localization as
shown in Figure 1.10. Figure from [142, 140].

limit by connecting to all other pixels. The efficient mean-field approximation can still be used
here, but the pairwise term is limited to the Gaussian potential [115]. Despite the “dense” nature,
one could control the coordinate bandwidth inside the Gaussian potential to determine the range
of the interactions among pixels. Veksler [218] noted that for large neighborhood size, it is equal
to volume estimation, suggesting weaker regularization effects. On the algorithmic level, the
dense Potts is smoother as shown in Figure 1.4 (c), which makes it amenable to gradient descent.
Consequently, it is easier to combine the dense Potts with the neural network training which will
be introduced in Section 1.2.3.

1.2.2 Semantic segmentation with neural networks

In previous sections, we are focused on low-level interactive segmentation and introduced the
commonly used regularization loss such as the Potts model. Here, we will introduce another
type of segmentation where the image will be partitioned into subregions of predefined semantic
categories, such as people, birds, trees, etc. Different from interactive segmentation which relies
on low-level cues such as color intensity, and pixel coordinates, semantic segmentation needs
more complex features. As mentioned in Section 1.1, learning-based methods, particularly neural
networks, can be suitable for such tasks. In the following, we introduce the network architecture
modified from the classification task and the corresponding pixel-level loss function.

First, let’s see how a classification network can be turned into one for segmentation tasks.
In Section 1.1, we mainly discussed the losses to train a neural network. Here we give an

13

Figure 1.5: The transformation from a classification network to a fully convolutional network
(FCN) by changing the last three fully connected layers into convolutional layers. The resulting
network (at the bottom) can be applied to images of any size, which makes the architecture suitable
for (coarse) semantic segmentation tasks. Each rectangular block represents an intermediate
feature map, with two spatial dimensions and one feature dimension. The spatial dimensions
are determined by the input and convolution kernel size, while the numbers below the blocks
indicate the feature dimensionality. It is implicitly assumed that each consecutive pair of blocks
contains a convolution layer, activation layer, and pooling layer if needed. The relative size of
the blocks reflects downsampling along the spatial dimensions (due to convolution strides and/or
max-pooling) and an increase in feature dimension (due to more convolutions within a single
convolution layer). Figure from [134].

14

introduction to the neural network architectures. The early version of neural networks is the
multilayer perceptron (MLP) which is a stack of linear transformations and activations:

h(x) = hL(σ(...(h2(σ(h1(x))))))

where L is the number of layers, σ is the element-wise nonlinear activation function and hi(x) =
Wi

⊤x is a linear transformation. Following the philosophy of network architecture design,
multiple types of layers are discovered, such as the convolution layer, pooling layer, attention layer,
etc [124]. The convolutional neural network (CNN) that usually combines convolution, linear,
activation, and pooling layers has recently dominated the field for several years [192, 117, 90].
Compared to MLP, it has fewer parameters and translational equivariance due to the convolution
operation. From the Figure 1.5, we can see that the last few layers are linear layers to calculate
the score for each class. To support the segmentation task and the different sizes of the input, the
fully convolutional neural network (FCN) is proposed [134]. Based on this work, many other
variants are proposed such as U-net [178], Segnet [10]. The overall architecture typically consists
of an encoder backbone and a decoder, where the encoder is usually pre-trained on ImageNet
based on the concept of transfer learning [159]. The decoder is used to recover the original
resolution to compute the loss on each pixel. DeeplabV3+ [42], as shown in Figure 1.6, is a classic
encoder-decoder framework. In the encoder part, it uses Atrous convolution and pyramid pooling
operations to better preserve the spatial information while having a larger receptive field [41]. The
decoder part combines the low-level and high-level features to leverage both fine-grained details
and semantic context.

The loss function is the pixel-wise cross-entropy loss:

L(θ) = E(I,ȳ)
1

|Ω|
∑
p∈Ω

− lnσȳp
p (θ) (1.19)

where θ is the trainable network parameters, and σ
ȳp
p is the softmax output at pixel p. The ground

truth label at any given pixel p ∈ ΩL is an integer

ȳp ∈ {1, . . . , K} (1.20)

where K is the number of classes including the background. Without much ambiguity, it is
convenient to use the same notation ȳp for the equivalent one-hot distribution

ȳp ≡ (ȳ1p, . . . , ȳ
K
p) ∈ ∆K

0,1 for ȳkp := [k = ȳp] ∈ {0, 1} (1.21)

where [·] is the True operator for the condition inside the brackets. Set ∆K
0,1 represents K possible

one-hot distributions, which are vertices of the K-class probability simplex representing all K-
categorical distributions. The context of specific expressions should make it obvious if ȳi is a
class index (1.20) or the corresponding one-hot distribution (1.21). The optimization methods
introduced in Section 1.1.1 can be applied to minimize (1.19).

15

Figure 1.6: The encoder-decoder architecture of deeplabV3+ framework [42]. As shown in
Figure 1.5, the output map has a much lower resolution compared to the original image. The
decoder part upsamples the feature map to the original resolution to get fine-detailed segmentation
output. DCNN represents the deep CNN model and Atrous Conv is a type of convolution
supporting a larger receptive field with the same number of parameters as the original convolutional
kernel. The rate of atrous convolution determines the spacing between the kernel elements during
convolution, controlling how many pixels in the input feature map are skipped when applying the
convolution operation. The stack of blocks in the encoder part represents the concatenation of
feature maps using the Atrous convolution with different rates. In the decoder part, the low-level
features from the first several layers are concatenated with the high-level features from later ones
to better capture both the fine details and semantic information.

1.2.3 From pixel-wise ground-truth to weak supervisions

One big issue with pixel-level supervision is the huge amount of labeling cost. According to
[6], it takes an average of 19 minutes to annotate an image for the COCO dataset [131] and 1.5
hours to fully annotate a single image from the Cityscapes datasets [49]. This motivates weaker
forms of supervision such as image tags, scribbles, or bounding boxes. The most appealing form
is the image tag which is the relatively easiest to obtain. How can the pixel label be inferred
from just the image tags? To give an intuition on this question, we start from the binary case.

16

Figure 1.7: The illustration of multiple instance learning (MIL). The colorful solid circles represent
different molecules and big black circles represent different drugs. The letters “Y” and “N” are
the labels indicating whether a certain drug works or not. The goal is to find the molecules that
make the drug work based on the test information.

Imagine we deal with the problem of drug (molecule) discovery and it is only possible to test
if a certain combination of molecules works, as shown in Figure 1.7. Given the labels "yes, it
works" or "no, it doesn’t" in Figure 1.7, we can infer that the green dot is the one that works.
Such binary classification problem is well-known as multiple instance learning (MIL) where
the training labels are only available for sets/bags of examples instead of individual ones. This
is a combinatorial problem. In Figure 1.8, the task is extended to the multi-label case and is
tag-supervised segmentation. We can infer that all the green pixels should be assigned to the grass
because the grass is in the first and third images but not the second, which means that the grass
can not be blue or yellow. In practice, the segmentation network needs to solve a combinatorial
problem to locate the object corresponding to some class and this needs a ton of images. Also,
the network needs to figure out good features as well because, not as simple as shown in the

17

figure, color cues are usually not enough. To enable the network to learn the pixel-wise prediction
from the image tags, several strategies are proposed to convert the pixel-wise predictions into
image-level ones by different types of pooling [162, 169, 112]. Most methods build upon the
classification activation map (CAM) [234] and try to refine the map [112, 3, 125, 2, 7, 237].
However, one can argue that the CAM was not originally designed for the segmentation problem,
which makes this line of approach sub-optimal.

Figure 1.8: A multi-label illustration of MIL. Each image is given a tag containing the objects
present in the image. The goal is to find correspondence between labels and objects in the image.
For example, it can be inferred that the grass should correspond to the region of green pixels.

Tag supervision typically requires highly specialized systems and complex multi-stage training
procedures, which are hard to reproduce. Another form of supervision is the scribble-based
approach motivated by its practical simplicity and mathematical clarity. The scribble-supervised
semantic segmentation is the focus of the Chapter 4. The corresponding methodologies are
focused on the design of unsupervised or self-supervised loss functions and stronger optimization
algorithms. The corresponding solutions are often general and can be used in different weakly-
supervised applications. Assume a subset of pixels with ground truth labels is ΩL ⊂ Ω, which
we call seeds or scribbles as subset ΩL is typically marked by mouse-controlled UI for image
annotations, e.g. see seeds over an image in Figure 1.9. Loss functions for weakly supervised
segmentation with scribbles typically use NLL/cross-entropy loss over scribbles p ∈ ΩL ⊂ Ω with
ground truth labels ȳp

−
∑
p∈ΩL

lnσȳp
p (1.22)

18

Figure 1.9: Scribbles on the image. Different categories correspond to different colors of the
scribbles. Figure from [206].

where σp = (σ1
p, . . . , σ

K
p) ∈ ∆K is the model prediction at pixel p. Note that here we only show

the loss for one image for brevity. This loss is a standard in full supervision where the only
difference is that ΩL = Ω and usually, no other losses are needed for training. However, in a
weakly supervised setting the majority of pixels are unlabeled, and unsupervised losses are needed
for i ̸∈ ΩL. The most common unsupervised loss in image segmentation is the Potts model and
its relaxations as introduced in Section 1.2.1. Tang el.al. [206] proposed combining the bilinear
relaxation of the dense Potts model

R(S(θ)) =
∑
k

(1− Sk(θ))⊤ASk(θ) (1.23)

with the NLL loss on the scribbles where θ is the network parameter, vector Sk(θ) is the flattened

Sk = {σk
p | p ∈ Ω}

prediction map for class k and A is the affinity matrix using Gaussian weights. The combined
regularized WSSS loss in [206] is

−
∑
p∈ΩL

lnσȳp
p +

∑
k

(1− Sk(θ))⊤ASk(θ) (1.24)

19

During the training backpropagation, the gradient of the Potts model is calculated as

∂R

∂Sk
= −2ASk

where the bilateral filtering is applied for efficient computation [115].

(a) (b) (c)

Figure 1.10: Low-level segmentation example for grid (b) and dense (c) Potts models for image
with scribbles (a). Grid Potts gives smoother segment boundaries with better edge alignment,
while dense Potts often gives noisy boundaries. Figure from [142].

As discussed in Section 1.2.1, the grid Potts model enforces stronger regularization but suffers
from GD. In [142], they propose using the alternate direction multiplier (ADM) framework by
introducing auxiliary variables to split the original optimization problem into easier subproblems,
where one can apply strong low-level solvers such as graph cut [25]. The loss is as follows:

min
θ,Y

∑
p∈ΩL

l(Sp(θ), ȳp) + γ
∑
p∈ΩU

D(Yp|Sp(θ) + λ
∑

(p,q)∈N

wpq[Yp ̸= Yq]

s.t. Yp = ȳp ∀p ∈ ΩL

where Yp ∈ {0, 1}K is a one-hot distribution and D is some divergence measure, e.g. Kullback-
Leibler divergence. R is now a classic discrete Potts model as in (1.17). The optimization is
done in block-wise descent fashion, where the Y is solved by graph cut solver and the network
parameters θ are optimized via SGD.

1.3 Thin structure in medical data

Unlike generic images, medical images present distinct challenges due to their complex and
heterogeneous nature, requiring specialized segmentation methods to extract clinically relevant

20

information. In this section, we shift our focus from the broad context of image segmentation
to the critical role it plays in medical imaging, particularly 3D vascular computed tomography
(CT), where precise delineation and characterization of thin structures are required for accurate
diagnosis, treatment planning, and patient care.

1.3.1 Difficulties in medical image labeling

Due to patient confidentiality, both the raw data and the annotations are often harder to acquire.
Even with enough raw data, annotating the medical images needs expertise and a large amount of
manual work [111]. Moreover, for tasks like segmentation of high-resolution 3D angiography, it
is almost impossible to annotate the data at near-capillary level. Although the newer micro-CT
is able to provide ultra high resolution (voxel size<= 20µm3) and have higher signal-to-noise
ratios (SNR), it is still hard to distinguish the thin near-capillary vessels from the background by
intensity alone, see Figure 1.11 (b). The sheer volume of data makes it practically impossible
to employ supervised methods due to the prohibitive cost of annotations. [140]. Consequently,
robust unsupervised methods are needed.

1.3.2 Unsupervised vessel segmentation methods

There is plenty of prior work on estimation of vessels in computer vision and biomedical imaging
communities [148]. Typically, pixel-level detection of tubular structures is based on multi-scale
eigen analysis of intensity Hessians developed by Frangi et.al. [70] and other research groups [64].
At any given point (pixel/voxel) such vessel enhancement filters output a tubularness/vesselness
measure and estimates of the vessel’s scale and orientation, which describes the flow direction
upto to a sign. While such local analysis of Hessians is very useful, simple thresholding of points
with large-enough vesselness measure is often unreliable as a method for computing the vessel
tree structure. While thresholding works well for detecting relatively large vessels, detection of
smaller vessels is complicated by noise, partial voluming, and outliers (e.g. ring artifacts caused
by an improperly calibrated CT-scan [97]). More importantly, standard tubular filters exhibit
signal loss at vessel bifurcations as those do not look like tubes.

Regularization methods can address the vessel continuation problems due to noise, outliers,
and signal loss at thinner parts and bifurcations. Curvature is a second-order smoothness term
used to regularize the model parameters defining the centerline. In general, curvature has been
studied for image segmentation [184, 198, 187, 28, 91, 157, 152, 143], for stereo or multi-view-
reconstruction [127, 155, 156, 224], connectivity measures in analysis of diffusion MRI [149], for
tubular structures extraction [143], for inpainting [5, 33] and edge completion [83, 222, 4]. Marin

21

et.al. [143] and Chesakov [46] employ the curvature regularization for vessel centerline extraction
on 3D images resolving near-capillary vessels. My prior work [232] proposes oriented curvature
and divergence regularization to improve the orientation estimation around the bifurcations.

Vessel representation: centerline or segment Two common approaches to representing vessels
in reconstruction methods are volumetric binary mask and centerline. A volumetric mask is typical
for techniques directly computing vessel segmentation, i.e. binary labeling of pixels/voxels. In
contrast, centerline is a 1D abstraction of the vessel. But, if combined with information about
vessel radii, it is easy to obtain a volumetric mask or segmentation from the vessel’s centerline, e.g.
using MAT [191]. Vice versa, centerline could be estimated from the vessel’s binary mask using
skeletonization algorithms. Bouix et.al. [21] adapted a skeletonization algorithm for centerline
extraction on tubular structures. The skeletonization algorithm exploits properties of the average
outward flux of the gradient vector field of a Euclidean distance function from the boundary
of the structure. However, this method relies on the quality of the segmentation output (or
boundary detection output) and it only utilizes local information to estimate the medial curve,
which results in very unsmoothed centerline. In the context of regularization-based methods
for vessel reconstruction, centerline representation offers significant advantages since powerful
higher-order regularizers are easier to apply to 1D structures. For example, centerline’s curvature
can be regularized [143], while conceptually comparable regularization for vessel segmentation
requires optimization of Gaussian or minimum curvature of the vessel’s surface, with no known
practical algorithms. In general, curvature remains a challenging regularization criteria for surfaces
[184, 198, 91, 157, 152]. Alternatively, some vessel segmentation methods use simpler first-order
regularizers producing minimal surfaces. While tractable, such regularizers impose a wrong prior
for surfaces of thin structures due to their bias to compact blob shapes as discussed around (1.18).

Towards Whole Tree Centerline Many vessel reconstruction methods directly compute cen-
terlines of different types that can be informaly defined as simplified (e.g. regularized) 1D
representation of the blood flow pathlines. For example, the A/B shortest path methods require a
user to specify two end points of a vessel and apply the Dijkstra [61] to find an optimal pathline
on a graph with edge weights based on vesselness measure.

Interactive A/B methods are not practical for large vessel tree reconstruction problems. While
it is OK to ask a user to identify the tree root, manual identification of all the end points (leaves)
is infeasible. There are tracing techniques [9] designed to trace vessel tree from a given root
based on vesselness measures and some local continuation heuristics. Chesakov [46] and Zhang
et.al. [232] apply the minimum spanning tree (MST) as the last step to extract the topology of
the whole tree. As shown in Figure 1.12, the blue dots are the middle points of the estimated

22

(a) cardiac microscopy CT volume

(b) zoom-in

Figure 1.11: Visualization (Maximum Intensity Projection) of the raw volumetric data obtained
from a mouse heart by micro computer tomography (micro-CT). The data is provided by Maria
Drangova from the Robarts Research Institute in London, Canada.

23

(a) tubular graph (b) MST

Figure 1.12: Whole tree reconstruction: (a) undirected tubular graph is built using K-nearest
neighbor (KNN). Graph edges represent distances, geodesics, or other symmetric (undirected)
properties. MST reconstruction quality (b) depends on the graph construction (nodes, neighbor-
hoods, edge weights).

(oriented) tangents from the optimization of the objective with oriented curvature and divergence
regularization. A so-called tubular graph is built using the K-nearest neighbors (KNN). The
edge weight is calculated based on the minimum arc lengths between the tangents on the graph’s
vertices. Note that the orientation of the tangents is ignored when computing the edge weights.
The MST is then applied to extract the tree topology as shown in Figure 1.12 (b). The MST
algorithm [118] aims to minimize the following loss:

l(T) =
∑

e∈E(T)

we

where E(T) represents the set of edges of a spanning tree T on the graph, we > 0 is the weight
for the edge.

24

1.4 Motivation and contributions

This thesis is focused on the design and study of unsupervised losses and corresponding optimiza-
tion algorithms under the settings of annotation shortage. In Chapter 3, we focus on entropy-based
clustering losses with softmax outputs [30]. We formally prove the maximum margin property
for the losses using linear models and disprove the equivalence to K-means loss, which is mis-
understood in previous literature [101]. The entropy-based losses are considered standard for
discriminative clustering [30, 116], but the properties are not fully understood. We also revisit a
standard unsupervised loss for weakly-supervised semantic segmentation (WSSS), i.e. the Potts
model discussed in Section 1.2.1. Some alternative methods use the so-called foundation model
such as the Segment Anything Model (SAM) [201] to address the WSSS problem. However, note
that the SAM still needs pixel-wise masks to train the model and massive human interactions to
rectify the errors in the masks [109]. Instead, our focus is the general unsupervised losses that can
be used to train the segmentation models with much weaker forms of supervision. In Chapter 4,
we propose soft self-labeling for WSSS and introduce several new relaxations of the Potts model.
Note that the optimization algorithms introduced in Chapters 3 and 4 are based on self-labeling
surrogates approximating the corresponding clustering and segmentation losses. In Chapter 2, we
review the standard splitting techniques [23] that motivate such self-labeling surrogates. We also
discuss prior self-labeling losses that lack robustness to errors in estimated pseudo-labels. Given
our new losses, corresponding efficient self-labeling algorithms are introduced in Chapters 3, 4.

Chapter 5 is focused on unsupervised segmentation of vessels from 3D high-resolution CT
images. Due to the shrinking bias of the Potts model (see Section 1.2.1) and difficulty of optimizing
surface curvature regularization (see Section 1.3.2), centerline representation and 1D curvature
are adopted in my prior work [232]. The global tree centerline is obtained via MST. However,
the MST ignores the orientation resulting in artifacts around bifurcations. Chapter 5 proposes
confluence as a new principle for computing directed edge weights. In our context of directed
tubular graphs, we replace MST with the minimum arborescence algorithm [63].

Below we provide an overview of the problems addressed in this thesis. The main contributions
are divided into four chapters. Chapters 3 and 4 use the general self-labeling methodologies
reviewed in Chapter 2 but address different problems: clustering and segmentation. Chapter 5
on medical image analysis is fairly independent of the rest, albeit it uses unsupervised loss and
focuses on a segmentation task similar to Chapter 4. We also give the introduction and literature
review separately for chapters 3, 4, and 5. Chapters 2 through 4 are based on three papers, with
two submitted to NeurIPS 2024, and one on Arxiv. Chapter 5 is based on [233] accepted at CVPR
2021. The following three subsections give a more detailed overview of the contributions in the
main Chapters 3, 4, and 5.

25

1.4.1 Theory and algorithms for entropy-based clustering

In Chapter 3, we formally prove that linear entropy clustering (1.13) has a maximum margin
property, distinguishing it from K-means minimizing cluster variances, as illustrated in Figure 1.1.
Our theories establish a conceptual relation between discriminative entropy clustering [30] and
SVM clustering [227]. The other contributions of Chapter 3 are two efficient optimization
algorithms for entropy clustering based on new self-labeling surrogates, see Chapter 2. In
particular, new EM-type algorithms proposed for estimating pseudo-labels are significantly faster
than standard algorithms such as projected gradient descent or Newton’s method. Our experiments
show the effectiveness of our approach, improving SOTA for end-to-end deep clustering methods.

1.4.2 Potts relaxation and weakly-supervised semantic segmentation

In Chapter 4, we advocate for soft self-labeling in WSSS using splitting-based surrogates for (1.24),
see Chapter 2. Note that soft pseudo-labels enable representation of uncertainty in segmentation
estimates while most prior WSSS methods use hard pseudo-labels. As confirmed empirically,
soft self-labeling significantly improves the robustness and accuracy of WSSS. We systematically
explore different second-order relaxations of the Potts model including the standard quadratic
and bilinear formulations. We study their properties both theoretically and empirically. Under the
splitting framework for (1.24), our self-labeling surrogates combine these Potts model relaxations
over pseudo-labels and different forms of cross-entropy connecting such pseudo-labels to network
predictions, as introduced in Chapter 2. We derive an efficient algorithm for estimating soft
pseudo-labels from these surrogates. The experimental results show that our method achieves
the SOTA on the standard segmentation benchmarks. In some cases, it can outperform the
fully-supervised segmentation due to improved generality.

1.4.3 Unsupervised vessel tree estimation with confluence

In Chapter 5, we propose using the minimum arborescence algorithm [63] to extract the tree on
the directed graph. To compute the directed edge weights, we propose a new geometric prior,
i.e. confluence, to incorporate the orientation estimated from the optimization of the objective
with oriented curvature and divergence regularization as discussed in Section 1.3.2. Extensive
experiments on synthetic and real data demonstrate better reconstruction around the bifurcations.
The results achieve the SOTA and have been published in [233].

26

Chapter 2

Soft self-labeling for softmax models

This chapter develops new surrogate losses for complex unsupervised losses in clustering and
segmentation based on entropy functions and the Potts model. The focus is on the standard splitting
approach from optimization literature [23] that introduces auxiliary or hidden variables, treated as
pseudo-labels, breaking the original optimization problem into two simpler sub-problems. Joint
optimization of the surrogate losses over pseudo-labels and the network parameters constitutes
“self-labeling”. One of the key contributions in this Chapter is the new concept of collision
cross-entropy (CCE) that connects pseudo-labels and soft-max predictions. This is an alternative
to the standard Shannon’s cross-entropy term used in all prior self-labeling methods. We show
numerical and empirical advantages for CCE in the context of soft pseudo-labels that can represent
estimation uncertainty. The algorithmic contributions in Chapters 3 and 4 depend highly on our
general self-labeling approach discussed below.

Self-labeling can be seen as a high-order approximation methodology for optimizing unsu-
pervised losses [57, 74, 8, 101, 142, 141]. Note that this is different from the self-supervised
learning which is focused on the representation learning and largely depend on the priors from
the engineer. The key components of self-labeling are auxiliary pseudo-labels, which have to
be estimated similarly to hidden/latent variables in standard EM [17]. This chapter focuses on
splitting methodologies [23] for deriving self-labeling surrogates for unsupervised losses in clus-
tering (1.13) and segmentation (1.24). Such surrogates are jointly optimized w.r.t pseudo-labels
and network predictions.

Below we discuss self-labeling with soft pseudo-labels. The softness during the optimization
naturally represents the uncertainty or errors in the estimated pseudo-labels. We propose two losses
specific to soft self-labeling: reverse cross-entropy (RCE) and collision cross-entropy (CCE).
Compared to standard cross-entropy, they are more robust to uncertainty in soft pseudo-labels. In

27

particular, CCE is symmetric w.r.t. jointly estimated pseudo-labels and predictions. Statistically,
CCE can be seen as a probability that two random variables, class predictions and unknown true
labels, are equal. This explains the term “collision”. In contrast, standard cross-entropy enforces
softmax predictions to equal the distribution represented by soft pseudo-labels. Unlike our CCE
loss, this forces network predictions to mimic the uncertainty of pseudo-labels, resulting in inferior
numerical properties.

Our clustering and weakly-supervised segmentation algorithms in Chapters 3 and 4 are based
on the soft self-labeling techniques and the cross-entropy functions introduced in this chapter.

2.1 ADM splitting for clustering and segmentation losses

One popular general optimization approach applicable to decomposable losses is ADMM [22]
which splits optimization into two efficiently solvable sub-problems. Standard ADMM casts a
problem minx f(x)+ g(x) into minx,y maxλ f(x)+ g(y)+λ⊤(x− y)+ρ∥x− y∥2 and alternates
updates over x, y and λ. If the L2 penalty term is replaced by KL divergence, then the method falls
into the Bregman-ADMM [23]. In practice, the Lagrangian term is omitted, making the form of
splitting similar to a penalty method. Similar splitting techniques to improve the optimization are
used in prior work for clustering and regularized losses in segmentation, as discussed in Section
3.1.4 and 1.2.3 respectively.

2.1.1 Our self-labeling loss in clustering

In clustering, the standard MI loss (1.13) can be split into simpler sub-problems separating the
“decisiveness” and “fairness” terms. This requires introduction of auxiliary splitting variables
y ∈ ∆K , one for each training example X . The ∆K represents a general categorical distribution
over K-classes. Then, optimization of the loss is equivalent to

min
θ

H(σθ) (decisiveness sub-problem) (2.1)

min
y

KL(y ∥u) (fairness sub-problem) (2.2)

s.t. y = σ (consistency constraint) (2.3)

where θ is the network parameter, u is a uniform distribution and KL(y ∥u) ≡ H(y) + const.
This can be solved approximately using a penalty method enforcing the constraint y = σ via the
forward KL divergence for y

LSL−clustering := H(σ) + β KL(σ ∥ y) + λKL(y ∥u) (2.4)

28

Ideally, the penalty method solves a series of unconstrained problems by changing the β. In
practice, we treat it as a fixed hyperparameter and set it to 1. Thus, the equality constraint y = σ
may not be satisfied exactly. Then, (2.4) is only an approximation of the loss (1.13). When β = 1,
the (2.4) can be written as

LSL−clustering
β = 1
= H(σ, y) + λKL(y ∥u) (2.5)

where H(·, ·) is the standard Shannon’s cross-entropy. Note that it is not symmetric. In prior
work, H(y, σ) is commonly used where the pseudo-label y is taken as the target and we refer to
it as CE. Asano et.al. [8] treat the pseudo-label y as the one-hot label and the optimization with
respect to the network parameters is the same as that for standard supervised learning. Dizaji et.al.
[74] and Jabi et.al. [101] use the soft pseudo-labels as the target where the soft pseudo-labels
arise naturally from the optimization. Note that the estimated pseudo-labels are noisy. In Section
2.2, we propose different cross-entropy losses that are more robust to the uncertainty/noise in the
soft pseudo-labels than the standard CE. The detailed optimization algorithms with respect to the
pseudo-labels can be found in Chapter 3.

2.1.2 Our self-labeling loss in segmentation

As for the scribble-supervised segmentation, we apply ADM splitting to weakly supervised loss

−
∑
i∈S

lnσȳi
i + η

∑
i ̸∈S

H(σi) + λ
∑
ij∈N

P (σi, σj)

to formulate the self-labeling loss as below. Here, the scribbles (seeds) contain a subset of pixels
S ⊂ Ω that have ground truth labels ȳi and the first term above is the NLL on seeds. The second
term above is the entropy term on unlabeled pixels. This term is inspired by the decisiveness term
in clustering and is also common in semi-supervised learning [79]. The third term above is the
relaxation of the Potts model. A more detailed introduction to this loss can be found in Chapter 4.

To formulate the self-labeling loss, it is convenient to introduce pseudo-labels yi on all pixels
in Ω even though a subset of pixels (seeds) S ⊂ Ω have ground truth labels ȳi. We will simply
impose a constraint that pseudo-labels and ground truth labels agree on S. Thus, we assume the
following set of pseudo-labels

YΩ := {yi ∈ ∆K | i ∈ Ω, s.t. yi = ȳi for i ∈ S}.

We split the terms in the loss above into two groups: one includes NLL and entropy H terms
keeping the original prediction variables σi and the other includes the Potts relaxation P replacing

29

σi with auxiliary variables yi. This turns into an expression

−
∑
i∈S

lnσȳi
i + η

∑
i ̸∈S

H(σi) + λ
∑
ij∈N

P (yi, yj)

with equality constraints σi = yi. The standard approximation is to incorporate constraint σi ≈ yi
directly into the loss, e.g. using KL-divergence. For simplicity, we use weight η for KL(σi, yi)
to combine it with H(σi) into a single cross-entropy term

−
∑
i∈S

lnσȳi
i + η

∑
i ̸∈S

H(σi) + η
∑
i ̸∈S

KL(σi, yi)︸ ︷︷ ︸ + λ
∑
ij∈N

P (yi, yj)

η
∑
i ̸∈S

H(σi, yi)

defining joint self-labeling loss for both predictions σi and pseudo-labels yi

Lself (σ, y) := −
∑
i∈S

lnσȳi
i + η

∑
i ̸∈S

H(σi, yi) + λ
∑
ij∈N

P (yi, yj) (2.6)

approximating the original weakly supervised loss. Iterative minimization of this loss w.r.t.
predictions σi (model parameters training) and pseudo-labels yi effectively breaks the original
optimization problem into two simpler sub-problems, assuming there is a good solver for optimal
pseudo-labels. The latter seems plausible since the unary term H(σi, yi) is convex for yi and the
Potts relaxations were widely studied in image segmentation for decades.

In prior work, Marin et.al. [142, 141] treat the pseudo-labels as hard labels and apply the
standard graph cut [25] solver to obtain the pseudo-labels. They also notice that the noise in the
estimated pseudo-labels does harm the training of the segmentation networks. Thus, they propose
a loss that is robust to the label noise. Instead, we advocate for using soft pseudo-labels where the
softness naturally represents the uncertainty/noise. In the following Section, we will introduce
new losses that are robust to the noise in the soft pseudo-labels. The corresponding optimization
algorithms for pseudo-labels can be found in Chapter 4.

2.2 Cross-entropy functions for soft pseudo-labels

Minimizing divergence enforces proximity between two distributions, which may work as a loss
for training model predictions σ with labels y, for example, if y are ground truth one-hot labels.
However, if y are pseudo-labels that are estimated jointly with σ, proximity between y and σ is not

30

a good criterion for the loss. For example, highly uncertain model predictions σ in combination
with uniformly distributed pseudo-labels y correspond to the optimal zero divergence, but this
is not a very useful result for self-labeling. Instead, all existing self-labeling losses for deep
clustering minimize Shannon’s cross-entropy that reduces the divergence and uncertainty at the
same time

H(y, σ) ≡ D(y, σ) +H(y).

The entropy term corresponds to the “decisiveness” constraint in unsupervised discriminative
clustering [30, 102, 8, 98, 101]. In general, it is recommended as a regularizer for unsupervised
and weakly-supervised network training [79] to encourage decision boundaries away from the
data points implicitly increasing the decision margins. Shannon’s cross-entropy H(y, σ) is the
most common loss for training network predictions σ from ground truth labels y in the context of
classification, semantic segmentation, etc. However, this loss may not be ideal for applications
where the targets y are soft categorical distributions representing various forms of class uncertainty.
For example, when the ground truth is not known for most data, and the network training is done
jointly with estimating pseudo-labels y for the unlabeled data. In this case, soft labels y are

0 0.5 0.8 0.95 1 σ

= (0.95, 0.05)

= (0.8, 0.2)

= (0.5, 0.5)

0 1 σ

= (0.95, 0.05)

= (0.8, 0.2)

= (0.5, 0.5)
− ln0.5

− ln 0.2

− ln 0.5

− ln 0.8

− ln 0.95

0 0.5 1 σ

− ln0.5

− ln 0.2

− ln 0.5

− ln 0.8

− ln 0.95

= (0.95, 0.05)

= (0.5, 0.5)

= (0.8, 0.2)

(a) standard HCE(y, σ) (b) reverse HRCE(y, σ) (c) collision HCCE(y, σ)

Figure 2.1: Cross-entropy functions: standard (2.7), reverse (2.8), and collision (2.9).

distributions representing class uncertainty. We observe that if such y is used as a target in
H(y, σ), the network is trained to reproduce the uncertainty, see Figure 2.1(a). This motivates
the discussion of alternative “cross-entropy” functions where the quotes indicate an informal
interpretation of this information-theoretic concept. Intuitively, such functions should encourage
decisiveness, as well as proximity between the predictions and pseudo-labels, but avoid mimicking
the uncertainty in both directions: from soft pseudo-labels to predictions and vice-versa. We show
that the last property can be achieved in a probabilistically principled manner. The following
sections discuss alternative cross-entropy functions that we study in the context of the self-labeling
loss.

31

2.2.1 Standard and reverse cross-entropy

Standard cross-entropy provides the obvious baseline for evaluating two alternative versions
that follow. For completeness, we include its mathematical definition

HCE(yi, σi) = H(yi, σi) ≡ −
∑
k

yki lnσ
k
i (2.7)

and remind the reader that this loss is primarily used with hard or one-hot labels, in which case it
is also equivalent to NLL loss − lnσyi

i previously discussed for pixels with ground truth labels
(2.6). As mentioned earlier, Figure 2.1(a) shows that for soft pseudo-labels like y = (0.5, 0.5),
it forces predictions to mimic or replicate the uncertainty σ ≈ y. In fact, label y = (0.5, 0.5)
just tells that the class is unknown and the network should not be supervised by this point. This
problem manifests itself in the poor performance of the standard cross-entropy (2.7) in Figure 2.2
and in our experiment discussed in Chapter 3 and 4.

Reverse cross-entropy switches the order of the label and prediction in (2.7)

HRCE(yi, σi) = H(σi, yi) ≡ −
∑
k

σk
i ln y

k
i (2.8)

which is not too common. Indeed, Shannon’s cross-entropy is not symmetric and the first argument
is normally the target distribution and the second is the estimated distribution. However, in our
case, both distributions are estimated and there is no reason not to try the reverse order. It is
worth noting that our self-labeling formulation (2.6) suggests that reverse cross-entropy naturally
appears when the ADM approach splits the decisiveness and fairness into separate sub-problems.
Moreover, as Figure 2.1(b) shows, in this case, the network does not mimic uncertain pseudo-
labels, e.g. the gradient of the blue line is zero. The results for the reverse cross-entropy in
Figure 2.2 and in Chapter 3 and 4 are significantly better than for the standard. Unfortunately,
now pseudo-labels y mimic the uncertainty in predictions σ.

2.2.2 Collision cross-entropy

Collision cross-entropy resolves the problem in a principled way. We define it as

HCCE(yi, σi) ≡ − ln
∑
k

σk
i y

k
i ≡ − lnσ⊤y (2.9)

which is symmetric w.r.t. pseudo-labels and predictions. The dot product σ⊤y can be seen as a
probability that random variables represented by the distribution σ, the prediction class C, and the

32

distribution y, the unknown true class T , are equal. Indeed,

Pr(C = T) =
∑
k

Pr(C = k) Pr(T = k) = σ⊤y.

When training softmax σ with pseudo-label distribution y, the collision event is the exact equality
of the predicted class and the pseudo-label, where these are interpreted as specific outcomes for
random variables with distributions σ and y. Note that the collision event, i.e. the equality of two
random variables, has very little to do with the equality of distributions σ = y. The collision may
happen when σ ̸= y, as long as σ · y > 0. Vice versa, this event is not guaranteed even when
σ = y. It will happen almost surely only if the two distributions are the same one-hot. However,
if the distributions are both uniform, the collision probability is only 1/K. Figure 2.1(c) shows
no mimicking of uncertainty (blue line). However, unlike reverse cross-entropy, this is also valid
when y is estimated from uncertain predictions σ since (2.9) is symmetric. This leads to the best
empirical performance. Our extensive experiments in Chapter 3 and 4 are conclusive that collision
cross-entropy is the best option for H in self-labeling loss (2.5) and (2.6).

As easy to check, the collision cross-entropy (2.9) can be equivalently represented as

HCCE(p, q) ≡ − ln cos(p, q) +
H2(p) +H2(q)

2

where cos(p, q) is the cosine of the angle between p and q as vectors in RK and H2(p) :=
− ln

∑
k p

2
k is the collision entropy. The first term corresponds to a “distance” between the two

distributions: it is non-negative, equals 0 iff p = q, and− ln cos(·) is a convex function of an angle,
which can be interpreted as a spherical metric. Thus, analogously to the Shannon’s cross-entropy,
HCCE is the sum of divergence and entropy.

The formula (2.9) can be found as a definition of quadratic Rényi cross-entropy [171, 173, 229].
However, we could not identify information-theoretic axioms characterizing a generalized cross-
entropy. Rényi himself did not discuss the concept of cross-entropy in his seminal work [176].
Also, two different formulations of “natural” and “shifted” Rényi cross-entropy of arbitrary
order could be found in [215, 208]. In particular, the shifted version of order 2 agrees with our
formulation of collision cross-entropy (2.9). However, lack of postulates or characterization
for the cross-entropy, and the existence of multiple non-equivalent formulations did not give
us the confidence to use the name Rényi. Instead, we use “collision” due to its clear intuitive
interpretation of the loss (2.9). But, the term “cross-entropy” is used only informally.

The numerical and empirical properties of the collision cross-entropy (2.7) are sufficiently
different from the Shannons cross-entropy (2.7). Figure 2.1 illustrates HCCE(y, σ) as a function of
σ for different label distributions y. For confident y it behaves the same way as the standard cross

33

0.0 0.2 0.4 0.6 0.8
corruption level

25%

35%

45%

55%

65%

75%

85%

95%
ac

cu
ra

cy

HCE(y,)
HCE(y,)
HRCE(y,)
HCCE(y,)

Figure 2.2: Robustness to label uncertainty: forward Shannon cross-entropy (2.7) vs. reverse
Shannon cross-entropy (2.8) vs. collision cross-entropy (2.9). The test uses ResNet-18 architecture
on fully-supervised Natural Scene dataset [154] where we corrupted some labels. The horizontal
axis shows the percentage η of training images where the correct ground truth labels were replaced
by a random label. All losses trained the model using soft target distributions ŷ = η∗u+(1−η)∗y
representing the mixture of one-hot distribution y for the observed corrupt label and the uniform
distribution u, as recommended in [151]. ŷ is interpreted as the posterior distribution of the
unknown true label given corrupted one-hot y. The vertical axis shows the test accuracy. Training
with the reverse and collision cross-entropy is robust to much higher levels of label uncertainty.

entropy H(y, σ), but softer low-confident labels y naturally have little influence on the training. In
contrast, the standard cross entropy encourages prediction σ to be the exact copy of uncertainty in
distribution y. Self-labeling methods based on H(y, σ) often “prune out” uncertain pseudo-labels
[35]. Collision cross entropy HCCE(y, σ) makes such heuristics redundant. We also demonstrate
the “robustness to label uncertainty” on an example where the ground truth labels are corrupted
by noise, see Figure2.2. This artificial fully-supervised test is used only to compare the robustness
of these cross-entropy terms in complete isolation from other terms in the self-labeling losses.

Soft labels vs noisy labels: Our collision CE for soft labels, represented by distributions y,
can be related to loss functions used for supervised classification with noisy labels [200, 163, 194],
which assume some observed hard target labels l that may not be true due to corruption or “noise”.

34

Instead of our probability of collision

Pr(C = T) =
∑
k

Pr(C = k, T = k) =
∑
k

σkyk ≡ y⊤σ

between the predicted class C and unknown true class T , whose distributions are prediction σ
and soft target y, they maximize the probability that a random variable L representing a corrupted
target equals the observed value l

Pr(L = l) =
∑
k

Pr(L = l|T = k) Pr(T = k)

≈
∑
k

Pr(L = l|T = k) σk ≡ Ql σ

where the approximation uses the model predictions σk instead of true class probabilities Pr(T =
k), which is a significant assumption. Vector Ql is the l-th row of the transition matrix Q, such
that Qlk = Pr(L = l|T = k), that has to be obtained in addition to hard noisy labels l.

Our approach maximizing the collision probability based on soft labels y is a generalization
of the methods for hard noisy labels. Their transitional matrix Q can be interpreted as an operator
for converting any hard label l into a soft label y = Q⊤1l = Ql. Then, the two methods are
numerically equivalent, though our statistical motivation is significantly different. Moreover,
our approach is more general since it applies to a wider set of problems where the class target
T can be directly specified by a distribution, a soft label y, representing the target uncertainty.
For example, in fully supervised classification or segmentation the human annotator can directly
indicate uncertainty (odds) for classes present in the image or at a specific pixel. In fact, class
ambiguity is common in many data sets, though for efficiency, the annotators are typically forced
to provide one hard label.

35

Chapter 3

Entropy-based clustering

This Chapter is focused on the Mutual Information (MI) principle for clustering. It discusses
the relation between generative and discriminative approaches and develops new theories for
MI-inspired entropy losses for softmax models. In particular, we prove margin maximization
property relating discriminative entropy clustering to unsupervised SVM-based methods [227].
We also develop an efficient EM-based self-labeling algorithm for entropy-based clustering using
collision-cross-entropy introduced in the previous Chapter.

3.1 Introduction

Mutual information (MI) was proposed as a criterion for clustering by Bridle et al. [30]. It is
motivated as a general information-theoretic measure of the “correlation” between the data X
and the class labels C. Starting from MI definition as Kullback–Leibler (KL) divergence between
the joint density and the product of the marginals for X and C, Bridle et al.[30] derive a simple
clustering loss for softmax models.

The MI criterion also unifies some well-known generative and discriminative approaches to
clustering. In particular, consider two equivalent entropy-based MI formulations

MI(C,X) = H(X) − H(X |C) (gen.) (3.1)
≡ H(C) − H(C |X) (disc.) (3.2)

where H(·) and H(· | ·) are the entropy and the conditional entropy functions over distributions
corresponding to the random variables X and C. Two terms in (3.2) can directly evaluate classes

36

C predicted by discriminative posterior models, e.g. softmax models. As detailed in Section
3.1.1, these two terms represent standard clustering criteria, fairness and decisiveness [30], used
for “deep” clustering with neural networks [30, 116, 98, 36, 102, 8, 101]. On the other hand,
the equivalent formulation of MI in (3.1) relates to standard generative algorithms for clustering
[103, 228, 31] and unsupervised or weakly-supervised image segmentation [238, 34, 180]. Such
algorithms minimize the entropy H(X|C) of data X in each cluster C, where fitting density
models helps to estimate the entropy. Section 3.2.1 details the relation of criterion (3.1) to the
most basic generative clustering algorithm, K-means.

Despite equivalence, criteria (3.1,3.2) can lead to clustering algorithms producing different
results depending on their specific generative or discriminative model choices, i.e. hypothesis
spaces. For example, Figure 3.1 shows optimal solutions for (a) K-means minimizing the variance
of each cluster, i.e. entropy H(X|C) assuming isotropic Gaussian density, and (b) the linear
softmax model minimizing (3.2). While both algorithms make linear decisions, K-means produces
compact clusters due to its implicit bias to isotropic Gaussian densities. In contrast, the linear
softmax model finds balanced or “fair” clusters with “decisive” decision boundary corresponding
to the maximum margin, as we later prove in Theorem 3 (α = 2). We will revisit Figure 3.1 again.

This chapter’s focus is clustering based on softmax models and unsupervised entropy loss
functions (3.2) inspired by [30]. We refer to this general group of methods as discriminative
entropy clustering. The rest of the introduction provides the background and motivation for
our work. Sections 3.1.1-3.1.4 present the necessary terminology for the discriminative entropy
clustering problem, its regularization, and its self-labeling formulations. In particular, Section
3.1.2 discusses the significance of model complexity and data representation. Finally, Section
3.1.5 summarizes our main contributions presented in the main parts of the paper.

3.1.1 Discriminative entropy clustering basics

This Section introduces our terminology for entropy-based clustering with softmax models. We
consider discriminative classification models that could be linear (single layer) or complex multi-
layered, and assume probability-type output often interpreted as a (pseudo-) posterior. Typically,
such outputs are produced by the softmax function σ : RK → ∆K mapping K raw classifier
outputs a = (a1, . . . , aK), e.g. real-valued “logits” or “scores”, to K class probabilities

σk(a) :=
exp ak∑
c exp a

c
for 1 ≤ k ≤ K

forming a categorical distribution σ = (σ1, . . . , σK) ∈ ∆K representing a point on the probability
simplex

∆K := {(p1, . . . , pK) ∈ RK | pk ≥ 0,
∑

pk = 1}.

37

TWO LINEAR DECISION FUNCTIONS OVER 2D FEATURES X ∈ R2

kµ(X) := argmink ∥X − µk∥ σv(X) := σ(v⊤X) ≡ soft-max(v⊤X)

(a) variance clustering (K-means) (b) entropy clustering (3.5,3.3)

Figure 3.1: Entropy clustering vs. K-means - binary example (K = 2) for 2D data {Xi} com-
paring two linear methods of similar parametric complexity: (a) K-means µk ∈ R2 and (b)
entropy clustering (3.5) with a linear model (3.3) defined by K-column matrix v = [vk] with
linear discriminants vk ∈ R2+1 (incl. bias). Red and green colors in (a) and (b) illustrate deci-
sion/prediction functions, kµ(X) := argmink ∥X − µk∥ and σv(X) := σ(v⊤X), corresponding
to the optimal parameters µ and v minimizing two losses: (a) compactness or variance of clusters∑

i ∥Xi − µki∥2 where ki = kµ(Xi), and (b) decisiveness and fairness H(σ)−H(σ̄), see (3.5),
where σi = σ(v⊤Xi). Color transparency in (b) visualizes “soft” decisions σ(v⊤X); the linear
boundary “blur” is proportional to 1

∥v∥ . Unlike low-variance (a), the optimal clusters in (b) have the
maximum margin among all fair/balanced solutions, assuming “infinitesimal” norm regularization
∥v∥2 discussed in Section 3.2.2.

For shortness, this chapter uses the same symbol for functions and examples of their output, e.g.
specific prediction values σ ∈ ∆K . In particular, σX may denote the prediction for any given
input X . If i is an integer, σi denotes the prediction for the specific example Xi in the training
dataset {Xi}Ni=1.

The simplest linear softmax model can be defined as

σ(v⊤X) (3.3)

where for any input vector X the matrix of parameters v produces K-logit vector a = v⊤X
mapped to a probability distribution by the softmax function. For shortness, we use a homogeneous

38

representation for the linear classifier so that v⊤X stands for an affine transformation including
the bias.

More complex non-linear network models compose a linear softmax model (3.3) with some
representation layers mapping input X to “deep” features fw(X)

σ(v⊤fw(X)) (3.4)

where the trainable parameters w of the embedding function fw are distinguished from the
linear classifier parameters v. The linear model (3.3) is a special case of (3.4) for f(X) = X .
Typical “deep” representation fw(X) significantly changes the dimensions of the input X . It is
convenient to assume that M always represents the dimensions of the linear head’s input, i.e. the
(homogeneous) matrix v has size (M + 1)×K.

Assuming softmax models as above, Bridle et al. [30] derive the following clustering loss for
data {Xi}Ni=1

Lec := −MI(C,X) ≈ H(σ) − H(σ) (3.5)

based on the Shannon entropy H(p) := −
∑

k p
k ln pk for categorical distributions p ∈ ∆K . The

average entropy of the model output

H(σ) :=
1

N

∑
i

H(σi)

represents H(C|X) in (3.2). The entropy of the average output

H(σ) where σ :=
1

N

∑
i

σi

is the entropy of class predictions over the whole dataset corresponding to H(C) in (3.2).

Loss (3.5) is minimized over model parameters v and w in (3.3) or (3.4), e.g. by gradient
descent or backpropagation [181]. Larger entropy H(σ) encourages “fair” predictions with a
balanced support of all categories across the whole dataset, while smaller H(σ) encourages
confident or “decisive” prediction at each data point suggesting that decision boundaries are away
from the training examples [79].

3.1.2 Model complexity and representation learning

Criterion (3.5) provides strong constraints for well-regularized or simple parametric models. For
example, in the case of linear softmax models (3.3), we prove the margin-maximizing property,
see Fig.3.1(b), relating (3.5) to SVM clustering [227].

39

Clustering algorithms for softmax models can also be motivated by the powerful representation
of data behind the deep network models (3.4). Some criteria related to MI are also studied
in the context of representation learning [20]1, [92, 158, 210, 8], but this is not our focus.
We study (3.2,3.5) as a clustering criterion where decisions C are optimized for fixed data X .
Nevertheless, this approach applies to complex networks (3.4) where internal layers can be seen as
responsible for representation fw(X). Our experiments with networks do not evaluate the quality
of representation separately from clustering and view the internal layers mainly as an integral part
of a complex model. Instead, we are concerned with regularization of complex models in the
context of clustering.

3.1.3 Regularized entropy clustering

Bridle & McKay [30] argue that MI maximization may allow arbitrarily complex solutions for
under-regularized network models, as illustrated in Figure 3.2(a) for (3.4). They note that

”... [MI] could be maximized by any implausible classification of the input... when
we use more complex models. This criterion encourages... objective techniques for
regularising classification networks... [138, 137].”

For example, a Bayesian approach to network regularization [138] combines training losses with
the squared L2 norm of all network weights interpreted as a log-prior or weight energy. Following
[138] and [116], regularized version of the entropy clustering loss (3.5) incorporates the norm of
network parameters motivated as their isotropic Gaussian prior

Lmi+decay = H(σ) − H(σ) + ∥[v,w]∥2
c
= H(σ) + KL(σ ∥u) + ∥[v,w]∥2 (3.6)

where c
= represents equality up to an additive constant and u is a uniform distribution over K

classes. The equivalent loss formulation (3.6) uses KL divergence motivated in [116] by the
possibility to generalize the fairness constraint to any target balancing distribution different from
the uniform.

Unsupervised representation learning techniques [92, 158, 44, 89] are also relevant as mecha-
nisms for constraining the network. In particular, self-augmentation techniques are widely used
for both clustering and representation learning [98, 102, 8]. For example, maximization of MI
between predictions for input X and its augmentation X ′ can improve representation [102].

1Boudiaf et al. [20] also discuss generative and discriminative “views” on MI exactly as in (3.1-3.2), but focus on
supervised representation learning where features X are optimized assuming given class labels C.

40

(a) under-regularized model⇒ random clusters (b) self-augmentation⇒ regular clusters, weak isometry

Figure 3.2: Model regularization is required: (a) arbitrarily complex model (3.4) can create any
random clusters of the input {Xi} despite the linear partitioning in the space of deep features
fw(X). Self-augmentation loss (3.7) regularizes the clusters (b), as well as the mapping f . Indeed,
similar inputs {X,X ′} are mapped to features equidistant from the decision boundary. Stronger
forms of isometry can be enforced by contrastive losses [47, 188, 193, 44], particularly if negative
pairs are also available. In general, model regularization with domain-specific constraints or
augmentation is important for the quality of clustering.

For large network models employed in this work, we use only generic network regulariza-
tion techniques based on squared L2 norm of the network weights (3.6) and a standard self-
augmentation loss [98, 8, 45] directly enforcing consistent clustering σX ≈ σX′ for input pairs
{X,X ′}

Lsa =
∑

{X,X′}∈Na

KL(σX∥σX′) +KL(σX′∥σX) (3.7)

where Na is the set of all pairs of augmented examples. This loss implies that similar inputs are
mapped to deep features equidistant from the decision boundary. We refer to this as weak isometry
between the space of inputs X and the embedding space of “deep” features fw(X), see Figure
3.2(b).

3.1.4 Self-labeling methods for entropy clustering

Optimization of losses (3.5) or (3.6) during network training could be done with standard gradient
descent or backpropagation [30, 116, 98]. However, the difference between the two entropy
terms implies non-convexity presenting challenges for the gradient descent. This motivates
alternative approaches to optimization. It is common to approximate (3.5) with some surrogate
loss incorporating auxiliary or hidden variables y representing pseudo-labels for unlabeled data
points X , which are estimated jointly with optimization of the network parameters [74, 8, 101].

41

Typically, such self-labeling approaches to entropy clustering iteratively optimize the surrogate
loss over pseudo-labels and network parameters, similarly to Lloyd’s algorithm for K-means or
EM algorithm for Gaussian mixtures [16]. While the network parameters are still optimized via
gradient descent, the pseudo-labels can be optimized via more powerful algorithms.

For example, [8] formulate self-labeling using the following constrained optimization problem
with discrete pseudo-labels y tied to predictions by cross entropy H(y, σ)

Lce = H(y, σ) s.t. y ∈ ∆K
0,1 and ȳ = u (3.8)

where ∆K
0,1 are one-hot distributions, i.e. the vertices of the probability simplex ∆K . Besides

proximity between σ and y, the cross-entropy in (3.8) encourages the decisiveness, while the
fairness is represented by the hard constraint ȳ = u. Assuming fixed pseudo-labels y, the network
training is done by minimizing the standard cross entropy loss H(y, σ) convex w.r.t. σ. Then,
model predictions are fixed and (3.8) is minimized over y. Note that H(y, σ) is linear with respect
to y and its minimum over simplex ∆K is achieved by one-hot distributions corresponding to
argmaxk(σ) at each data point. However, the “fairness” constraint ȳ = u converts minimization
of the cross-entropy loss over all pseudo-labels y into a non-trivial integer programming problem
that can be approximately solved via optimal transport [53].

Self-labeling methods for entropy clustering can also use “soft” pseudo-labels y ∈ ∆K as
targets in H(y, σ). In general, soft target distributions y are common in the context of noisy labels
[203, 194] and network calibration [82, 151]. They can also improve generalization by reducing
over-confidence [166]. In the context of entropy clustering, soft pseudo-labels y correspond to
a relaxation of cross-entropy. Nevertheless, cross-entropy encourages decisive pseudo-labels y
since H(y, σ) ≡ H(y) +KL(y∥σ). The last term also implies proximity σ ≈ y and, therefore,
the decisiveness of predictions σ. Many soft self-labeling methods [74, 101] represent the fairness
constraint using −H(ȳ) or KL(ȳ ∥u), as in (3.6). In particular, [101] formulates the following
entropy-based soft self-labeling loss

Lce+kl = H(y, σ) − H(ȳ) (3.9)

representing the decisiveness and the fairness constraints. Similarly to (3.8), the network parame-
ters in (3.9) are trained by the standard cross-entropy loss H(y, σ) when y are fixed. Optimization
over the relaxed pseudo-labels y ∈ ∆K is relatively easy since negative entropy is convex and
cross-entropy is linear w.r.t. y. While there is no closed-form solution, the authors offer an
efficient approximate solver.

42

3.1.5 Summary of our contributions

This chapter provides new theories and algorithms for discriminative entropy clustering. First,
we examine its conceptual relations to K-means and SVM. We disprove the theories in [101]
on the equivalence between the soft K-means and the linear case of entropy clustering (3.5,3.3).
Figures 3.1, 3.3, 3.4, 3.8 study a counterexample and Section 3.2.1 points out specific technical
errors in their proof. Despite the equivalence (3.1) ≡ (3.2), two discriminative and generative
clustering algorithms can operate within different hypothesis spaces even if both produce linear
results. Further contradicting equivalence to K-means, our theories in Section 3.2.2 prove that
linear entropy clustering (3.5,3.3) has a margin-maximizing property establishing a formal relation
to SVM-based clustering [13, 227]. In the general context of entropy clustering (3.5) with deep
models (3.4), our results imply margin maximization in the embedding space, similar to kernel
SVM [52]. Such non-linear methodologies, however, can not use arbitrary embeddings. Indeed,
SVM should restrict kernels (implicit embeddings) and networks should regularize (explicit)
embedding functions fw(X).

Second, our Section 3.3 propose a zero-avoiding form of KL-divergence as a stronger fairness
term that does not tolerate trivial clusters, unlike the standard fairness in (3.9). Our self-labeling
losses with reverse cross-entropy and collision cross-entropy as introduced in Chapter 2 are convex
w.r.t. y and allow efficient EM solvers for pseudo-labels. The new losses along with the new
EM algorithms improve the state-of-the-art on many standard benchmarks for deep clustering, as
shown in Section 3.4 empirically confirming our technical insights.

3.2 Linear entropy clustering

This Section analyses the theoretical properties of entropy clustering loss (3.5) in the context of
linear discriminative models (3.3). Even such simple models may require some regularization
to avoid degenerate clusters. Section 3.2.2 shows a form of regularization implying margin
maximization. But first, Section 3.2.1 juxtaposes (3.5,3.3) and K-means as representative linear
cases of discriminative and generative clustering (3.1,3.2).

3.2.1 Relation to K-means

There are many similarities between entropy clustering (3.5) with linear model (3.3) and K-means.
Both produce linear boundaries and use (nearly) the same number of parameters, K × (M + 1)
vs. K ×M . The former corresponds to K linear discriminants vk (w. bias) forming the columns

43

of matrix v in (3.3), and the latter corresponds to K means µk representing density models at
each cluster. Both approaches have good approximation algorithms for their non-convex (3.5)
and NP-hard [139] objectives. Two methods also generalize to non-linear clustering using more
complex representations, e.g. learned fw(X) or implicit (kernel K-means).

There is a limited understanding of the differences between linear entropy clustering and K-
means as most prior literature, including [30], discusses (3.5) in the context of networks (3.4). One
2D linear example in [116] (Fig.1) helps, but unlike our Figure 3.1, they employ trivial compact
clusters typical for the textbook’s illustrations of K-means. The two methods are indistinguishable
from the example in [116]. Moreover, there is a prior theoretical claim [101] about equivalence
between soft K-means and linear entropy clustering, assuming certain regularization. We disprove
this claim later in this Section.

Generative and discriminative formulations of MI (3.1,3.2) may also suggest the equivalence
of linear entropy clustering and K-means. We already discussed how (3.5) relates to (3.2), and
now we show how K-means relates to (3.1). Indeed, the Lloyd’s algorithm for K-means minimizes
the following self-labeling objective for hard pseudo-labels y ∈ ∆K

0,1 and parameters µk

Lkµ :=
∑
k

∑
i

yki ∥Xi − µk∥2 (3.10)

c
= −

∑
k

∑
i

yki lnNµk
(Xi)

≈
∑
k

|Xk| H(Xk, Nµk
)

where each point Xi contributes a squared distance to the mean µk of the assigned cluster such
that yki = 1. Isotropic Gaussian densities Nµ with covariances Σk = I/2 allow an equivalent
formulation on the second line below (3.10). Its Monte Carlo approximation on the third line
produces an expression with cross-entropy where Xk represents the “true” density of data in
cluster k and |Xk| is its cardinality. The standard relationship between cross-entropy and entropy
functions further implies an inequality∑

k

|Xk| H(Xk, Nµk
) ≥

∑
k

|Xk| H(Xk) ∝ H(X|C)

concerning the conditional entropy in (3.1). The last ∝ relation only ignores a constant factor, the
whole dataset cardinality. When recomputing cluster means, Lloyd’s algorithm minimizes the
cross-entropy above. It achieves its low bound, the entropy in the second expression, only when
the clusters are isotropic Gaussian blobs, which is an implicit assumption in K-means. This is
when K-means works well and, as we just showed, when it approximates generative MI clustering

44

(3.1). Thus, K-means and linear entropy clustering are equivalent in the case of isotropic Gaussian
clusters. This equivalence is consistent with the toy example in [116].

The arguments above also suggest how the equivalence may fail for more complex clusters.
Indeed, our Figure 3.1 demonstrates no equivalence without isotropy. We can also refute the
general claim in [101] about the equivalence between the following soft variant of K-means loss
(3.10)

Lskµ := y∥X − µ∥2 − γH(y) − ∥X∥2 (3.11)

and the linear case of their self-labeling entropy clustering formulation (3.9,3.3) with linear
classifier’s norm regularization

Lce+ := H(y, σ) − H(y) + γ∥v∥2 (3.12)

where the single bar operator averaging over data points i was introduced in Section 3.1.1, and the
double bar represents averaging over both i and k shortening the expression for loss Lkµ in (3.10).
The negative entropy in (3.11) encourages soft labeling, i.e. yi ∈ ∆K could be any categorical
distribution. This term is standard for soft K-means formulations. The last term in (3.11) is a
constant needed in the equivalence claim [101].

The only difference between the entropy clustering losses (3.9) and (3.12) is the squared norm
of the linear classifier parameters ∥v∥, excluding the bias. This standard regularization encourages
“softness” of the linear classifier’s soft-max predictions, similar to the effect of the entropy term
in soft K-means (3.11). However, unlike entropy clustering2, soft K-means fails on elongated
clusters in Figures 3.3 and 3.4 in the same way as the basic K-means in Figure 3.1. Indeed, soft
formulations of K-means are typically motivated by a different problem - overlapping clusters.
The proper generative mechanism to address anisotropic clusters is to drop the constraint on the
covariance matrices Σk ∼ I allowing a wider class of Gaussian density models, i.e. extending the
hypothesis space. For example, GMM can be viewed as an anisotropic extension of soft K-means,
and it would work perfectly in Figures 3.1, 3.3, 3.4, 3.8, similar to entropy clustering.

We also have a general argument for why linear entropy clustering is stronger than K-means.
As easy to check using Bayes formula, the posterior for isotropic Gaussian densities estimated by
K-means is consistent with model (3.3). However, discriminative entropy clustering optimizes
(3.3) without any assumptions on densities, implying a larger hypothesis space.

Besides our counterexample in Figure 3.3 and the general argument above, we found a
critical error in [101]. They ignore the normalization/denominator in the definition of softmax.

2The entropy clustering results in the toy examples in Figs. 3.1, 3.3, 3.4, 3.8 do not depend on the specific
formulation. Self-labeling algorithm [101] for (3.12) and our entropy clustering algorithm in Section 3.3 produce the
same results. For simplicity, these Figures use basic gradient descent for the regularized version of generic linear
entropy clustering (3.5,3.3), as in (3.14).

45

γ ≤ 0.00001
lin

ea
r

en
tr

op
y

cl
us

te
ri

ng
(3

.1
4,

3.
3)

(a) rEC loss = -0.6910 (b) rEC loss = -0.6610

so
ft

K
-m

ea
ns

(3
.1

1)

(c) sKM loss = 419.60 (d) sKM loss = 401.45

Figure 3.3: Global & local minima: linear regularized entropy clustering (rEC) versus soft K-
means (sKM). For both losses, global optima (a) and (d) are consistent for all γ ∈ (0, 0.00001].
Variations in the optimal loss values are negligible. sKM is nearly identical to hard K-means for
such γ; it softens only for larger γ, see Figure 3.4. The local minimum for sKM (c) is obtained by
Lloyd’s algorithm initialized at (a). Vice-versa, gradient descent for rEC converges to (a) from (c).
The same “cross-check” works for (b) and (d). Local minima for rEC (a,b) are balanced clusterings
with (locally) maximum margins. In contrast, local minima for sKM (c,d) are orthogonal bisectors
for the cluster centers. K-means ignores the margins.

46

γ1 = 0.00001 γ2 = 0.005 γ3 = 0.01 γ4 = 0.15

lin
ea

r
en

tr
op

y
cl

us
te

ri
ng

(3
.1

4,
3.

3)

so
ft

K
-m

ea
ns

(3
.1

1)

Figure 3.4: Global minima for various γ: linear regularized entropy clustering (rEC) versus soft
K-means (sKM). As γ → 0, both approaches converge to hard, but different, clusters. Optimal/low-
variance sKM clusters are consistent for all γ. In contrast, rEC produces max-margin clusters for
small γ and changes the solution for larger γ4. The latter reduces norm ∥v∥ implying a wider
“indecisiveness” zone around the linear decision boundary. Due to the decisiveness term in (3.5),
entropy clustering finds the boundary minimizing the overlap between the data and such “softness”
zone, explaining the result for γ4.

Symbol ∝ hides it in their equation (5), which is treated as equality in the proof of Proposition
2. Their proof does not work with the normalization, which is important for training softmax
models. The regularization term ∥v∥2 and constant ∥X∥2 play the following algebraic role
in their proof of equivalence between (3.12) and (3.11). Without softmax normalization, lnσ
inside cross-entropy H(y, σ) in (3.12) turns into a linear term w.r.t. logits v⊤X and combining it
with ∥v∥2 and ∥X∥2 creates a quadratic form ∥X − v∥2 resembling squared errors in K-means
(3.11). In contrast, Section 3.2.2 shows that regularization ∥v∥2 in (3.12) is needed for the margin
maximization property of entropy clustering illustrated in Figures 3.3(a) and 3.8(b). Our theories
show that instead of K-means, in general, linear entropy clustering is related to discriminative
SVM clustering [13, 227].

47

3.2.2 Margin maximization

This section establishes a margin-maximizing property of the regularized decisiveness for linear
model (3.3)

γ∥v∥2 + H(σ) (3.13)

where ∥v∥ is L2 norm of the linear discriminant w/o the bias. Without extra constraints, the
decisiveness allows a trivial solution with a single cluster. This can be avoided by focusing on
a set of feasible solutions, where feasibility can represent balanced clusters or consistency with
partial data labels as in semi-supervised learning.

Our theory assumes an arbitrary set of feasible solutions but is also relevant for soft feasibility.
For example, the regularized entropy clustering loss for linear model (3.3)

Lrec := H(σ) − H(σ) + γ∥v∥2 (3.14)

combines the margin-maximizing decisiveness with the fairness term encouraging balanced
clusters, see Fig. 3.3(a). The direct relation to MI [30] provides an information-theoretic
motivation for this loss, as discussed in Section 3.1.1. Our theories below extend the general
conceptual understanding of the decisiveness, entropy clustering, and establish their relation to
unsupervised SVM methods [13, 227].

Overview of max-margin clustering

As typical in SVM, our formal theories on the max-margin property of the regularized decisiveness
(3.13) in Sections 3.2.2-3.2.2 are mainly focused on the binary linear models, though multi-class
extensions are possible, see Sec. 3.2.2. Below we informally preview our max-margin property
claims about (3.13) providing some intuition that may be helpful due to differences with standard
margin maximization in SVM.

For example, basic SVM assumes linearly separable data in a fully supervised setting. Soft
SVM extension allows a trade-off between margin maximization and separation violations. In
contrast, linear separability is irrelevant in clustering as there are no ground-truth labels to be
violated. Yet, the “gap” can be measured between any pair of clusters, see Fig. 3.3(a) and (b).
Thus, the largest margin solution among all feasible (fair) linear clusterings is well-defined, see
Fig. 3.3(a).

SVM clustering [227] uses the hinge loss instead of decisiveness in (3.13) and also assumes
fairness, see Sec.3.2.2. In both cases, however, linear classifier regularization γ∥v∥2 is important
for margin maximization. The regularized hinge loss outputs a max-margin solution for all γ

48

below some threshold. In contrast, our theories show that optimal solutions for the regularized
decisiveness (3.13) converge to a max-margin clustering only as γ → 0, see Figure 3.4, though
this subtle difference may be hard to discern in practice.

Our results are based on the max-margin theories for supervised losses in [179]. We generalize
them to unsupervised clustering problems. Also, instead of (3.13), we prove the max-margin
property for a larger class of regularized decisiveness measures using Renyi entropy Rα [176] of
any order α > 0 (formally defined in the following Sections)

γ∥v∥2 + Rα(σ) (3.15)

where Shannon’s entropy in (3.13) is a special case H = R1. Focusing on binary clustering,
Section 3.2.2 establishes our results for α = ∞. In this base case, Renyi entropy R∞ can be
seen as a “self-labeled” logistic loss allowing us to prove our result in Theorem 2 by extending
the standard max-margin property for logistic regression [179]. Theorem 3 in Section 3.2.2
extends our results for (3.15) to all α > 0, including (3.13) as a special case. Then, Section 3.2.2
discusses the multi-class case K > 2. Finally, Section 3.2.2 summarizes margin maximization by
regularized entropy (3.15) and juxtaposes it with the regularized hinge loss in SVM clustering
[227].

Terminology and Renyi decisiveness for K = 2

We extend the earlier notation, in part to suit the binary case. For example, besides softmax output
σ, we also use a scalar sigmoid function ς . Below, we summarize our notation. In particular, there
is one significant modification specific to this theoretical Section 3.2.2. Here we use only hard
class indicators, thus it is convenient to have integer labels y instead of categorical distributions,
as in the rest of the paper. This change should not cause ambiguity as labels y appear mainly in
the proofs and their type is clear from the context.

Our notation concerning labels y, labelings y, and linear classifiers v is mostly general. Some
parts specific to K = 2 are designed to transition smoothly to multi-class problems. Note that
for K > 2 linear classifiers typically generate K logits v⊤X ∈ RK , output a K-categorical
distribution using softmax σ(v⊤X) ∈ ∆K , and use natural numbers as class labels. In contrast,
binary classifiers typically use a single logit, sigmoid output, and class labels {±1} or {0, 1}. Our
notation for K = 2 rectifies the differences using natural class indicators {1, 2} and categorical
distribution output σ = (σ1, σ2) = (ς, 1− ς). The latter is justified by a simple property that a
single-logit sigmoid classifier is equivalent to a softmax for two logits as only their difference
matters.

49

• v - linear classifier is a vector for K = 2. It generates scalar raw output v⊤X . Vector v
includes the bias as we assume “homogeneous” data representation X .

• ∥v∥ - L2 norm that excludes the bias.

• σ = (σ1, σ2) := (ς, 1− ς) - soft-max for K = 2 can be represented using a scalar sigmoid
function

ς(x) := (1 + e−x)−1 ≡ ex/2

ex/2 + e−x/2
∈ [0, 1]

for x = v⊤X . Similarly to σ, we use symbol ς both for specific values in [0, 1] and as a
function name.

• y ∈ {1, 2} - binary class indicator/label

• yσ - hard class label produced by soft prediction σ

yσ := argmax
k

σk (a.k.a. “hard-max”)

• yX - class label at arbitrary data point X

• yi = yXi
- class label at point Xi

• y := {yi}Ni=1 - labeling of the whole dataset {Xi}Ni=1

• yvX := yσ(v
⊤X) - hard class label produced by classifier v for an arbitrary data point X .

• yvi := yvXi
- hard label produced by v for point Xi.

• yv := {yvi }Ni=1 - dataset labeling by classifier v

• Vy := {v |yv = y} - a set of all linear classifiers consistent with given labeling y. By
default, this chapter uses “weak consistency” allowing data points on the decision boundary,
i.e. zero margins. Set Vy is non-empty only if labeling y is (weakly) linearly separable.

• FL - a set of feasible labelings y representing allowed clusterings. It could be arbitrary.
One example is a set of all “fair” linearly separable clusterings.

• VFL := ∪y∈FLV
y - a set of all linear classifiers v consistent with allowed labelings y in

FL.

• u - unit norm linear classifier such that ∥u∥ = 1

50

Figure 3.5: Renyi entropy [176] of order α: assuming K = 2 the plots above show Rα(σ) in
(3.16) for binary distributions σ = (ς, 1− ς) as functions of scalar ς ∈ [0, 1]. Shannon entropy
(3.19) is a special case corresponding to α = 1.

• Uy := {v |yv = y, ∥v∥ = 1} - a set of all unit-norm linear classifiers consistent with
given labeling y.

• UFL := ∪y∈FLU
y - a set of all unit-norm linear classifiers consistent with labelings in FL.

• uy - maximum margin linear classifier of unit norm corresponding to given linearly separa-
ble labeling y

Finally, we define the binary version of Renyi entropy Rα [176] of order α ≥ 0 studied by
our max-margin clustering theories for K = 2 in Sec. 3.2.2- 3.2.2. One-to-one correspondence
between distributions σ = (σ1, σ2) = (ς, 1− ς) and scalars ς makes it convenient to define for
K = 2 two equivalent functions Rα(σ) and Rα(ς)

Rα(σ) ≡ Rα(ς) :=
ln(ςα + (1− ς)α)

1− α
. (3.16)

The expression in (3.16) is numerically ill-conditioned when α ∈ {0, 1,∞}. In these three cases,

51

Renyi entropy is better defined by the asymptotically consistent formulations

R0(σ) = R0(ς) = ln 2 · [0 < ς < 1] (3.17)
R1(σ) = R1(ς) = H(σ) (binary Shannon entropy)

R∞(σ) = R∞(ς) = − lnmax{ς, 1− ς} (3.18)

where [·] is Iverson bracket indicator returning 1 or 0 depending if the condition inside is true or
not. For α = 1 one can use the standard formula for the binary Shannon entropy

H(σ) ≡ H(ς) = −ς ln ς − (1− ς) ln(1− ς). (3.19)

that has no numerical issues. Figure 3.5 illustrates binary Renyi entropy functions Rα for different
orders α.

Max-margin theories for binary R∞ decisiveness

Our base case is Renyi entropy R∞ for K = 2. As evident from (3.18), it resembles the standard
negative log-likelihood (NLL) loss for supervised classification, a.k.a. logistic regression. To
emphasize this relation, we denote supervised NLL loss by R∞(σ | y). For σ = (σ1, σ2) =
(ς, 1− ς) it is

R∞(σ | y) := − lnσy ≡

{
− ln ς if y = 1

− ln(1− ς) if y = 2
(3.20)

where y is a given binary label at a data point. The obvious relation between the entropy (3.18)
and NLL (3.20), see Fig. 3.7(a),

R∞(σ) = min {R∞(σ | 1), R∞(σ | 2) } (3.21)

can be equivalently represented as “self-labeling” identity

R∞(σ) ≡ R∞(σ | yσ) (3.22)

where yσ is the “hard-max” label for prediction σ.

We exploit the “self-labeling” identity (3.22) to prove the max-margin clustering property for
entropy R∞ by extending the known margin-maximizing property for logistic regression [179]
reviewed below.

Max-margin in logistic regression: With some exceptions [13, 227], margin maximization is
typically discussed in a fully supervised context assuming a given linearly separable labeling. The

52

max-margin property is easy to prove for the hinge loss [217] as it vanishes above some threshold.
Some monotone-decreasing losses, e.g. logistic loss, also have max-margin property, but the
proof requires careful analysis [179]. They prove a sufficient condition, “fast-enough” decay,
for monotone non-increasing classification losses that depend only on distances to classification
boundary, a.k.a. margins.

The standard logistic loss is defined w.r.t. raw classifier output x = v⊤X as

r(x) := ln(1 + e−x) ≡ − ln(ς(x)) (3.23)

which is a composition of NLL (3.20) and sigmoid function. Given true label y, the corresponding
supervision loss is

R∞(σ(v⊤X) | y) ≡ r(dvX(y)∥v∥) (3.24)

where

dvX(y) :=
v⊤X

∥v∥
· [y = 1]± (3.25)

is a signed margin, i.e. distance from point X to the classification boundary. The operator [·]±
returns +1 if the argument is true and −1 otherwise3. As easy to check, the sign of distance dvX(y)
in (3.25) is positive for correctly classified points X , and it is negative otherwise, see cyan color
in Figure 3.6(a).

Logistic regression is known to satisfy conditions for margin maximizing classification [179].

PROPERTY 1 (exponential decay for r). Logistic loss r(x) in (3.23) satisfies the following
“fast-enough” decay condition

lim
x→∞

r(x · (1− ϵ))

r(x)
=∞, ∀ϵ

which is a sufficient condition for margin-maximizing classification. This is case "T = ∞" in
Theorem 2.1 from [179].

For completeness, we also state a special case of Theorem 2.1 in [179] for logistic regression.
We use the following total loss formulation based on NLL (3.20)

R∞(v|y) := −lnσyX (v⊤X) (3.26)

where the bar indicates averaging over all data points {Xi}.
3Theories in [179] use binary labels y ∈ {±1} simplifying the signed margin expression in (3.25) to dvX(y) =

y v⊤X
∥v∥ . Instead, our natural labels y ∈ {1, · · · ,K} simplify notation for prediction σy at each class y.

53

Theorem 1 (max-margin for logistic regression [179]). Consider any given linearly separable
labeling y := {yi}Ni=1 for dataset {Xi}Ni=1. Assuming linear classifier v(γ) minimizes regularized
logistic loss over classifiers v ∈ Vy consistent with some given (e.g. ground truth) labeling y

v(γ) := arg min
v∈Vy

γ∥v∥2 +R∞(v|y)

then
v(γ)

∥v(γ)∥
γ→0−−→ uy

where uy is a unit-norm max-margin linear classifier for y.

Max-margins for R∞-decisiveness: To establish the margin-maximizing property for clus-
tering, we should drop full supervision where true labeling y is given. Instead, we formulate
max-margin clustering for a given setFL of allowed or feasible linearly separable binary labelings
y for dataset {Xi}Ni=1. In this unsupervised context, labelings y ∈ FL represent possible data
clusterings. For example, FL could represent “fair” clusterings4. As a minimum, we normally
assume that linearly separable labelings in FL exclude trivial solutions with empty clusters.

Naturally, labelings y ∈ FL divide the data into clusters differently. Thus, the corresponding
inter-cluster gaps vary.

DEFINITION 1. Assume y = {yi}Ni=1 is a binary linearly separable labeling of the dataset {Xi}Ni=1.
Then, the gap or margin size for labeling (clustering) y is defined as

|y| := max
u∈Uy

min
i
|u⊤Xi| ≡ min

i
|(uy)⊤Xi|

where uy is the max-margin unit-norm linear classifier for y.

This definition associates the term margin size with labelings. Alternatively, margin size is
often associated with classifiers. Given a separable labeling y, any consistent linear classifier
u ∈ Uy has margin size mini|u⊤Xi|. The margin size for labeling y in Definition 1 is the margin
size of the optimal max-margin classifier uy.

Now we define max-margin clustering in an unsupervised setting restricted to FL. It extends
the standard concept of max-margin classification restricted to one (true) labeling y. Our focus is
on optimal labelings rather than classifiers.

4The exact definition of “fair” clustering is irrelevant here.

54

classification clustering

(a) signed margins (3.25) (b) unsigned margins (3.29)

Figure 3.6: Margins: both examples (a) and (b) use distinct colors for classifiers partitioning
the data differently. (a) Point colors show given true labeling y. Green classifiers v ∈ Vy are
consistent with y and produce only non-negative margins dvX(y) ≥ 0 in (3.25). Yellow classifier
vc ̸∈ Vy has inconsistent labeling yvc ̸= y. It has negative (cyan) margins dvc

X (y) < 0 at
incorrectly classified points. In clustering (b), any classifier (green or yellow) produces only
non-negative margins dvX(y

v) ≡ dvX ≥ 0 in (3.29) w.r.t. its labeling/clustering yv.

55

(a) entropy R∞(σ) and logistic regression R∞(σ | y) (b) entropy Rα(σ) and supervised loss Rα(σ | y) for α = 2

Figure 3.7: Renyi entropies Rα(σ) and their supervised counterparts Rα(σ | y): assuming K = 2
the plots above visualize these functions defined in (3.16)-(3.18) and (3.32) for binary distributions
σ = (ς, 1− ς) ∈ ∆2 plotted over interval ς ∈ [0, 1]

DEFINITION 2. Consider any set FL of allowed linearly separable binary labelings y for dataset
{Xi}Ni=1. Then, max-margin clustering for FL is defined as

ŷ := arg max
y∈FL

|y|

where |y| is the gap size for clustering y, as in Definition 1.

The achieved maximum gap value defining ŷ is finite. Indeed, gap sizes for y ∈ FL are
uniformly bounded by the diameter of the dataset {Xi}Ni=1

|y| ≤ max
1≤i<j≤N

∥Xi −Xj∥ ∀y ∈ FL

assuming that FL excludes trivial clusterings.

Our next theorem extends Theorem 1 to clustering based on R∞-decisiveness. We define the
total decisiveness as

R∞(v) := R∞(σ(v⊤X)) ≡ −lnσyvX (v⊤X) (3.27)

where the bar indicates averaging over all data points {Xi}. The proof uses the equivalent
expression on the right, which is a self-labeling version of NLL (3.26) based on (3.22) and (3.20).

Theorem 2 (max-margin clustering for R∞). Consider any set FL of allowed or feasible
linearly separable binary labelings y for dataset {Xi}Ni=1, e.g. restricted to “fair” clusterings

56

of the data. Assuming linear classifier v(γ) minimizes regularized decisiveness over classifiers
v ∈ VFL consistent with FL

v(γ) := arg min
v∈VFL

γ∥v∥2 +R∞(v)

then
v(γ)

∥v(γ)∥
γ→0−−→ uŷ

for the maximum margin clustering ŷ in FL, as in Definition 2.

Proof. The proof requires analysis of the loss R∞(σ(v⊤X)), but due to identity (3.22), it can
follow the same steps as the analysis of the supervised loss (3.24) from Theorem 2.1 in [179]
(case “a”). Indeed, they consider supervised classification with a given true linearly separable
labeling y, but it appears in their proof only in the margin expression dvX(y) setting its right sign,
see (3.25). Their analysis is restricted to classifiers consistent with y, but we observe that their
supervised loss (3.24) has an equivalent constrained formulation

R∞(σ(v⊤X) | y) ≡ r(dvX∥v∥) for v ∈ Vy (3.28)

using a simpler unsigned expression for the margins

dvX :=
|v⊤X|
∥v∥

(3.29)

as (3.25) is guaranteed to be non-negative for all consistent classifiers, see Figure 3.6(a). Our
formulation of R∞(· | y) in (3.28) does not depend on labeling y, as as long as v ∈ Vy.

In the context of clustering, i.e. unsupervised classification without given (true) labeling y,
we show that entropy values R∞(σ(v⊤X)) relate to logistic loss and distances to the clustering
boundary, a.k.a. margins. Indeed, as implied by self-labeling identity (3.22) and (3.28), we get

R∞(σ(v⊤X)) ≡ r(dvX∥v∥) for any v (3.30)

for any linear classifier v, which is always consistent with its “hard-max” labeling yv, by definition.
Our equation (3.30) uses the unsigned expression for margins (3.29), see Figure 3.6(b).

The formal max-margin analysis for classifiers v ∈ Vy in [179] uses only logistic loss values,
which we expressed as (3.28). The same analysis directly applies to the identical decisiveness
values (3.30) for classifiers v ∈ VFL, even when such classifiers may have different labelings
yv ∈ FL.

57

Generalization for a > 0

Binary Renyi entropy Rα(σ) ≡ Rα(ς), defined in (3.16-3.19) for distribution σ = (ς, 1− ς), is
symmetric Rα(ς) = Rα(1− ς) around ς = 0.5 for any order α ≥ 0, see Figure 3.5. We define a
monotone non-increasing function, see Figure 3.7(b)

fα(ς) :=

{
Rα(ς) if ς ≥ 0.5

ln 2 if ς ≤ 0.5
(3.31)

that can be used for training softmax classifier σ(v⊤X) based on the following supervision loss

Rα(σ | y) := fα(σ
y). (3.32)

Function f satisfies the following identities, see Figure 3.7(b),

Rα(σ) ≡ min{fα(ς), fα(1− ς)} ≡ fα(max{ς, 1− ς})

analogous to the relation (3.21) between R∞(σ) and logistic regression, see Figure 3.7(a). As in
(3.22), the identities above imply the “self-labeling” identity

Rα(σ) = Rα(σ | yσ) (3.33)

between decisiveness Rα(σ) and the supervised loss (3.32).

Similarly to Section 3.2.2, we will prove the margin maximization property for decisiveness
Rα(σ) using the self-labeling relation (3.33) and the standard theories for supervised losses [179].
Instead of logistic loss r(x) in (3.23), we use

gα(x) := fα(ς(x))

(3.31,3.16)
=

{
ln((1+e−x)−α+(1+ex)−α)

1−α
if x ≥ 0

ln 2 if x ≤ 0
(3.34)

which is a monotone non-increasing supervision loss enabling an expression for Rα(σ|y) (3.32)
analogous to (3.24)

Rα(σ(v
⊤X) | y) ≡ gα(d

v
X(y)∥v∥) (3.35)

where dvX(y) are (signed) margins (3.25). Loss gα(x) satisfies the “fast-enough decay” condition
from Theorem 2.1 in [179].

58

PROPERTY 2 (exponential decay for gα). For any positive value of parameter α > 0, loss
function gα in (3.34) satisfies

lim
x→∞

gα(x · (1− ϵ))

gα(x)
=∞, ∀ϵ

which is the sufficient condition for margin-maximizing classification according to Theorem 2.1
from [179].

Proof. With loss of generality, we only prove the case when x→ +∞. First, let’s define

exϵ := ex·(1−ϵ) ≡ ex

eϵx
.

Then when x→ +∞, we have:

gα(x · (1− ϵ))

gα(x)
=

ln((1 + e−xϵ)−α + (1 + exϵ)−α)

ln((1 + e−x)−α + (1 + ex)−α)

=
ln(1− αe−xϵ + e−αxϵ)

ln(1− αe−x + e−αx)

=
−αe−xϵ + e−αxϵ

−αe−x + e−αx

= eϵx
αe−x − e(α−1)ϵx−αx

αe−x − e−αx
(3.36)

From (3.36), we will only keep the dominant terms in both nominator and denominator for
different α. Note that when 0 < α < 1, we have

(3.36) = eϵx
−e(α−1)ϵx−αx

−e−αx
= eαϵx →∞.

When α ≥ 1, we have

(3.36) = eϵx
αe−x

αe−x
= eϵx →∞.

Hence, when α > 0, the limitation goes to infinity and the proof is complete.

Property 2 allows us to generalize our max-margin clustering Theorem 2 to the total Rα-
decisiveness loss

Rα(v) := Rα(σ(v⊤X)) ≡ Rα(σ(v⊤X) | yvX)
≡ fα(σyvX (v⊤X)) (3.37)

where fα replaces "− ln" in the self-labeling NLL loss (3.27).

59

Theorem 3 (max-margin clustering for Rα). Consider any set FL of allowed linearly separable
binary clusterings/labelings y for dataset {Xi}Ni=1, e.g. restricted to “fair” clusterings. Given any
α > 0, assume that v(γ) minimizes regularized decisiveness over linear classifiers v ∈ VFL

consistent with FL
v(γ) := arg min

v∈VFL
γ∥v∥2 +Rα(v).

Then
v(γ)

∥v(γ)∥
γ→0−−→ uŷ

for the maximum margin clustering ŷ in FL, as in Definition 2.

Proof. We follow the same arguments as in the proof of Theorem 2. Equation (3.35) and
self-labeling relation (3.33) imply identical expressions for Rα-values w.r.t. unsigned margins
dvX = |v⊤X|

∥v∥ in two cases: (supervision) for classifiers v ∈ Vy consistent with some given (true)
labeling y

Rα(σ(v
⊤X) | y) ≡ gα(d

v
X∥v∥) for v ∈ Vy

and (decisiveness) for any classifier

Rα(σ(v
⊤X)) ≡ gα(d

v
X∥v∥) for any v

which are analogous to logistic loss (3.28) and decisiveness (3.30). The only difference between
these supervised and unsupervised cases is the set of allowed classifiers. Since classification loss
Rα(v |y) and decisiveness Rα(v) have identical dependence on unsigned margins dvi = |v⊤Xi|

∥v∥ , all
arguments from Theorem 2.1 [179] proving the margin maximizing property for the (exponential-
decay) classification loss Rα(v |y) directly apply to the clustering loss Rα(v).

Note that there is no margin maximization for α = 0 since R0(σ(v
⊤X)) = const for any

finite data point X .

Generalization for K > 2

We use the max-margin property for multi-label classification in Theorem 4.1 [179] to prove the
max-margin property for clustering with regularized Rα-decisiveness when K > 2. We need to
introduce some additional terminology.

First, the regularization for max-margin K-clustering is based on the squared Frobenius norm
of classifier matrix v

∥v∥2F :=
K∑
k=1

∥vk∥2

60

where ∥vk∥ are L2 norms of linear discriminators vk for each class k, which are the columns of
matrix v. As before, we exclude the bias parameters in the norms of vk.

We use the unit-norm multi-class classifiers consistent with any given labeling y

Uy := {v |yv = y, ∥v∥F = 1}

as in the binary case in Section 3.2.2. The next definition of margin size for multi-class labelings
is consistent with [179].

DEFINITION 3. Assume y = {yi}Ni=1 is a linearly separable multi-class labeling for {Xi}Ni=1 such
that yi ∈ {1, · · · , K}. Then, the gap or margin size for labeling/clustering y is

|y| := max
u∈Uy

min
i

min
k ̸=yi

|(uyi − uk)
⊤Xi|

≡ min
i

min
k ̸=yi

|(uy
yi
− uy

k)
⊤Xi|

where uy is the max-margin unit-norm linear classifier for y.

The multi-class margin in Definition 3 is determined by the two closest classes/clusters. The
gaps between the other pairs of clusters are ignored as long as they are larger.

DEFINITION 4. Consider any set FL of allowed linearly separable multi-class labelings y for
dataset {Xi}Ni=1 where yi ∈ {1, · · · , K}. Then, max-margin clustering for FL is

ŷ := arg max
y∈FL

|y|

where |y| is the gap size for clustering y, as in Definition 3.

Figure 3.8(b) is an example of multi-class clustering achieving the max-margin (Def. 3)
among fair solutions. The tightest spot between the red and blue clusters determines |ŷ|.

We state max-margin clustering theorem for multi-class decisiveness of order α consistent
with the binary case (3.37)

Rα(v) := Rα(σ(v⊤X))

using the general definition of Renyi entropy [176] for K ≥ 2

Rα(σ) :=
ln
∑K

k=1(σ
k)α

1− α
(3.38)

extending (3.16) to multi-class predictions σ = (σ1, · · · , σK).

61

(a) soft K-means (3.11) (b) entropy clustering (3.14)

Figure 3.8: Multi-label clustering: K-means vs. entropy clustering. Consistently with Theorem 4,
loss (3.14) produces max-margin clustering, as in Definitions 3-4, satisfying the fairness.

Theorem 4 (max-margin multi-class clustering for Rα). Consider any set FL of allowed or
feasible linearly separable multi-class labelings y for {Xi}Ni=1, e.g. restricted to “fair” clusterings.
Given any order α > 0, assume that v(γ) minimizes regularized decisiveness over linear classifiers
v ∈ VFL consistent with FL

v(γ) := arg min
v∈VFL

γ∥v∥2F +Rα(v).

Then
v(γ)

∥v(γ)∥
γ→0−−→ uŷ

for the maximum margin clustering ŷ in FL, as in Definition 4.

Idea of proof: Definition 3 above is consistent with multi-class L2-margin (10) in [179]. Their
multi-class max-margin classification Theorem 4.1 extends to clustering with regularized deci-
siveness Rα(v) due to self-labeling relation (3.33), which also works for K > 2 with a properly
constructed multi-class supervised loss Rα(σ | y). For example, generalizing (3.31,3.32) to the
case K > 2, one can use supervised loss

Rα(σ | y) :=

{
Rα(σ) if yσ = y

lnK o.w.
(3.39)

62

(a) Predictions σ ∈ ∆3 (b) Supervised loss Rα(σ|y)
where yσ = 1, 2, 3 for ground truth label y = 2

Figure 3.9: Supervised loss Rα(σ | y): extending Figure 3.7(b) to K = 3. Three colored areas of
probability simplex ∆3 in (a) mark predictions σ with different hard-max labels yσ. Assuming
y = 2, the blue region in (b) shows where supervised losses Rα(σ | y) in (3.39) and (3.40) are
consistent with entropy Rα(σ). Loss (3.39) is constant lnK in all gray regions. It is discontinuous
at the blue/gray boundary, except in the center. The continuous variant (3.40) is constant lnK
only in the light gray region. For σ in the dark gray area, it is defined by the entropy Rα(p) at the
closest point p in the blue region.

or its continuous variant, see Figure 3.9,

Rα(σ | y) := Rα

(
arg min

p∈∆K : yp=y
∥p− σ∥

)
(3.40)

where the argument of entropy Rα(p) is distribution p ∈ ∆K consistent with label y that is the
closest to prediction σ. It is necessary to check that, as a function of (K−1)-dimensional margins,
supervised loss Rα(· | y) satisfies the exponential decay condition (11) in Theorem 4.1 [179]. The
remaining proof of Theorem 4 follows the same arguments as in Theorem 3.

63

Discussion: entropy clustering vs SVM clustering

After establishing the max-margin property for regularized decisiveness (3.13) or (3.15), it is
interesting to review the implications for entropy clustering and juxtapose it with SVM clustering.
In particular, the formulation in [227] is highly relevant. They use the the regularized hinge loss,
as in soft SVM, combined with a hard fairness constraint

Lmm = γ∥v∥2 + max{0, 1− tv⊤X} (3.41)
subject to − ϵ ≤ t̄ ≤ ϵ

where, unlike supervised SVM [217], binary targets t ∈ {±1} are optimization variables here.
They are estimated jointly with the linear model parameters v. Following our terminology from
Section 3.1.4, objective (3.41) is a self-labeling loss with binary pseudo-labels t. It resembles (3.8)
where hard constraints represent fairness and pseudo-labels are discrete/hard. One can also relate
the hinge loss in (3.41) to a truncated variant of decisiveness5 encouraging linear discriminant v
such that |v⊤X| ≥ 1 for all data points X .

However, one significant difference exists between (3.41) and (3.8). Minimization of the norm
∥v∥2 in supervised or unsupervised SVM, as in (3.41), is known to be central to the problem.
It is well understood that it directly corresponds to margin maximization. In contrast, entropy
clustering methods [30, 98, 74, 102, 8] typically skip ∥v∥2 in their losses, e.g. (3.8), though it may
appear implicitly due to the omnipresence of the weight decay. It is included in (3.12) [101], but
for the wrong reason discussed in Section 3.2.1. It is also a part of (3.6), but it is motivated only
by a generic model simplicity argument in the context of complex models [116]. It is also argued
in [79] that decisiveness H(σ) encourages “decision boundary away from the data points”, which
may informally suggest margin maximization, but norm ∥v∥2 is not present in their argument. In
fact, margin maximization is not guaranteed without norm regularization.

Similarly to SVM, our max-margin theories for regularized decisiveness are focused on a
linear binary case where guarantees are the strongest, but the multi-label case is also discussed.
Non-linear extensions are possible due to high-dimensional embeddings fw(X) in (3.4), but
the quality guarantees are weak, as in kernel SVM. One notable difference is that non-linear
SVMs typically use fixed data kernels, i.e. implicit high-dimensional embeddings. In contrast,
discriminative entropy clustering can learn fw(X).

Also, note that our max-margin theories apply to entropy clustering losses combining regular-
ized decisiveness with fairness, e.g. (3.14), only if fairness is not compromised in the solution. If
decisiveness and fairness require some trade-off, the max-margin guarantee is less clear 6. How-
ever, four toy examples varying the cardinalities of one of the clusters in Figure 3.10 empirically

5Minimizing out t in the hinge loss (3.41) gives max{0, 1− |v⊤X|}.
6This is similar to soft SVM when the margin size is traded off with margin violations.

64

N of
points 200 + 200 200 + 150 200 + 100 200 + 50

“g
oo

d”
cl

us
te

ri
ng

loss = -0.6820 loss = -0.6719 loss = -0.6260 loss = -0.4901

“b
ad

”
cl

us
te

ri
ng

loss = -0.6276 loss = -0.6244 loss = -0.6220 loss = -0.6255

Figure 3.10: Balance vs margin size for loss (3.14). The data is generated from two Gaussian
distributions. The cardinalities are equal in the leftmost column, with 200 points in each Gaussian.
In the other three columns, the cardinality of one of the Gaussian blobs is gradually reduced to
50. The rows show two local minima for each example and the corresponding loss values. The
lower loss value is highlighted in boldface font. Note that loss (3.14) favors the clustering balance
(fairness) over the maximum margin only in the last column.

demonstrate that loss (3.14) prefers the maximum margin clustering even for highly unbalanced
data. The optimum favors the balance over the margin size only in the last column.

Empirically, the max-margin property is also evident for self-labeling surrogates of (3.14), see
Sec.3.1.4 and Sec.3.3. We conjecture that margin maximization could be formally extended to
many self-labeling formulations of entropy clustering loss including the norm ∥v∥2, but leave this
research for future work.

65

3.3 Our self-labeling loss and optimization algorithms

The conceptual properties discussed in the previous section may improve the general understanding
of entropy clustering, but their new practical benefits are limited. For example, margin maxi-
mization implicitly happens in prior entropy methods since norm regularization (weight-decay) is
omnipresent.

This section addresses some specific limitations of prior entropy clustering formulations that
do affect the practical performance. We focus on self-labeling (Section 3.1.4 and Chapter 2). As
introduced in Chapter 2, we observe that the standard cross-entropy formulation of decisiveness is
sensitive to pseudo-label errors while reverse cross-entropy and collision cross-entropy are more
robust to the errors in the estimated pseudo-labels. We propose strong fairness in Section 3.3.1,
which is critical to deriving efficient EM algorithms for minimizing the loss w.r.t. pseudo-labels.
The EM algorithms for reverse cross-entropy and collision cross-entropy are derived in Section
3.3.2 and 3.3.3 respectively.

3.3.1 Self-labeling surrogate loss formulation

We start from the (2.5) as introduced in Chapter 2. We observe that the standard fairness term in
((2.5),3.6,3.9) is the reverse KL divergence w.r.t. cluster volumes, i.e. the average predictions σ̄.
It can tolerate highly unbalanced solutions where σ̄k = 0 for some cluster k, see the dashed curves
in Figure 3.11(a). We propose the forward, a.k.a. zero-avoiding, KL divergence KL(u ∥σ), see
the solid curves Figure 3.11(a), which assigns infinite penalties to highly unbalanced clusters. We
refer to this as strong fairness. More importantly, this switch facilitates the derivation of efficient
EM algorithms for estimating the pseudo-labels. Our formulation of self-labeling loss can be
written as

Lour := H(σ, y) + λKL(u ∥ y) + γ ∥v∥2. (3.42)

where H(·, ·) will be replaced by HRCE as shown in the formula and HCCE.

3.3.2 EM algorithm for optimizing y with H RCE

Minimization of a self-labeling loss w.r.t pseudo-labels y for given predictions σ is a critical
operation in iterative self-labeling techniques [8, 101], see Section 3.1.4. Besides well-motivated
numerical properties of our new loss (3.42), in practice it also matters that it has an efficient
solver for pseudo-labels. While (3.42) is convex w.r.t. y, optimization is done over a probability

66

strong fairness KL(u∥ȳ)
Figure 3.11: “Forward” vs “reverse”: KL-divergence. Assuming binary classification K = 2,
probability distributions σ or σ̄ are represented as points on [0,1]. The solid curves illustrate the
forward KL-divergence KL(u∥ȳ) for average pseudo-labels ȳ in (3.42), though the same points
could be made with average predictions σ̄ instead of ȳ. We show two examples of volumetric prior
u1 = (0.9, 0.1) (blue) and u2 = (0.5, 0.5) (red). The reverse KL-divergence KL(σ̄∥u) (dashed
curves), commonly representing fairness in prior work, tolerates extremely unbalanced clustering,
i.e. the end points of the interval [0,1].

67

simplex and a good practical solver is not a given. Note that H(σ, y) works as a log barrier
for the constraint y ∈ ∆K . This could be problematic for the first-order methods, but a basic
Newton’s method is a good match, e.g. [107]. The overall convergence rate of such second-order
methods is fast, but computing the Hessian’s inverse is costly. Instead, we derive a more efficient
expectation-maximization (EM) algorithm, see Table 3.1.

Assume that model parameters and predictions in (3.42) are fixed, i.e. v and σ. Following
variational inference [16], we introduce K auxiliary latent variables, distributions Sk ∈ ∆N

representing normalized support of each cluster k over N data points. In contrast, N distributions
yi ∈ ∆K show support for each class at every point Xi. We refer to each vector Sk as a
normalized cluster k. Note that here we focus on individual data points and explicitly index them
by i ∈ {1, . . . , N}. Thus, we use yi ∈ ∆K and σi ∈ ∆K . Individual components of distribution
Sk ∈ ∆N corresponding to data point Xi is denoted by scalar Sk

i .

First, we expand our loss (3.42) using our new latent variables Sk ∈ ∆N

Lour
c
= HRCE(y, σ) + λH(u, ȳ) + γ ∥v∥2 (3.43)

= H(σ, y)− λ
∑
k

uk ln
∑
i

Sk
i

yki
Sk
i N

+ γ ∥v∥2

≤ H(σ, y)− λ
∑
k

∑
i

ukSk
i ln

yki
Sk
i N

+ γ ∥v∥2 (3.44)

Due to the convexity of negative log, we apply Jensen’s inequality to derive an upper bound,
i.e. (3.44), to Lour. Such a bound becomes tight when:

E-step : Sk
i =

yki∑
j y

k
j

(3.45)

Then, we fix Sk
i as (3.45) and solve the Lagrangian of (3.44) with simplex constraint to update y

as:

M-step : yki =
σk
i + λNukSk

i

1 + λN
∑

c u
cSc

i

(3.46)

We run these two steps until convergence with respect to some predefined tolerance. Note that the
minimum y is guaranteed to be globally optimal since (3.43) is convex w.r.t. y. The empirical
convergence rate is within 15 steps on MNIST. The comparison of computation speed on synthetic
data is shown in Table 3.1. While the number of iterations to convergence is roughly the same as
Newton’s methods, our EM algorithm is much faster in terms of running time and is extremely
easy to implement using the highly optimized built-in functions from the standard PyTorch library
that supports GPU.

68

number of iterations running time in Section
(to convergence) (to convergence)

K 2 20 200 2 20 200

Newton 3 3 4 2.8e−2 3.3e−2 1.7e−1

EM 2 2 2 9.9e−4 2.0e−3 4.0e−3

Table 3.1: Our EM algorithm vs Newton’s methods [107].

Inspired by [197, 98], we also adapted our EM algorithm to allow for updating y within each
batch. In fact, the mini-batch approximation of (3.43) is an upper bound. Considering the first
two terms of (3.43), we can use Jensen’s inequality

H(σ, y) + λH(u, ȳ) ≤ EB[HB(σ, y) + λH(u, ȳB)] (3.47)

where B is the batch randomly sampled from the whole dataset and the bar operator is the average
over data points in the batch. Now, we can apply our EM algorithm to update y in each batch,
which is even more efficient. Compared to other methods [74, 8, 101] using auxiliary variables y,
we can efficiently update y on the fly while they only update once or just a few times per epoch
due to the cost of computing y for the whole dataset. Interestingly, we found that it is important to
update y on the fly, which makes convergence faster and improves the performance significantly,
as shown in Figure 3.12. We use this “batch version” EM throughout all the experiments.

3.3.3 EM algorithm for optimizing y with HCCE

As discussed in Chapter 2, HCCE has more good properties than HRCE, such as symmetry, and
the allowance of one-hot distribution. However, the derivation of the EM algorithm is not as
straightforward as that for HRCE. Since the second-order Newton’s method can not be easily
applied, unlike HRCE that acts like a log barrier, an efficient EM algorithm is more necessary. As
shown in Table 3.2, our derived EM algorithm is much faster than the general projected gradient
descent algorithm. Next, we show the detailed derivation of the EM algorithm.

We derive the EM algorithm introducing latent variables, K distributions Sk ∈ ∆M repre-
senting normalized support for each cluster over M data points. We refer to each vector Sk as a
normalized cluster k. Note the difference with distributions represented by pseudo-labels y ∈ ∆K

showing support for each class at a given data point. Since we explicitly use individual data points
below, we will start to carefully index them by i ∈ {1, . . . ,M}. Thus, we will use yi ∈ ∆K and

69

Figure 3.12: Loss (3.42) for two different update strategies for y. These plots are generated with a
linear classifier on MNIST. We use the same initialization and run both strategies for 50 epochs.
Note that once-per-epoch updates (corresponding to the gray curve) achieve 52% accuracy, while
once-per-batch updates (corresponding to the yellow curve) achieve 63%.

σi ∈ ∆K . Individual components of distribution Sk ∈ ∆M corresponding to data point i will be
denoted by scalar Sk

i . In the following derivation, we omit the l2 norm for brevity.

First, we introduce the latent variables Sk ∈ ∆M

LCCE+
c
= HCCE(y, σ) + λH(u, ȳ) (3.48)

= HCCE(y, σ)− λ
∑
k

uk ln
∑
i

Sk
i

yki
Sk
i M
≤ HCCE(y, σ)− λ

∑
k

∑
i

ukSk
i ln

yki
Sk
i M

(3.49)

Due to the convexity of negative log, we apply the Jensen’s inequality to derive an upper
bound, i.e. (3.49), to LCCE+. Such bound becomes tight when:

E step : Sk
i =

yki∑
j y

k
j

(3.50)

Next, we derive the M step. Introducing the hidden variable S breaks the fairness term into
the sum of independent terms for pseudo-labels yi ∈ ∆K at each data point i. The solution for S

70

running time in Section number of iterations running time in Section
per iteration (to convergence) (to convergence)

K 2 20 200 2 20 200 2 20 200

PGD (η1) 7.8e−4 2.9e−3 6.7e−2 326 742 540 0.25 2.20 36.25
PGD (η2) 9.3e−4 3.3e−3 6.8e−2 101 468 344 0.09 1.55 23.35
PGD (η3) 9.9e−4 3.2e−3 7.0e−2 24 202 180 0.02 0.65 12.60

our EM 1.8e−3 1.6e−3 5.1e−3 25 53 71 0.04 0.09 0.36

Table 3.2: Comparison of our EM algorithm to Projected Gradient Descent (PGD). η is the step size.
For K = 2, η1 ∼ η3 are 1, 10 and 20 respectively. For K = 20 and K = 200, η1 ∼ η3 are 0.1, 1 and 5
respectively. Higher step size leads to divergence of PGD.

does not change (E step). Lets focus on the loss with respect to y. The collision cross-entropy
(CCE) also breaks into the sum of independent parts for each yi. For simplicity, we will drop all
indices i in variables yki , Sk

i , σk
i . Then, the combination of CCE loss with the corresponding part

of the fairness constraint can be written for each y = {yk} ∈ ∆K as

− ln
∑
k

σkyk − λ
∑
k

ukSk ln yk. (3.51)

First, observe that this loss must achieve its global optimum in the interior of the simplex if
Sk > 0 and uk > 0 for all k. Indeed, the second term enforces the “log-barier” at the boundary of
the simplex. Thus, we do not need to worry about KKT conditions in this case. Note that Sk might
be zero, in which case we need to consider the full KKT conditions. However, the Property 3 that
will be mentioned later eliminates such concern if we use positive initialization. For completeness,
we also give the detailed derivation for such case and it can be found at the end of this section.

Adding the Lagrange multiplier γ for the simplex constraint, we get an unconstrained loss

− ln
∑
k

σkyk − λ
∑
k

ukSk ln yk + γ

(∑
k

yk − 1

)

that must have a stationary point inside the simplex.

Computing partial derivatives w.r.t. yk and simplify the equations, then we get

yk

(
1 + λu⊤S − σk

σ⊤y

)
= λukSk

71

This equation is necessarily solved by pseudo-labels y = {yk} ∈ ∆K such that

yk = λukSk

λu⊤S+1−σk
x

for some x ∈
(

σmax

1+λu⊤S
, σmax

]
(3.52)

where σmax is the largest σk. The specified interval domain for x is necessary for the solution.

Theorem 5. [M-step solution]: The sum
∑

k yk as in (3.52) is positive, continuous, convex, and
monotonically decreasing function of x on the specified interval, see Fig.3.13(a). Moreover, there
exists a unique solution {yk} ∈ ∆k and x such that∑

k yk ≡
∑

k
λukSk

λu⊤S+1−σk
x

= 1 and x ∈
(

σmax

1+λu⊤S
, σmax

]
(3.53)

Proof. All yk in (3.52) are positive, continuous, convex, and monotonically decreasing functions
of x on the specified interval. Thus,

∑
yk behaves similarly. Assuming that max is the index of

prediction σmax, we have ymax → +∞ when approaching the interval’s left endpoint x→ σmax

1+λu⊤S
.

Thus,
∑

yk > 1 for smaller values of x. At the right endpoint x = σmax we have yk ≤ λukSk

λu⊤S
for

all k implying
∑

yk ≤ 1. Monotonicity and continuity of
∑

yk w.r.t. x imply the theorem.

The monotonicity and convexity of
∑

k yk with respect to x suggest that the problem (3.53)
formulated in Theorem 5 allows efficient algorithms for finding the corresponding unique solution.
For example, one can use the iterative Newton’s updates to search for x in the specified interval.
The following Lemma gives us a proper starting point for Newton’s method.

Lemma 1. Assuming ukSk is positive for each k, then the reachable left end point in Theorem 5
can be written as

l := max
k

σk

1 + λu⊤S − λukSk

.

Proof. Firstly, we prove that l is (strictly) inside the interior of the interval in Theorem 5. For the
left end point, we have

l := max
k

σk

1 + λu⊤S − λukSk

≥ σmax

1 + λu⊤S − λumaxSmax

>
σmax

1 + λu⊤S
umaxSmax is positive

72

(a) general case (b) special case for
σmin > σmax

1+λu⊤S

Figure 3.13: Collision Cross Entropy - M step (3.53): the sum
∑

k yk is a positive, continuous,
convex, and monotonically decreasing function of x on the specified interval (a). In case σmin >
σmax

1+λu⊤S
(b), one can further restrict the search interval for x. The fact that

∑
k yk ≥ 1 for x = σmin

follows from an argument similar to the one below (3.52) showing that
∑

k yk ≤ 1 for x = σmax.

For the right end point, we have

l := max
k

σk

1 + λu⊤S − λukSk

< max
k

σk 1 + λu⊤S − λukSk > 1

= σmax

Therefore, l is a reachable point. Moreover, any σmax

1+λu⊤S
< x < l will still induce positive yk for

any k and we will also use this to prove that x should not be smaller than l. Let

c := argmax
k

σk

1 + λu⊤S − λukSk

then we can substitute l into the x of yc. It can be easily verified that yc = 1 at such l. Since yc is
monotonically decreasing in terms of x, any x smaller than l will cause yc to be greater than 1. At
the same time, other yk is still positive as mentioned just above, so the

∑
k yk will be greater than

1. Thus, l is a reachable left end point.

73

The algorithm for M-step solution is summarized as below. Note that we present the algorithm
for only one data point, and we can easily and efficiently scale up for more data in a batch by
using the Numba compiler.

Algorithm 1 Newton’s method for M-step
Input : {σk}, {Sk}, λ, ϵ
Output : {yk}
Initialize x← maxk

σk

1+λu⊤S−λukSk

calculate f(x)←
∑

k
λukSk

λu⊤S+1−σk
x

− 1

while f(x) ≥ ϵ do
calculate f ′(x)←

∑
k

−λukSkσk

(λu⊤Sx+x−σk)2

x← x - f(x)
f ′(x)

calculate f(x)←
∑

k
λukSk

λu⊤S+1−σk
x

− 1

end
yk ← λukSk

λu⊤S+1−σk
x

In the following, we give the property about the positivity of the solution. This property
implies that if our EM algorithm has only (strictly) positive variables Sk or yk at initialization,
these variables will remain positive during all iterations.

PROPERTY 3. For any category k such that uk > 0, the set of strictly positive variables yk or Sk

can only grow during iterations of our EM algorithm for the loss (3.51) based on the collision
cross-entropy.

Proof. As obvious from the E-step (3.50), it is sufficient to prove this for variables yk. If yk = 0,
then the E-step (3.50) gives Sk = 0. According to the M-step for the case of collision cross-
entropy, variable yk may become (strictly) positive at the next iteration if σk = σmax. Once yk
becomes positive, the following E-step (3.50) produces Sk > 0. Then, the fairness term effectively
enforces the log-barrier from the corresponding simplex boundary making M-step solution yk = 0
prohibitively expensive. Thus, yk will remain strictly positive at all later iterations.

Note that Property 3 does not rule out the possibility that yk may become arbitrarily close to
zero during EM iterations. Empirically, we did not observe any numerical issues. The complete
algorithm is given below. As discussed in Section 3.3.2, we also update our y in each batch.
Intuitively, updating y on the fly can prevent the network from being easily trapped in some local
minima created by the incorrect pseudo-labels.

74

Complete Solutions for M step The main case when ukSk > 0 for all k in (3.51) is presented
above. Here we derive the case when there exists some k such that ukSk = 0. Assume a non-empty
subset of categories/classes

Ko := {k |ukSk = 0} ≠ ∅

and its non-empty complement

K̄o := {k |ukSk > 0} ≠ ∅.

In this case the second term (fairness) in our loss (3.51) does not depend on variables yk for
k ∈ Ko. Also, note that the first term (collision cross-entropy) in (3.51) depends on these variables
only via their linear combination

∑
k∈Ko

σkyk. It is easy to see that for any given confidences yk
for k ∈ K̄o it is optimal to put all the remaining confidence 1−

∑
k∈K̄o

yk into one class c ∈ Ko

corresponding to the larges prediction among the classes in Ko

c := argmax
k∈Ko

σk

so that
yc = 1−

∑
k∈K̄o

yk and yk = 0, ∀k ∈ Ko \ c.

Then, our loss function (3.51) can be written as

− ln
∑

k∈K̄o∪{c}

σkyk − λ
∑
k∈K̄o

ukSk ln yk (e)

that gives the Lagrangian function incorporating the probability simplex constraint

− ln
∑

k∈K̄o∪{c} σkyk − λ
∑

k∈K̄o
ukSk ln yk + γ

(∑
k∈K̄o∪{c} yk − 1

)
.

The stationary point for this Lagrangian function should satisfy equations

− σk

σ⊤y
− λukSk

1
yk

+ γ = 0, ∀k ∈ K̄o and − σc

σ⊤y
+ γ = 0

which could be easily written as a linear system w.r.t variables yk for k ∈ K̄o ∪ {c}.
We derive a closed-form solution for the stationary point as follows. Substituting γ from the

right equation into the left equation, we get

σc − σk

σ⊤y
yk = λukSk, ∀k ∈ K̄o . (f)

75

Summing over k ∈ K̄o we further obtain

σc(1−yc)−
∑

k∈K̄o
σkyk

σ⊤y
= λu⊤S ⇒ σc−σ⊤y

σ⊤y
= λu⊤S

giving a closed-form solution for σ⊤y

σ⊤y =
σc

1 + λu⊤S
.

Substituting this back into (f) we get closed-form solutions for yk

yk =
λukSk

(1 + λu⊤S)(1− σk

σc
)
, ∀k ∈ K̄o .

Note that positivity and boundedness of yk requires σc > σk for all k ∈ K̄o. In particular, this
means σc = σmax, but it also requires that all σk for k ∈ K̄o are strictly smaller than σmax. We
can also write the corresponding closed-form solution for yc

yc = 1−
∑
k∈K̄o

yk = 1 − σc

1 + λu⊤S

∑
k∈K̄o

λukSk

σc − σk

.

Note that this solution should be positive yc > 0 as well.

In case any of the mentioned constraints (σc > σk,∀k ∈ K̄o and yc > 0) is not satisfied, the
complimentary slackness (KKT) can be used to formally prove that the optimal solution is yc = 0.
That is, yk = 0 for all k ∈ Ko. This reduces the optimization problem to the earlier case focusing
on resolving yk for k ∈ K̄o. This case is guaranteed to find a unique solution in the interior of the
simplex ∆K̄o

. Indeed, since inequality ukSk > 0 holds for all k ∈ K̄o, the strong fairness enforces
a log-barrier for all the boundaries of this simplex.

3.3.4 Discussion

Here we briefly discuss the differences between our method for (3.42) and the algorithm for (3.12)
in [101]. Their loss is convex with respect to v. In contrast, the reverse cross-entropy in our
loss (3.42) is non-convex as a natural consequence of our focus on robustness to pseudo-label
errors. However, both losses are non-convex w.r.t. parameters w of the interior network layers
responsible for representation fw(X) in (3.4). As for the optimization w.r.t. the pseudo-labels
y, both losses are convex. Our EM algorithm converges to the global optima for y, while they
use an approximate closed-form solution for y, but it does not have optimality guarantees. Both
self-labeling algorithms iteratively optimize the corresponding surrogate losses over pseudo-labels
y and model parameters v, w.

76

3.4 Experimental results

We test our approach on standard benchmark datasets with different network architectures. We
also provide a comparison of different losses under semi-supervised settings. All the results are
reproduced using either public codes or our own implementation under the same experimental
settings for fair comparison.

Dataset For the clustering problem, we use four standard benchmark datasets: MNIST [123],
CIFAR10/100 [209] and STL10 [48]. We follow [102] to use the whole dataset for training and
testing unless otherwise specified. As for the semi-supervised setting, we conduct experiments
on CIFAR10 and STL10. We split the data into training and test sets as suggested by the official
instructions of the datasets.

Evaluation As for the evaluation of clustering, we set the number of clusters to the number of
ground-truth category labels. To calculate the accuracy, we use the standard Hungarian algorithm
[119] to find the best one-to-one mapping between predicted clusters and ground-truth labels.
We don’t need this matching step if we use other metrics, i.e. NMI, and ARI. For the evaluation
of semi-supervised classification, we directly calculate the accuracy of the test set without the
mapping step.

Implementation details For clustering with fixed features, we set λ in our loss to 100. The
learning rate of the stochastic gradient descent is set to 0.1 and training takes 10 epochs. The
batch size was set to 250. The coefficients for the l2 norm of the weights are set to 0.001, 0.02,
0.009, and 0.02 for MNIST, CIFAR10, CIFAR100, and STL10 respectively. We also tuned the
hyperparameters for all other methods.

As for the training of VGG4 in Section 3.4.3, we use Adam [108] with learning rate 1e−4 for
optimizing the network parameters. We set the batch size to 250 for CIFAR10, CIFAR100, and
MNIST, and we used 160 for STL10. For each image, we generate two augmentations sampled
from “horizontal flip", “rotation" and “color distortion". We set the λ to 100 in our loss. The
weight decay coefficient is set to 0.01. We report the mean accuracy and Std from 6 runs with
different initializations while we use the same initialization for all methods in each run. We use
50 epochs for each run and all methods with tuned hyperparameters reach convergence within 50
epochs. As for the training of ResNet-18, we still use the Adam optimizer, and the learning rate
is set to 1e−1 for the linear classifier and 1e−5 for the backbone. The weight decay coefficient is
set to 1e−4. The batch size is 200 and the number of total epochs is 50. The λ is still set to 100.
We only use one augmentation per image, and the coefficient for the augmentation term is set
to 0.5, 0.2 and 0.4 respectively for STL10, CIFAR10, and CIFAR100. Such coefficient is tuned
separately for IMSAT and MIADM.

77

3.4.1 Effect of α in Renyi entropies for clustering

In Section 3.2.2, we provide theoretical results that any α in Renyi entropies leads to the maximum
margin under certain conditions. However, it is unclear how different α affects the results in
real-world settings. Here, we use the standard STL10 dataset to test the clustering performance
for different α following the experimental settings from [216]. We tuned the hyperparameters for

α 0.1 0.5 1 5 ∞
ACC 62%(3.5) 63.45%(3.2) 70.23%(2.0) 71.05%(1.6) 73.34%(1.6)

Table 3.3: Effects of different α in Renyi entropy as the decisiveness term.

each column and used the stochastic gradient descent as the optimizer. While our self-labeling
approach can give a performance boost for α = 1, it does not work well empirically for other
α. As one can easily check, the subproblems in the self-labeling formulation for α ̸= 1 can not
be easily optimized. From the results in Table 3.3, we can see that larger α gives better results.
Note that larger α induces smaller gradients as the network prediction gets more confident. If
the network prediction is wrong, there is a chance for correction due to small gradients. On the
contrary, the smaller α has larger gradients as network predictions become more confident, which
creates strong local minima that are hard to get out of.

3.4.2 Clustering with fixed features

In this section, we test our loss as a proper clustering loss and compare it to the widely used
Kmeans (generative) and other closely related losses (entropy-based and discriminative). We
use the pre-trained (ImageNet) Resnet-50 [90] to extract the features. For Kmeans, the model is
parameterized by K cluster centers. Comparably, we use a one-layer linear classifier followed by
softmax for all other losses including ours. Kmeans results were obtained using the scikit-learn
package in Python. To optimize the model parameters for other losses, we use stochastic gradient
descent. Here we report the average accuracy and standard deviation over 6 randomly initialized
trials in Table 3.4.

3.4.3 Joint clustering and feature learning

In this section, we train a deep network to jointly learn the features and cluster the data. We test
our method on both a small architecture (VGG4) and large ones (ResNet-18, ResNet-50). The

78

STL10 CIFAR10 CIFAR100 (20) MNIST

K-means 85.20%(5.9) 67.78%(4.6) 42.99%(1.3) 47.62%(2.1)
MIGD [30, 116] 89.56%(6.4) 72.32%(5.8) 43.59%(1.1) 52.92%(3.0)

SeLa [8] 90.33%(4.8) 63.31%(3.7) 40.74%(1.1) 52.38%(5.2)
MIADM [101] 81.28%(7.2) 56.07%(5.5) 36.70%(1.1) 47.15%(3.7)
MIADM⋆ [101] 88.64%(7.1) 60.57%(3.3) 41.2%(1.4) 50.61%(1.3)

w/ HRCE 92.2%(6.2) 73.48%(6.2) 43.8%(1.1) 58.2%(3.1)
w/ HCCE 92.33%(6.4) 73.51%(6.3) 43.72%(1.1) 58.4%(3.2)

Table 3.4: Comparison of different methods using fixed features. The numbers are the average
accuracy and the standard deviation over 6 trials. ⋆: our “batch version" implementation of their
method.

only extra standard technique we add here is self-augmentation as discussed in Section 3.1.3.

To train the VGG4, we use random initialization for network parameters. From Table 3.5,
it can be seen that our approach consistently achieves the most competitive results in terms of
accuracy (ACC). Most of the methods we compared in our work (including our method) are
general concepts applicable to single-stage end-to-end training. To be fair, we tested all of them
on the same simple architecture. But, these general methods can be easily integrated into other
more complex systems with larger architecture such as ResNet-18.

STL10 CIFAR10 CIFAR100 (20) MNIST

IMSAT [98] 25.28%(0.5) 21.4%(0.5) 14.39%(0.7) 92.90%(6.3)
IIC [102] 24.12%(1.7) 21.3%(1.4) 12.58%(0.6) 82.51%(2.3)
SeLa [8] 23.99%(0.9) 24.16%(1.5) 15.34%(0.3) 52.86%(1.9)

MIADM [101] 17.37%(0.9) 17.27%(0.6) 11.02%(0.5) 17.75%(1.3)
MIADM⋆ [101] 23.37%(0.9) 23.26%(0.6) 14.02%(0.5) 78.88%(3.3)

w/ HRCE 25.33%(1.4) 24.16%(0.8) 15.09%(0.5) 93.58%(4.8)
w/ HCCE 25.98%(1.1) 24.26%(0.8) 15.14%(0.5) 95.11%(4.3)

Table 3.5: Quantitative results of accuracy for unsupervised clustering methods with VGG4. We
only use the 20 coarse categories for CIFAR100 following [102].

As for the training of ResNet-18, we found that random initialization does not work well.
Following [216], we use the pre-trained weight from the self-supervised learning. For a fair
comparison, we followed their experimental settings and compared ours to their second-stage

79

results. Note that they split the data into training and testing. We also report two additional
evaluation metrics, i.e. NMI and ARI.

In Table 3.6, we show the results using their pretext-trained network as initialization for our
entropy clustering. We use only our clustering loss together with the self-augmentation (one
augmentation per image this time) to reach higher numbers than SCAN, as shown in the table
below. More importantly, we consistently improve over the most related method, MIADM, by a
large margin, which clearly demonstrates the effectiveness of our proposed loss together with the
optimization algorithm.

CIFAR10 CIFAR100 (20) STL10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

SCAN [216] 81.8
(0.3)

71.2
(0.4)

66.5
(0.4)

42.2
(3.0)

44.1
(1.0)

26.7
(1.3)

75.5
(2.0)

65.4
(1.2)

59.0
(1.6)

IMSAT [98] 77.64%
(1.3)

71.05%
(0.4)

64.85%
(0.3)

43.68%
(0.4)

42.92%
(0.2)

26.47%
(0.1)

70.23%
(2.0)

62.22%
(1.2)

53.54%
(1.1)

MIADM⋆ [101] 74.76%
(0.3)

69.17%
(0.2)

62.51%
(0.2)

43.47%
(0.5)

42.85%
(0.4)

27.78%
(0.4)

67.84%
(0.2)

60.33%
(0.5)

51.67%
(0.6)

w/ HRCE 83.09
(0.2)

71.65
(0.1)

68.05
(0.1)

46.79
(0.3)

43.27
(0.1)

28.51
(0.1)

77.67
(0.1)

67.66
(0.3)

61.26
(0.4)

w/ HCCE 83.27%
(0.2)

71.95%
(0.2)

68.15%
(0.1)

47.01%
(0.2)

43.28%
(0.1)

29.11%
(0.1)

78.12%
(0.1)

68.11%
(0.3)

62.34%
(0.3)

Table 3.6: Quantitative comparison using network ResNet-18.

We also follow the experimental settings in [216] to test our method against some closely
related ones in the case where the number of classes is relatively large, say 100. We used a subset
of the ImageNet dataset [58] where the number of classes is 100, following [216].

Top1 Top5 NMI ARI

SCAN [216] 66.2 88.1 78.7 54.4
IMSAT [98] 65.1 87.3 78.2 53.5

MIADM⋆ [101] 63.4 86.1 77.1 52.9

w/ HRCE 67.1 89.7 79.5 55.2
w/ HCCE 68.5 89.9 79.8 55.3

Table 3.7: Quatitative comparison using ResNet-50 on ImageNet-100 subset [216].

80

3.4.4 Semi-supervised classification

Although our paper is focused on self-labeled classification, we find it also interesting and natural
to test our loss under a semi-supervised setting where partial data is provided with ground-truth
labels. We use the standard cross-entropy loss for labeled data and directly add it to the self-labeled
loss to train the network initialized by the pretext-trained network following [216]. Note that the
pseudo-labels for the labeled data are constrained to be the ground-truth labels.

0.1 0.05 0.01

STL10 CIFAR10 STL10 CIFAR10 STL10 CIFAR10

Only seeds 78.4% 81.2% 74.1% 76.8% 68.8% 71.8%
+ IMSAT [98] 88.1% 91.5% 81.1% 85.2% 74.1% 80.2%

+ IIC [102] 85.2% 90.3% 78.2% 84.8% 72.5% 80.5%
+ SeLa [8] 86.2% 88.6% 79.5% 82.7% 69.9% 79.1%

+ MIADM [101] 84.9% 86.1% 77.9% 80.1% 69.6% 77.5%

+ w/ HRCE 88.7% 92.2% 82.6% 85.8% 75.6% 81.9%
+ w/ HCCE 88.9% 92.3% 82.9% 86.2% 75.7% 82.4%

Table 3.8: Quantitative results for semi-supervised classification on STL10 and CIFAR10 using
ResNet18. The numbers 0.1, 0.05 and 0.01 correspond to different ratio of labels used for
supervision. “Only seeds” means we only use standard cross-entropy loss on seeds for training.

81

Chapter 4

Potts relaxations and weakly-supervised
semantic segmentation

This Chapter studies unsupervised losses in the context of weakly-supervised semantic segmen-
tation (WSSS). It combines entropy-based margin-maximizing clustering losses, decisiveness
discussed in the Chapter 3, with segmentation-specific unsupervised loss, the Potts model. It is
one of the simplest pairwise losses, which are common in semi-supervised learning [37, 240]
and could be seen as a pixel-based contrastive loss. In the context of self-labeling with soft
pseudo-labels and collision cross-entropy, see Chapter 2, we systematically study second-order
relaxations of the Potts model. We discuss the numerical properties of such relaxations and
provide an empirical comparison. We also develop an efficient general self-labeling algorithm.

4.1 Introduction

Full supervision for semantic segmentation requires thousands of training images with complete
pixel-accurate ground truth masks. Their high costs explain the interest in weakly-supervised
approaches based on image-level class tags [112, 7], pixel-level scribbles [130, 206, 205], or
boxes [120]. This chapter is focused on weak supervision with scribbles, which we also call seeds
or partial masks. While only slightly more expensive than image-level class tags, scribbles on
less than 3% of pixels were previously shown to achieve accuracy approaching full supervision
without any modifications of the segmentation models. In contrast, tag supervision typically
requires highly specialized systems and complex multi-stage training procedures, which are hard
to reproduce. Our interest in the scribble-based approach is motivated by its practical simplicity

82

and mathematical clarity. The corresponding methodologies are focused on the design of unsuper-
vised or self-supervised loss functions and stronger optimization algorithms. The corresponding
solutions are often general and can be used in different weakly-supervised applications.

4.1.1 Scribble-supervised segmentation

Assume that a set of image pixels is denoted by Ω and a subset of pixels with ground truth labels
is S ⊂ Ω, which we call seeds or scribbles as subset S is typically marked by mouse-controlled
UI for image annotations, e.g. see seeds over an image in Figure4.3(a). The ground truth label at
any given pixel i ∈ S is an integer

ȳi ∈ {1, . . . , K} (4.1)

where K is the number of classes including the background. Without much ambiguity, it is
convenient to use the same notation ȳi for the equivalent one-hot distribution

ȳi ≡ (ȳ1i , . . . , ȳ
K
i) ∈ ∆K

0,1 for ȳki := [k = ȳi] ∈ {0, 1} (4.2)

where [·] is the True operator for the condition inside the brackets. Set ∆K
0,1 represents K possible

one-hot distributions, which are vertices of the K-class probability simplex

∆K := {p = (p1, . . . , pK) | pk ≥ 0,
K∑
k=1

pk = 1}

representing all K-categorical distributions. The context of specific expressions should make it
obvious if ȳi is a class index (4.1) or the corresponding one-hot distribution (4.2).

Loss functions for weakly supervised segmentation with scribbles typically use negative
log-likelihoods (NLL) over scribbles i ∈ S ⊂ Ω with ground truth labels ȳi

−
∑
i∈S

lnσȳi
i (4.3)

where σi = (σ1
i , . . . , σ

K
i) ∈ ∆K is the model prediction at pixel i. This loss is a standard in

full supervision where the only difference is that S = Ω and usually, no other losses are needed
for training. However, in a weakly supervised setting the majority of pixels are unlabeled, and
unsupervised losses are needed for i ̸∈ S.

The most common unsupervised loss in image segmentation is the Potts model and its
relaxations. It is a pairwise loss defined on pairs of neighboring pixels {i, j} ∈ N for a given

83

neighborhood system N ⊂ Ω × Ω, typically corresponding to the nearest-neighbor grid (NN)
[26, 78], or other sparse (SN) [219] and dense neighborhoods (DN) [115]. The original Potts
model is defined for discrete segmentation variables, e.g. as in∑

{i,j}∈N

P (σi, σj) where P (σi, σj) = [σi ̸= σj]

assuming integer-valued one-hot predictions σi ∈ ∆K
0,1. This regularization loss encourages

smoothness between the pixels. Its popular self-supervised variant is

P (σi, σj) = wi,j · [σi ̸= σj]

where pairwise affinities wij are based on local intensity edges [26, 78, 115]. Of course, in the
context of network training, one should use relaxations of P applicable to (soft) predictions
σi ∈ ∆K . Many types of its relaxation [175, 230] were studied in segmentation, e.g. quadratic
[78], bi-linear [206], total variation [170, 32], and others [51].

Another unsupervised loss highly relevant for training segmentation networks is the entropy
of predictions, which is also known as decisiveness [29, 80]∑

i

H(σi)

where H is the Shannon’s entropy function. This loss can improve generalization and the quality
of representation by moving (deep) features away from the decision boundaries. Widely known in
the context of unsupervised or semi-supervised classification, this loss also matters in weakly-
supervised segmentation where it is used explicitly or implicitly1.

Other unsupervised losses (e.g. contrastive), clustering criteria (e.g. K-means), or specialized
architectures can be found in weakly-supervised segmentation [220, 160, 106, 39]. However, a
lot can be achieved simply by combining the basic losses discussed above

Lws(σ) := −
∑
i∈S

lnσȳi
i + η

∑
i ̸∈S

H(σi) + λ
∑
ij∈N

P (σi, σj) (4.4)

which can be optimized directly by gradient descent [206, 219] or using self-labeling techniques
[130, 142, 141] incorporating optimization of auxiliary pseudo-labels as sub-problems.

1Interestingly, a unary decisiveness-like term is the difference between convex quadratic and tight, but non-convex,
bi-linear relaxations [175, 141] of the discrete pairwise Potts model.

84

4.1.2 Self-labeling and hard pseudo-labels

One argument motivating self-labeling approaches to weakly-supervised segmentation comes
from well-known limitations of gradient descent when optimizing the Potts relaxatons, e.g. [142].
But even when using convex Potts relaxations [78, 170, 32], they are combined with the concave
entropy term in (4.4) making their optimization challenging.

Typical self-labeling methods, including one of the first works on scribble-based semantic
segmentation [130], introduce a sub-problem focused on the estimation of pseudo-labels over
unlabeled points, separately from the network training by such labels. Pseudo-labeling is typically
done by optimization algorithms or heuristics balancing unsupervised or self-supervised criteria,
e.g. the Potts, and proximity to current predictions. Then, network fine-tuning from pseudo-labels
and pseudo-labeling steps are iterated.

We denote pseudo-labels yi slightly differently from the ground truth labels ȳi by omitting
the bar. It is important to distinguish them since the ground truth labels ȳi for i ∈ S are given,
while the pseudo-labels yi for i ∈ Ω\S are estimated. The majority of existing self-labeling
methods [130, 3, 142, 2, 125, 141, 221] estimate hard pseudo-labels, which could be equivalently
represented either by class indices

yi ∈ {1, . . . , K} (4.5)

or by the corresponding one-hot categorical distributions

yi ≡ (y1i , . . . , y
K
i) ∈ ∆K

0,1 for yki := [k = yi] ∈ {0, 1} (4.6)

analogously with the hard ground truth labels in (4.1) and (4.2). In part, hard pseudo-labels are
motivated by the network training where the default is NLL loss (4.3) assuming discrete labels.
Besides, there are powerful discrete solvers for the Potts model [26, 170, 32]. We discuss the
potential advantages of soft pseudo-labels in the next Section 4.1.3.

Joint loss vs “proposal generation”: The majority of self-labeling approaches can be divided
into two groups. One group designs pseudo-labeling and the network training sup-problems that
are not formally related, e.g. [130, 129, 226]. While pseudo-labeling typically depends on the
current network predictions and the network fine-tuning uses such pseudo-labels, the lack of a
formal relation between these sub-problems implies that iterating such steps does not guarantee
any form of convergence. Such methods are often referred to as proposal generation heuristics.

Alternatively, the pseudo-labeling sub-problem and the network training sub-problem can
be formally derived from a weakly-supervised loss like (4.4), e.g. by ADM splitting [142] or as
high-order trust-region method [141]. Such methods often formulate a joint loss function w.r.t

85

network predictions and pseudo-labels and iteratively optimize it in a convergent manner that
is guaranteed to decrease the loss. We consider this group of self-labeling methods as better
motivated, more principled, and numerically safer.

4.1.3 Motivation and contributions

We observe that self-labeling with hard pseudo-labels yi in (4.5) and (4.6) is inherently limited
as such labels can not represent the uncertainty of class estimates at unlabeled pixels i ∈ Ω\S.
Instead, we focus on soft pseudo-labels

yi = (y1i , . . . , y
K
i) ∈ ∆K (4.7)

which are general categorical distributions p over K-classes. It is possible that the estimated
pseudo-label yi in (4.7) could be a one-hot distribution, which is a vertex of ∆K . In such a case,
one can treat yi as a class index (4.5), but we avoid this. However, the ground truth labels ȳi are
always hard and we use them either as indices (4.1) or one-hot distributions (4.2), as convenient.

Soft pseudo-labels can be found in prior work on weakly-supervised segmentation [129, 226]
using the “soft proposal generation”. In contrast, we formulate soft self-labeling as a principled
optimization methodology where network predictions and soft pseudo-labels are variables in
a joint loss, which guarantees convergence of the training procedure. Our pseudo-labels are
auxiliary variables for ADM-based [23] splitting of the loss (4.4) into two simpler optimization
sub-problems: one focused on the Potts model over unlabeled pixels, and the other on the network
training. While similar to [142], instead of hard, we use soft auxiliary variables for the Potts
sub-problem. Our work can be seen as a study of the relaxed Potts sub-problem in the context
of weakly-supervised semantic segmentation. The related prior work is focused on discrete
solvers fundamentally unable to represent class estimate uncertainty. Our contributions can be
summarized as follows:

• convergent soft self-labeling framework based on a simple joint self-labeling loss (2.6)

• systematic evaluation of Potts relaxations and (cross-) entropy terms in our loss (2.6)

• state-of-the-art in scribble-based semantic segmentation that does not require any modifica-
tions of semantic segmentation models and is easy to reproduce

• using the same segmentation model, our self-labeling loss with 3% scribbles may outperform
standard supervised cross-entropy loss with full ground truth masks.

86

bi-linear ∼ “graph cut” quadratic ∼ “random walker”
PBL(p, q) := 1− p⊤q PQ(p, q) := 1

2
∥p− q∥2

normalized quadratic

PNQ(p, q) := 1− p⊤q
∥p∥∥q∥ ≡ 1

2

∥∥∥ p
∥p∥ −

q
∥q∥

∥∥∥2
Table 4.1: Second-order Potts relaxations, see Figure4.1(a,b,c)

4.2 Second-order relaxations of the Potts model

We focus on second-order relaxations for two reasons. First, to manage the scope of this study.
Second, this includes several important baseline cases (see Table 4.1): quadratic, the simplest
convex relaxation popularized by the random walker algorithm [78], and bi-linear, which is non-
convex but tight [175] w.r.t. the original discrete Potts model. The latter implies that optimizing it
over relaxed variables will lead to a solution consistent with a discrete Potts solver, e.g. graph cut
[26]. On the contrary, the quadratic relaxation will produce a significantly different soft solution.
We investigate such soft solutions.

Figure 4.2 shows two examples illustrating local minima for (a) the bi-linear and (b) quadratic
relaxations of the Potts loss. In (a) two neighboring pixels attempt to jointly change the common
soft label from yi = yj = (1, 0, 0) to y′′i = y′′j = (0, 1, 0), which corresponds to a “move” where
the whole object is reclassified from A to B. This move does not violate smoothness within the
region represented by the Potts model. But, the soft intermediate state y′i = y′j = (1

2
, 1
2
, 0) will

prevent this move in bi-linear case

PBL(y
′
i, y

′
j) =

1

2
> 0 = PBL(yi, yj) = PBL(y

′′
i , y

′′
j)

while quadratic relaxation assigns zero loss for all states during this move. On the other hand, the
example in Figure 4.2(b) shows a move problematic for the quadratic relaxation. Two neighboring
pixels have labels yi = (1, 0, 0) and yj = (0, 0, 1) corresponding to the boundary of objects
A and C. The second object attempts to change from C to B. This move does not affect the
discontinuity between two pixels, but quadratic relaxation prefers that the second object is stuck
in the intermediate state y′j = (0, 1

2
, 1
2
)

PQ(yi, y
′
j) =

3

4
< 1 = PQ(yi, yj) = PQ(yi, y

′′
j)

while bi-linear relaxation PBL(yi, yj) = 1 remains constant as yj changes.

87

Ta
bl

e
4.

1

(a) bi-linear PBL (b) normalized quadratic PNQ (c) quadratic PQ

Ta
bl

e
4.

2
(+

lo
g)

(d) collision cr. entropy PCCE (e) collision divergence PCD (f) log-quadratic PLQ

Figure 4.1: Second-order Potts relaxations in Tables 4.1 and 4.2: interaction potentials P for pairs
of predictions (σi, σj) in (4.4) or pseudo-labels (yi, yj) in (2.6) are illustrated for K = 2 when each
prediction σi or label yi, i.e. distribution in ∆2, can be represented by a single scalar as (x, 1− x).
The contour maps are iso-levels of P ((xi, 1 − xi), (xj, 1 − xj)) over domain (xi, xj) ∈ [0, 1]2.
The 3D plots above illustrate the potentials P as functions over pairs of “logits” (li, lj) ∈ R2

where each scalar logit li defines binary distribution (xi, 1− xi) for xi =
1

1+e−2li
∈ [0, 1].

We propose a new relaxation, normalized quadratic in Table 4.1. Normalization leads to
equivalence between quadratic and bi-linear formulations combining their benefits. As easy to
check, normalized quadratic relaxation PNQ does not have local minima in both examples of Figure
4.2. Table 4.2 also proposes “logarithmic” versions of the relaxations in Table 4.1 composing
them with function − ln(1 − x). As illustrated by Figure 4.1, the logarithmic versions in (d-f)
addresses the “vanishing gradients” evident in (a-c).

collision cross entropy log-quadratic
PCCE(p, q) := − ln p⊤q PLQ(p, q) := − ln

(
1− ∥p−q∥2

2

)
collision divergence

PCD(p, q) := − ln p⊤q
∥p∥∥q∥ ≡ − ln

(
1− 1

2

∥∥∥ p
∥p∥ −

q
∥q∥

∥∥∥2)

Table 4.2: Log-based Potts relaxations, see Figure4.1(d,e,f)

88

(a) both pixels change (A→ B) (b) only pixel q changes (C→ B)

Figure 4.2: Examples of "moves" for neighboring pixels {i, j} ∈ N . Their (soft) pseudo-labels
yi and yj are illustrated on the probability simplex ∆K for K = 3. In (a) both pixels i and j are
inside a region/object changing its label from A to B. In (b) pixels i and j are on the boundary
between two regions/objects; one is fixed to class A and the other changes from class C to B.

4.3 Optimization algorithms

In this section, we will focus on the optimization of (2.6) in steps iterating optimization of y
and σ. The network parameters are optimized by standard stochastic gradient descent in all our
experiments. Pseudo-labels are also estimated online using a mini-batch. To solve y at given σ for
the loss below, it is a large-scale constrained convex problem.

η
∑
i ̸∈S

H(σi, yi) + λ
∑
ij∈N

P (yi, yj)

While there are existing general solvers to find global optima, such as projected gradient descent,
it is often too slow for practical usage. Instead, we reformulate our problem to avoid the simplex
constraints so that we can use standard gradient descent in PyTorch library accelerated by GPU.
Specifically, instead of directly optimizing y, we optimize a set of new variables {li ∈ RK , i ∈ Ω}
where yi is computed by softmax(li). Now, the simplex constraint on y will be automatically
satisfied. Note that the hard constraints on scribble regions still need to be considered because
the interaction with unlabeled regions through pairwise terms will influence the optimization
process. Inspired by [239], we can reset softmax(li) where i ∈ S back to the ground truth at the
beginning of each step of the gradient descent.

89

However, the original convex problem now becomes non-convex due to the Softmax operation.
Thus, initialization is important to help find better local minima or even the global optima.
Empirically, we observed that the network output logit can be a fairly good initialization. The
quantitative comparison uses a special quadratic formulation where closed-form solution and
efficient solver [1, 78] exist. We compute the standard soft Jaccard index for the pseudo-labels
between the solutions given by our solver and the global optima. The soft Jaccard index is 99.2%
on average over 100 images. Furthermore, our experimental results for all other formulations in
Figure 4.3, 4.5, and the experimental section confirm the effectiveness of our optimization solver.
In all experiments, the number of gradient descent steps for solving y is 200 and the corresponding
learning rate is 0.075. To test the robustness of the number of steps here, we decreased 200 to 100
and the mIoU on the validation set just dropped from 71.05 by 0.72. This indicates that we can
significantly accelerate the training without much sacrifice of accuracy.

4.4 Experimental results

We conducted comprehensive experiments to demonstrate the choice of each element (cross-
entropy, pairwise term, and neighborhood) in the loss and compare our method to the state-of-the-
art. In Section 4.4.2, quantitative results are shown to compare different Potts relaxations. The
qualitative examples are shown in Figure 4.3. Then we compare several cross-entropy terms in
Section 4.4.3. Besides, we also compare our soft self-labeling approach on the nearest and dense
neighborhood systems in Section 4.4.4. We summarized the results in Section 4.4.5. In the last
section, we show that our method achieves the SOTA and even can outperform the fully-supervised
method.

4.4.1 Experimental settings

Dataset and evaluation We mainly use the standard PASCAL VOC 2012 dataset [65] and
scribble-based annotations for supervision [130]. The dataset contains 21 classes including
background. Following the common practice [40, 205, 206], we use the augmented version
which has 10,582 training images and 1449 images for validation. We employ the standard
mean Intersection-over-Union (mIoU) on validation set as the evaluation metric. We also test
our method on two additional datasets in Section 4.4.6. One is Cityscapes [49] which is built for
urban scenes and consists of 2975 and 500 fine-labeled images for training and validation. There
are 19 out of 30 annotated classes for semantic segmentation. The other one is ADE20k [235]
which has 150 fine-grained classes. There are 20210 and 2000, images for training and validation.
Instead of scribble-based supervision, we followed [129] to use the block-wise annotation as a
form of weak supervision.

90

Image & scribble

GT mask predictions σ

entropy H(σ)

input: image and
network predictions σ

w
it
h

o
u

t
lo

g
w

it
h

 lo
g

quadraticbilinear n-quadratic

p
se

u
d

o
-l

ab
el

 y
p

se
u

d
o

-l
ab

el
 y

en
tr

o
p

y
H

(y
)

en
tr

o
p

y
H

(y
)

Potts relaxations and optimal pseudo-labels y

(a) Image, GT & input

(b) Pseudo-labels using different Potts relaxation

Figure 4.3: Illustration of the difference among Potts relaxations. The visualization of soft pseudo-
labels uses the convex combination of RGB colors for each class weighted by pseudo-label itself.

Implementation details We adpoted DeepLabv3+ [42] framework with two backbones, ResNet101
[90] and MobileNetV2 [183]. We use ResNet101 in Section 4.4.6, and use MobileNetV2 in other
sections for efficiency. All backbone networks (ResNet-101 and MobileNetV2) are pre-trained
on Imagenet [58]. Unless stated explicitly, we use batch 12 as the default across all the experi-
ments. Following [205], we adopt two-stage training, unless otherwise stated, where only the
cross-entropy loss on scribbles is used in the first stage. The optimizer for network parameters is
SGD. The learning rate is scheduled by a polynomial decay with a power of 0.9. Initial learning
is set to 0.007 in the first stage and 0.0007 in the second phase. 60 epochs are used to train the
model with different losses where hyperparameters are tuned separately for them. For our best
result, we use η = 0.3, λ = 6, HCCE and PCD.

91

scribble length ratio
0 0.3 0.5 0.8 1.0

PBL 56.42 61.74 63.81 65.73 67.24
PNQ 59.01 65.53 67.80 70.63 71.12
PQ 58.92 65.34 67.81 70.43 71.05
PCCE 56.40 61.82 63.81 65.81 67.41
PCD 59.04 65.52 67.84 70.93 71.22
PLQ 59.03 65.44 67.81 70.80 71.21

Table 4.3: Comparison of Potts relaxations with self-labeling. mIoUs on validation set are shown
here.

4.4.2 Comparison of Potts relaxations

To compare different Potts relaxations under the self-labeling framework, we need to choose
one cross-entropy term. Motivated by the properties and empirical results shown in Section
4.4.3, we use HCCE. The neighborhood system is the nearest neighbors. The color intensity
bandwidth in the Potts model is set to 9 across all the experiments on Pascal VOC 2012 and 3 for
Cityscapes and ADE20k datasets. To determine the bandwidths, we first randomly picked 100
images from the training set. Then we calculated the soft pseudo-labels with HCCE and PQ based
on pretrained network outputs. Then we calculated the soft mIoU and used such metric to select
the bandwidths. The quantitative results are in Table 4.3. First, One can see that the pairwise
terms with logarithm are better than those without the logarithm because the logarithm may help
with the gradient vanishing problem in softmax operation. Moreover, the logarithm does not like
abrupt change across the boundaries, so the transition across the boundaries is smoother (see
Figure 4.3). Note that it is reasonable to have higher uncertainty around the boundaries. Second,
the results prefer the normalized version, which confirms the points made in Figure 4.2. Third,
the simplest quadratic formulation PQ can be a fairly good starting point to obtain decent results.
Additionally, we specifically test HQ + PQ due to the existing closed-form solution [1, 78]. Since
the pseudo-labels generated from this formula tend to be overly soft, we explicitly add entropy
terms during the training of network parameters and the mIoU goes up to 68.97% from 67.8%.

92

0.0 0.2 0.4 0.6 0.8 1.0
ratio of scribble length

56

58

60

62

64

66

68

70

72

m
Io

U
on

 v
al

id
at

io
n

se
t

HCE

HRCE

HCCE

Figure 4.4: Comparison of cross-entropy terms.

4.4.3 Comparison of cross-entropy terms

In this section, we compare different cross-entropy terms while fixing the pairwise term to PQ due
to its simplicity and using the nearest neighborhood system. The results are shown in Figure 4.4.
One can see that HCCE performs the best consistently across different supervision levels, i.e.
scribble lengths. Both HCCE and HRCE are consistently better than standard HCE with a noticeable
margin because they are more robust, as explained in Chapter 2, to the uncertainty in soft pseudo-
labels when optimizing network parameters. We also test the performance of using HCCE + PQ

with hard pseudo-labels obtained via the argmax operation on the soft ones. The mIoU on the
validation set is 69.8% under the full scribble-length supervision.

4.4.4 Comparison of neighborhood systems

Until now, we only used the four nearest neighbors for the pairwise term. In this section, we also
use the dense neighborhood and compare the results under the self-labeling framework.

93

（a) Image & scribble (b) Predictions
(c) Pseudo-labels

for NN
(d) Pseudo-labels

for DN (25)
(e) Pseudo-labels

for DN (100)

Figure 4.5: Pseudo-labels generated from given network predictions using different neighbor-
hoods.

Firstly, to optimize the pseudo-labels for the dense neighborhood, we still use the gradient
descent technique as detailed in Section 4.3. The gradient computation employs the bilateral
filtering technique following [205]. For the pairwise term, we use PQ. The cross-entropy term
is HCCE. Note that the bilateral filtering technique only supports quadratic pairwise terms, i.e.
PBL and PQ. Since PBL leads to hard solutions, PQ is the only practical choice for soft self-
labeling. We obtained 71.1% mIoU on nearest neighbors while only getting 67.9% on dense
neighborhoods (bandwidth is 100). Some qualitative results are shown in Figure 4.5. Clearly from
this figure one can see that a larger neighborhood size induces lower-quality pseudo-labels. A
possible explanation is that the Potts model gets closer to cardinality/volume potentials when the
neighborhood size becomes larger [218]. The nearest neighborhood is better for edge alignment
and thus produces cleaner results.

94

N
NN DN

GD 67.0 69.5∗ [206]

SL
hard 69.6∗ [141] 63.1 [130]
soft 71.1 67.9

Table 4.4: Summary of comparisons. “∗” stands for the reproduced results from their code
repository.

4.4.5 Soft self-labeling vs. hard self-labeling vs. gradient descent

In this section, we give a summary in Table 4.4 as to what is the best framework for the WSSS
based on losses regularized by the Potts model. Firstly, to directly optimize the network parameters
via stochastic gradient descent on the regularized loss, one needs a larger neighborhood size.
One possible explanation is that a larger neighborhood size induces a smoother Potts model
and it helps the gradient descent [142]. However, larger neighborhood size is not preferred in
the self-labeling framework. If we use Potts model on nearest neighborhoods, the self-labeling
optimization should be applied and one should use soft pseudo-labels instead of hard ones. Note
that with proper optimization the advantage of the Potts model on small neighborhood size can
show up. In Figure 4.6, we also compare these approaches across different scribble lengths.

4.4.6 Comparison to SOTA

In this section, we use a different network architecture, ResNet101, to fairly compare our method
with the current state-of-the-art. We only compare the results before applying any post-processing
steps. The results are shown in Table 4.5. Note that our results can outperform the fully-supervised
method when using 12 as the batch size. We also observe that a larger batch size usually improves
the results quite a lot. Our results with 12 batch size can outperform several SOTA methods which
use 16 batch size. We also conducted experiments to compare our method to the SOTA on two
additional datasets as shown in Table 4.6.

95

0.0 0.2 0.4 0.6 0.8 1.0
ratio of scribble length

56

58

60

62

64

66

68

70

72

m
Io

U
on

 v
al

id
at

io
n

se
t

Full
GD-dense-PBL

GD-grid-PBL

SL-grid-hard-PBL

SL-grid-soft-HCCE + PQ

SL-grid-soft-HCCE + PCD

SL-dense-hard-HCCE + PQ

SL-dense-soft-HCCE + PQ

Figure 4.6: Comparison of different methods using Potts relaxations. The architecture is
DeeplabV3+ with the backbone MobileNetV2.

96

Method Architecture Batchsize
Optimization

N mIoUGD SL
hard soft

Full supervision
Deeplab∗ [42] V3+ 16 ✓ - - - 78.9
Deeplab∗ [42] V3+ 12 ✓ - - - 76.6
Deeplab [41] V2 12 ✓ - - - 75.6

Scribble supervision
Architectural modification

BPG [220] V2 10 ✓ - - - 73.2
URSS [160] V2 16 ✓ - - - 74.6
SPML [106] V2 16 ✓ - - - 74.2

PSI [226] V3+ - - - ✓ - 74.9
SEMINAR [39] V3+ 12 ✓ - - - 76.2

TEL [129] V3+ 16 - - ✓ - 77.1
Loss modification - Potts relaxations

ScribbleSup [130] VGG16(V2) 8 - ✓ - DN 63.1
DenseCRF loss∗ [206] V3+ 12 ✓ - - DN 75.8
GridCRF loss∗ [141] V3+ 12 - ✓ - NN 75.6

NonlocalCRF loss∗ [219] V3+ 12 ✓ - - SN 75.7
HCCE +PQ V3+ 12 - - ✓ NN 77.5
HCCE +PCD V3+ 12 - - ✓ NN 77.7

HCCE +PCD (no pretrain) V3+ 12 - - ✓ NN 76.7
HCCE +PCD V3+ 16 - - ✓ NN 78.1

HCCE +PCD (no pretrain) V3+ 16 - - ✓ NN 77.6

Table 4.5: Comparison to SOTA methods (without CRF postprocessing) on scribble-supervised
segmentation. The numbers are mIoU on the validation dataset of Pascal VOC 2012 and use
full-length scribble. The backbone is ResNet101 unless stated otherwise. V2: deeplabV2. V3+:
deeplabV3+. N : neighborhood. “∗”: reproduced results. GD: gradient descent. SL: self-labeling.
“no pretrain” means the segmentation network is not pretrained using cross-entropy on scribbles.

97

Method Architecture Cityscapes ADE20k
Full supervision

Deeplab [42] V3+ 80.2 44.6
Block-scribble supervision

DenseCRF loss [206] V3+ 69.3 37.4
GridCRF loss∗ [141] V3+ 69.5 37.7

TEL [129] V3+ 71.5 39.2
HCCE +PCD V3+ 72.4 39.7

Table 4.6: Comparison to SOTA methods (without CRF postprocessing) on segmentation with
block-scribble supervision. The numbers are mIoU on the validation dataset of cityscapes [49] and
ADE20k [235] and use 50% of full annotations for supervision following [129]. The backbone is
ResNet101. “∗”: reproduced results. All methods are trained in a single-stage fashion.

98

Chapter 5

Confluence prior for unsupervised vessel
tree estimation

5.1 Introduction

This chapter is focused on unsupervised vessel tree estimation in large volumes containing
numerous near-capillary vessels and thousands of bifurcations, see Figure 5.1, 5.13. Around
80% of the vessels in such data have sub-voxel diameter resulting in partial volume effects such
as contrast loss and gaps. Besides the topological accuracy of trees reconstructed from such
challenging imagery, we are particularly interested in the accurate estimation of bifurcations due
to their importance in biomedical and pharmaceutical research.

5.1.1 Unsupervised vasculature estimation methods

Unsupervised vessel tree estimation methods for complex high-resolution volumetric vasculature
data combine low-level vessel filtering and algorithms for computing global tree structures based
on constraints from anatomy, geometry, physics, etc. Below we review the most relevant standard
methodologies.

Low-level vessel estimation: Anisotropy of tubular structures is exploited by standard vessel
filtering techniques, e.g. Frangi et al. [70]. Combined with non-maximum suppression, local
tubularity filters provide estimates for vessel centerline points and tangents, see Figure 5.2(a).
Technically, elongated structures can be detected using intensity Hessian spectrum [70], optimally
oriented flux models [122, 211], steerable filters [71], path operators [146] or other anisotropic

99

(a) synthetic raw data with two trees (blue & green) (b) geodesic graph MST [76, 225, 211,
150]

(c) confluent tree reconstruction

Figure 5.1: Synthetic example: (a) raw 3D data with blue & green reconstructed trees, see also
zoom-ins (b,c). The blue tree (a,b) is an MST on a geodesic tubular graph. The green tree (a,c), is
a minimum arborescence on a directed confluent tubular graph, see section 5.3.

models. Dense local vessel detections can be denoised using curvature regularization [161, 143].
Prior knowledge about divergence or convergence of the vessel tree (arteries vs veins) can also be
exploited to estimate an oriented flow pattern [232], see Figure 5.2(b).

Thinning: One standard approach to vessel topology estimation is via medial axis [191]. This
assumes known vessel segmentation (volumetric mask) [145], which can be computed only for
relatively thick vessels. Well-formulated segmentation of thin structures requires Gaussian- or
min-curvature surface regularization that has no known practical algorithms. Segmentation is
particularly unrealistic for sub-voxel vessels.

Geodesics and shortest paths: Geodesics [60, 38] and shortest paths [67] are often used for
AB-interactive reconstruction of vessels between two specified points. A vessel is represented by
the shortest path with respect to some anisotropic continuous (Riemannian) or discrete (graph)
metric based on a local tubularity measure. Interestingly, the minimum path in an “elevated" search
space combining spatial locations and radii can simultaneously estimate the vessel’s centerline and
diameter, implicitly representing vessel segmentation [128, 15]. Unsupervised methods widely
use geodesics as their building blocks.

Spanning trees: The standard graph concept of a minimum spanning tree (MST) is well suited
for unsupervised reconstruction of large trees with unknown complex topology [76, 225, 211, 150].

100

(a) Frangi filtering [70] (b) oriented flow pattern [232]

Figure 5.2: Low-level vessel estimation: True centerline is black. Blue voxels in (a) are local
maxima of some tubularity measure [70, 122, 211, 71] in the direction orthogonal to the estimated
centerline tangents (red). Regularization [161, 143] can estimate subpixel centerline points (b)
and oriented tangents [232] (red flow field).

101

image from [213] k = 2 k = 3 k = 6
(a) sparse graph (b) semi-dense geodesic tubular graphs with different size NN systems

Figure 5.3: Examples of standard geodesic tubular graphs for vascular image data: A graph
from [213] in (a) uses (purple) nodes connected by undirected edges corresponding to shortest
paths (geodesics) w.r.t. tubularity-based Riemanninian metric. Alternatively, (b) shows graphs
where (blue) nodes correspond to densely-sampled voxels along the vessels [232]. Here the edges
correspond to nearest neighbors (KNN) weighted by length of some spline interpolation. In both
cases (a) and (b), near- or sub-voxel vessels have sparsely sampled bifurcations.

MST is closely related to the shortest paths and geodesics since its optimality is defined with
respect to its length. Like shortest paths, globally optimal MST can be computed very efficiently.
In contrast to the shortest paths, MST can reconstruct arbitrarily complex trees without user
interaction.

The quality of MST vessel tree reconstruction depends on the underlying graph construction,
see Figure 1.12 and 5.6(a). Graphs designed for reconstructing thin tubular structures as their
spanning tree (or sub-tree) are often called tubular graphs. Typically, the nodes are “anchor”
points generated by low-level vessel estimators, e.g. see Figure 5.2. Such anchors represent sparse
[212] or semi-dense [143] samples from the estimated tree structure that may be corrupted by
noise and outliers. Pairwise edges on a tubular graph typically represent distances or geodesics
between the nodes, as in AB-interactive methods discussed earlier. Such graphs are called
geodesic tubular graphs, see Figure 5.3.

There are numerous variants of tubular graph constructions designed to represent various thin
structures as MST [76, 225, 211, 150] or shortest path trees [165]. There are also interesting
and useful extensions of MST addressing tubular graph outliers, e.g. k-MST [213] and integer
programming technique in [212]. Such approaches are more powerful as they seek minimum sub-
trees that can automatically exclude outliers. However, the corresponding optimization problems
are NP-hard and require approximations. Such methods are expensive compared to the low-order

102

polynomial complexity of MST. They are not practical for dense reconstruction problems in
high-resolution vasculature volumes.

5.1.2 Motivation and contributions

We are interested in unsupervised reconstruction of large complex trees from vasculature volumes
resolving near-capillary details. Common geodesic approaches can not represent asymmetric
smoothness at bifurcations, which have forms sensitive to flow orientation. Hence, standard
methods produce vessel tree reconstructions with significant bifurcation artifacts, see Figure 5.1(b),
1.12(b) and 5.6(a). We define a general geometric property for oriented vessels, confluence, which
is missing in prior art, and propose a practical graph-based reconstruction method enforcing
it. The reconstructed confluent vessel trees have significantly better bifurcation accuracy. Our
contributions are detailed below.

•We introduce confluence as a geometric property for overlapping oriented smooth curves in
R3, e.g. representing blood-flow trajectories1. It is like “co-differentiability” or “co-continuity”.
We define confluent vessel trees formed by overlapping oriented curves.

• We extend confluence to discrete paths and trees on directed tubular graphs where di-
rected arcs/edges represent continuous oriented arcs/curves in R3. We propose a simple flow-
extrapolating circular arc construction that guarantees ε-confluence, which approximates conflu-
ence. Our confluence constraint implies directed tubular graph with asymmetric edge weights,
which is in contrast to standard undirected geodesic tubular graphs [104, 76, 225, 211, 150, 213,
143, 212, 232].

•We present an efficient practical algorithm for reconstructing confluent vessel trees. It uses
minimum arborescence [63, 207] on our directed confluent tubular graph construction.

• Our experiments on synthetic and real data confirm that confluent tree reconstruction signifi-
cantly improves bifurcation accuracy. We demonstrate qualitative and quantitative improvements
via standard and new accuracy measures 2 evaluating tree structure, bifurcation localization, and
bifurcation angles.

Our concept of confluent trees is general and our specific algorithm can be modified or
extended in many ways, some of which are discussed in section 5.3. To explicitly address outliers,
minimum arborescence on our confluent tubular graph can be replaced by optimal sub-tree

1Confluence is known in other contexts, e.g. rail tracks [99].
2For our dataset and implementation of evaluation metrics discussed in this chapter see

https://vision.cs.uwaterloo.ca/data.

103

https://vision.cs.uwaterloo.ca/data/

p

α

β

α

β

(a) confluence at point p (b) confluent curves
Figure 5.4: Confluence for oriented curves α and β.

algorithms [213, 212]3 or explicit outlier detection [143], but these approximation algorithms
address NP-hard problems and maybe too expensive for large semi-dense tubular graphs we study
in this work. While outlier detection is relevant, this work is not focused on this problem.

5.2 Confluence of Oriented Curves

This section introduces geometrically-motivated concept of smoothness for objects containing
multiple oriented curves, such as vessel trees. We define confluence as follows.

DEFINITION 5 (confluence at a point). Two differentiable oriented curves α(t) and β(τ) are
called confluent at a shared point p if for some k > 0

α′(tp) = k β′(τp) where

tp and τp are s.t. α(tp) = β(τp) = p, see Figure 5.4(a).

We will call two oriented curves confluent if they are confluent at all points they share, see
Figure 5.4(b).

Our concept of confluence is closely related to the geometric G1-continuity [59, 69]. A curve α
is called G1-continuous if at any point on the curve the slope orientation is continuous. Incidentally,
the differentiability classes Ck are too restrictive as a G1-continuous curve can easily be not C1

due to the curve parameterization. Note that G1-continuity is only defined for a single curve while
our confluence extends it for a pair of curves and can be seen as “co-G1-continuity”.

3IP solver in [212] uses minimum arborescence as a subroutine.

104

(a) ∠(c̆ 1pq, c̆
0
q∗) ≤ ε (b) ∠(c̆ 1qp, c̆

0
p∗) ≤ ε (c) ∠(c̆ 1qp, c̆

0
p∗) ≤ ε

short confluent arc c̆pq long confluent arc c̆qp non-confluent arc c̆qp

Figure 5.5: Examples of directed flow-extrapolating circular arcs: (a) flow c̆ 1pq extrapolated by
confluent arc c̆pq from p to q is consistent with the local flow estimate l̄q = c̆ 0q∗ at point q as the
angle between two vectors is small. Flow extrapolation from q to p in (b) requires another circular
arc c̆qp that belongs to a different circle defined by tangent l̄q. Two arcs c̆pq and c̆qp are not even
co-planar if tangents l̄p and l̄q are not. The extrapolated flow c̆ 1qp is also consistent with the local
flow estimate l̄p = c̆ 0p∗ at p, so that the reverse arc c̆qp in (b) is confluent as well. In (c) the local
flow estimate l̄p at p is flipped and arc c̆qp becomes non-confluent since the angle between c̆ 1qp and
l̄p = c̆ 0p∗ is large. Note that arc c̆pq in (c) differs from (a) but it must be non-confluent as well, see
Theorem 6.

Our concept of confluence allows defining arbitrarily complex (continuous) confluent vessel
trees. Such trees are formed by multiple oriented curves representing motion trajectories of blood
particles from the common root to an arbitrary number of leaves where each pair of curves must
be confluent. Figure 5.4(b) shows a simple example of a tree formed by two confluent curves with
one bifurcation, which can be formally defined.

5.3 Confluent Tubular Graphs

Our discrete approach to reconstructing confluent vessel trees is based on efficient algorithms for
directed graphs. Our “tubular” graph nodes correspond to a finite set of detected vessel points.
We use discrete representation of oriented vessels as paths along directed edges or directed arcs
(p, q) connecting the graph nodes. Each arc (p, q) on our tubular graph represents an oriented
continuous “flow-extrapolating” curve in R3 from p to q. Such curves could be obtained from
physical models based on fluid dynamics. For simplicity, this chapter is focused on oriented
circular arcs, see section 5.3.1, motivated as the lowest-order polynomial splines capable of

105

enforcing G1-continuity and confluence. In general, our confluent tubular graph construction
can use higher-order flow-extrapolation models, e.g. cubic Hermite splines that are common in
computer graphics and geometric modeling of motion trajectories.

By using circular arcs as flow-extrapolating curves, we introduce some ambiguity with “arcs”
as the standard term for graph edges. However, this should not create confusion since there is a
one-to-one relation between directed arcs on our tubular graph and the corresponding (circular)
oriented arcs in R3. Note that both interpretations are oriented/directed. In all technically formal
sentences, continuous or discrete interpretation of the “arc” is clear from the context. In more
informal settings, both interpretations are often equally valid.

The rest of this Section is as follows. Oriented flow-extrapolating circular arcs between
tubular graph nodes are introduced in section 5.3.1 where ε-confluence constraint is defined in the
context of such arcs. We also define directed arc weights to represent the confluence constraint
and the local costs of sending flow along these arcs. Geometric properties of confluent circular
arcs are discussed in section 5.3.2. The algorithm estimating confluent vessel trees via minimum
arborescence on our directed tubular graph is presented in section 5.3.3.

5.3.1 Confluent flow-extrapolating arcs

Formally, tubular graph G = ⟨V,A⟩ is based on a set of nodes/points V embedded in R3

representing semi-densely sampled centerlines of a tubular structure. A ⊆ V 2 is a set of directed
arcs. For our tubular graph construction, each directed arc (p, q) ∈ A represents some continuous
oriented curve in R3 modelling flow-extrapolation from point p to point q, see Figure 5.5. As
discussed earlier, this chapter is focused on oriented circular arcs as the simplest geometric
model that can represent confluent vessels, even though higher-order geometric splines or physics-
motivated curves are possible. Our specific construction uses flow-extrapolating circular arcs
based on a set of unit vectors L̄ = {l̄p}p∈V ⊂ S2 representing flow direction estimates at the nodes,
see Figure 5.2(b). Oriented circular arc c̆pq is fit into starting point p, its flow orientation estimate
l̄p, and the ending point q, see Figure 5.5. Formally, curve c̆pq corresponds to a differentiable
function

c̆pq : [0, 1] → R3

traversing points on a circular arc in the plane spanned by p, q, and vector l̄p so that

c̆pq(0) = p , c̆pq(1) = q ,
c̆′pq(0)

∥c̆′pq(0)∥
= l̄p (5.1)

where derivative c̆′pq(s) gives an oriented tangent.

106

For shortness, we define (oriented) unit tangents at the beginning and the end points of any
flow-extrapolating arc c̆ as

c̆ 0 :=
c̆′(0)

∥c̆′(0)∥
, c̆ 1 :=

c̆′(1)

∥c̆′(1)∥
. (5.2)

The definition of arc c̆pq in (5.1) implies c̆ 0pq ≡ l̄p so that tangent c̆ 0pq is the same for any arc
starting at given point p regardless of its end point q. Thus,

c̆ 0p∗ ≡ l̄p (5.3)

where the star ∗ represents an arbitrary end point. On the other hand, tangent c̆ 1pq at the end point
q depends on the arc’s starting point p. That is, generally,

∠(c̆ 1pq, c̆
1
rq) ̸≡ 0 if p ̸= r.

ε-Confluence Constraint: To constrain our tubular graph so that all feasible vessel trees are
confluent, it suffices to enforce confluence of the arcs at the nodes where they meet. However, our
simple flow-extrapolating circular arcs (5.1) can not be used to enforce the exact confluence. We
use some threshold ε to introduce a relaxed version of confluence in Definition 5 for an arbitrary
pair of adjacent arcs c̆pq, c̆qr connecting points p, q and r

∠(c̆ 1pq, c̆
0
qr) ≤ ε.

In general, this is a high-order (triple clique) constraint. But, property (5.3) of our flow-
extrapolating arc construction shows that the end point of the second arc c̆qr is irrelevant. Indeed,

∠(c̆ 1pq, c̆
0
qr) = ∠(c̆ 1pq, l̄q) ≡ ∠(c̆ 1pq, c̆

0
q∗)

implying that our specific tubular graph construction allows to express confluence as a pairwise
constraint

∠(c̆ 1pq, c̆
0
q∗) ≤ ε (5.4)

for any pair of points p, q. In essence, this becomes a constraint for our flow extrapolating arcs c̆pq
that can be called confluent if ∠(c̆ 1pq, l̄q) ≤ ε, see Figure 5.5.

To enforce ε-confluence constraint, our tubular graph can simply drop all non-confluent arcs.
Thus, any directed vessel tree on our graph will be confluent by construction. This chapter explores
the simplest approach to reconstructing confluent vessel trees as the minimum arborescence on our

107

vessel tree reconstruction using vessel tree reconstructions using

undirected Geodesic Tubular Graph (standard) directed Confluent Tubular Graph (our)

geodesic arcs GridMST confluent arcs MArb

(a) MST (blue) for Geodesic Tubular Graph (yellow) [104, 213, 232] (b) Min Arborescence (green) for Confluent Tubular Graph (yellow)

Figure 5.6: Typical tree reconstruction examples for standard geodesic (a) and our confluent (b)
tubular graphs. Arc weights are represented via thickness (yellow). The data is a (representative)
crop with near-capillary vessels at a periphery of large volumes, e.g. Figure 5.1, 5.13. Sub-voxel
vessels have bifurcations sparsely sampled by tubular graph nodes, as in Figure 5.3. MST (blue)
on geodesic graph “short-cuts" most bifurcations. Minimum arborescence (green) on a directed
tubular graph with confluent arcs (b), see section 5.3.1, reconstructs flow-consistent bifurcations.

directed tubular graph. In this case, instead of dropping non-confluent arcs, one can incorporate
ε-confluence constraint directly into the cost of the corresponding directed graph arcs

wpq :=

{
length(c̆pq) if ∠(c̆ 1pq, c̆

0
q∗) ≤ ε

∞ otherwise.
(5.5)

The reverse edge on our tubular graph has different weight wqp ̸= wpq because it corresponds to a
different flow extrapolating arc c̆qp that has a different length, see Figure 5.5(b). As an extension,
our approach also allows “elastic” arc weights by adding integral of arc’s curvature to its length in
(5.5). It is also possible to impose soft penalties for the discrepancy between the extrapolated flow
c̆ 1pq and flow estimate c̆ 0q∗ ≡ lq in (5.5) based on physical, physiological, or other principles.

Note that higher-order (non-circular) extrapolation arcs c̆pq can be constructed to fit the flow
orientation estimates at both ends exactly, implying an exactly confluent graph. However, some
non-trivial physiological constraints have to be imposed on the smoothness/curvature of such
(non-circular) confluent arcs which should result in very long curves in cases like Figure 5.5(c).
Thus, the confluence constraint will manifest itself similarly to the second line in (5.5).

108

5.3.2 Confluence and co-circularity

Specifically for oriented circular arcs, confluence implies several interesting properties and can
be juxtaposed with the standard concept of co-circularity [161]. Assume some circular flow-
extrapolating arc c̆pq and its reverse c̆qp defined by two oriented tangents l̄p, l̄q, see section 5.3.1
and Figure 5.5(a,b).

PROPERTY 4. The angle between c̆ 1pq and l̄q is equal to the angle between c̆ 1qp and l̄p. That is,

∠(c̆ 1pq, c̆
0
qp) ≡ ∠(c̆ 1qp, c̆

0
pq). (5.6)

Proof. First, we only consider the circle going through p, q and tangential to some vector τ̄p as
shown in Figure 5.7. Moving the tangent vector τ̄p in its direction along the circle yields another
tangent vector τ̄q at q. We also translate τ̄p to q. By construction, ∆Opq is equilateral. Thus,
∠Opq = ∠Oqp. Since τ̄p and τ̄q are tangential to the circle, we have α+∠Opq = β+∠Oqp = π

2
,

which obviously gives α = β. WLOG, we assume vectors τ̄p, τ̄q and ē are all unit vectors. As
α = β, we have:

τ̄q = 2[(τ̄p · ē)ē− τ̄p] + τ̄p (5.7)

Now, we consider the two circles going through both p and q while one is tangential to l̄p
and the other is tangential to the l̄q as shown in Figure 5.8. Note that these two circles are not
necessarily co-planar. Using (5.7), we can obtain

c̆1pq = 2[(c̆0pq · e⃗1)e⃗1 − c̆0pq] + c̆0pq (5.8)

c̆1qp = 2[(c̆0qp · e⃗1)e⃗1 − c̆0qp] + c̆0qp (5.9)

To prove (5.6), it is sufficient to prove equality of the two dot products which can be simplified
using (5.8) and (5.9):

c̆1pq · c̆0qp = 2(c̆0pq · e⃗1)(c̆0qp · e⃗1)− c̆0pq · c̆0qp (5.10)

c̆1qp · c̆0pq = 2(c̆0qp · e⃗1)(c̆0pq · e⃗1)− c̆0qp · c̆0pq (5.11)

It is obvious that the RHS of (5.10) and (5.11) are equal. Therefore, these two angles are
equal.

Identity (5.6) implies the following.

Theorem 6. For circular flow extrapolating arcs, c̆pq is confluent iff the reverse arc c̆qp is confluent.

109

𝒒

𝒑
𝒑

Figure 5.7: Illustration for (5.7). O is the center of the circle. ē is a unit vector along pq.

This theorem shows that confluence of c̆pq and c̆qp in Figure 5.5(a,b) is not a coincidence.
However, in general, such symmetry does not hold for non-circular flow-extrapolating arcs (higher
order polynomial curves, etc). Also, Theorem 6 does not imply “undirectedness" of our confluent
tubular graph construction using simple circular arcs. As follows from (5.5), wpq ̸= wqp since the
reverse arcs c̆pq and c̆qp have different lengths regardless of confluence, see Figure 5.5(a,b).

Interestingly, our confluence constraint in case of circular oriented arcs can be related to an
“oriented” generalization of co-circularity that was originally defined in [161] for 2D curves. In
Rn co-circularity constraint can be defined for two unoriented tangent lines lp and lq at points p
and q in a way similar to our definition of confluence for c̆pq that is based on oriented tangents l̄p
and l̄q. Assume unoriented circle cpq uniquely defined in Rn by a pair of points p, q and tangent lp
at the first point. If we use cx to denote an unoriented unit tangent of circle c at any given point x,

110

𝑙 ̅ = �̆�

𝑙 ̅ = �̆�

�̆�

Figure 5.8: Two circles given by p,q, c̆0pq and c̆0qp. Vectors in red are co-planar with the red circle
while those in maroon are co-planar with the maroon circle.

then circle cpq is uniquely defined by three conditions

cpq : p ∈ cpq, q ∈ cpq, c ppq = lp. (5.12)

In general, circle cqp is different as it is defined by tangent lq at point q, that is cqqp = lq. Then,
co-circularity constraint for lp and lq can be defined as

∠(c qpq, c
q
qp) ≡ ∠(c pqp, c

p
pq) ≤ ϵ (5.13)

where ∠(·, ·) is the angle between two lines in contrast to the angle between vectors in the similar
identity (5.6).

111

The difference between confluence for l̄p, l̄q and co-circularity for lp, lq can be illustrated
by the examples in Figure 5.5. Note that unoriented versions of l̄p, l̄q are identical in all three
examples (a,b,c) as they do not depend of the flip of orientation in (c). Thus, they are equally
co-circular in (a,b,c). At the same time, oriented tangents are confluent in (a,b) while flipping
orientation for l̄p results in non-confluence in (c). The properties discussed above imply that
confluence can be seen as oriented generalization of co-circularity [161].

PROPERTY 5. Confluence of oriented circular arcs c̆pq or c̆qp, which are defined by oriented
tangents l̄p, l̄q, implies co-circularity of the corresponding unoriented tangents lp, lq, but not the
other way around.

Note that co-circularity constraint for unoriented circular arcs along a path on a tubular graph
can enforce G1-smoothness within a single vessel branch. But, unoriented co-circularity enforces
smoothness indiscriminately in all directions from a bifurcation point without resolving conflicts
between multiple branches. This leads to artifacts observed on geodesic tubular graphs, see
Figure 5.6(a). In contrast, the confluence constraint discriminates orientations of branches when
enforcing smoothness at bifurcations, see Figure 5.6(b).

5.3.3 Confluent tree reconstruction algorithm

Algorithm 2 Confluent Tree Reconstruction
Require: Raw volumetric data and root location

1: Estimate a set of centerline points V and directed flow estimates L̄ = {l̄p|p ∈ V }.
2: Build a set of oriented arcs A ⊆ V × V , section 5.3.1
3: Build a confluent tubular graph G by computing weights wpq for (p, q) ∈ A using (5.5).
4: Return the Minimum Arborescence of G.

Our Confluent Tree Reconstruction Algorithm 2 is discussed below. It inputs raw volumetric
data with a marked root of the tree. The algorithm has four steps. First, it runs a subroutine that
estimates a set of points on the tree centerline V and oriented flow pattern at these points L̄. We
use a standard vector field estimation method [232] based on non-negative divergence constraint
and regularization over the voxel-grid neighborhood. Since 80% of our large vasculature volumes
are near-capillary vessels, the weak sub-voxel signal often results in missing data points and
grid-based regularization fails to produce consistent flow orientations, particularly at the tree
periphery. We modified [232] by (anisotropically) enlarging their regularization neighborhood,
see Section 5.4.3, improving the quality of flow estimates L̄ that helps to reconstruct confluent
vessel trees.

112

Second, we build a set of oriented arcs between the points in V that correspond to directed
edges on our tubular graph G. Our confluence constraint works well even with a complete graph
A = V × V . But, for efficiency, we restrict the neighborhood to K nearest neighbors (KNN). The
running time is O(K|V | log |V |) with k-d trees.

The last two steps compute a directed weight wpq for all arcs (p, q) ∈ A as described in
section 5.3.1, and invoke a standard minimum arborescence algorithm that has complexity
O(|A| + |V | log |V |) [72]. In practice, the overall running time of our method for vessel tree
reconstruction is dominated by the centerline localization and flow pattern estimation in the first
step.

5.4 Experimental results

We use two baselines which we call NMS-MST and GridMST. NMS-MST uses the Frangi method
[70] along with Non-Maximum Suppression (NMS) to obtain the centerline points and local
unoriented tangent estimates. On top of these, NMS-MST uses the KNN (K = 500) graph of
the centerline points to build the MST. Note that the KNN graph is symmetric such that a pair of
nodes have an arc as long as one is a neighbor of the other. Here, the undirected edge weight is
computed by the sum of two shorter arc lengths. GridMST uses [232] for estimating the centerline
points and flow direction. Then, it also uses the KNN graph of the centerline points to build the
MST.

GridArb uses the set of centerline points and flow estimates produced by [232], but it uses the
confluent tubular graph to build the minimum arborescence (discussed in section 5.3.3). MArb
exploits a modified version of [232] (see Section 5.4.3) and also uses the confluent tubular graph
to build the minimum arborescence. We set ε = π

2
in (5.5) for all our experiments.

5.4.1 Validation Measures

Many validation measures rely on matching between the ground truth and the predicted tree.
Matching algorithms could be separated into several groups. First, match the nodes of the trees
independently based on a distance measure, e.g. [232, 211, 214], partial (local) sub-tree matching
[75], or global tree matching approaches [110, 231, 46]. We base our evaluation approach on the
first group of methods due to their efficiency and the size of our problem.

Centerline reconstruction quality. Our reconstructed tree is ideally the centerline of the
vasculature. We compute the recall and fall-out statistics of the centerline points to evaluate the

113

Method Flow estimates Graph
Weights

Tree Ex-
traction

NMS-MST Frangi et al. [70]
MST

GridMST Zhang et al. [232]
standard
geodesic

GridArb Zhang et al. [232] our
confluent
(5.5)

minimum
arbores-
cence

MArb
Modified [232], see
Section 5.4.3

Table 5.1: The summary of comparison between different methods.

reconstruction quality. To obtain the centerline receiver operating characteristic (ROC) curve, we
generate a sequence of recall/fall-out points by varying the detection threshold parameter for the
low-level vessel filter of Frangi et al. [70].

Similarly to [232], a specific point on the ground truth centerline is considered detected
correctly (recall) iff it is located within max(r, ζ) distance of a reconstructed tree where r is the
radius of the corresponding ground truth vessel segment and ζ =

√
2
2

voxel-size. A point on
the reconstructed tree that is farther away than this distance is considered incorrectly detected
(fall-out). Before computing the ROC curve we re-sample uniformly both the ground truth and
reconstructed trees.

Bifurcation reconstruction quality. We introduce two separate metrics. First, we compute
the ROC curve for only bifurcation points to assess the quality of detection. Second, we measure
the median angular error at the reconstructed bifurcations to assess the accuracy, where we match
all ground truth bifurcations to closet branching points on the detected tree regardless of their
proximity and use the median rather than the average for greater stability. The average angular
error introduced in [232] uses only correctly detected points to compute the bifurcation angular
errors. Using such matching to compare different methods is unfair as for a particular detection
threshold these methods correctly detect different sets of bifurcations. So, we match all ground
truth bifurcations to closet branching points on the detected tree regardless of their proximity. For
certain thresholds, this causes many incorrectly matched bifurcation and large errors. Despite
that such statistic is influenced significantly by random matches, it is meaningful for comparing
different reconstruction methods.

114

no
is

e
st

d
10

0% 5% 10% 15% 20% 25% 30% 35% 40%
Fall-out ratio

60%

65%

70%

75%

80%

85%

90%

95%

100%

Re
ca

ll
ra

tio

NMS-MST
GridMST
GridArb
MArb

10% 15% 20% 25% 30% 35% 40%
Fall-out ratio

60%

65%

70%

75%

80%

85%

90%

Re
ca

ll
ra

tio

NMS-MST
GridMST
GridArb
MArb

no
is

e
st

d
15

0% 5% 10% 15% 20% 25% 30% 35% 40%
Fall-out ratio

60%

65%

70%

75%

80%

85%

90%

95%

100%

Re
ca

ll
ra

tio

NMS-MST
GridMST
GridArb
MArb

10% 15% 20% 25% 30% 35% 40%
Fall-out ratio

60%

65%

70%

75%

80%

85%

90%

Re
ca

ll
ra

tio
NMS-MST
GridMST
GridArb
MArb

(a) centerline detection (b) bifurcation detection

Figure 5.9: Quantitative comparison. Our methods are denoted by MArb and GridArb. GridMST
is the best result from [232].

5.4.2 Synthetic Data with Ground Truth

Zhang et al. [232] generated and published a dataset with ground truth using [84]. We found that
the diversity of bifurcation angles is limited. The mean angle is 68◦ and std is 17◦. To increase
the angle variance, we introduce a simple modification of vessel tree generation. When a new
bifurcation is created from a point and existing line segment, we move the bifurcation towards
one of the segment’s ends chosen at random decreasing the distance by half. The new mean is 68◦

and std is 29◦. We generate 15 volumes 100×100×100 with intensities between 0 and 512. The
voxel size is 0.046 mm. We add Gaussian noise with std 10 and 15.

One of the major challenges in large-scale vessel tree reconstruction is the lack of ground
truth. That complicates many interactive and supervised learning methods and makes evaluation
hard. Zhang et al. [232] generated and published a dataset with ground truth using [84]. We used
our newly generated 15 volumes 100×100×100 with intensities between 0 and 512. Our new

115

noise std 10 noise std 15

0.005
0.040

0.080
0.120

0.160
0.200

Threshold Value

15.5

18.0

20.5

23.0

25.5

28.0

30.5

33.0

An
gl

e
Er

ro
r,

de
gr

ee NMS-MST
GridMST
GridArb (our)
MArb (our)

0.005
0.040

0.080
0.120

0.160
0.200

Threshold Value

15.5

18.0

20.5

23.0

25.5

28.0

30.5

33.0

An
gl

e
Er

ro
r,

de
gr

ee NMS-MST
GridMST
GridArb (our)
MArb (our)

Figure 5.10: Median branching angular error for our methods (GridArb and MArb from sec-
tion 5.3) outperform all competitors (NMS-MST and GridMST [232])

dataset has a larger variance of bifurcation angles. The voxel size is 0.046 mm. We add Gaussian
noise with std 10 and 15.

Figure 5.9 compares the results of our methods with two competitors. One is the method of
[232], another baseline is simple MST computed over non-maximum suppression of vessel filter
output. All methods use essentially the same detection mechanism, i.e. Frangi et al. filter, so the
centerline extraction quality does not differ much. On the other hand, our method significantly
outperforms in the quality of bifurcation detection, see Figure 5.9 (b). This result is complemented
by superior angular errors in Figure 5.10. We attribute this to the subvoxel accuracy and better
reconstruction of bifurcation. A typical example is shown in Figure 5.1(b,c).

The GridArb performs competitively in terms of angular errors but gives the worst results in
terms of centerline quality. This is due to the artifact caused by some inconsistent flow estimates
near the tree periphery (see Figure 5.6 for concrete examples). In section 5.3.3 we argue that
enlarging the regularization neighborhood helps improve the estimation of the flow orientation.

5.4.3 CRF Regularization Neighborhood

Our tree extraction method is based on a directed confluent tubular graph construction G =
⟨V,A⟩ presented in Section 3 of the paper. We proposed an approach that builds confluent
flow-extrapolating arcs c̆pq for our graph from estimated oriented flow vectors {l̄p | p ∈ V }.
Specific flow orientations can be computed from Frangi filter outputs using standard MRF/CRF
regularization methods [232] enforcing divergence (or convergence) of the flow pattern. However,

116

as mentioned in Section 3.3 and Section 4, we modified [232] by anisotropically enlarging the
regularization neighborhood to improve the estimates of flow orientations, which are important for
our directed arc construction. The 26-grid neighborhood regularization used in [232] generates
too many CRF connectivity gaps near the vessel tree periphery where the signal gets weaker.
Such gaps result in flow orientation errors, see white vectors in the zoom-ins in Figure 5.12(a,b).
While tree reconstruction on standard undirected geodesic tubular graphs, see Figure 5.12(a), are
oblivious to such errors, our directed confluent tubular graph construction is sensitive to wrong
orientations, see Figure 5.12(b). To address CRF gaps in the flow orientation estimator [232], we
modified their 26-grid regularization neighborhood into anisotropic KNN based on Frangi’s vessel
tangents [70]. This significantly reduces orientation errors in {l̄p | p ∈ V } and resolves confluent
tubular graph artifacts, see Figure 5.12(c). We detail anisotropic KNN below.

CRF connectivity quality: Besides the size of the neighborhood K, anisotropic KNN system
has another important hyper-parameter, aspect ratio ar. To select better parameters K and ar, we
can evaluate CRF connectivity system N using ROC curves for synthetic vasculature volumes
with ground truth. We consider an edge in N as correct iff the projections of its ends onto the
ground truth tree have parent/descendant relationship. The recall is the portion of the ground truth
tree covered by the correct edges. The fall-out is the ratio of incorrect edges to the total edge
count.

As shown in Figure 5.11, simply increasing the size of neighborhood closes many gaps but, in
the meantime, introduces a lot of spurious connections between different vessel branches. Thus,
we propose to use anisotropic neighborhoods. Specifically, the regularization neighborhood is
redefined as k anisotropic nearest neighbors instead of regular grid connectivity. This similar to
the KNN except Mahalanobis distance is used. This modification addresses the issue giving the
state-of-the-art result, see Figure5.12(c). To implement such anisotropic neighborhood system, we
first built an isotropic KNN with some large K, eg. K=500. Then, for each node and its neighbors,
we transformed the Euclidean distance into Mahalanobis distance based on the tangent direction
on the node. After this, we selected K (eg. K=4) nearest neighbors for each node again based on
the Mahalnobis distance. Note that such anisotropic neighborhood is symmetric since we consider
a pair of nodes as neighbor as long as one is connected to the other.

5.4.4 High Resolution Microscopy CT

We use challenging microscopy computer tomography volume (micro-CT) of size 585×525×892
voxels to qualitatively demonstrate the advantages of our approach. The data is a high-resolution
image of mouse heart obtained ex vivo with the use of contrast. The resolution allows detecting

117

nearly capillary level vessels, which are partially resolved (partial volume). Figure 5.13 shows the
whole volume and reconstruction.

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

5% 10% 15% 20% 25% 30%

R
ec
al
l

Fall-out

ar1

ar4

ar7

ar10

ar20

ar40

grid26

1-ANN graph

2-ANN graph

4-ANN graph
7-ANN graph. . .

Figure 5.11: (Quasi) ROC curves evaluating accuracy of the neighborhoods N used for flow
pattern estimation, as in [232]. We compare anisotropic KNNs and standard 26-grid connectivity
(see gray dot). Evaluation is done based on synthetic data with ground truth where correct
connectivity is available. “ar" stands for the aspect ratio and the number denotes the square of
the aspect ratio. “grid26" represent the regular 26 neighbors on grid. We select “ar10” with 4
anisotropic nearest neighbourhood (ANN) connectivity system.

118

tree reconstruction (blue) on tree reconstructions (red and green) on
undirectedTubularGraph(standard) directed Confluent Tubular Graph (our)

GridMST

GridMST

GridArb

GridArb

MArb

MArb

(a) Flow pattern estimate (white) [232] (b) Flow pattern estimate (white) [232] (c) Improved flow estimate (white)

+ MST on geodesic tubular graph + min. arb. on confluent tubular graph + min. arb. on confluent tubular graph

Figure 5.12: Typical tree reconstruction examples for standard (a) and our confluent (b,c) tubular
graphs. (a) White vectors represent CRF-based flow pattern estimates [232] using 26-grid
regularization neighborhood N . In case of thin sub-voxel vessels, such N has gaps creating
inconsistent flow pattern for isolated small branches (yellow box) lacking bifurcations used by
divergence prior to disambiguate orientations. (a) Undirected geodesic tubular graph with large
KNN easily bridges such gaps ignoring (inconsistent) flow directions and produces topologically
valid vessel MST (blue), even though bifurcations are not accurate. (b) Directed confluent tubular
graph is sensitive to flow pattern errors. Minimum arborescence on this graph produces accurate
bifurcations, but flow orientation errors (yellow box) lead to wrong topology. (c) CRF-based
flow pattern estimator [232] with modified anisotropic KNN system N addresses the gaps at thin
vessels. This improves flow orientations (white vectors in yellow box) and resolves confluent
tubular graph artifacts producing trees with accurate both topology and bifurcations.

119

Figure 5.13: Real data micro-CT volume and vessel centerline reconstruction (green) obtained by
our method and (blue) by [232]. To reduce clutter we show the result of Frangi et al. filter [70]
instead of raw input data. The real data zoom-in is at the top left.

120

Chapter 6

Conclusions and future work

In this chapter, we summarize our contributions and also give the direction of future work.

Chapter 2 introduced novel reverse cross-entropy and collision cross-entropy in the context
of self-labeling losses for clustering and weakly-supervised semantic segmentation tasks, which
are later discussed in Chapter 3 and 4 respectively. In particular, the collision cross-entropy is
naturally interpreted as measuring the probability of equality between two random variables, which
perfectly fits the self-labeling framework where both the network predictions and pseudo-labels
are estimated. It is symmetric instead of treating one as the target, like the standard cross-entropy.
While the latter makes the network copy the uncertainty in estimated pseudo-labels, our collision
cross-entropy and reverse cross-entropy naturally weaken the training on data points where pseudo
labels are more uncertain, making the losses more robust to labeling errors.

Chapter 3 provides more insights into the properties of entropy-based clustering losses,
consisting of decisiveness and fairness terms, and optimization algorithms for the self-labeled
version of the losses introduced in Chapter 2. Specifically, we formally proved the maximum
margin property of the decisiveness term, represented by Renyi entropy, with norm regularization,
distinguishing itself from the variance-based clustering (K-means). For practicability, we derived
efficient EM algorithms for optimizing the pseudo-labels in the self-labeling losses with reverse
cross-entropy and collision cross-entropy respectively. The discriminative entropy clustering
losses we studied are flexible, but there are still limitations that can be taken for the future research.
For example, the current assumption for entropy clustering is that the number of clusters is fixed.
This assumption is very similar to the fundamental assumption in the basic K-means methodology,
which is even reflected in its name. This is not to say that K-means cannot be generalized in a way
where K becomes an estimated variable, but this requires additional terms added to the loss (e.g.
AIC or BIC information theoretic criteria). In fact, similar ideas can be explored in the context of

121

entropy clustering, but, this is a substantial topic on its own. This direction can be continued in
the future work. Also, the fairness term in the loss implies that the clusters should be balanced
while in the real world the data imbalance is common. How to adjust/design the loss function to
be able to deal with unbalanced datasets can be another future direction.

In Chapter 4 we proposed a convergent soft self-labeling framework based on a simple
well-motivated loss based on decisiveness term, discussed in Chapter 3, and Potts model. The
soft pseudo-labels were motivated as auxiliary optimization variables, as introduced in Chapter
2, which simplify optimization of scribble-supervised loss. We introduced new relaxations of
the Potts model and systematically evaluate them. We also provided an efficient and general
optimization algorithm for optimizing the soft pseudo-labels with different Potts relaxations and
cross-entropy unary terms. Specifically, we recommend the combination of log-quadratic Potts
relaxations, collision cross-entropy and the nearest-neighbor neighborhood, which achieves the
best result that may even outperform the fully-supervised method with full pixel-precise masks.
Our method does not require any modifications of the semantic segmentation models and it is
easy to reproduce. Our general framework can be used for other weakly-supervised segmentation
problems based on boxes, class tags, etc. in the future work.

Chapter 5 provides a new geometric prior, employing the estimated flow direction, to compute
the tree reconstruction loss followed by the standard minimum arboresence optimization algorithm.
Our extensive experiments convincingly demonstrate the advantages of directed tubular flow
graph for accuracy of unsupervised vessel tree reconstruction, particularly at bifurcations. They
validate the introduced anisotropic vessel geometry prior corresponding to the directedness of the
flow carried by the vessels on both synthetic and real 3D vasculature data. As for the future work,
we can integrate the deep networks and train the network using the pseudo-labels provided by our
algorithm. Thus, we can have faster inference. This can be further improved if the problem can
be formulated into a self-labeling loss alternating the optimization of pseudo-labels and network
parameters.

122

References

[1] Multilabel random walker image segmentation using prior models. In 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), volume 1, pages
763–770. IEEE, 2005.

[2] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly supervised learning of instance
segmentation with inter-pixel relations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2209–2218, 2019.

[3] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level
supervision for weakly supervised semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4981–4990, 2018.

[4] Tao D Alter and Ronen Basri. Extracting salient curves from images: An analysis of the
saliency network. IJCV, 27(1):51–69, 1998.

[5] Luis Alvarez, Pierre-Louis Lions, and Jean-Michel Morel. Image selective smoothing and
edge detection by nonlinear diffusion. ii. SIAM Journal on numerical analysis, 29(3):845–
866, 1992.

[6] Mykhaylo Andriluka, Jasper RR Uijlings, and Vittorio Ferrari. Fluid annotation: a human-
machine collaboration interface for full image annotation. In Proceedings of the 26th ACM
international conference on Multimedia, pages 1957–1966, 2018.

[7] Nikita Araslanov and Stefan Roth. Single-stage semantic segmentation from image labels.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4253–4262, 2020.

[8] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simul-
taneous clustering and representation learning. In International Conference on Learning
Representations, 2020.

123

[9] Stephen R Aylward and Elizabeth Bullitt. Initialization, noise, singularities, and scale in
height ridge traversal for tubular object centerline extraction. IEEE transactions on medical
imaging, 21(2):61–75, 2002.

[10] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 39(12):2481–2495, 2017.

[11] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, pages 404–417. Springer, 2006.

[12] Ismail Ben Ayed, Lena Gorelick, and Yuri Boykov. Auxiliary cuts for general classes of
higher order functionals. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1304–1311, 2013.

[13] A. Ben-Hur, D. Horn, H. Siegelman, and V. Vapnik. Support vector clustering. Journal of
Machine Learning Research, 2:125 – 137, 2001.

[14] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label propagation and quadratic
criterion. 2006.

[15] Fethallah Benmansour and Laurent D Cohen. Tubular structure segmentation based on
minimal path method and anisotropic enhancement. IJCV, 92(2):192–210, 2011.

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[17] Christopher M Bishop et al. Pattern recognition and machine learning, volume 4. springer
New York, 2006.

[18] Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete applied mathe-
matics, 123(1-3):155–225, 2002.

[19] Endre Boros and Peter L Hammer. Discrete optimization: the state of the art. 2003.

[20] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo
Piantanida, and Ismail Ben Ayed. A unifying mutual information view of metric learning:
cross-entropy vs. pairwise losses. In European conference on computer vision, pages
548–564. Springer, 2020.

[21] Sylvain Bouix, Kaleem Siddiqi, and Allen Tannenbaum. Flux driven automatic centerline
extraction. Medical image analysis, 9(3):209–221, 2005.

124

[22] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

[23] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[24] Boykov and Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. In
Proceedings Ninth IEEE international conference on computer vision, pages 26–33. IEEE,
2003.

[25] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11):1222–
1239, 2001.

[26] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images. In Proceedings eighth IEEE international conference
on computer vision. ICCV 2001, volume 1, pages 105–112. IEEE, 2001.

[27] Kristian Bredies, Thomas Pock, and Benedikt Wirth. Convex relaxation of a class of vertex
penalizing functionals. Journal of mathematical imaging and vision, 47:278–302, 2013.

[28] Kristian Bredies, Thomas Pock, and Benedikt Wirth. Convex relaxation of a class of vertex
penalizing functionals. Journal of Mathematical Imaging and Vision, 47(3):278–302, 2013.

[29] John Bridle, Anthony Heading, and David MacKay. Unsupervised classifiers, mutual
information and’phantom targets. Advances in neural information processing systems, 4,
1991.

[30] John S. Bridle, Anthony J. R. Heading, and David J. C. MacKay. Unsupervised classifiers,
mutual information and ’phantom targets’. In NIPS, pages 1096–1101, 1991.

[31] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[32] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of mathematical imaging and vision,
40:120–145, 2011.

[33] Tony F Chan and Jianhong Shen. Nontexture inpainting by curvature-driven diffusions.
Journal of Visual Communication and Image Representation, 12(4):436–449, 2001.

125

[34] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE Transactions on
image processing, 10(2):266–277, 2001.

[35] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
Deep adaptive image clustering. In International Conference on Computer Vision (ICCV),
pages 5879–5887, 2017.

[36] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
Deep adaptive image clustering. In Proceedings of the IEEE international conference on
computer vision, pages 5879–5887, 2017.

[37] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[38] Da Chen, Jean-Marie Mirebeau, and Laurent D Cohen. Global minimum for a finsler
elastica minimal path approach. International Journal of Computer Vision, 122(3):458–483,
2017.

[39] Hongjun Chen, Jinbao Wang, Hong Cai Chen, Xiantong Zhen, Feng Zheng, Rongrong Ji,
and Ling Shao. Seminar learning for click-level weakly supervised semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6920–6929, 2021.

[40] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062, 2014.

[41] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

[42] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 801–818,
2018.

[43] Qi Chen, Lingxiao Yang, Jian-Huang Lai, and Xiaohua Xie. Self-supervised image-specific
prototype exploration for weakly supervised semantic segmentation. In Proceedings of the

126

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4288–4298,
2022.

[44] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

[45] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15750–15758, 2021.

[46] Egor Chesakov. Vascular tree structure: Fast curvature regularization and validation.
Electronic Thesis and Dissertation Repository. The University of Western Ontario, (3396),
2015. Master of Science thesis.

[47] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE computer society conference on computer
vision and pattern recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[48] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 215–223. JMLR Workshop and Conference
Proceedings, 2011.

[49] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[50] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–
297, 1995.

[51] Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot. Power watershed: A
unifying graph-based optimization framework. IEEE transactions on pattern analysis and
machine intelligence, 33(7):1384–1399, 2010.

[52] Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines and
other kernel-based learning methods. Cambridge university press, 2000.

[53] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances
in neural information processing systems, 26, 2013.

127

[54] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[55] Hervé Delingette. On smoothness measures of active contours and surfaces. In Proceedings
IEEE Workshop on Variational and Level Set Methods in Computer Vision, pages 43–50.
IEEE, 2001.

[56] Andrew Delong, Anton Osokin, Hossam N Isack, and Yuri Boykov. Fast approximate
energy minimization with label costs. International journal of computer vision, 96:1–27,
2012.

[57] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society, pages 1–38,
1977.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[59] Anthony D DeRose. Geometric continuity: a parametrization independent measure of
continuity for computer aided geometric design. Technical report, CA Univ Berkeley Dept
of Electrical Engineering and Computer Sciences, 1985.

[60] Thomas Deschamps and Laurent D. Cohen. Fast extraction of minimal paths in 3d images
and applications to virtual endoscopy. Medical Image Analysis, 5(4):281 – 299, 2001.

[61] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–
271, December 1959.

[62] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[63] Jack Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, 71B(4), October-
December 1967.

[64] Andinet Enquobahrie, Luis Ibanez, Elizabeth Bullitt, and Stephen Aylward. Vessel enhanc-
ing diffusion filter. The Insight Journal, 1:1–14, 2007.

128

[65] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88:303–308, 2009.

[66] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88:303–338, 2010.

[67] M. A. T. Figueiredo and J. M. N. Leitao. A nonsmoothing approach to the estimation of
vessel contours in angiograms. IEEE Transactions on Medical Imaging, 14(1):162–172,
March 1995.

[68] Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties,
volume 1. USAF school of Aviation Medicine, 1985.

[69] AH Fowler and CW Wilson. Cubic spline: A curve fitting routine. Technical report, Union
Carbide Corp., Oak Ridge, Tenn. Y-12 Plant, 1966.

[70] Alejandro F Frangi, Wiro J Niessen, Koen L Vincken, and Max A Viergever. Multiscale
vessel enhancement filtering. In MICCAI’98, pages 130–137. Springer, 1998.

[71] William T. Freeman and Edward H Adelson. The design and use of steerable filters. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (9):891–906, 1991.

[72] Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

[73] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741, 1984.

[74] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng
Huang. Deep clustering via joint convolutional autoencoder embedding and relative
entropy minimization. In Proceedings of the IEEE international conference on computer
vision, pages 5736–5745, 2017.

[75] Todd A Gillette, Kerry M Brown, and Giorgio A Ascoli. The diadem metric: comparing
multiple reconstructions of the same neuron. Neuroinformatics, 9(2-3):233, 2011.

129

[76] Germán González, François Fleuret, and Pascal Fua. Automated delineation of dendritic
networks in noisy image stacks. In European Conference on Computer Vision, pages
214–227. Springer, 2008.

[77] Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed, and Andrew Delong. Sub-
modularization for binary pairwise energies. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1154–1161, 2014.

[78] Leo Grady. Random walks for image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 28(11):1768–1783, 2006.

[79] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization.
Advances in neural information processing systems, 17, 2004.

[80] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization.
Advances in neural information processing systems, 17, 2004.

[81] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 33:21271–21284, 2020.

[82] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International conference on machine learning, pages 1321–1330.
PMLR, 2017.

[83] Gideon Guy and Gérard Medioni. Inferring global perceptual contours from local features.
In CVPR, 1993.

[84] Ghassan Hamarneh and Preet Jassi. Vascusynth: simulating vascular trees for generating
volumetric image data with ground-truth segmentation and tree analysis. Computerized
medical imaging and graphics, 34(8):605–616, 2010.

[85] Peter L Hammer and Sergiu Rudeanu. Boolean methods in operations research and related
areas, volume 7. Springer Science & Business Media, 2012.

[86] Peter L Hammer, Sergiu Rudeanu, Peter L Hammer, and Sergiu Rudeanu. Flows in
networks and chains in partially ordered sets. Boolean Methods in Operations Research
and Related Areas, pages 258–267, 1968.

[87] Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey vision
conference, volume 15, pages 10–5244. Citeseer, 1988.

130

[88] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 16000–16009, 2022.

[89] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729–9738, 2020.

[90] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[91] Stefan Heber, Rene Ranftl, and Thomas Pock. Approximate envelope minimization for
curvature regularity. In ECCV, 2012.

[92] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In International Conference on Learning Representations,
2018.

[93] Berthold KP Horn. The curve of least energy. ACM Transactions on Mathematical Software
(TOMS), 9(4):441–460, 1983.

[94] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

[95] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic
regression. John Wiley & Sons, 2013.

[96] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[97] J. Hsieh. Computed tomography: principles, design, artifacts, and recent advances. SPIE,
2009.

[98] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama.
Learning discrete representations via information maximizing self-augmented training. In
International conference on machine learning, pages 1558–1567. PMLR, 2017.

[99] Peter Hui, Michael J Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Train tracks and
confluent drawings. Algorithmica, 47(4):465–479, 2007.

131

[100] Alan Julian Izenman. Review papers: Recent developments in nonparametric density
estimation. Journal of the american statistical association, 86(413):205–224, 1991.

[101] Mohammed Jabi, Marco Pedersoli, Amar Mitiche, and Ismail Ben Ayed. Deep clustering:
On the link between discriminative models and k-means. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(6):1887–1896, 2021.

[102] Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information clustering for unsuper-
vised image classification and segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9865–9874, 2019.

[103] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational
deep embedding: an unsupervised and generative approach to clustering. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pages 1965–1972, 2017.

[104] Julien Jomier, Vincent LeDigarcher, and Stephen R Aylward. Automatic vascular tree
formation using the mahalanobis distance. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 806–812. Springer, 2005.

[105] Jörg H Kappes, Bjoern Andres, Fred A Hamprecht, Christoph Schnörr, Sebastian Nowozin,
Dhruv Batra, Sungwoong Kim, Bernhard X Kausler, Thorben Kröger, Jan Lellmann,
et al. A comparative study of modern inference techniques for structured discrete energy
minimization problems. International Journal of Computer Vision, 115:155–184, 2015.

[106] Tsung-Wei Ke, Jyh-Jing Hwang, and Stella X Yu. Universal weakly supervised seg-
mentation by pixel-to-segment contrastive learning. arXiv preprint arXiv:2105.00957,
2021.

[107] Carl T Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[108] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

[109] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4015–4026, 2023.

[110] Philip N. Klein. Computing the edit-distance between unrooted ordered trees. pages
91–102, 1998.

132

[111] Timothy L Kline, Mair Zamir, and Erik L Ritman. Accuracy of microvascular measurements
obtained from micro-ct images. Annals of biomedical engineering, 38(9):2851–2864, 2010.

[112] Alexander Kolesnikov and Christoph H Lampert. Seed, expand and constrain: Three prin-
ciples for weakly-supervised image segmentation. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,
Part IV 14, pages 695–711. Springer, 2016.

[113] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. In International Workshop on Artificial Intelligence and Statistics, pages 182–189.
PMLR, 2005.

[114] Vladimir Kolmogorov and Ramin Zabin. What energy functions can be minimized via
graph cuts? IEEE transactions on pattern analysis and machine intelligence, 26(2):147–
159, 2004.

[115] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected CRFs with
Gaussian edge potentials. Advances in neural information processing systems, 24, 2011.

[116] Andreas Krause, Pietro Perona, and Ryan Gomes. Discriminative clustering by regularized
information maximization. Advances in neural information processing systems, 23, 2010.

[117] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[118] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[119] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[120] V. Kulharia, S. Chandra, A. Agrawal, P. Torr, and A. Tyagi. Box2seg: Attention weighted
loss and discriminative feature learning for weakly supervised segmentation. In ECCV’20.

[121] John Lafferty, Andrew McCallum, Fernando Pereira, et al. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Icml, volume 1, page 3.
Williamstown, MA, 2001.

[122] Max W K Law and Albert C S Chung. Three dimensional curvilinear structure detection
using optimally oriented flux. In European conference on computer vision, pages 368–382.
Springer, 2008.

133

[123] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[124] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

[125] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and Sungroh Yoon. Ficklenet:
Weakly and semi-supervised semantic image segmentation using stochastic inference. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5267–5276, 2019.

[126] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel,
J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE intelligent vehicles symposium (IV), pages
163–168. IEEE, 2011.

[127] Gang Li and Steven W Zucker. Differential geometric inference in surface stereo. PAMI,
32(1):72–86, 2010.

[128] Hua Li and Anthony Yezzi. Vessels as 4-d curves: Global minimal 4-d paths to extract 3-d
tubular surfaces and centerlines. IEEE transactions on medical imaging, 26(9):1213–1223,
2007.

[129] Zhiyuan Liang, Tiancai Wang, Xiangyu Zhang, Jian Sun, and Jianbing Shen. Tree energy
loss: Towards sparsely annotated semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16907–16916, 2022.

[130] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3159–3167, 2016.

[131] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.

[132] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,
and Clara I Sánchez. A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

134

[133] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[134] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[135] László Lovász. Submodular functions and convexity. Mathematical Programming The
State of the Art: Bonn 1982, pages 235–257, 1983.

[136] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004.

[137] David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

[138] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[139] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar K-means
problem is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

[140] Dmitrii Marin. Higher-order losses and optimization for low-level and deep segmentation.
2021.

[141] Dmitrii Marin and Yuri Boykov. Robust trust region for weakly supervised segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6608–6618, 2021.

[142] Dmitrii Marin, Meng Tang, Ismail Ben Ayed, and Yuri Boykov. Beyond gradient descent
for regularized segmentation losses. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10187–10196, 2019.

[143] Dmitrii Marin, Yuchen Zhong, Maria Drangova, and Yuri Boykov. Thin structure estimation
with curvature regularization. In International Conference on Computer Vision (ICCV),
2015.

[144] LW McKeehan. A contribution to the theory of ferromagnetism. Physical Review,
26(2):274, 1925.

[145] Odyssée Merveille, Benoît Naegel, Hugues Talbot, and Nicolas Passat. nD variational
restoration of curvilinear structures with prior-based directional regularization. IEEE
Transactions on Image Processing, 28(8):3848–3859, 2019.

135

[146] Odyssée Merveille, Hugues Talbot, Laurent Najman, and Nicolas Passat. Curvilinear
structure analysis by ranking the orientation responses of path operators. IEEE transactions
on pattern analysis and machine intelligence, 40(2):304–317, 2017.

[147] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and
Demetri Terzopoulos. Image segmentation using deep learning: A survey. IEEE transac-
tions on pattern analysis and machine intelligence, 44(7):3523–3542, 2021.

[148] Sara Moccia, Elena De Momi, Sara El Hadji, and Leonardo Mattos. Blood vessel seg-
mentation algorithms — review of methods, datasets and evaluation metrics. Computer
Methods and Programs in Biomedicine, 158:71–91, 2018.

[149] Parya MomayyezSiahkal and Kaleem Siddiqi. 3d stochastic completion fields for mapping
connectivity in diffusion mri. PAMI, 35(4):983–995, 2013.

[150] Stefano Moriconi, Maria A Zuluaga, H Rolf Jäger, Parashkev Nachev, Sébastien Ourselin,
and M Jorge Cardoso. Inference of cerebrovascular topology with geodesic minimum
spanning trees. IEEE transactions on medical imaging, 38(1):225–239, 2018.

[151] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help?
Advances in neural information processing systems, 32, 2019.

[152] C. Nieuwenhuis, E. Toeppe, L. Gorelick, O. Veksler, and Y. Boykov. Efficient squared
curvature. In CVPR, Columbus, Ohio, 2014.

[153] Claudia Nieuwenhuis, Eno Toeppe, Lena Gorelick, Olga Veksler, and Yuri Boykov. Efficient
squared curvature. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4098–4105, 2014.

[154] Natural Scenes Dataset [NSD]. https://www.kaggle.com/datasets/
nitishabharathi/scene-classification, 2020.

[155] Carl Olsson and Yuri Boykov. Curvature-based regularization for surface approximation.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages 1576–1583.
IEEE, 2012.

[156] Carl Olsson, Johannes Ulén, and Yuri Boykov. In defense of 3d-label stereo. In CVPR,
pages 1730–1737. IEEE, 2013.

[157] Carl Olsson, Johannes Ulén, Yuri Boykov, and Vladimir Kolmogorov. Partial enumeration
and curvature regularization. In ICCV, pages 2936–2943. IEEE, 2013.

136

https://www.kaggle.com/datasets/nitishabharathi/scene-classification
https://www.kaggle.com/datasets/nitishabharathi/scene-classification

[158] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[159] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[160] Zhiyi Pan, Peng Jiang, Yunhai Wang, Changhe Tu, and Anthony G Cohn. Scribble-
supervised semantic segmentation by uncertainty reduction on neural representation and
self-supervision on neural eigenspace. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7416–7425, 2021.

[161] Pierre Parent and Steven W Zucker. Trace inference, curvature consistency, and curve
detection. PAMI, 11:823–839, 1989.

[162] Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional
multi-class multiple instance learning. arXiv preprint arXiv:1412.7144, 2014.

[163] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen
Qu. Making deep neural networks robust to label noise: A loss correction approach. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR),
pages 1944–1952, 2017.

[164] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In
Probabilistic and Causal Inference: The Works of Judea Pearl, pages 129–138. 2022.

[165] Hanchuan Peng, Fuhui Long, and Gene Myers. Automatic 3d neuron tracing using all-path
pruning. Bioinformatics, 27(13):i239–i247, 2011.

[166] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton.
Regularizing neural networks by penalizing confident output distributions. 2017.

[167] P Jonathon Phillips, Patrick J Flynn, Todd Scruggs, Kevin W Bowyer, Jin Chang, Kevin
Hoffman, Joe Marques, Jaesik Min, and William Worek. Overview of the face recognition
grand challenge. In 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), volume 1, pages 947–954. IEEE, 2005.

[168] Jean-Claude Picard and H Donald Ratliff. A cut approach to the rectilinear distance facility
location problem. Operations Research, 26(3):422–433, 1978.

[169] Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1713–1721, 2015.

137

[170] Thomas Pock, Antonin Chambolle, Daniel Cremers, and Horst Bischof. A convex relax-
ation approach for computing minimal partitions. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 810–817, 2009.

[171] Jose C. Principe, Dongxin Xu, and John W. Fisher III. Information-theoretic learning.
Advances in unsupervised adaptive filtering, 3 2000.

[172] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents.

[173] Sudhir Rao, Allan de Medeiros Martins, and José C. Príncipe. Mean shift: An information
theoretic perspective. Pattern Recognition Letters, 30:222–230, February 2009.

[174] Pradeep Ravikumar and John Lafferty. Quadratic programming relaxations for metric
labeling and markov random field map estimation. In Proceedings of the 23rd international
conference on Machine learning, pages 737–744, 2006.

[175] Pradeep Ravikumar and John Lafferty. Quadratic programming relaxations for metric
labeling and Markov Random Field MAP estimation. In The 23rd International Conference
on Machine Learning, page 737–744, 2006.

[176] Alfréd Rényi. On measures of entropy and information. Fourth Berkeley Symp. Math. Stat.
Probab., 1:547–561, 1961.

[177] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022.

[178] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[179] Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss functions. Advances
in neural information processing systems, 16, 2003.

[180] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. " grabcut" interactive fore-
ground extraction using iterated graph cuts. ACM transactions on graphics (TOG),
23(3):309–314, 2004.

138

[181] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, 1986.

[182] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115:211–252,
2015.

[183] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[184] T. Schoenemann, F. Kahl, and D. Cremers. Curvature regularity for region-based image
segmentation and inpainting: A linear programming relaxation. In ICCV, Kyoto, 2009.

[185] Thomas Schoenemann, Fredrik Kahl, and Daniel Cremers. Curvature regularity for region-
based image segmentation and inpainting: A linear programming relaxation. In 2009 IEEE
12th International Conference on Computer Vision, pages 17–23. IEEE, 2009.

[186] Thomas Schoenemann, Fredrik Kahl, Simon Masnou, and Daniel Cremers. A linear frame-
work for region-based image segmentation and inpainting involving curvature penalization.
arXiv preprint arXiv:1102.3830, 2011.

[187] Thomas Schoenemann, Fredrik Kahl, Simon Masnou, and Daniel Cremers. A linear frame-
work for region-based image segmentation and inpainting involving curvature penalization.
IJCV, 2012.

[188] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

[189] Matthias Seeger. Learning with labeled and unlabeled data. 2000.

[190] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[191] Kaleem Siddiqi and Stephen Pizer. Medial representations: mathematics, algorithms and
applications, volume 37. Springer Science & Business Media, 2008.

[192] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

139

[193] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective.
Advances in neural information processing systems, 29, 2016.

[194] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from
noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[195] Yan-Yan Song and LU Ying. Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2):130, 2015.

[196] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. The Journal of Machine Learning
Research, 19(1):2822–2878, 2018.

[197] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In International Conference on Learning Representations,
2015.

[198] Petter Strandmark and Fredrik Kahl. Curvature regularization for curves and surfaces in a
global optimization framework. In EMMCVPR, pages 205–218. Springer, 2011.

[199] BU-Qing Su and Ding-zhe Liu. Computational geometry: curve and surface modeling.
Academic Press Professional, Inc., 1989.

[200] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus.
Training convolutional networks with noisy labels. ICLR workshop, 2015.

[201] W. Sun, Z. Liu, Y. Zhang, Y. Zhong, and N. Barnes. An alternative to wsss? an empir-
ical study of the segment anything model on weakly-supervised semantic segmentation
problems, 2023.

[202] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov,
Aseem Agarwala, Marshall Tappen, and Carsten Rother. A comparative study of energy
minimization methods for markov random fields with smoothness-based priors. IEEE
transactions on pattern analysis and machine intelligence, 30(6):1068–1080, 2008.

[203] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint optimization
framework for learning with noisy labels. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5552–5560, 2018.

[204] Meng Tang, Ismail Ben Ayed, and Yuri Boykov. Pseudo-bound optimization for binary
energies. In European Conference on Computer Vision, pages 691–707. Springer, 2014.

140

[205] Meng Tang, Abdelaziz Djelouah, Federico Perazzi, Yuri Boykov, and Christopher Schroers.
Normalized cut loss for weakly-supervised cnn segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1818–1827, 2018.

[206] Meng Tang, Federico Perazzi, Abdelaziz Djelouah, Ismail Ben Ayed, Christopher Schroers,
and Yuri Boykov. On regularized losses for weakly-supervised cnn segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 507–522,
2018.

[207] R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

[208] Ferenc C. Thierrin, Fady Alajaji, and Tamás Linder. Rényi cross-entropy measures for
common distributions and processes with memory. Entropy, 24(10), October 2022.

[209] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large
data set for nonparametric object and scene recognition. IEEE transactions on pattern
analysis and machine intelligence, 30(11):1958–1970, 2008.

[210] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario Lu-
cic. On mutual information maximization for representation learning. In International
Conference on Learning Representations, 2019.

[211] Engin Turetken, Carlos Becker, Przemyslaw Glowacki, Fethallah Benmansour, and Pascal
Fua. Detecting irregular curvilinear structures in gray scale and color imagery using
multi-directional oriented flux. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1553–1560, 2013.

[212] Engin Turetken, Fethallah Benmansour, Bjoern Andres, Przemyslaw Glowacki, Hanspeter
Pfister, and Pascal Fua. Reconstructing curvilinear networks using path classifiers and
integer programming. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 38(12):2515–2530, December 2016.

[213] Engin Turetken, German Gonzalez, Christian Blum, and Pascal Fua. Automated re-
construction of dendritic and axonal trees by global optimization with geometric priors.
Neuroinformatics, 9(2-3):279–302, 2011.

[214] J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam. Robust
3-d modeling of vasculature imagery using superellipsoids. IEEE Transactions on Medical
Imaging, 26(2):223–237, Feb 2007.

141

[215] Francisco J. Valverde-Albacete and Carmen Peláez-Moreno. The case for shifting the
Rényi entropy. Entropy, 21(1), January 2019.

[216] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and
Luc Van Gool. Scan: Learning to classify images without labels. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part X, pages 268–285. Springer, 2020.

[217] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[218] Olga Veksler. Efficient graph cut optimization for full crfs with quantized edges. IEEE
transactions on pattern analysis and machine intelligence, 42(4):1005–1012, 2019.

[219] Olga Veksler and Yuri Boykov. Sparse non-local crf. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4493–4503, 2022.

[220] Bin Wang, Guojun Qi, Sheng Tang, Tianzhu Zhang, Yunchao Wei, Linghui Li, and Yong-
dong Zhang. Boundary perception guidance: A scribble-supervised semantic segmentation
approach. In IJCAI International joint conference on artificial intelligence, 2019.

[221] Changwei Wang, Rongtao Xu, Shibiao Xu, Weiliang Meng, and Xiaopeng Zhang. Treating
pseudo-labels generation as image matting for weakly supervised semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
755–765, 2023.

[222] Lance R Williams and David W Jacobs. Stochastic completion fields: A neural model of
illusory contour shape and salience. Neural Computation, 9(4):837–858, 1997.

[223] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos with
matched background similarity. In CVPR 2011, pages 529–534. IEEE, 2011.

[224] Oliver Woodford, Philip Torr, Ian Reid, and Andrew Fitzgibbon. Global stereo reconstruc-
tion under second-order smoothness priors. PAMI, 31(12):2115–2128, 2009.

[225] Jun Xie, Ting Zhao, Tzumin Lee, Eugene Myers, and Hanchuan Peng. Automatic neuron
tracing in volumetric microscopy images with anisotropic path searching. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages
472–479. Springer, 2010.

[226] Jingshan Xu, Chuanwei Zhou, Zhen Cui, Chunyan Xu, Yuge Huang, Pengcheng Shen,
Shaoxin Li, and Jian Yang. Scribble-supervised semantic segmentation inference. In

142

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15354–
15363, 2021.

[227] Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clus-
tering. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information
Processing Systems, volume 17. MIT Press, 2004.

[228] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-friendly
spaces: Simultaneous deep learning and clustering. In international conference on machine
learning, pages 3861–3870. PMLR, 2017.

[229] Xiao-Tong Yuan and Bao-Gang Hu. Robust feature extraction via information theoretic
learning. In International Conference on Machine Learning, (ICML), page 1193–1200,
June 2009.

[230] Christopher Zach, Christian Häne, and Marc Pollefeys. What is optimized in tight convex
relaxations for multi-label problems? In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1664–1671, 2012.

[231] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM journal on computing, 18(6):1245–1262, 1989.

[232] Zhongwen Zhang, Dmitrii Marin, Egor Chesakov, Marc Moreno Maza, Maria Drangova,
and Yuri Boykov. Divergence prior and vessel-tree reconstruction. In IEEE conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019.

[233] Zhongwen Zhang, Dmitrii Marin, Maria Drangova, and Yuri Boykov. Confluent vessel
trees with accurate bifurcations. In arXiv:2103.14268, 2021.

[234] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

[235] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 633–641, 2017.

[236] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. Advances in neural information processing
systems, 16, 2003.

143

[237] Tianfei Zhou, Meijie Zhang, Fang Zhao, and Jianwu Li. Regional semantic contrast and
aggregation for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4299–4309, 2022.

[238] Song Chun Zhu and Alan Yuille. Region competition: Unifying snakes, region growing,
and bayes/mdl for multiband image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 18(9):884–900, 1996.

[239] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. ProQuest Number: INFORMATION TO ALL USERS, 2002.

[240] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Springer
Nature, 2022.

144

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Introduction: annotation shortage in vision
	Image classification
	Supervised classification
	Towards unsupervised classification
	K-means, GMM, and entropy clustering

	Image segmentation
	Low-level segmentation with Potts model
	Semantic segmentation with neural networks
	From pixel-wise ground-truth to weak supervisions

	Thin structure in medical data
	Difficulties in medical image labeling
	Unsupervised vessel segmentation methods

	Motivation and contributions
	Theory and algorithms for entropy-based clustering
	Potts relaxation and weakly-supervised semantic segmentation
	Unsupervised vessel tree estimation with confluence

	Soft self-labeling for softmax models
	ADM splitting for clustering and segmentation losses
	Our self-labeling loss in clustering
	Our self-labeling loss in segmentation

	Cross-entropy functions for soft pseudo-labels
	Standard and reverse cross-entropy
	Collision cross-entropy

	Entropy-based clustering
	Introduction
	Discriminative entropy clustering basics
	Model complexity and representation learning
	Regularized entropy clustering
	Self-labeling methods for entropy clustering
	Summary of our contributions

	Linear entropy clustering
	Relation to K-means
	Margin maximization

	Our self-labeling loss and optimization algorithms
	Self-labeling surrogate loss formulation
	EM algorithm for optimizing y with HRCE
	EM algorithm for optimizing y with HCCE
	Discussion

	Experimental results
	Effect of in Renyi entropies for clustering
	Clustering with fixed features
	Joint clustering and feature learning
	Semi-supervised classification

	Potts relaxations and weakly-supervised semantic segmentation
	Introduction
	Scribble-supervised segmentation
	Self-labeling and hard pseudo-labels
	Motivation and contributions

	Second-order relaxations of the Potts model
	Optimization algorithms
	Experimental results
	Experimental settings
	Comparison of Potts relaxations
	Comparison of cross-entropy terms
	Comparison of neighborhood systems
	Soft self-labeling vs. hard self-labeling vs. gradient descent
	Comparison to SOTA

	Confluence prior for unsupervised vessel tree estimation
	Introduction
	Unsupervised vasculature estimation methods
	Motivation and contributions

	Confluence of Oriented Curves
	Confluent Tubular Graphs
	Confluent flow-extrapolating arcs
	Confluence and co-circularity
	Confluent tree reconstruction algorithm

	Experimental results
	Validation Measures
	Synthetic Data with Ground Truth
	CRF Regularization Neighborhood
	High Resolution Microscopy CT

	Conclusions and future work
	References

