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Abstract

The theory of Hopf algebras and quantum groups have led to very rich and interesting devel-
opments in both mathematics and physics. In particular, they are known to play crucial roles
in the interplay between 3d topological quantum field theories, categorical algebras, and the
geometry of embedded links and tangles. Moreover, the semiclassical limits of quantum group
Hopf algebras, in particular, are vital for the understanding of integrable systems in statistical
mechanics and Poisson-Lie dualities in string theory. The goal of this PhD thesis is to study
a higher-dimensional version of these correspondences, based on the very successful categorical
ladder proposal: higher-dimensional physics and geometry is described by higher-categorical
strutures. This is accomplished with the definition of a higher homotopy Hopf algebra, which
can be understood as a quantization of the homotopy Lie bialgebra symmetries that have
recently received attention in various fields of theoretical physics. These higher-homotopy sym-
metries are part of the study of the recently-popular categorical symmetries, which appear in
the condensed matter literature, for instance, in relation to 1-form dipole symmetries in topo-
logically ordered phases. However, here I will provide another physical motivation arising from
the gauge theoretic perspective, which is natural in the context of the Green-Schwarz anomaly
cancellation mechanism in quantum field theories. In particular, I use this perspective to prove
various known structural theorems about Lie 2-bialgebras and their associated 2-graded clas-
sical R-matrices, as well as to provide a new definition and characterization of the so-called
"quadratic 2-Casimir" elements. I will apply these higher homotopy symmetries to study the
4d 2-Chern-Simons topological quantum field theory, and to develop a notion of graded clas-
sical integrability for 2+1d bulk-boundary coupled systems. By following the philosophy of
deformation quantization and the theory of A -algbera, I then introduce the notion of a "Hopf
2-algebra" explicitly, and prove several of their structural theorems. I will in particular derive a
novel definition of a universal quantum 2- R-matrix and the higher-Yang-Baxter equations they
satisfy. The main result of this thesis is that the 2-representation 2-category of Hopf 2-algebras
is cohesively braided monoidal iff it is equipped with a universal 2- R-matrix, and that (weak)
Hopf 2-algebras admit (weak) Lie 2-bialgebras as semiclassical limits. Finally, an application
of this quantization framework will be considered, in which I will explicitly compute the higher
representation theory of Drinfel’d double Hopf 2-algebras of finite groups. The corresponding
2-group Dijkgraaf-Witten topological field theories are then constructed directly from these
Hopf 2-algebras, and I show that they recover the known 2-categorical characterizations of 4d

Zo symmetry protected topological phases of matter.
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Chapter 1
Introduction

The theory of quantum groups and Hopf algebras have received significant attention in various
fields of mathematics and physics since the 1940’s. They were first used by Hopf (hence the
name "Hopf algebras") to describe structures of the cohomology rings of loop spaces, or more
generally H-spaces [3], in algebraic topology. Somewhat independently, it was found that the
#-algebra of operators in various statistical and quantum mechanical systems, such as integrable
spin chains |4, 5] and 3d topological quantum field theories (TQFTS) [6] (eg. Chern-Simons/BF
theory), also comes equipped with Hopf algebraic properties, in addition to extra functional
analytic data attached. These "C*-completed" Hopf algebras are also known as quantum groups,
which are oftentimes infinite dimensional. In may cases, these quantum groups can be obtained
from the corresponding "classical" Lie group/algebra objects in a systematic way through the
so-called Drinfel’d-Jimbo deformation |7, 8]. These semiclassical limits of quantum groups
are known as Poisson-Lie groups and Lie bialgebras |9, 10], which also turn out to play very
important roles in integrability [11, 12| and T-duality in string theory [13, 14].

On the other hand, for topologists, it is known since the early 20th century that geometric
and topological properties of spaces are best organized by algebraic gadgets known as categories
[15]. These are abstract collection of objects and maps between them, usually endowed with
additional structures such as a tensor product and a braiding. They in particular are understood
to be crucial in describing the behaviour of embedded knots and links in 3-dimensional space
— namely they capture invariants of skein theory. The tangle hypothesis [16] of Baez-Dolan is
a vast generalization of this idea to higher-dimensions. It was also realized relatively recently
that the structure of fusion categories — which are linear categories equipped with certain
finitness conditions — can very generally be used to model gapped boundaries of topological
phases in condensed matter physics [17, 18]. In this context, the celebrated Levin-Wen model
[19, 20] describes an algorithm in which one can construct a concrete 2d lattice Hamiltonian
from the data of a (spherical) fusion category. Such models can be understood as the lattice
realization of the 2-+1d Turaev- Viro- Barrett- Westbury topological quantum field theory (TQFT)
[21, 22, 23, 24], the latter of which has very close relations to skein theory [25].



1.1 Hopf algebras at the centre of the 3d triangle

We have seen that there is a deep interplay of physics, categorical algebra and topology /geometry
as captured by the following "3d triangle"

Braided tensor categories

/ \

3d TQFTs and knot invariants

integrable systems

It turns out that the theory of Hopf algebras and quantum groups in fact play a central role in

this story.

Hopf algebras and TQFTs/knot polynomials. It was known since the 1970’s that, from
certain statistical spin systems (ie. those that are integrable), an invariant of knots can in fact
be computed from the partition function [26]. These were known to be the Jones polynomial
invariants, which were found to be very closely related to 3d Chern-Simons quantum gravity
[27]. From the quantum group Hopf algebra underlying these physical systems, the data of these
geometric knot invariants can be systematically extracted out of their representations through
the Kauffman bracket [28]. Indeed, the category of representations of a quantum group Hopf
algebra turned out to have equipped precisely the structures required to describe embedded
knots and links in 3-dimensions up to isotopy. These ideas have been generalized by Reshetikhin
and Turaev 29, 30, 31] to define quantum invariants of 3-manifolds. This Reshetikhin-Turaev
TQFT can be understood as a "modular refinement" of the Turaev-Viro TQFT, the former
of which makes crucial use of the underlying braiding and ribbon data. These ideas have also
been proposed to give rise to robust quantum computation |32, 33]. A crucial result by Witten
[6] relates these Reshetikhin-Turaev quantum invariants back to the algebra of tangle operators
(ie. Wilson lines) in SU(2); Chern-Simons theory.

Hopf algebras and category theory. Somewhat independently of topology and physics,
Hopf algebras were also known to play a significant role in the study of abstract category theory.
Specifically, any fusion category (which are categories equipped with a monoidal product and
satisfy certain finiteness conditions) equipped with a forgetful functor can in fact be realized
up to equivalence as the representation category of a semisimple unital Hopf algebra [2]." This
is known as the Tannaka-Krein reconstruction of monoidal categories |34, 35, 36, 37|. Inspired
by this, the Tannakian philosophy is then the statement that structures on categories can be
captured by modules/representations of Hopf-like algebras [38, 39].

Just very recently, in fact, the Tannakian philosophy has been concretely realized in the
context of the Levin-Wen model [40]: string-net models can be realized as a gauge theory whose

gauge algebra has Hopf-like properties.

!This statement does not require a fibre functor if we are content with Hopf algebras with weak units.



Types of associative algebras Category of modules

k=0 algebra category
k=1 bialgebra monoidal category (w/ forgetful)
Hopf algebra tensor category (w/ forgetful)

k=2 quasitriangular bialgebra braided monoidal category (w/ forgetful)
quasitriangular Hopf algebra | braided tensor category (w/ forgetful)
Drinfel’d double Drinfel’d centre

Table 1.1: A table summarizing Tannaka duality. The number k£ measures the level of
"monoidality" of the category, with & = 1 denoting a monoidal product ® and k£ = 2
denoting a braiding. Tensor categories have equipped duals and co/evaluation morphisms
X®X*—>1,1— X*® X that satisfy the snake equations [2].

Hopf algebras and vertex operator algebras. The above is not the full story. With
compact quantum groups specifically, a correspondence of sorts was discovered by Kazhdan
and Lusztik [41] between the representations of compact quantum groups — which labelled
the tangle operators in 3d Chern-Simons theory [6] — and the positive energy representations
of the Kac-Moody affine Lie algebra. The latter describes the algebra of operators in the 2d
Wess-Zumino-Witten theory conformal field theory (CFT) [42], which lives at the boundary of
the 3d Chern-Simons theory. Such an explicit correspondence between the operators of the bulk
and boundary theories can be understood as one of the most mathematically well-understood

instances of holography [43].

These facts have made Hopf algebras an extremely popular topic of research among both

physicists and mathematicians, even until today.

1.2 Climbing the categorical ladder

The central theme of this PhD thesis is to motivate and understand a higher-dimensional
version of the above story, focusing more on the physical and semiclassical side. This line
of research has been very popular in the past few decades, following the "categorical ladder"
proposal [44, 16, 45]. This is the proposal that higher-dimensional physics and geometry should
be captured by higher-algebraic and higher-categorical structures [46, 47, 48|. The tangle
hypothesis of Baez-Dolan [16] mentioned previously is part of this proposal.

This idea has been very successfully applied to many fields of theoretical physics, as a way
to study emergent symmetry structures in field theory [49]. In fact, the development of the
underlying mathematical theory of higher categories and categorical algebras is motivated in
large part by the study of functorial TQFTs in the sense of Atiyah and Segal [50, 51, 52, 53, 54|,
which can be understood as a categorification of (framed) bordism invariants. The purported
proof of the cobordism hypothesis by Lurie [55, 51], which sought to classify equivalence classes
of (fully extended) functorial TQFTs in any dimension, sparked a series of developments in the
field of categorical algebra that sought to pin down a notion of "higher-categories" [56, 57].

These higher categorical structures, specifically higher fusion categories [58, 59] and higher

representations of finite groups [60, 61|, have recently been successfully used as a way to record

3



the renormalization group (RG) invariant properties of higher-dimensional phases of matter
[62]. For a short and certainly non-exhaustive list of developments in this direction, see [48, 63,
64, 65, 66, 67, 46, 68]. The 4d topological sigma models associated to finite categorical groups
have also been well-studied [69, 70, 71, 72, 73]. These can be understood as topological gauge
theories whose structure groups form a special kind of finite category, called a categorical
group/2-group,” and can be thought of as higher-dimensional generalizations of finite gauge
theories.

One major success of the categorical ladder proposal is the recent work by Douglas and Reut-
ter [65], in which the notion of "spherical fusion 2-categories" was defined, and a 4-dimensional
analogue of the Turaev-Viro TQFT was constructed from its data. This led to many generaliza-
tions of known results and applications in physics to higher-dimensions, including a construction
of 3d membrane-net Hamiltonians [74, 59|, as well as exactly-solvable "fusion surface models"
with 2-categorical symmetry [75]. Several very powerful classification and extension theorems
for fusion 2-categories [48, 76, 63, 58, 77, 68, 78, 79| have been proven. These results have

served to extend our understanding of higher-dimensional gapped topological phases.

The above results cement to an extent the connection between 4-dimensional TQFTs and
higher-categorical algebras. In particular, a notion of braided monoidal 2-categories [80, 81]
have been defined from the perspective of the 2-tangle hypothesis [82, 83]. Following similar
ideas, knot polynomial invariants have seen a categorification in terms of bigraded complexes,

called knot homologies |84, 85, 86]. Therefore, tentatively, there is a corresponding "4d triangle"

Braided tensor 2-categories

/ \

4d TQFTs knot homologies

that relates physics, algebra and geometry. Recent work as described above has cemented the
edge on the top-left, namely that between higher categories and higher-dimensional topological
field theories.

1.3 "Higher Hopf algebras" at the centre of the 4d triangle

What is the higher notion of Hopf algebras that sit in the centre of the 4d triangle? These
algebraic gadgets, at the very least, should have braided monoidal 2-categories as their repre-
sentations; see the categorical ladder diagram in 1.1.

One answer to this question came in the form of Hopf monoidal categories |87, 44|, which
can be understood as categories equipped with Hopf-like properties that hold up to homotopy.
Representations of such Hopf monoidal categories have also been studied in [88], and they were
found to have indeed the structure of a braided monoidal 2-category. A higher notion of the

Tannaka-Krein duality has also appeared in [89, 90].

2The name "2-group” is ambiguous, as it can refer to a categorical group as well as a p-group where p = 2.
We shall use the name "2-group" to refer strictly to the former throughout this thesis.

4



trialgebra ———  Hopf category monoidal 2-category 4D
Hopf algebra monoidal category 3D
algebra 2D

Figure 1.1: The categorical ladder as displayed in [1], which relates increasing categorical level
with increasing dimensionality (the diagonal line). The horizontal axis represents the operation
of taking modules/representations. The idea of a trialgebra is that their representations should
form a Hopf monoidal category.

Alternatives to Hopf monoidal categories. In light of such rapid recent developments,
however, several questions still remain open. One such question is the notion of a "quantum
2-group", which should be a categorical analogue of Drinfel’d-Jimbo deformed quantum groups.
These should carry certain analytic data, and have a well-defined semiclassical limits; both are
properties that Hopf monoidal categories lack. Many proposals for such objects have been
proposed, such as the Hopf algebroids of Lu [91], quantum 2-groups of Majid [92], Hopf cat!-
algebras of Wagemann [93], and representations of trialgebras [1], to name a few.

However, it is not at all clear if the representations of these candidates for higher quantum
groups have the right braided monoidal properties, or how any of them are related to higher-
dimensional physics (aside from an application of trialgebras to 2-+1d integrable spin systems
[94]).

My PhD work is designed to precisely address this problem: I will provide first a motivation
for the appearance of homotopy Lie algebras in higher gauge theory, then propose a notion
of homotopy Hopf algebra which (i) serves as the quantum version of Lie 2-bialgebras
[95]/Poisson-Lie 2-groups [96], (ii) whose representation 2-category is braided monoidal, and

(iii) is closely related to many of the proposals for a "quantum 2-group" listed above.

1.4 A tale of two 2Vect’s

An immediate issue one encounters is the contexrt in which higher homotopy Hopf algebras
should be defined. It is well-known that there are several inequivalent categorifications of the

category of vector spaces Vect. Two of which of major interest in this thesis are the following.

1. Kapranov-Voevodsky (KV) 2-vector spaces 2Vect™" [97], which is a linear 2-category
consisting of k-linear finite semisimple 1-categories (such as Vect), linear functors as 1-

morphisms and natural transformations between these functors as 2-morphisms, and

2. Baez-Crans (BC) 2-vector spaces 2Vect®® [98], which is a linear 2-category consisting of
k-linear 2-term cochain complexes of vector spaces, cochain maps as 1-morphisms and

cochain homotopies between such chain maps as 2-morphisms.



The theory surrounding the KV 2-vector space has received much more attention in the litera-
ture (see eg. [48, 63, 64, 65, 58, 77]), and have seen successful applications to describe gapped
topological phases in 4d [66, 67, 46, 68].

On the other hand, differential graded algebraic structures — such as Lo,-algebras [96, 99,
100, 101] and crossed-complexes of groups [102, 103, 104, 105, 106] — have also appeared in
the literature as a way to model higher-dimensional physics, topology and geometry. These
notions enjoy desirable properties, such as the fact that Lie 2-algebras serve as infinitesimal
approximations of Lie 2-groups. The sort of gauge principles that are built out of the corre-
sponding principal co-bundle [107, 108, 109] forms the basis of higher-gauge theories studied in
the literature [110, 72, 111].

Hopf monoidal categories are, by definition, Hopf algebra objects in 2Vect®V. They are
linear semisimple categories H equipped with Hopf structure maps given by functors: for
instance, the algebra map p : ‘H x ‘H — H is understood as a functor between categories,

whence associativity and unitality are witnessed by natural transformations [15]
a:po(pxid) = po(id xpu), Ao (id xn) — id, Moo (nxid) = id.

These are known as homotopy coherence data, which must satisfy a complicated set of co-
herence conditions. Working with Hopf monoidal categories and their representations, however,
is notoriously difficult [88].

On the other hand, the strict quantum 2-groups of Majid [92]| can be viewed as Hopf algebra
objects in the strictification of the bicategory of (linear semisimple) categories. By virtue of its
definition, neither it nor its representation theory carry non-trivial coherence data, whence there
are no coherence conditions to check and they are much easier to work with. Unfortunately, this
is not at all a generic property, as it is known that monoidal 2-categories cannot be completely
strictified [112]; contrast this with the case of monoidal 1-categories, which can always be
strictified.® The same issue plagues the Hopf cat!-algebras of Wagemann [93|, which are Hopf
algebra objects in the strict 2-category 2Vect?©.

A major result of this PhD thesis is the resolution of this issue of the lack of coherence data in
2Vect?C: T will develop a theory of Hopf A.-algebras which live, by the macroscopic principle
[16], as Hopf algebra objects in a certain homotopy refinement of 2Vect” “. This homotopy

refinement 2Vect"?¢

exists, as I am able to explicitly write down all of the conditions that
the coherence data must satisfy as cohomology descent equations. I will also show that these
coherence conditions are very similar to those in 2Vect®". This framework of such Hopf A.-
algebras appear directly from the fields in a 4d TQFT, similar to the factorization algebra

approach of [101].

3This is known as the coherence theorem for monoidal categories by MacLane [15].



1.5 OQOutline

The outline of this thesis is as follows. I will begin with a pedagogical motivation for the
appearance of higher homotopy Lie algebra symmetries from the perspective of gauge theory in
§2, and show that we recover the known structures of (weak) 2-gauge theory [99]. This chapter
is based on my paper [113]. I will then delve into the mathematical structures underlying Lie
2-bialgebras in §3, following the theory of (weak) Lie 2-bialgebras [95, 114, 115] known in the
literature. Several major applications of such higher semiclassical symmetries to physics will
be considered in §4, including 4d field theories and 2+41d integrable lattice systems. These
chapters are based on my papers [115, 116].

The main portion of the thesis is §5, in which I develop the theory of (weak) Hopf 2-
algebras as a Hopf algebra object in a homotopy refinement of the 2-category 2Vect? “. I prove
several key duality and factorizability properties a la Majid [117, 118], and define in a universal
manner a higher notion of the quantum R-matrix. I will prove that they admit Lie 2-bialgebras
as semiclassical limits, and their representations are cohesively braided monoidal in the sense
of [81, 78]. This chapter is based on my paper [119].

Finally, as a proof of concept, I will apply the above framework to study 4d gapped topologi-
cal phases with Z, symmetry. Specifically, I will use the representation theory of Hopf 2-algebras
to recover the Drinfel’d centre 2-categories that are used in the literature |76, 78, 120] to de-
scribe the 4d toric code and its spin version. This result unites the 2-categorical description of
such phases with the 2-group gauge theoretic description of |71, 46]. This chapter is based on
my paper [121].



Chapter 2
A procedure of "gauging the gauge"

In this Chapter, we introduce a procedure developed in [113]|, dubbed "gauging the gauge."
This is a new pedagogical perspective on symmetries in which one can see the appearance of
higher homotopy structures in gauge theory. We shall see that this "gauging" /localization of
a global shift symmetry in 1-gauge theory gives rise precisely to a 2-gauge symmetry structure
captured by Lie 2-algebras. Though such higher gauge structures have previously been studied
[111, 96, 95, 99], this perspective provides a way to motivate the structure of Lie higher-algebras
from physics and geometry. Moreover, we describe how the structures of a weak Lie 2-algebra
[114, 98] manifests when the (1-)Bianchi identity is relaxed, and point out how the classifying

Postnikov class [122, 69| contributes to the 2-curvature.

2.1 Gauging the 0-gauge

Let us begin by reviewing in a pedestrian way the notion of gauging a global symmetry. This
is standard material, for which one can find many introductions (eg. [123]).

Let X denote a d-dimensional smooth manifold admitting an action by a Lie group G.
Consider a (smooth) function ¢ on X transforming under a representation 7 : G — GL(V) of
the group G for some vector space V', that is ¢ € C*(X) ® V lies in the algebra of V-valued
smooth functions on X.

Note that 7 is an homomorphism, and the field ¢ transforms as

¢(x) = m(g)p(x),  geC.

If g € G is constant over X, then the derivative d¢ transforms covariantly,

dp — d(m(g)p) = 7(g)de,

and G encodes a (global) 0-gauge symmetry.
We can promote g to be a G-valued function of X itself, such that we still have the trans-

formation law



In this case we are dealing with a principal bundle with fiber G and base X. Indeed, the Leibniz

rule for the exterior derivative d dictates that!

do — g(d + g~ 'dg) - ¢.

As such it is not d¢ that transforms covariantly, but the covariant derivative V¢ = (d+ g~ *dg)¢.
Indeed, we can introduce the connection A = g~tdg € Q'(X) ® g, to compensate for the lack

of covariance,

gAp = d¢' — gdp — A = g~ 'dyg. (2.1.1)

Notice that this connection has a natural invariance symmetry under the left translation for all
h € G constant (ie. dh = 0).

(hg)~'d(hg) = g~'dg. (2.1.2)

This is the well-known fact that this is a left-invariant form.

Given the covariant derivative V = d + g~'dyg, its associated curvature
curV = [V, V] =d(g~"dg) + (g7 'dg) A (g7 'dg) =0

vanishes, where we have used the identity d(1) = d(¢g~'g) = (dg~1)g + g~ 'dg = 0. This means
that the connection A = g~ 'dg is flat.

The O-form symmetry and 1-gauge transformations. The connection 1-form in an
arbitrary gauge, A € Q'(X) ® g and the associated curvature 2-form cur A = F = d A =
dA + i[A A A] transform as

A—- A =g 'Ag+g'dg, F—FI=g'Fg. (2.1.3)

Expressing ¢ = exp A ~ 1 + A in terms of the infinitesimal gauge parameter A € Q°(X) ® g, we

achieve the (infinitesimal) (1-)gauge transformation laws

A - A=A+ [AN+d\= A+ da),
F — F*=F+[F\].

They endow the bundle P — X with a 0-form gauge symmetry parameterized by .

The Bianchi identity reads daF' = dF +[A A F] = 0, which holds in general for any principal

G-bundle with connection A. Since F transforms covariantly, d4F also transforms covariantly
dpF — dp F» = duF + [d4F, \].

It is possible (and consistent) to achieve a I-curvature anomaly F' = o # 0, as long as o €

!Note that for notational simplicity we will not indicate = anymore. The representation 7 of G induces a
representation dr of its Lie algebra Lie G = g. We will also omit dr in this case.



0?(X) ® g satisfies dyo = 0, and transforms covariantly o — g~ 1og.

Global 1-form symmetry. What we have recalled here is that, by gauging the global sym-
metry understood as a "O-gauge" symmetry, we obtain an ordinary 1-gauge bundle P — X
that is flat. However, one may notice that the curvature 2-form F' has a hidden symmetry in

the presence of a non-trivial center Z(g). This symmetry is given by
A—A+a, (2.1.4)

where « is a closed 1-form valued in the center Z(g) of the Lie algebra &, that is a € Q) (X) ®
Z(g). As such the above gauge structure in fact manifests a "1-form symmetry" parameterized
by «, on top of the pre-existing 1-gauge 0-form symmetry parameterized by A. This 1-form

symmetry is affecting the connection A but not its curvature.

2.2 Gauging the 1-gauge

In the 1-gauge case, we have highlighted two different types of invariance, one specified by a
left multiplication, in (2.1.2), the other one by a 1-form shift in (2.1.4). It is natural to ask
what happens when we gauge each symmetry, ie. we make them non-constant. For the former,
making h non-constant amounts to just another gauge transformation, so there is nothing new
to be gained. The latter is more interesting, as it leads to some new structures.

Relaxing the condition that a in (2.1.4) is constant and valued in the center Z(g) will be
called "gauging the 1-form gauge." So, we allow ourselves to take @ = a to be a generic 1-
form a € Q'(X) ® g that has non-trivial coordinate dependence on X, similar to the gauging

procedure for the global/0-gauge symmetry.

2.2.1 Shifting the connection

Typically, one may a prior: take a gauge bundle P — X with the non-trivial curvature F' =
o # 0, then study the associated gauge theory. Alternatively, we may perform a particular
1-form shift such that F' — F’ is transformed to a non-trivial value.

Indeed, under a generic 1-form shift.

A— A =A+a,

we see that the curvature transforms accordingly as
, , 1 1
F—F =dyA =F+d,4a—|—§[a/\a]=F+dAa+§[a/\a]. (2.2.1)

In the gauge where A = 0, we just have

, 1

F =da+§[a/\a],

10



which is the curvature of a considered as a G-connection. As such we may shift the curvature to
any value from zero, which serves as the central key fact for anomaly resolution discussed later.
Usually, the "gauging" story ends here, and we deal with an arbitrary curvature associated to
the connection in a particular 1-form gauge A = a.

However, the above also shows that, by considering the 1-form shift as a higher-form gauge
symmetry, the (1-)curvature quantity F' is a gauge datum, the notion of curvature is gauge
dependent. We have then a pair of gauge structures, one encoded in g which in a sense
encodes the arbitrariness of the frame we deal with, and one encoded in a, which encodes the

arbitrariness of the curvature.

One can realize that the transformation (2.2.1) can be seen as lack of covariance of the
curvature 2-form under the arbitrary shift, analogous to the one of the derivative of the field
¢ under 7(g). To amend for the lack of covariance, we introduced a non-zero connection
A =gdg™ in (2.1.1).

Hence in a similar manner, to amend for the lack of covariance of the curvature under the
arbitrary shift, we introduce a 2-form field ¥ € Q?(X) ® g such that, in the gauge where A = 0

ZE(F'—F)zF'zda—F%[a/\a]. (2.2.2)
If we define the curvature of X, as the 2-curvature,
K =daY%,
then we see that by the Bianchi identity
daY =daF =0,

so that this 2-connection is flat. Indeed as we shall see later, this 2-connection ¥ = da + %[a Aal
is a "pure 2-gauge", analogous to the flat pure 1-gauge A = g 'dg obtained from gauging the
0-gauge.

The construction so far is restrictive, in a sense since we focus on a 2-connection with value
in the same Lie algebra g. It seems natural to make it valued in some other Lie algebra b,
together with a map ¢ : h — g (a homomorphism of Lie algebras), which plays in a sense the
same role as the representation m when we dealt with a regular 1-gauge. The most natural
notion to use is that of a Lie 2-algebra [98]|. There are different notions of it. The first we are
interested in is the notion of strict Lie 2-algebra, which can be equivalently viewed as a Lie
algebra crossed-module [124]. The crossed-module formulation is most convenient to discuss
the notion of 2-gauge theory. We shall also see how the notion of a weak Lie 2-algebra can be

relevant in this setting.

11



2.2.2 Lie 2-algebras and Lie 2-groups

We first define the notion of Lie algebra crossed-modules, and introduce the fields relevant to
building a 2-gauge theory. We will then seek to develop all the structures of a principal 2-bundle

(see eg. [107]) from field-theoretic considerations.

Definition 2.2.1. A Lie algebra crossed-module & is the data of a pair of Lie algebras
(5, [, =]V, (&,[—, —]o), a Lie algebra action 1> : g — Derh and a Lie algebra homomor-
phism ¢ : h — & (called the t-map), satisfying the equivariance and the Peiffer identity

(X >Y)=[X,tY], [V,Y]"Y=@#Y)>Y, (2.2.3)
as well as the 2-Jacobi identities

[X, [ X, X o]0 + [X', [ X", X]oJo + [X", [X, X']o]o = 0,
X (X'>Y)-X'p>(XpY)-[X, XY =0, (2.2.4)

VX, X', X"eg, and VY, Y’ € b.

The B-equivariance of ¢ can be summarized by the following diagram

h ——— g
/ l : (2.2.5)

Derlh —— Inng

We shall denote a Lie algebra crossed-module by & = (h 5 g, >, [—, —]o) [115]. It is well-known
that Lie algebra crossed-modules are equivalent to Lo-algebras, strict 2-term Lo,-algebra [95, 93].
Definition 2.2.2. A [y-algebra is a graded space & =~ g_1®g equipped with n-ary operations
ftn, € Hom?* " (& &) given by

1o p:g-1 — go, n=2: pp=[——]:(00P9-1)®(GPg-1) — (G0 Dg-1)

S
I

such that the following Koszul conditions are satisfied,

[X7 X/] = _[X/7X]> [X7 Y] = _[YvX]7 Nl[Xa Y] = [X7N1Y]v [/"Ll}/u Y,] = [Y, MIY']’
(X X7, X7+ [[X7 X], X+ [[X5, X7, X =0, [[X, X Y]+ [[X Y] X+ [X[X, Y]

where X, X', X" e gy, YV,Y' €g_4.
It is convenient to write the graded bracket ps = [—, —] : 8,0, — &, ; with —2 < i+j <0,
in terms of the degree 7,7 mod 2 of & =~ g_; @ g, such that

(Y + X,V + X') = [X,X’]~|—([X,Y’]+[Y,X/]), X, X" ego, Y €g_1. (22.6)
In the following, we shall define p; on the full space go@® g1 by (Y + X) = 1Y

12



Definition 2.2.3. A Lie algebra crossed-module map ¢ = (¢, ¢p) : & — &' is a Lo-algebra
homorphismsm consisting of a tuple of Lie algebra maps ¢_; : h — b’ and ¢ : & — &’ such
that

poot =1t o,
and

P_1(X>Y) = (¢(X)) > (¢-1(Y)), VXed, Yeb

Given a Lie algebra crossed-module & = (b 4 g,>,[—,—]o), we simply identify g_; =
h,® = & and t = p;. Then, one reassembles the graded bracket s from the bracket [—, —]o

on & as well as the Lie algebra action > such that
pe(Y + X,V + X' = [X, X']o + (XDY’—X'DY), X, X'e®, VY eh.

It is then simple to check that the Lie algebra crossed-module conditions imply precisely the

Koszul conditions; in particular, the Peiffer identity implies the Koszul identity
(Y, Y] = [tV Y] = [V, Y100 = [y, Yo = —[tY", Y] = [V, Y] = [Y, Y]

as required. Conversely, given a strict Lo-algebra, one may recover a Lie algebra crossed-module

with the above procedure, provided one defines the bracket [—, —]"%) on b by
YY) = [y Y], (2.2.7)

whence the Koszul conditions guarantee that this bracket is skew-symmetric and satisfies the
Jacobi identity.
Due to this result, we will use "strict Lie 2-algebras" in the following to refer to both a

Lie algebra crossed-module and a strict 2-term L.-algebra.

Lie theorem for Lie 2-groups. It is known that there is a one-to-one correspondence
between (strict) Lie 2-algebras and connected, simply connected (strict) 2-groups [109, 125, 96],

where the latter of which also admits a group crossed-module description.

Definition 2.2.4. A Lie 2-group G = G_; L, Gy is the data of a pair of Lie groups G_1, Gy,
a smooth Lie group automorphism > : Gy x G_; — G_; and a smooth group homomorphism

t : G_1 — Gy such that the following conditions

t(r>y) =at(y)z™, () >y =y (2.2.8)

are satisfied for each x € Gy and y,y' € G_;.

It is easy to see that the t-map for the Lie algebra crossed-module is the tangent pushforward

(ie. the derivative) of the smooth map t in the corresponding Lie 2-group G.

13



2.2.3 Connections and curvatures for Lie 2-algebras

Let us consider now the relevant connections: the 1-form connection A is valued in g, while the
2-form connection ¥ is valued in h. As we will see in §2.2.3, ¢ is a Lie algebra homomorphism
that allows us to connect fields valued in h to ones valued in g. This action > can be viewed in
a sense as the gauge transformations induced by g on the fields/2-gauge parameters with value
in h. This will be discussed in §2.3.

The covariant derivative we will use is still d4, ie. it is defined in terms of the 1-connection
A. We will therefore use the action to define the covariant derivative of a form with value in
h. Taking an arbitrary h-valued n-form S € Q"(X) ® b, we introduce the wedge product A"

between a 1-form and and n-form,
A (QUX) @ 9) @ (@7(X) ®h) 2> 07 (X) @ (3@ ) S 9 (X) @,
This allows to define the covariant derivative of S € "(X) ® b,
daS=dS+ AA"S.

Putting together the differential dy— = d — +A A" — on Q"(X) ® h with the t-map, and using
the g-equivariance® implies that the covariant derivative d4 on h-valued forms is mapped under

t to the covariant differential d4 on g-valued forms. This can be expressed compactly as
tdg = dat. (2.2.9)

Given the general 2-Lie algebra framework, we explore the different notions of curvature
that appear. First we have the notion of fake flatness which relates the 2-connection to the
1-curvature up to the t-map. We then express the properties of the 2-curvature and highlight it
also satisfies a type of Bianchi identity. Finally, we discuss how the one kind of violation of the

1-Bianchi identity can be recast in terms of a 2-gauge theory based on a weak 2-Lie algebra.

Fake-curvature
When using the crossed-module formalism, the relation between the 2-connection and the
curvature we introduced in (2.2.2) can be rewritten as

t(X)=F =da+ana,

with ¥ = dL + 1[L A L], provided that ¢(L) = a. In fact (2.2.2) can be readily obtained if h = g
and the t map is the identity. Hence the construction in (2.2.2) can be seen as an example of

a 2-gauge theory based on the identity crossed-module.

ZWe have t(A A™ S) = [A A t(S)].

14



The relation (2.2.2) can also be interpreted as a generalized notion of curvature
F=F—t%),
which is known as fake-curvature. The condition in which it is constrained to be zero,
F=F—tX%) =0, (2.2.10)

is known as the fake-flatness condition. A naive notion of "2-parallel transport" serves as a
geometric motivation for imposing (2.2.10) [106], but we need not assume it at the infinitesimal
level based on a Lie algebra crossed-module/strict Lie 2-algebra. We will see nevertheless that

such condition can also appear when we consider 1- or 2-gauge transformations in §2.3.

Remark 2.2.1. As mentioned previously, we note that (2.2.10) can be interpreted as sourcing
the curvature with ¢(X), allowing us to break away from a flat 1-connection by sourcing it with a
higher-gauge field. Further, it is possible to define a notion of higher-parallel transport without
fake-flatness F # 0, which would move us into the realm of adjusted 2-parallel transport [99].

We shall not consider this here.

2-curvature and 2-Bianchi identity

The 2-curvature is defined as the tensor K = d,X € Q*(X)®Hh. When the 2-connection is pure
2-gauge X = dL + %[L A L], we have as expected K = 0,

1 1
da¥ = d°L + 5d[L AL+ t(L) > (dL + 5[L AL =0 (2.2.11)

where for simplicity we picked the 1-gauge where A = ¢(L) and we used that d* = 0, the Peiffer
identity and the Jacobi identity for b.

One may insert a 2-curvature anomaly k # 0, such that K = k, in which the principal
2-bundle under consideration is no longer trivial. We will study this in §2.3.2. As we are going
to show, K (and hence k) must be valued in ker¢ on-shell of the fake-flatness condition F = 0.
Indeed, for any 2-connection, as a consequence of the fake-flatness condition and the 1-Bianchi

identity, the 2-curvature must be valued in kert c b.
tK) =t(daX) = dat(X) = daF = 0. (2.2.12)

As a consequence of the Bianchi identity, we have that d4K € kert.

On the other hand, by the graded Leibniz rule, the 2-curvature K satisfies
daK = da(dsX) = F A" X =t(2) A" X = [Z A X|kerts

where we used the Peiffer condition. Note that since d4 K is valued in ker ¢, we should project

the commutator [¥ A Y| to kert. However, since ¥ is a 2-form and [—,—] = (t-) > — is

15



skew-symmetric, this term vanishes and hence we achieve the 2-Bianchi identity
daK = 0. (2.2.13)

1-Bianchi anomaly and weak 2-Lie algebras

Now suppose we relax the 1-Bianchi identity, such that it no longer holds. Then K needs not

be valued in ker¢.

tKIdAF:dF-i-[A,F]=d2A+%d[A/\A]+[A/\dA]+%[A/\[A/\A]]
deA—i-%[A/\[A/\A]]#O,

where we used that d[A A A] = [dA A A] — [A A dA] = —2[A A dA]. There are two different
ways to do this, one is to let d?A # 0 (globally), in which case we have a monopole. The other
way is if the second term is non-vanishing, which occurs when we let go of the Jacobi identity
on g. In this case, g is strictly speaking no longer a Lie algebra; however, we shall see that the
following structure we shall derive can also be applied to the case where & is a Lie algebra, but
t = 0 must be identically zero.
Remark 2.2.2. The two ways in which the 1-Bianchi identity is violated are distinct. The
violation of the Jacobi identity [A A [A A A]] is of an algebraic nature, and hence introduces
non-trivial modifications to our Lie 2-algebra structure; we shall focus on this case in the
following. On the other hand, the monopole case d?A # 0 is of differential geometric nature,
which indicates a non-trivial topology of the 1-gauge theory.

By relinquishing the Jacobi identity, we may write this term as a contribution to K by lifting
it along t up to h. In other words, we introduce a skew-trilinear map — called appropriately

the Jacobiator — satisfying

pe b (A A A) = [A A [A A A (2:2.14)

such that the modified 2-flatness reads
1
K =d ¥ — EM(A,A,A) =0. (2.2.15)

Since the term pu(A, A, A) arises due to the failure of the 1-Bianchi identity, we call it the
1-Bianchi anomaly. This structure is captured algebraically by the following.

Definition 2.2.5. A weak Lie 2-algebra [96], or equivalently a semistrict [126] Lie 2-algebra,
is a graded space & =~ g_; @ gy equipped with n-ary operations p, € Hom* "(&"", &) where
{1, pto are given as in Definition 2.2.2, but with a non-trivial homotopy map p = us : g4 —

g_1. The Koszul conditions now read

[XvX/] = _[leX]v [X7 Y] = _[Y> X]v :ul[Xv Y] = [X7 :U’IY]7 [N1Y>Yl] = [K lel]y
(2.2.16)
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(X, [X, X"]] + [X, (X7, XT] + [X7[X, X']] = tu(X, X', X"), (2.2.17)
X (X'>Y)-X'>(XY)-[X, XY = u(X, X tY)) (2.2.18)

for each X, X', X" e g=gopand Y € h = g_;. Moreover, 1 must satisfy the 3-cocycle condition

x> p(x, T, x3) = pl[x, x1], T2, T3) + pl1, [T, 22, 23) + P21, T2, [, 73]). (2.2.19)

Indeed, (2.2.14) is equivalent to the second line of these conditions. Note p may only appear
for non-Abelian g, and we note that the 1-gauge transformations need to be carefully analyzed

in this case as u(A, A, A) will not be a tensor.

Given the above structure, we can compute using the 3-cocycle condition (2.2.19) that

dap(A, A A) = d(pu(A, A A)) + A A" p(A A A) g-equivariance and Leibniz rule
= (3u(dA, A, A)) + g,u([A, A, A, A)) Trilinearity of u
= 3u(F, A A),

where O denotes a summation over cyclic permutations. The factor of % appears in the second
line due to the fact that u([A, A], A, A) is symmetric under an exchange of the first argument
[A, A] and the last two arguments A, A. This gives rise to the modified 2-Bianchi identity

1
dAK = F A" 5 = gp(F, A, A) = 0,

which has also appeared in the context of the gauge theory based on a weak Lie 2-algebra [99].

Remark 2.2.3. Notice that if the weak Lie 2-algebra is skeletal, namely ¢ = 0, there is no
violation to the Jacobi identity in the component g. An example is the skeletal model string
Lie 2-algebra string,(g) of a simple Lie algebra g [99, 122|, where k € Z is called the level.
The Lie 2-algebra structure is given by ¢ = 0,> = 0, and the Jacobiator is y = kw, where w is

the fundamental 3-cocycle

W= <_> [_7 _]> € Z3(97R)
This is one of the most commonly-seen weak Lie 2-algebras in the physics literature. The
bundle gerbe associated to the string Lie 2-algebra describes the string structure appearing in
string theory [43, 100].

2.3 Gauge transformations

In this section, we review the different transformations we can perform and the inherited com-

patibility conditions.
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2.3.1 1- and 2-gauge transformations

1-gauge transformations. In order to preserve the fake flatness condition, we derive the

transformations of ¥ and then K, from the transformation of the curvature 2-form (2.1.3).

F — F*=F+[F A=t -t +[tX),\]=tE)-tA>X)
Y - Y-ADX
K=ds~ — K-\pK, (2.3.1)

where A € Q°(X)®g.
Now suppose the underlying Lie 2-algebra is weak, with p # 0. We shall see that, provided

¥ acquires an additional term [99]
1
zﬁzkzzfA>zf§MXAA) (2.3.2)

under 1-gauge transformation, then we preserve the covariance of the 2-curvature under the

1-gauge transformations,
K- K=K -A> K+ p\AF).
Indeed, working with the modified 2-curvature (2.2.15), we have from the definition (2.2.18),
—AATASD)+H[ANATE = —p(A, N E2) = A> (AATE) = pu(\, AjtE) = A>(AATY). (2.3.3)

On the other hand, we have by the g-equivariance of y, (2.2.19), that

pldad, A, A) = (A A, A) = (X, AL A, A) — p([4, ], 4, 4))

1.2
— A A" pu(\ A A))
= 2\, A F) + 205 (A, A, 4) — dap(\, A, A).

There are three such terms, hence we have

1

1 1

A lu(A7 Aa A) - %dAM()H Av A) + O()\Q)

modulo terms of higher order in A\. These terms precisely cancel the dapu(\, A, A) term in the

1-gauge transformation of K, as desired.
2-gauge transformations. The shift of the 1-connection parameterized by L such that a =

t(L) is interpreted as the 2-gauge transformation. Indeed, the 2-connection ¥ was introduced
such that the 1-form shift A — A" = A+¢(L) in the 1-connection was interpreted as a (2-)gauge
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symmetry.

Given the 2-form connection ¥ undergoes a corresponding 2-gauge transformation,
, 1
Y- :E+dAL+§[L/\L], (2.3.4)

parameterized by a 1-form L € Q'(X) ® b, we see that the fake-curvature F = F — t¥ is kept
invariant, as desired. The 2-curvature is covariant under this 1-form shift transformation since,

with A" = A+ t(L),
1
K=K = dyX = dyS + L) A7 S+ dasaqpy(daL + 5[ A L))
1 1
= K+[L/\E]+F/\>L+édA[L/\L]—HE(L)/\'>dAL+§t(L)/\>[L/\L]

1 1
= K 1S A" L+ F A" Lt gda[L A L 4 [L A dal] + S[L A [L A L]]
— K+FA"L~K (2.3.5)

where we used extensively the Peiffer conditions, and the Jacobi identity for the cubic term in
L. Note K is invariant on-shell of the fake-flatness condition F = 0.

Now let us consider how the modified 2-curvature K (2.2.15) transforms in the weak case
p # 0. We seek to pick out terms in the computation of (2.3.5) that implicitly uses the 2-Jacobi

identities. All such terms occur in the quantity
1
daser)(dal + §[L A LJ),
which can be organized into three parts:
2 1 3y, L >
o(L) : dadaL, o(L?) : dipdal + §dA[L A L], o(L°) : §tL AT L A L.
Consider first the term linear in L, which gives
1
dadaLl = (dA) A" L+ AN (AN L)=F A" L+ §M(A,A,tL)

by using (2.2.18). The additional p-term here is compensated precisely by the linear o(L)-terms
in the 2-gauge transformation of u(A, A, A):

(AL A A) > (A, A A) 4 Ja(A, A, 1E) + of ).

Next we look at the terms quadratic in L. This gives

dupdaL + %dA[L ALl = %A NP [L AL+ [L A (AA® L)] = (A L, ¢1)
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via (2.2.18), which is compensated precisely by the o(L?)-terms in the transformation

|
A A A) = (A A A) 4 (AL A ) + (AL EE) + o 1)

Finally, the cubic term is
1
tLA"[LALl=tLA"[LALl=[LA[LAL]= 5u(tL,z&L,tL),
which is compensated by the o(L?)-term in the transformation
1 1 1 1
5#(14; A A) — 5#(14; AA) + §M(A’ A tL) + p(A tLtL) + gu(tL,tL,tL).

As such, we see that the modified 2-curvature (2.2.15) follows also the 2-gauge transform law

(2.3.5).

Compatibility between 1- and 2-gauge transformations. The shift has to be compat-

ible with the 1-gauge transformation, so that the new curvature transforms covariantly,

AN =Ata—A+dyd=a=tL)—a+[a N =tL)+[tHL),\] (2.3.6)
L—>L-A>L (2.3.7)

where we used the Peiffer conditions, as always. It is interesting to note that 1-gauge (X, 0) and
2-gauge (0, L) transformations do not commute. Through straightforward computations in the
strict case pu = 0 [69, 110, 127], we see that

[(X,0),(0,L)] = (0, A& L), (2.3.8)
so 2-gauge transformations in general form a semidirect product |72, 110]
Gauy = (2(X)®@b) x (2(X) @)

defined by (2.3.8).
It is possible to perform the same kinematical analysis for the weak case, where u # 0.

However, here the commutator between 2-gauge transformations read 99|
[N L), N, L] = (NN, A L= XN > L) 4+ (0, u(A N X)) 4+ u(F, A N). (2.3.9)

This is a major issue, because the additional term u(F, A\, \') is not a gauge transformation
— the 2-gauge algebra Gau, fails to close unless the fake curvature condition F = 0 is always
satisfied! This is one of the motivations for the theory of adjusted parallel transport in [99]. Of

course, when p = 0, we have a set of compatible gauge transformations, even if possibly F # 0.

Generally, we also have a "higher gauge transformation" on the 2-gauge parameter L —
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L + dul, where ¢ € Q°(X) ® . If we take the two 2-gauge parameters L, L/ = L + du/{, and
define

1 1
Y =Y+dsaL + §[L A L, Y=Y +dsL + Q[L’ AL
A= A+tL, A" = A+t = A+ t(L + dal),

then we have

1
-3 = FA>€+[L,dA€]+§[dA€,dA£],

Jy [F,t(é)]+[tL,t(dAé)]+%[t(dA£),t(dA€)].

By the Peiffer conditions, we see that the two 2-gauge transformations L, L = L + dsl act
identically on the fake-curvature F = F — t¥ [69, 128]. The computation (2.3.5) then implies
that the 2-curvature K is invariant on-shell of fake-flatness & = 0 under both L, L’. Because of
this, the study of such higher gauge transformation is not necessary in the context of higher-BF
theories [110].

2.3.2 2-curvature anomaly and the first descendant

Recall from (2.3.5) that the 2-curvature K is covariant under a 2-gauge transformation. To
introduce a 2-curvature anomaly x into the theory, we require the anomaly equation of motion
(EOM) K = k to transform covariantly, identically to how K transforms. On-shell of fake-
flatness F = 0, then, k = k(A,Y) must be 2-gauge invariant. Now since under a 2-gauge
transformation, ¥ shifts by an arbitrary element in h and hence x must be a constant as a
function of h. On the other hand, shift invariance k(A) = k(A + tL) implies that it can still
have A-dependence through cokert¢ = g/im¢.

Here, we will study this particularly nice form of the 2-curvature anomaly x(A). We shall
see that the covariance of the 2-curvature anomaly EOM K = k(A) will require a twist in the

gauge transformations.

Twisting gauge transformations. Given the 1-form connection A transforms in the usual
manner, we shall demonstrate here that the 1-gauge transformation of the 2-form connection

> must be twisted by an additional term
Yo YA =N - A2+ (). (2.3.10)

This additional contribution is required such that the 2-curvature anomaly equation K = «

transforms appropriately.
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Proposition 2.3.1.

1. The quantity K = K — k(A) transforms covariantly under 2-gauge transformations

K—>K'=K+FA"L

iff the 2-form C is ker t-valued and only a function of cokert.

2. the quantity K transforms covariantly under a 1-gauge transformation

iff Ca satisfies the following descent equation

dnCa(N) = K(AN) — (K(A) — A > K(A)). (2.3.11)

We call solutions C4 to (2.3.11) the first descendants of the 2-curvature anomaly x(A) (cf.
[69]).

Proof. We prove the second statement first. Indeed, we first have the following computation

K = dpX =dpn (B =A%) 4+ dpna(N)
= du2X—A> (dAZ) + dAACA()\) (2.3.12)

using (2.3.1). On the other hand, the 2-curvature anomaly transforms as xk(A) — xk(A?*), hence
from (2.3.12) we have

K —k(4) — K- k(A
= AT - (dAZ) + danCa(N) — K(AY)
= (K —r(A) = A (K - K(A4))
+ danCa(N) — m(AA> + K(A) = A K(A).

The last line is precisely the descent equation (2.3.11). Note moreover that (4(\) is valued in

kert iff it does not conflict with the covariance of the fake-curvature,

tH(X) = t(Z) = () —tA > B) + t(Ca(N)) .

Now we consider a 2-gauge shift symmetry. Note the covariance of the transformation
K — K" (2.3.5) implies that K* — K is in fact independent of , and hence both x and ¢
cannot transform under L. By hypothesis, x(A) is shift invariant, hence we acquire the following

terms from applying a 2-gauge transformation to the descent equation (2.3.11):

tL A" Ca(A) = —tCa(A) A7 L =0,
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[tL AN AT Ca(A) = —t(A> L) A" Ca(N) = (HCa(N) A" (A> L) =0,
Car(A) = Ca(N) +Gr(N). (2.3.13)

where we have used the Peiffer identity and the fact that (4()\) is ker t-valued. Note the last
term remains (4 iff ¢ depends on A only through cokert¢, which would imply that (2.3.11) is
invariant under 2-gauge transformations. This ensures that first descendants do not transform

under L, as desired.

]

If k = 0, then the first descendant (A, \) can be chosen to vanish, in which case we reproduce
the covariance of K (2.3.1). Conversely, (4(\) necessarily occurs in the presence of a non-trivial
K(A).

The descent equation (2.3.11) guarantees the 1-gauge covariance of the equation of motion
K = k, and provides a differential equation which allows to express  in terms of (. As such,
one may conversely view ( as a particular twist in the 1-gauge transformation of ¥, which

"inserts" the 2-curvature anomaly .

For readers familiar with the theory of Lie 2-algebras, this sort of 2-curvature anomaly
k(A) is in fact precisely given by the cohomological cllassification of &. This class [k] €
H?3(cokert, kert) is called the Postnikov class of &. We shall explain this in more detail in
the Appendix.

2.4 2BF theory

The simplest action to consider is an action constructed from Lagrange multipliers enforcing
the fake-flatness and 2-flatness constraints as equations of motion (EOMs). As such, this action
is topological. By analogy to the BF case, we would call this action the 2BF action [110, 127].
We shall see how the 2BF theory gives us a glimpse into the general symmetry structure of Lie
2-bialgebras and Drinfel’d 2-doubles, which we shall describe in detail in Chapter 3.

2.4.1 Action and EOMs

Let X be a manifold of dimension d and let us fix a Lie algebra crossed-module & = h 4 g.
Let &*[1] denote the dual space of linear functionals on &, and similarly let g* h* denote
respectively the dual space of g and h. We denote by (—, —) the duality pairing for them.

We begin by introducing Lagrange multipliers B € Q2 ® g*, C € Q%3 ® h* which imple-
ments the aforementioned flatness conditions. The 2-BF action in the absence of 2-curvature
anomalies is

Somr[A, 3] J (B A F(A,D)) +(C n G(AT)), (2.4.1)

where F(A,Y) = F —t(X) and G(A,X) = K = daX. For d < 3, the 2-BF theory reduces to a
BF theory, since the dual field C' does not exist.
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The first half of the EOMs are
IB=F=F—1%)=0, 0C = G =du> =0,

which implement precisely the fake curvature and 2-flatness conditions, respectively. On the
other hand, we also have the option to vary A and Y. These must be done more carefully: we

first introduce a map A : h A h* — g* dual to the crossed-module action:
({CAAATE))=—AA(CAX)AA).

Second, we define the map t* : g* — bh* dual (with respect to the pairings (—, —)) to the

crossed-module map ¢ : h — g, and write
(B At(X)) ={*(B) A X).
We also introduce the dual of the action and adjoint representation,

Yrey) ==z yy), & ra"]) = ([, 2], 2",

forally e b,y e h*, x e g, 2’ € g*.
These yield

SA=dB+[AABl*—=A(CAX)=0, O0X=t*B+dC+AA""C=0.
If we define the quantities
F=dy,C=dC+AA>"C, K=dsB=dB+[AA B[,
we see that these sets of EOMs read
F=t(B), K=ACAY), (2.4.2)

the first of which looks like a fake-flatness condition for the dual fields. This suggests that B, C'
should be treated as a 2-connection as well, valued in a Lie algebra crossed-module of the form
t* . g* — b*.

Remark 2.4.1. Indeed, dualizing the ¢ : h — g gives t* : g* — b*, hence the dual Lie 2-algebra
®*[1] comes with a shift [1] in the grading of the underlying vector spaces. This is a small
subtlety in the mathematical notation that we shall keep in order to be consistent with the
mathematical literature [95, 96, 114].

In the case of the specific action (2.4.1), the dual Lie 2-algebra is Abelian, equivalent to a
2-vector space [109]. More general cases can be studied by including certain coupling terms in
the 2BF action; see [115].
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2.4.2 Symmetries of the action

It was shown in [110] (see also [127]) that the 2BF action (2.4.1) is preserved under the opera-

tions

F - F=F+[F, )\ FoFL=F

: L: , (2.4.3)
G—->G=G+A>G G>Gl=G+FA"L
B — B*= B+ [\ BJ* B—BL=B+A(CAL)

, L: o (2.4.4)
C>C*=C+A\p*C C—-cLl=¢C

where we recognize the transformations of F and G we obtained in §2.3. Notice G is invariant
only on-shell of the fake curvature condition F = 0, which we had assumed in (2.3.5).

Algebraically, this implies that the 2-gauge algebra Gauy = (Q'(X)®b) x (Q°(X)®g) acts
naturally on the dual fields B,C. In other words, the original Lie 2-algebra & has a natural
action on the dual Lie 2-algebra &*[1] induced by the data >* A emergent form the dual
EOMs (2.4.2). These actions define a strict coadjoint representation [95] of the Lie 2-algebra
& on its dual &*[1].

A bit more structure can be inferred here, in fact. Generally, suppose the dual Lie 2-
algebra B*[1] is non-Abelian and defines its own 2-gauge sector, then the corresponding gauge
parameters (), L) € &*[1] also acts on the dual fields (C, B) as

N C — C*=C +deh ; C—CL=C+1TL
|B>B =B+Ax*B | B BE = Bdol + L[ A L),

If there is a non-trivial back-action of &*[1] on &, then (A, X)) would transform under (\, L)
as well, analogous to how (C, B) transforms under (A, L) in (2.4.4). If certain compatibility
conditions are satisfied between the mutual action of &, &*[1] between each other, then we

obtain the structure of a 2-Manin triple
D =06 g Mg 6*[1]7

which serves as a model for a "Drinfel’d 2-double" [95, 115] — a categorified, higher homotopy
notion of the classical Drinfel’d double 0 = g < g* for a Lie algebra g [9]. For a more detailed
study and analysis, see Chapter 3.

In this Chapter, we have introduced a procedure of "gauging" /localizing the higher-form
symmetry present in gauge theories. We showed that all the known 1- and 2-gauge transforma-
tions in a 2-gauge theory can be obtained from this perspective by imposing the condition that
certain physical quantities transform appropriately and covariantly. We also demonstrated how
certain well-known properties — such as flatness of the curvature and the Bianchi identity —
can be relaxed up to homotopy by introducing the concept of weak Lie 2-algebras.

At the end, we described the simplest topological 2-gauge theory exhibiting Lie 2-group
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symmetry, which is the 2BF theory (2.4.1). This example provided us a firsthand glance into
the fact that physical higher-gauge field theories typically exhibit a more intricate symmetry
structure, namely that of Lie 2-bialgebras and Drinfel’d 2-doubles, than the usual Lie 2-
algebra gauge symmetry. A deep dive in the mathematical formulation of such symmetry

structures will be the main point of the following Chapter.
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Chapter 3
Structure of Lie 2-bialgebras

We now dive into the full mathematical description of the Lie 2-bialgebra symmetry emergent
in the previous Chapter. We shall describe the known notion of Lie 2-algebra 2-cocycles, the
2-graded classical r-matrix, as well as the Drinfel’d 2-double following recent mathematical
literature (95, 114]. By leveraging these objects, I had developed a notion of graded Poisson
structure suitable for differential grade (dg) manifolds, for which Poisson-Lie 2-groups [96] are
examples. This perspective makes manifest the correspondence between (quasi) Poisson-Lie
2-groups and (quasi) Lie 2-bialgebras. This is based in part on my works [115, 116].

The classical r-matrix are known to play key roles in many areas of physics and mathematics,
such as deformation quantization [9], 2-+1d classical integrable systems [10] and 3d topological
quantum field theories (TQFTs) [129, 130, 131]. As such, a homotopy categorification of usual
classical r-matrix — namely the notion of a classical 2-r-matrix — are of particular interest, as
they are expected to play key roles in 4d TQFTs. Motivated by this, I will give a characterization
of the quadratic 2-Casimirs following my work [115], which controls the form of the classical

2-Yang-Bater equations [95].

3.1 Lie 2-bialgebras

Recall that Lie 2-algebras & =~ g _; @ go are synonymous with Lie algebra crossed-modules
t:h — & in which & = gy has degree-0 and h = g_; has degree-(-1). Similarly, Lie 2-groups
G = G_1 xGy 3 Gy are synonymous with Lie group crossed-modules ¢t : H — G with H = G_;
and G = G.

Let us begin by introducing the following linear maps
01:g-1— 0%, doigo— (B0®9-1) D (-1 ® o).

on the Lie 2-algebra &.

Definition 3.1.1. The tuple 6 = §_1 + §y is called Lie 2-algebra 2-cocycle — denoted
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§e Z1 (6,8 A 8) — iff the following conditions are satisfied [95, 125]

ot =(t®1+1®1t)d_4, (ID1 in Theorem 2.15 of [96]),
0=(t®1—-1&t)d, (ID2 in Theorem 2.15 of [96]),
So([X, X']) = (X >®1 + 1®adx)do(X")
— (X' >®1+1®adx)d(X), (2 ad-invariance)
I XpY)=(X>Rl+1®X>)i_1(Y)
+0(X) (Y ®1+1®>Y), (ID3 in Theorem 2.15 of [96]), (3.1.1)

where X, X' e® =ggand Y eh=g_;.
We can now define the notion of a Lie 2-bialgebra 95, 96, 115].

Definition 3.1.2. The tuple (8;6) is a (strict) Lie 2-bialgebra iff the Lie 2-algebra 2-cocycle

0 satisfies furthermore the following 2-cobracket conditions

0 = D ((0u1+0)®1)0dy=(5_1®1)0d — (1®d) o dy
cycl.
— (T®1)O(1®50)060
0 = 2(5—1@91)05—1=(5—1®1)O5—1—(1®5—1)05—1
cycl.
—(T®1)o(1®d-1) 01, (3.1.2)

where 7: B ® & — & ® & swaps the tensor factors.

These conditions are equivalent to ¢ defining a Lie 2-algebra structure [—, —], given by

<[f7 f,]*7Y> = <f®f/75—1<y)>7 <f >* g7X> = <f®gv($0<X)>

for each X € go,Y € g_; and each element f, f' € g*,,g € g§ in the dual graded space &*[1],
which we recall is equipped with a dual differential ¢ : g% — g_;. Indeed, the dual analogue
of the conditions (2.2.3) read

tr(ferg) =[f,t"gls, tTgr*d =19,d1s, ¥V feg s, 9,9 €,

which when written in terms of the 2-cochains (§_1, dy) are equivalent! to the first two lines of
(3.1.1). The 2-Jacobi identities then follow from conditions (3.1.2).

Note the shift in the grading [1] upon dualizing the graded Lie algebra. The above definition
is a direct generalization of the notion of a Lie 1-bialgebra (&;4) 9] to the differential graded

context. The following will describe results that also have lower-dimensional analogues.

1To see this, we first note (t7)7 = ¢ and evaluate, for instance, dot to yield (f A g)(6otY) = (f>*g)(#(Y)) =
(tT(f =% 9))(Y), while (f A g)(t@ 1+ 1@®1)0_1(Y)) = (f A tTg)(01Y) = [f, T gl (V).
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Weak Lie 2-bialgebras. Now recall the notion of a weak Lie 2-algebra as given in Definition
2.2.5, in which the Jacobi identities are relaxed up to homotopy given by a skew-trilinear
homotopy map g : gi* — g_1. The same idea can be applied to give the notion of a weak Lie
2-bialgebra [114], by relaxing the 2-cobracket conditions given in (3.1.2). To explain this, we
first define the notation

~——

i-th position

Da:i(_l)iu@...@ a ® --®1)

for the extension of a linear operator a : V — V to tensor products V"®,

Definition 3.1.3. A weak Lie 2-bialgebra is a tuple (&;4,7n) consisting of a weak Lie 2-
algebra &, a Lie 2-algebra 2-cocycle § and a cohomotopy map 7 : gy — g>} satisfying the

weak 2-cobracket conditions

not = Y (01 ®1)od_y, (3.1.3)

cycl.

Dion = >.((0-1+60)®1)0d (3.1.4)

cycl.

as well as the 3-cycle condition
Ds ,on=(1®n)od. (3.1.5)

In accordance with [96], we call (&;0,7n) in which & is strict u = 0 a quasi Lie 2-bialgebra.

The strict notion of Lie 2-bialgebras is clearly obtained by taking n, u = 0.

)3/\ N

As the name suggests, the cohomotopy map 7 dualizes to the homotopy map p* : (g*,
go of the dual Lie 2-algebra &*[1],

N @Y, ® Y3, (X)) = (u (Y1, Y2, Y3), X).

Indeed, the weak 2-cobracket conditions 3.1.4 imply (2.2.18), and the 3-cycle condition (3.1.5)
implies (2.2.19), hence B*[1] forms a weak Lie 2-algebra by Definition 2.2.5.
Therefore, analogous to Lie bialgebras [9], we once again have the following self-duality

property [95].
Proposition 3.1.1. (&;6) is a (weak) Lie 2-bialgebra iff (&*[1]; 6*) is a (weak) Lie 2-bialgebra.

We can organize the situation like so:

cohom. map 2-cocyc. ... are dual to ... gr. bracket hom. map

T

05*[1] :
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3.1.1 Classical Drinfel’d 2-double

Recall the self-duality property of Lie bialgebra structures is key in forming the classical Drin-
fel’d double ? = & < &* [132, 9]. Let us now turn to an analogous structure © which we call

a classical Drinfel’d 2-double. We shall focus on the strict case here.

Adjoint and coadjoint representation for Lie 2-algebras. Towards a description of ®,
we need to understand the adjoint representation of a Lie 2-algebra &. We denote this action

of & on itself by 5 ad, and it consists of the following graded components [95]

adg : go — End(go® g_
sad = (adg,ad_;) : g — End g, 0 g (90®g-1) (3.1.6)

ad_y : g—1 — Hom(go, g-1)

where

ado(X) = (adx = [X, -], xx = X > —), ad_1(YV)=—->Y

for each X € go,Y € g_1. They satisfy the following key identities
adx t = tyx, ad_1(Y)t = — ady, tad_1(Y) = —adyy (3.1.7)

for each X € go,Y € g_1, which come from the equivariance and the Peiffer identity conditions
(2.2.3). We shall denote the adjoint representation of the dual Lie 2-algebra &*[1] by ad.
By dualizing the adjoint representations 5 ad,; ad (3.1.6) with respect to the canonical eval-

uation pairing, we define

(adg,ad;) : g — End g*[1], (adf, ad*,) : g*[1] — End g,
ady = (ad®, x*) : go — End(g; ® ¢ ,), adg = (ad*,n*) : g*; — End(g_1 ® go),
aJdﬂil =A: g1 — Hom(gilagg)7 ao*_l = A : gg - Hom(go,g_l). (318)

Explicitly for each X, X’ € go,Y € g_1 and ¢,¢' € g5, f € g*,, they are defined in graded

components by

(ad g)(X") = —g([X, X']), f1(@3Y) = =[f, f']«(Y),
OxNY) = -f(X>Y), gy X) = =(f >* g)(X),
(Ay (MN(X) = —f(X > Y), F(Ay(X)) = =(f >* 9)(X).

It is clear that the canonical evaluation pairing

Lg+ [, X+Y)) = fY) +9(X) (3.1.9)

is by definition invariant under the coadjoint representations (3.1.8). The equivariance of ¢
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identities ty = adt,t’n = adt? then lead to

Yit? = t1 ad, Nt = tad}, (3.1.10)

Ay otT = ad, Agot=ad, (3.1.11)
If ad*, ad* satisfy (3.1.10), (3.1.11), then (3.1.8) define strict coadjoint representations of
g and g*[1] on each other.

We are now ready to define the classical Drinfel’d 2-double.

Definition 3.1.4. Let (&;) denote a Lie 2-bialgebra. The classical Drinfel’d 2-double ©
of & is given by the underlying differential graded (dg) vector space

OB = (0 @ 0;) " (20D %)),
—_—— E,_J
deg=—1 deg=0

and the following Lie 2-algebra bracket [—, —] defined by

[X+YV, X' +Y]=[X+Y,X +Y'], lo+f,d+f1=1g+fd+[]
[X+Y. '+ 9] = sady x(9+ f) a0y, (X +Y)

where X € go,Y € g1 and f € g*,,9 € g5. We denote the classical Drinfel’d 2-double by
D = BB*.

The central characterization theorem of [95] is the following.

Theorem 3.1.1. The tuple (8;6), (&*;0*) of mutually dual Lie 2-bialgebras form a classical
2-double ® = & > &* iff the following compatibility conditions

NPX X = (X X+ (XX = e p X e X

Xxlf Fe = DG P e+ UXa Sl = X /4 X x (3.1.12)
(X >Y) = X (ad}Y)+ (nX)>Y — ad,x ;Y + An, (5)(X),
adx(f >*g) = frr(adx g) + (k) B g —adprx g+ Ax ) (f), (3.1.13)
AfIX, X)) = X AYX) + X' Ag(X) = Auag (X) + Asas, 4(X),
Ayl fe) = FePAv(f) + 27 Av(f) = Aapy () + Aat, v () (3.1.14)

are satisfied for each X, X' € go, f, f' € "1, Y € g-1,9 € g§.

It is clear that each of piece of &, &* in © are coisotropic with respect to the canonical bilinear
form (3.1.9),

<<®> ®>> =0, <<Q5*7 ®*>> =0,

hence the tuple (&, &* ((—, —))) forms a 2-Manin triple, called the standard 2-Manin triple.

The following result is also proven in [95].
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Theorem 3.1.2. All homomorphisms of 2-Manin triples (cf. Definition 2.2.3) are isomor-

phisms.

Hence 2-Manin triples are all isomorphic to the standard one, aka. a classical 2-double. I have
provided a new proof of these known results from gauge theoretic considerations, but they are

too lengthy to reproduce here. The interested reader is referred to [115] for details.

3.2 Poisson-Lie 2-groups

Recall the Lie theorem is well-known [98, 105] to generalize to Lie 2-groups, that there is
a one-to-one correspondence between connected, simply-connected Lie 2-groups and Lie 2-
algebras. An analogous statement for Lie 2-bialgebras would then involve structures of a so-

called Poisson-Lie 2-groups. The following definition is due to [96].

Definition 3.2.1. A Poisson-Lie 2-group (G,II) is a Lie 2-group G = G_; x Gy =3 Gy
equipped with a bivector field IT € X*(G) that is multiplicative with respect to both the group

multiplication and groupoid multiplication of G.

We now wish to describe the structures of a Poisson-Lie 2-group fully. In order to do so, we

formalize the definition of a Poisson 2-algebra for differential graded (dg) manifolds in general.

3.2.1 Poisson structure on dg manifolds

Let M = M_; % M, denote a differential graded (dg) manifold consisting of only two terms,
which is the data of a pair of manifolds M_;, My and a smooth map t : M_; — M,.

Definition 3.2.2. The smooth functions C* (M) on M make up a differential graded commuta-
tive algebra (dgca) C™ (M) iR C*(M_;) given in terms of the graded sum C*(M_,)®C*(M,),
and the pullback t* : C*(My) — C*(M_,).

Note the reversal of the degrees due to the pullback — Fy € C*(M,) has degree-(-1) while
F_1 € C®(M_;) has degree-0. It will also be convenient to extend t* to all of C*(M) =
C*(Mo) ® C*(M_,) by

t*F =t (Fy®F1) =t*F.,, Y FeC®M).

The section I'(M, T M) of vector fields inherits the graded structure from TM =~ TM_; x
T M,. Hence, to build bivectors on M, we begin by first forming the following 3-term chain

complex

(M, TM®TM) = TI(M,TM_1Q®TM_;)25
(T(M, TM_, ® TMy)) ®T (M, TMy @ TM_,)) 24 T(M, TMo ® TM,),
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where D; = t®id £id ®t and ¢t = T't is the tangent pushforward of the anchor map t : M_; —
M. In accordance with the grading, we assign the degree -2, -1, 0 to the terms of the complex
(M, TM?®) from the left to right, and the sign in D; depends on this grading.

We shall define the space of bivector fields X?(M) as a subcomplex of I'(M, T M?*®).

Definition 3.2.3. The graded bivector fields X*(M) on M consist of sections IT € T'(M, T M*®)

such that the following conditions
t*11° = DT, D11’ =0 (3.2.1)

are satisfied, where II7! has degree-(-2) and II° has degree-(-1) in I'(M,TM?*®). Due to the

second condition, we can introduce a component I1° in degree-0 by
°=(1eH)l’ = (te 1)

One can compute that, for any smooth submersion ¢ : X — Y and any vector £ € ['(X,TX),

we have

§(O°F) = (¢:8)(F),  FeC(Y),

and therefore
DTt =I'ot*®1+1®t*). (3.2.2)

This will be important in the following.

We use the subspace of skeursymmetric bivector fields X2 (M) < T'(M,TM AT M) to define
the following structure on C®(M). Let I = II7! + I1° € X2 (M), we define

(F.F) =T(FQF), FFeC?M) (3.2.3)

which can be more explicitly written in the decomposed form

{F, F'}o {Fo, Foyo = II°(Fy @ F),
{FaF/}fl {FflaF(;}*l + {F07Fi1}*1 = HO(Ffl ®F(; + F0®FL1)7
(PP} = {F FL =TT (Fa®F),

by leveraging the decomposition F' = F_; @ F, of functions on M. We now prove that
(C*(M),{—,—}) is in fact a Lie 2-algebra.

Lemma 3.2.1. Let II = II"! + TI° € X2 (M) denote a Poisson bivector on M, namely a
bivector field satisfying

YII®1) = 0. (3.2.4)

cycl.
Then the graded space C*(M) = C*(M,) , C*®(M_y) equipped with the bracket (3.2.3) a
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strict Lie 2-algebra. We call (C*(M),{—,—}) the Poisson 2-algebra of the graded Poisson
manifold (M,II).

Proof. The proof consists in showing that the different properties given in Definition 2.2.2
are satisfied. The skew-symmetry property is automatic. By a direct computation, the first

condition in (3.2.1) implies

CIRF) ., = TR, +F 0 R
= (D) (R ®F, + L ® F)
= IR QF, + F @t F)
= {Ft"F'} o+ {t"F, F'} o,
where we have also used (3.2.2).

On the other hand, {—, —} is determined by {—, —} _;, as II° is induced by I1° through D;"
from (3.2.1). We thus have

/ 1 / ]‘ /
{F,.F'}y = M(Ry®F) = §(DJHO)(F0®F0)
= —Mt"FHQF)+ Fy @t Fy)

— St F)_ + (Pt F) ) = {t°F, F'}_,.

N =D =

From the Lie 2-algebraic perspective |95], the right-hand side of this computation should be
taken as the definition of {—, —}o.
Now it suffices to check the 2-Jacobi identities,

{{F’ F/}—QvF”}—l + {{F/’F”}—laF}—l + {{F,/vF}—lvF,}—l
{{F, F/}_z, F”}_z + {{F’, F”}_Q, F}_Q + {{F”, F}_g, F}_g = 0.

I
o

These are nothing but (3.2.4).

3.2.2 Poisson-Lie 2-groups as a Poisson dg manifold

The central example of a graded Poisson manifold (M, II) is a (strict) Poisson-Lie 2-group
(G, 1), where the graded Poisson bivector field IT = I + I1° € X2 (M) is given by

0= (L)) M= (Lol T = S(L)u(D )

T

where & integrates the Lie 2-algebra 2-cocycle § = §_1 + dp on &, and L, is the pushforward of
the group left-multiplication on G = G_; x Gy = Gy. The conditions (3.2.1) are nothing but
(3.2.5), and (3.2.4) follow from the 2-cobracket conditions (3.1.2). The rest of the 2-cocycle

conditions, namely the third and fourth equations in (3.1.1), in fact implies the multiplicativity
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of the bivector II with respect to the group and groupoid multiplications in G [96].

Theorem 3.2.1. There is a one-to-one correspondence between connected, simply-connected

Poisson-Lie 2-groups and Lie 2-bialgebras.

To describe this correspondence, we write down how the Lie 2-algebra 2-cocycle 6 can be

integrated. Given & = Lie G, we can define the following maps G,

~

o_1: G-y — gy, do : Go — go A 9-1,

given by
54(Y) = < ua(o) 0(X) =~ -o()
-1 - ds s=0\V—1)expsY> 0 - ds s=0\Y0)expsX-
For each z € Gy, y € G_; and wy,wy € B* = g§, the first two conditions in (3.1.1) imply the

following

~ ~ ~

(00)ty = De(6_1)y, by UTes (00) 2 = —Lus by, (00) (3.2.5)

which had also appeared in [96]. Here, t7 : g — g*, denotes the dual of t, and D = 1®t+t®1
is the extension of the t-map ¢ to the tensor product three-term complex & [95].

The inner product ¢ in (3.2.5) is given by the evaluation pairing (—, —) : *[1]® & — k
such that (g + f,Y + X) = f(V) + g(X) for each g€ g¥, f € g*,, X € g9, Y € g_;. The dual ¢©

of the t-map is taken with respect to this pairing,

<tT97Y>:<gatY>a Vgeﬂga Yeg—l-

A quadratic 2-Casimir [115] can also be used to induce such an invariant bilinear pairing; we

shall explain this in more detail in §3.3.

2-graded Poisson maps. Let M, M’ denote two 2-graded spaces, with t-maps t,t’, re-
spectively. A smooth 2-graded map J = (J-1,J0) : M — M’ consists of smooth maps
J-10:M_19— M/—Lo as its components, such that we have t'7_; = Jpt. These maps pullback
onto maps J* , : C*(M", ) — C*(M_1) on functions satisfying t*J; = J* t"*, such that
J* = (J§,T*) : C*(M') — C*(M) defines the 2-graded map on the function algebra of M’.

When M = G, M' = G’ are two 2-groups, then 7 must be a 2-group homomorphism [96]:
the components Jy, J_1 are group homomorphisms such that J_1(x >y) = (Jox) >' (J-1y) for
each x € Gy, y € G_1, in addition to the condition Jot = t'J_;. These imply that J = (J_1, Jo)
preserves the Peiffer identities (2.2.8) on G,G’. If we let 7 = (-1, J0) denote the derivative of
J, then 7 preserves the Peiffer identities (2.2.3) on the Lie 2-algebras &, &":

t'9-1 = jot, 20X, X'] = [50X, 30 X], I (X DY) = (3X) > (3-1Y)

for each X, X' € gg,Y € g_1, where t,1" denote respectively the crossed-module maps on &, &'.

We call such maps Lie 2-algebra homomorphisms [124].
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Suppose (G,II) and (G',II') are two Poisson-Lie 2-groups. The condition for J to be a
Poisson map is that its pullback J* : C*(G’) — C*(G) commutes with the bivectors, anmely

(TN @FL + Fa®Fy) = (TSR TN F, + T4 Fa @ J5F),
(T (FL@F.,) = THITNFa®@J54F)

for each F, F' € C*(G’). If we let {—, —},{—, —} denote respectively the Lo-Poisson brackets
induced on C*(G),C*(G') via (3.2.3), then J* is required to preserve them

j*{_’ _}/ — {j*)j*}

This must hold for each graded component, hence they are nothing but the conditions for J*

to be a Lo-algebra homomorphism between Poisson 2-algebras. In other words, we have

Definition 3.2.4. Let (G, II), (G/,II') denote two Poisson-Lie 2-groups. A 2-graded map J :
G — (' is a 2-graded Poisson map iff 7 is a 2-group homomorphism such that its pullback
J* = (J§, T*) is a Poisson 2-algebra homomorphism.

In particular, a Poisson-Lie 2-group (G, II) is precisely such that the group and groupoid mul-

tiplications are 2-graded Poisson maps [96].

Quasi Poisson-Lie 2-groups. As we have established, a Poisson bivector II endows the
graded functions C* (M) on a dg manifold M a structure of a (strict) Lie 2-algebra. A homotopy
weakening of this structure is hence available, in which we introduce a homotopy map [ :
C®(M_1)3" — C®(My) satisfying

M= —}ao({— —12®1) = t*4, (3.2.6)

cycl.

D tae (= e i —))®1) = jio D

cycl.
and the 3-cocycle condition equivalent to (2.2.19). Based on the duality (3.2.3) between the
graded Poisson bracket {—,—} and the bivector field II, we see that i can equivalently be

written

L(Fy, Fo, F3) () = 0,(F1 Q@ Fr ® Fy), Fip3€ C*(M), z e M,

in terms of a trivector field 7 € T'(My, TM?3?}).
If we take M = G as a (strict) Lie 2-group, we have in fact rediscovered the notion of a
quasi Poisson-Lie 2-group (G,II,7) above. Moreover, recalling the notion of a quasi Lie

2-bialgebra from Definition 3.1.3, the following is the main result in [96].

Theorem 3.2.2. There is a one-to-one correspondence between connected, simply-connected

quasi Poisson-Lie 2-groups and quasi Lie 2-biaglebras.
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The correspondence is given by integrating the cohomotopy map 7 to the trivector field 7

satisfying
d, .
NX) = Sloin, X o

3.3 The 2-graded classical r-matrix

Recall a (strict) Lie 2-bialgebra can be classified in terms of a Lie algebra 2-cocycle (d_1, o) [95,
114], which induces a dual Lie 2-algebra ©*[1]. Moreover, the natural coadjoint representations
(3.1.8) gives rise to the Drinfel’d 2-double ® = & 1 &*[1].

Similar to the l-algebra case, we begin by considering a 2-cocycle (6_1,d¢) that is a "2-
coboundary". We in particular focus on the form of the 2-coboundary generated by certain
elements rg € B A &_; and r_; € g*}. These elements r_;,7 form a triangular 2-graded

classical r-matrix [95]
R=rog—Dyr_1=10—(t®1+1®t)r_1€g0Ag_1,
whence the 2-coboundary they form is given by
(X)) =[X®1+1®X,R|, I1(Y)=Y®1+1®Y,R]. (3.3.1)

Here we are using the graded Lie bracket [—, —] = I of the Lie 2-algebra.
More generally, suppose we are given 7o € (go ® g_1) @ (9_1 ® go),7_1 € ¢°% (namely not

necessarily skew-symmetric elements). It was proven that [95]

Theorem 3.3.1. The 2-cochain (6_1,00) (3.3.4) makes (8;9_1,dq) into a Lie 2-bialgebra iff for
allWegi®g_q,

o [W2® R+ o(R)| =0 where o is an exchange of tensor factors, and
e the 2-graded classical Yang-Baxter equations [95] are satisfied:

1. Dﬂ’o = O,
2. [W3® [Ria, Ri3| + [Ris, Ras] + [Ri2, Ras]] = 0

where
W =-WRIRQR]I+1IIWRI+1IR1IRW.

We call solutions R € (go ® g_1) @ (g_1 ® go) to the above criteria a 2-graded classical
r-matrix.
In other words, the 2-graded classical Yang-Baxter equation implies the 2-cocycle condition

[95] for 2-cochains (_1,0¢) defined in (3.3.1). If we write out the components

ro=Y a®b+a®b, 1= c®d
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for some a,b € gy and @, b, c,d € g_1, then we have

R=)(a®b—tc®d)+(a®b—c@td) =Y p+p. (3.3.2)
690‘05971 697T®go
By decomposing into skew-symmetric and symmetric parts R = R* + R®, we have p = —op in

R” while p = op in R® in terms of the components defined in (3.3.2), where o permutes the

tensor factors. In other words, we have

R = Zp—apzZa/\b—tC/\d—C/\td=Za/\b—Dt(C/\d),
R® Zp—l—ap=2a@b—tc®d—c@d=Za@b—Dt(CQd),

If we write, using the graded Schouten bracket [—, —] [96, 95],
Q = —[R®, R°] = —[R%, R3] + [Rf, R3] + [RD, B3],

then the skew-symmetric part R" satisfies the modified 2-graded classical Yang-Baxter
equation
[R", R"] = Q. (3.3.3)

This is an equivalent way of writing the second point in Theorem 3.3.1.

As in the 1-algebra case, the symmetric component R® € gy ® g_; of R governs the form of
(3.3.3), while the skew-symmetric component R" € gy A g_1 contributes to the 2-coboundary
(3.3.1). Recalling D; = £t ® 1 + 1 ® ¢, the 2-coboundary (3.3.1) is given explicitly by

So(X) = DI[X.alabtan(X>Db)
- Z[X,tc] ANd+ten (X >d)+ (c e d),
(YY) = DleatdmY)+(cod) =D (a>Y)Ab, (3.3.4)

where ¢ < d indicates a swap of the elements ¢, d from the previous term.

One particular solution for the decomposition R = R* + R® is if the two quantities rg,r_;

can themselves be decomposed into skew-symmetric and symmetric parts:

A (O} A A 2A
To =Ty + 77, o €80 A 9-1, r2y €979,

2
r_y =12+ 7"91, rg) EgoOg_1, 7“91 € g_Gf.

The 2-graded r-matrix then reads

R" = rOA—Dtrﬁ1=Za/\b—Dt(C/\d),
R® = 1§ —Dp® =>a®b— Dy(cOd). (3.3.5)

We stress that this may not be the most general form of the decomposition R = R* + R®!
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Due to the first condition in Theorem 3.3.1, we see that the symmetric contribution R®
must be 5 ad-invariant, where 5 ad is the strict adjoint representation (3.1.6) of & on itself. We
shall call R® a quadratic 2-Casimir of the Lie 2-algebra &.

3.3.1 Quadratic 2-Casimirs

Recall (3.3.3) constrains the symmetric piece R® of the classical 2-r-matrix to be invariant
under the adjoint representation 5 ad, and to satisfy the condition D; R® = 0, thereby making
it into a quadratic 2-Casimir. The following is from my paper [133]|, which completes the

characterization of these objects R®.

First, we note that D,.q =2 ad®1 + 1 ®, ad is the derivation on the tensor product (GRS
associated to the strict adjoint representation ,ad. We also recall that &2® is a three-term
graded complex, in which the differentials are given by D; = 1 ®t + t ® 1 with the sign
dependent on the degree.

Let Y® X + X'®Y' denote an arbitrary element in g_1 ®go@Pgo®g_1, and let X" +Y" € &,
then

Dyadyryy(Y®X) = (X'B2Y)RX+Y QX" X]+YV® (X >Y"),
Dyadgryn(X'®@Y') = [X"X]QY +X'@X'>Y)+ X >Y)®Y.

Now if we take the symmetric tensor Y © X = Y®X + X®Y and sum the above contributions,

then the 5 ad-invariance condition D, aq,,, (Y © X) = 0 gives rise to the following equations

Y//
X" X]OY + X0 (X'>Y)=0, (XeY)OY =0
for all X” +Y"” € &. The space of solutions is the subspace

@DI{XQYEQOQQ_I|adX®Y—|—X@XY:07 XX:O},

where we recall y = > is the crossed-module action. Now the condition D;R = D;ry = 0 in

Theorem 3.3.1 constrains R® to lie in ker D(t)o, whence we assemble the elements
a®be 2Casg[0] = O N ker D,

as the quadratic 2-Casimirs of &.
On the other hand, for Y © Y’ € g°9 we have

I

D, adyn (D) 1(Y OY)) X'oY)otY+YQO[X" tY'+Y O @Y >Y")
+(X">Y)OtY + Y O[X"tY]+Y' O (Y >Y")

= X'pY)otY' +YOHX'>Y)+Y O, Y]
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+(X">Y)OtY + Y Ot(X">Y)+ Y OY,Y"]
= DO 4((X">Y)OY' +(X">Y)OY)
—([Y", YooY +Y' OY".Y]),

where we have used the conditions (2.2.3). Note D(t)_; =t® 1+ 1®t on g9, we define the

subspaces

I, = {YOY' egQ | xYOY +Y OxY' €ker D},
Cas,,, = {YOY' eg®|adY QY +Y @adY’ =0},

we see that the space of solutions is given by the intersection
cOde2Casg[—1] =T, n Casy_, .

Recall the adjoint action ad on g_; is defined via the Peiffer identity. If each term in D, g rayn (R®) =

0 vanishes, then we obtain the following characterization of quadratic 2-Casimirs:
R® = Z a®b+ D(t)_1(c®d) € 2Casg[0] @ D(t)_1(2Casg[—1]) = 2Casg,

provided the decomposition (3.3.5) holds.

3.3.2 2-Casimirs of the Drinfel’d 2-double

We now use our above characterization of 2-Casimirs to classify the pairings that can be used to
construct classical 2-doubles. To begin, let (&, &*[1]) denote a matched pair of Lie 2-bialgebras,
and we denote by 2Casp < (g0 ® ¢*,) © (g_1 @ g§) the quadratic 2-Casimirs of the classical
2-double ©® = & < B*[1]. Here, the adjoint and coadjoint actions (3.1.6), (3.1.8) of & and
®*[1] on each other both participate in the definition of the operator D, ,q.

After a lengthy calculation, it can be explicitly shown that quadratic 2-Casimirs of 9 satisfy

the following invariance properties:

(ady X + X% ) OV +9)+ (X + f)O(X'>Y +adyg) = 0
Mp X +a0pf)OY +9) + (X + [)O(arY + f'>*g) = 0,
0

(X + /) O (A(X) + Av(f) + (X" + ) O (8g(X) + Av(f)) = (33.6)

for each X, X' € go,Y € g1, f,f € g*,,9 € g5. By expanding each row of (3.3.6) out, we
see that these invariance properties encompass those of both the canonical evaluation pairing

{{—,=)) of (3.1.9), as well as the grading-inhomogeneous alternative pairing given by

LY +9)+ (X + 1), Y +4) + (X + ) = (Y, XD +{f,9)) + (X, Y) + g, /). (337)
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For instance, expanding out the first equation yields

0 = (ady XOg+X0Qadig)+(ofOY +fOX >Y)
+ady XOY + XOX' > Y)+ (X fOg+ fOadk g)
= (g,adx X) + (ad¥ g, X) + (X3 /. Y) + (f, xxY)
+adx X, Y) + (X, xxY) + Xk f, 9) + (f, ady 9,

where (—, —) and (—, —) are the components of the pairings (3.1.9), (3.3.7), respectively. Similar
computations can be carried out for the other two equations. Moreover, the condition that
D, 2Cas, = 0 implies that 7" is symmetric.

In other words, we have the following result.

Proposition 3.3.1. Quadratic 2-Casimirs 2Casg of the 2-Manin triple ® induces only the
grading-odd pairings (3.1.9), (3.3.7).

Note that (3.3.6) follows directly from the D, ,q4-invariance of R® itself as an element of goOg_1.
Assumptions about its particular form, such as (3.3.5), are not necessary. In other words,
Proposition 3.3.1 is a general result that applies to any Drinfel’d 2-double as defined here

and in the literature [95].
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Chapter 4

Applications of Lie 2-bialgebra

symmetries

Let us now turn to some applications of the semiclassical Lie 2-bialgebra symmetries that we
have described in the previous chapter. The first application is the 4-dimensional analogue
of the topological Chern-Simons theory defined using Lie 2-algebras and higher-gauge theory,
following existing literature. The second application is a higher-dimensional notion of Lax
integrability that I have derived in [116]. In particular, I shall describe an application of this
general 2-Lax framework to study the Heisenberg spin rectangle.

The 4d 2-Chern-Simons theory is a TQFT which is expected to exhibit properties analogous
to the usual 3d Chern-Simons theory, such as hosting (extended) topological operators that may
give rise to novel 4d tangle invariants. Moreover, these theories are important to understand for
quantum gravity [134, 44]. T have initiated a project which investigates the holographic principle
for 2-Chern-Simons theories and the 3d integrable field theory that lies on its boundary [135].

4.1 2-Chern-Simons theory

In this section, we shall first give an overview of 2-Chern-Simons theory and its higher-gauge
structures following [111]. I have also studied this theory in my paper [115] under the name
"monster! BF theory". Recalling the notion of 2-BF theory was studied in §2.4, I have proven
[115]:

Proposition 4.1.1. Let ® = &*[1] x & denote the classical Drinfel’d 2-double of & with an
Abelian dual 8*[1]. Then the 2-Chern-Simons theory on ® is equivalent to the 2-BF theory on
8.

An analogue of this statement in 3d is a well-known result [129] which identifies 3d gravity as

a Chern-Simons theory on the Poincaré algebra R»? x so(1,2).

!No relation to the monster finite group.
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4.1.1 2-Chern-Simons theory as a homotopy Maurer-Cartan theory

Let us begin with an exposition of homotopy Maurer-Cartan theory from the Batalin—Vilkovisky
(BV) and derived superfield formulation, following [136] and [111]|. This gives a general setting
in which higher homotopy generalizations of higher Chern-Simons-like Poisson AKSZ models
can be realized, of which "2-Chern-Simons theory" is an example.

Let ® = g_1®g, denote a weak Lie 2-algebra equipped with n-nary skew-symmetric brackets
fn, as in Definition 2.2.5. Tensoring with the de Rham complex Q*(X) over a space X gives

rise to a Lie 2-algebra L, with the graded components

i+j=n
together with the differential ¢; = d — py and ¢,, = pu, ® A™ for all n < 3.

Definition 4.1.1. An element A € £; of degree 1 living in the space
A=(AB) e (X)®g®P(X)®g_1,

is a Maurer-Cartan element iff its curvature

21
Z—IEH(A,...,A)ZO
n:ln'

vanishes.

We can compute the curvature explicitly as

6(A) + %@(A, A) + %63@4, A A) = dA— 1y (B) + %M(A A A)

1
+ dB + p2(A A B) + 5/,63(14 ~NANA).
Organizing this quantity by degree, we see that we obtain two equations
1 1
dA + 5#2(14 A A) — /L1<B) = O, dB + /JQ(A A B) + 5#3(14 ANAA A) =0

that are identical, under the identification py = ([—,—],>), to the fake-flatness (2.2.10) and
(modified) 2-flatness (2.2.15) conditions that we have already found in Chapter 1.

We now define the action whose variational principle is associated to the zero-curvature
condition; in other words, the minimal locus of the action consists of Maurer-Cartan elements.

This is accomplished with an inner product (—, —) on the Lie 2-algebra L, of degree —3,

S|
el = 2, Gy

m=1

(A, 0n(A, ... A)).

This requirement arises from the fact that we must pair a degree-1 Maurer-Cartan element
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A € L, with its degree-2 curvature F' € L5, and end up with a real number in R at degree-0.
Now if X were 4-dimensional, this pairing must produce a 4-form on X. This implies that

the invariant pairing on & consistent with (—, —) must have degree 1 [111, 115],

(=, =) : (g0 ®g-1)® (-1 ®go) — R.

This explains why dg Lie algebras are required to define a 4d analogue of Chern-Simons theory.
The 2-Maurer-Cartan action [136] is then

Somicl Al = L<B, A + %MQ(A A A) - %M(B» + %@4, ls(A A A A A,

where we have used the invariance property

<X17M2<X27 }/1)> = <:u2(X17 X2)7 Y71>7
<)/17t}/2>:<t}/17}/2>7 X17X26907 }/17}/26971 (411)

of the pairing. The equations of motion implement precisely the fake- and modified 2-flatness
conditions (2.2.10), (2.2.15).

When & is strict such that pz = 0, we recover the 2-Chern-Simons action

Saes[A, B] — L<B, Fae %MI(B» (4.1.2)

as formulated in [111], which is also called the "4d BF theory" [134, 137, 138] in some literature.

Indeed, a variation of the action

dpSecs[A,B] =0 = F = F4 —m(B) =0,
daS2cs[A, Bl =0 = K =dB+ u3(AnB)=0

imposes precisely the Maurer-Cartan condition for A € L.

4.1.2 Gauge symmetries of the 2-Chern-Simons theory

Let us now introduce the gauge symmetries of the action (4.1.2) through the derived super-
field formulation. Let A € £; denote a Maurer-Cartan element, then a (finite) derived gauge

transformation is given by
A— AV =, Adj' A+ U140, (4.1.3)

where U is a degree-0 derived gauge parameter. In general, U is a polyform on X valued in G.?
But in order to understand its "2-adjoint action" 5 Ady, we need it to inherit the compatible

group and groupoid structures of G.

2We denote by G = Gy and H = G_; the components of the Lie 2-group G as given in Definition 2.2.4,
such that LieG = &.
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To do this, we shall parameterize U = (g,e®*) in terms of a real parameter o € R4mb,
where g € C*(X) ® G is a G-valued function and L € Q'(X) ® b is a h-valued 1-form. This is
called the derived 2-group formalism [111]. Recalling ¢; = d — py, (4.1.3) can then be computed
explicitly by (we without loss of generality absorb « into L)

A= (A, B) - AL
1
= (Ad,' A+ g 'dg — (L), 97" > B+ dL + pa(AYM A L) + SlL A L),

which is precisely the form of the 2-gauge transformations that was found in §2.3 through ad hoc

means. The same computations then implies the covariance of the higher curvature quantities
FU =Ad' F, KY =g '> K4 po(F A L).

A lengthy computation shows that the gauge variation of the 2-Chern-Simons action (4.1.2) is
a total boundary term [111],

Saos[AWH), BOH] = Syos[A, B] + J dr’,
X

where

I'=2({g 'F'g,Ly+ g "A'g+ g 'dg,L A L)) + Les(L).

We notice the appearance of a 3d Chern-Simons term

Les(L) = L, dLy + 2L, [L, L))

In other words, the gauge non-invariance of 2-Chern-Simons theory is completely holographic,
in contrast to the 3d Chern-Simons theory whose finite gauge variation contains the well-known

bulk Wess-Zumino term, in addition to a total boundary term.

4.1.3 The underlying Lie 2-bialgebra symmetry of 2-Chern-Simons
theory

Now let us examine the Lie 2-bialgebra underlying the 2-Chern-Simons theory. We begin by
noting that the key ingredient in the construction of the Lagrangian is a bilinear form {(—, —)

on & which is
1. non-degenerate, meaning dim gy = dimg_;, and
2. invariant in the sense of (4.1.1).

Lie 2-algebras & equipped with such a pairing is called balanced in [111].
Now as we have proven in §3.3, such pairings are in one-to-one correspondence with quadratic

2-Casimir elements R® of &. Correspondingly, the Lo-bracket 1o on @& dualizes to a 2-cobracket
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0:86 —> & A B given in graded components by
VXX = Ga(Y), XOX), (XX 5= (X)X @V,
where X, X" € g, Y € g_; and puy = ([—, —],>). This endows & with a Lie 2-bialgebra structure

0, which is naturally encoded in the construction of 2-Chern-Simons action.

We are now ready to prove Proposition 4.1.1, following my paper [115]. We begin with

the standard Manin triple (recall t = py,t% = pt)

T=t+t7

D =6x6* = (g_; = g5) — (go ™ g%)

of the Lie 2-bialgebra (&;0). An element A € £; of degree-1 in the dgla £, = Q*(X) ® D is
given by (A,B) = (A + C, %X + B), where the fields are

Ae ON(X)® go, CeQ'(X)®g*,, Ye'(X)®g_1, Be *(X) Qg

With these and the 2-coadjoint representations (3.1.8), we can decompose the curvature quan-
tities
1 *
F = (dA + §[A ~ Al + ni(AA))
1 L
+ (dC + 5[6’ ACle + X5(AC))=F + F*,
K = (dX + A A" S+ Ag(AA) — adi(AX))
+ (dB+C A" B+ Ag(AC) —ad’y(AB)) = K + K*,

into &- and &*[1]-valued sectors.
With the canonical evaluation pairing (3.1.9) on ®, which we recall is coisotropic, the 2-

Chern-Simons action on @, also called the "monster 2-BF theory" in [115], is given by

1
S.s[A.B] - | (BF - 7B)
X

RGO E (AR

Note by the symmetry condition (tT—, —) = (—,t—), the two final terms are equivalent. On
the other hand, the first two terms read

(B A F)
(F* A YD)

(BAF)+ (B Ang(rA)),
{dC + %[C A Cle + X4(AC) A D).

An integration by parts (neglecting the boundary term d{C A ¥)) yields
_ 1
(F* AE)y=—(CAK)+ §<[C ACle A )
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in terms of the 2-curvature K = dX + A A" ¥ on g_;. Thus we see that the 2-Chern-Simons

theory can be written as
Spr|A,B] = %f (B,F —t¥)—(C,K)
X
1 1 *
i —J 10 A 15— (C AP B, A,
2 Jx 2

Now if &*[1] were Abelian, then [—,—].,>* = 0 whence the final two terms drop. The

remaining action is precisely the 2-BF action (2.4.1).

4.2 Higher-dimensional integrability and the 2-Lax pair

The goal in this section is to lay out the general theory of 2-graded integrable systems following
my work [116]. We defined an appropriate notion of a "2-graded Lax equation" as a categorifi-
cation of the usual Lax equation. Once this is achieved, we specialize to the dual Lie 2-algebra
®*[1] and construct a 2-graded Lax pair on it, in analogy with the 1-algebra case as reviewed
in eg. [10]. We then work to prove that it does in fact satisfy the 2-graded Lax equations.

We begin with a dg manifold M = M_, AR My equipped with a Poisson bivector II =
! + 1Y satisfying (3.2.1) and (3.2.4). We let (C*(M),t*,{—, —}) denote the Poisson 2-

algebra via Lemma 3.2.1.

4.2.1 2-Lax pair

Consider smooth functions from the 2-graded space M = M_; @ M, into a Lie 2-algebra g. We
treat such functions as elements in the tensor product C* (M) ® &, which is a 3-term complex

(cf. [95])

C*(Mp) ® g1 = (C*(M 1) ®g1) & (C”(My) ® go) = C*(M 1) ® g (4.2.1)
— ~ - ~ ~ -
deg-(—2) deg-(—1) deg-0

with the differentials D = 1®t + t* ® 1. The graded Lie bracket [—, —] on &, together with
the graded Poisson bracket {—, —} on C*(M), as in Proposition 3.2.1, endow this complex
with two Lie 2-algebra structures.

Let H € C*(M) a Hamiltonian function on M = M_; < My, which admits a graded
decomposition H = H_y + Hy € C*(M_1) @ C*(My).

Definition 4.2.1. A tuple of elements (L, P) € C*(M)®® is a 2-Lax pair, of the Hamiltonian
system (M, {—, —}, H) iff it satisfies the 2-Lax equation

L={HL}=[P1L], (4.2.2)

where {—, —},[—, —| are the graded Poisson/Lie brackets on the complex (4.2.1).
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There is a subtlety associated to the meaning of "L" in (4.2.2), as the Hamiltonian H = H_1+ H,
here is itself graded. As such, the dynamics it generates is also graded, in the sense that there
are essentially two Hamiltonians evolving under a single "time" parameter.

We note the functions L, P : M — & themselves need not be a 2-vector space homomor-

phisms. Indeed, such maps must only have components concentrated in degree-0 and degree-(-2)
in (4.2.1) [125, 98].

4.2.2 Conserved quantities

Recall that in the 1-algebra case, the trace polynomials fj of the Lax function L are constants of
motion. We wish now to investigate the analogous notion of "2-graded integrability" afforded
by the 2-Lax equations (4.2.2). Toward this, we must first explain how to construct trace
polynomials in the 2-graded context and hence the relevant concept of 2-representation in our

context.

Lie 2-algebra 2-representations. Let V = V_; KN Vo denote a 2-term complex of vector

spaces.

Definition 4.2.2. The space of endomorphisms gl(V') : End_;(V) 2 Endy(V) of V is a 2-
graded space

End_;(V) = Hom(Vy, V1),  Endg(V) = {M + N € End(V_,) ® End(Vy) | N = oM},
(4.2.3)
equipped with the following (strict) Lie 2-algebra structure [95, 125]

§ : End_y(V) — Endo(V), 5(A) = A0+ 0A,
[M+ N,M + N'|,=[M,M]+[N,N, (M+ N)>c A= MA— AN,
[A, A, = AQA" — A'0A,

for each M + N € Endy(V), A€ End_;(V).

Definition 4.2.3. A (strict) 2-representation p : & — gl(V) is a Lie 2-algebra homomor-
phism such that the following square

g-1 —t 9o

2 lpo (4.2.4)
End_;(V) —— Endy(V)

commutes. More explicitly, we have p = (pg, p1) with po(X) = (p3(X), p3(X)) € Endo(V) and
p1(Y) € End_{(V) for each X € go,Y € g_1, such that the following conditions

potY) =0op(Y),  pp(tY) = pi(Y),
P(X >Y) = (poX) e pY = py(X)p(Y) — p1(Y)p)(X) (4.2.5)
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are satisfied.

Furthermore, py = p{ + pJ represents gy on respectively V_; and Vj, with ¢ as the intertwiner.
Elementary examples of 2-representations include the adjoint/coadjoint representations of &;
see |95, 115] or Chapter 3.1.1.

Any 2-representation p as defined above gives rise to a genuine representation p?"* on the

direct sum V_; @ Vg, which takes the form of a block matrix

1
pgen(L) _ (pO(LO + thl) P1 Lfl)

egl(Voy@® Vo), Loego, L_1€g-1, (4.2.6)
0 po(Lo) )

where L_1, Ly denotes the graded components of L that take values in g_1, go = &, respectively.
This representation was shown to satisfy p9"([L, P]) = [p?**(L), p?*"(P)]c in [125], where

[—, —]c is the matrix commutator on gl(V_; @ 1}).

Example 4.2.1. The most relevant 2-representation for our current paper is the 2-coadjoint
representation o Ad* of the 2-group G on its dual Lie 2-algebra V = &*[1]. We shall now prove
that o Ad* : G — End(®*[1]) is indeed a 2-representation.

We define o Ad* by dualizing the adjoint representation s Ad = (Ady, ) of G on g defined
in (3.1.6). Hence, o Ad* has the graded components

Ady = (X*,Ad*) : go — End(g; @ g*,), T*:g_1 — Hom(g*,,95)
satisfying for each x € Go,y € G_1 and X € go, f € g_1,9 € 9§, f € 9%, the invariance conditions

Adig+ XX, Y + X)) = g+ f, XY + Ad,— X7,
(), X) (X))

with respect to the natural pairing form (—, —) between &*[1] and &. Moreover, we see that

o Ad™ satisfies the following key identities
T * #4T TArx * 4T *
t°Ad; = At Y, = Adj, Tt = Adg,—

where tT : g% — g*, is the dual t-map on &*[1]. The first identity implies (X*, Ad*) €

End(®*[1])o, while the rest imply precisely the commutativity condition (4.2.4). Indeed, one
explicitly computes for each’Y € g_1, X € go that

YA = VAd ) = (ALY, f) = (KoY. f) = VX5,
XX g)) = (XX, t"g) = (T, X).g) = (Ady, X, ) = (X, Ad, g).

Definition 4.2.4. A function H € C*(g*[1]) is  Ad*-invariant if

HO ©) Adz = H(), H,1 ©) X; = Hfl, HO o TZ = Hfl, (427)
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for each x € Gy, y € G_1, and where H = H_; + Hy € C*(g*[1]) = C*(g§) ® C*(g*,).

This notion of invariance will be useful later.

Constants of (graded) motion. We are now ready to characterize the notion of conserved
quantities inherited from the construction of 2-representation built out on 2-vector spaces of

the Baez-Crans type.

Theorem 4.2.1. Let yy : gl(V) — R denote a class function; namely any linear map that is
invariant under the Lo-bracket [—, —]c on gl(V). The 2-Laz equation (4.2.2) implies that the

polynomials
Fr = XVP(L)k

are constants of motion for any k and 2-representation p.

Proof. The proof runs in exact analogy with the l-algebra case [10]. From (4.2.15) and the

cyclicity of x, we have

Fi = 2 xv (p(L) p(L)p(L)* ) = kxv (p(L)¥ p([L, P])).

By the fact that p is a homomorphism of Lie 2-algebras, we have p([L, P]) = [p(L), p(P)]c and

hence

xv(p(L)* 'p([L, P)) = xv(p(L)* [p(L), p(P)]c)
= xv([p(L)*, p(P)]c) =0,

again from the invariance of xy . m

Note that the conservation of these trace polynomials is independent of the choice of the 2-
representation p. However, what exactly is being conserved does depend on the representation
— it is the eigenvalues of the matrix representation p(L). The conservation of these eigenvalues
can be understood as the notion of "2-graded integrability" that the 2-Lax pair in Definition
4.2.2 affords.

By making use of the genuine representation p9*™ given in (4.2.6), a straightforward example
of a class function yy is given by merely the trace form on gl(V_; @ V4). As such, the above

result states that the trace polynomials
Fi = trv (p*"(L)")

are conserved for any k € Z-o. By a fundamental result in linear algebra, the eigenvalues of a

block-triangular matrix consist of the combined eigenvalues of its diagonal blocks:
Eigen p?"(L) = Eigen pj(Lo + tL_1) H Eigen p)(Lo).
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These are example of the conserved quantities associated to the 2-Lax equation (4.2.2) that

one can always compute, using the genuine representation (4.2.6).

4.2.3 2-Kirillov-Kostant Poisson structure on C*(&*[1])

We first generalize the standard Kirillov-Kostant Poisson structure to the Lie 2-algebra context.
This shall serve as the appropriate setting for constructing a canonical 2-Lax pair on the dual
space ®*[1] of a given Lie 2-bialgebra (&;dR").

Proposition 4.2.1. Let & denote a Lie 2-bialgebra with the graded Lo-bracket [—,—]. The
graded algebra of functions C*(&*[1]), equipped with the Poisson bracket {—, —}*

{0,V (g + f) =g+ [.[dgss0,dgss8']),  ¢,¢" € CF(7[1]), (4.2.8)

where g + f € &*[1], is a Poisson 2-algebra. We call this o 2-Kirillov-Kostant (2KK)

Poisson structure on C*(&*[1]).

Proof. It will be convenient to provide the explicit correspondence between the graded compo-
nents of {—, —} and [—, —]. For this, it is useful to recall that g is dual to g*[1], so 1-forms on
®*[1] are elements in &. In particular, d¢ is valued in & for C*(&*[1]) 3 ¢ = (¢p_1 + o) €
C*(g5) ® C*(g%,) and

dgp—1 € Gy, drgo € g-1.

With this in mind, we identify the components of the graded bracket {—, —}.

{0,119 + f)
{0, 9035(f)
{,¢'}2,5(g)

€9, ldso, dg¢" 1] 1 + [dg@-1, drdp]-1),
(f dro, dpdp) V)
<97 [dg(bfla dggb/_l]0>- (429)

Now we must show that this graded Poisson bracket {—, —}* is a Ly-bracket, satisfying
(3.2.1) and (3.2.4). To do so, first we note that we can decompose g*, as g*; =~ im ¢’ @®coker 7,

hence every f € g*, can be written as
f=t"g + f eimt’ @ cokert’. (4.2.10)
Next, using the rank-nullity theorem, we have that cokert? = kert by duality, and hence

t(ddo) = t(dyrgdo + dp o) = t(derg o) = ((t7)*dgo)y (4.2.11)

for any ¢y € C(g*,); note the last equality is the definition of the pullback (t7)*d¢py. We can

now directly compute

{t"g, [(dgo-1), diryo]) = (g, tldg -1, dyrydi])
(9, [dg—1, t(dyrydp)]) = {g, [dg—1, (t")"dd)y])
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{o-1, (1) 00} 2 (9),

{do, 00} (f) = <f,[dsoo, drgp]) = . [t(dirg o)), dso])

(L) o)y, dpdiyl)

{(t") b0, 611 (), (4.2.12)

where we have used the equivariance and the Peiffer identity (2.2.3) in g. Similarly, the 2-Jacobi
identities (3.2.4) follow from that (2.2.4) of [—, —].
O

We now construct an alternative 2-KK Poisson structure on &*[1] by explicitly making use
of the classical 2-r-matrix. We first define a map ¢ = (p_1,¢0) : g — g of 2-graded vector
spaces, then use it to define an alternative Lo-bracket [—,—]r on &. Let us fix the bases

{Ti}i, {Sata of g0, 9—1 respectively.
Proposition 4.2.2. The map ¢ = (¢_1,¢0) : ¢ — @ defined by
Y-1:9-1—>0-1, Y — (RA)ia<K E>Sa7
%o * go — Yo, X - (RA)M<X, Sa)T;,
15 a 2-vector space homomorphism if and only if D; R* = 0.

Proof. Clearly, ¢ is linear, hence it remains to show that tp_; = pot. By definition, this
requires

(R")“T; A t(Sa) = (R")"#(Sa) A T

for each basis elements T; € g, S, € g_1. In other words, the combination (R")"“# is skew-
symmetric; this is precisely the condition D, R* = 0 in (3.3.3) [95].
[

Proposition 4.2.3. Let R€ go® g_1 D g_1 ® go denote a solution to the modified 2-CYBE
(3.3.3). The bracket defined by

Y+ XY +X'Ng=[eYV + X),Y + X'|+ [V + X,0(Y' + X],
18 a Lie 2-algebra bracket which satisfies
g+ f,9 + 1= Y+ X,Y + X|r) (4.2.13)

where fO) = (— X% e & and g = (-, Yy e g*,.

Proof. Recall [95] that the skew-symmetric piece R" of a solution R to the modified 2-CYBE
(3.3.3) defines the cobracket dR" (Y + X) =0(Y + X) = 0_1(Y) + do(X) given by

(V) =[Y®1+1QY,R"], 6(X)=[X®1+1®X,R"]
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and the symmetric piece R® = (—, —) defines a 5 ad-invariant pairing. These facts allow us to

compute directly (cf. [10]) that, for each basis element Z; = S; + T; € g,

[ W)(Z:) = @I, 0(Z:)) =Ch@N,[Z; @1+ 1@ Z;, R™])
= (RY)YMh®NW,[Zi, Zj) ® Z) + Z; ® | Zi, Zi))
= (R"V* (R®(Z,Z:, Z;])RO(Z', Zy) + RO(Z, Z;)R®(Z', | Z;, Z])) »
= —(R"V* (R®(1Z, 2], Z)R®(Z', Zy) + RO(Z, Z;)RO(|Z', Zi), Z:))
= RO([Z,0(Z")], Z:) + RO([¢(2), Z'], Z:)
= RO([Z, 2w, Zi) = {Zi,|Z, Z'|r),

where we abbreviated the graded elements h = g + f,h' = ¢ + f' € &*[1] and used that
7" =(h"), —) e &. This proves (4.2.13).

Now let us establish that [—, —|g is a genuine Ly-bracket on g. Since [—, —] by hypothesis is
equivariant and satisfies the Peiffer identity with respect to t, the fact that ¢ is a 2-vector space
homomorphism implies the same for [—, —]g. It thus suffices to check the 2-Jacobi identities
for [—, —]g, but this directly follows from (4.2.13) (cf. [139]),

<Z07(—> [[27 Zl]Rv Z”]R> = (O [[h7 hl]v h”])(ZO) =0 VZy e ®.

Lemma 4.2.1. The Poisson bracket {—, —}%,, defined by the following formula

{0.0Vr(g+ f) =g+ [ [dgss0, dgs s ]R), (4.2.14)

where ¢, ¢’ € C*(B*[1]), g + f € &*[1], is a 2KK Poisson structure.

Proof. This follows from the fact that [—, —]g is a Lo-bracket, hence the proof of Proposition
4.2.1 applies. O

4.2.4 2-Lax pair on &*[1]

Fix a o Ad*-invariant Hamiltonian H € C*(&*[1]) (as defined in Definition 4.2.4). We are
now ready to finally canonically construct a 2-Lax pair (L, P) on (&*[1],{—, —}%, H) in this
section according to (4.2.2), based on the 2-KK Poisson structure {—, —}% (4.2.14) as well as

the underlying classical 2-r-matrix. We will take

Lo e C*(g*;) ® go, L_1eC%(gy) ®9-1,
P,eC®g")®g_1, Py e C™(g5) ® go,

hence L has degree-(-1) and P has degree-0 and -2 in the complex (4.2.1).
Fix bases {T}}:, {Sa}a of g0, g1, and suppose the classical 2-r-matrix R on & is invertible.

We make use of a basic linear algebra fact [140] that the inverse of an off-diagonal block matrix,
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such as R where the off-diagonal pieces are given by Ri, Rs, is the off diagonal matrix with
blocks R;' and R;', and hence the inverse of the symmetric piece (RY),;, for instance, has

matrix elements ((R$)™!)®. Put

Lo: f— (RF)"[(Sa)T:, Loy : g (RP)"9(T)Sa,
P—l . f > g0_1(de0>, PD g SDO(dgH—l)a (4215)
and we wish to show that (L, P) : g*[1] — g is indeed a 2-Lax pair as in Definition 4.2.2.

Theorem 4.2.2. Let H € C*(®*[1]) denote a o Ad*-invariant Hamiltonian. Then (L, P) given
in (4.2.15) is a 2-Laz pair of the 2-graded Hamiltonian system (&*[1],{—, —}%, H) for which
the Lax potential L satisfies

t*L=tL, {L,L}5=[L®1+1QL,R"] (4.2.16)

where t* = (t7)* is the pullback of tT : g% — g*, and we have extended the Ly-bracket [—, —]
to g%®.

Proof. First we compute the coefficients
(dfL1)" = R§"Sy,  (dgLo)® = RYT;.
We note also that the 5 Ad*-invariance of H (4.2.7) implies, in particular, that
Y+ X,d, fH|] =0,YY € g_4, VX € go,

(we emphasize we use the bracket [—, —] and not [—, —]g).
Then from the 2-KK Poisson structure (4.2.14) we have

{H . L}k(g+ f) = L9+ fldgisH dg f L] r)(Ti ® Sa)
= g+ [, dgr s H df LU | R)T; + g + £ [dgs s H, dg L§] R)Sa
= {9+ f,[e(dgrsH),dsL" ] + [dgr s H, p(ds L ))DT;  invariance of the Hamiltonian
+ g+ [, [e(dgs  H), dg L] + [dgs 1 H, 0(dg L§)])Sa
= g+ [,[p(dgssH), RS"SyT; + (g + [, [p(dgs s H), RPT;])S,
= —R§"(f, SpleldgssH), T;] — RY7*{g, Tp)lp(dgs s H), Sa]
= [Llg+ f)P(g+

where we have used the 5 ad-invariance of the 2-Casimir R®. This proves the first statement.

To prove the second statement, we first note that we have the following expressions

0-1(Sa) = (RD)ai(R3)Se,  o(Ty) = (RS)a(R)VTy
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for ¢. Hence by a direct computation,

{L, Ly(g + f) = {L, LY} (g + [)(Sa + T) ® (S + T))
=g+ f, [dg+fLa’i’ dg+be’j]R>(Sa +T5) ® (S + Tj)
= (R + RY™) (RS + RY™™)g + [, [¢aTy + 915w, Ty + Sy]
+ [Ty + Sy 00Ty + 1w ])(Se + T3) ® (Sp + 1)
= (R + Ry™)(RSY + RP") g + f,[Ti + Se, Ty + Sy D((Sa + T3) ® (S + T}))
+ (RS™ + R™)(R"™ + Ry g + [, [T + Sar, T + Sal)((Sa + T2) ® (S + 1))
= —(RY + Ry )RSV + RY7 ) g + [, Ty + Sy)((Sa + T2) @ [Th + Se, Sy + T5])
— (RS™ + R )(R{"™ + Ry g + [, Ty + Sa)([Sa + T, Ton + Sa] ® (S + T7))
= —(R{ 4+ Ry™“)((Sa + T) @[T + Se, L(g + [)])
— (R + RN ([L(g + [), T + Sal ® (Sp + T7))
— [nL®1+1®L](g+f). (4.2.17)

Finally, for each g € g, we have

t*L(g) = L(t"g) = (RD)"(t"9)(S.)T,
= (B3)"g(t8.)(T7) = (RY)“g(T))tSa = tL(g)
as desired, where we have used the definition of the adjoint ¢7 as well as the symmetry of
RO. m
The special properties that the 2-Lax potential L satisfies in this case allows us to prove the

following.

Corollary 4.2.1. The 2-Lax pair (4.2.15) induces an ordinary Lax pair (L, Py) : g5 — @0 on
the Hamiltonian system® (gi,{—, —}&, H_1).

Proof. Recall that we have extended the t-map to act on all of &, such that ¢(Y + X) = tY
for each X € go,Y € g_; [96]. Similarly, we shall extend the pullback map (¢t1)* to act on all of
C*(®*[1]) such that (¢t")*(Fo® F_1) = (t7)*F, for Fy € C*(g*,) and F_; € C°(g;).

First, let us apply the t-map on & to (4.2.2). This gives

tL = t([L, P]) = t[Lo, P_y] + t[L_1, Py] = [Lo,tP_1] + [tL_y, Py],

where we have used the equivariance of t. Considering this as an equation on the graded 3-term
complex (4.2.1), we see that the term [Lg, tP_1] has total degree-(-1), while all the other terms

have total degree-0. Therefore, we have

[Lo,tP1] =0,  (tL_y) =[tL_y, P).

3Note the degree convention from §3.2 is indeed such that H_; € C®(g).
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We now apply t* = (t7)* to (4.2.2) and go through the same computation. We have
t*L = t*({H, L}}) = t*{Ho, L1} + t*{H_1, Lo} = {t"Ho, L1} o + {H-_1,t* Lo} 50,

where we have used the equivariance of t* with respect to the 2-KK Poisson structure (4.2.14)
(see also Lemma 3.2.1). We once again look at this equation within the graded complex
(4.2.1), and see that {t*Hy, L_,}§ has total degree-(-1) while the other terms have degree-0,

{(t*Ho, L_1}Y5o =0,  (t*Lo) = {H_1,t*Lo}o-
Theorem 4.2.2 allows us to define L = t*Ly = tL_;. Hence we have
L={H_y,L}},=[L P,

completing the proof. n

Conversely, it is known [95] that a Lie bialgebra & canonically gives rise to a Lie 2-bialgebra
idy given by idg = g =l g, where the dual t-map is the identity t7 = id. Moreover, it is also
known [115] that the 2-graded classical r-matrix R = R; + Rs on id, consist of two copies of

the classical r-matrix r = R; = Ry for g. Hence we immediately have the following.

Proposition 4.2.4. Let g be a Lie bialgebra. If (IA/, f)) :g* — g is a Lax pair on g*, then the
following graded functions L = L@® L, P = P® P consisting of two copies of the original Lazx

pair, is a 2-Lax pair on idgx = id;[l] L g* id, g*.

These two above results show that our definition of the 2-Lax pair (4.2.2) is indeed a general-

ization (a categorification) of the usual Lax pair.

To conclude this Chapter, we briefly mention that a notion of a "2-Kac-Moody algebra"
f;@ was defined in my paper [116], which is a centrally-extended infinite-dimensional Lie 2-
algebra living on a 2d surface ¥, such that the 2-Lax equations (4.2.2) valued in fs% can be
written equivalently as a zero 2-curvature condition for a 2-connection A, B on ¥ x R. I also
showed that the topological-holomorphic 3d integrable field theory as derived in my paper [135]
hosts higher-form currents that satisfy these 2-Lax equations, and is therefore an example of a

physical theory that enjoys the above notion of 2-graded integrability.
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Chapter 5

Hopf 2-Algebras: Quantization of Lie
2-bialgebras

In the previous Chapter, we have seen major applications of the semiclassical Lie 2-bialgebra
symmetry to physical systems. They serve as motivation for the study of a quantization of
these symmetry structures ’a la [101],

categorify

Lie(/Poisson) algebra
lquantize i quantize 5 (5 . 0 1)

N

> (Hopf) Ag-algebras

(Poisson) L.-algebras

categorify

(Hopf) algebras

based on the ideas of deformation quantization (cf. [117, 7, 141]). Such Hopf A,,-algebras can be
understood as the framed F,-operads that fit into factorization algebras of Costello-Gwilliam
[101].

In this Chapter, we give a proposal for the algebraic structure that captures such quantized,
2-term Hopf A,-objects, which we call 2-Hopf algebras and categorical quantum groups.
This Chapter is based on the work [119] and is the centrepiece of this PhD thesis.

There are two main theorems that we shall prove in this Chapter. The first one concerns

the 2-representation theory of 2-Hopf algebras.

Theorem 5.0.1. Let (G, T;0,A;) denote a weak 2-bialgebra, and let R € G*®. The weak
2-representation 2-category 2Rep’ (G) is braided monoidal (& la Gurski [S1, 78]) iff R is a
universal 2-R-matrix of G satisfying the 2-Yang-Baxter equations (2YBE).

The second one concerns the semiclassical limit of 2-Hopf algebras.

Theorem 5.0.2. Let £ : wk2Alg — wkLie2alg denote the Lie-ification functor [93] taking
(weak) 2-algebras to (weak) Lie 2-algebras.

1. L takes weak 2-biaglebras to a weak Lie 2-bialgebras, and

2. L takes solutions to the 2YBE to a solutions of the classical 2YBE (2CYBE).

All the ingredients of these theorems will be defined explicitly in the following sections.
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5.1 Strict 2-bialgebras

Quantum groups are Hopf algebras, hence we expect to define quantum 2-groups as "2-Hopf
algebras". Different notions of 2-Hopf algebra have already been previously proposed in [92]
and [93].

We begin with the following definition, and build up to the definition of an associative
2-algebra in [93].

Definition 5.1.1. Let Gy, G_; denote a pair of associative algebras. We say that G_; is a

Go-bimodule if we have a left and a right action® -, -, of Gy on G_; which commute.

/

(2'z)-y=2"(z-y), (v-y)-2a'=z-(y-2), y-(2a')=(y-2) 2 (5.1.1)
for all y € G_1 and 2/, z € Gy.

Equivalently we can demand that the following diagrams are commutative. We note p; the
multiplication in G;, i = —1,0.
If we introduce a homomorphism ¢ between G_; and G, subject to some conditions, then

G_1 and Gy can be used to define a crossed module of algebras.

Definition 5.1.2. A crossed-module of (finite dimensional) associative algebras, Gy, G_1, or

an associative 2-algebra, is given by an algebra homomorphism ¢ : G_; — Gy where
1. G_1 is a Gp-bimodule,
2. t is two-sided Gy-equivariant,
tla-y) =atly), ty z)=tys (5.1.2)
for all ye G_1,x € Gy, and
3. the Peiffer identity is satisfied,
ty) v =y =y ty), (5.1.3)
where v,y € G_1.

We call the latter two the Peiffer conditions. We denote an associative 2-algebra simply by G,
or by (G, ) to emphasize the bimodule structure. Let k denote the ground ring of the 2-vector
space underlying G. We call G unital if there exists a unit map n = (n_1,7) : K — G such that

Ny =Yn-1=y, NT==TN==2, N Y=y N =171, (5.1.4)

for all y € G_1,x € Gy. Moreover, t should respect the units such that ¢(n_1) = 7.

"'We will often omit the subscript when there is no ambiguity.
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Note that one may consider G_; first as a vector space and define its product with the
Peiffer identity. This notion is how one may show the bijective correspondence between Lie
algebra crossed-modules and 2-term L-algebras [95, 96]. However, in the skeletal case, since

the Peiffer identity is empty, which forces the product on G_; to be trivial.

Remark 5.1.1. If t # 0 were non-trivial then the Peiffer conditions, together with bimodularity,
imply that

vo(yy)=(x-v)y, yl-y)=w 2y, (W) r=yly )

for each = € Gy, y,y’ € G_1. This puts strong constraints on the algebra action -, which is not

necessarily imposed in the skeletal t = 0 case.

Classification of associative 2-algebras

A 2-algebra homomorphism f = (f_1, fo) : G — G’ is a graded pair of algebra homomorphisms

that respect the underlying bimodule structure, such that
1. fo:Go— Gl and f, : G-y — G’ are algebra homomorphisms,
2. foa(x-y) = (fox)’ (fory) and f1(y-z) = (f_1y) 7 (for) for each z € Gy,y € G4, and

3. fgt = t,f—l'

We say that two 2-algebras are elementary equivalent, or quasi-isomorphic, if there exists an

invertible 2-algebra homomorphism between them.

Theorem 5.1.1. (Gerstenhaber, attr. Wagemann [93]). Associative 2-algebras are clas-
sified up to quasi-isomorphism by a degree-3 Hochschild cohomology class T € HH*(N,V),
where N' = cokert and V = kert.

See |93] for a definition of Hochschild cohomology of an algebra. The Peiffer identity implies
that V < Z(G_1) is in the nucleus of G_1; it is in fact a square-free ideal [93]. Note the nucleus

is not the same as the centre, which have commutative (but non-trivial) multiplication.

5.1.1 Associative 2-bialgebras

We seek a dual notion of an associative 2-algebra Definition 5.1.2. However, we must keep
track of the degree-shift in our duality structure. This is a consequence of how "dualization"
is defined in homological algebra [95, 115, 96, 114].

Coassociative 2-coalgebra. Let us consider a pair of vector spaces, Gy, G_; with the map
t:G_ 1 — Gp. In direct analogy with the 2-cocycle § = 6_; + dy that were introduced to define

a classical Lie 2-bialgebra [95, 115], we introduce the coproduct maps

A:G4—-G.100G,, No: Gy — (G-1®Gy) D (Go®G_1). (5.1.5)
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Note that Ay comes in two components, Ag = Al + A} (we used the graded sum) with
Aélgoﬁgq@)go, AG: Gy — G ®G_.
In the following, we shall use extensively the conventional Sweedler notation

Ay, ) = Ai(y) + Do(2) = ya) ® Yz + (a1 ® 2y + 2(1) ® () (5.1.6)
where .Tl(l), Tiy € Go and y(1), Y(2)» xl@), Tip € g_1.
Now let
Ay Go — Go® Gy

denote a coproduct in degree-0, such that A_;, A{ are subject to the following coassociativity

conditions
(Id®A_1) oA = (A1 ®id) o A_y, (id ®A6) o A6 = (A6 ®id) o A'O. (5.1.7)

(G_1,A_1) and (G, Af) are coassociative coalgebras if (5.1.7) is satisfied [117]. In the following,

we shall use the Sweedler notation
AY(z) = Ty ® Z(2) € Go @ Go. (5.1.8)

Definition 5.1.3. Let (G_1,A_1) and (Go, Aj) denote a pair of coassociative coalgebras with
the coactions Al and A, We say that G, forms a G_;-cobimodule if the following cobimod-

ularity conditions

(AL ®id)o AL = ({d®AL) oAl
(dRA_) o A = (Al®id)o Al
(i[d®AL) o Al = (AL ®id)o A} (5.1.9)
are satisfied.

Definition 5.1.4. A coassociative 2-coalgebra (G,A) is a coalgebra homomorphism ¢ :
G_1 — Go such that

1. Gy is a G_j-cobimodule,

2. t is coequivariant
Df oA = Agot, (5.1.10)

where we have introduced a convenient tensor notation for the induced ¢t-map
Df =t®1+1Qt

in terms of the graded sum.
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3. the coPeiffer identity
(t®id) o Al = A} = (id®t) o A}, (5.1.11)
which in particular means that we must necessarily have

Dy Ag = (t®id) o Al — (id®t) o A

I
e

We call (G, A) counital if there is a counit map € = (e_1,¢) : G — k such that

id = (id@é_l) @) A_l, id = <€_1 ® ld) @) A_l,
id = (e_; ®id) o AL, id = (Id®e_1) o Af. (5.1.12)

Moreover, € should respect the t-map such that ¢g = e_; ot.

Note again that in Definition 5.1.4, the coequivariance and coPeiffer identity are treated
as constraints between two coalgebras and the coalgebra homomorphism ¢ between them. With

these constraints, we can deduce
id = (6o ®1id) 0 Aj = (id®eo) 0 Ag (5.1.13)

from (5.1.8) and (5.1.12). In the skeletal t = 0 case, the coproducts A_y, Ag, A} and the counits

€_1, € are independent, and this condition is separate from (5.1.12).

Remark 5.1.2. Similar to the 2-algebra case, if t # 0 were not trivial, then we could have the

following conditions

(Id®A}) o Al = (AL ®id) o A,
(AL ®id) o A = (Id®AG) o A,
(iId®AL) o Al = (A ®id) o A} (5.1.14)

between the coproducts Ag and Aj. By making use of the Sweedler notation (5.1.6), (5.1.8),

these conditions translate to

tya) = (ty)fl) T = txl(l) = ()

w l . (5.1.15)
tye) = () (2) = T(y) = 1T(y

K

When combined, they give t_y(l) = 1Y), t?g@) = ty(2) which will become important later. In the

skeletal case, the constraints involving ¢ drop and we would only have z(;) = x’(”l), T = xl(Q).

2-bialgebra. Using the Sweedler notations (5.1.6), (5.1.8), we state the condition that the

coproduct map A given in (5.1.5) preserves the algebra/bimodule structure:

Az y) = Ta) Yy ®Ze) Yo, A(y-z) =y - Ta) @y - T(2),
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Al (z2) = xl(l)x'(ll) ® xl@)ng), Ap(z2) = 2(y 71y ® () Ty (5.1.16)

We call these conditions the 2-bialgebra axioms.

The bialgebra axioms in each degree,

AL(WY) = yaun @Yo,  Auar)) = Ta)T() ® )T (),

follow directly from (5.1.16) and the coequivariance and coPeiffer identities (5.1.10), (5.1.11);

see Remark 5.1.2.

Definition 5.1.5. The tuple (G, -, A) is an associative 2-bialgebra iff (G, -) is an associative
2-algebra and (G, A) is a coassociative 2-coalgebra that are mutually compatible, in the sense
that the coproduct map A satisfies (5.1.7)-(5.1.11) and (5.1.16).

We call (G,-,n,A,¢) unital if (G,-,n) and (G, A, €) are respectively unital and counital.

5.2 Strict quantum 2-doubles and the universal 2-R-matrix

In this section, we construct our main example of a strict 2-bialgebra given by the strict quantum
2-doubles which can be seen a categorification of the standard quantum double [117], and the
quantization of a classical 2-double [96, 115] of Lie 2-algebras.

The goal for studying (2-)quantum doubles is that, for the ordinary 1-bialgebra H, the
skew-pairing involved in the construction of the quantum double D(H, H) of Majid [118] pro-
vides a characterization of R-matrices on H. Moreover, this construction is universal in the
sense that any R-matrix on H can be derived this way from D(H, H). We wish to directly
categorify Majid’s construction, and derive a universal characterization of 2-R-matrices from

our construction of a quantum 2-double.

Our strategy will be as follows. Firstly, we consider a pair of dual associative 2-bialgebras.
They are dual in the sense that the coalgebra sector is given by the algebra sector of its dual
counterpart. We then define a notion of a canonical coadjoint action of a 2-bialgebra on its
dual. By requesting that the mutually-dual 2-bialgebras act on each other by such coadjoint
actions, we are then able to form the quantum 2-double as a 2-bialgebra. We will then also

prove a key factorization theorem for quantum 2-doubles.

5.2.1 Matched pair of 2-(bi)algebras

Dually paired 2-bialgebras Let (G,-, A) denote a (finite dimensional) 2-bialgebra, and let

G* denote its linear dual, defined with respect to the following duality evaluation/pairing map?

(g, 1) () = {fry)—1 +<g, 20 (5.2.1)

2We shall drop the subscripts on the pairing forms (—, —) when no confusion arises.
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for each x € Gy,y € G_1,f € G*;,9 € G;. Note that the grading is flipped by dualizing the
t-map: {t*-,—) = (—,t—), whence t* : G5 — G*, and G* is skeletal whenever G is. In the
following, we shall denote this pairing also by an evaluation ev.

So far, G* merely forms a 2-vector space. By leveraging the duality (5.2.1), we can induce

algebraic structures on G* according to the coalgebraic structures (5.1.5), (5.1.8) on G as follows:

R Aily)) ={f 1), (g®4g', Ay(x)) = (99, ),
(f®g,80(x)) ={f* g,2), {g® f, Aj(x)) =g~ f, ),
A fyey) =), (ALg,z®1") = (g,z2"),
A fa@y) =z, A fy@a) = f,y v z).

The conditions (5.1.10), (5.1.11), (5.1.7), (5.1.9), then ensure that (G*,-*) forms an associative

2-algebra. More is true, in fact, which we now prove in the following.
Proposition 5.2.1. Let G,G* be dually paired as in (5.2.1), then (G, -, A) is an (unital) asso-
ciative 2-bialgebra iff (G*,-*, A*) is an (unital) associative 2-bialgebra.

Proof. This is a straightforward computation using the pairing (5.2.1). In particular, the equiv-
ariance and Peiffer identity of t*, as well as the fact that G*, forms a G;-bimodule, follow directly
from dualizing (5.1.10), (5.1.11), (5.1.7), (5.1.9).

What is non-trivial is (5.1.16). Define A} by dualizing the bimodule structure - of G, then

we have

(A () z@y) =@ f Az -y), A () y®@x) ={f®f, Ay ),
(AZ)(f * g),2@a") = (f ® g, Ag(wa’)), (A%)(g " [z @) = (f @ g, Ag(zz')).

We now compute using analogues of (5.1.16) for A*, that

<f(l1)f('l1)®f(12)f(/é)al’®y> = <(f(l1)®f/l ) ® (f(lz ®fl2))a(j(l)®j(2))®(y(l)®y(2))>
(z

= (AN @AY (1) ®ya)) ® (T2 ® Y(2)))
= (R f () ya) ® (T y2):
S ® foyfiapy@x) = (fRF (ya) - Ta)) ® (Ye) - T2)),
and similarly
oy 90 ® fiy -9, 2@ = (foy®gw) ® (floy ®g@), () ® 2(y) ® (¢() ® 2(y))
= (AF(f )®A* (9), (x(y) ®@ z{1)) ® ({9 @ (),
= <f®g> ®37l(2 /l)>
Yoy ™ foy®g@ -~ fopr®@a) = g f, $(1)x(1)® T(2)T(2))s

hence A also satisfies (5.1.16). This proves that (G*,-*, A*) is an associative 2-bialgebra iff
(G,-,A) also is.
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Now consider the units and counits. Given

(g,nr) ={(n* ®id) 0 A¥,(g), z), {g,xny = ((id®@n*) 0 A* (g), ),
{fon-yy = {n* @id) o (AD'(f), v, {fry-my =(id®n*) o (AE’S)T(f),y%

we see that 7 is a unit for (G, ) (ie. these quantities all vanish) iff n* is a counit for (G*, A*).
Similarly, € is a counit for (G, A) iff €* is a unit for (G*,-*). The converse direction is identical.

]

Coadjoint action.

Definition 5.2.1. The canonical coadjoint action of G on G* is specified in terms of three

components, > = ((>g,>_1), T) given by

0 - gO - El’ld 937 <g,l’$/> = —<.§L’ D0 g,$/>,
>_q :g(]_)Endgih <f,$y>: _<‘T > f7y>7
TiG, > Hom(@, G, (fyay=—(C,f0. (522

As we will see when discussing 2-representations in §5.5, the coadjoint action can also be
interpreted as a 2-representation.

Analogously, we have the coadjoint back-action < = ((<l, <I_1), T) of G* on G, which we
write from the right®. The "bar" notation is used to distinguish > from the group action > in
the case where G = kG is defined through a 2-group G.

Matched pair. Given the pair of strict 2-bialgebras (G, G*), we allow them to act upon each
other by coadjoint actions > and <. In analogy with [117]|, we impose the following monstrous

set of twelve compatibility conditions

z> (ff) = (mlu) >0 f(l1)) - ((xl(z) <1 f(lz)) >_1 f') + (2(1) Bo f(l1)) - (T%)%f(g)f/)
+ (Tzl(l)f@)) - (Tml@)fff&) )+ (ZU€1) >_1 f(rl)) - (Tx(g)%(t*f(g))f/),
LU = (W0) Do dh) ™ (g, £+ (Cu F1) * (i 1)
zi>o(fFg) = (m 1) Bo f(l)) ((xl@ <1 f(lz)) >0 g) + (z(1) >o fll)) * (Hzfy) <o f(lz)) >0 9)
+ (T, v f ) ¥ (o ng;)) >0 g) + (2(y o1 fiy) -~ (EHale) <o (7 f(2)) >0 9),
ty>o (f"9) = (tya) >o f(1)) " (t(ye) <o f(z)) >0 9) + (Tyy f1y) -~ (EY2) <o (7 f12))) o 9),
ao (g f) = (i (1) Bo ga ) (Tz 2 Yo f)+ (x(l) >0 (1)) " (T$(2)<0(t*9(2))f)
ty>o (g f) = (tyay>oga) * (T 9(2)40(t*9<2))f)
(z2) <1 f = (27 tx(1)>0f<1)) (I(Q) <1 f(z ) + (27, ’(Tl)bofll)) (2(2) <o f(l2))

+ (2T ”“Elnf“)) : (ﬁl(lz)ffg;)) + (v <oy (2 > () - (2 <o (Ffiy),

3This means that we have, for instance, (g -* f,z) = —(g,x <_1 f) and {f -* g,x) = —(f,zT,).
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(:L‘$/)Tg = (thx’(ll)Dogu)) (:B(Q T ) + ([L’T /(l)Dogu)) ( /(g) <o (t*g@)))a

(y-2)<of = ([Y<t” (m’u) B>o f )) (xl(Q -1 f(z)) (y <o t*(2(1) >0 f(l1))) -+ (2(2) <o f(lg))
+ (y <o t*(T, ! f(1))) ( Tf( ) + (y <o (2 >1 f(1) - (22 <o (7 f())),
(y-x)<ot'y = (y<ot™(tzly >090))) - (-fl(z)T )+ (Y <o t*(2(y Bog))) - (@) <o txy),
(x-y)<wf = (thy(l)Dof(ll)) (Y@ <o flyy) + (@Ty Ty, 1) - (W@ <o (Ff(),

(z-y) <oty = ($Tty(1)>og(1)) : (y(2) <o Z5*9(2))’
where we have made use of the Sweedler notation (5.1.6).

We define a shorthand notation where z = (y,x) € G, h = (g, f) € G*, such that the following

BhH) = GoBhy) - (e3he)BR), (5.2.3)
(ZZ/)i]h = (zil(zgl)ﬁh(l)))-(zEQ)i]h(Q)) (524)

encode respectively the first six and last six of the above conditions. We also have the cross

relations

h 1) X® Z(Q)[Sh(g) = Z(g)%h(g) ® Z(l)ﬁh(l), (5.2.5)

as well as the unity axioms against the unit 7 and counit e,
2>n = €(2), n<h = €(h). (5.2.6)

Definition 5.2.2. We call a tuple (G, G*) of (finite dimensional) 2-bialgebras satisfying (5.2.3)-
(5.2.6) a matched pair.

Remark 5.2.1. Note that in the skeletal case ¢,t* = 0, the crossed relations (5.2.3), (5.2.4)

reduce to just two non-trivial equations. These are given by

v (Ff) = (@ Do fin) ™ (Tar, aopr, 1)+ (Tar fi) (Txl@)fff&) f)
= (zo>fo) * (@e<fe)>f),
(za’) <4 f = (JZTxG)Dof%U) (x{yy <o fly) + (:BTTI%)J[{I)) . (x/é)i'f(rz))
= (z2(z(y>f)) - (x@<fe), (5.2.7)

where we have used a convenient notation for brevity. One may notice that these are precisely
the usual crossed relations for a quantum double group (cf. [117]) of a semidirect product

2-bialgebra G_1 x Gy, where G_; is nuclear.

5.2.2 Construction of the strict quantum 2-double

We now begin our construction of the general quantum 2-double given a matched pair (G, G*).

We shall explicitly construct its 2-bialgebra structure such that its self-duality is manifest.

65



2-algebra structure. We consider D(G) defined in terms of the graded components given
by
D(G)o=Go®0G%, 3 (x, f),  D(G)-1=G1®G; > (y,9),
for which we have a "right-moving" semidirect product X = (-, ), giving rise to D(G)_, ¥ D(G)o.
Similarly, we also have a "left-moving" semidirect product % = (-*, Q) giving rise to D(G)_1 % D(G)o.

The combined t-map T' =t ® t* is equivariant with respect to these semidirect products

t"(x>09) =z >_1t7y, ty <o f) = (ty) <1 f, (5.2.8)

since the coadjoint action is 2-representation, while the commutativity > ot = (—t*,t*—) o T

implies

(ty) >0 g = T, (t*g), y <o (t*g) = (ty) Ty,
() f = (L), was () = 1T, (529

These are in fact generalizations of the Peiffer identity.

Proposition 5.2.2. If>, < are given by the coadjoint representations (see (5.5.4) ), then (5.2.9)
reproduces the Peiffer identity.

Proof. This is a direct computation. By the equality in the second row of (5.2.9), we have

fry-ty) ==Y f,y) = (ty) > fy) =Lty -y,

giving ty -y = y - ty/. Now by the fact that ¢ is an algebra homomorphism, we have

{(ty) >0 9,ty') = —g,ty)(ty)) = (g, tyy")),
(Ty(t*g).ty') = —{t'g.y-ty)=—{g.tly-ty)),

for which the first row of (5.2.9) states yy’ =y - ty’. Altogether yields

for any y,vy’ € G_1, which is precisely the Peiffer identity on G. Similarly, if < is the coadjoint
representation then (5.2.9) reproduces the Peiffer identity on G*. ]

In other words, the Peiffer identity in D(G) is by definition given as in (5.2.9). The multiplication
between the sectors G_;, G*, is given by yg = T,(t*g) and gy = (ty)T,.
Now that we have defined the product of the graded components and the t-map associated

to D(G), we can identify the bimodule structure.

We combine the right-moving X = (-,5) and left-moving % = (-*, J) multiplications on
D(G) to form * = X + X,

(z,h)'(Z'\ 1) = (22" + 2<ah/ + Z’Qh,h - W' + 20 + 2'>h), 2,2/ € G, h,h' € G*.  (5.2.10)
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Since * is a combination of the internal 2-algebra structures of G, G* and the 2-representations
>, <, we have respectively the Peiffer conditions and associativity for G,G*, as well as the
2-representation properties (5.2.8), (5.2.9) and the matched pair conditions (5.2.3), (5.2.4),
(5.2.6). These imply that the map *

(i) is associative,
(ii) makes D(G)_; into a D(G)o-bimodule,
(iii) satisfies the Peiffer conditions under T = t ® t*.

Hence (D(G), ) is a 2-algebra.

2-coalgebra structure. We intend now to construct the coproduct Ap : D(G) — D(G)*®.
We have to build the components

Ap_1 @ D(G)-1 = D(G)-1®D(G)-1 = (G1®G) ®(G-1®Gy)
Apy : D(G)o— (D(G)-1® D(G)o) ® (D(G)o® D(G)_1)

We can directly infer some of the components Ap_; from the coproducts A_;, A*, of G, G*.

Explicitly, it is defined as

ADdl = A—1<>§A>‘:1-

This coproduct by construction encodes the separate coproducts A = Aplg, A* = Ap|g« by
restriction and it is consistent with the products of each 2-algebras. These components are

diagonal in a sense and we need to introduce some off diagonal contributions,
£1:G.0-G®0G4, (1:G—-0.100G;.

such that
Ap_1=(Ap)*, +£6..®C1. (5.2.11)

&1 and (_; can be interpreted as coactions and are defined as dualized components of the
coadjoint actions. Taking as usual (z, f) € D(G)p = Go ® G*, and (y,g9) € D(G)-1 = G_1 ® G

we have

<£—1(y)7$®f>:: <y,m>_1 f>a <C—1(g>7f®x>:: <g,:1c<]_1 f> (5212)

These coactions are 2-algebra maps by (5.2.5), and hence Ap_; satisfies (5.1.16) on D(G).

In a similar way, Ap, is also made of several components. We use the components Ay :

Go = (Go®G1) ®(G-1®Go) and Af : G* — (G5 ®G*,) D (G*; ® Gg) of G and G* to define
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the "diagonal" contribution,
(AD)S = Ag®AF,  (Ah) = Af®AS

. _ 1 ! .
Once again, by restriction, one recovers the separate coproducts Ay and Ay™ on respectively

G and G*.

We also have to recover the mixed terms.

f(l)igoﬂgf)k@go, £ :Go— G ®G
C(l)igfl - G.1®G%, ¢:6 — G ®G,

such that
(Ao = (AD)F + &' @ " (5.2.13)
These mixed terms are again obtained by dualizing the components of the coadjoint actions

(E(x), 7 ®@g)i={z, 2" o g), (&), y®f) =z, T,f),
G Ry =y f), (Gf)g®a)={faT,). (5.2.14)

Once again, these coactions are 2-algebra maps by (5.2.5), and hence Ap satisfies (5.1.16) on
D(G).

We now need to show that it also satisfies (5.1.10), (5.1.11). We do this by leveraging the
self-duality D(G) =~ D(G)* under the natural non-degenerate self-pairing via (5.2.1) (cf. [95]),

((z,h), (', 0) = (o) + g, 2) + (' y) + (g, ). (5.2.15)

By Proposition 5.2.1, (D(G),) is an associative 2-algebra iff (D(G)* =~ D(G),Ap) is a
coassociative 2-coalgebra, which implies (5.1.10)-(5.1.11) for Ap.

Definition 5.2.3. We call the 2-bialgebra
G=G* := D(G) = (D(G)_1 = D(G)o,", Ap)

built out of the the matched pair of strict 2-bialgebras (G,G*) with the product, coproduct,
and counit given respectively in (5.2.10), (5.2.11) and (5.2.13), (5.2.14), the strict quantum
2-double of G.

5.2.3 Factorizability of 2-bialgebras

Conversely, we can determine when a strict 2-bialgebra is actually a strict quantum 2-double,
which is given by a factorizability/splitting condition. In fact, we prove that any 2-bialgebra that

factorizes appropriately into 2-bialgebras will automatically determine a quantum 2-double.
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Theorem 5.2.1. Suppose a (unital) 2-bialgebra (K = K_4 L Ko, %) factorizes into two (unital)

sub-2-bialgebras G, H, meaning that there is a span of inclusions,
G5K LA, (5.2.16)

such that o (L®7) is an isomorphism of 2-vector spaces and such that the 2-sub-bialgebras G, H
are dually paired, with their t-maps satisfying {tg—, —) = (—,ty—). Then (G, H) is a matched
pair and K =~ GH.

Proof. Let K = K_4 EiN Ko be a 2-bialgebra factorizing into two 2-subbialgebras G, H, with
typical elements w € Ky and e € K_;. Its 2-algebra structure * contains a multiplication ww’ in
Ko and a Ky-bimodule structure w'e, e*w on K_;, which are both associative. Since (5.2.16) is

a span of 2-vector spaces, we have

To(1®)9-1) = (bootg) ®(Jooty) = (to® o) o (tg @ ty),

where tg, ty are the t-maps in G, H respectively, and ¢_1, (o are the graded components of the
inclusion ¢; similarly for j.

We now separate the bimodule structure * into components according to the span (5.2.16),

> = T‘im(bo®%1)7 T= ?‘im(u1®jo)>

then for e = ¢t_1(y), ¢’ = y_1(g) where y € G_1,g € H_; we have

~

(Tea(y))B>9-1(9) = woltgy)>7-1(9).

By the Peiffer identity in K, this should read as a left-multiplication of y on g. We lift this action
along t4, to create a map Ty : Ho — H_1, for which Ty(tﬂg) denotes the left-multiplicaion of
y by g. Similarly we have the lift Tg : Gg — G_; of the right-multiplication of g on .

Provided we identify Ty@q =T,® Tg, the Peiffer conditions in I are then equivalent to the
2-representation properties (5.2.8), (5.2.9). In particular, the multiplication y - g = T, (t*g) =
(ty)T, is given by the generalized Peiffer identity as shown in Proposition 5.2.2.

Now we prove that (5.2.16) is in fact a span of 2-algebras. Due to the linear isomorphsm
20 (1®7), there exists a tuple of well-defined linear maps ¥ = (U, ¥_;¥): GRQH - H®G,
called the braided transposition, such that

() - 30(f) =0 (0 ® ) o Yoz ® f),
(z)>-1(9) = To (11 ®uo) oV 1 (2 ® g),
t () T0(f) = <o (o ®@11) o UL, (y® f),

L a(y) 9a(g) =0 (L1 ®i1) 0 T(y®g),

where U_; = W' | + 0" and € Gy, y € G_1, f € Ho, g € H_1. Due to Peiffer conditions on K,
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these braiding maps are not independent and must satisfy

(ty®1) oW, = Vg0 (1Rty), (1®tg) oW | = Vg0 (tg®1),
U o(tg®1) =T =T o (1®@1ty).

By collecting all of the graded components of ¥ in accordance with the shorthand notation

z=(y,x) € G,h = (g, f) € H, the definition of ¥ can be concisely written as
1(2) 7 9(h) =20 (1®1) o ¥(2®h), (5.2.17)
and the relations between its components is summarized as
T'oW_; =WyoT, U=U_,0T, (5.2.18)

where T" = ty ® tg is the t-map of the 2-bialgebra X' ~ H ® G with G, H swapped in the span
(5.2.16). (5.2.18) then implies in particular that ¥ :  — K’ is a 2-vector space homomorphism.

We now proceed formally as in the 1-bialgebra case [117, 118]. The associativity in K is

which yields the 2-braiding relations

Vo ("®id) = (id®)o Wipo Wy,
Vo (id®) = (®id)oWay oW, (5.2.19)

This then allows us to define the actions

>

(iId®e) oV : GROH — H,
(e®id)oV:GRH — G,

Al
I

where € denotes the counit map. Applying id ®e and € ® id respectively to the first and second
equation of (5.2.19) implies that >, < respect the semidirect product structures G_1 x Go, H_1 %
Ho, respectively. Together with our above result, (5.2.16) is in fact a span of 2-algebras.

We now prove that (5.2.16) is actually a span of 2-bialgebras, which proves the theorem.
Applying € ® id and id ®e respectively to the first and second (5.2.19) yields

(z-2")<h =(2<¥ (2 ®h)), 2>(h-1) =V (2@ h)SH). (5.2.20)

We now take the coproduct Ay : K — K?® on K, given in components and Sweedler notation
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(see (5.1.5), (5.1.6)) by
(Ax)-1(e) = eq) ®e), (Ax)o(w) = wél) ® wé2) + w(l) ® wa)Q

note wél), Wiy € K_1. With the span (5.2.16), we can write w = 1o(2)0(f), € = t-1(y)-1(g) for

some appropriate elements z, f,y, g such that

(Ax)1(y,9) = (o ®91)) @ (W) ®gwe),
(Ak)olz, ) = (xl(l) ® f(ll)) ® (xl(Q) ® f(lz))a
(Ak)o(z, ) = (ﬁfl) ® f(Tl)) ® (x&) ® f(Tz))-

This then allows us to define coproducts on G, H by

(Ag)-1(y) = Y1) ®Y(2), (Ag)o(x) = 21y ® Ty + (1) ® (),
(AH)—I(Q) =9() ®9(2), (AH)O(f) = f(ll) ® f(l2) + f(T1) + f(TQ)a

whence Ax = Aggy, which implies that * o (¢ ® 7) and * o (3 ® ¢) by construction respects the
coproducts.

As such, V is a 2-coalgebra map. In particular, we have
AoV = (YR V) o Ak, (e®Re)oV =€e®e (5.2.21)

where K’ is the 2-bialgebra with G, H swapped in the span (5.2.16). An application of € ®
id®e ® id and id ®e ® id ®e to (5.2.21) gives

Agod=(A®3A)oAx, Ayob =(E®B5)o0 A,

which ensures that >, <1 are 2-coalgebra maps.
Now applying € ® id ® id ®e and id ®e ® € ® id to (5.2.21) yields

Z(l)i]h(l) ® Z(Z)§h(2) = TO \1/(2 ® h),
20>ha) @ 20 Jhe) = V(z®h).

Using the second equation, together with (5.2.20), gives (5.2.6) and

Z&(fﬂyh/) = ?((2(1)5]1(1) ® Z(g)%h(g))&h/) = (Z(l)§h(1))?|y((2’(2)%]h(z))ﬁh,),
(Z?|gzl)%h = f(zil(zzl)ﬁh(l) ® 222)21}1(2))) = (Z%(ZEI)§h(1)))?|g(zg2)%]h(2)),
which are precisely the mathced pair conditions (5.2.3), (5.2.4) for *|g = -,*|% = -*. On the

other hand, using the first equation gives (5.2.5). Thus (5.2.16) is a span of 2-bialgebras and
so K ~ GH. 0

Note that the span (5.2.16) factorizes the 2-algebra structure on K into the right- X =
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(Ylg, <) and left-moving % = (?|3F, >°PP) 2-algebra structures. In other words, in order to

identify K with a quantum 2-double, we must have [118§]
K = GH = D(G, HPP), (5.2.22)

where H°PP denotes the opposite 2-algebra. This is because, as can be seen in (5.2.14), the

back-action < is written from right to left.

5.2.4 Characterization of quantum 2-R-matrices

As we have mentioned in the beginning of this section, we wish to leverage the quantum 2-
double construction we have given above in order to provide a notion of a quantum R-matrix
on a 2-bialgebra G. More precisely, we shall use the skew-pairing on G used in forming the
quantum 2-double D(G,G) = GGPP in order to provide a definition of the 2-R-matrix on G.
We shall show in §5.6.2 that such a characterization is universal, in the sense that our definition

of a 2-R-matrix gives rise to a braiding on the 2-representations of G.

Review of the 1-bialgebra case. We first recall the explicit construction of the universal
R-matrix for the ordinary 1-bialgebra H. It was noted by Majid (see eg. [118, 117]) that, in
forming the quantum double D(H, H) = H » H°PP as a bicrossed product, the (non-degenerate)

skew-pairing which dualizes H with itself satisfies

<3§'IE/, g>sk = <.’L’ & 33/7 A<g)>sk = <$7 g(1)>sk <£L’/, g(2)>sk>
<377 gg/>sk = <A(:U), gl ®g>sk = <x(1)7 g/>sk <$(2)7 g>Sk7

where x,2' € H and ¢,¢' € H°P® >~ H. If we define this skew-pairing as a functional (—, =)y =

R* : H*® — [, then we see that the above conditions translate to
R*o (u®id) = RizRy;,  R*o (id®u) = RizRY,,

which is nothing but the defining properties of a dual R-matrix on H. Indeed, together with
the property
9 Ty B (22, 92) = B (2(1), 901)) T(2) 92 (5.2.23)

we obtain the (dual) Yang-Baxter equations [118; 117].

In other words, the duality pairing (—, —)g on the bicrossed product quantum double
D(H,H) = H = H°PP gives rise to a R-matrix R on H, and conversely any R-matrix gives rise
to such a duality bilinear form. Moreover, this pairing is non-degenerate iff the corresponding

R-matrix is quasitriangular (ie. R is invertible).

(Dual) 2-R-matrix. We now follow an analogous treatment to characterize dual 2- R-matrices

of a quasitriangular 2-bialgebra G. Take the quantum 2-double D(G, G), whose underlying dual-

72



ity pairing (5.2.15) is given by a non-degenerate self-duality skew-pairing (—, —)q : GRG — k.
Explicitly, this pairing satisfies

&y, o=@ @y, A MNse,  Wor sy o = W@ 2, AG(f) sk
<.T, f ‘1 g>Sk = <A6(I),g® f>Sk7 <.CC,g : f>Sk = <A6(£L’), f ®g>8k7 (5224)

and also in addition to the fact that it should respect the t-map T'=t® ¢ on D(G,G),

Yy, gsc = Y, tg)sk,

where z, f, f' € Gy and y, g € G_;. Writing the skew-pairing in terms of a functional R* : G*® —
k by
Rzk(yaf) = <y7 f>sk7 R;f(x,g) = <x7g>sk7

we can rewrite (5.2.24) as

Ri o (1 ®id) = (R;)13(R] )23, Ri o (- ®id) = (R} )13(R;)2s,
Ry o (id®) = (R} )13(R; )12, Ry o (id®-~) = (R)13(R) )z,

where -, - denotes respectively the left and right Gy-actions on G_;. We also have the compat-

ibility conditions with the t-map:
Rio(id®t) = R} o (t®id) e G*%.

By dualizing the above functional R*, we are able to characterize the 2-R-matrix R on G.

Definition 5.2.4. A 2-R-matrix associated to a 2-bialgebra (G, -, A) is an element R € G®R G

consisting of the graded components
R' e G_1 ® Gy, R eG®G_1.

such that the following identities are satisfied:

1. the compatibility with the coproduct

(Aé ® id)RT = Rll3 K Rgga (AS ® id)RT = R7{3 r Rl23a
(dRANR = RLy - RE,, (dRANR! = Ri, 1 R, (5.2.25)

2. the coproduct permutation identity
RIAN(z) = (0o AY(2)R",  RIA{(z) = (00 Aj(z))R! (5.2.26)

for each x € Gy, where 0 : G ® G — G ® G is the permutation of tensor factors, and
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3. the equivariance condition

D;R=0 < (t ®id)R' = (id®t)R" € G°. (5.2.27)

We call the tuple (G,-, A, R) a quasitriangular 2-bialgebra if R!,R" are both invertible.
We now derive the categorified notion of the Yang-Baxter equations.

Proposition 5.2.3. The 2-R-matriz of a quasitriangular 2-bialgebra (G, -, A, R) satisfies the
2-Yang-Baxter equations

Rgs(RT:a 'l Rl ) = (RllZ r R§3>Rg3= (Rl23 'l ng)R’ﬁ = Rgz(RTis r Rl23)v
Rl23(7y13 r RQQ) (Rgz ZR )Rlz:sv (Rgzs r Rlls)Rlu = le(Rlls 'l 7353) (5‘2‘28)

Proof. Recall that R is quasitriangular iff R!, R" are square and invertible. This pairs G with
itself and hence dim Gy = dim G_;. We calculate (id ®c o AS)RI and (oo Aé ®id)R", as well as
(id®c o Ap)R! and (0 0 Aj ®id)R" in two ways. First using (5.2.25), we have

(id®o o A)R!
(00 AL ®id)R" =
(id®o o ALR!
(0o Af®Id)R" =

(id ®U)Rl13 ' Rig = Rl12 ' Riss
(0 ®id)Ry5 1+ Ry = Ry 1 Ri,
(id®0)Ris 1 Rip = Riy -1 Riz,

(0 ®id)Ris - Rl23 =Rz RIIS‘

On the other hand from (5.2.26), we have that,

(1d ®0 o Al )Rl =R, ((1d ®AT)R1)RT231 R£3(R§3 'l Rl12>RT2_31
(U © Aé ®id)R" = Riy((A 0 ® 1d)RT)RT1_21 = R§2(R71“3 r Rés)Rrﬁl’
(id®o o AT)RZ = R ((1d ®Al )RZ)RlQ:’)1 Rl23(Rl13 r R§2>R12_31
(0o Ap® id)R" = le((Al ® 1d)RT)Rl121 RllQ(Rll3 'l Rgg)Rlﬁl
Putting each equation with its above counterpart leads to (5.2.28). O

Remark 5.2.2. It is easy to see that, when G = D(H) is itself the quantum 2-double of a 2-
bialgebra #H, then the skew-pairing required in forming the "2-quantum quadruple" D(G,G) =
D(D(H), D(H)) splits into two copies the self-pairing form (5.2.15),

Ay, 2), (g, NI 2, (9 ) Dse = g, 1), (0 2')) + (g ) ().

Since (5.2.15) is non-degenerate, then so is {(—, —)g and the corresponding universal 2-R-matrix

R e D(H,H) on D(H) is automatically quasitriangular.

The (dual) 2-R-matrix from factorizability. Due to the factorizability result Theorem

5.2.1, we could have begun our characterization with a general associative 2-bialgebra /C which

74



factorizes into two copies of G, instead of the quantum 2-double D(G,G). This introduces the
braided transposition ¥ : G ® G — G ® G given in (5.2.17) into the definition of the dual
2-R-matrix:

R} = ev;o0! | R: =ev,oU",

where ev = ev; + ev, is precisely the skew-pairing (—, —)q that we have introduced previously.

Dualizing this construction then gives
R! = ' | o coevy, R" = V", ocoev,, (5.2.29)

where coev = coev; +coev, : k — G ® G is the coevaluation. In other words, we are able
to reconstruct the 2-R-matrix from the braided transposition ¥ on the quantum 2-double
K = D(G,G). Indeed, (5.2.18) gives the equivariance (5.2.27), and the relation (5.2.19) implies
(5.2.25).

As mentioned in the proof of Proposition 5.2.3, having a quasitriangular structure on G
implies that G is self-dual. This explains why only W_; appears in the reconstruction of the
2- R-matrix: the degree-0 component ¥, dualizes to that in degree-(-2) U* for the dual K* =~ K,
which has the same t-map T = t @ t. As ¥* is determined by (U*,)b" = U™ per (5.2.18), the
component ¥y is also completely determined by W_;.

Since Theorem 5.2.1 implies that K =~ D(G, G), this particular construction is isomorphic
to the one we have given above directly from D(G,G). The characterization of the 2- R-matrix,
Definition 5.2.4, thus does not depend on whether we induce R from the skew-pairing on
D(G,G) or the braiding trasposition ¥ on K.

5.3 Weak 2-bialgebras

We now begin our endeavour to weaken the associativity conditions in the above quantum
2-double construction. The idea of non-associative 2-algebra has not been developed nearly as
much as the associative ones, but we shall take inspiration from their Lie 2-algebra counterparts.

We provide the notion of a weak 2-algebra by generalizing Definition 5.1.2.

Definition 5.3.1. A weak 2-algebra (G,7) is amap t : G_; — Gy between a pair of not
necessarily associative algebras, together with an invertible homotopy map 7 : Gi® — G,

such that we have the conditions (5.1.2), (5.1.3), as well as

1. the weak 1-associativity,

(xx/>$/l _ x(xlwll) — tT(I‘, x/’ .T”), (yy/)y// _ y(y/y/l) — T(ty, ty,, ty/l)
and the weak bimodularity,

w2 y) = (za!) y =T, ty)  (z-y) o'z (y o) =Tz tya),
(y )2’ —y-(x2)) = T(ty,z,2"),
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for each z,2', 2" € Gy and y,y/,y" € G_4,

2. the Hochschild 3-cocycle condition,
w1 - T (22, 23, 24) + T (21,72, 73) - 14 = T (2120, 73, 74) — T (21, 0273, 14) + T (21, T2, 374)

for each x4, ..., 24 € Gy.

We call (G, 7T) a unital weak 2-algebra if we have a unit map 7 : k — G that satisfies the usual
conditions (5.1.4), and such that 7 is normalized — namely it vanishes whenever any of its

arguments are 0 or 7.

We note here that this structure is precisely the definition of a 2-term homotopy A.-algebra
[142], together with the Peiffer identity constraint (5.1.3). The correspondence between the

n-nary product m,, € Hom" 2(G"®, G) and the weak 2-algebra structure is given by

with m,, = 0 trivial for n > 4. Nevertheless, we shall see that the Peiffer identity on G shall
play a very important role.

Similar to Remark 5.1.1, the Peiffer identity implies the further constraints
(@-y)y —x- () =T tyty), (y-2)y -yl y)="Tltyzty),
yy' @) = (') - = T(ty, ty', x)

for t # 0, where z € Go,y,y' € G_;.

Weak 2-algebra homomorphisms

We define a map between weak 2-algebras (G, 7) — (G', T') as a cochain map F' = ([, Fy, F_;) :
g—g"
F:G® G FiG—G, F.:Gi-G,

such that ¢ o F_; = Fy ot and the following conditions are satisfied,

P (z,2") = Fy(za') — Fo(z)Fo(2'),
Fi(z,ty) = Foa(v-y) — Fo(z) ' Foa(y),
Fi(ty,z) = Foaly-z)— Fa(y) ' Fo(x)

)

=  Fy(x) ' Fy(2,2") — Fi(z2', 2")
+ Fi(z,2'2") — Fy(z,2") 7 Fo(2")
+ F (T (z,2',2")). (5.3.1)

In other words, F} contributes as an "obstruction" for the other components (Fp, F_1) to define

a strict 2-algebra homomorphism, but only up to homotopy in the sense that F; by definition
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(see the last equation of (5.3.1)) gives an explicit trivialization of the Hochschild cohomology
class [T" o Fy] = [F-10T] =0.

It can then be deduced that quasi-isomorphism classes of weak 2-algebras — where G ~ G’
are said to be quasi-isomorphic iff there exists a weakly inertible cochain map (5.3.1) between
them — is still labeled by Hochschild cohomology classes T € HH*(N, V), where N = cokert
and V' = kert. In particular, (G,7) is always quasi-isomorphic to its skeleton (N %y, [T]),
which is in fact associative.

In summary, the difference between the strict and weak case is that there are distinguished

associator chain homotopies
T(z, 2", 2") : (xa")2" — x(2'2"), (5.3.2)

given by the homotopy map 7 witnessing associativity.

5.3.1 Weak 2-coalgebras

We begin by defining the notion of a weak 2-coalgebra. Recall that the weakening in Definition
5.3.1 concerns only the associativity of the 2-algebra structure. Correspondingly, the weakening
of a 2-coalgebra should only concern the coassociativity.

For brevity of notation later, we first rewrite the equations (5.1.7), (5.1.9) in a more concise
way. Consider coassociativity (5.1.7); we naturally extend A_; to act on tensor products (with

alternating sign) such that
A—l o A—l = (ld@A_l) o A—l - (A—l &® ld) o A—l-
Secondly, we recombine Ay = Al + Al and extend it as well to tensor products, such that

(AL +Ag)0dy = [(AL®id) o Af — (Id®A)) o Af]
+ [(([d®A_;) o AL — (A} ®id) o AJ]

encodes two expressions in (5.1.9). We extend the t-map to the triple tensor product,
Dy =1d®id®t —id®t ®id +t ® id ® id,

such that the equation
DtOAOOAO ZAOODtOAO

encodes all three equations in (5.1.14). For convenience, we define also the map
D2l =t®t®id—tid®t + idQt ®t,
which is an extension of two applications of ¢ to the 3-fold tensor product.
Definition 5.3.2. Let A; : Gy — gi@f denote an invertible trilinear map. Together with the
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maps (A_1,4) defined as in (5.1.5), we say that the tuple (G, A = (A_1, A, A;)) is a weak

2-coalgebra iff coequivariance (5.1.10), coPeiffer identity (5.1.11), weak coassociativity

A,l o A,l = Al o t,
(A,l =+ Ao) O AO = Dt @) Alu (533)

and 2-coassociativity
Al o AO = A_l o Al (534)

are satisfied. In which case we call A; the coassociator of G.
We call (G, A) counital if it is equipped with a counit € : k — G satisfying the usual

conditions, and € o A; = 0.

Notice that, provided the coequivariance and the coPeiffer identity are satisfied, applying

one more t-map to (5.3.3) yields
A6 @) AO - AO o) A6 = Dt[2] o Al, (535)

which is a monoidal weakening of the condition (5.1.14). Similarly, applying the t-map yet once
more gives a map ¢ = (tQt®t)A; : Gy — QS@ that lands only in Gy. We write this element
multiplicatively such that

(Af®id) o A = P o (Id®A) o Ag,. (5.3.6)

Recall that, in the skeletal case where ¢t = 0, the coproducts A_;, Ay, A} are independent and
hence (5.3.6) should also be imposed independently from (5.3.3).

5.3.2 Weak 2-bialgebras

Suppose now (G,7T) is a weak 2-algebra equipped with the tuple A = (A_1, Ay, A;) of linear
maps. Recall the Sweedler notation (5.1.8) for A} : Gy — G3®. We use it to state the condition

that the coassociator A; preserves the algebra structure on G,

(Afl © T) (SL’, xlv x”) = T(j(l)v j/(1)7 j/(,1)> ® T(E(Q)v i/(Z)v j/(/Q))a
Ar(zz’) = z@y7() @ T(2)T(y) ® T(3)T(3), (5.3.7)

for z,2',2" € Gy. Note that Z(),Z@) € Gy are not to be confused with the elements a:l(lr) in

(5.1.6).

Definition 5.3.3. The tuple (G,T,A) is a (unital) weak 2-bialgebra iff (G,T) is a weak
2-algebra and (G, A) is a (counital) weak 2-coalgebra. Equivalently, (G, 7T,A) is a weak 2-
bialgebra iff the tuple A = (A, Ay, A_y) satisfies (5.1.11), (5.1.10), (5.3.3)-(5.3.5), (5.1.16)
and (5.3.7).

A weak 2-bialgebra (G, T, A) is called quasi-2-bialgebra if 7 = 0.
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Similar to what we have done for the strict case, we suppose G is dually paired with its dual

2-algebra through (5.2.1). The coassociator A; on G induces a linear map 7* : G*; — G by

<f®f/®f”>A1(x)> = <7-*(f7 f/,f”),$>.

Similarly, the Hochschild 3-cocycle T on G induces a linear map A¥ : G* | — (G#)3®. We form
the tuple A* = (AY, A§, A*)).

Proposition 5.3.1. Let G, G* be dually paired, then (G,T,A) is a (unital) weak 2-bialgebra iff
(G*, T*, A*) is a (unital) weak 2-bialgebra.

Proof. This follows directly from the definitions.
O

Given (G,G*) are dually paired 2-bialgebras, we see that a quasi-2-bialgebra (G, T = 0,A)

encode the same data as a weak but coassociative 2-bialgebra (G*, T*, A*), in which A} = 0.

5.4 Weak (skeletal) quantum 2-double

Let G, G* be dually paired (weak) 2-bialgebras. To form its weak quantum 2-double, we require
them to act on each other weakly. This means, in particular, that the coadjoint actions >, <

now come with the additional components
>1: Go® — Hom(G*,,Gy), < :(G%,)*® — Hom(Gy, G1).

This will be justified further in §5.5.1 where we show that the coadjoint action can be interpreted
weak representation. More specifically, just like the product and actions in (5.2.2) contribute
to defining dually some (crossed) relations, the cocycle 7 should also contribute dually to the
adjoint action. This is what >>; and <; stand for, as we will see in (5.4.1).

To construct non-skeletal weak quantum 2-doubles, one must explicitly keep track of how
T,T* >1,< appear in the crossed-relations (5.2.3), (5.2.4), (5.2.5). For clarity and brevity,

we will restrict for now to the skeletal case when defining the quantum double.

5.4.1 Matched pair of skeletal weak 2-bialgebras

Though the situation is drastically simplified in the skeletal case ¢ = 0, it is now important for
us to keep track of the associators. We shall do this by using the notation of (5.3.2).
The non-trivial crossed relations (5.2.7), in particular, are attached with the components

>, <; of the coadjoint actions,

($)<1{’fl x>y (ff) = (oD fay) " (xe<fe)> 1),

ST(f) s (@) 9 f S (@B f) - (e < fe),
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where we have made use of the shorthand notation defined in Remark 5.2.1. These come

together to allow us to define a Hochschild 3-cochain on the quantum 2-double D(G),

rT(x’ {L'/,I”)

[>x,:v/ "
To: DG — DG, Tolw )= {00 U (5.4.1)
(z)<

T )

where w = (z, f) € D(G)y is a degree-0 element, with = € Gy and f € G*,.

Definition 5.4.1. The pair (G,G*) of mutually paired weak skeletal 2-bialgebras forms a
(skeletal) matched pair iff, in addition to the compatibility conditions (5.2.3)-(5.2.6), the
3-cochain Tp defined in (5.4.1) is a Hochschild 3-cocycle on D(G) = G ® G*.

For arguments contained solely in Gy or G*,, this condition merely states the 3-cocycle
conditions for T, 7™, respectively. The other ones mix non-trivially the different components

of the 3-cocycle Tp,

1 B ([>T27$3(f)) - T(x17$27x3) <o f = [>T1$27$3(f) - I>T17$2z3 (f) + T(Jfl, To, T3 <_1 f)v
r1 - (72) Q{I’b -1 (fi) M fe = (mm) <1{1’f2 — (1) <1?>_1f1’f2 + > (fifa),
20 T(f1s fo, f3) — (@)<Y <o fs = THa >y fi, fo, f3) — (x) <P 4 (2) < {(F4.2)

Then, we construct D(G) as a 2-bialgebra as in §5.2.

Since we are in the skeletal case, it is easy to see from (5.3.1) that the quantum 2-double
is weakly self-dual D(G) ~ D(G)*, where we recall ~ denotes equivalence of 2-algebras under
the classification result Theorem 5.1.1. This means that the associated Hochschild 3-cocycles

Tp, T; are cohomologous, where

T 11"
17 (@)
7?; : D(g>g® - D<g)—17 73(% wla w”) = 9 o ol 2
(f)<y

L7°-=1< (ZL’, I/, ZE”)

denotes the dual of the 3-cocycle Tp. The "dual" version of (5.4.2) reads

J1 <o <§{27f3<x>> - 70—(f1; fo, f3) oz = §{1f2’f3($) - §{1’]02]63(@ + 70—(f17 f2, f3 <1 @),
it ) =B @) e = (ARG = ()T 4 B (1),
<o T* (w1, 02, 33) — ((f)<;"") o a5 T*(f >y w1, 0, w3) — ()< + ()<} (5423)

It is important to note that the components >, <1; do not form Hochschild 3-cocycles by

themselves, and similarly for the components >1, <;.
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5.4.2 Factorizability of weak 2-bialgebras

We now prove the analogue of Theorem 5.2.1.

Theorem 5.4.1. Suppose (K., Tx) is a weak 2-bialgebra that weakly factors into two skeletal
weak sub-2-bialgebras G, H, namely the inclusions in the span (5.2.16) are weak homomorphisms
as defined in (5.3.1), then I ~ D(G) are equivalent as 2-bialgebras.

Recall two weak 2-bialgebras are equivalent when there exists an invertible weak 2-homomorphism
(5.3.1) between them.

Proof. The fact that K factors into skeletal 2-subalgebras means that it must also be skeletal
itself. This allows us to leverage the proof of Theorem 5.2.1 to reconstruct the underlying
2-bialgebra structure of K = D(G) as a quantum 2-double.

The subtlety here is that we must now keep track of the 3-cocycle Ty : Ki® — K_; in K

when we, in particular, invoke associativity in the form

>7(f) (o) o(x) 50 (f) = to(x):(eo(2")20(f)),
(@)l (@) 20(F)) 30 (f) = w0(x)Go(f)20(f)).

TK(LO(*I)a Lo(lL‘/),]O(f))
TK(LO(x)vjﬂ(f)7]0(f/))

Now in the skeletal case, the braiding map ¥ = (¥, U_1;¥): GO H — H ® G is still defined

as in (5.2.17). However, the components [>1, <; now give rise to associators

> o (A® ld) ;> (1d®A> ) \1112 O \1123,
<7 Yo (ld®A) ;> (A®1d) o ‘1’23 o \1112 (544)

that implement the braiding relations (5.2.19). These braiding associators satisfy a set of
algebraic conditions following from the 3-cocycle condition (5.4.2) for Tk-.

With the components >, <1; as defined above, we now wish to reconstruct the Hochschild
3-cocycles T, Ty of G, H from Tx. Note this cannot be achieved by just restricting Tx via
the span (5.2.16), as this does not have the desired codomains. For instance, the restriction
Tk|im =g : G(%@ — K1 =~ G 1 ®H_1 in general lands in the tensor product, for which only
the G_;-valued component gives the desired 3-cocycle T on G. Nevertheless, with Tg, Ty
defined in this way, having the span (5.2.16) means that the 3-cocycle condition for Tk implies
(G,Ta), (H,Ty) form a matched pair of weak 2-bialgebras, as in (5.4.2).

The "undesirable" piece T¢, namely the component of Tk|g valued in ‘H_1, is a Hochschild
coboundary. This follows from the definition of the inclusion ¢ = (¢t_1,10,¢1) : G — K as
a weak homomorphism. Indeed, by projecting the last of (5.3.1) for ¢; to H, the first term

1 1(Tg(z, 2’ 2"))|3 = 0 vanishes whence

To = Tr(w(x), ('), w(x"))]x
= @) @, 2"y — ulxd, 2"y + vz, 2’2"y — (2, 2") |3 o (2")

= dHH[['1|’H] (I7 'Tla l’”),
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where dp g is the Hochschild differential [93]. Similar arguments show that T = dyy [71]g] is
a Hochschild coboundary as well. This establishes the weak equivalence K ~ D(G).

The same argument as above, but dualized, is applied to reconstruct (A¢g); and (Ag); from
the coassociator (Ag);. The coassociator conditions (5.3.3)-(5.3.5), as well as (5.3.7), for them
follow from those for (Ag);. O

Note the coadjoint actions >, < only define genuine algebra representations when 7, 7* = 0
(as in Theorem 5.2.1), or when ¢,t* = 0. Without skeletality, the braiding transposition ¥ is
no longer of the form given in (5.2.17). Terms like %", <lt1* must now appear. This, of course,

would modify (5.2.19) in a complicated and intricate manner.

Remark 5.4.1. If the components ¢1, 7; are not required as part of the data for the inclusions
t,7 in the span (5.2.16), then I # D(G) in general. In particular, without the component ¢;
trivializing T¢ by (5.3.1), its (possibly non-trivial) Hochschild class [T¢] € HH?(Ko, K_1) is in
fact an extra piece of data in C that is not in D(G), despite them sharing the same 2-bialgebra

structure. Such a factorizable weak 2-bialgebra is still weakly self-dual IC ~ K*.

In the following, we shall shift gears a bit and study the 2-representation theory of quasi-

triangular 2-bialgebras.

5.5 The monoidal 2-category of 2-representations

With the above algebraic machinery in place, we are now ready to discuss the 2-representations
of a strict or weak 2-bialgebra G. In the following, we shall follow the Baez-Crans definition of

a 2-vector space and the monoidal 2-category 2Vect®® they form [98, 143].

Definition 5.5.1. A 2-vector space is a 2-term cochain complex of vector spaces; equivalently,

a 2-vector space is a nuclear 2-algebra [93|, or an Abelian Lie 2-algebra [95, 96].

2-vector spaces of this type form a 2-category 2Vect®® in which the 1-morphisms are cochain

maps and 2-morphisms are cochain homotopies. Concretely, let V = V_4 9 Vo, W =W_4 2,

Wy denote two 2-vector spaces. A cochain map f : V — W is a collection linear maps
fo—1: Vo1 — Wy 1 such that

d'f-1 = foo.
Given two such cochain maps f, g, a cochain homotopy ¢ : f = ¢ is a linear map ¢ : Vo — W_;
such that

oq = fo — 9o, q0 = f_1—g-1.

We shall refine these notions to fit the definition of a 2-representation of G in the following.

5.5.1 Weak 2-representations

Recall that a representation of an ordinary algebra A on the vector space V is an algebra

homomorphism A — End(V). Morally, a 2-representation should therefore be a 2-algebra
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homomorphism between a 2-algebra G and a "categorified" notion of the endomorphism algebra
End(V). Correspondingly, a weak 2-representation should be a weak 2-homomorphism as in

(5.3.1) into a "weak endomorphism 2-algebra".

Endomorphism 2-algebra on a 2-vector space

In the strict case, the endomorphisms of a 2-vector space are naturally given in the setting of
2Vect?® — namely End(V) = End,,,.sc(V), which forms an associative 2-algebra End(V) =

End(V)_4 LN End(V), of linear transformations on a 2-term cochain complex V' [125],

End(V)y = {(M,N)e End(V_y) x End(Vp) | 0M = No},
End(V)_y = {AeHom(V,,V_1)| (Ad,0A) € End(V_;) x End(Vj)},

equipped with the 2-algebra structure (take A € End(V)_y, (M, N) € End(V)y)
d:A— (A0,0A), (M,N)-A=MA, A-(M,N)= AN.

The associativity of matrix multiplication implies that End(V')_; is clearly a End(V")o-bimodule,
Moreover, we have the Peiffer conditions (note A, A’ € End(V)_;)

S(M,N)-A) = (MAd,0MA) = (MAd, NOA) = (M, N)§(A),
5(A-(M,N)) = (AN®,0AN) = (A0M,0AN) = §(A)(M, N),
As A = 6(A)-A' = A0A = A-§(A),

and hence End (V') is an associative 2-algebra. Note that none of the matrices here are required

to be invertible.

As weak 2-algebras are no longer associative, the above presentation of End(V) in terms
of matrices is no longer sufficient: we require a weaker version of End(V'). Such a notion
of the weak endomorphism 2-algebra &nd(V) would still have the same graded structure ¢ :
End(V)_1 — €End(V), as in the strict case above, but its algebra structure should have its

associativity controlled by a Hochschild 3-cocycle ¥, in accordance with Definition 5.3.1.

To begin, we extend the idea of [144] to weak 2-algebras. In essence, we leverage the
observation in the strict case that an algebra 2-homomorphism G — €nd(V) is equivalent to a
G-bimodule structure on V. We are going to provide a weak generalization of such a G-bimodule
structure in Definition 5.5.2.

Let 2Alg denote the category of weak 2-algebras (G, T'), which contains the full subcategory
2Alg, . of strict 2-algebras. A Baez-Crans 2-vector space V € 2Vect®? < 2Alg,.. — 2Alg fits as
a strict 2-algebra with trivial multiplication. We consider G a a weak 2-algebra (as defined in

Definition 5.3.1). We then equip the direct sum G @ V with a semidirect product structure,

(z+u) - (Z+d) = yWHegy+ya’+ax2
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+ao>w +r>v +y>w +y>v

+w<r +v<r +w=<y +v=<y,

where we have used the shorthand notation z = (y,z) € G_1xGy =G, u = (w,v) e V_ 1 xVy =V

and where

1:G0®G1 —> G4, +:G.10G — G,
D:QO®V—>V, <]IV®g()—>‘/,
G QV -V, < VG-V

are all bilinear maps.

Definition 5.5.2. We say that V' is a G-bimodule if (G®V,-) € 2Alg is a weak 2-algebra. In

other words,
(i) (GaV).1=G 1V isaweak (GDV)y := Gy ® Vp-bimodule,

(i) the map t® 0 : G1 ® V1 — Gy @V} is equivariant with respect to - and satisfies the
Peiffer identity?,

(iii) there exists a well-defined trilinear invertible map (Go @ V4)*® — G_1 @ V_; that satisfies
the Hochschild 3-cocycle condition.

An equivalent characterization of weak G-modules can be obtained as follows. By the

"B of homotopy Baez-Crans

macroscopic principle [16], there exists a k-linear 2-category 2Vect
2-vector spaces, whose algebra objects in which are precisely two-term A.-algebras. For each
V € 2Vect"PY | we call €nd(V) = Endynse(V) the weak endomorphism 2-algebra on V,
and denote by T : €nd(V)a® — &nd(V)_; its Hochschild 3-cocycle. It is easy to see that a weak
G-module structures on V' as given in Definition 5.5.2 are in one-to-one correspondence with

A-algebra maps G — End(V'). This motivates our following theory of weak 2-representations.

Remark 5.5.1. We emphasize here that the 2-category 2Vect?® of Baez-Crans 2-vector spaces is
completely strict [98], and hence its algebra objects (ie. associative 2-algebras/algebra crossed-
modules) and its endomorphism categories End(V') = End,ye5c (V) do not carry non-trivial
homotopy data. Weak 2-algebras/2-term A,-algebras are therefore do not live in 2Vect” =
but instead in its homotopy refinement 2Vect"®¢. The difference between the setting 2Vect"?¢
and the Kapranov-Voevodsky setting 2Vect®" is currently under investigation by the author;
however, I have proven in [119] (see also §5.7) that 2-representation theory based on 2Vect"5¢

and those |59, 64, 65, 145] based on Vect®V share the same homotopy coherences.

4The Peiffer identity states y > w = (ty) > w = y > (dw), and similarly w <y = (dw) <y = w < (ty). If we
write y > v = Ty, then we reproduce precisely the 2-representation properties (5.2.9).
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Weak 2-representations, weak 2-intertwiners and modifications

Definition 5.5.3. A weak 2-representation (g,p) : G — €nd(V) of G on V is a homomor-

phism between weak 2-algebras as in (5.3.1). In other words, p = (po, p1) is a chain map

G, —— G

lpl lpo (5.5.1)

eno(V)_, —2— eno(V),
which preserves the 2-algebra structures up to homotopy,

oo(x, ') = po(xx’) — po(x)po(z),
o(z,ty) = pi(z-y) —po(x) - p1(y),
olty,z) = pi(y-z)— p1(y) - po(z), (5.5.2)

and for which the Hochschild 3-cocycles T, ¥ of respectively G and &nd (V) satisfy the following

compatibility conditions

p(T(x, 2, 2")) = polx) - oz’ 2") — o(xa’, 2")

+ o(z,2'2") — o(z,2") - po(2”)
+ Z(po(x), po(a”), po(z")), (5.5.3)

where z,2', 2" € Gy and y € G_;. We require ¢ to be invertible.

We call p a strict 2-representation if p = 0 identically.

As T, % are normalized, ¢ by definition vanishes if any of its arguments are 0 or the unit ng € Gy.

Remark 5.5.2. Due to the classification Theorem 5.1.1 of 2-algebras [93], a non-trivial 2-
algebra G with 7 # 0 cannot admit a strict 2-representation. Conversely, however, 2-representations
of a strict 2-algebra can still be weak, as (5.5.3) only states that the cohomology class of ¥ is
trivial, not that it is trivial as a 3-cocycle. However, if we further restrict to the case where V

is a strict G-bimodule (ie. the trilinear map in Definition 5.5.2 vanishes), then ¥ = 0 and
¢nd(V) is isomorphic to End(V).

Example: weak coadjoint representation. A very natural example of a 2-representation
is achieved by dualizing, using (5.2.1), the 2-representation G — End(G) given by the weak
2-algebra structure of G on itself.

This gives rise to the coadjoint representation (cf. [95, 115]) > = (1, (>0, >_1),Y) : G —
€no(G*) of G on its dual G*, given explicitly by

>0 : Go — End(Gy), (g,za"y = —(w >0 9,2,
>_q: go - QSHD(gil), <f7$ ) y> = _<I >_1 f7 y>7
TG~ Hom(@, G (fys) = —(Nyf0) (55.4)
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and
>1: G2® — €md(GF)_y = Hom(G*,,G3),  {f.T(z,2,2")) = +(&57 (f), 2"y (5.5.5)

Notice a plus sign occurs here, in contrast with the rest of the components defined in (5.5.4).
This is because we have dualized two elements in G, instead of one.

Analogously, we have the coadjoint back-action < = ((<g, <I_1), T) of G* on G, which we
write from the right”.

Due to (5.5.2), the components of a weak 2-representation are not genuine algebra repre-

sentations in general, but only up to homotopy. We have in general that
(x2") g g =20 (2" >0 g) + >77 (t79), (zx Y>> f=a>_ (@' > f)+t">7" (f),
where t* is the dual t-map on G*, and

Tx'l/f = Dy (Tyf) + nyty(f% Twa = Ty(x >_1 f) + Diy’x(f)-

Of course, these components reduce to genuine strict algebra representations if >; = 0 or t = 0,

which simplifies the situation considerably.

1- and 2-morphisms on the weak 2-representation 2-category. With Definition 5.5.3
in hand, we are now ready to define the morphisms on the weak 2-representations. Let
p = (0,p0,p1) and p' = (0, p}, p}) denote two weak 2-representations on V,W € 2Rep’ (G),

respectively.

Definition 5.5.4. A weak 2-intertwiner i = (/,1iy,i9) : V — W consist of a 2-vector space
homomorphism (iy,ig) : V' — W together with a collection of invertible cochain homotopies

I, : Vo — W_, satisfying

/1

0l =10 pg(x) — pg)(m) 0 1, I,;0=10 p(l)(a:) —po (z) oy

for each x € Gy, as well as

Ly = 110 pi(y) — pi(y) oo

for each y € G_4. Moreover, I, ; trivializes o — ¢’ as a Hochschild 2-cocycle, in the sense that

for each x, 2’ € Gy,
id; ®o(x,2") — o' (x,2") ®id; = idpg(2) ®Ior i — Lo i + Lo ® idpy (0, (5.5.6)

where id; : ¢ = ¢ denotes the identity cochain homotopy on the intertwiner :.

5This means that we have, for instance, (g -* f,z) = —(g,z <1 f) and {f -* g,x) = —(f,zT,).
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In other words, a weak 2-intertwiner ¢ : V' — W is such that the following diagrams

V,1 2 > ‘/0
X io
o} W, s Wy Vo —— Vo
2 : lio lil (5.5.7)
Vo, o Vo iy Wy —2 W,
W_1 7 > W()

commute up to a natural invertible 2-morphism given by I,;. By definition, we have I; =
I,,,; = 0 where 7y is the unit of G.

Now let i,7" : p — p’ denote two weak 2-intertwiners, we have the following.

Definition 5.5.5. A modification p : ¢ = ¢ between two weak 2-intertwiners is a G-
equivariant cochain homotopy
|2 —2 Vo

- / i (5.5.8)

W_4 —) W()

where p intertwines between p;(y), p}(y) for each y € G_1, as cochain homotopies. Moreover, u

trivializes I.; — I. 7 as a Hochschild 1-cocycle, in the sense that
Ia:,i - Ix,i’ = idpg(z) ®,LL v (559)

for all x € Gy, as a relation between cochain homotopies.

We shall denote by 2RepT(g) the 2-category of weak 2-representations of the weak 2-
bialgebra (G, 7T), consisting of weak 2-representation (V,p) objects, weak 2-intertwiners i as
1-morphisms and modifications p as 2-morphisms. We devote the remainder of this section to

proving that 2Rep” (G) forms a monoidal 2-category.

5.5.2 Monoidal structure on the 2-representations

Recall that vector space cochain complexes come equipped with natural notions of direct sum

@, as well as tensor product ®, which satisfy the distributive law
VeWaelU)=VeW)e(VeU),

where V, W, U are vector space cochains. For 2-vector spaces (or equivalently two-term cochain

complexes of vector spaces [98]), the direct sum is given simply by

6@6

VW =V_eW_ =5 V,eW,,
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while the tensor product is given by the following 3-term complex (cf. [95])

VOW =V.,W, 251V, @W,0Vi@W_, 25V, @ W, (5.5.10)
~—— - ~ J gd ,_JO
deg=—2 deg=—1 eg=

where D¥ = +1® ¢ + 0 ® 1 is the tensor extension of the differentials ¢ : V_; — V and
o W_ — W,.

We endow the direct sum and tensor product structure on 2-representations of G in the
same way as above. Note the direct double G?® and the tensor square G?® of a strict 2-algebra

G also have the same structure.

Direct sums. For the direct sum 2-representation, this is simply accomplished by extending

Definition 5.5.3 to a direct sum of 2-algebra homomorphisms
(0.p)@®(d.p)= (0@ pDp): GBG — End(V) D End(IV).
In particular, the direct sum V @ W of 2-representations of G is given by the components
(P®p N =r®00 (@M o=p®0s  (PDP ) =p®p)
such that the square (5.5.1) commutes,
(p@p oo (t@t) = (0@5) o (p®p ),

where §,¢" are the differentials of the two 2-algebras End(V'), End(W), respectively. The zero
2-representation under direct sum is of course the trivial complex 0 — 0.
Tensor product

As in the 1-bialgebra case, the tensor product of 2-representations is accomplished by precom-
posing with the coproduct. However, the graded components of the coproduct A = A_;+Aq in
(5.1.5), as well as A in (5.1.8), allows us to define the tensor product between 2-representations
VeWw

pvaw () = ((pv)o ® (pw)o) 0 Ay(w), = € Go, (5.5.11)

as well as its weak component (cf. Definition 5.5.3)
ovew (2,7") = ov(Ta), T(1)) ® ow (T(2), T(s)), z, 1’ € Go.
We also have the tensor product between a 2-intertwiner ¢ : V' — U and a 2-representation

piow(z) = ((pv)10i® (pw)o) o Aj(z) + (1) (i o (pv)o ® (pw)1) © Af(x),
pwei(z) = ((pw)o® (pv)1 o) o Af(z) + (=1)*¥((pw)1 ®i o (pv)o) © Af(z) (5.5.12)
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for each = € Gy, where the sign depends on the degree of the components in (5.5.10). Lastly,

the tensor product between 2-intertwiners i : V- — U, j : W — T is given by just

pivi(y) = ((pv)1oi® (pr)ioj + (1) Fio (py)1 ®j o (pw)1) © Ai(y) (5.5.13)

for each y € G_;. This defines the invertible natural 2-morphism I;g;. (cf. Definition 5.5.4).
The fact that (5.5.11), (5.5.12), (5.5.13) define genuine 2-representations (up to the homo-
topy g; cf. Definition 5.5.3 and (5.5.2)), for instance

dovew (z, ") = pvew (22") — prew (z)pyew (z'),

requires the 2-bialgebra axioms (5.1.16).

Tensor unit. Now if G is a unital 2-bialgebra, then there is a tensor unit, denoted by I €
QRepT(g) given by the ground field complex & 5 k, and a unit 2-intertwiner given by the
identity id; : 1 — 1, such that G acts on them through multiplication of the counit ¢,

p[(ib‘) = 60(3:)7 pidl(y) = 6*1<y)'

From (5.5.2), the corresponding component ¢ = id for the tensor unit [ is clearly the identity
2-morphism. In according with (5.5.11), (5.5.12), (5.5.13), the condition (5.1.12) then implies
that the left- and right-unitor morphisms in 2RepT(g) are all 1- and 2-isomorphisms. For

instance, (5.1.13) implies
Pvel = Pv = P1ev,
whence V® 1,1 ® V and V coincides as 2-representations.
Due to this, all coherence diagrams in 2Rep’ (G) concerning the unitors, such as the ho-
motopy triangle and the zig-zag axioms |79, 81|, are trivially satisfied, and hence we will not
directly prove them. The conditions (5.1.12), (5.1.13) can of course be easily relaxed to give

non-trivial coherent unitors, but we shall not consider this here.

Naturality and Gray property of the tensor product

Recall the space €nd(V)_; is modelled by cochain homotopies, which can be interpreted as

"endomorphisms" on €nd(V'),. Using this perspective, we will prove the following key results.

Lemma 5.5.1. Let i : V — U denote a 2-intertwiner. We have the following diagrams

VW Prow s VW WeV Pwev s WV
Pi@W PW @i
% —— 7 ) i e i
URQW PUaw s UQW WU Pwey s WU
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in 2Rep” (G).

Proof. Let us focus first on the left diagram. The goal is to show that p;gu defines a cochain

homotopy which fits into the following diagram

VAW, —E— Vi eW e ke W, —2—— VoW,
l y l y l ,
Ua@W ——— U1 @W@U@W.1 ———— Uy ® W)

where the horizontal maps are the differentials given in (5.5.10), and the vertical maps are
various components of pygw 07 — i o pygw.

The key is the commutation relation (5.5.1), which allows us to write

5(p1(y)) = (p1(y)2,0p(v)) = (p5(ty), p5(ty))

for each y € G_4, as well as the definition (5.1.8) of Af. Directly computing, we have for the

rightmost triangle

D™ pigw = dulpu)i(z(yy) 0i® (pw)o(a(e) — (—1)*%i o (py)o(zy)) @ dw (pw)o(2(y))
(pv)o(tz(yy) 0 i @ (pw )o((2)) — i © (pv)o(a(yy) @ (pw ) (tx(y)

= puew ©1— 10 pygw

as maps on Vo ® Wy (with deg = 0), and similarly we have for the leftmost triangle

piow Dt = (pv)1((1)0u 0 i ® (pw)o(a(y) + (—=1)"Fi o (pv)o(2(y) ® (pw)g(xfa)) o
l r T

= (pv)o(ta(yy) 0 i ® (pw)o(a(a) — i 0 (pv)o(x(r) ® (pw)p(taly)

= puew ©1— 10 pyew

as maps on V_; ® W_; (with deg = -1).

Now consider the middle section. We need to compute

D pigw = (pu)s(t(y)
ol

U ® (p )8(35 2))
piow D™ = (pu)o(tz(y) 0

o1 W l( — 1
01 ® (pw)p(aly) — i
and sum them to find
DY pigw + pigwD™ = [(pv)s(tzlyy) ® (pw)o(xlg) + (pv)o(tz(yy) ® (pw)o(x(y)] o
—io [(pv)o(x(y) ® (pw)o(taly) + (pv)o(xf1y) ® (pw)o(tafy)]

= puew ©1— 10 pyew

asmaps on V.1 @ Wy ® Vo ® W_;. The other diagram is treated identically. O
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We now show that (5.5.13) is in fact not independently defined.

Lemma 5.5.2. If j : W — T is another 2-intertwiner, then "i ® j" decomposes as two 2-

1somorphic expressions

1Q)=1Q@ToVRj=UR®jorQW. (5.5.14)
The homotopy ligje = Ligidy * lidy @; also decomposes accordingly.

Proof. What we need to show is that pig; = (pier * pve;) ot = (pue; * Piew) ot as 2-morphisms.

hBC

Recall cochain homotopies ¢ : f = ¢, p: g = h in 2Vect compose by p*q = pdyq : [ = h,

where U is the source 2-vector space of the cochain map ¢g. Indeed, we have

dw(p=q) = (dwp) o (duq) = (go — ho) o (fo— 90),
(p*q)0v = (pou) o (q0v) = (g—1 — h—1) o (f=1 — g-1)

as desired, where W is the target of h and V is the source of f. Notice this is exactly how
elements in €nd(V')_; compose, A+ A" = AJA.

The goal is to prove that D¥ p;g;(y) in fact decomposes as described above for each y € G_;.
This follows from the coequivariance condition (5.1.10). By direct computation, precomposing

(5.5.12) yields (here we neglect the 2-vector space subscripts for brevity)

pri® (pot) + (—1)*%i(pot) @ p1) 0 A4
pri ® Opy + (=1)%%i(0p1) ® p1) 0 Ay,
(pot) ® prj + (=1)%p1 @ i(pot)) © A4
(10) ® p1j + (=1)*%p1 ® j(p10)) © Ay,

pigw ot =

(
(
pugjot = (
(

where we have used (5.5.1) to commute the t-map past the 2-representations to the differential

0. Using the Sweeder notation (5.1.6) for A_;, we compute their graded composition to be

(puei) (ty) = (pigw)(ty) = (p1(¥1))0)P1(¥)i ® p1(Y(2))i(Op1(¥e))
+ (=11 (y)) (101 (1)) ® J (1 (Y(2)) )1 (y(2))
= () = p1(y0))i ® 1 (p1(ye) * p1(y2)))
+ (=1)%(p1(y)) * p1(y1)))i ® J(p1(Ye2) * P1(Ye)))
(-

= (pi®pij+ (—1)*ip, ®@ip1) o A1 (y) = pig;i(y)

as desired, where we have noted the property i_1(py)1 = (pv)iio of the 2-intertwiners i, j to
permute them past the p’s. This proves that the 2-algebra homomorphisms pig; = pier * pve;
coincide. A similar argument shows that the 2-algebra homomorphisms p,g; = prg, * pigw also
coincide.

This is not sufficient to imply that 1 ® T oV ® j = U ® j o1 ® W, however. Indeed, the

weak component p of the two decomposed 2-representations in general may differ. After some
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computations, one can show that we have

l r

l
(
1)) ® Q(tI€2)7 m1(1)) + <_1>deg9(txl(1), x?l)) ® Q(x(Q)u lx 2))‘

Q>®T)o(VR)) © Ao(z) = (ml(ly xfl)) ® Q(‘Tl(Q)ﬂ mfz)) + (_1)deg9(x€1)7 tx 1)) ® Q(”?z): Il(l))a

!

( (
(5.5.15)

The difference oxigr)o(ve;)) * g(_(}@)o(@w) between these 2-morphisms is what gives rise to the
2-isomorphism t @ T o V®j=2U®joiQW. O

The fact that the tensor product of 1-morphisms decompose into two 2-isomorphic "mixed"
tensor products is a signature property of Gray-enriched categories [146, 88]. We call the
property that "structures on the 1-morphisms are determined by the mixed structure, together
with appropriate coherence 2-isomorphisms" the Gray property.

These lemmas are important, as its proof techniques will be used repeatedly in what follows.

5.5.3 Monoidal associators

In this section, we shall focus on the associator morphisms attached to the 2-representations
in 2Rep” (G), as they play a direct role in the main theorem. Recall from §5.5.2 that the
tensor product on 2Rep(G) is given by the coproduct A. The associator morphisms a are
therefore given by the coasscociator A; : Gy — Qi(? attached to the coproduct in G, and not
the Hochschild 3-cocycle T.

However, the data Ay, 7 are dual to each other by Proposition 5.3.1, hence if G is self-dual
(like the weak (skeletal) quantum 2-double as we constructed in §5.4), they in fact constitute
the same data. As such we shall denote the weak 2-representation 2-category by 2RepT(Q).
We shall neglect the tensor product notation ® in the following.

We begin by constructing the associator 2-morphism a;j; : (1 ® j) @k = i ® (j ® k) on
the triple ¢ : V. —> V', j: W — W' k : U — U’ of 2-intertwiners. By (5.3.3), we see that the
following quantity

aiji = ((pv)10i®(pw )10 ® (pu)10k+(=1)"Fio (py )1®j 0 (pw)1®ko (py)1)o (Arot) (5.5.16)

defines a cochain homotopy that fits into the following equation pjr — pigr) = aijr, which

induces a 2-morphism (also denoted by a;j;) between the 2-intertwiners
aij : (ig)k = i(jk).

Secondly, (5.3.3) implies that the following quantities based on D;A;,

avie = () ® (pw)10j® (pu)iok+ (—1)*(pr)o®j o (pw) @ ko (pu)1)
o(t®1®1)Ay,
awr = ((pv)10i® (pw)o® (pur)1 0k + (—=1)%%i o (pv)1 @ (pw)o @k o (pr)1)

92



o(1@t®1)A,
aju =  ((pv)10i® (pwr)10J® (pu)o + (—1)*%Bi o (pv)1 ® j o (pw)1 ® (pu)o)
o(1®1®t)Ay, (5.5.17)

give rise to the associators for the following tensor products,

for the mixed tensor products defined by (5.5.12). Thirdly, (5.3.4) implies that the following
quantities based in D;[2]Aq,

avwr = ((pv)o® (pw)o ® (pvr)1 0k + (—1)*%(pv)o ® (pw)o @ k © (pu)1)
o(t@t@ 1)A1,

awr = ((py)12i® (pw)o ® (pr)o + (=1)%%i o (py)1 @ (pw)o ® (pr)o)
o(l ®t®t)A1,

aviv = ()o@ (pw)1oj® (pv)o + (—1)*¥(pv)o ® j o (pw)1 @ (pv)o)
o(t®1®t)A, (5.5.18)

serve as the associators
aywik - (VW)/{? = V(Wk’), aij . (VJ)U = V(]U), aG;wu - (’LW) = Z(WU),

Notice that these quantities we have defined so far are all cochain homotopies/2-mophisms in
2Rep’ (G), due to the appearance of p; in their tensor products.

Lastly, (5.3.5) allows us to define the associator 1-morphism,

avwo = ((pv)o ® (pw)o ® (pr)o) (P), (5.5.19)
with @ = (t®t®1t)A; : Gy — gg@, which induces an invertible 1-morphism
aywu - (VW)U - V(WU)

that intertwines between pvegw)gu and pygwer)-
The adjoint associator 2-morphism a' is implemented by minus the corresponding cochain

homotopy. For (5.5.19), however, the adjoint morphism aLWU is given by the inverse ®1.

The pentagon relation and naturality of the associator. We now prove the following.

Lemma 5.5.3. Suppose the 3-cocycle T = 0 is trivial for the moment. The pentagon rela-
tion for the associators a arising from (5.5.16), (5.5.17), (5.5.18), (5.5.19) follows from the

2-coassociativity condition (5.3.5) for Ay.

Proof. Consider first (5.5.16). We precompose (5.3.5) with ¢ and reconstruct the associators
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corresponding to each term according to the definition,

(ld ®(A1 ¢) t)) ¢) A_l ~ ldZ ®ajkl, ((Al O t) ® ld) 9 A_l ~ Ak &® idl,
(1®A_1®1)0 Ay ot ~ a;jjuy, (AL ®1®1)oAjot ~ azij)kl,
—(I®1®A_)oAjot ~ aj,j(kl),
where id; : ¢« = 7 denotes the identity modification on the 2-intertwiner 7. Now note that, by
coequivariance (5.1.10) D, o A_y = Ag o t, we have

(d®(Aj0t)) o Ay = (Id®A;) o Al ot, (Ajot)®id)o Ay = (A1 ®id) o Af ot,

whence the pentagon relation

((ig)k)!
t ‘
Aig)kl m

(i) (k1) (G -

N
@i (ki)
Qi (jk)l

. id; ajr L.
i(j (kL)) i((7k)1)
is equivalently expressed as
0 = <1®A,1®1)OAlOt—(A,1®1®1)OA107§—(1®1®A,1)OA101§

(A ®1)oAlot+ (1®A)oALot
= [—A_loAl +A1 OAQ] Ot,

which is nothing but the 2-coassociativity (5.3.5) precomposed with . Now by the coPeiffer
identity Aj = D;A¢ (5.1.8), the same argument shows that the pentagon relations for the rest
of the associator 2-morphisms (5.5.17), (5.5.18) are equivalent to applying the t-map Dy, D;[2]
to (5.3.5).

Similarly, under the complete t-map D;[3] = t®t®t, the 2-coasscociativity condition (5.3.5)
becomes

Abo®d =doA), (5.5.21)
which by (5.5.11) implies the pentagon relation for the associator 1-morphism (5.5.19). O

We shall show in Theorem 5.7.1 that T gives rise to the pentagonator 2-morphism 7 in
2Rep” (G), which witnesses the pentagon relations (5.5.20) up to chain homotopy.

Recall from Proposition 5.3.1 that, for a self-dual weak 2-bialgebra, (5.3.5) follows from
the 3-cocycle condition for the Hochschild 3-cocycle 7. Thus the entirety of the 2-bialgebra
(or 2-Hopf algebra) structure plays a central role, precisely as one would expect in Tannakian
duality [38, 1].
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Lemma 5.5.4. The associator 2-morphism (5.5.18) fits into diagrams of the form

(VW)U wy s V(WU)
N SyWk, . (5.5.22)
VW)U’ fvwor y V(WU

together with the associator morphism ( 9). Moreover, the associator 2-morphisms (5.5.16),

5.5.1
(5.5.17) are completely determined by (5.5.18), (5.5.19).

Proof. The first statement follows directly from the definitions, and by using the same argument
as in the proofs of Lemma 5.5.1, and also later in Lemma 5.6.2. Similarly, by adapting the

proof of Lemma 5.5.2, we see that (5.5.16), (5.5.17) admit the following decompositions
ik = (OJV/W’k : aijU) ot =... etc., D(;CLZ‘JU = ayvyu - qwu = - - - etc.,

where Djs is the tensor triple of the t-map § on €nd(V'), and "etc." means permutations of the
subscripts. This proves the second statement. O
This naturaliy property shall become very important later in §5.6.2.

Remark 5.5.3. Suppose the endomorphism ® in (5.5.19) is inner, in the sense that it is given
by conjugation with an element — also denoted ® — of Go®, then the coassociativity condition

becomes
(id ®A{)) o A{) = @((Ag ®id) o Ag)fl)_l,

and the 2-coassociativity condition (5.5.21) becomes
(@A @AY D)((A) B A @id)D) = (B @ o) (I DA ® id)B) (1o @ B)

where 7 is the unit of Gy. In other words, (Go, Af, @) in fact forms a quasi-bialgebra [147] of
Drinfel’d.

We have established 2RepT(g) as a monoidal 2-category. We now turn to the braiding

structure in the following.

5.6 The braided monoidal 2-category of 2-representations

We now turn to the braiding structure on the weak 2-representations afforded by the 2-R-matrix
R. We shall first examine some of the basic properties of the braiding map in §5.6.1. We will
then study how such braiding maps interact with the weakened monoidal structures of the

2-representations in §5.6.2.

95



Let (G,-,A,R) denote a strict quasitriangular 2-bialgebra as defined in §5.2.4. Recall that
a 2-R-matrix R = R! + R" on the 2-bialgebra G consist of the following components

Rl = Rl(l) ®Rl(2) € g—l ® gO, RT = Rzl) ®R7{2) € gO ®g71

for which (5.2.25), (5.2.26), (5.2.27) are satisfied. The equivariance condition, (5.2.27), unam-

biguously defines an element
R = R ®tR{y(= R") = tR{;) ® R{y,(= R') € Gy ® G, (5.6.1)

where ¢t : G_; — G is the t-map on G. Notice by applying the t-map (at every leg in G_1)
to (5.2.28), we obtain two identical expressions that are equivalent to the usual 1-Yang-Baxter

equations

R12 R13R23 = R23 R13R12

for the degree-0 R-matrix (5.6.1).

5.6.1 The braiding maps and their naturality

We shall use these components to define the braiding b on 2Rep” (G). Take two 2-representations
V., W of G; we define the braiding map between V, W by

byw : VW - WYV, byw =flipopy(R) (5.6.2)

where py = (pv)o ® (pw)o on V® W, and R € Gy ® Gy is given in (5.6.1). By (5.5.11), the

braiding between the tensor product 2-representations are then given by

bvwer) = flipo po((1® AG)R),  bwewyw = flip o po((Ay ®1)R).

If W =V are the same 2-representations of G, then we have the self-braiding map by = by .
On the other hand, we define the mixed braiding map between a 1-morphism i : V' — U and an
object W by

biw = flipo[iopi(R') + (=1)*5po(R") 04,
by: = flipo [iope(R") + (—1)*p1p(RY) o 1], (5.6.3)

where we have used the shorthand p1p = (pv)1 ® (pw)o and po1 = (pr)o ® (pw)1- The sign
(—1)4e& depends on the degree of the complex V ® W; more explicitly, by gives two maps

by : Vo®@Wo — (W1 @ Up) @ (Wo @ U_y),
b - (Vo @Wo)® (Vo@W_y) > W1 ®U_,

on the tensor product V ® W, the latter of which carries a non-trivial sign (—1)d® = —1;
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similarly for by,;. Now in the spirit of Lemma 5.5.2, we shall define the braiding maps b;;

between two 1-morphisms 7, j by the decomposition formula®
bij = bju - bwi = bri - bjv, - : (5.6.4)

Let i : V — V' j: U — U’ denote any 2-intertwiner. The above definition (5.6.3), together
with (5.5.12) then allows us to form

biew); = Hipgeunew © [(E®1)p101((Af@ DR) + (=1)*Epen (AF@ 1)R") 0 (i ® 5)]
biwey) = Hibwemeun o [ ® 7)p101 (A RAGRY) + (=1)Ep110((1 @ AYRY) 0 (i @ 4)] -

By applying strict 2-representations to (5.2.25), we obtain the following strict higher hexagon
relations,

b(i@W)j = ldZ ®ij * b{/[/Z ® idj, bz’(W@j) = ldl ®bJW * le ® idj, (565)

in which the associator isomorphisms a have been suppressed. We will reinstate them later in
§5.6.2.

With the definitions (5.6.2), (5.6.3) in hand, we now need to prove some very important

lemmas.

Lemma 5.6.1. The maps byw and byw, by, are respectively 2-intertwiners and modifications
in 2Rep(G) for all 2-representation V., W and 2-intertwiner i iff (5.2.26) is satisfied.

Proof. Note for each 2-representation p, the flip map, flip: VR W — W ®V is a 2-intertwiner
between p and p’ = poo. Moreover, we interpret the cochain homotopy defined by (pyew)i(z)
for each * € Gy as a modification between the action (pyew)3(z) and itself, treated as a
2-intertwiner; similarly for p’. Therefore, in order for the mixed braiding map b; to be a

modification in 2Rep(G), it must commute with the cochain homotopy (pvew)i(z) — namely

biw (PV@W)(I)@) = (P/W®v)(1)($) * by,

where * denotes the composition of cochain homotopies. With pj,q, = (pw ® py) 0o 0 A, this
is satisfied by definition (5.6.2) of by iff

R AN z) = o(AL(2))R, R'AL = o(A(z))R, (5.6.6)

which is precisely (5.2.26).

6 Alternatively, provided there exists a well-defined R-matrix R_; € 93@1) for the degree-(-1) coproduct A_q,
satisfying (t® 1+ 1®t)R_1 = R, we can define

bij = flipo [(i®7) 0 pr1(R-1) + (~1)*Ep11(R_1) 0 i ® )]

such that (5.6.4) follows from the definition of R_;.
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Similarly, in order for the braiding map by to be a 2-intertwiner, it must commute with

the action (pygw )g(x) for each x € Gy:

byw © (pvew)o() = (Pev)o(@) © byw,

where o denotes the composition of 2-intertwiners.

First if the 2-representation p were strict, then this translates to the algebraic condition
oAy(z)R = RAj(x),

which in fact follows also from (5.2.26). To see this, we recall the definitions (5.6.1) of R and

(5.1.8) of the coproduct Ay, and simply apply t® 1 and 1 ®1¢ respectively to (5.2.26). The fact

that ¢ is an algebra homomorphism and that (f® 1) oo = 0 o (1 ®t) proves the statement.
Second, if the 2-representation p were weak, then in general the component o gives rise to

a possibly non-trivial invertible natural 2-morphism

Q(O-AE)('I)’ R) - Q(R7 AE)(:E))

We will not need this 2-morphism in the following so we shall suppose lyw . = id.
O

Notice this lemma implies that (Gy, A}, R) forms an ordinary quasitriangular 1-bialgebra. We
can then leverage the well-known result in the literature [117, 39| that the Yang-Baxter equation

for R implies the hexagon relation for the braiding structure by, at the level of the objects.

Next, we need to prove the naturality of b with respect to the 2-intertwiners ¢ : V. — U. We

shall do this via the same technique as Lemma 5.5.1.

Lemma 5.6.2. Consider the intertwinersi:V — U and j : U — T. The mixed braiding maps

biw, bw; fit into the following diagrams

VoW bvw s WV WV bwy s VW
7 % 7 ) 7 oW 7
UW buw s WU WU bw s UQW

in 2Rep” (G). Moreover, bjw * biw = bjoiw

Proof. For brevity, we shall suppress the subscripts V, U, W on the 2-representations. Recall
the two equivalent ways R", R! to express R in (5.6.1). We can then write

buw oi = flipopg(R")oi,  iobyw =ioflipopo(R).
Consider the left diagram. As 2-morphisms in 2Rep(G) are given by cochain homotopies,
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we need to show that the definition (5.6.3) of the mixed braiding map by = bl + b%y fits into

the following diagram

VaieW., 25 VieWed VoW, 25 V@ W,

l ”% l % l , (5.6.7)

W_,@U_ & W_iQUy®@Wy®@U_; = Wy ® Uy

where the vertical arrows are the various graded components of byy o7 — @ o byy,, and the
horizontal arrows are the differentials on the three-term tensor product complex (5.5.10); for
instance, the ones at the top row are given by D* = 1® dy + oy ® 1.

As in Lemma 5.5.1, the key towards this is the commutative square (5.5.1), which states

that for each y € G_; we have

(21 ()0, 0p1(y)) = 6(p1)(y) = (po)(Ty) = (po(Ty), p(T'y)).

Let us examine first the commutative triangle on the ends of (5.6.7). First, for the right-most

triangle, we compute in terms of the components bZlV[Q, that

Dby = (1®dy —dw ®1)oflipo p(R)
= flip o [p0(R{y) ® dw(p(Riy)) i —ioidy(p(Riy)) ® p(Riy)]
= flipo [p)(RYy) ®1R}y) 0 +io ph(—tRly) ® Rly)]

= bywoti—10byw
as maps on Vo ® Wy. Similarly for the left-most triangle, we have

Wiy DT = flipop(R)o(1®dw + oy ®1)
= flip o [py(R{1) ® (p1(R{y))ow 0i —io (p1(Riyy)) v ® py(Riy)]
= flipo [po(R 1) ® IR 2)) 01 —10 P(l)(tRl(l) ® Rl(Q))]

= bywoi—iobyw

as maps V_; ® W_;. Note the sign (—1)% in (5.6.3) is non-trivial here as R acts on the
degree-(-1) part of the tensor product V @ W.

We now turn to the middle section of (5.6.7). We are required to compute the following,

Dby, = (1®dv +dw ®1)oflipo p(R)
= flip o [po(R1)) ® dw (p1(Riz))) 0 i — i 0 v (p1(Riyy)) ® po(Riy)]
= flipo [Po(er)) ® Po(tR(Q)) 01 —10 Pg(tRl(l)) ® Pé(Rl@))] ’
by D™ = flipop(R)o(1®dw —dy ®1)
= flip o [p0(R{y) ® p1(Ri))dw 0@ — i o p1(Riy))dv ® po(Riy)]
= flipo [pB(Ry) @ ph(IRYy) o1 — i 0 ph(IR)y) @ ph(Rlz) |
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Summing these and rearranging terms gives, as maps on V.1 @ Wy @ Vo ® W_4,

flip o [Pg(RGQ ® p(lJ(t,R’ZQ)) + P(l)(R&)) ® Pg(tR&))] o (5.6.8)
— flipoio [p(lJ(tRl(l)) ® PS(RZ(Q)) + Pg(tRl(l)) ® P(IJ(RZQ))]

ZbUWOi—iObvw.

The diagram on the right is treated identically, and this establishes the first statement. The
second statement directly follows from the fact that (joi)opy = jopyoi = pxo(joi) for

composable 2-intertwiners 1, j. O

In particular, since Lemma 5.6.1 proves that byy is a 1-morphism, we can iterate the
braiding maps and define by, v as a 2-morphism. Lemma 5.6.2 then implies that this is a

2-morphism

bvwyu

VW)U y U (VW)
byw be:WU> byw (569)
1 . 1

WeV)U wv) s U@ (WRV)

on three 2-representations V, W, U, and similarly for byy,,,. This will be important later in

§5.6.4.

Recall the "higher-hexagon relations" (5.6.5) following directly from the identities (5.2.25).
We shall prove this in the weakened context in §5.6.2.

5.6.2 Braided 2-quasi-bialgebras; the modified hexagon relations

We now wish to keep track of the interplay between the fusion associators a and the braiding
maps b — or, algebraically, the coassociator and the 2- R-matrix — on 2RepT(g ). We shall do
this by revisiting the universal characterization of 2-R-matrices in §5.2.4. In other words, we
are prompted to study the weak quantum 2-double D(G,G) and its braided transposition W.
Fix the weak 2-bialgebra G. Despite the skeletal construction in §5.4, we are able to form
D(G,G) here without assuming skeletality, since we know exactly how G acts on itself by weak
2-representations — in the canonical way according to Definition 5.3.1. This fact also allows
us to identify 7p as merely several copies of the 3-cocycle 7 on G, and in particular the

components > = <y = 7 are equal.
To proceed, we recall two facts we have learned previously.
e The condition (5.2.25) in the strict case follows from dualizing the braiding relation

(5.2.19) (see (5.2.29)).

e From (5.4.4), the braiding relation (5.2.19) for the braided transposition W is modified by

T whenever we invoke the associativity in K =~ D(G, G).
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Combining these means that (5.2.25) is modified by the dual of T — ie. the coassociator A,

— in the weakened case. More explicitly, we have

DtA1($)231 : (1 ® AO)R : DtAl(x)123 = Ris3 - DtA1($)213 - Rz,
DAL (7)5 - (Ao @ )R - DA ()51 = Ruz - DiAL(7) 15y - Ros, (5.6.10)

for each x € Gy. This bears a striking resemblance to the defining relations of a braided quasi-
bialgebra [147]; indeed, applying the double-t-map D;[2] to (5.6.10) yields, by definition (5.6.1),
(5.5.19),

D31 (2)(1 ® AY) RP1g3(7) = Rig®ors(2) Rz, Papa(a)(Af ® 1) RP5y5(2) = Rug®igs(w) Ras,
(5.6.11)
which is precisely a braided quasi-bialgebra structure on (Go, Af), R, ®); see Remark 5.5.3. This

motivates the following definition.

Definition 5.6.1. A braided 2-quasi-bialgebra’ (G,A = (A;,Ag, A1), T,R) is a weak
2-bialgebra equipped with a universal 2-R-matrix R and a coassociator A; : Gy — G*® such
that (5.6.10), (5.6.11), (5.2.26) and (5.2.27) hold.

Similar to (5.6.5), by applying strict 2-representations p = (p1, po) to (5.6.10), we obtain:
Lemma 5.6.3. For each X € 2Rep’ (G), we have the decompositions (the hexagon relations)

bvwyx = axvw o brx o ayyy o bwx cavwx (5.6.11),  (5.6.12)

_ i
bV(WX) = Oy xy © byx o awyx ©byw o ywx

brirs =a % 1d *aT Cx 05y % AV
(VH)X XV byx "PvXx; T YiX T OVIX < apply D:’ to (5.6.10),

_ 1 : ) ) 1
bv(jx) = Aixy * idpy  *ajvx * by * ay,x

b(z'W)k = agw * bip, * lew * by * agwr — (5.6.10),

_ 1 i
bi(Wk) = Ay, * bik * awik * biw * QG

as 1-/2-morphisms, and similarly for all the other possible braiding maps on tensor products.

The decomposition formula for b;;; follows from these, as well as the fact that b;;, a;j; are all
determined by the mixed braiding/associators.

The 2-morphism by x, for instance, can be expressed in terms of the following composition

diagram
(V)X 2%y X) 20X, (X)) 22 v (VX)W 255 (XV)W 2% X (V)
(UW)X 295 V(WX) 20X, (X)) 2w, “ix Y (UX)W X (XU)W 2% X (UW)

(5.6.13)

"Note that a quasi 2-bialgebra, as opposed to a 2-quasi-bialgebra here, refers to a weak 2-bialgebra with
trivial 3-cocycle T = 0 but non-trivial coassociator Aj.
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which has also appeared in [78]. This establishes most of the structural properties of 2Rep” (G)

as a braided 2-category, and the final ingredient to introduce is the hexagonator.

5.6.3 The braiding hexagonator

We obtained the decomposition Lemma 5.6.3 by applying a strict 2-representation to (5.6.10).
However, as we have noted previously in Remark 5.5.2, 2-representations of a weak 2-bialgebra
(G, T) cannot be strict, even when G is skeletal. As such, we must take into account the addi-
tional component ¢ : GZ® — €nd(V)_; when deriving the decompositions above (in particular
(5.6.12)).

For the rest of the paper, it suffices to consider the case t = 0 or t = 7, the constant map
to the unit 1y € Gy. Since p is normalized and the second and third equations in (5.5.2) involve

pre-composing ¢ with ¢, the only non-trivial relation is

po(xz’) — po(x)po(a’) = do(x,2"),  x,a" € Gy,

where we recall that 6 : €nd(V)_; — €End(V), is the t-map on the weak endomorphism 2-
algebra. Therefore, in order to obtain the decomposition of the form (5.6.12) from (5.6.11), we

must keep track of the terms involving o that appear. For instance, we have

P8 (Ri3Pais) — Pl (Ris) pp2(Pa13) = (60)*®(Rus, Pars),

in which we notice that the second term on the left-hand side is the composition by o ay vy .

More explicitly, translating (5.6.11) to (5.6.12) comes at a price given by a cochain homotopy

Quiwv(x) = (ov ® ow ® ov)(Pasi(2), (1 ® AY) RP193(7))
— (ov ® ow ® ov)(Ri3, Pa13(7) R1z)
+ (ov ® ow ® 0v)((1 ® Ap) R, P13())
— (ov ® ow ® ov)(Pa13(), Ri2) (5.6.14)

between the two sides of (5.6.11) for each x € Gy, and similarly its adjoint QI/‘WU. We thus

have the following diagrams

VA@W.) QU 1 —Z s (e W) ® Uy

Qviwy

W_1® (U1 ®V_4) Qe Wo® (Up ® Vh)
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Va®@(Wa®U ) —2 5 V@ (W @ Up)

t
‘/ QV|VVU ‘/
)

(U1 ®@V_)@W_, B (U ® Vo) @ Wy

where the vertical arrows denote the decomposition (5.6.12). These diagrams cast 2, QF as the

hexagonator 2-morphisms in 2RepT(Q):

by (wu)

V(WU) WUV
“fg;/” ) ‘\\gzv
VWU L WUV
e )%

( )

WU ————— W(VU

awvu

bvwyu

(VW)U U(VW

)
avw/ R ww

V(WU) LAY (UV)
mw )WA

W -

UW) ——— (VU

Gyuw

In other words, the quantities Qywy, QL‘WU by definition is an invertible modification imple-
menting the two sides of the decomposition (5.6.12).
Now by the diagram (5.6.13), the 2-intertwiners i : V' — U and their associated mixed braid-

ing maps b;y preserve these hexagon relations. This leads to the naturality of the hexagonator
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Qv woy with respect to 2-intertwiners such that we have (cf. diagram (2.2) in [78])

V(WX) . (WX)V
biw x)
avwXx ' '
UWX) M ( x)U
QUV WU
Quiwx

(VIV)X —— (UW)X W(XU) +— W(XV) »

Qv iwx
buw

by x

(W)X 2% W(UX)

byw ﬂbiw ﬂbiX by x
i

(WV)X AL » W(VX)

and similarly for the adjoint diagrams with Q. The tensor product VX of 2-representations
is equipped with the tensor product Qy xjwy hexagonator, which are by construction natural

and invertible.

Remark 5.6.1. Notice we did not define any associators for the 2-morphisms y in 2Rep” (G).
This is because 2-morphisms in a 2-category the tensor product p® v = p = v given by compo-
sition is strictly associative; indeed, such an associator a,,» : (uv)A = p(vA) would have to be
a 3-morphism.

By the same token, the hexagon relations involving the mixed braiding maps (ie. the
decompositions in Lemma 5.6.3 aside from (5.6.12)), as well as the pentagon relations for the
associator 2-morphisms (5.5.16), (5.5.17), (5.5.18), must hold strictly on-the-nose. However, the
fact that aywy is a I-morphism implies we can have a 2-morphism 7, called the pentagonator,
that implements its pentagon relation. We will show in Theorem 5.7.1 that 7 is given by the
Hochschild 3-cocycle T attached to the weak endomorphism 2-algebra End(V).

5.6.4 Proof of the main theorem

We are finally ready to state and prove the main theorem. As earlier, we will often omit the

tensor products to lighten the notations.

Theorem 5.6.1. The 2-representation 2-category 2RepT(Q) of a weak quasitriangular 2-bialgebra
G 1is a braided monoidal 2-category with trivial left- /right-equivalencesl : 1V =V r: V1 = V.

We will prove this by using algebraic and diagrammatic manipulations that we have outlined
throughout the paper, and reproduce all the coherence relations defining a braided monoidal

2-category in [81]. On the way, we shall also construct quantities that has also appeared in [78].
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Recall first that, from §5.5.2, we have trivial left- and right-unitors [ : 1V - V. r: V1 -V,
and hence all coherence relations involving them (ie. diagrams (2.5), (2.7)-(2.9) of [78]) are

vacuously satisfied.

Braiding on the associator; the first axiom in [81]. Let V,W,U € 2Rep’ (G) be four

2-representations. Consider the mixed braiding 2-morphism by, x, which by Lemma 5.6.2

fits into a diagram of the form

b
(VW)U)X (mx y X(VIV)U)
bay iy X .
avwu e aywu
M bvwuyx

(VW)X . X (VWD)

Lemma 5.6.3 states that we can in fact decompose the top and bottom 1-morphisms in this
diagram, provided we keep in mind the hexagonator 2, Q" (5.6.14) that appears in doing so.
We thus obtain a formula of the form

QJ(TVW)\UX i
b((VW)U)X — axww)u° b(VW)X °Aywyxu © bux © QvVwWUX

of
VWX ¥
= ax(yw)u ° [GXVW obyx oay yy ©bwx © aVWX]

o aIVW)XU O bUX o a(VW)UXa (5615)
and similarly for the bottom 1-morphism by wuy)x,

i
Qv woyx

b(V(WU))X = axv(wu)° by x o CLLX(WU) o b(WU)X Caywu)x

t
QW\Ux

= axvwu) °byx o GLX(WU)

o [aXWU o bwx o alyxy ©bux © aWUX] oaywu)x- (5.6.16)

Now notice that there are three identical braiding maps that appear in both of these for-

mulas, by x, by x,byx, but they act on objects that differ by an associator: we have byx
(VW) UX) - (VW)(XU) from (5.6.15) and byx : V(W (UX)) —» V(W (XU)) from (5.6.16),
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for instance. Such a square is precisely given by the diagram (5.5.22),

(VIW)(UX) W) s V(IW(UX))
bu x % bux
N Ay w(XU) M

(VIW)(XU)

=
=
>
S

and similarly for the other braiding maps that occur in both (5.6.16), (5.6.15). Putting

this

all together, we achieve the following diagrammatic expression for b, ,x (labelling only the

2-morphisms for clarity):

(VU)X ~ )

R
Qvwyux

~

(VW) UX) — (VW) (XU) — (VW)X)U

1 |

VIWX)HU —— (V(XW)HU —— (V)W) U ——

l _aVbWXU _—> l

~

AV Wby x

Aby, x WU

(XV)yw)u

VIWUX)) — VIW(XU)) — V(IWX)U) — V((XW)U)

i
o] |

V(WU)X) — s VX(WU)) —— (VX)(WU) ——s
1 QLKWU)X
(VUW)X =~ >

This is precisely the third axiom in [81]; cf. diagram (2.6) in [78].

~

(XV)(WU)

Naturality of hexagonator Qy xwy; the third axiom of [81]. The strategy is to apply

the same naturality procedure as above to expand the defining diagram for Qy x v,

bvx)ywu)

(VX)(WU) (WU (VX)
(VX)W)U vxwy WUVX)) -

b(m %U

(WVX)H)U ——— W(VX)U)

aw (v X)U
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For this, we wish to leverage a result that we will prove in §5.7: a weak 2-representation

(V,p) € 2Rep” (G) has equipped the associator and pentagonator data

Agao|lV = Q(p0($1)7p0($2))(v)7 Mrzoas|V = (S(po(xl)>pO(xQ)HOO(m?)))(V) (5617)

given by p = (g, po, p1) as well as the Hochschild 3-cocycle T on End (V).

With this, we can begin by rewriting each of the associator and braiding maps appearing
here using (5.6.3) and the pentagonator 7 (5.6.17) introduced above. We obtain precisely
diagram (2.4) in 78] as the Qy xjwy. The third axiom of [81] then follows.

Iterating the braiding map; the fourth axiom of [81]. Now consider the iterated braid-
ing 2-morphism by, (5.6.9). By the same logic as above, we can use the decomposition

(5.6.12) once again on the top and bottom braiding morphisms that appear in the diagram,

b QV\UW T b b T
vVw) = QAuwy °0vw ©auvw © Ovu O Ay,

Q
b WY ot obyioa ob oal
V(WU) WUV VU wWvu VW VWU

We can thus form the composition
bayiwu = Q\_/|WU bvepw - Qviow, (5.6.18)

which fits into a diagram that "pastes" two hexagon diagrams together,

bvuyw

W(VU) 4 (WV)U <2 (VW)U 2% V(WU) <2 V(W) R ViIHw
b
QV\WU v beUW QV|UW
bVU bVU
bvww)
W(UV) « Wy (WO e (UW)V i UWV) 45— U(VIV) &555 &YW (UVYW

buvyw

Note that, by construction (5.6.18), the 2-morphisms bq, s are natural and invertible. More-
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over, its definition is precisely (2.10) in [78|, and hence the fourth axiom of [81] follows.

Cohomology descent equations; the second axiom of [81]. Let us now focus on (5.5.3).

Recall that it states, for z1, x5, x3 € Gy, that

p1(T (w1, 29, 73)) — T(po(21), po(T2), po(3)) = po(w1) - 0(x2, 3) — 0(2122, T3)
+ o(x1, ow3) — 0(w1, 2) - po(x3),

where ¥ is the Hochschild 3-cocycle on the weak endomorphism 2-algebra End(V') of a par-
ticularly chosen weak 2-vector space V € 2Vect"®“. We shall now specialize z1, ..., 3 to the
elements in Gy of (5.6.11), and let the equation act on V.

By some computations, we see that the right-hand side translates to the composition of
2-morphisms

idiqy, Quvivx * Qvwwx) * Q‘_/|1(WU)X s« (Quiwr idiay) ™",

while on the term po7 on the left dualizes to terms of the form (py®- - -®px ) (Ao R—RoD; A1),

which translates to
al * £ al x b
Woyu X bvwUX WUby x Vawux -

Now recall from Theorem 5.7.1 that T o pi® in fact defines the pentagonator m on 2Rep”(G).

The left-hand side then acquires also the contribution

i i
TWvUX *TwuvX * Tywux * Twuxv

where myuxv(x) = T((ow)o(x), (pv)o(@), (px)o(2))(V); see (5.6.17).
Altogether, this gives rise to the equation

; i i _
Twyux * Twovx * idiay Qviox = Qviwwx) * G, ux * Ovapy s =

: T T
mywux * Twuxv * Qviwo idiax *Qviwo)x = gy, x * Gy

for V,W,U, X € 2Rep’ (G), which is precisely the second axiom in [81] (or equivalently axiom
(2.1) in [78]). In the group-theoretical case, this axiom was also captured in a cohomological
manner in (3.2) of [78].

In summary, we find that 2Rep’ (G) has the following ingredients:

objects l-morphisms | 2-morphisms

. : : equivariant
2-representations | 2-intertwiners | .,cpain homotopies

(V7 cha QV|¢-) (Z, bzo) %

This establishes Theorem 5.6.1.
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5.7 Coherences of 2-representations

We first recall briefly some key aspects of a module 2-category [59, 64]. To be more concrete, let
C denote a semisimple (monoidal) 2-category. A C-module 2-category is a k-linear semisimple
2-category D with a C action 2-functor > : C x D — D and a set of adjoint natural equivalences
(the associators)

axyja: (X®Y)>A—-Xp (Y>> A)

for each XY € C and A € D, satistying the module pentagon relations up to a possibly non-
trivial module pentagonator 2-morphism 7xyz 4. These pentagonators must satisfy on the nose
an additional coherence condition, called the associahedron condition. The explicit expressions

of these conditions can be found in [59, 64].

Consider a 2-bialgebra G as a connected 2-category
BG =G_1®Gy = Go =3 pt,

which is a 2-category with a single object pt, 1-morphisms G, and each 2-Hom space over G

is a copy of G_;. Evaluating an action 2-functor > : G x 2Vect"?% — 2Vect"?“ on the object
V' gives precisely a weak 2-representation p : G — End,y.ree (V) = End(V) of G on V, as we

have defined in the main text.

Theorem 5.7.1. Weak 2-representations are G-module categories over 2Vect"BC :

2Rep” (G) = Modyyeeinie (G).

Proof. The k-linearity is immediate. As foretold in (5.6.17), we reconstruct the module associ-

ator a and pentagonator 7 of the G-module category V e 2Vect"?° by taking

Ogyaa|lV = Q(IOO(xl)a p0<l‘2))(V), Txyzozs|V = I(po(l‘l), po(x2)7 po(l’g))(V),

where p = (0, po, p1) : G — End(V) is a weak 2-representation and ¥ is the Hochschild 3-cocycle
on End(V'). We now proceed level by level.

Objects. We identify the action 2-functor > as the weak 2-representation p such that x>V =
po(z)V for each x € Gy. An arrow x>V — 2'>V is therefore expressed as py (y)V, wherey € G_4
is interpreted as a 2-morphism = = 2’ between z, 2’ = x +ty [93, 98], or simply by p1(y). What

we need to prove is the pentagon relation between «, 7, as well as the associahedron condition
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for m. The pentagon relation can be written as

p1(T (z1,22,73)) o(w1,z2m
1 1,72,T3 1,L223)

((x129)x3) >V

(]71(£E2I3)) > Vv x> ((lL‘QI’Q,) > V)

o(x122,23) % po(z1)o(z2,x3)
(21202) > (23> V) eler,72))polrs) s 11 > (22 (23> V)

Rewriting 7 in terms of the 3-cocycle T, we have

T(po(z1), po(w2), po(w3)) = —o(w1m2,23) — o(w1,22)po(23)
+ p1(T (21,22, 23)) + 0(21, 1273) + po(1)0(T2, 73),

which is nothing but the last equation of (5.3.1). It is then easy to see that the associahedron

condition follows from the Hochschild 3-cocycle condition for ¥.

2-intertwiners. Recall the notion of weak 2-intertwiners that we have given in Definition
5.5.4. By treating V as a G-module 2-category and taking ©>,>’' as the action 2-functors
corresponding to the 2-representations p, p’, we equivalently characterize the cochain homotopy
I as a collection of invertible natural transformations I, ; : i(e > V) = e " 4(V), such that the

following pentagon relation

i(po(z')V) _ r polaa’) o i(V)

iog(z,2') o' (z,2")oi

: ’ L2,i®id o0y . ’ Po(2)®L,1 ; ’ o ;
i(po(@)po(a')V) ——— pi(x) o ilpo(2")V) ———— po(z)ph(a’) o i(V)

follows directly from (5.5.6) This recovers precisely the notion of a G-module functor [64].
Notice no pentagonator appears here, as this is a relation on the 2-morphisms in 2RepT(g ) and

hence a pentagonator for it would have to be a 3-morphism.

Modifications. Now let us consider the notion of modifications in 2Rep’ (G) we have defined
in Definition 5.5.5. The condition (5.5.9) is equivalent to the composition of 2-morphisms

(idpy(a) pt) * Lz = Iz * 1, which is exactly a module natural transformation [64]. O
Following this, I have proven the following in [119].%

Proposition 5.7.1. Let G = G_,4 L Gy denote a split (ie. trivial Postnikov invariant ) skele-
tal finite 2-group, and let G = kG denote its 2-group algebra. The 2-categories 2RepT(k:G) =
2Fun((kG, «), 2Vect"P) and 2Rep,, = 2Fun((G, #),2Vect®") have the same homotopy theory.

8The proof is a routine but lengthy check, so I will not reproduce it here.
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What this means is that the coherence relations between the homotopy data — namely the
associators, pentagonators, 2-intertwiners, and modifications attached respectively to the two
2-categories — coincide. The latter of which 2Rep,, constitute the 2-representation theory of
finite 2-groups as studied in the literature [59, 64, 65] over 2Vect™" .

This result suggests that the 2-category 2Vect"?¢ that I have developed in this Chapter
serves as a homotopy refinement of 2Vect?® that can capture, or "mimic", the homotopy
coherence data in 2Vect™"". This partially resolve the issues plaguing 2Vect?® raised in §1.4. An

explicit comparison between 2Vect"®¢ and 2Vect®" is currently underway with a collaborator.

5.8 Classical limits of 2-bialgebras and 2- R-matrices

Motivated by the diagram (5.0.1), we shall prove in this section that the notion of quantum
2-doubles/2-bialgebras we have introduced in the main text reproduce the known notion of
2-Manin triples/Lie 2-bialgebras [95, 115, 96, 114] in the classical limit.

Classical limit and the Lie-ification functor. Given an (associative) algebra A € Alg,,
it is well-known [117, 93| that there is a Lie-ification functor £ : Alg,,, — LieAlg that assigns
A to its "classical" Lie algebra g(A). The Lie bracket is given by the commutator [X, X'] =
XX — X'X, where X € g(A) is the image of an element z € A under .. The associativity of
A implies the Jacobi identity of [—, —]; note A only needs to be left-symmetric (not necessarily
associative) in order for g(A) to enjoy the Jacobi identity [95].

There is a left-adjoint to the Lie-ification functor given by the universal envelope U : g —
U(g), which can be understood as a "quantization" map [118|. There is an analogous result for

associative 2-algebras [93].

Lemma 5.8.1. The Lie-ification functor £ : 2Alg,, — Lie2Alg lifts to associative 2-algebras
(see Definition 5.1.2), where &(G) = £(G_1) - ZL(Gy) is a Lie 2-algebra with

XpY=X-Y-Y-X, X=2()Y=2Ly)

where x € Go,y € G_1. Moreover, the universal envelop functor U also lifts to Lie 2-algebras

U(6) = U(g_) > Ulgo), such that U is left-adjoint to L.

In the following, we shall write [—, —] : &2 — & as the binary Lo-bracket on &.

Note Lie-ification .Z is a functor. This means that, in particular, it sends a 2-algebra
representation p : G — End(V) on 2-vector space V to a Lie 2-algebra representation .Z(p) :
&(G) — gl(V) as defined in [95, 125].

5.8.1 Lie 2-bialgebras and the 2-classical double

We now extend the above lemma to associative quantum 2-doubles. Let (G,-, A) denote a
strict 2-bialgebra as defined in Definition 5.2.1, and let (G*, -*, A*) denote its dually-paired
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2-algebra. We put & = Z(G) and &*[1] = Z(G*) as the corresponding Lie-ification of these
2-bialgebras.
The Lie-ification procedure can be understood loosely as an "expansion", or linearization,

x ~ 1 + X near the identity. Indeed, we have
' —2dr~ (1+X)1+X) -1+ X)(1+ X) ~ [X,X]

modulo terms of higher order. We make use of this notion on the coproduct (5.1.5), and also
perform a skew-symmetrization, in order to define a Lie 2-algebra 2-cochain Z(A) = § =

(5_1 + 50 on 6,

54(Y) = Yoy AL+ 1Yy,
Go(X) = [X(y = Xip] A 1+1A Xy —X()]
X(l) AL+1A X(g), (581)

where we have made use of the Sweedler notation (5.1.6), and the conventional notation A
to denote skew-symmetric tenor products. Note the skew-symmetrization G_; A Gy lands as a

subspace in G_1 ® Gy D Gy ® G_1.
In degree-0, we have of course also the coproduct A defined in (5.1.8). It gives rise to a

Lie algebra cochain on £ (Gy) = go by
56(X) = X(l) AL+1An X(g) = tX(l) Al+1A X(g),

where X (1), X(2) have been given in (5.8.1).
Proposition 5.8.1. The Lie-ification functor £ sends a strict 2-bialgebra (G,A) to a Lie
2-bialgebra (;0).

Proof. Recall (&;0) is a Lie 2-bialgebra iff ¢ is a Lie 2-algebra 2-cocycle [95]. Therefore it
suffices to show that the 2-cochain defined in (5.8.1) is a 2-cocycle. This shall follow from the
fact that (G,-, A) is a 2-bialgebra — namely the coproduct map A (5.1.5) satisfies (5.1.10),
(5.1.11) and (5.1.16).

First note that (5.1.10) and (5.1.11) for the coproduct A translates directly to the conditions

(t®1+1®t)6_1 =dpot, (t®1—-1®1t)6 =0

for the 2-cochain § = §_;+dy. Now by a direct computation using (5.8.1), the condition (5.1.16)

implies

B XT = B(XX) - 8(X'X)
— XX[y A l+1A XXy
— (X('l)X(l) Al+1A XéQ)X(g))
= [X(l)aXél)] Al+1A4 [X(Q),X(l2)]
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= (X ol+1®adx,)0h(X) - (X >l +1® adx;, )do(X),

where we have used the the Peiffer identity and the fact that X(l) = tX(1) inherited from the

constraints (5.1.15), and

FAXBY) = 64(X-Y)—5(Y-X)
= Xoy Yoy Al+1aXe Yo
= (Y- Xy A1 =1AYy X))
= (X Yn) Al+1a (X >Yy)
= [Xa, Yol A 1+1A (X > Y)
= (adx(l) ®L+1Q Xp)>)o_1(Y) — (ady(l) RIL-1® TY(Q))&)(X),

where X 2) = X(2). These are precisely the Lie 2-algebra 2-cocycle conditions for ¢ [95, 115]. O

Now the characterization result in [95] states that (&, ®*[1]) form a matched pair of Lie 2-
bialgebras iff § is a Lie 2-algebra 2-cobracket on &, namely ¢ satisfies the 2-cobracket identities.
For the 2-cocycle § = Z(A) defined in (5.8.1), this is guaranteed precisely by coassociativity
(5.1.10), (5.1.11). We have therefore the immediate corollary:

Corollary 5.8.1. Suppose (G,G*) form a matched pair of strict 2-bialgebras. The Lie-ification
functor £ sends a quantum 2-double D(G) = GxG* to a classical 2-double @ = & > &*[1].

In other words, our construction of the quantum 2-double D(G) admits the classical 2-double
as a classical limit, which directly categorifies an analogous statement between the general
quantum double construction of Majid [118] and the classical Drinfel’d double [9].

5.8.2 The classical 2-r-matrix

Let us now turn to the classical limit of the 2- R-martrix as defined in §5.2.4. Prior to that, we
first describe one of the key properties of the duality pairing on a quantum 2-double, namely its
invariance. This is expressed by, for instance, (5.5.4) in the case of the coadjoint representation.
For the sew-pairing {—, — g forming the quantum 2-double D(G, G) = G=G°PP however, G acts
on G°PP via its underlying (opposite) 2-algebra structure, which means that the skew-pairing

satisfies the invariance property

<33.CE/, g>sk = —<ZL‘/, g- x>sk> <-17 Y, f>sk = _<y> fx>sk> <ff/> y>sk = _<f/7 f ’ y>sk-

Given the adjoint action > = (Y1, (>>¢,>_1)) of G on G°PP,

rTPog=g-x, xD—lf:fx> Tyf:fya
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this invariance property translates to the following conditions on the 2- R-matrix R"",
(- @1+ 1@a>¢)R' =0, (z- @R+ (1@z>_1)R =0, (f ®1+1® fr>0)R" = 0.

Consider the first and last conditions with z = f € Gy. They can be rewritten equivalently as

the conditions
(z- @R '+ (1@ a>0)R" =0, (z-®R" + (1@ x>0)R' =0,

which together with the second condition may be compactly expressed as, using the graded

sum,

(2>®1+1®2>)(R +0(R)) =0, V x € G, (5.8.2)

where o is a permutation of the Gy, G_1 components.
Let us now finally recover the universal classical 2-r-matrix. This is once again accomplished
by taking the Lie-ification functor on the universal quantum 2-R-matrix, t = Z(R) € 6 ® &,

whence

g 1®g ot =2(R"), go®g_1 ot = Z(RH. (5.8.3)
The equivariance condition (5.2.27) clearly implies
D;t =0, (5.8.4)
while applying the Lie-ification functor £ to (5.8.2) gives
[X®1+1®X,t+0(tr)] =0, X =Z(x) € go.

Here, we have used the fact that the adjoint action p of G on itself gives rise to the adjoint
representation ( using the graded Lie bracket) Z(>) = [—, —] of & on itself [95].
Finally, we consider the 2-Yang-Baxter equations (5.2.28). We sum each equation in (5.2.28)

in the total graded complex G3®, and rearragnge them to the form

( 53 R§3 lR ) (Rln r R§3)R53)

+ (Ris 1 Ri3)Ris — Riy(Ris » Ris))

+ (Ris(Riz -+ Ria) — (R, 1 Ri3)Riy)

+ ( RQS T Rll3 Rl12 RllQ(RllS 'l RS?.)) . (5-8-5)

Applying the Lie-ification functor .Z to this equation yields

0 = ([t71"3, t112] + [ths, vi3] + [, t112]) |rrt + ([tl237 tz] + [t1237 o] + [tls tqiz]) |irr

+ ([tl137t7£2] + [t1237tl13] + [t1237t7£2]) lur + ([t§3,tll3] + [t§3at112] + [t113at112]) |t

where the subscripts indicate where each term came from in (5.8.5).
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Consider the two places in which thst], occurs in the above. These terms take the form

respectively in Sweedler notation

thatholmr = 7o ® tl(l)tfz) ® tl(z) N1,
thatlolur = -1 ® t1(1)%“2) ® tl(zmo,

where 79,n7_1 are the units in Gy, G_;. By using the Peiffer identity and the equivariance
condition (5.8.4)
(tely) @ty = @ )t' = 1@ )" = [y ® (try)),

we can compute that

t123t7{2‘llr = tﬁ) -1 ® tl(1) : (tt&)) ® t1(2)770 t12:3t§2|lrr = t?1)770 ® (ttl(1)> : th) ® tl(z) “1-1
= (tr{y) - N1 @ty - o) ® gy = ()Mo @ {1y * Tzy @ (Ix(y)) * 11
= T(1)N-1 @ (1) 'r T(a) ® Toy o =ty ® 1) 1 ¥y Oyt
= t123 o thy = T3 1 Ty

As such, we have
[tl23>t§2] = [tl23at112] = [, tis],

and hence collecting all terms from the above gives

[t12, 1] =[]y, ¥15] + [¥la, i3] + [tha, vis] + [th, 1]

(o1, vas] = [, V] + [, ths] + [t 5] + [¥hs, o]

[t12, ta3] = [t15, thy] + [t]a, thy] + 10, thy] + [thy, ths]

This is precisely the 2-graded classical Yang-Baxter equation of [95]

[t,t] = [t12, i3] + [v13, vos] + [t12, 23] = 0

for the expansion v = Z(R) =" + t’.

Theorem 5.8.1. The Lie-ification functor sends the universal quantum 2-R-matriz to a 2-

graded classical r-matrix.

In other words, the "quantization" of the classical 2-r-matrix and the associated Lie 2-bialgebra

& yields a universal 2- R-matrix with the associated quasitriangular 2-bialgebra G.

5.8.3 Weak Lie 2-bialgebras

We now prove the weak analogues of the classical limit for 2-bialgebras.

Lemma 5.8.2. The Lie-ification functor £ : Alg — LieAlg extends to weak 2-algebras, as-
signing (G,T) to a weak Lie 2-algebra (&(G), us) where the homotopy map ps is the total

skew-symmetrization of T .
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Proof. We construct the Lie 2-algebra structure as in Lemma 5.8.1. Let U3 = L o7 o &
denote the induced trilinear map on Z(G). We apply £ to the Jacobiator J(X, X', X") =
[X [X7, X7] + X7, [X7, XT) o+ (X X X7

JIX, X, X") = X(X'X") - X(X"X')— (X'X")X + (X"XX
FX(X'X) - X'(XX") — (X"X)X' + (XX")X'
FX(XX) - X'(X'X) — (XX)X" + (X'X)X"
= tUs(X, X, X") = tUs(X, X", X') + tUs(X', X", X)
— tU5(X, X, X") + tU3(X", X', X) — tUs(X", X, X')
= HUs(X, X', X") — Us(X, X", X') + Us(X', X", X)
— Us(X', X, X") + Us(X", X, X") — Us(X", X', X),

where we have used the weak l-associativity condition for G. Similarly, for J(X, X" Y) =
X>X'>Y)-X'>(X>Y)—-[X, X']|>Y we have

JOGLXLY) = HUs(X, X' 1Y) — Us(X, 1Y, X') + Us(X', Y, X)
- U3(X/’X7 tY) + U3(t§/7 X7 Xl) - U3(t}/7 leX)u

hence if we define the total skew-symmetrization

(X, X, X" = Us(X, X, X") = Us(X, X", X') + Us(X', X", X)
—U3(X, X, X") + Us(X", X, X') — Us(X", X', X),

then weak 1-associativity implies the 2-Jacobi identity on .Z(G).

Using the Peiffer conditions on this fact, we see that the weak bimodularity condition also
implies the 2-Jacobi identity, with two tY’s inserted in Uj instead. Similar computations show
that the Hochschild 3-cocycle condition for 7 implies the Lie 3-cocycle condition for ps.

Finally, let F' : (G,T) — (G',T’) denote a weak 2-algebra homomorphism as defined in
(5.3.1). By applying the Lie-ification functor and appropriately skew-symmetrizing 7,7’ and
the 2-algebra structure, we recover precisely the definition of a weak 2-algebra map Z(F) :
(B, 1) = (&, 1) [122]. Thus £ is functorial. O

Similar to the Lie 2-algebra 2-cocycle (5.8.1) defined from the coproduct A, we form the
classical limit of the coassociator A; by totally skew-symmetrizing and linearizing it, such that

we have the Lie cochain
NX) =X AlAl—=1AXgAl+1A1AXq), X e go=Z(Go). (5.8.6)

It is not hard to see by, for instance, dualizing the computations in the proof of Lemma 5.8.2,
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that the conditions (5.3.3), (5.3.5) reduce to

d_100_1 = not, cf. (42) in [96]
(0_14+09)0dg = D;on, cf. (43) in [96],
no 60 = 5_1 on, cf. (44) in [96]

Let (G, T,A;) be a weak 2-bialgebra as given in Definition 5.3.3. The conditions (5.3.7)

translate to

5_1(M3(X7 X/, X”))
51([X7 X,])

13 (X, X(1ys X() A p13(X o), Xy X)),
[X(l),X(,l)] ALlAlT—1Ah [X(Q),XEZ)] ALl+1TALTA [X(3)’XE3)]’

which are precisely the conditions for a weak-Lie 2-bialgebra (&, us, §) [114], expressed explicitly.

In other words, we have the weak version of Proposition 5.8.1:

Proposition 5.8.2. The Lie-ification functor takes a weak 2-bialgebra (G,T,A) to a weak Lie
2-bialgebra (B, p,9), with the 2-cocycle data given as in (5.8.1), (5.8.6).

Note that this is a general result, which does not require any skeletality assumptions on G.
When 7 = 0 and hence p3 = 0, we recover the conditions for a quasi-Lie 2-bialgebra studied
also in [96].
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Chapter 6

The 4d Kitaev model

In this Chapter, I will apply the quantization framework established in §5 to study 4d Z,-gauge
theories. I proved that this in fact recovers the known 2-categorical constructions of the charges

in the 3+1d toric code, as well as the spin-Z, gauge theory [76].

Theorem 6.0.1. We have the following braided equivalences

2Rep (D" (BZy)) ~ # ~ Z,(2Vect™V[Z,]),
2Rep, (DY (BZy)) ~ & ~ Z;(XsVect),

where Zy is the Drinfel’d centre and ¥ is the condensation completion functor' defined in [1/8].

This result makes concrete the equivalence between the 2-categorical [46] and field-theoretical
[71] descriptions of 4d gapped Zsy-symmetric topological phases, and provides an explicit ma-
chinery to produce 2-categories from a given 4d (finite) 2-group gauge theory action. This

chapter is based on my work [121].

6.0.1 Skeletal 2-double of a finite cyclic Abelian group

We first begin with a quick but explicit description of the Drinfel’d double 2-bialgebra (see
§5.4) that we are interested in. Let N be a finite cyclic Abelian group, and we take M = N to
be the Pontrjagyn dual of N. This makes the group algebra kM naturally as a k/N-bimodule
canonically through the dual left- and right- actions

(@ y)@) =y,  (y 2)@)=y@'), (6.0.1)

where z,2’ € N and y € N = M. We denote the Pontrjagyn duality isomorphism by p : x —
p(x) = & (recall both N, M are cyclic Abelian groups). We thus take kG = kBM[1] > kN as
our desired 2-algebra.

To make kG into a 2-bialgebra, we equip it with the grouplike graded coproduct A defined

INote XVect ~ 2Vect®V [148].
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ALi(y) =y®y,  Ay@)=r®m7,
Ao(z) = p(z) @z + 2 ® p(z), (6.0.2)

where x € N,y € M. By definition, A is coassociative and admits the usual antipode S{(z) =

r1, S} (y) = y~ !, together with the unit/counit

m=1eN €0(x) = Ogyo € K
N1=1leM €-1(y) = Oy, €k

Moreover, this coproduct can be very easily shown to satisfy the 2-bialgebra axioms,

Ag(r-y)=z-yQz-y, Ay 7)==y 2Qy-z,
Ao(zz") = p(z)p(2") ® xa’ + x2' @ p(z)p(x),

where we have used the fact that p is a group homomorphism p(zx’) = p(z)p(z’). This defines
(kG, -, A, S) as a unital Hopf 2-algebra (see Appendix A of [119]).

Moreover, it is easy to check that the grouplike coproduct Ag (6.0.2) dualizes to the kN-
bimodule structure (6.0.1) on kM = kN , as required by self-duality

BM =M=«

kG = D(BM) = kBM>EN, 0
N, =%—> N

We call this Hopf 2-algebra (D(BM),-, A, S) the (Drinfel’d) 2-double of M.

Recall the factorizability property Theorem 5.4.1 means that D(BM) fits into a cospan
of 2-bialgebras
kEBM — D(BM) < kN.

However, since HH3(x, kM) = 0, HH3(kN, ) = 0, these 2-bialgebra injections cannot extend to
an equivalence if we wish for D(BM) to carry a non-trivial Hochschild class T € HH?(kN, kM).

Due to a result

HH*(kN, kM) =~ kM ®, H*(kN, k) =~ H3(N, N) @ k

of [149], we shall take T as coming from a Postnikov class 7 € H3(N,N) of the 2-group
D = N 5 N. Since this is a bijection, we shall abuse notation and denote 7 as 7 in the

following.

6.1 2-BF theory on the Drinfel’d 2-double D(BM)

In this section, we specialize the above Drinfel’d double 2-bialgebra to the case N = Zy, M =
Zy =~ 7, and construct (34+1)D 2-BF theory based on D(BM). We study its extended Z,-

119



charged excitations by studying 2Rep,,,.(D(BZ>)), and seek to prove the main result Theorem
6.0.1.

Along the way, we shall make concrete the connection8 between our 2-BF theory and the
higher-gauge topological nonlinear o-models (NLSMs) that have already appeared in the liter-
ature [71, 46]. We shall take the ground field k = C throughout the following.

Recall the Drinfel’d double 2-bialgebra D(BZs) has the structure of a skeletal 2-algebra

D(BZs) = kZy > kZ,,
whose Hochschild class is determined by the choice of a Postnikov class
7€ H¥Zo, 7o) = 7y

of the underlying 2-group. Let x € kZy and y € kZ; be understood as the non-trivial generators.
Let kZs = kN in degree-0 act on k@ = kM on the left by (6.0.1) as group algebras.
There are two such algebra automorphisms: the trivial or the sign representation. We denote
the Drinfel’d double 2-bialgebra by D(BZ5)™  in the former case, while by D(BZ5)%" in the
latter case. This then induces a non-trivial grouplike component Ay(z) = 2 ® = + 2 ® 2 of the
coproduct A on D(BZ,) (recall = p(x) where p is the Pontrjagyn duality).
Now consider the discrete combined D(BZs)-connection (A,¥) = (A + X,C + B) on a

4-manifold X [115]. These connection forms are given by cochains
AeCY(X,Z,), BeCX,7Zy),

with the components ¥ = 0, C' = 0 trivial. Depending on the automorphism Aut(kZz) encoded
in the Drinfel’d double 2-bialgebra D(BZs), the 1- and 2-curvatures of the field theory are given
by

dA : in D(BZQ)triv dB : in D(BZQ)triv
F = 5 dAB = )
dA+3AU A in D(BZy)*" dB+Au B ;in D(BL,)*"

where the cup products are implemented through the automorphism Aut(kZs) or its dual. The

corresponding monster 2-BF theory [115] is given by the topological action

1

S[4.B] = L<B U P+ (r(A) U A, (6.1.1)

where we recall that 7 € H?(Z,, Z;) is the underlying Postnikov class of D(BZs).

Note that the discrete 1-form gauge fields must be flat, ' = dA = 0, and terms like A% =0

mod 2 vanish, hence the classical equations of motion (EOMs) are given by

F=dA=0, dsB=r(A). (6.1.2)
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These EOMs, together with the coefficient of 1 in front of the topological action (6.1.1), tell
us that the cochains A, B are Zs-valued. We will introduce in the following a non-trivial coho-
mological term that "mimics" %AQ. However, it is important to note that these cohomological
terms constitute twists on the Drinfel’d double 2-bialgebra and are not dynamical; they do not
alter the EOM (6.1.2).

We define the partition function corresponding to (6.1.1) on a 4-manifold X as a formal
path integral
T (X) = f JAdBESIAB] (6.13)

which should be appropriately normalized such that Zx;(S*) = 1 [71]. We call Z;, the 4d

Kitaev model. It should be understood as a collective of two such theories?,
(Invisible) toric code : Zg.,, Spin-Kiatev : Zg,,

arising respectively from D(BZ3)™ and D(BZ,)*". We shall refer to either of these Drinfel’d
double 2-bialgebras collectively as D(BZ,) in the following. The central idea is then that Zk;;
has a Drinfel’d double 2-bialgebra symmetry.

Zxit as a topological nonlinear c-model

There had been proposals to construct (3+1)D topological phases with a higher-gauge field
theory [104]. Specifically, [71] constructs a topological non-linear o-model (NLSM) which cor-
responds to a higher-Dijkgraaf-Witten theory based on a 2-group, and claims that all (3+1)D
topological phases can be described this way.

The NLSM they construct is characterized by the following data: (i) a (skeletal) 2-group
G = Zy — Gy, where GGy, is a finite group labeling "stringlike bosonic charges", and Z, is either
fermion parity ZJ or a magnetic 7-flux Z7", (i) the first Postnikov class 7 € H3(Gy, Z3) of G
and (iii) a Dijkgraaf-Witten class w € H*(G,R/Z) [104, 71]. We write the Hoang data [103] of
G as (Gy, Z4, 7).

Our construction of the Kitaev model (6.1.3) fits nicely into this framework, with the 2-group
Z; 9, Zo given by the Hoang data

(Gb = Z2>Z§ = Z;,T)-

To construct the Dijkgraaf-Witten cocycle, we begin with the group cohomology ring H*(Zy, Z)
Zsy[u] with a generator u € H'(Zy, Zs) in degree-1 [150]. Considering Z, as a trivial Zy-module,
the sign representation sgn € Aut(kZy) =~ Hom(Zy, Zs) =~ H'(Z,,7,) then serves as a represen-
tative of the generator u.

Now consider D(BZjy)*". The cup product for the term ;A4 U A in the curvature F' is

2There is a slight misnomer here, where Z%;, should really be called the "invisible" toric code, as it fails to
satisfy the principle of remote detecatbility [79, 78, 76]; see Remark 6.2.2 later.
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implemented by the sign representation sgn = v € H*(Z,Zs), from which

%AuA:é(A), e = %uuueH2(Zg,Z2). (6.1.4)
The factor of 1/2 is very important as, without it, u uu = 0 mod 2 is trivial in Zy-cohomology
[150]. Dualizing the value of € to a class in H?*(Zs, Z;), it lifts the action > of kZs on k@ to a
central extension.

The term (B U €(A)) that appears in (6.1.1) gives precisely the Dijkgraaf-Witten cocycle
w e ZYG,R/Z). Indeed, going on-shell of the EOM (6.1.2) reduces the spin-Kitaev partition
function to

Z(X) ~ 3] e le@uan,
i1

This gives exactly the NLSM constructed in [71] with w(B,A) = B u é(A), provided the
anomaly-free condition

Tue=0 (6.1.5)

is satisfied. This condition ensures that that the Dijkgraaf-Witten integrand w(A, B) = (B u
é(A)) is a cocycle dw(A, B) = 0 in light of the EOM dB = 7(A).

Classification of 4d topological phases with a single pointlike Zj,-charge

The above describes the construction of a 4d Dijkgraaf-Witten topological field theory. As we
have mentioned, these were proposed to describe |71, 104, 72, 151], in a very general sense,
4d gapped topological phases. Another approach towards this follows the program of "higher
categorical symmetries" [46, 152, 47, 79, 48, 64, 66, 18|. In particular, the 4d toric code has
been extensively studied in the literature |67, 68, 76| from this perspective, so we understand
its corresponding braided fusion 2-category quite well.

By hypothesis, gapped topological phases are characterized by non-degenerate® braided
fusion 2-categories, based on the physical principle of remote detectability [152, 47, 79, 48,
18]. In particular, those with a single pointlike Z,-charge have been classified in |76, 63]. These

phases are
1. the 4d toric code #Z ~ Z;(2Vect™V|[Z,]),
2. the 4d spin-Z, gauge theory . ~ Z;(XsVect),
3. the wows gravitational anomaly .7,

where Z; denotes the Drinfel’d centre and 3 denotes the condensation completion functor [148].
Here, Vect|Z,]| denotes the category of Zs-graded vector spaces, and sVect is the category of
supervector spaces.

In this paper, we shall mostly focus on the gapped phases Z,.7, and leave the study of

the gravitational anomaly 7 to a later work; the reason for this shall be given at the end of

3Namely the sylleptic/Ep-centre Zy is trivial.
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§6.3. We will find explicit realizations of these phases as 2-representation 2-categories of certain
versions of the quantum 2-double D(BZ3). To do so, we study the excitations in the associated
NLSM (6.1.1).

6.1.1 Anomaly-freeness of the 4d spin-Kitaev model

Recall from the above that the 4d Kitaev model Z;; is well-defined provided the non-trivial
Postnikov class 7 and extension class e of the underlying 2-group satisfies the anomaly free
condition (6.1.5).

Let us here study, from the point of view of the 2-representation 2-category 2Rep,, (D(BZs)),
why the anomaly-free condition (6.1.5) is necessary. Recall that the self-duality of D(BZs)
as a Drinfel’d double 2-bialgebra means that the Postnikov class 7 dualizes to a coassoci-
ator Ay : Zy — Z;?@ defining the associator 1-morphism ayyy for the objects V. W U €
2Repy (D(BZs)).

The key point is that, in general, the pentagon relation for a follows from the condition
(5.3.4), which in turn follows from the 3-cocycle condition for 7. This notion generalizes to
the case where D(BZ,) is twisted by e € H?(Z, Z), that is, the product in D(BZs)g = Zs is
modified such that

rx 2 =eé(x ) (x), x,x € Zo.
We shall denote the corresponding 2-representation 2-category by

2Rep,(D°(BZ)) = 2Repy, (D(BZ2)*").

This notation shall be explained later in §6.3. For now, we prove the following.

Lemma 6.1.1. The anomaly-free condition (6.1.5) implies that the associator a of 2Rep] (D(BZ3)%")

satisfies the pentagon relations.

Proof. In order to see the anomaly-free condition (6.1.5) manifest on the 2-representations, we

begin with the observation that the component A of the coproduct on D(BZs) satisfies
Ao(z?) = é(r,2)i* @2 = é(r,2) ® 1, (6.1.6)

by (5.1.16). This means that Ag is an algebra map on kZ,, not kZs.
Because of (6.1.6), evaluating the condition (5.3.4) on 1 = x? € kZ, gives

1'® = A1 0A(1) = (A1 ®@1) 0 Ag(a?) = &z, ) ® Ay(1),

which violates the pentagon relation unless the right-hand side is also trivial 1*®. Pairing this

equation with arbitrary x,...,x3 € kZy gives

l={e(z,2) ®A1(1),1® 11 ®x2 @ w3) = {e(x,2) ® 1,1 ® T(x1, T2, x3)) = é(x, x)T(x1, T2, T3).
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This is nothing but e U 7 = 0. [

Notice on the other hand that if 7 = 0 is trivial, then so is A; and the coassociativity condition

simply implies the group cocycle condition for e.

Weakening the anomaly-free condition. There is a way to weaken the anomaly-free con-
dition, by imposing (6.1.5) only in cohomology T U € = 0 € H®(Zy, k*) |104, 153|. This means
that the 4d Kitaev model gains an additional term v(A) that trivializes the coboundary of the
Dijkgraaf-Witten 4-cocycle,

d(wp, —v) = 0.

Algebraically, this 4-cocycle v € H*(Zy,k*) is known to play the role of a "pentagonator"
2-morphism in the underlying 2-group [46, 71|, implementing the pentagon relation Lemma
5.5.3.

This group 4-cocycle v is intimately related to the Hochschild 3-cocycle T attached to the
weak endomorphism 2-algebra €nd(V') (see Definition 5.5.3). Indeed, Theorem 5.7.1 states
that the module pentagonator 7 [64] is given by

Txzoxs|V = ‘Z(p0<xl)a pO(:UQ)a pO(x?)))(V)? Ty,...,T3€ kZQ

Given V is irreducible with an associated label x4 € Zy, then 7y, 4y2402, = V(21, T2, T3, 4) defines
a group 4-cocycle whose cocycle condition arises from the associahedron condition [64, 119].
Moreover, the fact that the Hochschild cohomology of

ﬂlOT—TOp(%@

is trivial (coming from (5.5.3)) translates to precisely the equation d(w, —v) = 0. This relation-
ship between 7 and v is intimately related to the conjecture [46] that the 4d v-twisted gauge
theory on G coincides with the 4d untwisted 2-gauge theory on G = (G, k*, 7). We will not be

proving this conjecture in this thesis, however.

6.2 Excitations in the (invisible) toric code Z,

Excitations are inserted into the theory Zx;, with 2-representations p of D(BZs). Since D(BZs,)
is skeletal, it suffices to study 2-representations of the underlying 2-group. Let us first focus on
the trivial case D(BZ,)™.

Recall that a 2-representation p : D(BZ3)™ — €nd(V) on a 2-vector space V = V_; 5V,

consists of the following data:

1. a pair of Zs-representations

po=po @ py - Lo — End(Vy) @ End(V-y),
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such that ¢ is an intertwiner between p) and pj, and
2. amap p : z; — Hom(Vp, V_1) such that p;(1) = 0 on the identity 1 € 2\2

Since the t-map for D(BZ,) is trivial, p must satisfy dp; = (p1 00,00 p1) = pot = 0, which
means either p; = 0 or ¢ = 0. For 1-dimensional irreducible representations (irreps) Vo, Vo1 = k
over the ground field k, the value of p; on the non-trivial generator y Z; is either O or a scalar
multiplication. We write simply p; = 0 in the former case, while in the latter case we shall

normalize the scalar p;(y) to 1 € k%, and denote this map by p; = 1.

Remark 6.2.1. Though p; need not be an intertwiner, we require it to preserve the identity
pot (1) = po'(2®) = id in the sense that

p1(y) oidy, = idy_, op1(y), T € Ly, yE€ Lo.

This condition is vacuous here, but it shall become non-trivial later when we twist D(BM).
Strictly speaking, p; can be trivial as well if ¢ = 0, but this distinction makes no difference for
D(BZy)™.

Now given pf, p} are irreducible, Schur’s lemma implies that ¢ is either trivial or an isomor-
phism. Hence given 0 # 0, then pJ, p} are either both the trivial representation 1, or both the

sign representation sgn. We therefore have four inequivalent irreducible 2-representations

Electric 1=(1&1,0=1,p, =0) c=(1®sgn,d=0,p =1)
Magnetic | 1* = (sgn®sgn, 0 = 1,p; =0) | c* = (sgn® 1,0 =0,p; = 1)

Table 6.1: The list of the irreducible 2-representations of the Drinfel’d 2-double D(BZs,).

which constitute the simple’ objects in 2Repy, (D(BZs)). We call the first row the electric
sector and the second row the magnetic sector; this partition will be clear in the following.

Note that c is not equivalent to c*, because the map ¢ remembers its domain and codomain.

6.2.1 Fusion structure

V). Since the co-

We now investigate the monoidal structure of the 2-category 2Rep(D(BZ,)
product A on D(BZ,) is grouplike, the tensor product of 2-representations p, p’ is just the usual
graded tensor product p® p’. Graded here means (5.5.10), ie. equipped with the differential o;
we demonstrate this through computations below.

Let us examine the 2-representations as listed in (6.1). In the electric sector, we use the

Morita equivalence sgn®® ~ 12® ~ 1 to have

c®c=(1®sgn)® (1®sgn) = 1@ sgn@®sgn*® Psgn ~ c@ec, (6.2.1)

4Given any arbitrary 2-representation p € 2Repy, (D(BZsz), each graded component of the vector space com-

plex V =V_4 9, Vo carries a Zs-representation, which decomposes individually into direct sums of irreducible
representations 1,sgn. As ¢ must be a Zs-intertwiner, it also decomposes accordingly as a direct sum on each
irreducible summand, whence V' is a direct sum of the objects listed in (6.1).
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which tells us that c is a Cheshire string [76]; similarly, we compute
cFRc* 2sgn®@sgn@1@sgn ~cPe.

Note that the order of the direct sums matter, as we have are keeping track of the (trivial)
differential ¢ = 0. Indeed, we have on the other hand,

c®c*=(1®sgn)®(sgn®1) =sgn@®1@sgn®1l~c*Pc* ~c*®c, (6.2.2)

which is distinct from the above fusion rules.

Consider the mixed fusion 1* ® c. Here, we need to keep track of the non-trivial maps 0,

1"®c = (sgn@®sgn)® (1@ sgn)
a=1
~ sgn &) sgn?®(~ 1) &) sgn &) sgn?®(~ 1) .

Since these maps ¢ are intertwiners (in fact the identity), its domain and codomain are the

same. We keep only one copy, so that
1"®c~sgn®1 = c*. (6.2.3)
Through similar computations, we have
1®1 =1, 1®c ~c, 1*®1% ~ 1,

hence 1,1* are the vacuum lines; in particular, 1 is the indecomposable identity object in
2Rep(D(BZs)™).

2-intertwiners; the 1-morphisms

Recall from Definition 5.5.4 that the 1-morphisms in 2Rep(D(BZ3)™ ) are given by Zo-
equivariant cochain maps. Form the list (6.1), we clearly have identity self-2-intertwiners, such
as i[00] =id : 1 — 1 and ¢[11] = id : ¢ — c. As the source and target are the same graded
Zo-representations for self-2-intertwiners in particular, we can find two more. These are given

by a swap of grading together with a certain twist,
i'[00] : (w,v) — (v, w), i'[11] : (w,v) — (£1) - (v, w), (6.2.4)

where (v,w) € V_; @ V; denotes elements in 1 or c. Clearly, the identity ¢[00],7[11] admit
trivial actions by p;, in contrast to the grading swaps i'[00],7[11]. Hence from the grouplike

126



coproduct A_; (6.0.2) we deduce the following fusion rules
i[00] ® i[00] = [00] ®#'[00] = i[00],  i[00] ®#'[00] = 7'[00] ®[00] = #'[00],  (6.2.5)

and similarly for ¢[11],4'[11]. The same analysis applies to the dual sector i*[00] € End(1*),i*[11] €
End(c*).
Now consider a map i[01] : 1 — c; in the absence of the homotopy I, the commutative

diagrams (5.5.7) respectively enforce that
i[01]po1 = 004[01];,  4[01]; 00 = 1(y) o i[01]o,

where 1(y) = p1(y) € Hom(V,, V1) is a non-trivial scalar multiplication. These equations admit

a non-trivial solution i[01]y = 0,:[01]; = 1, hence there is a non-trivial 2-intertwiner
i[01] =1®0:1 - c;

similar arguments show that we also have a non-trivial 2-intertwiner
i[10]=0®@1:c—1.

These are the only possible 2-intertwiners between 1 and c. Again, the same analysis applies
to the dual sector. Since ¢[01] and ¢[10] have different domain and codomain, we must employ
the decomposition (5.5.14) in order to find the tensor product between them [146]. However,

since the coproduct Ay = 0 is trivial in D(BZy)™, we find their tensor product
i[01] ®i[10] = i[10] ® i[01] ~ 1 = 4[00]

to be trivial as well. We shall see later in §6.3.1 that this will be different once we introduce
twists on D(BZs).

Let us now come finally to the 2-intertwiners that map between dual sectors. First, consider
maps such as 1 — 1* or ¢ — c*. Any such maps must intertwine between different Z,-
representations in both degrees, and the only such map is 0. Next, consider a map [01] : 1 —

c*. The commutative diagrams (5.5.7) enforce
i[01]o00 = 103[01]y,  4[01]; 00 = 1(1) o 7[01]p.

The first equation says i[01]; = 0, while the second equation says i[01]y = 0, hence i[01] = 0.
Similarly, any 2-intertwiner [10] : ¢* — 1 must be trivial :[10] = 0.

The above paragraph proves that 2Rep(D(BZs)"™) has two connected components made
separately of the electric and magnetic objects in (6.1), which have no (invertible) 1-morphisms
between them. We denote the identity component of 2Rep(D(BZ3)™ ), namely the con-
nected component of the fusion identity 1, by I', which consist of nothing but the electric

sector. Relabeling [00],i[11] = 1 and '[00],#'[11] = e, we achieve the following structure for
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I’ from (6.2.5),
ifo1]

w(C Q ¢ e, (6.2.6)
2|10

which shall become crucial in the following.

Cochain homotopies; the 2-morphisms

Recall from Definition 5.5.4 that the 2-morphisms in 2Rep,, (BZ>) are given by Z;—equivariant
cochain homotopies. Of course, the monoidal structure of the 1-morphisms (eg. (6.2.5)) induce
a monoidal structure on the modifications u®y' : i®j = i'®j’, which by using the (so-far trivial)
interchanger (5.5.15) can be expressed in terms of the composition (1 ®id;) o (id; ®p') ~ pop'.

By inspection of the connected component I' (6.2.6), one can argue that the only modifi-
cations possible in I' are self-modifications i : ¢+ = 7. To see this, we first note that there is
only one unique 1-morphism ¢[01] (or [10]) between the simple objects 1 and ¢, hence we only
have the trivial identity cochain homotopy id : ¢[01] = i[01]. On the other hand, there are two
l-endomorphisms on 1 (or equivalently c), denoted by 1, ¢. Each of these of course comes with

its own trivial identity cochain homotopy, denoted by
l:1=1 e =e. (6.2.7)

Here, we note that u ~ —1 - id carries a global sign due to a grading swap in ¢ (6.2.4).

It then remains to check that there are no non-trivial cochain homotopies between 1 and e.
Let f1 : 1 = ¢ denote such a cochain homotopy. In order for i to denote a genuine 2-morphism
in 2Repy, (D(BZsy)), it must by definition (5.5.8) intertwine p;. However, Zs "acts" trivially

on 1, while non-trivially on e,
pr=1id 1 =1, pr=sgn-id:e= e,

and hence i = 0 must be trivial. This demonstartes that the only modofications in 2Rep,,, (D(BZ>))

that exist are the self-modifications p : ¢ = 1, as desired.

We of course have the trivial 1- and 2-morphisms given by 0. More importantly, we note that
the non-trivial 1- and 2-morphisms that we have identified above are not unique. In particular,
we have made the choice to normalize all of the 2-intertwiners and the self-modifications,
whereas any scalar multiple of them would also be valid. Further, we are also able to take
direct sums of the 2-intertwiners that we have identified above; basically, §6.2.1 lists a minimal

set of generators for the Hom-spaces of 2Rep,.(D(BZs)).

Loop 1-category: the 1-endomorphism space of the tensor unit. Recall that, for any
Abelian group N, p; : N - End(V)_; defines a " N-action" by cochain homotopies on the en-
domorphisms €nd (V') of a 2-representation V' € 2Rep,, (D(BN)). Furthermore, modifications

ji+i = i between i,i’ € €nd(V) by definition (5.5.8) must necessarily intertwine this N-action.
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On the tensor unit V' = 1, in particular, the space €nd(1) =~ k L k furnishes a 1-dimensional
irreducible N -module, for which the intertwining modifications between the different N-module

structures are either the identity or trivial. This allows us to conclude that
Q2Rep, (D(BN)) = Endagep, , (p(sny)(1) =~ Rep(N). (6.2.8)

For N = Z,, we recover the result that €nd(1) ~ Rep(Z,) ~ Vect[Z,] has two distinct objects,
1, ¢, with no non-trivial modifications between them.

Notice that in the usual theory of higher representations [46, 78, 63, 77|, where 2Vect™" is
2-enriched in Vect [97, 154], the above statement follows immediately from definition. However,

in the context of 2Vect"?¢ (which is not 2-enriched), we have to prove it by direct computation.

Proposition 6.2.1. There is an equivalence between Z;(XVect[Zs]) and 2Rep,,(D(BZs)™)

which is not compatible with the monoidal structure.

Proof. We use the description of the braided fusion 2-category Z ~ Z;(XVect|Z,]) (with trivial
associator class) describing the (3+1)D toric code given in [76]. This category has two identical
components; the identity component XVect|Z,| has two simple objects, given by the trivial
Zy-algebra I = C and the Cheshire string ¢ = C[z]/{z* — 1), where Z, acts non-trivially on z.
Monoidally, the two components of Z follow a fusion rule that is graded by Z, [78],

IP~m?~1, E~m?~cde, cm=m®®c>m, c@m' ~m'@c~m' ®m/,

where m, m’ denotes the simple objects in the non-trivially graded copy of XVect|Z,].
To show the desired equivalence, we need to exhibit a 2-functor § : Z — 2Rep,, (D (BZ,))

which is essentially surjective and fully faithful. This means that
1. § is essentially surjective, namely a surjection on the equivalence classes of objects, and
2. § is fully faithful, namely it is an equivalence of Hom-categories.

We begin by taking
(=1, JFl)=¢,  Fm)=1%  Fm')=c"

which is a bijection on the simple objects. Hence § is essentially surjective, and furthermore
preserves the identity. Now to check that .# is fully-faithful, we must consider the Hom-
categories. Since Z;(XVect|Zs]) ~ X2Vect|Zo]| @ X2Vect|Zs] 78], it suffices to show full and
faithfulness on the corresponding identity components § : XVect[Z,] — T.

To begin, we note that XVect[Z,] is well-known to have the following form [65],

Vect

Vect[Zs] C I T c SVect[Zz]7
1\/

Vect
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with each of the Hom-categories labeled. We let v; =~ k (resp. v =~ k) denote respec-
tively the simple object in the linear Hom-category Vect = Homywecz,]({,c) (resp. Vect =
Homswvect[z,]({; ¢)), which can be understood as the 1-dimensional vector space over k. Similarly,
we let i, e denote the two simple objects of the linear Hom-category Vect[Z,| = Endsvectz,](1) =~
Endsvect(z,](c); the direct sum 1@e corresponds to a 1-dimensional super- (ie. Zy-graded) vector
space.

By comparing with (6.2.6), we define the following component functors of the 2-functor §

by
L ) i00] = ()r—-i(1) 7'[00] = (8)1-1(e)
2[11] = (3)0—»0(1) Zl[ll] = (S)c—w(e)

i[01] = ®)r-c(vr),  i[10] = (§)esr(v2),

which we note are all unit-preserving and essentially surjective. It then suffices to check that
these component functors are fully faithful. By leveraging the linearity of the Hom-categories
under consideration, this is equivalent to checking that each of the component functors send
(additive) generating 2-morphisms to generating 2-morphisms.

This is indeed the case. Let j; € Endyet(vi) = k denote the non-trivial generating 2-
morphism over the indecomposable 1-morphism v; € Vect = Homgvect[zz](] ,¢). Then by
construction §rc(j1 : v1 = v1) = idsor) : i[01] = i[01] is the identity self-modification on
i[01] = §rc(v1), which is the generating object in the Hom-category Homogep, , (p(Bz,)) (1, ¢) as
required.

Similarly, as /-1, §cc are additive, they send the generating 2-morphism jz, : 1®e = i@e
over the indecomposable 1@e € Vect[Z,] to the (graded) generating chain homotopy 1+ (6.2.7)
over 1®e = §7_, [(i@e). This shows that each component functor §x_.y are equivalences of the

corresponding Hom-categories, and hence § : ¥Vect[Z,] — T is an equivalence of 2-categories.

We now wish to lift § to a monoidal 2-functor, which requires the fusion rules to be preserved
(up to coherence). The computations (6.2.1), (6.2.2), (6.2.3) show that § : Z;(XVect[Zs]) —
2Rep, (D(BZ2)™) preserves the fusion rules of the simples, and is indeed monoidally essen-
tially surjective. Next is to check that each component functor §Fx_y, X,Y € XVect|[Z,] is
monoidal on the Hom-categories.

From the fusion rules (6.2.5) for the 1-morphisms, we see that Fx . x with X = I, c are indeed
monoidal, but the issue is that §;. (or Feo) is not: Froe(v1) @Fr-e(v1) = i[01]®i[10] ~ 1 is
trivial in ' © 2Rep,, (D(B%Zy)™), while v; ® v; # 1 is not in XVect[Z,]. This prevents § from

being a monoidal equivalence. O

The problem is in fact even worse — we will show in the following that 2Rep, (D(BZs)™)
does not even define a gapped topological order. We elaborate in §6.3 on how this problem can

be amended by twisting the 2-algebra structure of D(BZs).
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6.2.2 The braiding data

Let us for now turn to the braiding structure. From the perspective of Z, it is understood [76]

in particular that there is the self-braiding
B:m®@m-—->m@m

on the magnetic m line, which can either be trivial 1 or the electric Zy-particle e. An argument
was given in |76] that states § = 1 is in fact trivial. We will prove that this is also the case in
2Repy (D(BZ2)™), but there is a major problem.

Theorem 6.2.1. All braiding maps on 2Rep(D(BZ5)"™) are trivial.

Proof. Recall from (5.6.2), (5.6.3) that the braiding structure of 2Rep(D(BZ2)™) is induced
by a 2-R-matrix (R, R) on D(BZy)"™ . Since D(BZ,) is a Drinfel’d double, we can make use
of the braided transpositions ¥, ¥ to characterize (R, R) using (5.2.29),

R = U o coev, (6.2.9)
R*T =T | ocoevy, R~ =U", ocoev, (6.2.10)

Here, coev is the coevaluation dual to the canonical pairing form on Z, and coev;, is the
coevaluation dual to the Pontrjagyn pairing. This method is based on the general quantum
double construction of Majid [118, 117].

First, in degree-0, the braided transposition VU : kZ, ® kZy — kZs ® kZ, satisfies

v’ = o V¥U(2 ®u1), x, 2’ € Lo.

Now since Z, is Abelian, W is simply the identity and hence (6.2.9) states that R = id is in fact
the identity matrix. The braiding maps by,» = 1 are thus all trivial. Now in degree-(-1), the

braided transpositions

W£1:Z§2®ZQQZQ®@, \IJT_1Z2®Z§2—>@®Z2

for D(BZ5)™ is given by Pontrjagyn duality
Ve f)=90f, UV, (z©g) =213,

whence (6.2.10) states that R* = p o coev = id is the identity matrix. The mixed braiding
maps b; w, by, are thus all trivial.
O

The fact that all the braiding maps are trivial on 2Rep, (D(BZ2)™) can also be seen from

the corresponding topological NLSM ZY.., which has no terms in its action that encode any
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non-trivial statistics of the charges in the theory [71, 46]. Of course, we already know from
Proposition 6.2.1 that 2Rep,,, (D(BZ2)™) not (braided) monoidally equivalent to the toric

code Z, and hence calling Z%;, the "4d toric code" is incorrect.

Remark 6.2.2. 2Rep,,.(D(BZ3)™") is "too trivial" to even describe a gapped topological phase,
since it violates the principle of remote detectability [79, 78, 76]. This principle states that
all non-trivial excitations can be detected by braiding, and it is part of the definition of a
topological order (such as the toric code #Z ~ Y.Vect[Z]). In this simple Z,-charged case, this
principle is encoded by the presence of the term (B ué(A)) in the Dijkgraaf-Witten 4-cocycle w
[71, 76], which is only present for Z};,. Nevertheless, the above computations lay the foundation

for our results in the following.

6.3 Excitations in the spin-Kitaev model Zj;,

We now turn to the spin-Kitaev model Zj;, given by the Drinfel’d double 2-bialgebra D(BZ,)%".
Its 2-representations have the same ingredients as those of D(BZ3)™", and hence the 2-category
2Rep(D(BZ2)*") also has four objects, similar to those in (6.1).

The difference here is that D(BZs)y" = Zs now acts non-trivially on D(BZy)*] = Z,. This
action was obtained by dualizing the non-trivial action u € Aut(kZ,), which induces via (6.1.4)
the class e = %uQ € H*(Zy,Z,) determining the non-trivial central extension of Z, by itself.
This extension is Z4, which we interpret as a "semidirect product" Zs x Z, where the central
element 22 € Z, acts by —1.

2 Macts" non-trivially on the degree-(-1) component of the

As such, the component p(z)
graded 2-representation spaces. In other words, provided p) is non-trivial, the component py of

the 2-representation p furnishes a representation of Zy x Zs, satisfying

po(@?) (w,v) = (2(e,2) - (p(a?)w, (a*)0) = (~w,v),  we s,

where (w,v) € V =~ V_; @ V. We denote such representations by py = pg @+ p§ = (€ pp, pJ)-
From (6.1), we thus see that the magnetic vacuum line 1* and the Cheshire string c carry
a Zj-representation, while the electric vacuum line 1 and the magnetic Cheshire c* carry a

Ziy X Zip-representation.

Now recall from Remark 6.2.1 that p should preserve the identity, which was a vacuous
condition as pJ'(z?) = 1 are both trivial for D(BZ,)"". However, due to the non-trivial sign
coming from p;(é(z,z)) = —1 in the current case, this becomes a non-trivial relation that one

must impose,

~1-pi(y) = pi(e(z,2) - y)pb(a?) = K@) (y) = m(y),  ye L.

The component p; is thus no longer required in general to preserve the identity. As V), V1 >~ k
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are both 1-dimensional vector spaces over the ground field k£, we have

p1(y N pi(y) = () = ;1) (p1(y*) " = ely.y) = —1 (6.3.1)

by considering p;(y) € k* as an invertible element. This defines a 2-cocycle ¢ € H 2(@, k*) at
degree-(-1) carried by 2-representations that have p; # 0. In other words, the Cheshire strings
c,c* are capable of carrying a minus sign due to ¢, while the vacuum lines 1,1* do not. We
thus have two versions of the 2-category 2Rep} ,,(D(BZ)%*"), corresponding to the versions of

D(BZ) that either carry the projective sign ¢ or do not.

Twisted Drinfel’d 2-doubles. These 2-cocycles ¢,é can alternatively be interpreted as
"twists" in the 2-algebra structure of the Drinfel’d double 2-bialgebra. Moreover, they can
also be interpreted as contributions to the 4-cocycles H*(D(BZs), k™) of the (2-group underly-
ing the) Drinfel’d double 2-bialgebra D(BZ,). This is a categorification of the 3-cocycle twists
of an ordinary 1-Drinfel’d double/3d tube algebra [155]; indeed, twists of 2-group(oid) algebras
by 4-cocycles have also appeared in the construction of the 4d tube algebra [156].

More precisely, the degree-4 cohomology of D(BZ5) was computed in [104] to take the form

HY(D(BZy),k*) = H*(BZs, k) ® H2(BZs, Zs) ® H*(Zs, k*).

The 2-cocycle e fits into the second term, while the double suspension map Z — B% sends
¢ — ¢[1] into the first term [46, 63, 71]. This allows us to identify two different 2-group
4-cocycles

wr=c¢[l]+e, wy=e €HYG, k") (6.3.2)

corresponding to twists of the Drinfel’d double 2-bialgebra D(BZ,), where the notation "[1]"
signifies a degree-shift under the double suspension map. These are the 4-cocycles that had
appeared in Theorem 6.0.1.

In analogy with the 3-dimensional case [155], we shall denote the twisted Drinfel’d double
2-bialgebras by D¥(BZ,), where w € H*(D(BZ,), k*). We take, now with proper naming,

Spin-Kitaev:  2Rep}(D(BZ;)*") = 2Rep,, (D*/ (BZs)),
Toric code:  2Rep;, (D(BZ3)™®") = 2Rep,, (D**(BZy)),

in which the first version is called fermionic (f-subscript) while the second version is bosonic
(m-subscript). This notation is suggestive, as it corresponds to whether the degree-(-1) @ of
the Dijkgraaf-Witten NLSM associated to D(BZs)%" is fermion parity Zg or a bosonic m-flux
Zm (71, 46].

Strictly speaking, the monster 2-BF theory (6.1.1) associated to 2Rep;(D(B%Zy)*") should

include a term ¢(B, B) given by the data of the 2-cocycle ¢, whence the partition function
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(6.1.3) reads

Z}S{lt<X) ~ 2 6i27rsx<Bué(A)>+5(B,B)‘ (633)

dA=0
dB=1

Note that this term ¢(B, B), being cohomological, does not alter the EOM® for the fields
(A, B). The theory Zj;, has also appeared as part of the NLSM construction in |71], provided
we identify
1 1
e(A) = 3 Sq'A,  @&B,B)= 3 Sq* B (6.3.4)
in terms of the Zj-cohomology operation Sq' : H7(X,Zy) — H'**(X,7Zs,) called the Steenrod

square [157].

Remark 6.3.1. In the spin-Kitaev model Z7.,, the coefficient of 1/2 that appeared in front of the
term Sq* B means that the point-like particle in the NLSM is a fermion [71]. If this coefficient
is 1/4, then such a term 1 Sq® B = py(B) gives a cohomology operation called the Pontrjagyn
square py : H*(X,Zy) — H*(X,Z,) [104]. The point particle would then be a semion |71] in

this case.

6.3.1 Fusion structure in the twisted case

Due to the presence of 2-cocycles € and ¢ in 2Rep;(D(BZy)%*"), the corresponding coproduct
component Aj, governing the tensor product of 2-representations now satisfies a modified version
of the condition (5.1.16),

AY(z?) = (e(z,7) - e(z,2)) ® 2 = &(y,y)1 @1, (6.3.5)

where we have noted y = é(x,z) and the twisted monoidal structure y -y = ¢(y,y) - 1 for
generators x € Zg,y € @ The presence of the sign ¢(y,y) = —1 allows us to lift or trivialize
certain Z4-representations. We demonstrate this with explicit computations.

Forming the tensor product, we see that the fusion rules in 2Rep;(D(B%Z3)%*") must be
different than that in 2Rep(D(BZ2)™). To see this more explicitly, we perform a monoidal
computation while keeping track of the data p; : Vj =sgn - V_; =1,

c®c = (Pc®pC>OA6

P1®1
= (6-1®eé -1 & sgn®sgn(~ 1))6—)(6-1®sgn% sgn®e- 1)
p1
N p1®1
~ (1<L1)6L)(é-1®sgn_l__>sgn®é-1),
1®pq

where we we have used the fact that (¢-1)*® ~ 1 and p; ® p; ~ 1.

2 = ely,y) = -1

in the second term to lift "sgn" to a sign representation of the subgroup Z, < Z,. However,

The first term is simply the trivial representation 1, while we use p;(y)

5Indeed, a 2-gauge theory with F' = B as an equation of motion would host instead a trivial 2-group Z N Zo
[115].
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together with the factor é(x,z) # 1, this allows to degenerate € - 1 ® sgn ~ 1 to the trivial

representation; this is the effect of the condition (6.3.5). As such, we have
c@c~(1LiN@old~1@1=1, (6.3.6)

which is indeed distinct from (6.2.1). The magnetic Cheshire ¢*, on the other hand, does not
carry e, so it furnishes a kZs x kZs-representation. However, it does carry the 2-cocycle ¢, which
lifts the sign representation of Zs to the trivial one. Hence we deduce that we have ¢c*®c* ~ 1
as well.

On the other hand, the above argument can be applied to compute the fusion
c®c* ~ (1 il sgn) @ (1 L sgn) ~ sgn @sgn ~ 1% (6.3.7)

where a non-trivial sign representation is left over due to the lack of a 2-cocycle € carried by
the magnetic Cheshire line c*. Similarly, we have ¢c* ® ¢ ~ 1*.

The above computations for (6.3.6), (6.3.7) rely crucially on ¢é # 0. Therefore, if ¢ = 0 were
trivial, then the Cheshire strings c,c* € 2Rep,,(D(BZy)%") revert to having the same fusion
rules (6.2.1), (6.2.2) as those in 2Rep(D(BZ3)™ ). This observation corroborates with [76].

Fusion rules for the 2-intertwiners i[01],7[10]. Now in contrast to the previous case of
the invisible toric code, the coproduct component A is non-trivial for the Drinfel’d double 2-
bialgebra D(BZs)%*". This induces a tensor product between the 2-representations (6.1) and the
2-intertwiners on them. To be concrete and for brevity, we shall concentrate on the connected
component I' = Endagep. , (D(Bz2)sen (1) in the following.

The fusion rules for the self-2-intertwiners :[00] = ¢[11] = 1,i[00]" = i[11]’ = ¢ remain the
same as (6.3.6), hence we shall focus on the fusion rules between i[01],i[10]. For convenience,
we relabel these 2-intertwiners as v, ve by their domains, and the goal is to directly compute
the tensor product v; ® ve = v. ® v through the definition. Given the Gray-property we have

noted in Lemma 5.5.2, the following two decompositions of i ® j
11 ®101® v, ve®coc®uy

differ up to an invertible modification. This 2-isomorphism was computed in [119] to be given by
the weak component ¢ = p; oé, which in this case is determined by the 2-cocycle & € H?*(Zs, Z;)
(see (6.3.10) later).

This fact is verified after a bit of a lengthy computation. We find that, for each non-trivial

x € Zs (recall the counit € defines the trivial 2-representation p = 1),

Poiel - Plewe(T) = €1 ®id = p,,
Puege * Poguy () = (621 @ po(x)) - (621 @ po(x)) = (€21 @ po(x)?).

Upon using the extension class €, the latter indeed becomes p; (é(z, 2))®po(z?) = p1(y)®id = p,,
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where y € 2; is the non-trivial generator. These contribute as (graded) summands into the
tensor product, whence
V1 ®Ue(= 1. ®v1) ~1De. (6.3.8)

This is required for the following.

Theorem 6.3.1. There are monoidal equivalences
Sm : Z1(XVect|Zs]) ~ 2Rep,,(D“* (BZs)), §¢: Z1(XsVect) ~ 2Rep,,(D“! (BZs))

of fusion 2-categories.

Proof. Recall from proof of Proposition 6.2.1 that the obstruction from lifting the equivalence
§ : XVect[Zy] — T’ < 2Repy (D(BZ2)™ ) to a monoidal one is the component functor §;. (or
equivalently §.;), where I, ¢ € YVect|Zs] are respectively the tensor unit and the (electric)
Cheshire string in Z.

Let T, © 2Repy (D*“?(BZsy)) denote the identity component. By adapting § to the twisted
case §n, : LVect[Zy| — Iy, < 2Repy, (D (BZs)), we see that the fusion rule (6.3.8) makes the

component functors of §,, monoidal,

(%m)[cacl(vlq&) = (Sm)[calc<i (‘Be) =1@¢
V1Vc = (Sm)[%c(vl)(gm)CHIO@)y

12

and identically for (Fm)er—re(v2v1) = (Fm)eor(v2)(Fm)1—c(v1) (note the work [63] did not dis-
tinguish between v, v9, so the fusion rule there is v? ~ 1+ e). Therefore, ., : XVect[Zy] — T,
is a monoidal equivalence. Since §,, and its component functors preserve all units, it extends
to a monoidal equivalence §,, : Z;(XVect|Zs]) ~ Z — 2Repy (D (BZs)), as desired.

Now consider the fermionic case. We use the description of the braided fusion 2-category
& describing the spin-Z, gauge theory given in [76]. The 2-category . is very similar to Z:
it has two identical components, with the endormophism category on the identity given by
.7 = sVect ~ Vect|[Zz]. The fusion rules of the two components are once again graded by Zs.
The caveat, however, is that each component are monoidally equivalent to ¥sVect instead.

In the identity component YsVect, the Cheshire string ¢ € sVect is the superalgebra C1(1), ie.
the Clifford algebra with one odd generator. It satisfies the well-known fusion rule c® ¢ ~ 1 in

the ambient category sVect. The rest of the fusion rules are then determined by the Z,-grading,

A ~m?~1, c@m ~m'®c~m, mcec~cRm~m'
Let I'y denote the identity component of 2Repy, (D“f(Z3)). The 2-functor §y : XsVect — Iy,
defined in the same way as in Proposition 6.2.1 and the above, the computations (6.3.6),
(6.3.7) show that § is monoidally essentially surjective.

Consider QI'y = Endygep,  (p#7(z,)) (1), Whose unit is 1. Though I'y % T',, as monoidal 2-
categories, we do have sVect ~ QI'y ~ QI',, ~ Vect|Z,]| (only monoidally) [76], hence § is
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monoidally fully faithful by the same argument as the above for I';,,. Therefore, §; extends to
a monoidal equivalence §; : .# — 2Rep;(D(BZ,)*") as desired. O

6.3.2 Proof of the main theorem

Let us now look at the braiding data. We recall that the braiding in the 4d toric code # ~
Z1(XVect[Zs]) is known [78] to be given by

Bxy(X®Y) =Y ®sgny X, XY € Z(XVect[Z,]) (6.3.9)

where sgn is the sign representation and |Y| € Zs denotes the Zs-grading of the object Y
namely, given Y = m, m’ is magnetic, sgny| acts non-trivially on the electric sector. This then

gives rise, by naturality, to a non-trivial full mixed braiding |76, 68|
Be,Y o ﬁY,e =—1- 1d7 Y = m, m*

between the non-trivial 1-morphism e € Q% ~ Vect|Z,] and the magnetic objects m, m*, as
required by remote detectability (see Remark 6.2.2).

The spin-Z, gauge theory . ~ Z;(Y¥sVect), on the other hand, has Q¥sVect ~ sVect, which
has a non-trivial self-braiding S, = —1-id for the odd object e (this is what distinguishes sVect
from Vect[Zs]). Moreover, since the Cheshire strings ¢, m’ are now invertible, either of them be
self-braided. Given that the mixed braiding maps behave the same way as in % (namely the
only non-trivial mixed braiding maps are between e and the magnetic sector, with non-trivial
full-braiding), then it is one of the main results in [76] that only the electric Cheshire ¢ carries
a non-trivial self-braiding 8. = e — a non-trivial self-braiding in m, m’ would in fact trivialize

the anomaly of ..

We are now in a position to prove the main theorem.
Theorem 6.3.2. The 2-functors §,, s in Theorem 6.3.1 are braided equivalences.

Proof. The strategy is to simply compute all of the braiding structures in 2Rep, (D(BZ3)%*"),
and match them to the topological orders #,.. To do this, we lift the 2-functors §,,  of

Theorem 6.3.1 to braided ones. This requires:

1. For each pair of simple objects X,Y € %, say, the 1-morphisms §,,(5x,y) and bz, (x)5.(v)
are 2-isomorphic in 2Rep,, (D**(BZy)), and

2. For each object X and morphism f:Y — Y in %, the component functors (F,,)xy-y'x

and (gm)quxy/ satisfy
(Tm)xy v x(Bx.f) = 000 (X), )y oy (f) (Fm)yx-xv (Br.X) = DEm)yyr ()G ()

Of course, the same conditions must be met for §; : . — 2Rep,, (D“/ (BZ,)).
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We shall follow the proof of Theorem 6.2.1 in order to construct the 2-R-matrix on
D“(BZs), which leads to the braiding in 2Rep,, (D¥(BZs)) through (5.6.2), (5.6.3). We will
see how each of the non-trivial 2-cocycle twists & € H*(Zy, Zs) and ¢ € H?(Zy, k™) manifest in
the braiding data.

Recall the 2-R-matrix (R, R) is determined by the braided transposition ¥ by (6.2.10),
(6.2.9). Due to the "semidirect product" structure 7 » Zs induced by the 2-cocycle e, the
degree-0 Zy acts non-trivially on the degree-(-1) 7o by a sign —1. The defining relations
(6.2.11) then implies that 2-R-matrix R is non-trivial:

R=(-1)"y®r+zr(—1)%, R=(-1)z®z.

By (5.6.2), (5.6.3), the off-diagonal nature of these R-matrices witness non-trivial braiding
between the electric and magnetic sectors. Indeed, R acts non-trivially on 2-representations
V,W € 2Rep (D*(BZs)) that differ in both of their graded Zs-representations, which is only
possible if VW lie in distinct sectors by (6.1). The sign then indicates that this braiding is

non-trivial, consistent with (6.3.9).

Lemma 6.3.1. The 2-cocycle € € H*(Zy,Zs) leads to non-trivial full braiding maps between e

and objects W in the magnetic sector.

Proof. Recall € € H?(Zy,Z,) determines the non-trivial central extension Z4 of Z, by itself. Pro-
vided that the component pJ is non-trivial, then py = (€ pg, po) furnishes a kZ,-representation.
In addition, this 2-cocycle also dualizes to € € H 2(22,22), which "twists" the algebra

structure in D(BZ,)*" in the sense that

- (z-y)=élz,a)y#2°y=y,

where x € Zy and y € k@ . In the 2-representation 2-category 2Rep,, (D(BZ,)), this manifests

as the presence of the 2-morphism

o(x1,x2) = pr(e(z1,22)) 1 po(x1) © po(x2) = polx122), x1, %9 € kZq (6.3.10)

mentioned in Definition 5.5.4. This demonstrates why we must use the weak 2-representation
theory based on 2Vectff , as the strict version does contain the component o, and hence cannot
detect any twists in the 2-bialgebra D(BZs).

Recall (6.2.4) that e swaps the grading of the 2-representation spaces, and hence € will occur
only in the full mixed braiding By, = B, w = bw, - b w between ¢ and those 2-representations
W that carry a non-trivial sign representation in degree-(-1) — namely the magnetic sector in
(6.1). The other full mixed braiding maps being trivial. A simple computation then gives

By, : PS(R@))P&R(})) = Pg(Ra)Ra)) =1, (6.3.11)

which is precisely the map oi(x,z) = pi(é(z,z)) ~ —1 from (6.3.10). In other words, the
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Zo-particle e braids non-trivially with the magnetic sector 1*, c*, as required.
n

Lemma 6.3.2. The 2-cocycle ¢ € HQ(Z;, k*) gives the non-trivial self-braiding b, = —1. More-
over, the self-braiding b is non-trivial in 2Rep,,(D*f (BZs)), but bex, b1+ are trivial.

Proof. Consider the first statement. By naturality, the braiding maps b; ; on 1-morphisms ¢, j

can be decomposed into mixed braiding maps,

1.V ->U
3 W =T

bij = biwbv,,

Taking ¢ = j = ¢ and the identity endomorphism 1* : W — W on a magnetic line, we see that

be = be,l*bl*,e = (be,WbVV,e)(bW,ebe,W)
= BowDBw, = (p(e(z,7)))* =y, y) id = —~1-1id

from the definition of ¢ in (6.3.1) and the fact that B,y = € from the above lemma. Here, note
the extension cocycle e satisfies é(z, ) = y for the non-trivial generators x € Zy,y € @ This
is consistent with the observation that ¢ implements the fermionic statistics of the Z,-charged
particle in [46, 71, 76].

Consider the second statement. Since € also determines a central extension of D(BZsy)o = Zs
by itself, an analogous argument as the previous lemma shows that, provided the 2-representation
po has the non-trivial sign representation at degree-0 (ie. the Cheshire string ¢ or the magnetic

vacuum line 1*), then the self-braiding
bv : po(R)po(Re) = po(RayRez)) = 1

can carry the non-trivial 1-morphism pg(é(x,x)) ~ e. In particular, this establishes that bex ~ 1
is trivial while b. ~ e is not.

But what about the magnetic vacuum 1*? The above argument does not force byx to be
trivial, but the fusion rule (6.2.3) (in the form ¢ ® ¢* ~ 1*) and the ribbon equation

bvew = (V@byw @ W) o (by @ bw) o (V ® b,y @ W)

do. Since the magnetic Cheshire c* is bosonic, the full braiding Be+ . ~ bs ~ ¢ must be

non-trivial. Using this along with (6.2.3) and the previous result then gives

bix = berge

ber e © (bex @ be) © be,c
(bex @ be) © Ber o
1®e®e ~ 1,

lIe

0

0
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hence the magnetic vacuum 1* must have trivial self-braiding by = 1.

Of course, in the absence of ¢, the braiding maps considered above are all trivial. O

These lemmas demonstrate that the non-trivial braiding data in &% (resp. .¥) appear in
2Repy, (D**(BZsy)) (resp. 2Repy(D“/(BZs))), and identifies them from the 2-cocycle twists
€, ¢ present in D*(BZ,).

O

To further drive home the point of the main result Theorem 6.3.2, we shall recover the
5-dimensional cobordism invariant associated to the spin Zs-gauge theory . from the spin-
Kitaev model. Recall the expressions of &(4) = 1 Sq' A and &(B, B) = 1 Sq” B in terms of the
Steenrod square. Starting from the partition function (6.3.3),

. Lagl Ao lqs2
Z}s(w(X) -~ Z 6227TSXBUQSC[ A+5Sq B7

dA=0
dB=t1

we deduce that, given W is a 5-dimensional manifold with boundary X = JW, the bulk

partition function takes the form [71]
75 (X) ~ exp lm J (A) U Sq A + S T(A)]
w

on-shell of the EOM dA = 0,dB = 7(A).

By interpreting the on-shell gauge fields (A, B) (ie. satisfying dA = 0,dB = 7(A)) as a
classifying map f = (A, B) : W — BD(BZy) |71, 104], we can introduce group cohomology
classes

Ee H¥Zs,Zy), M e H%(Zy,Z,)

such that f*E = 7(A) and f*M = %Sq1 A = é(A). Then, the spin-Kitaev partition function
can be written as

Zig(X)~ > (W], fra),

fe[W,BK]

where [W] € H5(W,C*) is the fundamental homology class and « is a degree-5 group cohomol-
ogy class given by

o = (=1)3C E+BOM ¢ H5(7,13] x Z,[2], C). (6.3.12)

This is precisely the anomaly of the fermionic phase .7 [76].

To conclude this Chapter, I would like to emphasize that I have generalized the above
computations and results in [121] to study the 4d Z, toric code, where p is an arbitrary prime.

The partition function reads

ZKitp(X)N Z 6z‘27r§X<Buém(,4)>7

dA=0
dB=1(A)
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where the 2-cocycle €, € H?(Z,, i;) evaluated on A can be written in terms of the Z,-Bockstein

homomorphism 3 : H'(X,Z,) — H*(X,Z,). We state the main results here without proof.

Theorem 6.3.3. There is a monoidal equivalence between 2Rep®,(D(BZ,)) and Z1(2Vect™Y (Z,)).

Further, the electric Z,-flavoured bosons e;, have non-trivial full braidings with any of the a-
magnetic objects W,

B, wa =¢"-id, Ya,k=1,....,p—1,

where id : ¢, @ W* = ¢,  W* denotes the identity 2-morphism.
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Chapter 7

Outlook

This PhD thesis has motivated the appearance of homotopy Lie algebra symmetries in gauge
theories, and outlined several applications of the structure of Lie 2-bialgebras and the 2-graded
classical R-matrix. I showed in my paper [113| that this gauge-theoretic perspective of higher
homotopy symmetries is in fact very natural for the anomaly cancellation mechanism [100, 158,
159, 160], and the "gauging the gauge" idea extends straightforwardly to Lie $-algebras and
3-gauge theories [161]. These points did not make it into the main text of the thesis due to
length constraints, but the interested reader is encouraged to check [113].

I then developed the algebraic structure of Hopf 2-algebras to serve as the quantization of
the theory of (weak) Lie 2-bialgebras. One key point to emphasize is that no where in §5 did
I require the underlying algebras to be semisimple or finite-dimensional. Hence the theory of
Hopf 2-algebras can be used to describe a notion of compact categorical quantum groups,
namely a deformation quantization, in the style of Drinfel’d-Jimbo, of compact Lie 2-groups.
Such structures have been proposed to have important applications in 4d quantum gravity
[44, 134, 1, 162].

These ideas that I have developed throughout my PhD allows one to tackle many open

questions that remain to be explored. I end this thesis with a short list of them.

Higher-ribbon structures and modular tensor 2-categories. The reader may noticed
that I have conveniently left out the study of the anomalous version .7 of the fermionic order
& in §6. This is because 7 is not a Drinfel’d centre [63, 77|, and hence a description in terms
of a 4d Dijkgraaf-Witten TFT will not be straightforward. However, it is closely related to the
wyws gravitational anomaly |76, 163], and there had been field theories and lattice models that
are proposed to describe this anomaly [70, 113, 164].

The order .7 is known to be distinct from . as fusion 2-supercategories |76, 63|. As
mentioned in Remark 3.4 of [63], this can be understood as the difference between the self-
duality datum they host for the magnetic line m, which prompts a notion of ribbon Hopf
2-algebras and their 2-representations. Such objects should morally be a quasitriangular Hopf
2-algebra equipped with a central ribbon element v € A satisfying appropriate homotopy ribbon

equations and coherences. Ideally, I wish to develop this theory in such a way that the ribbon
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data can be read off directly from the underlying Hopf 2-algebra of the 4d TQFT, or the
underlying 2-groupoid algebra of the membrane-net lattice model [156].

The modular data of (possibly non-finite semisimple) ribbon tensor 2-categories — such as
2Repy (A) for an infinite-dimensional ribbon 2-Hopf algebra .4 — could be used to construct
a 4d version of the Reshetikhin-Turaev TQFT. As these TQFTs are non-semisimple [165], they

can produce novel invariants of 4-manifolds that see exotic smooth structure.

Higher character theory and state sums for 4d TQFTs. The goal here is to provide a
machinery that produces state sum invariants directly from the given 4d TQFT action. Towards
this, I have initiated work with prof. Clement Delcamp (IHES) to establish a notion of delta
functions and orthogonality of categorical characters [166, 167, 168| for higher representations of
groups/2-groups [64, 60| from the tensor networks/matrix product operators perspective.
This would allow us to explore the 4d analogue of the known deep relationship between Turaev-
Viro invariants and the tangle operators in 3d Chern-Simons theory [30, 27, 25|, which makes
heavy use of character theory.

Having such a result would settle a conjecture [134] concerning the equivalence between 4d
2-Chern-Simons theory and the Crane-Yetter-Broda TQFT. Moreover, a higher homotopical
version of the Peter-Weyl theorem, which states that the space of L?-functions on a compact
quantum group decomposes into (infinitely many!) finite-dimensional unitary irreps, would
open the door towards the study of non-semisimple tensor 2-categories. Such algebraic gadgets
would be very useful for both mathematics and physics, such as the construction of novel

4-manifold invariants and the classification of gapless conformal defects [169].

The holographic duality in higher Chern-Simons theory. The well-known 3d Chern-
Simons/2d Wess-Zumino-Witten holographic correspondence [43], we expect a higher-integrable
CFT to be associated to the boundary of higher-Chern-Simons theory [111]. In an upcoming
work with Joaquin Liniado (La Plata U.), I have studied the homotopy 2+41d current algebra
that lives on the boundary of 4d 2-Chern-Simons theory [135], based on the holomorphic Chern-
Simons localization of [170]. The associated 2-Lax connections allowed us to construct higher
conserved currents that live on surfaces. These can be used to model conformal defects in
higher-dimensional CF'Ts.

In contrast to the twice-holomorphic homotopy current algebra of [171], the 3d currents are
holomorphic-topological, and hence should admit a quantization in terms of a holomorphic-
topological vertex operator algebra (VOA). It would be interesting to relate this VOA to the
"Raviolo VOA" of [172, 173|. Similarly, its representations should also admit a higher ho-
motopy version of the Kazhdan-Lusztik correspondence as mentioned in §1 — namely that
"positive energy" 2-representations of this homotopy current algebra should be in one-to-one

correspondence with 2-representations of compact categorical quantum groups.

2-+1d quantum integrability. I propose that compact categorical quantum groups serves as

the foundation for a 2-dimensional quantum inverse scattering method. Such a notion
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of higher quantum integrability should realize the exact solvability of 24-1d lattice models with
general 2-categorical symmetries |75]. This proposal is inspired by the Bethe ansatz for quan-
tum integrable spin chains [174, 175] in 1-dimension, which gave rise to coherent states which
diagonalizes the transfer matrix of the lattice model. Having control over higher-dimensional
quantum integrability would also lead to the development of tools that are suitable for studying

quantum entanglement properties of novel 3d quantum codes.
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Appendix A

Classification of Lie 2-algebras

In this section we examine the classification of Lie algebra crossed-modules by Lie algebra
cohomology, following [124]. Recall that a given two Lie algebras b, g over a fized field k of
characteristic zero, a Lie algebra crossed-module is a map ¢ : h — g and an action > of g on h

such that the following Peiffer conditions
(X >Y)=[X,tY],, tYY =[VY] (A.0.1)

are satisfied for each Y, Y’ € h, X € g. Mathematically, it is equivalent to a strict Lie 2-algebra!',
where the homotopy map p = 0 introduced in the main text vanishes.

Consider the following four-term algebra complex built from the Lie algebra crossed-module,
0->Veohbgon—oo, (A.0.2)

where V' = kert and n = cokert. Due to the Peiffer identity in (A.0.1), the Lie algebra
V < Z(h) must lie in the centre of b, and hence is Abelian. It admits an action by n induced

by the crossed-module action >.

Definition A.0.1. We say that two crossed-modules ¢ : h — g,t’ : h’ — g’ with the respective

actions >, > are elementary equivalent if
1. kert = kert’ = V and cokert = cokert’ = n,

2. there exists Lie algebra homomorphisms ¢ : h — §’,¢ : g — ¢ compatible with the
actions >, >’ such that
PX >Y) = (X)) > oY)

!Namely a two-term differential graded L..-algebra.
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for all X € g and Y € . Moreover, the diagram

h —— g

AN

0 ——V ¢ ¥ n——0

AN S

t/
h —— ¢
commutes.

Let us denote the set of elementary equivalence classes of Lie algebra crossed-modules by
XMod(n, V).

A.1 Lie algebra cohomology

We first review some basic facts about Lie algebra cohomology, which is a very powerful and
important tool for classification of Ly-algebras. We once again follow the treatment of [124].

Let n be a Lie algebra over the field k and let V be an Abelian n-module. Define its
differential graded Chevalley-Filenberg complex

AP, V) ;p>0

(C*(n,V),d), C’(n,V) = ,
\% p=0

where A(n?, V') denotes the exterior algebra of alternating forms on p-copies of n over V. The
differential d : CP(n, V) — CP™1(n, V) is given explicitly by

de(zg, ..., xp) = Z(—l)”jc([:vi,xj],xo,...,ii,...,ij,...,xp)
1<j
p .
—Z(—l)zxiDc(xo,...,:i:i,...,xp)
i=1

for each cochain ¢ € CP(n, V'), where * denotes an omitted element.
Lemma A.1.1. d*> = 0.

Proof. Recall the Cartan formula
L, =di, + ,d, TEN
where ¢, : CP*1(n, V) — CP(n,V) is the interior evaluation

by e ((T1,...,2p) — (T, 21,...,2p))
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and L, : CP(n, V) — CP(n,V) is the Lie evaluation

L,:c— ((xl,...,xp)'—>x>c(:z:1,...,xp)—Zc(azl,...,[x,xi],...,xp)),

which by construction commutes with d. Now let v e V = C%n, V) be a 0-form, then

d*v(z1,20) = —dv([w1,12]) + 21 > dv(29) — 19 > dv(77)

= [zo, ;1| v+a1> (22>0) — 29> (2 >0) =0,

which vanishes by the n-module structure on V.
Now let p > 0 and assume the induction hypothesis: d?> = 0 on CP~!(n, V). Consider
ce CP(n,V), then by the Cartan formula

dc(z_1, 20,71, ..., 7)) = to,(d?c)(0,T1,. .., Tp)
= (Ly , —diy ,)dc(zo, z1,...,2p)
= (Ly d—d(Ly , —diy_,)c(xo,21,...,2p)
= (Ly,d—dL, , +d*, \)c(xo,71,...,7,) =0,

where the first two terms cancel by the property L,d = dL,, and the last term vanishes due to
the induction hypothesis (recall ¢, _,c € CP~1(n, V). O

This nilpotency allows us to define the Lie algebra cohomology
H*(n,V) =kerd/imd.

These groups are extremely useful, as they are isomorphic to the de Rham cohomology of the

topological group G [176]. Moreover, they classify various algebraic structures; for instance,

1. Degree p = 0: the group H’(n, V) = V" < V classifies the n-invariants: namely elements

v € V annihilated by n via the action >. Indeed, the 0-cocycle condition merely states
dv(z) =z >v =0, veV =CMnV),

which means that v € Z°%(n, V) is n-invariant.

2. Degree p = 1: the group H'(n,V) classifies algebra representations of n on V (i.e.

derivations Der, (V")) modulo inner representations. Indeed, the 1-cocycle condition reads
de(xy, x2) = c[z1, 22]) — 21 D> c(x) + 22 > (1) = 0,

which implies that ¢ € Z!'(n, V) is a linear representation of n on V. The 1-coboundaries
are inner derivations c(x) = dv(x) = z > v for some v € V = C%(n, V). If n acts trivially
on V, then H'(n,V) is in fact isomorphic to the (dual of the) Abelianization n/[n, n].
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3. Degree p = 2: the group H?(n,V) classifies central extensions i of n by V, which fits in

the three-term exact sequence
0—-V—->n—->n—0.

To see this at a glance, a set-theoretic section s : n — 1 sees an obstruction to being a

Lie algebra-theoretic section given by

(w1, 29) = s([71, 72]) — [5(21), 8(72)].

It can be shown, with the n-module structure of V and the Jacobi identity, that ¢ €
Z%(n, V) is a 2-cocycle, and any two choices of such sections s yields 2-cocycles ¢, ¢’ that

differ by a 2-coboundary ¢ — ¢ = da.

In general, the set HP(n, V') classifies (p + 1)-term extensions of n by V. Moreover, equivalence
classes of such extensions can be equipped with an Abelian group structure such that H?(n, V)
coincides with it not just as a set, but also as a group.

We shall show in detail next that, at degree 3, H*(n, V) classifies precisely the four-term

complex (A.0.2) of a Lie algebra crossed-module.

A.2 Theorem of Gerstenhaber

Before constructing the 3-cocycle ¢ € Z3(n, V), we introduce the notion of addition in the set
of crossed-modules. Given two crossed-modules ¢ : h — g,t' : h’ — ¢’ with the same kernel V'

and cokernel n, it can be shown that
(tot) : h@h /A —gdng

is another crossed-module, called the crossed-module sum of t and t'. Here, A is the kernel of
the addition map 4+ : V@V — V, while g ®, ¢ is the fibre pullback; explicitly,

A={(v,—v)|veV}, g@.g={X,X)egadg |pX =pX'}.

Note that as direct sums are commutative, we have (t@t') = (¢ ).
This notion descends to elementary equivalence classes of crossed-modules, and endows the
set XMod(n, V') the structure of an Abelian group. We shall show that this Abelian group is

isomorphic precisely to H3(n, V). To begin, we construct a bilinear skew-symmetric map

f(x1, 22) = s1([x1, 22]) — [s1(x1), s1(22)], T1,T9 €N

from a section s; : n — g of the map p : g — cokert = n in (A.0.2). Though s; may not be

a Lie algebra map, the projection p is, so pf = 0 and f is valued in kerp. By the exactness
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kerp = imt of (A.0.2), there exists a bilinear skew-symmetric map e : n*? — b such that

f=te.
We now pick another section s, : imt < g — h of the crossed-module map ¢t : h — g, whence

= sof. Let O denote a summation over cyclic permutations of x1, s, 3, then by construction,

tde(x1,x9,23) = t[O e([x1, x2], 23)— O s1(x1) > e(wo, x3)]
= O f([x1, 22], 23)— O t(s(x1) > e(xq, x3)) Peiffer conditions (A.0.1)
= O f([x1, 22], 23)— O [s1(x1), te(xa, x3)] Definition of f
=f(z2,73)
= O ([s1([1, z2]), s1(ws)] — sa([[21, 22], 25]))
— O ([s1(z1), [s1(72), s1(z3)]] — [s1(x1), s1([22, 23])]) Jacobi identity
= O ([s1([z1,22]), s1(z3)] — [s1([w2, x3]), s(x1)]) Cyclicity of summation
= 07

as such de is in fact valued in kert. Again by the exactness of the sequence (A.0.2) we may
find a skewsymmetric trilinear map ¢ : n*® — V such that ic = de, where i : V < b is the
inclusion. Picking yet another section s3: h — V yields ¢ = s3De.

Now we must show that dc = 0. It may be tempting to say that, since ic = de, we have
idc = dic = d*e = 0 by the nilpotency d*> = 0. However, this does not immediately follow,
as $1 is not necessarily a section and hence s1(-)>> is not necessarily a well-defined action. By

explicit computation, terms involving the problematic operation s;(-)> in idc read

Z(-l)i+j81([$i, .I'j]) > 6(1‘1, e ,JATi, e ,i’j, l‘4)

1<J
- Z(—l)isl(a:i) > 2(—1)j31(:€j) >e(zy,...,&5,...,23) Rearrange terms
i=1 i
= Z(—l)ZJrj (81([331‘,.1’]']) — [Sl(SCi),Sl(l'j)]) De(xl,...,ii,...,ﬁtj,m) Definition Off
1<j

= Z(—l)”j flxi, xj) >e(zy,. .., &y ..., Tj, 24) Peiffer conditions

1<j
=te(x,x;)
= Z(—l)”j[e(xi, zj),e(xr, ... By, Ty, 24)] Cyclicity of summation
1<j

hence we nevertheless have dc = 0. This allows us to conclude that c € Z3(n, V).
We now wish to show that changing the choices of the sections s; 2 3 adds to ¢ a 3-coboundary.
By linearity, we can write s) = s; + ¢ for some map 6 : n — g. Defining a bilinear skew-

symmetric map f’ analogously, we see that

[y, w0) = f(w1, 22) + [s1(21), 0(22)] + [0(21), 51(22)] + [0(21), 6 (22)] — d([1, 22]).

162



Notice the terms [s1(z1), 0(z2)]+[d(21), s1(x2)]—([x1, 22]) constitute precisely the coboundary
do(xq,x9) of a cochain § : n — g, with 1, x5 € n lifted up to g by the map s;.

Now as f/, f are valued in kerp = imt¢, we can find h-valued bilinear maps €, & such that
te(xy, xe) = db(x1,x2) and te(xy, x2) = [0(x1),0(x2)]. Further, we can also find a kert = im-

valued bilinear map ¢ such that
¢ (x1,x2) = e(xy,m3) + €(x1, 22) + (21, T2) + i0(1, T2)

when lifted by s5. Our goal now is to apply the differential d; however, the trouble here is that

d and sy need not commute, as sy is not in general a section. Now by computation

tdsed(z1,m9) = t(si(xy) B> s20(xa) + s1(22) B> s20(21) — s20([21, x2])), Peiffer conditions

= tso([s1(z1),0(xz2)] — [s1(22), 8(x1)] — 0([x1, 22]))
= tSQdd(:Cl,xQ),

so0 Ay = dsoe — Sode is valued in kert. Similarly, the difference Ay = dsse — sode also lies in

ker ¢, which allows us to finally write
(1,29, 13) = (1, T2, w3)+de(x1, T, T3)+de(x1, To, x3)+1 (A1 + Do) (21, T2, 13)+dip(x1, 1o, T3).

Using the injectivity of 7, we have dip = i(d|y ), hence defining 0 = e+e and I' = A1+ As+d|y e
yields
d=c+do+il'=c+do mod kert,

whence lifting by s3 up to V yields ¢ = ¢+ do. This shows that the cohomology class of ¢ does
not depend on the choice of the section s;.

Now suppose we have distinct sections sq, s}, defining e = sof and €’ = s, f. It is clear that
tle—€) =tsof —tshf = f— f =0, hence e — € is valued in kert = im¢. This means that s3
lifts d(e — €’) to a coboundary dw such that ¢ = ¢ + dw, demonstrating that the cohomnology
class of ¢ does not depend on the choice of the section s as well. Lastly, any two sections s3, s
must coincide, at least on the image im ¢ = kert, hence the cocycle itself ¢ does not depend on

the choice of s3.

Lemma A.2.1. Let t,t' denote two elementary equivalent crossed-modules, then the 3-cocycles

¢, they define coincide [c] = [d] € H?*(n, V) in cohomology.

Proof. First, pick sections s 23, 5] 53 in the respective crossed-modules ¢,¢" and construct the
3-cocycles ¢, ¢ € C3(n, V). Suppose an elementary equivalence (¢, 1)) between the two crossed-
modules exists, then ¥s; is a section of p’. The above shows that the 3-cocycle & constructed
from the sections (¢s1, sb, s4) differ from that ¢’ constructed from (s}, s}, s4) only by a cobound-
ary. Our task is thus to show that ¢ also coincides with ¢ up to coboundary.

Toward this, we define syif = € and compare this to ¢ge = ¢sof. First, we know that

t'sh, = 1, hence ¢’ — ¢e is valued in kert’ = im7’, so we can find a map v : n*? — V such that
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e — ¢e =1iv.

We now take the differential d of this equation. By definition of the elementary equivalence,
we can rewrite contributions ¢ (x;) > ¢(e) = ¢(z; &> e) in the differential, as such d(¢pe) = ¢de.

Now s3¢ is a section of 7', hence
d —c=s3Dé" — (s3¢)de = dv

is a coboundary. This proves the lemma. O
The lemma allows us to put a well-defined map b : XMod(n, V) — H3*(n, V).

Theorem A.2.1. (Gerstenhaber, attr. by MacLane). b is an isomorphism of Abelian

groups.

The classifying data of a Lie algebra crossed-module ¢ : h — g is exactly (n,V,c) with ¢ €
H3(n, V).

A.3 The Postnikov class

Let us now turn to the reason why we called an element in H*(n,V) a "Postnikov class" in
the main text. Formally, a Lie 2-algebra integrates to a Lie 2-group ¢ : H — G |95, 122], for
which a "Gerstenhaber theorem" also holds: ¢ : H — G is classified by its Hoang data (N, V, k)
[177, 102], where N = cokert,V = kert and x € H*(N,V) is a group cohomology class (as
opposed to a Lie algebra cohomology class).

The name "Postnikov class" comes from topology. Given any "nice" space X (a finite CW
complex), its fundamental group m;(X) in general acts on higher homotopy groups m>2(X) via
monodromy. The homotopy 2-type (X ) = (m1(X), m2(X), Ptn(X)) is modeled by the group

crossed-module [102]

1 ker 0 = my(X) - m(X,Y) S 1 (Y) — 7 (X) = coker d — 1,

where Y < X is a closed subspace and ¢ is the natural boundary map. Up to homotopy, it is
classified by the Postnikov class Ptn(X) € H3(m(X), (X)), which determines how 2-cells are
glued upon the 1-cells.

It is possible to construct the classifying space B(N, V') satisfying the condition [IsB(N, V) =
(N,V, k) [69, 126]. Such a space sits in the Postnikov tower fibration sequence

BV — B(N,V) — BN,

where BN = K(N, 1) is the classifying Eilenberg-MacLane space of N and B*V = K(V,2) is
the second delooping of V| satisfying mo(B2V) = V with other homotopy groups vanishing.
In other words, the Postnikov class determines how B(N, V') is constructed from the base

BN by gluing the second delooping space B*V. The homotopy classification theorem states that
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gauge-equivalent discrete flat 2-connections H'(X, (N, V) are isomorphic to homotopy classes
of classifying maps X — B(N, V) [177, 126]; this is how 2-gauge topological field theories are
constructed [69, 71].

The Postnikov class as a 2-curvature anomaly. The role the Postnikov class plays in
the 2-gauge theory is as a 2-curvature anomaly. Indeed, as we have seen already in §2.3.2; a

3-form contribution x(A) to the 2-curvature
1. does not violate the Bianchi identity daF = da(F — t3) = 0 iff x is ker ¢t-valued, and
2. is invariant under 2-gauge shifts A — A + tL iff k only depends on coker t.

These desirable properties, as well as the descent equation (2.3.11), allows x(A) to have a
cohomological interpretation in terms of a Lie algebra 3-cocycle k € Z3(coker t, kert).

Notice that the function k is only required to be a Lie algebra 3-cocycle, and hence is
not necessarily covariantly closed. This means that, in the presence of k(A), the 2-Bianchi
identity (2.2.13) can in fact be violated, due to the 2-curvature anomaly EOM K = k(A)
giving dy K = dar(A) # 0.

As we see from the Gerstenhaber theorem above, the Postnikov class classifies the crossed-
module & up to elementary equivalence [124, 122]; in fact, Lie 2-algebras are classified by the
same data [178, 126]. Indeed, the astute reader may have noticed a close parallel between the
Postnikov anomaly x(A) and the Bianchi anomaly (A, A, A). They both define an anomaly of
the 2-flatness condition, and the resulting 2-curvature quantity K have identical gauge trans-
formation properties.

For ¢t # 0, the two structures are actually different. Indeed, the 1-Bianchi anomaly (A, A, A)
is not invariant under the 1-form shift symmetry A — A + tL, while x by hypothesis is. This
speaks to the fact that, unlike their strict counterparts, weak Lie 2-algebras and non-trivial Lie
algebra crossed-modules are not equivalent when ¢ # 0. Indeed, the component & in a weak
Lie 2-algebra is not a Lie algebra, as the 2-Jacobi identities (2.2.18) do not hold. The quantity
%u()\, A, A) that appeared in (2.3.2), which seems to serve as the first descendant of p(A, A, A),
does not satisfy the descent equation (2.3.11).

When & is skeletal, on the other hand, the Postnikov class « plays precisely the same role
as a homotopy map for the Lie 2-algebra V % n. No violation of the Jacobi identities are
present due to t = 0. Therefore, algebraically, there is no distinction between a weak skeletal
Lie 2-algebra and a Lie algebra crossed-module with Postnikov class.

However, in terms of the geometry of the principal 2-bundle, the Lie algebra crossed-module
formulation has the distinct advantage that the 2-gauge theory it defines is free of the problems
plaguing that of a weak Lie 2-algebra, such as the lack of closure of gauge transformations
(2.3.9). This is because of the first descendant (4(\) of k(A) is part of the data of the 2-gauge
theory. The descent equation (2.3.11) ensures that the 2-gauge structure closes and is consistent

[99], even in the presence of a non-trivial Postnikov class [69].
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Appendix B

2-bundle homomorphisms

In this Chapter, we show that an elementary equivalence gives rise to a homomorphism between
2-gauge bundles. We also generalize this perspective to the weak case.

Let P, P’ — X denote two 2-gauge bundles on X, equipped with connections (A,3) and
(A’ X)), respectively. Intuitively, from the gauge theory perspective, a 2-bundle homomorphism

g : P — P’ should satisfy two properties: (1) it is a bundle map over X; namely the triangle
P z > P!
X

commutes, and (2) preserves all gauge-invariant data.

From our computations in the main text, the gauge-invariant data consist precisely of the

fake-flatness F (2.2.10) and the 2-curvature G = K. As such homomorphisms ¢ must satisfy
F _ g*F/, g — g*g/

Let us write, locally, ¢* = f*®WV in terms of components, where f* is the pullback of f : X — X

on forms and W = (¢, ) is a map on the Lie algebras
o9 —>b,  Y:g —>g
The fake-flatness condition F = ¢*F’ implies
F=(f"@y)F, 1E=(f Uiy =1f"@q¢x, (B.0.1)

by linearity and F' = djA, F' = daA’, the first condition in (B.0.1) means that f* commutes
with the de Rham differential d, and that 1 is a Lie algebra homomorphism®. The second

condition means t¢ = ¥t’ commutes with the crossed-module maps t,t'.

!This means that A = ¢ A’ and [A A A] = Y[A" A A'] = [ A A pA'].
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Equivalence of 2-gauge bundles. The 2-curvature condition reads
G=da¥ = (f*@¢)daY = (f*®¢)(dY + A A" Y),

where >’ is the crossed-module action in P’. Using the second condition from (B.0.1), the first

term reads
(f*®¢)dY =d¥ = d(f* ®¢)¥,
while the second term reads
AR S = (f*Re)A A™' Y.

However, the condition A = (f* ® 1)) A’ means that we must have
(FF @A AT Y = (" @P)A) A" (@)%

This tells us that, not only does g_; also has to be a Lie algebra homomorphism, but also the

condition

HXD'Y)=WX)>(¢Y), VXeg,Yey. (B.0.2)

This is precisely the definition of an elementary equivalence of Lie algebra crossed-modules
[124, 122].

As such, we may interpret elementary equivalence as an equivalence of the gauge-invariant
data on the 2-gauge bundles P, P’. The Gerstenhaber Theorem A.2.1 then implies

Corollary B.0.1. If the 2-gauge bundles P, P’ exhibit distinct Postnikov classes k # K €
H3(n,V) as 2-curvature anomalies, then there does not exist an invertible 2-bundle homomor-

phism between them.
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