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Abstract

The theory of Hopf algebras and quantum groups have led to very rich and interesting devel-
opments in both mathematics and physics. In particular, they are known to play crucial roles
in the interplay between 3d topological quantum field theories, categorical algebras, and the
geometry of embedded links and tangles. Moreover, the semiclassical limits of quantum group
Hopf algebras, in particular, are vital for the understanding of integrable systems in statistical
mechanics and Poisson-Lie dualities in string theory. The goal of this PhD thesis is to study
a higher-dimensional version of these correspondences, based on the very successful categorical
ladder proposal: higher-dimensional physics and geometry is described by higher-categorical
strutures. This is accomplished with the definition of a higher homotopy Hopf algebra, which
can be understood as a quantization of the homotopy Lie bialgebra symmetries that have
recently received attention in various fields of theoretical physics. These higher-homotopy sym-
metries are part of the study of the recently-popular categorical symmetries, which appear in
the condensed matter literature, for instance, in relation to 1-form dipole symmetries in topo-
logically ordered phases. However, here I will provide another physical motivation arising from
the gauge theoretic perspective, which is natural in the context of the Green-Schwarz anomaly
cancellation mechanism in quantum field theories. In particular, I use this perspective to prove
various known structural theorems about Lie 2-bialgebras and their associated 2-graded clas-
sical R-matrices, as well as to provide a new definition and characterization of the so-called
"quadratic 2-Casimir" elements. I will apply these higher homotopy symmetries to study the
4d 2-Chern-Simons topological quantum field theory, and to develop a notion of graded clas-
sical integrability for 2+1d bulk-boundary coupled systems. By following the philosophy of
deformation quantization and the theory of A8-algbera, I then introduce the notion of a "Hopf
2-algebra" explicitly, and prove several of their structural theorems. I will in particular derive a
novel definition of a universal quantum 2-R-matrix and the higher-Yang-Baxter equations they
satisfy. The main result of this thesis is that the 2-representation 2-category of Hopf 2-algebras
is cohesively braided monoidal iff it is equipped with a universal 2-R-matrix, and that (weak)
Hopf 2-algebras admit (weak) Lie 2-bialgebras as semiclassical limits. Finally, an application
of this quantization framework will be considered, in which I will explicitly compute the higher
representation theory of Drinfel’d double Hopf 2-algebras of finite groups. The corresponding
2-group Dijkgraaf-Witten topological field theories are then constructed directly from these
Hopf 2-algebras, and I show that they recover the known 2-categorical characterizations of 4d
Z2 symmetry protected topological phases of matter.
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Chapter 1

Introduction

The theory of quantum groups and Hopf algebras have received significant attention in various
fields of mathematics and physics since the 1940’s. They were first used by Hopf (hence the
name "Hopf algebras") to describe structures of the cohomology rings of loop spaces, or more
generally H-spaces [3], in algebraic topology. Somewhat independently, it was found that the
˚-algebra of operators in various statistical and quantum mechanical systems, such as integrable
spin chains [4, 5] and 3d topological quantum field theories (TQFTs) [6] (eg. Chern-Simons/BF
theory), also comes equipped with Hopf algebraic properties, in addition to extra functional
analytic data attached. These "C˚-completed" Hopf algebras are also known as quantum groups,
which are oftentimes infinite dimensional. In may cases, these quantum groups can be obtained
from the corresponding "classical" Lie group/algebra objects in a systematic way through the
so-called Drinfel’d-Jimbo deformation [7, 8]. These semiclassical limits of quantum groups
are known as Poisson-Lie groups and Lie bialgebras [9, 10], which also turn out to play very
important roles in integrability [11, 12] and T -duality in string theory [13, 14].

On the other hand, for topologists, it is known since the early 20th century that geometric
and topological properties of spaces are best organized by algebraic gadgets known as categories
[15]. These are abstract collection of objects and maps between them, usually endowed with
additional structures such as a tensor product and a braiding. They in particular are understood
to be crucial in describing the behaviour of embedded knots and links in 3-dimensional space
— namely they capture invariants of skein theory. The tangle hypothesis [16] of Baez-Dolan is
a vast generalization of this idea to higher-dimensions. It was also realized relatively recently
that the structure of fusion categories — which are linear categories equipped with certain
finitness conditions — can very generally be used to model gapped boundaries of topological
phases in condensed matter physics [17, 18]. In this context, the celebrated Levin-Wen model
[19, 20] describes an algorithm in which one can construct a concrete 2d lattice Hamiltonian
from the data of a (spherical) fusion category. Such models can be understood as the lattice
realization of the 2+1d Turaev-Viro-Barrett-Westbury topological quantum field theory (TQFT)
[21, 22, 23, 24], the latter of which has very close relations to skein theory [25].
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1.1 Hopf algebras at the centre of the 3d triangle

We have seen that there is a deep interplay of physics, categorical algebra and topology/geometry
as captured by the following "3d triangle"

Braided tensor categories

3d TQFTs and
integrable systems knot invariants

.

It turns out that the theory of Hopf algebras and quantum groups in fact play a central role in
this story.

Hopf algebras and TQFTs/knot polynomials. It was known since the 1970’s that, from
certain statistical spin systems (ie. those that are integrable), an invariant of knots can in fact
be computed from the partition function [26]. These were known to be the Jones polynomial
invariants, which were found to be very closely related to 3d Chern-Simons quantum gravity
[27]. From the quantum group Hopf algebra underlying these physical systems, the data of these
geometric knot invariants can be systematically extracted out of their representations through
the Kauffman bracket [28]. Indeed, the category of representations of a quantum group Hopf
algebra turned out to have equipped precisely the structures required to describe embedded
knots and links in 3-dimensions up to isotopy. These ideas have been generalized by Reshetikhin
and Turaev [29, 30, 31] to define quantum invariants of 3-manifolds. This Reshetikhin-Turaev
TQFT can be understood as a "modular refinement" of the Turaev-Viro TQFT, the former
of which makes crucial use of the underlying braiding and ribbon data. These ideas have also
been proposed to give rise to robust quantum computation [32, 33]. A crucial result by Witten
[6] relates these Reshetikhin-Turaev quantum invariants back to the algebra of tangle operators
(ie. Wilson lines) in SUp2qk Chern-Simons theory.

Hopf algebras and category theory. Somewhat independently of topology and physics,
Hopf algebras were also known to play a significant role in the study of abstract category theory.
Specifically, any fusion category (which are categories equipped with a monoidal product and
satisfy certain finiteness conditions) equipped with a forgetful functor can in fact be realized
up to equivalence as the representation category of a semisimple unital Hopf algebra [2].1 This
is known as the Tannaka-Krein reconstruction of monoidal categories [34, 35, 36, 37]. Inspired
by this, the Tannakian philosophy is then the statement that structures on categories can be
captured by modules/representations of Hopf-like algebras [38, 39].

Just very recently, in fact, the Tannakian philosophy has been concretely realized in the
context of the Levin-Wen model [40]: string-net models can be realized as a gauge theory whose
gauge algebra has Hopf-like properties.

1This statement does not require a fibre functor if we are content with Hopf algebras with weak units.
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Types of associative algebras Category of modules
k “ 0 algebra category
k “ 1 bialgebra monoidal category (w/ forgetful)
. . . Hopf algebra tensor category (w/ forgetful)
k “ 2 quasitriangular bialgebra braided monoidal category (w/ forgetful)
. . . quasitriangular Hopf algebra braided tensor category (w/ forgetful)
. . . Drinfel’d double Drinfel’d centre

Table 1.1: A table summarizing Tannaka duality. The number k measures the level of
"monoidality" of the category, with k “ 1 denoting a monoidal product b and k “ 2
denoting a braiding. Tensor categories have equipped duals and co/evaluation morphisms
X b X˚ Ñ 1, 1 Ñ X˚ b X that satisfy the snake equations [2].

Hopf algebras and vertex operator algebras. The above is not the full story. With
compact quantum groups specifically, a correspondence of sorts was discovered by Kazhdan
and Lusztik [41] between the representations of compact quantum groups — which labelled
the tangle operators in 3d Chern-Simons theory [6] — and the positive energy representations
of the Kac-Moody affine Lie algebra. The latter describes the algebra of operators in the 2d
Wess-Zumino-Witten theory conformal field theory (CFT) [42], which lives at the boundary of
the 3d Chern-Simons theory. Such an explicit correspondence between the operators of the bulk
and boundary theories can be understood as one of the most mathematically well-understood
instances of holography [43].

These facts have made Hopf algebras an extremely popular topic of research among both
physicists and mathematicians, even until today.

1.2 Climbing the categorical ladder

The central theme of this PhD thesis is to motivate and understand a higher-dimensional
version of the above story, focusing more on the physical and semiclassical side. This line
of research has been very popular in the past few decades, following the "categorical ladder"
proposal [44, 16, 45]. This is the proposal that higher-dimensional physics and geometry should
be captured by higher-algebraic and higher-categorical structures [46, 47, 48]. The tangle
hypothesis of Baez-Dolan [16] mentioned previously is part of this proposal.

This idea has been very successfully applied to many fields of theoretical physics, as a way
to study emergent symmetry structures in field theory [49]. In fact, the development of the
underlying mathematical theory of higher categories and categorical algebras is motivated in
large part by the study of functorial TQFTs in the sense of Atiyah and Segal [50, 51, 52, 53, 54],
which can be understood as a categorification of (framed) bordism invariants. The purported
proof of the cobordism hypothesis by Lurie [55, 51], which sought to classify equivalence classes
of (fully extended) functorial TQFTs in any dimension, sparked a series of developments in the
field of categorical algebra that sought to pin down a notion of "higher-categories" [56, 57].

These higher categorical structures, specifically higher fusion categories [58, 59] and higher
representations of finite groups [60, 61], have recently been successfully used as a way to record

3



the renormalization group (RG) invariant properties of higher-dimensional phases of matter
[62]. For a short and certainly non-exhaustive list of developments in this direction, see [48, 63,
64, 65, 66, 67, 46, 68]. The 4d topological sigma models associated to finite categorical groups
have also been well-studied [69, 70, 71, 72, 73]. These can be understood as topological gauge
theories whose structure groups form a special kind of finite category, called a categorical
group/2-group,2 and can be thought of as higher-dimensional generalizations of finite gauge
theories.

One major success of the categorical ladder proposal is the recent work by Douglas and Reut-
ter [65], in which the notion of "spherical fusion 2-categories" was defined, and a 4-dimensional
analogue of the Turaev-Viro TQFT was constructed from its data. This led to many generaliza-
tions of known results and applications in physics to higher-dimensions, including a construction
of 3d membrane-net Hamiltonians [74, 59], as well as exactly-solvable "fusion surface models"
with 2-categorical symmetry [75]. Several very powerful classification and extension theorems
for fusion 2-categories [48, 76, 63, 58, 77, 68, 78, 79] have been proven. These results have
served to extend our understanding of higher-dimensional gapped topological phases.

The above results cement to an extent the connection between 4-dimensional TQFTs and
higher-categorical algebras. In particular, a notion of braided monoidal 2-categories [80, 81]
have been defined from the perspective of the 2-tangle hypothesis [82, 83]. Following similar
ideas, knot polynomial invariants have seen a categorification in terms of bigraded complexes,
called knot homologies [84, 85, 86]. Therefore, tentatively, there is a corresponding "4d triangle"

Braided tensor 2-categories

4d TQFTs knot homologies

that relates physics, algebra and geometry. Recent work as described above has cemented the
edge on the top-left, namely that between higher categories and higher-dimensional topological
field theories.

1.3 "Higher Hopf algebras" at the centre of the 4d triangle

What is the higher notion of Hopf algebras that sit in the centre of the 4d triangle? These
algebraic gadgets, at the very least, should have braided monoidal 2-categories as their repre-
sentations; see the categorical ladder diagram in 1.1.

One answer to this question came in the form of Hopf monoidal categories [87, 44], which
can be understood as categories equipped with Hopf-like properties that hold up to homotopy.
Representations of such Hopf monoidal categories have also been studied in [88], and they were
found to have indeed the structure of a braided monoidal 2-category. A higher notion of the
Tannaka-Krein duality has also appeared in [89, 90].

2The name "2-group" is ambiguous, as it can refer to a categorical group as well as a p-group where p “ 2.
We shall use the name "2-group" to refer strictly to the former throughout this thesis.
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Figure 1.1: The categorical ladder as displayed in [1], which relates increasing categorical level
with increasing dimensionality (the diagonal line). The horizontal axis represents the operation
of taking modules/representations. The idea of a trialgebra is that their representations should
form a Hopf monoidal category.

Alternatives to Hopf monoidal categories. In light of such rapid recent developments,
however, several questions still remain open. One such question is the notion of a "quantum
2-group", which should be a categorical analogue of Drinfel’d-Jimbo deformed quantum groups.
These should carry certain analytic data, and have a well-defined semiclassical limits; both are
properties that Hopf monoidal categories lack. Many proposals for such objects have been
proposed, such as the Hopf algebroids of Lu [91], quantum 2-groups of Majid [92], Hopf cat1-
algebras of Wagemann [93], and representations of trialgebras [1], to name a few.

However, it is not at all clear if the representations of these candidates for higher quantum
groups have the right braided monoidal properties, or how any of them are related to higher-
dimensional physics (aside from an application of trialgebras to 2+1d integrable spin systems
[94]).

My PhD work is designed to precisely address this problem: I will provide first a motivation
for the appearance of homotopy Lie algebras in higher gauge theory, then propose a notion
of homotopy Hopf algebra which (i) serves as the quantum version of Lie 2-bialgebras
[95]/Poisson-Lie 2-groups [96], (ii) whose representation 2-category is braided monoidal, and
(iii) is closely related to many of the proposals for a "quantum 2-group" listed above.

1.4 A tale of two 2Vect’s

An immediate issue one encounters is the context in which higher homotopy Hopf algebras
should be defined. It is well-known that there are several inequivalent categorifications of the
category of vector spaces Vect. Two of which of major interest in this thesis are the following.

1. Kapranov-Voevodsky (KV) 2-vector spaces 2VectKV [97], which is a linear 2-category
consisting of k-linear finite semisimple 1-categories (such as Vect), linear functors as 1-
morphisms and natural transformations between these functors as 2-morphisms, and

2. Baez-Crans (BC) 2-vector spaces 2VectBC [98], which is a linear 2-category consisting of
k-linear 2-term cochain complexes of vector spaces, cochain maps as 1-morphisms and
cochain homotopies between such chain maps as 2-morphisms.
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The theory surrounding the KV 2-vector space has received much more attention in the litera-
ture (see eg. [48, 63, 64, 65, 58, 77]), and have seen successful applications to describe gapped
topological phases in 4d [66, 67, 46, 68].

On the other hand, differential graded algebraic structures — such as L8-algebras [96, 99,
100, 101] and crossed-complexes of groups [102, 103, 104, 105, 106] — have also appeared in
the literature as a way to model higher-dimensional physics, topology and geometry. These
notions enjoy desirable properties, such as the fact that Lie 2-algebras serve as infinitesimal
approximations of Lie 2-groups. The sort of gauge principles that are built out of the corre-
sponding principal 8-bundle [107, 108, 109] forms the basis of higher-gauge theories studied in
the literature [110, 72, 111].

Hopf monoidal categories are, by definition, Hopf algebra objects in 2VectKV . They are
linear semisimple categories H equipped with Hopf structure maps given by functors: for
instance, the algebra map µ : H ˆ H Ñ H is understood as a functor between categories,
whence associativity and unitality are witnessed by natural transformations [15]

α : µ ˝ pµ ˆ idq ñ µ ˝ pidˆµq, λr : µ ˝ pidˆηq Ñ id, λl : µ ˝ pη ˆ idq ñ id .

These are known as homotopy coherence data, which must satisfy a complicated set of co-
herence conditions. Working with Hopf monoidal categories and their representations, however,
is notoriously difficult [88].

On the other hand, the strict quantum 2-groups of Majid [92] can be viewed as Hopf algebra
objects in the strictification of the bicategory of (linear semisimple) categories. By virtue of its
definition, neither it nor its representation theory carry non-trivial coherence data, whence there
are no coherence conditions to check and they are much easier to work with. Unfortunately, this
is not at all a generic property, as it is known that monoidal 2-categories cannot be completely
strictified [112]; contrast this with the case of monoidal 1-categories, which can always be
strictified.3 The same issue plagues the Hopf cat1-algebras of Wagemann [93], which are Hopf
algebra objects in the strict 2-category 2VectBC .

A major result of this PhD thesis is the resolution of this issue of the lack of coherence data in
2VectBC : I will develop a theory of Hopf A8-algebras which live, by the macroscopic principle
[16], as Hopf algebra objects in a certain homotopy refinement of 2VectBC . This homotopy
refinement 2VecthBC exists, as I am able to explicitly write down all of the conditions that
the coherence data must satisfy as cohomology descent equations. I will also show that these
coherence conditions are very similar to those in 2VectKV . This framework of such Hopf A8-
algebras appear directly from the fields in a 4d TQFT, similar to the factorization algebra
approach of [101].

3This is known as the coherence theorem for monoidal categories by MacLane [15].
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1.5 Outline

The outline of this thesis is as follows. I will begin with a pedagogical motivation for the
appearance of higher homotopy Lie algebra symmetries from the perspective of gauge theory in
§2, and show that we recover the known structures of (weak) 2-gauge theory [99]. This chapter
is based on my paper [113]. I will then delve into the mathematical structures underlying Lie
2-bialgebras in §3, following the theory of (weak) Lie 2-bialgebras [95, 114, 115] known in the
literature. Several major applications of such higher semiclassical symmetries to physics will
be considered in §4, including 4d field theories and 2+1d integrable lattice systems. These
chapters are based on my papers [115, 116].

The main portion of the thesis is §5, in which I develop the theory of (weak) Hopf 2-
algebras as a Hopf algebra object in a homotopy refinement of the 2-category 2VectBC . I prove
several key duality and factorizability properties à la Majid [117, 118], and define in a universal
manner a higher notion of the quantum R-matrix. I will prove that they admit Lie 2-bialgebras
as semiclassical limits, and their representations are cohesively braided monoidal in the sense
of [81, 78]. This chapter is based on my paper [119].

Finally, as a proof of concept, I will apply the above framework to study 4d gapped topologi-
cal phases with Z2 symmetry. Specifically, I will use the representation theory of Hopf 2-algebras
to recover the Drinfel’d centre 2-categories that are used in the literature [76, 78, 120] to de-
scribe the 4d toric code and its spin version. This result unites the 2-categorical description of
such phases with the 2-group gauge theoretic description of [71, 46]. This chapter is based on
my paper [121].
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Chapter 2

A procedure of "gauging the gauge"

In this Chapter, we introduce a procedure developed in [113], dubbed "gauging the gauge."
This is a new pedagogical perspective on symmetries in which one can see the appearance of
higher homotopy structures in gauge theory. We shall see that this "gauging"/localization of
a global shift symmetry in 1-gauge theory gives rise precisely to a 2-gauge symmetry structure
captured by Lie 2-algebras. Though such higher gauge structures have previously been studied
[111, 96, 95, 99], this perspective provides a way to motivate the structure of Lie higher-algebras
from physics and geometry. Moreover, we describe how the structures of a weak Lie 2-algebra
[114, 98] manifests when the (1-)Bianchi identity is relaxed, and point out how the classifying
Postnikov class [122, 69] contributes to the 2-curvature.

2.1 Gauging the 0-gauge

Let us begin by reviewing in a pedestrian way the notion of gauging a global symmetry. This
is standard material, for which one can find many introductions (eg. [123]).

Let X denote a d-dimensional smooth manifold admitting an action by a Lie group G.
Consider a (smooth) function ϕ on X transforming under a representation π : G Ñ GLpV q of
the group G for some vector space V , that is ϕ P C8pXq b V lies in the algebra of V -valued
smooth functions on X.

Note that π is an homomorphism, and the field ϕ transforms as

ϕpxq Ñ πpgqϕpxq, g P G.

If g P G is constant over X, then the derivative dϕ transforms covariantly,

dϕ Ñ dpπpgqϕq “ πpgqdϕ,

and G encodes a (global) 0-gauge symmetry.
We can promote g to be a G-valued function of X itself, such that we still have the trans-

formation law
ϕpxq Ñ πpgpxqqϕpxq ” gpxq ¨ ϕpxq “ ϕ1.
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In this case we are dealing with a principal bundle with fiber G and base X. Indeed, the Leibniz
rule for the exterior derivative d dictates that1

dϕ Ñ gpd ` g´1dgq ¨ ϕ.

As such it is not dϕ that transforms covariantly, but the covariant derivative ∇ϕ ” pd`g´1dgqϕ.
Indeed, we can introduce the connection A “ g´1dg P Ω1pXq b g, to compensate for the lack
of covariance,

gAϕ “ dϕ1
´ gdϕ Ñ A “ g´1dg. (2.1.1)

Notice that this connection has a natural invariance symmetry under the left translation for all
h P G constant (ie. dh “ 0).

phgq
´1dphgq “ g´1dg. (2.1.2)

This is the well-known fact that this is a left-invariant form.
Given the covariant derivative ∇ “ d ` g´1dg, its associated curvature

cur∇ “ r∇,∇s “ dpg´1dgq ` pg´1dgq ^ pg´1dgq “ 0

vanishes, where we have used the identity dp1q “ dpg´1gq “ pdg´1qg ` g´1dg “ 0. This means
that the connection A “ g´1dg is flat.

The 0-form symmetry and 1-gauge transformations. The connection 1-form in an
arbitrary gauge, A P Ω1pXq b g and the associated curvature 2-form curA “ F “ dAA “

dA ` 1
2
rA ^ As transform as

A Ñ Ag “ g´1Ag ` g´1dg, F Ñ F g
“ g´1Fg. (2.1.3)

Expressing g “ expλ « 1 ` λ in terms of the infinitesimal gauge parameter λ P Ω0pXq b g, we
achieve the (infinitesimal) (1-)gauge transformation laws

A Ñ Aλ “ A ` rA, λs ` dλ ” A ` dAλ,

F Ñ F λ
“ F ` rF, λs.

They endow the bundle P Ñ X with a 0-form gauge symmetry parameterized by λ.

The Bianchi identity reads dAF “ dF`rA^F s “ 0, which holds in general for any principal
G-bundle with connection A. Since F transforms covariantly, dAF also transforms covariantly

dAF Ñ dAλF λ
“ dAF ` rdAF, λs.

It is possible (and consistent) to achieve a 1-curvature anomaly F “ σ ‰ 0, as long as σ P

1Note that for notational simplicity we will not indicate π anymore. The representation π of G induces a
representation dπ of its Lie algebra LieG “ g. We will also omit dπ in this case.
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Ω2pXq b g satisfies dAσ “ 0, and transforms covariantly σ Ñ g´1σg.

Global 1-form symmetry. What we have recalled here is that, by gauging the global sym-
metry understood as a "0-gauge" symmetry, we obtain an ordinary 1-gauge bundle P Ñ X

that is flat. However, one may notice that the curvature 2-form F has a hidden symmetry in
the presence of a non-trivial center Zpgq. This symmetry is given by

A Ñ A ` α, (2.1.4)

where α is a closed 1-form valued in the center Zpgq of the Lie algebra G, that is α P Ω1
0pXq b

Zpgq. As such the above gauge structure in fact manifests a "1-form symmetry" parameterized
by α, on top of the pre-existing 1-gauge 0-form symmetry parameterized by λ. This 1-form
symmetry is affecting the connection A but not its curvature.

2.2 Gauging the 1-gauge

In the 1-gauge case, we have highlighted two different types of invariance, one specified by a
left multiplication, in (2.1.2), the other one by a 1-form shift in (2.1.4). It is natural to ask
what happens when we gauge each symmetry, ie. we make them non-constant. For the former,
making h non-constant amounts to just another gauge transformation, so there is nothing new
to be gained. The latter is more interesting, as it leads to some new structures.

Relaxing the condition that α in (2.1.4) is constant and valued in the center Zpgq will be
called "gauging the 1-form gauge." So, we allow ourselves to take α “ a to be a generic 1-
form a P Ω1pXq b g that has non-trivial coordinate dependence on X, similar to the gauging
procedure for the global/0-gauge symmetry.

2.2.1 Shifting the connection

Typically, one may a priori take a gauge bundle P Ñ X with the non-trivial curvature F “

σ ‰ 0, then study the associated gauge theory. Alternatively, we may perform a particular
1-form shift such that F Ñ F 1 is transformed to a non-trivial value.

Indeed, under a generic 1-form shift.

A Ñ A1
“ A ` a,

we see that the curvature transforms accordingly as

F Ñ F 1
“ dA1A1

“ F ` dAa `
1

2
ra ^ as “ F ` dAa `

1

2
ra ^ as. (2.2.1)

In the gauge where A “ 0, we just have

F 1
“ da `

1

2
ra ^ as,
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which is the curvature of a considered as a G-connection. As such we may shift the curvature to
any value from zero, which serves as the central key fact for anomaly resolution discussed later.
Usually, the "gauging" story ends here, and we deal with an arbitrary curvature associated to
the connection in a particular 1-form gauge A “ a.

However, the above also shows that, by considering the 1-form shift as a higher-form gauge
symmetry, the (1-)curvature quantity F is a gauge datum, the notion of curvature is gauge
dependent. We have then a pair of gauge structures, one encoded in g which in a sense
encodes the arbitrariness of the frame we deal with, and one encoded in a, which encodes the
arbitrariness of the curvature.

One can realize that the transformation (2.2.1) can be seen as lack of covariance of the
curvature 2-form under the arbitrary shift, analogous to the one of the derivative of the field
ϕ under πpgq. To amend for the lack of covariance, we introduced a non-zero connection
A “ gdg´1 in (2.1.1).

Hence in a similar manner, to amend for the lack of covariance of the curvature under the
arbitrary shift, we introduce a 2-form field Σ P Ω2pXq b g such that, in the gauge where A “ 0

Σ ” pF 1
´ F q “ F 1

“ da `
1

2
ra ^ as. (2.2.2)

If we define the curvature of Σ, as the 2-curvature,

K “ dAΣ,

then we see that by the Bianchi identity

dAΣ “ dAF “ 0,

so that this 2-connection is flat. Indeed as we shall see later, this 2-connection Σ “ da` 1
2
ra^as

is a "pure 2-gauge", analogous to the flat pure 1-gauge A “ g´1dg obtained from gauging the
0-gauge.

The construction so far is restrictive, in a sense since we focus on a 2-connection with value
in the same Lie algebra g. It seems natural to make it valued in some other Lie algebra h,
together with a map t : h Ñ g (a homomorphism of Lie algebras), which plays in a sense the
same role as the representation π when we dealt with a regular 1-gauge. The most natural
notion to use is that of a Lie 2-algebra [98]. There are different notions of it. The first we are
interested in is the notion of strict Lie 2-algebra, which can be equivalently viewed as a Lie
algebra crossed-module [124]. The crossed-module formulation is most convenient to discuss
the notion of 2-gauge theory. We shall also see how the notion of a weak Lie 2-algebra can be
relevant in this setting.
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2.2.2 Lie 2-algebras and Lie 2-groups

We first define the notion of Lie algebra crossed-modules, and introduce the fields relevant to
building a 2-gauge theory. We will then seek to develop all the structures of a principal 2-bundle
(see eg. [107]) from field-theoretic considerations.

Definition 2.2.1. A Lie algebra crossed-module G is the data of a pair of Lie algebras
ph, r´,´sp´1qq, pG, r´,´s0q, a Lie algebra action ▷ : g Ñ Der h and a Lie algebra homomor-
phism t : h Ñ G (called the t-map), satisfying the equivariance and the Peiffer identity

tpX ▷ Y q “ rX, tY s0, rY, Y 1
s

p´1q
“ ptY q▷ Y 1, (2.2.3)

as well as the 2-Jacobi identities

rX, rX 1, X2
s0s0 ` rX 1, rX2, Xs0s0 ` rX2, rX,X 1

s0s0 “ 0,

X ▷ pX 1 ▷ Y q ´ X 1 ▷ pX ▷ Y q ´ rX,X 1
s0 ▷ Y “ 0, (2.2.4)

@X,X 1, X2 P g, and @Y, Y 1 P h.
The G-equivariance of t can be summarized by the following diagram

h g

Der h Inn g

t

▷

t

. (2.2.5)

We shall denote a Lie algebra crossed-module by G “ ph
t

ÝÑ g,▷, r´,´s0q [115]. It is well-known
that Lie algebra crossed-modules are equivalent to L2-algebras, strict 2-term L8-algebra [95, 93].

Definition 2.2.2. A L2-algebra is a graded space G – g´1‘g0 equipped with n-ary operations
µn P Hom2´n

pGn^,Gq given by

n “ 1 : µ1 : g´1 Ñ g0, n “ 2 : µ2 “ r´,´s : pg0 ‘ g´1q b pg0 ‘ g´1q Ñ pg0 ‘ g´1q

such that the following Koszul conditions are satisfied,

rX,X 1
s “ ´rX 1, Xs, rX, Y s “ ´rY,Xs, µ1rX, Y s “ rX,µ1Y s, rµ1Y, Y

1
s “ rY, µ1Y

1
s,

rrX,X 1
s, X2

s ` rrX2, Xs, X 1
s ` rrX 1, X2

s, Xs “ 0, rrX,X 1
s, Y s ` rrX, Y s, X 1

s ` rX, rX 1, Y ss “ 0,

where X,X 1, X2 P g0, Y, Y 1 P g´1.
It is convenient to write the graded bracket µ2 “ r´,´s : GibGj Ñ Gi`j with ´2 ď i`j ď 0,

in terms of the degree i, j mod 2 of G – g´1 ‘ g0, such that

µ2pY ` X, Y 1
` X 1

q “ rX,X 1
s `

`

rX, Y 1
s ` rY,X 1

s
˘

, X,X 1
P g0, Y, Y

1
P g´1. (2.2.6)

In the following, we shall define µ1 on the full space g0 ‘ g´1 by µ1pY ` Xq “ µ1Y .
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Definition 2.2.3. A Lie algebra crossed-module map ϕ “ pϕ, ϕ0q : G Ñ G1 is a L2-algebra
homorphismsm consisting of a tuple of Lie algebra maps ϕ´1 : h Ñ h1 and ϕ0 : G Ñ G1 such
that

ϕ0 ˝ t “ t1 ˝ ϕ´1

and
ϕ´1pX ▷ Y q “ pϕ0pXqq▷1

pϕ´1pY qq, @ X P G, Y P h.

Given a Lie algebra crossed-module G “ ph
t

ÝÑ g,▷, r´,´s0q, we simply identify g´1 “

h,G “ G and t “ µ1. Then, one reassembles the graded bracket µ2 from the bracket r´,´s0

on G as well as the Lie algebra action ▷ such that

µ2pY ` X, Y 1
` X 1

q “ rX,X 1
s0 `

`

X ▷ Y 1
´ X 1 ▷ Y

˘

, X,X 1
P G, Y, Y 1

P h.

It is then simple to check that the Lie algebra crossed-module conditions imply precisely the
Koszul conditions; in particular, the Peiffer identity implies the Koszul identity

rµ1Y, Y
1
s “ rtY, Y 1

s “ rY, Y 1
s

p´1q
“ ´rY 1, Y s

p´1q
“ ´rtY 1, Y s “ ´rµ1Y

1, Y s “ rY, µ1Y
1
s

as required. Conversely, given a strict L2-algebra, one may recover a Lie algebra crossed-module
with the above procedure, provided one defines the bracket r´,´sp´1q on h by

rY, Y 1
s

p´1q
” rµ1Y, Y

1
s, (2.2.7)

whence the Koszul conditions guarantee that this bracket is skew-symmetric and satisfies the
Jacobi identity.

Due to this result, we will use "strict Lie 2-algebras" in the following to refer to both a
Lie algebra crossed-module and a strict 2-term L8-algebra.

Lie theorem for Lie 2-groups. It is known that there is a one-to-one correspondence
between (strict) Lie 2-algebras and connected, simply connected (strict) 2-groups [109, 125, 96],
where the latter of which also admits a group crossed-module description.

Definition 2.2.4. A Lie 2-group G “ G´1
t

ÝÑ G0 is the data of a pair of Lie groups G´1, G0,
a smooth Lie group automorphism ▷ : G0 ˆ G´1 Ñ G´1 and a smooth group homomorphism
t : G´1 Ñ G0 such that the following conditions

tpx▷ yq “ xtpyqx´1, ptyq▷ y1
“ yy1y´1 (2.2.8)

are satisfied for each x P G0 and y, y1 P G´1.

It is easy to see that the t-map for the Lie algebra crossed-module is the tangent pushforward
(ie. the derivative) of the smooth map t in the corresponding Lie 2-group G.
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2.2.3 Connections and curvatures for Lie 2-algebras

Let us consider now the relevant connections: the 1-form connection A is valued in g, while the
2-form connection Σ is valued in h. As we will see in §2.2.3, t is a Lie algebra homomorphism
that allows us to connect fields valued in h to ones valued in g. This action ▷ can be viewed in
a sense as the gauge transformations induced by g on the fields/2-gauge parameters with value
in h. This will be discussed in §2.3.

The covariant derivative we will use is still dA, ie. it is defined in terms of the 1-connection
A. We will therefore use the action to define the covariant derivative of a form with value in
h. Taking an arbitrary h-valued n-form S P ΩnpXq b h, we introduce the wedge product ^▷

between a 1-form and and n-form,

^
▷ : pΩ1

pXq b gq b pΩn
pXq b hq

^
ÝÑ Ωn`1

pXq b pg b hq
▷
ÝÑ Ωn`1

pXq b h.

This allows to define the covariant derivative of S P ΩnpXq b h,

dAS ” dS ` A ^
▷ S.

Putting together the differential dA´ “ d´ `A^▷´ on ΩnpXq b h with the t-map, and using
the g-equivariance2 implies that the covariant derivative dA on h-valued forms is mapped under
t to the covariant differential dA on g-valued forms. This can be expressed compactly as

tdA “ dAt. (2.2.9)

Given the general 2-Lie algebra framework, we explore the different notions of curvature
that appear. First we have the notion of fake flatness which relates the 2-connection to the
1-curvature up to the t-map. We then express the properties of the 2-curvature and highlight it
also satisfies a type of Bianchi identity. Finally, we discuss how the one kind of violation of the
1-Bianchi identity can be recast in terms of a 2-gauge theory based on a weak 2-Lie algebra.

Fake-curvature

When using the crossed-module formalism, the relation between the 2-connection and the
curvature we introduced in (2.2.2) can be rewritten as

tpΣq “ F 1
“ da ` a ^ a,

with Σ “ dL` 1
2
rL^Ls, provided that tpLq “ a. In fact (2.2.2) can be readily obtained if h “ g

and the t map is the identity. Hence the construction in (2.2.2) can be seen as an example of
a 2-gauge theory based on the identity crossed-module.

2We have tpA^▷ Sq “ rA^ tpSqs.
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The relation (2.2.2) can also be interpreted as a generalized notion of curvature

F “ F 1
´ tpΣq,

which is known as fake-curvature. The condition in which it is constrained to be zero,

F “ F 1
´ tpΣq “ 0, (2.2.10)

is known as the fake-flatness condition. A naïve notion of "2-parallel transport" serves as a
geometric motivation for imposing (2.2.10) [106], but we need not assume it at the infinitesimal
level based on a Lie algebra crossed-module/strict Lie 2-algebra. We will see nevertheless that
such condition can also appear when we consider 1- or 2-gauge transformations in §2.3.

Remark 2.2.1. As mentioned previously, we note that (2.2.10) can be interpreted as sourcing
the curvature with tpΣq, allowing us to break away from a flat 1-connection by sourcing it with a
higher-gauge field. Further, it is possible to define a notion of higher-parallel transport without
fake-flatness F ‰ 0, which would move us into the realm of adjusted 2-parallel transport [99].
We shall not consider this here.

2-curvature and 2-Bianchi identity

The 2-curvature is defined as the tensor K “ dAΣ P Ω3pXq bh. When the 2-connection is pure
2-gauge Σ “ dL ` 1

2
rL ^ Ls, we have as expected K “ 0,

dAΣ “ d2L `
1

2
drL ^ Ls ` tpLq▷ pdL `

1

2
rL ^ Lsq “ 0 (2.2.11)

where for simplicity we picked the 1-gauge where A “ tpLq and we used that d2 “ 0, the Peiffer
identity and the Jacobi identity for h.

One may insert a 2-curvature anomaly κ ‰ 0, such that K “ κ, in which the principal
2-bundle under consideration is no longer trivial. We will study this in §2.3.2. As we are going
to show, K (and hence κ) must be valued in ker t on-shell of the fake-flatness condition F “ 0.
Indeed, for any 2-connection, as a consequence of the fake-flatness condition and the 1-Bianchi
identity, the 2-curvature must be valued in ker t Ă h.

tpKq “ tpdAΣq “ dAtpΣq “ dAF “ 0. (2.2.12)

As a consequence of the Bianchi identity, we have that dAK P ker t.

On the other hand, by the graded Leibniz rule, the 2-curvature K satisfies

dAK “ dApdAΣq “ F ^
▷ Σ “ tpΣq ^

▷ Σ “ rΣ ^ Σs|ker t,

where we used the Peiffer condition. Note that since dAK is valued in ker t, we should project
the commutator rΣ ^ Σs to ker t. However, since Σ is a 2-form and r´,´s “ pt¨q ▷ ´ is
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skew-symmetric, this term vanishes and hence we achieve the 2-Bianchi identity

dAK “ 0. (2.2.13)

1-Bianchi anomaly and weak 2-Lie algebras

Now suppose we relax the 1-Bianchi identity, such that it no longer holds. Then K needs not
be valued in ker t.

tK “ dAF “ dF ` rA,F s “ d2A `
1

2
drA ^ As ` rA ^ dAs `

1

2
rA ^ rA ^ Ass

“ d2A `
1

2
rA ^ rA ^ Ass ‰ 0,

where we used that drA ^ As “ rdA ^ As ´ rA ^ dAs “ ´2rA ^ dAs. There are two different
ways to do this, one is to let d2A ‰ 0 (globally), in which case we have a monopole. The other
way is if the second term is non-vanishing, which occurs when we let go of the Jacobi identity
on g. In this case, g is strictly speaking no longer a Lie algebra; however, we shall see that the
following structure we shall derive can also be applied to the case where G is a Lie algebra, but
t “ 0 must be identically zero.

Remark 2.2.2. The two ways in which the 1-Bianchi identity is violated are distinct. The
violation of the Jacobi identity rA ^ rA ^ Ass is of an algebraic nature, and hence introduces
non-trivial modifications to our Lie 2-algebra structure; we shall focus on this case in the
following. On the other hand, the monopole case d2A ‰ 0 is of differential geometric nature,
which indicates a non-trivial topology of the 1-gauge theory.

By relinquishing the Jacobi identity, we may write this term as a contribution to K by lifting
it along t up to h. In other words, we introduce a skew-trilinear map — called appropriately
the Jacobiator — satisfying

µ : g^3
Ñ h,

1

3!
tµpA,A,Aq “ rA ^ rA ^ Ass, (2.2.14)

such that the modified 2-flatness reads

K “ dAΣ ´
1

3!
µpA,A,Aq “ 0. (2.2.15)

Since the term µpA,A,Aq arises due to the failure of the 1-Bianchi identity, we call it the
1-Bianchi anomaly. This structure is captured algebraically by the following.

Definition 2.2.5. A weak Lie 2-algebra [96], or equivalently a semistrict [126] Lie 2-algebra,
is a graded space G – g´1 ‘ g0 equipped with n-ary operations µn P Hom2´n

pGn^,Gq where
µ1, µ2 are given as in Definition 2.2.2, but with a non-trivial homotopy map µ “ µ3 : g

^3
0 Ñ

g´1. The Koszul conditions now read

rX,X 1
s “ ´rX 1, Xs, rX, Y s “ ´rY,Xs, µ1rX, Y s “ rX,µ1Y s, rµ1Y, Y

1
s “ rY, µ1Y

1
s,

(2.2.16)
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rX, rX 1, X2
ss ` rX 1, rX2, Xss ` rX2, rX,X 1

ss “ tµpX,X 1, X2
q, (2.2.17)

X ▷ pX 1 ▷ Y q ´ X 1 ▷ pX ▷ Y q ´ rX,X 1
s▷ Y “ µpX,X 1, tpY qq (2.2.18)

for each X,X 1, X2 P g “ g0 and Y P h “ g´1. Moreover, µ must satisfy the 3-cocycle condition

x▷ µpx1, x2, x3q “ µprx, x1s, x2, x3q ` µpx1, rx, x2s, x3q ` µpx1, x2, rx, x3sq. (2.2.19)

Indeed, (2.2.14) is equivalent to the second line of these conditions. Note µ may only appear
for non-Abelian g, and we note that the 1-gauge transformations need to be carefully analyzed
in this case as µpA,A,Aq will not be a tensor.

Given the above structure, we can compute using the 3-cocycle condition (2.2.19) that

dAµpA,A,Aq “ dpµpA,A,Aqq ` A ^
▷ µpA,A,Aq g-equivariance and Leibniz rule

“
`

3µpdA,A,Aqq `
3

2
µprA,As, A,Aq

˘

Trilinearity of µ

“ 3µpF,A,Aq,

where œ denotes a summation over cyclic permutations. The factor of 3
2

appears in the second
line due to the fact that µprA,As, A,Aq is symmetric under an exchange of the first argument
rA,As and the last two arguments A,A. This gives rise to the modified 2-Bianchi identity

dAK “ F ^
▷ Σ ´

1

2
µpF,A,Aq “ 0,

which has also appeared in the context of the gauge theory based on a weak Lie 2-algebra [99].

Remark 2.2.3. Notice that if the weak Lie 2-algebra is skeletal, namely t “ 0, there is no
violation to the Jacobi identity in the component g. An example is the skeletal model string
Lie 2-algebra stringkpgq of a simple Lie algebra g [99, 122], where k P Z is called the level.
The Lie 2-algebra structure is given by t “ 0,▷ “ 0, and the Jacobiator is µ “ kω, where ω is
the fundamental 3-cocycle

ω “ x´, r´,´sy P Z3
pg,Rq.

This is one of the most commonly-seen weak Lie 2-algebras in the physics literature. The
bundle gerbe associated to the string Lie 2-algebra describes the string structure appearing in
string theory [43, 100].

2.3 Gauge transformations

In this section, we review the different transformations we can perform and the inherited com-
patibility conditions.
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2.3.1 1- and 2-gauge transformations

1-gauge transformations. In order to preserve the fake flatness condition, we derive the
transformations of Σ and then K, from the transformation of the curvature 2-form (2.1.3).

F Ñ F λ
“ F ` rF, λs ñ tpΣq Ñ tpΣq ` rtpΣq, λs “ tpΣq ´ tpλ▷ Σq

Σ Ñ Σ ´ λ▷ Σ

K “ dAΣ Ñ K ´ λ▷K, (2.3.1)

where λ P Ω0pXq b g.

Now suppose the underlying Lie 2-algebra is weak, with µ ‰ 0. We shall see that, provided
Σ acquires an additional term [99]

Σ Ñ Σλ
“ Σ ´ λ▷ Σ ´

1

2
µpλ,A,Aq (2.3.2)

under 1-gauge transformation, then we preserve the covariance of the 2-curvature under the
1-gauge transformations,

K Ñ Kλ
“ K ´ λ▷K ` µpλ,A,Fq.

Indeed, working with the modified 2-curvature (2.2.15), we have from the definition (2.2.18),

´A^
▷

pλ▷Σq`rA, λs^
▷Σ “ ´µpA, λ, tΣq´λ▷pA^

▷Σq “ µpλ,A, tΣq´λ▷pA^
▷Σq. (2.3.3)

On the other hand, we have by the g-equivariance of µ, (2.2.19), that

µpdAλ,A,Aq “ µpdλ,A,Aq ´
1

2
pµprλ,As, A,Aq ´ µprA, λs, A,Aqq

“ dpµpλ,A,Aqq ` 2µpλ,A, dAq `
1

2
p
2

3
λ▷ µpA,A,Aq ` 2µpλ,A, rA ^ Asq

´ A ^
▷ µpλ,A,Aqq

“ 2µpλ,A, F q `
1

3
λ▷ µpA,A,Aq ´ dAµpλ,A,Aq.

There are three such terms, hence we have

1

3!
µpA,A,Aq Ñ

1

3!
µpA,A,Aq ` µpλ,A, F q `

1

3!
λ▷ µpA,A,Aq ´

1

2
dAµpλ,A,Aq ` opλ2q

modulo terms of higher order in λ. These terms precisely cancel the dAµpλ,A,Aq term in the
1-gauge transformation of K, as desired.

2-gauge transformations. The shift of the 1-connection parameterized by L such that a “

tpLq is interpreted as the 2-gauge transformation. Indeed, the 2-connection Σ was introduced
such that the 1-form shift A Ñ A1 “ A`tpLq in the 1-connection was interpreted as a (2-)gauge
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symmetry.
Given the 2-form connection Σ undergoes a corresponding 2-gauge transformation,

Σ Ñ Σ1
“ Σ ` dAL `

1

2
rL ^ Ls, (2.3.4)

parameterized by a 1-form L P Ω1pXq b h, we see that the fake-curvature F “ F ´ tΣ is kept
invariant, as desired. The 2-curvature is covariant under this 1-form shift transformation since,
with A1 “ A ` tpLq,

K Ñ K 1
“ dA1Σ1

“ dAΣ ` tpLq ^
▷ Σ ` dA`tpLqpdAL `

1

2
rL ^ Lsq

“ K ` rL ^ Σs ` F ^
▷ L `

1

2
dArL ^ Ls ` tpLq ^

▷ dAL `
1

2
tpLq ^

▷
rL ^ Ls

“ K ´ tΣ ^
▷ L ` F ^

▷ L `
1

2
dArL ^ Ls ` rL ^ dALs `

1

4
rL ^ rL ^ Lss

“ K ` F ^
▷ L „ K (2.3.5)

where we used extensively the Peiffer conditions, and the Jacobi identity for the cubic term in
L. Note K is invariant on-shell of the fake-flatness condition F “ 0.

Now let us consider how the modified 2-curvature K (2.2.15) transforms in the weak case
µ ‰ 0. We seek to pick out terms in the computation of (2.3.5) that implicitly uses the 2-Jacobi
identities. All such terms occur in the quantity

dA`tpLqpdAL `
1

2
rL ^ Lsq,

which can be organized into three parts:

opLq : dAdAL, opL2
q : dtLdAL `

1

2
dArL ^ Ls, opL3

q :
1

2
tL ^

▷
rL ^ Ls.

Consider first the term linear in L, which gives

dAdAL “ pdAq ^
▷ L ` A ^

▷
pA ^

▷ Lq “ F ^
▷ L `

1

2
µpA,A, tLq

by using (2.2.18). The additional µ-term here is compensated precisely by the linear opLq-terms
in the 2-gauge transformation of µpA,A,Aq:

1

3!
µpA,A,Aq Ñ

1

3!
µpA,A,Aq `

1

2
µpA,A, tLq ` opL2

q.

Next we look at the terms quadratic in L. This gives

dtLdAL `
1

2
dArL ^ Ls “

1

2
A ^

▷
rL ^ Ls ` rL ^ pA ^

▷ Lqs “ µpA, tL, tLq
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via (2.2.18), which is compensated precisely by the opL2q-terms in the transformation

1

3!
µpA,A,Aq Ñ

1

3!
µpA,A,Aq `

1

2
µpA,A, tLq `

3!

3!
µpA, tL, tLq ` opL3

q.

Finally, the cubic term is

tL ^
▷

rL ^ Ls “ tL ^
▷

rL ^ Ls “ rL ^ rL ^ Lss “
1

3!
µptL, tL, tLq,

which is compensated by the opL3q-term in the transformation

1

3!
µpA,A,Aq Ñ

1

3!
µpA,A,Aq `

1

2
µpA,A, tLq ` µpA, tL, tLq `

1

3!
µptL, tL, tLq.

As such, we see that the modified 2-curvature (2.2.15) follows also the 2-gauge transform law
(2.3.5).

Compatibility between 1- and 2-gauge transformations. The shift has to be compat-
ible with the 1-gauge transformation, so that the new curvature transforms covariantly,

A Ñ A1
“ A ` a Ñ A1

` dA1λ ñ a “ tpLq Ñ a ` ra, λs “ tpLq ` rtpLq, λs (2.3.6)

L Ñ L ´ λ▷ L (2.3.7)

where we used the Peiffer conditions, as always. It is interesting to note that 1-gauge pλ, 0q and
2-gauge p0, Lq transformations do not commute. Through straightforward computations in the
strict case µ “ 0 [69, 110, 127], we see that

rpλ, 0q, p0, Lqs “ p0, λ▷ Lq, (2.3.8)

so 2-gauge transformations in general form a semidirect product [72, 110]

Gau2 “ pΩ1
pXq b hq ¸ pΩ0

pXq b gq

defined by (2.3.8).
It is possible to perform the same kinematical analysis for the weak case, where µ ‰ 0.

However, here the commutator between 2-gauge transformations read [99]

rpλ, Lq, pλ1, L1
qs “ prλ, λ1

s, λ▷ L1
´ λ1 ▷ Lq ` p0, µpA, λ, λ1

qq ` µpF , λ, λ1
q. (2.3.9)

This is a major issue, because the additional term µpF , λ, λ1q is not a gauge transformation
— the 2-gauge algebra Gau2 fails to close unless the fake curvature condition F “ 0 is always
satisfied! This is one of the motivations for the theory of adjusted parallel transport in [99]. Of
course, when µ “ 0, we have a set of compatible gauge transformations, even if possibly F ‰ 0.

Generally, we also have a "higher gauge transformation" on the 2-gauge parameter L Ñ
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L ` dAℓ, where ℓ P Ω0pXq b h. If we take the two 2-gauge parameters L,L1 “ L ` dAℓ, and
define

Σ1
“ Σ ` dAL `

1

2
rL ^ Ls, Σ2

“ Σ ` dAL
1
`

1

2
rL1

^ L1
s

A1
“ A ` tL, A2

“ A ` tL1
“ A ` tpL ` dAℓq,

then we have

Σ2
´ Σ1

“ F ^
▷ ℓ ` rL, dAℓs `

1

2
rdAℓ, dAℓs,

F 2
´ F 1

“ rF, tpℓqs ` rtL, tpdAℓqs `
1

2
rtpdAℓq, tpdAℓqs.

By the Peiffer conditions, we see that the two 2-gauge transformations L,L1 “ L ` dAℓ act
identically on the fake-curvature F “ F ´ tΣ [69, 128]. The computation (2.3.5) then implies
that the 2-curvature K is invariant on-shell of fake-flatness F “ 0 under both L,L1. Because of
this, the study of such higher gauge transformation is not necessary in the context of higher-BF
theories [110].

2.3.2 2-curvature anomaly and the first descendant

Recall from (2.3.5) that the 2-curvature K is covariant under a 2-gauge transformation. To
introduce a 2-curvature anomaly κ into the theory, we require the anomaly equation of motion
(EOM) K “ κ to transform covariantly, identically to how K transforms. On-shell of fake-
flatness F “ 0, then, κ “ κpA,Σq must be 2-gauge invariant. Now since under a 2-gauge
transformation, Σ shifts by an arbitrary element in h and hence κ must be a constant as a
function of h. On the other hand, shift invariance κpAq “ κpA ` tLq implies that it can still
have A-dependence through coker t “ g{ im t.

Here, we will study this particularly nice form of the 2-curvature anomaly κpAq. We shall
see that the covariance of the 2-curvature anomaly EOM K “ κpAq will require a twist in the
gauge transformations.

Twisting gauge transformations. Given the 1-form connection A transforms in the usual
manner, we shall demonstrate here that the 1-gauge transformation of the 2-form connection
Σ must be twisted by an additional term

Σ Ñ Σλ
“ Σ ´ λ▷ Σ ` ζApλq. (2.3.10)

This additional contribution is required such that the 2-curvature anomaly equation K “ κ

transforms appropriately.
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Proposition 2.3.1.

1. The quantity K̄ “ K ´ κpAq transforms covariantly under 2-gauge transformations

K̄ Ñ K̄L
“ K̄ ` F ^

▷ L

iff the 2-form ζ is ker t-valued and only a function of coker t.

2. the quantity K̄ transforms covariantly under a 1-gauge transformation

K̄ Ñ K̄λ
“ K̄ ´ λ▷ K̄

iff ζA satisfies the following descent equation

dAλζApλq “ κpAλq ´ pκpAq ´ λ▷ κpAqq. (2.3.11)

We call solutions ζA to (2.3.11) the first descendants of the 2-curvature anomaly κpAq (cf.
[69]).

Proof. We prove the second statement first. Indeed, we first have the following computation

Kλ
“ dAλΣλ

“ dAλpΣ ´ λ▷ Σq ` dAλζApλq

“ dAΣ ´ λ▷ pdAΣq ` dAλζApλq (2.3.12)

using (2.3.1). On the other hand, the 2-curvature anomaly transforms as κpAq Ñ κpAλq, hence
from (2.3.12) we have

K ´ κpAq Ñ Kλ
´ κpAλq

“ dAΣ ´ λ▷ pdAΣq ` dAλζApλq ´ κpAλq

“ pK ´ κpAqq ´ λ▷ pK ´ κpAqq

` dAλζApλq ´ κpAλq ` κpAq ´ λ▷ κpAq.

The last line is precisely the descent equation (2.3.11). Note moreover that ζApλq is valued in
ker t iff it does not conflict with the covariance of the fake-curvature,

tpΣq Ñ tpΣλ
q “ tpΣq ´ tpλ▷ Σq ` tpζApλqq

looomooon

“0

.

Now we consider a 2-gauge shift symmetry. Note the covariance of the transformation
K̄ Ñ K̄L (2.3.5) implies that K̄L ´ K̄ is in fact independent of κ, and hence both κ and ζ

cannot transform under L. By hypothesis, κpAq is shift invariant, hence we acquire the following
terms from applying a 2-gauge transformation to the descent equation (2.3.11):

tL ^
▷ ζApλq “ ´tζApλq ^

▷ L “ 0,
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rtL ^ λs ^
▷ ζApλq “ ´tpλ▷ Lq ^

▷ ζApλq “ ptζApλqq ^
▷

pλ▷ Lq “ 0,

ζALpλq “ ζApλq ` ζtLpλq. (2.3.13)

where we have used the Peiffer identity and the fact that ζApλq is ker t-valued. Note the last
term remains ζA iff ζ depends on A only through coker t, which would imply that (2.3.11) is
invariant under 2-gauge transformations. This ensures that first descendants do not transform
under L, as desired.

If κ “ 0, then the first descendant ζpA, λq can be chosen to vanish, in which case we reproduce
the covariance of K (2.3.1). Conversely, ζApλq necessarily occurs in the presence of a non-trivial
κpAq.

The descent equation (2.3.11) guarantees the 1-gauge covariance of the equation of motion
K “ κ, and provides a differential equation which allows to express κ in terms of ζ. As such,
one may conversely view ζ as a particular twist in the 1-gauge transformation of Σ, which
"inserts" the 2-curvature anomaly κ.

For readers familiar with the theory of Lie 2-algebras, this sort of 2-curvature anomaly
κpAq is in fact precisely given by the cohomological cllassification of G. This class rκs P

H3pcoker t, ker tq is called the Postnikov class of G. We shall explain this in more detail in
the Appendix.

2.4 2BF theory

The simplest action to consider is an action constructed from Lagrange multipliers enforcing
the fake-flatness and 2-flatness constraints as equations of motion (EOMs). As such, this action
is topological. By analogy to the BF case, we would call this action the 2BF action [110, 127].
We shall see how the 2BF theory gives us a glimpse into the general symmetry structure of Lie
2-bialgebras and Drinfel’d 2-doubles, which we shall describe in detail in Chapter 3.

2.4.1 Action and EOMs

Let X be a manifold of dimension d and let us fix a Lie algebra crossed-module G “ h
t

ÝÑ g.
Let G˚r1s denote the dual space of linear functionals on G, and similarly let g˚, h˚ denote
respectively the dual space of g and h. We denote by x´,´y the duality pairing for them.

We begin by introducing Lagrange multipliers B P Ωd´2 b g˚, C P Ωd´3 b h˚ which imple-
ments the aforementioned flatness conditions. The 2-BF action in the absence of 2-curvature
anomalies is

S2BFrA,Σs “

ż

X

xB ^ FpA,Σqy ` xC ^ GpA,Σqy, (2.4.1)

where FpA,Σq “ F ´ tpΣq and GpA,Σq “ K “ dAΣ. For d ă 3, the 2-BF theory reduces to a
BF theory, since the dual field C does not exist.
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The first half of the EOMs are

δB ñ F “ F ´ tpΣq “ 0, δC ñ G “ dAΣ “ 0,

which implement precisely the fake curvature and 2-flatness conditions, respectively. On the
other hand, we also have the option to vary A and Σ. These must be done more carefully: we
first introduce a map ∆ : h ^ h˚ Ñ g˚ dual to the crossed-module action:

xC ^ pA ^
▷ Σqy “ ´x∆pC ^ Σq ^ Ay.

Second, we define the map t˚ : g˚ Ñ h˚ dual (with respect to the pairings x´,´y) to the
crossed-module map t : h Ñ g, and write

xB ^ tpΣqy “ xt˚pBq ^ Σy.

We also introduce the dual of the action and adjoint representation,

xy, x▷ y1
y “ ´xx▷˚ y, y1

y, xx1, rx, x2
sy “ ´xrx, x1

s
˚, x2

y,

for all y P h, y1 P h˚, x P g, x1 P g˚.
These yield

δA ñ dB ` rA ^ Bs
˚

´ ∆pC ^ Σq “ 0, δΣ ñ t˚B ` dC ` A ^
▷˚

C “ 0.

If we define the quantities

F̃ ” dAC “ dC ` A ^
▷˚

C, K̃ ” dAB “ dB ` rA ^ Bs
˚,

we see that these sets of EOMs read

F̃ “ t˚pBq, K̃ “ ∆pC ^ Σq, (2.4.2)

the first of which looks like a fake-flatness condition for the dual fields. This suggests that B,C
should be treated as a 2-connection as well, valued in a Lie algebra crossed-module of the form
t˚ : g˚ Ñ h˚.

Remark 2.4.1. Indeed, dualizing the t : h Ñ g gives t˚ : g˚ Ñ h˚, hence the dual Lie 2-algebra
G˚r1s comes with a shift r1s in the grading of the underlying vector spaces. This is a small
subtlety in the mathematical notation that we shall keep in order to be consistent with the
mathematical literature [95, 96, 114].

In the case of the specific action (2.4.1), the dual Lie 2-algebra is Abelian, equivalent to a
2-vector space [109]. More general cases can be studied by including certain coupling terms in
the 2BF action; see [115].
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2.4.2 Symmetries of the action

It was shown in [110] (see also [127]) that the 2BF action (2.4.1) is preserved under the opera-
tions

λ :

$

&

%

F Ñ Fλ “ F ` rF , λs

G Ñ Gλ “ G ` λ▷ G
, L :

$

&

%

F Ñ FL “ F

G Ñ GL “ G ` F ^▷ L
, (2.4.3)

λ :

$

&

%

B Ñ Bλ “ B ` rλ,Bs˚

C Ñ Cλ “ C ` λ▷˚ C
, L :

$

&

%

B Ñ BL “ B ` ∆pC ^ Lq

C Ñ CL “ C
, (2.4.4)

where we recognize the transformations of F and G we obtained in §2.3. Notice GL is invariant
only on-shell of the fake curvature condition F “ 0, which we had assumed in (2.3.5).

Algebraically, this implies that the 2-gauge algebra Gau2 “ pΩ1pXq b hq ¸ pΩ0pXq b gq acts
naturally on the dual fields B,C. In other words, the original Lie 2-algebra G has a natural
action on the dual Lie 2-algebra G˚r1s induced by the data ▷˚,∆ emergent form the dual
EOMs (2.4.2). These actions define a strict coadjoint representation [95] of the Lie 2-algebra
G on its dual G˚r1s.

A bit more structure can be inferred here, in fact. Generally, suppose the dual Lie 2-
algebra G˚r1s is non-Abelian and defines its own 2-gauge sector, then the corresponding gauge
parameters pλ̃, L̃q P G˚r1s also acts on the dual fields pC,Bq as

λ̃ :

$

&

%

C Ñ C λ̃ “ C ` dC λ̃

B Ñ Bλ̃ “ B ` λ̃▷˚ B
, L̃ :

$

&

%

C Ñ CL̃ “ C ` tT L̃

B Ñ BL̃ “ B ` dCL̃ ` 1
2
rL̃ ^ L̃s˚

.

If there is a non-trivial back-action of G˚r1s on G, then pA,Σq would transform under pλ̃, L̃q

as well, analogous to how pC,Bq transforms under pλ, Lq in (2.4.4). If certain compatibility
conditions are satisfied between the mutual action of G,G˚r1s between each other, then we
obtain the structure of a 2-Manin triple

D “ G ad˚ ’ad˚ G˚
r1s,

which serves as a model for a "Drinfel’d 2-double" [95, 115] — a categorified, higher homotopy
notion of the classical Drinfel’d double d “ g ’ g˚ for a Lie algebra g [9]. For a more detailed
study and analysis, see Chapter 3.

In this Chapter, we have introduced a procedure of "gauging"/localizing the higher-form
symmetry present in gauge theories. We showed that all the known 1- and 2-gauge transforma-
tions in a 2-gauge theory can be obtained from this perspective by imposing the condition that
certain physical quantities transform appropriately and covariantly. We also demonstrated how
certain well-known properties — such as flatness of the curvature and the Bianchi identity —
can be relaxed up to homotopy by introducing the concept of weak Lie 2-algebras.

At the end, we described the simplest topological 2-gauge theory exhibiting Lie 2-group
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symmetry, which is the 2BF theory (2.4.1). This example provided us a firsthand glance into
the fact that physical higher-gauge field theories typically exhibit a more intricate symmetry
structure, namely that of Lie 2-bialgebras and Drinfel’d 2-doubles, than the usual Lie 2-
algebra gauge symmetry. A deep dive in the mathematical formulation of such symmetry
structures will be the main point of the following Chapter.
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Chapter 3

Structure of Lie 2-bialgebras

We now dive into the full mathematical description of the Lie 2-bialgebra symmetry emergent
in the previous Chapter. We shall describe the known notion of Lie 2-algebra 2-cocycles, the
2-graded classical r-matrix, as well as the Drinfel’d 2-double following recent mathematical
literature [95, 114]. By leveraging these objects, I had developed a notion of graded Poisson
structure suitable for differential grade (dg) manifolds, for which Poisson-Lie 2-groups [96] are
examples. This perspective makes manifest the correspondence between (quasi) Poisson-Lie
2-groups and (quasi) Lie 2-bialgebras. This is based in part on my works [115, 116].

The classical r-matrix are known to play key roles in many areas of physics and mathematics,
such as deformation quantization [9], 2+1d classical integrable systems [10] and 3d topological
quantum field theories (TQFTs) [129, 130, 131]. As such, a homotopy categorification of usual
classical r-matrix — namely the notion of a classical 2-r-matrix — are of particular interest, as
they are expected to play key roles in 4d TQFTs. Motivated by this, I will give a characterization
of the quadratic 2-Casimirs following my work [115], which controls the form of the classical
2-Yang-Bater equations [95].

3.1 Lie 2-bialgebras

Recall that Lie 2-algebras G – g´1 ‘ g0 are synonymous with Lie algebra crossed-modules
t : h Ñ G in which G “ g0 has degree-0 and h “ g´1 has degree-(-1). Similarly, Lie 2-groups
G “ G´1¸G0 Ñ G0 are synonymous with Lie group crossed-modules t : H Ñ G with H “ G´1

and G “ G0.
Let us begin by introducing the following linear maps

δ´1 : g´1 Ñ g2b
´1, δ0 : g0 Ñ pg0 b g´1q ‘ pg´1 b g0q.

on the Lie 2-algebra G.

Definition 3.1.1. The tuple δ “ δ´1 ` δ0 is called Lie 2-algebra 2-cocycle — denoted
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δ P Z1pG,G ^ Gq — iff the following conditions are satisfied [95, 125]

δ0t “ pt b 1 ` 1 b tqδ´1, (ID1 in Theorem 2.15 of [96]),

0 “ pt b 1 ´ 1 b tqδ0, (ID2 in Theorem 2.15 of [96]),

δ0prX,X 1
sq “ pX ▷b1 ` 1 b adXqδ0pX

1
q

´ pX 1 ▷b1 ` 1 b adX 1qδ0pXq, (2 ad-invariance)

δ´1pX ▷ Y q “ pX ▷b1 ` 1 b X▷qδ´1pY q

` δ0pXqp▷Y b 1 ` 1 b▷Y q, (ID3 in Theorem 2.15 of [96]), (3.1.1)

where X,X 1 P G “ g0 and Y P h “ g´1.

We can now define the notion of a Lie 2-bialgebra [95, 96, 115].

Definition 3.1.2. The tuple pG; δq is a (strict) Lie 2-bialgebra iff the Lie 2-algebra 2-cocycle
δ satisfies furthermore the following 2-cobracket conditions

0 “
ÿ

cycl.

ppδ´1 ` δ0q b 1q ˝ δ0 “ pδ´1 b 1q ˝ δ0 ´ p1 b δ0q ˝ δ0

´ pτ b 1q ˝ p1 b δ0q ˝ δ0

0 “
ÿ

cycl.

pδ´1 b 1q ˝ δ´1 “ pδ´1 b 1q ˝ δ´1 ´ p1 b δ´1q ˝ δ´1

´ pτ b 1q ˝ p1 b δ´1q ˝ δ´1, (3.1.2)

where τ : G b G Ñ G b G swaps the tensor factors.

These conditions are equivalent to δ defining a Lie 2-algebra structure r´,´s˚ given by

xrf, f 1
s˚, Y y “ xf b f 1, δ´1pY qy, xf ▷˚ g,Xy “ xf b g, δ0pXqy

for each X P g0, Y P g´1 and each element f, f 1 P g˚
´1, g P g˚

0 in the dual graded space G˚r1s,
which we recall is equipped with a dual differential tT : g˚

0 Ñ g´1. Indeed, the dual analogue
of the conditions (2.2.3) read

tT pf ▷˚ gq “ rf, tTgs˚, tTg ▷˚ g1
“ rg, g1

s˚, @ f P g˚
´1, g, g

1
P g˚

0 ,

which when written in terms of the 2-cochains pδ´1, δ0q are equivalent1 to the first two lines of
(3.1.1). The 2-Jacobi identities then follow from conditions (3.1.2).

Note the shift in the grading r1s upon dualizing the graded Lie algebra. The above definition
is a direct generalization of the notion of a Lie 1-bialgebra pG; δq [9] to the differential graded
context. The following will describe results that also have lower-dimensional analogues.

1To see this, we first note ptT qT “ t and evaluate, for instance, δ0t to yield pf ^ gqpδ0tY q “ pf ▷˚ gqptpY qq “

ptT pf ▷˚ gqqpY q, while pf ^ gqpptb 1 ` 1 b tqδ´1pY qq “ pf ^ tT gqpδ´1Y q “ rf, tT gs˚pY q.
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Weak Lie 2-bialgebras. Now recall the notion of a weak Lie 2-algebra as given in Definition
2.2.5, in which the Jacobi identities are relaxed up to homotopy given by a skew-trilinear
homotopy map µ : g3^

0 Ñ g´1. The same idea can be applied to give the notion of a weak Lie
2-bialgebra [114], by relaxing the 2-cobracket conditions given in (3.1.2). To explain this, we
first define the notation

Da “

n
ÿ

i“1

p´1q
i
p1 b ¨ ¨ ¨ b a

loomoon

i-th position

b ¨ ¨ ¨ b 1q

for the extension of a linear operator a : V Ñ V to tensor products V nb.

Definition 3.1.3. A weak Lie 2-bialgebra is a tuple pG; δ, ηq consisting of a weak Lie 2-
algebra G, a Lie 2-algebra 2-cocycle δ and a cohomotopy map η : g0 Ñ g3^

´1 satisfying the
weak 2-cobracket conditions

η ˝ t “
ÿ

cycl.

pδ´1 b 1q ˝ δ´1, (3.1.3)

Dt ˝ η “
ÿ

cycl.

ppδ´1 ` δ0q b 1q ˝ δ0 (3.1.4)

as well as the 3-cycle condition

Dδ´1 ˝ η “ p1 b ηq ˝ δ0. (3.1.5)

In accordance with [96], we call pG; δ, ηq in which G is strict µ “ 0 a quasi Lie 2-bialgebra.

The strict notion of Lie 2-bialgebras is clearly obtained by taking η, µ “ 0.
As the name suggests, the cohomotopy map η dualizes to the homotopy map µ˚ : pg˚

´1q
3^ Ñ

g˚
0 of the dual Lie 2-algebra G˚r1s,

xY1 b Y2 b Y3, ηpXqy “ xµ˚
pY1, Y2, Y3q, Xy.

Indeed, the weak 2-cobracket conditions 3.1.4 imply (2.2.18), and the 3-cycle condition (3.1.5)
implies (2.2.19), hence G˚r1s forms a weak Lie 2-algebra by Definition 2.2.5.

Therefore, analogous to Lie bialgebras [9], we once again have the following self-duality
property [95].

Proposition 3.1.1. pG; δq is a (weak) Lie 2-bialgebra iff pG˚r1s; δ˚q is a (weak) Lie 2-bialgebra.

We can organize the situation like so:

cohom. map 2-cocyc. ... are dual to ... gr. bracket hom. map

G : η δ´1 ` δ0 ▷` r´,´s µ

G˚r1s : η˚ δ˚
´1 ` δ˚

0 ▷˚ ` r´,´s˚ µ˚

tT “t˚
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3.1.1 Classical Drinfel’d 2-double

Recall the self-duality property of Lie bialgebra structures is key in forming the classical Drin-
fel’d double d “ G ’ G˚ [132, 9]. Let us now turn to an analogous structure D which we call
a classical Drinfel’d 2-double. We shall focus on the strict case here.

Adjoint and coadjoint representation for Lie 2-algebras. Towards a description of D,
we need to understand the adjoint representation of a Lie 2-algebra G. We denote this action
of G on itself by 2 ad, and it consists of the following graded components [95]

2ad “ pad0, ad´1q : g Ñ End g,

$

&

%

ad0 : g0 Ñ Endpg0 ‘ g´1q

ad´1 : g´1 Ñ Hompg0, g´1q
, (3.1.6)

where
ad0pXq “ padX ” rX,´s, χX ” X ▷´q, ad´1pY q “ ´▷ Y

for each X P g0, Y P g´1. They satisfy the following key identities

adX t “ tχX , ad´1pY qt “ ´ adY , t ad´1pY q “ ´ adtY (3.1.7)

for each X P g0, Y P g´1, which come from the equivariance and the Peiffer identity conditions
(2.2.3). We shall denote the adjoint representation of the dual Lie 2-algebra G˚r1s by 2ad.

By dualizing the adjoint representations 2 ad,2 ad (3.1.6) with respect to the canonical eval-
uation pairing, we define

pad˚
0 , ad

˚
´1q : g Ñ End g˚

r1s, pad˚
0 , ad

˚
´1q : g˚

r1s Ñ End g,

ad˚
0 “ pad˚, χ˚

q : g0 Ñ Endpg˚
0 ‘ g˚

´1q, ad˚
0 “ pad˚, η˚

q : g˚
´1 Ñ Endpg´1 ‘ g0q,

ad˚
´1 ” ∆ : g´1 Ñ Hompg˚

´1, g
˚
0q, ad˚

´1 ” ∆̃ : g˚
0 Ñ Hompg0, g´1q. (3.1.8)

Explicitly for each X,X 1 P g0, Y P g´1 and g, g1 P g˚
0 , f P g˚

´1, they are defined in graded
components by

pad˚
X gqpX 1

q “ ´gprX,X 1
sq, f 1

pad˚
fY q “ ´rf, f 1

s˚pY q,

pχ˚
XfqpY q “ ´fpX ▷ Y q, gpη˚

fXq “ ´pf ▷˚ gqpXq,

p∆Y pfqqpXq “ ´fpX ▷ Y q, fp∆̃gpXqq “ ´pf ▷˚ gqpXq.

It is clear that the canonical evaluation pairing

xxg ` f,X ` Y yy “ fpY q ` gpXq (3.1.9)

is by definition invariant under the coadjoint representations (3.1.8). The equivariance of t
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identities tχ “ ad t, tTη “ adtT then lead to

χ˚
Xt

T
“ tT ad˚

X , η˚
f t “ tad˚

f , (3.1.10)

∆Y ˝ tT “ ad˚
tY , ∆̃g ˝ t “ ad˚

t˚g. (3.1.11)

If ad˚, ad˚ satisfy (3.1.10), (3.1.11), then (3.1.8) define strict coadjoint representations of
g and g˚r1s on each other.

We are now ready to define the classical Drinfel’d 2-double.

Definition 3.1.4. Let pG; δq denote a Lie 2-bialgebra. The classical Drinfel’d 2-double D

of G is given by the underlying differential graded (dg) vector space

G ‘ G˚
– pg´1 ‘ g˚

0q
loooomoooon

deg“´1

t`tT
ÝÝÝÑ pg0 ‘ g˚

´1q
loooomoooon

deg“0

,

and the following Lie 2-algebra bracket rrr´,´sss defined by

rrrX ` Y,X 1
` Y 1

sss “ rX ` Y,X 1
` Y 1

s, rrrg ` f, g1
` f 1

sss “ rg ` f, g1
` f 1

s˚

rrrX ` Y, f 1
` g1

sss “ 2 ad
˚
Y `Xpg ` fq ´2 ad

˚
g`f pX ` Y q

where X P g0, Y P g´1 and f P g˚
´1, g P g˚

0 . We denote the classical Drinfel’d 2-double by
D “ G’̄G˚.

The central characterization theorem of [95] is the following.

Theorem 3.1.1. The tuple pG; δq, pG˚; δ˚q of mutually dual Lie 2-bialgebras form a classical
2-double D “ G ’ G˚ iff the following compatibility conditions

η˚
f rX,X 1

s “ rη˚
fX,X

1
s ` rX, η˚

fX
1
s ´ η˚

χ˚
Xf
X 1

` η˚

χ˚

X1f
X,

χ˚
Xrf, f 1

s˚ “ rχ˚
Xf, f

1
s˚ ` rf, χ˚

Xf s˚ ´ χ˚

η˚
fX
f 1

` χη˚

f 1X
f, (3.1.12)

ad˚
f pX ▷ Y q “ X ▷ pad˚

fY q ` pη˚
fXq▷ Y ´ adχ˚

Xf
Y ` ∆̃∆Y pfqpXq,

ad˚
Xpf ▷˚ gq “ f ▷˚

pad˚
X gq ` pχ˚

Xfq▷˚ g ´ adη˚
fX

g ` ∆∆̃gpXqpfq, (3.1.13)

∆̃gprX,X 1
sq “ X ▷ ∆̃gpX

1
q ` X 1 ▷ ∆̃gpXq ´ ∆̃ad˚

X gpX
1
q ` ∆̃ad˚

X1 g
pXq,

∆Y prf, f 1
s˚q “ f ▷˚ ∆Y pf 1

q ` f 1 ▷˚ ∆Y pfq ´ ∆ad˚
f Y

pf 1
q ` ∆ad˚

f 1Y
pfq (3.1.14)

are satisfied for each X,X 1 P g0, f, f
1 P g˚

´1, Y P g´1, g P g˚
0 .

It is clear that each of piece of G,G˚ in D are coisotropic with respect to the canonical bilinear
form (3.1.9),

xxG,Gyy “ 0, xxG˚,G˚
yy “ 0,

hence the tuple pG,G˚, xx´,´yyq forms a 2-Manin triple, called the standard 2-Manin triple.
The following result is also proven in [95].
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Theorem 3.1.2. All homomorphisms of 2-Manin triples (cf. Definition 2.2.3) are isomor-
phisms.

Hence 2-Manin triples are all isomorphic to the standard one, aka. a classical 2-double. I have
provided a new proof of these known results from gauge theoretic considerations, but they are
too lengthy to reproduce here. The interested reader is referred to [115] for details.

3.2 Poisson-Lie 2-groups

Recall the Lie theorem is well-known [98, 105] to generalize to Lie 2-groups, that there is
a one-to-one correspondence between connected, simply-connected Lie 2-groups and Lie 2-
algebras. An analogous statement for Lie 2-bialgebras would then involve structures of a so-
called Poisson-Lie 2-groups. The following definition is due to [96].

Definition 3.2.1. A Poisson-Lie 2-group pG,Πq is a Lie 2-group G “ G´1 ¸ G0 Ñ G0

equipped with a bivector field Π P X2pGq that is multiplicative with respect to both the group
multiplication and groupoid multiplication of G.

We now wish to describe the structures of a Poisson-Lie 2-group fully. In order to do so, we
formalize the definition of a Poisson 2-algebra for differential graded (dg) manifolds in general.

3.2.1 Poisson structure on dg manifolds

Let M “ M´1
t

ÝÑ M0 denote a differential graded (dg) manifold consisting of only two terms,
which is the data of a pair of manifolds M´1,M0 and a smooth map t :M´1 Ñ M0.

Definition 3.2.2. The smooth functions C8pMq onM make up a differential graded commuta-
tive algebra (dgca) C8pM0q

t˚

ÝÑ C8pM´1q given in terms of the graded sum C8pM´1q‘C8pM0q,
and the pullback t˚ : C8pM0q Ñ C8pM´1q.

Note the reversal of the degrees due to the pullback — F0 P C8pM0q has degree-(-1) while
F´1 P C8pM´1q has degree-0. It will also be convenient to extend t˚ to all of C8pMq –

C8pM0q ‘ C8pM´1q by

t˚F “ t˚
pF0 ‘ F´1q “ t˚F´1, @ F P C8

pMq.

The section ΓpM,TMq of vector fields inherits the graded structure from TM – TM´1 ˆ

TM0. Hence, to build bivectors on M , we begin by first forming the following 3-term chain
complex

ΓpM,TM b TMq “ ΓpM,TM´1 b TM´1q
Dt
ÝÑ

`

ΓpM,TM´1 b TM0qq ‘ ΓpM,TM0 b TM´1q
˘ Dt

ÝÑ ΓpM,TM0 b TM0q,
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where Dt “ tb id˘ idbt and t “ T t is the tangent pushforward of the anchor map t :M´1 Ñ

M0. In accordance with the grading, we assign the degree -2, -1, 0 to the terms of the complex
ΓpM,TM2bq from the left to right, and the sign in Dt depends on this grading.

We shall define the space of bivector fields X2pMq as a subcomplex of ΓpM,TM2bq.

Definition 3.2.3. The graded bivector fields X2pMq onM consist of sections Π P ΓpM,TM2bq

such that the following conditions

t˚Π0
“ D`

t Π
´1, D´

t Π
0

“ 0 (3.2.1)

are satisfied, where Π´1 has degree-(-2) and Π0 has degree-(-1) in ΓpM,TM2bq. Due to the
second condition, we can introduce a component Π̄0 in degree-0 by

Π̄0
“ p1 b tqΠ0

“ pt b 1qΠ0.

One can compute that, for any smooth submersion ϕ : X Ñ Y and any vector ξ P ΓpX,TXq,
we have

ξpϕ˚F q “ pϕ˚ξqpF q, F P C8
pY q,

and therefore
D`
t Π

´1
“ Π´1

˝ pt˚
b 1 ` 1 b t˚

q. (3.2.2)

This will be important in the following.

We use the subspace of skew-symmetric bivector fields X2
skpMq Ă ΓpM,TM^TMq to define

the following structure on C8pMq. Let Π “ Π´1 ` Π0 P X2
skpMq, we define

tF, F 1
u “ ΠpF b F 1

q, F, F 1
P C8

pMq, (3.2.3)

which can be more explicitly written in the decomposed form

tF, F 1
u0 “ tF0, F

1
0u0 “ Π̄0

pF0 b F 1
0q,

tF, F 1
u´1 “ tF´1, F

1
0u´1 ` tF0, F

1
´1u´1 “ Π0

pF´1 b F 1
0 ` F0 b F 1

´1q,

tF, F 1
u´2 “ tF´1, F

1
´1u´2 “ Π´1

pF´1 b F 1
´1q,

by leveraging the decomposition F “ F´1 ‘ F0 of functions on M . We now prove that
pC8pMq, t´,´uq is in fact a Lie 2-algebra.

Lemma 3.2.1. Let Π “ Π´1 ` Π0 P X2
skpMq denote a Poisson bivector on M , namely a

bivector field satisfying

ÿ

cycl.

ΠpΠ b 1q “ 0. (3.2.4)

Then the graded space C8pMq “ C8pM0q
t˚

ÝÑ C8pM´1q equipped with the bracket (3.2.3) a
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strict Lie 2-algebra. We call pC8pMq, t´,´uq the Poisson 2-algebra of the graded Poisson
manifold pM,Πq.

Proof. The proof consists in showing that the different properties given in Definition 2.2.2
are satisfied. The skew-symmetry property is automatic. By a direct computation, the first
condition in (3.2.1) implies

t˚
tF, F 1

u´1 “ pt˚Π0
qpF0 b F 1

´1 ` F´1 b F 1
0q

“ pD`
t Π

´1
qpF0 b F 1

´1 ` F´1 b F 1
0q

“ Π´1
pt˚F0 b F 1

´1 ` F´1 b t˚F 1
0q

“ tF, t˚F 1
u´2 ` tt˚F, F 1

u´2,

where we have also used (3.2.2).
On the other hand, t´,´u0 is determined by t´,´u´1, as Π̄0 is induced by Π0 through D`

t

from (3.2.1). We thus have

tF, F 1
u0 “ Π̄0

pF0 b F 1
0q “

1

2
pD`

t Π
0
qpF0 b F 1

0q

“
1

2
Π0

pt˚F0 b F 1
0 ` F0 b t˚F 1

0q

“
1

2
ptt˚F, F 1

u´1 ` tF, t˚F 1
u´1q “ tt˚F, F 1

u´1.

From the Lie 2-algebraic perspective [95], the right-hand side of this computation should be
taken as the definition of t´,´u0.

Now it suffices to check the 2-Jacobi identities,

ttF, F 1
u´2, F

2
u´1 ` ttF 1, F 2

u´1, F u´1 ` ttF 2, F u´1, F
1
u´1 “ 0

ttF, F 1
u´2, F

2
u´2 ` ttF 1, F 2

u´2, F u´2 ` ttF 2, F u´2, F u´2 “ 0.

These are nothing but (3.2.4).

3.2.2 Poisson-Lie 2-groups as a Poisson dg manifold

The central example of a graded Poisson manifold pM,Πq is a (strict) Poisson-Lie 2-group
pG,Πq, where the graded Poisson bivector field Π “ Π´1 ` Π0 P X2

skpMq is given by

Π´1
y “ pLyq˚pδ̂´1qy, Π0

x “ pLxq˚pδ̂0qx, Π̄0
x “

1

2
pLxq˚pD`

t δ̂0qx,

where δ̂ integrates the Lie 2-algebra 2-cocycle δ “ δ´1 ` δ0 on G, and L˚ is the pushforward of
the group left-multiplication on G “ G´1 ¸ G0 Ñ G0. The conditions (3.2.1) are nothing but
(3.2.5), and (3.2.4) follow from the 2-cobracket conditions (3.1.2). The rest of the 2-cocycle
conditions, namely the third and fourth equations in (3.1.1), in fact implies the multiplicativity
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of the bivector Π with respect to the group and groupoid multiplications in G [96].

Theorem 3.2.1. There is a one-to-one correspondence between connected, simply-connected
Poisson-Lie 2-groups and Lie 2-bialgebras.

To describe this correspondence, we write down how the Lie 2-algebra 2-cocycle δ can be
integrated. Given G “ LieG, we can define the following maps G,

δ̂´1 : G´1 Ñ g2^
´1, δ̂0 : G0 Ñ g0 ^ g´1,

given by

δ´1pY q “ ´
d

ds
|s“0pδ̂´1qexp sY , δ0pXq “ ´

d

ds
|s“0pδ̂0qexp sX .

For each x P G0, y P G´1 and ω1, ω2 P G˚ “ g˚
0 , the first two conditions in (3.1.1) imply the

following
pδ̂0qty “ Dtpδ̂´1qy, ιω1ιtTω2

pδ̂0qx “ ´ιω2ιtTω1
pδ̂0qx, (3.2.5)

which had also appeared in [96]. Here, tT : g˚
0 Ñ g˚

´1 denotes the dual of t, and D˘
t “ 1bt˘tb1

is the extension of the t-map t to the tensor product three-term complex G2b [95].
The inner product ι in (3.2.5) is given by the evaluation pairing x´,´y : G˚r1s b G Ñ k

such that xg ` f, Y `Xy “ fpY q ` gpXq for each g P g˚
0 , f P g˚

´1, X P g0, Y P g´1. The dual tT

of the t-map is taken with respect to this pairing,

xtTg, Y y “ xg, tY y, @g P g˚
0 , Y P g´1.

A quadratic 2-Casimir [115] can also be used to induce such an invariant bilinear pairing; we
shall explain this in more detail in §3.3.

2-graded Poisson maps. Let M,M 1 denote two 2-graded spaces, with t-maps t, t1, re-
spectively. A smooth 2-graded map J “ pJ´1,J0q : M Ñ M 1 consists of smooth maps
J´1,0 :M´1,0 Ñ M 1

´1,0 as its components, such that we have t1J´1 “ J0t. These maps pullback
onto maps J ˚

´1,0 : C8pM 1
´1,0q Ñ C8pM´1,0q on functions satisfying t˚J ˚

0 “ J ˚
´1t

1˚, such that
J ˚ “ pJ ˚

0 ,J ˚
´1q : C

8pM 1q Ñ C8pMq defines the 2-graded map on the function algebra of M 1.

WhenM “ G,M 1 “ G1 are two 2-groups, then J must be a 2-group homomorphism [96]:
the components J0,J´1 are group homomorphisms such that J´1px▷ yq “ pJ0xq▷1 pJ´1yq for
each x P G0, y P G´1, in addition to the condition J0t “ t1J´1. These imply that J “ pJ´1,J0q

preserves the Peiffer identities (2.2.8) on G,G1. If we let ȷ “ pȷ´1, ȷ0q denote the derivative of
J , then ȷ preserves the Peiffer identities (2.2.3) on the Lie 2-algebras G,G1:

t1ȷ´1 “ ȷ0t, ȷ0rX,X
1
s “ rȷ0X, ȷ0X

1
s

1, ȷ´1pX ▷ Y q “ pȷ0Xq▷1
pȷ´1Y q

for each X,X 1 P g0, Y P g´1, where t, t1 denote respectively the crossed-module maps on G,G1.
We call such maps Lie 2-algebra homomorphisms [124].
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Suppose pG,Πq and pG1,Π1q are two Poisson-Lie 2-groups. The condition for J to be a
Poisson map is that its pullback J ˚ : C8pG1q Ñ C8pGq commutes with the bivectors, anmely

pJ ˚
0 Π

10
qpF0 b F 1

´1 ` F´1 b F 1
0q “ Π0

pJ ˚
0 F0 b J ˚

´1F
1
´1 ` J ˚

´1F´1 b J ˚
0 F

1
0q,

pJ ˚
´1Π

1´1
qpF´1 b F 1

´1q “ Π´1
pJ ˚

´1F´1 b J ˚
´1F

1
´1q

for each F, F 1 P C8pG1q. If we let t´,´u, t´,´u1 denote respectively the L2-Poisson brackets
induced on C8pGq, C8pG1q via (3.2.3), then J ˚ is required to preserve them

J ˚
t´,´u

1
“ tJ ˚

¨,J ˚
¨u.

This must hold for each graded component, hence they are nothing but the conditions for J ˚

to be a L2-algebra homomorphism between Poisson 2-algebras. In other words, we have

Definition 3.2.4. Let pG,Πq, pG1,Π1q denote two Poisson-Lie 2-groups. A 2-graded map J :

G Ñ G1 is a 2-graded Poisson map iff J is a 2-group homomorphism such that its pullback
J ˚ “ pJ ˚

0 ,J ˚
´1q is a Poisson 2-algebra homomorphism.

In particular, a Poisson-Lie 2-group pG,Πq is precisely such that the group and groupoid mul-
tiplications are 2-graded Poisson maps [96].

Quasi Poisson-Lie 2-groups. As we have established, a Poisson bivector Π endows the
graded functions C8pMq on a dg manifoldM a structure of a (strict) Lie 2-algebra. A homotopy
weakening of this structure is hence available, in which we introduce a homotopy map µ̂ :

C8pM´1q
3^ Ñ C8pM0q satisfying

ÿ

cycl.

t´,´u´2 ˝ pt´,´u´2 b 1q “ t˚µ̂, (3.2.6)

ÿ

cycl.

t´,´u´1 ˝ ppt´,´u´2 ` t´,´u´1q b 1q “ µ̂ ˝ Dt˚

and the 3-cocycle condition equivalent to (2.2.19). Based on the duality (3.2.3) between the
graded Poisson bracket t´,´u and the bivector field Π, we see that µ̂ can equivalently be
written

µ̂pF1, F2, F3qpxq “ η̂xpF1 b F2 b F3q, F1,2,3 P C8
pMq, x P M0

in terms of a trivector field η̂ P ΓpM0, TM
3^
´1 q.

If we take M “ G as a (strict) Lie 2-group, we have in fact rediscovered the notion of a
quasi Poisson-Lie 2-group pG,Π, η̂q above. Moreover, recalling the notion of a quasi Lie
2-bialgebra from Definition 3.1.3, the following is the main result in [96].

Theorem 3.2.2. There is a one-to-one correspondence between connected, simply-connected
quasi Poisson-Lie 2-groups and quasi Lie 2-biaglebras.
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The correspondence is given by integrating the cohomotopy map η to the trivector field η̂

satisfying

ηpXq “
d

ds
|s“0η̂esX , X P g0.

3.3 The 2-graded classical r-matrix

Recall a (strict) Lie 2-bialgebra can be classified in terms of a Lie algebra 2-cocycle pδ´1, δ0q [95,
114], which induces a dual Lie 2-algebra D˚r1s. Moreover, the natural coadjoint representations
(3.1.8) gives rise to the Drinfel’d 2-double D “ G ’ G˚r1s.

Similar to the 1-algebra case, we begin by considering a 2-cocycle pδ´1, δ0q that is a "2-
coboundary". We in particular focus on the form of the 2-coboundary generated by certain
elements r0 P G0 ^ G´1 and r´1 P g2^

´1. These elements r´1, r0 form a triangular 2-graded
classical r-matrix [95]

R “ r0 ´ Dtr´1 “ r0 ´ pt b 1 ` 1 b tqr´1 P g0 ^ g´1,

whence the 2-coboundary they form is given by

δ0pXq “ rX b 1 ` 1 b X,Rs, δ´1pY q “ rY b 1 ` 1 b Y,Rs. (3.3.1)

Here we are using the graded Lie bracket r´,´s “ l2 of the Lie 2-algebra.
More generally, suppose we are given r0 P pg0 b g´1q ‘ pg´1 b g0q, r´1 P g2b

´1 (namely not
necessarily skew-symmetric elements). It was proven that [95]

Theorem 3.3.1. The 2-cochain pδ´1, δ0q (3.3.4) makes pG; δ´1, δ0q into a Lie 2-bialgebra iff for
all W P g0 ‘ g´1,

• rW 2b, R ` σpRqs “ 0 where σ is an exchange of tensor factors, and

• the 2-graded classical Yang-Baxter equations [95] are satisfied:

1. Dtr0 “ 0,

2. rW 3b, rR12, R13s ` rR13, R23s ` rR12, R23ss “ 0

where
W 3b

“ W b 1 b 1 ` 1 b W b 1 ` 1 b 1 b W.

We call solutions R P pg0 b g´1q ‘ pg´1 b g0q to the above criteria a 2-graded classical
r-matrix.

In other words, the 2-graded classical Yang-Baxter equation implies the 2-cocycle condition
[95] for 2-cochains pδ´1, δ0q defined in (3.3.1). If we write out the components

r0 “
ÿ

a b b ` ā b b̄, r´1 “
ÿ

c b d
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for some a, b̄ P g0 and ā, b, c, d P g´1, then we have

R “
ÿ

pa b b ´ tc b dq
loooooooomoooooooon

Pg0bg´1

` pā b b̄ ´ c b tdq
loooooooomoooooooon

Pg´1bg0

”
ÿ

ρ ` ρ̄. (3.3.2)

By decomposing into skew-symmetric and symmetric parts R “ R^ `Rd, we have ρ̄ “ ´σρ in
R^ while ρ̄ “ σρ in Rd in terms of the components defined in (3.3.2), where σ permutes the
tensor factors. In other words, we have

R^
“

ÿ

ρ ´ σρ “
ÿ

a ^ b ´ tc ^ d ´ c ^ td “
ÿ

a ^ b ´ Dtpc ^ dq,

Rd
“

ÿ

ρ ` σρ “
ÿ

a d b ´ tc d d ´ c d d “
ÿ

a d b ´ Dtpc d dq,

If we write, using the graded Schouten bracket J´,´K [96, 95],

Ω “ ´JRd, RdK “ ´rRd
12, R

d
13s ` rRd

13, R
d
23s ` rRd

12, R
d
23s,

then the skew-symmetric part R^ satisfies the modified 2-graded classical Yang-Baxter
equation

JR^, R^K “ Ω. (3.3.3)

This is an equivalent way of writing the second point in Theorem 3.3.1.

As in the 1-algebra case, the symmetric component Rd P g0 d g´1 of R governs the form of
(3.3.3), while the skew-symmetric component R^ P g0 ^ g´1 contributes to the 2-coboundary
(3.3.1). Recalling Dt “ ˘t b 1 ` 1 b t, the 2-coboundary (3.3.1) is given explicitly by

δ0pXq “
ÿ

rX, as ^ b ` a ^ pX ▷ bq

´
ÿ

rX, tcs ^ d ` tc ^ pX ▷ dq ` pc Ø dq,

δ´1pY q “
ÿ

c ^ ptd▷ Y q ` pc Ø dq ´
ÿ

pa▷ Y q ^ b, (3.3.4)

where c Ø d indicates a swap of the elements c, d from the previous term.

One particular solution for the decomposition R “ R^ ` Rd is if the two quantities r0, r´1

can themselves be decomposed into skew-symmetric and symmetric parts:

r0 “ r^
0 ` rd

0 , r^
0 P g0 ^ g´1, r^

´1 P g2^
´1,

r´1 “ r^
´1 ` rd

´1, rd
0 P g0 d g´1, rd

´1 P g2d
´1.

The 2-graded r-matrix then reads

R^
“ r^

0 ´ Dtr
^
´1 “

ÿ

a ^ b ´ Dtpc ^ dq,

Rd
“ rd

0 ´ Dtr
d
´1 “

ÿ

a d b ´ Dtpc d dq. (3.3.5)

We stress that this may not be the most general form of the decomposition R “ R^ ` Rd!

38



Due to the first condition in Theorem 3.3.1, we see that the symmetric contribution Rd

must be 2 ad-invariant, where 2 ad is the strict adjoint representation (3.1.6) of G on itself. We
shall call Rd a quadratic 2-Casimir of the Lie 2-algebra G.

3.3.1 Quadratic 2-Casimirs

Recall (3.3.3) constrains the symmetric piece Rd of the classical 2-r-matrix to be invariant
under the adjoint representation 2 ad, and to satisfy the condition D´

t R
d “ 0, thereby making

it into a quadratic 2-Casimir. The following is from my paper [133], which completes the
characterization of these objects Rd.

First, we note that D2 ad “2 adb1 ` 1 b2 ad is the derivation on the tensor product G2b

associated to the strict adjoint representation 2 ad. We also recall that G2b is a three-term
graded complex, in which the differentials are given by Dt “ 1 b t ˘ t b 1 with the sign
dependent on the degree.

Let Y bX`X 1 bY 1 denote an arbitrary element in g´1 bg0 ‘g0 bg´1, and let X2 `Y 2 P G,
then

D2 adX2`Y 2 pY b Xq “ pX2 ▷ Y q b X ` Y b rX2, Xs
loooooooooooooooooomoooooooooooooooooon

g´1bg0

`Y b pX ▷ Y 2
q

looooooomooooooon

g2b
´1

,

D2 adX2`Y 2 pX 1
b Y 1

q “ rX2, X 1
s b Y 1

` X 1
b pX2 ▷ Y 1

q
loooooooooooooooooooomoooooooooooooooooooon

g0bg´1

` pX 1 ▷ Y 2
q b Y 1

loooooooomoooooooon

g2b
´1

.

Now if we take the symmetric tensor Y dX “ Y bX`XbY and sum the above contributions,
then the 2 ad-invariance condition D2 adX2`Y 2 pY d Xq “ 0 gives rise to the following equations

rX2, Xs d Y ` X d pX2 ▷ Y q “ 0, pX ▷ Y 2
q d Y “ 0

for all X2 ` Y 2 P G. The space of solutions is the subspace

Θ▷ “ tX d Y P g0 d g´1 | adX d Y ` X d χY “ 0, χX “ 0u,

where we recall χ “ ▷ is the crossed-module action. Now the condition DtR “ Dtr0 “ 0 in
Theorem 3.3.1 constrains Rd to lie in kerDptq0, whence we assemble the elements

a d b P 2CasGr0s ” Θ▷ X kerDt

as the quadratic 2-Casimirs of G.
On the other hand, for Y d Y 1 P g2d

´1 we have

D2 adX2`Y 2 pDptq´1pY d Y 1
qq “ pX2 ▷ Y q d tY 1

` Y d rX2, tY 1
s ` Y d ptY 1 ▷ Y 2

q

`pX2 ▷ Y 1
q d tY ` Y 1

d rX2, tY s ` Y 1
d ptY ▷ Y 2

q

“ pX2 ▷ Y q d tY 1
` Y d tpX2 ▷ Y 1

q ` Y d rY 1, Y 2
s
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`pX2 ▷ Y 1
q d tY ` Y 1

d tpX2 ▷ Y q ` Y 1
d rY, Y 2

s

“ Dptq´1ppX2 ▷ Y q d Y 1
` pX2 ▷ Y 1

q d Y q

´prY 2, Y 1
s d Y ` Y 1

d rY 2, Y sq,

where we have used the conditions (2.2.3). Note Dptq´1 “ t b 1 ` 1 b t on g2d
´1, we define the

subspaces

Γt “ tY d Y 1
P g2d

´1 | χY d Y 1
` Y d χY 1

P kerDtu,

Casg´1 “ tY d Y 1
P g2d

´1 | adY d Y 1
` Y d adY 1

“ 0u,

we see that the space of solutions is given by the intersection

c d d P 2CasGr´1s ” Γt X Casg´1 .

Recall the adjoint action ad on g´1 is defined via the Peiffer identity. If each term inD2 adX2`Y 2 pRdq “

0 vanishes, then we obtain the following characterization of quadratic 2-Casimirs:

Rd
“

ÿ

a d b ` Dptq´1pc d dq P 2CasGr0s ‘ Dptq´1p2CasGr´1sq ” 2CasG,

provided the decomposition (3.3.5) holds.

3.3.2 2-Casimirs of the Drinfel’d 2-double

We now use our above characterization of 2-Casimirs to classify the pairings that can be used to
construct classical 2-doubles. To begin, let pG,G˚r1sq denote a matched pair of Lie 2-bialgebras,
and we denote by 2CasD Ă pg0 ‘ g˚

´1q d pg´1 ‘ g˚
0q the quadratic 2-Casimirs of the classical

2-double D “ G ’ G˚r1s. Here, the adjoint and coadjoint actions (3.1.6), (3.1.8) of G and
G˚r1s on each other both participate in the definition of the operator D2 ad.

After a lengthy calculation, it can be explicitly shown that quadratic 2-Casimirs of d satisfy
the following invariance properties:

padX 1 X ` χ˚
X 1fq d pY ` gq ` pX ` fq d pX 1 ▷ Y ` ad˚

X 1 gq “ 0,

pη˚
f 1X ` adf 1fq d pY ` gq ` pX ` fq d pad˚

f 1Y ` f 1 ▷˚ gq “ 0,

pX ` fq d p∆̃gpX
1
q ` ∆Y pf 1

qq ` pX 1
` f 1

q d p∆̃gpXq ` ∆Y pfqq “ 0 (3.3.6)

for each X,X 1 P g0, Y P g´1, f, f
1 P g˚

´1, g P g˚
0 . By expanding each row of (3.3.6) out, we

see that these invariance properties encompass those of both the canonical evaluation pairing
xx´,´yy of (3.1.9), as well as the grading-inhomogeneous alternative pairing given by

xxpY ` gq ` pX ` fq, pY 1
` g1

q ` pX 1
` f 1

qyy
1

“ pxY,X 1
y ` xf, g1

yq ` pxX, Y 1
y ` xg, f 1

yq. (3.3.7)

40



For instance, expanding out the first equation yields

0 “ padX 1 X d g ` X d ad˚
X 1 gq ` pχ˚

X 1f d Y ` f d X 1 ▷ Y q

`padX 1 X d Y ` X d X 1 ▷ Y q ` pχ˚
X 1f d g ` f d ad˚

X 1 gq

“ pg, adX 1 Xq ` pad˚
X 1 g,Xq ` pχ˚

X 1f, Y q ` pf, χX 1Y q

`xadX 1 X, Y y ` xX,χX 1Y y ` xχ˚
X 1f, gy ` xf, ad˚

X 1 gy,

where p´,´q and x´,´y are the components of the pairings (3.1.9), (3.3.7), respectively. Similar
computations can be carried out for the other two equations. Moreover, the condition that
Dt`tT 2Casd “ 0 implies that T is symmetric.

In other words, we have the following result.

Proposition 3.3.1. Quadratic 2-Casimirs 2CasD of the 2-Manin triple D induces only the
grading-odd pairings (3.1.9), (3.3.7).

Note that (3.3.6) follows directly from the D2 ad-invariance of Rd itself as an element of g0dg´1.
Assumptions about its particular form, such as (3.3.5), are not necessary. In other words,
Proposition 3.3.1 is a general result that applies to any Drinfel’d 2-double as defined here
and in the literature [95].
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Chapter 4

Applications of Lie 2-bialgebra
symmetries

Let us now turn to some applications of the semiclassical Lie 2-bialgebra symmetries that we
have described in the previous chapter. The first application is the 4-dimensional analogue
of the topological Chern-Simons theory defined using Lie 2-algebras and higher-gauge theory,
following existing literature. The second application is a higher-dimensional notion of Lax
integrability that I have derived in [116]. In particular, I shall describe an application of this
general 2-Lax framework to study the Heisenberg spin rectangle.

The 4d 2-Chern-Simons theory is a TQFT which is expected to exhibit properties analogous
to the usual 3d Chern-Simons theory, such as hosting (extended) topological operators that may
give rise to novel 4d tangle invariants. Moreover, these theories are important to understand for
quantum gravity [134, 44]. I have initiated a project which investigates the holographic principle
for 2-Chern-Simons theories and the 3d integrable field theory that lies on its boundary [135].

4.1 2-Chern-Simons theory

In this section, we shall first give an overview of 2-Chern-Simons theory and its higher-gauge
structures following [111]. I have also studied this theory in my paper [115] under the name
"monster1 BF theory". Recalling the notion of 2-BF theory was studied in §2.4, I have proven
[115]:

Proposition 4.1.1. Let D “ G˚r1s ¸ G denote the classical Drinfel’d 2-double of G with an
Abelian dual G˚r1s. Then the 2-Chern-Simons theory on D is equivalent to the 2-BF theory on
G.

An analogue of this statement in 3d is a well-known result [129] which identifies 3d gravity as
a Chern-Simons theory on the Poincaré algebra R1,2 ¸ sop1, 2q.

1No relation to the monster finite group.

42



4.1.1 2-Chern-Simons theory as a homotopy Maurer-Cartan theory

Let us begin with an exposition of homotopy Maurer-Cartan theory from the Batalin–Vilkovisky
(BV) and derived superfield formulation, following [136] and [111]. This gives a general setting
in which higher homotopy generalizations of higher Chern-Simons-like Poisson AKSZ models
can be realized, of which "2-Chern-Simons theory" is an example.

Let G – g´1‘g0 denote a weak Lie 2-algebra equipped with n-nary skew-symmetric brackets
µn, as in Definition 2.2.5. Tensoring with the de Rham complex Ω˚pXq over a space X gives
rise to a Lie 2-algebra L, with the graded components

Ln “
à

i`j“n

Ωi
pXq b gj,

together with the differential ℓ1 “ d ´ µ1 and ℓn “ µn b ^n for all n ď 3.

Definition 4.1.1. An element A P L1 of degree 1 living in the space

A “ pA,Bq P Ω1
pXq b g0 ‘ Ω2

pXq b g´1,

is a Maurer-Cartan element iff its curvature

3
ÿ

n“1

1

n!
ℓnpA, . . . ,Aq “ 0

vanishes.

We can compute the curvature explicitly as

ℓ1pAq `
1

2
ℓ2pA,Aq `

1

3!
ℓ3pA,A,Aq “ dA ´ µ1pBq `

1

2
µ2pA ^ Aq

` dB ` µ2pA ^ Bq `
1

3!
µ3pA ^ A ^ Aq.

Organizing this quantity by degree, we see that we obtain two equations

dA `
1

2
µ2pA ^ Aq ´ µ1pBq “ 0, dB ` µ2pA ^ Bq `

1

3!
µ3pA ^ A ^ Aq “ 0

that are identical, under the identification µ2 “ pr´,´s,▷q, to the fake-flatness (2.2.10) and
(modified) 2-flatness (2.2.15) conditions that we have already found in Chapter 1.

We now define the action whose variational principle is associated to the zero-curvature
condition; in other words, the minimal locus of the action consists of Maurer-Cartan elements.
This is accomplished with an inner product p´,´q on the Lie 2-algebra L˚ of degree ´3,

S2MCrAs “

3
ÿ

m“1

1

pm ` 1q!
pA, ℓmpA, . . . ,Aqq.

This requirement arises from the fact that we must pair a degree-1 Maurer-Cartan element
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A P L1 with its degree-2 curvature F P L2, and end up with a real number in R at degree-0.
Now if X were 4-dimensional, this pairing must produce a 4-form on X. This implies that

the invariant pairing on G consistent with p´,´q must have degree 1 [111, 115],

x´,´y : pg0 b g´1q ‘ pg´1 b g0q Ñ R.

This explains why dg Lie algebras are required to define a 4d analogue of Chern-Simons theory.
The 2-Maurer-Cartan action [136] is then

S2MCrAs “

ż

X

xB, dA `
1

2
µ2pA ^ Aq ´

1

2
µ1pBqy `

1

4!
xA, µ3pA ^ A ^ Aqy,

where we have used the invariance property

xX1, µ2pX2, Y1qy “ xµ2pX1, X2q, Y1y,

xY1, tY2y “ xtY1, Y2y, X1, X2 P g0, Y1, Y2 P g´1 (4.1.1)

of the pairing. The equations of motion implement precisely the fake- and modified 2-flatness
conditions (2.2.10), (2.2.15).

When G is strict such that µ3 “ 0, we recover the 2-Chern-Simons action

S2CSrA,Bs “

ż

X

xB,FA ´
1

2
µ1pBqy (4.1.2)

as formulated in [111], which is also called the "4d BF theory" [134, 137, 138] in some literature.
Indeed, a variation of the action

δBS2CSrA,Bs “ 0 ùñ F “ FA ´ µ1pBq “ 0,

δAS2CSrA,Bs “ 0 ùñ K “ dB ` µ2pA ^ Bq “ 0

imposes precisely the Maurer-Cartan condition for A P L1.

4.1.2 Gauge symmetries of the 2-Chern-Simons theory

Let us now introduce the gauge symmetries of the action (4.1.2) through the derived super-
field formulation. Let A P L1 denote a Maurer-Cartan element, then a (finite) derived gauge
transformation is given by

A Ñ AU
“2 Ad

´1
U A ` U´1ℓ1U, (4.1.3)

where U is a degree-0 derived gauge parameter. In general, U is a polyform on X valued in G.2

But in order to understand its "2-adjoint action" 2AdU , we need it to inherit the compatible
group and groupoid structures of G.

2We denote by G “ G0 and H “ G´1 the components of the Lie 2-group G as given in Definition 2.2.4,
such that LieG “ G.
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To do this, we shall parameterize U “ pg, eαLq in terms of a real parameter α P Rdim h,
where g P C8pXq b G is a G-valued function and L P Ω1pXq b h is a h-valued 1-form. This is
called the derived 2-group formalism [111]. Recalling ℓ1 “ d´µ1, (4.1.3) can then be computed
explicitly by (we without loss of generality absorb α into L)

A “ pA,Bq Ñ Apg,Lq

“ pAd´1
g A ` g´1dg ´ µ1pLq, g´1 ▷B ` dL ` µ2pA

pg,Lq
^ Lq `

1

2
rL ^ Lsq,

which is precisely the form of the 2-gauge transformations that was found in §2.3 through ad hoc
means. The same computations then implies the covariance of the higher curvature quantities

FU
“ Ad´1

g F , KU
“ g´1 ▷K ` µ2pF ^ Lq.

A lengthy computation shows that the gauge variation of the 2-Chern-Simons action (4.1.2) is
a total boundary term [111],

S2CSrApg,Lq, Bpg,Lq
s “ S2CSrA,Bs `

ż

X

dΓ,

where
Γ “ 2pxg´1F 1g, Ly ` xg´1A1g ` g´1dg, L ^ Lyq ` LCSpLq.

We notice the appearance of a 3d Chern-Simons term

LCSpLq “ xµ1L, dLy `
2

3
xµ1L, rL,Lsy.

In other words, the gauge non-invariance of 2-Chern-Simons theory is completely holographic,
in contrast to the 3d Chern-Simons theory whose finite gauge variation contains the well-known
bulk Wess-Zumino term, in addition to a total boundary term.

4.1.3 The underlying Lie 2-bialgebra symmetry of 2-Chern-Simons

theory

Now let us examine the Lie 2-bialgebra underlying the 2-Chern-Simons theory. We begin by
noting that the key ingredient in the construction of the Lagrangian is a bilinear form x´,´y

on G which is

1. non-degenerate, meaning dim g0 “ dim g´1, and

2. invariant in the sense of (4.1.1).

Lie 2-algebras G equipped with such a pairing is called balanced in [111].
Now as we have proven in §3.3, such pairings are in one-to-one correspondence with quadratic

2-Casimir elements Rd of G. Correspondingly, the L2-bracket µ2 on G dualizes to a 2-cobracket
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δ : G Ñ G ^ G given in graded components by

xY, rX,X 1
sy “ xδ´1pY q, X b X 1

y, xX,X 1 ▷ Y y “ xδ0pXq, X 1
b Y y,

where X,X 1 P g0, Y P g´1 and µ2 “ pr´,´s,▷q. This endows G with a Lie 2-bialgebra structure
δ, which is naturally encoded in the construction of 2-Chern-Simons action.

We are now ready to prove Proposition 4.1.1, following my paper [115]. We begin with
the standard Manin triple (recall t “ µ1, t

T “ µT1 )

D “ G’̄G˚
“ pg´1 ’ g˚

0q
T“t`tT
ÝÝÝÝÝÑ pg0 ’ g˚

´1q

of the Lie 2-bialgebra pG; δq. An element A P L1 of degree-1 in the dgla L‚ “ Ω‚pXq b D is
given by pA,Bq “ pA ` C,Σ ` Bq, where the fields are

A P Ω1
pXq b g0, C P Ω1

pXq b g˚
´1, Σ P Ω1

pXq b g´1, B P Ω2
pXq b g˚

0 .

With these and the 2-coadjoint representations (3.1.8), we can decompose the curvature quan-
tities

F “ pdA `
1

2
rA ^ As ` η˚

Cp^Aqq

` pdC `
1

2
rC ^ Cs˚ ` χ˚

Ap^Cqq ” F̄ ` F̄ ˚,

K “ pdΣ ` A ^
▷ Σ ` ∆̃Bp^Aq ´ ad˚

Cp^Σqq

` pdB ` C ^
▷˚

B ` ∆Σp^Cq ´ ad˚
Ap^Bqq ” K̄ ` K̄˚,

into G- and G˚r1s-valued sectors.
With the canonical evaluation pairing (3.1.9) on D, which we recall is coisotropic, the 2-

Chern-Simons action on D, also called the "monster 2-BF theory" in [115], is given by

S2CSrA,Bs “

ż

X

xB,F ´
1

2
TBy

“

ż

X

xB, F̄ y ` xF̄ ˚,Σy ´
1

2

“

xB, tΣy ` xΣ, tTBy
‰

.

Note by the symmetry condition xtT´,´y “ x´, t´y, the two final terms are equivalent. On
the other hand, the first two terms read

xB ^ F̄ y “ xB ^ F y ` xB ^ η˚
Cp^Aqy,

xF̄ ˚
^ Σy “ xdC `

1

2
rC ^ Cs˚ ` χ˚

Ap^Cq ^ Σy.

An integration by parts (neglecting the boundary term dxC ^ Σy) yields

xF̄ ˚
^ Σy “ ´xC ^ Ky `

1

2
xrC ^ Cs˚ ^ Σy
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in terms of the 2-curvature K “ dΣ ` A ^▷ Σ on g´1. Thus we see that the 2-Chern-Simons
theory can be written as

SBFrA,Bs “
1

2

ż

X

xB,F ´ tΣy ´ xC,Ky

`
1

2

ż

X

x
1

2
rC ^ Cs˚,Σy ´ xC ^

▷˚

B,Ay.

Now if G˚r1s were Abelian, then r´,´s˚,▷˚ “ 0 whence the final two terms drop. The
remaining action is precisely the 2-BF action (2.4.1).

4.2 Higher-dimensional integrability and the 2-Lax pair

The goal in this section is to lay out the general theory of 2-graded integrable systems following
my work [116]. We defined an appropriate notion of a "2-graded Lax equation" as a categorifi-
cation of the usual Lax equation. Once this is achieved, we specialize to the dual Lie 2-algebra
G˚r1s and construct a 2-graded Lax pair on it, in analogy with the 1-algebra case as reviewed
in eg. [10]. We then work to prove that it does in fact satisfy the 2-graded Lax equations.

We begin with a dg manifold M “ M´1
t

ÝÑ M0 equipped with a Poisson bivector Π “

Π´1 ` Π0 satisfying (3.2.1) and (3.2.4). We let pC8pMq, t˚, t´,´uq denote the Poisson 2-
algebra via Lemma 3.2.1.

4.2.1 2-Lax pair

Consider smooth functions from the 2-graded space M “ M´1 ‘M0 into a Lie 2-algebra g. We
treat such functions as elements in the tensor product C8pMq b G, which is a 3-term complex
(cf. [95])

C8
pM0q b g´1

looooooomooooooon

deg-p´2q

D
ÝÑ pC8

pM´1q b g´1q ‘ pC8
pM0q b g0q

loooooooooooooooooooooomoooooooooooooooooooooon

deg-p´1q

D
ÝÑ C8

pM´1q b g0
looooooomooooooon

deg-0

(4.2.1)

with the differentials D “ 1 b t ˘ t˚ b 1. The graded Lie bracket r´,´s on G, together with
the graded Poisson bracket t´,´u on C8pMq, as in Proposition 3.2.1, endow this complex
with two Lie 2-algebra structures.

Let H P C8pMq a Hamiltonian function on M “ M´1
t

ÝÑ M0, which admits a graded
decomposition H “ H´1 ` H0 P C8pM´1q ‘ C8pM0q.

Definition 4.2.1. A tuple of elements pL, P q P C8pMqbG is a 2-Lax pair, of the Hamiltonian
system pM, t´,´u, Hq iff it satisfies the 2-Lax equation

9L “ tH,Lu “ rP,Ls, (4.2.2)

where t´,´u, r´,´s are the graded Poisson/Lie brackets on the complex (4.2.1).
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There is a subtlety associated to the meaning of " 9L" in (4.2.2), as the HamiltonianH “ H´1`H0

here is itself graded. As such, the dynamics it generates is also graded, in the sense that there
are essentially two Hamiltonians evolving under a single "time" parameter.

We note the functions L, P : M Ñ G themselves need not be a 2-vector space homomor-
phisms. Indeed, such maps must only have components concentrated in degree-0 and degree-(-2)
in (4.2.1) [125, 98].

4.2.2 Conserved quantities

Recall that in the 1-algebra case, the trace polynomials fk of the Lax function L are constants of
motion. We wish now to investigate the analogous notion of "2-graded integrability" afforded
by the 2-Lax equations (4.2.2). Toward this, we must first explain how to construct trace
polynomials in the 2-graded context and hence the relevant concept of 2-representation in our
context.

Lie 2-algebra 2-representations. Let V “ V´1
B
ÝÑ V0 denote a 2-term complex of vector

spaces.

Definition 4.2.2. The space of endomorphisms glpV q : End´1pV q
δ

ÝÑ End0pV q of V is a 2-
graded space

End´1pV q “ HompV0, V´1q, End0pV q “ tM ` N P EndpV´1q ‘ EndpV0q | NB “ BMu,

(4.2.3)
equipped with the following (strict) Lie 2-algebra structure [95, 125]

δ : End´1pV q Ñ End0pV q, δpAq “ AB ` BA,

rM ` N,M 1
` N 1

sC “ rM,M 1
s ` rN,N 1

s, pM ` Nq▷C A “ MA ´ AN,

rA,A1
sC “ ABA1

´ A1
BA,

for each M ` N P End0pV q, A P End´1pV q.

Definition 4.2.3. A (strict) 2-representation ρ : G Ñ glpV q is a Lie 2-algebra homomor-
phism such that the following square

g´1 g0

End´1pV q End0pV q

t

ρ1 ρ0

δ

(4.2.4)

commutes. More explicitly, we have ρ “ pρ0, ρ1q with ρ0pXq “ pρ00pXq, ρ10pXqq P End0pV q and
ρ1pY q P End´1pV q for each X P g0, Y P g´1, such that the following conditions

ρ00ptY q “ Bρ1pY q, ρ10ptY q “ ρ1pY qB,

ρ1pX ▷ Y q “ pρ0Xq▷C ρ1Y “ ρ10pXqρ1pY q ´ ρ1pY qρ00pXq (4.2.5)
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are satisfied.

Furthermore, ρ0 “ ρ10 ` ρ00 represents g0 on respectively V´1 and V0, with B as the intertwiner.
Elementary examples of 2-representations include the adjoint/coadjoint representations of G;
see [95, 115] or Chapter 3.1.1.

Any 2-representation ρ as defined above gives rise to a genuine representation ρgen on the
direct sum V´1 ‘ V0, which takes the form of a block matrix

ρgenpLq “

˜

ρ10pL0 ` tL´1q ρ1pL´1q

0 ρ00pL0q

¸

P glpV´1 ‘ V0q, L0 P g0, L´1 P g´1, (4.2.6)

where L´1, L0 denotes the graded components of L that take values in g´1, g0 Ă G, respectively.
This representation was shown to satisfy ρgenprL, P sq “ rρgenpLq, ρgenpP qsC in [125], where
r´,´sC is the matrix commutator on glpV´1 ‘ V0q.

Example 4.2.1. The most relevant 2-representation for our current paper is the 2-coadjoint
representation 2Ad

˚ of the 2-group G on its dual Lie 2-algebra V “ G˚r1s. We shall now prove
that 2Ad

˚ : G Ñ EndpG˚r1sq is indeed a 2-representation.
We define 2Ad

˚ by dualizing the adjoint representation 2Ad “ pAd0,Υq of G on g defined
in (3.1.6). Hence, 2Ad

˚ has the graded components

Ad˚
0 “ pX ˚,Ad˚

q : g0 Ñ Endpg˚
0 ‘ g˚

´1q, Υ˚ : g´1 Ñ Hompg˚
´1, g

˚
0q

satisfying for each x P G0, y P G´1 and X P g0, f P g´1, g P g˚
0 , f P g˚

´1 the invariance conditions

xAd˚
x g ` X ˚

x f, Y ` X 1
y “ xg ` f,Xx´1Y ` Adx´1 X 1

y,

xΥ˚
ypfq, Xy “ xf,Υy´1pXqy

with respect to the natural pairing form x´,´y between G˚r1s and G. Moreover, we see that

2Ad
˚ satisfies the following key identities

tT Ad˚
x “ X ˚

x t
T , tTΥ˚

y “ Ad˚
y´1 , Υ˚

yt
T

“ Ad˚
ty´1 ,

where tT : g˚
0 Ñ g˚

´1 is the dual t-map on G˚r1s. The first identity implies pX ˚,Ad˚
q P

EndpG˚r1sq0, while the rest imply precisely the commutativity condition (4.2.4). Indeed, one
explicitly computes for each Y P g´1, X P g0 that

xY, tT pΥ˚
ypfqqy “ xY,Ad˚

y´1 fy “ xAdy Y, fy “ xXty´1Y, fy “ xY,X ˚
tyfy,

xX,Υ˚
yptTgqy “ xΥy´1X, tTgy “ xtpΥy´1Xq, gy “ xAdty´1 X, gy “ xX,Ad˚

ty gy.

Definition 4.2.4. A function H P C8pg˚r1sq is 2Ad
˚-invariant if

H0 ˝ Ad˚
x “ H0, H´1 ˝ X ˚

x “ H´1, H0 ˝ Υ˚
y “ H´1, (4.2.7)
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for each x P G0, y P G´1, and where H “ H´1 ` H0 P C8pg˚r1sq – C8pg˚
0q ‘ C8pg˚

´1q.

This notion of invariance will be useful later.

Constants of (graded) motion. We are now ready to characterize the notion of conserved
quantities inherited from the construction of 2-representation built out on 2-vector spaces of
the Baez-Crans type.

Theorem 4.2.1. Let χV : glpV q Ñ R denote a class function; namely any linear map that is
invariant under the L2-bracket r´,´sC on glpV q. The 2-Lax equation (4.2.2) implies that the
polynomials

Fk “ χV ρpLq
k

are constants of motion for any k and 2-representation ρ.

Proof. The proof runs in exact analogy with the 1-algebra case [10]. From (4.2.15) and the
cyclicity of χ, we have

9Fk “

k´1
ÿ

i“0

χV pρpLq
iρp 9LqρpLq

k´i´1
q “ k χV pρpLq

k´1ρprL, P sqq.

By the fact that ρ is a homomorphism of Lie 2-algebras, we have ρprL, P sq “ rρpLq, ρpP qsC and
hence

χV pρpLq
k´1ρprL, P sqq “ χV pρpLq

k´1
rρpLq, ρpP qsCq

“ χV prρpLq
k, ρpP qsCq “ 0,

again from the invariance of χV .

Note that the conservation of these trace polynomials is independent of the choice of the 2-
representation ρ. However, what exactly is being conserved does depend on the representation
— it is the eigenvalues of the matrix representation ρpLq. The conservation of these eigenvalues
can be understood as the notion of "2-graded integrability" that the 2-Lax pair in Definition
4.2.2 affords.

By making use of the genuine representation ρgen given in (4.2.6), a straightforward example
of a class function χV is given by merely the trace form on glpV´1 ‘ V0q. As such, the above
result states that the trace polynomials

Fk “ trV pρgenpLq
k
q

are conserved for any k P Zě0. By a fundamental result in linear algebra, the eigenvalues of a
block-triangular matrix consist of the combined eigenvalues of its diagonal blocks:

Eigen ρgenpLq “ Eigen ρ10pL0 ` tL´1q
ž

Eigen ρ00pL0q.
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These are example of the conserved quantities associated to the 2-Lax equation (4.2.2) that
one can always compute, using the genuine representation (4.2.6).

4.2.3 2-Kirillov-Kostant Poisson structure on C8pG˚r1sq

We first generalize the standard Kirillov-Kostant Poisson structure to the Lie 2-algebra context.
This shall serve as the appropriate setting for constructing a canonical 2-Lax pair on the dual
space G˚r1s of a given Lie 2-bialgebra pG; dR^q.

Proposition 4.2.1. Let G denote a Lie 2-bialgebra with the graded L2-bracket r´,´s. The
graded algebra of functions C8pG˚r1sq, equipped with the Poisson bracket t´,´u˚

tϕ, ϕ1
u

˚
pg ` fq “ xg ` f, rdg`fϕ, dg`fϕ

1
sy, ϕ, ϕ1

P C8
pG˚

r1sq, (4.2.8)

where g ` f P G˚r1s, is a Poisson 2-algebra. We call this a 2-Kirillov-Kostant (2KK)
Poisson structure on C8pG˚r1sq.

Proof. It will be convenient to provide the explicit correspondence between the graded compo-
nents of t´,´u and r´,´s. For this, it is useful to recall that g is dual to g˚r1s, so 1-forms on
G˚r1s are elements in G. In particular, dϕ is valued in G for C8pG˚r1sq Q ϕ “ pϕ´1 ` ϕ0q P

C8pg˚
0q ‘ C8pg˚

´1q and
dgϕ´1 P G0, dfϕ0 P g´1.

With this in mind, we identify the components of the graded bracket t´,´u.

tϕ, ϕ1
u

˚
´1pg ` fq “ xg, rdfϕ0, dgϕ

1
´1s´1 ` rdgϕ´1, dfϕ

1
0s´1y,

tϕ0, ϕ
1
0u

˚
0pfq “ xf, rdfϕ0, dfϕ

1
0s

p´1q
y

tϕ, ϕ1
u

˚
´2pgq “ xg, rdgϕ´1, dgϕ

1
´1s0y. (4.2.9)

Now we must show that this graded Poisson bracket t´,´u˚ is a L2-bracket, satisfying
(3.2.1) and (3.2.4). To do so, first we note that we can decompose g˚

´1 as g˚
´1 – im tT ‘coker tT ,

hence every f P g˚
´1 can be written as

f “ tTg1
` f 1

P im tT ‘ coker tT . (4.2.10)

Next, using the rank-nullity theorem, we have that coker tT – ker t by duality, and hence

tpdfϕ0q “ tpdtT g1ϕ0 ` df 1ϕ0q “ tpdtT g1ϕ0q ” pptT q
˚dϕ0qg1 (4.2.11)

for any ϕ0 P C8pg˚
´1q; note the last equality is the definition of the pullback ptT q˚dϕ0. We can

now directly compute

pptT q
˚
tϕ´1, ϕ

1
0u

˚
´1qpgq “ xtTg, rpdgϕ´1q, dtT gϕ

1
0sy “ xg, trdgϕ´1, dtT gϕ

1
0sy

“ xg, rdgϕ´1, tpdtT gϕ
1
0qsy “ xg, rdgϕ´1, pptT q

˚dϕ1
qgsy
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“ tϕ´1, pt
T

q
˚ϕ1

0u
˚
´2pgq,

tϕ0, ϕ
1
0u

˚
0pfq “ xf, rdfϕ0, dfϕ

1
0sy “ xf, rtpdtT g1ϕ0qq, dfϕ

1
0sy

“ xf, rpptT q
˚dϕ0qg1 , dfϕ

1
0sy

“ tptT q
˚ϕ0, ϕ

1
0u

˚
´1pfq, (4.2.12)

where we have used the equivariance and the Peiffer identity (2.2.3) in g. Similarly, the 2-Jacobi
identities (3.2.4) follow from that (2.2.4) of r´,´s.

We now construct an alternative 2-KK Poisson structure on G˚r1s by explicitly making use
of the classical 2-r-matrix. We first define a map φ “ pφ´1, φ0q : g Ñ g of 2-graded vector
spaces, then use it to define an alternative L2-bracket r´,´sR on G. Let us fix the bases
tTiui, tSaua of g0, g´1 respectively.

Proposition 4.2.2. The map φ “ pφ´1, φ0q : g Ñ g defined by

φ´1 : g´1 Ñ g´1, Y ÞÑ pR^
q
ia

xY, TiySa,

φ0 : g0 Ñ g0, X ÞÑ pR^
q
ai

xX,SayTi,

is a 2-vector space homomorphism if and only if D´
t R

^ “ 0.

Proof. Clearly, φ is linear, hence it remains to show that tφ´1 “ φ0t. By definition, this
requires

pR^
q
iaTi ^ tpSaq “ pR^

q
aitpSaq ^ Ti

for each basis elements Ti P g0, Sa P g´1. In other words, the combination pR^qiatja is skew-
symmetric; this is precisely the condition D´

t R
^ “ 0 in (3.3.3) [95].

Proposition 4.2.3. Let R P g0 b g´1 ‘ g´1 b g0 denote a solution to the modified 2-CYBE
(3.3.3). The bracket defined by

rY ` X, Y 1
` X 1

sR “ rφpY ` Xq, Y 1
` X 1

s ` rY ` X,φpY 1
` X 1

qs,

is a Lie 2-algebra bracket which satisfies

rg ` f, g1
` f 1

s “ x´, rY ` X, Y 1
` X 1

sRy (4.2.13)

where f p1q “ x´, Xp1qy P G˚
0 and gp1q “ x´, Y p1qy P g˚

´1.

Proof. Recall [95] that the skew-symmetric piece R^ of a solution R to the modified 2-CYBE
(3.3.3) defines the cobracket dR^pY ` Xq “ δpY ` Xq “ δ´1pY q ` δ0pXq given by

δ´1pY q “ rY b 1 ` 1 b Y,R^
s, δ0pXq “ rX b 1 ` 1 b X,R^

s,
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and the symmetric piece Rd “ x´,´y defines a 2 ad-invariant pairing. These facts allow us to
compute directly (cf. [10]) that, for each basis element Zi “ Si ` Ti P g,

rh, h1
spZiq “ xh b h1, δpZiqy “ xh b h1, rZi b 1 ` 1 b Zi, R

^
sy

“ pR^
q
jk

xh b h1, rZi, Zjs b Zk ` Zj b rZi, Zksy

“ pR^
q
jk

`

Rd
pZ, rZi, ZjsqR

d
pZ 1, Zkq ` Rd

pZ,ZjqR
d

pZ 1, rZi, Zksq
˘

,

“ ´pR^
q
jk

`

Rd
prZ,Zjs, ZiqR

d
pZ 1, Zkq ` Rd

pZ,ZjqR
d

prZ 1, Zks, Ziq
˘

“ Rd
prZ, φpZ 1

qs, Ziq ` Rd
prφpZq, Z 1

s, Ziq

“ Rd
prZ,Z 1

sR, Ziq “ xZi, rZ,Z
1
sRy,

where we abbreviated the graded elements h “ g ` f, h1 “ g1 ` f 1 P G˚r1s and used that
Zp1q ” xhp1q,´y P G. This proves (4.2.13).

Now let us establish that r´,´sR is a genuine L2-bracket on g. Since r´,´s by hypothesis is
equivariant and satisfies the Peiffer identity with respect to t, the fact that φ is a 2-vector space
homomorphism implies the same for r´,´sR. It thus suffices to check the 2-Jacobi identities
for r´,´sR, but this directly follows from (4.2.13) (cf. [139]),

xZ0,œ rrZ,Z 1
sR, Z

2
sRy “ pœ rrh, h1

s, h2
sqpZ0q “ 0 @Z0 P G.

Lemma 4.2.1. The Poisson bracket t´,´u˚
R, defined by the following formula

tϕ, ϕ1
u

˚
Rpg ` fq “ xg ` f, rdg`fϕ, dg`fϕ

1
sRy, (4.2.14)

where ϕ, ϕ1 P C8pG˚r1sq, g ` f P G˚r1s, is a 2KK Poisson structure.

Proof. This follows from the fact that r´,´sR is a L2-bracket, hence the proof of Proposition
4.2.1 applies.

4.2.4 2-Lax pair on G˚r1s

Fix a 2Ad
˚-invariant Hamiltonian H P C8pG˚r1sq (as defined in Definition 4.2.4). We are

now ready to finally canonically construct a 2-Lax pair pL, P q on pG˚r1s, t´,´u˚
R, Hq in this

section according to (4.2.2), based on the 2-KK Poisson structure t´,´u˚
R (4.2.14) as well as

the underlying classical 2-r-matrix. We will take

L0 P C8
pg˚

´1q b g0, L´1 P C8
pg˚

0q b g´1,

P´1 P C8
pg˚

´1q b g´1, P0 P C8
pg˚

0q b g0,

hence L has degree-(-1) and P has degree-0 and -2 in the complex (4.2.1).
Fix bases tTiui, tSaua of g0, g´1, and suppose the classical 2-r-matrix R on G is invertible.

We make use of a basic linear algebra fact [140] that the inverse of an off-diagonal block matrix,
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such as R where the off-diagonal pieces are given by R1, R2, is the off diagonal matrix with
blocks R´1

2 and R´1
1 , and hence the inverse of the symmetric piece pRd

1 qai, for instance, has
matrix elements ppRd

2 q´1qai. Put

L0 : f ÞÑ pRd
2 q

aifpSaqTi, L´1 : g ÞÑ pRd
1 q

iagpTiqSa,

P´1 : f ÞÑ φ´1pdfH0q, P0 : g ÞÑ φ0pdgH´1q, (4.2.15)

and we wish to show that pL, P q : g˚r1s Ñ g is indeed a 2-Lax pair as in Definition 4.2.2.

Theorem 4.2.2. Let H P C8pG˚r1sq denote a 2Ad
˚-invariant Hamiltonian. Then pL, P q given

in (4.2.15) is a 2-Lax pair of the 2-graded Hamiltonian system pG˚r1s, t´,´u˚
R, Hq for which

the Lax potential L satisfies

t˚L “ tL, tL,Lu
˚
R “ rL b 1 ` 1 b L,R^

s, (4.2.16)

where t˚ “ ptT q˚ is the pullback of tT : g˚
0 Ñ g˚

´1 and we have extended the L2-bracket r´,´s

to g2b.

Proof. First we compute the coefficients

pdfL´1q
i

“ Rd
2
biSb, pdgL0q

a
“ Rd

1
jaTj.

We note also that the 2Ad
˚-invariance of H (4.2.7) implies, in particular, that

rY ` X, dg`fHs “ 0, @Y P g´1, @X P g0,

(we emphasize we use the bracket r´,´s and not r´,´sR).
Then from the 2-KK Poisson structure (4.2.14) we have

tH,Lu
˚
Rpg ` fq “ xg ` f, rdg`fH, dg`fL

i,a
sRypTi ‘ Saq

“ xg ` f, rdg`fH, dfL
i
´1sRyTi ` xg ` f, rdg`fH, dgL

a
0sRySa

“ xg ` f, rφpdg`fHq, dfL
i
´1s ` rdg`fH,φpdfL

i
´1qsyTi invariance of the Hamiltonian

` xg ` f, rφpdg`fHq, dgL
a
0s ` rdg`fH,φpdgL

a
0qsySa

“ xg ` f, rφpdg`fHq, Rd
2
biSbsyTi ` xg ` f, rφpdg`fHq, Rd

1
jaTjsySa

“ ´Rd
2
bi

xf, Sbyrφpdg`fHq, Tis ´ Rd
1
ja

xg, Tiyrφpdg`fHq, Sas

“ rLpg ` fq, P pg ` fqs,

where we have used the 2 ad-invariance of the 2-Casimir Rd. This proves the first statement.
To prove the second statement, we first note that we have the following expressions

φ´1pSaq “ pRd
1 qaipR

^
2 q

icSc, φ0pTiq “ pRd
2 qibpR

^
1 q

bjTj
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for φ. Hence by a direct computation,

tL,Lu
˚
Rpg ` fq “ tLa,i, Lb,ju˚

pg ` fqpSa ` Tiq b pSb ` Tjq

“ xg ` f, rdg`fL
a,i, dg`fL

b,j
sRypSa ` Tiq b pSb ` Tjq

“ pRd
2
ai1

` Rd
1
ia1

qpRd
2
bj1

` Rd
1
jb1

qxg ` f, rφ0Ti1 ` φ´1Sa1 , Tj1 ` Sb1s

` rTi1 ` Sa1 , φ0Tj1 ` φ´1Sb1sypSa ` Tiq b pSb ` Tjq

“ pR^
1
al

` R^
2
ic

qpRd
2
bj1

` Rd
1
jb1

qxg ` f, rTl ` Sc, Tj1 ` Sb1syppSa ` Tiq b pSb ` Tjqq

` pRd
2
ai1

` Rd
1
ib1

qpR^
1
bm

` R^
2
jd

qxg ` f, rTi1 ` Sa1 , Tm ` SdsyppSa ` Tiq b pSb ` Tjqq

“ ´pR^
1
al

` R^
2
ic

qpRd
2
bj1

` Rd
1
jb1

qxg ` f, Tj1 ` Sb1yppSa ` Tiq b rTl ` Sc, Sb ` Tjsq

´ pRd
2
ai1

` Rd
1
ib1

qpR^
1
bm

` R^
2
jd

qxg ` f, Ti1 ` Sa1yprSa ` Ti, Tm ` Sds b pSb ` Tjqq

“ ´pR^
1
al

` R^
2
ic

qppSa ` Tiq b rTl ` Sc, Lpg ` fqsq

´ pR^
1
bm

` R^
2
jd

qprLpg ` fq, Tm ` Sds b pSb ` Tjqq

“ ´rr, L b 1 ` 1 b Lspg ` fq. (4.2.17)

Finally, for each g P g˚
0 , we have

t˚Lpgq “ LptTgq “ pRd
2 q

ai
ptTgqpSaqTi

“ pRd
2 q

aigptSaqpTiq “ pRd
1 q

iagpTiqtSa “ tLpgq

as desired, where we have used the definition of the adjoint tT as well as the symmetry of
Rd.

The special properties that the 2-Lax potential L satisfies in this case allows us to prove the
following.

Corollary 4.2.1. The 2-Lax pair (4.2.15) induces an ordinary Lax pair pL, P0q : g˚
0 Ñ g0 on

the Hamiltonian system3 pg˚
0 , t´,´u˚

0 , H´1q.

Proof. Recall that we have extended the t-map to act on all of G, such that tpY ` Xq “ tY

for each X P g0, Y P g´1 [96]. Similarly, we shall extend the pullback map ptT q˚ to act on all of
C8pG˚r1sq such that ptT q˚pF0 ‘ F´1q “ ptT q˚F0 for F0 P C8pg˚

´1q and F´1 P C8pg˚
0q.

First, let us apply the t-map on G to (4.2.2). This gives

t 9L “ tprL, P sq “ trL0, P´1s ` trL´1, P0s “ rL0, tP´1s ` rtL´1, P0s,

where we have used the equivariance of t. Considering this as an equation on the graded 3-term
complex (4.2.1), we see that the term rL0, tP´1s has total degree-(-1), while all the other terms
have total degree-0. Therefore, we have

rL0, tP´1s “ 0, 9ptL´1q “ rtL´1, P0s.

3Note the degree convention from §3.2 is indeed such that H´1 P C8pg˚
0 q.
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We now apply t˚ ” ptT q˚ to (4.2.2) and go through the same computation. We have

t˚ 9L “ t˚
ptH,Lu

˚
Rq “ t˚

tH0, L´1u
˚
R ` t˚

tH´1, L0u
˚
R “ tt˚H0, L´1u

˚
R,0 ` tH´1, t

˚L0u
˚
R,0,

where we have used the equivariance of t˚ with respect to the 2-KK Poisson structure (4.2.14)
(see also Lemma 3.2.1). We once again look at this equation within the graded complex
(4.2.1), and see that tt˚H0, L´1u˚

0 has total degree-(-1) while the other terms have degree-0,

tt˚H0, L´1u
˚
R,0 “ 0, 9pt˚L0q “ tH´1, t

˚L0u
˚
R,0.

Theorem 4.2.2 allows us to define L “ t˚L0 “ tL´1. Hence we have

9L “ tH´1, Lu
˚
R,0 “ rL, P0s,

completing the proof.

Conversely, it is known [95] that a Lie bialgebra G canonically gives rise to a Lie 2-bialgebra
idg given by idg “ g

t“1
ÝÝÑ g, where the dual t-map is the identity tT “ id. Moreover, it is also

known [115] that the 2-graded classical r-matrix R “ R1 ` R2 on idg consist of two copies of
the classical r-matrix r “ R1 “ R2 for g. Hence we immediately have the following.

Proposition 4.2.4. Let g be a Lie bialgebra. If pL̂, P̂ q : g˚ Ñ g is a Lax pair on g˚, then the
following graded functions L “ L̂ ‘ L̂, P “ P̂ ‘ P̂ consisting of two copies of the original Lax
pair, is a 2-Lax pair on idg˚ “ id˚

g r1s : g˚ id
ÝÑ g˚.

These two above results show that our definition of the 2-Lax pair (4.2.2) is indeed a general-
ization (a categorification) of the usual Lax pair.

To conclude this Chapter, we briefly mention that a notion of a "2-Kac-Moody algebra"
yΣsG was defined in my paper [116], which is a centrally-extended infinite-dimensional Lie 2-
algebra living on a 2d surface Σ, such that the 2-Lax equations (4.2.2) valued in yΣsG can be
written equivalently as a zero 2-curvature condition for a 2-connection A,B on Σ ˆ R. I also
showed that the topological-holomorphic 3d integrable field theory as derived in my paper [135]
hosts higher-form currents that satisfy these 2-Lax equations, and is therefore an example of a
physical theory that enjoys the above notion of 2-graded integrability.
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Chapter 5

Hopf 2-Algebras: Quantization of Lie
2-bialgebras

In the previous Chapter, we have seen major applications of the semiclassical Lie 2-bialgebra
symmetry to physical systems. They serve as motivation for the study of a quantization of
these symmetry structures ’a la [101],

Lie(/Poisson) algebra (Poisson) L8-algebras

(Hopf) algebras (Hopf) A8-algebras

categorify

quantize quantize

categorify

, (5.0.1)

based on the ideas of deformation quantization (cf. [117, 7, 141]). Such Hopf An-algebras can be
understood as the framed En-operads that fit into factorization algebras of Costello-Gwilliam
[101].

In this Chapter, we give a proposal for the algebraic structure that captures such quantized,
2-term Hopf A8-objects, which we call 2-Hopf algebras and categorical quantum groups.
This Chapter is based on the work [119] and is the centrepiece of this PhD thesis.

There are two main theorems that we shall prove in this Chapter. The first one concerns
the 2-representation theory of 2-Hopf algebras.

Theorem 5.0.1. Let pG, T ; δ,∆1q denote a weak 2-bialgebra, and let R P G2b. The weak
2-representation 2-category 2RepT

pGq is braided monoidal (à la Gurski [81, 78]) iff R is a
universal 2-R-matrix of G satisfying the 2-Yang-Baxter equations (2YBE).

The second one concerns the semiclassical limit of 2-Hopf algebras.

Theorem 5.0.2. Let L : wk2Alg Ñ wkLie2alg denote the Lie-ification functor [93] taking
(weak) 2-algebras to (weak) Lie 2-algebras.

1. L takes weak 2-biaglebras to a weak Lie 2-bialgebras, and

2. L takes solutions to the 2YBE to a solutions of the classical 2YBE (2CYBE).

All the ingredients of these theorems will be defined explicitly in the following sections.
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5.1 Strict 2-bialgebras

Quantum groups are Hopf algebras, hence we expect to define quantum 2-groups as "2-Hopf
algebras". Different notions of 2-Hopf algebra have already been previously proposed in [92]
and [93].

We begin with the following definition, and build up to the definition of an associative
2-algebra in [93].

Definition 5.1.1. Let G0,G´1 denote a pair of associative algebras. We say that G´1 is a
G0-bimodule if we have a left and a right action1 ¨l, ¨r of G0 on G´1 which commute.

px1xq ¨ y “ x1
¨ px ¨ yq, px ¨ yq ¨ x1

“ x ¨ py ¨ x1
q, y ¨ pxx1

q “ py ¨ xq ¨ x1 (5.1.1)

for all y P G´1 and x1, x P G0.

Equivalently we can demand that the following diagrams are commutative. We note µi the
multiplication in Gi, i “ ´1, 0.

If we introduce a homomorphism t between G´1 and G0, subject to some conditions, then
G´1 and G0 can be used to define a crossed module of algebras.

Definition 5.1.2. A crossed-module of (finite dimensional) associative algebras, G0, G´1, or
an associative 2-algebra, is given by an algebra homomorphism t : G´1 Ñ G0 where

1. G´1 is a G0-bimodule,

2. t is two-sided G0-equivariant,

tpx ¨ yq “ xtpyq, tpy ¨ xq “ tpyqx (5.1.2)

for all y P G´1, x P G0, and

3. the Peiffer identity is satisfied,

tpyq ¨ y1
“ yy1

“ y ¨ tpy1
q, (5.1.3)

where y, y1 P G´1.

We call the latter two the Peiffer conditions. We denote an associative 2-algebra simply by G,
or by pG, ¨q to emphasize the bimodule structure. Let k denote the ground ring of the 2-vector
space underlying G. We call G unital if there exists a unit map η “ pη´1, η0q : k Ñ G such that

η´1y “ yη´1 “ y, η0x “ xη0 “ x, η0 ¨ y “ y ¨ η0 “ y, (5.1.4)

for all y P G´1, x P G0. Moreover, t should respect the units such that tpη´1q “ η0.
1We will often omit the subscript when there is no ambiguity.
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Note that one may consider G´1 first as a vector space and define its product with the
Peiffer identity. This notion is how one may show the bijective correspondence between Lie
algebra crossed-modules and 2-term L8-algebras [95, 96]. However, in the skeletal case, since
the Peiffer identity is empty, which forces the product on G´1 to be trivial.

Remark 5.1.1. If t ‰ 0 were non-trivial then the Peiffer conditions, together with bimodularity,
imply that

x ¨ pyy1
q “ px ¨ yqy1, ypx ¨ y1

q “ py ¨ xqy1, pyy1
q ¨ x “ ypy1

¨ xq

for each x P G0, y, y
1 P G´1. This puts strong constraints on the algebra action ¨, which is not

necessarily imposed in the skeletal t “ 0 case.

Classification of associative 2-algebras

A 2-algebra homomorphism f “ pf´1, f0q : G Ñ G 1 is a graded pair of algebra homomorphisms
that respect the underlying bimodule structure, such that

1. f0 : G0 Ñ G 1
0 and f1 : G´1 Ñ G 1

´1 are algebra homomorphisms,

2. f´1px ¨ yq “ pf0xq ¨1 pf´1yq and f´1py ¨ xq “ pf´1yq ¨1 pf0xq for each x P G0, y P G´1, and

3. f0t “ t1f´1.

We say that two 2-algebras are elementary equivalent, or quasi-isomorphic, if there exists an
invertible 2-algebra homomorphism between them.

Theorem 5.1.1. (Gerstenhaber, attr. Wagemann [93]). Associative 2-algebras are clas-
sified up to quasi-isomorphism by a degree-3 Hochschild cohomology class T P HH3pN , V q,
where N “ coker t and V “ ker t.

See [93] for a definition of Hochschild cohomology of an algebra. The Peiffer identity implies
that V Ă ZpG´1q is in the nucleus of G´1; it is in fact a square-free ideal [93]. Note the nucleus
is not the same as the centre, which have commutative (but non-trivial) multiplication.

5.1.1 Associative 2-bialgebras

We seek a dual notion of an associative 2-algebra Definition 5.1.2. However, we must keep
track of the degree-shift in our duality structure. This is a consequence of how "dualization"
is defined in homological algebra [95, 115, 96, 114].

Coassociative 2-coalgebra. Let us consider a pair of vector spaces, G0,G´1 with the map
t : G´1 Ñ G0. In direct analogy with the 2-cocycle δ “ δ´1 ` δ0 that were introduced to define
a classical Lie 2-bialgebra [95, 115], we introduce the coproduct maps

∆´1 : G´1 Ñ G´1 b G´1, ∆0 : G0 Ñ pG´1 b G0q ‘ pG0 b G´1q. (5.1.5)
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Note that ∆0 comes in two components, ∆0 “ ∆l
0 ` ∆r

0 (we used the graded sum) with

∆l
0 : G0 Ñ G´1 b G0, ∆r

0 : G0 Ñ G0 b G´1.

In the following, we shall use extensively the conventional Sweedler notation

∆py, xq ” ∆´1pyq ` ∆0pxq “ yp1q b yp2q ` pxlp1q b xlp2q ` xrp1q b xrp2qq (5.1.6)

where xl
p1q
, xr

p2q
P G0 and yp1q, yp2q, x

l
p2q
, xr

p1q
P G´1.

Now let
∆1

0 : G0 Ñ G0 b G0

denote a coproduct in degree-0, such that ∆´1,∆
1
0 are subject to the following coassociativity

conditions

pidb∆´1q ˝ ∆´1 “ p∆´1 b idq ˝ ∆´1, pidb∆1
0q ˝ ∆1

0 “ p∆1
0 b idq ˝ ∆1

0. (5.1.7)

pG´1,∆´1q and pG0,∆
1
0q are coassociative coalgebras if (5.1.7) is satisfied [117]. In the following,

we shall use the Sweedler notation

∆1
0pxq “ x̄p1q b x̄p2q P G0 b G0. (5.1.8)

Definition 5.1.3. Let pG´1,∆´1q and pG0,∆
1
0q denote a pair of coassociative coalgebras with

the coactions ∆l
0 and ∆r

0. We say that G0 forms a G´1-cobimodule if the following cobimod-
ularity conditions

p∆´1 b idq ˝ ∆l
0 “ pidb∆l

0q ˝ ∆l
0,

pidb∆´1q ˝ ∆r
0 “ p∆r

0 b idq ˝ ∆r
0,

pidb∆r
0q ˝ ∆l

0 “ p∆l
0 b idq ˝ ∆r

0 (5.1.9)

are satisfied.

Definition 5.1.4. A coassociative 2-coalgebra pG,∆q is a coalgebra homomorphism t :

G´1 Ñ G0 such that

1. G0 is a G´1-cobimodule,

2. t is coequivariant
D`
t ˝ ∆´1 “ ∆0 ˝ t, (5.1.10)

where we have introduced a convenient tensor notation for the induced t-map

D˘
t :“ t b 1 ˘ 1 b t

in terms of the graded sum.
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3. the coPeiffer identity

pt b idq ˝ ∆l
0 “ ∆1

0 “ pidbtq ˝ ∆r
0, (5.1.11)

which in particular means that we must necessarily have

D´
t ∆0 “ pt b idq ˝ ∆l

0 ´ pidbtq ˝ ∆r
0 “ 0.

We call pG,∆q counital if there is a counit map ϵ “ pϵ´1, ϵ0q : G Ñ k such that

id “ pidbϵ´1q ˝ ∆´1, id “ pϵ´1 b idq ˝ ∆´1,

id “ pϵ´1 b idq ˝ ∆l
0, id “ pidbϵ´1q ˝ ∆r

0. (5.1.12)

Moreover, ϵ should respect the t-map such that ϵ0 “ ϵ´1 ˝ t.

Note again that in Definition 5.1.4, the coequivariance and coPeiffer identity are treated
as constraints between two coalgebras and the coalgebra homomorphism t between them. With
these constraints, we can deduce

id “ pϵ0 b idq ˝ ∆1
0 “ pidbϵ0q ˝ ∆1

0 (5.1.13)

from (5.1.8) and (5.1.12). In the skeletal t “ 0 case, the coproducts ∆´1,∆0,∆
1
0 and the counits

ϵ´1, ϵ0 are independent, and this condition is separate from (5.1.12).

Remark 5.1.2. Similar to the 2-algebra case, if t ‰ 0 were not trivial, then we could have the
following conditions

pidb∆1
0q ˝ ∆l

0 “ p∆l
0 b idq ˝ ∆1

0,

p∆1
0 b idq ˝ ∆r

0 “ pidb∆r
0q ˝ ∆1

0,

pidb∆l
0q ˝ ∆1

0 “ p∆r
0 b idq ˝ ∆1

0 (5.1.14)

between the coproducts ∆0 and ∆1
0. By making use of the Sweedler notation (5.1.6), (5.1.8),

these conditions translate to
$

&

%

typ1q “ ptyqr
p1q

typ2q “ ptyql
p2q

,

$

&

%

x̄p1q “ txl
p1q

“ xr
p1q

x̄p2q “ xl
p2q

“ txr
p2q

. (5.1.15)

When combined, they give styp1q “ typ1q, styp2q “ typ2q which will become important later. In the
skeletal case, the constraints involving t drop and we would only have x̄p1q “ xr

p1q
, x̄p2q “ xl

p2q
.

2-bialgebra. Using the Sweedler notations (5.1.6), (5.1.8), we state the condition that the
coproduct map ∆ given in (5.1.5) preserves the algebra/bimodule structure:

∆´1px ¨ yq “ x̄p1q ¨ yp1q b x̄p2q ¨ yp2q, ∆´1py ¨ xq “ yp1q ¨ x̄p1q b yp2q ¨ x̄p2q,
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∆l
0pxx

1
q “ xlp1qx

1l
p1q b xlp2qx

1l
p2q, ∆r

0pxx1
q “ xrp1qx

1r
p1q b xrp2qx

1r
p2q. (5.1.16)

We call these conditions the 2-bialgebra axioms.

The bialgebra axioms in each degree,

∆´1pyy
1
q “ yp1qy

1
p1q b yp2qy

1
p2q, ∆1

0pxx1
q “ x̄p1qx̄

1
p1q b x̄p2qx̄

1
p2q,

follow directly from (5.1.16) and the coequivariance and coPeiffer identities (5.1.10), (5.1.11);
see Remark 5.1.2.

Definition 5.1.5. The tuple pG, ¨,∆q is an associative 2-bialgebra iff pG, ¨q is an associative
2-algebra and pG,∆q is a coassociative 2-coalgebra that are mutually compatible, in the sense
that the coproduct map ∆ satisfies (5.1.7)-(5.1.11) and (5.1.16).

We call pG, ¨, η,∆, ϵq unital if pG, ¨, ηq and pG,∆, ϵq are respectively unital and counital.

5.2 Strict quantum 2-doubles and the universal 2-R-matrix

In this section, we construct our main example of a strict 2-bialgebra given by the strict quantum
2-doubles which can be seen a categorification of the standard quantum double [117], and the
quantization of a classical 2-double [96, 115] of Lie 2-algebras.

The goal for studying (2-)quantum doubles is that, for the ordinary 1-bialgebra H, the
skew-pairing involved in the construction of the quantum double DpH,Hq of Majid [118] pro-
vides a characterization of R-matrices on H. Moreover, this construction is universal in the
sense that any R-matrix on H can be derived this way from DpH,Hq. We wish to directly
categorify Majid’s construction, and derive a universal characterization of 2-R-matrices from
our construction of a quantum 2-double.

Our strategy will be as follows. Firstly, we consider a pair of dual associative 2-bialgebras.
They are dual in the sense that the coalgebra sector is given by the algebra sector of its dual
counterpart. We then define a notion of a canonical coadjoint action of a 2-bialgebra on its
dual. By requesting that the mutually-dual 2-bialgebras act on each other by such coadjoint
actions, we are then able to form the quantum 2-double as a 2-bialgebra. We will then also
prove a key factorization theorem for quantum 2-doubles.

5.2.1 Matched pair of 2-(bi)algebras

Dually paired 2-bialgebras Let pG, ¨,∆q denote a (finite dimensional) 2-bialgebra, and let
G˚ denote its linear dual, defined with respect to the following duality evaluation/pairing map2

xpg, fq, py, xqy “ xf, yy´1 ` xg, xy0 (5.2.1)
2We shall drop the subscripts on the pairing forms x´,´y when no confusion arises.
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for each x P G0, y P G´1, f P G˚
´1, g P G˚

0 . Note that the grading is flipped by dualizing the
t-map: xt˚¨,´y “ x´, t´y, whence t˚ : G˚

0 Ñ G˚
´1 and G˚ is skeletal whenever G is. In the

following, we shall denote this pairing also by an evaluation ev.
So far, G˚ merely forms a 2-vector space. By leveraging the duality (5.2.1), we can induce

algebraic structures on G˚ according to the coalgebraic structures (5.1.5), (5.1.8) on G as follows:

xf b f 1,∆´1pyqy “ xff 1, yy, xg b g1,∆1
0pxqy “ xgg1, xy,

xf b g,∆l
0pxqy “ xf ¨

˚ g, xy, xg b f,∆r
0pxqy “ xg ¨

˚ f, xy,

x∆˚
0

1f, y b y1
y “ xf, yy1

y, x∆˚
´1g, x b x1

y “ xg, xx1
y,

x∆˚
0
rf, x b yy “ xf, x ¨l yy, x∆˚

0
lf, y b xy “ xf, y ¨r xy.

The conditions (5.1.10), (5.1.11), (5.1.7), (5.1.9), then ensure that pG˚, ¨˚q forms an associative
2-algebra. More is true, in fact, which we now prove in the following.

Proposition 5.2.1. Let G,G˚ be dually paired as in (5.2.1), then pG, ¨,∆q is an (unital) asso-
ciative 2-bialgebra iff pG˚, ¨˚,∆˚q is an (unital) associative 2-bialgebra.

Proof. This is a straightforward computation using the pairing (5.2.1). In particular, the equiv-
ariance and Peiffer identity of t˚, as well as the fact that G˚

´1 forms a G˚
0 -bimodule, follow directly

from dualizing (5.1.10), (5.1.11), (5.1.7), (5.1.9).
What is non-trivial is (5.1.16). Define ∆˚

0 by dualizing the bimodule structure ¨ of G, then
we have

xp∆˚
0q
l
pff 1

q, x b yy “ xf b f 1,∆´1px ¨ yqy, xp∆˚
0q
r
pff 1

q, y b xy “ xf b f 1,∆´1py ¨ xqy,

xp∆˚
´1qpf ¨

˚ gq, x b x1
y “ xf b g,∆l

0pxx
1
qy, xp∆˚

´1qpg ¨
˚ fq, x b x1

y “ xf b g,∆r
0pxx

1
qy.

We now compute using analogues of (5.1.16) for ∆˚, that

xf lp1qf
1l
p1q b f lp2qf

1l
p2q, x b yy “ xpf lp1q b f 1l

p1qq b pf lp2q b f 1l
p2qq, px̄p1q b x̄p2qq b pyp1q b yp2qqy

“ xp∆˚
0q
l
pfq b p∆˚

0q
l
pf 1

q, px̄p1q b yp1qq b px̄p2q b yp2qqy

“ xf b f 1, px̄p1q ¨ yp1qq b px̄p2q ¨ yp2qqy,

xf rp1qf
1r
p1q b f rp2qf

1r
p2q, y b xy “ xf b f 1, pyp1q ¨ x̄p1qq b pyp2q ¨ x̄p2qqy,

and similarly

xf̄p1q ¨
˚ gp1q b f̄p2q ¨ gp2q, x b x1

y “ xpf̄p1q b gp1qq b pf̄p2q b gp2qq, px
l
p1q b xlp2qq b px1l

p1q b x1l
p2qqy

“ x∆1˚
0 pfq b ∆˚

´1pgq, pxlp1q b x1l
p1qq b pxlp2q b x1l

p2qqy,

“ xf b g, xlp1qx
1l
p1q b xlp2qx

1l
p2qy,

xgp1q ¨
˚ f̄p1q b gp2q ¨

˚ f̄p2q, x b x1
y “ xg b f, xrp1qx

1r
p1q b xrp2qx

1r
p2qy,

hence ∆ also satisfies (5.1.16). This proves that pG˚, ¨˚,∆˚q is an associative 2-bialgebra iff
pG, ¨,∆q also is.
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Now consider the units and counits. Given

xg, ηxy “ xpη˚
b idq ˝ ∆˚

´1pgq, xy, xg, xηy “ xpidbη˚
q ˝ ∆˚

´1pgq, xy,

xf, η ¨ yy “ xpη˚
b idq ˝ p∆˚

0q
l
pfq, yy, xf, y ¨ ηy “ xpidbη˚

q ˝ p∆˚
0q
r
pfq, yy,

we see that η is a unit for pG, ¨q (ie. these quantities all vanish) iff η˚ is a counit for pG˚,∆˚q.
Similarly, ϵ is a counit for pG,∆q iff ϵ˚ is a unit for pG˚, ¨˚q. The converse direction is identical.

Coadjoint action.

Definition 5.2.1. The canonical coadjoint action of G on G˚ is specified in terms of three
components, ▷̄ “ pp▷0,▷´1q,Υq given by

▷0 : G0 Ñ EndG˚
0 , xg, xx1

y “ ´xx▷0 g, x
1
y,

▷´1 : G0 Ñ EndG˚
´1, xf, x ¨ yy “ ´xx▷´1 f, yy,

Υ : G´1 Ñ HompG˚
´1,G˚

0 q, xf, y ¨ xy “ ´xΥyf, xy. (5.2.2)

As we will see when discussing 2-representations in §5.5, the coadjoint action can also be
interpreted as a 2-representation.

Analogously, we have the coadjoint back-action ◁̄ “ pp◁0,◁´1q, Υ̃q of G˚ on G, which we
write from the right3. The "bar" notation is used to distinguish ▷̄ from the group action ▷ in
the case where G “ kG is defined through a 2-group G.

Matched pair. Given the pair of strict 2-bialgebras pG,G˚q, we allow them to act upon each
other by coadjoint actions ▷̄ and ◁̄. In analogy with [117], we impose the following monstrous
set of twelve compatibility conditions

x▷´1 pff 1
q “ ptxlp1q ▷0 f

l
p1qq ¨

˚
ppxlp2q ◁´1 f

l
p2qq▷´1 f

1
q ` pxrp1q ▷0 f

l
p1qq ¨

˚
pΥxr

p2q
◁0f lp2q

f 1
q

` pΥxl
p1q
f rp1qq ¨

˚
pΥxl

p2q
Υ̃fr

p2q

f 1
q ` pxrp1q ▷´1 f

r
p1qq ¨

˚
pΥxr

p2q
◁0pt˚fr

p2q
qf

1
q,

Υypff
1
q “ pptyp1qq▷0 f

l
p1qq ¨

˚
pΥyp2q◁0f lp2q

f 1
q ` pΥyp1q

f rp1qq ¨
˚

pΥyp2q◁0pt˚fr
p2q

qf
1
q,

x▷0 pf ¨
˚ gq “ ptxlp1q ▷0 f

l
p1qq ¨

˚
ppxlp2q ◁´1 f

l
p2qq▷0 gq ` pxrp1q ▷0 f

l
p1qq ¨

˚
ptpxrp2q ◁0 f

l
p2qq▷0 gq

` pΥxl
p1q
f rp1qq ¨

˚
ptpxlp2qΥ̃fr

p2q
q▷0 gq ` pxrp1q ▷´1 f

r
p1qq ¨

˚
ptpxrp2q ◁0 pt˚f rp2qqq▷0 gq,

ty ▷0 pf ¨
˚ gq “ ptyp1q ▷0 f

l
p1qq ¨

˚
ptpyp2q ◁0 f

l
p2qq▷0 gq ` pΥyp1q

f rp1qq ¨
˚

ptpyp2q ◁0 pt˚f rp2qqq▷0 gq,

x▷0 pg ¨
˚ fq “ ptxlp1q ▷0 gp1qq ¨

˚
pΥxl

p2q
Υ̃gp2q

fq ` pxrp1q ▷0 gp1qq ¨
˚

pΥxr
p2q
◁0pt˚gp2qqfq

ty ▷0 pg ¨
˚ fq “ ptyp1q ▷0 gp1qq ¨

˚
pΥyp2q◁0pt˚gp2qqfq,

pxx1
q◁´1 f “ pxΥ̃tx1l

p1q
▷0f lp1q

q ¨ px1l
p2q ◁´1 f

l
p2qq ` pxΥ̃x1r

p1q
▷0f lp1q

q ¨ px1r
p2q ◁0 f

l
p2qq

` pxΥ̃Υ
x1l

p1q

fr
p1q

q ¨ px1l
p2qΥ̃fr

p2q
q ` px◁´1 px1r

p1q ▷´1 f
r
p1qqq ¨ px1r

p2q ◁0 pt˚f rp2qqq,

3This means that we have, for instance, xg ¨˚ f, xy “ ´xg, x◁´1 fy and xf ¨˚ g, xy “ ´xf, xΥ̃gy.
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pxx1
qΥ̃g “ pxΥ̃tx1l

p1q
▷0gp1q

q ¨ px1l
p2qΥ̃gp2q

q ` pxΥ̃x1r
p1q
▷0gp1q

q ¨ px1r
p2q ◁0 pt˚gp2qqq,

py ¨ xq◁0 f “ py ◁0 t
˚
ptxlp1q ▷0 f

l
p1qqq ¨ pxlp2q ◁´1 f

l
p2qq ` py ◁0 t

˚
pxrp1q ▷0 f

l
p1qqq ¨ pxrp2q ◁0 f

l
p2qq

` py ◁0 t
˚
pΥxl

p1q
f rp1qqq ¨ pxlp2qΥ̃fr

p2q
q ` py ◁0 pxrp1q ▷´1 f

r
p1qqq ¨ pxrp2q ◁0 pt˚f rp2qqq,

py ¨ xq◁0 t
˚g “ py ◁0 t

˚
ptxlp1q ▷0 gp1qqq ¨ pxlp2qΥ̃gp2q

q ` py ◁0 t
˚
pxrp1q ▷0 gp1qqq ¨ pxrp2q ◁0 t˚

g
p2q

q,

px ¨ yq◁0 f “ pxΥ̃typ1q▷0f lp1q
q ¨ pyp2q ◁0 f

l
p2qq ` pxΥ̃Υyp1q

fr
p1q

q ¨ pyp2q ◁0 pt˚f rp2qqq,

px ¨ yq◁0 t
˚g “ pxΥ̃typ1q▷0gp1q

q ¨ pyp2q ◁0 t
˚gp2qq,

where we have made use of the Sweedler notation (5.1.6).

We define a shorthand notation where z “ py, xq P G, h “ pg, fq P G˚, such that the following

z▷̄ph ¨
˚ h1

q “ pzp1q▷̄hp1qq ¨
˚

ppzp2q◁̄hp2qq▷̄h
1
q, (5.2.3)

pz ¨ z1
q◁̄h “ pz◁̄pz1

p1q▷̄hp1qqq ¨ pz1
p2q◁̄hp2qq (5.2.4)

encode respectively the first six and last six of the above conditions. We also have the cross
relations

zp1q◁̄hp1q b zp2q▷̄hp2q “ zp2q◁̄hp2q b zp1q▷̄hp1q, (5.2.5)

as well as the unity axioms against the unit η and counit ϵ,

z▷̄η “ ϵpzq, η◁̄h “ ϵphq. (5.2.6)

Definition 5.2.2. We call a tuple pG,G˚q of (finite dimensional) 2-bialgebras satisfying (5.2.3)-
(5.2.6) a matched pair.

Remark 5.2.1. Note that in the skeletal case t, t˚ “ 0, the crossed relations (5.2.3), (5.2.4)
reduce to just two non-trivial equations. These are given by

x▷´1 pff 1
q “ pxrp1q ▷0 f

l
p1qq ¨

˚
pΥxr

p2q
◁0f lp2q

f 1
q ` pΥxl

p1q
f rp1qq ¨

˚
pΥxl

p2q
Υ̃fr

p2q

f 1
q

” pxp1q▷̄fp1qq ¨
˚

ppxp2q◁̄fp2qq▷̄f
1
q,

pxx1
q◁´1 f “ pxΥ̃x1r

p1q
▷0f lp1q

q ¨ px1r
p2q ◁0 f

l
p2qq ` pxΥ̃Υ

x1l
p1q

fr
p1q

q ¨ px1l
p2qΥ̃fr

p2q
q

” px◁̄px1
p1q▷̄fp1qqq ¨ pxp2q◁̄fp2qq, (5.2.7)

where we have used a convenient notation for brevity. One may notice that these are precisely
the usual crossed relations for a quantum double group (cf. [117]) of a semidirect product
2-bialgebra G´1 ¸ G0, where G´1 is nuclear.

5.2.2 Construction of the strict quantum 2-double

We now begin our construction of the general quantum 2-double given a matched pair pG,G˚q.
We shall explicitly construct its 2-bialgebra structure such that its self-duality is manifest.
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2-algebra structure. We consider DpGq defined in terms of the graded components given
by

DpGq0 – G0 b G˚
´1 Q px, fq, DpGq´1 – G´1 b G˚

0 Q py, gq,

for which we have a "right-moving" semidirect product ÝÑ
ˆ “ p¨, ▷̄q, giving rise toDpGq´1

ÝÑ
¸DpGq0.

Similarly, we also have a "left-moving" semidirect product ÐÝ
ˆ “ p¨˚, ◁̄q giving rise toDpGq´1

ÐÝ
¸DpGq0.

The combined t-map T “ t b t˚ is equivariant with respect to these semidirect products

t˚px▷0 gq “ x▷´1 t
˚g, tpy ◁0 fq “ ptyq◁´1 f, (5.2.8)

since the coadjoint action is 2-representation, while the commutativity ▷ ˝ t “ p´t˚, t˚´q ˝ Υ

implies

ptyq▷0 g “ Υypt
˚gq, y ◁0 pt˚gq “ ptyqΥ̃g,

ptyq▷´1 f “ t˚pΥyfq, x◁´1 pt˚gq “ tpxΥ̃gq. (5.2.9)

These are in fact generalizations of the Peiffer identity.

Proposition 5.2.2. If ▷̄, ◁̄ are given by the coadjoint representations (see (5.5.4)), then (5.2.9)
reproduces the Peiffer identity.

Proof. This is a direct computation. By the equality in the second row of (5.2.9), we have

xf, y ¨ ty1
y “ ´xt˚Υyf, y

1
y “ ´xptyq▷´1 f, y

1
y “ xf, ty ¨ y1

y,

giving ty ¨ y1 “ y ¨ ty1. Now by the fact that t is an algebra homomorphism, we have

xptyq▷0 g, ty
1
y “ ´xg, ptyqpty1

qy “ ´xg, tpyy1
qy,

xΥypt
˚gq, ty1

y “ ´xt˚g, y ¨ ty1
y “ ´xg, tpy ¨ ty1

qy,

for which the first row of (5.2.9) states yy1 “ y ¨ ty1. Altogether yields

yy1
“ y ¨ tpy1

q “ tpyq ¨ y1

for any y, y1 P G´1, which is precisely the Peiffer identity on G. Similarly, if ◁̄ is the coadjoint
representation then (5.2.9) reproduces the Peiffer identity on G˚.

In other words, the Peiffer identity inDpGq is by definition given as in (5.2.9). The multiplication
between the sectors G´1,G˚

´1 is given by yg “ Υypt
˚gq and gy “ ptyqΥ̃g.

Now that we have defined the product of the graded components and the t-map associated
to DpGq, we can identify the bimodule structure.

We combine the right-moving ÝÑ
ˆ “ p¨, ▷̄q and left-moving ÐÝ

ˆ “ p¨˚, ◁̄q multiplications on
DpGq to form ˆ̈“

ÝÑ
ˆ `

ÐÝ
ˆ ,

pz, hq̂¨pz1, h1
q “ pz ¨ z1

` z◁̄h1
` z1◁̄h, h ¨ h1

` z▷̄h1
` z1▷̄hq, z, z1

P G, h, h1
P G˚. (5.2.10)
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Since ˆ̈ is a combination of the internal 2-algebra structures of G,G˚ and the 2-representations
▷̄, ◁̄, we have respectively the Peiffer conditions and associativity for G,G˚, as well as the
2-representation properties (5.2.8), (5.2.9) and the matched pair conditions (5.2.3), (5.2.4),
(5.2.6). These imply that the map ˆ̈

(i) is associative,

(ii) makes DpGq´1 into a DpGq0-bimodule,

(iii) satisfies the Peiffer conditions under T “ t b t˚.

Hence pDpGq, ˆ̈ q is a 2-algebra.

2-coalgebra structure. We intend now to construct the coproduct ∆D : DpGq Ñ DpGq2b.
We have to build the components

∆D´1 : DpGq´1 Ñ DpGq´1 b DpGq´1 “ pG´1 b G˚
0 q b pG´1 b G˚

0 q

∆D0 : DpGq0 Ñ pDpGq´1 b DpGq0q ‘ pDpGq0 b DpGq´1q

We can directly infer some of the components ∆D´1 from the coproducts ∆´1,∆
˚
´1 of G,G˚.

Explicitly, it is defined as

∆D
d
´1 “ ∆´1 b ∆˚

´1.

This coproduct by construction encodes the separate coproducts ∆ “ ∆D|G,∆
˚ “ ∆D|G˚ by

restriction and it is consistent with the products of each 2-algebras. These components are
diagonal in a sense and we need to introduce some off diagonal contributions,

ξ´1 : G´1 Ñ G˚
0 b G´1, ζ´1 : G˚

0 Ñ G´1 b G˚
0 .

such that
∆D´1 “ p∆Dq

d
´1 ` ξ´1 b ζ´1. (5.2.11)

ξ´1 and ζ´1 can be interpreted as coactions and are defined as dualized components of the
coadjoint actions. Taking as usual px, fq P DpGq0 – G0 b G˚

´1 and py, gq P DpGq´1 – G´1 b G˚
0

we have

xξ´1pyq, x b fy :“ xy, x▷´1 fy, xζ´1pgq, f b xy :“ xg, x◁´1 fy (5.2.12)

These coactions are 2-algebra maps by (5.2.5), and hence ∆D´1 satisfies (5.1.16) on DpGq.

In a similar way, ∆D0 is also made of several components. We use the components ∆0 :

G0 Ñ pG0 b G´1q ‘ pG´1 b G0q and ∆˚
0 : G˚

´1 Ñ pG˚
0 b G˚

´1q ‘ pG˚
´1 b G˚

0 q of G and G˚ to define
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the "diagonal" contribution,

p∆l
Dq

d
0 :“ ∆l

0 b ∆˚l
0 , p∆r

Dq0 :“ ∆r
0 b ∆˚r

0 .

Once again, by restriction, one recovers the separate coproducts ∆r,l
0 and ∆˚r,l

0 on respectively
G and G˚.

We also have to recover the mixed terms.

ξl0 : G0 Ñ G˚
0 b G0, ξr0 : G0 Ñ G˚

´1 b G´1

ζ l0 : G˚
´1 Ñ G´1 b G˚

´1, ζr0 : G0 Ñ G0 b G˚
0 ,

such that
p∆r,l

D q0 :“ p∆l
Dq

d
0 ` ξr,l0 b ζr,l0 . (5.2.13)

These mixed terms are again obtained by dualizing the components of the coadjoint actions

xξl0pxq, x1
b gy :“ xx, x1 ▷0 gy, xξr0pxq, y b fy :“ xx,Υyfy,

xζ l0pfq, f 1
b yy :“ xf, y ◁´1 f

1
y, xζr0pfq, g b xy :“ xf, xΥ̃gy. (5.2.14)

Once again, these coactions are 2-algebra maps by (5.2.5), and hence ∆D satisfies (5.1.16) on
DpGq.

We now need to show that it also satisfies (5.1.10), (5.1.11). We do this by leveraging the
self-duality DpGq – DpGq˚ under the natural non-degenerate self-pairing via (5.2.1) (cf. [95]),

xpz, hq, pz1, h1
qy “ xf, y1

y ` xg, x1
y ` xf 1, yy ` xg1, xy. (5.2.15)

By Proposition 5.2.1, pDpGq, ¨q is an associative 2-algebra iff pDpGq˚ – DpGq,∆Dq is a
coassociative 2-coalgebra, which implies (5.1.10)-(5.1.11) for ∆D.

Definition 5.2.3. We call the 2-bialgebra

G’̄G˚ :“ DpGq “ pDpGq´1
T
ÝÑ DpGq0,ˆ̈,∆Dq

built out of the the matched pair of strict 2-bialgebras pG,G˚q with the product, coproduct,
and counit given respectively in (5.2.10), (5.2.11) and (5.2.13), (5.2.14), the strict quantum
2-double of G.

5.2.3 Factorizability of 2-bialgebras

Conversely, we can determine when a strict 2-bialgebra is actually a strict quantum 2-double,
which is given by a factorizability/splitting condition. In fact, we prove that any 2-bialgebra that
factorizes appropriately into 2-bialgebras will automatically determine a quantum 2-double.
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Theorem 5.2.1. Suppose a (unital) 2-bialgebra pK “ K´1
T
ÝÑ K0,ˆ̈q factorizes into two (unital)

sub-2-bialgebras G,H, meaning that there is a span of inclusions,

G ι
ãÝÑ K ȷ

ÐÝâ H, (5.2.16)

such that ˆ̈˝ pιb ȷq is an isomorphism of 2-vector spaces and such that the 2-sub-bialgebras G,H
are dually paired, with their t-maps satisfying xtG´,´y “ x´, tH´y. Then pG,Hq is a matched
pair and K – G’̄H.

Proof. Let K “ K´1
T
ÝÑ K0 be a 2-bialgebra factorizing into two 2-subbialgebras G,H, with

typical elements w P K0 and e P K´1. Its 2-algebra structure ˆ̈ contains a multiplication ww1 in
K0 and a K0-bimodule structure wˆ̈e, ê¨w on K´1, which are both associative. Since (5.2.16) is
a span of 2-vector spaces, we have

T ˝ pι´1 b ȷ´1q “ pι0 ˝ tGq b pȷ0 ˝ tHq “ pι0 b ȷ0q ˝ ptG b tHq,

where tG, tH are the t-maps in G,H respectively, and ι´1, ι0 are the graded components of the
inclusion ι; similarly for ȷ.

We now separate the bimodule structure ˆ̈ into components according to the span (5.2.16),

▷̂ ” ˆ̈|impι0bȷ´1q, Υ̂ ” ˆ̈|impι´1bȷ0q,

then for e “ ι´1pyq, e1 “ ȷ´1pgq where y P G´1, g P H´1 we have

pTι´1pyqq▷̂ȷ´1pgq “ ι0ptGyq▷̂ȷ´1pgq.

By the Peiffer identity in K, this should read as a left-multiplication of y on g. We lift this action
along tH to create a map Υ̂y : H0 Ñ H´1, for which Υ̂yptHgq denotes the left-multiplicaion of
y by g. Similarly we have the lift Υ̂g : G0 Ñ G´1 of the right-multiplication of g on y.

Provided we identify Υ̂ybg “ Υy b Υ̃g, the Peiffer conditions in K are then equivalent to the
2-representation properties (5.2.8), (5.2.9). In particular, the multiplication y ¨ g “ Υypt

˚gq “

ptyqΥ̃g is given by the generalized Peiffer identity as shown in Proposition 5.2.2.

Now we prove that (5.2.16) is in fact a span of 2-algebras. Due to the linear isomorphsm
ˆ̈˝ pι b ȷq, there exists a tuple of well-defined linear maps Ψ “ pΨ0,Ψ´1; Ψ̄q : G b H Ñ H b G,
called the braided transposition, such that

ι0pxq ¨ ȷ0pfq “ ¨ ˝ pȷ0 b ι0q ˝ Ψ0px b fq,

ι0pxq▷̂ȷ´1pgq “ Υ̂ ˝ pȷ´1 b ι0q ˝ Ψr
´1px b gq,

ι´1pyqΥ̂ȷ0pfq “ ◁̂ ˝ pȷ0 b ι´1q ˝ Ψl
´1py b fq,

ι´1pyq ¨ ȷ´1pgq “ ¨ ˝ pȷ´1 b ι´1q ˝ Ψ̄py b gq,

where Ψ´1 “ Ψl
´1 ` Ψr

´1 and x P G0, y P G´1, f P H0, g P H´1. Due to Peiffer conditions on K,

69



these braiding maps are not independent and must satisfy

ptH b 1q ˝ Ψr
´1 “ Ψ0 ˝ p1 b tHq, p1 b tGq ˝ Ψl

´1 “ Ψ0 ˝ ptG b 1q,

Ψr
´1 ˝ ptG b 1q “ Ψ̄ “ Ψl

´1 ˝ p1 b tHq.

By collecting all of the graded components of Ψ in accordance with the shorthand notation
z “ py, xq P G, h “ pg, fq P H, the definition of Ψ can be concisely written as

ιpzq ˆ̈ ȷphq “ ˆ̈˝ pȷ b ιq ˝ Ψpz b hq, (5.2.17)

and the relations between its components is summarized as

T 1
˝ Ψ´1 “ Ψ0 ˝ T, Ψ̄ “ Ψ´1 ˝ T, (5.2.18)

where T 1 “ tH b tG is the t-map of the 2-bialgebra K1 – H b G with G,H swapped in the span
(5.2.16). (5.2.18) then implies in particular that Ψ : K Ñ K1 is a 2-vector space homomorphism.

We now proceed formally as in the 1-bialgebra case [117, 118]. The associativity in K is

pιpzq̂¨ιpz1
qq̂¨ȷphq “ ιpzq̂¨pιpz1

q̂¨ȷphqq,

pιpzq̂¨ȷphqq̂¨ȷph1
q “ ιpzq̂¨pȷphq̂¨ȷph1

qq,

which yields the 2-braiding relations

Ψ ˝ p̂¨ b idq “ pidbˆ̈q ˝ Ψ12 ˝ Ψ23,

Ψ ˝ pidbˆ̈q “ p̂¨ b idq ˝ Ψ23 ˝ Ψ12. (5.2.19)

This then allows us to define the actions

▷̄ “ pidbϵq ˝ Ψ : G b H Ñ H,

◁̄ “ pϵ b idq ˝ Ψ : G b H Ñ G,

where ϵ denotes the counit map. Applying idbϵ and ϵb id respectively to the first and second
equation of (5.2.19) implies that ▷̄, ◁̄ respect the semidirect product structures G´1¸G0,H´1¸

H0, respectively. Together with our above result, (5.2.16) is in fact a span of 2-algebras.
We now prove that (5.2.16) is actually a span of 2-bialgebras, which proves the theorem.

Applying ϵ b id and idbϵ respectively to the first and second (5.2.19) yields

pz ¨ z1
q◁̄h “ ˆ̈pz◁̄Ψpz1

b hqq, z▷̄ph ¨ h1
q “ ˆ̈pΨpz b hq▷̂h1

q. (5.2.20)

We now take the coproduct ∆K : K Ñ K2b on K, given in components and Sweedler notation
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(see (5.1.5), (5.1.6)) by

p∆Kq´1peq “ ep1q b ep2q, p∆Kq0pwq “ wlp1q b wlp2q ` wrp1q b wrp2q;

note wl
p1q
, wr

p2q
P K´1. With the span (5.2.16), we can write w “ ι0pxqȷ0pfq, e “ ι´1pyqȷ´1pgq for

some appropriate elements x, f, y, g such that

p∆Kq´1py, gq “ pyp1q b gp1qq b pyp2q b gp2qq,

p∆l
Kq0px, fq “ pxlp1q b f lp1qq b pxlp2q b f lp2qq,

p∆r
Kq0px, fq “ pxrp1q b f rp1qq b pxrp2q b f rp2qq.

This then allows us to define coproducts on G,H by

p∆Gq´1pyq “ yp1q b yp2q, p∆Gq0pxq “ xlp1q b xlp2q ` xrp1q b xrp2q,

p∆Hq´1pgq “ gp1q b gp2q, p∆Hq0pfq “ f lp1q b f lp2q ` f rp1q ` f rp2q,

whence ∆K “ ∆GbH, which implies that ˆ̈˝ pι b ȷq and ˆ̈˝ pȷ b ιq by construction respects the
coproducts.

As such, Ψ is a 2-coalgebra map. In particular, we have

∆K ˝ Ψ “ pΨ b Ψq ˝ ∆K1 , pϵ b ϵq ˝ Ψ “ ϵ b ϵ (5.2.21)

where K1 is the 2-bialgebra with G,H swapped in the span (5.2.16). An application of ϵ b

idbϵ b id and idbϵ b idbϵ to (5.2.21) gives

∆G ˝ ◁̄ “ p◁̄b ◁̄q ˝ ∆K, ∆H ˝ ▷̄ “ p▷̄b ▷̄q ˝ ∆K,

which ensures that ▷̄, ◁̄ are 2-coalgebra maps.
Now applying ϵ b idb idbϵ and idbϵ b ϵ b id to (5.2.21) yields

zp1q◁̄hp1q b zp2q▷̄hp2q “ τ ˝ Ψpz b hq,

zp1q▷̄hp1q b zp2q◁̄hp2q “ Ψpz b hq.

Using the second equation, together with (5.2.20), gives (5.2.6) and

z▷̄pĥ¨|Hh
1
q “ ˆ̈ppzp1q▷̄hp1q b zp2q◁̄hp2qq▷̂h

1
q “ pzp1q▷̄hp1qq̂¨|Hppzp2q◁̂hp2qq▷̄h

1
q,

pzˆ̈|Gz
1
q◁̄h “ ˆ̈pz◁̄pz1

p1q▷̄hp1q b z1
p2q◁̄hp2qqq “ pz◁̄pz1

p1q▷̄hp1qqq̂¨|Gpz1
p2q◁̂hp2qq,

which are precisely the mathced pair conditions (5.2.3), (5.2.4) for ˆ̈|G “ ¨,ˆ̈|H “ ¨˚. On the
other hand, using the first equation gives (5.2.5). Thus (5.2.16) is a span of 2-bialgebras and
so K – G’̄H.

Note that the span (5.2.16) factorizes the 2-algebra structure on K into the right- ÝÑ
ˆ “

71



p̂¨|G, ◁̄q and left-moving ÐÝ
ˆ “ p̂¨|

opp
H , ▷̄opp

q 2-algebra structures. In other words, in order to
identify K with a quantum 2-double, we must have [118]

K – G’̄H – DpG,Hopp
q, (5.2.22)

where Hopp denotes the opposite 2-algebra. This is because, as can be seen in (5.2.14), the
back-action ◁̄ is written from right to left.

5.2.4 Characterization of quantum 2-R-matrices

As we have mentioned in the beginning of this section, we wish to leverage the quantum 2-
double construction we have given above in order to provide a notion of a quantum R-matrix
on a 2-bialgebra G. More precisely, we shall use the skew-pairing on G used in forming the
quantum 2-double DpG,Gq “ G’̄Gopp in order to provide a definition of the 2-R-matrix on G.
We shall show in §5.6.2 that such a characterization is universal, in the sense that our definition
of a 2-R-matrix gives rise to a braiding on the 2-representations of G.

Review of the 1-bialgebra case. We first recall the explicit construction of the universal
R-matrix for the ordinary 1-bialgebra H. It was noted by Majid (see eg. [118, 117]) that, in
forming the quantum doubleDpH,Hq “ H ’ Hopp as a bicrossed product, the (non-degenerate)
skew-pairing which dualizes H with itself satisfies

xxx1, gysk “ xx b x1,∆pgqysk “ xx, gp1qysk xx1, gp2qysk,

xx, gg1
ysk “ x∆pxq, g1

b gysk “ xxp1q, g
1
ysk xxp2q, gysk,

where x, x1 P H and g, g1 P Hopp – H. If we define this skew-pairing as a functional x´,´ysk “

R˚ : H2b Ñ k, then we see that the above conditions translate to

R˚
˝ pµ b idq “ R˚

13R
˚
23, R˚

˝ pidbµq “ R˚
13R

˚
12,

which is nothing but the defining properties of a dual R-matrix on H. Indeed, together with
the property

gp1q xp1q R
˚
pxp2q, gp2qq “ R˚

pxp1q, gp1qqxp2q gp2q, (5.2.23)

we obtain the (dual) Yang-Baxter equations [118, 117].
In other words, the duality pairing x´,´ysk on the bicrossed product quantum double

DpH,Hq “ H ’ Hopp gives rise to a R-matrix R on H, and conversely any R-matrix gives rise
to such a duality bilinear form. Moreover, this pairing is non-degenerate iff the corresponding
R-matrix is quasitriangular (ie. R is invertible).

(Dual) 2-R-matrix. We now follow an analogous treatment to characterize dual 2-R-matrices
of a quasitriangular 2-bialgebra G. Take the quantum 2-double DpG,Gq, whose underlying dual-
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ity pairing (5.2.15) is given by a non-degenerate self-duality skew-pairing x´,´ysk : G bG Ñ k.
Explicitly, this pairing satisfies

xx ¨l y, fysk “ xx b y,∆l
0pfqysk, xy ¨r x, fysk “ xy b x,∆r

0pfqysk,

xx, f ¨l gysk “ x∆r
0pxq, g b fysk, xx, g ¨ fysk “ x∆l

0pxq, f b gysk, (5.2.24)

and also in addition to the fact that it should respect the t-map T “ t b t on DpG,Gq,

xty, gysk “ xy, tgysk,

where x, f, f 1 P G0 and y, g P G´1. Writing the skew-pairing in terms of a functional R˚ : G2b Ñ

k by
R˚
l py, fq “ xy, fysk, R˚

r px, gq “ xx, gysk,

we can rewrite (5.2.24) as

R˚
l ˝ p¨l b idq “ pR˚

r q13pR˚
l q23, R˚

l ˝ p¨r b idq “ pR˚
l q13pR˚

r q23,

R˚
r ˝ pidb¨lq “ pR˚

l q13pR˚
r q12, R˚

r ˝ pidb¨rq “ pR˚
r q13pR˚

l q12,

where ¨l, ¨r denotes respectively the left and right G0-actions on G´1. We also have the compat-
ibility conditions with the t-map:

R˚
r ˝ pidbtq “ R˚

l ˝ pt b idq P G2b
´1 .

By dualizing the above functional R˚, we are able to characterize the 2-R-matrix R on G.

Definition 5.2.4. A 2-R-matrix associated to a 2-bialgebra pG, ¨,∆q is an element R P G bG
consisting of the graded components

Rl
P G´1 b G0, Rr

P G0 b G´1.

such that the following identities are satisfied:

1. the compatibility with the coproduct

p∆l
0 b idqRr

“ Rl
13 ¨l Rr

23, p∆r
0 b idqRr

“ Rr
13 ¨r Rl

23,

pidb∆l
0qRl

“ Rl
13 ¨r Rr

12, pidb∆r
0qRl

“ Rr
13 ¨l Rl

12, (5.2.25)

2. the coproduct permutation identity

Rr∆r
0pxq “ pσ ˝ ∆l

0pxqqRr, Rl∆l
0pxq “ pσ ˝ ∆r

0pxqqRl (5.2.26)

for each x P G0, where σ : G b G Ñ G b G is the permutation of tensor factors, and
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3. the equivariance condition

D´
t R “ 0 ðñ pt b idqRl

“ pidb tqRr
P G2b

0 . (5.2.27)

We call the tuple pG, ¨,∆,Rq a quasitriangular 2-bialgebra if Rl,Rr are both invertible.

We now derive the categorified notion of the Yang-Baxter equations.

Proposition 5.2.3. The 2-R-matrix of a quasitriangular 2-bialgebra pG, ¨,∆,Rq satisfies the
2-Yang-Baxter equations

Rr
23pRr

13 ¨l Rl
12q “ pRl

12 ¨r Rr
13qRr

23, pRl
23 ¨l Rr

13qRr
12 “ Rr

12pRr
13 ¨r Rl

23q,

Rl
23pRl

13 ¨r Rr
12q “ pRr

12 ¨l Rl
13qRl

23, pRr
23 ¨r Rl

13qRl
12 “ Rl

12pRl
13 ¨l Rr

23q. (5.2.28)

Proof. Recall that R is quasitriangular iff Rl,Rr are square and invertible. This pairs G with
itself and hence dimG0 “ dimG´1. We calculate pidbσ ˝∆l

0qRl and pσ ˝∆l
0 b idqRr, as well as

pidbσ ˝ ∆r
0qRl and pσ ˝ ∆r

0 b idqRr in two ways. First using (5.2.25), we have

pidbσ ˝ ∆l
0qRl

“ pidbσqRl
13 ¨r Rr

12 “ Rl
12 ¨r Rr

13,

pσ ˝ ∆l
0 b idqRr

“ pσ b idqRl
13 ¨l Rr

23 “ Rl
23 ¨l Rr

13,

pidbσ ˝ ∆r
0qRl

“ pidbσqRr
13 ¨l Rl

12 “ Rr
12 ¨l Rl

13,

pσ ˝ ∆r
0 b idqRr

“ pσ b idqRr
13 ¨r Rl

23 “ Rr
23 ¨r Rl

13.

On the other hand from (5.2.26), we have that,

pidbσ ˝ ∆l
0qRl

“ Rr
23ppidb∆r

0qRl
qRr´1

23 “ Rr
23pRr

13 ¨l Rl
12qRr´1

23

pσ ˝ ∆l
0 b idqRr

“ Rr
12pp∆r

0 b idqRr
qRr´1

12 “ Rr
12pRr

13 ¨r Rl
23qRr´1

12 ,

pidbσ ˝ ∆r
0qRl

“ Rl
23ppidb∆l

0qRl
qRl´1

23 “ Rl
23pRl

13 ¨r Rr
12qRl´1

23

pσ ˝ ∆r
0 b idqRr

“ Rl
12pp∆l

0 b idqRr
qRl´1

12 “ Rl
12pRl

13 ¨l Rr
23qRl´1

12

Putting each equation with its above counterpart leads to (5.2.28).

Remark 5.2.2. It is easy to see that, when G “ DpHq is itself the quantum 2-double of a 2-
bialgebra H, then the skew-pairing required in forming the "2-quantum quadruple" DpG,Gq “

DpDpHq, DpHqq splits into two copies the self-pairing form (5.2.15),

xrpy, xq, pg, fqs, rpy1, x1
q, pg1, f 1

qsysk “ xpg, fq, py1, x1
qy ` xpg1, f 1

q, py, xqy.

Since (5.2.15) is non-degenerate, then so is x´,´ysk and the corresponding universal 2-R-matrix
R P DpH,Hq on DpHq is automatically quasitriangular.

The (dual) 2-R-matrix from factorizability. Due to the factorizability result Theorem
5.2.1, we could have begun our characterization with a general associative 2-bialgebra K which
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factorizes into two copies of G, instead of the quantum 2-double DpG,Gq. This introduces the
braided transposition Ψ : G b G Ñ G b G given in (5.2.17) into the definition of the dual
2-R-matrix:

R˚
l “ evl ˝Ψ

l
´1, R˚

r “ evr ˝Ψr
´1

where ev “ evl ` evr is precisely the skew-pairing x´,´ysk that we have introduced previously.
Dualizing this construction then gives

Rl
“ Ψl

´1 ˝ coevl, Rr
“ Ψr

´1 ˝ coevr, (5.2.29)

where coev “ coevl ` coevr : k Ñ G b G is the coevaluation. In other words, we are able
to reconstruct the 2-R-matrix from the braided transposition Ψ on the quantum 2-double
K – DpG,Gq. Indeed, (5.2.18) gives the equivariance (5.2.27), and the relation (5.2.19) implies
(5.2.25).

As mentioned in the proof of Proposition 5.2.3, having a quasitriangular structure on G
implies that G is self-dual. This explains why only Ψ´1 appears in the reconstruction of the
2-R-matrix: the degree-0 component Ψ0 dualizes to that in degree-(-2) Ψ̄˚ for the dual K˚ – K,
which has the same t-map T “ t b t. As Ψ̄˚ is determined by pΨ˚

´1q
l,r “ Ψr,l

´1 per (5.2.18), the
component Ψ0 is also completely determined by Ψ´1.

Since Theorem 5.2.1 implies that K – DpG,Gq, this particular construction is isomorphic
to the one we have given above directly from DpG,Gq. The characterization of the 2-R-matrix,
Definition 5.2.4, thus does not depend on whether we induce R from the skew-pairing on
DpG,Gq or the braiding trasposition Ψ on K.

5.3 Weak 2-bialgebras

We now begin our endeavour to weaken the associativity conditions in the above quantum
2-double construction. The idea of non-associative 2-algebra has not been developed nearly as
much as the associative ones, but we shall take inspiration from their Lie 2-algebra counterparts.

We provide the notion of a weak 2-algebra by generalizing Definition 5.1.2.

Definition 5.3.1. A weak 2-algebra pG, T q is a map t : G´1 Ñ G0 between a pair of not
necessarily associative algebras, together with an invertible homotopy map T : G3b

0 Ñ G´1

such that we have the conditions (5.1.2), (5.1.3), as well as

1. the weak 1-associativity,

pxx1
qx2

´ xpx1x2
q “ tT px, x1, x2

q, pyy1
qy2

´ ypy1y2
q “ T pty, ty1, ty2

q

and the weak bimodularity,

x ¨ px1
¨ yq ´ pxx1

q ¨ y “ T px, x1, tyq px ¨ yq ¨ x1
´ x ¨ py ¨ x1

q “ T px, ty, x1
q,

py ¨ xq ¨ x1
´ y ¨ pxx1

q “ T pty, x, x1
q,
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for each x, x1, x2 P G0 and y, y1, y2 P G´1,

2. the Hochschild 3-cocycle condition,

x1 ¨ T px2, x3, x4q ` T px1, x2, x3q ¨ x4 “ T px1x2, x3, x4q ´ T px1, x2x3, x4q ` T px1, x2, x3x4q

for each x1, . . . , x4 P G0.

We call pG, T q a unital weak 2-algebra if we have a unit map η : k Ñ G that satisfies the usual
conditions (5.1.4), and such that T is normalized — namely it vanishes whenever any of its
arguments are 0 or η0.

We note here that this structure is precisely the definition of a 2-term homotopy A8-algebra
[142], together with the Peiffer identity constraint (5.1.3). The correspondence between the
n-nary product mn P Homn´2

pGnb,Gq and the weak 2-algebra structure is given by

m1p´q “ tp´q, m2p´,´q “ p´´,´ ¨ ´q, m3p´,´,´q “ T p´,´,´q,

with mn “ 0 trivial for n ě 4. Nevertheless, we shall see that the Peiffer identity on G shall
play a very important role.

Similar to Remark 5.1.1, the Peiffer identity implies the further constraints

px ¨ yqy1
´ x ¨ pyy1

q “ T px, ty, ty1
q, py ¨ xqy1

´ ypx ¨ y1
q “ T pty, x, ty1

q,

ypy1
¨ xq ´ pyy1

q ¨ x “ T pty, ty1, xq

for t ‰ 0, where x P G0, y, y
1 P G´1.

Weak 2-algebra homomorphisms

We define a map between weak 2-algebras pG, T q Ñ pG 1, T 1q as a cochain map F “ pF1, F0, F´1q :

G Ñ G 1:
F1 : G2b

0 Ñ G 1
´1, F0 : G0 Ñ G 1

0, F´1 : G´1 Ñ G 1
´1,

such that t1 ˝ F´1 “ F0 ˝ t and the following conditions are satisfied,

t1F1px, x
1
q “ F0pxx

1
q ´ F0pxqF0px1

q,

F1px, tyq “ F´1px ¨ yq ´ F0pxq ¨
1 F´1pyq,

F1pty, xq “ F´1py ¨ xq ´ F´1pyq ¨
1 F0pxq

T 1
pF0pxq, F0px

1
q, F0px2

qq “ F0pxq ¨
1 F1px

1, x2
q ´ F1pxx

1, x2
q

` F1px, x1x2
q ´ F1px, x1

q ¨
1 F0px

2
q

` F´1pT px, x1, x2
qq. (5.3.1)

In other words, F1 contributes as an "obstruction" for the other components pF0, F´1q to define
a strict 2-algebra homomorphism, but only up to homotopy in the sense that F1 by definition
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(see the last equation of (5.3.1)) gives an explicit trivialization of the Hochschild cohomology
class rT 1 ˝ F0s ´ rF´1 ˝ T s “ 0.

It can then be deduced that quasi-isomorphism classes of weak 2-algebras — where G „ G 1

are said to be quasi-isomorphic iff there exists a weakly inertible cochain map (5.3.1) between
them — is still labeled by Hochschild cohomology classes T P HH3pN , V q, where N “ coker t

and V “ ker t. In particular, pG, T q is always quasi-isomorphic to its skeleton pN 0
ÝÑ V, rT sq,

which is in fact associative.
In summary, the difference between the strict and weak case is that there are distinguished

associator chain homotopies

T px, x1, x2
q : pxx1

qx2
Ñ xpx1x2

q, (5.3.2)

given by the homotopy map T witnessing associativity.

5.3.1 Weak 2-coalgebras

We begin by defining the notion of a weak 2-coalgebra. Recall that the weakening in Definition
5.3.1 concerns only the associativity of the 2-algebra structure. Correspondingly, the weakening
of a 2-coalgebra should only concern the coassociativity.

For brevity of notation later, we first rewrite the equations (5.1.7), (5.1.9) in a more concise
way. Consider coassociativity (5.1.7); we naturally extend ∆´1 to act on tensor products (with
alternating sign) such that

∆´1 ˝ ∆´1 ” pidb∆´1q ˝ ∆´1 ´ p∆´1 b idq ˝ ∆´1.

Secondly, we recombine ∆0 “ ∆l
0 ` ∆r

0 and extend it as well to tensor products, such that

p∆´1 ` ∆0q ˝ ∆0 ”
“

p∆´1 b idq ˝ ∆l
0 ´ pidb∆l

0q ˝ ∆l
0

‰

` rpidb∆´1q ˝ ∆r
0 ´ p∆r

0 b idq ˝ ∆r
0s

encodes two expressions in (5.1.9). We extend the t-map to the triple tensor product,

Dt “ idb idbt ´ idbt b id`t b idb id,

such that the equation
Dt ˝ ∆0 ˝ ∆0 “ ∆0 ˝ Dt ˝ ∆0

encodes all three equations in (5.1.14). For convenience, we define also the map

Dtr2s ” t b t b id´t b idbt ` idbt b t,

which is an extension of two applications of t to the 3-fold tensor product.

Definition 5.3.2. Let ∆1 : G0 Ñ G3b
´1 denote an invertible trilinear map. Together with the
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maps p∆´1,∆0q defined as in (5.1.5), we say that the tuple pG,∆ “ p∆´1,∆0,∆1qq is a weak
2-coalgebra iff coequivariance (5.1.10), coPeiffer identity (5.1.11), weak coassociativity

∆´1 ˝ ∆´1 “ ∆1 ˝ t,

p∆´1 ` ∆0q ˝ ∆0 “ Dt ˝ ∆1, (5.3.3)

and 2-coassociativity
∆1 ˝ ∆0 “ ∆´1 ˝ ∆1 (5.3.4)

are satisfied. In which case we call ∆1 the coassociator of G.
We call pG,∆q counital if it is equipped with a counit ϵ : k Ñ G satisfying the usual

conditions, and ϵ ˝ ∆1 “ 0.

Notice that, provided the coequivariance and the coPeiffer identity are satisfied, applying
one more t-map to (5.3.3) yields

∆1
0 ˝ ∆0 ´ ∆0 ˝ ∆1

0 “ Dtr2s ˝ ∆1, (5.3.5)

which is a monoidal weakening of the condition (5.1.14). Similarly, applying the t-map yet once
more gives a map Φ ” pt b t b tq∆1 : G0 Ñ G3b

0 that lands only in G0. We write this element
multiplicatively such that

p∆1
0 b idq ˝ ∆1

0 “ Φ ˝ pidb∆1
0q ˝ ∆1

0. (5.3.6)

Recall that, in the skeletal case where t “ 0, the coproducts ∆´1,∆0,∆
1
0 are independent and

hence (5.3.6) should also be imposed independently from (5.3.3).

5.3.2 Weak 2-bialgebras

Suppose now pG, T q is a weak 2-algebra equipped with the tuple ∆ “ p∆´1,∆0,∆1q of linear
maps. Recall the Sweedler notation (5.1.8) for ∆1

0 : G0 Ñ G2b
0 . We use it to state the condition

that the coassociator ∆1 preserves the algebra structure on G,

p∆´1 ˝ T qpx, x1, x2
q “ T px̄p1q, x̄

1
p1q, x̄

2
p1qq b T px̄p2q, x̄

1
p2q, x̄

2
p2qq,

∆1pxx1
q “ xp1qx

1
p1q b xp2qx

1
p2q b xp3qx

1
p3q, (5.3.7)

for x, x1, x2 P G0. Note that x̄p1q, x̄p2q P G0 are not to be confused with the elements xl,r
p1q

in
(5.1.6).

Definition 5.3.3. The tuple pG, T ,∆q is a (unital) weak 2-bialgebra iff pG, T q is a weak
2-algebra and pG,∆q is a (counital) weak 2-coalgebra. Equivalently, pG, T ,∆q is a weak 2-
bialgebra iff the tuple ∆ “ p∆1,∆0,∆´1q satisfies (5.1.11), (5.1.10), (5.3.3)-(5.3.5), (5.1.16)
and (5.3.7).

A weak 2-bialgebra pG, T ,∆q is called quasi-2-bialgebra if T “ 0.
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Similar to what we have done for the strict case, we suppose G is dually paired with its dual
2-algebra through (5.2.1). The coassociator ∆1 on G induces a linear map T ˚ : G˚

´1 Ñ G˚
0 by

xf b f 1
b f2,∆1pxqy “ xT ˚

pf, f 1, f2
q, xy.

Similarly, the Hochschild 3-cocycle T on G induces a linear map ∆˚
1 : G˚

´1 Ñ pG˚
0 q3b. We form

the tuple ∆˚ “ p∆˚
1 ,∆

˚
0 ,∆

˚
´1q.

Proposition 5.3.1. Let G,G˚ be dually paired, then pG, T ,∆q is a (unital) weak 2-bialgebra iff
pG˚, T ˚,∆˚q is a (unital) weak 2-bialgebra.

Proof. This follows directly from the definitions.

Given pG,G˚q are dually paired 2-bialgebras, we see that a quasi-2-bialgebra pG, T “ 0,∆q

encode the same data as a weak but coassociative 2-bialgebra pG˚, T ˚,∆˚q, in which ∆˚
1 “ 0.

5.4 Weak (skeletal) quantum 2-double

Let G,G˚ be dually paired (weak) 2-bialgebras. To form its weak quantum 2-double, we require
them to act on each other weakly. This means, in particular, that the coadjoint actions ▷̄, ◁̄
now come with the additional components

▷1 : G2b
0 Ñ HompG˚

´1,G˚
0 q, ◁1 : pG˚

´1q
2b

Ñ HompG0,G´1q.

This will be justified further in §5.5.1 where we show that the coadjoint action can be interpreted
weak representation. More specifically, just like the product and actions in (5.2.2) contribute
to defining dually some (crossed) relations, the cocycle T should also contribute dually to the
adjoint action. This is what ▷1 and ◁1 stand for, as we will see in (5.4.1).

To construct non-skeletal weak quantum 2-doubles, one must explicitly keep track of how
T , T ˚,▷1,◁1 appear in the crossed-relations (5.2.3), (5.2.4), (5.2.5). For clarity and brevity,
we will restrict for now to the skeletal case when defining the quantum double.

5.4.1 Matched pair of skeletal weak 2-bialgebras

Though the situation is drastically simplified in the skeletal case t “ 0, it is now important for
us to keep track of the associators. We shall do this by using the notation of (5.3.2).

The non-trivial crossed relations (5.2.7), in particular, are attached with the components
▷1,◁1 of the coadjoint actions,

pxq◁f,f
1

1 : x▷´1 pff 1
q

„
ÝÑ pxp1q▷̄fp1qq ¨

˚
ppxp2q◁̄fp2qq▷̄f

1
q,

▷x,x
1

1 pfq : pxx1
q◁´1 f

„
ÝÑ px◁̄px1

p1q▷̄fp1qqq ¨ pxp2q◁̄fp2qq,
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where we have made use of the shorthand notation defined in Remark 5.2.1. These come
together to allow us to define a Hochschild 3-cochain on the quantum 2-double DpGq,

TD : DpGq
3b
0 Ñ DpGq´1, TDpw,w1, w2

q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

T px, x1, x2q

▷x,x
1

1 pf2q

pxq◁f
1,f2

1

T ˚pf, f 1, f2q

, (5.4.1)

where w “ px, fq P DpGq0 is a degree-0 element, with x P G0 and f P G˚
´1.

Definition 5.4.1. The pair pG,G˚q of mutually paired weak skeletal 2-bialgebras forms a
(skeletal) matched pair iff, in addition to the compatibility conditions (5.2.3)-(5.2.6), the
3-cochain TD defined in (5.4.1) is a Hochschild 3-cocycle on DpGq – G b G˚.

For arguments contained solely in G0 or G˚
´1, this condition merely states the 3-cocycle

conditions for T , T ˚, respectively. The other ones mix non-trivially the different components
of the 3-cocycle TD,

x1 ▷0 p▷x2,x31 pfqq ´ T px1, x2, x3q◁0 f “ ▷x1x2,x31 pfq ´▷x1,x2x31 pfq ` T px1, x2, x3 ◁´1 fq,

x1 ¨ px2q◁f1,f21 ´▷x1,x21 pf1q ¨
˚ f2 “ px1x2q◁f1,f21 ´px1q◁x2▷´1f1,f2

1 `▷x1,x21 pf1f2q,

x▷0 T ˚
pf1, f2, f3q ´ ppxq◁f1,f21 q◁0 f3 “ T ˚

px▷´1 f1, f2, f3q ´ pxq◁f1f2,f31 `pxq◁f1,f2f31 .(5.4.2)

Then, we construct DpGq as a 2-bialgebra as in §5.2.
Since we are in the skeletal case, it is easy to see from (5.3.1) that the quantum 2-double

is weakly self-dual DpGq „ DpGq˚, where we recall „ denotes equivalence of 2-algebras under
the classification result Theorem 5.1.1. This means that the associated Hochschild 3-cocycles
TD, T ˚

D are cohomologous, where

T ˚
D : DpGq

3b
0 Ñ DpGq´1, T ˚

D pw,w1, w2
q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

T̊ pf, f 1, f2q

▷̊f,f
1

1 px2q

pfq◁̊x
1,x2

1

T̊ ˚px, x1, x2q

,

denotes the dual of the 3-cocycle TD. The "dual" version of (5.4.2) reads

f1 ◁0 p▷̊f2,f31 pxqq ´ T̊ pf1, f2, f3q▷0 x “ ▷̊f1f2,f31 pxq ´ ▷̊f1,f2f31 pxq ` T̊ pf1, f2, f3 ◁´1 xq,

f1 ¨
˚

pf2q◁̊x1,x21 ´ ▷̊f1,f21 px1q ¨ x2 “ pf1f2q◁̊
x1,x2
1 ´ pf1q◁̊f2◁´1x1,x2

1 ` ▷̊f1,f21 px1x2q,

f ◁0 T̊ ˚
px1, x2, x3q ´ ppfq◁̊x1,x21 q▷0 x3 “ T̊ ˚

pf ▷´1 x1, x2, x3q ´ pfq◁̊x1x2,x31 ` pfq◁̊x1,x2x31 .(5.4.3)

It is important to note that the components ▷1,◁1 do not form Hochschild 3-cocycles by
themselves, and similarly for the components ▷̊1, ◁̊1.
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5.4.2 Factorizability of weak 2-bialgebras

We now prove the analogue of Theorem 5.2.1.

Theorem 5.4.1. Suppose pK,ˆ̈, TKq is a weak 2-bialgebra that weakly factors into two skeletal
weak sub-2-bialgebras G,H, namely the inclusions in the span (5.2.16) are weak homomorphisms
as defined in (5.3.1), then K „ DpGq are equivalent as 2-bialgebras.

Recall two weak 2-bialgebras are equivalent when there exists an invertible weak 2-homomorphism
(5.3.1) between them.

Proof. The fact that K factors into skeletal 2-subalgebras means that it must also be skeletal
itself. This allows us to leverage the proof of Theorem 5.2.1 to reconstruct the underlying
2-bialgebra structure of K – DpGq as a quantum 2-double.

The subtlety here is that we must now keep track of the 3-cocycle TK : K3b
0 Ñ K´1 in K

when we, in particular, invoke associativity in the form

TKpι0pxq, ι0px
1
q, ȷ0pfqq ” ▷x,x

1

1 pfq : pι0pxq̂¨ι0px
1
qq̂¨ȷ0pfq

„
ÝÑ ι0pxq̂¨pι0px

1
q̂¨ȷ0pfqq,

TKpι0pxq, ȷ0pfq, ȷ0pf
1
qq ” pxq◁f,f

1

1 : pι0pxq̂¨ȷ0pfqq̂¨ȷ0pf 1
q

„
ÝÑ ι0pxq̂¨pȷ0pf q̂¨ȷ0pf

1
qq.

Now in the skeletal case, the braiding map Ψ “ pΨ0,Ψ´1; Ψ̄q : G b H Ñ H b G is still defined
as in (5.2.17). However, the components ▷1,◁1 now give rise to associators

▷1 : Ψ ˝ p̂¨ b idq
„
ùñ pidbˆ̈q ˝ Ψ12 ˝ Ψ23,

◁1 : Ψ ˝ pidbˆ̈q
„
ùñ p̂¨ b idq ˝ Ψ23 ˝ Ψ12 (5.4.4)

that implement the braiding relations (5.2.19). These braiding associators satisfy a set of
algebraic conditions following from the 3-cocycle condition (5.4.2) for TK .

With the components ▷1,◁1 as defined above, we now wish to reconstruct the Hochschild
3-cocycles TG, TH of G,H from TK . Note this cannot be achieved by just restricting TK via
the span (5.2.16), as this does not have the desired codomains. For instance, the restriction
TK |im ι“G : G3b

0 Ñ K´1 – G´1 b H´1 in general lands in the tensor product, for which only
the G´1-valued component gives the desired 3-cocycle TG on G. Nevertheless, with TG, TH
defined in this way, having the span (5.2.16) means that the 3-cocycle condition for TK implies
pG, TGq, pH, THq form a matched pair of weak 2-bialgebras, as in (5.4.2).

The "undesirable" piece T̃G, namely the component of TK |G valued in H´1, is a Hochschild
coboundary. This follows from the definition of the inclusion ι “ pι´1, ι0, ι1q : G ãÑ K as
a weak homomorphism. Indeed, by projecting the last of (5.3.1) for ι1 to H, the first term
ι´1pTGpx, x1, x2qq|H “ 0 vanishes whence

T̃G ” TKpι0pxq, ι0px
1
q, ι0px2

qq|H

“ ι0pxqˆ̈ι1px1, x2
q|H ´ ι1pxx

1, x2
q|H ` ι1px, x

1x2
q|H ´ ι1px, x

1
q|Hˆ̈ι0px

2
q

“ dHHrι1|Hspx, x1, x2
q,
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where dHH is the Hochschild differential [93]. Similar arguments show that T̃H “ dHHrȷ1|Gs is
a Hochschild coboundary as well. This establishes the weak equivalence K „ DpGq.

The same argument as above, but dualized, is applied to reconstruct p∆Gq1 and p∆Hq1 from
the coassociator p∆Kq1. The coassociator conditions (5.3.3)-(5.3.5), as well as (5.3.7), for them
follow from those for p∆Kq1.

Note the coadjoint actions ▷,◁ only define genuine algebra representations when T , T ˚ “ 0

(as in Theorem 5.2.1), or when t, t˚ “ 0. Without skeletality, the braiding transposition Ψ is
no longer of the form given in (5.2.17). Terms like ▷t¨,¨1 ,◁t

˚¨,¨
1 must now appear. This, of course,

would modify (5.2.19) in a complicated and intricate manner.

Remark 5.4.1. If the components ι1, ȷ1 are not required as part of the data for the inclusions
ι, ȷ in the span (5.2.16), then K ȷ DpGq in general. In particular, without the component ι1
trivializing T̃G by (5.3.1), its (possibly non-trivial) Hochschild class rT̃Gs P HH3pK0,K´1q is in
fact an extra piece of data in K that is not in DpGq, despite them sharing the same 2-bialgebra
structure. Such a factorizable weak 2-bialgebra is still weakly self-dual K „ K˚.

In the following, we shall shift gears a bit and study the 2-representation theory of quasi-
triangular 2-bialgebras.

5.5 The monoidal 2-category of 2-representations

With the above algebraic machinery in place, we are now ready to discuss the 2-representations
of a strict or weak 2-bialgebra G. In the following, we shall follow the Baez-Crans definition of
a 2-vector space and the monoidal 2-category 2VectBC they form [98, 143].

Definition 5.5.1. A 2-vector space is a 2-term cochain complex of vector spaces; equivalently,
a 2-vector space is a nuclear 2-algebra [93], or an Abelian Lie 2-algebra [95, 96].

2-vector spaces of this type form a 2-category 2VectBC in which the 1-morphisms are cochain
maps and 2-morphisms are cochain homotopies. Concretely, let V “ V´1

B
ÝÑ V0,W “ W´1

B1

ÝÑ

W0 denote two 2-vector spaces. A cochain map f : V Ñ W is a collection linear maps
f0,´1 : V0,´1 Ñ W0,´1 such that

B
1f´1 “ f0B.

Given two such cochain maps f, g, a cochain homotopy q : f ñ g is a linear map q : V0 Ñ W´1

such that
Bq “ f0 ´ g0, qB “ f´1 ´ g´1.

We shall refine these notions to fit the definition of a 2-representation of G in the following.

5.5.1 Weak 2-representations

Recall that a representation of an ordinary algebra A on the vector space V is an algebra
homomorphism A Ñ EndpV q. Morally, a 2-representation should therefore be a 2-algebra
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homomorphism between a 2-algebra G and a "categorified" notion of the endomorphism algebra
EndpV q. Correspondingly, a weak 2-representation should be a weak 2-homomorphism as in
(5.3.1) into a "weak endomorphism 2-algebra".

Endomorphism 2-algebra on a 2-vector space

In the strict case, the endomorphisms of a 2-vector space are naturally given in the setting of
2VectBC — namely EndpV q “ End2VectBC pV q, which forms an associative 2-algebra EndpV q “

EndpV q´1
δ

ÝÑ EndpV q0 of linear transformations on a 2-term cochain complex V [125],

EndpV q0 “ tpM,Nq P EndpV´1q ˆ EndpV0q | BM “ NBu,

EndpV q´1 “ tA P HompV0, V´1q | pAB, BAq P EndpV´1q ˆ EndpV0qu,

equipped with the 2-algebra structure (take A P EndpV q´1, pM,Nq P EndpV q0)

δ : A ÞÑ pAB, BAq, pM,Nq ¨ A “ MA, A ¨ pM,Nq “ AN.

The associativity of matrix multiplication implies that EndpV q´1 is clearly a EndpV q0-bimodule,
Moreover, we have the Peiffer conditions (note A,A1 P EndpV q´1)

δppM,Nq ¨ Aq “ pMAB, BMAq “ pMAB, NBAq “ pM,NqδpAq,

δpA ¨ pM,Nqq “ pANB, BANq “ pABM, BANq “ δpAqpM,Nq,

A ˚ A1
” δpAq ¨ A1

“ ABA1
“ A ¨ δpA1

q,

and hence EndpV q is an associative 2-algebra. Note that none of the matrices here are required
to be invertible.

As weak 2-algebras are no longer associative, the above presentation of EndpV q in terms
of matrices is no longer sufficient: we require a weaker version of EndpV q. Such a notion
of the weak endomorphism 2-algebra EndpV q would still have the same graded structure δ :

EndpV q´1 Ñ EndpV q0 as in the strict case above, but its algebra structure should have its
associativity controlled by a Hochschild 3-cocycle T, in accordance with Definition 5.3.1.

To begin, we extend the idea of [144] to weak 2-algebras. In essence, we leverage the
observation in the strict case that an algebra 2-homomorphism G Ñ EndpV q is equivalent to a
G-bimodule structure on V . We are going to provide a weak generalization of such a G-bimodule
structure in Definition 5.5.2.

Let 2Alg denote the category of weak 2-algebras pG, T q, which contains the full subcategory
2Algass of strict 2-algebras. A Baez-Crans 2-vector space V P 2VectBC Ă 2Algass Ă 2Alg fits as
a strict 2-algebra with trivial multiplication. We consider G a a weak 2-algebra (as defined in
Definition 5.3.1). We then equip the direct sum G ‘ V with a semidirect product structure,

pz ` uq ¨ pz1
` u1

q “ yy1
` x ¨l y

1
` y ¨r x

1
` xx1

83



` x▷ w1
` x▷ v1

` y � w1
` y � v1

` w ◁ x1
` v ◁ x1

` w � y1
` v � y1,

where we have used the shorthand notation z “ py, xq P G´1ˆG0 “ G, u “ pw, vq P V´1ˆV0 “ V

and where

¨l : G0 b G´1 Ñ G´1, ¨r : G´1 b G0 Ñ G´1,

▷ : G0 b V Ñ V, ◁ : V b G0 Ñ V,

� : G´1 b V Ñ V, � : V b G´1 Ñ V

are all bilinear maps.

Definition 5.5.2. We say that V is a G-bimodule if pG ‘ V, ¨q P 2Alg is a weak 2-algebra. In
other words,

(i) pG ‘ V q´1 ” G´1 ‘ V´1 is a weak pG ‘ V q0 :“ G0 ‘ V0-bimodule,

(ii) the map t ‘ B : G´1 ‘ V´1 Ñ G0 ‘ V0 is equivariant with respect to ¨ and satisfies the
Peiffer identity4,

(iii) there exists a well-defined trilinear invertible map pG0 ‘ V0q
3b Ñ G´1 ‘ V´1 that satisfies

the Hochschild 3-cocycle condition.

An equivalent characterization of weak G-modules can be obtained as follows. By the
macroscopic principle [16], there exists a k-linear 2-category 2VecthBC of homotopy Baez-Crans
2-vector spaces, whose algebra objects in which are precisely two-term A8-algebras. For each
V P 2VecthBC , we call EndpV q “ End2VecthBC pV q the weak endomorphism 2-algebra on V ,
and denote by T : EndpV q

3b
0 Ñ EndpV q´1 its Hochschild 3-cocycle. It is easy to see that a weak

G-module structures on V as given in Definition 5.5.2 are in one-to-one correspondence with
A8-algebra maps G Ñ EndpV q. This motivates our following theory of weak 2-representations.

Remark 5.5.1. We emphasize here that the 2-category 2VectBC of Baez-Crans 2-vector spaces is
completely strict [98], and hence its algebra objects (ie. associative 2-algebras/algebra crossed-
modules) and its endomorphism categories EndpV q “ End2VectBC pV q do not carry non-trivial
homotopy data. Weak 2-algebras/2-term A8-algebras are therefore do not live in 2VectBC ,
but instead in its homotopy refinement 2VecthBC . The difference between the setting 2VecthBC

and the Kapranov-Voevodsky setting 2VectKV is currently under investigation by the author;
however, I have proven in [119] (see also §5.7) that 2-representation theory based on 2VecthBC

and those [59, 64, 65, 145] based on VectKV share the same homotopy coherences.
4The Peiffer identity states y � w “ ptyq ▷ w “ y � pBwq, and similarly w � y “ pBwq � y “ w ◁ ptyq. If we

write y � v “ Υyv, then we reproduce precisely the 2-representation properties (5.2.9).
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Weak 2-representations, weak 2-intertwiners and modifications

Definition 5.5.3. A weak 2-representation pϱ, ρq : G Ñ EndpV q of G on V is a homomor-
phism between weak 2-algebras as in (5.3.1). In other words, ρ “ pρ0, ρ1q is a chain map

G´1 G0

EndpV q´1 EndpV q0

ρ1

t

ρ0

δ

(5.5.1)

which preserves the 2-algebra structures up to homotopy,

δϱpx, x1
q “ ρ0pxx

1
q ´ ρ0pxqρ0px

1
q,

ϱpx, tyq “ ρ1px ¨ yq ´ ρ0pxq ¨ ρ1pyq,

ϱpty, xq “ ρ1py ¨ xq ´ ρ1pyq ¨ ρ0pxq, (5.5.2)

and for which the Hochschild 3-cocycles T ,T of respectively G and EndpV q satisfy the following
compatibility conditions

ρ1pT px, x1, x2
qq “ ρ0pxq ¨ ϱpx1, x2

q ´ ϱpxx1, x2
q

` ϱpx, x1x2
q ´ ϱpx, x1

q ¨ ρ0px
2
q

` Tpρ0pxq, ρ0px
1
q, ρ0px

2
qq, (5.5.3)

where x, x1, x2 P G0 and y P G´1. We require ϱ to be invertible.
We call ρ a strict 2-representation if ϱ “ 0 identically.

As T ,T are normalized, ϱ by definition vanishes if any of its arguments are 0 or the unit η0 P G0.

Remark 5.5.2. Due to the classification Theorem 5.1.1 of 2-algebras [93], a non-trivial 2-
algebra G with T ‰ 0 cannot admit a strict 2-representation. Conversely, however, 2-representations
of a strict 2-algebra can still be weak, as (5.5.3) only states that the cohomology class of T is
trivial, not that it is trivial as a 3-cocycle. However, if we further restrict to the case where V
is a strict G-bimodule (ie. the trilinear map in Definition 5.5.2 vanishes), then T “ 0 and
EndpV q is isomorphic to EndpV q.

Example: weak coadjoint representation. A very natural example of a 2-representation
is achieved by dualizing, using (5.2.1), the 2-representation G Ñ EndpGq given by the weak
2-algebra structure of G on itself.

This gives rise to the coadjoint representation (cf. [95, 115]) ▷̄ “ p▷1, p▷0,▷´1q,Υq : G Ñ

EndpG˚q of G on its dual G˚, given explicitly by

▷0 : G0 Ñ EndpG˚
0 q, xg, xx1

y “ ´xx▷0 g, x
1
y,

▷´1 : G0 Ñ EndpG˚
´1q, xf, x ¨ yy “ ´xx▷´1 f, yy,

Υ : G´1 Ñ HompG˚
´1,G˚

0 q, xf, y ¨ xy “ ´xΥyf, xy (5.5.4)
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and

▷1 : G2b
0 Ñ EndpG˚

q´1 “ HompG˚
´1,G˚

0 q, xf, T px, x1, x2
qy “ `x▷x,x

1

1 pfq, x2
y. (5.5.5)

Notice a plus sign occurs here, in contrast with the rest of the components defined in (5.5.4).
This is because we have dualized two elements in G, instead of one.

Analogously, we have the coadjoint back-action ◁̄ “ pp◁0,◁´1q, Υ̃q of G˚ on G, which we
write from the right5.

Due to (5.5.2), the components of a weak 2-representation are not genuine algebra repre-
sentations in general, but only up to homotopy. We have in general that

pxx1
q▷0 g “ x▷0 px1 ▷0 gq `▷x,x

1

1 pt˚gq, pxx1
q▷´1 f “ x▷´1 px1 ▷´1 fq ` t˚ ▷x,x

1

1 pfq,

where t˚ is the dual t-map on G˚, and

Υx¨yf “ x▷0 pΥyfq `▷x,ty1 pfq, Υy¨xf “ Υypx▷´1 fq `▷ty,x1 pfq.

Of course, these components reduce to genuine strict algebra representations if ▷1 “ 0 or t “ 0,
which simplifies the situation considerably.

1- and 2-morphisms on the weak 2-representation 2-category. With Definition 5.5.3
in hand, we are now ready to define the morphisms on the weak 2-representations. Let
ρ “ pϱ, ρ0, ρ1q and ρ1 “ pϱ1, ρ1

0, ρ
1
1q denote two weak 2-representations on V,W P 2RepT

pGq,
respectively.

Definition 5.5.4. A weak 2-intertwiner i “ pI, i1, i0q : V Ñ W consist of a 2-vector space
homomorphism pi1, i0q : V Ñ W together with a collection of invertible cochain homotopies
Ix,i : V0 Ñ W´1 satisfying

BIx,i “ i0 ˝ ρ00pxq ´ ρ10
0 pxq ˝ i0, Ix,iB “ i1 ˝ ρ10pxq ´ ρ11

0 pxq ˝ i1

for each x P G0, as well as
Ity,i “ i1 ˝ ρ1pyq ´ ρ1

1pyq ˝ i0

for each y P G´1. Moreover, I‚,i trivializes ϱ ´ ϱ1 as a Hochschild 2-cocycle, in the sense that
for each x, x1 P G0,

idi bϱpx, x1
q ´ ϱ1

px, x1
q b idi “ idρ0pxq bIx1,i ´ Ixx1,i ` Ix,i b idρ0px1q, (5.5.6)

where idi : i ñ i denotes the identity cochain homotopy on the intertwiner i.
5This means that we have, for instance, xg ¨˚ f, xy “ ´xg, x◁´1 fy and xf ¨˚ g, xy “ ´xf, xΥ̃gy.
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In other words, a weak 2-intertwiner i : V Ñ W is such that the following diagrams

V´1 V0

W´1 W0

V´1 V0

W´1 W0

i1

B

ρ10

i0

ρ00

B1

ρ11
0 ρ10

0

B

i1 i0

B1

,

V0 V´1

W0 W´1

ρ1

i0 i1

ρ1
1

(5.5.7)

commute up to a natural invertible 2-morphism given by I‚,i. By definition, we have I0,i “

Iη0,i “ 0 where η0 is the unit of G0.
Now let i, i1 : ρ Ñ ρ1 denote two weak 2-intertwiners, we have the following.

Definition 5.5.5. A modification µ : i ñ i1 between two weak 2-intertwiners is a G-
equivariant cochain homotopy

V´1 V0

W´1 W0

B

i1´i11
µ

i0´i10

B1

, (5.5.8)

where µ intertwines between ρ1pyq, ρ1
1pyq for each y P G´1, as cochain homotopies. Moreover, µ

trivializes I¨,i ´ I¨,i1 as a Hochschild 1-cocycle, in the sense that

Ix,i ´ Ix,i1 “ idρ0pxq bµ ´ µ (5.5.9)

for all x P G0, as a relation between cochain homotopies.

We shall denote by 2RepT
pGq the 2-category of weak 2-representations of the weak 2-

bialgebra pG, T q, consisting of weak 2-representation pV, ρq objects, weak 2-intertwiners i as
1-morphisms and modifications µ as 2-morphisms. We devote the remainder of this section to
proving that 2RepT

pGq forms a monoidal 2-category.

5.5.2 Monoidal structure on the 2-representations

Recall that vector space cochain complexes come equipped with natural notions of direct sum
‘, as well as tensor product b, which satisfy the distributive law

V b pW ‘ Uq “ pV b W q ‘ pV b Uq,

where V,W,U are vector space cochains. For 2-vector spaces (or equivalently two-term cochain
complexes of vector spaces [98]), the direct sum is given simply by

V ‘ W “ V´1 ‘ W´1
B‘B1

ÝÝÑ V0 ‘ W0,
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while the tensor product is given by the following 3-term complex (cf. [95])

V b W “ V´1 b W´1
looooomooooon

deg“´2

D`

ÝÝÑ V´1 b W0 ‘ V0 b W´1
looooooooooooomooooooooooooon

deg“´1

D´

ÝÝÑ V0 b W0
looomooon

deg“0

, (5.5.10)

where D˘ “ ˘1 b B1 ` B b 1 is the tensor extension of the differentials B : V´1 Ñ V and
B1 : W´1 Ñ W0.

We endow the direct sum and tensor product structure on 2-representations of G in the
same way as above. Note the direct double G2‘ and the tensor square G2b of a strict 2-algebra
G also have the same structure.

Direct sums. For the direct sum 2-representation, this is simply accomplished by extending
Definition 5.5.3 to a direct sum of 2-algebra homomorphisms

pϱ, ρq ‘ pϱ1, ρ1
q “ pϱ ‘ ϱ1, ρ ‘ ρ1

q : G ‘ G Ñ EndpV q ‘ EndpW q.

In particular, the direct sum V ‘ W of 2-representations of G is given by the components

pρ ‘ ρ1
q
0
0 “ ρ00 ‘ ρ10

0, pρ ‘ ρ1
q
1
0 “ ρ10 ‘ ρ11

0, pρ ‘ ρ1
q1 “ ρ1 ‘ ρ1

1

such that the square (5.5.1) commutes,

pρ ‘ ρ1
q0 ˝ pt ‘ tq “ pδ ‘ δ1

q ˝ pρ ‘ ρ1
q1,

where δ, δ1 are the differentials of the two 2-algebras EndpV q,EndpW q, respectively. The zero
2-representation under direct sum is of course the trivial complex 0 Ñ 0.

Tensor product

As in the 1-bialgebra case, the tensor product of 2-representations is accomplished by precom-
posing with the coproduct. However, the graded components of the coproduct ∆ “ ∆´1`∆0 in
(5.1.5), as well as ∆1

0 in (5.1.8), allows us to define the tensor product between 2-representations
V b W

ρV bW pxq “
`

pρV q0 b pρW q0
˘

˝ ∆1
0pxq, x P G0, (5.5.11)

as well as its weak component (cf. Definition 5.5.3)

ϱV bW px, x1
q “ ϱV px̄p1q, x̄

1
p1qq b ϱW px̄p2q, x̄

1
p2qq, x, x1

P G0.

We also have the tensor product between a 2-intertwiner i : V Ñ U and a 2-representation

ρibW pxq “
`

pρUq1 ˝ i b pρW q0
˘

˝ ∆l
0pxq ` p´1q

deg`

i ˝ pρV q0 b pρW q1
˘

˝ ∆r
0pxq,

ρWbipxq “
`

pρW q0 b pρUq1 ˝ i
˘

˝ ∆r
0pxq ` p´1q

deg`

pρW q1 b i ˝ pρV q0
˘

˝ ∆l
0pxq (5.5.12)
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for each x P G0, where the sign depends on the degree of the components in (5.5.10). Lastly,
the tensor product between 2-intertwiners i : V Ñ U, j : W Ñ T is given by just

ρibjpyq “
`

pρUq1 ˝ i b pρT q1 ˝ j ` p´1q
degi ˝ pρV q1 b j ˝ pρW q1

˘

˝ ∆´1pyq (5.5.13)

for each y P G´1. This defines the invertible natural 2-morphism Iibj,‚ (cf. Definition 5.5.4).
The fact that (5.5.11), (5.5.12), (5.5.13) define genuine 2-representations (up to the homo-

topy ϱ; cf. Definition 5.5.3 and (5.5.2)), for instance

δϱV bW px, x1
q “ ρV bW pxx1

q ´ ρV bW pxqρV bW px1
q,

requires the 2-bialgebra axioms (5.1.16).

Tensor unit. Now if G is a unital 2-bialgebra, then there is a tensor unit, denoted by I P

2RepT
pGq given by the ground field complex k

1
ÝÑ k, and a unit 2-intertwiner given by the

identity idI : 1 Ñ 1, such that G acts on them through multiplication of the counit ϵ,

ρIpxq “ ϵ0pxq, ρidI pyq “ ϵ´1pyq.

From (5.5.2), the corresponding component ϱ “ id for the tensor unit I is clearly the identity
2-morphism. In according with (5.5.11), (5.5.12), (5.5.13), the condition (5.1.12) then implies
that the left- and right-unitor morphisms in 2RepT

pGq are all 1- and 2-isomorphisms. For
instance, (5.1.13) implies

ρV b1 “ ρV “ ρ1bV ,

whence V b 1, 1 b V and V coincides as 2-representations.
Due to this, all coherence diagrams in 2RepT

pGq concerning the unitors, such as the ho-
motopy triangle and the zig-zag axioms [79, 81], are trivially satisfied, and hence we will not
directly prove them. The conditions (5.1.12), (5.1.13) can of course be easily relaxed to give
non-trivial coherent unitors, but we shall not consider this here.

Naturality and Gray property of the tensor product

Recall the space EndpV q´1 is modelled by cochain homotopies, which can be interpreted as
"endomorphisms" on EndpV q0. Using this perspective, we will prove the following key results.

Lemma 5.5.1. Let i : V Ñ U denote a 2-intertwiner. We have the following diagrams

V b W V b W

ρibW
ùùùñ

U b W U b W

ρV bW

i i

ρUbW

,

W b V W b V

ρWbi
ùùùñ

W b U W b U

ρWbV

i i

ρWbU
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in 2RepT
pGq.

Proof. Let us focus first on the left diagram. The goal is to show that ρibW defines a cochain
homotopy which fits into the following diagram

V´1 b W´1 V´1 b W0 ‘ V0 b W´1 V0 b W0

U´1 b W´1 U´1 b W0 ‘ U0 b W´1 U0 b W0

D` D´

ρibW
ρibW

D` D´

,

where the horizontal maps are the differentials given in (5.5.10), and the vertical maps are
various components of ρV bW ˝ i ´ i ˝ ρV bW .

The key is the commutation relation (5.5.1), which allows us to write

δpρ1pyqq “ pρ1pyqB, Bρ1pyqq “ pρ10ptyq, ρ00ptyqq

for each y P G´1, as well as the definition (5.1.8) of ∆1
0. Directly computing, we have for the

rightmost triangle

D´ρibW “ BUpρUq1pxlp1qq ˝ i b pρW q
0
0px

l
p2qq ´ p´1q

degi ˝ pρV q0pxrp1qq b BW pρW q
0
0px

r
p2qq

“ pρUq
0
0ptx

l
p1qq ˝ i b pρW q

0
0pxlp2qq ´ i ˝ pρV q

0
0pxrp1qq b pρW q

0
0ptxrp2qq

“ ρUbW ˝ i ´ i ˝ ρV bW

as maps on V0 b W0 (with deg = 0), and similarly we have for the leftmost triangle

ρibWD
`

“ pρUq1px
l
p1qqBU ˝ i b pρW q

1
0px

l
p2qq ` p´1q

degi ˝ pρV q0pxrp1qq b pρW q
0
0pxrp2qqBW

“ pρUq
1
0ptx

l
p1qq ˝ i b pρW q

1
0pxlp2qq ´ i ˝ pρV q

1
0pxrp1qq b pρW q

1
0ptxrp2qq

“ ρUbW ˝ i ´ i ˝ ρV bW

as maps on V´1 b W´1 (with deg = -1).
Now consider the middle section. We need to compute

D`ρibW “ pρUq
1
0ptxlp1qq ˝ i b pρW q

0
0px

l
p2qq ´ i ˝ pρV q

0
0px

r
p1qq b pρW q

1
0ptx

r
p2qq,

ρibWD
´

“ pρUq
0
0ptxlp1qq ˝ i b pρW q

1
0px

l
p2qq ´ i ˝ pρV q

1
0px

r
p1qq b pρW q

0
0ptx

r
p2qq,

and sum them to find

D`ρibW ` ρibWD
´

“
“

pρUq
1
0ptx

l
p1qq b pρW q

0
0px

l
p2qq ` pρUq

0
0ptxlp1qq b pρW q

1
0pxlp2qq

‰

˝ i

´ i ˝
“

pρV q
0
0pxrp1qq b pρW q

1
0ptxrp2qq ` pρV q

1
0pxrp1qq b pρW q

0
0ptxrp2qq

‰

“ ρUbW ˝ i ´ i ˝ ρV bW

as maps on V´1 b W0 ‘ V0 b W´1. The other diagram is treated identically.
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We now show that (5.5.13) is in fact not independently defined.

Lemma 5.5.2. If j : W Ñ T is another 2-intertwiner, then "i b j" decomposes as two 2-
isomorphic expressions

i b j “ i b T ˝ V b j – U b j ˝ i b W. (5.5.14)

The homotopy Iibj,‚ “ IibidW ˚ IidV bj also decomposes accordingly.

Proof. What we need to show is that ρibj “ pρibT ˚ρV bjq˝ t “ pρUbj ˚ρibW q˝ t as 2-morphisms.
Recall cochain homotopies q : f ñ g, p : g ñ h in 2VecthBC compose by p ˚ q “ pBUq : f ñ h,
where U is the source 2-vector space of the cochain map g. Indeed, we have

BW pp ˚ qq “ pBWpq ˝ pBUqq “ pg0 ´ h0q ˝ pf0 ´ g0q,

pp ˚ qqBV “ ppBUq ˝ pqBV q “ pg´1 ´ h´1q ˝ pf´1 ´ g´1q

as desired, where W is the target of h and V is the source of f . Notice this is exactly how
elements in EndpV q´1 compose, A ˚ A1 “ AδA.

The goal is to prove that D˘ρibjpyq in fact decomposes as described above for each y P G´1.
This follows from the coequivariance condition (5.1.10). By direct computation, precomposing
(5.5.12) yields (here we neglect the 2-vector space subscripts for brevity)

ρibW ˝ t “ pρ1i b pρ0tq ` p´1q
degipρ0tq b ρ1q ˝ ∆´1

“ pρ1i b Bρ1 ` p´1q
degipBρ1q b ρ1q ˝ ∆´1,

ρUbj ˝ t “ ppρ0tq b ρ1j ` p´1q
degρ1 b ipρ0tqq ˝ ∆´1

“ ppρ1Bq b ρ1j ` p´1q
degρ1 b jpρ1Bqq ˝ ∆´1,

where we have used (5.5.1) to commute the t-map past the 2-representations to the differential
B. Using the Sweeder notation (5.1.6) for ∆´1, we compute their graded composition to be

pρUbjqptyq ˚ pρibW qptyq “ pρ1pyp1qqBqρ1pyp1qqi b ρ1pyp2qqjpBρ1pyp2qqq

` p´1q
degρ1pyp1qqpiBρ1pyp1qqq b jpρ1pyp2qqBqρ1pyp2qq

“ pρ1pyp1qq ˚ ρ1pyp1qqqi b jpρ1pyp2qq ˚ ρ1pyp2qqq

` p´1q
deg

pρ1pyp1qq ˚ ρ1pyp1qqqi b jpρ1pyp2qq ˚ ρ1pyp2qqq

“ pρ1i b ρ1j ` p´1q
degiρ1 b jρ1q ˝ ∆´1pyq “ ρibjpyq

as desired, where we have noted the property i´1pρV q1 “ pρUq1i0 of the 2-intertwiners i, j to
permute them past the ρ’s. This proves that the 2-algebra homomorphisms ρibj “ ρibT ˚ ρV bj

coincide. A similar argument shows that the 2-algebra homomorphisms ρibj “ ρUbj ˚ρibW also
coincide.

This is not sufficient to imply that i b T ˝ V b j “ U b j ˝ i b W , however. Indeed, the
weak component ϱ of the two decomposed 2-representations in general may differ. After some
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computations, one can show that we have

ϱpibT q˝pV bjq ˝ ∆0pxq “ ϱptxlp1q, x
r
p1qq b ϱpxlp2q, tx

r
p2qq ` p´1q

degϱpxrp1q, tx
l
p1qq b ϱptxrp2q, x

l
p1qq,

ϱpUbjq˝pibW q ˝ ∆0pxq “ ϱpxrp1q, tx
l
p1qq b ϱptxrp2q, x

l
p1qq ` p´1q

degϱptxlp1q, x
r
p1qq b ϱpxlp2q, tx

r
p2qq.

(5.5.15)

The difference ϱpibT q˝pV bjq ˚ ϱ´1
pUbjq˝pibW q

between these 2-morphisms is what gives rise to the
2-isomorphism i b T ˝ V b j – U b j ˝ i b W .

The fact that the tensor product of 1-morphisms decompose into two 2-isomorphic "mixed"
tensor products is a signature property of Gray-enriched categories [146, 88]. We call the
property that "structures on the 1-morphisms are determined by the mixed structure, together
with appropriate coherence 2-isomorphisms" the Gray property.

These lemmas are important, as its proof techniques will be used repeatedly in what follows.

5.5.3 Monoidal associators

In this section, we shall focus on the associator morphisms attached to the 2-representations
in 2RepT

pGq, as they play a direct role in the main theorem. Recall from §5.5.2 that the
tensor product on 2ReppGq is given by the coproduct ∆. The associator morphisms a are
therefore given by the coasscociator ∆1 : G0 Ñ G3b

´1 attached to the coproduct in G, and not
the Hochschild 3-cocycle T .

However, the data ∆1, T are dual to each other by Proposition 5.3.1, hence if G is self-dual
(like the weak (skeletal) quantum 2-double as we constructed in §5.4), they in fact constitute
the same data. As such we shall denote the weak 2-representation 2-category by 2RepT

pGq.
We shall neglect the tensor product notation b in the following.

We begin by constructing the associator 2-morphism aijk : pi b jq b k ñ i b pj b kq on
the triple i : V Ñ V 1, j : W Ñ W 1, k : U Ñ U 1 of 2-intertwiners. By (5.3.3), we see that the
following quantity

aijk “ ppρV 1q1˝ibpρW 1q1˝jbpρU 1q1˝k`p´1q
degi˝pρV q1bj˝pρW q1bk˝pρUq1q˝p∆1˝tq (5.5.16)

defines a cochain homotopy that fits into the following equation ρpijqk ´ ρipjkq “ aijk, which
induces a 2-morphism (also denoted by aijk) between the 2-intertwiners

aijk : pijqk ñ ipjkq.

Secondly, (5.3.3) implies that the following quantities based on Dt∆1,

aV jk “ ppρV q0 b pρW 1q1 ˝ j b pρU 1q1 ˝ k ` p´1q
deg

pρV q0 b j ˝ pρW q1 b k ˝ pρUq1q

˝pt b 1 b 1q∆1,

aiWk “ ppρV 1q1 ˝ i b pρW q0 b pρU 1q1 ˝ k ` p´1q
degi ˝ pρV q1 b pρW q0 b k ˝ pρUq1q
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˝p1 b t b 1q∆1,

aijU “ ppρV 1q1 ˝ i b pρW 1q1 ˝ j b pρUq0 ` p´1q
degi ˝ pρV q1 b j ˝ pρW q1 b pρUq0q

˝p1 b 1 b tq∆1, (5.5.17)

give rise to the associators for the following tensor products,

aV jk : pV jqk ñ V pjkq, aiWk : piW qk ñ ipWKq, aijU : pijqU ñ ipjUq

for the mixed tensor products defined by (5.5.12). Thirdly, (5.3.4) implies that the following
quantities based in Dtr2s∆1,

aVWk “ ppρV q0 b pρW q0 b pρU 1q1 ˝ k ` p´1q
deg

pρV q0 b pρW q0 b k ˝ pρUq1q

˝pt b t b 1q∆1,

aiWU “ ppρV 1q1 ˝ i b pρW q0 b pρUq0 ` p´1q
degi ˝ pρV q1 b pρW q0 b pρUq0q

˝p1 b t b tq∆1,

aV jU “ ppρV q0 b pρW 1q1 ˝ j b pρUq0 ` p´1q
deg

pρV q0 b j ˝ pρW q1 b pρUq0q

˝pt b 1 b tq∆1, (5.5.18)

serve as the associators

aVWk : pVW qk ñ V pWkq, aV jU : pV jqU ñ V pjUq, aiWU : piW q ñ ipWUq,

Notice that these quantities we have defined so far are all cochain homotopies/2-mophisms in
2RepT

pGq, due to the appearance of ρ1 in their tensor products.
Lastly, (5.3.5) allows us to define the associator 1-morphism,

aVWU “ ppρV q0 b pρW q0 b pρUq0qpΦq, (5.5.19)

with Φ ” pt b t b tq∆1 : G0 Ñ G3b
0 , which induces an invertible 1-morphism

aVWU : pVW qU Ñ V pWUq

that intertwines between ρpV bW qbU and ρV bpWbUq.
The adjoint associator 2-morphism a: is implemented by minus the corresponding cochain

homotopy. For (5.5.19), however, the adjoint morphism a:

VWU is given by the inverse Φ´1.

The pentagon relation and naturality of the associator. We now prove the following.

Lemma 5.5.3. Suppose the 3-cocycle T “ 0 is trivial for the moment. The pentagon rela-
tion for the associators a arising from (5.5.16), (5.5.17), (5.5.18), (5.5.19) follows from the
2-coassociativity condition (5.3.5) for ∆1.

Proof. Consider first (5.5.16). We precompose (5.3.5) with t and reconstruct the associators
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corresponding to each term according to the definition,

pidbp∆1 ˝ tqq ˝ ∆´1 ⇝ idi bajkl, pp∆1 ˝ tq b idq ˝ ∆´1 ⇝ aijk b idl,

p1 b ∆´1 b 1q ˝ ∆1 ˝ t⇝ aipjkql, ´p∆´1 b 1 b 1q ˝ ∆1 ˝ t⇝ a:

pijqkl,

´p1 b 1 b ∆´1q ˝ ∆1 ˝ t⇝ a:

ijpklq,

where idi : i ñ i denotes the identity modification on the 2-intertwiner i. Now note that, by
coequivariance (5.1.10) Dt ˝ ∆´1 “ ∆0 ˝ t, we have

pidbp∆1 ˝ tqq ˝ ∆´1 “ pidb∆1q ˝ ∆l
0 ˝ t, pp∆1 ˝ tq b idq ˝ ∆´1 “ p∆1 b idq ˝ ∆r

0 ˝ t,

whence the pentagon relation

ppijqkql

pijqpklq pipjkqql

ipjpklqq ippjkqlq

aijk idla:

pijqkl

aipjkql

a:

ijpklq

idi ajkl

(5.5.20)

is equivalently expressed as

0 “ p1 b ∆´1 b 1q ˝ ∆1 ˝ t ´ p∆´1 b 1 b 1q ˝ ∆1 ˝ t ´ p1 b 1 b ∆´1q ˝ ∆1 ˝ t

`p∆1 b 1q ˝ ∆r
0 ˝ t ` p1 b ∆1q ˝ ∆l

0 ˝ t

“ r´∆´1 ˝ ∆1 ` ∆1 ˝ ∆0s ˝ t,

which is nothing but the 2-coassociativity (5.3.5) precomposed with t. Now by the coPeiffer
identity ∆1

0 “ Dt∆0 (5.1.8), the same argument shows that the pentagon relations for the rest
of the associator 2-morphisms (5.5.17), (5.5.18) are equivalent to applying the t-map Dt, Dtr2s

to (5.3.5).
Similarly, under the complete t-map Dtr3s “ tbtbt, the 2-coasscociativity condition (5.3.5)

becomes
∆1

0 ˝ Φ “ Φ ˝ ∆1
0, (5.5.21)

which by (5.5.11) implies the pentagon relation for the associator 1-morphism (5.5.19).

We shall show in Theorem 5.7.1 that T gives rise to the pentagonator 2-morphism π in
2RepT

pGq, which witnesses the pentagon relations (5.5.20) up to chain homotopy.
Recall from Proposition 5.3.1 that, for a self-dual weak 2-bialgebra, (5.3.5) follows from

the 3-cocycle condition for the Hochschild 3-cocycle T . Thus the entirety of the 2-bialgebra
(or 2-Hopf algebra) structure plays a central role, precisely as one would expect in Tannakian
duality [38, 1].
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Lemma 5.5.4. The associator 2-morphism (5.5.18) fits into diagrams of the form

pVW qU V pWUq

aV Wk
ùùùùñ

pVW qU 1 V pWU 1q

aV WU

k k

aV WU 1

(5.5.22)

together with the associator morphism (5.5.19). Moreover, the associator 2-morphisms (5.5.16),
(5.5.17) are completely determined by (5.5.18), (5.5.19).

Proof. The first statement follows directly from the definitions, and by using the same argument
as in the proofs of Lemma 5.5.1, and also later in Lemma 5.6.2. Similarly, by adapting the
proof of Lemma 5.5.2, we see that (5.5.16), (5.5.17) admit the following decompositions

aijk “ paV 1W 1k ¨ aijUq ˝ t “ . . . etc., DδaijU “ aV 1jU ¨ aiWU “ . . . etc.,

where Dδ is the tensor triple of the t-map δ on EndpV q, and "etc." means permutations of the
subscripts. This proves the second statement.

This naturaliy property shall become very important later in §5.6.2.

Remark 5.5.3. Suppose the endomorphism Φ in (5.5.19) is inner, in the sense that it is given
by conjugation with an element — also denoted Φ — of G3b

0 , then the coassociativity condition
becomes

pidb∆1
0q ˝ ∆1

0 “ Φpp∆1
0 b idq ˝ ∆1

0qΦ
´1,

and the 2-coassociativity condition (5.5.21) becomes

ppidb idb∆1
0qΦqpp∆1

0 b idb idqΦq “ pΦ b η0qppidb∆1
0 b idqΦqpη0 b Φq,

where η0 is the unit of G0. In other words, pG0,∆
1
0,Φq in fact forms a quasi-bialgebra [147] of

Drinfel’d.

We have established 2RepT
pGq as a monoidal 2-category. We now turn to the braiding

structure in the following.

5.6 The braided monoidal 2-category of 2-representations

We now turn to the braiding structure on the weak 2-representations afforded by the 2-R-matrix
R. We shall first examine some of the basic properties of the braiding map in §5.6.1. We will
then study how such braiding maps interact with the weakened monoidal structures of the
2-representations in §5.6.2.
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Let pG, ¨,∆,Rq denote a strict quasitriangular 2-bialgebra as defined in §5.2.4. Recall that
a 2-R-matrix R “ Rl ` Rr on the 2-bialgebra G consist of the following components

Rl
“ Rl

p1q b Rl
p2q P G´1 b G0, Rr

“ Rr
p1q b Rr

p2q P G0 b G´1

for which (5.2.25), (5.2.26), (5.2.27) are satisfied. The equivariance condition, (5.2.27), unam-
biguously defines an element

R “ Rr
p1q b tRr

p2qp” Rr
q “ tRl

p1q b Rl
p2qp” Rl

q P G0 b G0, (5.6.1)

where t : G´1 Ñ G0 is the t-map on G. Notice by applying the t-map (at every leg in G´1)
to (5.2.28), we obtain two identical expressions that are equivalent to the usual 1-Yang-Baxter
equations

R12R13R23 “ R23R13R12

for the degree-0 R-matrix (5.6.1).

5.6.1 The braiding maps and their naturality

We shall use these components to define the braiding b on 2RepT
pGq. Take two 2-representations

V,W of G; we define the braiding map between V,W by

bVW : V b W Ñ W b V, bVW “ flip ˝ ρ0pRq (5.6.2)

where ρ0 “ pρV q0 b pρW q0 on V b W , and R P G0 b G0 is given in (5.6.1). By (5.5.11), the
braiding between the tensor product 2-representations are then given by

bV pWbUq “ flip ˝ ρ0pp1 b ∆1
0qRq, bpV bW qU “ flip ˝ ρ0pp∆1

0 b 1qRq.

If W “ V are the same 2-representations of G, then we have the self-braiding map bV “ bV V .
On the other hand, we define the mixed braiding map between a 1-morphism i : V Ñ U and an
object W by

biW “ flip ˝
“

i ˝ ρ10pRl
q ` p´1q

degρ01pRr
q ˝ i

‰

,

bWi “ flip ˝
“

i ˝ ρ01pRr
q ` p´1q

degρ10pRl
q ˝ i

‰

, (5.6.3)

where we have used the shorthand ρ10 “ pρV q1 b pρW q0 and ρ01 “ pρUq0 b pρW q1. The sign
p´1qdeg depends on the degree of the complex V b W ; more explicitly, biW gives two maps

b1iW : V0 b W0 Ñ pW´1 b U0q ‘ pW0 b U´1q,

b2iW : pV´1 b W0q ‘ pV0 b W´1q Ñ W´1 b U´1

on the tensor product V b W , the latter of which carries a non-trivial sign p´1qdeg “ ´1;
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similarly for bWi. Now in the spirit of Lemma 5.5.2, we shall define the braiding maps bij
between two 1-morphisms i, j by the decomposition formula6

bij “ bjU ¨ bWi – bT i ¨ bjV ,

$

&

%

i : V Ñ U

j : W Ñ T
. (5.6.4)

Let i : V Ñ V 1, j : U Ñ U 1 denote any 2-intertwiner. The above definition (5.6.3), together
with (5.5.12) then allows us to form

bpibW qj “ flippV 1bU 1qbW ˝
“

pi b jqρ101pp∆l
0 b 1qRr

q ` p´1q
degρ011pp∆r

0 b 1qRr
q ˝ pi b jq

‰

,

bipWbjq “ flipWbpV 1bU 1q ˝
“

pi b jqρ101ppidb∆r
0qRl

q ` p´1q
degρ110pp1 b ∆l

0qRl
q ˝ pi b jq

‰

.

By applying strict 2-representations to (5.2.25), we obtain the following strict higher hexagon
relations,

bpibW qj “ idi bbWj ˚ bWi b idj, bipWbjq “ idi bbjW ˚ biW b idj, (5.6.5)

in which the associator isomorphisms a have been suppressed. We will reinstate them later in
§5.6.2.

With the definitions (5.6.2), (5.6.3) in hand, we now need to prove some very important
lemmas.

Lemma 5.6.1. The maps bVW and biW , bWi are respectively 2-intertwiners and modifications
in 2ReppGq for all 2-representation V,W and 2-intertwiner i iff (5.2.26) is satisfied.

Proof. Note for each 2-representation ρ, the flip map, flip : V bW Ñ W b V is a 2-intertwiner
between ρ and ρ1 “ ρ ˝σ. Moreover, we interpret the cochain homotopy defined by pρV bW q10pxq

for each x P G0 as a modification between the action pρV bW q00pxq and itself, treated as a
2-intertwiner; similarly for ρ1. Therefore, in order for the mixed braiding map biW to be a
modification in 2ReppGq, it must commute with the cochain homotopy pρV bW q10pxq — namely

biW ˚ pρV bW q
1
0pxq “ pρ1

WbV q
1
0pxq ˚ biW ,

where ˚ denotes the composition of cochain homotopies. With ρ1
WbV “ pρW b ρV q ˝ σ ˝ ∆, this

is satisfied by definition (5.6.2) of biW iff

Rr∆r
0pxq “ σp∆l

0pxqqRr, Rl∆l
0 “ σp∆r

0pxqqRl, (5.6.6)

which is precisely (5.2.26).
6Alternatively, provided there exists a well-defined R-matrix R´1 P G2b

´1 for the degree-(-1) coproduct ∆´1,
satisfying ptb 1 ` 1 b tqR´1 “ R, we can define

bij “ flip ˝
“

pib jq ˝ ρ11pR´1q ` p´1qdegρ11pR´1q ˝ ib jq
‰

such that (5.6.4) follows from the definition of R´1.
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Similarly, in order for the braiding map bVW to be a 2-intertwiner, it must commute with
the action pρV bW q00pxq for each x P G0:

bVW ˝ pρV bW q
0
0pxq “ pρ1

WbV q
0
0pxq ˝ bVW ,

where ˝ denotes the composition of 2-intertwiners.
First if the 2-representation ρ were strict, then this translates to the algebraic condition

σ∆1
0pxqR “ R∆1

0pxq,

which in fact follows also from (5.2.26). To see this, we recall the definitions (5.6.1) of R and
(5.1.8) of the coproduct ∆1

0, and simply apply tb 1 and 1b t respectively to (5.2.26). The fact
that t is an algebra homomorphism and that pt b 1q ˝ σ “ σ ˝ p1 b tq proves the statement.

Second, if the 2-representation ρ were weak, then in general the component ϱ gives rise to
a possibly non-trivial invertible natural 2-morphism

ϱpσ∆1
0pxq, Rq ´ ϱpR,∆1

0pxqq.

We will not need this 2-morphism in the following so we shall suppose IbV W,‚ “ id.

Notice this lemma implies that pG0,∆
1
0, Rq forms an ordinary quasitriangular 1-bialgebra. We

can then leverage the well-known result in the literature [117, 39] that the Yang-Baxter equation
for R implies the hexagon relation for the braiding structure bVW at the level of the objects.

Next, we need to prove the naturality of b with respect to the 2-intertwiners i : V Ñ U . We
shall do this via the same technique as Lemma 5.5.1.

Lemma 5.6.2. Consider the intertwiners i : V Ñ U and j : U Ñ T . The mixed braiding maps
biW , bWi fit into the following diagrams

V b W W b V

U b W W b U

bV W

i i
biW

bUW

,

W b V V b W

W b U U b W

bWV

i i
bWi

bWU

in 2RepT
pGq. Moreover, bjW ˚ biW “ bj˝i,W .

Proof. For brevity, we shall suppress the subscripts V, U,W on the 2-representations. Recall
the two equivalent ways Rr, Rl to express R in (5.6.1). We can then write

bUW ˝ i “ flip ˝ ρ0pR
r
q ˝ i, i ˝ bVW “ i ˝ flip ˝ ρ0pRl

q.

Consider the left diagram. As 2-morphisms in 2ReppGq are given by cochain homotopies,
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we need to show that the definition (5.6.3) of the mixed braiding map biW “ b1iW ` b2iW fits into
the following diagram

V´1 b W´1 V´1 b W0 ‘ V0 b W´1 V0 b W0

W´1 b U´1 W´1 b U0 ‘ W0 b U´1 W0 b U0

D` D´

b2iW

b1iW

D` D´

, (5.6.7)

where the vertical arrows are the various graded components of bUW ˝ i ´ i ˝ bVW , and the
horizontal arrows are the differentials on the three-term tensor product complex (5.5.10); for
instance, the ones at the top row are given by D˘ “ 1 b BW ˘ BV b 1.

As in Lemma 5.5.1, the key towards this is the commutative square (5.5.1), which states
that for each y P G´1 we have

pρ1pyqB, Bρ1pyqq “ δpρ1qpyq “ pρ0qpTyq “ pρ10pTyq, ρ00pTyqq.

Let us examine first the commutative triangle on the ends of (5.6.7). First, for the right-most
triangle, we compute in terms of the components b1,2iW that

D´b1iW “ p1 b BV ´ BW b 1q ˝ flip ˝ ρpRq

“ flip ˝
“

ρ00pRr
p1qq b BW pρ1pRr

p2qqq ˝ i ´ i ˝ iBV pρ1pRl
p1qqq b ρ00pRl

p2qq
‰

“ flip ˝
“

ρ00pRr
p1q b tRr

p2qq ˝ i ` i ˝ ρ00p´tRl
p1q b Rl

p2qq
‰

“ bUW ˝ i ´ i ˝ bVW

as maps on V0 b W0. Similarly for the left-most triangle, we have

b2iWD
`

“ flip ˝ ρpRq ˝ p1 b BW ` BV b 1q

“ flip ˝
“

ρ10pRr
p1qq b pρ1pRr

p2qqqBW ˝ i ´ i ˝ pρ1pRl
p1qqqBV b ρ10pRl

p2qq
‰

“ flip ˝
“

ρ10pRr
p1q b tRr

p2qq ˝ i ´ i ˝ ρ10ptRl
p1q b Rl

p2qq
‰

“ bUW ˝ i ´ i ˝ bVW

as maps V´1 b W´1. Note the sign p´1qdeg in (5.6.3) is non-trivial here as R acts on the
degree-(-1) part of the tensor product V b W .

We now turn to the middle section of (5.6.7). We are required to compute the following,

D`b2iW “ p1 b BV ` BW b 1q ˝ flip ˝ ρpRq

“ flip ˝
“

ρ10pRr
p1qq b BW pρ1pRr

p2qqq ˝ i ´ i ˝ BV pρ1pRl
p1qqq b ρ10pRl

p2qq
‰

“ flip ˝
“

ρ10pRr
p1qq b ρ00ptRr

p2qq ˝ i ´ i ˝ ρ00ptRl
p1qq b ρ10pRl

p2qq
‰

,

b1iWD
´

“ flip ˝ ρpRq ˝ p1 b BW ´ BV b 1q

“ flip ˝
“

ρ00pRr
p1qq b ρ1pRr

p2qqBW ˝ i ´ i ˝ ρ1pRl
p1qqBV b ρ00pRl

p2qq
‰

“ flip ˝

”

ρ00pRr
p1qq b ρ10ptRr

p2qq ˝ i ´ i ˝ ρ10ptR
q

p1q
b ρ00pRl

p2qq

ı

.
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Summing these and rearranging terms gives, as maps on V´1 b W0 ‘ V0 b W´1,

flip ˝
“

ρ00pRr
p1qq b ρ10ptRr

p2qq ` ρ10pRr
p1qq b ρ00ptRr

p2qq
‰

˝ i (5.6.8)

´ flip ˝ i ˝
“

ρ10ptRl
p1qq b ρ00pRl

p2qq ` ρ00ptRl
p1qq b ρ10pRl

p2qq
‰

“ bUW ˝ i ´ i ˝ bVW .

The diagram on the right is treated identically, and this establishes the first statement. The
second statement directly follows from the fact that pj ˝ iq ˝ ρV “ j ˝ ρU ˝ i “ ρX ˝ pj ˝ iq for
composable 2-intertwiners i, j.

In particular, since Lemma 5.6.1 proves that bVW is a 1-morphism, we can iterate the
braiding maps and define bbV WU as a 2-morphism. Lemma 5.6.2 then implies that this is a
2-morphism

pV b W q b U U b pV b W q

bbV WU

ùùùùñ

pW b V q b U U b pW b V q

bpV W qU

bV W bV W

bpWV qU

(5.6.9)

on three 2-representations V,W,U , and similarly for bV bWU
. This will be important later in

§5.6.4.

Recall the "higher-hexagon relations" (5.6.5) following directly from the identities (5.2.25).
We shall prove this in the weakened context in §5.6.2.

5.6.2 Braided 2-quasi-bialgebras; the modified hexagon relations

We now wish to keep track of the interplay between the fusion associators a and the braiding
maps b — or, algebraically, the coassociator and the 2-R-matrix — on 2RepT

pGq. We shall do
this by revisiting the universal characterization of 2-R-matrices in §5.2.4. In other words, we
are prompted to study the weak quantum 2-double DpG,Gq and its braided transposition Ψ.

Fix the weak 2-bialgebra G. Despite the skeletal construction in §5.4, we are able to form
DpG,Gq here without assuming skeletality, since we know exactly how G acts on itself by weak
2-representations — in the canonical way according to Definition 5.3.1. This fact also allows
us to identify TD as merely several copies of the 3-cocycle T on G, and in particular the
components ▷1 “ ◁1 “ T are equal.

To proceed, we recall two facts we have learned previously.

• The condition (5.2.25) in the strict case follows from dualizing the braiding relation
(5.2.19) (see (5.2.29)).

• From (5.4.4), the braiding relation (5.2.19) for the braided transposition Ψ is modified by
T whenever we invoke the associativity in K – DpG,Gq.
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Combining these means that (5.2.25) is modified by the dual of T — ie. the coassociator ∆1

— in the weakened case. More explicitly, we have

Dt∆1pxq231 ¨ p1 b ∆0qR ¨ Dt∆1pxq123 “ R13 ¨ Dt∆1pxq213 ¨ R12,

Dt∆1pxq
´1
312 ¨ p∆0 b 1qR ¨ Dt∆1pxq

´1
213 “ R13 ¨ Dt∆1pxq

´1
132 ¨ R23, (5.6.10)

for each x P G0. This bears a striking resemblance to the defining relations of a braided quasi-
bialgebra [147]; indeed, applying the double-t-map Dtr2s to (5.6.10) yields, by definition (5.6.1),
(5.5.19),

Φ231pxqp1 b ∆1
0qRΦ123pxq “ R13Φ213pxqR12, Φ´1

312pxqp∆1
0 b 1qRΦ´1

213pxq “ R13Φ
´1
132pxqR23,

(5.6.11)
which is precisely a braided quasi-bialgebra structure on pG0,∆

1
0, R,Φq; see Remark 5.5.3. This

motivates the following definition.

Definition 5.6.1. A braided 2-quasi-bialgebra7 pG,∆ “ p∆1,∆0,∆´1q, T ,Rq is a weak
2-bialgebra equipped with a universal 2-R-matrix R and a coassociator ∆1 : G0 Ñ G3b

´1 such
that (5.6.10), (5.6.11), (5.2.26) and (5.2.27) hold.

Similar to (5.6.5), by applying strict 2-representations ρ “ pρ1, ρ0q to (5.6.10), we obtain:

Lemma 5.6.3. For each X P 2RepT
pGq, we have the decompositions (the hexagon relations)

$

&

%

bpVW qX “ aXVW ˝ bV X ˝ a:

V XW ˝ bWX ˝ aVWX

bV pWXq “ a:

WXV ˝ bV X ˝ aWVX ˝ bVW ˝ a:

VWX

ðñ (5.6.11), (5.6.12)

$

&

%

bpV jqX “ aXV j ˚ idbV X
˚a:

V Xj ˚ bjX ˚ aV jX

bV pjXq “ a:

jXV ˚ idbV X
˚ajV X ˚ bV j ˚ a:

V jX

ðñ apply D`
t to (5.6.10),

$

&

%

bpiW qk “ akiW ˚ bik ˚ a:

ikW ˚ bWk ˚ aiWk

bipWkq “ a:

Wki ˚ bik ˚ aWik ˚ biW ˚ a:

iWk

ðñ (5.6.10),

as 1-/2-morphisms, and similarly for all the other possible braiding maps on tensor products.

The decomposition formula for bijk follows from these, as well as the fact that bij, aijk are all
determined by the mixed braiding/associators.

The 2-morphism bpiW qX , for instance, can be expressed in terms of the following composition
diagram

pVW qX V pWXq V pXW q pV XqW pXV qW XpVW q

pUW qX V pWXq UpXW q pUXqW pXUqW XpUW q

i

aV WX

i

bWX a:

V XW

i

bV X

i

aXV W

i i

aUWX bWX a:

UXW bUX aUV W

,

(5.6.13)
7Note that a quasi 2-bialgebra, as opposed to a 2-quasi-bialgebra here, refers to a weak 2-bialgebra with

trivial 3-cocycle T “ 0 but non-trivial coassociator ∆1.
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which has also appeared in [78]. This establishes most of the structural properties of 2RepT
pGq

as a braided 2-category, and the final ingredient to introduce is the hexagonator.

5.6.3 The braiding hexagonator

We obtained the decomposition Lemma 5.6.3 by applying a strict 2-representation to (5.6.10).
However, as we have noted previously in Remark 5.5.2, 2-representations of a weak 2-bialgebra
pG, T q cannot be strict, even when G is skeletal. As such, we must take into account the addi-
tional component ϱ : G2b

0 Ñ EndpV q´1 when deriving the decompositions above (in particular
(5.6.12)).

For the rest of the paper, it suffices to consider the case t “ 0 or t “ η0, the constant map
to the unit η0 P G0. Since ϱ is normalized and the second and third equations in (5.5.2) involve
pre-composing ϱ with t, the only non-trivial relation is

ρ0pxx
1
q ´ ρ0pxqρ0px

1
q “ δϱpx, x1

q, x, x1
P G0,

where we recall that δ : EndpV q´1 Ñ EndpV q0 is the t-map on the weak endomorphism 2-
algebra. Therefore, in order to obtain the decomposition of the form (5.6.12) from (5.6.11), we
must keep track of the terms involving ϱ that appear. For instance, we have

ρ3b
0 pR13Φ213q ´ ρ3b

0 pR13qρ3b
0 pΦ213q “ pδϱq

3b
pR13,Φ213q,

in which we notice that the second term on the left-hand side is the composition bV U ˝ aWV U .
More explicitly, translating (5.6.11) to (5.6.12) comes at a price given by a cochain homotopy

ΩV |WUpxq “ pϱV b ϱW b ϱUqpΦ231pxq, p1 b ∆1
0qRΦ123pxqq

´ pϱV b ϱW b ϱUqpR13,Φ213pxqR12q

` pϱV b ϱW b ϱUqpp1 b ∆1
0qR,Φ123pxqq

´ pϱV b ϱW b ϱUqpΦ213pxq, R12q (5.6.14)

between the two sides of (5.6.11) for each x P G0, and similarly its adjoint Ω:

V |WU . We thus
have the following diagrams

pV´1 b W´1q b U´1 pV0 b W0q b U0

W´1 b pU´1 b V´1q W0 b pU0 b V0q

B3b

ΩV |WU

B3b

,
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V´1 b pW´1 b U´1q V0 b pW0 b U0q

pU´1 b V´1q b W´1 pU0 b V0q b W0

B3b

Ω:

V |WU

B3b

,

where the vertical arrows denote the decomposition (5.6.12). These diagrams cast Ω,Ω: as the
hexagonator 2-morphisms in 2RepT

pGq:

V pWUq pWUqV

pVW qU W pUV q

pWV qU W pV Uq

bV pWUq

aWUVaV WU

bV W

ΩV |WU

aWV U

bV U

,

pVW qU UpVW q

V pWUq pUV qW

V pUW q pV UqW

bpV W qU

a:

UV Wa:

V WU

bWU

Ω:

V |WU

a:

V UW

bV U

.

In other words, the quantities ΩV |WU ,Ω
:

V |WU by definition is an invertible modification imple-
menting the two sides of the decomposition (5.6.12).

Now by the diagram (5.6.13), the 2-intertwiners i : V Ñ U and their associated mixed braid-
ing maps biW preserve these hexagon relations. This leads to the naturality of the hexagonator
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ΩV |WU with respect to 2-intertwiners such that we have (cf. diagram (2.2) in [78])

V pWXq pWXqV

UpWXq pWXqU

pVW qX pUW qX W pXUq W pXV q

pWUqX W pUXq

pWV qX W pV Xq

i i

bipWXq

bUpWXq

aWXU

aV WX

bV W

i

aUWX

bUW

ΩU |WX

ΩV |WX

i

biW

aWUX

bUX

biX

aWV X

i
bV X

i

,

and similarly for the adjoint diagrams with Ω:. The tensor product V X of 2-representations
is equipped with the tensor product ΩV X|WU hexagonator, which are by construction natural
and invertible.

Remark 5.6.1. Notice we did not define any associators for the 2-morphisms µ in 2RepT
pGq.

This is because 2-morphisms in a 2-category the tensor product µb ν “ µ ˚ ν given by compo-
sition is strictly associative; indeed, such an associator aµνλ : pµνqλ⇛ µpνλq would have to be
a 3-morphism.

By the same token, the hexagon relations involving the mixed braiding maps (ie. the
decompositions in Lemma 5.6.3 aside from (5.6.12)), as well as the pentagon relations for the
associator 2-morphisms (5.5.16), (5.5.17), (5.5.18), must hold strictly on-the-nose. However, the
fact that aVWU is a 1-morphism implies we can have a 2-morphism π, called the pentagonator,
that implements its pentagon relation. We will show in Theorem 5.7.1 that π is given by the
Hochschild 3-cocycle T attached to the weak endomorphism 2-algebra EndpV q.

5.6.4 Proof of the main theorem

We are finally ready to state and prove the main theorem. As earlier, we will often omit the
tensor products to lighten the notations.

Theorem 5.6.1. The 2-representation 2-category 2RepT
pGq of a weak quasitriangular 2-bialgebra

G is a braided monoidal 2-category with trivial left-/right-equivalences l : 1V „
ÝÑ V , r : V 1

„
ÝÑ V .

We will prove this by using algebraic and diagrammatic manipulations that we have outlined
throughout the paper, and reproduce all the coherence relations defining a braided monoidal
2-category in [81]. On the way, we shall also construct quantities that has also appeared in [78].

104



Recall first that, from §5.5.2, we have trivial left- and right-unitors l : 1V Ñ V, r : V 1 Ñ V ,
and hence all coherence relations involving them (ie. diagrams (2.5), (2.7)-(2.9) of [78]) are
vacuously satisfied.

Braiding on the associator; the first axiom in [81]. Let V,W,U P 2RepT
pGq be four

2-representations. Consider the mixed braiding 2-morphism baV WUX , which by Lemma 5.6.2
fits into a diagram of the form

ppVW qUqX XppVW qUq

baV WUX

ùùùùùñ

pV pWUqqX XpV pWUqq

bppV W qUqX

aV WU aV WU

bpV pWUqqX

.

Lemma 5.6.3 states that we can in fact decompose the top and bottom 1-morphisms in this
diagram, provided we keep in mind the hexagonator Ω,Ω: (5.6.14) that appears in doing so.
We thus obtain a formula of the form

bppVW qUqX

Ω:

pV W q|UX

ùùùùùùñ aXpVW qU ˝ bpVW qX ˝ a:

pVW qXU ˝ bUX ˝ apVW qUX

Ω:

V |WX

ùùùùùñ aXpVW qU ˝

”

aXVW ˝ bV X ˝ a:

V XW ˝ bWX ˝ aVWX

ı

˝ a:

pVW qXU ˝ bUX ˝ apVW qUX , (5.6.15)

and similarly for the bottom 1-morphism bpV pWUqqX ,

bpV pWUqqX

Ω:

V |pWUqX

ùùùùùùñ aXV pWUq ˝ bV X ˝ a:

V XpWUq
˝ bpWUqX ˝ aV pWUqX

Ω:

W |UX

ùùùùñ aXV pWUq ˝ bV X ˝ a:

V XpWUq

˝

”

aXWU ˝ bWX ˝ a:

WXU ˝ bUX ˝ aWUX

ı

˝ aV pWUqX . (5.6.16)

Now notice that there are three identical braiding maps that appear in both of these for-
mulas, bV X , bWX , bUX , but they act on objects that differ by an associator: we have bUX :

pVW qpUXq Ñ pVW qpXUq from (5.6.15) and bUX : V pW pUXqq Ñ V pW pXUqq from (5.6.16),
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for instance. Such a square is precisely given by the diagram (5.5.22),

pVW qpUXq V pW pUXqq

aV WbUX
ùùùùùñ

pVW qpXUq V pW pXUqq

aV W pUXq

bUX bUX

aV W pXUq

,

and similarly for the other braiding maps that occur in both (5.6.16), (5.6.15). Putting this
all together, we achieve the following diagrammatic expression for baV WUX (labelling only the
2-morphisms for clarity):

ppVW qUqX XppVW qUq

pVW qpUXq pVW qpXUq ppVW qXqU pXpVW qqU

pV pWXqqU pV pXW qqU ppV XqW qU ppXV qW qU

V pW pUXqq V pW pXUqq V ppWXqUq V ppXW qUq

V ppWUqXq V pXpWUqq pV XqpWUq pXV qpWUq

pV pUW qqX XpV pUW qq

aV WbUX

Ω:

V |WX

aV bWXU

abV XWU

Ω:

W |UX

Ω:

V |pWUqX

Ω:

pV W q|UX

This is precisely the third axiom in [81]; cf. diagram (2.6) in [78].

Naturality of hexagonator ΩV X|WU ; the third axiom of [81]. The strategy is to apply
the same naturality procedure as above to expand the defining diagram for ΩV X|WU ,

pV XqpWUq pWUqpV Xq

ppV XqW qU W pUpV Xqq

pW pV XqqU W ppV XqUq

bpV XqpWUq

aWUpV XqapV XqWU

bpV XqW

ΩV X|WU

aW pV XqU

bpV XqU

.
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For this, we wish to leverage a result that we will prove in §5.7: a weak 2-representation
pV, ρq P 2RepT

pGq has equipped the associator and pentagonator data

αx1x2|V “ ϱpρ0px1q, ρ0px2qqpV q, πx1x2x3|V “ Tpρ0px1q, ρ0px2q, ρ0px3qqpV q (5.6.17)

given by ρ “ pϱ, ρ0, ρ1q as well as the Hochschild 3-cocycle T on EndpV q.
With this, we can begin by rewriting each of the associator and braiding maps appearing

here using (5.6.3) and the pentagonator π (5.6.17) introduced above. We obtain precisely
diagram (2.4) in [78] as the ΩV X|WU . The third axiom of [81] then follows.

Iterating the braiding map; the fourth axiom of [81]. Now consider the iterated braid-
ing 2-morphism bV bUW

(5.6.9). By the same logic as above, we can use the decomposition
(5.6.12) once again on the top and bottom braiding morphisms that appear in the diagram,

bV pUW q

ΩV |UW

ùùùùñ a:

UWV ˝ bVW ˝ aUVW ˝ bV U ˝ a:

V UW ,

bV pWUq

ΩV |WU

ùùùùñ a:

WUV ˝ bV U ˝ aWV U ˝ bVW ˝ a:

VWU .

We can thus form the composition

bΩV |WU ” Ω´1
V |WU ¨ bV bUW

¨ ΩV |UW , (5.6.18)

which fits into a diagram that "pastes" two hexagon diagrams together,

W pV Uq pWV qU pVW qU V pWUq V pUW q pV UqW

ΩV |WU

ùùùùñ
bV bUW

ðùùùù
ΩV |UW

ðùùùù

W pUV q pWUqV pUW qV UpWV q UpVW q pUV qW

bV U

aWV U

aV WUbV W

bV pWUq

bV pUW q

bUW

bV U

aV WU

bpV UqW

aWUV

aUWVbUW bV W

aUV W

bpUV qW

Note that, by construction (5.6.18), the 2-morphisms bΩV |‚‚ are natural and invertible. More-

107



over, its definition is precisely (2.10) in [78], and hence the fourth axiom of [81] follows.

Cohomology descent equations; the second axiom of [81]. Let us now focus on (5.5.3).
Recall that it states, for x1, x2, x3 P G0, that

ρ1pT px1, x2, x3qq ´ Tpρ0px1q, ρ0px2q, ρ0px3qq “ ρ0px1q ¨ ϱpx2, x3q ´ ϱpx1x2, x3q

` ϱpx1, x2x3q ´ ϱpx1, x2q ¨ ρ0px3q,

where T is the Hochschild 3-cocycle on the weak endomorphism 2-algebra EndpV q of a par-
ticularly chosen weak 2-vector space V P 2VecthBC . We shall now specialize x1, . . . , x3 to the
elements in G0 of (5.6.11), and let the equation act on V .

By some computations, we see that the right-hand side translates to the composition of
2-morphisms

ididW ΩV |UX ˚ ΩV |W pUXq ˚ Ω´1
V |pWUqX ˚ pΩV |WU ididX q

´1,

while on the term ρ˝T on the left dualizes to terms of the form pρV b¨ ¨ ¨bρXqp∆1˝R´R˝D`
t ∆1q,

which translates to
a:

WbV UX
˚ abV WUX ˚ a:

WUbV X
˚ bV aWUX

.

Now recall from Theorem 5.7.1 that T ˝ ρ3b
0 in fact defines the pentagonator π on 2Repτ pGq.

The left-hand side then acquires also the contribution

πWV UX ˚ πWUVX ˚ π:

VWUX ˚ π:

WUXV ,

where πWUXV pxq “ TppρW q0pxq, pρUq0pxq, pρXq0pxqqpV q; see (5.6.17).
Altogether, this gives rise to the equation

πWV UX ˚ πWUVX ˚ ididW ΩV |UX ˚ ΩV |W pUXq ˚ a:

bV WUX ˚ b:

V aWUX
“

πVWUX ˚ πWUXV ˚ ΩV |WU ididX ˚ΩV |pWUqX ˚ a:

WbV UX
˚ a:

WUbV X

for V,W,U,X P 2RepT
pGq, which is precisely the second axiom in [81] (or equivalently axiom

(2.1) in [78]). In the group-theoretical case, this axiom was also captured in a cohomological
manner in (3.2) of [78].

In summary, we find that 2RepT
pGq has the following ingredients:

objects 1-morphisms 2-morphisms
2-representations 2-intertwiners equivariant

cochain homotopies

pV, bV ‚,ΩV |‚‚q pi, bi‚q µ

This establishes Theorem 5.6.1.
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5.7 Coherences of 2-representations

We first recall briefly some key aspects of a module 2-category [59, 64]. To be more concrete, let
C denote a semisimple (monoidal) 2-category. A C-module 2-category is a k-linear semisimple
2-category D with a C action 2-functor ▷ : CˆD Ñ D and a set of adjoint natural equivalences
(the associators)

αXY |A : pX b Y q▷ A Ñ X ▷ pY ▷ Aq

for each X, Y P C and A P D, satisfying the module pentagon relations up to a possibly non-
trivial module pentagonator 2-morphism πXY Z|A. These pentagonators must satisfy on the nose
an additional coherence condition, called the associahedron condition. The explicit expressions
of these conditions can be found in [59, 64].

Consider a 2-bialgebra G as a connected 2-category

BG “ G´1 b G0 Ñ G0 Ñ pt,

which is a 2-category with a single object pt, 1-morphisms G0 and each 2-Hom space over G0

is a copy of G´1. Evaluating an action 2-functor ▷ : G ˆ 2VecthBC Ñ 2VecthBC on the object
V gives precisely a weak 2-representation ρ : G Ñ End2VecthBC pV q “ EndpV q of G on V , as we
have defined in the main text.

Theorem 5.7.1. Weak 2-representations are G-module categories over 2VecthBC:

2RepT
pGq “ Mod2VecthBC pGq.

Proof. The k-linearity is immediate. As foretold in (5.6.17), we reconstruct the module associ-
ator α and pentagonator π of the G-module category V P 2VecthBC by taking

αx1x2|V “ ϱpρ0px1q, ρ0px2qqpV q, πx1x2x3|V “ Tpρ0px1q, ρ0px2q, ρ0px3qqpV q,

where ρ “ pϱ, ρ0, ρ1q : G Ñ EndpV q is a weak 2-representation and T is the Hochschild 3-cocycle
on EndpV q. We now proceed level by level.

Objects. We identify the action 2-functor ▷ as the weak 2-representation ρ such that x▷V “

ρ0pxqV for each x P G0. An arrow x▷V Ñ x1▷V is therefore expressed as ρ1pyqV , where y P G´1

is interpreted as a 2-morphism x
y
ùñ x1 between x, x1 “ x` ty [93, 98], or simply by ρ1pyq. What

we need to prove is the pentagon relation between α, π, as well as the associahedron condition
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for π. The pentagon relation can be written as

ppx1x2qx3q▷ V px1px2x3qq▷ V x1 ▷ ppx2x3q▷ V q

πx1x2x3|V

ùùùùùùñ

px1x2q▷ px3 ▷ V q x1 ▷ px2 ▷ px3 ▷ V qqq

ρ1pT px1,x2,x3qq ϱpx1,x2x3q

ϱpx1,x2qqρ0px3q

ϱpx1x2,x3q ρ0px1qϱpx2,x3q

Rewriting π in terms of the 3-cocycle T, we have

Tpρ0px1q, ρ0px2q, ρ0px3qq “ ´ϱpx1x2, x3q ´ ϱpx1, x2qρ0px3q

` ρ1pT px1, x2, x3qq ` ϱpx1, x2x3q ` ρ0px1qϱpx2, x3q,

which is nothing but the last equation of (5.3.1). It is then easy to see that the associahedron
condition follows from the Hochschild 3-cocycle condition for T.

2-intertwiners. Recall the notion of weak 2-intertwiners that we have given in Definition
5.5.4. By treating V as a G-module 2-category and taking ▷,▷1 as the action 2-functors
corresponding to the 2-representations ρ, ρ1, we equivalently characterize the cochain homotopy
I as a collection of invertible natural transformations I‚,i : ip‚▷ V q ñ ‚▷1 ipV q, such that the
following pentagon relation

ipρ0pxx
1qV q ρ1

0pxx
1q ˝ ipV q

ipρ0pxqρ0px1qV q ρ1
0pxq ˝ ipρ0px

1qV q ρ1
0pxqρ1

0px1q ˝ ipV q

Ixx1,i

i˝ϱpx,x1q

Ix,ibidρ0px1q ρ1
0pxqbIx1,i

ϱ1px,x1q˝i

follows directly from (5.5.6) This recovers precisely the notion of a G-module functor [64].
Notice no pentagonator appears here, as this is a relation on the 2-morphisms in 2RepT

pGq and
hence a pentagonator for it would have to be a 3-morphism.

Modifications. Now let us consider the notion of modifications in 2RepT
pGq we have defined

in Definition 5.5.5. The condition (5.5.9) is equivalent to the composition of 2-morphisms
pidρ0pxq µq ˚ Ix,i “ Ix,i1 ˚ µ, which is exactly a module natural transformation [64].

Following this, I have proven the following in [119].8

Proposition 5.7.1. Let G “ G´1
1
ÝÑ G0 denote a split (ie. trivial Postnikov invariant τ) skele-

tal finite 2-group, and let G “ kG denote its 2-group algebra. The 2-categories 2RepT
pkGq “

2FunppkG, ˚q, 2VecthBCq and 2RepG “ 2FunppG, ˚q, 2VectKV q have the same homotopy theory.
8The proof is a routine but lengthy check, so I will not reproduce it here.
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What this means is that the coherence relations between the homotopy data — namely the
associators, pentagonators, 2-intertwiners, and modifications attached respectively to the two
2-categories — coincide. The latter of which 2RepG constitute the 2-representation theory of
finite 2-groups as studied in the literature [59, 64, 65] over 2VectKV .

This result suggests that the 2-category 2VecthBC that I have developed in this Chapter
serves as a homotopy refinement of 2VectBC that can capture, or "mimic", the homotopy
coherence data in 2VectKV . This partially resolve the issues plaguing 2VectBC raised in §1.4. An
explicit comparison between 2VecthBC and 2VectKV is currently underway with a collaborator.

5.8 Classical limits of 2-bialgebras and 2-R-matrices

Motivated by the diagram (5.0.1), we shall prove in this section that the notion of quantum
2-doubles/2-bialgebras we have introduced in the main text reproduce the known notion of
2-Manin triples/Lie 2-bialgebras [95, 115, 96, 114] in the classical limit.

Classical limit and the Lie-ification functor. Given an (associative) algebra A P Algass,
it is well-known [117, 93] that there is a Lie-ification functor L : Algass Ñ LieAlg that assigns
A to its "classical" Lie algebra gpAq. The Lie bracket is given by the commutator rX,X 1s “

XX 1 ´ X 1X, where X P gpAq is the image of an element x P A under L . The associativity of
A implies the Jacobi identity of r´,´s; note A only needs to be left-symmetric (not necessarily
associative) in order for gpAq to enjoy the Jacobi identity [95].

There is a left-adjoint to the Lie-ification functor given by the universal envelope U : g ÞÑ

Upgq, which can be understood as a "quantization" map [118]. There is an analogous result for
associative 2-algebras [93].

Lemma 5.8.1. The Lie-ification functor L : 2Algass Ñ Lie2Alg lifts to associative 2-algebras
(see Definition 5.1.2), where GpGq “ L pG´1q

t
ÝÑ L pG0q is a Lie 2-algebra with

X ▷ Y “ X ¨ Y ´ Y ¨ X, X “ L pxq, Y “ L pyq,

where x P G0, y P G´1. Moreover, the universal envelop functor U also lifts to Lie 2-algebras
UpGq “ Upg´1q

t
ÝÑ Upg0q, such that U is left-adjoint to L .

In the following, we shall write r´,´s : G2^ Ñ G as the binary L2-bracket on G.
Note Lie-ification L is a functor. This means that, in particular, it sends a 2-algebra

representation ρ : G Ñ EndpV q on 2-vector space V to a Lie 2-algebra representation L pρq :

GpGq Ñ glpV q as defined in [95, 125].

5.8.1 Lie 2-bialgebras and the 2-classical double

We now extend the above lemma to associative quantum 2-doubles. Let pG, ¨,∆q denote a
strict 2-bialgebra as defined in Definition 5.2.1, and let pG˚, ¨˚,∆˚q denote its dually-paired
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2-algebra. We put G “ L pGq and G˚r1s “ L pG˚q as the corresponding Lie-ification of these
2-bialgebras.

The Lie-ification procedure can be understood loosely as an "expansion", or linearization,
x « 1 ` X near the identity. Indeed, we have

xx1
´ x1x « p1 ` Xqp1 ` X 1

q ´ p1 ` X 1
qp1 ` Xq « rX,X 1

s

modulo terms of higher order. We make use of this notion on the coproduct (5.1.5), and also
perform a skew-symmetrization, in order to define a Lie 2-algebra 2-cochain L p∆q “ δ “

δ´1 ` δ0 on G,

δ´1pY q “ Yp1q ^ 1 ` 1 ^ Yp2q,

δ0pXq “
“

X l
p1q ´ Xr

p2q

‰

^ 1 ` 1 ^
“

X l
p2q ´ Xr

p1q

‰

” Xp1q ^ 1 ` 1 ^ Xp2q, (5.8.1)

where we have made use of the Sweedler notation (5.1.6), and the conventional notation ^

to denote skew-symmetric tenor products. Note the skew-symmetrization G´1 ^ G0 lands as a
subspace in G´1 b G0 ‘ G0 b G´1.

In degree-0, we have of course also the coproduct ∆1
0 defined in (5.1.8). It gives rise to a

Lie algebra cochain on L pG0q “ g0 by

δ1
0pXq “ X̄p1q ^ 1 ` 1 ^ X̄p2q “ tXp1q ^ 1 ` 1 ^ Xp2q,

where Xp1q, Xp2q have been given in (5.8.1).

Proposition 5.8.1. The Lie-ification functor L sends a strict 2-bialgebra pG,∆q to a Lie
2-bialgebra pG; δq.

Proof. Recall pG; δq is a Lie 2-bialgebra iff δ is a Lie 2-algebra 2-cocycle [95]. Therefore it
suffices to show that the 2-cochain defined in (5.8.1) is a 2-cocycle. This shall follow from the
fact that pG, ¨,∆q is a 2-bialgebra — namely the coproduct map ∆ (5.1.5) satisfies (5.1.10),
(5.1.11) and (5.1.16).

First note that (5.1.10) and (5.1.11) for the coproduct ∆ translates directly to the conditions

pt b 1 ` 1 b tqδ´1 “ δ0 ˝ t, pt b 1 ´ 1 b tqδ0 “ 0

for the 2-cochain δ “ δ´1`δ0. Now by a direct computation using (5.8.1), the condition (5.1.16)
implies

δ0rX,X
1
s “ δ0pXX

1
q ´ δ0pX

1Xq

“ Xp1qX
1
p1q ^ 1 ` 1 ^ Xp2qX

1
p2q

´
`

X 1
p1qXp1q ^ 1 ` 1 ^ X 1

p2qXp2q

˘

“ rXp1q, X
1
p1qs ^ 1 ` 1 ^ rXp2q, X

1
p2qs
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“ tXp1q ▷X
1
p1q ^ 1 ` 1 ^ rXp2q, X

1
p2qs

“ pX̄p1q ▷b1 ` 1 b adXp2q
qδ0pX

1
q ´ pX̄ 1

p1q ▷b1 ` 1 b adX 1
p2q

qδ0pXq,

where we have used the the Peiffer identity and the fact that X̄p1q “ tXp1q inherited from the
constraints (5.1.15), and

δ´1pX ▷ Y q “ δ´1pX ¨ Y q ´ δ´1pY ¨ Xq

“ X̄p1q ¨ Yp1q ^ 1 ` 1 ^ X̄p2q ¨ Yp2q

´
`

Yp1q ¨ X̄p1q ^ 1 ´ 1 ^ Yp2q ¨ X̄p1q

˘

“ pX̄p1q ▷ Yp1qq ^ 1 ` 1 ^ pX̄p2q ▷ Yp2qq

“ rXp1q, Yp1qs ^ 1 ` 1 ^ pXp2q ▷ Yp2qq

“ padXp1q
b1 ` 1 b Xp2q▷qδ´1pY q ´ padYp1q

b1 ´ 1 b ΥYp2q
qδ0pXq,

where X̄p2q “ Xp2q. These are precisely the Lie 2-algebra 2-cocycle conditions for δ [95, 115].

Now the characterization result in [95] states that pG,G˚r1sq form a matched pair of Lie 2-
bialgebras iff δ is a Lie 2-algebra 2-cobracket on G, namely δ satisfies the 2-cobracket identities.
For the 2-cocycle δ “ L p∆q defined in (5.8.1), this is guaranteed precisely by coassociativity
(5.1.10), (5.1.11). We have therefore the immediate corollary:

Corollary 5.8.1. Suppose pG,G˚q form a matched pair of strict 2-bialgebras. The Lie-ification
functor L sends a quantum 2-double DpGq “ G’̄G˚ to a classical 2-double d “ G ’ G˚r1s.

In other words, our construction of the quantum 2-double DpGq admits the classical 2-double
as a classical limit, which directly categorifies an analogous statement between the general
quantum double construction of Majid [118] and the classical Drinfel’d double [9].

5.8.2 The classical 2-r-matrix

Let us now turn to the classical limit of the 2-R-martrix as defined in §5.2.4. Prior to that, we
first describe one of the key properties of the duality pairing on a quantum 2-double, namely its
invariance. This is expressed by, for instance, (5.5.4) in the case of the coadjoint representation.
For the sew-pairing x´,´ysk forming the quantum 2-double DpG,Gq “ G’̄Gopp, however, G acts
on Gopp via its underlying (opposite) 2-algebra structure, which means that the skew-pairing
satisfies the invariance property

xxx1, gysk “ ´xx1, g ¨ xysk, xx ¨ y, fysk “ ´xy, fxysk, xff 1, yysk “ ´xf 1, f ¨ yysk.

Given the adjoint action ▷̄ “ pΥ, p▷0,▷´1qq of G on Gopp,

x▷0 g “ g ¨ x, x▷´1 f “ fx, Υyf “ f ¨ y,
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this invariance property translates to the following conditions on the 2-R-matrix Rl,r,

px ¨ b1 ` 1 b x▷0qRl
“ 0, px ¨ b1qRr

` p1 b x▷´1qRl
“ 0, pf ¨ b1 ` 1 b f▷0qRr

“ 0.

Consider the first and last conditions with x “ f P G0. They can be rewritten equivalently as
the conditions

px ¨ b1qRl
` p1 b x▷0qRr

“ 0, px ¨ b1qRr
` p1 b x▷0qRl

“ 0,

which together with the second condition may be compactly expressed as, using the graded
sum,

px▷̄b 1 ` 1 b x▷̄qpR ` σpRqq “ 0, @ x P G0, (5.8.2)

where σ is a permutation of the G0,G´1 components.
Let us now finally recover the universal classical 2-r-matrix. This is once again accomplished

by taking the Lie-ification functor on the universal quantum 2-R-matrix, r “ L pRq P G b G,
whence

g´1 b g0 Q rr “ L pRr
q, g0 b g´1 Q rl “ L pRl

q. (5.8.3)

The equivariance condition (5.2.27) clearly implies

D´
t r “ 0, (5.8.4)

while applying the Lie-ification functor L to (5.8.2) gives

rX b 1 ` 1 b X, r ` σprqs “ 0, X “ L pxq P g0.

Here, we have used the fact that the adjoint action ρ of G on itself gives rise to the adjoint
representation ( using the graded Lie bracket) L p▷̄q “ r´,´s of G on itself [95].

Finally, we consider the 2-Yang-Baxter equations (5.2.28). We sum each equation in (5.2.28)
in the total graded complex G3b, and rearragnge them to the form

0 “
`

Rr
23pRr

13 ¨l Rl
12q ´ pRl

12 ¨r Rr
13qRr

23

˘

`
`

Rl
23 ¨l Rr

13qRr
12 ´ Rr

12pRr
13 ¨r Rl

23q
˘

`
`

Rl
23pRl

13 ¨r Rr
12q ´ pRr

12 ¨l Rl
13qRl

23

˘

`
`

pRr
23 ¨r Rl

13qRl
12 ´ Rl

12pRl
13 ¨l Rr

23q
˘

. (5.8.5)

Applying the Lie-ification functor L to this equation yields

0 “
`

rrr13, r
l
12s ` rrr23, r

r
13s ` rrr23, r

l
12s

˘

|rrl `
`

rrl23, r
r
13s ` rrl23, r

r
12s ` rrr13, r

r
12s

˘

|lrr

`
`

rrl13, r
r
12s ` rrl23, r

l
13s ` rrl23, r

r
12s

˘

|llr `
`

rrr23, r
l
13s ` rrr23, r

l
12s ` rrl13, r

l
12s

˘

|rll,

where the subscripts indicate where each term came from in (5.8.5).
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Consider the two places in which rl23r
r
12 occurs in the above. These terms take the form

respectively in Sweedler notation

rl23r
r
12|lrr “ rrp1qη0 b rlp1qr

r
p2q b rlp2q ¨ η´1,

rl23r
r
12|llr “ rrp1q ¨ η´1 b rlp1qr

r
p2q b rlp2qη0,

where η0, η´1 are the units in G0,G´1. By using the Peiffer identity and the equivariance
condition (5.8.4)

ptrlp1qq b rlp2q “ pt b 1qrl “ p1 b tqrr “ rrp1q b ptrrp2qq,

we can compute that

rl23r
r
12|llr “ rrp1q ¨ η´1 b rlp1q ¨ ptrrp2qq b rlp2qη0

“ ptrlp1qq ¨ η´1 b rlp1q ¨ rlp2q b rlp2qη0

“ rlp1qη´1 b rlp1q ¨r r
l
p2q b rlp2qη0

“ rl23 ¨r r
l
12

rl23r
r
12|lrr “ rrp1qη0 b ptrlp1qq ¨ rrp2q b rlp2q ¨ η´1

“ rrp1qη0 b rrp1q ¨ rrp2q b ptrrp2qq ¨ η´1

“ rrp1qη0 b rrp1q ¨l r
r
p2q b rrp2qη´1

“ rr23 ¨l r
r
12

,

As such, we have
rrl23, r

r
12s “ rrl23, r

l
12s “ rrr23, r

r
12s,

and hence collecting all terms from the above gives

rr12, r13s “ rrr12, r
r
13s ` rrr12, r

l
13s ` rrl12, r

r
13s ` rrl12, r

l
13s

rr13, r23s “ rrr13, r
r
23s ` rrr13, r

l
23s ` rrl13, r

r
23s ` rrl13, r

l
23s

rr12, r23s “ rrr12, r
r
23s ` rrr12, r

l
23s ` rrl12, r

r
23s ` rrl12, r

l
23s

This is precisely the 2-graded classical Yang-Baxter equation of [95]

Jr, rK “ rr12, r13s ` rr13, r23s ` rr12, r23s “ 0

for the expansion r “ L pRq “ rr ` rl.

Theorem 5.8.1. The Lie-ification functor sends the universal quantum 2-R-matrix to a 2-
graded classical r-matrix.

In other words, the "quantization" of the classical 2-r-matrix and the associated Lie 2-bialgebra
G yields a universal 2-R-matrix with the associated quasitriangular 2-bialgebra G.

5.8.3 Weak Lie 2-bialgebras

We now prove the weak analogues of the classical limit for 2-bialgebras.

Lemma 5.8.2. The Lie-ification functor L : Alg Ñ LieAlg extends to weak 2-algebras, as-
signing pG, T q to a weak Lie 2-algebra pGpGq, µ3q where the homotopy map µ3 is the total
skew-symmetrization of T .
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Proof. We construct the Lie 2-algebra structure as in Lemma 5.8.1. Let U3 “ L ˝ T ˝ L

denote the induced trilinear map on L pGq. We apply L to the Jacobiator JpX,X 1, X2q “

rX, rX 1, X2ss ` rX 1, rX2, X 1s ` rX2, rX,X 1ss,

JpX,X 1, X2
q “ XpX 1X2

q ´ XpX2X 1
q ´ pX 1X2

qX ` pX2X 1
qX

`X 1
pX2Xq ´ X 1

pXX2
q ´ pX2XqX 1

` pXX2
qX 1

`X2
pXX 1

q ´ X2
pX 1Xq ´ pXX 1

qX2
` pX 1XqX2

“ tU3pX,X 1, X2
q ´ tU3pX,X

2, X 1
q ` tU3pX 1, X2, Xq

´ tU3pX
1, X,X2

q ` tU3pX2, X 1, Xq ´ tU3pX2, X,X 1
q

“ tpU3pX,X
1, X2

q ´ U3pX,X
2, X 1

q ` U3pX 1, X2, Xq

´ U3pX
1, X,X2

q ` U3pX2, X,X 1
qq ´ U3pX

2, X 1, Xq,

where we have used the weak 1-associativity condition for G. Similarly, for JpX,X 1, Y q “

X ▷ pX 1 ▷ Y q ´ X 1 ▷ pX ▷ Y q ´ rX,X 1s▷ Y we have

JpX,X 1, Y q “ tpU3pX,X
1, tY q ´ U3pX, tY,X 1

q ` U3pX 1, tY,Xq

´ U3pX
1, X, tY q ` U3ptY,X,X

1
q ´ U3ptY,X 1, Xq,

hence if we define the total skew-symmetrization

µ3pX,X
1, X2

q ” U3pX,X 1, X2
q ´ U3pX,X

2, X 1
q ` U3pX

1, X2, Xq

´U3pX
1, X,X2

q ` U3pX2, X,X 1
q ´ U3pX

2, X 1, Xq,

then weak 1-associativity implies the 2-Jacobi identity on L pGq.
Using the Peiffer conditions on this fact, we see that the weak bimodularity condition also

implies the 2-Jacobi identity, with two tY ’s inserted in U3 instead. Similar computations show
that the Hochschild 3-cocycle condition for T implies the Lie 3-cocycle condition for µ3.

Finally, let F : pG, T q Ñ pG 1, T 1q denote a weak 2-algebra homomorphism as defined in
(5.3.1). By applying the Lie-ification functor and appropriately skew-symmetrizing T , T 1 and
the 2-algebra structure, we recover precisely the definition of a weak 2-algebra map L pF q :

pG, µq Ñ pG1, µ1q [122]. Thus L is functorial.

Similar to the Lie 2-algebra 2-cocycle (5.8.1) defined from the coproduct ∆, we form the
classical limit of the coassociator ∆1 by totally skew-symmetrizing and linearizing it, such that
we have the Lie cochain

ηpXq “ Xp1q ^ 1 ^ 1 ´ 1 ^ Xp2q ^ 1 ` 1 ^ 1 ^ Xp3q, X P g0 “ L pG0q. (5.8.6)

It is not hard to see by, for instance, dualizing the computations in the proof of Lemma 5.8.2,
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that the conditions (5.3.3), (5.3.5) reduce to

δ´1 ˝ δ´1 “ η ˝ t, cf. (42) in [96]

pδ´1 ` δ0q ˝ δ0 “ Dt ˝ η, cf. (43) in [96],

η ˝ δ0 “ δ´1 ˝ η, cf. (44) in [96].

Let pG, T ,∆1q be a weak 2-bialgebra as given in Definition 5.3.3. The conditions (5.3.7)
translate to

δ´1pµ3pX,X
1, X2

qq “ µ3pX̄p1q, X̄
1
p1q, X̄

2
p1qq ^ µ3pX̄p2q, X̄

1
p2q, X̄

2
p2qq,

δ1prX,X 1
sq “ rXp1q, X

1
p1qs ^ 1 ^ 1 ´ 1 ^ rXp2q, X

1
p2qs ^ 1 ` 1 ^ 1 ^ rXp3q, X

1
p3qs,

which are precisely the conditions for a weak-Lie 2-bialgebra pG, µ3, δq [114], expressed explicitly.
In other words, we have the weak version of Proposition 5.8.1:

Proposition 5.8.2. The Lie-ification functor takes a weak 2-bialgebra pG, T ,∆q to a weak Lie
2-bialgebra pG, µ, δq, with the 2-cocycle data given as in (5.8.1), (5.8.6).

Note that this is a general result, which does not require any skeletality assumptions on G.
When T “ 0 and hence µ3 “ 0, we recover the conditions for a quasi-Lie 2-bialgebra studied
also in [96].
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Chapter 6

The 4d Kitaev model

In this Chapter, I will apply the quantization framework established in §5 to study 4d Z2-gauge
theories. I proved that this in fact recovers the known 2-categorical constructions of the charges
in the 3+1d toric code, as well as the spin-Z2 gauge theory [76].

Theorem 6.0.1. We have the following braided equivalences

2RepwkpD
ωbpBZ2qq » R » Z1p2VectKV rZ2sq,

2RepwkpD
ωf pBZ2qq » S » Z1pΣsVectq,

where Z1 is the Drinfel’d centre and Σ is the condensation completion functor1 defined in [148].

This result makes concrete the equivalence between the 2-categorical [46] and field-theoretical
[71] descriptions of 4d gapped Z2-symmetric topological phases, and provides an explicit ma-
chinery to produce 2-categories from a given 4d (finite) 2-group gauge theory action. This
chapter is based on my work [121].

6.0.1 Skeletal 2-double of a finite cyclic Abelian group

We first begin with a quick but explicit description of the Drinfel’d double 2-bialgebra (see
§5.4) that we are interested in. Let N be a finite cyclic Abelian group, and we take M “ pN to
be the Pontrjagyn dual of N . This makes the group algebra kM naturally as a kN -bimodule
canonically through the dual left- and right- actions

px ¨ yqpx1
q “ ypx´1x1

q, py ¨ xqpx1
q “ ypx1xq, (6.0.1)

where x, x1 P N and y P pN “ M . We denote the Pontrjagyn duality isomorphism by p : x ÞÑ

ppxq “ x̂ (recall both N,M are cyclic Abelian groups). We thus take kG “ kBM r1s
0
ÝÑ kN as

our desired 2-algebra.
To make kG into a 2-bialgebra, we equip it with the grouplike graded coproduct ∆ defined

1Note ΣVect » 2VectKV [148].
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by

∆´1pyq “ y b y, ∆1
0pxq “ x b x,

∆0pxq “ ppxq b x ` x b ppxq, (6.0.2)

where x P N, y P M . By definition, ∆ is coassociative and admits the usual antipode S0
0pxq “

x´1, S1
0pyq “ y´1, together with the unit/counit

$

&

%

η0 “ 1 P N

η´1 “ 1 P M
,

$

&

%

ϵ0pxq “ δxη0 P k

ϵ´1pyq “ δyη´1 P k
.

Moreover, this coproduct can be very easily shown to satisfy the 2-bialgebra axioms,

∆´1px ¨ yq “ x ¨ y b x ¨ y, ∆´1py ¨ xq “ y ¨ x b y ¨ x,

∆0pxx
1
q “ ppxqppx1

q b xx1
` xx1

b ppxqppx1
q,

where we have used the fact that p is a group homomorphism ppxx1q “ ppxqppx1q. This defines
pkG, ¨,∆, Sq as a unital Hopf 2-algebra (see Appendix A of [119]).

Moreover, it is easy to check that the grouplike coproduct ∆0 (6.0.2) dualizes to the kN -
bimodule structure (6.0.1) on kM – k pN , as required by self-duality

kG ” DpBMq “ kBM’̄kN,

$

&

%

BM “ M
0
ÝÑ ˚

N˚ “ ˚
0
ÝÑ N

.

We call this Hopf 2-algebra pDpBMq, ¨,∆, Sq the (Drinfel’d) 2-double of M .

Recall the factorizability property Theorem 5.4.1 means that DpBMq fits into a cospan
of 2-bialgebras

kBM ãÑ DpBMq Ðâ kN.

However, sinceHH3p˚, kMq “ 0, HH3pkN, ˚q “ 0, these 2-bialgebra injections cannot extend to
an equivalence if we wish forDpBMq to carry a non-trivial Hochschild class T P HH3pkN, kMq.
Due to a result

HH˚
pkN, kMq – kM bk H

˚
pkN, kq – H3

pN, pNq b k

of [149], we shall take T as coming from a Postnikov class τ P H3pN, N̂q of the 2-group
D “ N̂

1
ÝÑ N . Since this is a bijection, we shall abuse notation and denote T as τ in the

following.

6.1 2-BF theory on the Drinfel’d 2-double DpBMq

In this section, we specialize the above Drinfel’d double 2-bialgebra to the case N “ Z2,M “

xZ2 – Z2, and construct (3+1)D 2-BF theory based on DpBMq. We study its extended Z2-
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charged excitations by studying 2RepwkpDpBZ2qq, and seek to prove the main result Theorem
6.0.1.

Along the way, we shall make concrete the connection8 between our 2-BF theory and the
higher-gauge topological nonlinear σ-models (NLSMs) that have already appeared in the liter-
ature [71, 46]. We shall take the ground field k “ C throughout the following.

Recall the Drinfel’d double 2-bialgebra DpBZ2q has the structure of a skeletal 2-algebra

DpBZ2q “ kxZ2
0
ÝÑ kZ2,

whose Hochschild class is determined by the choice of a Postnikov class

τ P H3
pZ2,xZ2q – Z2

of the underlying 2-group. Let x P kZ2 and y P kxZ2 be understood as the non-trivial generators.
Let kZ2 “ kN in degree-0 act on kxZ2 “ kM on the left by (6.0.1) as group algebras.

There are two such algebra automorphisms: the trivial or the sign representation. We denote
the Drinfel’d double 2-bialgebra by DpBZ2q

trv in the former case, while by DpBZ2q
sgn in the

latter case. This then induces a non-trivial grouplike component ∆0pxq “ x̂b x` xb x̂ of the
coproduct ∆ on DpBZ2q (recall x̂ “ ppxq where p is the Pontrjagyn duality).

Now consider the discrete combined DpBZ2q-connection pA,Σq “ pA ` Σ, C ` Bq on a
4-manifold X [115]. These connection forms are given by cochains

A P C1
pX,Z2q, B P C2

pX,xZ2q,

with the components Σ “ 0, C “ 0 trivial. Depending on the automorphism AutpkZ2q encoded
in the Drinfel’d double 2-bialgebra DpBZ2q, the 1- and 2-curvatures of the field theory are given
by

F “

$

&

%

dA ; in DpBZ2q
triv

dA ` 1
2
A Y A ; in DpBZ2q

sgn
, dAB “

$

&

%

dB ; in DpBZ2q
triv

dB ` A Y B ; in DpBZ2q
sgn

,

where the cup products are implemented through the automorphism AutpkZ2q or its dual. The
corresponding monster 2-BF theory [115] is given by the topological action

SrA,Bs “
1

2

ż

X

xB Y F y ` xτpAq Y Ay, (6.1.1)

where we recall that τ P H3pZ2,xZ2q is the underlying Postnikov class of DpBZ2q.
Note that the discrete 1-form gauge fields must be flat, F “ dA “ 0, and terms like A2 “ 0

mod 2 vanish, hence the classical equations of motion (EOMs) are given by

F “ dA “ 0, dAB “ τpAq. (6.1.2)
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These EOMs, together with the coefficient of 1
2

in front of the topological action (6.1.1), tell
us that the cochains A,B are Z2-valued. We will introduce in the following a non-trivial coho-
mological term that "mimics" 1

2
A2. However, it is important to note that these cohomological

terms constitute twists on the Drinfel’d double 2-bialgebra and are not dynamical; they do not
alter the EOM (6.1.2).

We define the partition function corresponding to (6.1.1) on a 4-manifold X as a formal
path integral

ZKitpXq “

ż

dAdBei2πSrA,Bs, (6.1.3)

which should be appropriately normalized such that ZKitpS
4q “ 1 [71]. We call ZKit the 4d

Kitaev model. It should be understood as a collective of two such theories2,

(Invisible) toric code : Z0
Kit, Spin-Kiatev : Zs

Kit,

arising respectively from DpBZ2q
trv and DpBZ2qsgn. We shall refer to either of these Drinfel’d

double 2-bialgebras collectively as DpBZ2q in the following. The central idea is then that ZKit

has a Drinfel’d double 2-bialgebra symmetry.

ZKit as a topological nonlinear σ-model

There had been proposals to construct (3+1)D topological phases with a higher-gauge field
theory [104]. Specifically, [71] constructs a topological non-linear σ-model (NLSM) which cor-
responds to a higher-Dijkgraaf-Witten theory based on a 2-group, and claims that all (3+1)D
topological phases can be described this way.

The NLSM they construct is characterized by the following data: (i) a (skeletal) 2-group
G “ Z2 Ñ Gb, where Gb is a finite group labeling "stringlike bosonic charges", and Z2 is either
fermion parity Zf2 or a magnetic π-flux Zm2 , (ii) the first Postnikov class τ P H3pGb,Zf2q of G
and (iii) a Dijkgraaf-Witten class ω P H4pG,R{Zq [104, 71]. We write the Hoáng data [103] of
G as pGb,Zf2 , τq.

Our construction of the Kitaev model (6.1.3) fits nicely into this framework, with the 2-group
xZ2

0
ÝÑ Z2 given by the Hoáng data

pGb “ Z2,Zf2 – xZ2, τq.

To construct the Dijkgraaf-Witten cocycle, we begin with the group cohomology ringH˚pZ2,Z2q –

Z2rus with a generator u P H1pZ2,Z2q in degree-1 [150]. Considering Z2 as a trivial Z2-module,
the sign representation sgn P AutpkZ2q – HompZ2,Z2q – H1pZ2,Z2q then serves as a represen-
tative of the generator u.

Now consider DpBZ2q
sgn. The cup product for the term 1

2
A Y A in the curvature F is

2There is a slight misnomer here, where Z0
Kit should really be called the "invisible" toric code, as it fails to

satisfy the principle of remote detecatbility [79, 78, 76]; see Remark 6.2.2 later.
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implemented by the sign representation sgn “ u P H1pZ2,Z2q, from which

1

2
A Y A “ ēpAq, ē “

1

2
u Y u P H2

pZ2,Z2q. (6.1.4)

The factor of 1{2 is very important as, without it, uYu “ 0 mod 2 is trivial in Z2-cohomology
[150]. Dualizing the value of ē to a class in H2pZ2,xZ2q, it lifts the action ▷ of kZ2 on kxZ2 to a
central extension.

The term xB Y ēpAqy that appears in (6.1.1) gives precisely the Dijkgraaf-Witten cocycle
ω P Z4pG,R{Zq. Indeed, going on-shell of the EOM (6.1.2) reduces the spin-Kitaev partition
function to

Zs
KitpXq „

ÿ

dA“0
dB“τ

eiπ
ş

XxBYēpAqy.

This gives exactly the NLSM constructed in [71] with ωpB,Aq “ B Y ēpAq, provided the
anomaly-free condition

τ Y ē “ 0 (6.1.5)

is satisfied. This condition ensures that that the Dijkgraaf-Witten integrand ωpA,Bq “ xB Y

ēpAqy is a cocycle dωpA,Bq “ 0 in light of the EOM dB “ τpAq.

Classification of 4d topological phases with a single pointlike Z2-charge

The above describes the construction of a 4d Dijkgraaf-Witten topological field theory. As we
have mentioned, these were proposed to describe [71, 104, 72, 151], in a very general sense,
4d gapped topological phases. Another approach towards this follows the program of "higher
categorical symmetries" [46, 152, 47, 79, 48, 64, 66, 18]. In particular, the 4d toric code has
been extensively studied in the literature [67, 68, 76] from this perspective, so we understand
its corresponding braided fusion 2-category quite well.

By hypothesis, gapped topological phases are characterized by non-degenerate3 braided
fusion 2-categories, based on the physical principle of remote detectability [152, 47, 79, 48,
18]. In particular, those with a single pointlike Z2-charge have been classified in [76, 63]. These
phases are

1. the 4d toric code R » Z1p2Vect
KV

rZ2sq,

2. the 4d spin-Z2 gauge theory S » Z1pΣsVectq,

3. the w2w3 gravitational anomaly T ,

where Z1 denotes the Drinfel’d centre and Σ denotes the condensation completion functor [148].
Here, VectrZ2s denotes the category of Z2-graded vector spaces, and sVect is the category of
supervector spaces.

In this paper, we shall mostly focus on the gapped phases R,S , and leave the study of
the gravitational anomaly T to a later work; the reason for this shall be given at the end of

3Namely the sylleptic/E2-centre Z2 is trivial.
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§6.3. We will find explicit realizations of these phases as 2-representation 2-categories of certain
versions of the quantum 2-double DpBZ2q. To do so, we study the excitations in the associated
NLSM (6.1.1).

6.1.1 Anomaly-freeness of the 4d spin-Kitaev model

Recall from the above that the 4d Kitaev model ZKit is well-defined provided the non-trivial
Postnikov class τ and extension class ē of the underlying 2-group satisfies the anomaly free
condition (6.1.5).

Let us here study, from the point of view of the 2-representation 2-category 2RepwkpDpBZ2qq,
why the anomaly-free condition (6.1.5) is necessary. Recall that the self-duality of DpBZ2q

as a Drinfel’d double 2-bialgebra means that the Postnikov class τ dualizes to a coassoci-
ator ∆1 : Z2 Ñ xZ2

3b

defining the associator 1-morphism aVWU for the objects V,W,U P

2RepwkpDpBZ2qq.
The key point is that, in general, the pentagon relation for a follows from the condition

(5.3.4), which in turn follows from the 3-cocycle condition for τ . This notion generalizes to
the case where DpBZ2q is twisted by ē P H2pZ2,xZ2q; that is, the product in DpBZ2q0 “ Z2 is
modified such that

x ˆ x1
“ ēpx, x1

qpxx1
q, x, x1

P Z2.

We shall denote the corresponding 2-representation 2-category by

2RepwkpDē
pBZqq “ 2RepτmpDpBZ2q

sgn
q.

This notation shall be explained later in §6.3. For now, we prove the following.

Lemma 6.1.1. The anomaly-free condition (6.1.5) implies that the associator a of 2RepτmpDpBZ2q
sgnq

satisfies the pentagon relations.

Proof. In order to see the anomaly-free condition (6.1.5) manifest on the 2-representations, we
begin with the observation that the component ∆0 of the coproduct on DpBZ2q satisfies

∆0px
2
q “ ēpx, xqx̂2 b x2 “ ēpx, xq b 1, (6.1.6)

by (5.1.16). This means that ∆0 is an algebra map on kZ4, not kZ2.
Because of (6.1.6), evaluating the condition (5.3.4) on 1 “ x2 P kZ2 gives

14b
“ ∆´1 ˝ ∆1p1q “ p∆1 b 1q ˝ ∆0px2q “ ēpx, xq b ∆1p1q,

which violates the pentagon relation unless the right-hand side is also trivial 14b. Pairing this
equation with arbitrary x1, . . . , x3 P kZ2 gives

1 “ xēpx, xq b ∆1p1q, 1 b x1 b x2 b x3y “ xēpx, xq b 1, 1 b τpx1, x2, x3qy “ ēpx, xqτpx1, x2, x3q.
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This is nothing but ē Y τ “ 0.

Notice on the other hand that if τ “ 0 is trivial, then so is ∆1 and the coassociativity condition
simply implies the group cocycle condition for ē.

Weakening the anomaly-free condition. There is a way to weaken the anomaly-free con-
dition, by imposing (6.1.5) only in cohomology τ Y ē “ 0 P H5pZ2, k

ˆq [104, 153]. This means
that the 4d Kitaev model gains an additional term νpAq that trivializes the coboundary of the
Dijkgraaf-Witten 4-cocycle,

dpωb ´ νq “ 0.

Algebraically, this 4-cocycle ν P H4pZ2, k
ˆq is known to play the role of a "pentagonator"

2-morphism in the underlying 2-group [46, 71], implementing the pentagon relation Lemma
5.5.3.

This group 4-cocycle ν is intimately related to the Hochschild 3-cocycle T attached to the
weak endomorphism 2-algebra EndpV q (see Definition 5.5.3). Indeed, Theorem 5.7.1 states
that the module pentagonator π [64] is given by

πx1x2x3|V “ Tpρ0px1q, ρ0px2q, ρ0px3qqpV q, x1, . . . , x3 P kZ2.

Given V is irreducible with an associated label x4 P Z2, then πx1x2x3|x4 “ νpx1, x2, x3, x4q defines
a group 4-cocycle whose cocycle condition arises from the associahedron condition [64, 119].
Moreover, the fact that the Hochschild cohomology of

ρ1 ˝ τ ´ T ˝ ρ3b
0

is trivial (coming from (5.5.3)) translates to precisely the equation dpωb´νq “ 0. This relation-
ship between τ and ν is intimately related to the conjecture [46] that the 4d ν-twisted gauge
theory on G coincides with the 4d untwisted 2-gauge theory on G “ pG, kˆ, τq. We will not be
proving this conjecture in this thesis, however.

6.2 Excitations in the (invisible) toric code Z0
Kit

Excitations are inserted into the theory ZKit with 2-representations ρ of DpBZ2q. Since DpBZ2q

is skeletal, it suffices to study 2-representations of the underlying 2-group. Let us first focus on
the trivial case DpBZ2q

trv.
Recall that a 2-representation ρ : DpBZ2qtrv Ñ EndpV q on a 2-vector space V “ V´1

B
ÝÑ V0

consists of the following data:

1. a pair of Z2-representations

ρ0 “ ρ10 ‘ ρ00 : Z2 Ñ EndpV0q ‘ EndpV´1q,
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such that B is an intertwiner between ρ00 and ρ10, and

2. a map ρ1 : xZ2 Ñ HompV0, V´1q such that ρ1p1q “ 0 on the identity 1 P xZ2.

Since the t-map for DpBZ2q is trivial, ρ must satisfy δρ1 “ pρ1 ˝ B, B ˝ ρ1q “ ρ0t “ 0, which
means either ρ1 “ 0 or B “ 0. For 1-dimensional irreducible representations (irreps) V0, V´1 – k

over the ground field k, the value of ρ1 on the non-trivial generator y P xZ2 is either 0 or a scalar
multiplication. We write simply ρ1 “ 0 in the former case, while in the latter case we shall
normalize the scalar ρ1pyq to 1 P kˆ, and denote this map by ρ1 “ 1̂.

Remark 6.2.1. Though ρ1 need not be an intertwiner, we require it to preserve the identity
ρ0,10 p1q “ ρ0,10 px2q “ id in the sense that

ρ1pyq ˝ idV0 “ idV´1 ˝ρ1pyq, x P Z2, y P xZ2.

This condition is vacuous here, but it shall become non-trivial later when we twist DpBMq.
Strictly speaking, ρ1 can be trivial as well if B “ 0, but this distinction makes no difference for
DpBZ2q

trv.

Now given ρ00, ρ10 are irreducible, Schur’s lemma implies that B is either trivial or an isomor-
phism. Hence given B ‰ 0, then ρ00, ρ

1
0 are either both the trivial representation 1, or both the

sign representation sgn. We therefore have four inequivalent irreducible 2-representations

Electric 1 “ p1 ‘ 1, B “ 1, ρ1 “ 0q c “ p1 ‘ sgn, B “ 0, ρ1 “ 1̂q

Magnetic 1˚ “ psgn ‘ sgn, B “ 1, ρ1 “ 0q c˚ “ psgn ‘ 1, B “ 0, ρ1 “ 1̂q

Table 6.1: The list of the irreducible 2-representations of the Drinfel’d 2-double DpBZ2q.

which constitute the simple4 objects in 2RepwkpDpBZ2qq. We call the first row the electric
sector and the second row the magnetic sector; this partition will be clear in the following.
Note that c is not equivalent to c˚, because the map B remembers its domain and codomain.

6.2.1 Fusion structure

We now investigate the monoidal structure of the 2-category 2ReppDpBZ2qtrvq. Since the co-
product ∆ on DpBZ2q is grouplike, the tensor product of 2-representations ρ, ρ1 is just the usual
graded tensor product ρb ρ1. Graded here means (5.5.10), ie. equipped with the differential B;
we demonstrate this through computations below.

Let us examine the 2-representations as listed in (6.1). In the electric sector, we use the
Morita equivalence sgn2b » 12b – 1 to have

c b c “ p1 ‘ sgnq b p1 ‘ sgnq – 1 ‘ sgn ‘ sgn2b
‘ sgn » c ‘ c, (6.2.1)

4Given any arbitrary 2-representation ρ P 2RepwkpDpBZ2q, each graded component of the vector space com-
plex V “ V´1

B
ÝÑ V0 carries a Z2-representation, which decomposes individually into direct sums of irreducible

representations 1, sgn. As B must be a Z2-intertwiner, it also decomposes accordingly as a direct sum on each
irreducible summand, whence V is a direct sum of the objects listed in (6.1).
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which tells us that c is a Cheshire string [76]; similarly, we compute

c˚
b c˚

– sgn2b
‘ sgn ‘ 1 ‘ sgn » c ‘ c.

Note that the order of the direct sums matter, as we have are keeping track of the (trivial)
differential B “ 0. Indeed, we have on the other hand,

c b c˚
“ p1 ‘ sgnq b psgn ‘ 1q – sgn ‘ 1 ‘ sgn ‘ 1 » c˚

‘ c˚
» c˚

b c, (6.2.2)

which is distinct from the above fusion rules.
Consider the mixed fusion 1˚ b c. Here, we need to keep track of the non-trivial maps B,

1˚
b c “ psgn ‘ sgnq b p1 ‘ sgnq

– sgn ‘ sgn2bp» 1q ‘ sgn ‘ sgn2bp» 1q

B“1

B“1

.

Since these maps B are intertwiners (in fact the identity), its domain and codomain are the
same. We keep only one copy, so that

1˚
b c » sgn ‘ 1 “ c˚. (6.2.3)

Through similar computations, we have

1 b 1 – 1, 1 b c » c, 1˚
b 1˚

» 1,

hence 1,1˚ are the vacuum lines; in particular, 1 is the indecomposable identity object in
2ReppDpBZ2q

trvq.

2-intertwiners; the 1-morphisms

Recall from Definition 5.5.4 that the 1-morphisms in 2ReppDpBZ2qtrvq are given by Z2-
equivariant cochain maps. Form the list (6.1), we clearly have identity self-2-intertwiners, such
as ir00s “ id : 1 Ñ 1 and ir11s “ id : c Ñ c. As the source and target are the same graded
Z2-representations for self-2-intertwiners in particular, we can find two more. These are given
by a swap of grading together with a certain twist,

i1r00s : pw, vq ÞÑ pv, wq, i1r11s : pw, vq ÞÑ p˘1q ¨ pv, wq, (6.2.4)

where pv, wq P V´1 ‘ V0 denotes elements in 1 or c. Clearly, the identity ir00s, ir11s admit
trivial actions by ρ1, in contrast to the grading swaps i1r00s, i1r11s. Hence from the grouplike
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coproduct ∆´1 (6.0.2) we deduce the following fusion rules

ir00s b ir00s “ i1r00s b i1r00s “ ir00s, ir00s b i1r00s “ i1r00s b ir00s “ i1r00s, (6.2.5)

and similarly for ir11s, i1r11s. The same analysis applies to the dual sector i˚r00s P Endp1˚q, i˚r11s P

Endpc˚q.
Now consider a map ir01s : 1 Ñ c; in the absence of the homotopy I, the commutative

diagrams (5.5.7) respectively enforce that

ir01s0 ˝ 1 “ 0 ˝ ir01s1, ir01s1 ˝ 0 “ 1̂pyq ˝ ir01s0,

where 1̂pyq “ ρ1pyq P HompV0, V1q is a non-trivial scalar multiplication. These equations admit
a non-trivial solution ir01s0 “ 0, ir01s1 “ 1, hence there is a non-trivial 2-intertwiner

ir01s “ 1 ‘ 0 : 1 Ñ c;

similar arguments show that we also have a non-trivial 2-intertwiner

ir10s “ 0 ‘ 1 : c Ñ 1.

These are the only possible 2-intertwiners between 1 and c. Again, the same analysis applies
to the dual sector. Since ir01s and ir10s have different domain and codomain, we must employ
the decomposition (5.5.14) in order to find the tensor product between them [146]. However,
since the coproduct ∆0 “ 0 is trivial in DpBZ2q

trv, we find their tensor product

ir01s b ir10s “ ir10s b ir01s » 1 “ ir00s

to be trivial as well. We shall see later in §6.3.1 that this will be different once we introduce
twists on DpBZ2q.

Let us now come finally to the 2-intertwiners that map between dual sectors. First, consider
maps such as 1 Ñ 1˚ or c Ñ c˚. Any such maps must intertwine between different Z2-
representations in both degrees, and the only such map is 0. Next, consider a map īr01s : 1 Ñ

c˚. The commutative diagrams (5.5.7) enforce

īr01s0 ˝ 0 “ 1 ˝ īr01s1, īr01s1 ˝ 0 “ 1̂p1q ˝ īr01s0.

The first equation says īr01s1 “ 0, while the second equation says īr01s0 “ 0, hence īr01s “ 0.
Similarly, any 2-intertwiner īr10s : c˚ Ñ 1 must be trivial īr10s “ 0.

The above paragraph proves that 2ReppDpBZ2q
trvq has two connected components made

separately of the electric and magnetic objects in (6.1), which have no (invertible) 1-morphisms
between them. We denote the identity component of 2ReppDpBZ2qtrvq, namely the con-
nected component of the fusion identity 1, by Γ, which consist of nothing but the electric
sector. Relabeling ir00s, ir11s “ 1 and i1r00s, i1r11s “ e, we achieve the following structure for
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Γ from (6.2.5),

1 c

ir01s

1,e

ir10s

1,e , (6.2.6)

which shall become crucial in the following.

Cochain homotopies; the 2-morphisms

Recall from Definition 5.5.4 that the 2-morphisms in 2RepwkpBZ2q are given by xZ2-equivariant
cochain homotopies. Of course, the monoidal structure of the 1-morphisms (eg. (6.2.5)) induce
a monoidal structure on the modifications µbµ1 : ibj ñ i1bj1, which by using the (so-far trivial)
interchanger (5.5.15) can be expressed in terms of the composition pµb idjq ˝ pidi bµ1q » µ ˝µ1.

By inspection of the connected component Γ (6.2.6), one can argue that the only modifi-
cations possible in Γ are self-modifications µ : i ñ i. To see this, we first note that there is
only one unique 1-morphism ir01s (or ir10s) between the simple objects 1 and c, hence we only
have the trivial identity cochain homotopy id : ir01s ñ ir01s. On the other hand, there are two
1-endomorphisms on 1 (or equivalently c), denoted by 1, e. Each of these of course comes with
its own trivial identity cochain homotopy, denoted by

1 : 1 ñ 1 µ : e ñ e. (6.2.7)

Here, we note that µ » ´1 ¨ id carries a global sign due to a grading swap in e (6.2.4).
It then remains to check that there are no non-trivial cochain homotopies between 1 and e.

Let µ̄ : 1 ñ e denote such a cochain homotopy. In order for µ̄ to denote a genuine 2-morphism
in 2RepwkpDpBZ2qq, it must by definition (5.5.8) intertwine ρ1. However, xZ2 "acts" trivially
on 1, while non-trivially on e,

ρ1 “ id : 1 ñ 1, ρ1 “ sgn ¨ id : e ñ e,

and hence µ̄ “ 0 must be trivial. This demonstartes that the only modofications in 2RepwkpDpBZ2qq

that exist are the self-modifications µ : i ñ i, as desired.

We of course have the trivial 1- and 2-morphisms given by 0. More importantly, we note that
the non-trivial 1- and 2-morphisms that we have identified above are not unique. In particular,
we have made the choice to normalize all of the 2-intertwiners and the self-modifications,
whereas any scalar multiple of them would also be valid. Further, we are also able to take
direct sums of the 2-intertwiners that we have identified above; basically, §6.2.1 lists a minimal
set of generators for the Hom-spaces of 2RepwkpDpBZ2qq.

Loop 1-category: the 1-endomorphism space of the tensor unit. Recall that, for any
Abelian group N , ρ1 : pN Ñ EndpV q´1 defines a " pN -action" by cochain homotopies on the en-
domorphisms EndpV q of a 2-representation V P 2RepwkpDpBNqq. Furthermore, modifications
µ : i ñ i1 between i, i1 P EndpV q by definition (5.5.8) must necessarily intertwine this pN -action.
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On the tensor unit V “ 1, in particular, the space Endp1q – k
1
ÝÑ k furnishes a 1-dimensional

irreducible pN -module, for which the intertwining modifications between the different pN -module
structures are either the identity or trivial. This allows us to conclude that

Ω2RepwkpDpBNqq “ End2RepwkpDpBNqqp1q » Repp pNq. (6.2.8)

For N “ Z2, we recover the result that Endp1q » ReppZ2q » VectrZ2s has two distinct objects,
1, e, with no non-trivial modifications between them.

Notice that in the usual theory of higher representations [46, 78, 63, 77], where 2VectKV is
2-enriched in Vect [97, 154], the above statement follows immediately from definition. However,
in the context of 2VecthBC (which is not 2-enriched), we have to prove it by direct computation.

Proposition 6.2.1. There is an equivalence between Z1pΣVectrZ2sq and 2RepwkpDpBZ2qtrvq

which is not compatible with the monoidal structure.

Proof. We use the description of the braided fusion 2-category R » Z1pΣVectrZ2sq (with trivial
associator class) describing the (3+1)D toric code given in [76]. This category has two identical
components; the identity component ΣVectrZ2s has two simple objects, given by the trivial
Z2-algebra I “ C and the Cheshire string c “ Crxs{xx2 ´ 1y, where Z2 acts non-trivially on x.
Monoidally, the two components of R follow a fusion rule that is graded by Z2 [78],

I2 » m2
» I, c2 » m12

» c ‘ c, c b m “ m b c » m1, c b m1
» m1

b c » m1
‘ m1,

where m,m1 denotes the simple objects in the non-trivially graded copy of ΣVectrZ2s.
To show the desired equivalence, we need to exhibit a 2-functor F : R Ñ 2RepwkpDpBZ2qq

which is essentially surjective and fully faithful. This means that

1. F is essentially surjective, namely a surjection on the equivalence classes of objects, and

2. F is fully faithful, namely it is an equivalence of Hom-categories.

We begin by taking

FpIq “ 1, Fpcq “ c, Fpmq “ 1˚, Fpm1
q “ c˚,

which is a bijection on the simple objects. Hence F is essentially surjective, and furthermore
preserves the identity. Now to check that F is fully-faithful, we must consider the Hom-
categories. Since Z1pΣVectrZ2sq » Σ2VectrZ2s ‘ Σ2VectrZ2s [78], it suffices to show full and
faithfulness on the corresponding identity components F : ΣVectrZ2s Ñ Γ.

To begin, we note that ΣVectrZ2s is well-known to have the following form [65],

I c

Vect

VectrZ2s

Vect

VectrZ2s ,
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with each of the Hom-categories labeled. We let v1 – k (resp. v2 – k) denote respec-
tively the simple object in the linear Hom-category Vect “ HomΣVectrZ2spI, cq (resp. Vect “

HomΣVectrZ2spI, cq), which can be understood as the 1-dimensional vector space over k. Similarly,
we let 1̊, e denote the two simple objects of the linear Hom-category VectrZ2s “ EndΣVectrZ2spIq »

EndΣVectrZ2spcq; the direct sum 1̊‘e corresponds to a 1-dimensional super- (ie. Z2-graded) vector
space.

By comparing with (6.2.6), we define the following component functors of the 2-functor F

by

1 “

$

&

%

ir00s “ pFqIÑI p̊1q

ir11s “ pFqcÑcp̊1q
, e “

$

&

%

i1r00s “ pFqIÑIpeq

i1r11s “ pFqcÑcpeq

ir01s “ pFqIÑcpv1q, ir10s “ pFqcÑIpv2q,

which we note are all unit-preserving and essentially surjective. It then suffices to check that
these component functors are fully faithful. By leveraging the linearity of the Hom-categories
under consideration, this is equivalent to checking that each of the component functors send
(additive) generating 2-morphisms to generating 2-morphisms.

This is indeed the case. Let j1 P EndVectpv1q – k denote the non-trivial generating 2-
morphism over the indecomposable 1-morphism v1 P Vect “ HomΣVectrZ2spI, cq. Then by
construction FIÑcpj1 : v1 ñ v1q “ idir01s : ir01s ñ ir01s is the identity self-modification on
ir01s “ FIcpv1q, which is the generating object in the Hom-category Hom2RepwkpDpBZ2qqpI, cq as
required.

Similarly, as FIÑI ,FcÑc are additive, they send the generating 2-morphism jZ2 : 1̊‘e ñ 1̊‘e

over the indecomposable 1̊‘e P VectrZ2s to the (graded) generating chain homotopy 1`µ (6.2.7)
over 1‘e “ FIÑI p̊1‘eq. This shows that each component functor FXÑY are equivalences of the
corresponding Hom-categories, and hence F : ΣVectrZ2s Ñ Γ is an equivalence of 2-categories.

We now wish to lift F to a monoidal 2-functor, which requires the fusion rules to be preserved
(up to coherence). The computations (6.2.1), (6.2.2), (6.2.3) show that F : Z1pΣVectrZ2sq Ñ

2RepwkpDpBZ2q
trvq preserves the fusion rules of the simples, and is indeed monoidally essen-

tially surjective. Next is to check that each component functor FXÑY , X, Y P ΣVectrZ2s is
monoidal on the Hom-categories.

From the fusion rules (6.2.5) for the 1-morphisms, we see that FXÑX withX “ I, c are indeed
monoidal, but the issue is that FIÑc (or FcÑI) is not: FIÑcpv1q bFIÑcpv1q “ ir01s b ir10s » 1 is
trivial in Γ Ă 2RepwkpDpBZ2q

trvq, while v1 b v1 fi 1̊ is not in ΣVectrZ2s. This prevents F from
being a monoidal equivalence.

The problem is in fact even worse — we will show in the following that 2RepwkpDpBZ2q
trvq

does not even define a gapped topological order. We elaborate in §6.3 on how this problem can
be amended by twisting the 2-algebra structure of DpBZ2q.
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6.2.2 The braiding data

Let us for now turn to the braiding structure. From the perspective of R, it is understood [76]
in particular that there is the self-braiding

β : m b m Ñ m b m

on the magnetic m line, which can either be trivial 1̊ or the electric Z2-particle e. An argument
was given in [76] that states β “ 1̊ is in fact trivial. We will prove that this is also the case in
2RepwkpDpBZ2q

trvq, but there is a major problem.

Theorem 6.2.1. All braiding maps on 2ReppDpBZ2q
trvq are trivial.

Proof. Recall from (5.6.2), (5.6.3) that the braiding structure of 2ReppDpBZ2q
trvq is induced

by a 2-R-matrix pR, Rq on DpBZ2q
trv. Since DpBZ2q is a Drinfel’d double, we can make use

of the braided transpositions Ψ, Ψ̄ to characterize pR, Rq using (5.2.29),

R “ Ψ̄ ˝ coev, (6.2.9)

R`
“ Ψl

´1 ˝ coevl, R´
“ Ψr

´1 ˝ coevr (6.2.10)

Here, coev is the coevaluation dual to the canonical pairing form on Z2 and coevl,r is the
coevaluation dual to the Pontrjagyn pairing. This method is based on the general quantum
double construction of Majid [118, 117].

First, in degree-0, the braided transposition Ψ̄ : kZ2 b kZ2 Ñ kZ2 b kZ2 satisfies

xx1
“ ¨ ˝ Ψ̄px1

b xq, x, x1
P Z2.

Now since Z2 is Abelian, Ψ̄ is simply the identity and hence (6.2.9) states that R “ id is in fact
the identity matrix. The braiding maps bV,W “ 1 are thus all trivial. Now in degree-(-1), the
braided transpositions

Ψl
´1 :

xZ2 b Z2 Ñ Z2 b xZ2, Ψr
´1 : Z2 b xZ2 Ñ xZ2 b Z2

y ¨ f “ ¨Ψl
´1py b fq, x ¨ g “ ¨ ˝ Ψr

´1px b gq (6.2.11)

for DpBZ2q
trv is given by Pontrjagyn duality

Ψl
´1py b fq “ ŷ b f̂ , Ψr

´1px b gq “ x̂ b ĝ,

whence (6.2.10) states that R˘ “ p ˝ coev “ id is the identity matrix. The mixed braiding
maps bi,W , bW,i are thus all trivial.

The fact that all the braiding maps are trivial on 2RepwkpDpBZ2q
trvq can also be seen from

the corresponding topological NLSM Z0
Kit, which has no terms in its action that encode any
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non-trivial statistics of the charges in the theory [71, 46]. Of course, we already know from
Proposition 6.2.1 that 2RepwkpDpBZ2qtrvq not (braided) monoidally equivalent to the toric
code R, and hence calling Z0

Kit the "4d toric code" is incorrect.

Remark 6.2.2. 2RepwkpDpBZ2qtrvq is "too trivial" to even describe a gapped topological phase,
since it violates the principle of remote detectability [79, 78, 76]. This principle states that
all non-trivial excitations can be detected by braiding, and it is part of the definition of a
topological order (such as the toric code R » ΣVectrZ2s). In this simple Z2-charged case, this
principle is encoded by the presence of the term xBY ēpAqy in the Dijkgraaf-Witten 4-cocycle ω
[71, 76], which is only present for Zs

Kit. Nevertheless, the above computations lay the foundation
for our results in the following.

6.3 Excitations in the spin-Kitaev model Zs
Kit

We now turn to the spin-Kitaev model Zs
Kit given by the Drinfel’d double 2-bialgebraDpBZ2q

sgn.
Its 2-representations have the same ingredients as those of DpBZ2q

trv, and hence the 2-category
2ReppDpBZ2qsgnq also has four objects, similar to those in (6.1).

The difference here is that DpBZ2q
sgn
0 “ Z2 now acts non-trivially on DpBZ2q

sgn
´1 “ xZ2. This

action was obtained by dualizing the non-trivial action u P AutpkZ2q, which induces via (6.1.4)
the class ē “ 1

2
u2 P H2pZ2,Z2q determining the non-trivial central extension of Z2 by itself.

This extension is Z4, which we interpret as a "semidirect product" Z2 ¸ Z2 where the central
element x2 P Z2 acts by ´1.

As such, the component ρ00pxq2 "acts" non-trivially on the degree-(-1) component of the
graded 2-representation spaces. In other words, provided ρ00 is non-trivial, the component ρ0 of
the 2-representation ρ furnishes a representation of Z2 ¸ Z2, satisfying

ρ0px
2
qpw, vq “ pēpx, xq ¨ pρ10px2qqw, ρ00px2qvq “ p´w, vq, x P Z2,

where pw, vq P V – V´1 ‘ V0. We denote such representations by ρ0 “ ρ10 ‘˘ ρ
0
0 “ pē ¨ ρ10, ρ

0
0q.

From (6.1), we thus see that the magnetic vacuum line 1˚ and the Cheshire string c carry
a Z4-representation, while the electric vacuum line 1 and the magnetic Cheshire c˚ carry a
Z2 ˆ Z2-representation.

Now recall from Remark 6.2.1 that ρ should preserve the identity, which was a vacuous
condition as ρ0,10 px2q “ 1 are both trivial for DpBZ2q

trv. However, due to the non-trivial sign
coming from ρ1pēpx, xqq “ ´1 in the current case, this becomes a non-trivial relation that one
must impose,

´1 ¨ ρ1pyq “ ρ1pēpx, xq ¨ yqρ10px
2
q “ ρ00px

2
qρ1pyq “ ρ1pyq, y P xZ2.

The component ρ1 is thus no longer required in general to preserve the identity. As V0, V´1 – k
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are both 1-dimensional vector spaces over the ground field k, we have

ρ1py
´1

qρ1pyq “ ρ1pyq
2

“ ρ1pyq
2
pρ1py

2
qq

´1
” c̄py, yq “ ´1 (6.3.1)

by considering ρ1pyq P kˆ as an invertible element. This defines a 2-cocycle c̄ P H2pxZ2, k
ˆq at

degree-(-1) carried by 2-representations that have ρ1 ‰ 0. In other words, the Cheshire strings
c, c˚ are capable of carrying a minus sign due to c̄, while the vacuum lines 1,1˚ do not. We
thus have two versions of the 2-category 2Repτf,mpDpBZqsgnq, corresponding to the versions of
DpBZ2q that either carry the projective sign c̄ or do not.

Twisted Drinfel’d 2-doubles. These 2-cocycles c̄, ē can alternatively be interpreted as
"twists" in the 2-algebra structure of the Drinfel’d double 2-bialgebra. Moreover, they can
also be interpreted as contributions to the 4-cocycles H4pDpBZ2q, k

ˆq of the (2-group underly-
ing the) Drinfel’d double 2-bialgebra DpBZ2q. This is a categorification of the 3-cocycle twists
of an ordinary 1-Drinfel’d double/3d tube algebra [155]; indeed, twists of 2-group(oid) algebras
by 4-cocycles have also appeared in the construction of the 4d tube algebra [156].

More precisely, the degree-4 cohomology of DpBZ2q was computed in [104] to take the form

H4
pDpBZ2q, kˆ

q – H4
pB2

xZ2, k
ˆ

q ‘ H2
pBZ2,xZ2q ‘ H4

pZ2, k
ˆ

q.

The 2-cocycle ē fits into the second term, while the double suspension map xZ2 Ñ B2
xZ2 sends

c̄ ÞÑ c̄r1s into the first term [46, 63, 71]. This allows us to identify two different 2-group
4-cocycles

ωf “ c̄r1s ` ē, ωb “ ē P H4
pG, kˆ

q (6.3.2)

corresponding to twists of the Drinfel’d double 2-bialgebra DpBZ2q, where the notation "r1s"
signifies a degree-shift under the double suspension map. These are the 4-cocycles that had
appeared in Theorem 6.0.1.

In analogy with the 3-dimensional case [155], we shall denote the twisted Drinfel’d double
2-bialgebras by DωpBZ2q, where ω P H4pDpBZ2q, k

ˆq. We take, now with proper naming,

Spin-Kitaev: 2Repτf pDpBZ2q
sgn

q “ 2RepwkpDωf pBZ2qq,

Toric code: 2RepτmpDpBZ2q
sgn

q “ 2RepwkpDωbpBZ2qq,

in which the first version is called fermionic (f -subscript) while the second version is bosonic
(m-subscript). This notation is suggestive, as it corresponds to whether the degree-(-1) xZ2 of
the Dijkgraaf-Witten NLSM associated to DpBZ2q

sgn is fermion parity Zf2 or a bosonic π-flux
Zm2 [71, 46].

Strictly speaking, the monster 2-BF theory (6.1.1) associated to 2Repf pDpBZ2q
sgnq should

include a term c̄pB,Bq given by the data of the 2-cocycle c̄, whence the partition function
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(6.1.3) reads
Zs

KitpXq „
ÿ

dA“0
dB“τ

ei2π
ş

XxBYēpAqy`c̄pB,Bq. (6.3.3)

Note that this term c̄pB,Bq, being cohomological, does not alter the EOM5 for the fields
pA,Bq. The theory Zs

Kit has also appeared as part of the NLSM construction in [71], provided
we identify

ēpAq “
1

2
Sq1A, c̄pB,Bq “

1

2
Sq2B (6.3.4)

in terms of the Z2-cohomology operation Sqi : HjpX,Z2q Ñ Hj`ipX,Z2q called the Steenrod
square [157].

Remark 6.3.1. In the spin-Kitaev model Zs
Kit, the coefficient of 1{2 that appeared in front of the

term Sq2B means that the point-like particle in the NLSM is a fermion [71]. If this coefficient
is 1{4, then such a term 1

4
Sq2B “ p2pBq gives a cohomology operation called the Pontrjagyn

square p2 : H2pX,Z2q Ñ H4pX,Z4q [104]. The point particle would then be a semion [71] in
this case.

6.3.1 Fusion structure in the twisted case

Due to the presence of 2-cocycles ē and c̄ in 2Repf pDpBZ2qsgnq, the corresponding coproduct
component ∆1

0 governing the tensor product of 2-representations now satisfies a modified version
of the condition (5.1.16),

∆1
0px

2
q “ pēpx, xq ¨ ēpx, xqq b x2 “ c̄py, yq1 b 1, (6.3.5)

where we have noted y “ ēpx, xq and the twisted monoidal structure y ¨ y “ c̄py, yq ¨ 1 for
generators x P Z2, y P xZ2. The presence of the sign c̄py, yq “ ´1 allows us to lift or trivialize
certain Z4-representations. We demonstrate this with explicit computations.

Forming the tensor product, we see that the fusion rules in 2Repf pDpBZ2qsgnq must be
different than that in 2ReppDpBZ2qtrvq. To see this more explicitly, we perform a monoidal
computation while keeping track of the data ρ1 : V0 “ sgn Ñ V´1 “ 1,

c b c “ pρc b ρcq ˝ ∆1
0

“ pē ¨ 1 b ē ¨ 1
ρ1

ÐÝ sgn b sgnp» 1qq ‘ pē ¨ 1 b sgn
ρ1b1

ÐÝÝÝ
ÝÝÝÑ
1bρ1

sgn b ē ¨ 1q

» p1
1̂

ÐÝ 1q ‘ pē ¨ 1 b sgn
ρ1b1

ÐÝÝÝ
ÝÝÝÑ
1bρ1

sgn b ē ¨ 1q,

where we we have used the fact that pē ¨ 1q2b » 1 and ρ1 b ρ1 » 1̂.
The first term is simply the trivial representation 1, while we use ρ1pyq2 “ c̄py, yq “ ´1

in the second term to lift "sgn" to a sign representation of the subgroup Z2 Ă Z4. However,

5Indeed, a 2-gauge theory with F “ B as an equation of motion would host instead a trivial 2-group Z 1
ÝÑ Z2

[115].
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together with the factor ēpx, xq ‰ 1, this allows to degenerate ē ¨ 1 b sgn » 1 to the trivial
representation; this is the effect of the condition (6.3.5). As such, we have

c b c » p1
1̂

ÐÝ 1q ‘ p1
1̂

ÐÝ 1q » 1 ‘ 1 “ 1, (6.3.6)

which is indeed distinct from (6.2.1). The magnetic Cheshire c˚, on the other hand, does not
carry ē, so it furnishes a kZ2ˆkZ2-representation. However, it does carry the 2-cocycle c̄, which
lifts the sign representation of Z2 to the trivial one. Hence we deduce that we have c˚ b c˚ » 1

as well.
On the other hand, the above argument can be applied to compute the fusion

c b c˚
» p1

1̂
ÐÝ sgnq ‘ p1

1̂
ÐÝ sgnq » sgn ‘ sgn » 1˚, (6.3.7)

where a non-trivial sign representation is left over due to the lack of a 2-cocycle ē carried by
the magnetic Cheshire line c˚. Similarly, we have c˚ b c » 1˚.

The above computations for (6.3.6), (6.3.7) rely crucially on c̄ ‰ 0. Therefore, if c̄ “ 0 were
trivial, then the Cheshire strings c, c˚ P 2RepmpDpBZ2q

sgnq revert to having the same fusion
rules (6.2.1), (6.2.2) as those in 2ReppDpBZ2q

trvq. This observation corroborates with [76].

Fusion rules for the 2-intertwiners ir01s, ir10s. Now in contrast to the previous case of
the invisible toric code, the coproduct component ∆0 is non-trivial for the Drinfel’d double 2-
bialgebraDpBZ2qsgn. This induces a tensor product between the 2-representations (6.1) and the
2-intertwiners on them. To be concrete and for brevity, we shall concentrate on the connected
component Γ “ End2RepwkpDpBZ2qsgnp1q in the following.

The fusion rules for the self-2-intertwiners ir00s “ ir11s “ 1, ir00s1 “ ir11s1 “ e remain the
same as (6.3.6), hence we shall focus on the fusion rules between ir01s, ir10s. For convenience,
we relabel these 2-intertwiners as v1, vc by their domains, and the goal is to directly compute
the tensor product v1 b vc “ vc b v1 through the definition. Given the Gray-property we have
noted in Lemma 5.5.2, the following two decompositions of i b j

v1 b 1 ˝ 1 b vc, vc b c ˝ c b v1

differ up to an invertible modification. This 2-isomorphism was computed in [119] to be given by
the weak component ϱ “ ρ1 ˝ ē, which in this case is determined by the 2-cocycle ē P H2pZ2,xZ2q

(see (6.3.10) later).
This fact is verified after a bit of a lengthy computation. We find that, for each non-trivial

x P Z2 (recall the counit ϵ defines the trivial 2-representation ρ “ 1),

ρv1b1 ¨ ρ1bvcpxq “ ϵ´1 b id – ρ1,

ρvcbc ¨ ρcbv1pxq “ pϵ´1 b ρ0pxqq ¨ pϵ´1 b ρ0pxqq “ pϵ´1 b ρ0pxq
2
q.

Upon using the extension class ē, the latter indeed becomes ρ1pēpx, xqqbρ0px
2q “ ρ1pyqbid – ρe,
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where y P xZ2 is the non-trivial generator. These contribute as (graded) summands into the
tensor product, whence

v1 b vcp“ vc b v1q » 1 ‘ e. (6.3.8)

This is required for the following.

Theorem 6.3.1. There are monoidal equivalences

Fm : Z1pΣVectrZ2sq » 2RepwkpD
ωbpBZ2qq, Ff : Z1pΣsVectq » 2RepwkpD

ωf pBZ2qq

of fusion 2-categories.

Proof. Recall from proof of Proposition 6.2.1 that the obstruction from lifting the equivalence
F : ΣVectrZ2s Ñ Γ Ă 2RepwkpDpBZ2qtrvq to a monoidal one is the component functor FIc (or
equivalently FcI), where I, c P ΣVectrZ2s are respectively the tensor unit and the (electric)
Cheshire string in R.

Let Γm Ă 2RepwkpDωbpBZ2qq denote the identity component. By adapting F to the twisted
case Fm : ΣVectrZ2s Ñ Γm Ă 2RepwkpDωbpBZ2qq, we see that the fusion rule (6.3.8) makes the
component functors of Fm monoidal,

pFmqIcÑcIpv1v2q “ pFmqIcÑIcp̊1 ‘ eq “ 1 ‘ e

» v1vc “ pFmqIÑcpv1qpFmqcÑIpv2q,

and identically for pFmqcIÑIcpv2v1q » pFmqcÑIpv2qpFmqIÑcpv1q (note the work [63] did not dis-
tinguish between v1, v2, so the fusion rule there is v2 » 1̊` e). Therefore, Fm : ΣVectrZ2s Ñ Γm

is a monoidal equivalence. Since Fm and its component functors preserve all units, it extends
to a monoidal equivalence Fm : Z1pΣVectrZ2sq » R Ñ 2RepwkpDωbpBZ2qq, as desired.

Now consider the fermionic case. We use the description of the braided fusion 2-category
S describing the spin-Z2 gauge theory given in [76]. The 2-category S is very similar to R:
it has two identical components, with the endormophism category on the identity given by
ΩS “ sVect » VectrZ2s. The fusion rules of the two components are once again graded by Z2.
The caveat, however, is that each component are monoidally equivalent to ΣsVect instead.

In the identity component ΣsVect, the Cheshire string c P sVect is the superalgebra Clp1q, ie.
the Clifford algebra with one odd generator. It satisfies the well-known fusion rule cb c » 1 in
the ambient category sVect. The rest of the fusion rules are then determined by the Z2-grading,

c2 » m12
» 1, c b m1

» m1
b c » m, m b c » c b m » m1

Let Γf denote the identity component of 2RepwkpDωf pZ2qq. The 2-functor Ff : ΣsVect Ñ Γf ,
defined in the same way as in Proposition 6.2.1 and the above, the computations (6.3.6),
(6.3.7) show that Ff is monoidally essentially surjective.

Consider ΩΓf “ End2RepwkpD
ωf pZ2qqp1q, whose unit is 1. Though Γf fi Γm as monoidal 2-

categories, we do have sVect » ΩΓf » ΩΓm » VectrZ2s (only monoidally) [76], hence Ff is
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monoidally fully faithful by the same argument as the above for Γm. Therefore, Ff extends to
a monoidal equivalence Ff : S

„
ÝÑ 2Repf pDpBZ2q

sgnq as desired.

6.3.2 Proof of the main theorem

Let us now look at the braiding data. We recall that the braiding in the 4d toric code R »

Z1pΣVectrZ2sq is known [78] to be given by

βX,Y pX b Y q “ Y b sgn|Y |X, X, Y P Z1pΣVectrZ2sq (6.3.9)

where sgn is the sign representation and |Y | P Z2 denotes the Z2-grading of the object Y ;
namely, given Y “ m,m1 is magnetic, sgn|Y | acts non-trivially on the electric sector. This then
gives rise, by naturality, to a non-trivial full mixed braiding [76, 68]

βe,Y ˝ βY,e “ ´1 ¨ id, Y “ m,m˚

between the non-trivial 1-morphism e P ΩR » VectrZ2s and the magnetic objects m,m˚, as
required by remote detectability (see Remark 6.2.2).

The spin-Z2 gauge theory S » Z1pΣsVectq, on the other hand, has ΩΣsVect » sVect, which
has a non-trivial self-braiding βe “ ´1 ¨ id for the odd object e (this is what distinguishes sVect
from VectrZ2s). Moreover, since the Cheshire strings c,m1 are now invertible, either of them be
self-braided. Given that the mixed braiding maps behave the same way as in R (namely the
only non-trivial mixed braiding maps are between e and the magnetic sector, with non-trivial
full-braiding), then it is one of the main results in [76] that only the electric Cheshire c carries
a non-trivial self-braiding βc “ e — a non-trivial self-braiding in m,m1 would in fact trivialize
the anomaly of S .

We are now in a position to prove the main theorem.

Theorem 6.3.2. The 2-functors Fm,f in Theorem 6.3.1 are braided equivalences.

Proof. The strategy is to simply compute all of the braiding structures in 2RepwkpDpBZ2q
sgnq,

and match them to the topological orders R,S . To do this, we lift the 2-functors Fm,f of
Theorem 6.3.1 to braided ones. This requires:

1. For each pair of simple objects X, Y P R, say, the 1-morphisms FmpβX,Y q and bFmpXq,FmpY q

are 2-isomorphic in 2RepwkpDωbpBZ2qq, and

2. For each object X and morphism f : Y Ñ Y in R, the component functors pFmqXY ÑY 1X

and pFmqY XÑXY 1 satisfy

pFmqXY ÑY 1XpβX,f q “ bFmpXq,pFmqY ÑY 1 pfq, pFmqY XÑXY 1pβf,Xq “ bpFmqY ÑY 1 pfq,FmpXq.

Of course, the same conditions must be met for Ff : S Ñ 2RepwkpDωf pBZ2qq.
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We shall follow the proof of Theorem 6.2.1 in order to construct the 2-R-matrix on
DωpBZ2q, which leads to the braiding in 2RepwkpDωpBZ2qq through (5.6.2), (5.6.3). We will
see how each of the non-trivial 2-cocycle twists ē P H2pZ2,Z2q and c̄ P H2pxZ2, k

ˆq manifest in
the braiding data.

Recall the 2-R-matrix pR, Rq is determined by the braided transposition Ψ by (6.2.10),
(6.2.9). Due to the "semidirect product" structure xZ2 ¸ Z2 induced by the 2-cocycle ē, the
degree-0 Z2 acts non-trivially on the degree-(-1) xZ2 by a sign ´1. The defining relations
(6.2.11) then implies that 2-R-matrix R is non-trivial:

R “ p´1q
x

¨ y b x ` x b p´1q
xy, R “ p´1q

xx b x.

By (5.6.2), (5.6.3), the off-diagonal nature of these R-matrices witness non-trivial braiding
between the electric and magnetic sectors. Indeed, R acts non-trivially on 2-representations
V,W P 2RepwkpDωpBZ2qq that differ in both of their graded Z2-representations, which is only
possible if V,W lie in distinct sectors by (6.1). The sign then indicates that this braiding is
non-trivial, consistent with (6.3.9).

Lemma 6.3.1. The 2-cocycle ē P H2pZ2,Z2q leads to non-trivial full braiding maps between e

and objects W in the magnetic sector.

Proof. Recall ē P H2pZ2,Z2q determines the non-trivial central extension Z4 of Z2 by itself. Pro-
vided that the component ρ00 is non-trivial, then ρ0 “ pē ¨ρ10, ρ0q furnishes a kZ4-representation.

In addition, this 2-cocycle also dualizes to ē P H2pZ2,xZ2q, which "twists" the algebra
structure in DpBZ2q

sgn in the sense that

x ¨ px ¨ yq “ ēpx, xqy ‰ x2 ¨ y “ y,

where x P Z2 and y P kxZ2. In the 2-representation 2-category 2RepwkpDpBZ2qq, this manifests
as the presence of the 2-morphism

ϱpx1, x2q “ ρ1pēpx1, x2qq : ρ0px1q ˝ ρ0px2q ñ ρ0px1x2q, x1, x2 P kZ2 (6.3.10)

mentioned in Definition 5.5.4. This demonstrates why we must use the weak 2-representation
theory based on 2VectBCwk , as the strict version does contain the component ϱ, and hence cannot
detect any twists in the 2-bialgebra DpBZ2q.

Recall (6.2.4) that e swaps the grading of the 2-representation spaces, and hence ē will occur
only in the full mixed braiding BW,e “ Be,W “ bW,e ¨ be,W between e and those 2-representations
W that carry a non-trivial sign representation in degree-(-1) — namely the magnetic sector in
(6.1). The other full mixed braiding maps being trivial. A simple computation then gives

BW,e : ρ
0
0pR`

p2q
qρ00pR´

p1q
q ñ ρ00pR`

p2q
R´

p1q
q “ 1, (6.3.11)

which is precisely the map ϱ1px, xq “ ρ1pēpx, xqq » ´1 from (6.3.10). In other words, the
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Z2-particle e braids non-trivially with the magnetic sector 1˚, c˚, as required.

Lemma 6.3.2. The 2-cocycle c̄ P H2pxZ2, k
ˆq gives the non-trivial self-braiding be “ ´1. More-

over, the self-braiding bc is non-trivial in 2RepwkpD
ωf pBZ2qq, but bc˚ , b1˚ are trivial.

Proof. Consider the first statement. By naturality, the braiding maps bi,j on 1-morphisms i, j
can be decomposed into mixed braiding maps,

bi,j “ bi,W bV,j,

$

&

%

i : V Ñ U

j : W Ñ T
.

Taking i “ j “ e and the identity endomorphism 1˚ : W Ñ W on a magnetic line, we see that

be “ be,1˚b1˚,e “ pbe,W bW,eqpbW,ebe,W q

“ Be,WBW,e “ pρ1pēpx, xqqq
2

“ c̄py, yq ¨ id “ ´1 ¨ id

from the definition of c̄ in (6.3.1) and the fact that Be,W “ ē from the above lemma. Here, note
the extension cocycle ē satisfies ēpx, xq “ y for the non-trivial generators x P Z2, y P xZ2. This
is consistent with the observation that c̄ implements the fermionic statistics of the Z2-charged
particle in [46, 71, 76].

Consider the second statement. Since ē also determines a central extension ofDpBZ2q0 “ Z2

by itself, an analogous argument as the previous lemma shows that, provided the 2-representation
ρ0 has the non-trivial sign representation at degree-0 (ie. the Cheshire string c or the magnetic
vacuum line 1˚), then the self-braiding

bV : ρ00pRp1qqρ
0
0pRp2qq ñ ρ00pRp1qRp2qq “ 1

can carry the non-trivial 1-morphism ρ0pēpx, xqq » e. In particular, this establishes that bc˚ » 1

is trivial while bc » e is not.
But what about the magnetic vacuum 1˚? The above argument does not force b1˚ to be

trivial, but the fusion rule (6.2.3) (in the form c b c˚ » 1˚) and the ribbon equation

bV bW – pV b bV,W b W q ˝ pbV b bW q ˝ pV b bW,V b W q

do. Since the magnetic Cheshire c˚ is bosonic, the full braiding Bc˚,c » bc » e must be
non-trivial. Using this along with (6.2.3) and the previous result then gives

b1˚ “ bc˚bc

– bc˚,c ˝ pbc˚ b bcq ˝ bc,c

» pbc˚ b bcq ˝ Bc˚,c

» 1 b e b e » 1,
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hence the magnetic vacuum 1˚ must have trivial self-braiding b1˚ “ 1.
Of course, in the absence of c̄, the braiding maps considered above are all trivial.

These lemmas demonstrate that the non-trivial braiding data in R (resp. S ) appear in
2RepwkpDωbpBZ2qq (resp. 2RepwkpDωf pBZ2qq), and identifies them from the 2-cocycle twists
ē, c̄ present in DωpBZ2q.

To further drive home the point of the main result Theorem 6.3.2, we shall recover the
5-dimensional cobordism invariant associated to the spin Z2-gauge theory S from the spin-
Kitaev model. Recall the expressions of ēpAq “ 1

2
Sq1A and c̄pB,Bq “ 1

2
Sq2B in terms of the

Steenrod square. Starting from the partition function (6.3.3),

Zs
KitpXq „

ÿ

dA“0
dB“τ

ei2π
ş

X BY 1
2
Sq1 A` 1

2
Sq2B,

we deduce that, given W is a 5-dimensional manifold with boundary X “ BW , the bulk
partition function takes the form [71]

Zs
KitpXq „ exp

„

iπ

ż

W

τpAq Y Sq1A ` Sq2 τpAq

ȷ

on-shell of the EOM dA “ 0, dB “ τpAq.
By interpreting the on-shell gauge fields pA,Bq (ie. satisfying dA “ 0, dB “ τpAq) as a

classifying map f “ pA,Bq : W Ñ BDpBZ2q [71, 104], we can introduce group cohomology
classes

E P H3
pZ2,xZ2q, M P H2

pZ2,Z2q

such that f˚E “ τpAq and f˚M “ 1
2
Sq1A “ ēpAq. Then, the spin-Kitaev partition function

can be written as
Zs

KitpXq „
ÿ

fPrW,BKs

prW s, f˚αq,

where rW s P H5pW,Cˆq is the fundamental homology class and α is a degree-5 group cohomol-
ogy class given by

α “ p´1q
Sq2 E`EYM

P H5
pZ2r3s ˆ Z2r2s,Cˆ

q. (6.3.12)

This is precisely the anomaly of the fermionic phase S [76].

To conclude this Chapter, I would like to emphasize that I have generalized the above
computations and results in [121] to study the 4d Zp toric code, where p is an arbitrary prime.
The partition function reads

ZKitppXq „
ÿ

dA“0
dB“τpAq

ei2π
ş

XxBYēmpAqy,
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where the 2-cocycle ēm P H2pZp,xZpq evaluated on A can be written in terms of the Zp-Bockstein
homomorphism β : H1pX,Zpq Ñ H2pX,Zpq. We state the main results here without proof.

Theorem 6.3.3. There is a monoidal equivalence between 2RepēwkpDpBZpqq and Z1p2Vect
KV

pZpqq.
Further, the electric Zp-flavoured bosons ek have non-trivial full braidings with any of the a-
magnetic objects W a,

Bek,Wa “ ζm ¨ id, @a, k “ 1, . . . , p ´ 1,

where id : ek b W a ñ ek b W a denotes the identity 2-morphism.
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Chapter 7

Outlook

This PhD thesis has motivated the appearance of homotopy Lie algebra symmetries in gauge
theories, and outlined several applications of the structure of Lie 2-bialgebras and the 2-graded
classical R-matrix. I showed in my paper [113] that this gauge-theoretic perspective of higher
homotopy symmetries is in fact very natural for the anomaly cancellation mechanism [100, 158,
159, 160], and the "gauging the gauge" idea extends straightforwardly to Lie 3-algebras and
3-gauge theories [161]. These points did not make it into the main text of the thesis due to
length constraints, but the interested reader is encouraged to check [113].

I then developed the algebraic structure of Hopf 2-algebras to serve as the quantization of
the theory of (weak) Lie 2-bialgebras. One key point to emphasize is that no where in §5 did
I require the underlying algebras to be semisimple or finite-dimensional. Hence the theory of
Hopf 2-algebras can be used to describe a notion of compact categorical quantum groups,
namely a deformation quantization, in the style of Drinfel’d-Jimbo, of compact Lie 2-groups.
Such structures have been proposed to have important applications in 4d quantum gravity
[44, 134, 1, 162].

These ideas that I have developed throughout my PhD allows one to tackle many open
questions that remain to be explored. I end this thesis with a short list of them.

Higher-ribbon structures and modular tensor 2-categories. The reader may noticed
that I have conveniently left out the study of the anomalous version T of the fermionic order
S in §6. This is because T is not a Drinfel’d centre [63, 77], and hence a description in terms
of a 4d Dijkgraaf-Witten TFT will not be straightforward. However, it is closely related to the
w2w3 gravitational anomaly [76, 163], and there had been field theories and lattice models that
are proposed to describe this anomaly [70, 113, 164].

The order T is known to be distinct from S as fusion 2-supercategories [76, 63]. As
mentioned in Remark 3.4 of [63], this can be understood as the difference between the self-
duality datum they host for the magnetic line m, which prompts a notion of ribbon Hopf
2-algebras and their 2-representations. Such objects should morally be a quasitriangular Hopf
2-algebra equipped with a central ribbon element ν P A satisfying appropriate homotopy ribbon
equations and coherences. Ideally, I wish to develop this theory in such a way that the ribbon
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data can be read off directly from the underlying Hopf 2-algebra of the 4d TQFT, or the
underlying 2-groupoid algebra of the membrane-net lattice model [156].

The modular data of (possibly non-finite semisimple) ribbon tensor 2-categories — such as
2RepwkpAq for an infinite-dimensional ribbon 2-Hopf algebra A — could be used to construct
a 4d version of the Reshetikhin-Turaev TQFT. As these TQFTs are non-semisimple [165], they
can produce novel invariants of 4-manifolds that see exotic smooth structure.

Higher character theory and state sums for 4d TQFTs. The goal here is to provide a
machinery that produces state sum invariants directly from the given 4d TQFT action. Towards
this, I have initiated work with prof. Clement Delcamp (IHÉS) to establish a notion of delta
functions and orthogonality of categorical characters [166, 167, 168] for higher representations of
groups/2-groups [64, 60] from the tensor networks/matrix product operators perspective.
This would allow us to explore the 4d analogue of the known deep relationship between Turaev-
Viro invariants and the tangle operators in 3d Chern-Simons theory [30, 27, 25], which makes
heavy use of character theory.

Having such a result would settle a conjecture [134] concerning the equivalence between 4d
2-Chern-Simons theory and the Crane-Yetter-Broda TQFT. Moreover, a higher homotopical
version of the Peter-Weyl theorem, which states that the space of L2-functions on a compact
quantum group decomposes into (infinitely many!) finite-dimensional unitary irreps, would
open the door towards the study of non-semisimple tensor 2-categories. Such algebraic gadgets
would be very useful for both mathematics and physics, such as the construction of novel
4-manifold invariants and the classification of gapless conformal defects [169].

The holographic duality in higher Chern-Simons theory. The well-known 3d Chern-
Simons/2d Wess-Zumino-Witten holographic correspondence [43], we expect a higher-integrable
CFT to be associated to the boundary of higher-Chern-Simons theory [111]. In an upcoming
work with Joaquin Liniado (La Plata U.), I have studied the homotopy 2+1d current algebra
that lives on the boundary of 4d 2-Chern-Simons theory [135], based on the holomorphic Chern-
Simons localization of [170]. The associated 2-Lax connections allowed us to construct higher
conserved currents that live on surfaces. These can be used to model conformal defects in
higher-dimensional CFTs.

In contrast to the twice-holomorphic homotopy current algebra of [171], the 3d currents are
holomorphic-topological, and hence should admit a quantization in terms of a holomorphic-
topological vertex operator algebra (VOA). It would be interesting to relate this VOA to the
"Raviolo VOA" of [172, 173]. Similarly, its representations should also admit a higher ho-
motopy version of the Kazhdan-Lusztik correspondence as mentioned in §1 — namely that
"positive energy" 2-representations of this homotopy current algebra should be in one-to-one
correspondence with 2-representations of compact categorical quantum groups.

2+1d quantum integrability. I propose that compact categorical quantum groups serves as
the foundation for a 2-dimensional quantum inverse scattering method. Such a notion
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of higher quantum integrability should realize the exact solvability of 2+1d lattice models with
general 2-categorical symmetries [75]. This proposal is inspired by the Bethe ansatz for quan-
tum integrable spin chains [174, 175] in 1-dimension, which gave rise to coherent states which
diagonalizes the transfer matrix of the lattice model. Having control over higher-dimensional
quantum integrability would also lead to the development of tools that are suitable for studying
quantum entanglement properties of novel 3d quantum codes.
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Appendix A

Classification of Lie 2-algebras

In this section we examine the classification of Lie algebra crossed-modules by Lie algebra
cohomology, following [124]. Recall that a given two Lie algebras h, g over a fixed field k of
characteristic zero, a Lie algebra crossed-module is a map t : h Ñ g and an action ▷ of g on h

such that the following Peiffer conditions

tpX ▷ Y q “ rX, tY sg, tY ▷ Y 1
“ rY, Y 1

sh (A.0.1)

are satisfied for each Y, Y 1 P h, X P g. Mathematically, it is equivalent to a strict Lie 2-algebra1,
where the homotopy map µ “ 0 introduced in the main text vanishes.

Consider the following four-term algebra complex built from the Lie algebra crossed-module,

0 Ñ V ãÑ h
t

ÝÑ g Ñ n Ñ 0, (A.0.2)

where V “ ker t and n “ coker t. Due to the Peiffer identity in (A.0.1), the Lie algebra
V Ă Zphq must lie in the centre of h, and hence is Abelian. It admits an action by n induced
by the crossed-module action ▷.

Definition A.0.1. We say that two crossed-modules t : h Ñ g, t1 : h1 Ñ g1 with the respective
actions ▷,▷1 are elementary equivalent if

1. ker t “ ker t1 “ V and coker t “ coker t1 “ n,

2. there exists Lie algebra homomorphisms ϕ : h Ñ h1, ψ : g Ñ g1 compatible with the
actions ▷,▷1 such that

ϕpX ▷ Y q “ ψpXq▷1 ϕpY q

1Namely a two-term differential graded L8-algebra.
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for all X P g and Y P h. Moreover, the diagram

h g

0 V n 0

h1 g1

t

ϕ ψ

t1

commutes.

Let us denote the set of elementary equivalence classes of Lie algebra crossed-modules by
XModpn, V q.

A.1 Lie algebra cohomology

We first review some basic facts about Lie algebra cohomology, which is a very powerful and
important tool for classification of L8-algebras. We once again follow the treatment of [124].

Let n be a Lie algebra over the field k and let V be an Abelian n-module. Define its
differential graded Chevalley-Eilenberg complex

pC‚
pn, V q, dq, Cp

pn, V q “

$

&

%

Λpnp, V q ; p ą 0

V ; p “ 0
,

where Λpnp, V q denotes the exterior algebra of alternating forms on p-copies of n over V . The
differential d : Cppn, V q Ñ Cp`1pn, V q is given explicitly by

dcpx0, . . . , xpq “
ÿ

iăj

p´1q
i`jcprxi, xjs, x0, . . . , x̂i, . . . , x̂j, . . . , xpq

´

p
ÿ

i“1

p´1q
ixi ▷ cpx0, . . . , x̂i, . . . , xpq

for each cochain c P Cppn, V q, where ˆ̈ denotes an omitted element.

Lemma A.1.1. d2 “ 0.

Proof. Recall the Cartan formula

Lx “ dιx ` ιxd, x P n

where ιx : Cp`1pn, V q Ñ Cppn, V q is the interior evaluation

ιx : c ÞÑ ppx1, . . . , xpq ÞÑ cpx, x1, . . . , xpqq
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and Lx : Cppn, V q Ñ Cppn, V q is the Lie evaluation

Lx : c ÞÑ ppx1, . . . , xpq ÞÑ x▷ cpx1, . . . , xpq ´
ÿ

i

cpx1, . . . , rx, xis, . . . , xpqq,

which by construction commutes with d. Now let v P V “ C0pn, V q be a 0-form, then

d2vpx1, x2q “ ´dvprx1, x2sq ` x1 ▷ dvpx2q ´ x2 ▷ dvpx1q

“ rx2, x1s▷ v ` x1 ▷ px2 ▷ vq ´ x2 ▷ px1 ▷ vq “ 0,

which vanishes by the n-module structure on V .
Now let p ą 0 and assume the induction hypothesis: d2 “ 0 on Cp´1pn, V q. Consider

c P Cppn, V q, then by the Cartan formula

d2cpx´1, x0, x1, . . . , xpq “ ιx´1pd2cqpx0, x1, . . . , xpq

“ pLx´1 ´ dιx´1qdcpx0, x1, . . . , xpq

“ pLx´1d ´ dpLx´1 ´ dιx´1qcpx0, x1, . . . , xpq

“ pLx´1d ´ dLx´1 ` d2ιx´1qcpx0, x1, . . . , xpq “ 0,

where the first two terms cancel by the property Lxd “ dLx, and the last term vanishes due to
the induction hypothesis (recall ιx´1c P Cp´1pn, V q).

This nilpotency allows us to define the Lie algebra cohomology

H‚
pn, V q “ ker d{ im d.

These groups are extremely useful, as they are isomorphic to the de Rham cohomology of the
topological group G [176]. Moreover, they classify various algebraic structures; for instance,

1. Degree p “ 0: the group H0pn, V q “ V n Ă V classifies the n-invariants: namely elements
v P V annihilated by n via the action ▷. Indeed, the 0-cocycle condition merely states

dvpxq “ x▷ v “ 0, v P V “ C0
pn, V q,

which means that v P Z0pn, V q is n-invariant.

2. Degree p “ 1: the group H1pn, V q classifies algebra representations of n on V (i.e.
derivations DernpV q) modulo inner representations. Indeed, the 1-cocycle condition reads

dcpx1, x2q “ cprx1, x2sq ´ x1 ▷ cpx2q ` x2 ▷ cpx1q “ 0,

which implies that c P Z1pn, V q is a linear representation of n on V . The 1-coboundaries
are inner derivations cpxq “ dvpxq “ x▷ v for some v P V “ C0pn, V q. If n acts trivially
on V , then H1pn, V q is in fact isomorphic to the (dual of the) Abelianization n{rn, ns.
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3. Degree p “ 2: the group H2pn, V q classifies central extensions pn of n by V , which fits in
the three-term exact sequence

0 Ñ V Ñ pn Ñ n Ñ 0.

To see this at a glance, a set-theoretic section s : n Ñ pn sees an obstruction to being a
Lie algebra-theoretic section given by

cpx1, x2q “ sprx1, x2sq ´ rspx1q, spx2qs.

It can be shown, with the n-module structure of V and the Jacobi identity, that c P

Z2pn, V q is a 2-cocycle, and any two choices of such sections s yields 2-cocycles c, c1 that
differ by a 2-coboundary c ´ c1 “ da.

In general, the set Hppn, V q classifies (p` 1)-term extensions of n by V . Moreover, equivalence
classes of such extensions can be equipped with an Abelian group structure such that Hppn, V q

coincides with it not just as a set, but also as a group.
We shall show in detail next that, at degree 3, H3pn, V q classifies precisely the four-term

complex (A.0.2) of a Lie algebra crossed-module.

A.2 Theorem of Gerstenhaber

Before constructing the 3-cocycle c P Z3pn, V q, we introduce the notion of addition in the set
of crossed-modules. Given two crossed-modules t : h Ñ g, t1 : h1 Ñ g1 with the same kernel V
and cokernel n, it can be shown that

pt ‘ t1q : h ‘ h1
{∆ Ñ g ‘n g

1

is another crossed-module, called the crossed-module sum of t and t1. Here, ∆ is the kernel of
the addition map ` : V ‘ V Ñ V , while g ‘n g

1 is the fibre pullback; explicitly,

∆ “ tpv,´vq | v P V u, g ‘n g
1

“ tpX,X 1
q P g ‘ g1

| pX “ p1X 1
u.

Note that as direct sums are commutative, we have pt ‘ t1q – pt1 ‘ tq.
This notion descends to elementary equivalence classes of crossed-modules, and endows the

set XModpn, V q the structure of an Abelian group. We shall show that this Abelian group is
isomorphic precisely to H3pn, V q. To begin, we construct a bilinear skew-symmetric map

fpx1, x2q “ s1prx1, x2sq ´ rs1px1q, s1px2qs, x1, x2 P n

from a section s1 : n Ñ g of the map p : g Ñ coker t “ n in (A.0.2). Though s1 may not be
a Lie algebra map, the projection p is, so pf “ 0 and f is valued in ker p. By the exactness
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ker p “ im t of (A.0.2), there exists a bilinear skew-symmetric map e : n^2 Ñ h such that
f “ te.

We now pick another section s2 : im t Ă g Ñ h of the crossed-module map t : h Ñ g, whence
e “ s2f . Let œ denote a summation over cyclic permutations of x1, x2, x3, then by construction,

tdepx1, x2, x3q “ t rœ eprx1, x2s, x3q´ œ s1px1q▷ epx2, x3qs

“ œ fprx1, x2s, x3q´ œ tpspx1q▷ epx2, x3qq Peiffer conditions (A.0.1)

“ œ fprx1, x2s, x3q´ œ rs1px1q, tepx2, x3q
loooomoooon

“fpx2,x3q

s Definition of f

“ œ prs1prx1, x2sq, s1px3qs ´ s1prrx1, x2s, x3sqq

´ œ prs1px1q, rs1px2q, s1px3qss ´ rs1px1q, s1prx2, x3sqsq Jacobi identity

“ œ prs1prx1, x2sq, s1px3qs ´ rs1prx2, x3sq, spx1qsq Cyclicity of summation

“ 0,

as such de is in fact valued in ker t. Again by the exactness of the sequence (A.0.2) we may
find a skewsymmetric trilinear map c : n^3 Ñ V such that ic “ de, where i : V ãÑ h is the
inclusion. Picking yet another section s3 : h Ñ V yields c “ s3De.

Now we must show that dc “ 0. It may be tempting to say that, since ic “ de, we have
idc “ dic “ d2e “ 0 by the nilpotency d2 “ 0. However, this does not immediately follow,
as s1 is not necessarily a section and hence s1p¨q▷ is not necessarily a well-defined action. By
explicit computation, terms involving the problematic operation s1p¨q▷ in idc read

ÿ

iăj

p´1q
i`js1prxi, xjsq▷ epx1, . . . , x̂i, . . . , x̂j, x4q

´

4
ÿ

i“1

p´1q
is1pxiq▷

«

ÿ

j‰i

p´1q
js1pxjq▷ epx1, . . . , x̂j, . . . , x3q

ff

Rearrange terms

“
ÿ

iăj

p´1q
i`j

ps1prxi, xjsq ´ rs1pxiq, s1pxjqsq▷ epx1, . . . , x̂i, . . . , x̂j, x4q Definition of f

“
ÿ

iăj

p´1q
i`j fpxi, xjq

looomooon

“tepxi,xjq

▷epx1, . . . , x̂i, . . . , x̂j, x4q Peiffer conditions

“
ÿ

iăj

p´1q
i`j

repxi, xjq, epx1, . . . , x̂i, . . . , x̂j, x4qs Cyclicity of summation

“ 0,

hence we nevertheless have dc “ 0. This allows us to conclude that c P Z3pn, V q.
We now wish to show that changing the choices of the sections s1,2,3 adds to c a 3-coboundary.

By linearity, we can write s1
1 “ s1 ` δ for some map δ : n Ñ g. Defining a bilinear skew-

symmetric map f 1 analogously, we see that

f 1
px1, x2q “ fpx1, x2q ` rs1px1q, δpx2qs ` rδpx1q, s1px2qs ` rδpx1q, δpx2qs ´ δprx1, x2sq.
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Notice the terms rs1px1q, δpx2qs`rδpx1q, s1px2qs´δprx1, x2sq constitute precisely the coboundary
dδpx1, x2q of a cochain δ : n Ñ g, with x1, x2 P n lifted up to g by the map s1.

Now as f 1, f are valued in ker p “ im t, we can find h-valued bilinear maps ϵ, ε such that
tϵpx1, x2q “ dδpx1, x2q and tεpx1, x2q “ rδpx1q, δpx2qs. Further, we can also find a ker t “ im i-
valued bilinear map φ such that

e1
px1, x2q “ epx1, x2q ` ϵpx1, x2q ` εpx1, x2q ` iφpx1, x2q

when lifted by s2. Our goal now is to apply the differential d; however, the trouble here is that
d and s2 need not commute, as s2 is not in general a section. Now by computation

tds2δpx1, x2q “ tps1px1q▷ s2δpx2q ` s1px2q▷ s2δpx1q ´ s2δprx1, x2sqq, Peiffer conditions

“ ts2prs1px1q, δpx2qs ´ rs1px2q, δpx1qs ´ δprx1, x2sqq

“ ts2dδpx1, x2q,

so ∆1 “ ds2ϵ ´ s2dϵ is valued in ker t. Similarly, the difference ∆2 “ ds2ε ´ s2dε also lies in
ker t, which allows us to finally write

c1
px1, x2, x3q “ cpx1, x2, x3q`dϵpx1, x2, x3q`dεpx1, x2, x3q`i p∆1 ` ∆2q px1, x2, x3q`diφpx1, x2, x3q.

Using the injectivity of i, we have diφ “ ipd|V φq, hence defining σ “ ϵ`ε and Γ “ ∆1`∆2`d|V φ

yields
c1

“ c ` dσ ` iΓ “ c ` dσ mod ker t,

whence lifting by s3 up to V yields c1 “ c` dσ. This shows that the cohomology class of c does
not depend on the choice of the section s1.

Now suppose we have distinct sections s2, s1
2, defining e “ s2f and e1 “ s1

2f . It is clear that
tpe ´ e1q “ ts2f ´ ts1

2f “ f ´ f “ 0, hence e ´ e1 is valued in ker t “ im i. This means that s3
lifts dpe ´ e1q to a coboundary dω such that c1 “ c ` dω, demonstrating that the cohomnology
class of c does not depend on the choice of the section s2 as well. Lastly, any two sections s3, s1

3

must coincide, at least on the image im i “ ker t, hence the cocycle itself c does not depend on
the choice of s3.

Lemma A.2.1. Let t, t1 denote two elementary equivalent crossed-modules, then the 3-cocycles
c, c1 they define coincide rcs “ rc1s P H3pn, V q in cohomology.

Proof. First, pick sections s1,2,3, s1
1,2,3 in the respective crossed-modules t, t1 and construct the

3-cocycles c, c1 P C3pn, V q. Suppose an elementary equivalence pϕ, ψq between the two crossed-
modules exists, then ψs1 is a section of p1. The above shows that the 3-cocycle c̃1 constructed
from the sections pψs1, s

1
2, s

1
3q differ from that c1 constructed from ps1

1, s
1
2, s

1
3q only by a cobound-

ary. Our task is thus to show that c̃1 also coincides with c up to coboundary.
Toward this, we define s1

2ψf ” ẽ1 and compare this to ϕe “ ϕs2f . First, we know that
t1s1

2 “ 1, hence ẽ1 ´ ϕe is valued in ker t1 “ im i1, so we can find a map v : n^2 Ñ V such that
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ẽ1 ´ ϕe “ i1v.
We now take the differential d of this equation. By definition of the elementary equivalence,

we can rewrite contributions ψpxiq▷ ϕpeq “ ϕpxi ▷ eq in the differential, as such dpϕeq “ ϕde.
Now s3ϕ is a section of i1, hence

c̃1
´ c “ s3Dẽ

1
´ ps3ϕqde “ dv

is a coboundary. This proves the lemma.

The lemma allows us to put a well-defined map b : XModpn, V q Ñ H3pn, V q.

Theorem A.2.1. (Gerstenhaber, attr. by MacLane). b is an isomorphism of Abelian
groups.

The classifying data of a Lie algebra crossed-module t : h Ñ g is exactly pn, V, cq with c P

H3pn, V q.

A.3 The Postnikov class

Let us now turn to the reason why we called an element in H3pn, V q a "Postnikov class" in
the main text. Formally, a Lie 2-algebra integrates to a Lie 2-group t : H Ñ G [95, 122], for
which a "Gerstenhaber theorem" also holds: t : H Ñ G is classified by its Hoang data pN, V, κq

[177, 102], where N “ coker t, V “ ker t and κ P H3pN, V q is a group cohomology class (as
opposed to a Lie algebra cohomology class).

The name "Postnikov class" comes from topology. Given any "nice" space X (a finite CW
complex), its fundamental group π1pXq in general acts on higher homotopy groups πě2pXq via
monodromy. The homotopy 2-type Π2pXq “ pπ1pXq, π2pXq,PtnpXqq is modeled by the group
crossed-module [102]

1 Ñ ker B “ π2pXq Ñ π2pX, Y q
B
ÝÑ π1pY q Ñ π1pXq “ coker B Ñ 1,

where Y Ă X is a closed subspace and B is the natural boundary map. Up to homotopy, it is
classified by the Postnikov class PtnpXq P H3pπ1pXq, π2pXqq, which determines how 2-cells are
glued upon the 1-cells.

It is possible to construct the classifying spaceBpN, V q satisfying the condition Π2BpN, V q “

pN, V, κq [69, 126]. Such a space sits in the Postnikov tower fibration sequence

B2V Ñ BpN, V q Ñ BN,

where BN “ KpN, 1q is the classifying Eilenberg-MacLane space of N and B2V “ KpV, 2q is
the second delooping of V , satisfying π2pB2V q “ V with other homotopy groups vanishing.

In other words, the Postnikov class determines how BpN, V q is constructed from the base
BN by gluing the second delooping space B2V . The homotopy classification theorem states that
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gauge-equivalent discrete flat 2-connections H1pX, pN, V qq are isomorphic to homotopy classes
of classifying maps X Ñ BpN, V q [177, 126]; this is how 2-gauge topological field theories are
constructed [69, 71].

The Postnikov class as a 2-curvature anomaly. The role the Postnikov class plays in
the 2-gauge theory is as a 2-curvature anomaly. Indeed, as we have seen already in §2.3.2, a
3-form contribution κpAq to the 2-curvature

1. does not violate the Bianchi identity dAF “ dApF ´ tΣq “ 0 iff κ is ker t-valued, and

2. is invariant under 2-gauge shifts A ÞÑ A ` tL iff κ only depends on coker t.

These desirable properties, as well as the descent equation (2.3.11), allows κpAq to have a
cohomological interpretation in terms of a Lie algebra 3-cocycle κ P Z3pcoker t, ker tq.

Notice that the function κ is only required to be a Lie algebra 3-cocycle, and hence is
not necessarily covariantly closed. This means that, in the presence of κpAq, the 2-Bianchi
identity (2.2.13) can in fact be violated, due to the 2-curvature anomaly EOM K “ κpAq

giving dAK “ dAκpAq ‰ 0.

As we see from the Gerstenhaber theorem above, the Postnikov class classifies the crossed-
module G up to elementary equivalence [124, 122]; in fact, Lie 2-algebras are classified by the
same data [178, 126]. Indeed, the astute reader may have noticed a close parallel between the
Postnikov anomaly κpAq and the Bianchi anomaly µpA,A,Aq. They both define an anomaly of
the 2-flatness condition, and the resulting 2-curvature quantity K have identical gauge trans-
formation properties.

For t ‰ 0, the two structures are actually different. Indeed, the 1-Bianchi anomaly µpA,A,Aq

is not invariant under the 1-form shift symmetry A Ñ A ` tL, while κ by hypothesis is. This
speaks to the fact that, unlike their strict counterparts, weak Lie 2-algebras and non-trivial Lie
algebra crossed-modules are not equivalent when t ‰ 0. Indeed, the component G in a weak
Lie 2-algebra is not a Lie algebra, as the 2-Jacobi identities (2.2.18) do not hold. The quantity
1
2
µpλ,A,Aq that appeared in (2.3.2), which seems to serve as the first descendant of µpA,A,Aq,

does not satisfy the descent equation (2.3.11).
When G is skeletal, on the other hand, the Postnikov class κ plays precisely the same role

as a homotopy map for the Lie 2-algebra V
0
ÝÑ n. No violation of the Jacobi identities are

present due to t “ 0. Therefore, algebraically, there is no distinction between a weak skeletal
Lie 2-algebra and a Lie algebra crossed-module with Postnikov class.

However, in terms of the geometry of the principal 2-bundle, the Lie algebra crossed-module
formulation has the distinct advantage that the 2-gauge theory it defines is free of the problems
plaguing that of a weak Lie 2-algebra, such as the lack of closure of gauge transformations
(2.3.9). This is because of the first descendant ζApλq of κpAq is part of the data of the 2-gauge
theory. The descent equation (2.3.11) ensures that the 2-gauge structure closes and is consistent
[99], even in the presence of a non-trivial Postnikov class [69].
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Appendix B

2-bundle homomorphisms

In this Chapter, we show that an elementary equivalence gives rise to a homomorphism between
2-gauge bundles. We also generalize this perspective to the weak case.

Let P ,P 1 Ñ X denote two 2-gauge bundles on X, equipped with connections pA,Σq and
pA1,Σ1q, respectively. Intuitively, from the gauge theory perspective, a 2-bundle homomorphism
g : P Ñ P 1 should satisfy two properties: (1) it is a bundle map over X; namely the triangle

P P 1

X

g

commutes, and (2) preserves all gauge-invariant data.
From our computations in the main text, the gauge-invariant data consist precisely of the

fake-flatness F (2.2.10) and the 2-curvature G “ K. As such homomorphisms ψ must satisfy

F “ g˚F 1, G “ g˚G 1.

Let us write, locally, g˚ “ f˚bΨ in terms of components, where f˚ is the pullback of f : X Ñ X

on forms and Ψ “ pϕ, ψq is a map on the Lie algebras

ϕ : h1
Ñ h, ψ : g1

Ñ g.

The fake-flatness condition F “ ψ˚F 1 implies

F “ pf˚
b ψqF 1, tΣ “ pf˚

b ψqt1Σ1
“ tpf˚

b ϕqΣ1; (B.0.1)

by linearity and F “ dAA,F
1 “ dA1A1, the first condition in (B.0.1) means that f˚ commutes

with the de Rham differential d, and that ψ is a Lie algebra homomorphism1. The second
condition means tϕ “ ψt1 commutes with the crossed-module maps t, t1.

1This means that A “ ψA1 and rA^As “ ψrA1 ^A1s “ rψA1 ^ ψA1s.
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Equivalence of 2-gauge bundles. The 2-curvature condition reads

G “ dAΣ “ pf˚
b ϕqdA1Σ1

“ pf˚
b ϕqpdΣ1

` A ^
▷1

Σ1
q,

where ▷1 is the crossed-module action in P 1. Using the second condition from (B.0.1), the first
term reads

pf˚
b ϕqdΣ1

“ dΣ “ dpf˚
b ϕqΣ1,

while the second term reads
A ^

▷ Σ “ pf˚
b ϕqA1

^
▷1

Σ1.

However, the condition A “ pf˚ b ψqA1 means that we must have

pf˚
b ϕqA1

^
▷1

Σ1
“ ppf˚

b ψqA1
q ^

▷
pf˚

b ϕqΣ1.

This tells us that, not only does g´1 also has to be a Lie algebra homomorphism, but also the
condition

ϕpX ▷1 Y q “ pψXq▷ pϕY q, @ X P g1, Y P h1. (B.0.2)

This is precisely the definition of an elementary equivalence of Lie algebra crossed-modules
[124, 122].

As such, we may interpret elementary equivalence as an equivalence of the gauge-invariant
data on the 2-gauge bundles P ,P 1. The Gerstenhaber Theorem A.2.1 then implies

Corollary B.0.1. If the 2-gauge bundles P ,P 1 exhibit distinct Postnikov classes κ ‰ κ1 P

H3pn, V q as 2-curvature anomalies, then there does not exist an invertible 2-bundle homomor-
phism between them.
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