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Abstract 

As water networks age, many utilities are faced with rising water main break rates and insufficient 

replacement funds.  Machine learning is a promising tool to support efficient water pipe replacement 

decisions.  This thesis explores the practical application of machine learning for water pipe failure 

prediction using a dataset of over 10 million pipe-year records from four countries.  Analysis of 

predictive factors shows that length, age, diameter, material, and failure history are each significant.  

Two novel relationships with break rate are observed: with respect to diameter, an inverse linear 

relationship, and with respect to age a peak at around 40 years followed by a decline lasting several 

decades.  A method is presented for predicting both probability of failure and the expected number of 

failures in a given pipe and time period.  By inferring units, encoding categorical features, and 

normalizing for different utility practices, it is proposed that a single model can generalize across 

utilities, geographies, and time periods without any utility-specific data cleansing.  The model is 

trained and tested on a leave-one-utility-out basis, with training data from time periods strictly prior 

to test data.  The resulting Area Under the Curve for the Receiver Operating Characteristic of over 

0.85 and Cumulate Lift at 10% of over 5.0 demonstrate the practical applicability of the model, 

matching the performance of models trained and tested on each utility’s own data.  Within this model, 

a method of cross-encoding categorical features with numerical features is introduced to enable 

integration of data sets from diverse contributors.  The applicability of these performance metrics and 

model outputs to common utility water main replacement decision making processes is also shown. 
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Chapter 1 

Introduction 

The distribution of potable drinking water is a cornerstone of modern sanitation.  This is 

accomplished by using networks of pressurized pipes running from water treatment plants to 

individual customers.  These water pipes can fail by leaking, breaking, or bursting.  When this occurs, 

this results in the loss of treated water, damage to the surrounding area, and disruption of water 

supply services.  Such failures are challenging to predict, as water mains are generally buried, making 

physical inspections difficult.  This study examines the application of machine learning as a method 

of predicting water pipe failures.  Its focus is on practical considerations in the use of such a model as 

a decision support tool. 

1.1 Water Distribution Networks and Pipes 

The main components of a water distribution system are a raw water source (usually a lake, river, or 

aquifer), a treatment plant, one or more pumps, and a water distribution network which brings the 

treated water to customers.  As shown in Figure 1, a water distribution network is divided into logical 

segments of pipe, which typically run underground along a street and span from junction to junction.  

A pipe segment is often composed of many sticks of pipe, connected together by joints. 

 

Figure 1: Illustration of a water network, pipe segments, and pipe sticks. 

A range of materials have been used for pipes, such as Cast Iron, Steel, Concreate, and 

Polyvinylchloride (PVC).  Each entire segment of pipe is generally installed at the same time, and 

made of a single material.  Pipe segments are usually the finest grained records kept by a utility. 
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1.2 Water Pipe Failures and Their Prediction 

A water pipe failure occurs when the pipe’s hydraulic integrity is compromised.  Failures encompass 

a wide range of severities, from tiny leaks that can only be detected via dedicated sensors, through to 

catastrophic bursts releasing millions of liters of water per hour.  Depending on the severity of the 

failure, the failed pipe stick will either be repaired or replaced before the pipe segment is returned to 

service.  A single pipe segment may fail and be repaired multiple times before being replaced. 

Such failures are difficult to predict.  Water pipes generally run underground, making inspections 

difficult and costly.  Few (if any) sensors are generally present in the networks to collect operational 

data.  This often leaves only the limited records kept during installation or during repair of past 

failures available for use in supporting water network management decisions. 

Water networks are managed by utilities in their capital improvement programs.  These programs 

aim to maintain the network in a state of good repair by replacing degraded or high-risk pipes.  The 

state of repair is measured by key performance indicators such as the water loss percentage, number 

of breaks per 100 km per year, and the annual cost of repairing water main breaks. 

Efficient management of a capital improvement program involves identifying which pipes are more 

likely to fail than others.  This is often considered an engineering discipline.  Various techniques are 

employed to this purpose, such as engineering judgement informed by case studies and surveys, 

targeted inspections and monitoring, survival analysis, failure risk assessment, financial decision 

optimization, and more recently the application of machine learning. 

1.3 Objective of this Research 

The objective of this research is to develop a practical method for the application of machine learning 

to pipe failure prediction.  Numerous studies have been conducted in recent years into the application 

of machine learning for pipe failure prediction.  These have either been case studies with limited 

generalizability, or tests of the potential for application of a particular analytical technique to the 

problem.  None have yet attempted to meet the required criteria to be of practical use, namely: 

 It must use only data to which typical utilities have access. 

o This means that any data not generally available to utilities, such as real-time 

sensor data and environmental data, must not be used. 
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 It must be applicable using only the skills available to most utilities. 

 It must be demonstrated to extrapolate forward in time, and to new utilities. 

 Its performance must be measured in a way that aligns with how the results will be used, 

demonstrating measurable value over existing processes. 

 The outputs must be usable without major changes to utility engineering practices and 

decision-making processes. 

This study aims to demonstrate that machine learning can indeed be practically applied to the 

prediction of pipe failures.  It addresses the question of whether a single model can be used to predict 

pipe failures for a wide range of utilities that did not contribute data to training the model.  It aims to 

do this without requiring utilities to manually cleanse their data and standardize to the same language, 

units of measure, technical jargon, and record keeping practices.  It describes the process of 

assembling a large and diverse data set, with contributions from six large utilities in three continents, 

developing a new three-layer model for predicting water pipe failure risk, and then testing its ability 

to predict failures in new utilities which did not contribute to the training data. 

1.4 Contributions of this Research 

This research provides novel contributions in three areas.  First are observations from the pipe failure 

dataset itself, being the largest and most diverse reported on to date.  Second are the demonstrations 

of how the appropriate selection of target variables and test metrics for the machine learning problem 

can allow the results to be used in various engineering and utility decision practices.  Third are the 

novel elements of the three-layer model presented. 

A major element of this research project was assembling a dataset containing over 10,000,000 pipe-

years of failure history.  This dataset includes records from six utilities, in four countries spread 

across three continents.  Past datasets have included data from only one country, and (with few 

exceptions) usually only a single utility.  The size and diversity of the dataset from this project has 

allowed clear trends to emerge in the relationship between pipe failure rates and certain predictive 

variables.  Some relationships, such as with pipe length and pipe material, confirmed the results 

obtained in smaller studies.  Two novel findings were also made.  First was a strong inverse linear 

relationship between pipe diameter and failure rate.  Second was the observation of a patter of peaks 

and subsequent declines in the failure rate as age increases. 
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In reviewing the literature on the application of machine learning to pipe failure prediction, a wide 

range was found in the selection of target variables and performance metrics.  This lack of 

consistency makes comparison of performance between algorithms difficult.  This study observes that 

selection of the calibrated probability of failure in a given time interval as the target variable allows 

the results of a machine learning model to be directly used in a wide range of utility engineering and 

decision-making processes.  Further, it is shown that two standard machine learning performance 

metrics are directly related to the impact which the results would have if used, namely the area under 

the curve of the receiver operating characteristic, and cumulative lift at 10%.  

A three-layer model is presented as a general machine learning model for pipe failure prediction.  

The first layer automates the data preprocessing by inferring units of measure for numerical features 

and encoding categorical features.  This allows data from new utilities to be used in the model 

without the need for manual data cleansing.  The second layer is a machine learning classification 

model for predicting whether or not a pipe will fail in a given five-year time period.  These 

predictions, however, are discarded, and only the relative likelihood of failure estimates used by the 

model are carried forward.  The third layer calibrates these results to match actual failure 

probabilities, thereby normalizing for each utility’s record keeping processes.  This layer also 

calibrates for the expectation value of the number of failures, accounting for the same pipe failing 

multiple times within a time period.  This allows for aggregation of the expected total number of 

failures within a cohort of pipes simply by adding the expectation values for all pipes in the cohort. 

This three-layer model was then used to demonstrate that a machine learning pipe failure model 

can indeed extrapolate forward in time and to new utilities.  The training and test sets were separated 

in time, with the training set falling prior to the test set.  Model training was performed on the basis of 

“leave one utility out” cross validation.  For each utility, the model was trained on the past data from 

all other utilities, and then tested on the future data from that utility.  This simulates a new utility 

using a pretrained model built with data from other utilities.  With the preprocessing later applied, the 

model outperformed other models which were trained and tested on each utility’s data in isolation. 

1.5 Organization of this Thesis 

Chapter 2 reviews the literature relevant to the use of machine learning for pipe failure prediction.  

This review spans three broad areas.  First, the construction and management of water networks and 

water pipes are described.  This is provided both to provide a clear definition of the problem of water 
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pipe failure prediction, and to provide context of the management decisions which the results of such 

a prediction algorithm would be used to support.  Second, the established engineering methods used 

to predict water pipe failures are reviewed.  This is provided both to provide the historical context 

leading up to the application of machine learning methods, and also to demonstrate that, with 

appropriate design choices, a machine learning model can be used within these established 

engineering methods.  Third, previous studies in the application of machine learning to pipe failure 

prediction are reviewed, which are directly relevant to this study. 

Chapter 3 presents the methodology applied in this study.  It describes the process for assembling 

the dataset, the exploratory data analysis, and details the novel three-layer model for pipe failure 

prediction. 

Chapter 4 presents the results of exploratory data analysis and modeling on this study’s dataset.  

This includes analysis of the impact of individual variables on pipe failure rates, and also the results 

of exploratory modeling conducted on this data. 

Chapter 5 presents the results obtained by applying the generalized machine learning model for 

pipe failure prediction. 

Chapter 6 presents a discussion of the results obtained, including results from the exploratory 

analysis of the dataset and from the new model proposed, as well as the potential relevance and 

impact of these results. 

Chapter 7 presents the conclusions of the study, along with limitations of the model and directions 

for future research. 
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Chapter 2 

Literature Review 

2.1 Water Pipe Network Construction and Management 

This section provides a background on the construction of water networks, and the management 

decisions made by water utilities related to water main replacement.   

2.1.1 Pipe Construction and Failures in Water Networks 

According to a 2020 American Society of Civil Engineers report, the United States projects a $2.2 

trillion dollar water infrastructure spending gap between 2019 and 2039, spending roughly $1 trillion 

out of a $3.2 trillion need (DiLoreto et al., 2020).  This gap arises because much of the water 

infrastructure is out of sight and out of mind: buried underground.  The fact that a pipeline has 

degraded becomes apparent only once the main bursts.  While water main breaks are rising (Folkman, 

2018), this effect is gradual and does not thrust the problem into the public eye. 

With insufficient capital funds to replace all infrastructure that surpasses its design life, utilities 

must be selective in replacing or rehabilitating only those water mains that have, in fact, degraded.  

Yet the fact that water mains are buried underground also prevents utilities from directly assessing 

their condition.  Instead, utilities must rely on limited data to infer the conditions of water mains and 

project these into the future. 

Addressing this contradiction is the essential challenge posed by pipeline diagnostics.  With limited 

available data, determining which pipes need to be rehabilitated or replaced to maintain quality of 

service is usually measured by the water main break rate.  Available data is usually limited to pipe 

demographics (age, material, etc.), maintenance records, and minimal (if any) sensor or testing data. 

Historically, this diagnostic problem has been addressed via human judgment.  Each utility creates 

its own formula to assign condition ratings based to pipes.  These formulae generally consist of 

subjective rules, often as simple as age.  More complex rules incorporate other factors, such as 

material and diameter, in some cases based on an understanding of the failure mechanisms of the 

pipes in question. 
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Studies have investigated the impact on failure rates of individual factors in individual utilities.  

These valuable contributions enable more data-driven rules for condition ratings.  These condition 

ratings can be combined with the consequence of failure ratings to yield net risk ratings for each pipe. 

Yet these approaches remain qualitative.  An alternative approach, rarely practiced due to a lack of 

readily available methods, is to make quantitative estimates of the probability (or expectation value) 

and consequence of future failures and to use these to calculate the expectation value of future 

failures. 

The problem to be investigated in this project is providing quantitative methods for estimating the 

probability or expectation value of future failures using machine learning methods. 

Machine learning techniques offer an avenue for making quantitative estimates of failure 

probability that consider all the available data on each pipe.  Few studies have been attempted in this 

domain.  These have generally been limited to data from a single utility and have predominantly 

relied on basic machine learning techniques that do not capture the relationship between pipes nor the 

time relationship between events on pipes. 

Advances in machine learning over the past decade have dramatically improved performance on 

many problems.  A review of the recent use of these techniques in the related problem of medical 

diagnostics highlights approaches which may be effective in pipeline diagnostics. 

Readers should note that the author has worked in the field of pipeline diagnostics and failure 

management from 1999 through 2018.  Portions of this thesis related to the management of water 

pipelines and their failures incorporate generally accepted industry knowledge and perspectives 

developed from 20 years of work and study in this area. 

2.1.1.1 Water Networks and Pipes 

2.1.1.1.1 Pipes in Water Networks 

A water network consists of a set of interconnected pipes that bring water from sources to consumers.  

To be considered part of the same network, the pipes must be hydraulically connected to each other; 

that is to say, there must be a path through which water could flow from any given pipe to any other 

given pipe within the same network.  Networks can be broken down into four components: 

transmission mains, trunk mains, distribution mains, and customer connections. 
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Transmission mains transport water in bulk from one location to another.  They generally run from 

raw water sources to treatment plants and then from treatment plants to a large group of consumers 

(typically a town or city but sometimes a single large consumer such as a power plant).  They tend to 

be large diameter (typically 500mm to 3000mm, sometimes even larger) and run for long distances 

without junctions or isolation valves. 

Trunk mains are larger diameter water mains that move water about within an urban center.  Some 

water networks are built in a “trunk-and-branch” arrangement, with larger trunk mains bringing water 

to zones or areas in the network and then smaller mains distributing water within that zone or area.  

Other networks employ a grid or loop system to provide redundancy.  The term trunk mains is still 

sometimes used to describe the larger diameter mains within a grid or loop system.  Trunk mains are 

generally of medium to large diameter (typically 200mm to 1000mm).  While they tend to run 

moderately long distances between junctions with other trunk mains, junctions with smaller diameter 

distribution mains or isolation valves can be more frequent.  A few large customers (hotels, hospitals, 

factories, etc.) may receive a connection directly from a trunk main. 

Distribution mains are the small diameter water mains that bring water supply into close proximity 

for most customers.  They are generally small diameter (50mm to 150mm) and tend to run short 

distances between junctions and isolation valves.  Distribution mains almost always follow streets, 

laid either underneath the street or in a right of way along the street.  Most customer connections are 

attached to a distribution main. 

Customer connections are the individual service lines connecting a single customer to the 

distribution network.  They often consist of three components: a water meter with an isolation valve 

(called a curb stop) connected to it, a pipe leading from the meter to the customer building (the 

customer-side pipe), and a pipe connecting the meter to the distribution main.  It is common practice 

(but not universal) for the customer to own the pipe on their side of the meter and the utility to own 

the pipe connecting the meter to the distribution main.  Ownership of the meter itself and the isolation 

valve varies.  Each full set of components (utility-side pipe, curb stop, meter, and customer-side pipe) 

is generally referred to as a single customer connection or customer supply pipe.  
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Figure 2: Components of a customer connection. 

2.1.1.1.2 Defining a Pipe 

The notion of pipes is simple and intuitive: cylindrical vessels used to transport fluid from one place 

to another.  It is clear that a network consists of many different pipes.  What is less clear is what 

constitutes a single pipe within the network, as the term pipe is ambiguous. 

Here, we introduce three specific terms: stick, segment, and pipeline.  Each of these represents a 

different level of granularity.  The term “pipe” can sometimes refer to each of these terms, both 

industry and literature.  The reason for this is that a pipe is a logical entity rather than a physical 

entity. 

The finest reasonable level of granularity is to define a single stick of pipe as a member of the 

population.  Most types of pipe are produced in discrete lengths (typically 4 to 6 meters in length).  

These are jointed together, frequently in a bell-and-spigot configuration, to produce pipelines.  For 

some types of pipe, common degradation mechanisms tend to be isolated to a single stick of pipe.  

For example, prestressed concrete cylinder pipe (PCCP) tends to fail due to corrosion or 

embrittlement of the prestressing wires.  This corrosion does not naturally spread from one stick of 

pipe to the next.  As a result, assessment and rehabilitation tends to occur on a stick-by-stick basis.  

For such types of pipe, individual sticks are the natural “members” of the population.  The challenge 

with using such fine-grained definitions is that associating a data point with a particular member is 

challenging.  Pipeline design drawings are prone to errors, as the actual installation often differs from 

the original design.  Even when correct, making the connection between physical location and the 

“station numbers” used to describe a location along a pipeline is often difficult.  Even for PCCP 

pipes, when a particular stick of pipe is selected for reinforcement, it is common practice to reinforce 
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the sticks on either side of it as well, as the odds of misalignment between the analysis and the 

physical pipeline are high. 

Another reasonable level of granularity is to consider a segment of pipe - the length of pipe 

between adjacent “nodes” in the pipe network - as a member of the population.  These nodes often 

consist of intersections, isolation valves, pressure reducing valves, or other features that offer a 

physical separation along the pipeline.  Some types of plastic piping material are produced in long 

spools rather than individual sticks.  These types of pipe are typically installed in one continuous 

stretch between nodes in the pipe network.  For such pipes, the lengths of pipe between nodes in a 

network are the natural “members” of a population.  This definition is often used in the Geographic 

Information Systems (GIS’s) used by utilities to track their underground infrastructure.  This 

approach does, however, come with four drawbacks.  The first is that there is no natural way to 

include the “nodes” themselves in the model.  These nodes are common failure points, making this a 

significant drawback.  The second is that there is no universal definition of what separates one 

segment from another.  For example, some utilities consider the short length of pipe connecting a fire 

hydrant to a distribution main to be a pipe itself, whereas others consider it a feature on the 

distribution main.  The third, which is partially a consequence of the second, is that the size of the 

population members varies widely, which can pose challenges to diagnostic models.  A single “pipe” 

that is 800m long has far more locations, each of which could experience a leak or burst, than one that 

is 20m long, regardless of its condition.  In regression models, this can be dealt with by normalizing 

for length (e.g., predict the number of leaks per km), but classification models have been prone to 

ignoring this factor.  Finally, members of the population defined this way are not necessarily 

persistent over time.  A long stretch of pipeline can be “split” into two by adding a new valve in the 

middle of it. 

Differences in rules for defining a single segment can be of material significance when performing 

analysis related to water main replacements.  While there are common conventions to this grouping 

(e.g., a junction separates pipes, an isolation valve separates pipes, a change in material separates 

pipes), there are also variations among utilities.  A prime example of these differences comes from 

the use of repair pieces.  When a pipe leaks or breaks, it is generally either repaired with a clamp or 

the broken section is cut out and replaced with a repair piece (a single stick of pipe, often shorter than 

a standard stick and usually of a different material).  When a repair clamp is used, the standard 
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convention is that the pipe remains the same pipe.  However, when a repair piece is placed in the 

middle of pipe, the pipe records can be updated in one of several ways: 

a) No change; the pipe remains the same pipe. 

b) The pipe is split into two, with two new pipes created. 

c) The pipe is split into two, with one portion remaining the original pipe and one new pipe 

created. 

d) The pipe is split into three (the upstream section, the repair piece itself, and the 

downstream section), with three new pipes created. 

e) The pipe is split into three (the upstream section, the repair piece itself, and the 

downstream section), with one portion remaining the original pipe and two new pipes 

created. 

This is a recordkeeping policy decision for each utility, and it can have significant implications for 

pipe break forecasting.  Take the example of a 200m long pipe segment that has suffered two leaks at 

the 50m point and the 150m point along its length, both of which were repaired with clamps.  A new 

break forms at the 100m point that requires a repair piece.  If the utility follows policy a) above, then 

there is a single pipe with three breaks in its database.  If the utility follows policy c) above, however, 

then there could be a pipe with three breaks and another with zero breaks. 

Finally, we can consider a pipeline.  This is a group of one or more segments that constitute a 

single path from a source to a destination.  The pipeline is generally of a single material and of a 

similar diameter throughout.  For example, a single pipeline may start at a water treatment plant and 

run to a reservoir in the center of a city.  There may be several isolation valves along its length, 

several branch lines drawing water from the pipeline between the start and end, and it may even 

change in diameter if these branch lines draw significant amounts of water. 

For the purposes of this study, we will use the term pipe to refer to a segment.  This is the unit of 

granularity most commonly used for making pipe replacement decisions, making it appropriate for 

this study.  The terms pipe and segment may be used interchangeably herein.  The terms stick and 

pipeline will be used explicitly when referring to these granularities. 
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2.1.1.2 Pipe Materials and Their History 

There are eight common pipe materials in use for water pipes: cast iron, steel, concrete (including 

reinforced concrete and prestressed concrete cylinder pipe), ductile iron, asbestos cement, 

polyvinylchloride (PVC), polyethylene (PE) including high density polyethylene (HDPE), and 

copper.  These are described in this section, together with their history of use.  Except where 

otherwise referenced, the content can be found in the American Water Works Association (AWWA) 

M77 guidebook (Ellison et al., 2018).  A summary is provided in Table 1, with details provided in 

Appendix A. 

Table 1: Summary of common pipe materials and properties. 

Material Acronym Diameters Usage Period Key Note 
Cast Iron CI Small – Med 1700 - 1960 Pit cast and later spun cast 
Ductile Iron DI Small – Med 1960 - 2000 Cement linings now common 
Steel ST Med – Large 1850 - present Common for critical pipes 
Asbestos Cement AC Small – Med 1940 - 1970 Many utilities removing 
Polyvinyl Chloride PVC Small 1950 - present Earlier use in Europe 
Polyethylene PE/HDPE Small 1950 - present Includes HDPE 
Concrete CONC Large 1950 - present Includes PCCP 
Copper CU Small 1940 - present Mainly customer service lines 
 

2.1.1.3 Pipe Degradation and Failure 

Like any mechanical structure, a pipeline will fail when the stresses placed on the pipeline exceed the 

strength of the pipeline.  Pipeline failure management consists of assessing the current condition of 

the pipeline, including various measures of strength and stress, and applying a judgement as to the 

current (or a projection as to the future) fitness for service based on these. 

Most pipelines are buried, making them difficult to observe directly.  As a result, assessing the 

current condition of a pipeline is a diagnostic problem requiring inference from indirect measures.   

Another diagnostic problem of interest is projecting a pipe’s future fitness for service.  Pipeline 

management decisions, such as selecting pipes for replacement or rehabilitation, are generally made 

based on projections of a pipe’s future fitness for service.  This fitness for service can be quantified 

by the pipe’s failure rate (breaks per pipe per year), normalized failure rate (breaks per 100 km per 

year), or time to next failure.  This diagnostic problem involves projecting a pipe’s current conditions 

into the future.  As noted above, the actual current condition of the pipe is rarely known.  As a result, 



 

 13 

projecting a pipe’s future conditions is, in fact, a compound problem of first inferring the pipe’s 

current condition and then projecting it to the future. 

This section introduces the mechanisms of pipeline degradation and failure as well as the signs and 

symptoms of progression towards failure. 

2.1.1.3.1 Degradation and Failure Mechanisms 

The definition of a pipeline failure is not universally agreed upon in the industry.  The terms “burst,” 

“break,” and “leak” are each used to describe a pipeline that is allowing fluid to escape.  These terms 

are sometimes used interchangeably.  When used to differentiate severity, it is usually the case that 

burst >= break >= leak.  Yet the state in which a pipeline has “failed” differs depending on the 

situation.  A pipeline transporting raw water in a water-rich region may have a hole losing hundreds 

of gallons per minute and be considered fit for service.  Conversely, a pipeline through a water scarce 

region carrying water treated by desalination may be deemed to have failed if even a miniscule leak is 

present. 

While the state at which failure occurs is contentious, the path towards this state is better 

understood.  Pipelines are designed to withstand their expected stresses, plus some safety factor.  

According to a 2005 Environmental Protection Agency white paper, “Water main breaks are caused 

when and where the loading on the pipe exceeds the pipe strength (i.e., ability to resist loading)” 

(Royer, 2005).  If a pipe initially operates as expected but eventually fails then something about either 

these stresses or the pipe’s ability to withstand the stresses must have changed over time.  The path to 

failure may thus involve increases in stress, loss of ability to withstand stress or a combination thereof 

(Wilson et al., 2014). 

Perhaps the best understood path to failure is corrosion.  In ferrous pipes, the internal or external 

surface will corrode with time.  This corrosion reduces the thickness of the structurally sound 

material, which is referred to as the wall thickness or structural wall thickness.  This loss of wall 

thickness represents a reduction in strength for the pipeline (Rajani & Makar, 2000).  It can spread 

broadly across the entire surface (e.g., from acidic water or soil) (McFarland et al., 2012) or locally 

(e.g., pitting corrosion, galvanic corrosion, stray current induced corrosion) (Baird, 2011).  Corrosion 

protection coatings are often applied to slow this process.  These coatings themselves will degrade 

and fail over time, which can also happen either locally (via mechanical damage) or more broadly 

with time.  Corrosion can also occur in the ferrous portions of composite material pipes, such as when 
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the steel reinforcing wires in prestressed concrete cylinder pipe (PCCP) corrode and break (Ge, 

2016).  Asbestos Cement (AC) pipe can undergo an analogous process whereby the chemical 

composition of the pipe wall changes over time in a manner that reduces its strength (Ghirmay, 2014).  

This is sometimes referred to as effective wall thickness loss.  Corrosion often results in gradual 

failure, where a pipeline leaks before failing. 

Another recognized path to failure is the application of severe, unplanned stress to the pipeline.  

Examples of stresses that have been studied include third party damage  (Makar et al., 2001), pressure 

transients (Lambert, 2000), frost heave (Selvadurai & Shinde, 1993), soil shifting (Makar et al., 

2001), and traffic loads (Stone et al., 2002).  These stresses sometimes cause a pipeline to fail 

suddenly. 

These two paths to failure are by no means mutually exclusive.  For a pipeline to fail, it is sufficient 

for the stresses to exceed the strength only at one point, and in one direction.  An unplanned stress 

that a new pipeline could withstand may cause a degraded pipeline to fail.  Even when an unplanned 

stress is severe enough to cause a new pipeline to fail, this failure will occur at the weakest point on 

the pipeline. 

2.1.1.3.2 Leakage: Existing Failures 

Along with playing a role in defining whether a pipe has already failed, leakage can be a sign of 

impending failure (Chastain-Howley, 2005).  The formation and growth of leaks tends to follow one 

of two broad paths.  One path is characterized by the formation of a pinhole-sized leak, which grows 

slowly and steadily over time.  The second path is characterized by crack-like leaks, which can form 

and grow in sudden episodes (Rajani & Kleiner, 2012). 

A more detailed explanation of the leakage phenomenon and related inspection technologies, based 

on the author’s 15 years of professional experience in this field, is provided as optional 

supplementary reading in Appendix A.  That material is outside the scope of the proposed research 

project.  For this project, it is sufficient to observe that past leakage is recognized as an indication of 

future leaks and breaks. 

2.1.1.3.3 Pipe Condition: Indicators of Future Failures 

While leakage identifies pipes that are already failing to hold fluid as designed, pipe condition 

describes the propensity for future failures by via early signs of degradation.  While small leaks can 
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themselves be signs of degradation, more often condition assessment aims to detect loss of strength in 

the pipes prior to leakage. 

The results of condition assessment projects fall into two types: condition ranking and quantitative 

assessment (Ellison et al., 2018).   

Condition rankings (e.g., “A through F” or 1 to 10) are subjective ratings based on utility staff 

experience.  They are generated using rules applied to available pipe records (age, material, past 

failures, etc.), with each utility creating their own rules from staff experience or engaging an 

engineering consultant to create rules for them.  No standard for these rankings exists; however, the 

consistency of the rules used by different utilities has been demonstrated by training a single artificial 

neural network to predict the rankings to pipes by three different utilities (Al-Barqawi & Zayed, 

2006). 

Quantitative assessment involves estimating a measurable value.  Values such as the remaining 

wall thickness, number of broken prestressing wires (Atherton et al., 2000), maximum corrosion pit 

depth, current burst strength or crush strength, future probability of failure, and the time to next 

failure are examples of quantitative assessment.  The specific techniques and technologies used to 

assess pipe condition are described in Chapter 2.2.1. 

2.1.1.4 Management of Pipe Failures 

Pipe failures are generally treated as an inevitable consequence.  Utilities treat pipe failures as 

something to be managed, rather than entirely prevented.  It covers how the failures themselves are 

dealt with, the costs (both direct and indirect) associated with failures, and the norms and targets that 

exist around the world. 

Management of pipe failures is done based on objectives or KPIs set by utilities and their 

regulators.  The common objectives are water conservation, financial efficiency, and customer 

service. 

Where water conservation is the objective, common practice is for utilities to track their pipe 

failure performance based on the Non-Revenue Water (NRW) percentage (Ellison et al., 2018).  This 

is calculated as: 
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𝑁𝑅𝑊 =
𝑆𝐼𝑉 − 𝑊𝑆𝑉

𝑆𝐼𝑉
 

(1) 

Where: 

 SIV = System Input Volume: bulk purchases plus raw water extraction 

 WSV = Water Sales Volume: metered water sales, plus estimated unmetered sales 

While NRW percentage is the most common metric used, it is not the recommended metric.  The 

reason for this is the presence of SIV in the denominator.  An effective program by the utility to 

encourage its customers to conserve water will result in reductions in the SIV, which will leave the 

numerator as is but reduce the denominator.  Consequently, the NRW percentage will increase due to 

the utility running a successful conservation program.  Alternate KPIs encouraged by industry 

associations include leakage in L / customer connection / day, leakage in L / km of pipe / day, and the 

Infrastructure Leakage Index (ILI) (Jernigan et al., 2019). 

Where the objective is financial efficiency, the concept of the Economic Leakage Level is used.  

This concept considers the tradeoff between the cost of efforts to reduce leakage and the cost of 

treating and pumping additional water that ends up leaking.  An example of the Economic Leakage 

Level concept is the Economic Intervention Frequency.  This concept considers the cost of proactive 

leak detection programs run at some time interval t.  As t decreases, the annual cost of the 

intervention increases.  As t decreases, the average run time of an undetected leak decreases.  The 

Economic Intervention Frequency is the interval t that produces the lowest total average annual cost 

(Lambert & Lalonde, 2005). 

Where customer service is the objective, a common performance metric is the number of breaks per 

100 km per year.  A water main break represents both a disruption to water service for the end 

customers relying on that water main, as well as a disruption to traffic.  Common targets are to keep 

water main breaks below a threshold of 20 breaks / 100km / year, or 30 breaks / 100 miles / year for 

utilities that use imperial units (Ellison et al., 2018).  

2.1.2 The Aging Pipes Decision: Replace, Reline, Rehabilitate, or Run to Failure? 

As pipe networks degrade, rates of main breaks can increase to levels beyond the targets set by or for 

utilities.  There are four essential options for handling an aging (and potentially degrading) pipe: 
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replace the existing pipe with a new one, reline the pipe entirely, rehabilitate selected sections of the 

pipe, or run the pipe until it reaches a failure state. 

2.1.2.1 Pipe Replacement 

Pipe replacement involves laying a new pipe in the original location of the old pipe.   

Historically, pipe replacement was done via an open-cut approach.  Under this approach, a trench is 

excavated around the location of the existing pipe.  The old pipe material is removed for disposal, 

recycling, or to be sold as scrap metal.  A new pipe is laid in the original trench and then returned to 

service.  Open-cut methods allow new materials or different diameters to be laid.  A large portion of 

the cost of this installation method lies in the excavation and restoration of the surface cover, 

particularly when the pipe ran underneath roadways.  Coordination of rehabilitation activities with 

other underground utilities (sewers, gas lines, power lines, etc.) and/or with planned road resurfacing 

can reduce the cost. 

Trenchless methods for pipe replacement have become more common over the past several decades 

(Wu et al., 2021).  Horizontal directional drilling allows a new pipe to be run between two pits, 

avoiding the cost of excavating along its full length.  This generally requires a non-jointed pipe 

material, such as HDPE, so that the new pipe can be pulled or pushed into place.  If a smaller 

diameter is acceptable for the new pipe, then the pipe-in-pipe technique can be used, whereby the new 

pipe is drawn through the old pipe.  Pipe bursting is similar to pipe-in-pipe, except that a burst head is 

forced through the old pipe prior to drawing through the new pipe, allowing a new pipe of the same or 

even slightly larger diameter to be used. 

2.1.2.2 Pipe Relining 

Aging pipes will sometimes have their service life extended by relining the pipe.  This process 

generally involves cleaning the pipe first to remove any debris, scale, or corrosion product that has 

built up on the inside pipe wall.  A liner is applied with the intention of extending the service life.  

Liners can generally be divided into two groups: structural and non-structural. 

Non-structural liners aim to restore the hydraulic integrity of a leaking pipe, and to delay the onset 

of corrosion caused by contact between the water and the pipe wall.  Internal cement mortar linings 

are intended to prevent or delay internal corrosion.  Spray-on linings have been applied to cast iron 

and ductile iron pipes since the 1940s, and it has become common for iron pipes to have a cement 



 

 18 

mortar lining pre-applied during manufacture, preventing the need for application (Dąbrowski & Li, 

2021). 

Structural liners aim to provide additional structural strength to a pipe, in addition to corrosion 

protection.  These liners are often made of plastic or resin.  They are either sprayed on or drawn 

through the pipe and then cured in place (Wu et al., 2021). 

2.1.2.3 Pipe Rehabilitation 

Pipe rehabilitation describes the process of extending the service life of a pipe without wholesale 

replacement or relining.  This generally involves testing or monitoring the full length of the pipe, and 

applying preemptive repairs or reinforcement at locations deemed at high risk of failure (Zarghamee 

et al., 2011). 

There are two common approaches to rehabilitation.  One is inspection and spot reinforcement of 

large diameter pipes, whereby an inline inspection device is run through the pipe, and at-risk locations 

suffering from degradation are reinforced.  The second is leak monitoring and spot repairs, whereby a 

monitoring system is used to detect small leaks as they form on the pipeline, which are then 

excavated and repaired prior to the leak growing into a larger burst. 

2.1.2.4 Running Pipes to Failure 

The final option is simply “running the pipe to failure.”  While this option is commonly selected by 

utilities for pipes with a low consequence of failure, it means different things to different utilities due 

to the absence of a universally accepted definition of the failure state for a pipe segment.  This 

practice is discussed further in Chapter 2.2.3.5.1. 

2.1.3 Replacement Decision in Organizational Context 

Pipeline replacement decisions are made within the broader planning and operational context of water 

utilities.  There are three common planning processes in use at water utilities.  Each has its own 

cadence, its own time horizon, and its own specific decisions to be made. 

2.1.3.1 Long Term Decisions: Master Plans 

Master Plans describe a utility’s long-term plan for providing services in a reliable and cost-effective 

manner.  They typical look 25 to 50 years into the future (GM BluePlan Engineering, 2020).  The 
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core question here is “how much should be budgeted for pipe replacement?”  Examples of specific 

decisions that can be aided with a pipeline failure prediction model at this stage include: 

 How much capital will we need for pipeline replacement over the coming decades? 

 What design decisions can we make (i.e., pipe material & diameter) that will help to keep 

costs down? 

 Should we focus on replacing or rehabilitating aging mains? 

 What balance of capital spending (i.e., replacement) and operational costs (i.e., repairs & 

maintenance) offers the best long-term impact? 

2.1.3.2 Medium Term Decisions: Capital Improvement Plans 

Capital Improvement Plans outline specific projects to be undertaken in the upcoming period of three, 

five, or ten years.  They are typically constrained by policies in the Master Plan, and by available 

capital budgets.  These plans are where tactical decisions are made regarding management of specific 

pipelines.  The core question here is “which pipes should be replaced in the coming years?”  

Examples of decisions that can be aided with a pipeline failure prediction model at this stage include: 

 Which pipes should I prioritize for replacement over the next five years to minimize the 

future break rate? 

 Which of the prioritized pipes should be replaced, and which should be relined? 

 Which pipes offer the best return on investment for replacement? 

 Which pipes are more economical to rehabilitate than to replace? 

2.1.3.3 Short Term Decisions: Operational Plans 

Operational planning is generally done on an annual basis as part of the budget planning cycle.  Often 

looking forward one to three years, these plans set out the likely expenses to maintain services.  

Because these operational plans are made within the constraints of the pipeline network, there are a 

limited number of decisions available which could be informed by a model.  Some are: 

 How much should I budget for main break repairs in the upcoming one to two years? 

 Are we better off using contractors or utility staff for main break repairs? 
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2.1.4 Specific Decisions to Be Addressed by This Study 

This study aims to provide a practical method of using machine learning to support certain water 

main replacement decisions.  The decisions the method should support are grouped into two 

categories: questions that are addressed directly by the model and questions where the model supports 

obtaining answers together with additional analysis. 

2.1.4.1 Questions to be Answered Directly by the Model 

The model outputs should provide direct answers to the following questions.  These questions are 

primarily related to the Medium-Term time horizon (Capital Improvement Planning).  They are not an 

exhaustive list but rather reflect a representative sample of questions which should be answerable. 

 Which water mains are most likely to suffer a break in the next five years? 

 How likely is it that a particular pipe will break in the next five years? 

 How many breaks can be expected from a particular group of water mains in the next five 

years? 

2.1.4.2 Questions For Which the Model Supports Answers 

The models and their outputs should, when used together with additional analysis methods, provide 

useful support to answering the following questions.  These questions are primarily related to the 

Long-Term time horizon (Utility Master Planning).  They are not an exhaustive list but rather reflect a 

representative sample of questions which should be answerable. 

 How many water main breaks per year should we expect in each five year period for the 

next 25 years or 50 years? 

 Which pipe materials and diameters offer the best long-term value? 

 How much do we need to budget for water main replacement to keep water main break 

rates below a threshold of 20 breaks per 100 km per year? 

 Which groupings (cohorts) of pipe will be cost-effective to replace in the next 25 years? 
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2.2 Established Engineering Methods for Water Pipe Failure Prediction 

This section outlines the established engineering methods for water pipe failure predictions, and how 

these are commonly used as supporting methods for pipe replacement decisions.  The methods are 

discussed in the context of the specific management decisions outlined in Chapter 2.1.4. 

2.2.1 Inspection and Monitoring 

One approach used to predict pipe failure is applying various inspection and monitoring technologies 

to the pipes.  While effective, these techniques require specialized equipment and expertise, making 

them costly and time consuming.  As a result, these are often used only in a targeted manner rather 

than broadly across water distribution networks. 

The technologies and analytical methods commonly applied vary depending on the pipe material in 

question.  This section of the review offers a summary of the common pipe types and condition 

assessment methods, their applicability as summarized in Table 2, and summary descriptions below.  

Greater detail is available in the AWWA M77 guidebook (Ellison et al., 2018). 

Table 2: Common pipe types and condition assessment methods. 

 CI DI Steel AC PVC HDPE CONC CU 

Pit depth measurement Yes        

Ultrasonic Testing ~        

Near Field Eddy Current  ~       

Magnetic Flux Leakage   ~      

Remote Field Eddy Current   Yes      

Transformer Coupling       Yes  

Wire Break Monitoring       Yes  

Acoustic Wall Thickness Testing Yes ~  Yes     

Phenolphthalein Dye Testing    Yes     

Leak Detection  Yes Yes   ~   

Inline Video (CCTV)         
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2.2.1.1 Common Condition Assessment Methods 

This section introduces the various common methods of condition assessment for water pipelines.  

Much of this material is drawn from the personal experience of the author, based on over 15 years of 

experience developing, commercializing, and applying condition assessment technologies.  A 

summary is provided in Table 3, with details provided in Appendix A. 

Table 3: Summary of condition assessment methods. 

Method Applicability Usage Raw Results Analyzed Results 
Pit depth 
measurement 

CI Samples Pit depths Statistically extrapolated 
maximum pit depths 

Ultrasonic testing CI, DI Local Pulse times Wall thickness at test point 
Near field eddy 
current 

CI, DI, ST Local / inline EM signal High resolution wall 
thickness 

Magnetic flux 
leakage 

CI, DI Local / inline Flux at each 
sensor 

Pit depths 

Remote field eddy 
current 

DI, ST Inline EM signal Pit depths 

Transformer 
coupling 

PCCP Inline EM signal Broken prestressing wires 

Wire break 
monitoring 

PCCP External Acoustic 
signal 

Breaking prestressing wires 

Acoustic wall 
thickness testing 

CI, AC, DI, ST External Acoustic 
signal 

Average wall thickness over 
interval between sensors 

Phenolphthalein 
dye testing 

AC Samples Cross section 
images 

Wall thickness in cross 
section 

Leak detection All External Acoustic 
signal 

Leak location 

Inline video (CCTV) Rare Inline Video signal N/A 
 

2.2.1.2 Application of Machine Learning to Leak Detection 

While the focus of this study is predicting future breaks in water pipes, a closely related problem is 

identifying and locating existing breaks (i.e., leaks) that are not visible from the surface, a process 

known as leak detection or leak monitoring.  Practical application of machine learning to this problem 

includes using acoustic signals from sensors either temporarily placed (leak detection) or permanently 

installed (leak monitoring) on the pipe, usually for this specific purpose.  Another practical approach 

is inducing small pressure transients (also known as water hammers), measuring the propagation 

speed and head loss, and comparing these to the expected speed and head loss, which can be 
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calculated using various numerical methods (Bostan et al., 2021).  Another approach involves using 

flows and non-transient pressures to identify the specific locations of leaks.  The latter approach is 

effective in identifying isolated zones or areas in a network (known as District Metered Areas, or 

DMAs) experiencing heavy leakage. The application of this approach to locating leaks more precisely 

is strictly theoretical at this time.  This section provides a brief review of selected studies in the 

literature on this topic. 

The task of detecting leaks using acoustic vibration data has been shown to be effective when a 

Gaussian Mixture Model is applied (Cody & Narasimhan, 2020).  Accuracy rates of over 70% were 

achieved in discriminating simulated leaks from non-leaking pipes. 

One study investigated the use of deep learning for determining the location of a burst using data 

from pressure meters operating at 15 minute intervals (Zhou et al., 2019).  This study showed 

promising results but relied entirely on synthetic data (simulated in a hydraulic modeling package) for 

both training and evaluation of the algorithms.  This reliance is a substantial weakness in the study, as 

it is in practice simply demonstrating the ability of a neural network to approximate the inverse 

functions of the equations used in the simulation. 

Fan and Yu applied a two-step approach of clustering to define pressure sensor placements 

followed by training machine learning models for detecting whether or not a leak is occurring in each 

zone (Fan & Yu, 2022).  They concluded that with optimized sensor placement, only a small number 

of known and measured historical leaks were needed in the vicinity of each pressure sensor.  Using 

data from two hypothetical water networks simulated in a hydraulic model, over 95% of leaks could 

theoretically be detected, and over 80% could be localized. 

Cai et al. employed support vector machines to classify pipes in a simulated network as leaking or 

not leaking using only simulated flow and pressure measurements and were able to achieve an AUC 

score of 0.891 on this simulated, calibrated, noise-free network (Cai et al., 2022).  The authors also 

applied a multi-stage approach of prioritizing areas of a network, detecting the presence of leaks, and 

then localizing the leaks to within 300m (Cai et al., 2023).  Their approach was applied to a simulated 

water network and was able to detect 12 of 19 simulated leaks and to localize 8 out of 19. 

Ravichandran et al. explored the use of acoustic sensor data to detect the presence of a leak in close 

proximity to a monitoring sensor (Ravichandran et al., 2021).  The authors used power spectral 
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density based features and found that a strategy of training multiple gradient boosted trees and then 

creating an ensemble learner from these to be extremely effective, reaching an accuracy of 99.84%. 

2.2.2 Case Studies and Survey Reports 

2.2.2.1 Background on Case Studies and Survey Reports 

Within the domain of pipeline management, making pipe replacement decisions is often considered 

an engineering discipline.  As such, the professional judgment of an experienced engineer figures 

prominently.  While this process may lack academic rigor, it is nevertheless common in practical 

application and thus merits description.  

Beyond the foundational requirements of becoming a professional engineer (education and 

experience), there is a requirement for background information to be used by the engineer to inform 

their professional judgement.  The background information comes primarily from a mixture of 

personal experience, peer discussion, and industry education (papers, articles, seminars, etc.).  In the 

case of pipeline risk assessment, industry education consists largely of publications of survey results 

and case studies.  Survey results often include highly aggregated information (such as average break 

rates) across multiple utilities.  Case studies often include informal univariate analysis (charts and 

aggregations, usually without any formal statistical analysis) of data from a single utility or detailed 

analysis of the proximate cause of a single pipe break.  These types of studies supplement an 

engineer’s personal experience, helping them to provide informed opinions.  The ease of 

understanding and applying these studies likely contributes to their popularity in industry. 

2.2.2.2 Prior Work on Case Studies and Survey Reports for Pipe Diagnostics 

A wide range of surveys and statistical studies have been conducted related to estimating the risk of 

pipeline failure.   These have generally focused on a single parameter at a time, either as a categorial 

variable (such as pipe material) or a linear correlation (such as age). 

Different types of pipe have been found to exhibit different mechanisms and rates of failure.  Table 

4 illustrates the findings of a study by the National Research Council of Canada that found the 

following average break rates per 100 km per year across 1992 and 1993 on different materials 

(Rajani et al., 1993). 
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Table 4: Water main break rates for Canadian pipes of a variety of materials, based on data 

found in  (Rajani et al., 1993) 

Material Length 
(km) 

1992 Breaks 1993 Breaks 1 Year Change 

Total /100 km Total /100 km Rate As % 

Cast Iron 8769.9 3078 35.1 3219 36.7 1.6 4.6% 

Ductile Iron 4237.5 394 9.3 415 9.8 0.5 5.4% 

Asbestos Cement 2105.4 114 5.4 128 6.1 0.7 13.0% 

PVC 1818 16 0.9 9 0.5 -0.4 -44.4% 

PCCP 623.2 3 0.5 5 0.8 0.3 60.0% 

Total 17554 3605 20.5 3776 21.5 1 4.9% 

Cast iron pipes exhibit the highest rates of failure.  Many cast iron pipes have no corrosion 

protection applied to their inside and/or outside diameter, leaving them prone to rust.  The material is 

also brittle and prone to cracking.  There have also been periods, particularly in the 1930s, when a 

material called leadite was used for packing the joints of cast iron water mains (Makar et al., 2001).  

This material has a different coefficient of thermal expansion than the iron itself, causing added stress 

near the joints during temperature cycles, which is thought to result in cracking of the bell end of the 

pipe. 

Ductile iron pipes share some failure mechanisms with cast iron pipes, with two key differences.  

First, the material is less brittle, making these pipes capable of supporting small, non-surfacing leaks 

for long periods without bursting.  Second, newer ductile iron pipes have inner linings and external 

coatings applied to reduce the rates of corrosion.  

Steel, plastic, and PVC pipes are all less prone to corrosion.  These materials are all very flexible, 

leaving them less prone to brittle failure as well.  Many failures in these pipes can be traced to the 

joints, which can be the weak points in the pipe.  Water leaking from the joints can also impact the 

surrounding soil, creating voids (loss of support) or frost heaves that cause unplanned stress on the 

pipe. 

Calgary inspectors have learned the hard way that permitting 
deviations of even a few degrees on main over 200mm offer a slight 
but measurable risk of leakage at the gasket, which then begins a 
process of erosion-corrosion of the gasket, the bedding, and even the 
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pipe itself. The leak only increases with time until finally a major 
failure can occur. 

(Brander, 2004, p. 8) 

Recorded failures in PCCP happen at quite low rates for two reasons.  First, the pipe barrel does not 

exhibit either of the gradual failure mechanisms (cracks, or corrosion pinholes) shown by ferrous 

pipes.  These pipes tend to burst catastrophically rather than leaking.  When leakage does occur, it is 

often at the joints.  The exception to this is Lined Cylinder Pipe, a type of PCCP in which the 

prestressing wires are placed directly on the steel cylinder, where leakage from corrosion of the steel 

cylinder has been suggested as a failure mechanism (Erbay et al., 2007).  Second, leaks on PCCP are 

difficult to detect using conventional acoustic leak detection approaches.  More costly techniques are 

required, such as inline leak location or trunk main correlators, which are used less frequently (Laven 

& Lambert, 2012).  Hence a leak on PCCP is more likely to go undetected than on other materials. 

Diameter is another well-known predictive factor.  Larger diameter pipes have been found to 

exhibit lower rates of failure than small diameter pipes (Sundahl, 1996).  There are two known 

mechanisms for this.  First, larger diameter pipes generally employ thicker pipe walls.  This means 

that the same design safety factor (as a ratio) will result in a greater excess material thickness.  Simply 

put, more of the pipe wall can corrode before reaching the critical thickness.  The greater pipe wall 

strength also leaves it more resistant to stresses for which it was not designed, such as third-party 

damage (e.g., being struck during excavation) and torque applied during installation.  Second, leaks 

on these mains are more likely to go undetected.  Large diameter mains are typically buried more 

deeply, hence a greater portion of leaks do not surface.  Sound attenuates more quickly on large 

diameter mains, and fittings for listening are placed less frequently, making acoustic leak detection 

methods less effective (Jones & Laven, 2008).  These two factors both contribute to the lower rate of 

measured failures on large diameter mains. 

The impact of age has also been widely investigated.  While many failure mechanisms operate over 

long periods, the relationship between age and break rate is quite complex.  Pipe materials have 

changed over time.  The oldest material (Cast Iron) generally exhibits the highest failure rates; 

however, it is not immediately clear whether this is due to age or material.  Similarly, PVC is the 

newest material widely used and exhibits the lowest failure rate; however, the age and material 

factors are highly correlated and difficult to decouple.  Even within a given material type, there is 
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complexity.  Material quality and installation practices have generally improved over time.  For 

example, the first generation of Ductile Iron pipe lacked appropriate corrosion protection, resulting in 

high break rates.  The “bathtub curve” of asset life also comes into play, as material or installation 

defects may surface early in the pipe’s life.  Survival bias also plays a role, as over poorly performing 

pipes (or cohorts) may be replaced early, leaving behind only those whose material, installation, and 

soil environment will allow them to operate for many decades without issues.  The author has 

personally seen >100-year-old cast iron pipe that looked nearly new when coming out of the ground.  

The net result can be a rather complex relationship between age and break rate, as illustrated in Figure 

3, as found in (Stone et al., 2002) and showing data from (Sundahl, 1996).  

 

Figure 3: Failure rates by age for cast iron pipe in Malmo, Sweden, over five years (Sundahl, 

1996). 

Traffic loading has also been shown to be a predictor of failure rate, as shown in Table 4 from 

Stone et al. (2002), who cite Eisenbeis et al. (2000) as the original source of the data.  It is not entirely 

clear whether it is the added weight, the variability of the weight, or the vibrations that cause this. 

Table 5: Relative failures rates for water mains in high traffic and low traffic areas in France  

(Stone et al., 2002). 
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Internal pressures also play a prominent role.  Higher pressures have been found to be predictive of 

the rate of failure formation (Lambert, 1994).  Variations in internal pressure, such as in systems with 

intermittent water pressure, can induce material fatigue due to cyclical stresses; systems experiencing 

pressure cycles have also shown higher rates of failures (Rezaei et al., 2015).  Finally, pressure 

transients (also known as water hammers) have been shown in many cases to be the immediate trigger 

of a failure (Romer et al., 2007), and the frequency and severity of pressure transients have also been 

quantitatively shown to be predictive of failure rates (Rezaei et al., 2015). 

2.2.3 Survival Analysis 

Survival analysis is an engineering concept widely used to predict asset failures, with numerous 

studies available in the literature describing its application to water pipe diagnosis. 

2.2.3.1 Background on Survival Analysis 

Survival analysis is a branch of statistics concerned with estimating the expected time until a 

failure event.  These methods employ a selection of functions to describe the expected lifespan of 

members of a population.  Central to these is a survival function S, which is denoted as: 

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡)  

(2) 

Where: 

 t is a time of interest 

 T is the time of the failure event 

 Pr() is the probability 

A survival function requires clear definition of the start time (i.e., t = 0).  In most cases all members 

of the population are considered to survive at time zero (i.e., S(0) = 1); however, this is not strictly 

required.   

It is, however, required that the survival function be non-increasing.  In other words, it must be the 

case that once a member of the population has failed, it remains failed in the future, although it may 

be replaced.  This requirement is expressed as: 
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𝑆(𝑡 ) ≤ 𝑆(𝑡 ) if 𝑡 ≥ 𝑡  

(3) 

The complement of the survival function S(t) is the lifetime distribution function F(t).  It can be 

thought of as a cumulative failure distribution function.  It is expressed as: 

𝐹(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡) 

𝐹(𝑡) = 1 − 𝑆(𝑡) 

(4) 

In cases where F(t) and S(t) are differentiable, then the survival event density s(t) and failure event 

density f(t) can be defined as follows: 

𝑠(𝑡) =
𝑑

𝑑𝑡
𝑆(𝑡) 

𝑓(𝑡) =
𝑑

𝑑𝑡
𝐹(𝑡) 

(5) 

These properties represent the probability density function of a sample failing at (or surviving 

through) time t.  They are related as: 

𝑠(𝑡) = −𝑓(𝑡) 

(6) 

The final key concept is the hazard function h(t), also referred to as the conditional hazard function.  

This function represents the chances that a particular member of the population which survived up to 

time t will fail at time t.  This is formally defined as the failure rate at time t, conditional upon having 

survived up to time t: 

h(𝑡) = lim
→

𝑃𝑟(𝑡 ≤ 𝑇 < 𝑡 + δt)

δt ⋅ 𝑆(𝑡)
 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

(7) 
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In many practical cases, data is available only in discrete time intervals (days, weeks, months, 

years, etc.).  For these situations, the hazard function h(t) can be approximated by the probability that 

a failure event will occur to a given member of the population at any point during the time interval 

beginning at t, conditional upon it having survived to the beginning of time interval t.  The remaining 

curves S(t), s(t), F(t), and f(t) can be approximated in analogous manners.  

Note that the hazard function, survival function, and failure functions all have simple relationships.  

Once any one is known, the others can be derived either analytically or numerically.  Hence, fitting 

any one to data is sufficient to generate all of these curves. 

Once these curves are fit, two commonly used derived quantities are the mean residual lifetime and 

the mean time to failure.  The mean residual lifetime is the expectation value of future lifetime, given 

survival to age t0.  Where t0=0, this becomes the mean time to failure (sometimes called the life 

expectancy at birth).  Both are analytically solvable for many of the distributions commonly used and 

can be approximated numerically for nonparametric formulations (often ignoring the impact of long-

tailed survivorship, which may be neglected in nonparametric models due to Right Censoring in 

data).  Also of interest is the median residual lifetime and the median time to failure.  These represent 

the times at which half of the population is expected to have failed.  These median quantities are also 

analytically solvable for many distributions and can often be solved numerically for nonparametric 

formulations (provided that at least half of the study population experiences the failure event during 

the study timeframe). 

2.2.3.2 Survival Curves Applied to a Cohort 

Most survival curves are applied to a population as a whole.  While the estimator for the curves may 

be parametric (e.g., Weibull curves) or nonparametric (e.g., Kaplan Meier curves), many are fit on a 

single parameter (time) and operate on an entire population. 

There are numerous benefits to fitting survival curves to an entire population or cohort.  The 

resultant curves provide a succinct summary of the expected behavior of a population over time and 

facilitate planning and decision making on the basis of these populations. 

Parametric curves have several distinct advantages, thanks to the analytics expression of the 

distributions.  These curves can often be used in conjunction with cost information for (failures and 

replacement) to identify analytical solutions to the optimal lifespan of members of the population.  
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Parametric curves can also be used to extrapolate to ages beyond what is included in the data to which 

they are fit.  

Nonparametric curves offer their own advantages.  Most importantly, they do not rely on 

assumptions as to the relationship between the failure rate and time (e.g., assuming exponential 

growth of the hazard rate).  They are also more robust against outliers and noise in the training data.  

They often, however, require more data to fit the curves and, generally, cannot extrapolate to ages not 

present in the training data. 

2.2.3.3 Survival Analysis Applied to Individuals 

As larger data sets have become available, survival analysis has extended to take advantage of more 

predictive variables (sometimes called covariates).  

The Cox Proportional Hazard model is a common approach to estimating the impact of factors 

other than time (covariates) on the hazard rate.  It works from the assumption that a given covariate is 

multiplicatively related to the hazard function.  This is expressed as: 

ℎ( 𝑡 ∣∣ 𝑿 ) = ℎ (𝑡) ⋅ 𝑒 𝑿 𝑿 ⋯ 𝑿  

(8) 

Where: 

 h0(t) is the baseline hazard function at time t for the entire population 

 Xi is a vector of p covariates for sample number i, with entries Xi1 through Xip  

 B1, B2, …Bp are the coefficients applied to the p covariates, which are fit to data  

Once a Cox Proportional Hazard model has been fit to data, the coefficients provide a clear 

indicator of how the value of a given covariate impacts the risk of failure.  Different types of 

proportional hazard models are often referred to, based on the assumed shape of the baseline hazard 

function.  For example, if a Weibull distribution is used for h0(t), it may be referred to as a Weibull 

Proportional Hazard model. 

The Cox Proportional Hazard approach can be considered a parametric approach to inclusion of 

covariates, as it assumes a multiplicative relationship to the baseline hazard. 
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Nonparametric approaches to incorporating additional covariates also exist.  Many of these rely on 

subdividing the population via tree structures.  This can be done by successively dividing the 

population across one covariate at a time, creating a tree structure with separate populations at each 

leaf.  A separate survival curve can then be fit to each leaf in the tree, creating a Survival Tree.  

Various strategies for dividing the population are available.  The resulting conditional survival 

function S(t | x) and conditional hazard function h(t | x) can be smoothed out by fitting multiple 

Survival Trees, each on a randomly selected subset of the data.  This approach, known as Survival 

Random Forests, has become common in recent years. 

2.2.3.4 The Challenge of Censored and Truncated Data 

In the ideal scenario for survival curve fitting, the entire lifespan of each member of the population is 

present in the records.  In practice, some data is often unavailable, either due to events happening 

outside the study period (Censored) or samples being missing altogether due to the timing of events 

(Truncated).  This data unavailability can be grouped into four categories (Turkson et al., 2021). 

Right Censoring: It is known that a member of the population survived at least until some time l 

(the lower limit on the lift of that member of the population), but not precisely when.  This often 

occurs when the failure occurred after the end of the data recording period. 

Left Censoring: It is known that a member of the population failed before some time u (the upper 

limit on the life of that member of the population), but not precisely when.  This often occurs when 

the failure occurred before the beginning of the data recording period. 

Interval Censoring: It is known that a member of the population failed between time l (the lower 

limit on the lifespan) and u (the upper limit on the lifespan), but not precisely when.  This often 

occurs when checks for the failure condition happen periodically, such as testing for presence of a 

disease. 

Truncation: When members of the population with a lifespan less than some threshold are simply 

not observed.  This often occurs when some members of the population experienced failure events 

prior to the start of the data recording period and are consequently not present in the study. 

2.2.3.5 Prior Work on Fitting Survival Curves to Pipe Data 

Failure curves have a long history of application in pipe diagnosis.  A brief review of examples from 

the literature is provided in this section.  First, however, some challenges must be addressed. 
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2.2.3.5.1 Challenges With Fitting Survival Curves to Pipe Data 

There are four broad challenges in fitting survival curves to pipe data.  The first is the ambiguity of 

what constitutes “failure” and “survival” of a pipe.  The second is the problem of data censoring and 

truncation.  The third is the challenge of selecting appropriate assumptions for fitting parametric 

models.  The fourth challenge is finding a formulation that is directly applicable in practice. 

The foundational assumption of survival curves is that a given member of the population can only 

fail once.  It survives until the point of failure, at which point it is no longer a survivor.  This is not 

strictly true of pipes at any level of granularity (stick, segment, or cohort).  A stick of pipe can 

experience a break, be patched and put back into service, and then break again at a later date.  

Likewise, a pipe segment can break multiple times at different locations along its length, or even 

multiple times at the same location (if that location has been repaired).  This ambiguity leaves several 

possible interpretations of a “failure event” in survival analysis: 

 The pipe is replaced.  This is clear and unambiguous and fits well with the definition of a 

failure event in Survival Analysis.  It is, however, less useful, as the survival curves end up 

describing human decisions and utility policies rather than physical phenomena. 

 The pipe experiences its first break.  While clear and unambiguous, this is both of 

limited practical application and difficult to apply.  It has the benefit of allowing 

calculation of a Mean Time to Failure for new pipes, which is an intuitive metric.  

However, most utilities accept a certain rate of water main failures as inevitable.  

Replacing pipes before their first failure is not generally their goal; in fact, many have a 

policy not to replace a pipe before it has failed at least once.  The metric also provides 

limited insight into the behavior of pipes that have failed at least once, which are often the 

main area of focus for replacement programs.  Fitting curves based on this definition is also 

difficult.  The issues of Left Censoring and Right Censoring are both highly prevalent.  

Left Censoring is prevalent because most utilities do not have failure records stretching 

back nearly as far as the ages of their oldest pipes.  Right censoring is prevalent because 

most pipes in their databases have not yet experienced a failure.    

 The pipe experiences its second break.  A relatively common policy is to replace a pipe 

after it experiences its second break.  This definition shares some of the benefits and 

drawbacks of each of the two definitions above.  
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 The pipe experiences its next break.  This resolves the problem of Left Censoring, as it 

allows for an arbitrary choice of the t=0 time.  The t=0 time is often set at the time of the 

most recent break.  This definition is still, however, prone to the Right Censoring and 

Truncation problems. 

 The pipe’s expected rate of failures per km exceeds a threshold (e.g., 20 breaks / 100 

km / year).  This is another replacement policy used by some utilities, as the average rate of 

breaks in the network (usually expressed per 100 km per year, or per 100 miles per year) is 

a common performance metric used to measure both customer service and the state of good 

repair of the network.  It is not, however, a practical definition for fitting a survival curve 

since it requires a preexisting model for estimating the future likelihood of failure.  This is 

equivalent to the hazard function itself, yielding a circular definition.  

Each of the definitions above, except for exceeding an expected rate of failures, suffers from the 

second group of problems: Censoring and Truncation. 

Right Censoring is a common challenge in fitting survival curves to situations where study 

durations are less than the maximum lifetime of the subjects.  This is the case for pipe failure studies, 

where utility records typically span only a few decades, but pipes can remain in service for a century 

or more.  There are four common methods for handling Right Censored data.  The first is simply to 

discard the right-censored records.  The second is imputation of the missing data, where a rule or 

model is used to fill in the missing records.  Third is dichotomizing the data, where a classifier is first 

fit to separate those that did and did not experience a failure, and then fitting a survival curve to only 

the non-censored data.  Fourth and most widely used is likelihood-based methods, which adjust 

mathematically for whether a sample was censored or not; this method is used by Kaplain-Meier 

estimators and by Cox Regression (Turkson et al., 2021). 

Left Censoring in pipe failure records warrants deeper discussion.  In a conventional Left 

Censoring scenario, it is known which members of the population failed prior to the study start time, 

but not when.  An example of conventional Left Censoring would be leak detection on pipes, wherein 

a leak detection survey may discover a non-surfacing leak on the pipe which formed at some 

unknown time in the pipe’s history.  In pipe break records, however, another type of Left Censoring 

occurs, where it is simply not known whether a pipe has previously failed or not.  This most 

commonly occurs when unknown breaks have occurred prior to commencement of systematic break 
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recording.  This problem would not be present in an ideal scenario where a utility has recorded all 

pipe failures and pipe replacements since the installation of its first pipe.  The reality is that recording 

pipe breaks is a relatively recent trend in industry.  Many utilities do not practice it.  Those that do 

generally have limited records.  In the case of the utilities participating in this study, the 

commencement date of their records ranges from 1960 to 2010.  This likely means that many breaks 

that occurred early in the lifetimes of some pipes are unrecorded.  There is no definitive way to know 

which pipes have and have not previously failed.  Consequently, most methods of accounting for Left 

Censoring, such as removing Left Censored records from the training set, cannot generally be applied.   

Such unknown missing records can lead to a bias in the survival curve tending to overestimate 

survival rates.  The dichotomization method has, however, been applied successfully.  To account for 

previously unrecorded leaks, a model to predict which pipes had breaks prior to commencement of 

recordkeeping can be created followed by a second model to estimate when.  This approach has been 

shown to reduce the bias introduced by left censoring (Xu & Sinha, 2021). 

Interval Censoring is not a widely documented problem for pipe failure records. 

Truncation is also a common challenge in pipe failure records.  Many utilities keep records of their 

current installed pipe inventory only.  Once a pipe is removed from service, it is expunged from their 

records.  This is a form of Truncation, whereby pipes which were removed from service prior to the 

study date are simply not present in the database.  It acts as a form of selection bias, whereby pipes 

which failed early may simply not appear in the data.  The absence of records for pipes which 

experienced premature failure may cause a bias in the survival curve tending to overestimate survival 

rates.  Fortunately, many data sets (including the majority used in this study) also include records of 

pipes that had been removed from service, in which case no Truncation is expected. 

The third group of problems relates to the challenging of selecting appropriate assumptions in 

fitting parametric and semi-parametric (where the relationship with time is parametric, but with other 

covariates is nonparametric) models.  By their nature, parametric models assume some form for the 

relationship between time, the covariates, and the failure rate.  Particularly common is assuming a 

specific form of the relationship between time and the failure rate, such as (for example) an 

exponential increase in the hazard rate with time or an exponential decrease in the mean time between 

failures with age.  While not strictly required, most implementations of parametric or semi-parametric 

models choose a baseline hazard function which assumes a monotonic relationship between the 
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hazard rate and time for a given cohort of pipes.  This relationship is shown in Chapters 4.2.4 and 

5.4.2 to be highly questionable.  Likewise, proportional hazard models assume that each covariate 

impacts failure risk consistently regardless of the value of other covariates.  This too is a questionable 

assumption with respect to pipes, as shown in Chapter 4.2.2 with the interaction between pipe 

material and diameter and in Chapter 4.2.4 with pipe material and age. 

The fourth and final challenge relates to finding a formulation of the survival curve that is directly 

applicable in practice.  Fitting a survival curve requires choosing a study period, which in practical 

terms generally means the duration of pipe break records provided by utilities contributing data.  

Many of the resulting metrics, such as the mean time to next failure, would be applicable to other 

similar study periods.  However, given the changing nature of pipe manufacturing and installation 

over time, it is not clear whether pipes will behave similarly during a future period (for example, 

starting 30 years later than the original study period).  Holding back the most recent study data from 

the curve fitting process and using this to test the curve would provide this confirmation; however, 

this is not common practice in survival curve fitting.  Similarly challenging is that many problem 

formulations require a long history of record-keeping (specifically when the most recent break 

occurred on each pipe) to be effectively applied. 

2.2.3.5.2 History of Fitting Survival Curves to Pipe Data 

Here are brief summaries of several studies related to survival analysis or survival curves in the 

context of water pipe break prediction: 

Le Gat and Eisenbeis applied a Weibull Proportional Hazard Model on both long duration (20 to 50 

years) and short duration (5 years) maintenance records (Le Gat & Eisenbeis, 2000).  The study found 

that with appropriate both left and right truncated data and appropriate grouping of cohorts, the short 

duration data was sufficient to fit the survival curves effectively. 

Scheidegger et al. explored the impact of truncation on pipe failure models (Scheidegger et al., 

2013).  They proposed an extension to these methods to consider absent data from replaced pipes.  

Their further work included a review of statistical failure models applied to water distribution pipes 

prior to 2015 (Scheidegger et al., 2015). 

Xu and Sinha discussed the overlooked issue of left truncation in many studies. They highlighted 

that this leads to systematic bias in survival analysis models, affecting the scale and shape of survival 
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curves and changing Mean Time To Failure (MTTF) estimates (Xu & Sinha, 2020).  In particular, 

they noted that this bias leads to underestimation of failure rates and overestimation of the time to 

next break.  They later proposed integrating an Artificial Neural Network (ANN) imputation method 

with Weibull proportional hazard survival analysis to calibrate the survival curve and reduce bias in 

MTTF estimation due to left truncation, reducing bias from 14.3% to 2.1% (Xu & Sinha, 2021). 

Phan et al. proposed an approach to managing water main breaks using risk-based decision making, 

combining machine learning and survival analysis (Phan et al., 2019). 

Rahbaralam et al. employed machine learning algorithms and a Cox proportional hazard survival 

analysis model to predict water main failures in Barcelona, evaluating the models with various 

metrics including AUC and Matthews’ Correlation Coefficient (Rahbaralam et al., 2007). 

The use of survival trees, survival tree ensembles, and survival random forests for this application 

was introduced in a master’s thesis (Oliveira, 2019).  This thesis further introduced the concept of 

ranking the pipe segments and plotting the percentage of the network selected for replacement versus 

the percentage of failures avoided if it were replaced, describing this as a cumulative gain curve, the 

use of a concordance index for measuring overall performance, and the use of a metric (such as the 

Brier score) to measure the absolute accuracy of failure probability estimates. 

Snider and McBean published several recent studies on this topic.  They addressed the issue of 

censored data in water utility datasets, where many pipes in service have never experienced a break. 

They noted that traditional survival analysis models like Cox proportional hazard models can handle 

censored data, unlike many machine learning models (Snider & McBean, 2020b).  They also 

compared a machine learning model (XGBoost) with Weibull proportional hazard survival analysis 

for predicting time to next failure, finding that the XGBoost model underpredicted time to next break 

due to its inability to include censored events (Snider & McBean, 2020a).  They further discussed the 

use of survival machine learning models like Random Survival Forest, which incorporate censored 

data and model complex relationships between variables (Snider & McBean, 2021). 

Recent work on fitting survival curves to data continues to explore the use of random survival 

forests (Daulat et al., 2024).  Random survival forests can be considered both survival curve fitting 

and a machine learning approach.  Prior work in this area will also be described in Chapter 2.3.2.  
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2.2.4 Failure Risk Assessment 

The concept of failure risk prediction is prominent in engineering approaches to asset management.  

This section provides a synopsis of studies from the literature which have applied the technique to 

water pipe diagnosis. 

2.2.4.1 Background on Failure Risk Assessment 

Failure risk prediction deals with the same fundamental problem as survival analysis but approaches 

it from the opposite direction.  Rather than focusing on the question of how long it will be until a 

member of the population fails, it focuses on estimating the risk of failure in a given time period. 

Failure risk assessment generally breaks down the problem into two dimensions: the likelihood (or 

probability) of a failure occurring, and the consequences (or severity) of a failure if it does occur.  

Both dimensions can be handled qualitatively (such as with risk categories) or quantitatively (such as 

in failure probability estimation).  Similarly, the joint consideration of likelihood and consequences of 

failure can also be handled qualitatively (such as with a risk matrix) or quantitatively.  When joint 

risk consideration is handled quantitatively, a common approach is to calculate the expectation value 

of the consequences from a given risk: 

𝑅𝑜𝐹(𝑡) = 𝐶𝑜𝐹(𝑡) ⋅ 𝑃𝑜𝐹(𝑡) 

(9) 

Where: 

 t = A time period of interest, such as a particular year 

 RoF(t) = Risk of Failure during time period t 

 CoF(t) = Consequence of Failure during time period t 

 PoF(t) = Probability of Failure during time period t 

In many applications, a range of different types of failures are possible, each with different 

probability and consequences of failure.  In such cases, the total risk is often expressed as a 

summation over these different types of risk. 
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𝑅𝑜𝐹(𝑡) = 𝑅𝑜𝐹 (𝑡) 

RoF(𝑡) = 𝐶𝑜𝐹 (𝑡) ⋅ 𝑃𝑜𝐹 (𝑡) 

(10) 

Where: 

 RoFi, CoFi, and PoFi are the Risk, Consequence, and Probability of the ith failure of type. 

The expression of the aggregate risk over a population comes in a similar form.  Rather than 

summing over types of risk, the same summation is applied over the different members of a 

population.  Where the population is homogeneous, this works out to a simple multiplication by the 

total size of the population. 

RoF(𝑡) = 𝐶𝑜𝑓 (𝑡) ⋅ 𝑃𝑜𝐹 (𝑡) 

𝑅𝑜𝐹(𝑡) = 𝑁 ⋅ 𝐶𝑜𝐹(𝑡) ⋅ 𝑃𝑜𝐹(𝑡) 

(11) 

Where: 

 RoFn, CoFn, and PoFn are the Risk, Consequence, and Probability of a failure of the nth 

member of the population 

 N is the total size of the population 

It should be noted that, while the terms “Probability of Failure” and “Likelihood of Failure” are 

commonly used, strictly speaking this should be the expectation value of the number of failures.  The 

two are identical in the case where a particular failure can only occur once; however, in some cases, it 

is possible for the same member of the population to fail multiple times within the same time unit t. 

This study is primarily focused on the PoF term.  A range of methods exist for the estimation of 

this term.  Several of these methods and their history of use for pipe failure risk assessment are 

described in the sections below. 
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2.2.4.2 Failure Prediction Applied to a Pipe Cohort 

Early approaches to pipe failure probability estimation generally considered large populations of 

pipes together.  These approaches generally involve first defining cohorts (i.e., separating the 

population into groups across one or more dimensions) and then predicting the number of failures 

within a given cohort and a given period. 

Separating the population into groups (called segmentation) requires selection of both the 

dimensions (variables) upon which to divide the population and the thresholds (for numerical 

variables) or aggregations (for categorical variables) that will be used to separate the groups.  This 

process can be done analytically (via segmentation techniques, such as K-Means) or manually.  When 

performed manually, exploratory data analysis and statistical techniques are generally applied to 

select the variables for use in defining the cohorts and then to confirm that the resultant groups are 

appropriate. 

Predicting the number of failures within a group is generally accomplished via regression analysis.  

Various types of regression analysis are available, varying in their complexity.  Complexity can be 

increased across two dimensions: the number of predictor variables used and the assumptions made as 

to the form of the relationships assumed among the variables. 

2.2.4.2.1 Segmentation Approaches 

Analytical approaches to segmentation are generally formulated as optimization problems.  These 

seek to minimize some cost function.  Perhaps the best known segmentation algorithm is K-Means.  

This algorithm aims to identify central points for K groups in a manner that minimized the average 

distance between each member of the population and its assigned group central point.  While various 

distance measures are possible, Euclidean Distance is the most common. 

One practical challenge with K-Means segmentation is that the results can be challenging to 

understand and explain.  As the separations between classes exist across multiple dimensions of the 

data, it is often the case that no clear definition of the barrier (e.g., “diameter > 150 mm” in the case 

of pipe populations) is possible.  This is particularly true when the data is subject to dimensionality 

reduction (such as principal component analysis) prior to application of the K-Means algorithm.  

Consequently, the segments are generally “profiled” across additional dimensions of the data and 

given qualitative labels which are easy to understand.  A clear example of this in the domain of water 
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pipelines is the distinction between classes of pipes: “customer connections,” “distribution mains,” 

“trunk mains,” and “transmission mains.”  While there are no strict demarcation lines between the 

segments, the concepts are understandable.  For example, “distribution mains” generally describes 

water pipes that are of relatively small diameter and short length, constructed with low-cost materials 

that are easy to tap, but not directly supplying a single customer with water. 

In practice, K-Means is often applied hierarchically as a means of creating more explainable 

segments, first segmenting into K groups, and then further segmenting some or all of these K groups 

into subsegments.  Selecting a very small number of dimensions for each level of segmentation can 

create segments which are easily explained by their decision parameters (e.g., “Plastic pipes less than 

75m in length” for pipelines). 

Manual approaches for constructing segments often yield the most explainable segments, making 

them quite common in practice.  In such cases it is common practice to begin with exploratory data 

analysis, considering predictor variables individually (or in pairs) and checking for relationships with 

the target variables. 

It is the author’s professional observation that manual rules for segmenting the pipe population into 

cohorts are quite common in the pipeline industry.  It is not clear whether this is due to a desire for 

explainable segments, the small number of predictive variables available, or the existing research 

regarding the relationships between these and the target variable. 

2.2.4.2.2 Regression Approaches 

Once cohorts have been defined, predicting the number of future breaks within a cohort can be treated 

as a regression problem.  Regression models involve estimating some quantity y based on a vector of 

predictive variables x using an estimator function.  While a time variable t can be contained within x, 

in the case of regression problems that attempt to estimate a future value, t is often shown separately. 

ŷ = f(x) 

ŷ = f(t, x) 

(12) 

Where: 

 ŷ is the estimated value of target (dependent) variable y 
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 x is a vector of predictive variables 

 t is a time period of interest 

 f() is an estimator; a function which estimates the value of ŷ at time t using x 

In the case of pipe failure risk assessment, the target variable y is generally the number of breaks 

within a given cohort in a given time period t.  The predictive variables used for x generally consist of 

the variables used to define the cohort, concatenated with several statistical measures on the cohort. 

𝐵 (𝑡) = 𝑓(𝑡, [𝑐𝑜ℎ𝑜𝑟𝑡_𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦; 𝑐𝑜ℎ𝑜𝑟𝑡_𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠]) 

(13) 

Where: 

 t is the time period of interest 

 Bm(t) is the number of breaks in the mth cohort during time period t 

 cohort_identity is a vector of the variable values used to define the cohort, such as pipe 

diameter, pipe material, or geographic neighborhood 

 cohort_statistics is a collection of aggregate statistics of the pipes in the cohort, such as 

average age, total length, or the failure rates from prior time periods 

A wide range of estimators can be used for the function f(t, x).  They can be broadly classified into 

point-in-time models, which use information about the current state of the system in x, and time series 

regression models (also called autoregressive models), which use past values of the target variable in 

x.  Some models are able to consider both current state and historical information jointly in x.  

Perhaps the simplest point-in-time model is linear regression, which uses only a single variable for 

x, and assumes a linear relationship between x and y.  Complexity can be introduced in either of two 

ways: increasing the number of variables in x or using estimators f(x) which make fewer (or weaker) 

assumptions about the relationship between variables. 

The simplest time series model is the trivial identity model, whereby each sample in the series is 

predicted to be the same as the previous time interval: f(t) = y(t-1).  As with the point in time models, 

complexity can be added both by increasing the number of variables considered (e.g., f(t) = 
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MEAN(y(t-1), y(t-2), y(t-3)) or by making fewer (or weaker) assumptions about the relationship 

between f(t) and the values of y during previous time intervals. 

This distinction is not strict, as both point-in-time models and time series models can be adapted to 

blur the distinction between the two.  Point-in-time models can include lag variables in x, which 

provide information about the historical state of the system.  Certain autoregressive models, such as 

Markov Chains and Recurrent Neural Networks, consider both past values and current state variables 

jointly when making a prediction of the next value. 

2.2.4.3 Failure Prediction Applied to Individual Pipes 

When applied to an individual pipe, failure prediction can be formulated as a classification problem.  

The common approach is to classify pipes as breaking vs not breaking within a particular timeframe.  

The general formulation of this approach is to predict a class label y based on a vector of predictive 

variables x, using a classification function. 

ŷ = g(x) 

(14) 

Where: 

 ŷ is the predicted class label 

 g(x) is a classification function, which returns the predicted class label 

The classification function g(x) can be formulated as seeking the label assignment that maximizes 

the value of a scoring function on that data: 

𝑔(𝐱) = argmax  f(𝒙, 𝑦 ) 

(15) 

Where: 

 x is a vector of numerical features 

 yi is the ith possible label which could be assigned to the sample represented by x 

 f(x, yi) is the scoring function, where label yi is applied to feature vector x 
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Many different scoring functions can be employed; however, a commonly used class of scoring 

function in machine learning models is to use a conditional probability estimate: 

𝑓(𝒙, 𝑦) = 𝑃( 𝑦 ∣∣ 𝒙 ) 

(16) 

Where: 

 x is a vector of numerical features 

 y is a possible label which could be assigned to the sample represented by x 

 P(y | x) is the estimated probability that y is the correct label for the sample, given that the 

sample is represented by feature vector x 

This represents an estimate of the probability of the label y being correct, given the observed data 

vector x.  In the case of failure prediction, this is generally formulated as a binary classification 

problem, where only two classes (Failure = true or false) are possible, and with the time period t 

shown separately from the rest of x.  This simplifies the formulation to estimation of a single 

probability (that Failure = true): 

𝑓(𝑡, 𝒙) = 𝑃( Failure occurs at time 𝑡 ∣ 𝒙 ) 

𝑓(𝑡, 𝒙) = 𝑃𝑜𝐹( 𝑡 ∣ 𝒙 ) 

(17) 

Where: 

 x is a vector of numerical features 

 t is a time of interest 

 PoF(t | x) is the Probability of a Failure during time t for the sample described by x 

Note that in failure risk assessment, the Probability of Failure during time t is assumed to be 

conditional upon the sample having survived up to time t.  As such, this formulation of the scoring 

function matches the Hazard Function h(t | x) used in Survival Analysis, described in Chapter 2.2.3.3.  

Care should be taken not to confuse it with the failure event density, which is the joint probability of 

the sample surviving up to time t and also failing during time t.   
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2.2.4.3.1 Defining a Member of the Population and the Target Variable 

Many descriptions of the problem, such as “pipe failure prediction,” seem intuitively clear, but 

contain hidden ambiguity.  This is a consequence of certain definitions being subjective and a result 

of utility record-keeping decisions.  In particular, the following three questions must be answered: 

 What constitutes a single pipe? 

 What constitutes a break? 

 What sampling frequency should be used across a pipe’s lifetime? 

 What should be each prediction’s time window? 

Answers to these questions are required to unambiguously define a member of the population for 

analysis and the target variable.  Along with being unambiguous, for the model to be practically 

applicable, the definitions of a member of the population and the target variable should also match the 

manner in which decisions are made. 

Ambiguity in what constitutes a member of the population (i.e., a pipe) for a given study can be 

particularly problematic.  As noted in Chapter 2.1.1.1.2, the term pipe can refer to a stick, a segment, 

or a pipeline.  If a utility were to take a model for predicting failure risk on a stick and use it to predict 

the probability of failure on an entire pipeline, this could result in failure risk estimates that are off by 

several orders of magnitude.  Even where it is clear that a pipe refers to a segment, the precise rules 

for what constitutes a segment vary from utility to utility.  This limits the transferability of models or 

failure rates from one utility to another.  

To be practically applicable, the definition of a pipe should match the items upon which decisions 

are made.  For example, if a utility aims to extend the life of a pipe by reinforcing individual sticks of 

pipe, then providing failure risk predictions on the basis of full pipe segments (which may include 

dozens or even hundreds of sticks) is not sufficiently granular to be practically applicable.  

Conversely, if a utility is making decisions regarding entire neighborhoods to undergo pipe 

replacement, failure risk predictions on a per-segment basis may be too granular. 

Similar challenges exist in the definition of a break.  As described in 2.1.1.3, pipe failures exist on 

a continuum from inconsequentially small leaks (e.g., joint seepage) through to catastrophic bursts.  

Each utility must set a threshold of severity which qualifies as a break and should be entered into its 
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records.  These thresholds may be different from one utility to another.  Many utilities have two 

distinct programs for repairing broken or leaking pipes: reactive and proactive.  A reactive program 

requires reports of a water main break to be provided by the public, at which point a repair crew is 

usually dispatched immediately.  These are generally considered breaks and are recorded in a 

maintenance system.  Some, but not all, utilities also have a proactive program, which involves using 

inspections or monitoring systems to detect non-surfacing leaks.  Where such programs exist, these 

records may or may not be entered into the break history system.  Another point of variation is leaks 

on a meter connected to a water main; some utilities may consider this as a break on that main, 

whereas others may not. 

The selection of sampling frequency and time window are also significant.  While it is common for 

these two values to be the same (e.g., predicting once per year whether there will be a break in the 

upcoming one-year period), they can also be different (e.g., predicting once per month whether there 

will be a break in the upcoming twelve-month period).  Where data granularity supports using a 

higher sampling frequency (with overlap between time periods), this approach can generate larger 

training and test sets from the same underlying data.   

The choice of prediction time window is particularly significant for practical application purposes.  

This choice has two components: the duration (e.g., 6 months, 1 year, 5 years) and the lag if any (e.g., 

predict breaks in the one-year period starting 1 year from now).  Often, predictions are made using 

pipe records for a single year in the future.  In practical terms, the data from a prior year is often not 

available until several months into the next year, and predictions would be available even later than 

that.  Decisions about which pipes to replace that year, however, would generally be made prior to the 

beginning of the year.  This means that the predictions would only become available once they were 

no longer necessary.  Introducing a lag or making predictions over a longer period can make the 

predictions easier to apply. 

The choice of time window duration can also impact model performance.  Failure prediction 

datasets are often unbalanced, with more negative (did not fail) records than positive (did fail) in any 

given year.  Some machine learning algorithms require consideration for imbalanced data, such as 

stratified sampling or weighting samples to rebalance the classes.  Lengthening the period for the 

target variable can reduce the degree of imbalance in the data set.  Care must be taken, however, to 
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avoid or account for the same Right-Censorship problem present in Survival Analysis, as described in 

Chapter 2.2.3.4. 

2.2.4.3.2 Selecting the Performance Metrics 

A wide range of performance metrics are available for comparing the performance of different 

models.  Some, such as Accuracy, Precision, and Recall, are dependent upon the threshold used to 

separate positive from negative classes.  Others, such as Maximum F1 Score (often called the F1 

Score), the Area Under the Curve for the Receiver Operating Characteristic (often called AUC), and 

the Cumulative Lift at a given percentage (often called Lift) are independent of this decision. 

Selection of an appropriate performance metric is important for the practical use of the resulting 

model.  A good metric will demonstrate to any skilled professional in the problem domain whether 

the particular model is appropriate for their application.  Poor choices of performance metric can lead 

to confusion or even be deceptive.  An example of a poor metric would be using Accuracy in the case 

of predicting whether a pipe will break in the ensuing year. 

Accuracy =
True Positives + True Negatives

Number of Samples
 

(18) 

 The reason this is a poor choice is that the data will generally be highly imbalanced.  Many studies 

have shown that a given pipe will have less than a 2% chance of failing in a given year.  That means 

that the trivial classification rule “pipes do not break” will be more than 98% accurate.  This may 

sound like excellent performance to a layperson, despite being a terrible model. 

In the case of pipe failure prediction, a wide array of performance metrics have been reported in the 

literature.  These include Accuracy, Precision, Recall, F1 Score, ROC Area Under the Curve, 

Concordance Index, and others (Barton et al., 2022a). 

2.2.4.4 Prior Work on Failure Risk Assessment to Pipe Diagnostics 

This section provides a brief review of studies in the literature of Failure Risk Assessment applied to 

pipelines.  

In their comprehensive exploration, Clark et al. (2002) developed cost models for various aspects 

of water supply distribution systems.  The paper focuses on estimating costs for construction, 
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expansion, rehabilitation, and repair of distribution system components.  It presents equations for the 

installation of new pipes, trenching, embedment, and several unit operations necessary for new 

construction or replacement of distribution system components.  Additionally, the study develops cost 

estimations for relining and rehabilitation methods.  These models are intended to assist in making 

preliminary cost estimates for a wide range of repair and rehabilitation scenarios, providing a valuable 

tool for urban infrastructure management. 

Vairavamoorthy and Ali developed a Dynamic Risk-Based Maintenance model for water 

distribution networks that evaluates both the probability of pipe failure and its consequences 

(Vairavamoorthy & Ali, 2005). This model employed a genetic algorithm and proved effective in 

determining optimal maintenance and rehabilitation strategies by balancing the costs of maintenance 

against the risks and consequences of pipe failures. 

Giustolisi et al. proposed a methodology for assessing failure risk in water distribution systems, 

emphasizing the importance of understanding both the likelihood of failure and its consequences 

(Giustolisi et al., 2006). The methodology successfully quantified risks and helped prioritize pipes for 

maintenance and replacement. 

De Marinis et al. introduced a risk-based decision support system for rehabilitating water 

distribution systems. The system combined hydraulic modeling with failure risk analysis and was 

effective in optimizing rehabilitation strategies, leading to cost savings and improved system 

reliability (De Marinis et al., 2009). 

Fares and Zayed (2010) developed a hierarchical fuzzy expert system to assess the risk of water 

main failures, considering 16 risk factors. They categorized these factors into two groups: those 

leading to failure (deterioration factors) and those resulting from failure (consequence factors). The 

study found that the most significant influences on failure risk were pipe age, pipe material, and pipe 

breakage rate, offering a comprehensive risk assessment approach for water mains. 

Kabir et al. proposed a Bayesian Belief Network model to prioritize metallic water mains and 

evaluate their failure risk.  The model incorporated structural integrity, hydraulic capacity, water 

quality, and consequence factors (Kabir et al., 2015).  They highlighted the flexibility of their model 

to include additional factors, providing a robust and adaptable framework for assessing water main 

failure risks. 
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Malm et al. conducted a risk-based Cost-Benefit Analysis for leakage reduction, comparing the 

costs and benefits of different alternatives over time, including uncertainty analysis.  They found that 

reactive repairing, despite a high leakage rate, was more cost-effective for their study network 

compared to proactive pipe replacement, providing valuable insights into the economic aspects of 

water main break management (Malm et al., 2015). 

Al-Zahrani et al. applied a fuzzy synthetic evaluation technique for risk-based prioritization of 

water main failures.  This approach incorporated various risk factors and uncertainties to effectively 

prioritize maintenance and intervention efforts based on the assessed risk levels (Al-Zahrani et al., 

2016). 

Marzouk and Osama presented a coordinated maintenance method for road, water distribution, and 

wastewater distribution networks.  They developed a deterioration model using a hierarchical fuzzy 

expert system, a risk model using fuzzy Monte Carlo simulation for probability of failure, and 

Analytic Hierarchy Process for consequences of failure (Marzouk & Osama, 2017).  Their multi-

objective optimization using a genetic algorithm focused on minimizing overall risk, maximizing 

service levels, optimizing asset conditions, and minimizing life cycle costs. 

Phan et al. employed a risk assessment framework in a case study of water main in a water 

distribution network, using Weibull distribution for failure probability calculation.  They used a fuzzy 

inference system to aggregate different types of failure consequences, which included impacts on the 

network's redundancy/vulnerability, water loss, rehabilitation costs, and public health (Phan et al., 

2019).  This approach allowed for the integration of diverse impact factors into a unified outcome, 

aiding in comprehensive risk assessment and prioritization. 

Vishwakarma and Sinha used a fuzzy inference method to develop a quantitative risk matrix for 

assessing the consequences of water pipeline failures.  This approach aimed to reduce subjectivity 

compared to semi-quantitative and qualitative matrices.  The model encompassed various types of 

consequences such as economic, environmental, social impacts, and operational intelligence 

(Vishwakarma & Sinha, 2020).  This provided a more comprehensive and objective framework for 

visualizing and comparing failure risks. 

Balekelayi and Tesfamariam utilized an ordered weighted averaging technique to identify the 

criticality index of wastewater pipes in the City of Calgary, combining it with a dynamic deterioration 

model to determine operational risk (Balekelayi & Tesfamariam, 2021).  The technique was 
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particularly useful in identifying critical pipes when hydrodynamic data were not available, with the 

aim of aiding municipalities in prioritizing inspection and replacement plans. 

In recent years, numerous studies have been published on the use of machine learning to predict the 

failure risk of individual pipes.  While also relevant to the topic of failure risk assessment, a review of 

these applications in the literature is saved for Chapter 2.3.2. 

2.2.5 Decision Optimization 

Asset replacement decisions can also be formulated as optimization problem, either to minimize costs 

or maximize yield.  Pipeline replacement and construction decisions using this approach are described 

in the literature, using predictions of pipeline failure as part of the approach. 

A general formulation of the costs associated with water main management is provided in 

(Neelakantan et al., 2008): 

𝐶 = 𝐼𝐶 + 𝐵𝐶 

(19) 

Where: 

 C = Total Costs 

 IC = Installation Costs 

 BC = Break Costs 

The formulas for IC and BC are provided on a present value basis and can be adapted to cover a 

single pipe: 

𝐼𝐶 = 𝐿 ∗ 𝑈𝐼𝐶(𝑚, 𝑑) 

(20) 

Where: 

 L = length 

 UIC = Unit Installation Costs, which is a function of the design parameters 

 m = material 
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 d = diameter 

This formulation assumes that pipeline installation costs correlate linearly with the length of the 

pipeline.  This is a reasonable assumption.  Most pipeline replacement is handled via contracts issued 

via a public tender process.  These processes generally use costs per unit distance as the units of 

measure for the contract (BCC Research Inc, 2016), which forces the cost to the utility to fit the 

above formulation (Neelakantan et al., 2008).  

𝐵𝐶 =  (1 + 𝐷𝑅) ∗ (1 + 𝐼𝑅) ∗ 𝐶𝑜𝐹(𝑑, 𝑚) ∗ 𝑃𝑜𝐹(𝑚, 𝑑, 𝐿, 𝑎𝑔𝑒 , 𝑒𝑡𝑐. ) 

(21) 

Where: 

 t = a year of interest, typically starting with the upcoming year (t=1) 

 T = total number of years for analysis 

 DR = Discount rate for future cashflows 

 IR = Inflation rate for break repair costs 

 m, d, and L are the material, diameter, and length of the pipe, respectively 

 CoF = Cost of Failure to repair a break, a function of diameter and material 

 PoF = Probability of Failure in year i, a function of material, diameter, the age of the pipe 

in year t, and other available data of the pipe segment which helps to predict failures. 

The cost function need not be limited to direct financial costs to the utility.  Other factors, such as 

external costs to the community and the cost of greenhouse gas emissions, can be considered jointly 

as part of a combined cost function.  These can also be incorporated directly into the financial cost via 

estimated damage claims from third parties or an assumed future carbon price. 

If we make the simplifying assumption that the inflation rate for break costs will match the 

discount rate, these two terms will cancel out, leaving the break cost equation as: 
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𝐵𝐶 =  𝐶𝑜𝐹(𝑑, 𝑚) ∗ 𝑃𝑜𝐹(𝑚, 𝑑, 𝐿, 𝑎𝑔𝑒 , 𝑒𝑡𝑐. ) 

(22) 

Worth noting is the similarity of this equation to the formulation of the Failure Risk Assessment 

equations described in Chapter 2.2.4.3, with both the Cost of Failure and the Probability of Failure 

terms taking a similar form. 

Starting from these equations, various constrained optimization problems can be formulated.  

Examples of such questions related to the decisions outlined in Chapter 2.1.4 are: 

 Select pipes to replace which minimize the total number of expected breaks in the next five 

years, subject to the constraint of the total cost of replacement being less than the available 

budget. 

 Select the replacement age which offers the minimum average annual total cost for 150mm 

PVC pipe, assuming IR=0.04 and DR=0.06. 

 Identify the minimum average annual costs for 100mm pipe of each pipe material, 

selecting the optimal replacement age for each per the formulation above. 

 Select the pipe diameter for ductile iron pipe which offers the minimum total cost over a 

100-year time horizon. 

With estimators for both CoF and PoF, all of the above formulations (among many others) can be 

solved relatively easily, providing effective guidance for decisions on a variety of timescales.  

2.2.6 Specific Problem Statement for This Study 

This study aims to provide a single model that generalizes across utilities, applications, and time 

periods.  More specifically, the model should: 

Extrapolate well to a new utility that did not contribute data to the model calibration: 

 Regardless of language, jargon, and units of measure 

 Regardless of their administrative practices (i.e., their definitions of a “pipe” and a “break,” 

and the availability of their failure history data) 
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 Regardless of their local context (e.g., climate, rainfall, pipe manufacturers, etc.) 

Be applicable to a variety of applications: 

 To estimating future number of pipe breaks in a cohort of arbitrary definition. 

 To prioritizing a utility’s pipes for replacement in the near future. 

 To projecting the implications of design policies on future break rates. 

 To supporting existing engineering practices, such as survival analysis and failure risk 

estimation. 

Extrapolate forward in time, to any period of interest: 

 Providing far enough ahead to be used in typical decision-making cycles. 

 Validated as extrapolating forward in time. 

 Also able to provide forecasts for alternative time periods. 

A model able that meets these criteria should facilitate practical answers to many of the questions 

posed in Chapter 2.1.4.   

The specific formulation chosen for this study involves estimating the Probability of Failure terms 

found in Chapters 2.2.3, 2.2.4, and 2.2.5 present in Survival Analysis, Failure Risk Assessment, and 

Decision Optimization respectively.  It requires two equations: 

𝐸𝑁𝑜𝐹( 𝑡 ∣ 𝒙 ) = 𝑐 ⋅ 𝑃𝑜𝐹( 𝑡 ∣ 𝒙 ) 

𝑃𝑜𝐹( 𝑡 ∣ 𝒙 ) = 𝑓(𝑡, 𝒙) 

(23) 

Where: 

 t is the first year of a five-year period 

 x is a feature vector describing a single pipe 

 ENoF(t | x) is Expected Number of Failures in the five-year period beginning at t, for the 

pipe described by feature vector x 
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 PoF(t | x) is Probability that a pipe described by feature vector x will experience one or 

more failures during the five-year period beginning at t  

 c is a calibration constant to convert between probability of failure and number of failures  

 f(t, x) is an estimator function 

The following restrictions are placed on the estimator function f() and x: 

 f(t, x) must provide results for any starting time t after the pipe’s installation date 

o This allows the model to be used in both near and long-term applications. 

 f(t, x) must be effective when extended forward in time to future time periods 

o This ensures that the model can predict future breaks, not just past ones  

o A practical implication of this restriction is that x may not include any features 

which incorporate information from the future 

o A practical implication of this restriction is that x may include features which 

incorporate information from the past (e.g., past failures), but f(t, x) must be 

effective even if these are limited or absent 

 f(t, x) must be effective when extended to a new utility 

o This ensures that the model can be used by new utilities not part of the study 

o A practical implication of this restriction is that x must incorporate data as 

provided by the utility, without undergoing utility-specific data cleansing prior to 

use 

A model conforming to these restrictions should achieve all of the generalization requirements 

outlined herein. 

The application of the calibration constant c to convert between Probability of Failure and 

Expected Number of Failures facilitates use of the same model both to prioritize pipes within a utility, 

and to estimate the number of future failures in an arbitrary cohort by simple aggregation of the 

estimates for all pipes within that cohort.  By selecting a cohort that matches the entire pipe 

population of a utility, this method would also support budgeting applications. 
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The restriction requiring effectiveness even when failure history is absent ensures that the model 

can be used for long-term forecasting as well, simply by using a future value of t to test the model.  It 

also facilitates understanding the implication of design decision, by modifying a design parameter 

(e.g., changing from Cast Iron to PVC for new 100mm distribution mains) and forecasting future 

breaks under each scenario. 

Choosing a problem formulation that also appears in each of the Survival Analysis, Failure Risk 

Assessment, and Decision Optimization applications means that the outputs of this model can be 

applied directly in these disciplines. 

A default five-year time horizon for forecasting has been selected to match the typical duration of 

utility master planning activities, within which pipe replacement prioritization decisions are generally 

made.  This also has the benefit (vs a one-year forecast) of providing better balance between the 

“failed” and “did not fail” classes. 

2.3 Machine Learning for Pipe Failure Prediction 

The approach taken in this study is to train a machine learning model to act as an estimator f(t, x) of 

the conditional probability of a pipe failing PoF(t | x), using data contributed by water utilities from 

around the world.  This section provides background on the applicability of machine learning for pipe 

failure prediction, a review of past approaches described in the literature, and the specific 

methodology used in this study. 

2.3.1 Background on Machine Learning for Failure Prediction Problems 

A very brief introduction to machine learning methods is described herein.  Further details about the 

application of these concepts to pipeline diagnostics are provided in later sections. 

Machine learning methods are broadly classified into supervised and unsupervised learning 

algorithms. 

Supervised machine learning models predict the value of a target (dependent) variable from a set of 

input (independent) variables.  Two types of supervised learning algorithms are classification (for 

categorical target variables) and regression (for numerical target variables).  Some diagnostic 

problems can be directly addressed using supervised learning methods, such as classifying items as 

“will fail” or “will not fail” over a given time.  These algorithms are the focus of this project. 
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Unsupervised machine learning models operate without a target (dependent) variable.  These 

models also fit parameters to minimize a cost function on training data.  The most common class of 

unsupervised machine learning models are clustering algorithms, such as K-Means, which classify 

members of a population into a number of groups in which the elements are similar to each other.  An 

example of using these algorithms for pipeline diagnostics would be to define cohorts of pipes which 

behave similarly to one another. 

The supervised machine learning concepts planned for use in this paper are introduced below. 

2.3.1.1 Machine Learning for Classification Problems 

Each member of the population is described by a vector of numerical values (features).  A scoring 

function describes how well the model correctly classifies a set of examples (the training set) with the 

value of the target variable provided (the ground truth).  Fitting a model (also called training the 

model) involves searching for the set of parameters which minimize the cost function across the 

training set.   

For classification, the target variable consists of one or more classes (called labels) to which a 

member of the population may belong.  The classification function g(x) can be formulated as seeking 

the label assignment which maximizes the value of a scoring function on that data: 

𝑔(𝐱, 𝛉) = argmax  𝑓(𝒙, 𝑦, 𝛉) 

(24) 

Where: 

 x is a vector of numerical features 

 y is a possible label assignment 

 θ is a vector of parameters 

 f(x, y, θ) is the scoring function, as applied when label y is applied to data vector x, using 

parameter values in θ 

By convention, f(x, y, θ) may also be negatively oriented (i.e., lower scores are better), and 

described as a cost function or a loss function.  In such cases, g(x, θ) will either seek the maximum of 

- f(x, y, θ), or the minimum of f(x, y, θ). 
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Many different scoring functions can be employed.  A commonly used type of scoring function in 

machine learning models is those which provide a conditional probability estimate: 

f(x, y, θ) = P(y | x, θ) 

(25) 

Where: 

 x is a vector of numerical features 

 y is a possible label assignment 

 θ is a vector of parameters 

 P(y | x, θ) is probability that y is the correct label of the sample, given that it is described by 

feature vector x and the parameter values in θ are used 

This represents an estimate of the probability of the label y being correct, given the observed data 

vector x and the set of parameters θ. 

In machine learning classification methods, the vector of parameters θ are fit to the available 

training data, in a manner that minimizes the total loss function across the training data samples. 

𝛉 = argmin
𝛉

𝑙(𝑔(𝒙 , 𝛉), 𝑦 ) 

(26) 

Where: 

 θ is a vector of parameters 

 N is the total number of samples in the training set 

 xn is a vector of features describing the nth sample in the training set 

 yn is the correct label for the nth sample in the training set 

 g(x, θ) is the label assignment function as shown in Equation (24) 

 l(ŷ, y) is the loss function for predicted label ŷ and correct label y 
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Binary classification problems are a special case where only two possible labels are available for 

each value of y.  These values are generally represented as 1 (true) and 0 (false), with the selection of 

which value constitutes “true” being somewhat arbitrary.  In this case, only a single probability 

P(y=1) needs to be represented, since P(y=0) = 1 – P(y-1).  This simplifies the equations to: 

 

𝑓(𝒙, 𝛉) = 𝑃( 𝑦 = 1 ∣∣ 𝒙, 𝛉 ) 

𝛉 = argmin
𝛉

𝑙(𝑔(𝒙 , 𝛉), 𝑦 ) 

(27) 

Where: 

 θ is a vector of parameters 

 N is the total number of samples in the training set 

 x is a vector of features, with xn describing the nth sample in the training set 

 yn is the correct label for the nth sample in the training set 

 g(x, θ) is the label assignment function as shown in Equation (24) 

 l(ŷ, y) is the loss function for predicted label ŷ and correct label y, used to fit θ to the 

training data 

In the definition of g(x, θ) above, a fixed value of 0.5 is used as the cutoff for the probability of 

y=1 at which the value of 1 would be assigned.  Other decision thresholds can be used, and tuning 

this decision threshold for specific applications is common practice.  Lower thresholds will result in 

more false positives but fewer false negatives.  Higher thresholds will result in more false negatives 

but fewer false positives. 

Machine learning failure prediction problems are a special case of binary machine learning 

classification problems.  In these problems, the y=1 label is generally assigned to a failure event.  

This further simplifies the definition of f(x, θ) to: 
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f(x, θ) = PoF(x, θ) 

(28) 

Where: 

 PoF(x, θ) is an estimate of the Probability of Failure for sample x, under parameters θ 

Where failure prediction relates to a specific period, as it does in pipe failure prediction, x generally 

includes a time period of interest t, in a manner similar to time series forecasting.  This time variable 

can either be included in x or noted separately.  For example, PoF(t | x, θ) represents the Probability 

of Failure during time interval t, for a pipe described by feature vector x and using parameter values 

θ.  This is equivalent to PoF(x, θ) where t is included in x.  For failure prediction problems, each 

member of the population generally includes such a period of interest, making the final formulation of 

the machine learning estimator function: 

f(t, x, θ) = PoF(t | x, θ) 

(29) 

Where: 

 θ is a vector of parameters 

 x is a vector of features 

 t is a time period of interest 

 PoF (t | x, θ) is the estimated Probability of Failure during time period t 

2.3.1.2 Machine Learning Classification Algorithms 

Machine learning classification algorithms can be grouped into six broad categories: Linear Models, 

Tree-Based Models, Ensemble Methods, Nearest Neighbor Methods, and Neural Networks. 

2.3.1.2.1 Linear Models:  

Linear models aim to find a linear boundary that separates different classes.  Some widely-used 

linear models include: 

 Logistic Regression:  Introduced in Cox (1958), this algorithm models the probability of a 

binary outcome. 
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 Support Vector Machines (SVM):  SVMs transform the input vector x to a higher-

dimensional space with the aim of making the classes linearly separable and then finding 

the hyperplane that maximizes the margin between classes (Vapnik, 1995). 

2.3.1.2.2 Tree-Based Models:  

Tree-based models create decision trees to make classification decisions.  Key algorithms include: 

 Decision Trees: Induced decision trees, as described in Hunt et al. (1966), recursively split 

data based on feature values.  Each split is made to maximize some property in the 

resulting child nodes. 

 Random Forest: As described in (Breiman, 2001), a random forest combines multiple 

decision trees to improve generalizability and reduce overfitting. 

2.3.1.2.3 Nearest Neighbor Methods 

These methods classify data points based on the class of their nearest neighbors.  Notable methods 

include: 

 k-Nearest Neighbors: This algorithm, as described in Fix & Hodges (1989), assigns a class 

based on the majority class among the k nearest neighbors within a feature space defined 

by a vector of numerical features. 

2.3.1.2.4 Ensemble Methods 

Ensemble methods combine multiple base classifiers to improve classification performance. 

Important ensemble techniques are: 

 AdaBoost: Proposed in Freund & Schapire (1997), this algorithm combines multiple weak 

learners to create a strong classifier. 

 Gradient Boosted Trees: This algorithm, described in Friedman (2001), builds an ensemble 

of decision trees sequentially to minimize a loss function. 

2.3.1.2.5 Artificial Neural Networks:  

An artificial neural network (ANN) is a network of nodes that each mimic the behavior of a neuron.  

Each node accepts numerical inputs, multiplies each by a weight, and sums the resulting values.  The 
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sum is then passed through an activation function, and the result is the node’s output.  The weights for 

the nodes are the model parameters.  The backpropagation algorithm allows the cost function to be 

minimized by determining the gradient of each weight in the model with respect to the cost function. 

The networks are generally arranged in layers, with nodes in a given layer accepting input from the 

previous layer and sending their output to the next layer.  The first layer, known as the input layer, 

takes its input directly from the feature vector.  The final layer, known as the output layer, will have 

one node per class, with each node’s output being the relative likelihood that the item belongs to that 

class.  As with other classification algorithms, the system assigns a predicted label based on the class 

which received the highest likelihood estimate.  Types of ANN considered for use in this project 

include: 

 Perceptrons.  The original ANN, consisting of a single node using the sigmoid activation 

function. 

 Multi Layer Perceptrons (MLPs).  A unidirectional network including one or more fully 

connected layers (known as hidden layers) between the inputs and the output layers. 

 Extreme Learning Machine (ELM).  An ANN with (typically) one hidden layer where 

the input weights to the hidden layer are randomly assigned to speed the learning process 

and reduce the chances of overfitting (Khozani et al., 2017). 

 Recurrent Neural Networks (RNNs).  Includes a mechanism for cycles in the network, 

feeding information back to earlier layers.  Models such as Long Short Term Memory 

(LSTM) and Gated Recurrent Units (GRUs) are used when the population forms a 

sequence of arbitrary length, allowing for information about past elements to be 

“remembered” by the system. 

2.3.1.2.6 Deep Learning 

Deep learning refers to ANNs in which many layers are utilized, forming a deep network.  Deep 

learning concepts considered for this project include: 

 Convolutional Neural Networks (CNNs).  Introduced by LeCun et al. (1998), CNNs are 

used when features have spatial relationships.  Each node is connected only to a small 

number of nodes adjacent to its location in the previous layer.  All nodes in a given layer 
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share the same weights.  This arrangement results in each layer being a convolution of the 

previous layer.  The combination of weight sharing and limited connections reduces the 

computational cost of training deeper networks. 

 Embeddings.  An embedding maps a vector onto a smaller vector, with each element in 

the smaller vector being a function of elements in the larger.  Embeddings reduce sparse 

high-dimensional feature vectors to denser vectors with lower dimensionality.  The 

parameters for the mapping are learned as part of the process of fitting a model to the 

training data. 

 Attention.  The attention mechanism allows a node to “focus” on the most relevant input.  

The mechanism uses a set of context variables to generate attention weights.  A subset of 

the node inputs are multiplied by each attention weight, adding more weight to certain 

input elements.  The parameters used to map the context variables to the attention weights 

are learned as part of the training process. 

2.3.1.3 Machine Learning for Pipe Failure Prediction 

The objective of this project is to provide quantitative estimates of pipeline conditions using available 

data.  This section provides detailed descriptions of the specific problem formulations to be 

considered.  

2.3.1.3.1 Defining the Population 

In pipeline diagnostics, there are several reasonable options for what constitutes a member of the 

population to be diagnosed, offering varying levels of granularity.  We discuss three levels of 

granularity here, which will be referred to as stick, segment, and cohort.  The terms stick and segment 

are used as defined in Chapter 2.1.1.1.2. 

Some studies examine the risk of failure of individual sticks of pipe.  This is most common for 

prestressed concrete cylinder pipe (PCCP).  The reason for this is twofold.  First, the particular failure 

mechanisms of PCCP allow each stick to degrade and fail at a rate unconnected to the sticks adjacent 

to it.  Second, PCCP tends to be used for large diameter pipes, leading to both a high cost of 

replacement and a high consequence of failure.  Spot repairs are thus practical. 
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Most utilities use segment-level granularity in their systems of record – specifically their 

Geographic Information System (GIS) and their Computerized Maintenance Management System.  

This makes segments a natural level of granularity for defining a member of the population for 

management decisions.  It is the definition used most commonly in literature and is the definition of a 

member of the population used in this study. 

Also considered is a cohort – a group of segments expected to behave and degrade similarly – as a 

member of the population.  A cohort will generally consist of one material and diameter, will usually 

be installed in the same general time and area.  For transmission mains and trunk mains, a cohort 

often means a single pipeline from source to destination.  For distribution networks, this definition 

often means the network of pipelines in a neighbourhood or city block.  This level of granularity is 

often the one at which replacement or rehabilitation decisions are made.  Consequently, it may be the 

most pragmatic, although it results in smaller sample sizes than the others. 

2.3.1.3.2 Data Availability 

Data available for pipeline diagnosis is quite varied.  It typically consists of demographic data, 

environmental data, structured and unstructured maintenance records, time series data from sensors, 

quantitative test results, and finally data about the network itself (geospatial, and network topology). 

Demographic data is the most consistent and has been the most widely studied.  It typically consists 

of a handful of parameters that can be applied to each member of the population: 

 Age (or installation date) 

 Pipe material 

 Joint type 

 Pipe inside diameter 

 Pipe wall thickness 

Other demographic data is sometimes available, such as the pressure class, installation contractor, 

pipe manufacturer, or design firm.  The demographic data is not always reliable, as the records often 

date back to the early 20th century.  The pipe wall thickness, in particular, is often questionable.  

These generally describe the minimum thickness permitted by the applicable standard.  Manufacturers 
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often produced thicker pipe to ensure compliance, particularly given the wide manufacturing 

tolerances common decades ago. 

Common sources of environmental data are records and tests describing the soil around the 

pipeline, and what is on the surface above the pipeline.  Soil data generally consists of records of the 

bedding material (what the pipe is laid on) and the cover material (what is placed over the pipe when 

it is buried), as well as soil chemistry tests made from test pits.  Some soil tests, such as Linear 

Polarization Resistance, can be the primary measurement made for pipeline diagnosis, as they are a 

strong predictor of corrosion.  Surface cover data generally focuses on roadways and traffic loading, 

as these are predictors of the stress put on pipelines.  These have also been extensively studied and 

shown to be predictive.  Weather and climate data are generally accessible but are often neglected in 

studies that focus on a single locale (and hence share the same weather and climate). 

The time series data generally comes from sensors distributed around the network.  Common 

sensors are flowmeters, pressure sensors, and acoustic sensors, with other types of sensors 

(temperature, chlorine levels, etc.) less common.  In medical diagnosis, there is generally a one-to-one 

relationship between sensors and patients.  For pipeline diagnosis, the sensors tend to be sparsely 

distributed around the pipe network.  This presents challenges in identifying which sensors provide 

data that is relevant to a given member of the population.  The frequency of readings can also vary 

widely.  Sensors located in powered facilities, such as treatment plants and pump stations, often take 

high frequency readings (every minute, every second, or more).  Battery powered devices often take 

much lower frequency readings (every 15 minutes, or hourly).  Acoustic devices often take very high 

frequency readings (above 1000 Hz) at periodic intervals (often daily).  These variations make them 

challenging to integrate into a single model. 

Discrete measurements generally require the pipe surface to be exposed.  These are often made 

opportunistically, such as when a pipeline leak or burst requires excavation for repair.  Some utilities 

run proactive programs of exposing sections of pipe for testing.  These can be destructive, in which a 

“coupon” is taken from the pipe for testing, or non-destructive, where sensors are applied to the pipe 

in-situ.  Common destructive measurements are phenolphthalein dye testing for asbestos cement pipe, 

and the use of pit gauges to measure corrosion pitting.  Non-destructive tests include electromagnetic 

wall thickness testing for ferrous pipes and ultrasonic wall thickness testing for all pipe types.  Less 

common are continuous tests, such as inline electromagnetic tests, and external acoustic tests which 



 

 65 

use acoustic wave propagation velocity to measure average wall thickness over intervals (typically 

about 100m). 

Descriptive data of observations is generally found in maintenance databases.  These records are 

filled in whenever a work crew is called in to act on a pipeline.  This often includes a categorization 

of the event (e.g., a leak, a dirty water complaint) as well as a free-form field (such as “notes” or 

“comments”) where observations are described. 

The data that describes the network generally comes in two forms.  Geospatial data provides a 2-

dimensional description of the physical locations of nodes in the network (isolation valves, fire 

hydrants, intersections of pipelines, etc.) and the pipelines that connect them.  The network topology 

data describes how these features are connected.  For example, two pipelines that pass by (one above 

the other), may be joined together but sealed off by a closed valve, or may have an open connection. 

2.3.1.3.3 Diagnostic Objectives 

Several pipeline diagnostic objectives have been studied with machine learning approaches.  All share 

the same objective: helping water companies decide when to rehabilitate or replace a section of a 

pipeline. 

One common objective is to predict the remaining life of a pipeline.  This problem is ill formed.  

No consensus exists as to what defines the end of life for a pipeline.  Some standards used by utilities 

include having a set number (often 1, 2, or 3) leaks (or bursts) from a single “asset” in their GIS 

(usually the length of pipe between to “nodes” in the network).  This leads to long stretches of 

pipeline “dying” long before their shorter counterparts.  Some use financial measures, declaring a 

pipeline “dead” once the net present value of expected future leaks & bursts exceeds the cost of 

replacing the pipe.  Others set a service level threshold (often leaks per 100 km per year) and aim to 

replace pipelines once they reach this threshold.  Still others set a minimum acceptable remaining 

wall thickness and aim to replace once this is reached. 

While a network cannot be trained to predict a measure for which there is no consensus definition, 

they can be trained to predict the quantitative metrics that are commonly used by utilities to construct 

these rules.  The specific objectives to be studied will depend on the data received.  Candidates are: 

Estimating the probability of failure.  This is either the probability per segment per year or 

normalized to failures per 100 km per year.  For certain types of pipe, the probability of failure per 
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year per individual stick of pipe is of interest.  This probability can be calculated both for the present 

and as a projection into the future. 

Predicting the time to next failure.  This is an alternate formulation of predicting the probability 

of failure. 

Estimating the consequences of a failure.  This component of risk management would offer 

tremendous value in risk management.  It requires data on the actual cost of past failures, which is 

rarely stored. 

Predicting whether a leak is already present.  Many leaks go undetected for long periods of 

time.  Certain sensors (such as acoustic sensors) are used to detect non-surfacing leaks proactively.  

Estimating pipe wall thickness.  The variable itself is somewhat ill-defined, as different metrics 

exist.  The average thickness, the percentage of metal loss, the maximum pit depth or minimum 

remaining wall thickness in each stick of pipe, and the linear average of the circumferential minimum, 

and the results of a crush strength or burst strength test, are all used.  Rather than try to define the 

“correct” measure, a system could simply try to predict what the results would be of a particular type 

of test.  As with other metrics, this calculation can be done for the present state and as a projection 

into the future. 

Predicting the time until replacement.  This is predicting human behavior just as much as 

predicting pipeline behavior.  It is analogous to predicting length of patient stay.  Interestingly, if it is 

trained on the actual behavior of leading utilities, it could offer an embodiment of industry best 

practice. 

2.3.2 Prior Work on Machine Learning for Pipe Failure Prediction 

Numerous attempts have been made at applying machine learning to pipeline diagnostics.  Many of 

these have been undertaken by private for-profit companies, such as Fracta and Voda, who generally 

hold their approaches and results as confidential trade secrets and present only highly obfuscated 

approaches and results (Fracta, 2022).  A selection of published results is shown below. 

A literature review by Delnaz et al. (2023) provided a comprehensive analysis of asset management 

analytics for urban water mains, with a focus on the application of machine learning to water pipe 

break prediction.  This paper categorizes various methods used for predicting water main failures and 

evaluates their effectiveness. It also explores the challenges and future directions in the field, 
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highlighting the importance of integrating machine learning models with traditional techniques to 

improve the accuracy and reliability of water pipe break predictions.  This study provides a taxonomy 

for classifying different data-driven models, as shown in Figure 4, grouping them into Deterministic, 

Probabilistic, and Learning-based approaches. 

 

Figure 4: Classification of water main predictive models (Delnaz et al., 2023) 

2.3.2.1 Summaries of Prior Studies 

Farmani et al. attempted to predict the number of failures among cohorts of pipe from a water 

distribution system in the UK.  They employed a 2-stage cohort formation approach, first grouping 

pipes by diameter, age, and soil type, and then applying K-Means to cluster these into larger cohorts 

(Farmani et al., 2017).  They then applied Evolutionary Polynomial Regression to predict the number 

of failures within each cohort.  The study obtained RMSE of between 5.5 and 7.5, and R^2 values of 

between 0.9 and 0.92, depending on the number of clusters (cohorts) used (between 1 and 7).  

Wilson et al. conducted a comprehensive review of water pipe failure prediction models, 

emphasizing the applicability of these models to large-diameter mains (Wilson et al., 2017).  They 

explored various machine learning techniques, examining their effectiveness in predicting pipe 

failures in complex water distribution networks. 
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Zhang et al. employed a Bayesian nonparametric machine learning model to incorporate expert 

knowledge to pipe and failure data from three regions (likely from Australia, as the authors all have 

.au email addresses).  They focused only on “Critical Water Mains” (those of 300mm diameter or 

greater), giving them a dataset which spanned a 12-year period and included a total of roughly 11,000 

pipes and 1,500 breaks.  The authors employed a time-based split of training and test data, training on 

the first 11 years and testing on the 12th.  The model achieved AUC scores of either 0.827 or 0.669 

(Zhang et al., 2018); both scores are shown in the same cell of the table, with no clear explanation as 

to what each represents, however a reasonable guess is that these are scores from the train and test set 

respectively. 

Winkler et al. focused on modeling pipe failure in water distribution networks using boosted 

decision trees (Winkler et al., 2018).  Their approach enhanced the prediction accuracy of pipe 

failures by effectively incorporating complex data relationships.  Their available data came from a 

single midsized with about 40,000 pipes and approximately 20 years of failure history.  Their model 

aimed to predict whether a given pipe experienced at least one failure at any point in time during the 

study period.  The data was split randomly and equally between train and test sets.  Imbalanced 

datasets were handled by random under sampling.  Performance was measured using both confusion 

matrices and ROC curves, with the decision-tree based models achieving AUC scores of 0.9 to 0.93. 

A series of studies by Snider and McBean offer significant contributions to the application of 

machine learning in predicting pipe failures.  Their first published study on the topic compared a 

gradient-boosting algorithm model, an ANN model, and a Random Forest algorithm for predicting the 

time to the next break of ductile iron pipes (Snider & McBean, 2018). The gradient-boosting model, 

which combines multiple learning algorithms, was found to outperform the others due to its ensemble 

nature.  They later addressed the issue of data censoring in machine learning models for water main 

failures, suggesting that survival machine learning models, like the Random Survival Forest, could 

effectively incorporate censored data and model complex relationships between input and output 

variables (Snider & McBean, 2020a).  They further investigated the relationship between training data 

size and model performance across several prediction algorithms (Snider & McBean, 2020b).  The 

study considered the task of correctly sequencing a series of pipes in terms of their time to next burst.  

It compared the performance on different sizes of data sets for XGBoost and simpler methods such as 

Weibull Proportional Hazard, age ranking, and ranking based on the number of previous breaks.  This 

study found that XGBoost outperformed the simpler methods for large data sets (>5,000 pipe 



 

 69 

segments) when at least 10 years of historical data is available and for mid-sized data sets (1,000 to 

5,000 pipe segments) when at least 25 years of data is present.  In an extension of their work (Snider 

& McBean, 2021), they explored the potential impact of random survival forests combining the 

strengths of machine learning with survival statistics.  This paper included a case study suggesting a 

reduction in pipe replacement and repair costs by 14% over the next 50 years was possible using this 

technique. 

Weeraddana et al. utilized machine learning to predict water main breaks in Melbourne, Australia.  

This study aimed to use a small number of pipeline failure predictors to estimate likelihood of failure 

in the upcoming 20-year period.  The study used a two-step approach, first applying a failure 

probability estimator based on random forest classification.  The classification algorithm was trained 

to predict failure in a one-year period, matching the recommended PoF(t | x) formulation.  It was 

trained and tested four times, testing on each of the last four years in the data set and in each case 

training on all data prior to that year.  The study observed that failure rates increased during the first 

40 years after installation in a relatively linear manner and applied linear regression to project the 

relative changes in the probability of failure forward in time.  The study noted that by selecting the 

highest 10% likelihood of failure pipes, more than 30% of the future breaks could be identified 

(Weeraddana et al., 2018).  In a follow-up study using the same data, Weeraddana et al. (2019) 

employed factor analysis to investigate which parameters are predictive, and random forest regression 

to estimate probability of failure.  While the included charts of performance are promising, no 

quantitative analysis of results is provided, and the paper indicates that 75% of the validation data was 

also used in the training set. 

Almheiri et al. used ANN, ridge regression, and a boosted decision tree to predict time to failure for 

1,118 water mains in the Municipality of Saint Foy, Canada over a 15-year period.  The study 

reported R values of 0.84 for the ANN, 0.88 for boosted decision trees, and 0.90 for linear regression 

(Almheiri et al., 2020).  While the paper did not clearly state what the target variable was, from the 

dates shown it appears to be pipe age at first failure, and that the dataset included only pipes 

experiencing a failure during the study period. 

Al-Ali et al. used a Logistic Regression model aimed at identifying the most critical parameters for 

predicting the probability of water main failure (Al-Ali et al., 2020).  Their data set included nearly 

30,000 pipes and monitored for a six-year period, with a total of 1,053 breaks affecting 847 pipe 
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segments.  Their classifier aimed to predict whether any breaks occurred during the study period.  

Their most significant contribution was the selection of logistic regression, which offers calibrated 

probability estimates by default, and using these as estimates as the probability of failure for failure 

risk ranking purposes.  Model performance was tested on the training data (no train/test separation 

was performed), and only the sensitivity (True Positives / (True Positives + False Negatives) was 

reported, at 74.3%. 

Fan et al. investigated the impact of including a range of factors in failure prediction, including the 

novel inclusion of socio-economic factors, using a database of over 51,000 pipes from the City of 

Cleveland, USA (Fan et al., 2022).  The authors found that gradient boosted trees offered the best 

performance, achieving an AUC of 0.90 when no time separation was enforced between the train and 

test sets.  The authors note that a time-based separation was also tested, but did not include the results. 

Dawood et al. conducted two systematic literature reviews, one focused on water pipe failure 

prediction and risk models (Dawood et al., 2020b), and the other considering a range of analytical 

approaches such as machine learning and fuzzy inference for a range of water network management 

activities.  They suggested considering a range of factors such as soil type, traffic loads, construction 

methods, and contractor experience for improved prediction of pipe failures (Dawood et al., 2020a).  

They further suggested combining multiple inference techniques into a joint assessment of pipe 

integrity. 

Giraldo-González and Rodríguez studied the prediction of pipeline failures in Colombia’s water 

distribution network, which included just over 60,000 pipes spanning over 1,800 km, and used a 

study period of seven years (Giraldo-González & Rodríguez, 2020).  The dataset used is somewhat 

suspect, presenting a total of only 69 breaks, reflecting an average of 0.55 breaks / 100 km / year.  

They considered both the problem of predicting the number of failures in cohorts using three 

regression models (Linear Regression, Poisson Regression, Evolutionary Polynomial Regression), 

and also classification of individual pipes’ failure status using four machine learning classification 

models (ANN, Bayes, SVM, GBT).  All analysis considered total failures during the seven-year study 

period.  A random splitting of train and test sets was performed, with no time-based separation to 

confirm the ability of the models to extrapolate forward in time.  The study incorporated physical 

factors (age, diameter, length), environmental factors (moisture content, soil contraction), and 

operational factors (valve, hydrant, previous failure) as predictors.  Top performance on the 
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regression problem was achieved with the Poisson Regression model, which achieved an R^2 of 

0.927 and RMSE of 22.09 on the test data.  Classifier performance was measured using confusion 

matrices, accuracy, F1 Score, and ROC AUC.  The top classifier was reported as the gradient boosted 

tree, with AUC of over 0.99.  This extremely high performance is suspect and suggests the possibility 

of information leakage from the target variable into the features.  The paper notes that an important 

feature in predicting whether a failure occurred was the Previous Failures.  Considering that the target 

variable was whether a failure occurred at any point in the available records, it is plausible that the 

number of previous failures feature was in fact the number of failures occurring during the study 

period.  This possibility is supported by the fact that these results were inadvertently replicated during 

our own study, when the number of failures during the target period was inadvertently included as a 

feature, which also in AUC scores of over 0.99 for a gradient boosted tree classifier. 

Khan et al. provided a practical case study using data from 3,779 miles of cast iron pipe in New 

Jersey, USA.  This study worked by grouping pipes into geographic districts and used a rules-based 

approach to aggregate various failure risk measures for pipes within that district.  The model results 

were used in practice for making water main replacement decisions, with 32% of the highest-risk 

cohort replaced in the two-year study period.  This provides fascinating insight into the practical 

application of a model, and confirmed that the relative failure rate, as measured by PoF(t | x, θ), is 

indeed a critical output for practical use. While no standard quantitative measure of performance was 

provided, a chart showing the actual rate of breaks per 100 km per year among the five risk groupings 

(Low to High scale) showed a clear progression of increased failure rates in the high-risk groups.  The 

paper further went on to elaborate the cost savings resulting from the work.  They estimated 54 breaks 

per year avoided, at an average cost of $4,000 each, for $216,000 per year of operational costs 

avoided (Kahn et al., 2020).  The utility is permitted to spend $8 in capital costs for every $1 in 

operational costs saved, which they state is standard practice, thereby freeing up an additional 

$1,728,000 in capital costs.  At their standard rates of $225/foot, this would allow an additional 1.45 

miles of pipe replacement per year. 

In one of two significant publications emerging from the thesis of Alicia Velasco Robles (2022), 

Robles-Velasco et al. used Logistic Regression and Support Vector Classification to predict pipe 

failures, focusing on all pipes in the network rather than just those that had previously experienced 

breaks.  The study was conducted on data from the City of Seville, with 3,800 km of pipe, with a 

study period of seven years including 4,393 breaks (Robles-Velasco et al., 2020).  They focused on 
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binary classification to determine whether a pipe would break or not.  They used the model’s label 

assignment scoring, ranging between 0 and 1, to represent the probability of failure, to facilitate use 

of this probability of failure estimate in other common pipeline management techniques.  Time-

dependent separation of the training and test set was employed, with the first five years used to train 

and the final two years used to test.  The choice of including differing periods (five years vs two 

years) in the training and test set is of questionable validity, as it means the model is trained to 

estimate the probability of failure in a five-year period and tested on its ability to estimate the 

probability of failure in a two-year period.  It is a reasonable assumption that these will have an 

almost perfect rank correlation, so metrics such as the AUC should be unaffected.  Under-sampling 

was utilized to balance the dataset, which was found to substantially improve model results.  This 

study noted that replacing diameter with its logarithm substantially improved the performance of both 

of these methods, improving AUC performance from 0.863 to 0.876 for logistic regression, and from 

0.798 to 0.855 for Support Vector Classification; this suggests a consistent but non-linear relationship 

between diameter and risk of failure, which is further explored in Chapter 4.2.1 and discussed in 

Chapter 6.1.2.  Another interesting advance presented in this paper was tuning the decision threshold 

to measure performance of the classifier when it was permitted to select only a small percentage of 

the network for replacement.  This approach can be generalized to the Cumulative Lift performance 

metric at a low percentage, as described in Chapter 3.6.3 . 

In their follow-on study using the same data, the authors explore predicting failure in each of three 

successive one-year periods using a classifier chain (Robles-Velasco et al., 2023).  This explicit 

formulation of estimating the probability of failure within a given time period PoF(t | x) matches the 

approach described in Chapter 3.5 and is selected for this study.  The study further explores the value 

of selecting the highest-risk pipes for replacement, providing estimates of the percentage of failures 

that could be avoided by replacing the 5% (32.1% of failures avoided), 10% (51.4% of failures 

avoided) or 15% (54.0% of failures avoided) of the pipes respectively.    

Aslani et al. employed spatiotemporal data to predict water main failures using main break records 

from 2015 to 2020 in Tampa, Florida, with over 3,000 failures recorded.  They used machine learning 

models to predict water pipeline breaks with inputs of spatiotemporal data.  Prior to applying the 

machine learning models, they conducted spatial clustering to identify the relative rates of pipe 

failures in geographic regions (a “hotspot level”) and provided this as a feature for use in the machine 

learning model (Aslani et al., 2021).  While the “hotspot level” is a novel concept, it should be noted 
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that this implementation included data from the test set in defining the hotspot level, making this an 

example of “information leakage” from the target variable into the features.  Furthermore, the train 

and test data were separated randomly, with both datasets spanning the same period.  As a target 

variable, they chose the average number of failures per month during the six-year study period.  This 

regression model calculates the expected number of failures per month, allowing for easy aggregation 

of results into groups or cohorts of pipe.  The study reported Root Mean Squared Error (RMSE) in the 

number of failures per pipe per month in a six-year period (again, a unique and unusual target 

variable) ranging from 0.083 for an ANN down to 0.007 for a boosted regression tree estimator.  

They also measured performance by ranking pipes based on their expected number of breaks and 

providing the percentage of breaks captured by selecting a given percentage of pipe length.  The 

charts presented show that by selecting 10% of the pipe length, approximately 22% of breaks could 

be captured.  Furthermore, they presented an aggregate “Area Under the Break Capture Curve” as a 

novel performance metric, which is calculated in a manner analogous to area under the receiver 

operating characteristic curve but uses percentage of length for the x-axis. 

The thesis work of Mohammad Amini explored the application of machine learning models to 

predict failure status in data from 13 Canadian utilities (Amini, 2021).  Extensive manual data 

cleansing was performed, including manually mapping the categorical variables used by each utility 

to a common standard.  The models aimed to classify each pipe based on whether a break occurred at 

some point during the study period, which varied by utility.  Note that an “age” feature was included, 

which was either the age at time of first recorded break or the age as of the last year in which 

monitoring occurred, which has the potential for information leakage from the target variable into the 

features.  Top performance was reported with XGBoost, achieving F1 scores of between 0.07 and 

0.88 across the 13 utilities, with each utility’s data being used to train and test separately, but no time 

separation between train and test data.  A final test was reported on cast iron pipe only, training a 

single model on data from all utilities.  This model achieved an F1 score of 0.72, with the authors 

reporting no change in the overall (aggregate) F1 score, but an improvement in the F1 score for each 

utility, with the average improvement well over 10%. 

Amini et al. compared random forest, logistic regression, and decision tree models on data from 

Saskatoon and Waterloo, Canada (Amini & Dziedzic, 2022).  Extensive data cleansing was applied, 

considering only pipes with length less than 200m, ages under 80 years, and materials from the five 

most common materials in these networks (AC, CONC, DI, PVC, and PE).  Certain unusual statistics 
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were reported from the data, such as mean values greater than the max value for diameter, length, and 

age in one of the contributing utilities.  A random train / test separation was employed on the roughly 

35,000 pipes and 19 years of records, with no time-based separation of train and test data enforced.  

The study notes that 12 binary variables were created as to whether a failure occurred during each 

month of the year, however the choice of target variable is not explicitly stated.  It may have been 

whether a given pipe would fail during the entire study period, whether a given pipe failed in any 

instance of a given month within the study period (i.e., any January failures, any February failures, 

etc.), or whether each month in the study period experienced a failure (i.e., any failures in January of 

2000, any failures in February of 2000, etc.).    

Karimian et al. attempted to predict the number of breaks per pipe over the course of a >50-year 

study period using a variety of regression models.  The dataset consisted of water infrastructure in 

Montreal, including 5,045 km of water linear assets with a total of 22,735 pipe breaks recorded 

between 1972 through to an unspecified end date (assumed to be shortly before 2020).  The models 

aimed to predict the number of breaks for each pipe segment, utilizing variables such as pipe length, 

diameter, age, and material (Karimian et al., 2021).  While the paper refers to an “annual” number of 

breaks, it is unclear whether this is the average break rate per year or if each pipe-year combination is 

predicted separately.  The top performing model was evolutionary polynomial regression (EPR), with 

the best-performing model reaching an R^2 value of 89.35%, with the most plausible interpretation 

being that the target variable was the number of breaks per segment in total during the >50-year study 

period. 

Zakikhani et al. employed multiple linear regression for failure prediction on 20 years of records 

for gas transmission pipelines in the USA.  It employed multiple known predictive values from 

physical tests (e.g., operating temperatures, hoop stress, soil moisture content, size of cathodic 

protection anodes, redox potential, etc.), to predict the observed values of their continuous dependent 

variable y (Zakikhani et al., 2021).  It is never clearly stated what y represents (time to failure, 

consequence of failure, and failure rates are all mentioned), or how members of the population are 

defined (these are less clear on long-distance gas transmission pipelines), however the authors report 

R2 values of 0.93 and 0.75 in two different climate regions. 

While sewer pipes are easier to access than water pipes and commonly inspected using closed 

circuit television, Mohammadi et al. used K-Nearest Neighbors to predict the condition of 



 

 75 

uninspected sewer pipes.  The study considered over 30,000 pipes in the City of Tampa, with a single 

pipe being clearly defined as a stretch from one manhole to another.  Many of the same features (age, 

material, diameter, length) were employed as are commonly used in water pipe failure prediction.  

Sewer pipes benefit from a standard 1 through 5 condition classification scale, and the model was 

trained to distinguish between good (condition 1, 2, or 3) and poor (condition 4 or 5) pipes 

(Mohammadi et al., 2021).  While no time split was enforced between training and test sets, 

extrapolation forward in time is not as significant for this particular application, which aims to assess 

the current condition of uninspected pipes rather than to predict future failures.  Performance was 

measured by area under the ROC curve, with an AUC of 0.89 achieved, with age and length being the 

most important features. 

Published results from a for-profit model (Fracta, 2022), while not disclosing their approach, did 

include a Cumulative Lift chart plotting portion of pipes vs portion of breaks.  Manual examination of 

this chart shows a Lift at 10% of roughly 4x, which is one of the key metrics selected for this study. 

Barton et al. attempted to improve performance of a pipe break classification model by grouping 

pipes together into 1km intervals of pipe with the same material, diameter grouping, and age 

grouping.  The study considered 14 years of failure history on approximately 40,000 km of pipe in a 

UK city, considering only the four most common types of pipe and grouped steel and ductile iron 

together as a single material.  The study noted that they were able to create over 80,000 cohorts from 

the 40,000 km of pipe, and that the actual average cohort length was less than 500m, suggesting that 

more complex rules were implemented to define cohorts than were explicitly stated.  The study did 

not state whether they aimed to predict whether a failure occurred on a per-unit-time basis or over the 

entire duration of the study.  A random train/test split was used, with stratified random sampling to 

ensure balance of materials across the train and test set.  Employing a gradient boosted tree, they were 

able to achieve an AUC of 0.89.  In a novel contribution, performance in estimating the actual 

probability of failure was also provided using the Brier’s Score (essentially the mean squared error in 

the probability estimates), and reached a score of 0.007 (Barton et al., 2022b).  The strong Brier’s 

Score, combined with the fact that gradient boosted trees do not naturally produce calibrated 

probability estimates, suggests that a method of calibrating the probabilities was applied; however, 

this method was not discussed in the paper. 
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Beig Zali et al. attempted to predict failures on a data set from a UK utility with nearly 400,000 

pipes and over 18,000 failures over 26 months (Beig Zali et al., 2024).  The authors considered only 

cast iron and asbestos cement pipes for the study, creating a more homogeneous population of the 

materials deemed to be most at-risk in that network.  Segmentation was performed first manually on 

material, length, diameter, and age, by examining charts of each of these continuous variables versus 

the cumulative numbers of breaks.  Small clusters were grouped together, and large clusters were 

further subdivided using of k-means.  It should be noted that this is an instance of information leakage 

from the target variable into the features, as both the training and test data was used to create the 

clusters.  Classification was then performed using logistic regression, random forest, and gradient 

boosted trees.  It is not clear whether the study trained a separate classifier for each cluster to predict 

failure of each pipe segment, or if they trained a single classifier to predict whether a failure occurred 

within the cluster.  The authors compared various methods of class rebalancing and reported the 

highest AUC scores of 0.803 with the use of undersampling and the gradient boosted tree model.   

Omar et al. employed a range of machine learning classifiers to predict breaks for the City of 

Kitchener, Canada, on roughly 15,000 pipes over a period from January 1985 to January 2021.  This 

study integrated expert knowledge with the machine learning approach via the inclusion of a 

“Condition Score” variable incorporating factors such as material and history of breaks (Omar et al., 

2023).  Note that there appears to be information leakage from the target variable into this feature: the 

target variable was whether any break occurred during the study period, and the number of recorded 

breaks contributed 50% of the weighting to the Condition Score feature.  No time separation was 

enforced between the test and training sets.  The top performing model was the random forest 

approach, which achieved an Area Under the Curve of 0.814 on all pipe materials, and of 0.862 when 

a model was trained and tested on cast iron pipe only. 

Fan et al. employed a Long Term Short Memory (LSTM) time series model to predict the total 

number of breaks per month across an entire water network, using 35 years of data from Cuyahoga 

County, USA (Fan et al., 2023).  They found that the LSTM approach yielded slightly lower bias 

(13.3% lower) and narrower confidence intervals (44.7% smaller) than the ARIMAX method used for 

comparison. 
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Finally, two recent studies have begun to explore the ability of machine learning models to 

extrapolate from one utility to another.  Both include elements of the approach used in this study, 

which requires extrapolation both forward in time and to a new location concurrently. 

Chen et al. conducted a study using data from six water utilities in the USA, all contributing break 

data from the period of 2005 to 2018 (Chen et al., 2022).  Each utility had between 36,000 and 

265,000 pipes, and between 500 and 22,000 breaks.  Strict time separation was enforced between the 

training and test sets, with data from 2005 to 2015 used for training, and from 2016 to 2018 for 

testing.  As a target variable, this study elected to train based on whether there was at least one break 

recorded on that asset or any of its neighbors within 60.96m (200 feet), during the following three-

year period, but to test using whether there was at least 1 break recorded on that asset itself during a 

three-year period.  In addition to pipe and environmental features, both time lag (number of breaks in 

prior 1, 2, 3, 4, and 5 years) and spatiotemporal lag (breaks on the asset or its neighbors with 60.96m 

in the prior 1, 2, 3, 4, and 5 years) were used.  Several data inclusion cases were tested and compared: 

using each utility’s data in isolation (either all of it, or the most recent five years only), supplementing 

it with all data from the other five utilities inclusively, or supplementing it with an equal amount of 

data from other utilities in a manner matching the pipe material distribution of that utility.  Area under 

the curve for break capture was selected as the performance metric, with the models tested being 

random forest and two different implementations of gradient boosted trees.  Performance among the 

six utilities ranged from AUC of 0.73 to 0.90 (average 0.81) using random forest, and from AUC of 

0.54 to 0.90 (average 0.79) using boosted trees.  Limiting the training data to the most recent five 

years degraded performance across all algorithms, and particularly on the boosted trees.  

Supplementing with other utilities’ data, however, provided mixed results, with no overall 

improvement in performance measured.  The authors concluded that data quality was more significant 

than data quantity in training a model. 

A promising study Daulat et al. (2024) explored the potential of machine learning models to predict 

time to failure for pipes in water distribution systems beyond the systems whose data was used to 

train the models.  It specifically investigated whether smaller utilities can leverage data and models 

from larger or multiple utilities to enhance their predictive capabilities.  The study utilized datasets 

from nine Norwegian utilities to train both multi-utility (“global”) and single-utility (“local”) models 

using Random Survival Forest.  It examined the generalizability of global models and the 

transferability of local models in predicting pipe failures of utilities not included in their training 
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datasets.  A single set of data was used for both training and testing purposes, with extensive data 

cleansing removing 108,000 out of the total 139,000 pipes (22% of the population) via numerous 

exclusions (e.g., pipes installed before 1945, pipes less than 1m in length, pipes with anomalous 

installation dates).  To fit the survival curves, the authors defined a failure state as a single break and 

registered a “new” pipe (with more previous breaks) each time a failure occurred.  The findings 

suggested that global models offer promising accuracy in prediction, with performance measured by 

the Concordance Index (somewhat analogous to Area Under the Curve for classification models) of 

0.82 for the local model and 0.80 for the global model.  The study also delved into survival curves 

and variable importance analysis, providing insights into the factors influencing pipe deterioration 

and the feasibility of model sharing among utilities.  The authors noted that “It would be interesting to 

check the performance of the global models for utilities in other countries with similar and different 

climate, geography, and historical network evolution to test the limits of such a transferability,” 

(Daulat et al., 2024) which is undertaken in our study, as described in Chapters 3 through 6. 

2.3.2.2 Comparative Analysis of Prior Work 

These numerous publications over since 2017 in the application of machine learning to water pipe 

failure prediction have shown several consistent findings, as well as certain limitations. 

Decision tree-based models have consistently proven effective on this problem.  A wide range of 

types of machine learning models have been applied in the various studies.  Where direct 

comparisons have been made between different models, the most frequent top performers have been 

random forest and gradient boosted tree models.  These belong to the same family of models which 

utilize multiple learned decision trees to make predictions or classifications.  Models in this family 

share traits of being able to represent non-linear and even non-monotonic relationships between 

features and the target variable, as well as robustness to certain data quality problems such as outliers 

in numerical features. 

While performance metrics have varied from study to study, a common performance metric used 

has been area under the curve (AUC).  A summary of comparable results from the literature in which 

AUC was reported is provided in Table 6.  Values achieved by these various studies all fall into the 

range of 0.8 to 0.9 in their AUC scores, with an average value among the reported studies of 0.85.  In 

cases where a time split is applied (i.e. where the training data is drawn from a time period prior to 

test data), the range narrows to between 0.81 and 0.88.  
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Table 6: Summary of performance by AUC reported in the literature. 

Study Model AUC Target Variable 
Time 
split? 

Omar et al. (2023) Random Forest 0.81 Any failures in a 35-year period. n 

Robles-Velasco et al. 
(2020) 

Logistic Regression 0.88 Failure in a 2-year period y 
Support Vector Classifier 0.86 Failure in a 2-year period y 

Zhang et al. (2018) Bayesian nonparametric 0.83 Failure in a 1-year period y 
Winkler et al. (2018) Gradient boosted trees 0.90 Any failures in a 20-year period n 
Fan et al. (2022) Gradient boosted trees 0.90 Any failures in records n 

Barton et al. (2022) Gradient boosted trees 0.89 
Failure in a group of pipes in a 
14-year period n 

Beig Zali et al. (2024) Gradient boosted trees 0.80 
Failure in a group of pipes in a 
26-month period n 

Omar et al. (2023) 
  

Random forest 0.81 Failure in a 35-year period n 
  0.86 Same, on cast iron only n 

Chen at al. (2022) Random Forest 0.81 
Break in a 3-year period;  
avg. across six utilities y 

 

Some consistencies have also emerged with respect to the top predictive features.  Diameter and 

material were noted as top predictive features in each study.  The features, which are tracked by 

nearly every utility, are clearly useful in predicting pipe failure with machine learning.  Age was often 

cited as a top predictor, but not in all cases.  In some publications there was in fact no correlation 

observed between age and failure rate. 

 Limitations of the prior work include data limitations, methodological limitations, and limitations 

of practicality.  The data sets for each study came from a single source (either one utility or at most 

several utilities in the same country), preventing the testing of transferability of models and findings 

to other regions.  Different data sets were used in each study, which prevents the direct comparison of 

modeling methods employed in each study.  Further limiting the direct comparison of modeling 

methods across studies is the wide variability in the target variable used (pipe vs cohort, and duration 

of time in which the presence or absence of a break is to be predicted).  Many of these target variables 

(such as whether or not a break will occur in a 35 year period) are poorly aligned with utility decision 

making practices, limiting their practical value to model users. 
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2.4 Chapter Summary 

This chapter provided a review of the literature relevant to the application of machine learning for 

pipe failure prediction.  It first provided background and context for the construction and management 

of water networks and water pipe failures, including clear definitions of what constitutes a pipe and a 

failure within this study.  A review was then provided of the historically established engineering 

methods of water pipe failure prediction, and how these are used to support water network 

management decisions.  Lastly, an overview of machine learning methods for classification problems 

was provided, along with a review of their application for pipe failure prediction as reported in the 

literature. 

Chapter 3 describes the methodology applied in this study for the development and testing of a 

generalized machine learning model for pipe failure prediction.  It describes the process of collecting, 

preparing, and analyzing the data for the study.  It then describes in detail the three layer model 

developed in this study, and the testing process employed to evaluate the practical applicability of the 

approach. 
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Chapter 3 

Study Methodology 

3.1 Introduction to Methodology 

The methodology of this research involved the following steps: 

 Data collection on pipes and breaks from utilities 

 Datra integration into a standard data model 

 Exploratory data analysis 

 Machine learning model development and training 

 Evaluation of the model performance 

 

Figure 5: Summary of research project activities. 

The data collection stage involved gathering data from multiple water utilities representing a range 

of geographic and environmental regions.  This was an extensive process, taking over two years to 

complete.  Most utilities were reluctant to share data for a variety of reasons.  For many it was simply 

a matter of time and data availability.  For other utilities, data security was the primary concern.  Data 

security concerns stemmed from either privacy concerns with respect to the utilities’ customers, or 

security concerns with respect to information about the physical infrastructure.  In some cases these 

concerns were addressed via data sharing agreements.  Upon receipt of data, each contribution was 

evaluated for suitability for the study. 

Data integration required bringing the datasets provided in disparate formats into a single common 

data model.  Data was provided in a variety of formats, including .csv files, Excel files, and shape 
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files.  In the case of shape files, a geolocation step was required to match break events to pipes prior 

to integrating the data into the standard model. 

The objective of the exploratory analysis stage was to inform the design of the machine learning 

model.  This involved profiling the data, and examining the relationships between the individual 

predictive factors and the target variable.  Observations from this stage supported decisions regarding 

feature engineering, normalization, and selection of model types. 

Creation of the generalized machine learning model for pipe failure prediction was the primary 

objective of the study.  This involved creation of the proposed model.  To ensure repeatability of the 

study, no manual data cleansing was applied to the data provided by each utility.  Minimal 

preprocessing was performed, and all of it done in an automated manner consistent across all utilities. 

Model evaluation was the final stage of this project.  The focus of this stage was to ensure that the 

model extrapolates both forward in time to periods not included in the training data, and also to new 

utilities which did not contribute training data. 

3.2 Data Collection 

The best option for data collection is to gather actual pipeline data and failure results from water 

utilities. Previous research and publications consist of either analysis of data from a single utility, or 

of collation of survey results from multiple utilities.  Survey results have generally been confined to 

one country.  Collecting and preparing a large and geographically diverse data set was a major aim of 

this research. 

Data collection from water utilities was the longest lead time component of this project.  Utilities 

are highly protective of their data, and most participants required a lengthy negotiation process for 

access to data.  Even upon completion of these negotiations, some utilities were unable to collect and 

share data appropriate for the proposed analysis. 

By focusing effort on data collection and preparation, this project has collected usable data from 

seven utilities spread across four countries in North America, Europe, and Asia.  The data contains 

174,870 breaks, and 640,226 pipe segments representing 29,626 km of pipe.  With a cumulate total of 

13,673,295 segment-years of break history, this may be the largest data set used to date for academic 

purposes. 
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Data collection was performed in a four-step process of Outreach, Data Sharing Agreements, Data 

Collection, and Data Evaluation.  The number of target organizations at each stage was as shown in 

Table 7. 

Table 7: Data Collection Process Stages 

Stage Number of Organizations 

Outreach 27 organizations approached 

Data Sharing Agreements 12 organizations responded and opened negotiations 

Data Collection 8 organizations provided some form of data 

Data Evaluation 7 organizations provided usable data 

6 organizations provided data fully usable 

3.2.1 Step 1: Outreach 

An outreach process was conducted with outreach to a large number of water utilities, research 

groups, industry groups, and private technical service companies inviting them to participate in the 

research.  Outreach candidates were identified via the existing relationships from members of the 

research lab.  The groups in Table 8 were contacted and invited to participate in the study. 

Table 8: Groups Invited to Participate in Study 

 Anglian Water  Brabant Water  Ontario Clean Water Agency 

 American Water  Suez Environment  Tacoma Water 

 Toronto Water  Town of Aurora  Dunea 

 The City of Hamilton  York Region  KWR [Research Group] 

 Vitens  American Water  Singapore Public Utilities Board (PUB) 

 Waternet  Halifax Water  San Diego County Water Authority 

 The Sewerage and 

Water Board of New 

Orleans 

 Washington Suburban 

Sanitary Commission 

 American Water Works Association 

(AWWA) [Industry Association] 
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 International Water 

Association (IWA) 

 Virginia Tech WaterID 

Project [Research 

Group] 

 Center for Advancement of 

Trenchless Technology [Research 

Group] 

 Peel Region  City of Winnipeg Water 

& Waste Department 

 City of Kitchener 

3.2.2 Step 2: Data Sharing Agreements 

Water utilities are generally quite protective of their data.  Most participants required Non-Disclosure 

Agreements or Data Sharing Agreements between the utility and the university prior to sharing data.  

Negotiation of these agreements took between four and nine months.  The groups shown in Table 9 

responded to outreach efforts, and engaged in discussions for access to data: 

Table 9: Groups Responding to Outreach Efforts 

 American Water  Ontario Clean Water Agency 

 Toronto Water  KWR [Research Group] 

 The City of Hamilton  Singapore Public Utilities Board (PUB) 

 Vitens  Washington Suburban Sanitary Commission  

 Waternet  Virginia Tech WaterID Project [Research Group] 

 Dunea   Peel Region  

3.2.3 Step 3: Data Receipt 

Upon successful negotiation of data sharing agreements, a standard data sharing request document 

was shared with each organization.  Some organizations were unwilling to share full data for security 

reasons and opted to aggregate the data prior to sharing.  Others were unable to gather and share all of 

the requested data.  Of the 12 groups that engaged in discussions for access to data, the eight shown in 

Table 10 provided data in some form. 

Table 10: Groups Contributing Data to Study 

 American Water  Dunea 

 Toronto Water  Singapore Public Utilities Board (PUB) 

 The City of Hamilton  Waternet 
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 Vitens  Peel Region 

3.2.4 Step 4: Data Evaluation 

Once received, each data set was evaluated for usability and appropriateness for the research project.  

The following data sets were received from water utilities. 

 Toronto Water: Fully Usable.  A database consisting of a Pipe Segments table and Breaks 

table, with an existing key variable (LD_ID) linking each break to a pipe.  This was 

immediately appropriate for the proposed analysis. 

 The City of Hamilton: Fully Usable. Two Excel files, one containing a Pipe Segments table 

and the other containing a Breaks table, with an existing key variable (COMPKEY) linking 

each break to a pipe.  This was immediately appropriate for the proposed analysis. 

 Dunea: Not Usable. One Excel file consisting of a Breaks table and aggregate lengths by 

material, and only for large diameter transmission mains.  It was not appropriate for our 

proposed research, as it did not provide sufficient detail for Segment-Level analysis, nor was 

the aggregation sufficiently granular for Cohort-Level analysis 

 Waternet: Fully Usable. One Excel file with a Break table, and a GIS Shape File with a Pipe 

Segments table, but no key variable linking the two.  This was appropriate for the proposed 

analysis with geospatial preprocessing to identify the closest pipe to each break. 

 Singapore Public Utilities Board: Fully Usable. Two Excel files, one containing a Pipe 

Segments table and the other containing a Breaks table, with an existing key variable 

(WATERMAIN_) linking each break to a pipe.  This was immediately appropriate for the 

proposed analysis. 

 New Jersey American Water: Fully Usable. A GIS file with a Break table, and a GIS 

Shape File with a Pipe Segments table, but no key variable linking the two.  This was 

appropriate for the proposed analysis with geospatial preprocessing to identify the closest 

pipe to each break. 

 Peel Region: Fully Usable. A database consisting of a Pipe Segments table and Breaks table, 

with an existing key variable (WM_COMPKEY) linking each break to a pipe.  This was 

immediately appropriate for the proposed analysis. 

 Vitens: Limited Usability. A single Excel file containing a Breaks table together with the 

Pipe Segment details for the Pipe Segment associated with the break.  While it contained the 
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required data for our analysis, it included only Pipe Segments that suffered a failure.  This 

selection bias meant that it had to be handled carefully during analysis to ensure that this bias 

did not skew the models, the descriptive statistics, or the factor analysis. It was appropriate 

for the proposed analysis in limited usage. 

3.3 Data Integration 

To train and test predictive models, the data from each utility needed to be integrated by transforming 

each into a consistent data model and then integrated into a single database.  The data received posed 

several challenges to this process.  First, some utilities do not make a practice of associating break 

records with pipe records. Second, while certain core features were present in all the pipe tables 

(material, diameter, length, and installation year), there was considerable variety in the additional 

features included.  Third, even when the same information was contained, the column names, units of 

measure, date formats, acronyms, and languages varied considerably.  Fourth, many of the Break 

tables were generated as a full extract from the utility’s maintenance records database, and included 

both actual pipe break events (Leaks, Bursts, Breaks, etc.) and other maintenance activities (meter 

reads, service connections, surface flooding, sewer overflows, etc.). 

The data model used and integration process applied to transform the various data sets into this 

common data model are described in this chapter. 

3.3.1 Standard Data Model 

Prior to receiving utility data, a conceptual data model was laid.  This model reflects data which 

has previously been shared with the researcher during various instances in his professional career.  

This preliminary design consists of the four tables shown in Figure 6.  
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Figure 6: Schema of planned data model.  Table headings are above the line, primary keys are 

in bold, and references to other tables are in italics. 

Raw data supplied by utilities was expected to vary.  It could come at the Stick (from pipe joint to 

pipe joint), Segment (one entry in the utility’s asset records), or Cohort (a group of pipes expected to 

degrade similarly over time) level, as described in Chapter 2.1.1.1.2.  Data received at the Stick level 

would require aggregation prior to usage.  Data received at the Cohort level would be usable only for 

testing the trained models’ ability to forecast total numbers of breaks in a cohort. 

Stick level data is often only available for large diameter pipelines that have been subject to inline 

inspection (usually PCCP or Steel).  In practice, no utilities were willing to share stick level data for 

this project. The final data model used reflecting the data actually received is shown in Figure 7. 

 

Figure 7: Schema of final standard data model.  Table headings are above the line, primary 

keys are in bold, and references to other tables are in italics. 

The level of time granularity for analysis is years.  Hence a single member of the population for 

analysis is a Segment-Year tuple, with Cohort-Year tuples also used for validation. 

Segment 
PipeID 
CohortID 
Material 
Diameter 
Length 
Install_date 
…  

Stick 
StickID 
PipeID 
Material 
Diameter 
Length 
Install_date 
…  

Cohort 
CohortID 
Material 
Diameter 
Length 
…  

Break 
BreakID 
Date 
BreakType 
PipeID 
CohortID 
Notes 
…  

Segment 
PipeID 
CohortID 
Material 
Diameter 
Length 
Install_date 
…  

Cohort 
CohortID 
Material 
Diameter 
Length 
…  

Break 
BreakID 
Date 
BreakType 
PipeID 
CohortID 
Notes 
…  
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3.3.2 Data Set Merges 

Substantial data integration was required to bring all the data sets into conformance with the proposed 

data model described in Chapter 3.3.1.  Where possible the data integration process was done using 

scripts or code to ensure repeatability of the exercise.  Scripts and code are in the form of python and 

SQL queries and are executed using the processing software Dataiku.  The steps followed for each 

data set were as follows: 

 Data Integration Step 1: Geospatial Preprocessing.  This step involves linking Break records 

with Pipe records based on geospatial proximity.  It was needed only for Waternet and New 

Jersey American Water to provide a key variable to link each Break record with a Pipe 

Segment record. 

 Data Integration Step 2: Extra raw data into comma separated value (csv) format. 

 Data Integration Step 3: Import csv files into PostgreSQL tables with standard column 

names. 

 Data Integration Step 4: Normalize the units, date formats, and data types. 

 Data Integration Step 5: Merge Data from all utilities into common pipe and break tables. 

During these steps, minimal data cleansing and transformation was undertaken to allow the steps to 

move forward.  Where possible, these operations were deferred to after the end of the data preparation 

pipeline, to allow them to be performed on the merged data from all utilities.  Certain data cleansing 

operations, such as removing or correcting improper date strings, were required during the integration 

phase.  These steps are described in detail to ensure repeatability of this research. 

A data conversion script was developed in Python to generate the Segment-Year tuples for 

analysis.  The number of failures in each tuple has been calculated as the target variable. 

3.3.2.1 Data Integration Step 1: Geospatial Preprocessing 

Two of the data sources (Waternet and New Jersey American Water) were received in the format of a 

GIS Shape File for the pipe data, and an Excel file for the breaks data.  No linking field was provided 

to associate each break with a particular pipe. 

Geospatial analysis was used to associate breaks with pipes.  This stage in the integration process 

required manual execution of several steps rather than via code or scripts.  This was accomplished via 

a four-step process, as outlined and further detailed below: 
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1. Convert each address to a latitude and longitude 

2. Convert the latitude and longitude to an X and Y coordinate 

3. Identify the pipe (a Line object) that is closest to each break (a Point object) 

4. Record the pipeid associated with each breakid 

After applying these steps, each break record with a valid address was associated with a single pipe 

via the PipeID field.  This enables association of pipe and break records using this field in code and in 

SQL join operations. 

3.3.2.1.1 Convert Each Address to a Latitude and Longitude 

The process of converting a location description, such as an address, to a geospatial location, such as 

latitude and longitude, is known as geocoding.  The website geocode.xyz provides batch geocoding 

services and was used for this conversion.  The data was transformed to a format with one column.  

The column contains the full address, in the format “<House Number> <Street Name>, <City>, 

<Country>” as illustrated by the example “33 Haarlemmerstraat, AMSTERDAM, Netherlands” (note 

this is an illustrative example not in the actual dataset). 

Many of the address records provided by Waternet showed a house number of 0.  This was 

assumed to be a sentinel value inserted into the Waternet database in cases where no house number 

was present in the original maintenance notes. The presence of the 0 caused the geolocation service to 

fail; however, when the numbers were removed, the service provided a geolocation of the lowest 

numbered house on the street.  A manual review of the Waternet GIS file showed that nearly all 

streets have only a single water main.  As such, using the geolocation of the street resulted in a correct 

mapping of break to pipe in nearly all cases, making it appropriate for this analysis. 

This process was able to identify a geolocation for 99.5% of the break locations in the data. 

3.3.2.1.2 Convert the Latitude and Longitude to an X and Y Coordinate 

This conversion was done using the open-source GIS software package QGIS.  Latitude and longitude 

of the break locations was transformed to X and Y coordinates using the transformation “Inverse of 

Amersfoort to WGS 84 (4) + RD New.”  According to the QGIS documentation, this transformation 

provides accuracy of 1 meter for onshore Netherlands addresses. 
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3.3.2.1.3 Identify the Pipe (a Line Object) That Is Closest to Each Break (a Point Object) 

This matching was done using the QGIS geoprocessing feature.  First, two Layers were added to the 

project: one for the pipes (Shape File provided by utility) and one for the Breaks (the break 

information, together with the X and Y coordinates created in the previous step).  The matching was 

performed using the command accessible via the “Processing  Processing Toolbox  Vector 

General  Join attributes by nearest” command.   

To minimize the number of false associations, a maximum distance of 100m was permitted 

between the break location and the pipe object.  Note that the break location provided was the address 

of the nearest building, not the location of the break itself.  Given this, the threshold was manually 

tuned to capture associations between buildings located somewhat distant from the road but to 

exclude break locations which were recorded in an area not close to any pipe. 

3.3.2.1.4 Record the PipeID Associated With Each BreakID  

This was performed to enable future association of records via simple join operations. 

This process was able to associate a PipeID with 98.0% of those Break records of a type that 

corresponded to an actual pipe break event, and 67.9% of all the Break records provided.  The higher 

proportion of actual break events is due to many non-break events either having no associated address 

or an address that is distant from any water pipeline. 

3.3.2.2 Data Integration Step 2: Extract csv files 

This step involved opening each file provided by the utility in software appropriate for the native file 

format.  The software used included QGIS, Microsoft Access, and Microsoft Excel.  Each software 

included a function to export or save to csv format, which was used to generate these files. 

With all data in a standard csv format, all further processing was performed using code (Python) 

and queries (PostgreSQL).  The code and queries were stored and orchestrated using the free version 

of the Dataiku data processing software.  This software visually organizes data tables (shown as 

squares) and data processing steps (shown as circles) in a flow from left to right.  This visual 

representation of the data integration flow for Steps 3 through 5 on the Pipes is shown in Figure 8. 
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Figure 8: Visual representation of the Data Integration processing steps 3 (standardize), 4 

(normalize), and 5 (merge) for the Pipes tables.  Squares show tables, and circles show data 

processing steps. 

The corresponding visual representation of the data integration flow for Steps 3 through 5 on the 

Breaks is shown in Figure 9.  This flow is considerably more complex.  The greater variety of data 

structures in which utilities provided breaks data required more processing steps to standardize and 

normalize. 
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Figure 9: Visual representation of the Data Integration processing steps 3 (standardize), 4 

(normalize), and 5 (merge) for the Breaks tables.  Squares show tables, and circles show data 

processing steps. 

3.3.2.3 Data Integration Step 3: Import to PostgreSQL Table in Standard Data Model 

This step involved converting each csv file into a database table using a standardized naming scheme.  

Data types were kept as text during this step, with type conversions deferred for Step 4. 

The standard data model shown in Chapter 3.3.1 formed the starting point for each of the Pipe and 

Breaks tables.  Additional columns were added to incorporate the fields actually provided by the 

utilities.  In many cases, utilities provided fields with different names but similar content.  In these 

cases, the similar fields were all mapped to the same field in the common table.  The aim of this 

practice was to generate predictive models which generalize across multiple utilities, including 

extrapolating to new utilities, rather than models which need to be trained separately for each utility.  

Data dictionaries summarizing the fields expected to be used in the modeling, their meaning, and how 
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many utilities included a field mapping to it are provided in Table 11 for the Pipes table and in Table 

12 for the Breaks table. 

Table 11: Data dictionary for Pipes table 

Field Meaning Included 
dataset Unique identifier of each data provider 6 
pipeid Unique identifier of a pipe segment 6 
from PipeID of the upstream pipe segment 2 
to PipeID of the downstream pipe segment 2 
dia Nominal inside diameter of the pipe 6 
mat Pipe material 6 
len Length of the pipe segment 6 
lining Lining on the inside wall of the pipe 5 
cor_protect Corrosion protection applied to the pipe 2 
joints Joint type between pipe sticks 2 
main_type Water main type: distribution or transmission 4 
deadend Is this a dead-end, with no downstream segment 1 
inst_date When was the pipe installed 6 
rem_date When was the pipe removed 3 
rehab_date When was the pipe rehabilitated 3 
active Is the pipe currently in active use 3 
loc1 Location: district, or service area 4 
loc2 Location: postal code or pressure zone 2 
owner Owner: Utility, Customer, or Third Party 3 
water_type Potable water, raw water, or sewage 2 
soil_type Description of the soil type 2 
note1 Free form text field for notes about the pipe 4 

 

Table 12: Data dictionary for Breaks table 

Field Meaning Included 
dataset Unique identifier of each data provider 7 
brid Unique identifier of a break event 7 
pipeid The pipe on which the break occurred 5 
date The date of the break 7 
addr Street address nearest to the break 5 
loc1 Location: City, town, or district 5 
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loc2 Location: Postal code or county 3 
event_class Work order event type 3 
break_type Type of break (leak, burst, crack, etc.) 2 
cause Cause of break (split joint, corrosion, etc.) 3 
soil_depth Measured soil depth at break location 2 
soil_type Measured soil type at break location 3 
xcoord Longitude at break location 2 
ycoord Latitude at break location 2 
pipe_mat Pipe material at break location 3 
pipe_dia Pipe diameter at break location 3 
note1 Free form text field for notes about the break 5 

While additional fields were provided by utilities, these were present in only a single data set and 

did not represent factors expected to contribute to the analysis. 

Certain fields required additional processing steps to populate for some utilities.  Rather than 

providing one break per row, one utility provided one row per pipe, and columns for the date of the 

1st, 2nd, 3rd, etc., through to the 9th break on that pipe.  Some utilities omitted a unique identifier for 

each break record, requiring one to be generated.  Some utilities stored the address in a single field 

whereas others had separate fields for number, street, city, and postal code.  Some utilities spread the 

unstructured Notes associated with one break across multiple rows in the table.  Many utilities 

included a range of maintenance records together with the actual break records, requiring the creation 

of a Boolean “isBreak” field populated by a utility-specific formula.  Many utilities had multiple 

different date formats in the installation date field (e.g., “1921-03-07”, “19210307”, and 

“03/07/1921” all in the same utility’s data), which needed to be made consistent.  A similar issue was 

present in the pipe diameter field for many utilities, where units of measure were sometimes but not 

always included (e.g., “4”, “4IN”, and “4 inches”).  Finally, some utilities included sentinel values 

that did not conform to the expected data type for the field, such as “July of 1982” for the installation 

date. 

3.3.2.4 Data Integration Step 4: Merge Data from All Utilities into Pipe and Break Tables 

This merging was accomplished by starting with an empty template table containing all of the target 

fields but no data, and inserting all of the rows from each of the individual utility data tables. 
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To facilitate easy analysis, date components were extracted from certain fields.  For the Pipes table, 

the year was extracted from the installation, rehabilitation, and removal dates, and the month was also 

extracted from the installation date.  For the Breaks table, the event date was broken down into 

separate year, month, day, and day of week values. 

The net result of these operations were final Pipes and Breaks tables ready for data transformation 

and analysis. 

3.3.3 Data Transformation 

The data transformation process to prepare for analysis involved three main steps: 

 Data Transformation Step 1: Creating segment-year tuples 

 Data Transformation Step 2: Aggregating cohort-year tuples  

 Data Transformation Step 3: Joining Pipe and Break data 

These steps are described in detail to ensure repeatability of this research. 

3.3.3.1 Data Transformation Step 1: Creating Segment-Year Tuples 

The bulk of the planned analysis was conducted based on breaks occurring within a given time 

window on a given pipe segment or within a given cohort.  Creating a list of valid segment-year 

tuples within which to populate data for analysis was a necessary step for this transformation.  A 

given segment-year tuple was considered valid for this analysis if it occurred while the pipe was 

installed, and the utility was recording breaks for that pipe.  This was calculated by ensuring all the 

following conditions were met: 

1. The year was no earlier than the installation date of the segment 

2. The year was no later than the removal date of the segment 

3. The year was no earlier than the earliest recorded break for that data set 

4. The year was no later than the last recorded break from that data set 

Upon completion of this transformation, a total of 14,540,438 valid Segment-Year tuples were 

available for analysis. 
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3.3.3.2 Data Transformation Step 2: Aggregating Cohort-Year Tuples 

It is common practice among utility asset managers to make rehabilitation and replacement decisions 

on the basis of cohorts.  Cohorts can be defined in a wide variety of ways, such material, diameter, 

installation dates, geographic proximity, failure history, or the presence of corrosion protection 

measures such as linings.  Grouping pipes into cohorts and making decisions based on these allows 

for more concise communication of plans and decisions.  For example, “we will apply an internal 

cement mortar lining to all of our 1950s ductile iron mains and will replace all of the asbestos cement 

mains in our downtown area” is a clear and understandable plan, whereas a listing of hundreds of 

individual pipe identifiers cannot always be communicated concisely. 

This concise communication can be critical to water utilities because of their regulated operations.  

Most water utilities are either public sector entities or operate under the purview of a public sector 

regulator.  In either case, their capital expenditures are generally subject to an approval process, as 

these expenditures are a major driver of the water rates charged to the utility’s customers.  A clear and 

concise communication of which pipes will be replaced or rehabilitated and the rationale for doing so 

can help these plans to be explained both to the regulatory approvers and to the public. 

For the purposes of this study, a simple and consistent method of defining cohorts was used.  A 

cohort was defined as a combination of material, diameter, installation era, and geographic proximity.  

Grouping methods were applied across each of these four dimensions, as described below. 

 Material.  The same pipe material was often described with different words, short forms, 

or acronyms.  For example, a cast iron pipe was described as CI, Cast, Cast Iron, Iron, 

Gietijzer (Dutch), Grijs Gietijzer (Dutch), GG (Dutch Acronym), among others.  A rules-

based script was used to standardize material names into the eight common water main 

material types: Cast Iron, Ductile Iron, Steel, Concrete, Asbestos Cement, PVC, Copper, 

and HDPE (including other Polyethylene types).  Names which could not be clearly 

identified were grouped as Unknown. 

 Diameter.  Grouped into bins of 100mm (e.g., 0 – 99.99mm, 100 – 199.99mm, etc.). 

 Installation era.  Grouped by decade (e.g., 1950 – 1959, 1960 – 1969, etc.). 

 Geographic Proximity.  Grouped by utility. 
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3.3.3.3 Data Transformation Step 3: Joining Pipe and Break Data 

At this stage in the processing, each Break record was associated with a single year and Segment.  

Some Segments and Cohorts had multiple breaks in the same year.  As a result, the individual Break 

records had to be aggregated before joining the Break data with the Segment-Year or Cohort-Year 

tuples.  The Break records are grouped using Dataset, Break_Year, and either PipeID or CohortID as 

the group keys, with the count of BreakID’s representing the number of breaks on that segment or 

cohort respectively. 

These aggregations were then joined with the list of valid Segment-Year and Cohort-Year tuples 

previously generated.  A time-window operation was then used to generate additional break history 

features for a given Segment-Year or Cohort-Year tuple.  Windows used include: 

 Potential target variables <may include information from the future>: 

o A binary feature of whether any breaks occurred in the current year. 

o A binary feature of whether any breaks occurred in the five-year period beginning 

in the current year. 

o The number of breaks that occurred in the current year. 

o The number of breaks that occurred in the five-year period beginning in the current 

year. 

 Potential predictive variables <may only include information from the past>: 

o The number of breaks that occurred in the prior year. 

o The number of breaks that occurred in the three-year period ending in the prior 

year. 

o The number of breaks that occurred in the five-year period ending in the prior year. 

o The number of breaks that occurred in all years up to and including the prior year. 

o A binary feature of whether any breaks occurred in any previous year. 

o A binary feature of whether any breaks in the five-year period ending in the prior 

year. 
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  These form the final Segment-Year-Breaks and Cohort-Year-Breaks tables used to train and test 

the predictive models.  The actual models are trained on subsets of these features, as described in the 

chapters covering the algorithm in question. 

3.4 Exploratory Data Analysis 

This section describes the exploratory data analysis and modeling performed prior to creation of the 

final model.  The purpose of the exploratory work is to inform the design and selection of features, 

the choice of model types, and the selection of hyperparameters. 

3.4.1 Data Preparation for Exploratory Data Analysis 

While an objective of this model is to automate this process, a manual exercise of data preparation 

was undertaken as well.  This was both to facilitate exploratory data analysis on clean data and to 

provide a version of the data against which the results of the automated processing could be 

compared. 

3.4.1.1 Normalize the Units, Date Formats, and Data Types 

This step required normalizing the date formats, units of measure, and data types across the various 

data sets into common standards.  Numerical fields were all set to floating point decimal type with the 

exception of diameter, which was set to integer values.  All numerical values were converted to 

metric units.  All dates were converted from the text representation used by that utility into the 

PostgreSQL Date format. 

The units used for numerical fields were as follows: 

 Nominal Diameter: millimeters (rounded to the nearest integer when converted from 

inches) 

 Length: meters 

 Soil Depth: meters  

 Roughness: microns 

 Pressure Class: megapascals 

 Tensile Strength: microns 
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 Measured Diameter (inside & outside): millimeters 

3.4.1.2 Data Cleansing 

Data cleansing scripts were prepared for both the Breaks and Pipes tables.  Data cleansing activities 

prior to analysis were limited to those which each utility could reasonably be expected to be able to 

do on their own data, without access to data from other utilities.  Given the large number of pipe 

segments (over 500,000) and breaks (over 180,000), a full manual inspection of all records for data 

quality issue identification and correction was not feasible. 

As an example, rows were deleted where pipes had installation dates earlier than 1700 or after the 

date upon which the data sets were shared.  Quite common were installation dates in the years 0 and 

9999, both of which were likely sentinel values used to represent some specific but unknown 

information.   

A more complex example was certain pipes having diameter records well below the normal 

minimum watermain size of 4 inches (100 mm).  In some cases, this was clearly due to a units error 

during entry, such as a 1000 mm pipe being entered as 1 (length in meters) rather than 1000.  These 

were corrected by identifying diameters for which water mains are not manufactured at that size (such 

as 1 mm) but which would exactly match a standard water main size if such a unit error is inverted.   

3.4.2 Dataset Profiling 

The analytical approach began with a data profiling exercise, consisting of exploratory data analysis 

and factor analysis, with a focus on the impact of individual factors.  This aimed to validate and 

extend prior results cited in Chapter 2.2.2.2.  It also served to verify the integrity and quality of the 

data set.  The metrics tested include: 

 Segment Length: Impact on annual failure rate (to confirm normalization per 100 km) 

 Pipe Diameter: Impact on annual failure rate per 1,000 segments and per 100 km 

 Pipe Material: Impact on annual failure rate per 1,000 segments and per 100 km 

 Utility: Explore the variability of the data by utility 

 Age: Impact on annual failure rate per 1,000 segments and per 100 km 
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Profiling by these factors ranged in complexity.  The first two factors (age and diameter) were 

simple and straightforward to profile against.   

Material was somewhat more complicated due to different languages, spellings, short forms, and 

acronyms being used to describe the same pipe material.  This was accounted for by compiling a term 

mapping table to convert all commonly used terms to the common pipe materials described in 

Chapter 2.1.1.2, along with “unknown” where a mapping could not be found.  It is also worth noting 

that the material records are tightly coupled with the age records.  The earliest date of utilities’ break 

tracking data ranged from 1959 in Toronto Water through to 2010 for Singapore PUB.  Pipe ages, 

however, ranged back much further, in some cases to the late 1800s.  Pipe material usage has changed 

over time; in the past 50 years cast iron pipe has fallen out of usage and PVC pipe has been 

introduced.  As a result, the available break history on Cast Iron pipe is all for older pipe, whereas the 

break history for PVC pipe is all for newer pipe. 

Profiling based on age was complicated by the risk of survivor bias (Wald, 1943).  Anecdotally 

from discussions with the participating utilities, segments or even entire cohorts suffering from many 

breaks within the first few decades after their installation are often replaced or rehabilitated well 

before exceeding their design life.  Conversely, segments or cohorts with few failures are often left in 

service for decades beyond their design life.  This phenomenon could create either of two effects.  

First, it could dampen the rate of increase of failures as age increases, as the worst performing pipe 

groups are removed.  This effect could conceivably even cause failure rates to decline after extensive 

replacement or rehabilitation of poorly performing pipes.  As noted under material profiling, the older 

pipe also tends to be of different materials than the newer pipe. 

Profiling based on past failures presents a data quality challenge.  The break history often does not 

extend to the beginning of the pipe lifetimes.  As a result, the actual number of prior breaks is not 

available for many of the pipes. 

3.4.3 Exploratory Modeling 

Following the data profiling exercise, conventional machine learning models were applied to the data 

to provide baseline performance metrics and to select the model type for the generalized model. 

3.4.3.1 Target Variables and Performance Metrics 

The target variables used for the baseline models were as follows: 
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 For Segment-Year tuples: Binary classification on whether any breaks occurred that year. 

 Alternate: Binary classification on whether any breaks will occur in the next five years. 

The Segment-Year tuples dataset was highly imbalanced, with non-break years accounting for 

99.1% of the data.  With such a highly imbalanced data set, using accuracy as the performance metric 

would be ineffective, as a simple “always classify as not a break” model would be 99.1% accurate.  

The alternate five-year-horizon Segment-Year dataset was also highly biased, with 96.0% of the data 

reflecting a non-break period.  To account for this class imbalance, all training samples were given 

weights inversely proportional to their “break / no-break” class frequency.  This ensured each class 

received equal weight during training. 

The most common practical use of the results of pipe failure prediction models such as these is to 

select a small subset of the pipe network as candidates for a replacement or relining program aimed at 

reducing the overall system break rate.  Performance metrics have been selected with this in mind.  

An effective classifier would be one which captures a high percentage of the breaking segments 

among a relatively small number of predicted failing segments.  Two common metrics that support 

this are the area under the curve (AUC) for the receiver operating characteristic (ROC), and the 

Cumulative Lift at a given low percentage. 

The alternative target variable of whether a break occurred in the upcoming five years was also 

tested in consideration of this likely use case.  Pipe replacement and rehabilitation programs generally 

take several years to plan and execute, so this may prove to be a more practical time horizon.  The 

same features, models, and hyperparameters were used for this test as well.  

Hyperparameter tuning was performed based on the AUC performance metric.  This ensures that 

the selected model will perform well across a range of different percentages of the pipe population 

selected for replacement or rehabilitation.  Performance of the selected models will be reported using 

Cumulative Lift at 10% of the population.  This will be expressed as the percentage of all actual 

breaks captured if 10% of the system were to be selected for replacement or rehabilitation.  This 

provides an easy and intuitive comparison metric for readers who do not have a background in 

machine learning.  
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3.4.3.2 Feature Selection and Preparation 

For the Segment-Year tuples baseline model, the features selected, and the preparation via 

standardization, which involves subtracting the mean and dividing by the standard deviation 

(Bonakdari et al., 2023), or dummy encoding for each, were as follows: 

 Diameter: Mean / Standard Deviation Rescaling 

 Material: Dummy encoding, max of 10 categories 

 Length: Mean / Standard Deviation Rescaling 

 Lining: Dummy encoding, max of five categories 

 Corrosion Protection: Dummy encoding, max of five categories 

 Joints: Dummy encoding, max of five categories 

 Main Type: Dummy encoding, max of five categories 

 Installed Year: Mean / Standard Deviation Rescaling 

 Age: Mean / Standard Deviation Rescaling 

 Rehabilitation Date: Binary variable to flag presence 

3.4.3.3 Selection of Train / Test Split 

Standard best practice for training machine learning models is to separate the available data into three 

groups: training data, validation data (for hyperparameter tuning), and test data (for final evaluation).  

This helps avoid overfitting by ensuring that hyperparameters are not tuned on the test data.  Unless 

otherwise noted, the test set was selected randomly from the training set, the top hyperparameters 

were selected using the validation set only, and performance metrics shown are on the test set by the 

model with the top hyperparameters. 

Careful consideration must be given to the choice of the training and test data.  A simple random 

assignment of Segment-Year tuples would introduce a substantial risk of information leakage from 

the future into the past.  In the most extreme example, the training data could include future records 

from the same segment in the test data.  In less extreme examples, the training data could include 

records from the same year for other pipe segments in the same cohort.  Furthermore, random 

assignment does not establish whether the model extrapolates well to new utilities.  Each utility has 
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certain unique descriptive values in the non-numerical fields, such as material and joints.  

Consequently, models have an opportunity to learn predictions specific to each utility.  This would be 

particularly true for decision-tree based models such as random forests or gradient boosted trees, 

which can explicitly segregate predictions based on any parameter.   A truly robust model should be 

able to predict failure rates for data from a new utility. 

Each of these challenges was addressed through careful selection of training and test data splits.  

The information leakage challenge was overcome by excluding the most recent two years from the 

training data and using only the most recent two years in the test data.  The generalization to new 

utilities was tested by using K-Fold Cross-Validation (Lu, 2010), applying a variant thereof wherein 

one fold is created for each utility.  For each utility, the models were trained on all other utilities’ data 

and then tested on that utility’s data.  Combining time splitting and Utility Cross-Validation 

approaches offers a stringent test of the generalization of a model.  It is trained on past data from 

other utilities and then tested on future data from the target utility. 

3.4.3.4 Models and Hyperparameters Tested 

For the Segment-Year classification model, a selection of four common model types was tested, with 

a range of hyperparameters used for each model.  All classifiers have been trained in Python, with the 

Random Forest, Logistic Regression, and Decision Tree classifiers from the Scikit Learn package, 

and a gradient boosted tree classifier from the XGBoost package.  The models and hyperparameter 

values tested were: 

 Random Forest (100 trees) 

o Maximum depth of trees: 4, 6, 8, 10, and 12 

o Minimum samples per leaf: 1, 2 

 Logistic Regression 

o L1 Regularization with C of 0.01, 0.1, 1, 10, and 100 

 Gradient Boosted Trees (XGBoost implementation; 100 trees; 10 round early stopping) 

o Maximum tree depth: 2, 3, 4, and 5 

 Decision Tree (Gini split criterion, maximum tree depth of 5) 
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Hyperparameter tuning was conducted via 5-fold cross validation on a sample drawn from the 

training set, with the test set being reserved for final evaluation of the selected hyperparameters.  

Where multiple different hyperparameters were being tested, a full grid search was conducted across 

all combinations. 

3.5 Generalized Machine Learning Model for Pipe Failure Prediction 

The general problem statement provided in Chapter 2.2.6 is to provide an estimator f(t, x) and a 

calibration factor c that allow estimation of the Probability of Failure (PoF) and Expected Number of 

Failures (ENoF) for a given pipe in a given time period t.  Specifying a time period t, as 

recommended by Robles-Velasco et al. (2023), will allow the model to provide an estimate of the 

failure rate.  This ensures that the model outputs can be used in a wide range of engineering 

applications (Scheidegger et al., 2015) and is often sufficient for making management decisions 

(Barton et al., 2022b).  The additional forecasting of the expected number of failures, as introduced 

by Aslani et al. (2021), will allow for simple aggregation to cohorts, areas, or an entire utility, 

removing the need for a separate estimate of number of failures. 

The objective of our model is to provide estimators for the Expected Number of Failures and the 

Probability of Failure in a manner that is fit to data in a training set.  This is expressed by 

supplementing the equations for ENoF and POF in Chapter 2.3.1.1 with a parameter vector θ. 

𝐸𝑁𝑜𝐹( 𝑡 ∣ 𝒙, 𝛉 ) = 𝑐 ⋅ 𝑃𝑜𝐹( 𝑡 ∣ 𝒙, 𝛉 ) 

𝑃𝑜𝐹( 𝑡 ∣ 𝒙, 𝛉 ) = 𝑓(𝑡, 𝒙, 𝛉) 

(30) 

Where: 

 θ is a vector of parameters 

 t is the first year of a five-year period 

 x is a feature vector describing a single pipe 

 ENoF(t | x, θ) is Expected Number of Failures in the five-year period beginning at t, for the 

pipe described by feature vector x, using the parameters in θ 
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 PoF(t | x, θ) is probability that a pipe described by feature vector x will experience one or 

more failures during the five-year period beginning at t, using the parameters in θ 

 c is a calibration constant to convert between probability of failure and number of failures  

 f(t, x, θ) is an estimator function 

Chapter 2.3.1.1 provides a general problem formulation for failure prediction problems, with the 

final equations also shown below.  These equations describe the method that will be used to train a 

machine learning classifier as the estimator function f(t, x, θ). 

 

𝑓(𝒙, 𝛉) = 𝑃( 𝑦 = 1 ∣∣ 𝒙, 𝛉 ) 

𝛉 = argmin
𝛉

𝑙(𝑔(𝒙 , 𝛉), 𝑦 ) 

(31) 

Where: 

 θ is a vector of parameters 

 N is the total number of samples in the training set 

 x is a vector of features, with xn describing the nth sample in the training set 

 yn is the correct label for the nth sample in the training set 

 g(x, θ) is the label assignment function as shown in Equation (24) 

 l(ŷ, y) is the loss function for predicted label ŷ and correct label y, used to fit θ to the 

training data 

Note that while the class assignment function g() is necessary for fitting θ, it is not actually 

required in the final application.  Our model outputs will be the probability estimates, enabling 

various sorting methods and decision thresholds to be used for different applications. 
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3.5.1 Model Structure 

A three-layer structure illustrated in Figure 10 is used in the model to accommodate the requirements 

to generalize across utilities and applications, as set out in Chapter 2.2.6.  The first layer is a pre-

processing layer to allow the model to use data from a variety of sources as provided by the utility, 

irrespective of units of measure, language, jargon, and record-keeping decisions regarding what 

constitutes a single pipe.  If effective, this will remove the need frequently stated in the literature for 

extensive data cleansing.  The second layer is the core machine learning model, which provides as 

outputs both the class label (failed / not failed) and the probability assignment for each class.  The 

final layer calibrates the relative probability estimates provided by the machine learning model and 

calculates the expected number of failures. 

 

 

Figure 10: Structure of generalized machine learning model for pipe failure estimation. 

Drawing concepts from the field of transfer learning, machine learning failure classification model 

is frozen upon training.  No information from the utility being tested is permitted to be used in 

training this model.  Layer 1 (Preprocessing) and Layer 3 (Calibration) are adapted on a per-utility 

basis. 

3.5.2 Model Input: Raw Utility Data 

A member of the population for this model (i.e., a single feature vector x) is a Segment-Year tuple.  

This may also be referred to informally as a Pipe-Year tuple. 
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As noted in Chapter 2.1.1.1.2, record-keeping decisions as to how pipe sticks were grouped into 

segments varied from utility to utility.  This is evidenced by the varying average length of a pipe 

segment across utilities, as shown in Chapter 4.1.1.  This variability is accepted as part of this study, 

with the definition of a segment being “whatever the utility tracks as a single record in its pipe 

database.”  Calibration for utility record-keeping practices is performed in the feature pre-processing 

described in Chapter 3.5.3. 

Segment-Year tuples were created by joining the Segment and Break tables, as described in detail 

in Chapter 3.3.3.1.  The specific training and test sets used are described in Chapter 3.6. 

The features included from each Segment-Year tuple are those that were present in at least half of 

the participating utilities: 

 Diameter: Nominal diameter of the pipe, in whatever units the utility generally uses 

 Material: Text field describing the pipe’s material of manufacture 

 Length: Recorded length of the pipe segment, in whatever units the utility generally uses 

 Lining: Text description of the internal lining applied to the pipe 

 Corrosion Protection: Text description of external corrosion protection applied to the pipe 

 Joints: Text description of the type of joints between pipe sticks 

 Main Type: Text description of the type of main (distribution, transmission, etc.) 

 Installed Year: Year of installation of the pipe 

 Age: Age of the pipe during the target year (note that this is a calculated feature, where 

Age = Year of Interest – Installed Year) 

 Previous Rehabilitation: Binary field indicating whether the pipe record showed a 

Rehabilitation Date prior to the target year 

 Breaks in [1, 3, 5] Prior Years: Numerical fields indicating the number of breaks in the 

[1, 3, and 5]-year period prior to the year of interest. 

These features have been selected to conform to the requirements set out in Chapter 2.2.6 for the 

feature vector x.  A short time horizon was selected for the prior breaks features, to reduce the 
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chances of unavailable data for new utilities, and also to mitigate the risk of left censorship of training 

data. 

The features selected will also permit running the model for a target time t that is further out into 

the future.  Most of the features selected are permanent aspects of the pipe.  Only the Age, Previous 

Rehabilitation, and Breaks in [1, 3, 5] Prior Years are time dependent.  These can all be updated 

simply if a future point in time t is to be simulated.  Age can simply be calculated using the Installed 

Year.  The value of Previous Rehabilitation can simply be drawn from the most recent value for that 

pipe.  The values of the Breaks in [1, 3, 5] Prior Years can be left as per the most recent values. 

The target variable for the machine learning model is whether any breaks occur in a Segment-Year 

tuple in the upcoming five-year period.  As discussed in Chapter 2.2.6, the five-year time horizon was 

chosen to provide the most practical application value.  This time horizon matches the typical time 

horizon used in utility Capital Improvement Planning processes.  It also mitigates the challenge of an 

unbalanced data set. 

The definition of a break varied from utility to utility among those contributing to the study.  No 

specific definition of a break was required beyond “whatever each utility considers a break.”  

Calibration for this aspect of the utility record-keeping practices is performed by Layer 3 in the 

model, as described in Chapter 5.3. 

Cohort-Year tuples were used to confirm that aggregation of the model results facilitates 

forecasting the number of failures in a cohort. 

3.5.3 Layer 1: Feature Preprocessing 

As described in Chapter 4.1.2, a major challenge with integrating data from various contributors is 

variability in the data contained in what is nominally the same field.  While not extensively reported 

on in the literature, this challenge is likely present in many other domains where data needs to be 

integrated from a variety of contributors.  This preprocessing layer aims to address this challenge in a 

manner that may be applicable to data integration across disparate sources for any machine learning 

classification problem. 

A general approach to integrating data from various sources is presented below.  It assumes only 

the data type integrity for numerical, date, and text features.  Processing steps are as follows: 
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3.5.3.1 Infer Units for Objective Numerical Features 

Objective Numerical Features represent an objective, real-world quantity, such as pipe diameter.  The 

units used will vary across data contributors and need to be inferred.  For each type of units (such as 

length), there are a finite number of different possible units used by each utility (e.g., mm, cm, inches, 

feet, meters, km, or miles for a length feature).  The most likely units for each dataset are inferred 

using aggregate statistics of that feature for that dataset.  Units were then normalized to a consistent 

standard. 

Aggregate statistics used were mean, median, and standard deviation.  These were selected as they 

are measures of the scale of the variable, which would scale linearly with the values.  This allows 

possible unit conversions to be tested directly on the aggregate values. 

For each objective numerical feature, the plausible units of measure were listed.  Conversion 

factors to a desired standard unit were prepared in a list.  All possible combinations from these unit 

conversions among the utilities contributing to the sample set were listed.  For each combination, the 

resulting converted mean, median, and standard deviation were listed for each data contributor.  The 

scaled variance (i.e., the variance divided by the mean value) across data contributors was calculated 

for each aggregation (mean, median, and standard deviation), providing measures of the similarity of 

the converted values.  The scaling of the variance was selected to avoid introducing a bias in favor of 

smaller values (e.g., the unscaled variance with all units in km would be smaller than the unscaled 

variance with all units in m for the same data).  The sum of these three measures was taken.  The 

combination with the lowest sum was selected as the correct unit conversion combination. 

For the selected combination, the mean of each aggregation across utilities was stored as a model 

parameter.  At test time, when a new data contributor was added, each metric was calculated for the 

new utility and compared to these averages.  The unit conversion which minimizes the sum of these 

differences is selected for application to that utility at test time. 

For the specific case of pipe condition assessment, the plausible units of measure were: 

 Pipe Diameter: mm, inches 

 Pipe Length: feet, meters 

A further constraint was applied that both Diameter and Length must be either metric (mm, meters, 

km) or imperial (inches, feet, miles) for each utility.  The sum of the scaled variances for the final 



 

 110 

units selection was taken jointly across the two measures.  It is noted that with a larger number of 

plausible unit pairings, the number of combinations to test would become quite large.  For example, if 

there were four plausible sets of units (two metric, two imperial) for each variable, this would leave 

eight possible unit pairings for each utility, with six participating utilities, for 8^6 (262,144) possible 

combinations to be tested.  The requirement previously mentioned that aggregations scale linearly 

with unit conversions was put in place for computational tractability, given the large number of 

combinations to test. 

To ensure generalizability forward in time, only data from the training set was permitted for use in 

inferring units for numerical features.  Since the training set data was strictly prior to the test set data 

for any given utility, this ensures that there is no information leakage from the future into the past in 

this step.  The unit conversion factors, as inferred using the training data, were then applied to both 

the training and test data for each data contributor. 

3.5.3.2 Normalize for Subjective Numerical Features   

Some numerical features involve an element of human judgement or differences in administrative 

record-keeping processes.  An example is pipe break frequencies.  There is some ambiguity as to 

what constitutes a pipe break.  For example, some utilities own the service lines connecting each 

customer to the network and would consider a leak on these a main break, whereas for other utilities 

these may be the responsibility of the customer and not recorded as a break in their database.  

Features of this type will have the per-contributor average value added to the original feature vector.  

This allows the machine learning model in Layer 2 to discover appropriate normalization 

relationships between the tendencies of data contributors, the individual variable values, and the 

target variable. 

As an additional normalization step, one further feature is introduced to the feature vector.  Based 

on the strong inverse relationship between pipe diameter and failures per unit length described 

Chapter 4.2.1, the length to diameter ratio was added as a feature.  This feature also provided an 

additional hedge against the possibility that a particular utility uses units on a different scale from 

others (e.g., using m for pipe diameter and km for length).   
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3.5.3.3 Encode Categorical Features 

The standard method of handling categorical features is to create dummy variables.  This method fails 

to extend to new datasets which contain new labels not previously seen.  This is common among 

utilities, where different languages and jargons will be in use.  For example, the terms “Grey Iron”, 

“Centrifugally Cast”, and “GG” all refer to the same physical type of pipe in our data set.  

The potential for encoding or embedding these categorical features has been noted in past literature 

reviews (Delnaz et al., 2023).  A simple approach was proposed (Robles-Velasco et al., 2020) 

whereby each categorical variable is replaced by ordinal encoding when the labels are sorted by their 

respective average failure rate per km per year.  

We introduce a more complex encoding method, called cross-encoding, with the aim of 

generalizing across data contributors.  Instead of dummy encoding, each label pairing was replaced 

with a vector representing statistics about numerical features from the training data where the entries 

had that value.  For example, the pipe_mat field may be replaced with [pipe_mat_dia_avg, 

pipe_mat_install_year_avg, pipe_mat_len_avg, pipe_mat_breaks_per_1000_seg_year_avg].  Since 

these vectors are constructed after the units inference step, the same physical pipe materials should be 

represented with similar vectors.  Continuing our example, the entries for different types of cast iron 

would likely be close to [150, 1940, 80, 50], whereas entries for concrete pipe would be closer to 

[500, 1970, 300, 5].  To allow for different practices among data contributors, aggregate values were 

calculated for each feature-contributor tuple (in this study, each feature-utility tuple). 

The output of the preprocessing layer is the feature vector which will be passed to the machine 

learning model.  Note that there is no further preprocessing of categorical or numerical variables.  No 

rescaling is needed for numerical variables, as they have already been normalized to the same units, 

and the decision-tree based models used in Layer 2 are not sensitive to feature scale.  Since all 

categorical variables have already been encoded, there is no need to create dummy variables. 

3.5.4 Layer 2: Failure Classification 

This layer employs a machine learning classifier, labelling Segment-Year tuples based on whether 

they will experience a break in the upcoming five-year period.  Any machine learning classifier can 

be used, provided that it conforms to the following requirements: 

 Able to capture non-linear relationships with and among features. 
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 Able to provide a probability estimate for the “Break” class. 

 Is relatively robust to missing (null) values in some features. 

The particular model selected for use in this study was gradient boosted trees.  This decision was 

informed by both the literature review, where several studies have indicated strong performance by 

gradient boosted trees on pipe failure assessment problems (Delnaz et al., 2023), as well as by the 

observations in the Exploratory Modeling exercise in Chapter 4.3. 

Hyperparameter selection was performed based primarily on the results obtained during the 

exploratory modeling described in Chapter 4.3.1.6.  The exception was the maximum number of trees 

and early stopping.  In the exploratory modeling, a maximum of 100 trees was used, with early 

stopping occurring if no improvement in the loss function was achieved in 10 rounds of adding a tree.  

This setting caused repeatability problems with the final model implementation described below.  As 

such, a fixed value of 40 trees was used, with early stopping disabled.  The value of 40 trees was 

selected as a typical value at which early stopping occurred during the exploratory modeling.  For 

replicability, the full setting string used to train the model is provided below. 

Xgb_params = { 
            ‘max_depth’: 4, 
            ‘learning_rate’: 0.2, 
            ‘gamma’: 0.0, 
            ‘min_child_weight’: 1.0, 
            ‘max_delta_step’: 0.0, 
            ‘subsample’: 1.0, 
            ‘colsample_bytree’: 1.0, 
            ‘colsample_bylevel’: 1.0, 
            ‘reg_alpha’: 0.0, 
            ‘reg_lambda’: 1.0, 
            ‘n_estimators’: 40, 
            ‘silent’: 0, 
            ‘nthread’: 4, 
            ‘scale_pos_weight’: 1, 
            ‘base_score’: 0.5, 
            ‘random_state’: 1337, 
            ‘missing’: None 
        } 
 
To account for the imbalance between the “Break” and “No Break” classes, samples were weighted 

with inverse proportion to the number of samples in the training set with that class. 
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Three versions of the model were trained and tested in each instance, to help with assessing of the 

effectiveness of the full model in generalizing.  The models were as follows: 

 Isolated: Six estimators were trained, one for each utility contributor using only the data 

provided by that contributor.  At test time, each utility was evaluated using the estimator 

trained with its own data.  This simulated the scenario wherein a single utility uses their 

own data in isolation to predict their own future breaks. 

 Inclusive: One estimator was trained using all the training data from all six utility 

contributors.  At test time, each utility was evaluated using the same estimator.  This 

simulates the scenario wherein multiple utilities pool their data to train a common model. 

 Leave One Group Out (LOGO): Six estimators were trained, one for each utility 

contributor using only the data provided by other contributors (i.e., excluding that utility’s 

data in the training set).  At test time, each utility was evaluated using the estimator trained 

without using its data.  This simulates the scenario wherein a pretrained model is used by a 

new utility that did not contribute data to the model. 

Each version of the training simulates a different practical situation.  The Isolated situation 

represents each utility training their own model on their own data.  The Integrated situation represents 

multiple utilities choosing to pool their data on an ongoing basis, for the sake of training a model 

which all could use.  The LOGO situation represents a group of utilities choosing to pool their data on 

a one-time basis, with the resultant model being used by other utilities. 

The LOGO model is proposed as the generalized model by this study.  The experience of the 

authors in gathering data for this study suggests that expecting utilities to pool their data on a regular 

basis is impractical.  Furthermore, few utilities have both sufficient failure records and the capacity to 

build and train their own models.  The scenario where a model is trained once and then used broadly 

is by far the most practical. 

As previously noted in Chapter 3.5.1, the class label assignments created by the machine learning 

model are dropped at this stage.  Only the probability of the “Break” class, PoF(t | x, θ) is used by the 

final layer. 
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3.5.5 Layer 3: Calibration 

The first step in calibration is to calibrate the probability estimates f(x, θ) output by the XGBoost 

binary classifier.  These probability estimates are tuned to maximize the application of correct class 

labels, rather than to provide correct probability estimates, and as a result may not be well calibrated 

to the true probabilities.  This is a common issue when classes are imbalanced (as was the case for 

these models), and can be resolved by calibrating the probability estimates (Niculescu-Mizil & 

Caruana, 2005).  The degree to which the predicted probabilities match the actual observed 

probabilities is summarized by the Calibration Loss metric (Kull & Flach, 2015). 

Isotonic Regression was used to calibrate the XGBoost output probabilities to the actual observed 

probabilities.  This is a nonparametric regression calibration, which is done by grouping the samples 

into bins of similar estimated probability and calculating a calibration factor per each bin which aligns 

the average estimated probability in the bin with the average observed probability in the bin 

(Zadrozny & Elkan, 2002). 

The final step in the calibration layer is converting the Probability of Failure (PoF) estimate to an 

Expected Number of Failures (ENoF) estimate.  This conversion accounts for the possibility that 

multiple failures may occur on the same pipe within the same time window (five years, in the case of 

this model).  A simple multiplicative linear calibration is applied on a per-utility basis.  The 

calibration was calculated using only the two most recent years of data in the training set for each 

utility.  The rationale for this was twofold.  First, it simulates a utility with only a limited break 

history using the model.  Second, it accounts for the possibility that a utility with a longer break 

history may have changed its record keeping practices from time to time, with the most recent data 

more likely to reflect their current practices. 

3.6 Evaluating the Model to Confirm Generalizability 

This section elaborates on the concepts of generalizing forward in time, and generalizing across 

different utilities, regions, and languages. 

3.6.1 Defining the Train / Test Split to Generalize Forward in Time 

The train and test data were split in a manner to ensure that the model extrapolates forward in time.  

For each utility data contributor, the most recent seven years from their data was reserved as the test 

set.  This allows for three target years, each with a full five years of recording data to ensure no right-
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truncation of the target variable.  All other data is designated for the training data set.  This ensures a 

long history is included in the training data, reducing the chances that the model will overfit on a 

short-term phenomenon. 

As with the exploratory data analysis, only a sample of the data could be used due to memory 

limitations.  A random sampling of 1,000,000 records (800,000 for training, and 200,000 for test) was 

employed.  The samples were drawn equally from the contributing utilities. 

3.6.2 Leave One Utility Out Cross-Validation to Generalize to New Utilities 

Model evaluation was performed using K-Fold Cross-Validation (Lu, 2010), applying a variant 

thereof wherein one fold is created for each utility.  For each utility, the models were trained on all 

other utilities’ data, and then tested on that utility’s data.  This approach, known as “Leave One 

Group Out” cross validation, was used by Daulat et al. (2024) as a method of testing the ability of a 

model to extrapolate to new utilities.  This approach simulates the situation where all but one of the 

utilities contributed data to train the model, which was then applied to the new utility.  This reflects 

the scenario wherein a pre-trained model being used as-is (with no retraining) by new utilities. 

Of particular interest is how this model will perform when tested on a utility that employs a 

language or units of measurement which were not previously seen in the training set.  This will 

provide the strongest confirmation of the generalization to new utilities. 

When combined with the train/test time splitting noted in Chapter 3.6.1, this provides a reasonable 

estimate of the performance of the model were it to be used by a new utility, at a future point in time, 

the problem statement described in Chapter 2.2.6. 

3.6.3 Selection of Performance Metrics to Generalize Across Applications 

This section discusses the evaluation structure used to compare performance of different models, 

including a discussion of the various performance metrics used in the literature. 

As noted in Chapter 3.5, while the class assignment function g() is necessary for fitting θ, it is not 

required in the final application.  Consequently, the choice of threshold (here 0.5) is not relevant to 

this study.  Any performance metrics which depend on the threshold (such as accuracy, sensitivity, 

specificity, etc.) were avoided.  However, performance metrics which aggregate across possible 

values of the threshold remain valuable. 
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Two primary performance metrics have been selected for this study.  The first is the Area Under 

the Curve of the Receiver Operating Characteristic.  The second is Lift at 10%.  Each has been 

selected for its alignment to the specific decisions to be addressed by this study, as described in 

Chapter 2.1.4.  

The Area Under the Curve (AUC) for the Receiver Operating Characteristic (ROC) is a widely 

used metric in machine learning for evaluating the performance of classification models. The ROC 

curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various decision 

threshold settings. The AUC represents the degree to which the model can distinguish between 

classes. An AUC of 1 indicates perfect classification, while an AUC of 0.5 suggests no discriminative 

power, equivalent to random guessing (Fawcett, 2006).  The mathematical formulation of AUC can 

be represented as the integral of the ROC curve: 

AUC = 𝑅𝑂𝐶(fpr)  𝑑fpr 

(32) 

Where: 

 fpr = False Positive Rate 

 ROC(fpr) is the value of the Receiver Operating Characteristic at a given false positive rate  

A higher AUC indicates a better model performance with a greater ability to differentiate between 

the positive and negative classes, with an AUC of 0.5 being the score of a “random guess” classifier 

and an AUC of 1.0 being the score of an oracle (a classifier which is always correct). 

A plot of the Receiver Operating Characteristic provides a good representation of the effectiveness 

of a binary classifier at various selections of the classification threshold.  In the case of pipe failure 

classification, the x-axis corresponds to the proportion of replaced pipes which would not in fact have 

incurred a break during the five-year period, whereas the y-axis corresponds to the proportion of the 

currently anticipated breaks which could be avoided in the upcoming five-year period by replacing 

those pipes.  Each potential value of the decision threshold represents a different level of investment 

in a pipe replacement program.  A lower threshold corresponds to targeting more pipes for 

replacement, and a higher threshold corresponds to targeting fewer pipes.  The ROC curve hence 

provides a visual representation of the effectiveness of a range of different levels of investment in 
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pipe replacement.  The Area Under the Curve provides an aggregate metric of this performance.  The 

downside of the AUC performance metric is that it is not intuitive and easy to explain to pipeline 

management professionals. 

Lift, also known as cumulative lift, is a machine learning metric used to assess the effectiveness of 

a predictive model, particularly in binary classification problems.  It measures the model’s ability to 

identify positive instances (e.g., a rare event) compared to random chance.  Lift at a low percentage is 

appropriate for use in imbalanced data sets because it focuses on the early detection of positive 

instances, which is often more critical in such scenarios (Lu, 2010).  The formula for calculating lift 

at a specific percentage x, is as follows: 

Lift(𝑥%) =
Percent of True Positives Cases in Top 𝑥%

Percentage of Positive Cases in data set
 

(33) 

Where: 

 Percentage of True Positives in Top x% = the proportion of actual positive instances correctly 

identified by the model among the top 10% of predictions 

 Percentage of Positive Cases in data set = the overall proportion of positive instances in the 

dataset 

Lift(x%) has a simple and intuitive conceptual explanation.  Among the x% of samples with the 

highest estimated probabilities, how many times better did the classifier do at correcting picking 

positive samples than random guessing would have?  In the context of pipe replacement, this can be 

explained as “if you select the x% highest risk pipes, this includes <Lift(x%) * x%> of the breaks.”   

Lift at 10% was chosen as an intuitive performance metric, which is well aligned to the primary 

target application of selecting pipes for replacement.  This metric provides the proportion of pipe 

failures in the upcoming five-year period which would be averted by replacing the 10% of pipes 

deemed by the model to be at highest risk of failure.  For example, if the Lift at 10% is 4.5, this 

means that replacing this 10% of the pipes in a network would avoid 45% (4.5 * 10%) of the pipe 

breaks for the ensuing five-year period.  Along with being intuitive and easy to explain, Lift at 10% 

directs the focus of the performance evaluation to the most at-risk pipes.  The practical value of 

measuring performance when selecting a small number of pipes for replacement was noted by 
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Robles-Velasco et al. (2020), who manually tuned decision thresholds to measure the percentage of 

breaks that could be avoided by selecting a small percentage of the pipes.  The Lift at 10% metric 

generalizes their approach. 

Further metrics were selected for evaluating the performance of the full model including the 

calibration layer.   

Log Loss and Calibration Loss were used to measure the effectiveness of the Isotonic Regression 

calibration step.  Log Loss is impacted by both the relative probability estimates between samples and 

the alignment of probability estimates to actual observed probabilities, whereas Calibration Loss 

measures only the alignment of probability estimates to actual observed probabilities. 

For the final calibration from Probability of Failure (PoF) to Expected Number of Failures (ENoF), 

cohorts were formed as follows.  Each utility – material – diameter grouping was considered a 

separate cohort.  Diameter groupings were based on the following bins (all sizes in mm): [0 – 99; 100 

– 199; 200 – 299; 300 – 399; 400 – 599; 600 – 899; 900+].  Any cohorts too small for meaningful 

analysis (i.e., experiencing fewer than one failure per year on average) were dropped.  Performance 

was measured by comparing the ENoF summation to the actual total number of breaks in cohort over 

the ensuing five-year period.   

As a reference point, the performance of a simple “Predict the same number of breaks as occurred 

in the previous five-year period” model (referred to as the Prior Period model) was also measured.  

The following metrics are presented: 

 Mean Absolute Error (MAE) 

 Bias 

 Mean Squared Error (MSE) 

 Root Mean Squared Error (RMS error, or RMSE) 

 Linear Regression Best Fit (coefficients closer to 1, and intercepts closer to 0, are better) 

 R2 Value for linear regression best fit line  
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3.7 Chapter Summary 

This chapter provided a detailed methodology for the research project.  It described the four principle 

steps of the project: (1) collecting data from utilities, (2) integrating it into a standard data model for 

analysis, (3) exploratory analysis and modeling, (4) creating a generalized model for pipe failure 

analysis, and (5) evaluating the performance of this model.  The three-layer structure of the 

generalized model was described in detail, with a focus on the novel methods for inferring units and 

encoding categorical features to remove the need for manual data cleansing. 

The following chapters describe the results obtained by following this methodology.  Chapter 4 

describes the results of the exploratory analysis, and Chapter 5 describes the results of the generalized 

machine learning model for pipe failure prediction. 
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Chapter 4 

Results: Exploratory Data Analysis 

Exploratory data analysis has been performed on the Segment-Year tuples generated from the six 

utilities providing fully usable data: City of Toronto, Peel Region, Hamilton, American Water, 

Waternet, and Singapore Public Utilities Board (PUB).  The factors investigated and preliminary 

results are described below. 

4.1 Dataset Profiling 

This section provides summary statistics of the dataset. 

4.1.1 Basic Descriptive Statistics 

The overall dataset consists of data from six utilities, with 153,868 breaks on 581,974 pipe segments 

spanning 31,535 km of pipe.  The break recording periods by each utility range between 13 and 56 

years.  These monitoring periods result in a total of 10,046,561 segment-year tuples, accounting for 

692,732 km-years of pipeline failure records. 

Detailed statistics from the key data tables are available in Appendix A.  

4.1.2 Exploration of Distribution of Data 

Figure 11 shows the distribution of pipe length currently in service (i.e., not abandoned) and total 

recorded breaks among different materials, with the top 20 shown for each.  Cast Iron is both the most 

used pipe material, and the largest contributor to the total break count. 
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Figure 11: Top materials by in-service length (top) and number of breaks (bottom). 

Many of the material names used by the utilities are either duplicative (such as CI and CAST 

IRON) or not standard English pipe material acronyms (such as GG).  The bulk of these names have 

been normalized to the eight common water main materials for profiling purposes.  This 

normalization was accomplished through careful manual review of the data, considering the diameter, 

installation year, and the local language and terminology.  For example, in the Netherlands, cast iron 

is commonly referred to as “grey cast iron” which translates to “gietijzer grijs” or GG for short.  

Likewise, ductile iron is referred to as “Cast Iron Ductile” which translates to “gietijzer nodulair” or 

GN for short.  These translations were confirmed via the diameters and installation dates of the pipes 

in question.  Figure 12 shows the total length of installed pipe and number of breaks after this 

material name normalization has been applied.  After normalization, Ductile Iron is now the most 

common material; however, the majority of breaks still occur on Cast Iron. 
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Figure 12: In-service length (top) and number of breaks (bottom) by normalized material type. 

One reason for the high number of breaks recorded in cast iron pipe is apparent from the 

distribution of pipe installations over time, as presented in Figure 13.  Installation years are binned 

into groups of five years.  This was to account for a suspected data quality issue, wherein the majority 

of older (pre-1960) installation data were shown in years that were exact multiples of 5 (e.g., 1955, 

1950, 1945, 1940, etc.).  Cast Iron accounts for the vast majority of the oldest pipe (pre-1960), hence 

the average age will be highest.  Furthermore, the cast iron pipe also has a longer average monitoring 

period.  This chart shows that the majority of this pre-1960 cast iron pipe was installed by the City of 

Toronto, which also has the longest running data set at 55 years.  The other five utilities average 28.4 

years of monitoring.  This means that the older cast iron pipes from the City of Toronto will have 

almost twice as many years of monitoring records as the average among all other pipes. 
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Figure 13: Pipe installation history, grouped by utility (top) and material (bottom). 

A breakdown of the number of breaks over time is presented in Figure 14.  The number of breaks is 

heavily impacted by utilities starting and stopping their break recording programs.  



 

 124 

 

Figure 14: Number of Breaks vs Time, Grouped by Utility. 

A crosstab analysis by material and utility is provided in Figure 15.  This analysis reveals 

substantial differences in the break rate (scaled to breaks per 1,000 segments per year), average 

length, and average age both across materials and utilities. 
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Figure 15: Crosstab analysis by Material and Utility, showing the average breaks per 1,000 

segments per year, age, and length for each group. 

Perhaps most interesting in this table are the differences in segment length.  These differences in 

length are explained by four primary factors.  First, urban areas tend to have shorter segments than 

rural areas.  Second, the definition of a pipe segment is somewhat flexible.  As an example, when a 

customer service line connects to a water main, some utilities may decide that this divides the main 

into two separate segments, whereas others may choose to call it a single segment.  Third, differences 

in water network construction practices can have significant impacts on the measured pipe lengths.  
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For example, water distribution mains in North America often use a standard minimum size of 4 

inches (or 100 mm) to ensure sufficient flows for fire protection, whereas in Europe it is more 

common to reduce the size in steps as the end of a branch line is reached.  Since each diameter change 

creates a separate logical segment, this practice results in more segments of shorter lengths.  Fourth, 

data collection differences can have a significant impact.  For example, in North America it is 

common for water meters to be placed relatively close to the road.  The customer is responsible for 

the portion of their service pipe on their side of the meter.  The short portion of the service pipe on the 

utility’s side of the meter is often recorded in their systems only as a service connection on the main, 

rather than as a separate pipe.  In Europe and Asia by contrast, water meters are often in the home, 

and the utility is responsible for the entire service pipe.  This would lead to a large number of short, 

small diameter pipes.  As a second example, short (less than one meter) closure pieces of different 

materials are often needed when constructing a pipeline, which can either be considered part of the 

segment they are on or as dividing it into three segments (the upstream segment, the closure piece 

itself, and the downstream segment).  The implications of these varying segments lengths are 

explored in Chapter 2.1.1.1.2.  

The variations in break rate by utility, material and other factors will be described in Chapter 4.2.  

Note that some of the following analysis requires use of the Segment-Year records described in 

Chapter 3.3.3.  While there are over 10,000,000 such rows, due to memory limitations, pre-

aggregation was performed across several dimensions of the data to facilitate this analysis. 

4.1.3 Confirming Normalization by Pipe Length 

If each stick of pipe had the same probability of breaking, then breaks per pipe segment should 

correlate linearly with segment length.  This relationship is apparent in Figure 16 for segments less 

than 500m long (to the left of the orange lines).  The chart on the left presents average break rates for 

bins of 100m.  It shows an obvious trend for lengths below 500m, with the trend breaking down as 

lengths increase.  The chart on the right shows the same data, but with smaller bins of 10 m to 

confirm the consistency of this relationship for shorter length pipe segments.  The left on the right 

also makes it clear that the trend does not hold for longer segments (to the right of the orange lines). 
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Figure 16: Average breaks per 100 segments per year, among segments of various lengths. 

The increasing complexity for longer lengths may be explained by the difference between 

distribution mains and trunk mains.  Distribution mains are the smaller diameter pipes that are 

available for customer connections.  These tend to have segment lengths no longer than the length of 

a block or the distance between fire hydrants in an urban area (typically 40m to 200m) and will have a 

consistent design during any era of pipe installation for a given utility.  Trunk mains are larger 

diameter pipes used to bring water to an area of the network.  These are often longer, and the 

selection of material, diameter, and pressure class will be specific to that particular pipe.  Figure 17 

shows how the material prevalence and average pipe diameter change with segment length. 

 

Figure 17: Pipe length (bins of 10m) vs average diameter (left) and relative prevalence of 

different pipe materials (right). 

The linear relationship between length and break rate within more homogenous populations is 

supported by more detailed analysis.  Figure 18 shows this relationship for Cast Iron pipe only, with 

both the less granular (bin size of 100m) and more granular (bin size of 10m) charts showing a strong 

linear relationship with nearly identical slope.  Similarly, the length and break rate relationship is 
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shown for Ductile Iron pipe only in Figure 19, which also shows linear relationships in each plot with 

nearly identical slopes.   

 

Figure 18: Average segment break rates for Cast Iron, with bin sizes of 100m (left) and 10m 

(right), in both cases only showing bins with at least 2,500 segment-years of data. 

 

Figure 19: Average segment break rates for Ductile Iron, with bin sizes of 100m (left) and 10m 

(right), in both cases only showing bins with at least 2,500 segment-years of data. 

The linear relationship between segment length and break rate within a homogenous group of pipe 

types is further confirmed by isolating particular material-diameter combinations.  Figure 20 shows 

the break rate per 1,000 segments per year for various groupings of diameter (bins of size 100mm) 

and length (bins if size 10m).  The diameter bins are labeled by their midpoint, with pipes of 

diameters in exact multiples of 100 assigned upwards (i.e., the 150mm bin includes pipes with 

diameters from 100mm to 199.99mm, the 250mm bin includes pipes with diameters from 200mm to 

299.99mm, etc.).  In each case, only groups with at least 1,000 segment-years included are shown in 

the charts.  The top chart including all four categories shows visually distinct trends for each of the 

four, with the clear pattern of larger diameters failing less often at a given length.  Each of the four 
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lower charts shows a clear linear relationship between segment length and the failure rate, with 

increasingly noisy results in the larger diameters and lengths likely due to smaller sample sizes. 

 

Figure 20: Average segment length vs break rate for Cast Iron (CI) pipe of four different 

diameter groupings, shown together (top chart) and individually (bottom four charts). 

Once again, the trend in Ductile Iron confirms the finding within Cast Iron, as shown in Figure 21.  

The four trends in the top chart are less visually distinct; however, once again, the charts of individual 

material-diameter combinations show clear linear relationships, again increasingly noisy for larger 

diameters and longer lengths. 
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Figure 21: Average segment length vs break rate for Ductile Iron (DI) pipe of four different 

diameter groupings, shown together (top chart) and individually (bottom four charts). 

The linear relationship between length and break rate per 1,000 segments per year for a 

homogenous group of pipes thus supports the intuitive hypothesis that break rates can reasonably be 

normalized by segment length.  This is highly convenient when considering groupings or cohorts of 

pipes, where normalizing the break rate per 100 km per year has become common in the literature.  In 

keeping with this common standard, the predictive feature analysis performed in Chapter 4.2 has used 

break rates per 100 km per year. 

4.2 Individual Predictive Feature Analysis 

This section provides a brief view of individual predictive factors.  The data broadly conforms to the 

prior literature, with a few surprises and novel observations.  The predictive feature analysis was 

conducted towards the goal of effective feature engineering for the predictive models.  While certain 
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observed relationships may warrant a more formal statistical and causal analysis, this would be 

outside the scope of this thesis and is left as an area for future research.  

4.2.1 Pipe Diameter 

Figure 22 shows the expected relationship between diameter and break rate using both breaks per 

1,000 segment-years and breaks per 100 km-years.  When the break rate is plotted on the basis of km-

years, the relationship appears visually similar to an inverse relationship. 

 

Figure 22: Break rates per 1,000 segment-years (left) and per 100 km-years (right), grouped by 

diameter with bin sizes of 100mm.     

It is immediately apparent that diameter is an extremely strong predictor of failure rate, with 

smaller diameters being more likely to fail.  In the per 1,000 segment-years plot, the dip in the 

smallest diameter category (<100mm) is likely due to a large number of fittings (valves, etc.) and 

service connections of extremely short length, which appear only in these very small diameters.  This 

relationship is confirmed by the per 100 km-years plot, where the same diameter category (<100mm) 

has the highest failure rate.  The average failure rate of small diameter pipe (<100mm, covering 1.02 

million km-years of data) is 116.5 breaks / 100 km / yr, whereas the failure for large diameter pipe 

(>=900mm) are 0.74 breaks / 100 km / yr or lower in each of the 16 size bins (covering 1.95 million 

km-years of data in total among the 16 bins).  This ratio of over 100:1 in the break rate offers a 

powerful predictive tool.  As shown in Figure 23, the trend holds with a finer-grained grouping into 

diameter bins of 25mm (left) as well as when the analysis is extended out to very large diameters 

(right). 
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Figure 23: Break rates per 100 km-years, with a finer-grained presentation at smaller 

diameters (left) grouped by diameter with bin sizes of 25mm, as well as an extension up to large 

diameters (right) grouped by diameter with bin sizes of 100mm. 

The data is increasingly noisy with the 25mm bin sizes, which is a consequence of different pipe 

diameter standards being used in different jurisdictions.  While all utilities use relatively similar pipe 

diameters, there are minor variations.  In a coarse binning scheme with bins of 100mm, regardless of 

these variations, each utility will have at least one standard diameter falling into each bin.  However, 

in the fine-grained binning scheme with bins of 25mm, several bins contain data from just a single 

utility.  In such instances, a particular data quality issue present in a single utility will not be averaged 

out by other utilities.  In these cases, a single data quality issue can lead to an outlier in the data.  An 

example is the outlier in Figure 23 in the diameter bin of 875mm to 900mm, with average diameter of 

896mm, as highlighted with the orange arrow.  This bin shows a break rate of 11.1 breaks / 100km / 

year and contains a total of 31 breaks.  Of these, 29 are attributed to a single pipe segment 17.16m in 

length.  It seems implausible for such a short segment to have suffered so many breaks, and 

investigation confirmed this to be a data quality issue.  The address records for these breaks are all 

along the same street, with street numbers ranging from 1132 through 4831.  However, manual 

investigation of these addresses via Google Maps shows that no addresses numbered above 1100 on 

this street are found.  They instead return a location at the midpoint along this street.  That point is 

located along this short length of pipe.  With these 29 erroneous leaks removed, the break rate for this 

entire bin declines to 0.7 breaks / 100km / year, which is well aligned with the neighboring points and 

overall trend.  This single example serves to illustrate the point that some degree of noise is expected 

in these relationships, due to the unavoidable data quality issues present in such a large manually 

compiled dataset.   
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The trend is clearly present in five of the seven common pipe materials: Cast Iron, Ductile Iron, 

HDPE, PVC, and Asbestos Cement.  As seen in Figure 24, all the diameter lines are substantially 

higher in the small diameters than the large diameters.  Small diameter steel is the exception, with a 

low break rate among very small diameter pipes.  Concrete is omitted from the analysis, as small 

diameter concrete pipe is not often used for water mains, and none of the utilities in this study 

reported small diameter concrete pipe in use. 

 

Figure 24: Break rate per 100 km per year, grouped by diameter with bin sizes of 100mm, for 

various materials. 

Deeper investigation into this relationship for steel pipes shows that the trend is generally present, 

as shown in Figure 25, except for two clear outliers.  There is a lower-than-expected break rate among 

very small diameter (<100mm) steel mains.  This data point contains a relatively small amount of 

data (4.6 km of pipe), the majority of which (3.8 km) comes from one utility (American Water).  

Manual analysis suggests this outlier represents a data completeness issue.  The American Water 

breaks data included a record of the diameter and material measured when the break was repaired.  A 

query was applied for pipes with a measured diameter of 100mm or less, where the measured material 

did not match the material for the pipe to which the break was associated.  This revealed 17 instances 

of a pipe which was measured as steel, but the pipe record indicated another material, all of which 

were short customer service lines.  There were only two instances of the pipe record showing steel 

and the measurement at the site of the break showing steel.  Reversing these misallocations would add 

another 15 breaks to the three currently tracked in this bin.  That would raise the break rate from 7.3 

to 43.8, putting it well in line with the trend.  A hint as to the reason for this asymmetry of errors 
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comes from examining the pipe installation and break dates.  For the majority of these 17 instances, 

the break occurred before the installation date listed for the pipe.  This suggests that the failure 

occurred on an older steel main, which was subsequently replaced by a new pipe of a different 

material (generally PVC).  This asymmetric replacement pattern would result in exactly the 

asymmetric material errors found in the data.  The second outlier showing an unexpectedly high break 

rate is for the 600mm to 699mm diameter bin.  Of the 55 breaks in this bin, at least 23 are due to data 

quality issues.  These 23 leaks are registered to a single line just 25 meters in length.  The recorded 

addresses all failed to include a house number, so were geocoded to the beginning of the street, where 

this pipe happened to be.  All but three of the breaks in this bin came from the same utility.  Manual 

inspection of the break records from an additional three pipes accounting for a further 16 breaks 

showed seven more with blank house numbers and eight with addresses registered to houseboats with 

comments suggesting that the issue was in fact with a customer service connection rather than the 

adjacent large diameter steel watermain.  Accounting for these data quality issues, the steel pipe 

category would join the remaining five materials analyzed as having a clear trend whereby the break 

rate decreases as diameter increases. 

 

Figure 25: Break rate per 100 km per year, grouped by diameter with bin sizes of 100mm, for 

steel. 

Despite the noise introduced by data quality issues, the relationship of the break rate increasing as 

pipe diameter decreases remains strong, and visually approximates an inverse relationship.  This 

apparent inverse relationship between diameter and break rate was confirmed by inverting each of the 
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x and y axis variables.  As shown in Figure 26, the resulting relationship appears linear, regardless of 

whether the inverse of average diameter is used for the x-axis, or the inverse of the break rate is used 

for the y-axis.  

  

Figure 26: Break rate vs diameter, with inverse variables for the y-axis (left) and x-axis (right), 

confirms the inverse linear relationship between diameter and break rate. 

The linear relationship holds true when tested for individual pipe materials, as shown in Figure 27.  

With the increasingly fine-grained analysis, some of the categories contained relatively small 

numbers of breaks and km-years of pipe history.  Thresholds of five breaks and 10 km of pipe were 

established to limit this effect; nevertheless, the data is notably noisier.   
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Figure 27: Inverse of break rate per 100 km per year, grouped by diameter with bin size of 100 

mm, for each of the seven materials with multiple bins containing at least five breaks and 10 km 

of pipe. 

Once again, some of the noise in these relationships has been confirmed as due to data quality 

issues.  An example of this comes from the Concrete mains of 800mm diameter.  This is an outlier 

from the trend line, with an inverse break rate much lower than the trend (i.e., break rate much higher 

than the trend).  This group contains a total of 41 break records.  However, all these breaks come 

from the same utility, and at least 34 of the 41 breaks have been confirmed to be data quality issues 

from the geospatial mapping step.  These 34 breaks were tracked to two pipe segments, one of which 

had a length of 65m and eight breaks, and the other a length of 436 m with 26 breaks.  For the pipe 

with eight breaks, examination of the comments showed that all were on customer connections 

attached to a smaller 42mm diameter copper distribution main running underneath the street.  The 

800mm concrete main was in a right of way through the front yards of the houses.  The breaks were 
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geospatially mapped to the closest main but were in fact on a different one.  This illustrates a potential 

for improving the geospatial mapping step, with such work being outside the scope of this study.  The 

26 breaks were all due to an error in the geocoding service used.  These breaks were all recorded at 

addresses of houseboats in Amsterdam.  The geocoding service used is not able to place houseboat 

locations, so instead mapped all 26 to the lowest house number on their street.  This incorrect 

geocoding resulted in them being matched by proximity to the wrong pipe.  Removing these errors 

would change its inverse break rate to 0.7, placing this data point much closer to the trend line. 

While these data quality issues represent a tiny percentage of the overall dataset, due to the small 

lengths of pipe and numbers of breaks in certain material-diameter bins, they can introduce significant 

noise to individual data points in this fine-grained analysis.  This sort of noise is expected for the 

machine learning modeling that is the primary focus of this study, which should perform well despite 

noisy data.  It is called out in this section to note the trend that wherever an outlier point from the 

trend was investigated, a data quality issue was discovered, whereas no data quality issues could be 

identified in a selection of data points investigated along the trend line.  

4.2.2 Pipe Material 

Break rates by material, as shown in Figure 28, were largely as expected from the literature review.  

The least break-prone materials by all three normalization methods are steel and concrete.  Cast Iron 

and HDPE are among the most break prone, regardless of normalization method.  Copper is used 

exclusively in small diameter, short length service connections, so shows a very high break rate per 

100km, but performs nearly identically to PVC (a newer material used in a similar manner) when 

normalized for diameter. 
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Figure 28: Break rates by material length and break counts, respectively. 

It is worth noting the apparent effectiveness of the pipe diameter normalization introduced in 

Chapter 4.2.1.  The relative difference between material performance becomes much smaller under 

this normalization scheme.  In particular, the advantage of steel and concrete over other materials 

becomes much less significant once this diameter normalization is applied. 

4.2.3 Utility 

It was anticipated that there would be significant variations in the break rate from one utility to 

another.  There are three significant reasons why this variation was expected. 

First is administrative differences in the recordkeeping from one utility to the next.  The rigor and 

consistency of recording pipe breaks may vary from one utility to the next, as well as within one 

utility over the years or decades of the data provided by that utility.  There is also no universal 

consensus as to what does and does not constitute a pipe break.  A significant rupture of the pipe body 

itself, such as a longitudinal split (also called a burst), a circumferential split (also called a “broken 

back”), or a corrosion blowout, can be expected to qualify for any utility.  On the other hand, a small 

leak, proactively detected and repaired, may or may not be tracked as a break depending on the 
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utility’s practices.  This is even more true if the leak occurs on an appurtenance, such as a valve, fire 

hydrant, or meter connected to the pipe, rather than on the pipe itself.  Customer service connections 

offer perhaps the most substantial opportunity for administrative differences.  These are the short 

(typically under 3m to 10m) lines leading from the water main to the individual property, with a water 

meter set in between.  Typically, the utility is responsible for the connection from the main up to the 

water meter, and the customer is responsible for the connection from the water meter to the home.  

These connections may be tracked by a utility as separate pipes or may be tracked simply as customer 

connection points along the main pipe.  Breaks on these service connections are quite common and 

may be recorded to those small pipes themselves, to the main pipe that they attach to, or not recorded 

at all. 

Second is differences in the pipe population.  The age, diameter, and material of pipes may vary 

substantially from one utility to another.  These differences should not impact the analysis by other 

parameters (such as diameter, material, and age), nor the performance of a machine learning model. 

Third is the impact of the local environment.  This includes the soil environment (corrosivity, and 

stability), the water inside the mains (water hardness and presence of pressure transients), the climate 

and weather, and finally the commercial environment (pipe manufacture and installation practices). 

While the data presented cannot distinguish between these causes, there are clearly differences 

between the participating utilities.  Figure 29 shows the break rates by utility and material.  One 

utility (Waternet) clearly stands out with the highest break rate in all materials except for PVC, in 

some cases more than three times as high as the next highest utility.  The same trend holds in Figure 

30, which provides a breakdown by diameter bin and utility, where Waternet has the highest break 

rate in every diameter bin except one.  As Waternet enjoys moderate climates, stable soils, non-

corrosive water, and world-class engineering and construction standards, these differences can be 

explained only by differences in administrative processes.  This observation is backed up by manual 

inspection of the break records.  Upon translation from Dutch, these reveal repairs to valves and water 

meters, reports of leaks inside customer properties, and a wide range of other issues which most 

utilities would not track as a leak, break, or defect.   
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Figure 29: Break rates per 100 km per year, grouped by utility and material. 

 

Figure 30: Break rates per 100 km per year, grouped by utility and diameter. 

The remaining utilities show comparable break rates when broken down by material and diameter.  

There is no clear standout, with each utility showing low break rates in certain materials and 

diameters, and higher break rates in others.  This result is as expected, as all the participating utilities 

are known as global leaders in practices and technology for managing their water networks.  One 

example is Singapore PUB, which shows the lowest break rate per segment, and below average per-

km break rates in every diameter category.  Singapore exists in a warm climate, and high 

temperatures are well known to increase the pace of corrosion, which is a temperature-dependent 

electrochemical process.  It also sits within the “ring of fire” region prone to earthquakes and earth 

movement.  Singapore PUB is world renowned for the level of investment and care it takes of its 

water network, preferring quality over low cost for its pipe materials and implementing one of the 

most rigorous leak detection programs in the world.  These commercial factors likely counterbalance 

the challenging environmental factors faced by this utility.  This variety of performance across 
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diameters and materials does, however, suggest that a wide range of administrative practices are 

employed for tracking breaks and leaks. 

There is no objectively right or wrong way to perform these administrative processes.  As such, this 

variation across utilities is a positive outcome for this study.  It means that the dataset represents a 

diverse range of practices from around the world, and that a model which performs effectively across 

all these utilities is likely to extrapolate well to new utilities. 

4.2.4 Pipe Age 

Perhaps most interesting is the relationship between break rate and age.  The intuition that older pipes 

should fail more often is so powerful that the actual relationship has scarcely been studied.  The data 

provided for this study, however, shows that the relationship is far more complex and nuanced than 

expected. 

Prior to an effective analysis of the impact of pipe age, data cleansing activities were needed.  The 

records provided contain numerous instances of pipe installation occurring prior to the advent of the 

pipe material in question.  Filtering of records was performed per the following estimated earliest 

dates of manufacture for certain relatively new pipe materials: 

 Ductile Iron: 1948 (Gray et al., 2009) 

 Asbestos Cement: 1929 (Hu et al., 2008) 

 PVC in Europe: 1934 (Hülsmann & Nowack, 2004) 

 PVC in North America: 1950 (Walker, 2011) 

 Concrete: 1910 (Erdogmus et al., 2010) 

Immediately apparent upon review of Figure 31 is a replication of the results found in (Sundahl, 

1996) in their study of cast iron pipes: there is a direct relationship between age and failure rate for 

the first 30 to 40 years of pipe life, after which the relationship with age changes.  This remains true 

whether the break rate is unnormalized (breaks per 1,000 pipe segments), or normalized by distance 

(per 100 km), or by distance and pipe diameter (per million pipe diameters of pipe length). 
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Figure 31: Break rates by age for various normalization methods; all charts except the lower-

right were filtered with a minimum threshold of 50km of pipe. 

Two additional features of the age / break rate curve are also visually apparent.  First, close 

inspection of the first 10 years reveal the expected bathtub curve pattern (Singh & Adachi, 2013).  

Break rates begin moderately high, decline for the first two to three years, and then begin to climb.  

Beyond 40 years, however, an unexpected result appears.  Rather than continuing to climb, the break 

rates peak at around 40 to 45 years, and then begin to decline.  The decline is quite pronounced in 

both of the normalized views and continues until around the 100-year mark, at which point the rate 

begins another climb.  The data beyond the 100-year mark is sparse, hence the relationship between 

age and break rate from 100 to 140 years is quite noisy.  A minimum threshold of 50km of pipe was 

applied to each 1-year bin of pipe age to all charts except the bottom-right one.  This chart shows 

another sharp decline in the break rate after 140 years; however, the abruptness of the drop-off and 

the small sample sizes at the ages make this additional decline quite suspect. 

This peak-and-trough pattern was first noted during a preliminary investigation of data from 

Toronto Water (the first utility to provide data).  Figure 32 shows a breakdown of data from this 

utility only, presenting both the break rates for each of the top materials by year and by pipe age.  The 
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data is quite noisy; however, after applying Hamming smoothing (11 point window for year, 31 point 

for age), consistent patterns begin to emerge.  In the lower right chart of Figure 32, each pipe material 

shows an initial wave of failures, with the peak falling at between 10 and 50 years of age, as 

illustrated by the star symbol on the chart.  The failure rate then declines for a period of time and then 

rises again later on.  This may be evidence of the bathtub curve concept in action, but with the “wear-

in” period taking decades rather than the generally assumed few years.  The exception is Ductile Iron 

pipe, which shows multiple waves.  This may be due to changes in the manufacturing standards, as 

early Ductile Iron pipes lacked adequate corrosion protection.  This may also be an artifact of data 

quality issues, as the third and fourth waves of Ductile Iron failures correspond to installation dates 

prior to the invention of Ductile Iron. 

 

     

Figure 32: Break rates for Toronto Water data only, by year and age, raw (above) and 

smoothed (below) with 11 and 31 point Hamming windows for Year and Age respectively. 

Extending the analysis to the full data set from all utilities shows that the pattern above continues to 

hold.  To accommodate different scales for the y-axis, materials with moderate to high break rates are 
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shown in Figure 33, and for low break rates in Figure 34.  These charts have the pipes grouped into 

age bins of 10 years to provide smoothing and have a minimum threshold of 10 km-years (1 km per 

year of bin size) applied to filter out bins with small sample sizes.  Each material follows the general 

pattern of starting low, rising to a peak, and then falling again.  Some materials (such as Copper most 

clearly) show an additional subsequent rise, and some show another fall after that rise. 

 

Figure 33: Break rates per 100 km per year, grouped by age with bin sizes of 10 years, for 

materials with moderate to high break rates. 

 

Figure 34: Break rates per 100 km per year, grouped by age with bin sizes of 10 years, for 

materials with low break rates. 
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Individual charts for each material are shown in Figure 35.  These present highly granular data, 

with one point on the chart per year of age, using a minimum threshold of 1km of pipe to include an 

age bin in the chart.  For most materials (Cast Iron, Copper, HDPE, Asbestos Cement, and Concrete), 

the initial rise and fall remains very clear.  The pattern is also present for ductile iron, but the peak is 

low and broad, and the fall is less pronounced.  For Steel and PVC, the rise is clear; however, it is 

unclear whether the subsequent fall is genuine or an artifact of sparse data in the high-age range for 

those materials. 

 

Figure 35: Break rates per 100 km per year, by age, for each material type. 

The best fit linear regression lines provided with each chart in Figure 35 illustrate the complexity of 

the age relationship.  For some materials (such as PVC), the line shows a reasonable fit with a slope 

in the expected direction of increasing break rates with age.  For others (such as Cast Iron), the fit 

appears somewhat reasonable but the slope is in the opposite direction, with failure rates decreasing 

with age.  For others, such as Copper, the regression line appears to offer no predictive value.  While 
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age does appear to be a predictor of failure rate within a given material type, the relationship is 

certainly not linear or even monotonic. 

Proceeding to an even finer grained division of the records, Figure 36 and Figure 37 show the age – 

break rate relationship for each material-utility pairing.  The number of records per year becomes 

quite small at this level of division, creating highly noisy charts.  Binning is applied into bins of five 

years (for Cast Iron, Ductile Iron, and Asbestos Cement) or 10 years (all other materials) to make the 

charts more readable.  In Figure 37 the charts for Copper and HDPE are presented both with and 

without Waternet, which exhibits break rates for these materials on a wholly different scale from the 

other utilities.  This difference is likely due to data recording practices, as manual inspection of the 

break notes suggests that Waternet alone includes breaks on the service connections themselves 

(including the meters) in their records.  Since copper and HDPE are used almost exclusively for these 

service connections, this would explain the difference.   

 

Figure 36: Break rates by age per utility, grouped into bins of 5 years (top) or 10 years 

(bottom). 
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Figure 37: Break rates by age per utility, grouped into bins of 10 years, both with (left) and 

excluding (right) Waternet, whose break rate for these materials is out of scale with other 

utilities. 

One plausible objection to this trend relates to the relationship between pipe age and the installation 

dates.  Certain utility data contributions span relatively short durations of 10 to 20 years.  For such 

groups, the pipes in certain age bins would have had different manufacturing and installation 

processes.  Take as a hypothetical example a utility which shared data from 2010 to 2019 only.  Pipes 

installed in the year 1970 would appear only in the 60 to 69 years age bin.  The 60 to 69 years age bin 

would only include any entries from pipes installed between 1961 and 1979.  The 40 to 49 years age 

bin would include only pipes installed between 1981 and 1999, which may have followed different 

manufacturing and/or installation standards.  To address this objection, further analysis is provided in 

Figure 38.  This shows data exclusively from long-running data contributions (from Toronto Water 

and the Region of Peel), where entire pipe cohorts can be tracked through multiple decades of age.  

The peak-valley trend remains clear: if anything, it is more pronounced within these more 

homogeneous grouping of pipe. 
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Figure 38: Break rates by year, for various cohorts of pipe in long-running data sets. 

These various presentations of the data show a wide range of scales (horizontally and vertically) 

and clarity of the peak-valley pattern.  The pattern is present consistently enough to give confidence 

that it is not simply an artifact arising out of random variation in a small sample size.  While running 

against the grain of intuition, the peak–valley patterns appear to a degree of consistency that suggests 

a genuine physical phenomenon is driving it. 

4.3 Exploratory Modeling 

This section describes the results of the exploratory modeling methodology described in Chapter 

3.4.3. 

The data set was highly imbalanced, with 0.9% of the Pipe-Year samples exhibiting breaks.  This 

imbalance means that simple accuracy would be a poor metric for model performance.  To illustrate 

this point, a classifier that simply said “pipes never break” would be 99.1% accurate.  Models were 

trained using an inverse class frequency weighting on Break samples.   
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4.3.1.1 Exploratory Model 1: Random Sample Selection for Train / Test Split 

The first set of models used a random selection for the train / test split.  While relatively common in 

the literature reviewed in Chapter 2.3.2, this method allows test samples to be more recent than the 

training samples, introducing a risk of information leakage from the future to the past.  To ensure 

equal impact of the various utility data sets, the training and test samples were all drawn from the 

period of 2010 through 2014 when all the data sets overlap.  A random sampling of approximately 

one million samples was used, drawn equally from the six datasets.  The chart of performance vs time 

for all the trained models is shown in Figure 39.   

 

Figure 39: Training performance for baseline models with random train / test assignment. 

The top model based on the AUC metric was the Gradient Boosted Tree with Max Depth 5.  This 

agrees with the observation of Snider & McBean (2020b) that boosted decision tree classifiers are 

well suited to this problem.  It achieved an AUC of 0.904, and a Lift at 10% of 6.45.  This Lift metric 

means that by selecting 10% of the population of pipes for replacement using this model, they could 

capture 64.5% of the next year’s breaks.   

A comparison of the models’ performance across the various dataset subpopulations is provided in 

Figure 40, with the decision threshold tuned to select 10% of the Segment-Year tuples as having 

breaks (as per our selected Lift threshold).  This shows relatively consistent performance across the 

six datasets whether measured by AUC or Lift at 10%.   
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Figure 40: Performance metrics across all utility data sets for gradient boosted tree, the top 

performing baseline model with random sampling for train and test sets. 

4.3.1.2 Exploratory Model 2: Time Dependent Selection of Train / Test Split 

The next set of models required that the test set fall strictly after the training set.  A similar 

sampling approach was used for Exploratory Model 1, with the exception that the Train data was 

drawn exclusively from 2010 to 2012, and the test data was drawn exclusively from 2013 to 2014.  

This ensures that the Test data falls strictly after the Train data, preventing the possibility of 

information leakage from the future to the past. 

As with the random assignment, the top performing model by AUC was the gradient boosted tree, 

as shown in Figure 41.  The AUC performance of 0.892 was slightly worse than the 0.904 achieved 

by the same model when the times of the training and test set were intermingled.  This was also true 

of each other model tested (Random Forest, Decision Tree, and Logistic Regression).  This consistent 

effect suggests that there is indeed a small effect of information leakage from the future into the past 

for pipe failure prediction when the training and test sets are drawn from the same time period.  

Future research into pipeline failure forecasting would be advised to consider this, and to follow a 

practice of time-based separation of the training and test sets. 
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Figure 41: Training performance for baseline models with the test set falling strictly later than 

the training set. 

The top performing model was once again the gradient boosted tree, this time with Max Depth of 4.  

The AUC and Lift at 10% metrics for this model are shown in Figure 42.  As was seen in the AUC 

scores across the different models, the overall AUC and Lift performance are slightly worse than the 

top performing model when no time separation was enforced between the train and test sets (shown in 

Figure 40).  Enforcing the time separation degraded performance as measured by AUC on each 

dataset, and degraded the performance as measured by Lift at 10% for five of the six datasets [peel, 

sin, ham, tor, wnet].  This offers further validation for the observation of a minor information leakage 

effect. 

 

Figure 42: Performance metrics across all utility data sets for gradient boosted tree, the top 

performing baseline model with the test set falling strictly later than the training set. 
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The overall performance of this model is encouraging from a practical standpoint.  An average Lift 

at 10% of 6.27 means that if a utility selected 10% of their pipes for replacement or rehabilitation 

using this algorithm, they could avoid 62.7% of the next year’s breaks. 

4.3.1.3 Exploratory Model 3: Utility Dependent Selection of Train & Test Sets 

Along with extending to future times, a fully generalizable model should also extend to new 

utilities that did not constitute part of the training data.  The third set of baseline models also enforce 

this requirement in the train / test split of data. 

A cross-validation approach was used to achieve this requirement.  For each of the six utilities, a 

training set of roughly 800,000 samples was drawn from the 2010 to 2012 data from the other five, as 

equally as possible from the utilities.  A test set of up to 200,000 samples was drawn from the 2013 

and 2014 data for the remaining target utility.  The time periods were kept consistent with the other 

exploratory models to ensure good comparability.  Most data sets did not have 200,000 Segment-Year 

tuples available in the 2013 and 2014 data, in which case a smaller test set was used. 

Table 13: Performance metrics for leave-one-utility-out cross validation of baseline models. 

Dataset Test Samples Top Model ROC AUC Lift 
Tor 91,406 Random Forest 0.770 3.32 
Peel 100,931 Boosted Trees 0.871 5.88 
Sin 200,161 Random Forest 0.809 4.06 
Wnet 199,650 Boosted Trees 0.792 4.00 
Ham 68,730 Random Forest 0.834 4.36 
Aw 133,098 Logistic Regression 0.785 3.65 
Average 132,329  0.810 4.21 

 

The average performance across the datasets was an AUC of 0.810 and a Lift at 10% of 4.21.  This 

performance is a substantial decline from the AUC of 0.89 and Lift of 6.27 achieved when the train 

and test data were both drawn from all the utilities.  Performance as measured by both AUC and Lift 

declined for each data set.  This suggests that each dataset includes unique information not captured 

by the others. 

The average performance of these models offers a reasonable estimate of the expected performance 

of Exploratory Model 2 were it to be applied to future data from a new utility.  This is a likely means 



 

 153 

of application of such an algorithm in practice, particularly among utilities that do not make a practice 

of tracking pipe failure history in a structured manner. 

4.3.1.4 Exploratory Model 4: Train and Test on Individual Utilities 

The last set of baseline models is intended to represent a single utility acting on their own, training 

and testing on their own data alone.  This approach is only available to utilities with a relatively large 

number of segments, as well as a history of tracking pipe failures and allocating them to pipe 

segments.  These conditions are true for all of the utilities participating in this study but are relatively 

uncommon among the over 30,000 water utilities operating worldwide. 

To facilitate comparison with the previous baseline models, the training and test sets are drawn 

from the same portions of the data.  Training data is drawn from the years 2010 through 2012, and 

test data from 2013 to 2014.  For each of the six utility-specific training and test sets, the maximum 

dataset size was set to 1/6th the size used for all of the utilities.  This made the number of samples 

used in these utility-specific tests approximately the same as the number of samples from each utility 

in the multi-utility tests.  For utilities which did not track pipe rehabilitation (aw and peel), this 

feature was removed. 

Table 14: Performance metrics for individual utility baseline models. 

Dataset Test Samples Top Model ROC AUC Lift 
Tor 33,306 Boosted Trees 0.831 4.34 
Peel 33,044 Boosted Trees 0.909 7.43 
Sin 33,342 Random Forest 0.861 6.04 
Wnet 33,126 Boosted Trees 0.882 5.33 
Ham 33,221 Boosted Trees 0.855 5.09 
Aw 33,176 Boosted Trees 0.835 4.32 
Average 33,203  0.862 5.43 

For all utilities, the individual utility performance was superior to the utility split performance.  

This result supports the conclusion of Snider & McBean, (2020b) that for utilities with over 10,000 

segment-years available, training on that utility’s data outperformed a simple rule-based classifier. 

This finding suggests that even manual data cleansing is insufficient for full generalization.  The 

result may simply be a matter of too few contributing utilities, or there could be important factors 

which could differentiate between utilities but are not captured in the data set.  Potential factors can 

be divided into three categories: 
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 Physical factors which can be represented by measurements from public data sources 

o Temperatures (avg, max, min, range, etc.) 

o Precipitation 

o Typical soil types (sandy, clay, rocky, etc.) 

o Typical surface water acidity (also known as water hardness or PH) 

o Urban vs rural environment 

 Physical factors which could be manually obtained from a utility 

o Typical depth of soil cover over pipelines 

o Frequency of proactive leak detection activities 

 Information gathering differences among the utilities 

o Whether proactively detected leaks are included in the data set 

o Terminology differences preventing generalization of key fields (material, joints, 

etc.) 

o Data quality issues that are utility-specific but consistent within that utility 

4.3.1.5 Exploratory Model 5: Five-year Future Failure Window Target Variable 

An alternative target variable was also tested.  Pipeline replacement and rehabilitation programs 

typically take several years to plan and complete.  A five-year time horizon for future breaks was also 

considered.  The methodology was adapted from Exploratory Model 2, with two modifications.  First, 

the target variable was changed to whether a failure will occur on that pipe segment within a five-year 

window (the current year plus four years into the future).  Second, the time window for selecting test 

and training samples was adjusted for one utility (Toronto Water) to ensure that a full five years of 

future data was available for calculating the target variable.  This data set ends in 2014, so the test set 

was drawn from the latest two years for which a full five-year window can be calculated (2009 and 

2010), and the training set from the three years prior to that (2006 to 2008). 

The gradient boosted tree was once again the top performing model, this time with a maximum 

depth of 5.  The dataset was somewhat more balanced than in other models, with 4% of the samples 
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including a break.  The model performance as measured by AUC and Lift at 10% is not substantially 

different from Exploratory Model 2.   

 

Figure 43: Performance metrics for five-year future failure prediction across all utility data sets 

for gradient boosted tree, the top performing baseline model with the test set falling strictly 

later than the training set. 

4.3.1.6 Summary of Exploratory Segment-Year Model Performance 

Baseline performance was measured for the six datasets using several different rules for selecting the 

training and test sets.  These results, presented in Table 15, each represent different potential usage 

scenarios for the models. 

Table 15: Summary of exploratory modeling results 

 1: Fully 
Random 

2: Time Split 3: Utility Split 4: Individual 
Utility 

5: Break in 5 Yrs 

Dataset AUC Lift AUC Lift AUC Lift AUC Lift AUC Lift 
Tor 0.84 4.49 0.83 4.25 0.77 3.32 0.83 4.34 0.85 4.11 
Peel 0.94 7.94 0.90 7.26 0.87 5.88 0.91 7.43 0.92 7.08 
Sin 0.87 5.97 0.85 5.31 0.81 4.06 0.86 6.04 0.87 5.73 
Wnet 0.88 5.20 0.87 4.96 0.79 4.00 0.88 5.33 0.89 4.80 
Ham 0.88 5.95 0.86 5.43 0.83 4.36 0.86 5.09 0.89 5.69 
Aw 0.85 4.09 0.81 4.12 0.79 3.65 0.84 4.32 0.86 4.80 
Average 0.876 5.61 0.85 5.22 0.810 4.21 0.862 5.43 0.88 5.37 
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The best average performance was achieved by the classifier that permits the train and test set time 

periods to overlap.  Among the remaining train/test split rule sets which prevent this, the top 

performance was achieved by training separate classifiers on each utility individually.  The worst 

performance achieved was for training a classifier on data from all but one utility, and then testing it 

on data from that utility. 

The Random Assignment baseline introduces information leakage from the future into the past.  It 

is provided only for the purpose of comparison to other studies that may overlook this issue. 

The two baselines which most realistically simulate real world use are the Individual Utility and 

Utility Split rules, both with time separation of the train / test sets.  The Individual Utility rule 

represents an individual utility with their own large dataset training a model on their own data and 

then applying it to their own future predictions.  This will be the basis for the Isolated data inclusion 

scheme used in testing the final model in this study.  The Utility Split rule represents a pre-trained 

model being prepared, and then applied at a later data to a new utility.  This will be the basis for the 

Leave One Group Out (LOGO) data inclusion scheme used in testing the final model in this study. 

4.4 Chapter Summary 

This chapter described the results of the exploratory analysis, which was conducted following the 

methodology described in Chapter 3.4.  Basic descriptive statistics of the data were provided, as well 

as a confirmation of the appropriateness of normalizing failure rates by pipe length.  The impact on 

failure rates was examined for individual features expected to be predictive based on the literature 

review, such as diameter, material, and age.  Two findings of interest emerged, likely due to the large 

size and diversity of the dataset: (1) a strong inverse relationship between diameter and failure rate, 

and (2) a pattern of peaks and subsequent declines in the failure rate as age increased.  The results of 

exploratory modeling were also described, which broadly agreed with past results from the literature 

review.  The exploratory modeling showed that models perform worse when tested on data from 

future time periods or other utilities, validating the direction of research towards a generalized model 

which can extrapolate forward in time and to new utilities.  

Chapter 5 describes the results obtained from the generalized machine learning model for pipe 

failure prediction, following the methodology described in Chapter 3.5.  The results of each of the 
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three layers of the model are described individually, to provide confirmation that each layer is serving 

its intended function effectively.  A detailed analysis of the performance of the full model is then 

provided, including performance on various subpopulations and the impact of particular predictive 

features. 
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Chapter 5 

Results: Generalized Machine Learning Model 

This chapter presents the performance of the final generalized machine learning model. 

5.1 Layer 1: Feature Preprocessing 

This section provides the results obtained by the feature preprocessing layer.  It shows the 

intermediate results fed forward into the failure classification model layer.  The purpose of showing 

these results is to evaluate the effective performance of this layer. 

5.1.1 Infer Units for Objective Numerical Features 

As described in Chapter 3.5.3, the feature preprocessing layer aims to prepare the feature vector x by 

inferring the units of numerical features and encoding categorical features. 

The units inference was performed by testing all plausible combinations of units among the six 

utilities contributing data.  Two numerical fields were converted: length and diameter.  The aggregate 

metrics before conversion were as follows: 

Diameter summary: 
               mean   median          std 
dataset                                   
aw         9.462854      8.0     6.795564 
ham      226.384828    150.0   160.504489 
peel     253.592924    200.0   184.815599 
sin      228.570478    150.0   211.028601 
tor      237.364365    150.0   199.035686 
wnet     419.623208    150.0   490.320509 
 
Length summary: 
               mean       median          std 
dataset                                       
aw       239.717502   159.251702   279.848256 
ham       60.934126    20.070000    90.272359 
peel     106.095258    65.240000   155.239076 
sin       40.465063    10.193719    94.657403 
tor      134.513141    96.600000   148.632137 
wnet      24.352321     6.040000    47.979690 

 

The top 10 unit assignment sets, and the resulting sum of scale variance, were as follows: 
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Diameter Units             Length Units             Sum Variance  
(in, mm, mm, mm, mm, mm)   (ft, m, m, m, m, m)      1.458187 
(in, mm, in, mm, in, mm)   (ft, m, ft, m, ft, m)    1.571404 
(in, mm, in, in, in, mm)   (ft, m, ft, ft, ft, m)   2.243774 
(in, mm, in, mm, in, in)   (ft, m, ft, m, ft, ft)   2.293011 
(in, in, in, mm, in, mm)   (ft, ft, ft, m, ft, m)   2.306178 
(in, mm, mm, mm, in, mm)   (ft, m, m, m, ft, m)     2.570075 
(in, mm, mm, mm, in, in)   (ft, m, m, m, ft, ft)    2.658917 
(in, mm, mm, in, in, mm)   (ft, m, m, ft, ft, m)    2.727322 
(in, in, mm, mm, in, mm)   (ft, ft, m, m, ft, m)    2.882029 
 

Based on a manual review of the data, the top performing set of unit assignments was the correct 

set of assignments.  It is worth noting that the number of datasets in use for this unit inference model 

was relatively small.  Exploring whether this approach works on larger collections of datasets and in 

other domains is left as an area for future research. 

5.1.2 Encode Categorical Features 

The specific encodings applied in this study were averages of the following numerical features, for 

the [utility-categorical feature] tuples shown.  The encodings were developed using the averages from 

the training data only (i.e., the test data was excluded) to prevent information leakage from the future 

into the past.  Note that “Had Break This Year” is a binary (0 or 1) feature; hence, the average 

represents the proportion of samples which experienced a break. 

 Utility-Material: Diameter, Length, Install Year, Had Break This Year  

 Utility-Lining: Diameter, Length, Install Year, Had Break This Year 

 Utility-Corrosion_Protection: Diameter, Length, Install Year, Had Break This Year  

 Utility-Joints: Diameter, Length, Install Year, Had Break This Year 

 Utility-Main_Type: Diameter, Length, Install Year, Had Break This Year 

These encodings of categorical features result in a total of 31 features being used by the machine 

learning model in Layer 2, as compared to 141 features when dummy encoding was applied. 

The effectiveness of the feature encodings can be measured by their impact on the performance of 

the machine learning classifiers trained in Layer 2. 
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5.2 Layer 2: Failure Classification 

Note that the performance in this section cannot be compared exactly to the Exploratory Modeling 

results in Chapter 4.3, as a different Train and Test sample set were used.  Specifically, this set took a 

random sampling from a longer duration in time for the training set.  This is expected to result in 

slightly worse performance on the test set, but better generalizability to test sets not from time periods 

adjacent to the training set. 

Performance was measured by four metrics, including the two primary metrics for this study (ROC 

AUC and Lift at 10%) and two secondary metrics (Log Loss, and Maximum F1 Score).  Tests were 

done for each of the three data inclusion schemes described in Chapter 3.5.4, both on the original data 

and the data after preprocessing by Layer 1. 

5.2.1 Calculation of Relative Performance Between Models 

Also presented are the relative performance of LOGO versus both the Isolated and Inclusive schemes.  

Relative performance was measured as follows: 

 ROC AUC: (LOGO – 0.5) / (Comparable – 0.5).  Since a random estimator would achieve 

an AUC score of 0.5, this sets the practical floor for performance.  Subtracting 0.5 from 

each score provides an estimate of the relative performance gain or loss. 

 Lift at 10%: LOGO / Comparable.  Simple proportionate score. 

 Log Loss: Comparable / LOGO.  Log Loss is negatively oriented, with 0 being a perfect 

score. 

 F1 Score: LOGO / Comparable.  Simple proportionate score. 

Wherever a “Gain” is referred to as a relative performance measure, this is calculated as (Score – 

Comparable) / Comparable. 

5.2.2 Results on Raw Data 

Results of the three data inclusion schemes prior to application of the preprocessing layer are 

presented in Table 16 below.  The results were unsurprising, with the Inclusive scheme offering the 

best performance by all metrics.  The worst performance across all metrics was achieved by the 

LOGO scheme, with Isolated falling in the middle.  This top performance of the inclusive scheme 
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confirms that there is in fact a degree of generalizability in the data, since access to the break history 

from other utilities does, on average, improve performance compared to using each utility’s data in 

isolation. 

Table 16: Failure classification model results on raw data. 

  
Results on Raw Data LOGO Performance Vs 

Isolated Inclusive LOGO Isolated Inclusive 
By ROC AUC 0.870 0.885 0.782 76.2% 73.2% 
By Lift at 10% 4.989 5.650 4.232 84.8% 74.9% 
By Log Loss 0.424 0.399 0.519 81.7% 76.9% 
By F1 Score 0.269 0.317 0.241 89.6% 76.0% 

Average Relative Score Across Metrics 83.1% 75.3% 
 

The average relative performance of the LOGO scheme across these four metrics was 83.1% as 

strong as the Isolated scheme, and 75.3% as strong as the top performing Inclusive scheme.  This 

result confirms that differences in the data from contributing utilities are preventing full 

generalization. 

5.2.3 Results on Preprocessed Data 

Results of the three data inclusion schemes after application of the preprocessing layer are presented 

in Table 17 below.  Once again, the Inclusive scheme is the strongest performing by all metrics.  The 

performance of the LOGO and Isolates schemes are now mixed, with each scoring last in two out of 

four metrics. 

Table 17: Failure classification model results on preprocessed data 

  
Results on Preprocessed Data LOGO Performance Vs 
Isolated Inclusive LOGO Isolated Inclusive 

By ROC AUC 0.871 0.889 0.863 97.8% 93.3% 
By Lift at 10% 5.026 5.784 5.092 101.3% 88.0% 
By Log Loss 0.420 0.399 0.377 111.4% 105.8% 
By F1 Score 0.267 0.322 0.271 101.5% 84.2% 

Average Relative Score Across Metrics 103.0% 92.8% 
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The performance gap between the different LOGO and the other data inclusion schemes has shrunk 

considerably.  The average relative performance of the LOGO scheme across the four metrics is now 

103% as strong as the Isolated scheme, and 92.8% as strong as the top performing Inclusive scheme. 

5.2.4 Relative Performance Before and After Preprocessing 

Comparative results for each data inclusion scheme are presented in Table 18 below.  The 

preprocessing has had a negligible impact on the performance of the Isolated and Inclusive schemes.  

The performance of the LOGO scheme, however, improved by between 12% and 29% on each of the 

performance metrics used. 

Table 18: Failure classification model performance gains introduced by preprocessing layer. 

  
Isolated Inclusive LOGO 

Raw Preproc. Gain Raw Preproc. Gain Raw Preproc. Gain 
By ROC AUC 0.870 0.871 0.3% 0.885 0.889 1.0% 0.782 0.863 28.7% 
By Lift at 10% 4.989 5.026 0.7% 5.650 5.784 2.4% 4.232 5.092 20.3% 
By Log Loss 0.424 0.420 0.9% 0.399 0.399 0.0% 0.519 0.377 27.4% 
By F1 Score 0.269 0.267 -0.7% 0.317 0.322 1.6% 0.241 0.271 12.4% 

 

Table 19 presents a direct comparison of the LOGO performance on the raw and preprocessed data.  

It is shown as a relative performance to both the Isolated and the Inclusive schemes.  Measurement of 

relative performance is as described in Chapter 5.2.1.  Averaged across the performance metrics, the 

preprocessing layer closes the gap versus the Isolated scheme by nearly 20% (to the point of slightly 

outperforming) and closes the gap by over 17% on the Inclusive scheme.  

Table 19: Relative performance gains introduced by preprocessing layer in the LOGO data 

inclusion scheme, as compared to Isolated and Inclusive schemes. 

  
LOGO vs Isolated LOGO vs Inclusive 

Raw Preproc Gain Raw Preproc Gain 
By ROC AUC 76.2% 97.8% 21.6% 73.2% 93.3% 20.1% 
By Lift at 10% 84.8% 101.3% 16.5% 74.9% 88.0% 13.1% 
By Log Loss 81.7% 111.4% 29.7% 76.9% 105.8% 29.0% 
By F1 Score 89.6% 101.5% 11.9% 76.0% 84.2% 8.1% 
Average Across Metrics 83.1% 103.0% 19.9% 75.3% 92.8% 17.6% 
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The final comparison for Layer 2, as shown in Table 20, is between the LOGO scheme on the 

Preprocessed data with the Isolated and Inclusive schemes on the original raw data.  These metrics 

compare the relative performance that a utility could expect were they to use the pretrained 

generalized model, versus participating in a multi-utility study or training their own model on their 

own data.  

Table 20: Final LOGO model performance compared with Isolated and Inclusive model 

performance on raw data. 

  
LOGO on Vs. Isolated on Raw Vs. Inclusive on Raw 

Preprocessed Score Relative Score Relative 
By ROC AUC 0.863 0.870 98.1% 0.885 94.3% 
By Lift at 10% 5.092 4.989 102.1% 5.650 90.1% 
By Log Loss 0.377 0.424 112.5% 0.399 105.8% 
By F1 Score 0.271 0.269 100.7% 0.317 85.5% 

Average Across Metrics 103.3%   93.9% 
 

5.3 Layer 3: Calibration 

This section provides the results obtained by the final calibration layer.  The outcomes of each of the 

two calibration steps are shown.  First is the creation of a calibrated probability of failure estimate 

using isotonic regression.  Second is the estimation of the expected number of failures in a segment 

by application of a linear scaling to account for multiple failures in the same pipe within a five-year 

period.  The expected number of failures are then summed up over a cohort of segments for the 

purpose of performance evaluation. 

5.3.1 Impact of Isotonic Regression 

The effectiveness of the Calibration layer is measured in two ways.  The impact of applying Isotonic 

Regression is measured on the Calibration layer on the metrics previously discussed, as well as on the 

Calibration Loss metric described in Chapter 3.5.5.  These results are presented in Table 21. 

Table 21: Performance of models before and after application of isotonic regression to calibrate 

probability estimates. 

  
Isolated Inclusive LOGO 

Before After Before After Before After 
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By ROC AUC 0.871 0.872 0.889 0.890 0.863 0.864 
By Lift at 10% 5.026 5.084 5.784 5.801 5.092 5.092 
By Log Loss 0.420 0.115 0.399 0.110 0.377 0.117 
By F1 Score 0.267 0.269 0.322 0.325 0.271 0.272 
By Calibration Loss 0.244 0.000 0.229 0.000 0.201 0.000 

 

Three of the metrics (AUC, Lift at 10%, and F1 Score) are largely unaffected by the application of 

isotonic regression.  This is a consequence of the fact that these metrics rely exclusively on the 

relative probability estimates between samples.  Since the ordinality of the probability scores is 

preserved by the calibration, these scores are unchanged.  Minor variations are explained by the 

presence of tied probability scores among samples, which are relatively common in decision-tree 

based models.  These tied scores may be sorted in a random manner, leading to slight variations in the 

scoring before and after application of isotonic regression.  The Calibration Loss reduces to zero for 

all data inclusion schemes, which is an expected consequence of applying isotonic regression on the 

same binning scheme used to calculate the calibration loss.  The Log Loss metric improves 

significantly, as this metric is impacted by both the relative rankings and the accuracy of the 

probability estimate itself. 

5.3.2 Ability to Predict Total Breaks in a Cohort 

The last evaluation of the calibration layer is the ability of the model to predict the actual number of 

breaks in a future period on a cohort.  Performance was measured by comparing the Expected 

Number of Failures (ENoF) summation to the actual total number of breaks in cohort over the 

ensuing five-year period, as shown in Figure 44.   
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Figure 44: Expected Number of Failures from model, aggregated to cohorts, compared to actual 

failures in those cohorts. 

As a reference point, the performance of a simple “Predict the same number of breaks as occurred 

in the previous five-year period” model (referred to as the Prior Period model) was also measured.  

Comparative charts are presented in Figure 45, and  Table 22 shows the results using the metrics 

described in Chapter 3.6.3. 
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Figure 45: Comparative plots of Expected Number of Failures from the model and Previous 

Period Failures each plotted versus actual failures in next period. 

 

Table 22: Performance metrics of Expected Number of Failures from the model and Prior 

Period Failures used to forecast number of failures in the upcoming period. 

  MAE Bias MSE RMSE 
Linear 

Regression R^2 
ENoF 18.11 1.30 899 29.98 y = 1.09x - 8.71 0.99 
Prior Period 26.19 4.65 4669 68.33 y = 0.74x + 17.06 0.97 

 

The ENoF summation outperformed the Prior Period model by all metrics.  It is worth noting that 

the Prior Period model is limited in practical application, since it can only be used for the upcoming 

five-year period.  The ENoF from the model, however, can be projected forward simply by 

incrementing the Age features of each entry in the test set by the desired number of years, and then 

re-running Layers 2 and 3. 

5.4 Detailed Model Performance Analysis 

This section presents performance details for the full proposed model.  This consists of subpopulation 

analysis to evaluate performance of the model within various subgroups of the data, as well as 

individual feature explanatory analysis. 

5.4.1 Subpopulation Analysis 

This subsection presents analysis of model performance on various subpopulation groups among the 

test set.  In each instance, the decision threshold for the model was tuned to pick the 10% highest risk 

pipes from the overall population for replacement.  

5.4.1.1 By Contributing Utility 

A summary of performance on the data from the six utilities is presented in Table 23, with the model 

decision threshold tuned to select approximately 10% of all pipes (across all utilities) for replacement. 
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Table 23: Subpopulation analysis of final model performance by contributing utility, using a 

common decision threshold to select 10% of pipes across the full data set. 

Contributing Utility ROC AUC Lift Accuracy Precision Recall 
peel 0.879 6.51 0.95 0.13 0.45 
wnet 0.880 4.84 0.93 0.32 0.34 
ham 0.859 5.50 0.94 0.25 0.36 
sin 0.796 3.95 0.99 0.12 0.07 
tor 0.796 3.31 0.65 0.16 0.81 
aw 0.812 4.27 0.95 0.11 0.25 

 

An alternate analysis is provided in Table 24 with the decision thresholds tuned separately for each 

utility, to select approximately 10% of the pipes within that utility.  Note that the ROC AUC does not 

change, as this is independent of the decision threshold.  The other metrics do change, including Lift.  

While both Lift figures represent “Lift at 10%,” the definition has changed from “at 10% of all pipes” 

to “at 10% of the pipes within this utility.”  

Table 24: Subpopulation analysis of final model performance by contributing utility, using 

varied decision thresholds to select 10% of pipes for each utility. 

Contributing Utility ROC AUC Lift Accuracy Precision Recall 
peel 0.879 6.23 0.89 0.09 0.69 
wnet 0.880 5.13 0.91 0.28 0.44 
ham 0.859 5.82 0.91 0.19 0.53 
sin 0.796 4.14 0.92 0.04 0.34 
tor 0.796 3.25 0.87 0.26 0.34 
aw 0.812 4.69 0.91 0.08 0.39 

 

Further details for each contributing utility are provided in Figure 46 through Figure 51, also using 

the decision thresholds tuned to select approximately 10% of pipes per utility.  These figures provide 

both a confusion matrix and a density plot, which shows the probability density of the true (i.e., 

break) and false (i.e., no break) populations by predicted probability.  Greater separation between the 

two groups indicates better model performance on that subpopulation. 
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Figure 46: Subpopulation analysis for utility contributor Peel. 

 

Figure 47: Subpopulation analysis for utility contributor Waternet. 

 

Figure 48: Subpopulation analysis for utility contributor Hamilton. 
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Figure 49: Subpopulation analysis for utility contributor Singapore. 

 

Figure 50: Subpopulation analysis for utility contributor Toronto. 

 

Figure 51: Subpopulation analysis for utility contributor American Water. 

The lowest performing utilities were Sin and Tor, but for opposite reasons.  The Sin network has 

both the lowest rate of breaks and the lowest prevalence of break risk indicators among the features.  

The decision threshold must be tuned to an extremely low level (2.5% predicted probability of 

failure) to select an appropriate number of pipes; however, this tuning results in selecting many pipes 

that will not fail.  The Tor network is at the opposite end of the spectrum, including both the highest 

rate of breaks and the greatest prevalence of risk indicators.  The decision threshold must be tuned 
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substantially higher (20% predicted probability of a failure) to select an appropriate number of pipes; 

however, this still omits many high risk pipes. 

These two utilities represent the “outliers” on the spectrum of break prevalence.  The remaining 

four fall in between, with decision thresholds between 5% and 7.5% resulting in appropriate numbers 

of pipes.  It is not surprising that the “Leave One Group Out” method performs worst when applied to 

utilities on the edges of the performance spectrum, as it is well known that machine learning models 

interpolate better than they extrapolate.  

5.4.1.2 By Material 

For the purposes of subpopulation analysis, the manual data cleansing on material type was used, 

which allows for grouping of samples based on their actual material.  Note that this manual data 

cleansing was not used in the model tuning or sample evaluation, but only for the purpose of grouping 

samples together for subpopulation analysis.  As with utility contributors, these are presented both 

with decision thresholds tuned to select 10% of overall pipes (Table 25), and also to select 

approximately 10% of the pipes of in that material class (Table 26). 

Table 25: Subpopulation analysis of final model performance by pipe material, using a common 

decision threshold to select 10% of pipes across the full data set. 

Material Group ROC AUC Lift Accuracy Precision Recall 
Ductile Iron 0.84 5.38 0.96 0.16 0.34 
Cast Iron 0.79 3.41 0.76 0.18 0.63 
PVC 0.91 7.61 0.98 0.32 0.25 
Concrete 0.87 5.86 0.99 0.02 0.02 
Unknown 0.89 6.81 0.92 0.10 0.65 
Steel 0.81 3.06 0.99 0.00 0.00 
Copper 0.84 4.36 0.94 0.28 0.22 
PE 0.84 3.89 0.92 0.31 0.26 
Asbestos Cement 0.69 2.55 0.89 0.14 0.25 

 

Table 26: Subpopulation analysis of final model performance by material, using varied decision 

thresholds to select approximately 10% of pipes for material. 

Material Group ROC AUC Lift Accuracy Precision Recall 
Ductile Iron 0.84 4.86 0.89 0.09 0.56 
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Cast Iron 0.79 3.93 0.90 0.28 0.26 
PVC 0.91 6.39 0.89 0.10 0.79 
Concrete 0.87 7.16 0.95 0.02 0.32 
Unknown 0.89 6.51 0.90 0.08 0.72 
Steel 0.81 4.43 0.95 0.03 0.19 
Copper 0.84 4.81 0.92 0.22 0.29 
PE 0.84 4.30 0.91 0.25 0.32 
Asbestos Cement 0.69 3.91 0.89 0.14 0.25 

 

The model performance was strongest as measured by both Lift and AUC on PVC, Concrete, and 

(somewhat surprisingly) where the material was unknown.  Weaker performance was observed on 

asbestos cement and on cast iron.  It is plausible that these materials, being both of high average age 

and having high break rates, would benefit most from allowing inclusion of longer break history 

records as a feature. 

5.4.1.3 By Diameter 

Performance by diameter is summarized in Table 27.  Diameters were grouped automatically into 

seven bins of approximately equal population.  Square brackets indicate that the bin is inclusive of the 

value, and round brackets indicate that the bin excludes the value. 

Table 27: Subpopulation analysis of final model performance by diameter. 

Diameter Bin ROC AUC Lift Accuracy Precision Recall 
[1, 110] 0.85 4.07 0.93 0.26 0.27 
(110, 150] 0.85 4.30 0.82 0.18 0.67 
(150, 160] 0.78 3.30 0.91 0.12 0.29 
(160, 200] 0.89 5.92 0.94 0.19 0.45 
(200, 300] 0.86 5.41 0.93 0.15 0.43 
(300, 406] 0.83 5.36 0.96 0.11 0.29 
(406, 3300] 0.85 4.54 0.99 0.06 0.06 

 

No noteworthy performance differences are notable between the smaller and larger diameter pipes.  

A minor anomaly is the performance of pipes between 151 and 160mm in diameter.  This small bin 

essential includes pipe with a nominal diameter of 6 inches.  Only one of the contributing utilities 

uses pipe of this precise size; hence, the Leave One Group Out modeling approach would not have 
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had any pipe of identical diameter in the training set.  This suggests that the model performance may 

improve if trained using data from at least one utility using pipe of identical diameters. 

5.4.1.4 By Length  

Performance of the model by length bin is presented in Table 28.  Bins were formed automatically to 

include 10% of the pipe population in each.  Square brackets indicate that the bin is inclusive of the 

value, and round brackets indicate that the bin excludes the value.  Only metrics that are independent 

of the decision threshold are presented, as the class balance is highly dependent on length, making 

threshold-based metrics such as precision and recall less useful. 

Table 28: Subpopulation analysis of final model performance by length. 

Length Bin ROC AUC Lift 
[0.012, 2.27] 0.698 3.43 
(2.27, 5.05] 0.775 4.10 
(5.05, 8] 0.847 5.65 
(8, 14.72] 0.790 3.96 
(14.72, 28.10] 0.798 4.22 
28.10, 53.40] 0.790 3.35 
(53.40, 80.47] 0.772 3.19 
(80.47, 113] 0.752 2.94 
(113, 187] 0.780 3.30 
(187, 5478] 0.796 3.39 

 

Note that the AUC and Lift scores for a given bin show the model’s ability to distinguish between 

the low- and high-risk pipes within that same bin.  The lower scores in all bins indicate that the model 

is less effective distinguishing break rates among pipe of similar length.  This finding is not 

surprising, as length is a major contributor to the model.  The average AUC of 0.780 and Lift of 3.75 

within these bins offers a reasonable estimate of the model’s ability to prioritize pipes of similar 

length. 

5.4.1.5 By Age and Installed Date 

Model performance by age is presented in Table 29.  The test data was automatically grouped into 10 

bins of approximately equal size.  Square brackets indicate that the bin is inclusive of the value, and 

round brackets indicate that the bin excludes the value. 
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Table 29: Subpopulation analysis of final model performance by pipe age. 

Age bin ROC AUC Lift Accuracy Precision Recall 
[0, 7] 0.83 5.70 0.99 0.20 0.12 
(7, 12] 0.9 7.00 0.99 0.32 0.18 
(12, 18] 0.88 6.90 0.98 0.34 0.23 
(18, 25] 0.85 5.54 0.97 0.21 0.21 
(25, 31] 0.82 4.90 0.95 0.18 0.26 
(31, 41] 0.83 4.60 0.89 0.18 0.50 
(41, 48] 0.86 4.82 0.87 0.20 0.57 
(48, 58] 0.82 3.47 0.75 0.22 0.71 
(58, 86] 0.77 3.23 0.80 0.16 0.53 
(86, 255] 0.77 3.30 0.82 0.10 0.49 

 

Similar performance measures grouped by installed date are presented in Table 30. 

Table 30: Subpopulation analysis of final model performance by year of installation. 

Installed Date bin ROC AUC Lift Accuracy Precision Recall 
[1758, 1925] 0.77 3.24 0.80 0.10 0.53 
(1925, 1954] 0.8 3.36 0.79 0.20 0.60 
(1954, 1964] 0.82 3.53 0.76 0.21 0.69 
(1964, 1972] 0.85 4.77 0.87 0.17 0.55 
(1972, 1981] 0.82 4.48 0.90 0.16 0.43 
(1981, 1989] 0.83 5.30 0.96 0.24 0.25 
(1989, 1995] 0.86 5.78 0.97 0.23 0.18 
(1999, 2001] 0.89 6.90 0.99 0.34 0.21 
(2001, 2006] 0.89 6.72 0.99 0.33 0.18 
(2006, 2014] 0.83 5.65 0.99 0.19 0.12 

 

The model is reasonably effective distinguishing between high- and low-risk pipes of similar age or 

installation vintage.  Model performance is somewhat weaker among very new and very old pipes.  

For very new pipes, this result may be a consequence of a higher proportion of wholly unpredictable 

failures (installation errors, third party damage, etc.).  For very old pipes, this may be an area where 

the model would have benefited from being permitted to use longer term break history.  The model’s 

average Lift of 4.95 across these bins confirms that machine learning models can provide utilities 

substantial value over age-based replacement programs.  
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5.4.1.6 By Pipe History 

Table 31 presents the performance based on past rehabilitation status. 

Table 31: Subpopulation analysis of final model performance by past rehabilitation status. 

Past Rehab Status ROC AUC Lift Accuracy Precision Recall 
FALSE 0.87 5.25 0.93 0.17 0.43 
TRUE 0.73 2.47 0.62 0.18 0.74 

 

Performance of the model is markedly worse on pipes with a history of rehabilitation.  It is possible 

that insufficient information regarding the past rehabilitation status is being provided to the model.  

The type of rehabilitation or the time since rehabilitation may be important information.  The long-

term impact of rehabilitation on break rates offers an interesting area of potential for future research.   

Model performance by break history is presented in two divisions: whether a break occurred in the 

past five years (one of the features), and whether or not a break occurred at any point in the pipe’s 

records (not a model feature) in Table 32 and Table 33 respectively. 

Table 32: Subpopulation analysis of final model performance by whether a break was recorded 

in the prior five-year period. 

Break Past 5 Years ROC AUC Lift Accuracy Precision Recall 
FALSE 0.84 4.35 0.94 0.14 0.25 
TRUE 0.61 1.53 0.45 0.32 0.84 

 

Table 33: Subpopulation analysis of final model performance by whether a break was recorded 

at any point in the available records. 

Any Break in Records ROC AUC Lift Accuracy Precision Recall 
FALSE 0.81 3.85 0.96 0.07 0.12 
TRUE 0.64 1.81 0.56 0.27 0.66 

 

Distinguishing between pipes with similar break history is clearly challenging for the model.  Good 

performance is achieved among pipes with no failures (either in the past five years, or anywhere in 

their historical records); however, the model struggles to distinguish between high and low risk pipes 
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that have had a previous or recent failure.  This confirms the findings in Snider & McBean (2021) that 

pipes with previous failures behave markedly differently from pipes with no previous failures. 

This presents another interesting area for future research.  Models developed specifically for the 

purpose of predicting future failures among pipes with a previous failure history could be both 

interesting and of great practical value. 

5.4.2 Individual Feature Analysis 

5.4.2.1 Feature Importance by Shapley Values 

The relative contributions of the 20 most important features, as measured by Shapley values, are 

shown in Figure 52: Relative contributions of top 20 features in the model as measured by Shapley 

values..  The contributions are concentrated among a relatively small number of features.  In 

agreement with previous findings in the literature, the significant features include length and diameter 

(captured jointly in the length to diameter ratio and separately in length), material (as encoded by the 

historical break rate and installation year), and age.  While the dataset (identity of the contributing 

utility) is not a feature in the model, it is used to direct each sample to the correct model; hence, its 

relative contribution can also be measured with the Shapley value and was found to be significant.  

Lesser contributions come from the year of installation and the recent break history. 
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Figure 52: Relative contributions of top 20 features in the model as measured by Shapley 

values. 

Shapley values are computed per sample, and are directional, with positive numbers indicating the 

value was pushed towards the positive class and negative values indicating the value was pushed 

towards the negative class.  The directional contributions of the top 20 features on a random selection 

of samples is shown in Figure 53.  One aspect of this chart which particularly stands out is the 

contribution of the break history.  While this value is 0 for almost all samples, the cases with larger 

values (1 or greater) have strongly positive Shapley contributions.  Taken together with the overall 

Shapley contributions in Figure 53, this finding indicates that previous breaks are an infrequent but 

potent predictor of future breaks. 
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Figure 53: Directional contributions of top 20 features, as measured by Shapley values, for a 

random selection of samples from the test set. 

A selection of plots of Shapley value contributions are shown for features of interest in Figure 54: 

Plots of the contribution by features of greatest impact, as measured by Shapley values on a random 

selection of samples from the test set.  For the most part the trends are unsurprising and conform to 

the expectations from past studies and the exploratory analysis.  Confirming the exploratory findings 

on age discussed in Chapter 4.2.4, the plot of age shows minor overall contributions, with positive 

contributions peaking around age 40 to 50 and then declining.   
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Figure 54: Plots of the contribution by features of greatest impact, as measured by Shapley 

values on a random selection of samples from the test set. 

5.4.2.2 Feature Partial Dependence 

Another means of understanding the impact is via partial dependence plots.  Partial dependence plots 

simulate measuring the direct impact of feature values on predictions by re-running the model 

inference for part or all the test sets with modified values for the feature of interest.  For example, a 

partial dependence test on the five-year break history would run the full test set through model 

inference, first testing it with values of 0 failures for each sample, then with values of 1 failure for 

each sample, and so on to the limit of the available values.  The plots in Figure 55 group numerical 

features into bins, showing on the x-axis the feature value, and on the y-axis the relative increase or 

decrease of the log odds of a “true” (i.e., a break) prediction within that bin vs the average log odds of 

a “break” prediction in the full test set.  Also plotted against the secondary (right) y-axis are bar charts 

of the percentage of samples falling into each bin. 
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Figure 55: Partial dependence plots for features of interest, together with bar charts of sample 

density. 

Partial dependence plots by age are of particular interest.  These represent a potential practical 

application of the model in the task of projecting the break rates in the longer-term future.  These 

projections would be calculated by taking a given set of pipes and running them through model 

inference with their ages incremented. 

5.5 Alternate Target Variable: Annual Break Rate 

While the five-year-forward break rate has been selected as the primary target variable, the selected 

model achieves comparable performance on the selected metrics when tested with the one-year-

forward break rate (i.e., the annual probability of failure). 

Table 34: Comparative results predicting one-year and five-year break status with the same 

model. 

  
LOGO Results Predicting 

Relative 5-years 1-year 
By ROC AUC 0.864 0.863 99.7% 
By Lift at 10% 5.092 5.128 100.7% 
By Log Loss 0.117 0.041 285.4% 
By F1 Score 0.272 0.123 45.2% 
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Performance is not meaningfully different on the primary performance metrics of AUC and Lift at 

10%, indicating that the model ranks pipes based on their relative one-year or five-year failure risk 

equally well.  Unsurprisingly, the Log Loss and F1 Score metrics are substantially different.  

Shortening the time window for the target variable has decreased the percentage of positive instances 

from 3.47% to 0.86%, thereby impacting these metrics.  Both of these metrics are impacted by the 

degree of class imbalance in the test data, making them inappropriate for comparison of different time 

windows. 

5.6  Chapter Summary 

This chapter described the results obtained from the generalized machine learning model for pipe 

failure prediction, following the methodology described in Chapter 4.5.  The Feature Preprocessing 

layer was shown to improve performance for models that were tested on data from a utility which was 

excluded from the training data.  Results from the Failure Classification layer simulate a new utility 

using a pretrained model created using data from other utilities, which is the intended practical 

application of this research.  The resulting model slightly outperformed the results of training and 

testing separate models on each utility in isolation, and performed better than 90% as well as a model 

trained on pooled data from all utilities including the utility being tested.  Results from the final 

Calibration layer demonstrated a strong ability to predict the number of breaks in a cohort, achieving 

an R2 value of 0.99 when comparing the predicted and actual number of breaks per cohort in a five-

year period. 

Chapter 6 provides a discussion of the results obtained by following the methodology described in 

Chapter 3.  It begins with a discussion of the potential implications of results of the exploratory 

analysis described in Chapter 4, and then provides a detailed discussion of the results of the final 

generalized machine learning model for pipe failure prediction as provided in this chapter. 

 

 

 

  



 

 181 

Chapter 6 

Discussion: Applying Results to Pipe Replacement Decisions 

Much of the value from this study comes as a result of the sheer size and variety of the data collected.  

This has allowed novel insights to be drawn from three different aspects of this study: from the 

exploratory data analysis, from the exploratory modeling, and from the final generalized model. 

6.1 From the Individual Predictive Feature Analysis 

This section presents key observations from the exploratory data analysis.  While these observations 

are not the primary focus of this research, they present potential directions for future research. 

6.1.1 Segment Length as a Simple Predictor of Break Risk for Distribution Mains 

It is highly intuitive that segment length would be a predictor of break risk.  A longer segment simply 

introduces more points for potential failure.  Furthermore, segments are logical groupings of pipe 

sticks, rather than genuinely discrete physical things.  Changes to how these groupings are formed 

should not change the total aggregate number of failures.  So, using smaller groupings to define the 

segments (and therefore more segments) should result in fewer breaks per segment.  Were this not the 

case, there would need to be a confounding variable that impacts both the break rate and the segment 

length. 

This intuition has been confirmed with the analysis of data from this study.  The linear relationship 

between segment length and break rate is clear up to a segment length of 500m.  This length limit 

includes 99% of the segment-year records in this data set and will include all of the distribution 

mains. 

This finding confirms the soundness of the common industry practice of reporting break rates on a 

unit length basis (typically per 100 miles per year in the US, and per 100km per year elsewhere). 

The relationship between failure risk and length for long diameter transmission mains is less clear 

from the data in this study.  This is left as an area for future research. 

6.1.2 Length to Diameter Ratio as a Simple Predictor of Break Risk 

Pipe diameter was a clear predictor of pipe break risk in the data from this study, with smaller 

diameter pipes failing at higher rates.  The relationship was consistently present across all materials, 
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diameters, and utilities.  Prior research had indicated higher rates of breaks for small diameter mains 

for individual utilities and material types.  The consistency of the relationship in this large and diverse 

dataset establishes the relationship more clearly than ever before. 

When normalizing the break rate by pipe length (i.e., breaks per 100 km per year), the impact of 

diameter became even more clear and consistent.  The relationship appears to be inverse linear, such 

that the length/diameter ratio offers a consistent linear relationship with the rate of breaks per year. 

This inverse linear relationship between diameter and break rate, as shown in Chapter 4.2.1, is a 

novel finding.  It is of interest for two reasons.  First, it offers an alternative normalization for the 

break rate.  Second, it suggests a potential area of improvement for pipe design specifications. 

While Chapter 4.1.3 confirmed the appropriateness of normalizing break rates for length (breaks 

per 100 km per year), this finding suggests that an additional normalization by diameter may be 

useful.  Mathematically, this would be: 

𝐵𝑟𝑒𝑎𝑘𝑅𝑎𝑡𝑒 =
𝐵𝑟𝑒𝑎𝑘𝑠 ∗ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑌𝑒𝑎𝑟𝑠
 

(34) 

 This equation can be rearranged to illustrate a simplified description of the normalization: 

𝐵𝑟𝑒𝑎𝑘𝑅𝑎𝑡𝑒 =
𝐵𝑟𝑒𝑎𝑘𝑠

𝐿𝑒𝑛𝑔𝑡ℎ
𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

∗ 𝑌𝑒𝑎𝑟𝑠
 

(35) 

This rearrangement highlights the ratio of pipe length to pipe diameter, allowing the pipe’s length 

to be expressed in pipe diameters.  For example, a 1km long pipe with a 1,000mm diameter (1m 

diameter) would be 1,000 pipe diameters long, whereas a 1km long pipe with a 100mm diameter (0.1 

m diameter) would be 10,000 pipe diameters long.  A suggested scale is breaks per million pipe 

diameters of length per year.  A normalization of the break rate per million diameter-years is 

analogous to the break rate per 100 km-years already broadly in use and is identical for the very 

common pipe diameter of 100mm.  Testing on our dataset shows that this scaling yields results on a 

similar order of magnitude on our dataset, with most values falling in an easily human readable range 
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of 1 to 100.  A further benefit of this scale is that Length / Diameter is unitless, so this normalization 

would be equally intuitive for both metric and imperial unit users. 

The potential area of improvement for pipe design specifications requires an examination of the 

current standard design specifications.  Standards for pipe design require that for a given pressure 

class, thicker walled pipe is to be used for larger diameters.  This standard is illustrated in Table 35, 

which shows the North American standard for minimum wall thickness of different diameters of pipe 

and different pressure classes.  For any given pressure class in the table, the required wall thickness 

increases as the pipe diameter increases. 

Table 35: North American standards for minimum wall thickness by pressure class and pipe 

diameter.  From AWWA C151/A.21.51 Ductile-Iron Pipe, Centrifugally Cast. 

Nominal 
Size 

(inches) 

Outside 
Diameter 
(inches)  

Pressure Class 

150 200 250 300 350 

Wall Thickness (inches) 

3 3.96 0.25 0.25 0.25 0.25 0.25 

4 4.80 0.26 0.26 0.26 0.26 0.26 

6 6.90 0.25 0.25 0.25 0.25 0.25 

8 9.05 0.27 0.27 0.27 0.27 0.27 

10 11.10 0.29 0.29 0.29 0.29 0.29 

12 13.20 0.31 0.31 0.31 0.31 0.31 

14 15.30 0.33 0.33 0.33 0.33 0.33 

16 17.40 0.34 0.34 0.34 0.34 0.34 

18 19.50 0.35 0.35 0.35 0.35 0.35 

20 21.60 0.36 0.36 0.36 0.36 0.39 

24 25.80 0.38 0.38 0.38 0.41 0.44 

30 32.00 0.39 0.39 0.43 0.47 0.51 

36 38.30 0.43 0.43 0.48 0.53 0.58 

42 44.50 0.47 0.47 0.53 0.59 0.65 

48 50.80 0.51 0.51 0.58 0.65 0.72 

54 57.56 0.57 0.57 0.65 0.73 0.81 
 

The rationale behind this standard comes from Barlow’s Formula for thin-walled pipe (Adams et 

al., 2018) and the Lamé equations for thick-walled pipe (Capecchi & Ruta, 2015).   



 

 184 

Barlow’s Formula, originally pushed in 1836 and shown in (36), relates the Allowable Stress (also 

referred to as the Hoop Stress), outside diameter, wall thickness, and internal pressure. 

𝑃 = 2𝑆𝑡/𝐷 

(36) 

Where  P = Pressure inside a pipe  

  S = Hoop Stress, an empirically calibrated Allowable Stress value per material 

  t = Wall thickness 

  D = Outside pipe diameter 

The Lamé equation offers a similar relationship between pressure and hoop stress for thicker 

walled material, as shown in (37).    

𝑆 =
𝑃 𝑎 − 𝑃 𝑏

𝑏 − 𝑎
+

𝑎 𝑏 (𝑃 − 𝑃 )

(𝑏 − 𝑎 )𝑟
  

(37) 

Where  Pint = Internal pressure 

  Pext = External pressure 

  S = Hoop stress 

   a = Radius to inside of pipe wall  

   b = Radius to outside of pipe wall 

   r = Point of interest on the pipe wall 

Two simplifying assumptions allow us to express the Lamé equation in a simplified manner.  First, 

assuming that the external pressure is zero, and second assuming that we are interested in the point on 

the pipe wall where stress is maximized, which is where r = a.  In this case, the equation can be 

simplified as follows: 

𝑆 =
𝑃 𝑎

𝑏 − 𝑎
+

𝑎 𝑏 𝑃

(𝑏 − 𝑎 )𝑎
  

(38) 
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𝑆 =
𝑃 𝑎

𝑏 − 𝑎
+

𝑏 𝑃

𝑏 − 𝑎
  

(39) 

𝑆 = 𝑃
𝑎 + 𝑏

𝑏 − 𝑎
  

(40) 

𝑃 = 𝑆
𝑏 − 𝑎

𝑎 + 𝑏
  

(41) 

Once rearranged as shown in (41), it is apparent that the numerator (b2 – a2) increases as the wall 

thickness (b – a) increases, whereas the denominator (a2 + b2) increases as the diameter increases.  

Hence for both the thin-walled and thick-walled equations, at a given pressure and allowable hoop 

stress (which is specific to the material type), these equations state that the required wall thickness 

increases as the diameter increases.   

While the rationale is clear, the strong relationship found between diameter and break rate suggests 

that the design standards may not be achieving the desired outcome of preventing failures across all 

diameters.  There are two plausible reasons why this may be the case. 

One possible reason emerged from a study of the origins of the Barlow equation.  This study noted 

flaws in the original 1836 derivation of the equation, the results of which being that “Present design 

practice is over-conservative for thick wall pipe, and potentially unconservative for thin wall.” 

(Adams et al., 2018)  This agrees with the observations in this study that small diameter pipe (with 

thinner required wall thicknesses) consistently fails at a higher rate than large diameter pipe (with 

thicker required wall thicknesses). 

A second possible reason comes from Makar et al. (2001), which observed that as diameters 

decrease in cast iron pipe, the most common failure mode switches from longitudinal cracking to 

circumferential cracking.  A longitudinal crack is the expected result of the internal pressure 

exceeding the hoop strength of the pipe.  This is the failure mechanism considered in Barlow’s 

Formula and the Lamé equation and, together with crushing forces, the failure mode considered in 

pipe design specifications.  The author has personally observed this failure mode during burst testing 
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of pipes.  Circumferential cracking failure, on the other hand, can be caused by either shear or 

bending forces, such as those caused by frost heave (Selvadurai & Shinde, 1993).  These prior results, 

taken together with this new observation of the inverse relationship between diameter and failure rate, 

suggest that these failure modes have not been adequately considered in the design specifications for 

small diameter pipe.  Exploring the implications of these alternative failure modes on pipe 

specifications is a recommended area for further future research. 

Furthermore, the inverse linear relationship between diameter and failure rates per unit distance 

opens the potential for a new normalization method for reporting break rates.  Presenting the break 

rate on the basis of Breaks per Million Pipe Diameters of Length offers a more consistent and stable 

normalization of the break rate. 

A potential explanation for the relationship between diameter and break rate comes from pipe 

design standards.  Pipes are designed based primarily on burst strength equations.  These equations 

describe the internal pressure at which a pipe will suffer a longitudinal split.  These equations call for 

thicker pipe walls at larger diameters for a given internal pressure.  However, prior research has 

shown that at smaller diameters the principal failure mode ceases to be longitudinal splits and 

becomes instead circumferential splits.   

The combination of dramatically increasing failure rates at small diameters, and a change in the 

failure mode at small diameters away from the mode used to create design specifications offers an 

important possibility.  It may be that bending and/or shear forces acting on the pipeline are the 

primary stresses causing failures in small diameter mains.  This hypothesis could be confirmed by 

modeling the risk of failure due to such forces of varying magnitudes at different diameters and the 

accompanying standard wall thicknesses and comparing the resultant expected failure rates to those 

observed in this study.  This is left as an area for further research.   

It is worth noting that if this proves to be the case, there could be substantial implications for 

industry.  It would mean that a substantial fraction (perhaps more than 50%) of water pipeline failures 

could be avoided through the introduction of new pipeline design standards for small diameter pipes.  

The value of this line of research and standards revision was also highlighted by Adams et al. based 

on their review of the origin of the Barlow equations, stating, “The industry should therefore consider 

revising OCTG burst ratings and accompanying design practice to achieve a more uniform safety 
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level over the full D/t range of casing and tubing” (Adams et al., 2018, p. 1).  Globally, such a change 

could translate to tens of billions of dollars per year worth of avoided damage. 

Even without modification to pipe design standards, the strength of the relationship between 

diameter and failure rate may offer opportunities for efficiency gains at utilities.  Simply increasing 

the standard diameter used for distribution mains (often 100mm or 4-inch in North America, smaller 

in Europe) could economically reduce failure rates.  As previously observed (Neelakantan et al., 

2008), assuming a lower break rates for larger diameters would result in longer optimal replacement 

periods and in some cases lower total costs if larger diameters were used than was necessary for the 

network capacity, despite the increased material and construction costs.  Based on the results of this 

study, changing from a standard of 100mm to 150mm could reduce main breaks in these mains by 

roughly 1/3, and changing from 100mm to 200mm could reduce main breaks by roughly half.  A 

further potential benefit of larger diameters is improved energy efficiency in networks (Dziedzic & 

Karney, 2014).  A comprehensive review of optimal diameters, considering the operational cost 

reductions from both reduced energy costs and reduced break repair costs, is recommended as an area 

for further research. 

6.1.3 Age as a Complex Predictor of Break Risk 

As with pipe length, pipe age is an intuitive predictor of break rates.  The concept of the bathtub curve 

of asset life is an established concept that is well accepted by most engineers.  

Surprisingly, the data in this study did not conform to these expectations for most materials.  The 

relationship between failure rate and age in the data from this study was more complex.  As was 

found in prior studies, failure rates began low and then increased for an initial period.  This period of 

rising break rates varied by material and utility, with a typical value of 30 to 40 years.  A period of 

declining break rates followed, also with a varying duration.  A second rise in the break rate would 

follow for materials with sufficient history.  Beyond that point the data was too sparse to determine 

whether another fall in the break rate occurs or if the rise is indefinite. 

The implications for industry of the rise and then fall of the failure rate are substantial.  One 

practice used for selecting pipes to replace is to track the failure rates of each cohort, to project them 

forward linearly, and select the cohorts with the highest future expected failure rates.  A second 

practice is to track the cumulate failure rate over time for a given cohort and use this rate as a 

prioritization method.  The presence of a rise and subsequent fall of failure rates with age would mean 
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that either practice runs a risk of selecting pipes for replacement just as they are entering a long 

period (in some cases over 50 years) of low failure risk.  Confirming this pattern, and making industry 

professionals aware of it, could prevent tens of billions of dollars annually in unnecessary capital 

expenditures around the world. 

While the pattern is not intuitive, an alternate paradigm of pipeline failures could explain it.  Rather 

than consider “age” as the cause of failure, consider instead that there will be a small number of 

potential time-dependent processes which can lead to failure.  Consider a cast iron pipeline with a 

bituminous external coating.  Certain points along the pipeline will have a thin or damaged coating 

and will be subject to external corrosion.  The corrosion will progress at a speed described by some 

random distribution.  These points will reach the point of failure at another random distribution, 

determined by the original wall thickness and safety factor as well as the random distribution of the 

corrosion speeds.  If the number of potential points of failure for this particular mechanism is finite, 

then this would form a “wave” of failures with a characteristic shape, including a peak and then a 

valley.  Once the bulk of this “wave” had passed, nearly all the points along the pipeline subject to 

that degradation mechanism would have failed, with the remaining points simply not having the 

appropriate conditions for the mechanism to take place.  By contrast, a degradation process which 

applies to all points along the pipeline could show indefinite growth in the failure rate until each stick 

of the pipeline had failed and been replaced.  Embrittlement of PVC with age is an example of such a 

process.  While exposure to sunlight speeds up this process, it will proceed regardless of 

environmental conditions. 

Under such a paradigm, any given cohort of pipe would be subject to one or more waves of failure 

caused by specific degradation mechanisms that applied only to certain sticks of pipe.  Eventually a 

ubiquitous failure mechanism would take hold and cause an indefinite rise in the break rate; however, 

it is possible that the time until this occurs has been substantially underestimated for some materials. 

Further investigation of this hypothesis would require a substantial program of material testing, 

modeling, controlled experimentation, and likely the examination of many samples of exhumed pipe.  

This is left as a direction for future research. 

6.2 From the Exploratory Models 

A key observation from the exploratory models was the effectiveness of decision tree-based models 

in forecasting failure risk.  Decision tree-based models, including both simple decision tree and more 
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complex Random Forests and Gradient Boosted Trees, consistently performed well in this study.  

This finding was true for both problem formulations studied: predicting whether a break will occur in 

a segment-year tuple and for forecasting the number of breaks in a cohort-year tuple. 

This finding aligns with the results of the exploratory analysis.  Many of the powerful predictive 

variables, such as diameter, had non-linear relationships with the break rate.  Others, such as age, had 

non-monotonic relationships, wherein the break rate increased in certain ranges but decreased in 

others.  Tree-based models are effective at representing these types of complex relationships in 

numerical data. 

The performance of the exploratory models in the segment-year break prediction was noteworthy 

from a perspective of practical application to industry.  Their performance against the metric of 

cumulative lift at 10% highlights this applicability.  The baseline models were generally able to 

achieve a lift at 10% of roughly six times.  This means that a utility using this method to select 10% 

of their pipes for replacement or rehabilitation would be able to avoid 60% of the breaks in the 

upcoming year.  This represents a highly efficient rehabilitation / replacement program using quite a 

simple model. 

These models also trained quickly, operate quickly at inference time, and are relatively explainable.  

The strong performance of these models in the domain leads to a clear recommendation for their use 

in modeling pipe failure risk. 

The caveat is that these models require access to a large set (both in number of pipes and failure 

history) of clean data from each utility and would furthermore require each utility to train their own 

machine learning model.  

6.3 From the Generalized Machine Learning Model 

This section presents observations and discussion of the results from the final generalized machine 

learning model. 

6.3.1 The Case for Predicting Probability of Failure in a Given Time Period 

This study has demonstrated that the Probability of Failure for a given pipe in a given time period 

PoF(t | x) can be estimated by a pretrained machine learning model.  This is the recommended target 
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variable for the application of machine learning to pipe failure prediction due to the broad practical 

applicability of the results, both to utility decision making and engineering practice. 

In survival analysis, as described in Chapter 2.2.3, one of the core measures used is the hazard 

function.  This can be expressed as a conditional hazard function for a given member of the 

population h(t | x), or as an aggregate hazard function for a cohort h(t).  The conditional hazard 

function h(t | x) is the probability of a member of the population described by feature vector x to 

experience a failure during time period t, conditional upon having survived to the start of time period 

t.  This is precisely what is provided by a machine learning model in estimating PoF(t | x).  All other 

common metrics for survival analysis, such as the failure density function, the cumulative failure 

function, the survival function, and mean time to failure, can be calculated by straightforward 

numerical methods using the conditional hazard function.  As such, the estimate of PoF(t | x) is a 

target variable appropriate for use in survival analysis.  

In failure risk assessment, as described in Chapter 2.2.4, the total risk of failure of an asset in a time 

period t is described as the product of the probability of failure and consequence of failure.  The 

probability of failure of a given asset in a given time period is precisely what is provided by a 

machine learning model in estimating PoF(t | x).  As such, the estimate of PoF(t | x) is a target 

variable appropriate for use in failure risk assessment, when combined with a separate method of 

estimating the consequence of failure. 

In decision optimization, as described in Chapter 2.2.5, calculations are made to determine choices 

which result in the maximum benefits or minimum costs.  A generalized cost equation for pipe 

replacement decisions includes the probability of failure in a given time period for an asset with 

specific features (length, diameter, material).  This is precisely what is provided by a machine 

learning model in estimating PoF(t | x).  This can be used in optimization calculations, simulating 

different design decisions by changing features of x (e.g., different materials, diameters, etc.) and 

searching for the optimal decisions.  By varying the value of t (and adjusting any features in x as 

necessary), long term cost estimates can also be calculated in support of these optimization 

calculations.  As such, the estimate of PoF(t | x) is a target variable appropriate for use in decision 

optimization. 

In utility capital improvement planning, as described in Chapter 2.1.3.2, utilities seek to make pipe 

replacement decisions which will improve their performance against key performance indicators.  
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Several common performance indicators, such as water loss rate and breaks per 100km per year, can 

be directly calculated using the probability of failure of a given pipe in given time period.  This is 

precisely the output provided by a machine learning model estimating PoF(t | x).  This can be used to 

prioritize pipes for replacement in a manner that will improve these metrics in a predictable manner.  

As such, the estimate of PoF(t | x) is a target variable appropriate for use in utility capital 

improvement planning. 

In utility master plans, as described in Chapter 2.1.3.1, long term projections of capital and 

operational costs are required.  A significant operational cost element is the costs associated with 

water main breaks.  Estimating the future number of water main breaks can help plan for these costs.  

When calibrated linearly to provided Expected Number of Failures, this quantity can be calculated 

using a machine learning model’s estimate of PoF(t | x).  Furthermore, master planning involves 

analyzing the tradeoff between capital costs (cost of replacement) and operational costs (cost of 

responding to failures) associated with various water main replacement program decisions.  The 

estimates of Expected Number of Failures under different simulated scenarios can be provided by 

calculating PoF(t | x) with modifications to the values of t and x to match these scenarios.  As such, 

the estimate of PoF(t | x) is a target variable appropriate for use in utility master planning. 

This choice of probability of failure of a given pipe in a given time period as a target variable is 

appropriate for all of the applications discussed in this thesis.  As a highly practical choice for 

application of results, it is recommended for use. 

6.3.2 The Case for AUC and Lift at 10% as Standard Performance Metrics 

A wide range of performance metrics are available for machine learning classifiers.  Table 36 notes 

several desirable criteria for a performance metric and which of the available performance metrics 

meet each criterion.  The criteria considered are: 

 Is a standard metric.  A standard machine learning performance metric is desirable: one 

that is well understood, clearly documented, and ideally available in standard software 

packages.  This ensures that the metric itself is calculated consistently to allow comparison 

across studies.  Custom metrics, requiring manual implementation for each study, introduce 

risk of a metric that is nominally the same being implemented differently. 
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 Independent of decision threshold.  Most applications of pipe failure prediction rely on 

the relative ranking of pipes.  A metric which depends on the selection of a decision 

threshold does not facilitate comparison of the fitness for use of different models. 

 Can be applied to all pipes.  Certain metrics can only be applied to pipes with recorded 

history of failure.  This limits their broad applicability and understandability. 

 Shows ability to rank pipes.  Certain metrics demonstrate the ability of a model to rank 

the relative failure risk of all pipes.  This is desirable for long-term planning. 

 Focus on high-risk pipes.  Certain metrics focus on the ability of a model to successfully 

identify the highest risk pipes.  This is desirable for medium-term replacement decisions. 

 Simple to explain.  A metric with a simple explanation that will be intuitive for a 

layperson is far more likely both to be considered in practice and less likely to be 

misapplied due to incorrect interpretation. 

Table 36: Potential performance metrics vs desirable criteria. 

  

Is a 
standard 
metric 

Independent 
of decision 
threshold 

Can be 
applied to 
all pipes 

Shows 
ability to 
rank pipes 

Focus on 
high-risk 
pipes 

Simple 
to 
explain 

Accuracy y   y     y 
Precision y   y     y 
Recall y   y   y y 
F1 Score y   y       
Maximum F1 Score y y         

Area under ROC 
curve y y y y   y 
Lift at 10% y y y  y y 
Log loss y y y       
Concordance index y y   y     

Area under break 
capture curve   y y y   y 
 

Many standard metrics, such as Accuracy, Precision, Recall, and F1 Score, can be immediately 

discounted for recommendation, as they rely on the decision threshold. 
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Log loss and Maximum F1 Score are both useful measures.  Neither, however, is particularly 

focused on the relative ranking of pipes nor the performance on high-risk pipes.  Most importantly, 

neither has a simple and intuitive explanation.  Further, neither has an explanation in the domain of 

pipe failure prediction which is intuitive and simple to explain to a layperson. 

The concordance index is an effective measure of the ability of a model to rank pipes.  It is, 

however, only applicable to pipes with at least one failure recorded in their history.  Furthermore, it 

lacks an intuitive explanation. 

Area under the break capture curve is a well-crafted metric for this application.  It has a simple and 

intuitive explanation and would likely be correctly used to select models for pipe replacement 

prioritization.  Its only downside is that it is not a standard metric and must be separately coded for 

each study.  This introduces a substantial risk of variations in understanding or implementation, 

which would result in comparison of different measures that are nominally the same. 

Area under the ROC curve and Lift at 10% each meet nearly all the desired criteria.  Each is a 

standard metric already implemented in most machine learning packages.  Each has an intuitive 

explanation in the domain of pipe failure prediction.  The area under the ROC curve measures how 

well the model ranks the pipes in order of risk of failure, with a score of 0.5 indicating random 

ranking and 1.0 indicating perfect ranking.  The Lift at 10% measures what portion of breaks could be 

avoided if the 10% most at-risk pipes were to be replaced.  When considered jointly, the two can 

confirm that a model is broadly effective at ranking pipes and particularly effective at identifying the 

highest risk pipes.  This makes them appropriate metrics for comparing models. 

It is further noted that in this study, both metrics were stable regardless of whether the model was 

used to predict whether a break would occur in a one-year or five-year period.  If this finding is 

consistent in other studies, and in particular, if the same is true over longer time periods such as 10 or 

20 years, it would mean that performance by these metrics could be compared across studies using a 

range of different time periods.  This is left as an area for future research. 

6.3.3 Effectiveness of Preprocessing Layer 

Ubiquitous in the literature is the claim that substantial manual data cleansing is required on utility 

data before application of machine learning for pipe failure prediction (Delnaz et al., 2023).  This 

study has demonstrated that automated preprocessing can remove the need for this cleansing. 
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A summary of comparable results from the literature (see Chapter 2.3.2.2 for details) in which 

AUC was reported is provided in Table 6 .  Performance as measured by AUC ranges from 0.81 to 

0.88 when a time split is applied between train and test sets and between 0.80 and 0.90 when no time 

separation is enforced.  This finding aligns with the results of the exploratory modeling conducted in 

this study and described in Chapter 4.3.1.6.  This study showed that an AUC score of 0.87 can be 

achieved (see Chapter 5.2.3) with training and testing on each utility separately, using only the 

automated preprocessing steps described here, and no manual or utility-specific data cleansing rules.  

This result nearly matches the top results reported in the literature of 0.88 when a time split is 

enforced between train and test data sets. 

6.3.4 Benefit of Pooling Data 

In all tests conducted during this study, the Inclusive data scheme outperformed the Isolated data 

inclusion scheme by every performance measure (see Chapter 5.2).  The average performance 

difference across the metrics was approximately 10%.  This result suggests that even utilities with 

strong record keeping and data management practices would benefit from pooling data for the 

training of machine learning models.  Performance on the Inclusive data selection scheme reached an 

AUC score of 0.89 on the preprocessed data, exceeding the highest score found in Error! Reference 

source not found. in which a time split is applied between the train and test sets.  This result suggests 

that the benefits of pooling data exceed the benefits of investing in extensive data management 

activities.   

On the converse, the administrative burden for utilities to share their data is not trivial.  This fact 

was demonstrated by the time required to obtain data in this study and the small proportion of 

contacted utilities who were willing to share data for this study, as described in Chapter 3.2.  Whether 

a 10% improvement in the efficiency of their capital improvement programs is a sufficient benefit to 

entice utilities to overcome the administrative obstacles to sharing data is an area left for future 

research. 

6.3.5 Practicality of Using a Pretrained Model 

The ability of a pretrained model to extrapolate both forward in time and to new utilities concurrently 

has been demonstrated.  The performance reported in Chapter 5.2.3 shows that an AUC score over 

0.86, and a Lift at 10% of over 5x, is feasible when using a model trained using only historical data 
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from other utilities, and without any utility-specific data cleansing.  This result essentially matches 

the performance obtained when training and testing models on each utility in isolation during this 

study, confirming the findings in Daulat et al. (2024) that pooled data from other utilities can match 

the performance of a utility using its own data.  Furthermore, it is comparable to the highest 

performance found in the literature of 0.88 (see Error! Reference source not found.).   

Consequently, the use of a pretrained model using only a small number of commonly available  

features can perform as well as a model specifically engineered for an individual utility using all 

available data and manual data cleansing.  The most critical features are length, material, diameter, 

installation date, and the recent failure history (within the past five years), which should be available 

at nearly all utilities.  

This finding offers significant opportunities for operational efficiency among utilities, removing the 

need for each to train their own models.  Furthermore, it opens up the practical possibility for small 

utilities, who may lack the capacity for extensive data management programs or the ability to train 

and test their own models to nevertheless benefit from the application of machine learning.   

6.3.6 Areas for Model Improvement 

Several areas were identified in which stronger performance may be desirable. 

First and foremost, the model performance was worse on pipes which had experienced previous 

failures.  This is likely a result of the fact that these make up a small proportion of the dataset.  

Stronger performance on these high-risk pipes would be desirable in a model.  Training a separate 

model specifically on these pipes may prove beneficial and is left as an area for future research. 

Second and related, the model performance was weaker on pipes with a recorded history of 

rehabilitation.  This finding may indicate that further information, such as the type of rehabilitation or 

the time since rehabilitation, could benefit the model.  Investigation into effective features to improve 

performance on this subpopulation is left as an area for future research. 

6.4  Chapter Summary 

This chapter provided a discussion of the results obtained in this research project.  Two interesting 

findings from the exploratory analysis were discussed.  The strong inverse relationship between pipe 

diameter and failure rate has possible implications for both pipe design standards and for the selection 
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of pipe diameters.  The observed relationship between pipe age and failure rate, with peaks and 

subsequent declines, is a novel finding which may have significant implications for pipeline 

management decisions.  The practical applicability of the generalized machine learning model for 

pipe failure prediction was discussed in detail.  The preprocessing layer was effective in allowing a 

pretrained model to be applied to new utilities, and has the potential for application to other problem 

domains where pretrained models would offer practical value.  Pooling training data among utilities 

was also shown to offer the potential for a roughly 10% improvement in the effectiveness of a pipe 

replacement program at reducing pipe failures.  Several areas for model improvement were also 

provided. 

Chapter 7 provides the final conclusions of this research, including the limitations of the methods 

applied and potential areas for future research. 
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Chapter 7 

Conclusions 

7.1 Key Findings and Potential Impact 

This thesis has demonstrated that a practical machine learning model for prediction of water pipe 

failure is indeed possible.  A method has been presented for integrating data from multiple utilities, 

without the need for manual data cleansing and estimating both the calibrated Probability of Failure 

and the Expected Number of Failures within a given timeframe.  The method has been demonstrated 

on data from six water utilities across four countries.  It was found that pooled data from multiple 

utilities yields models that outperform those trained on a single utility in isolation.  With the 

application of the preprocessing and calibration steps proposed, it has been shown that models trained 

only on other utilities’ data can match the performance of models trained on a single utility in 

isolation.  The model presented achieved an AUC of over 0.86, and Lift at 10% of over 5x.  This 

performance, done without using data from the target utility for training or the application of manual 

data cleansing, is comparable to that reported in the literature for models trained on individual 

utilities’ data with manual preprocessing applied.  The expected number of failures, when aggregated 

to cohorts, yielded correlations with R2 value of 0.99 in comparison to actual future failure numbers. 

7.1.1 Key Contributions to the Research 

The three most significant contributions to the research are the creation of a large pipe failure dataset 

from diverse sources, the demonstration of generalizability of pretrained models across utilities, and 

the cross-encoding method for handling of categorical features. 

The dataset itself is of significant value, as prior research into pipe failure prediction has generally 

used data from a single source (one utility, or one country).  The large and diverse dataset enables 

generalized observations which apply across a range of geographic and environmental regions. 

 The demonstration that a model trained using data from a group of utilities can be effectively used 

by other utilities that did not contribute to the training data is also significant.  Prior published 

research has demonstrated that a model trained on data from one utility can predict future pipe 

failures in that same utility.  This is of limited practical applicability, as most utilities lack the data 

and expertise to train their own model.  The novel finding of generalizability from this study shows 

that pipes around the world fail under consistent enough patterns that a more general model can be 



 

 198 

created.  This confirms the feasibility of a more practical approach to research into machine learning 

for pipe failure prediction, searching for broadly applicable models and results, rather than ones 

specific to one utility or country. 

The proposed method of categorical feature cross-encoding offers a valuable technique to support 

such generalized models.  This method overcomes two significant limitations of dummy encoding, 

the conventional approach for handling categorical variables in machine learning models.  The first 

limitation is that new categories not seen in the training data cannot be used at test time when dummy 

encoding is used.  By representing each category by a vector of statistics drawn from samples with 

that label, new labels not seen at training time can now be used.  The second limitation is that dummy 

encoding can produce a large number of features: one for every value of the categorical variable.  

Cross-encoding offers a simple means of limiting the number of features created.  These effects 

together may make cross-encoding a viable alternative to dummy encoding for a wide variety of 

situations, particularly when data is integrated from disparate sources. 

7.1.2 Findings and Potential Impact 

An argument has been made for the preferred target variable for pipe failure prediction using 

machine learning.  Predicting a calibrated probability of failure for a given time period yields results 

which can be easily applied to several engineering applications, including failure risk analysis 

(considered jointly with the consequence of failure), survival analysis (as an estimate of the hazard 

rate, which can be numerically integrated to provide survival and failure curves), and optimization 

calculations.  It can be directly utilized to prioritize pipe replacement in the five-year period typically 

used for utility capital improvement plans.  By linearly scaling to the Expected Number of Failures, 

total expected failure forecasts can be made per cohort or per utility to support long term budgetary 

planning. 

A further argument has been made for the preferred performance metrics for pipe failure prediction 

using machine learning.  The Area Under the Curve for the Receiver Operating Characteristic is a 

standard metric which aligns well with the need for relative prioritization of pipes for replacement.  

Lift at 10% offers a second standard metric with an interpretation that is both intuitive and relevant: if 

a utility were to select 10% of their pipes for replacement, it shows the fraction of the breaks which 

could be avoided. 

Analysis of such a large and diverse dataset allowed novel observations to be made.   
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First, it was observed that pipe diameter is strongly related to the failure rate per km, with small 

diameter pipes failing more than 100 times as frequently as large diameter pipes.  It was noted that the 

correlation is inverse, suggesting that the length to diameter ratio may be a useful normalization 

factor for failure rates, with failures per million diameters per year on a similar scale to the existing 

failures per 100 km per year standard.  It was further noted that the literature includes observations 

that the common failure mode in small diameter pipe (circumferential splits) is not accounted for in 

the common pipe design standards.  Combining these observations with the data in this study suggests 

that changing pipe design standards and diameter selection practices could reduce water main failure 

rates significantly, perhaps by as much as half.  Investigation into these phenomena and opportunities 

is left as an area of future research.   

Second, it was observed that for many materials, failure rates by age do not increase in an 

exponential manner as is assumed by many models, nor even monotonically.  In fact, they tend to 

reach a peak (between 20 and 50 years, depending on the material), then decline for an extended 

period, and then eventually rise again.  This observation has significant implications for survival 

curve modeling, the design life and time to failure concepts, and for pipe rehabilitation / replacement 

programs.  One possible explanation is that the first few decades after a pipe is installed represent a 

secondary wear-in period, where local flaws in material or installation gradually lead to failure, and 

that genuine wear-out failures do not begin until much later than was previously thought.  

Investigation into this phenomenon, its causes, and its implications is left as an area for future 

research. 

Analysis of the model results confirmed that even large utilities with extensive records and clean 

data could benefit from pooling their data to train machine learning models for probability of failure.  

Furthermore, utilities with limited historical records and less clean data can benefit from a model 

trained on data from other utilities, reaching performance on par with large utilities training on their 

own data alone. 

The method for integrating data from multiple contributing sources has been demonstrated to be 

highly effective in allowing results to generalize and extrapolate to new utilities.  Central to this 

method was the concept of encoding categorical features as vectors, drawn from aggregate statistics 

of numerical features from samples sharing the same label for that categorical feature.  This method 

may be broadly applicable, particularly when pooling data from contributors using different language 
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or jargon for the application of machine learning models.  Further investigation into the applicability 

of this method, as well as testing of its generalizability, are left as areas for future research. 

Finally, it was observed that the model performance is weaker on pipes which have previously 

failed and which have previously been rehabilitated.  An area suggested for further research is the 

study of the future performance of water pipes which have previously failed and/or been rehabilitated.  

These pipes are often among those considered for replacement, and a better understanding of their 

expected future performance would be of great value. 

7.2 Limitations of Approach 

Despite overcoming several major limitations of prior approaches to machine learning for pipe failure 

prediction, three significant limitations remain.  Two of these stem from the available data, and the 

third is related to the modeling method itself. 

First, no sensor data was used by the models.  It is a reasonable hypothesis that sensor data from 

permanent monitoring devices and/or pipeline inspections contains significant useful information 

regarding the condition of pipes.  Upon initiating this research program, the researchers’ intent was to 

collect such data and integrate it into the machine learning model.  Unfortunately, no such data was 

available from the participating utilities. 

Second, no environmental data was used by the models.  Environmental data can be grouped into 

two forms: local data which would apply to individual pipes (e.g. type of bedding supporting the pipe 

or whether it is covered by grass, sidewalk, or a road), and regional data which would apply to an 

entire utility (e.g. historical temperatures and rainfalls).  Local data was not available from the 

participating utilities.  Regional data was not included due to a concern that it would lead to 

overfitting in the models.  With only one value per utility and six participating utilities, such data 

would not present sufficient unique data points for the models to infer robust relationships. 

Third, it was noted in Chapter 5.4.1.6 that model performance was worse among pipes with 

recorded history of failures or rehabilitation.  Such pipes would be of interest in pipe replacement 

prioritization programs.  Improving the model’s ability to discriminate among this subpopulation of 

pipes would enhance its potential for practical use. 
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7.3 Future Research 

Three broad areas for future research have been highlighted by this thesis: deeper research into key 

findings from the data, addressing the remaining limitations of the model, and a direct comparison 

between this model and other approaches. 

The large dataset used in this research resulted in two findings which bear further research.  First 

was the strong inverse relationship observed between diameter and failure rates.  Deeper research into 

the physical causes of this observed phenomenon is recommended, as is exploration of the 

implications for pipe design standards and selection of diameters for installation.  Second was the 

relationship observed between age and failure rates, with peaks and subsequent declines.  This novel 

finding suggests three potential paths of research: determining the root cause of the observed pattern, 

exploring its implications for the validity of prior research and existing standards which assume an 

exponential increase of the failure rate with time, and revising the practical risk and optimization 

engineering calculations to account for this relationship.  One possible explanation for the root cause 

of this pattern would be that some failure modes are applicable only at a finite number of points in a 

pipe network, as outlined in Chapter 6.1.3.  Exploration of this hypothesis by formulating a statistical 

model and testing its fit to failure data may be a valuable path of research. 

The limitations of this model could be addressed by future research projects.  Addressing the data 

limitations would require a significant effort to acquire data from utilities containing pipe sensor 

measurements and environmental measurements.  Acquiring such data from a range of utilities is 

likely to be a multi-year effort, and may require the continuity of work offered by a research lab 

focused on this area.  Addressing the model underperformance on pipes with recorded history of 

failure or rehabilitation, however, may be practical using data similar to that used in this study.  

Training a separate model only on pipes with this history may prove effective.  Limiting the training 

and test set to these pipes, and introducing additional features using this history data, may prove to be 

effective. 

As a final direction for future research, the generalizability of this model makes it particularly well 

suited to direct comparison with other pipe failure prediction approaches.  This model is pretrained, 

requires a very small number of data fields, and does not require manual data cleansing.  As such, the 

test data used by other research programs could easily be tested using this model as well.  This would 

allow direct comparison of the model results with any other model used to predict probability of 
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failure per segment.  The calibration for expected number of failures per segment allows the model to 

be directly compared with other models which predict the number of failures per cohort.  By treating 

the model’s predicted number of failures per segment per year as the hazard function, it can also be 

compared directly against survival curve estimates.  This would allow the results of this model to 

serve as a standard comparison point for nearly any other model, thereby facilitating performance 

comparison across results which cannot currently be directly compared. 
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Appendix A 

Detailed Data Tables 

A.1.  Pipe Material Detail 

Cast Iron (CI) 

Description Older, thick-walled ferrous pipes.  While susceptible to corrosion, the sheer 
volume of metal used offered these pipes a long service life. 

Degradation 1) Internal and external corrosion, both general and pitting corrosion. 
2) Cracking of the pipe wall (brittle failure). 
3) Joint failure, particularly where joints were sealed using a material with a 

different coefficient of thermal expansion, such as leadite. 
Usage Common for small, medium, and large diameters prior to 1960 (Paradkar, 

2012). 
Assessment Measuring the loss of pipe wall thickness via a range of techniques.  Leak 

detection often used to detect joint failure. 
Rehabilitation Cleaning and lining, often with cement mortar, can extend the life of these 

pipes. 

Ductile Iron (DI) 

Description Newer, thinner walled ferrous pipes.  Often internally lined and externally 
coated to provide protection against corrosion. 

Degradation 1) Corrosion pitting where external coating is damaged. 
2) General corrosion where no corrosion protection applied. 

Usage Common for small and medium diameters from 1960 to 2000 (Paradkar, 2012). 
Assessment Leak detection for pinhole leaks due to corrosion pitting.  Acoustic wall 

thickness testing for general corrosion.  Inline electromagnetic techniques are 
effective but are rarely used due to high ratio of inspection cost to 
replacement cost. 

Rehabilitation Cathodic protection via sacrificial anodes. 

Steel (ST) 

Description High strength pipe, more expensive than iron.  Generally internally lined and 
externally coated to provide protection against corrosion. 

Degradation Corrosion pitting where internal lining or external coating is damaged. 
Usage Medium and large diameters, particularly for high pressures (Joshi, 2012). 
Assessment Leak detection for pinhole leaks due to corrosion pitting.  Inline near field eddy 

current and magnetic flux leakage are sometimes used for large diameter pipes 
that are highly critical or have a high cost of replacement. 

Rehabilitation 1) Cathodic protection via impressed current. 
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2) Replacement or carbon fiber reinforcement of individual degraded 
sections. 

Asbestos Cement (AC) 

Description Cement mixed with asbestos fibers to provide tensile strength. 
Degradation 1) Calcium leaches from the material, weakening the pipe wall. 

2) Cracking, particular in weakened portions (brittle failure). 
Usage Common for small and medium diameters from 1940 to 1970 (Hu et al., 2008). 
Assessment 1) Acoustic wall thickness testing to measure average loss of structural 

material. 
2) Phenolphthalein dye testing to spot check loss of structural material. 

Rehabilitation Uncommon; degraded pipe is usually replaced. 

Polyvinyl Chloride (PVC) 

Description Newer plastic pipes using a variety of materials. 
Degradation These pipe types are relatively new and have low rates of leakage and failures.  

Aside from the first few small cohorts made from substandard material, little 
research has been published on the actual degradation of plastic pipes. 

Usage Increasingly common for small diameters from 1950 onwards (Plastic 
Pipework, n.d.). 

Assessment No common and effective method is available. 
Rehabilitation Uncommon.  These pipes are generally relatively new. 

Polyethylene (PE), including High Density Polyethylene (HDPE) 

Description Newer plastic pipes using a variety of materials. 
Degradation These pipe types are relatively new and have low rates of leakage and failures.  

Aside from the first few small cohorts made from substandard material, little 
research has been published on the actual degradation of plastic pipes. 

Usage Increasingly common for small diameters from 1950 onwards (Plastic 
Pipework, n.d.). 

Assessment No common and effective method is available. 
Rehabilitation Uncommon.  These pipes are generally relatively new. 

Concrete (CONC), including Prestressed Concrete Cylinder Pipe (PCCP) 

Description Composite pipe made from a concrete core wrapped with prestressing wires to 
keep it under compression.  A steel cylinder is often used inside the wires to 
act as a watertight membrane.  Cement mortar is applied for corrosion 
protection on the inside and outside. 
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Degradation Prestressing wires may suffer from corrosion or hydrogen embrittlement and 
then snap.  Once sufficient prestress is lost, the concrete core can lose its 
compression, allowing the pipe to rupture catastrophically. 

Usage Common for large diameters 1950 onwards (Manda, 2012). 
Assessment Testing for breaks in the prestressing wire via transformer coupling or acoustic 

monitoring. 
Rehabilitation Replacement or carbon fiber reinforcement of individual degraded sections. 

Copper (CU) 

Description Flexible metal pipe made almost exclusively in small diameters. 
Degradation External corrosion; internal mineral buildup reducing capacity. 
Usage Widely used for small diameters (Groover, 2019). 
Assessment Direct visual assessment. 
Rehabilitation Uncommon.  These pipes are generally replaced. 

 

A.2.  Pipe Condition Assessment Methods 

Pit Depth Measurement 

Description A pit gauge is used to manually measure the depths of corrosion pits.  The 
surface is often prepared by sandblasting to remove rust and graphitized 
material. 

Applicability Quantify loss of wall thickness from corrosion in ferrous pipes.  Primarily used 
on cast iron pipe and to a lesser extent ductile iron and steel.  

Usage Localized measurements, either from coupons or external in-situ. 
Raw Data Maximum or average pit depth(s) within given surface areas. 
Analysis Fit a statistical curve of pit depth populations and extrapolate. 
Analyzed Data Shape & location parameters of statistical curve or extrapolated pit statistics 

for full pipe segments. 

Ultrasonic Testing 

Description An ultrasonic pulse is applied to the pipe wall.  This reflects off the opposite 
surface, and the propagation time is used to calculate the wall thickness.  

Applicability Quantify loss of wall thickness from corrosion in ferrous pipes.  Sometimes 
used in conjunction with pit depth measurements to estimate original wall 
thickness.  

Usage 1) Localized measurements, either from coupons or external in-situ. 
2) Inline testing. 

Raw Data Ultrasonic pulse propagation times. 
Analysis Calculate wall thickness via speed of sound in material. 
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Analyzed Data Wall thickness at measurement points. 
Note: Presence of graphitized material causes multiple reflections, making 
analysis more difficult and possibly leading to false readings. 

Near Field Eddy Current 

Description An electromagnetic testing method where a periodic signal is applied to the 
pipe surface.  Localized eddy currents are measured beneath an array of small 
sensors, allowing determination of average all thickness beneath each.  Known 
as Broadband Electromagnetic when multiple frequencies used concurrently. 

Applicability Quantify loss of wall thickness from corrosion in ferrous pipes.  Less sensitive 
than magnetic flux leakage but lower cost and easier to apply, as it permits 
separation between sensor and pipe wall.  

Usage 1) Localized measurements, usually external in-situ. 
2) Inline testing (less common). 

Raw Data Phase and amplitude (or in-phase and quadrature) per frequency for each 
sensor. 

Analysis Relate the phase and amplitude to various thicknesses of the material (requires 
calibration to the specific material being tested). 

Analyzed Data Average wall thickness at each sensor for each measurement. 

Magnetic Flux Leakage 

Description Magnets are placed close together in contact with the pipe wall, saturating the 
area between them with magnetic flux.  Corrosion pits will cause leakage of 
this flux, which is detected by an array of Hall sensors close to the pipe wall.  

Applicability Quantify loss of wall thickness from corrosion in ferrous pipes.  More sensitive 
than eddy current techniques but also more costly, as it requires close contact 
between sensor and pipe wall.  

Usage 1) Localized measurements, usually external in-situ. 
2) Inline testing (less common). 

Raw Data Unidirectional flux from each Hall sensor, sometimes supplemented by eddy 
current sensor to help determine if the flux originates from the inside or 
outside surface of the pipe wall. 

Analysis Calculate pit size based the measured flux. 
Analyzed Data Pit size per measurement.   

Note: second level analysis may be performed as per pit depth measurements. 

Remote Field Eddy Current 

Description A periodic electromagnetic signal is applied to a pipe wall.  Eddy currents 
propagate further than the direct signal, allowing these to be measured by 
multiple receiver sensors spaced around the inside of the pipe in the “remote 
field” distance (typically 10 to 15 pipe diameters away).  
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Applicability Quantify loss of wall thickness from corrosion in ferrous pipes.  
Usage Inline testing. 
Raw Data Phase and amplitude of the received signal at each sensor. 
Analysis Calculate corrosion pit depths from variations in signal amplitude and phase. 
Analyzed Data Corrosion pit depths and locations. 

Transformer Coupling 

Description A coil of wire (the “exciter”) is used to induce a signal in the spiral-wound 
prestressing wire.  The resulting signal is then measured by a second coil (the 
“detector”).  Discontinuities in the prestressing wire cause changes in the 
signal. 

Applicability Prestressed concrete cylinder pipe (PCCP) to detect and quantify breaks in the 
spiral-wound prestressing wire.   

Usage Inline testing. 
Raw Data Phase and amplitude of the received signal. 
Analysis Calculate number of broken wires from phase and amplitude of received 

signal. 
Analyzed Data Number of broken wires. 

Wire Break Monitoring 

Description Acoustic sensors are placed along the length of a pipe.  When prestressing 
wires in the pipe break, this sound is captured as an indication of degradation. 

Applicability Prestressed concrete cylinder pipe (PCCP) to detect and quantify ongoing 
breakage of the spiral-wound prestressing wire.   

Usage External and internal hydrophones or internal fiber optic sensor. 
Raw Data Acoustic data. 
Analysis Detect wire break events in the acoustic data and quantify them. 
Analyzed Data Number of wires that broke during the monitoring period. 

Note: This measures the rate of degradation not the current state. 

Acoustic Wall Thickness Testing 

Description Acoustic noise or a pressure wave is induced in the fluid inside a pipe.  The 
propagation time for this disturbance is measured between two sensors 
located along the pipe.  That, in turn, is used to calculate the average wall 
thickness over the interval between the two sensors.  

Applicability Primarily asbestos cement and cast iron pipe to measure the average 
remaining thickness of structural material in the pipe wall.   

Usage External testing, measuring average pipe condition over an interval (typically 
100m to 1,000m). 

Raw Data Transit time and distance between a pair of sensors. 
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Analysis Calculate average pipe wall thickness using relationship between speed of 
sound in a fluid-bearing pipe and the thickness of the pipe wall. 

Analyzed Data Average thickness of structural pipe wall material between a pair of sensors. 

Phenolphthalein Dye Testing 

Description A cross-section of asbestos cement pipe is cut and smoothed; then it has a 
phenolphthalein dye applied.  This dye turns pink in the presence of 
structurally sound material, allowing estimation of the remaining pipe wall 
strength. 

Applicability Quantify loss of effective wall thickness due to calcium leaching in asbestos 
cement pipes.  

Usage Local testing from pipe coupons. 
Raw Data Photographs of the pipe cross-section surface after application of dye. 
Analysis Measurement of loss of structural material from the internal and external 

diameter. 
Analyzed Data Average or maximum thickness loss from inner and outer diameter. 

Leak Detection 

Description Acoustic sensors are placed at locations along or inside the pipe.  The sound of 
water escaping is detected, indicating the presence and location of a leak. 

Applicability All pipe materials.  Particularly applicable to ductile materials, such as ductile 
iron, steel, and PVC, which can support leaks for long periods before failing 
completely.  

Usage External sensors, or inline testing for greater sensitivity to small leaks. 
Raw Data Acoustic data. 
Analysis Sound amplitude, spectrum, and cross-correlation to detect & localize leaks. 
Analyzed Data Leak presence, sometimes location and size. 

Inline Video (Closed Circuit Television) 

Description A closed-circuit television camera passed through the pipe to detect visible 
signs of degradation. 

Applicability Non-pressurized pipes running partially full (very rare in water networks). 
Usage Inline testing. 
Raw Data Video. 
Analysis Visual observation of defects such as cracks, obstructions, scouring, etc. 
Analyzed Data Defect types, severity, and locations per a standard defect coding system, 

often the WRC / NASSCO system (Rahman & Vanier, 2004). 
 

A.3.  Data Set Summary Statistics 
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The following tables in this appendix provide summary statistics of the data set.  These are presented 

for the Pipes (Error! Reference source not found.), for the Breaks (Error! Reference source not 

found.), and for the Segment-Year combinations (Error! Reference source not found.).  Measures 

are provided per utility contributor to provide a sense of the completeness of each contribution.  One 

aggregate measure across all data sets is provided for each data column, with the aggregation selected 

to provide insight into the column.  Note that for each column with a _count suffix, this measure 

provides the count of non-blank entries for that column.  The sum of these entries describes how 

many of the entries include this feature.   

Table 37: Descriptive statistics for the Pipes table, aggregated by participating utility. 

Column aw ham peel sin tor wnet Aggregation 

Count 77,256 36,769 57,376 208,842 50,401 151,330 Sum: 581,974 

pipeid_distinct 77,256 36,769 57,376 208,842 50,400 151,330 Sum: 581,974 

dia_min 19 1 10 15 0 1 Min: 0 

dia_max 1,800 2,250 2,550 2,200 4,500 1,500 Max: 4,500 

dia_count 77,256 36,769 57,376 208,842 50,383 150,290 Sum: 580,916 

dia_avg 231 229 251 229 244 376 Mean: 260 

dia_stddev 163 150 184 217 210 469 Mean: 232 

mat_count 77,256 36,769 57,376 208,842 49,340 150,250 Sum: 579,833 

mat_distinct 10 20 26 14 21 18 Sum: 109 

len_min 0.01 0.00 0.00 0.22 0.10 0.00 Min: 0 

len_max 2,136 2,320 5,478 7,034 3,855 4,855 Max: 7,034 

len_avg (m) 66 57 95 41 131 25 Mean: 69 

len_sum (km) 5,128 2,112 5,454 8,513 6,604 3,723 Sum: 31,535 

len_stddev 83 86 149 98 151 52 Mean: 103 

lining_count 0 3,075 0 167,617 17,974 106,208 Sum: 294,874 

lining_distinct 0 3 0 9 2 8 Sum: 22 

cor_protect_count 0 0 0 0 8,131 115,604 Sum: 123,735 

cor_protect_distinct 0 0 0 0 1 7 Sum: 8 

joints_count 0 0 0 0 12,379 115,403 Sum: 127,782 

joints_distinct 0 0 0 0 11 18 Sum: 29 

main_type_count 0 0 0 208,842 50,401 151,303 Sum: 410,546 

main_type_distinct 0 0 0 3 3 12 Sum: 18 

inst_year_min 1800 1758 1855 1900 1858 1853 Min: 1758 

inst_year_max 2022 2020 2021 2022 2015 2021 Max: 2022 

inst_year_avg 1970 1977 1994 1981 1954 1979 Mean: 1976 
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rem_year_min 
   

1900 1913 209 Min: 209 

rem_year_max 
   

2021 2014 2021 Max: 2,021 

rem_year_count 0 0 0 22,854 4,943 8,364 Sum: 36,161 

rehab_year_min 
 

1950 
 

2006 2 1978 Min: 2 

rehab_year_max 
 

2019 
 

2021 9991 2017 Max: 9,991 

rehab_year_count 0 2,937 0 48 20,313 1,163 Sum: 24,461 

active_count 0 0 57,376 208,842 50,401 151,330 Sum: 467,949 

active_sum 
  

48,210 156,284 44,623 140,039 Sum: 389,156 

loc1_count 77,256 0 0 183,042 50,393 151,293 Sum: 461,984 

loc2_count 0 0 0 0 0 151,330 Sum: 151,330 

owner_count 0 0 57,376 0 50,401 151,316 Sum: 259,093 

owner_distinct 0 0 7 0 5 2 Sum: 14 

water_type_count 0 0 0 208,842 0 151,316 Sum: 360,158 

water_type_distinct 0 0 0 3 0 3 Sum: 6 

note1_count 0 0 0 208,733 8,894 29,267 Sum: 246,894 

roughness_count 0 0 0 191,392 0 151,330 Sum: 342,722 

roughness_distinct 0 0 0 22 0 13 Sum: 35 

pressure_class_count 0 0 0 0 0 116,729 Sum: 116,729 

pressure_class_distinc
t 

0 0 0 0 0 13 Sum: 13 

manufacturer_count 0 0 0 0 0 37,076 Sum: 37,076 

manufacturer_distinct 0 0 0 0 0 16 Sum: 16 

deadend_count 0 0 0 0 5,185 0 Sum: 5,185 

deadend_distinct 0 0 0 0 2 0 Sum: 2 

soil_type_count 0 27,825 57,272 0 0 0 Sum: 85,097 

soil_type_distinct 0 14 8 0 0 0 Sum: 22 

soil_depth_count 0 36,769 0 0 0 0 Sum: 36,769 

The Pipe table values contain many obvious data quality issues.  An example is the 

“rem_year_min” (earliest year in which a pipe was removed from service) for wnet in the Pipes table.  

This shows the year 209, and is likely a data entry error where 2009 was intended.  A similar issue 

presents in the “rehab_year_max” (latest year in which a pipe was rehabilitated) for tor, which shows 

9991 (likely 1991).  A deliberate choice was made to leave these entries as they are when they do not 

interfere with the data processing pipelines.  This maintains an accurate representation of the expected 

outcomes of attempting to apply this model to a new utility’s data. 
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Table 38: Descriptive statistics for the Breaks table, aggregated by participating utility. 

Column aw ham peel sin tor wnet Aggregation 

count  4,362   7,345   7,643   10,330   76,027   48,275  Sum:   153,982  

brid_distinct  4,362   7,344   7,643   10,330   76,027   48,162  Sum:   153,868  

pipeid_distinct  3,314   3,683   3,263   3,619   17,011   19,777  Sum:   50,667  

date_count  4,362   7,345   7,643   10,330   76,027   48,275  Sum:   153,982  

br_year_min 2010 1982 1975 2010 1963 1999 Min:   1,963  

br_year_max 2022 2019 2020 2021 2014 2019 Max:   2,022  

br_year_distinct 14 39 48 13 56 22 Mean:  32 

loc1_count  4,362  0 0  4,610   69,961   47,909  Sum:   126,842  

loc2_count 0 0 0 0  70,884   47,900  Sum:   118,784  

event_class_count 0 0 0 0 0  48,275  Sum:   48,275  

event_class_distinct 0 0 0 0 0 1 Sum:   1  

cause_count 0 0 0  10,330   61,369  0 Sum:   71,699  

cause_distinct 0 0 0 3 198 0 Sum:   201  

note1_count 0  7,345  0 0  12,392   48,056  Sum:   67,793  

isbr_count  4,362  0 0 0 0  48,275  Sum:   52,637  

break_type_count  2,089  0 0 0  61,859  0 Sum:   63,948  

break_type_distinct 4 0 0 0 8 0 Sum:   12  

temp_count 0 0 0 0  34,574  0 Sum:   34,574  

fix_count 0 0 0 0  24,300  0 Sum:   24,300  

fix_distinct 0 0 0 0  7,117  0 Sum:   7,117  

soil_depth_count 0 0 0 0  55,133  0 Sum:   55,133  

soil_type_count 0  6,949  0 0  8,323  0 Sum:   15,272  

soil_type_distinct 0 13 0 0 11 0 Sum:   24  

The segment-years table is generated after the data integration steps described in Chapter 3.3, and 

as such shows statistics from after certain minimal data cleansing activities were undertaken.  As an 

example, manual examination of the tor dataset showed that recording of pipe breaks begin as an 

inconsistent ad-hoc activity, with some years having zero pipe breaks recorded.  The activity appears 

to have become consistent around 1963 and was likely added to the city’s standard procedures around 

this time.  To avoid generating Segment-Year records from the period of 1928 to 1962 that incorrectly 

show very few breaks, all data from prior to 1963 was dropped.  Similarly, each dataset included 

break records spanning only a portion of the final year.  To avoid creating artificially low break rates 

for the final year of records for each dataset (and the pipe segments and cohorts contained therein), 

this final partial year was dropped.  
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Table 39: Descriptive statistics for the Segment-Years table, aggregated by participating utility. 

Column aw ham peel sin tor wnet Aggregation 

count  841,142  1,026,773  1,417,439  1,875,295  2,122,983  2,762,929  Sum:  10,046,561  

year_min 2010 1982 1975 2010 1963 1999 Min:  1963 

year_max 2022 2019 2020 2021 2014 2019 Max:  2022 

pipeid_distinct  72,019   36,635   57,316   175,954   50,305   147,147  Sum:   539,376  
breaks_this_ 
year_sum 

 3,000   7,228   7,104   4,132   68,277   37,027  Sum:   126,768  

had_break_sum  2,845   6,697   6,198   3,830   60,460   30,825  Sum:   110,855  

dia_avg 240 227 252 242 239 413 Mean:  269 

len_avg (m) 70 60 103 38 135 24 Mean:  72 

len_sum (km)  59,200   61,697   146,245   71,907   286,086   67,596  Sum:   692,732  

age_avg 39 37 19 23 46 34 Mean:  33 
Breaks_per_100_ 
km_per_year 

5.07 11.72 4.86 5.75 23.87 54.78 Mean:  17.67 

Breaks_per_1000 
_seg_years 

3.57 7.04 5.01 2.20 32.16 13.40 Mean:  10.56 

Two measures of the break rate are provided for each dataset: breaks per 100 km per year and 

breaks per 1,000 segments per year.  Breaks per 100 km per year is a common metric in the industry.  

Breaks per 1,000 segments per year was selected to provide a scaling that is on a similar order of 

magnitude, given the average segment lengths in the data set.  These break rates show considerable 

variation from one utility to another. 

 


