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Abstract

As water networks age, many utilities are faced with rising water main break rates and insufficient
replacement funds. Machine learning is a promising tool to support efficient water pipe replacement
decisions. This thesis explores the practical application of machine learning for water pipe failure
prediction using a dataset of over 10 million pipe-year records from four countries. Analysis of
predictive factors shows that length, age, diameter, material, and failure history are each significant.
Two novel relationships with break rate are observed: with respect to diameter, an inverse linear
relationship, and with respect to age a peak at around 40 years followed by a decline lasting several
decades. A method is presented for predicting both probability of failure and the expected number of
failures in a given pipe and time period. By inferring units, encoding categorical features, and
normalizing for different utility practices, it is proposed that a single model can generalize across
utilities, geographies, and time periods without any utility-specific data cleansing. The model is
trained and tested on a leave-one-utility-out basis, with training data from time periods strictly prior
to test data. The resulting Area Under the Curve for the Receiver Operating Characteristic of over
0.85 and Cumulate Lift at 10% of over 5.0 demonstrate the practical applicability of the model,
matching the performance of models trained and tested on each utility’s own data. Within this model,
a method of cross-encoding categorical features with numerical features is introduced to enable
integration of data sets from diverse contributors. The applicability of these performance metrics and

model outputs to common utility water main replacement decision making processes is also shown.
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Chapter 1

Introduction

The distribution of potable drinking water is a cornerstone of modern sanitation. This is
accomplished by using networks of pressurized pipes running from water treatment plants to
individual customers. These water pipes can fail by leaking, breaking, or bursting. When this occurs,
this results in the loss of treated water, damage to the surrounding area, and disruption of water
supply services. Such failures are challenging to predict, as water mains are generally buried, making
physical inspections difficult. This study examines the application of machine learning as a method
of predicting water pipe failures. Its focus is on practical considerations in the use of such a model as

a decision support tool.

1.1 Water Distribution Networks and Pipes

The main components of a water distribution system are a raw water source (usually a lake, river, or
aquifer), a treatment plant, one or more pumps, and a water distribution network which brings the
treated water to customers. As shown in Figure 1, a water distribution network is divided into logical
segments of pipe, which typically run underground along a street and span from junction to junction.

A pipe segment is often composed of many sticks of pipe, connected together by joints.

Stick
Single piece of pipe from joint to joint;
Usually no individual records

Network

Many connected segments of
pipe used to bring water from
treatment plant to customer

Segment
Uninterrupted
sequence of
similar Sticks with
a shared asset ID

Image © Pam Broviak, available under Creative Commons 2.0 license.
https://www.flickr.com/photos/publicworksgroup/2269567444

Figure 1: Illustration of a water network, pipe segments, and pipe sticks.

A range of materials have been used for pipes, such as Cast Iron, Steel, Concreate, and
Polyvinylchloride (PVC). Each entire segment of pipe is generally installed at the same time, and

made of a single material. Pipe segments are usually the finest grained records kept by a utility.
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1.2 Water Pipe Failures and Their Prediction

A water pipe failure occurs when the pipe’s hydraulic integrity is compromised. Failures encompass
a wide range of severities, from tiny leaks that can only be detected via dedicated sensors, through to
catastrophic bursts releasing millions of liters of water per hour. Depending on the severity of the

failure, the failed pipe stick will either be repaired or replaced before the pipe segment is returned to

service. A single pipe segment may fail and be repaired multiple times before being replaced.

Such failures are difficult to predict. Water pipes generally run underground, making inspections
difficult and costly. Few (if any) sensors are generally present in the networks to collect operational
data. This often leaves only the limited records kept during installation or during repair of past

failures available for use in supporting water network management decisions.

Water networks are managed by utilities in their capital improvement programs. These programs
aim to maintain the network in a state of good repair by replacing degraded or high-risk pipes. The
state of repair is measured by key performance indicators such as the water loss percentage, number

of breaks per 100 km per year, and the annual cost of repairing water main breaks.

Efficient management of a capital improvement program involves identifying which pipes are more
likely to fail than others. This is often considered an engineering discipline. Various techniques are
employed to this purpose, such as engineering judgement informed by case studies and surveys,
targeted inspections and monitoring, survival analysis, failure risk assessment, financial decision

optimization, and more recently the application of machine learning.

1.3 Objective of this Research

The objective of this research is to develop a practical method for the application of machine learning
to pipe failure prediction. Numerous studies have been conducted in recent years into the application
of machine learning for pipe failure prediction. These have either been case studies with limited
generalizability, or tests of the potential for application of a particular analytical technique to the

problem. None have yet attempted to meet the required criteria to be of practical use, namely:
e [t must use only data to which typical utilities have access.

o This means that any data not generally available to utilities, such as real-time

sensor data and environmental data, must not be used.



e [t must be applicable using only the skills available to most utilities.
e It must be demonstrated to extrapolate forward in time, and to new utilities.

e [ts performance must be measured in a way that aligns with how the results will be used,

demonstrating measurable value over existing processes.

o The outputs must be usable without major changes to utility engineering practices and

decision-making processes.

This study aims to demonstrate that machine learning can indeed be practically applied to the
prediction of pipe failures. It addresses the question of whether a single model can be used to predict
pipe failures for a wide range of utilities that did not contribute data to training the model. It aims to
do this without requiring utilities to manually cleanse their data and standardize to the same language,
units of measure, technical jargon, and record keeping practices. It describes the process of
assembling a large and diverse data set, with contributions from six large utilities in three continents,
developing a new three-layer model for predicting water pipe failure risk, and then testing its ability

to predict failures in new utilities which did not contribute to the training data.

1.4 Contributions of this Research

This research provides novel contributions in three areas. First are observations from the pipe failure
dataset itself, being the largest and most diverse reported on to date. Second are the demonstrations
of how the appropriate selection of target variables and test metrics for the machine learning problem
can allow the results to be used in various engineering and utility decision practices. Third are the

novel elements of the three-layer model presented.

A major element of this research project was assembling a dataset containing over 10,000,000 pipe-
years of failure history. This dataset includes records from six utilities, in four countries spread
across three continents. Past datasets have included data from only one country, and (with few
exceptions) usually only a single utility. The size and diversity of the dataset from this project has
allowed clear trends to emerge in the relationship between pipe failure rates and certain predictive
variables. Some relationships, such as with pipe length and pipe material, confirmed the results
obtained in smaller studies. Two novel findings were also made. First was a strong inverse linear
relationship between pipe diameter and failure rate. Second was the observation of a patter of peaks

and subsequent declines in the failure rate as age increases.
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In reviewing the literature on the application of machine learning to pipe failure prediction, a wide
range was found in the selection of target variables and performance metrics. This lack of
consistency makes comparison of performance between algorithms difficult. This study observes that
selection of the calibrated probability of failure in a given time interval as the target variable allows
the results of a machine learning model to be directly used in a wide range of utility engineering and
decision-making processes. Further, it is shown that two standard machine learning performance
metrics are directly related to the impact which the results would have if used, namely the area under

the curve of the receiver operating characteristic, and cumulative lift at 10%.

A three-layer model is presented as a general machine learning model for pipe failure prediction.
The first layer automates the data preprocessing by inferring units of measure for numerical features
and encoding categorical features. This allows data from new utilities to be used in the model
without the need for manual data cleansing. The second layer is a machine learning classification
model for predicting whether or not a pipe will fail in a given five-year time period. These
predictions, however, are discarded, and only the relative likelihood of failure estimates used by the
model are carried forward. The third layer calibrates these results to match actual failure
probabilities, thereby normalizing for each utility’s record keeping processes. This layer also
calibrates for the expectation value of the number of failures, accounting for the same pipe failing
multiple times within a time period. This allows for aggregation of the expected total number of

failures within a cohort of pipes simply by adding the expectation values for all pipes in the cohort.

This three-layer model was then used to demonstrate that a machine learning pipe failure model
can indeed extrapolate forward in time and to new utilities. The training and test sets were separated
in time, with the training set falling prior to the test set. Model training was performed on the basis of
“leave one utility out” cross validation. For each utility, the model was trained on the past data from
all other utilities, and then tested on the future data from that utility. This simulates a new utility
using a pretrained model built with data from other utilities. With the preprocessing later applied, the

model outperformed other models which were trained and tested on each utility’s data in isolation.

1.5 Organization of this Thesis

Chapter 2 reviews the literature relevant to the use of machine learning for pipe failure prediction.
This review spans three broad areas. First, the construction and management of water networks and
water pipes are described. This is provided both to provide a clear definition of the problem of water
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pipe failure prediction, and to provide context of the management decisions which the results of such
a prediction algorithm would be used to support. Second, the established engineering methods used
to predict water pipe failures are reviewed. This is provided both to provide the historical context
leading up to the application of machine learning methods, and also to demonstrate that, with
appropriate design choices, a machine learning model can be used within these established
engineering methods. Third, previous studies in the application of machine learning to pipe failure

prediction are reviewed, which are directly relevant to this study.

Chapter 3 presents the methodology applied in this study. It describes the process for assembling
the dataset, the exploratory data analysis, and details the novel three-layer model for pipe failure

prediction.

Chapter 4 presents the results of exploratory data analysis and modeling on this study’s dataset.
This includes analysis of the impact of individual variables on pipe failure rates, and also the results

of exploratory modeling conducted on this data.

Chapter 5 presents the results obtained by applying the generalized machine learning model for

pipe failure prediction.

Chapter 6 presents a discussion of the results obtained, including results from the exploratory
analysis of the dataset and from the new model proposed, as well as the potential relevance and

impact of these results.

Chapter 7 presents the conclusions of the study, along with limitations of the model and directions

for future research.



Chapter 2

Literature Review

2.1 Water Pipe Network Construction and Management

This section provides a background on the construction of water networks, and the management

decisions made by water utilities related to water main replacement.

2.1.1 Pipe Construction and Failures in Water Networks

According to a 2020 American Society of Civil Engineers report, the United States projects a $2.2
trillion dollar water infrastructure spending gap between 2019 and 2039, spending roughly $1 trillion
out of a $3.2 trillion need (DiLoreto et al., 2020). This gap arises because much of the water
infrastructure is out of sight and out of mind: buried underground. The fact that a pipeline has
degraded becomes apparent only once the main bursts. While water main breaks are rising (Folkman,

2018), this effect is gradual and does not thrust the problem into the public eye.

With insufficient capital funds to replace all infrastructure that surpasses its design life, utilities
must be selective in replacing or rehabilitating only those water mains that have, in fact, degraded.
Yet the fact that water mains are buried underground also prevents utilities from directly assessing
their condition. Instead, utilities must rely on limited data to infer the conditions of water mains and

project these into the future.

Addressing this contradiction is the essential challenge posed by pipeline diagnostics. With limited
available data, determining which pipes need to be rehabilitated or replaced to maintain quality of
service is usually measured by the water main break rate. Available data is usually limited to pipe

demographics (age, material, etc.), maintenance records, and minimal (if any) sensor or testing data.

Historically, this diagnostic problem has been addressed via human judgment. Each utility creates
its own formula to assign condition ratings based to pipes. These formulae generally consist of
subjective rules, often as simple as age. More complex rules incorporate other factors, such as
material and diameter, in some cases based on an understanding of the failure mechanisms of the

pipes in question.



Studies have investigated the impact on failure rates of individual factors in individual utilities.
These valuable contributions enable more data-driven rules for condition ratings. These condition

ratings can be combined with the consequence of failure ratings to yield net risk ratings for each pipe.

Yet these approaches remain qualitative. An alternative approach, rarely practiced due to a lack of
readily available methods, is to make quantitative estimates of the probability (or expectation value)
and consequence of future failures and to use these to calculate the expectation value of future

failures.

The problem to be investigated in this project is providing quantitative methods for estimating the

probability or expectation value of future failures using machine learning methods.

Machine learning techniques offer an avenue for making quantitative estimates of failure
probability that consider all the available data on each pipe. Few studies have been attempted in this
domain. These have generally been limited to data from a single utility and have predominantly
relied on basic machine learning techniques that do not capture the relationship between pipes nor the

time relationship between events on pipes.

Advances in machine learning over the past decade have dramatically improved performance on
many problems. A review of the recent use of these techniques in the related problem of medical

diagnostics highlights approaches which may be effective in pipeline diagnostics.

Readers should note that the author has worked in the field of pipeline diagnostics and failure
management from 1999 through 2018. Portions of this thesis related to the management of water
pipelines and their failures incorporate generally accepted industry knowledge and perspectives

developed from 20 years of work and study in this area.
2.1.1.1 Water Networks and Pipes

2.1.1.1.1 Pipes in Water Networks

A water network consists of a set of interconnected pipes that bring water from sources to consumers.
To be considered part of the same network, the pipes must be hydraulically connected to each other;
that is to say, there must be a path through which water could flow from any given pipe to any other
given pipe within the same network. Networks can be broken down into four components:

transmission mains, trunk mains, distribution mains, and customer connections.



Transmission mains transport water in bulk from one location to another. They generally run from
raw water sources to treatment plants and then from treatment plants to a large group of consumers
(typically a town or city but sometimes a single large consumer such as a power plant). They tend to
be large diameter (typically 500mm to 3000mm, sometimes even larger) and run for long distances

without junctions or isolation valves.

Trunk mains are larger diameter water mains that move water about within an urban center. Some
water networks are built in a “trunk-and-branch” arrangement, with larger trunk mains bringing water
to zones or areas in the network and then smaller mains distributing water within that zone or area.
Other networks employ a grid or loop system to provide redundancy. The term trunk mains is still
sometimes used to describe the larger diameter mains within a grid or loop system. Trunk mains are
generally of medium to large diameter (typically 200mm to 1000mm). While they tend to run
moderately long distances between junctions with other trunk mains, junctions with smaller diameter
distribution mains or isolation valves can be more frequent. A few large customers (hotels, hospitals,

factories, etc.) may receive a connection directly from a trunk main.

Distribution mains are the small diameter water mains that bring water supply into close proximity
for most customers. They are generally small diameter (50mm to 150mm) and tend to run short
distances between junctions and isolation valves. Distribution mains almost always follow streets,
laid either underneath the street or in a right of way along the street. Most customer connections are

attached to a distribution main.

Customer connections are the individual service lines connecting a single customer to the
distribution network. They often consist of three components: a water meter with an isolation valve
(called a curb stop) connected to it, a pipe leading from the meter to the customer building (the
customer-side pipe), and a pipe connecting the meter to the distribution main. It is common practice
(but not universal) for the customer to own the pipe on their side of the meter and the utility to own
the pipe connecting the meter to the distribution main. Ownership of the meter itself and the isolation
valve varies. Each full set of components (utility-side pipe, curb stop, meter, and customer-side pipe)

is generally referred to as a single customer connection or customer supply pipe.



Distribution Main

Curb Stop Water Meter

\

Utility-side pipe Customer-side pipe

Figure 2: Components of a customer connection.

2.1.1.1.2 Defining a Pipe

The notion of pipes is simple and intuitive: cylindrical vessels used to transport fluid from one place
to another. It is clear that a network consists of many different pipes. What is less clear is what

constitutes a single pipe within the network, as the term pipe is ambiguous.

Here, we introduce three specific terms: stick, segment, and pipeline. Each of these represents a
different level of granularity. The term “pipe” can sometimes refer to each of these terms, both
industry and literature. The reason for this is that a pipe is a logical entity rather than a physical

entity.

The finest reasonable level of granularity is to define a single stick of pipe as a member of the
population. Most types of pipe are produced in discrete lengths (typically 4 to 6 meters in length).
These are jointed together, frequently in a bell-and-spigot configuration, to produce pipelines. For
some types of pipe, common degradation mechanisms tend to be isolated to a single stick of pipe.
For example, prestressed concrete cylinder pipe (PCCP) tends to fail due to corrosion or
embrittlement of the prestressing wires. This corrosion does not naturally spread from one stick of
pipe to the next. As a result, assessment and rehabilitation tends to occur on a stick-by-stick basis.
For such types of pipe, individual sticks are the natural “members” of the population. The challenge
with using such fine-grained definitions is that associating a data point with a particular member is
challenging. Pipeline design drawings are prone to errors, as the actual installation often differs from
the original design. Even when correct, making the connection between physical location and the
“station numbers” used to describe a location along a pipeline is often difficult. Even for PCCP

pipes, when a particular stick of pipe is selected for reinforcement, it is common practice to reinforce
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the sticks on either side of it as well, as the odds of misalignment between the analysis and the

physical pipeline are high.

Another reasonable level of granularity is to consider a segment of pipe - the length of pipe
between adjacent “nodes” in the pipe network - as a member of the population. These nodes often
consist of intersections, isolation valves, pressure reducing valves, or other features that offer a
physical separation along the pipeline. Some types of plastic piping material are produced in long
spools rather than individual sticks. These types of pipe are typically installed in one continuous
stretch between nodes in the pipe network. For such pipes, the lengths of pipe between nodes in a
network are the natural “members” of a population. This definition is often used in the Geographic
Information Systems (GIS’s) used by utilities to track their underground infrastructure. This
approach does, however, come with four drawbacks. The first is that there is no natural way to
include the “nodes” themselves in the model. These nodes are common failure points, making this a
significant drawback. The second is that there is no universal definition of what separates one
segment from another. For example, some utilities consider the short length of pipe connecting a fire
hydrant to a distribution main to be a pipe itself, whereas others consider it a feature on the
distribution main. The third, which is partially a consequence of the second, is that the size of the
population members varies widely, which can pose challenges to diagnostic models. A single “pipe”
that is 800m long has far more locations, each of which could experience a leak or burst, than one that
is 20m long, regardless of its condition. In regression models, this can be dealt with by normalizing
for length (e.g., predict the number of leaks per km), but classification models have been prone to
ignoring this factor. Finally, members of the population defined this way are not necessarily
persistent over time. A long stretch of pipeline can be “split” into two by adding a new valve in the

middle of it.

Differences in rules for defining a single segment can be of material significance when performing
analysis related to water main replacements. While there are common conventions to this grouping
(e.g., a junction separates pipes, an isolation valve separates pipes, a change in material separates
pipes), there are also variations among utilities. A prime example of these differences comes from
the use of repair pieces. When a pipe leaks or breaks, it is generally either repaired with a clamp or
the broken section is cut out and replaced with a repair piece (a single stick of pipe, often shorter than

a standard stick and usually of a different material). When a repair clamp is used, the standard
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convention is that the pipe remains the same pipe. However, when a repair piece is placed in the

middle of pipe, the pipe records can be updated in one of several ways:
a) No change; the pipe remains the same pipe.
b) The pipe is split into two, with two new pipes created.

c) The pipe is split into two, with one portion remaining the original pipe and one new pipe

created.

d) The pipe is split into three (the upstream section, the repair piece itself, and the

downstream section), with three new pipes created.

e) The pipe is split into three (the upstream section, the repair piece itself, and the
downstream section), with one portion remaining the original pipe and two new pipes

created.

This is a recordkeeping policy decision for each utility, and it can have significant implications for
pipe break forecasting. Take the example of a 200m long pipe segment that has suffered two leaks at
the 50m point and the 150m point along its length, both of which were repaired with clamps. A new
break forms at the 100m point that requires a repair piece. If the utility follows policy a) above, then
there is a single pipe with three breaks in its database. If the utility follows policy c) above, however,

then there could be a pipe with three breaks and another with zero breaks.

Finally, we can consider a pipeline. This is a group of one or more segments that constitute a
single path from a source to a destination. The pipeline is generally of a single material and of a
similar diameter throughout. For example, a single pipeline may start at a water treatment plant and
run to a reservoir in the center of a city. There may be several isolation valves along its length,
several branch lines drawing water from the pipeline between the start and end, and it may even

change in diameter if these branch lines draw significant amounts of water.

For the purposes of this study, we will use the term pipe to refer to a segment. This is the unit of
granularity most commonly used for making pipe replacement decisions, making it appropriate for
this study. The terms pipe and segment may be used interchangeably herein. The terms stick and

pipeline will be used explicitly when referring to these granularities.
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2.1.1.2 Pipe Materials and Their History

There are eight common pipe materials in use for water pipes: cast iron, steel, concrete (including
reinforced concrete and prestressed concrete cylinder pipe), ductile iron, asbestos cement,
polyvinylchloride (PVC), polyethylene (PE) including high density polyethylene (HDPE), and
copper. These are described in this section, together with their history of use. Except where
otherwise referenced, the content can be found in the American Water Works Association (AWWA)
M77 guidebook (Ellison et al., 2018). A summary is provided in Table 1, with details provided in
Appendix A.

Table 1: Summary of common pipe materials and properties.

Material Acronym | Diameters Usage Period Key Note

Cast Iron Cl Small—Med | 1700 - 1960 Pit cast and later spun cast
Ductile Iron DI Small —Med | 1960 - 2000 Cement linings now common
Steel ST Med — Large | 1850 - present | Common for critical pipes
Asbestos Cement AC Small —Med | 1940 - 1970 Many utilities removing
Polyvinyl Chloride PVC Small 1950 - present | Earlier use in Europe
Polyethylene PE/HDPE | Small 1950 - present | Includes HDPE

Concrete CONC Large 1950 - present | Includes PCCP

Copper cu Small 1940 - present | Mainly customer service lines

2.1.1.3 Pipe Degradation and Failure

Like any mechanical structure, a pipeline will fail when the stresses placed on the pipeline exceed the
strength of the pipeline. Pipeline failure management consists of assessing the current condition of
the pipeline, including various measures of strength and stress, and applying a judgement as to the

current (or a projection as to the future) fitness for service based on these.

Most pipelines are buried, making them difficult to observe directly. As a result, assessing the

current condition of a pipeline is a diagnostic problem requiring inference from indirect measures.

Another diagnostic problem of interest is projecting a pipe’s future fitness for service. Pipeline
management decisions, such as selecting pipes for replacement or rehabilitation, are generally made
based on projections of a pipe’s future fitness for service. This fitness for service can be quantified
by the pipe’s failure rate (breaks per pipe per year), normalized failure rate (breaks per 100 km per
year), or time to next failure. This diagnostic problem involves projecting a pipe’s current conditions

into the future. As noted above, the actual current condition of the pipe is rarely known. As a result,
12



projecting a pipe’s future conditions is, in fact, a compound problem of first inferring the pipe’s

current condition and then projecting it to the future.

This section introduces the mechanisms of pipeline degradation and failure as well as the signs and

symptoms of progression towards failure.

2.1.1.3.1 Degradation and Failure Mechanisms

The definition of a pipeline failure is not universally agreed upon in the industry. The terms “burst,”
“break,” and “leak” are each used to describe a pipeline that is allowing fluid to escape. These terms
are sometimes used interchangeably. When used to differentiate severity, it is usually the case that
burst >= break >= leak. Yet the state in which a pipeline has “failed” differs depending on the
situation. A pipeline transporting raw water in a water-rich region may have a hole losing hundreds
of gallons per minute and be considered fit for service. Conversely, a pipeline through a water scarce
region carrying water treated by desalination may be deemed to have failed if even a miniscule leak is

present.

While the state at which failure occurs is contentious, the path towards this state is better
understood. Pipelines are designed to withstand their expected stresses, plus some safety factor.
According to a 2005 Environmental Protection Agency white paper, “Water main breaks are caused
when and where the loading on the pipe exceeds the pipe strength (i.e., ability to resist loading)”
(Royer, 2005). If a pipe initially operates as expected but eventually fails then something about either
these stresses or the pipe’s ability to withstand the stresses must have changed over time. The path to
failure may thus involve increases in stress, loss of ability to withstand stress or a combination thereof

(Wilson et al., 2014).

Perhaps the best understood path to failure is corrosion. In ferrous pipes, the internal or external
surface will corrode with time. This corrosion reduces the thickness of the structurally sound
material, which is referred to as the wall thickness or structural wall thickness. This loss of wall
thickness represents a reduction in strength for the pipeline (Rajani & Makar, 2000). It can spread
broadly across the entire surface (e.g., from acidic water or soil) (McFarland et al., 2012) or locally
(e.g., pitting corrosion, galvanic corrosion, stray current induced corrosion) (Baird, 2011). Corrosion
protection coatings are often applied to slow this process. These coatings themselves will degrade
and fail over time, which can also happen either locally (via mechanical damage) or more broadly

with time. Corrosion can also occur in the ferrous portions of composite material pipes, such as when
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the steel reinforcing wires in prestressed concrete cylinder pipe (PCCP) corrode and break (Ge,
2016). Asbestos Cement (AC) pipe can undergo an analogous process whereby the chemical
composition of the pipe wall changes over time in a manner that reduces its strength (Ghirmay, 2014).
This is sometimes referred to as effective wall thickness loss. Corrosion often results in gradual

failure, where a pipeline leaks before failing.

Another recognized path to failure is the application of severe, unplanned stress to the pipeline.
Examples of stresses that have been studied include third party damage (Makar et al., 2001), pressure
transients (Lambert, 2000), frost heave (Selvadurai & Shinde, 1993), soil shifting (Makar et al.,
2001), and traffic loads (Stone et al., 2002). These stresses sometimes cause a pipeline to fail

suddenly.

These two paths to failure are by no means mutually exclusive. For a pipeline to fail, it is sufficient
for the stresses to exceed the strength only at one point, and in one direction. An unplanned stress
that a new pipeline could withstand may cause a degraded pipeline to fail. Even when an unplanned
stress is severe enough to cause a new pipeline to fail, this failure will occur at the weakest point on

the pipeline.

2.1.1.3.2 Leakage: Existing Failures

Along with playing a role in defining whether a pipe has already failed, leakage can be a sign of

impending failure (Chastain-Howley, 2005). The formation and growth of leaks tends to follow one
of two broad paths. One path is characterized by the formation of a pinhole-sized leak, which grows
slowly and steadily over time. The second path is characterized by crack-like leaks, which can form

and grow in sudden episodes (Rajani & Kleiner, 2012).

A more detailed explanation of the leakage phenomenon and related inspection technologies, based
on the author’s 15 years of professional experience in this field, is provided as optional
supplementary reading in Appendix A. That material is outside the scope of the proposed research
project. For this project, it is sufficient to observe that past leakage is recognized as an indication of

future leaks and breaks.

2.1.1.3.3 Pipe Condition: Indicators of Future Failures

While leakage identifies pipes that are already failing to hold fluid as designed, pipe condition
describes the propensity for future failures by via early signs of degradation. While small leaks can
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themselves be signs of degradation, more often condition assessment aims to detect loss of strength in

the pipes prior to leakage.

The results of condition assessment projects fall into two types: condition ranking and quantitative

assessment (Ellison et al., 2018).

Condition rankings (e.g., “A through F” or 1 to 10) are subjective ratings based on utility staff
experience. They are generated using rules applied to available pipe records (age, material, past
failures, etc.), with each utility creating their own rules from staff experience or engaging an
engineering consultant to create rules for them. No standard for these rankings exists; however, the
consistency of the rules used by different utilities has been demonstrated by training a single artificial
neural network to predict the rankings to pipes by three different utilities (Al-Barqawi & Zayed,
2006).

Quantitative assessment involves estimating a measurable value. Values such as the remaining
wall thickness, number of broken prestressing wires (Atherton et al., 2000), maximum corrosion pit
depth, current burst strength or crush strength, future probability of failure, and the time to next
failure are examples of quantitative assessment. The specific techniques and technologies used to

assess pipe condition are described in Chapter 2.2.1.

2.1.1.4 Management of Pipe Failures

Pipe failures are generally treated as an inevitable consequence. Utilities treat pipe failures as
something to be managed, rather than entirely prevented. It covers how the failures themselves are
dealt with, the costs (both direct and indirect) associated with failures, and the norms and targets that

exist around the world.

Management of pipe failures is done based on objectives or KPIs set by utilities and their
regulators. The common objectives are water conservation, financial efficiency, and customer

service.

Where water conservation is the objective, common practice is for utilities to track their pipe
failure performance based on the Non-Revenue Water (NRW) percentage (Ellison et al., 2018). This

1s calculated as:
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SIV —wSsv

NRW =
SIvV

1
Where:
e SIV = System Input Volume: bulk purchases plus raw water extraction
e WSV = Water Sales Volume: metered water sales, plus estimated unmetered sales

While NRW percentage is the most common metric used, it is not the recommended metric. The
reason for this is the presence of SIV in the denominator. An effective program by the utility to
encourage its customers to conserve water will result in reductions in the SIV, which will leave the
numerator as is but reduce the denominator. Consequently, the NRW percentage will increase due to
the utility running a successful conservation program. Alternate KPIs encouraged by industry
associations include leakage in L / customer connection / day, leakage in L / km of pipe / day, and the

Infrastructure Leakage Index (ILI) (Jernigan et al., 2019).

Where the objective is financial efficiency, the concept of the Economic Leakage Level is used.
This concept considers the tradeoff between the cost of efforts to reduce leakage and the cost of
treating and pumping additional water that ends up leaking. An example of the Economic Leakage
Level concept is the Economic Intervention Frequency. This concept considers the cost of proactive
leak detection programs run at some time interval t. As t decreases, the annual cost of the
intervention increases. As t decreases, the average run time of an undetected leak decreases. The
Economic Intervention Frequency is the interval t that produces the lowest total average annual cost

(Lambert & Lalonde, 2005).

Where customer service is the objective, a common performance metric is the number of breaks per
100 km per year. A water main break represents both a disruption to water service for the end
customers relying on that water main, as well as a disruption to traffic. Common targets are to keep
water main breaks below a threshold of 20 breaks / 100km / year, or 30 breaks / 100 miles / year for

utilities that use imperial units (Ellison et al., 2018).

2.1.2 The Aging Pipes Decision: Replace, Reline, Rehabilitate, or Run to Failure?

As pipe networks degrade, rates of main breaks can increase to levels beyond the targets set by or for

utilities. There are four essential options for handling an aging (and potentially degrading) pipe:
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replace the existing pipe with a new one, reline the pipe entirely, rehabilitate selected sections of the

pipe, or run the pipe until it reaches a failure state.

2.1.2.1 Pipe Replacement

Pipe replacement involves laying a new pipe in the original location of the old pipe.

Historically, pipe replacement was done via an open-cut approach. Under this approach, a trench is
excavated around the location of the existing pipe. The old pipe material is removed for disposal,
recycling, or to be sold as scrap metal. A new pipe is laid in the original trench and then returned to
service. Open-cut methods allow new materials or different diameters to be laid. A large portion of
the cost of this installation method lies in the excavation and restoration of the surface cover,
particularly when the pipe ran underneath roadways. Coordination of rehabilitation activities with
other underground utilities (sewers, gas lines, power lines, etc.) and/or with planned road resurfacing

can reduce the cost.

Trenchless methods for pipe replacement have become more common over the past several decades
(Wuetal., 2021). Horizontal directional drilling allows a new pipe to be run between two pits,
avoiding the cost of excavating along its full length. This generally requires a non-jointed pipe
material, such as HDPE, so that the new pipe can be pulled or pushed into place. If a smaller
diameter is acceptable for the new pipe, then the pipe-in-pipe technique can be used, whereby the new
pipe is drawn through the old pipe. Pipe bursting is similar to pipe-in-pipe, except that a burst head is
forced through the old pipe prior to drawing through the new pipe, allowing a new pipe of the same or

even slightly larger diameter to be used.

2.1.2.2 Pipe Relining

Aging pipes will sometimes have their service life extended by relining the pipe. This process
generally involves cleaning the pipe first to remove any debris, scale, or corrosion product that has
built up on the inside pipe wall. A liner is applied with the intention of extending the service life.

Liners can generally be divided into two groups: structural and non-structural.

Non-structural liners aim to restore the hydraulic integrity of a leaking pipe, and to delay the onset
of corrosion caused by contact between the water and the pipe wall. Internal cement mortar linings
are intended to prevent or delay internal corrosion. Spray-on linings have been applied to cast iron
and ductile iron pipes since the 1940s, and it has become common for iron pipes to have a cement
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mortar lining pre-applied during manufacture, preventing the need for application (Dgbrowski & Li,

2021).

Structural liners aim to provide additional structural strength to a pipe, in addition to corrosion
protection. These liners are often made of plastic or resin. They are either sprayed on or drawn

through the pipe and then cured in place (Wu et al., 2021).

2.1.2.3 Pipe Rehabilitation

Pipe rehabilitation describes the process of extending the service life of a pipe without wholesale
replacement or relining. This generally involves testing or monitoring the full length of the pipe, and
applying preemptive repairs or reinforcement at locations deemed at high risk of failure (Zarghamee

etal., 2011).

There are two common approaches to rehabilitation. One is inspection and spot reinforcement of
large diameter pipes, whereby an inline inspection device is run through the pipe, and at-risk locations
suffering from degradation are reinforced. The second is leak monitoring and spot repairs, whereby a
monitoring system is used to detect small leaks as they form on the pipeline, which are then

excavated and repaired prior to the leak growing into a larger burst.

2.1.2.4 Running Pipes to Failure

The final option is simply “running the pipe to failure.” While this option is commonly selected by
utilities for pipes with a low consequence of failure, it means different things to different utilities due
to the absence of a universally accepted definition of the failure state for a pipe segment. This

practice is discussed further in Chapter 2.2.3.5.1.

2.1.3 Replacement Decision in Organizational Context

Pipeline replacement decisions are made within the broader planning and operational context of water
utilities. There are three common planning processes in use at water utilities. Each has its own

cadence, its own time horizon, and its own specific decisions to be made.

2.1.3.1 Long Term Decisions: Master Plans

Master Plans describe a utility’s long-term plan for providing services in a reliable and cost-effective

manner. They typical look 25 to 50 years into the future (GM BluePlan Engineering, 2020). The
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core question here is “how much should be budgeted for pipe replacement?” Examples of specific

decisions that can be aided with a pipeline failure prediction model at this stage include:
e How much capital will we need for pipeline replacement over the coming decades?

e  What design decisions can we make (i.e., pipe material & diameter) that will help to keep

costs down?
e Should we focus on replacing or rehabilitating aging mains?
e What balance of capital spending (i.e., replacement) and operational costs (i.e., repairs &

maintenance) offers the best long-term impact?

2.1.3.2 Medium Term Decisions: Capital Improvement Plans

Capital Improvement Plans outline specific projects to be undertaken in the upcoming period of three,
five, or ten years. They are typically constrained by policies in the Master Plan, and by available
capital budgets. These plans are where tactical decisions are made regarding management of specific
pipelines. The core question here is “which pipes should be replaced in the coming years?”

Examples of decisions that can be aided with a pipeline failure prediction model at this stage include:

e Which pipes should I prioritize for replacement over the next five years to minimize the

future break rate?
e  Which of the prioritized pipes should be replaced, and which should be relined?
e Which pipes offer the best return on investment for replacement?
e  Which pipes are more economical to rehabilitate than to replace?

2.1.3.3 Short Term Decisions: Operational Plans

Operational planning is generally done on an annual basis as part of the budget planning cycle. Often
looking forward one to three years, these plans set out the likely expenses to maintain services.
Because these operational plans are made within the constraints of the pipeline network, there are a

limited number of decisions available which could be informed by a model. Some are:
e How much should I budget for main break repairs in the upcoming one to two years?
e Are we better off using contractors or utility staff for main break repairs?
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2.1.4 Specific Decisions to Be Addressed by This Study

This study aims to provide a practical method of using machine learning to support certain water
main replacement decisions. The decisions the method should support are grouped into two
categories: questions that are addressed directly by the model and questions where the model supports

obtaining answers together with additional analysis.

2.1.4.1 Questions to be Answered Directly by the Model

The model outputs should provide direct answers to the following questions. These questions are
primarily related to the Medium-Term time horizon (Capital Improvement Planning). They are not an

exhaustive list but rather reflect a representative sample of questions which should be answerable.
e  Which water mains are most likely to suffer a break in the next five years?
e How likely is it that a particular pipe will break in the next five years?
e How many breaks can be expected from a particular group of water mains in the next five

years?

2.1.4.2 Questions For Which the Model Supports Answers

The models and their outputs should, when used together with additional analysis methods, provide
useful support to answering the following questions. These questions are primarily related to the
Long-Term time horizon (Utility Master Planning). They are not an exhaustive list but rather reflect a

representative sample of questions which should be answerable.

¢ How many water main breaks per year should we expect in each five year period for the

next 25 years or 50 years?
e  Which pipe materials and diameters offer the best long-term value?

e How much do we need to budget for water main replacement to keep water main break

rates below a threshold of 20 breaks per 100 km per year?

e  Which groupings (cohorts) of pipe will be cost-effective to replace in the next 25 years?
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2.2 Established Engineering Methods for Water Pipe Failure Prediction

This section outlines the established engineering methods for water pipe failure predictions, and how
these are commonly used as supporting methods for pipe replacement decisions. The methods are

discussed in the context of the specific management decisions outlined in Chapter 2.1.4.

2.2.1 Inspection and Monitoring

One approach used to predict pipe failure is applying various inspection and monitoring technologies
to the pipes. While effective, these techniques require specialized equipment and expertise, making
them costly and time consuming. As a result, these are often used only in a targeted manner rather

than broadly across water distribution networks.

The technologies and analytical methods commonly applied vary depending on the pipe material in
question. This section of the review offers a summary of the common pipe types and condition
assessment methods, their applicability as summarized in Table 2, and summary descriptions below.

Greater detail is available in the AWWA M77 guidebook (Ellison et al., 2018).

Table 2: Common pipe types and condition assessment methods.

cl DI | Steel | AC | PVC | HDPE | CONC | CU

Pit depth measurement Yes

Ultrasonic Testing ~

Near Field Eddy Current ~

Magnetic Flux Leakage ~

Remote Field Eddy Current Yes

Transformer Coupling Yes

Wire Break Monitoring Yes

Acoustic Wall Thickness Testing | Yes ~ Yes

Phenolphthalein Dye Testing Yes

Leak Detection Yes Yes ~

Inline Video (CCTV)
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2.2.1.1 Common Condition Assessment Methods

This section introduces the various common methods of condition assessment for water pipelines.

Much of this material is drawn from the personal experience of the author, based on over 15 years of

experience developing, commercializing, and applying condition assessment technologies. A

summary is provided in Table 3, with details provided in Appendix A.

Table 3: Summary of condition assessment methods.

Method Applicability | Usage Raw Results Analyzed Results
Pit depth Cl Samples Pit depths Statistically extrapolated
measurement maximum pit depths
Ultrasonic testing Cl, DI Local Pulse times Wall thickness at test point
Near field eddy Cl, DI, ST Local /inline | EM signal High resolution wall
current thickness
Magnetic flux Cl, DI Local / inline | Flux at each Pit depths
leakage sensor
Remote field eddy | DI, ST Inline EM signal Pit depths
current
Transformer PCCP Inline EM signal Broken prestressing wires
coupling
Wire break PCCP External Acoustic Breaking prestressing wires
monitoring signal
Acoustic wall Cl, AC, DI, ST | External Acoustic Average wall thickness over
thickness testing signal interval between sensors
Phenolphthalein AC Samples Cross section | Wall thickness in cross
dye testing images section
Leak detection All External Acoustic Leak location

signal
Inline video (CCTV) | Rare Inline Video signal N/A

2.2.1.2 Application of Machine Learning to Leak Detection

While the focus of this study is predicting future breaks in water pipes, a closely related problem is

identifying and locating existing breaks (i.e., leaks) that are not visible from the surface, a process

known as leak detection or leak monitoring. Practical application of machine learning to this problem

includes using acoustic signals from sensors either temporarily placed (leak detection) or permanently

installed (leak monitoring) on the pipe, usually for this specific purpose. Another practical approach

is inducing small pressure transients (also known as water hammers), measuring the propagation

speed and head loss, and comparing these to the expected speed and head loss, which can be
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calculated using various numerical methods (Bostan et al., 2021). Another approach involves using
flows and non-transient pressures to identify the specific locations of leaks. The latter approach is
effective in identifying isolated zones or areas in a network (known as District Metered Areas, or
DMAs) experiencing heavy leakage. The application of this approach to locating leaks more precisely
is strictly theoretical at this time. This section provides a brief review of selected studies in the

literature on this topic.

The task of detecting leaks using acoustic vibration data has been shown to be effective when a
Gaussian Mixture Model is applied (Cody & Narasimhan, 2020). Accuracy rates of over 70% were

achieved in discriminating simulated leaks from non-leaking pipes.

One study investigated the use of deep learning for determining the location of a burst using data
from pressure meters operating at 15 minute intervals (Zhou et al., 2019). This study showed
promising results but relied entirely on synthetic data (simulated in a hydraulic modeling package) for
both training and evaluation of the algorithms. This reliance is a substantial weakness in the study, as
it is in practice simply demonstrating the ability of a neural network to approximate the inverse

functions of the equations used in the simulation.

Fan and Yu applied a two-step approach of clustering to define pressure sensor placements
followed by training machine learning models for detecting whether or not a leak is occurring in each
zone (Fan & Yu, 2022). They concluded that with optimized sensor placement, only a small number
of known and measured historical leaks were needed in the vicinity of each pressure sensor. Using
data from two hypothetical water networks simulated in a hydraulic model, over 95% of leaks could

theoretically be detected, and over 80% could be localized.

Cai et al. employed support vector machines to classify pipes in a simulated network as leaking or
not leaking using only simulated flow and pressure measurements and were able to achieve an AUC
score of 0.891 on this simulated, calibrated, noise-free network (Cai et al., 2022). The authors also
applied a multi-stage approach of prioritizing areas of a network, detecting the presence of leaks, and
then localizing the leaks to within 300m (Cai et al., 2023). Their approach was applied to a simulated

water network and was able to detect 12 of 19 simulated leaks and to localize 8 out of 19.

Ravichandran et al. explored the use of acoustic sensor data to detect the presence of a leak in close

proximity to a monitoring sensor (Ravichandran et al., 2021). The authors used power spectral
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density based features and found that a strategy of training multiple gradient boosted trees and then

creating an ensemble learner from these to be extremely effective, reaching an accuracy of 99.84%.
2.2.2 Case Studies and Survey Reports

2.2.2.1 Background on Case Studies and Survey Reports

Within the domain of pipeline management, making pipe replacement decisions is often considered
an engineering discipline. As such, the professional judgment of an experienced engineer figures
prominently. While this process may lack academic rigor, it is nevertheless common in practical

application and thus merits description.

Beyond the foundational requirements of becoming a professional engineer (education and
experience), there is a requirement for background information to be used by the engineer to inform
their professional judgement. The background information comes primarily from a mixture of
personal experience, peer discussion, and industry education (papers, articles, seminars, etc.). In the
case of pipeline risk assessment, industry education consists largely of publications of survey results
and case studies. Survey results often include highly aggregated information (such as average break
rates) across multiple utilities. Case studies often include informal univariate analysis (charts and
aggregations, usually without any formal statistical analysis) of data from a single utility or detailed
analysis of the proximate cause of a single pipe break. These types of studies supplement an
engineer’s personal experience, helping them to provide informed opinions. The ease of

understanding and applying these studies likely contributes to their popularity in industry.

2.2.2.2 Prior Work on Case Studies and Survey Reports for Pipe Diagnostics

A wide range of surveys and statistical studies have been conducted related to estimating the risk of
pipeline failure. These have generally focused on a single parameter at a time, either as a categorial

variable (such as pipe material) or a linear correlation (such as age).

Different types of pipe have been found to exhibit different mechanisms and rates of failure. Table
4 illustrates the findings of a study by the National Research Council of Canada that found the
following average break rates per 100 km per year across 1992 and 1993 on different materials

(Rajani et al., 1993).
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Table 4: Water main break rates for Canadian pipes of a variety of materials, based on data

found in (Rajani et al., 1993)

1992 Breaks 1993 Breaks 1 Year Change
Material Length

(km) Total /100 km Total /100 km Rate As %
Cast Iron 8769.9 | 3078 35.1| 3219 36.7 1.6 4.6%
Ductile Iron 4237.5 394 9.3 415 9.8 0.5 5.4%
Asbestos Cement 2105.4 114 54 128 6.1 0.7 13.0%
PVC 1818 16 0.9 9 0.5 -04 | -44.4%
PCCP 623.2 3 0.5 5 0.8 0.3 60.0%
Total 17554 | 3605 20.5 | 3776 215 1 4.9%

Cast iron pipes exhibit the highest rates of failure. Many cast iron pipes have no corrosion
protection applied to their inside and/or outside diameter, leaving them prone to rust. The material is
also brittle and prone to cracking. There have also been periods, particularly in the 1930s, when a
material called leadite was used for packing the joints of cast iron water mains (Makar et al., 2001).
This material has a different coefficient of thermal expansion than the iron itself, causing added stress

near the joints during temperature cycles, which is thought to result in cracking of the bell end of the
pipe.

Ductile iron pipes share some failure mechanisms with cast iron pipes, with two key differences.
First, the material is less brittle, making these pipes capable of supporting small, non-surfacing leaks
for long periods without bursting. Second, newer ductile iron pipes have inner linings and external

coatings applied to reduce the rates of corrosion.

Steel, plastic, and PVC pipes are all less prone to corrosion. These materials are all very flexible,
leaving them less prone to brittle failure as well. Many failures in these pipes can be traced to the
joints, which can be the weak points in the pipe. Water leaking from the joints can also impact the

surrounding soil, creating voids (loss of support) or frost heaves that cause unplanned stress on the
pipe.

Calgary inspectors have learned the hard way that permitting
deviations of even a few degrees on main over 200mm offer a slight
but measurable risk of leakage at the gasket, which then begins a
process of erosion-corrosion of the gasket, the bedding, and even the
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pipe itself. The leak only increases with time until finally a major
failure can occur.

(Brander, 2004, p. 8)

Recorded failures in PCCP happen at quite low rates for two reasons. First, the pipe barrel does not
exhibit either of the gradual failure mechanisms (cracks, or corrosion pinholes) shown by ferrous
pipes. These pipes tend to burst catastrophically rather than leaking. When leakage does occur, it is
often at the joints. The exception to this is Lined Cylinder Pipe, a type of PCCP in which the
prestressing wires are placed directly on the steel cylinder, where leakage from corrosion of the steel
cylinder has been suggested as a failure mechanism (Erbay et al., 2007). Second, leaks on PCCP are
difficult to detect using conventional acoustic leak detection approaches. More costly techniques are
required, such as inline leak location or trunk main correlators, which are used less frequently (Laven

& Lambert, 2012). Hence a leak on PCCP is more likely to go undetected than on other materials.

Diameter is another well-known predictive factor. Larger diameter pipes have been found to
exhibit lower rates of failure than small diameter pipes (Sundahl, 1996). There are two known
mechanisms for this. First, larger diameter pipes generally employ thicker pipe walls. This means
that the same design safety factor (as a ratio) will result in a greater excess material thickness. Simply
put, more of the pipe wall can corrode before reaching the critical thickness. The greater pipe wall
strength also leaves it more resistant to stresses for which it was not designed, such as third-party
damage (e.g., being struck during excavation) and torque applied during installation. Second, leaks
on these mains are more likely to go undetected. Large diameter mains are typically buried more
deeply, hence a greater portion of leaks do not surface. Sound attenuates more quickly on large
diameter mains, and fittings for listening are placed less frequently, making acoustic leak detection
methods less effective (Jones & Laven, 2008). These two factors both contribute to the lower rate of

measured failures on large diameter mains.

The impact of age has also been widely investigated. While many failure mechanisms operate over
long periods, the relationship between age and break rate is quite complex. Pipe materials have
changed over time. The oldest material (Cast Iron) generally exhibits the highest failure rates;
however, it is not immediately clear whether this is due to age or material. Similarly, PVC is the
newest material widely used and exhibits the lowest failure rate; however, the age and material

factors are highly correlated and difficult to decouple. Even within a given material type, there is
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complexity. Material quality and installation practices have generally improved over time. For
example, the first generation of Ductile Iron pipe lacked appropriate corrosion protection, resulting in
high break rates. The “bathtub curve” of asset life also comes into play, as material or installation
defects may surface early in the pipe’s life. Survival bias also plays a role, as over poorly performing
pipes (or cohorts) may be replaced early, leaving behind only those whose material, installation, and
soil environment will allow them to operate for many decades without issues. The author has
personally seen >100-year-old cast iron pipe that looked nearly new when coming out of the ground.
The net result can be a rather complex relationship between age and break rate, as illustrated in Figure
3, as found in (Stone et al., 2002) and showing data from (Sundahl, 1996).

Leaks/km-year
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Correlation exists for pipe
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Figure 3: Failure rates by age for cast iron pipe in Malmo, Sweden, over five years (Sundahl,

1996).

Traffic loading has also been shown to be a predictor of failure rate, as shown in Table 4 from
Stone et al. (2002), who cite Eisenbeis et al. (2000) as the original source of the data. It is not entirely

clear whether it is the added weight, the variability of the weight, or the vibrations that cause this.

Table 5: Relative failures rates for water mains in high traffic and low traffic areas in France

(Stone et al., 2002).

. ) ) . X Bordeaux Charente M. Suburb of Paris
Relative Failure Rate = [hihigh traffic)] / (GCI, 1* fail.) (GCL 1* fail.) (GCL 1 fail.)

[h(low traffic)] 230 3.00 1.77
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Internal pressures also play a prominent role. Higher pressures have been found to be predictive of
the rate of failure formation (Lambert, 1994). Variations in internal pressure, such as in systems with
intermittent water pressure, can induce material fatigue due to cyclical stresses; systems experiencing
pressure cycles have also shown higher rates of failures (Rezaei et al., 2015). Finally, pressure
transients (also known as water hammers) have been shown in many cases to be the immediate trigger
of a failure (Romer et al., 2007), and the frequency and severity of pressure transients have also been

quantitatively shown to be predictive of failure rates (Rezaei et al., 2015).

2.2.3 Survival Analysis

Survival analysis is an engineering concept widely used to predict asset failures, with numerous

studies available in the literature describing its application to water pipe diagnosis.

2.2.3.1 Background on Survival Analysis

Survival analysis is a branch of statistics concerned with estimating the expected time until a
failure event. These methods employ a selection of functions to describe the expected lifespan of

members of a population. Central to these is a survival function S, which is denoted as:
S =Pr(T>t)
2
Where:
e tisatime of interest
e Tis the time of the failure event
e  Pr() is the probability

A survival function requires clear definition of the start time (i.e., # = 0). In most cases all members
of the population are considered to survive at time zero (i.e., S(0) = 1); however, this is not strictly

required.

It is, however, required that the survival function be non-increasing. In other words, it must be the
case that once a member of the population has failed, it remains failed in the future, although it may

be replaced. This requirement is expressed as:
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S(ty) < S(ty)ift, >t

3
The complement of the survival function S(¢) is the lifetime distribution function F(¢). It can be
thought of as a cumulative failure distribution function. It is expressed as:
F(t) =Pr(T <t)
F(t)=1-S(t)
“

In cases where F(¢) and S(¢) are differentiable, then the survival event density s(¢) and failure event

density f{¢) can be defined as follows:

d
s(t) = %S(t)

d
) =—F@©

©))

These properties represent the probability density function of a sample failing at (or surviving

through) time t. They are related as:
s(t) =—f()
(6)

The final key concept is the hazard function /4(¢), also referred to as the conditional hazard function.
This function represents the chances that a particular member of the population which survived up to
time ¢ will fail at time #. This is formally defined as the failure rate at time t, conditional upon having

survived up to time t:

Pr(t<T <t+6t)

h®) = M ——5®

)
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In many practical cases, data is available only in discrete time intervals (days, weeks, months,
years, etc.). For these situations, the hazard function A(f) can be approximated by the probability that
a failure event will occur to a given member of the population at any point during the time interval
beginning at ¢, conditional upon it having survived to the beginning of time interval ¢. The remaining

curves S(¢), s(?), F(t), and f{t) can be approximated in analogous manners.

Note that the hazard function, survival function, and failure functions all have simple relationships.
Once any one is known, the others can be derived either analytically or numerically. Hence, fitting

any one to data is sufficient to generate all of these curves.

Once these curves are fit, two commonly used derived quantities are the mean residual lifetime and
the mean time to failure. The mean residual lifetime is the expectation value of future lifetime, given
survival to age to. Where t;=0, this becomes the mean time to failure (sometimes called the life
expectancy at birth). Both are analytically solvable for many of the distributions commonly used and
can be approximated numerically for nonparametric formulations (often ignoring the impact of long-
tailed survivorship, which may be neglected in nonparametric models due to Right Censoring in
data). Also of interest is the median residual lifetime and the median time to failure. These represent
the times at which half of the population is expected to have failed. These median quantities are also
analytically solvable for many distributions and can often be solved numerically for nonparametric
formulations (provided that at least half of the study population experiences the failure event during

the study timeframe).

2.2.3.2 Survival Curves Applied to a Cohort

Most survival curves are applied to a population as a whole. While the estimator for the curves may
be parametric (e.g., Weibull curves) or nonparametric (e.g., Kaplan Meier curves), many are fit on a

single parameter (time) and operate on an entire population.

There are numerous benefits to fitting survival curves to an entire population or cohort. The
resultant curves provide a succinct summary of the expected behavior of a population over time and

facilitate planning and decision making on the basis of these populations.

Parametric curves have several distinct advantages, thanks to the analytics expression of the
distributions. These curves can often be used in conjunction with cost information for (failures and

replacement) to identify analytical solutions to the optimal lifespan of members of the population.

30



Parametric curves can also be used to extrapolate to ages beyond what is included in the data to which

they are fit.

Nonparametric curves offer their own advantages. Most importantly, they do not rely on
assumptions as to the relationship between the failure rate and time (e.g., assuming exponential
growth of the hazard rate). They are also more robust against outliers and noise in the training data.
They often, however, require more data to fit the curves and, generally, cannot extrapolate to ages not

present in the training data.

2.2.3.3 Survival Analysis Applied to Individuals

As larger data sets have become available, survival analysis has extended to take advantage of more

predictive variables (sometimes called covariates).

The Cox Proportional Hazard model is a common approach to estimating the impact of factors
other than time (covariates) on the hazard rate. It works from the assumption that a given covariate is

multiplicatively related to the hazard function. This is expressed as:
h(t | X;) = ho(t) - eBrXutBoXiot+BpXip
®)
Where:
e /9(?) is the baseline hazard function at time ¢ for the entire population
e X is a vector of p covariates for sample number i, with entries X;; through Xj,
e By, By, ...B, are the coefficients applied to the p covariates, which are fit to data

Once a Cox Proportional Hazard model has been fit to data, the coefficients provide a clear
indicator of how the value of a given covariate impacts the risk of failure. Different types of
proportional hazard models are often referred to, based on the assumed shape of the baseline hazard
function. For example, if a Weibull distribution is used for %¢(?), it may be referred to as a Weibull

Proportional Hazard model.

The Cox Proportional Hazard approach can be considered a parametric approach to inclusion of

covariates, as it assumes a multiplicative relationship to the baseline hazard.
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Nonparametric approaches to incorporating additional covariates also exist. Many of these rely on
subdividing the population via tree structures. This can be done by successively dividing the
population across one covariate at a time, creating a tree structure with separate populations at each
leaf. A separate survival curve can then be fit to each leaf in the tree, creating a Survival Tree.
Various strategies for dividing the population are available. The resulting conditional survival
function S(¢ | x) and conditional hazard function A(z | x) can be smoothed out by fitting multiple
Survival Trees, each on a randomly selected subset of the data. This approach, known as Survival

Random Forests, has become common in recent years.

2.2.3.4 The Challenge of Censored and Truncated Data

In the ideal scenario for survival curve fitting, the entire lifespan of each member of the population is
present in the records. In practice, some data is often unavailable, either due to events happening
outside the study period (Censored) or samples being missing altogether due to the timing of events

(Truncated). This data unavailability can be grouped into four categories (Turkson et al., 2021).

Right Censoring: It is known that a member of the population survived at least until some time |
(the lower limit on the lift of that member of the population), but not precisely when. This often

occurs when the failure occurred after the end of the data recording period.

Left Censoring: It is known that a member of the population failed before some time u (the upper
limit on the life of that member of the population), but not precisely when. This often occurs when

the failure occurred before the beginning of the data recording period.

Interval Censoring: It is known that a member of the population failed between time 1 (the lower
limit on the lifespan) and u (the upper limit on the lifespan), but not precisely when. This often
occurs when checks for the failure condition happen periodically, such as testing for presence of a

disease.

Truncation: When members of the population with a lifespan less than some threshold are simply
not observed. This often occurs when some members of the population experienced failure events

prior to the start of the data recording period and are consequently not present in the study.

2.2.3.5 Prior Work on Fitting Survival Curves to Pipe Data

Failure curves have a long history of application in pipe diagnosis. A brief review of examples from

the literature is provided in this section. First, however, some challenges must be addressed.
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2.2.3.5.1 Challenges With Fitting Survival Curves to Pipe Data

There are four broad challenges in fitting survival curves to pipe data. The first is the ambiguity of
what constitutes “failure” and “survival” of a pipe. The second is the problem of data censoring and
truncation. The third is the challenge of selecting appropriate assumptions for fitting parametric

models. The fourth challenge is finding a formulation that is directly applicable in practice.

The foundational assumption of survival curves is that a given member of the population can only
fail once. It survives until the point of failure, at which point it is no longer a survivor. This is not
strictly true of pipes at any level of granularity (stick, segment, or cohort). A stick of pipe can
experience a break, be patched and put back into service, and then break again at a later date.
Likewise, a pipe segment can break multiple times at different locations along its length, or even
multiple times at the same location (if that location has been repaired). This ambiguity leaves several

possible interpretations of a “failure event” in survival analysis:

e The pipe is replaced. This is clear and unambiguous and fits well with the definition of a
failure event in Survival Analysis. It is, however, less useful, as the survival curves end up

describing human decisions and utility policies rather than physical phenomena.

e The pipe experiences its first break. While clear and unambiguous, this is both of
limited practical application and difficult to apply. It has the benefit of allowing
calculation of a Mean Time to Failure for new pipes, which is an intuitive metric.
However, most utilities accept a certain rate of water main failures as inevitable.
Replacing pipes before their first failure is not generally their goal; in fact, many have a
policy not to replace a pipe before it has failed at least once. The metric also provides
limited insight into the behavior of pipes that have failed at least once, which are often the
main area of focus for replacement programs. Fitting curves based on this definition is also
difficult. The issues of Left Censoring and Right Censoring are both highly prevalent.
Left Censoring is prevalent because most utilities do not have failure records stretching
back nearly as far as the ages of their oldest pipes. Right censoring is prevalent because

most pipes in their databases have not yet experienced a failure.

e The pipe experiences its second break. A relatively common policy is to replace a pipe
after it experiences its second break. This definition shares some of the benefits and

drawbacks of each of the two definitions above.
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e The pipe experiences its next break. This resolves the problem of Left Censoring, as it
allows for an arbitrary choice of the t=0 time. The t=0 time is often set at the time of the
most recent break. This definition is still, however, prone to the Right Censoring and

Truncation problems.

o The pipe’s expected rate of failures per km exceeds a threshold (e.g., 20 breaks / 100
km / year). This is another replacement policy used by some utilities, as the average rate of
breaks in the network (usually expressed per 100 km per year, or per 100 miles per year) is
a common performance metric used to measure both customer service and the state of good
repair of the network. It is not, however, a practical definition for fitting a survival curve
since it requires a preexisting model for estimating the future likelihood of failure. This is

equivalent to the hazard function itself, yielding a circular definition.

Each of the definitions above, except for exceeding an expected rate of failures, suffers from the

second group of problems: Censoring and Truncation.

Right Censoring is a common challenge in fitting survival curves to situations where study
durations are less than the maximum lifetime of the subjects. This is the case for pipe failure studies,
where utility records typically span only a few decades, but pipes can remain in service for a century
or more. There are four common methods for handling Right Censored data. The first is simply to
discard the right-censored records. The second is imputation of the missing data, where a rule or
model is used to fill in the missing records. Third is dichotomizing the data, where a classifier is first
fit to separate those that did and did not experience a failure, and then fitting a survival curve to only
the non-censored data. Fourth and most widely used is likelihood-based methods, which adjust
mathematically for whether a sample was censored or not; this method is used by Kaplain-Meier

estimators and by Cox Regression (Turkson et al., 2021).

Left Censoring in pipe failure records warrants deeper discussion. In a conventional Left
Censoring scenario, it is known which members of the population failed prior to the study start time,
but not when. An example of conventional Left Censoring would be leak detection on pipes, wherein
a leak detection survey may discover a non-surfacing leak on the pipe which formed at some
unknown time in the pipe’s history. In pipe break records, however, another type of Left Censoring
occurs, where it is simply not known whether a pipe has previously failed or not. This most

commonly occurs when unknown breaks have occurred prior to commencement of systematic break
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recording. This problem would not be present in an ideal scenario where a utility has recorded all
pipe failures and pipe replacements since the installation of its first pipe. The reality is that recording
pipe breaks is a relatively recent trend in industry. Many utilities do not practice it. Those that do
generally have limited records. In the case of the utilities participating in this study, the
commencement date of their records ranges from 1960 to 2010. This likely means that many breaks
that occurred early in the lifetimes of some pipes are unrecorded. There is no definitive way to know
which pipes have and have not previously failed. Consequently, most methods of accounting for Left
Censoring, such as removing Left Censored records from the training set, cannot generally be applied.
Such unknown missing records can lead to a bias in the survival curve tending to overestimate
survival rates. The dichotomization method has, however, been applied successfully. To account for
previously unrecorded leaks, a model to predict which pipes had breaks prior to commencement of
recordkeeping can be created followed by a second model to estimate when. This approach has been

shown to reduce the bias introduced by left censoring (Xu & Sinha, 2021).
Interval Censoring is not a widely documented problem for pipe failure records.

Truncation is also a common challenge in pipe failure records. Many utilities keep records of their
current installed pipe inventory only. Once a pipe is removed from service, it is expunged from their
records. This is a form of Truncation, whereby pipes which were removed from service prior to the
study date are simply not present in the database. It acts as a form of selection bias, whereby pipes
which failed early may simply not appear in the data. The absence of records for pipes which
experienced premature failure may cause a bias in the survival curve tending to overestimate survival
rates. Fortunately, many data sets (including the majority used in this study) also include records of

pipes that had been removed from service, in which case no Truncation is expected.

The third group of problems relates to the challenging of selecting appropriate assumptions in
fitting parametric and semi-parametric (where the relationship with time is parametric, but with other
covariates is nonparametric) models. By their nature, parametric models assume some form for the
relationship between time, the covariates, and the failure rate. Particularly common is assuming a
specific form of the relationship between time and the failure rate, such as (for example) an
exponential increase in the hazard rate with time or an exponential decrease in the mean time between
failures with age. While not strictly required, most implementations of parametric or semi-parametric

models choose a baseline hazard function which assumes a monotonic relationship between the
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hazard rate and time for a given cohort of pipes. This relationship is shown in Chapters 4.2.4 and
5.4.2 to be highly questionable. Likewise, proportional hazard models assume that each covariate
impacts failure risk consistently regardless of the value of other covariates. This too is a questionable
assumption with respect to pipes, as shown in Chapter 4.2.2 with the interaction between pipe

material and diameter and in Chapter 4.2.4 with pipe material and age.

The fourth and final challenge relates to finding a formulation of the survival curve that is directly
applicable in practice. Fitting a survival curve requires choosing a study period, which in practical
terms generally means the duration of pipe break records provided by utilities contributing data.
Many of the resulting metrics, such as the mean time to next failure, would be applicable to other
similar study periods. However, given the changing nature of pipe manufacturing and installation
over time, it is not clear whether pipes will behave similarly during a future period (for example,
starting 30 years later than the original study period). Holding back the most recent study data from
the curve fitting process and using this to test the curve would provide this confirmation; however,
this is not common practice in survival curve fitting. Similarly challenging is that many problem
formulations require a long history of record-keeping (specifically when the most recent break

occurred on each pipe) to be effectively applied.

2.2.3.5.2 History of Fitting Survival Curves to Pipe Data

Here are brief summaries of several studies related to survival analysis or survival curves in the

context of water pipe break prediction:

Le Gat and Eisenbeis applied a Weibull Proportional Hazard Model on both long duration (20 to 50
years) and short duration (5 years) maintenance records (Le Gat & Eisenbeis, 2000). The study found
that with appropriate both left and right truncated data and appropriate grouping of cohorts, the short

duration data was sufficient to fit the survival curves effectively.

Scheidegger et al. explored the impact of truncation on pipe failure models (Scheidegger et al.,
2013). They proposed an extension to these methods to consider absent data from replaced pipes.
Their further work included a review of statistical failure models applied to water distribution pipes

prior to 2015 (Scheidegger et al., 2015).

Xu and Sinha discussed the overlooked issue of left truncation in many studies. They highlighted

that this leads to systematic bias in survival analysis models, affecting the scale and shape of survival
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curves and changing Mean Time To Failure (MTTF) estimates (Xu & Sinha, 2020). In particular,
they noted that this bias leads to underestimation of failure rates and overestimation of the time to
next break. They later proposed integrating an Artificial Neural Network (ANN) imputation method
with Weibull proportional hazard survival analysis to calibrate the survival curve and reduce bias in

MTTF estimation due to left truncation, reducing bias from 14.3% to 2.1% (Xu & Sinha, 2021).

Phan et al. proposed an approach to managing water main breaks using risk-based decision making,

combining machine learning and survival analysis (Phan et al., 2019).

Rahbaralam et al. employed machine learning algorithms and a Cox proportional hazard survival
analysis model to predict water main failures in Barcelona, evaluating the models with various

metrics including AUC and Matthews’ Correlation Coefficient (Rahbaralam et al., 2007).

The use of survival trees, survival tree ensembles, and survival random forests for this application
was introduced in a master’s thesis (Oliveira, 2019). This thesis further introduced the concept of
ranking the pipe segments and plotting the percentage of the network selected for replacement versus
the percentage of failures avoided if it were replaced, describing this as a cumulative gain curve, the
use of a concordance index for measuring overall performance, and the use of a metric (such as the

Brier score) to measure the absolute accuracy of failure probability estimates.

Snider and McBean published several recent studies on this topic. They addressed the issue of
censored data in water utility datasets, where many pipes in service have never experienced a break.
They noted that traditional survival analysis models like Cox proportional hazard models can handle
censored data, unlike many machine learning models (Snider & McBean, 2020b). They also
compared a machine learning model (XGBoost) with Weibull proportional hazard survival analysis
for predicting time to next failure, finding that the XGBoost model underpredicted time to next break
due to its inability to include censored events (Snider & McBean, 2020a). They further discussed the
use of survival machine learning models like Random Survival Forest, which incorporate censored

data and model complex relationships between variables (Snider & McBean, 2021).

Recent work on fitting survival curves to data continues to explore the use of random survival
forests (Daulat et al., 2024). Random survival forests can be considered both survival curve fitting

and a machine learning approach. Prior work in this area will also be described in Chapter 2.3.2.
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2.2.4 Failure Risk Assessment

The concept of failure risk prediction is prominent in engineering approaches to asset management.
This section provides a synopsis of studies from the literature which have applied the technique to

water pipe diagnosis.

2.2.4.1 Background on Failure Risk Assessment

Failure risk prediction deals with the same fundamental problem as survival analysis but approaches
it from the opposite direction. Rather than focusing on the question of how long it will be until a

member of the population fails, it focuses on estimating the risk of failure in a given time period.

Failure risk assessment generally breaks down the problem into two dimensions: the likelihood (or
probability) of a failure occurring, and the consequences (or severity) of a failure if it does occur.
Both dimensions can be handled qualitatively (such as with risk categories) or quantitatively (such as
in failure probability estimation). Similarly, the joint consideration of likelihood and consequences of
failure can also be handled qualitatively (such as with a risk matrix) or quantitatively. When joint
risk consideration is handled quantitatively, a common approach is to calculate the expectation value

of the consequences from a given risk:
RoF(t) = CoF(t) - PoF(t)
&)
Where:

e = A time period of interest, such as a particular year
e RoF(t) = Risk of Failure during time period ¢
e (Cof(t) = Consequence of Failure during time period ¢
e PoF(t) = Probability of Failure during time period ¢

In many applications, a range of different types of failures are possible, each with different
probability and consequences of failure. In such cases, the total risk is often expressed as a

summation over these different types of risk.
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RoF(t) = Z RoF,(t)

RoF(¢) = Z CoFy(t) - PoF;(t)

10)
Where:
e RoF;, CoF;, and PoF; are the Risk, Consequence, and Probability of the i™ failure of type.

The expression of the aggregate risk over a population comes in a similar form. Rather than
summing over types of risk, the same summation is applied over the different members of a
population. Where the population is homogeneous, this works out to a simple multiplication by the

total size of the population.

N
RoF(¢) = Z Cof,(t) - PoF,(t)
n=1

RoF(t) = N - CoF(t) - PoF(t)
an
Where:

e RoF,, CoF,, and PoF, are the Risk, Consequence, and Probability of a failure of the n™

member of the population
e Nis the total size of the population

It should be noted that, while the terms “Probability of Failure” and “Likelihood of Failure” are
commonly used, strictly speaking this should be the expectation value of the number of failures. The
two are identical in the case where a particular failure can only occur once; however, in some cases, it

is possible for the same member of the population to fail multiple times within the same time unit t.

This study is primarily focused on the PoF term. A range of methods exist for the estimation of
this term. Several of these methods and their history of use for pipe failure risk assessment are

described in the sections below.
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2.2.4.2 Failure Prediction Applied to a Pipe Cohort

Early approaches to pipe failure probability estimation generally considered large populations of
pipes together. These approaches generally involve first defining cohorts (i.e., separating the
population into groups across one or more dimensions) and then predicting the number of failures

within a given cohort and a given period.

Separating the population into groups (called segmentation) requires selection of both the
dimensions (variables) upon which to divide the population and the thresholds (for numerical
variables) or aggregations (for categorical variables) that will be used to separate the groups. This
process can be done analytically (via segmentation techniques, such as K-Means) or manually. When
performed manually, exploratory data analysis and statistical techniques are generally applied to
select the variables for use in defining the cohorts and then to confirm that the resultant groups are

appropriate.

Predicting the number of failures within a group is generally accomplished via regression analysis.
Various types of regression analysis are available, varying in their complexity. Complexity can be
increased across two dimensions: the number of predictor variables used and the assumptions made as

to the form of the relationships assumed among the variables.

2.2.4.2.1 Segmentation Approaches

Analytical approaches to segmentation are generally formulated as optimization problems. These
seek to minimize some cost function. Perhaps the best known segmentation algorithm is K-Means.
This algorithm aims to identify central points for K groups in a manner that minimized the average
distance between each member of the population and its assigned group central point. While various

distance measures are possible, Euclidean Distance is the most common.

One practical challenge with K-Means segmentation is that the results can be challenging to
understand and explain. As the separations between classes exist across multiple dimensions of the
data, it is often the case that no clear definition of the barrier (e.g., “diameter > 150 mm” in the case
of pipe populations) is possible. This is particularly true when the data is subject to dimensionality
reduction (such as principal component analysis) prior to application of the K-Means algorithm.
Consequently, the segments are generally “profiled” across additional dimensions of the data and

given qualitative labels which are easy to understand. A clear example of this in the domain of water

40



pipelines is the distinction between classes of pipes: “customer connections,” “distribution mains,”
“trunk mains,” and “transmission mains.” While there are no strict demarcation lines between the
segments, the concepts are understandable. For example, “distribution mains” generally describes
water pipes that are of relatively small diameter and short length, constructed with low-cost materials

that are easy to tap, but not directly supplying a single customer with water.

In practice, K-Means is often applied hierarchically as a means of creating more explainable
segments, first segmenting into K groups, and then further segmenting some or all of these K groups
into subsegments. Selecting a very small number of dimensions for each level of segmentation can
create segments which are easily explained by their decision parameters (e.g., “Plastic pipes less than

75m in length” for pipelines).

Manual approaches for constructing segments often yield the most explainable segments, making
them quite common in practice. In such cases it is common practice to begin with exploratory data
analysis, considering predictor variables individually (or in pairs) and checking for relationships with

the target variables.

It is the author’s professional observation that manual rules for segmenting the pipe population into
cohorts are quite common in the pipeline industry. It is not clear whether this is due to a desire for
explainable segments, the small number of predictive variables available, or the existing research

regarding the relationships between these and the target variable.

2.2.4.2.2 Regression Approaches

Once cohorts have been defined, predicting the number of future breaks within a cohort can be treated
as a regression problem. Regression models involve estimating some quantity y based on a vector of
predictive variables x using an estimator function. While a time variable ¢ can be contained within X,

in the case of regression problems that attempt to estimate a future value, t is often shown separately.

(12)
Where:

e ¥ is the estimated value of target (dependent) variable y
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e xis avector of predictive variables
e tisatime period of interest
e f{)is an estimator; a function which estimates the value of § at time ¢ using x

In the case of pipe failure risk assessment, the target variable y is generally the number of breaks
within a given cohort in a given time period t. The predictive variables used for x generally consist of

the variables used to define the cohort, concatenated with several statistical measures on the cohort.
B,,(t) = f(t, [cohort_identity; cohort_statistics])
a3)
Where:
e tis the time period of interest
e B,(f)is the number of breaks in the m™ cohort during time period ¢

e cohort identity is a vector of the variable values used to define the cohort, such as pipe

diameter, pipe material, or geographic neighborhood

e cohort statistics is a collection of aggregate statistics of the pipes in the cohort, such as

average age, total length, or the failure rates from prior time periods

A wide range of estimators can be used for the function f{z, x). They can be broadly classified into
point-in-time models, which use information about the current state of the system in x, and time series
regression models (also called autoregressive models), which use past values of the target variable in

x. Some models are able to consider both current state and historical information jointly in x.

Perhaps the simplest point-in-time model is linear regression, which uses only a single variable for
x, and assumes a linear relationship between x and y. Complexity can be introduced in either of two
ways: increasing the number of variables in x or using estimators f{x) which make fewer (or weaker)

assumptions about the relationship between variables.

The simplest time series model is the trivial identity model, whereby each sample in the series is
predicted to be the same as the previous time interval: f{r) = y(¢-1). As with the point in time models,

complexity can be added both by increasing the number of variables considered (e.g., f{t) =
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MEANQ(/(#-1), ¥(2-2), ¥(¢-3)) or by making fewer (or weaker) assumptions about the relationship

between f{¢) and the values of y during previous time intervals.

This distinction is not strict, as both point-in-time models and time series models can be adapted to
blur the distinction between the two. Point-in-time models can include lag variables in x, which
provide information about the historical state of the system. Certain autoregressive models, such as
Markov Chains and Recurrent Neural Networks, consider both past values and current state variables

jointly when making a prediction of the next value.

2.2.4.3 Failure Prediction Applied to Individual Pipes

When applied to an individual pipe, failure prediction can be formulated as a classification problem.
The common approach is to classify pipes as breaking vs not breaking within a particular timeframe.
The general formulation of this approach is to predict a class label y based on a vector of predictive

variables x, using a classification function.
y=gx)
a14)
Where:
e 7y is the predicted class label
e g(x)is a classification function, which returns the predicted class label

The classification function g(x) can be formulated as seeking the label assignment that maximizes

the value of a scoring function on that data:
g(x) = argmax f(x, y;)
i
as)
Where:
e xis avector of numerical features
e y;is the i" possible label which could be assigned to the sample represented by x

e fix, y)) is the scoring function, where label y; is applied to feature vector x
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Many different scoring functions can be employed; however, a commonly used class of scoring

function in machine learning models is to use a conditional probability estimate:
fxy)=P(ylx)
16)
Where:
e xis avector of numerical features
e yisapossible label which could be assigned to the sample represented by x

e P(y|x) is the estimated probability that y is the correct label for the sample, given that the

sample is represented by feature vector x

This represents an estimate of the probability of the label y being correct, given the observed data
vector x. In the case of failure prediction, this is generally formulated as a binary classification
problem, where only two classes (Failure = true or false) are possible, and with the time period #
shown separately from the rest of x. This simplifies the formulation to estimation of a single

probability (that Failure = true):
f(t,x) = P(Failure occurs at time t | x)
f(t,x) =PoF(tl|x)
an
Where:

e xis avector of numerical features

e tisatime of interest

e PoF(t|x) is the Probability of a Failure during time t for the sample described by x

Note that in failure risk assessment, the Probability of Failure during time ¢ is assumed to be
conditional upon the sample having survived up to time ¢. As such, this formulation of the scoring
function matches the Hazard Function A(¢ | x) used in Survival Analysis, described in Chapter 2.2.3.3.
Care should be taken not to confuse it with the failure event density, which is the joint probability of

the sample surviving up to time # and also failing during time ¢.
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2.2.4.3.1 Defining a Member of the Population and the Target Variable

Many descriptions of the problem, such as “pipe failure prediction,” seem intuitively clear, but
contain hidden ambiguity. This is a consequence