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Abstract

Optical transport networks (OTNs) serve as a pivotal role in Internet backbones thanks to
their support for multi-tenant and multi-service environments with high reliability and low
cost. A failure event may affect one or multiple boards in OTN that ignite a vast number of
alarms, which significantly boosts the complexity of failure localization and alarm analysis.
Accordingly, there is an urgent need for a systematic framework that harnesses the known
network state and received alarms to achieve effective failure localization.

Alarm correlation has been considered as a representative approach to identifying the
dependencies among alarms, aiming at eliminating as many descendent alarms as possible,
thereby fulfilling failure localization with much decreased complexity. Nevertheless, exist-
ing methods of alarm correlation are subject to the following issues. Firstly, they ignore
the fact that alarm propagation mostly takes place along certain connections and that the
network topology and traffic distribution may solidly underpin the required alarm correla-
tion process. Secondly, they necessitate heuristically setting initial parameters but lack a
general rule that adjusts their values according to various network characters. Lastly, they
are deficient in generality to versatile network environments, where the obtained result
grounded in a specific network state may not be migrated to another.

Enlightened by its significance and stringent requirements, this thesis proposes a novel
framework of board-level failure localization in OTN, called Failure-Alarm Correlation Tree
based Failure Localization (FACT-FL). It aims to construct one or multiple FACTs that
achieve both failure localization and alarm correlation, where each FACT takes a failed
board and its associated alarms as the tree root and leaves, respectively. We have designed
three methodologies to obtain viable FACTs. A scheme named FACT-FL-Heuristic is
firstly attempted via a learned binary classifier that intelligently captures the historical
correlations in the form of board → alarm and alarm → alarm, followed by heuristically
creating the feasible FACT(s). To further improve FACT-FL-Heuristic’s performance, a
method termed FACT-FL-Chain treats each FACT as a suite of correlation chains with
different order values and generates viable FACT(s) by elegantly solving an integer linear
programing (ILP) problem. Moreover, to reduce the computational complexity incurred by
enumerating all chain candidates with FACT-FL-Chain, an approach dubbed FACT-FL-
GNN leverages graph neural network (GNN) for evaluating the edge weights of potential
FACT(s), which facilitates formulating an alternative simplified ILP to yield the most likely
FACT(s). The above three methods share the same functional blocks including feature
extraction, binary classifier training, and FACT formation, while each method realizes
each functional block with different strategies. Extensive case studies are conducted to
unveil the proposed methods’ advantage over their counterparts in terms of the metrics
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assessing the recognized failed boards/root alarms. We also explore their performance
in volatile environmental variations such as diverse failure scenarios, network topologies,
traffic distributions, and noise alarms.
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Chapter 1

Introduction

1.1 Background

Telecommunication networks, notably the Internet optical backbones, have gone through
tremendous expansion in the past decades not only in their capacity and geographical
coverage but also in their heterogeneous nature where a multi-service and multi-tenant
environment is supported. Optical transport network (OTN) is a standard control and
management protocol introduced by ITU-T that serves as the basis of facilitating such
expansion by multiplexing various service flows over individual optical flows [29]. The
OTN control plane provides a strong capability in handling end-to-end lightpaths, where
it offers abundant maintenance and management signals in the electrical and optical layer
overheads. It introduces a suite of rigid alarming mechanisms at each device board in
response to any failure event detected by the board sensor. For example, a transponder
board triggers an alarm reported to the network management system (NMS) when any ir-
regularity affecting the quality of the received lightpath is identified in the electrical/optical
domain. Another example is that the failure of a fiber segment would be recognized by its
downstream fiber interface unit (FIU) board which in turn reports an alarm to the NMS.

In general, a failure event may hit one or a set of boards, which probably causes quality
of service (QoS) degradation or even service outage resulting in the loss of a significant
amount of data. [50] Therefore, failure localization is one of the most important issues in
the OTN operation, where the network operator aims to accurately identify the broken
network elements and restore them sooner.

However, as the current Internet distributes over thousands of kilometers with millions
of network entities, failure localization becomes intractable because a mass of failures hit
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the interconnected nodes in the network every day. A failure event could disrupt numerous
optical signals, which would be sensed by many other boards that are traversed by these
optical signals. An alarm could be raised and/or reported at a board not only owing to
an identified failure event but also in response to a notification alarm issued by another
remote board. Then these alarms are sent to the centralized NMS which generally receives
approximately 1 million alarms every day that overwhelm the network operators. [69]
Traditionally, the diagnosis of network failure counts on experienced network operators
who are required to manually figure out the relations among alarms and timely identify
the root alarm(s) from the alarm storm for locating the network failure(s). [45] For a large-
scale network, this poses a great challenge to failure localization procedure and increases
the maintenance cost as well. This situation becomes even worse in the network domains of
large geographical coverage and huge number of device boards such as nowadays Internet
OTN backbones.

1.2 Motivation and Challenges

To reduce the heavy workload of network operators, the key component of failure lo-
calization called alarm correlation is introduced, which aims to characterize the depen-
dency/causality of collected alarms. It can remarkably decrease the number of alarms by
discarding those dependent ones, which facilitates screening out the root cause one(s) for
localizing the failure(s). Nevertheless, the above alarm correlation procedure may bring
about high computational complexity in the context of an enormous number of alarms
propagating in the network. This especially becomes troublesome in a heterogeneous net-
work like the OTN, where the alarm attributes vary with layers and network domains, even
if these alarms are emitted from identical hardware devices/boards.

Alarm correlation has been considered as an effective approach to identifying the de-
pendencies among alarms, aiming to remove as many dependent alarms from the failure
localization process as possible such that the failure event(s) can be inferred/pinpointed
with significantly reduced complexity. By leveraging various alarm correlation techniques,
numerous methods have been reported in the literature, most of which focused on the
relations among alarms [59, 54, 32, 33, 51, 1, 8, 81, 19, 53, 42, 69, 84, 2, 12, 35, 3, 66, 82],
between possible faulty network devices and alarms [50, 75, 77, 45, 46, 47, 76, 85, 36, 74],
or between device performance data and device states [20, 70, 71, 78, 79, 34] in a static
network environment. However, they are subject to a couple of issues.

• They don’t consider the fact that the alarm propagation mostly occurs along certain
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connections and that the information on network topology and instantaneous traffic
distribution may solidly facilitate the desired alarm correlation process.

• They are required to heuristically set the initial parameters but lack a general rule
to determine their values that conform to various network characteristics.

• They lack sufficient generality to various network environments, where the obtained
result according to a specific network at a given moment may not be migratable to
another.

The aforementioned issues, along with many others, are specific to the OTN optical
layer but have not been sufficiently addressed by existing research works, leading to lower
precision and/or much more computation in failure localization via identifying correlated
alarms. Therefore, a novel failure localization framework via alarm correlation is expected
to have the following characteristics:

• Superior performance in localizing faulty board(s)/root alarm(s).

• Sufficient generality to various network environments and adaptability to the chang-
ing network topology and traffic distribution.

• High scalability and computational efficiency.

1.3 Related Works

Existing studies on alarm correlation generally employ approaches such as expert systems
[59, 54, 32], graphs [81, 8], pattern mining [19, 42, 69, 84], and machine learning [68, 66,
82, 50, 75, 77, 46, 47, 45, 22, 35, 85, 76, 3, 36].

Expert systems represent some of the earliest techniques that automatically transfer
the knowledge of correlating alarms from human experts into an exhaustive rule database
[59]. However, they come with the significant drawback of high costs while updating the
knowledge base, and they struggle to adapt to the network environmental changes. In [54],
an expert system called DANTES integrates structural and heuristic knowledge into rules
and applies them to network maintenance and problem diagnosis. Afterward, the authors
in [32] implement the expert system, namely IMPACT, and employ it for intelligent alarm
filtering, alarm generalization, and fault diagnosis.
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Graph-based methods model dependencies between alarm types using directed graphs.
However, these methods mostly concern temporal relationships of alarms, ignoring the fact
that alarms often propagate along specific routes, like lightpaths. In [81], a weighted alarm
causal graph is built via the Hawkes process and conditional independence tests, followed by
identifying the root alarms in each time window with the influence maximization analysis.
Nevertheless, it could lack a principle of setting window size according to different network
characters. Concurrently, the work in [8] aims at obtaining the alarm causal graph through
the multivariate Hawkes process. It assumes that an alarm is triggered by other alarms from
the alarm sequence and those alarms reported by its topological neighbors, but this method
may suffer from high computation complexity with the expansion of network topology.

Pattern mining-based approaches offer the advantage of identifying hidden alarm pat-
terns to generate alarm correlation rules. However, they require hyperparameter config-
uration based on prior knowledge, and rules established for one network state might not
be applied to another. A pioneering knowledge acquisition system dubbed TASA [19][42]
semi-automatically discovers alarm episode rules and association rules. Inspired by this
seminal work, Wang et al. [69] derive parent-child rules, indicating the alarm causal rela-
tions from frequent itemsets using the PrefixSpan algorithm. However, identifying potential
parent alarms is challenging as it leans heavily on the experience of domain experts, and
these parent alarms can change based on network topology. Furthermore, [84] adds a pre-
processing step to PrefixSpan, which involves calculating an association matrix to uncover
more significant alarm patterns. This addition, though, might lead to a marked increase
in complexity with longer alarm sequences.

Nowadays, machine learning-based approaches have become predominant in alarm cor-
relation research [68]. However, these methods, tailored to a specific network state, may
need to retrain their models when there are changes in the network topology or traffic
distribution. Wang et al. [66][82] employ K-means and the backpropagation (BP) neu-
ral network to quantify the alarm importance in high-frequency chain alarm sets mined
by the rule mining algorithm termed Apriori. However, they overlook the alarm loca-
tion information. In [50], failure locations are inferred using the long short-term memory
(LSTM) network and BP to find the mapping between the alarming devices and faulty ones.
Still, their approach is best suited for small-scale static networks with a limited number
of lightpaths. In [75], the researchers utilize the Hopfield neural network to address the
multi-failure scenario. This becomes challenging when establishing relations between the
suspected failures and alarms, since the alarms surge and spread throughout numerous
boards in contemporary OTN backbones. Furthermore, Yu et al. [77] address the single-
link failure localization problem by classifying the root alarms and non-root alarms. They
tackle this using a deep belief network. However, their approach is specific to a certain
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network state and might not be applicable to others.

Li et al. [46, 47, 45] utilize a constructed alarm knowledge graph (KG) to train a graph
neural network (GNN) to determine the root alarm(s) and localize the single failure. How-
ever, the KG primarily incorporates static knowledge without dynamic factors such as the
network topology and traffic distribution. Furthermore, this framework is extended in [22]
which considers the network topology for addressing the multi-failure scenario, where the
network status KG and alarm KG are integrated. However, this model requires retraining
whenever the network topology changes. In addition, [35] attempts to use the pre-trained
natural language processing model, specifically the Bidirectional Encoder Representations
from Transformers (BERT), to identify the root alarm and its correlated alarms. How-
ever, BERT might struggle to distinguish alarms with similar semantics. In [85][76], a
deep neural evolution network is employed to filter out the single-failure location from
the set of suspected fault locations. However, in practical scenarios, preparing a possible
fault location set for each alarm might be challenging. Babbar et al. [3] localize a single
power attenuation failure using two classifiers based on the light gradient boosting machine.
Nonetheless, the pre-defined sliding window size taken by the authors may not be suitable
for other network environments. Lastly, [36] proposes the alarm propagation graph neural
network to get the root alarms and eliminate the false repair orders via [84], Bayesian
networks, and GNN, but their alarm correlation conditions are mostly summarized from
expertise and not integrated as a universal metric.

Apart from the approaches using failure-alarm dependency relationships, failure local-
ization can also be achieved via machine learning methods using other performance data.
In [52], irregular wavelength selective switch (WSS) can be localized by inspecting power
spectrum density (PSD) that presents different distortion degrees. In [55][56], the authors
design a network-wide soft failure localization framework, where they lean on an artifi-
cial neural network-based approach using the data from streaming telemetry. In [5], the
generalized signal-to-noise ratio (GSNR) is leveraged for failure localization by analyzing
the evolution of GSNR over time, where the failure in WSSs could lead to the decrease of
GSNR value.

Finally, we create a table in 1.1 that summarizes the applicable failure scenarios of
our proposed approach and the counterparts. Obviously, most of the existing methods can
simply be applied to single failure scenarios while some of them are feasible for multi-failure
but non-region level failure. Note that the region-level failure represents that the number
of failed boards is more than 1 and those failed boards correspond to a connected subgraph
of the board-level network topology. Our proposed FACT-FL framework is the only one
that works for region-level multi-failure cases.
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Table 1.1: Summary of applicable failure scenarios of different methods.

Method name
Single failure Multi-failure

Board level Node level Link level Non-region-level Region level
FACT-FL ✓ ✓ ✓ ✓ ✓

[50] ✓ ✓ ✓ ✓
[75] ✓ ✓ ✓ ✓
[77] ✓

[46, 47, 45] ✓ ✓ ✓
[22] ✓ ✓ ✓ ✓
[35] ✓ ✓ ✓ ✓

[85][76] ✓ ✓ ✓
[3] ✓ ✓ ✓
[36] ✓ ✓ ✓

1.4 Research Objectives

Motivated by the exclusive demand for an effective failure localization approach, this thesis
aims to propose a novel framework of board-level failure localization in the OTN optical
layer, referred to as Failure-Alarm Correlation Tree based Failure Localization (FACT-FL).
Its anticipated output is one or multiple FACT(s), where each FACT takes one failed board
and its correlated alarms as the tree root and leaves, respectively. This research is designed
to implement FACT-FL with different schemes summarized as follows:

• FACT-FL-Heuristic: an approach that trains a binary classifier for learning the
correlation measure and heuristically creates the feasible FACT(s).

• FACT-FL-Chain: an approach that learns a set of binary classifiers for recogniz-
ing correlation chains with different order values and generates feasible FACT(s) by
handling an integer linear programing (ILP) problem.

• FACT-FL-GNN: an approach that harnesses graph neural network (GNN) for as-
sessing the edge weights of potential FACT(s) and obtains viable FACT(s) by solving
an alternative simplified ILP.
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Figure 1.1: Flowchart of FACT-FL.

1.5 Thesis Structure

Fig. 1.1 demonstrates the flowchart of FACT-FL which consists of three functional blocks:
feature extraction, binary classifier training, and FACT formation. We have realized FACT-
FL through three approaches, named FACT-FL-Heuristic (Chapter 2), FACT-FL-Chain
(Chapter 3), and FACT-FL-GNN (Chapter 4), respectively. Each approach adopts a dif-
ferent strategy to fulfill each functional block.

The rest of this thesis is organized as follows. Chapter 2 raises FACT-FL-Heuristic, a
method that heuristically constructs FACT(s) grounded in the correlation measure learned
by a binary classifier. Chapter 3 proposes FACT-FL-Chain, an approach that yields each
FACT via selecting a suite of eligible correlation chains, which is achieved by addressing
an ILP whose variables correspond to the chain candidates identified by the set of trained
binary classifiers. Chapter 4 presents FACT-FL-GNN, which firstly utilizes GNN for evalu-
ating the edge weights of latent FACTs induced by a collection of functional graphs (FGs),
followed by framing a simplified ILP to construct the most likely FACT(s). Furthermore,
extensive case studies are carried out in Chapter 2, 3, and 4 to compare the performance of
proposed methodologies with that of the counterparts in terms of the metrics for evaluating
the identified failed boards/root alarms. Finally, we summarize the thesis and discuss the
future work in Chapter 5.
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Chapter 2

FACT-FL-Heuristic

Failure localization serves as a key to an efficacious fault management plane in the In-
ternet backbone. This chapter investigates a novel board-level failure localization frame-
work, namely Failure-Alarm Correlation Tree based Failure Localization (FACT-FL), for
achieving effective fault management in optical transport network (OTN). The FACT-FL
is aimed at localizing failed device boards in the optical layer of OTN by correlating the
failed boards and alarms. The outcome of FACT-FL is one or multiple FACT(s), where
each FACT takes one failed board and its correlated alarms as the tree root and leaves,
respectively. To implement FACT-FL, we present FACT-FL-Heuristic, an approach that
heuristically creates the feasible FACT(s) using the correlation measure learned by a binary
classifier. Notably, the proposed binary classifier is characterized by an intelligent feature
extraction of historical correlations in dimensions of time, board/alarm attribute, network
topology, and traffic distribution. Extensive case studies are conducted to demonstrate
the advantages gained by FACT-FL-Heuristic in terms of its high precision, as well as
the analysis of its performance due to various environmental turbulence such as network
topology, traffic diversity, and noise alarms.

2.1 Introduction

Alarm correlation has been considered an effective approach to achieve the required pre-
cision in identifying dependency for each pair of collected alarms. With those depen-
dencies, most dependent alarms can be removed such that the failure event(s) can be
inferred/pinpointed with remarkably reduced complexity.
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An example is given in Fig. 2.1 where five boards A,B,C,D, and E are connected by
corresponding fiber pairs. As shown in Fig. 2.1(a), let the fiber cut event on the link from
D to B be denoted as f1, which is firstly detected by B, noted as an event f2, and further
triggers an alarm a2 reported to the NMS. Upon f2, B notifies its neighboring boards D
and E as events f3 and f4, respectively, where the incurred alarms a3 and a4 are reported
to the NMS accordingly. The entire failure-alarm propagation process is represented as a
failure-alarm correlation tree (FACT) shown in Fig. 2.1(b). Note that although f1 does not
correspond to any alarm reported to the NMS, it is the root cause that requires a further
inference to localize.

Another example is given in Fig. 2.1(c) where the failure on board D, noted as f5,
has even disabled its sensor and thus reported no alarm to the NMS. The failure event f5
propagates to boards A, B, and C due to the commonly traversing traffic (i.e., an OTS,
OMS, or OCH connection) that causes events f6, f7, and f8, which further triggers alarms
a6, a7, and a8 reported to the NMS, respectively. At the same time, board E has event
f9 to occur due to the notification by B and reports an alarm a9. The expected result of
failure localization is by correlating the alarms a6, a7, a8, and a9, by which the NMS has
to come up with the FACT as shown in Fig. 2.1(d) in spite of the fact that the root cause
f5 is completely “silent” throughout the whole alarm propagation and reporting process.

In addition to precision, the desired features of failure localization design include suffi-
cient generality to various network environments and adaptability to the changing network
status, including any possible variation in network topology and traffic distribution. Fur-
ther, scalability should be pursued such that the NMS can swiftly identify the observed
irregularity and launch the required reaction/restoration to the incurred damages.

Motivated by its importance and stringent requirements, this chapter introduces a novel
failure localization framework in the optical layer of OTN, called Failure-Alarm Correlation
Tree based Failure Localization (FACT-FL), aiming to explore various design dimensions
for achieving all the desired features. FACT-FL is realized by the approach called FACT-
FL-Heuristic, which heuristically creates the feasible FACT(s) using the correlation mea-
sure learned by a binary classifier. We firstly define board instances and alarm instances,
which represent the status of each board and the collected alarms at the NMS during an
observation window, respectively. By assuming that a functioning board can become faulty
at most once at the beginning of an observation window, a board instance can be at most
directly correlated with a set of alarm instances in time vicinity; while an alarm instance
contains a number of features related to the reported alarm.

By taking each instance as a vertex, the correlation of an instance pair is nothing
but the likelihood of the existence of an arc interconnecting the two vertices. As such

9



(a) (b)

(c) (d)

𝑓!𝑓"

A

B

C

D
𝑓#
E 𝑓$

𝑎" 𝑎!𝑎#

𝑓%

𝑓&

𝑓'

A

B

C

D
𝑓(
E

𝑓)

𝑎%

𝑎&

𝑎'𝑎(
𝑓)

𝑎% 𝑎' 𝑎&

𝑎(

𝑓$

𝑎"

𝑎! 𝑎#

Figure 2.1: (a), (c) Examples of different failure events hitting the same network, where
the red cross indicates the faulty fiber segment/board. (b), (d) Corresponding FACTs.
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we investigate the instance correlation measurement using a machine learning approach by
jointly considering the network topology and dynamic traffic distribution, where the trained
binary classifier is migratable to any possible network environment with the same failure-
alarm propagation rules. With all the labeled arcs, FACT formation can be exclusively
completed by heuristically solving an integer linear programing (ILP) problem, where each
FACT has a board instance as the tree root connecting to one or multiple alarm instances.
The goal of the FACT formation is to cover all the alarms by the FACTs where each FACT
demonstrates the complete alarm propagation process due to a faulty board.

The contributions of this chapter are summarized as follows.

• Investigate a novel failure localization approach, namely FACT-FL-Heuristic, which
relies on a machine learning-based binary classifier and FACT formation modeling
approach.

• Propose a novel binary classifier model, aiming to achieve the best generality and
adaptation to the versatile network environment by taking both board instances and
alarm instances as the input of the model.

• Introduce a novel FACT formation process for obtaining the most likely FACTs
according to the given set of alarms.

• Conduct extensive case studies to verify the proposed FACT-FL-Heuristic approach
and show that it can achieve effective and precise failure localization in the optical
layer of OTN.

The rest of this chapter is organized as follows. Section 2.2 presents the system model,
followed by the proposed FACT-FL-Heuristic approach in Section 2.3. Section 2.4 expounds
on the case study setup and the results. Section 2.5 concludes this chapter.

2.2 OTN Failure-Alarm Propagation Model

In this study, two types of instances are defined. An alarm instance is denoted by a 5-tuple
ai = {ti, hi, bi,mi, ri}, ∀i ∈ {1, · · · , N}, where ti is the occurrence time, hi and bi are the
ID and type of the board that issues this instance, respectively. mi is the alarm type
and ri is the layer information that can be either OTS, OMS, or OCH. A board instance is
denoted by a 2-tuple fj = {hj, bj}, ∀j ∈ {1, · · · ,M}, where hj is the board ID and bj is the
board type. Note that the board instance can be any type of device board in the network
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topology, including fiber segment, fiber interfact unit (FIU), optical amplifier (OA), optical
transponder unit (OTU), optical multiplexer (OM), optical demultiplexer (OD), etc.

The correlation of two instances is evaluated between every pair of instances. An in-
stance correlation between fj and ai could be due to the fact that the failure on board
instance fj triggers an alarm instance ai, which is denoted as fj → ai. Another possible sce-
nario of instance correlation is between ai and ai′ , where the alarm instance corresponding
to ai triggers another alarm instance ai′ , which is denoted as ai → ai′ .

In the setting of OTN, a board that has been hit by a failure/received a notification
signal would change the status of board instance fj/initiate alarm instance ai, and this
board could notify a remote board of reporting another alarm instance ai′ to the NMS.
The direction of alarm propagation can be divided into forward propagation (FP), backward
propagation (BP), and local notification (LN). With FP (or BP), a board instance reports
an alarm instance and sends a notification signal to downstream (or upstream) board
instances that in turn emit corresponding alarm instances. LN, on the other hand, must be
a single alarm instance reported by a board instance without any failure-alarm propagation
process. Furthermore, we assume that the alarm propagation occurs along the shortest
path between the source board and the destination board. Also note that the direction
of alarm propagation can be used to determine the locations of the source board and
destination board, which facilitates calculating the length of the shortest path between
these two boards.

Accordingly, the failure-alarm propagation behavior in OTN is modeled into the fol-
lowing two generic types:

• One2Many-Static-SameLayer/CrossLayer: one failed board instance/alarm in-
stance whose occurrence time is earlier triggers n alarm instances that happen later
in the same/upper layer reported by no more than n + 1 different boards in the way
of FP, BP, or LN, respectively. The value of n is constant regardless of dynamic
traffic distribution.

• One2Many-Dynamic-SameLayer/CrossLayer:
one failed board instance/alarm instance that occurs earlier leads to n alarm instances
that take place later in the same/upper layer emitted by at most n+1 various boards
in the way of FP, BP, or LN, respectively. The value of n depends on the traffic
distribution.

Due to the above characters, the OTN failure-alarm propagation process incurred by a
failure event can be represented by one or multiple FACTs.
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2.3 Proposed FACT-FL-Heuristic Approach

Raw dataset of historical observations
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Binary classifier training
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FACT(s)
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Figure 2.2: Flowchart of the proposed FACT-FL-Heuristic approach.

Fig. 2.2 shows the flowchart of the proposed FACT-FL-Heuristic approach that aims
to construct the FACT(s) according to a set of alarms during an observation window.
Given the raw dataset collected from the historical observations, our first step is to obtain
attractive features from each instance pair as exhibited in (i) of Fig. 2.2. The details of
feature extraction are given in 2.3.1. Then the obtained training dataset is used to train a
binary classifier that learns the correlation measure of an instance pair, as demonstrated
in (ii) of the flowchart whose details will be given in 2.3.2.

With the learned correlation measure, given a testing dataset collected by observing
a network within an observation window P , all correlations among the instances can be
explored through the FACT formation process as illustrated in (iii) of Fig. 2.2 that will be
detailed in 2.3.3. Eventually, one or a set of FACTs corresponding to the given alarm set
shall be obtained as the output of the proposed approach.

Additionally, Table 2.1 has summarized all notations used in this chapter for better
readability.

2.3.1 Feature Extraction

The raw dataset is provided according to the historical data from carrier operators, which
is collected within a set of observation windows denoted as T = {T1, · · · , Tk, · · · , TK},
∀k ∈ {1, · · · , K}. During Tk we observed the network topology GTk

and a set of lightpaths
denoted as LTk

. Here, GTk
represents the interconnection of boards and each board could
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Table 2.1: Summary of symbols and their definitions

Symbol Definition
Ti Observation window
GTi

Network topology in Ti

LTi
Traffic distribution in Ti

ATi
Alarm instance set in Ti

NTi
Number of alarm instances in FTi

FTi
Board instance set in Ti

MTi
Number of board instances in FTi

DTi
Set of all possible instance pairs in Ti

UTi
Set of ground-truth instance correlations in Ti

D Training dataset

be a fiber segment or device whose failure would interrupt the traversing optical traffic
flows. A total number of NTk

alarm instances that have been sorted in ascending order
of their occurrence time are denoted as ATk

= {a1, · · · , aNTk
}. A total number of MTk

board instances, denoted as FTk
= {f1, · · · , fMTk

}, are obtained by considering all boards

in GTk
. Based on ATk

and FTk
, a set denoted as DTk

with a size far smaller than 1
2
[(NTk

+
MTk

)2 − (NTk
+ MTk

)], contains all possible instance pairs. A set of ground-truth instance
correlations denoted as UTk

= {fj → ai|i ∈ {1, · · · , NTk
}, j ∈ {1, · · · ,MTk

}}
⋃
{ai →

ai′|i, i′ ∈ {1, · · · , NTk
}}, is prepared. It is used for generating the binary label for each

instance pair in DTk
during the training process.

To characterize each instance pair (vi, vj) ∈ DTk
, we create a feature space H in di-

mensions of time, board/alarm attribute, network topology, and traffic distribution. The
feature vector of (vi, vj), denoted as H(vi, vj), is defined in (2.1):

H(vi, vj) = [∆ti,j, |li,j|,M(li,j), bi,mi, ri, bj,mj, rj, C(li,j)], (2.1)

where ∆ti,j denotes the time gap of two instances, |li,j| denotes the length of the shortest
path from hi to hj in GTk

, and M(li,j) counts the number of OMS connections traversed
by the boards on the shortest path. bi,mi, ri and bj,mj, rj are the board type, instance
type, and layer type of instance vi and vj, respectively. Finally, C(li,j) is a binary value
that indicates whether hi and hj are traversed by a common OCH and can be obtained by
checking LTk

. Note that for the instance pair that contains a board instance, the missing
features are complemented, where the occurrence time is set as the beginning moment of
the observation window and an additional layer type is introduced.
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By mapping each instance pair from DTk
to H, the transformed dataset H(DTk

) can be
obtained. ∀k ∈ {1, · · · , K}, the training dataset derived from all historical data, which is
denoted as D =

⋃K
k=1H(DTk

), can be obtained for the subsequent binary classifier training.

2.3.2 DNN Architecture

The proposed binary classifier is used to evaluate the correlation of an instance pair in
terms of the correlation measure. For this, a deep neural network (DNN) is employed
whose architecture is illustrated in Fig. 2.3, where the dimension of each layer is given
in parentheses. According to (2.1), H(vi, vj) consists of the numerical features including
∆ti,j, |li,j|,M(li,j) as well as the categorical features containing bi,mi, ri, bj,mj, rj, C(li,j).
To combine these two types of input features, we map the categorical features of H(vi, vj)
in continuous space by an embedding layer. Its output is concatenated with the numerical
features of H(vi, vj) and fed into the subsequent fully-connected layers. Eventually, the
model outputs the probability of instance correlation vi → vj, denoted as Pr{vi → vj}.

In addition, since most instance pairs are non-correlated, D is imbalanced. We adopt
the resampling approach to build a balanced dataset through oversampling the minority
class by random duplication [49][31].

2.3.3 FACT Formation

During an observation window P , the testing dataset of an arbitrary network state is
provided, which incorporates the network topology GP , a set of lightpaths LP , and an
alarm instance set AP . The set of board instances is denoted as FP = {f1, · · · , fMP

}. As
shown in Fig. 2.4, the goal of the proposed FACT formation is to construct one or multiple
FACTs, each with a board instance as the tree root and some alarm instances as the leaf
nodes, such that the alarm instances can be covered by the FACT(s) to the maximum
extent. With the FACT(s), the required failure localization and alarm correlation can be
achieved.

The following assumptions are held in the proposed FACT formation process. Firstly,
the state of any board in FP can only change at most once at the beginning of each
observation window, i.e., either staying normal or switching from normal to failed. Once
a board is failed, it stays in the failed state until the end of the observation window. This
implies that a board instance may not correlate to any alarm instance and will not be
taken into the FACT formation process. Secondly, all alarm instances in AP are caused
by one or multiple boards being failed at the starting moment of P . If there exists any
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Figure 2.3: Architecture of DNN.
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alarm instance associated with a board that wasn’t faulty at the beginning of P , it could be
removed by examining the historical FACTs. Thirdly, due to the characters of failure-alarm
propagation behavior in OTN, One2One and One2Many could happen whereas Many2One
isn’t allowed.

Based on the above assumptions, one or multiple FACTs constitute a directed forest
denoted as GI

P = (V I
P , E

I
P ), where V I

P is the vertex set of instances containing the faulty
board instances and all alarm instances, and EI

P is the arc set covering all identified instance
correlations.

To provision the search space for discovering GI
P , a weighted directed acyclic graph GP is

defined to incorporate all possible instance correlations, denoted as GP = (VP , EP ,W (EP )).
VP = FP

⋃
AP is the vertex set of all board instances and alarm instances. EP = E1

P

⋃
E2

P

is the set of arcs, where E1
P = FP × AP , E2

P ⊆ AP × AP are the sets of all possible
instance correlations. The alarm instances in AP have been sorted in ascending order of
their occurrence time. E2

P can be obtained by considering all alarm instance pairs whose
time gap is greater than 0. Whereas W (EP ) is the set of non-negative weights for arcs in
EP . ∀vi, vj ∈ VP , (vi, vj) ∈ EP , wij ∈ W (EP ) represents the cost of instance correlation
vi → vj and it’s denoted in (2.2):

wij =


1 − Pr{vi is failed}

· Pr{vi → vj}, if (vi, vj) ∈ E1
P ,

1 − Pr{vi → vj}, if (vi, vj) ∈ E2
P ,

(2.2)

where Pr{vi is failed} is the probability that the board instance vi becomes faulty. It
can be determined by the probability density function of time-to-failure (TTF) of the
corresponding board, which is estimated according to the historical failure events hitting
this board. Pr{vi → vj} is the probability of instance correlation vi → vj, which is
calculated by the trained binary classifier.
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2.3.4 Integer Linear Programing (ILP)

The problem of abstracting the best possible GI
P from GP can be formulated as an ILP

given as follows:

minimize
∑
e∈EP

wexe +
∑
u∈FP

(1 − Pr{u fails}) · yu (2.3a)

subject to
∑

e∈δ−(u)

xe = 1, ∀u ∈ AP , (2.3b)

xe ≤ yu, ∀u ∈ FP , ∀e ∈ δ+(u), (2.3c)

xe ∈ {0, 1}, ∀e ∈ EP , (2.3d)

yu ∈ {0, 1}, ∀u ∈ FP , (2.3e)

where ∀e ∈ EP , we ∈ W (EP ),∀u ∈ VP , δ
−(u), δ+(u) are the sets of all incoming arcs and

outgoing arcs of vertex u, respectively. Two binary variables xe, yu are defined, where xe

takes 1 if the instance correlation arc e is chosen by GI
P and 0 otherwise; while yu takes

1 if the board instance vertex u is selected as a tree root in GI
P and 0 otherwise. The

objective function (2.3a) aims to find the GI
P that minimizes the total cost of selected

instance correlations and board instances. Constraint (2.3b) indicates that for each alarm
instance vertex, only one incoming arc is selected by GI

P . This guarantees that all alarm
instances are traversed by GI

P and the in-degree of each alarm instance vertex must be one,
which satisfies GI

P ’s property of being a directed forest. Constraint (2.3c) implies that for
each board instance, if any one of its outgoing arcs is selected then this board instance
vertex must be chosen as a tree root.

By solving the above ILP, the anticipated FACT(s) GI
P can be obtained. The root

nodes in GI
P are faulty boards in the observed network state, where the failure localization

is accomplished by checking their location information. Also, GI
P elaborates all correlations

among the faulty boards and alarms.

Obviously, solving the above ILP model could be subject to intolerably long computa-
tion time. Thus, a heuristic scheme is developed to come up with feasible solutions.

2.3.5 Heuristic Algorithm

Fig. 2.5 demonstrates the flowchart of the proposed heuristic algorithm that aims to con-
struct the feasible FACT(s) GI

P . Given the set of instances VP and its corresponding
instance pair set EP , we can obtain the set of arc weights W (EP ) by passing through each
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Figure 2.5: Flowchart of the proposed heuristic algorithm for FACT formation.

instance pair from EP into the pre-trained binary classifier. For simplicity, we assume that
each board instance is equally likely to be faulty, which implies that the cost of choosing
a board instance can be ignored by setting Pr{u fails} as 1 in (2.3a).

To remove unreliable instance correlations in GP , the arcs whose weight in W (EP ) is
greater than 0.5 are discarded. Also, due to the characters of failure-alarm propagation be-
havior, for each alarm instance, there is at most one incoming arc whose tail vertex belongs
to the alarm instance, where we only reserve one arc with the minimum weight if there
are multiple qualified incoming arcs. Hence, GP is reduced to be G1

P = (VP , E
3
P ). Mean-

while, the subgraph of G1
P induced by AP has become a directed forest, which represents

all instance correlations formed by alarm instances and it’s denoted as G1
P [AP ].

Furthermore, the set of root alarm instances, denoted as RP ⊆ AP , can be identified as
the alarm instance whose in-degree in G1

P is non-zero and all its incoming arcs are initiated
by board instances. For each root alarm instance ri ∈ RP , the corresponding set of board
instances Fi and the set of associated alarm instances Ai can be determined by G1

P , where
Fi contains all board instances that connect to ri and Ai aggregates all alarm instances
that are reachable from ri. Based on the attributes of ri and all alarm instances in Ai,
the board instance whose confidence not only surpasses 0.5 but also is the highest one
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could be chosen according to the mined association rules between the faulty board and its
corresponding alarm types in the raw dataset and all other board instances are eliminated
from Fi. In addition, the set of board instances F is acquired by taking the union of all
Fi’s.

To reflect the relationship between the set of board instances and root alarm instances,
we define a directed bipartite graph G2

P = (F,RP , E
4
P ), where E4

P ⊆ E3
P is the arc set

that represents all instance correlations between the board instances in F and root alarm
instances in RP . We will post-process it and denote the output as G3

P , which aims to cover
the root alarm instances to the maximum extent by choosing the least number of board
instances as the faulty boards. For each component in G2

P , we iteratively select one board
instance with the maximum out-degree and all of its outgoing arcs until all root alarm
instances have been explained by the corresponding board instances.

Eventually, the feasible FACT(s) GI
P shall be obtained by taking the union of G3

P and
G1
P [AP ]. Note that there could exist more than one G3

P for the same G2
P , leading to multiple

GI
P ’s, where we will take the union of all those solutions in case missing any possible faulty

board.

2.4 Case Studies

Extensive case studies are conducted to verify the proposed FACT-FL-Heuristic method
in OTN and compare it with a number of counterparts. An OTN simulator [44] is firstly
developed to generate ground-truth alarms and the resultant FACTs GT

P according to the
given failure event, failure-alarm propagation rule database, as well as GP and LP during
the observation window P . The FACTs produced by the proposed FACT-FL-Heuristic
approach are denoted as GE

P . Currently, the relational rule database contains 39 rules
which incorporate 65 instance correlation types formed by 20 failure types, 26 alarm types,
and 16 board types. Without loss of generality, each failure event will independently hit a
board, thereby affecting the traversing optical flows.

The goal of this case study includes the following two aspects:

• Evaluate the performance of the trained binary classifier on the training/validation
set.

• Verify the generality and migratability of the proposed FACT-FL-Heuristic by com-
paring its performance with that of the counterparts on the testing datasets of single-
board failure in the following network environments:
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– use the same network topology and lightpath setting as the raw dataset;

– change the number of lightpaths for the given network topology;

– change the size of network topology for the given number of lightpaths;

– change the ratio of the number of noise alarms to that of true alarms.

The state-of-the-art counterparts considered in this case study include BP[50], LSTM[50],
GNN[46, 47, 45], Transformer[35], and convolutional neural network (CNN)[77].

2.4.1 Setup

Raw Dataset

We generate the raw dataset by initiating a set of independent single-board failure events,
where each of them in turn hits one board in the given network topology. The length
of each observation window Ti is 1 min. The network topology GTi

is characterized by
Si, |FTi

|, degi, which are the number of nodes, the number of board instances, and the
board-level average degree, respectively. Whereas the set of lightpaths LTi

is described
by |LTi

| and |li| that indicate the number of lightpaths and the average number of boards
traversed by each lightpath. The setting of network topology and lightpath is consistent in
all observation windows, where ∀i ∈ [1, 561], Si = 15, |FTi

| = 561, degi = 2.48, |LTi
| = 40,

and |li| = 14.

Training Dataset

The raw dataset contains 7365 alarms, leading to a training dataset of size 2726247, where
the ratio of positive samples to negative samples is 4970:2721277. We set a 64%, 16%,
and 20% split for training, validation and test sets. For the numerical features, min-max
scaling is applied for normalization. We adopt the binary cross-entropy loss function, which
is optimized with Adam at a learning rate of 0.001. The batch size and the number of
epochs are set to 450 and 100. Also, the technique of early stopping [7] is applied to reduce
overfitting, which monitors the value of the area under the curve (AUC) on the validation
set in each epoch.
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AI Architectures of the Counterparts

The network architectures of the counterparts are briefly described as follows. For BP and
LSTM, two networks of 233 × 64 × 32 × 561 and 233 × 64 × 561 are constructed. For
training the GNN, an alarm knowledge graph with 43 entity nodes is built based on the
failure-alarm propagation rule database. The CNN model consists of 24 input layer units
as well as 3 hidden layers whose number of neurons are 256, 128, and 32, where the kernel
size in each hidden layer is 2 × 2. The Transformer encodes the alarm context with a
768-dimension vector and sets the length of each alarm transaction to 5.

2.4.2 Performance Metrics

The comparison between GE
P and GT

P is accomplished via three parts.

Metrics for Root Alarm Identification

Firstly, we evaluate the results of identified root alarms in terms of precision(R), recall(R),
and accuracy(R), which are defined as follows:

precision(R) =
NCra,E

NTra,E

,

recall(R) =
NCra,E

NTra,T

,

accuracy(R) =
NCa,E

|AP |
, (2.4)

where NCa,E is the number of correctly inferred root and non-root alarm instances accord-
ing to GE

P ; |AP | is the size of alarm instance set AP ; NCra,E is the number of correctly
inferred root alarm instances in GE

P ; NTra,E, NTra,T are the number of root alarm instances
in GE

P , GT
P , respectively.

Metrics for Failed Board Identification

Secondly, the performance of failure localization in terms of how precisely/accurately the
failed boards can be identified is assessed by comparing the faulty boards in GE

P with that
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in GT
P , which is evaluated via precision(F), recall(F), and accuracy(F), as given by:

precision(F ) =
NCroot,E

NTroot,E

,

recall(F ) =
NCroot,E

NTroot,T

,

accuracy(F ) =
NCF

|FP |
, (2.5)

where NCF is the number of correctly inferred functioning and faulty boards according
to GE

P ; |FP | is the total number of boards in GP ; NCroot,E is the number of correctly
inferred faulty boards in GE

P ; NTroot,E, NTroot,T are the number of faulty boards in GE
P , GT

P ,
respectively.

Metrics for Alarm Instance Correlation

Thirdly, we evaluate the quality of alarm instance correlations in FACTs in terms of re-
call(A) and accuracy(A), which are defined by:

recall(A) =
NCarc,E

NTarc,T

,

accuracy(A) =
NCA

|DA
P |

, (2.6)

where NCA is the number of correctly labeled alarm instance pairs according to GE
P ; |DA

P |
is the size of alarm instance pair set DA

P ; NCarc,E is the number of correctly inferred alarm
instance correlations in GE

P and NTarc,T is the number of alarm instance correlations in GT
P .

2.4.3 Results

Binary Classifier

The training procedure of DNN is demonstrated in Fig. 2.6. The loss converges to 0.0087/0.014
and accuracy reaches 99.85%/99.72% after 15 epochs on the training/validation set.
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Figure 2.6: DNN performance on the training and validation set.

Table 2.2: Performance comparison among different schemes under the network environ-
ment of the raw dataset

Schemes
Metrics

# of trainable parameters precision(R) recall(R) accuracy(R)

FACT-FL-Heuristic (IC-FD) 5585 1 0.9666 0.9975
CNN 150531 0.895 0.9666 0.9627

Transformer 2521716 0.2153 0.2666 0.7156

Schemes
Metrics

# of trainable parameters precision(F ) recall(F ) accuracy(F )

FACT-FL-Heuristic (IC-FD) 5585 0.95 1 0.9998
BP 35569 0.85 0.9 0.9994

LSTM 112753 0.85 1 0.9994
GNN 51999 0.5833 0.7 0.7
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FACT Formation

Firstly, we adopt the network setting of the raw dataset and conduct 10 independent
single-board failure experiments. The average performance results of various schemes are
summarized in Table 2.2. Apparently, the FACT-FL-Heuristic achieves a significant ad-
vantage in terms of all metrics regarding root alarm instance/failed board identification
against the counterparts at the cost of the least number of parameters.

Furthermore, we verify the migratability of FACT-FL-Heuristic where the model is
trained by using the raw data from an initial setting while being applied to some other
network scenarios with different topologies and traffic distributions. On one hand, given a
network topology whose Si = 14, |FPi

| = 3470, degi = 2.08, we vary the number of light-
paths |LPi

| from 50 to 500. On the other hand, we fix |LPi
| = 200, |li| = 16 and change

the size of network topology, where Si ∈ [10, 37], |FPi
| ∈ [1074, 1839], degi ∈ [2.1, 2.32]. As

shown in Fig. 2.7 and Fig. 2.8, the FACT-FL-Heuristic performs the best in root alarm
identification among those three methods, where its accuracy(R), recall(R) stabilize above
97%, 90% and its precision(R) remains above 93%. However, the performance by the
CNN model is significantly degraded under certain values of |LPi

|/|FPi
| and that by Trans-

former behaves even worse, which shows that they can’t stably capture root alarms when
the spatial relation and traffic distribution are completely ignored. Further as depicted
in Fig. 2.10 and Fig. 2.11, recall(F ) of FACT-FL-Heuristic maintains 1 that implies no
true faulty boards are missed, which isn’t accomplished by LSTM and BP even if their
accuracy(F ) and precision(F ) are similar to that of FACT-FL-Heuristic. Whereas the per-
formance of GNN exhibits high fluctuation due to merely learning the mapping between
the failure type and alarm type. Also, as displayed in Fig. 2.13 and Fig. 2.14, most alarm
instance correlations are successfully identified by FACT-FL-Heuristic. Note that since the
location information of faulty board/alarm varies with different network environments, all
AI models taken by the counterparts need to be retrained as long as there is any change
with the network topology/traffic distribution, whereas the FACT-FL-Heuristic only needs
to be trained once with the alarm data collected from any given network state(s) but it
shows the best migratability among all counterparts.

Finally, we test the anti-noise capability of the FACT-FL-Heuristic by introducing some
noise alarms on top of the true alarms due to a single-board failure event. As shown in
Fig. 2.9, CNN and Transformer suffer serious performance degradation in detecting root
alarms as the ratio of noise alarms continues to increase, whereas FACT-FL-Heuristic
demonstrates a good capability in overcoming the noises thanks to its additional con-
sideration of the spatial relations among the received alarms. Similarly as illustrated in
Fig. 2.12, FACT-FL-Heuristic can keep steady performance in faulty board identification

26



when encountering the noises while all the counterparts are subject to significant degrada-
tion.

Note that the total processing time of FACT-FL-Heuristic is proportional to the number
of examined instance pairs each taking about 4 ms to handle.
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Figure 2.7: Performance result of root alarm metrics when changing |LPi
|.

Complexity Analysis

We assume that during an OW P , the board set FP = {b1, · · · , bMP
} and alarm set

AP = {a1, · · · , aNP
} are provided. The complexity of FACT-FL-Heuristic mainly derives
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Figure 2.8: Performance result of root alarm metrics when changing |FPi
|.
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Figure 2.9: Performance result of root alarm metrics when adding noise alarms.
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Figure 2.10: Performance result of failed board metrics when changing |LPi
|.
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Figure 2.11: Performance result of failed board metrics when changing |FPi
|.

31



0
0.2
0.4
0.6
0.8
1.0

recall(F)-IC-FD
recall(F)-BP
recall(F)-LSTM
recall(F)-GNN

0
0.2
0.4
0.6
0.8
1.0

precision(F)-IC-FD
precision(F)-BP
precision(F)-LSTM
precision(F)-GNN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of Noise Alarms

0.0
0.2
0.4
0.6
0.8
1.0

accuracy(F)-IC-FD
accuracy(F)-BP
accuracy(F)-LSTM
accuracy(F)-GNN

M
et

ric
 V

al
ue

Figure 2.12: Performance result of failed board metrics when adding noise alarms.
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Figure 2.13: Performance result of alarm instance correlation metrics when changing |LPi
|.
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Figure 2.14: Performance result of alarm instance correlation metrics when changing |FPi
|.
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Figure 2.15: Performance result of alarm instance correlation metrics when adding noise
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from the FACT formation procedure that uses the pre-trained binary classifier to examine
all possible instance pairs, resulting in the complexity of O(MP ×NP + NP

2).

2.5 Conclusion

This chapter introduced a novel failure localization and alarm analysis scheme in the optical
layer of OTN, called FACT-FL-Heuristic, aiming to identify the affected boards due to a
failure event with high precision. The proposed FACT-FL-Heuristic is characterized by a
suite of novel modeling approaches. Firstly, we have included both the alarm instances and
board instances in the correlation model to perform localization of the failed boards directly
instead of merely obtaining the root alarms. Secondly, we developed a novel DNN-based
binary classifier along with various features that consider all those static and dynamic
network parameters, aiming to achieve sufficient generality and migratability for various
network environments. Thirdly, the FACT can effectively describe the correlation between
the alarms and the faulty boards, and the FACT formation process serves as a graceful
solution that can swiftly come up with high-quality results.

Extensive case studies were conducted to verify the feasibility and performance of the
proposed method and modeling approaches. Compared with its counterparts, the proposed
FACT-FL-Heuristic scheme can adapt to versatile network environments (i.e., change of
network topology, traffic distribution, or adding noise alarms) and achieve superb and
stable performance in root alarm and failed board identification in terms of precision,
recall, and accuracy.
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Chapter 3

FACT-FL-Chain

This chapter presents a novel approach to achieving the FACT-FL framework, called FACT-
FL-Chain. Specifically, an FACT consists of a suite of kth order Failure-Alarm Correlation
Chains (k-FACCs) with different order values of k. Each k-FACC indicates the chain-
like correlation established by k alarms due to one common failed board. To identify all
previously undetected k-FACCs, a set of binary classifiers is trained that characterizes each
k-FACC from various dimensions, including the time, network topology, traffic distribution,
and board/alarm attributes. Eventually, an integer linear programing (ILP) problem is
formulated to extract the most likely FACT(s) from those k-FACCs. Extensive case studies
demonstrate the superior results of FACT-FL-Chain in terms of metrics evaluating the
identified failed boards and root alarms. We also analyze its performance under different
maximum order values of k and environmental changes, including diverse failure scenarios,
network topologies, traffic distributions, and noise alarms.

3.1 Introduction

Internet optical backbones have evolved remarkably over the past few decades to support
higher bandwidth, expand geographical coverage, and increase heterogeneity. This adapt-
ability accommodates the multi-service and multi-tenant environment. Optical transport
network (OTN) has been standardized by ITU-T as a digital wrapper. This wrapper
multiplexes services over a single lightpath for transparent transport [29], serving as the
foundation for the rapid advancement of modern Internet backbones. The OTN optical
domain adopts a 3-layer structure comprising the optical channel (OCH), optical multiplex
section (OMS), and optical transport section (OTS) [9]. As illustrated in Fig. 3.1, each
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OCH (lightpath) goes through a set of device boards that traverse one or multiple OMSs.
Concretely, an OMS spans an extensive number of cascaded OTSs, which incorporates a
variety of board types, including the optical transponder unit (OTU), optical multiplexer
(OM), optical demultiplexer (OD), optical amplifier (OA), fiber interface unit (FIU), fiber
segment, etc [27]. To facilitate monitoring performance, the OTN control plane exploits
electrical and optical layer overheads for exchanging all types of maintenance signals be-
tween numerous boards. This enables each board to generate corresponding alarms in
response to any failure event detected by its built-in sensor. For instance, if an FIU board
identifies a failure in its upstream fiber segment, it will report an alarm to the network
management system (NMS). Similarly, an OTU board will report an alarm to the NMS if
it detects any anomaly that impacts the lightpath quality.

OTS OTS OTS

OTU OM OA OA OD OTUOptical Switch

OTS

OM OA

OTS

OD

OMS

OCH

OMS

Figure 3.1: Relationships between OTN layers in a lightpath.

In most cases, a failure event may impact one or multiple boards. These boards could
be scattered throughout the network or connected within a specific region, and this can
unexpectedly disrupt countless lightpaths. Other boards along those interrupted lightpaths
can also detect these disruptions. Moreover, a board might raise an alarm and report it to
the NMS not just because of a detected failure event but also in response to a notification
alarm from another remote board. Consequently, a failure event can lead to an alarm flood,
significantly increasing the complexity of alarm analysis and failure localization—especially
in network domains with a vast number of boards, such as the OTN backbones.

Alarm correlation is widely recognized as an effective method to identify dependencies
among alarms. The goal is to discard as many dependent alarms as possible, thereby
simplifying the complexity of failure localization.

An illustrative example is shown in Fig. 3.2a. The fiber segment cut, represented by f1,
is firstly detected by its downstream board B that issues alarm type a1. On one hand, B
further notifies its upstream board D via alarm type a2. On the other hand, the effects of
f1 are detected along the lightpath by all other boards traversed by this path, successively
triggering alarm types a3, a4, and a5. Note that all alarms are subsequently reported to
the NMS.
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Figure 3.2: (a), (c) Illustration of two single-board failure events, where A,B, . . . , I are
boards, red and blue arrows are lightpaths, a1, . . . , a5 are alarm types, and the cross indi-
cates the failed board. (b), (d) Resultant FACTs.
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Another example is given in Fig. 3.2c, where the failure f2 on board D even disables
its sensor and thus doesn’t report any alarm to the NMS. Nonetheless, it notifies its neigh-
boring boards A, B, and C via the alarm types a2, a4, and a5, respectively. f1 causes all
boards along the affected lightpath to raise alarms. On the contrary, f2 triggers alarms a1
and a3 on the terminal boards G and I but bypasses the intermediate boards E, F , and
H.

Clearly, both two failure scenarios f1 and f2 have generated the same alarm pattern,
where they deploy the same network topology but different traffic distributions. Note that
the same alarm name indicates the identical alarm type. Also note that whether an alarm
type serves as the root alarm or the non-root alarm, as well as its correlation with other
alarms, depends on both the failure type and the network state at the given moment. For
instance, in Fig. 3.2a, both a3 and a4 are non-root alarms, with a3 triggering a4. Conversely,
in Fig. 3.2c, a4 is the root alarm and it activates a3.

In the two examples above, the failure-alarm propagation resulting from a single failed
board is depicted by a failure-alarm correlation tree (FACT), as shown in Fig. 3.2b and
Fig. 3.2d. The aim is to identify dependent alarms to accurately pinpoint the failed de-
vice boards in the OTN optical layers. Extensive research efforts have been dedicated to
developing effective alarm correlation techniques. Many of these studies focus on the rela-
tionships among alarms [59, 54, 32, 81, 8, 19, 42, 69, 84, 66, 82]. Others concentrate on the
relationships between potential failed nodes/links and alarms [50, 75, 77, 46, 47, 45, 22,
35, 85, 76, 3, 36]. These studies, however, are often set in a static network environment,
which may not provide sufficient generality for versatile network environments, especially
those undergoing changes in network topology and traffic distribution.

Motivated by its significance and stringent demands, this chapter introduces a novel
approach to realize FACT-FL, namely FACT-FL-Chain. We firstly assume that the state
of each board can change at most once at the beginning of an observation window (OWnd),
i.e., either remaining normal or transitioning from normal to failed. We then define the
kth order Failure-Alarm Correlation Chain (k-FACC) as the representation of k alarms,
where each alarm triggers exactly one other due to a common failed board. Furthermore,
during the OWnd, a failed board can be correlated with the collected alarms using one
or multiple k-FACCs that jointly constitute an FACT. Each board/alarm incorporates a
number of attributes including its occurrence time, alarm type, board type, and location.

By treating each board/alarm as a vertex, the chain-like correlation between a board
and k alarms is essentially quantified by the likelihood of forming a k-FACC. To deter-
mine whether a board and k alarms can constitute a k-FACC, we employ a machine
learning approach that takes into account the network topology, traffic distribution, and
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alarms collected within the given OWnd. The trained binary classifiers are designed to
be generalizable across different network environments with various topologies and traf-
fic distributions, provided they adhere to the same failure-alarm propagation rules that
characterize the failure-alarm propagation behavior, where those rules incorporate a par-
ticular set of failure types, board types, and alarm types. With all identified k-FACCs in
place, FACT formation can be exclusively achieved by solving an integer linear programing
(ILP) problem, where each FACT features a failed board as the tree root linked to one or
multiple alarms. The objective of FACT formation is to encompass all alarms using the
fewest FACTs, where each FACT captures the complete failure-alarm propagation process
resulting from a specific failed board.

The contributions of this chapter are summarized as follows.

• Investigate a novel failure localization approach, namely FACT-FL-Chain, which
relies on the machine learning-based binary classifiers and FACT formation modeling
approach.

• Leverage the novel binary classifiers for assessing the likelihood of establishing the
k-FACCs. These classifiers offer optimal generality and adaptability to versatile
network environments by characterizing both boards and alarms.

• Formulate the FACT formation process as an ILP problem to yield the most optimal
FACTs, ensuring that both failure localization and alarm correlation are achieved.

• Conduct extensive case studies for both single-board failure and regional failure sce-
narios to validate the proposed FACT-FL-Chain. This demonstrates its ability to
achieve precise failure localization for optical layer device boards in OTN.

The remainder of this chapter is organized as follows: Section 3.2 details the system
model. The proposed FACT-FL-Chain approach is described in Section 3.3. Section 3.4
discusses the case study setup and results. Lastly, Section 3.5 provides the concluding
remarks.

3.2 System Model

Two types of instances are defined in this study. One is an alarm instance denoted as a
5-tuple a = (t, l, b,m, r), where t is the occurrence time, l and b are the ID and type of
the board that reports this alarm, respectively. m is the alarm type and r is the layer
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information that can be OTS, OMS, or OCH. Another is a board instance that is defined
by a 2-tuple f = (l, b), where l and b are the board ID and type. Note that the definitions
of alarm instance and board instance are consistent with the definitions in Chapter 2.2.

The instance correlation is evaluated among one board instance and k alarm instances.
As illustrated in Fig. 3.3a, a correlation chain of one board instance and k alarm instances
can be generally expressed as a k-FACC due to the fact that a failed board f successively
triggers k alarms. Furthermore, as shown in Fig. 3.3b, an FACT can be deemed as a suite
of k-FACCs that have different order values of k and result from a common failed board.
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Figure 3.3: (a) Illustration of a k-FACC. (b) An FACT is the ensemble of k-FACCs with
various order values, where k ∈ {1, 2, 3} are considered in this example.

3.3 Proposed FACT-FL-Chain Approach

Fig. 3.4 demonstrates the flowchart of the proposed FACT-FL-Chain approach. Given the
raw dataset of historical observations, for all k in the range of {1, · · · , K}, we firstly extract
some features from each k-FACC, as shown in (i) of Fig. 3.4 and elaborated in Section 3.3.1.
Then the attained dataset is utilized to train a binary classifier for recognizing k-FACCs, as
depicted in (ii) of Fig. 3.4 and detailed in Section 3.3.2. With the learned binary classifiers,
the k-FACCs derived from all possible order values of k can be leveraged for the FACT
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Figure 3.4: Flowchart of the proposed FACT-FL-Chain approach.

formation procedure, which is displayed in (iii) of Fig. 3.4 and explained in Section 3.3.3.
Ultimately, for the given testing dataset of a new observation, one or multiple FACTs shall
be gained as the output of FACT-FL-Chain.

In addition, we have summarized all notations in Table 3.1 for easier reference in the
coming subsection.

Table 3.1: Summary of symbols and their definitions

Symbol Definition
k Order value of k-FACC
Ti Observation window
GTi

Network topology in Ti

LTi
Traffic distribution in Ti

ATi
Alarm set in Ti

FTi
Board set in Ti

Dk
Ti

Set of k-FACC candidates in Ti

Uk
Ti

Set of ground-truth k-FACCs in Ti

Dk Training dataset
Uk Set of ground-truth k-FACCs

41



3.3.1 Feature Extraction

The raw dataset is a set of data from historical operations, each collected in a set of OWnds
denoted as T = {T1, · · · , Ti, · · · , TI}, ∀i ∈ {1, · · · , I}. During Ti we observe the network
topology GTi

, traffic distribution LTi
, alarm set ATi

, failure event, and reference FACT(s).
Here, GTi

represents the connectivity of all device boards. LTi
is depicted by a set of

lightpaths each traversing certain device boards in GTi
. ATi

= {a1, · · · , aNTi
} incorporates

NTi
alarm instances that have been sorted in ascending order according to their occurrence

time. The board set, defined as FTi
= {f1, · · · , fMTi

}, is obtained by considering all device
boards in GTi

. Note that the reference FACT(s) is inferred according to the failure event
and ATi

. Given FTi
and ATi

, the set of k-FACC candidates denoted as Dk
Ti

can be acquired
by enumerating all entries from FTi

and ATi
. The set of ground-truth k-FACCs denoted

as Uk
Ti

is abstracted from the reference FACT(s) in Ti to label each k-FACC candidate in
Dk

Ti
.

To characterize each k-FACC candidate, we create a feature space H with dimensions
including the time, network topology, traffic distribution, and board/alarm attributes, as
given by:

• For each board/alarm instance associated with a k-FACC candidate, we create a
dictionary with an integer value index and it considers 15 board types, 25 alarm
types, and 4 layers.

• For every pair of adjacent instances within a k-FACC candidate, we extract the
following features:

– time gap: the time gap between the occurrences of two instances;

– physical distance: the length of the shortest path from the instance that
occurred earlier to the other one in GTi

;

– hop distance: the number of OMSs taken by the shortest path in terms of hop
count;

– lightpath label: a binary value taking 0 or 1 indicates whether these two
instances are traversed by a common lightpath.

Mapping each k-FACC candidate from Dk
Ti

to H leads to a transformed dataset H(Dk
Ti

).

Further, ∀i ∈ {1, · · · , I}, Dk =
I⋃

i=1

H(Dk
Ti

), Uk =
I⋃

i=1

Uk
Ti

can be obtained as the dataset for

the subsequent binary classifier training and labeling each k-FACC candidate, respectively.
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Note that for each k-FACC candidate in the dataset Dk, it’s labeled as 1 if it appears in
Uk and 0 otherwise.

Besides, for the testing dataset observed in a new network environment that adopts
the same failure-alarm propagation rules, all numerical features including the time gap,
physical distance, and hop distance can be normalized by min-max scaling.

3.3.2 k-FACC Binary Classifier

Embedding Layer, ReLU

𝑃𝑟{being a 𝑘−FACC}

Categorical features of 
a k−FACC candidate

Numerical features of 
a k−FACC candidate

Dropout
Fully-connected (64), ReLU

Dropout
Fully-connected (32), ReLU

Dropout
Fully-connected (32), ReLU

Fully-connected (1), Sigmoid

Concatenate

Figure 3.5: Architecture of k-FACC binary classifier.

A binary classifier is formulated to evaluate the likelihood of being a k-FACC. We em-
ploy a fully connected neural network (FCNN) whose architecture is illustrated in Fig. 3.5,
where the dimension of each layer is annotated in parentheses. The features of a k-FACC
candidate consist of the numerical features including the time gap, physical distance,
and hop distance as well as the categorical features comprising the lightpath label and
board/alarm attribute. To jointly consider these two types of input features, the categor-
ical features are mapped onto a continuous space via an embedding layer, and its output
is concatenated with the numerical features and fed into FCNN. Finally, FCNN outputs
the probability of forming a k-FACC. Note that those simpler/low complexity ML models
(i.e., decision tree, random forests, support vector machine, naive bayes, and k-nearest
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neighbors, et al.) may output the label of each data sample without giving the likelihood,
which doesn’t meet the requirement of our design. Therefore, FCNN is considered in this
study.

Since most board instances and alarm instances are non-correlated and cannot establish
a k-FACC, the dataset Dk is imbalanced, where the number of samples from the majority
class (0) is way more than that of samples from the minority class (1). Therefore, we adopt
the resampling approach to build a balanced dataset through oversampling the samples
from the minority class by random duplication [49] [31], i.e., the samples from the minority
class can be randomly chosen and added to the new “more balanced” dataset multiple
times. Note that this oversampling process may increase the likelihood of overfitting the
model since it makes exact copies of the samples in the minority class. Also, this pro-
cess was performed after the digitization of the categorical features and solely determined
by the sample labels. However, the experimental results shown in Fig. 3.8 demonstrate
that all trained k-FACC classifiers fit well on the validation set in terms of accuracy and
loss. Moreover, random undersampling is an alternative approach that deletes samples
in the majority class, whereas it may be more suitable for those imbalance datasets with
a sufficient number of samples in the minority class and thus it is inappropriate for our
scenario.

3.3.3 FACT Formation

Within each OWnd P , the testing dataset of a new observation whose structure is similar
to the raw dataset is provided. It incorporates the network topology GP , traffic distribution
LP , alarm set AP , and the corresponding board set FP . The proposed FACT formation
algorithm aims to construct the fewest FACTs within each P while covering all alarm in-
stances in AP , with each FACT rooted by a failed board instance and some alarm instances
as the leaves.

In the proposed FACT-FL-Chain approach, we assume that once a board instance fails
at the beginning of P , it remains failed until the end of P . Further, all alarm instances
in AP are as a result of the failure event at the starting moment of P that hits one or a
number of board instances.

Fig. 3.6 depicts the proposed FACT formation algorithm. Given the testing dataset
during P and pre-trained binary classifiers for identifying k-FACCs, ∀k ∈ {1, · · · , K}, a
weighted directed acyclic multigraph GP is constructed for provisioning the search space
of FACT(s), denoted as GP = (VP , CP ,W (CP )). VP = FP

⋃
AP constitutes the vertex

set, encompassing all board instances and alarm instances. CP is the set of k-FACCs
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Testing dataset of a new observation,
pre-trained k-FACC binary classifier,

∀𝑘 ∈ {1,… , 𝐾}

Weighted directed acyclic
multigraph

FACT(s)

FACT search space construction

ILP solver

Figure 3.6: Flowchart of the proposed FACT formation algorithm.

recognized by those classifiers and each k-FACC is portrayed by a directed path, denoted
as c = {fc}

⋃
Ac, where ∀c ∈ CP , fc ∈ FP , Ac ⊆ AP . Also, W (CP ) is the set of non-

negative weights of all k-FACCs in CP , where ∀wc ∈ W (CP ) indicates the weight/cost of
k-FACC c and it’s defined in (3.1):

wc = 1 − Pr(fc is failed) · Pr(c is a k-FACC), (3.1)

where Pr(fc is failed) is the probability that the board instance fc becomes failed. It can
be determined by the probability density function (PDF) of the corresponding board’s
time-to-failure, where the PDF can be estimated according to the historical failure events
taking place at this board. Pr(c is a k-FACC) is the probability output from the trained
k-FACC binary classifier. Note that to reduce the computational complexity of the FACT
formation algorithm, only the k-FACCs whose probability output from the classifier is
greater than 0.5 are involved in creating GP . Also, note that a board instance that doesn’t
form k-FACC with any alarm instance will not join the FACT formation process and won’t
be considered as failed.

Furthermore, the problem of abstracting the most likely FACTs Gopt
P from GP can be

formulated as an ILP problem given as follows:

minimize
∑
c∈CP

wcxc +
∑
u∈FP

(1 − Pr{u fails}) · yu (3.2a)

subject to xc ≤ yu, ∀u ∈ FP ,∀c ∈ δ+(u), (3.2b)
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∑
c∈δ−(v)

xc ≥ 1,∀v ∈ AP , (3.2c)

∑
c∈δ−(v)′

xc +

∑
c∈δ−(v)\δ−(v)′

xc

|δ−(v) \ δ−(v)′|
≤ 1,∀v ∈ AP , (3.2d)

xi + xj ≤ 1,∀i ∈ Cl ⊆ Cu
v ,∀j ∈ Cu

v \ Cl,

∀l ∈ {1, · · · , nu
v},∀u ∈ FP ,∀v ∈ AP , (3.2e)

xc ∈ {0, 1}, ∀c ∈ CP , (3.2f)

yu ∈ {0, 1},∀u ∈ FP . (3.2g)

∀c ∈ CP ,∀u ∈ FP , two binary variables xc, yu are defined, where xc takes 1 if the k-FACC c
is chosen by Gopt

P and 0 otherwise; while yu takes 1 if the board vertex u is selected as a tree
root in Gopt

P and 0 otherwise. The objective function (3.2a) aims to find Gopt
P that minimizes

the total cost of selected k-FACCs and board instances. Constraint (3.2b) implies that for
each board vertex u, if any item from the set of k-FACCs outgoing from u, defined as
δ+(u), is chosen, then u must be selected. Constraint (3.2c) suggests that for each alarm
vertex v, at least one item from the set of k-FACCs incoming to v, namely δ−(v), must be
opted to ensure all alarm instances are visited by Gopt

P . Constraint (3.2d) aims to guarantee
that the selected k-FACCs won’t form a closed loop, which indicates that for each v, one
can either choose exactly one item from the set of k-FACCs terminating at v, referred to
as δ−(v), or choose one or multiple items from the set of k-FACCs bypassing v, represented
by δ−(v)\ δ−(v)′. An illustrative example is given in Fig. 3.7, where f1 indicates the board
vertex, {e1, e2, e3, e4} is the set of k-FACCs, and {a1, . . . , a8} is the set of alarm vertices.
For a4, we can either select one item from {e1, e4} or select one or multiple items from
{e2, e3}. Constraint (3.2e) ensures that for each v and u, the selected k-FACCs, which

𝑓!
𝑎!

𝑎"

𝑎#

𝑎$
𝑎%
𝑎&
𝑎' 𝑎(

\

𝑒!

𝑒"

𝑒#

𝑒$

OWnd

Figure 3.7: Illustrative explanation of ILP constraint (3.2d).

start from u and bypass v, must share a common trajectory before reaching v. Here, Cu
v is

the set of k-FACCs that originate from u and bypass v, which can be further divided into
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nu
v subsets based on various trajectories from u to v. Note that (3.2d) and (3.2e) aim to

ensure that the in-degree of each alarm instance must be one such that the Gopt
P satisfies

the property of being a set of trees.

By solving the above ILP, we can obtain the anticipated FACT(s) Gopt
P , which realizes

both failure localization and alarm correlation.

3.4 Case Studies

Extensive case studies are conducted to verify the effectiveness of the proposed FACT-FL-
Chain in the OTN optical layers and compare it with a number of counterparts. An OTN
simulator [48][44] is firstly developed to generate ground-truth alarms and resultant FACTs
according to the given failure event, failure-alarm propagation rule database, as well as the
network topology and traffic distribution during an OWnd. Currently, the rule database
contains 38 entries in the form of One2Many, where 16 failure types, 16 board types,
and 25 alarm types are taken into account. Without loss of generality, each failure event
independently hits a certain number of boards and affects their traversing optical flows
(i.e., OTS, OMS, and/or OCH). Meanwhile, we assume that the failure-alarm propagation
process always succeeds even if there is any malfunctioned board along the notification
signal propagation path. On the other hand, we assume that each board instance is even
likely to fail and thus ignore the cost of choosing board instances by setting Pr{u fails} as
1 in (3.2a).

The goal of the case studies is to validate the generality and migratability of FACT-
FL-Chain. For this, we apply the k-FACC binary classifiers trained by the raw dataset
to the testing datasets obtained from the OTN environments with different failures, net-
work topologies, traffic distributions, and noise alarms. The state-of-the-art counterparts
considered in the case studies include BP [50], LSTM [50], convolutional neural network
(CNN) [77], GNN [46, 47, 45], BERT [35], and FACT-FL-Heuristic [37][39]. Additionally,
we evaluate the performance of FACT-FL-Chain under various maximum order values of
k denoted as K, where 1, 2, and 3 are considered due to the fact that the OTN optical
domain adopts a 3-sublayer structure. Note that the value of K equals the number of
layers considered by the network protocol.
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3.4.1 Case Study Setup

Raw Dataset

The raw dataset is generated from a default network state that consists of 8 nodes and 304
boards, where it deploys 20 lightpaths each averagely traversing 14 boards, and the board-
level average degree is 2.31. We collect 3730 alarms in total from the default network state
via 304 1-minute OWnds, where those OWnds are launched by the single-board failure
events that independently hit each board in the network topology.

Datasets

The raw dataset leads to the datasets of size 146247, 28316, and 150249 for training the
1-FACC, 2-FACC, and 3-FACC classifiers, where their imbalance ratios are 0.09%, 1.04%,
and 0.55%, respectively. Note that the dataset size is determined by the number of k-
FACC candidates, where those candidates are enumerated by the failed boards and the
received alarms involved in all reference FACTs. Also, each reference FACT has a unique
tree structure, resulting in various numbers of k-FACC candidates. Each dataset is set at
64%, 16%, and 20% split for training, validation, and test sets. The binary cross-entropy
loss function is optimized with Adam at a learning rate of 0.001. We set the batch size
and number of epochs to 450 and 100. Also, we monitor the value of the area under the
curve on the validation set in each epoch and use early stopping [7] to reduce overfitting.

Machine Learning Models of the Counterparts

The network architectures of the counterparts using the raw dataset are briefly described
as follows. For BP and LSTM, two networks of dimension 128 × 64 × 32 × 304 and 128 ×
64 × 304 are constructed, where the input and output network dimensions are determined
by the number of all possible alarming boards and the total number of boards in the given
network topology. For GNN, the alarm knowledge graph is constructed according to our
rule database, leading to 41 entries. CNN model consists of 24 input layer units and 3
hidden layers whose number of neurons are 256, 128, and 32, where the kernel size in each
hidden layer is 3 × 3. BERT encodes the alarm context with a 768-dimension vector,
where it sets the length of each alarm transaction to 3 according to the maximum order
value of k. Note that for BP, LSTM, and CNN model, those hyperparameters taken from
those references are reasonable considering their input and output network dimensions.
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Testing Datasets

Testing datasets are produced as below. To evaluate the benchmark performance of each
scheme, the single-board failure dataset is prepared that contains 10 failed boards randomly
chosen from the default network state.

Furthermore, we generate two regional failure datasets to assess the generality and
migratability of each scheme. One dataset incorporates the regional failures from 10 new
network states by changing the number of lightpaths in a consistent network topology. The
network topology consists of 10 nodes, 2380 boards, and its board-level average degree is
2.06. The number of lightpaths varies from 10 to 100 at a constant interval of 10, and each
lightpath averagely traverses 13 boards. Another dataset includes the regional failures
from 10 new network states each deploying 40 lightpaths. These states result from diverse
topological sizes, where the number of nodes, the number of boards, the board-level average
degree, and the average number of boards traversed by each lightpath range from 11 to 20,
461 to 700, 2.31 to 2.38, and 8 to 18, respectively. Note that each regional failure is initiated
by randomly selecting one board from the network topology, which is further expanded by
arbitrarily adding one board at a time, ensuring that the chosen boards are connected. The
number of failed boards in each regional failure varies from 1 to 10, and the average degree
of each regional failure is 1.25.

Finally, the single-board failure dataset is created to test the anti-noise capability of
FACT-FL-Chain, which contains 10 failed boards, and different ratios of noise alarms are
introduced on top of the true alarms due to each failed board. Note that those noise alarms
are randomly selected from diverse OTN sublayers.
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Performance Metrics

F -measure(R) = 2 · Precision(R) ·Recall(R)

Precision(R) + Recall(R)
, (3.3)

Precision(R) =
# of correctly inferred root alarms

total # of inferred root alarms
,

Recall(R) =
# of correctly inferred root alarms

total # of root alarms
,

F -measure(F ) = 2 · Precision(F ) ·Recall(F )

Precision(F ) + Recall(F )
, (3.4)

Precision(F ) =
# of correctly inferred failed boards

total # of inferred failed boards
,

Recall(F ) =
# of correctly inferred failed boards

total # of failed boards
,

F -measure(T ) = 2 · Precision(T ) ·Recall(T )

Precision(T ) + Recall(T )
, (3.5)

Precision(T ) =
# of correctly inferred 1-FACCs, 2-FACCs, and 3-FACCs

total # of inferred 1-FACCs, 2-FACCs, and 3-FACCs
,

Recall(T ) =
# of correctly inferred 1-FACCs, 2-FACCs, and 3-FACCs

total # of 1-FACCs, 2-FACCs, and 3-FACCs
.

The performance metrics called F-measure(R), F-measure(F), and F-measure(T) are con-
sidered for evaluating the following three outcomes from our approach in each simulated
instance, namely root alarms, failed boards, and FACTs. The definitions of F-measure(R),
F-measure(F), and F-measure(T) are given in (3.3), (3.4), and (3.5), where a higher value
represents better performance in identifying root alarms/failed boards/FACTs. Note that
F-measure(T) is merely applicable to FACT-FL-Chain with K = 3.

3.4.2 Results

k-FACC Binary Classifiers

To determine the architecture of k-FACC binary classifiers, we range the number of hidden
layers from 1 to 10 and the number of neurons per hidden layer from {16, 32, 64, 128, 256}.
For simplicity, we fix the number of neurons in the last hidden layer at 64. We leverage the
strategy of grid search with cross-validation for finding the optimal ones, where the most
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Figure 3.8: Training curves of k-FACC binary classifiers.
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suitable k-FACC binary classifiers consist of 3 hidden layers whose number of neurons are
32, 32, and 64, respectively.

The training curves of 1-FACC/2-FACC/3-FACC binary classifiers are demonstrated
in Fig. 3.8. The loss and accuracy of corresponding classifiers on the training set and
validation set are summarized in Table 3.2, which show that the obtained classifiers have
well converged.

Table 3.2: Classifier performance on the training/validation set.

Classifier # of trainable parameters # of training epochs
Training set Validation set

Loss Accuracy Loss Accuracy
1-FACC 5265 22 0.0142 99.76% 0.0237 99.52%
2-FACC 6129 24 0.0705 98.06% 0.1028 96.55%
3-FACC 6993 28 0.0479 98.84% 0.0670 97.91%

FACT Formation

Table 3.3: Average performance comparison on the single-board failure dataset

Method # of trainable parameters F-measure(R) F-measure(F)
FACT-FL-Chain, K = 3 18771 1.000±0.000 1.000±0.000
FACT-FL-Chain, K = 2 11490 0.886±0.122 0.773±0.203
FACT-FL-Chain, K = 1 5265 0.783±0.217 0.750±0.250

FACT-FL-Heuristic (IC-FD) 5585 0.608±0.259 0.369±0.201
CNN 338441 0.877±0.106

N/A
BERT 2446910 0.070±0.124

BP 44528
N/A

0.874±0.192
LSTM 69168 0.900±0.186
GNN 51999 0.531±0.225

Firstly, the experimental results of various schemes on the single-board failure dataset
are summarized in Table 3.3, where the value before “±” implies the average F-measure(R)/F-
measure(F) over 10 failures and the value after “±” indicates the margin of error at the
confidence interval of 95%. Apparently, FACT-FL-Chain with K = 3 achieves a significant
advantage in all employed metrics while taking the fewest trainable parameters and its
F-measure(T) reaches 0.912± 0.059. Compared with K = 3, FACT-FL-Chain with K = 2
suffers from severe performance degradation and it is even worse for K = 1. This verifies
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the necessity of considering all possible chain order values, given that the chain order values
involved in a failure event are co-determined by the failure type, network topology, and
traffic distribution.
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Figure 3.9: Average performance result on the regional failure dataset under various traffic
distributions.

Furthermore, the average performance results of different schemes on two regional fail-
ure datasets are shown in Fig. 3.9 and Fig. 3.10. As for recognizing root alarms, FACT-
FL-Chain with K = 3 outperforms the counterparts under all considered number of failed
boards, while FACT-FL-Chain with K = 2 behaves similar to FACT-FL-Heuristic but
much better than FACT-FL-Chain with K = 1. However, CNN and BERT yield sig-
nificantly degraded performance since they completely ignore the traffic distribution and
spatial relation among those alarms. Moreover, as for identifying failed boards, FACT-
FL-Chain with K = 3 achieves the best performance among all its counterparts and the
performance of FACT-FL-Chain obtains slight performance degradation when choosing
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Figure 3.10: Average performance result on the regional failure dataset under various
network topologies.
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Figure 3.11: Average performance result on the single-board failure dataset under various
ratios of noise alarms.
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the smaller K, whereas it is still better than FACT-FL-Heuristic. Nevertheless, BP and
LSTM show their serious performance decline with the increase in the number of failed
boards, which suggests that they are likely to miss more real failed boards while abundant
alarm attributes aren’t considered.

In addition, the average performance of different schemes on the single-board failure
dataset with noise alarms is displayed in Fig. 3.11. FACT-FL-Chain with a larger K
demonstrates a good capability in overcoming the noise alarms thanks to its more thorough
consideration of the correlation among the received alarms, while all other counterparts
suffer crucial performance degradation in detecting root alarms/failed boards as the ratio
of noise alarms continues to increase.

As for the ILP solver, we adopt the branch-and-price method [4] that works for ILP
problems with a huge number of variables, where it is implemented in the high-performance
optimization software (HiGHS) [23] that is designed for large scale sparse linear optimiza-
tion models.

Note that since the location information of failed board/alarm varies with different
network environments, all models taken by the counterparts require retraining when there
is any change with the network topology/traffic distribution, whereas FACT-FL-Chain and
FACT-FL-Heuristic only need to be trained once with the alarms collected from the default
network state and thus achieve the best migratability among all the counterparts.

Complexity Analysis

We assume that during an OWnd P , the board set FP = {f1, · · · , fMP
} and alarm set

AP = {a1, · · · , aNP
} are given. AP can be divided into RP subsets according to various oc-

currence timestamps, denoted as AP =
RP⋃
i=1

Ai and NP =
RP∑
i=1

Ni, where Ai and Ni represent

the alarm set with the ith occurrence timestamp and the number of alarms in Ai, respec-
tively. The number of examined 1-FACC, 2-FACC, and 3-FACC candidates are MP ·NP ,

MP · [
(
NP

2

)
−

RP∑
i=1

(
Ni

2

)
], and MP · {

(
NP

3

)
−

RP∑
i=1

(
Ni

3

)
−

RP−1∑
i=1

[
(
Ni

2

)
·

RP∑
j=i+1

Nj + Ni ·
RP∑

j=i+1

(
Nj

2

)
]},

leading to the computation complexity of O(MP · NP ), O(MP · N2
P ), and O(MP · N3

P ).
This suggests that the FACT-FL-Chain with a larger order value of K could incur higher
computation complexity although it has achieved better performance than the FACT-FL-
Chain with lower K in variable network environments. Note that this complexity could be
further reduced by discarding the candidates whose categorical features don’t conform to
the existing k-FACCs in the dataset.

56



3.5 Conclusion

This chapter introduced FACT-FL-Chain, a novel failure localization approach to realize
the FACT-FL framework. The presented FACT-FL-Chain features a suite of novel model-
ing approaches. Firstly, we have jointly considered the boards and alarms in the correlation
process that localizes the failed boards while identifying the root alarms. Secondly, we
have trained a set of FCNN-based binary classifiers that capture chain-like failure-alarm
correlation patterns to accommodate versatile network environments. Thirdly, we have
proposed the concept of FACT that effectively models the correlation among failed boards
and alarms, and the FACT formation process is formulated as an elegant ILP that figures
out a high-quality result.

Extensive case studies are conducted in different network environmental variations to
compare the performance of the proposed FACT-FL-Chain with other schemes. We ob-
serve that FACT-FL-Chain has gained superb and stable performance in identifying failed
boards and root alarms, which verifies its sufficient generality and migratability in versatile
network environments.
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Chapter 4

FACT-FL-GNN

This chapter proposes another novel approach to implementing the FACT-FL framework,
dubbed FACT-FL-GNN. Foremost, a collection of functional graphs (FGs) is garnered
by iteratively tagging each board in the network topology, serving as the ground of the
proposed method. To evaluate the edge weights of potential FACTs induced by FGs,
a graph neural network (GNN) with the graph transformer operator is employed as an
edge classifier, which characterizes each vertex/edge from diverse dimensions including the
time, traffic distribution, network topology, and board/alarm attributes. Subsequently, we
frame an integer linear programing (ILP) problem to construct the most likely FACT(s).
Extensive case studies are conducted to showcase FACT-FL-GNN’s advantage over its
counterparts in terms of the metrics assessing the identified failed boards/root alarms. We
also delve into its performance in volatile environmental variations such as diverse failure
scenarios, network topologies, traffic distributions, and noise alarms.

4.1 Introduction

Internet backbones have undergone explosive growth in bandwidth requirement and geo-
graphical coverage, aiming at adapting to the multi-service and multi-tenant heterogeneous
network environment. Optical transport networks (OTNs) are formalized by ITU-T as a
set of telecommunication protocols [29], allowing for multiplexing different services onto a
single high-capacity wavelength to underpin the rapid advancement of contemporary In-
ternet backbones. The OTN optical layers encompass the optical transport section (OTS),
optical multiplex section (OMS), and optical channel (OCH) [30]. Specifically, each OCH
(i.e. lightpath) traverses various types of device boards connected in series, such as the
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fiber segment, optical amplifier (OA), fiber interface unit (FIU), optical multiplexer (OM),
optical demultiplexer (OD), optical transponder unit (OTU), etc. [28] The OTN control
plane harnesses a comprehensive set of rigid alarming mechanisms at each board for mon-
itoring system performance. As a result, each board is capable of generating alarms in
response to any failure event perceived by its sensor. For example, if an OD board de-
tects a failure in its upstream fiber segment, it will notify the network management system
(NMS) via an alarm. Alternatively, an OTN board will report an alarm to the NMS if any
exception degrades the received lightpath’s quality of service.

Overall, a failure event may interfere with one or multiple boards, resulting in tearing
down numerous lightpaths by accident. Concurrently, other boards along the affected
lightpaths may sense these disruptions as well. Additionally, a board might emit an alarm
and send it to the NMS not only due to an identified failure event but also in response to
the notification alarm stemming from another remote board. Accordingly, a failure event
inevitably gives rise to an alarm flood, considerably boosting the complexity of alarm
analysis and failure localization, particularly in the network domains with a myriad of
boards such as the OTN.

Alarm correlation is universally acknowledged as an effective approach to discerning
the dependencies among alarms. The objective is to remove those dependent alarms as
many as possible, thereby substantially decreasing the complexity of failure localization.
An illustrative example is given in Fig. 4.1(a). The fiber segment fD

B is taken as the tagged
board, attaining the functional graph (FG) that incorporates all boards traversed by the
functional connections pertaining to the tagged board such as OTS, OMS, and OCH. A
failure that hits fD

B is firstly detected by its downstream board B. B issues an alarm a3
and informs fD

B ’s upstream board D via a2, where these alarms are further reported to
the NMS. In addition, the impacts of fD

B are detected by all other boards traversing the
affected lightpaths, engendering a1 and a4. Note that fiber segments are passive devices,
thereby not reporting any alarms but could be failed.

Another example is illustrated in Fig. 4.1(c). The failure on the tagged board D even
malfunctions its sensor and hence doesn’t raise any alarm. However, D’s neighboring
boards A, B, and C receive the notification alarms a2, a1, and a4, respectively. B causes
E to report a3, where E passes through the interrupted lightpath. Apparently, the failures
on fD

B and D influence an identical network topology of different traffic distributions,
whereas they yield the same alarm pattern. Besides, the failure type and current network
state determine whether an alarm is the root alarm or non-root alarm and its correlation
with other alarms. For instance, in Fig. 4.1(a), a3 is the root alarm and it triggers a4.
Conversely, in Fig. 4.1(c), a4 is the root alarm, yet it doesn’t bring about a3.
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Figure 4.1: (a), (c) Illustrations of two FGs due to single-board failure events, where
A, · · · , F, fA

D , · · · , fF
B are device boards, bold arrows are lightpaths, red nodes are failed

tagged boards, and a1, · · · , a4 are alarm types. (b), (d) Consequential FACTs.
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According to the examples above, the failure-alarm propagation phenomenon resulting
from a failed tagged board in an FG is portrayed by an FACT, as displayed in Fig. 4.1(b)
and Fig. 4.1(d). The goal is to recognize dependent alarms for precisely localizing failed
device boards in the OTN optical layers. Extensive research achievements are directed
toward proposing effective alarm correlation approaches to assist failure localization. Some
of their findings concentrate on utilizing the relationships among alarms [66, 82, 77, 35, 3,
47, 46, 45, 36, 84]. Others exploit the relationships between failed nodes/links and alarms
[50, 75, 85, 76, 20, 22, 70, 71, 78, 79, 34, 74]. Nevertheless, these works generally suppose
that the network environment is simply static, which may not provide sufficient generality
for the changeable network environment, especially for those experiencing alterations in
network topology or traffic distribution.

Inspired by its importance and unique challenges, this chapter introduces a novel ap-
proach to fulfill FACT-FL, called FACT-FL-GNN. Firstly, we assume that during an ob-
servation window (OW) of the given network state, the status of each board can change no
more than once at the beginning of this OW, i.e., either maintaining normal or transitioning
from normal to failed, incurring an alarm set. Then we define an FG as a tagged board-
centric graph that contains all boards functionally related to the tagged one. Based on an
FG, an FACT represents the tree-shape correlation between the failed tagged board and
alarms, where each board/alarm is featured by several attributes including its occurrence
time, board type, and alarm type.

Given a set of FGs within an OW, FACT-FL-GNN adopts the graph neural network
(GNN) as an edge classifier for weighting the edges in each potential FACT. The trained
graph edge binary classifier jointly considers the network topology, traffic distribution, and
received alarms. It is intended to accommodate diverse network environments, provided
that they comply with the same failure-alarm propagation rules. With all weighted edges in
place, FACT formation can be exclusively realized by tackling an integer linear programing
(ILP) problem, where each FACT, connecting to one or multiple alarms, is rooted by a
failed board. The purpose of FACT formation is to cover all alarms with the minimum
cost.

The contributions of this chapter are summarized as follows.

• Propose a novel board-level failure localization approach, referred to as FACT-FL-
GNN, which leans on a graph edge binary classifier and FACT modeling approach.

• Leverage GNN for building a novel graph edge binary classifier. This classifier offers
superior adaptability and generality to versatile network environments by considering
both boards and alarms.
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• Formulate the FACT formation problem as an ILP to obtain the optimal FACT(s),
fulfilling both failure localization and alarm correlation.

• Conduct extensive case studies on the single-board and regional failure events to
verify the raised FACT-FL-GNN. The results demonstrate its capability of precisely
localizing failed device boards in the OTN optical layers.

The remainder of this chapter is structured as follows. Section 4.2 dwells on the pro-
posed FACT-FL-GNN approach. Section 4.3 describes the setup of case studies and results.
Section 4.4 concludes this chapter.

4.2 Proposed FACT-FL-GNN Approach

Raw dataset of historical observations

Feature extraction

Binary classifier training

(i)

(ii)

Dataset

Testing dataset of a new observation

FACT formation (iv)

FACT(s)Learned graph edge binary classifier

Training
stage

Testing
stage

(iii)FG construction

FG(s)

Figure 4.2: Flowchart of the proposed FACT-FL-GNN approach.

Fig. 4.2 shows the flowchart of the proposed FACT-FL-GNN approach. Given the raw
dataset of historical observations, we extract the features from each FACT, as depicted
in (i) of Fig. 4.2 and detailed in Section 4.2.1. Then the obtained dataset is harnessed
for training a graph edge binary classifier to weight the edges in each potential FACT, as
exhibited in (ii) of Fig. 4.2 and elaborated in Section 4.2.2. Further, a new observation is
furnished as the testing dataset, aiming at attaining a number of FGs via FG construction,
as displayed in (iii) of Fig. 4.2 and described in Section 4.2.3. The learned classifier and
FG(s) are the inputs for the FACT formation procedure demonstrated in (iv) of Fig. 4.2
and explained in Section 4.2.4. FACT-FL-GNN culminates in gaining one or multiple
FACTs as the expected output.
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Also, we have summarized all notations used in this chapter in Table 4.1 for readability.

Table 4.1: Summary of symbols and their definitions

Symbol Definition
Oi Observation window
TOi

Network topology in Oi

LOi
Traffic distribution in Oi

AOi
Alarm instance set in Oi

NOi
Number of alarm instances in AOi

BOi
Board instance set in Oi

DOi
Dataset in Oi

D Training dataset

4.2.1 Feature Extraction

The raw dataset is composed of historical observations collected from a set of OWs, de-
noted as O = {O1, · · · , Oi, · · · , OI}, ∀i ∈ {1, · · · , I}. During Oi we observe the network
topology TOi

, traffic distribution LOi
, alarm set AOi

, failure event, and FACTs. Here,
TOi

= (BOi
, EOi

) is an undirected graph indicating the board-level connectivity, where BOi

is the vertex set of device board instances and EOi
is the edge set. LOi

represents a set
of lightpaths each traversing several device board instances in BOi

. AOi
= {a1, · · · , aNOi

}
embodies NOi

alarm instances which are sorted in ascending order of their occurrence time.
Note that the FACTs could be inferred by the failure event and BOi

with the assistance
of expertise, and we assume that they are consistent with the ground-truth failure-alarm
propagation rules. For each FACT, all its edges are labeled as 1s. Also, we introduce the
auxiliary edges for creating the edges labeled as 0s. Some auxiliary edges are carried out by
connecting the tree root board instance with each alarm instance, while others are realized
by pairing any two alarm instances with a positive occurrence time gap. Eventually, these
modified FACTs constitute the dataset DOi

.

To portray each FACT in DOi
, we create a feature space F with dimensions including

the time, network topology, traffic distribution, and board/alarm attributes, given as below:

• For each vertex within an FACT, we consider the board type, alarm type, and layer
information.
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• For each edge within an FACT, we extract the following features:

– occurrence time gap: the occurrence time gap between two instances;

– physical distance: the length of the shortest path from the instance that
happened earlier to the other one in TOi

;

– hop distance: the number of OMSs passed by the shortest path in terms of
hop count;

– lightpath label: a binary value signifying whether these two instances traverse
a common lightpath.

Mapping each FACT from DOi
to F results in a transformed dataset F(DOi

). Ulti-

mately, ∀i ∈ {1, · · · , I}, D =
I⋃

i=1

F(DOi
) can be garnered as the dataset catering to the

need of training the graph edge binary classifier.

4.2.2 Graph Edge Binary Classifier

A graph edge binary classifier is designed to evaluate the edge weights for each potential
FACT. We adopt a one-layer GNN whose architecture is shown in Fig. 4.3, where the
dimension of the corresponding layer/embedding vector is annotated in parentheses. The
input layer consists of vertex features, edge features, and FACT. The features of the vertex
and edge belong to categorical and numerical ones, respectively. To jointly manipulate
these two types of features, the vertex features are mapped onto a continuous space via
an embedding layer. Then the vertex and edge features are individually pre-processed
with 2 fully connected layers. Each FACT, which indicates the connectivity amongst
these vertices, is treated as an undirected graph due to the fact that the performance
of benchmark GNN models on homophilic graphs didn’t benefit much from using edge
direction [58]. The GNN layer employs 1 convolutional layer with the graph transformer
operator [61] that supports message passing with vertex and edge features along the FACT
structure, outputting the vertex embedding vectors. Consequently, a graph edge binary
classifier is established to calculate the probability of an edge connecting two vertices
as the edge weight. We concatenate the two vertices’ embedding vectors as well as the
corresponding edge embedding vector and feed it into another fully connected layer.
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Figure 4.3: Architecture of the graph edge binary classifier.

65



4.2.3 FG Construction

Within each OW P , the testing dataset of a new observation is given, which embraces
the network topology TP , traffic distribution LP , and alarm set AP . The presented FG
construction process is designed to build a set of FGs, providing the search space for the
subsequent FACT formation. Initially, a device board from TP is labeled as the tagged
board, which is used to generate a subgraph induced by TP . This subgraph contains all
boards going through the tagged board’s functional connections, i.e., OTS, OMS, and
OCH in the setting of OTN. Then we focus on the alarms reported by the boards in the
subgraph and examine whether the tagged board could be associated with the subset of
these alarms. Here, FACTs in the raw dataset can be leveraged for mining the failure-
alarm association rules between the tagged board’s failure type and alarm type(s) in each
FACT. If the tagged board and its alarm subset satisfy the corresponding association rule,
this subgraph is deemed as a valid FG otherwise we skip this tagged board. The above
procedure will be performed for each device board in TP , resulting in a set of FGs, where
the tagged board and its alarm subset are attached to each FG as well.

4.2.4 FACT Formation

Given the trained graph edge binary classifier and FGs, the proposed FACT formation
algorithm aims to construct the minimum cost FACTs while covering all alarm instances
in AP , with each FACT rooted by a failed board and taking some alarms as the leaves.

Fig. 4.4 showcases the proposed FACT formation algorithm. For each FG, a potential
FACT can be generated by pairing its tagged board with each alarm from the alarm subset
and connecting all alarm instance pairs with a positive occurrence time gap. Then each
potential FACT is fed into the trained graph edge binary classifier for weighting its edges.
These weighted potential FACTs will be post-processed with two steps. We take the graph
union of all weighted potential FACTs, followed by checking whether the resultant graph
is a simple graph. If there exists more than one edge between any two vertices, we merely
reserve one of the maximum-weight edges. Afterward, a weighted directed acyclic graph
GP is prepared as the search space of optimal FACT(s), denoted as GP = (VP , EP , C(EP )).
VP = BP

⋃
AP represents the vertex set aggregated by the board instance set BP and

alarm set AP . EP = E1
P

⋃
E2

P is the edge set, where E1
P = BP × AP , E2

P ⊆ AP × AP

are the edge sets formed by boards and alarms as well as alarm pairs, respectively. Also,
C(EP ) is the set of non-negative edge costs, where ∀vi, vj ∈ VP , (vi, vj) ∈ EP , cij ∈ C(EP )

66



FG(s)

Weighted potential FACT(s)

FACT(s)

Graph edge binary classifier

Post-processing

Generate potential FACT(s)

Potential FACT(s)

ILP solver

Weighted directed acyclic graph

Figure 4.4: Flowchart of the proposed FACT formation algorithm.
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signifies the weight/cost of edge (vi, vj) and it’s defined in (4.1):

cij =


1 − Pr{vi fails}

· Pr{(vi, vj) connects vi, vj}, if (vi, vj) ∈ E1
P ,

1 − Pr{(vi, vj) connects vi, vj}, if (vi, vj) ∈ E2
P ,

(4.1)

where Pr{vi fails} is the probability that board instance vi fails. It can be derived from the
probability density function (PDF) of the corresponding board’s time-to-failure, where the
PDF could be estimated grounded in historical failure events taking place at this board.
Pr{(vi, vj) connects vi, vj} is the probability output from the trained graph edge binary
classifier.

Furthermore, the problem of coming up with the optimal FACTs G∗
P can be framed as

an ILP problem defined in (4.2):

minimize
∑
e∈EP

cexe +
∑
u∈BP

(1 − Pr{u fails}) · yu (4.2a)

subject to
∑

e∈δ−(v)

xe = 1, ∀v ∈ AP , (4.2b)

xe ≤ yu, ∀u ∈ BP ,∀e ∈ δ+(u), (4.2c)

xe ∈ {0, 1}, ∀e ∈ EP , (4.2d)

yu ∈ {0, 1}, ∀u ∈ BP . (4.2e)

∀e ∈ EP , ∀u ∈ BP , two binary variables xe, yu are defined, where xe takes 1 if the edge e is
selected by G∗

P and 0 otherwise; while yu takes 1 if the board instance vertex u is chosen as
a tree root in G∗

P and 0 otherwise. The objective function (4.2a) aims to extract G∗
P that

minimizes the total cost of opted edges and board instances. Constraint (4.2b) implies
that for each alarm instance vertex v, only one item from the set of edges incoming to v,
namely δ−(v), must be chosen to ensure all alarm instances are visited by G∗

P . Constraint
(4.2c) suggests that for each board instance vertex u, if any item from the set of edges
outgoing from u, called δ+(u), is chosen, then u must be selected.

By solving the above ILP, the anticipated FACT(s) G∗
P is gained, which achieves both

failure localization and alarm correlation.

4.3 Case Studies

Extensive case studies are performed to validate the viability of the proposed FACT-FL-
GNN in the OTN optical layers and compare it with the counterparts. Firstly, we develop
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an OTN simulator [48][44] to harvest ground-truth alarms and FACTs according to the
given failure event, failure-alarm propagation rule database, as well as the network topology
and traffic distribution during an OW. The rule database incorporates 38 entries in the
form of One2Many, where 16 failure types, 16 board types, and 25 alarm types are taken
into account. Without loss of generality, each failure event independently hits a certain
number of boards and breaks their traversing functional connections. Besides, we assume
that the failure-alarm propagation process always succeeds even though any failed board
exists along the notification signal propagation path. On the other hand, we suppose that
each board instance is equiprobable to fail, thereby ignoring the cost of choosing a board
instance by setting Pr{u fails} as 1 in (4.2a).

The case studies aim to verify the generality and migratability of FACT-FL-GNN. For
this purpose, we apply the graph edge binary classifier trained by the raw dataset to the
testing datasets gathered from OTN environments with diverse failures, network topologies,
traffic distributions, and noise alarms. The state-of-the-art counterparts for comparison
include BP [50], LSTM [50], convolutional neural network (CNN) [77], BERT [35], GNN
[46, 47, 45], GNN-Dual [34], FACT-FL-Heuristic [37][39], and FACT-FL-Chain [38].

4.3.1 Setup

Raw Dataset

The raw dataset is produced from a default network state. It comprises 8 nodes, 264
boards, and 20 lightpaths each going through 14 boards on average and its board-level
average degree is 2.2. We collect 3086 alarms from this default network state via 264 1-
minute OWs, where these OWs are initiated by the single-board failure events that in turn
hit each board in the network topology.

Dataset

The raw dataset leads to the dataset of 264 FACTs for training the graph edge binary
classifier. Note that the size of each FACT equals to one plus the number of alarms caused
by the failed root board, which is co-determined by the invoked failure-alarm propagation
rules, network topology, and traffic distribution. The dataset is split into training, valida-
tion, and test sets with a ratio of 7:2:1. We utilize the min-max scaling to normalize the
numerical features. The binary cross entropy loss function is optimized with Adam at a
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learning rate of 0.005. The batch size and number of epochs are set to 64 and 500, respec-
tively. In addition, we monitor the value of the area under the curve on the validation set
in each epoch and make use of early stopping [7] for mitigating overfitting.

Machine Learning Model Counterparts

The network architectures of machine learning model counterparts under the raw dataset
are concisely delivered as follows. For BP and LSTM, two networks of dimension 120 × 64
× 32 × 264 and 120 × 64 × 264 are established. The CNN model is made up of 25 input
layer units and 3 hidden layers whose number of neurons are 256, 128, and 32, where the
kernel size in each hidden layer is 3 × 3. As for BERT, it encodes the alarm contextual
information with a 768-dimension vector and sets the length of each alarm transaction to
3. For training GNN, an alarm knowledge graph with 41 entities is structured based on the
rule database. For GNN-Dual, one convolutional layer using the graph operator in [41] is
utilized to obtain a 32-dimension feature vector for each node. Lastly, FACT-FL-Heuristic
exerts a 3-layer fully connected neural network whose number of neurons is 32, 32, and 64,
respectively.

Testing Datasets

The process of generating testing datasets is sketched out as follows. To assess the bench-
mark performance for each scheme, we emulate a single-board failure dataset of 10 failed
boards randomly selected from the default network state.

Moreover, we generate two regional failure datasets to evaluate the generality and mi-
gratability of each method. One dataset is composed of regional failures from 10 new
network states achieved by altering the number of lightpaths in a common network topol-
ogy. This network topology consists of 10 nodes and 2380 boards with a board-level average
degree of 2.06. The number of lightpaths ranges from 10 to 100 with an equal interval of
10 and each lightpath averagely traverses 14 boards. The other dataset contains the re-
gional failures from 10 new network states each taking 40 lightpaths. These network states
correspond to different topological sizes, where the number of nodes, number of boards,
board-level average degree, and average number of boards traversed by each lightpath vary
from 11 to 20, 461 to 700, 2.21 to 2.26, and 12 to 18, respectively. Note that each regional
failure starts with selecting one board from the network topology at random, which is
further expanded by arbitrarily adding one board at a time and ensuring that the chosen
boards are connected. The number of failed boards in each regional failure changes from
1 to 10 and the average degree of each regional failure is 1.39.
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In the end, the single-board failure dataset incorporating 10 failed boards is simulated
to test FACT-FL-GNN’s noise-resistant ability. For each failed board, different ratios of
noise alarms are introduced on top of the true alarms.

ILP Solver and Performance Metrics

To deal with the ILP problem with a huge number of variables, we take the branch-and-
price method [4], which is implemented in the high-performance optimization software
(HiGHS) [23] that is dedicated to large-scale sparse linear optimization models.

Two performance metrics called F-measure(F) and F-measure(R) are considered for
evaluating the two outcomes from our framework in each imitated instance, termed failed
boards and root alarms. F-measure(F) and F-measure(R) are defined in (4.3) and (4.4),
where a larger value implies better performance in identifying failed boards/root alarms:

F -measure(F ) = 2 · Precision(F ) ·Recall(F )

Precision(F ) + Recall(F )
, (4.3)

Precision(F ) =
# of correctly identified failed boards

total # of identified failed boards
,

Recall(F ) =
# of correctly identified failed boards

total # of failed boards
,

F -measure(R) = 2 · Precision(R) ·Recall(R)

Precision(R) + Recall(R)
, (4.4)

Precision(R) =
# of correctly identified root alarms

total # of inferred root alarms
,

Recall(R) =
# of correctly identified root alarms

total # of root alarms
.

4.3.2 Results

Graph Edge Binary Classifier

The training curve of the graph edge binary classifier is shown in Fig. 4.5. The loss
converges to 0.0862/0.0891 and the accuracy reaches 96.07%/95.75% after 463 epochs on
the training/validation set.
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Figure 4.5: Training curve of the graph edge binary classifier.

FACT Formation

Table 4.2: Results on the single-board failure dataset for benchmark performance compar-
ison

Method # of trainable parameters F-measure(F) F-measure(R)
FACT-FL-GNN 4521 1.000±0.000 1.000±0.000

FACT-FL-Chain, K = 3 18771 0.9667±0.062 0.9±0.186
FACT-FL-Chain, K = 2 11490 0.9±0.186 0.8667±0.189
FACT-FL-Chain, K = 1 5265 0.9±0.186 0.7667±0.245

FACT-FL-Heuristic 5585 0.391±0.211 0.747±0.241
CNN 338378

N/A
0.630±0.272

BERT 2521646 0.200±0.211
BP 40904 0.500±0.310

N/A
LSTM 64520 0.500±0.310
GNN 51999 0.800±0.248

GNN-Dual 16801 0.2567±0.17
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Figure 4.6: Average performance result on the regional failure dataset under various traffic
distributions.
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Figure 4.7: Average performance result on the regional failure dataset under various net-
work topologies.
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Figure 4.8: Average performance result on the single-board failure dataset under various
ratios of noise alarms.
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Firstly, the results of all schemes on the single-board failure dataset for benchmark
performance comparison are listed in Table 4.2, where the value before “±” means the
average F-measure(F)/F-measure(R) over 10 failure events and the value after “±” stands
for the margin of error at the confidence interval of 95%. Notably, FACT-FL-GNN attains
a pronounced advantage over its counterparts in all employed metrics while taking the
fewest trainable parameters.

Furthermore, the results of all schemes on two regional failure datasets are summa-
rized in Fig. 4.6 and Fig. 4.7. Obviously, FACT-FL-GNN performs the best among all
its counterparts in recognizing failed boards. FACT-FL-Chain, which is second only to
FACT-FL-GNN, behaves better with a larger value of K. Nevertheless, BP and LSTM
grapple with a significant performance decline with increasing the number of failed boards,
which hints that they could lose more real failed boards on account of neglecting abundant
alarm attributes. Similarly, GNN-Dual, which is neck and neck with FACT-FL-Heuristic,
is subject to poor performance due to overlooking the traffic distribution, even if the
network topology is considered. Again, FACT-FL-GNN outperforms its counterparts in
terms of root alarm identification except for FACT-FL-Chain with K = 2 or 3, and FACT-
FL-Heuristic. However, CNN and BERT suffer from dramatic performance degradation
because they completely ignore the traffic distribution and spatial relation among these
alarms. Note that although FACT-FL-Chain and FACT-FL-Heuristic are on par with
or even better than FACT-FL-GNN in recognizing root alarms, they are still worse than
FACT-FL-GNN in localizing failed boards since they independently evaluate each edge
weight without considering the hidden tree-shape correlation pattern between the tagged
board and alarm subset.

Additionally, the results of various schemes on the single-board failure dataset with
noise alarms are exhibited in Fig. 4.8. FACT-FL-GNN has the strong capability of noise
immunity in identifying failed boards/root alarms thanks to its careful consideration of the
tree-shape correlation among the received alarms. In contrast, most of its counterparts are
severely degraded in detecting failed boards/root alarms with the increase in the ratio of
noise alarms.

Further note that since the location information of failed boards/alarms changes through
the evolving network environments, all models used by FACT-FL-GNN’s counterparts
(apart from FACT-FL-Heuristic and FACT-FL-Chain) require retraining when any distur-
bance occurs in the network topology or traffic distribution, but FACT-FL-GNN needs to
be trained once with the raw dataset gathered from the default network state and thus it
realizes the best migratability among all considered counterparts.
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Complexity Analysis

We assume that during an OW P , the board set BP = {b1, · · · , bMP
} and alarm set AP =

{a1, · · · , aNP
} are provided. The step of FG construction requires examining each board

from BP , leading to mP FGs and the computation complexity of O(MP ). Furthermore,
the complexity of the FACT formation algorithm derives from using the graph edge binary
classifier and ILP solver. The former one results in O(mP ). The latter one is known
as an NP-hard problem and thus it’s overlooked in the complexity analysis, where the
number of variables and constraints considered by the ILP in (4.2) encompass no more

than mP + NP ·(NP−1)
2

and NP + mP ·NP , respectively.

4.4 Conclusion

This chapter presents a novel approach for board-level failure localization in the OTN,
called FACT-FL-GNN. The proposed FACT-FL-GNN is characterized by several impres-
sive modeling approaches. Firstly, we have collaborated boards and alarms into the cor-
relation process that pinpoints both failed boards and root alarms. Secondly, we have
trained a graph edge binary classifier that is generalized to various network environments
that deploy the same failure-alarm propagation rules. Thirdly, we have proposed the con-
cept of FACT that effectively models the correlation among the failed boards and alarms,
and the FACT formation procedure is formulated as a solvable ILP problem that provides
a graceful solution.

Extensive case studies are conducted to compare the proposed FACT-FL-GNN with
other schemes in diverse network environmental changes. We observe that FACT-FL-
GNN has achieved extraordinary and stable performance in localizing failed boards and
root alarms, which champions our claim that FACT-FL-GNN boasts sufficient generality
and migratability in variable network environments.
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Chapter 5

Conclusion

In this thesis, we propose a novel framework of board-level failure localization in the OTN
optical layer, namely Failure-Alarm Correlation Tree based Failure Localization (FACT-
FL), where its outcome is one or multiple FACT(s) each taking one failed board and its
correlated alarms as the root and leaves, respectively. We have implemented three ap-
proaches to achieve FACT-FL. The proposed FACT-FL-Heuristic (in Chapter 2) designs
a binary classifier that learns the correlation measure between a board instance and an
alarm instance/two alarm instances, followed by raising a heuristic algorithm for creating
the feasible FACT(s). Further, to improve FACT-FL-Heuristic’s performance, we come up
with FACT-FL-Chain (in Chapter 3), an approach that regards each FACT as a set of cor-
relation chains with different order values and yields the appropriate FACT(s) by working
out an ILP problem. Moreover, to reduce the computational complexity of generating all
chain candidates for FACT-FL-Chain, we put forward FACT-FL-GNN (in Chapter 4), a
method that adopts GNN for calculating the edge weights of latent FACT(s) and formu-
lates a simplified ILP to obtain the most likely FACT(s). The results of extensive case
studies have demonstrated that the proposed approaches’ advantages over their counter-
parts in terms of the metrics evaluating the identified failed boards/root alarms, even if
the network environment undergoes versatile variations including diverse failure scenarios,
network topologies, traffic distributions, and noise alarms.

5.1 Contributions

The contributions of this thesis are summarized as follows:
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• We have investigated a novel failure localization framework, called FACT-FL, which
leans on the concept of FACT that effectively models the correlation among the
failed board and alarms so as to achieve both failed board localization and root
alarm identification.

• We have implemented three approaches to realize FACT-FL, namely FACT-FL-
Heuristic, FACT-FL-Chain, and FACT-FL-GNN.

• We have developed various types of binary classifiers that incorporate all those static
and dynamic network parameters, aiming at fulfilling sufficient generality and mi-
gratability for volatile network environments.

• We have framed the FACT formation procedure as a solvable ILP problem that offers
graceful results.

• We have carried out abundant case studies to unveil that the presented approaches
have achieved superb and stable performance in identifying failed boards and root
alarms, which advocates our claim that the proposed approaches boast sufficient
generality and migratability in variable network environments.

5.2 Future Work

The following issues could be further investigated in future work:

• The proposed framework currently assumes that the failure-alarm propagation rules
are constant in various network environments. However, those rules could vary with
the network environments, which brings about the problem of how to fine-tune the
trained binary classifiers.

• The case studies are conducted on the synthetic dataset instead of the real-world
dataset. Therefore, we need to collect some real datasets from OTN and verify the
effectiveness of the proposed approaches.

• The assumption made by our approach is that the failure-alarm propagation behavior
in OTN follows One2Many, whereas there could be more complicated forms such as
Many2One or appending some triggering conditions.
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• It may be difficult for the engineers who aren’t deeply versed in statistical modeling to
provide accurate reference FACTs as the training dataset, leading to introducing some
false FACTs/alarms. Accordingly, an effective pre-processing procedure is required
to create a more reliable training dataset.

• The raised framework is merely compared with other machine learning (ML) ap-
proaches, though, it should be further compared against traditional failure localiza-
tion methods.

• The proposed framework may be subject to high computational cost in the setting
of large-scale network topology or alarm flood and thus it can’t realize failure local-
ization in real time. Hence, we are anticipated to propose another novel approach
that inspects the status of each board in real time and achieves equivalent or even
better performance than the state of the arts in the dynamically changing network
environment.

• The objective function of formulated ILP problems simply considers the linear com-
bination of the likelihood of opted instance correlation and selected board instance,
which could be further improved by making the weight adapt to the change of network
environment.

• The constraints of considered ILP problems only meet the requirement of establishing
one or a set of trees, ignoring the fact that the structure of each feasible FACT is
associated with the board connectivity of the lightpaths traversed by the tree root
board. Thus, we need to reformulate the ILP problems.
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