
Measures for risk, dependence and

diversification

by

Liyuan Lin

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2024

© Liyuan Lin 2024



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Paul Glasserman

Professor, Graduate School of Business, Columbia University

Supervisors: Ruodu Wang

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Alexander Schied

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Internal Member: Mary Hardy

Professor Emerita, Department of Statistics and Actuarial Science,

University of Waterloo

Internal Member: Fan Yang

Assistant Professor, Department of Statistics and Actuarial Science,

University of Waterloo

ii



Internal-External Member: Keisuke Teeple

Assistant Professor, Department of Economics,

University of Waterloo

iii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iv



Abstract

Two primary tasks in quantitative risk management are measuring risk and managing

risk. Risk measures and dependence modeling are important tools for assessing portfolio

risk, which have gained much interest in the literature of finance and actuarial science. The

assessment of risk further serves to address risk management problems, such as portfolio

optimization and risk sharing.

Value-at-Risk (VaR) and Expected Shortfall (ES) are the most widely used risk mea-

sures in banking and insurance regulation. The Probability Equivalent Level of VaR-ES

(PELVE) is a new risk metric designed to bridge VaR and ES. In Chapter 2, we investigate

the theoretical properties of PELVE and address the calibration problem of PELVE, that

is, to find a distribution model that yields a given PELVE. Joint mixability, dependence

of a random vector with a constant sum, is considered an extreme negative dependence as

it represents a perfectly diversified portfolio. Chapter 3 explores the relationship between

joint mix and some negative dependence notions in statistics. We further show that the

negatively dependent joint mix plays a crucial role in solving the multi-marginal optimal

transport problem under the uncertainty in the components of risks.

Diversification is a traditional strategy for mitigating portfolio risk. In Chapter 4, we

employ an axiomatic approach to introduce a new diversification measurement called the

diversification quotient (DQ). DQ exhibits many attractive properties not shared by existing

diversification indices in terms of interpretation for dependence, ability to capture common

shocks and tail heaviness, as well as efficiency in portfolio optimization. Chapter 5 provides

some technical details and illustrations to support Chapter 4. Moreover, DQ based on VaR

and ES have simple formulas for computation. We explore asymptotic behavior of VaR-based

DQ and ES-based DQ for large portfolios, the elliptical model, and the multivariate regular

varying (MRV) model in Chapter 6, as well as the portfolio optimization problems for the

elliptical and MRV models.

Counter-monotonicity, as the converse of comonotonicity, is a natural extreme nega-

tive dependence. Chapter 7 conducts a systematic study of pairwise counter-monotonicity.

We obtain its stochastic representation, invariance property, interactions with negative as-
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sociation, and equivalence to joint mix within the same Fréchet class. We also show that

Pareto-optimal allocations for quantile agents exhibit pairwise counter-monotonicity. This

finding contrasts sharply with traditional comonotonic allocations for risk-averse agents, in-

spired further investigation into the appearance of pairwise counter-monotonic allocation in

risk-sharing problems. In Chapter 8, we address the risk-sharing problem for agents using

distortion riskmetrics, who are not necessarily risk-averse or monotone. Our results indicate

that Pareto-optimal allocations for inter-quantile difference agents include pairwise counter-

monotonicity. Chapter 9 further explores other decision models in risk-sharing that exhibit

pairwise counter-monotonicity in optimal allocations. We introduce a counter-monotonic

improvement theorem – a converse result to the widely used comonotonic improvement theo-

rem. Furthermore, we show that pairwise counter-monotonic allocations are Pareto optimal

for risk-seeking agents, Bernoulli utility agents, and rank-dependent expected utility agents

under certain conditions.

Besides the studies of two extreme negative dependencies, we expand our analysis to de-

pendence modeling through Pearson correlation and copula. In Chapter 10, we characterize

all dependence structures for a bivariate random vector that preserve its Pearson correlation

coefficient under any common marginal transformations. For multivariate cases, we charac-

terize all invariant correlation matrices and explore the application of invariant correlation

in sample duplication. Chapter 11 discusses the selection of copulas when marginals are

discontinuous. The checkerboard copula is a desirable choice. We show that the check-

board copula has the largest Shannon entropy and carries the dependence information of the

original random vector.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Quantifying portfolio risk has gained much interest in the literature of finance and

actuarial science. Risk measures, which map a random variable into risk level, are commonly

used by financial institutions to gauge and manage exposure. Among various of risk measures,

Value-at-Risk (VaR) and Expected Shortfall (ES) are two most widely used risk measures

in banking and insurance regulation frameworks such as Basel III/IV, Solvency II and the

Swiss Solvency Test. More detailed comparisons between VaR and ES regarding coherence,

robustness, and elicitability can be found in Cont et al. (2010), Embrechts et al. (2022),

Gneiting (2011) and Kou and Peng (2016).

Compared with VaR, ES is regarded as a more reliable risk measure under extreme

scenarios. This has led to suggestions from BCBS (2019) to replace VaR with ES. To bridge

between VaR and ES, Li and Wang (2022) proposed the Probability Equivalent Level of

VaR-ES (PELVE) to convert the level of VaR to that of ES. Remarkably, PELVE can also

measure tail heaviness, reporting higher values for distributions with heavier tails. In Chapter

2, we study the calibration problem of PELVE; that is, to find a distribution model that

yields a given PELVE, which may either be obtained from data or from expert opinion.

We discuss separately the cases when one-point, two-point and curve constraints are given.

For one-point and two-point problems, we construct the distribution model with the Pareto
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distribution tail as the calibrated distribution. In the most complicated case of a curve

constraint, we reformulate the calibration as an advanced differential equation problem and

characterize all potential distributions when PELVE remains constant across all probability

levels. We further study some technical properties of PELVE by offering a few new results

on monotonicity and convergence. It turns out that the monotonicity of the PELVE is

corresponding to the shape of the hazard rate function which is also used as a measurement

for tail heaviness.

An essential tool of quantifying multiple risks is dependence modelling. A joint mix,

introduced by Wang and Wang (2016), is a random vector with a constant component-wise

sum. It is considered an extremely negative dependence since it represents a perfectly di-

versified portfolio. In Chapter 3, we explore the connection between the joint mix structure

and popular notions of negative dependence in statistics, such as negative correlation de-

pendence, negative orthant dependence and negative association (see Block et al. (1982);

Lehmann (1966); Alam and Saxena (1981); Joag-Dev and Proschan (1983)). While not all

joint mixes are negatively dependent in these senses, we identify some natural classes of

joint mixes are. We derive various necessary and sufficient conditions for a joint mix to be

negatively dependent, and study the compatibility of these notions. Joint mix is also well

known as the solution for the Monge-Kantorovich problem (see Puccetti and Wang (2015))

with convex cost functions. We show that the negatively dependent joint mix serves as the

solution for the optimal transport problem under uncertainty of components with quadratic

cost function and identical marginal distributions Analysis of this optimal transport problem

with heterogeneous marginals reveals a trade-off between negative dependence and the joint

mix structure.

Traditionally, diversification has been recognized as an efficient strategy in portfolio risk

management. Existing literature on quantifying diversification, such as the diversification

ratio (see Choueifaty and Coignard (2008)) and the diversification benefit (see Embrechts et

al. (2009)), experiences practical and theoretical deficiencies. In Chapter 4, we establish the

first axiomatic theory for diversification indices using six intuitive axioms: non-negativity,

location invariance, scale invariance, rationality, normalization, and continuity. The unique

class of indices satisfying these axioms, called the diversification quotients (DQs), are defined
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based on a parametric family of risk measures. A further axiom of portfolio convexity pins

down DQ based on coherent risk measures. DQ has many attractive properties, and it

can address several theoretical and practical limitations of existing indices. In particular,

for the popular risk measures Value-at-Risk and Expected Shortfall, the corresponding DQ

admits simple formulas and it is efficient to optimize in portfolio selection. Moreover, it

can properly capture tail heaviness and common shocks, which are neglected by traditional

diversification indices. When illustrated with financial data, DQ is intuitive to interpret,

and its performance is competitive against other diversification indices. Detailed technical

support and auxiliary results for the axiomatic theories are provided in Chapter 5. We

further investigate DQ constructed from VaR and ES in Chapter 6. For the popular models

of elliptical and multivariate regular varying (MRV) distributions, explicit formulas of DQs

based on VaR and ES are available. The portfolio optimization problems for the elliptical

and MRV models are also studied. Our results further reveal favourable features of DQ, both

theoretically and practically, compared to traditional diversification indices based on a single

risk measure.

The other extremely negative dependence notion is called pairwise counter-monotonicity,

which is also know as mutually exclusive in actuarial literature (see Dhaene et al. (1999) and

Cheung and Lo (2014)). In contrast to the large literature on comonotonicity, there are limit

studies of pairwise counter-monotonicity. In Chapter 7, we systematically study pairwise

counter-monotonicity. A stochastic representation and an invariance property are estab-

lished for this dependence structure. We show that pairwise counter-monotonicity implies

negative association, and it is equivalent to joint mix dependence if both are possible for

the same marginal distributions. Interestingly, we find that Pareto-optimal allocations for

risk-sharing among quantile agents are pairwise counter-monotonic.

The risk-sharing scheme can be considered as a function from a random variable to a

random vector, which is different from risk allocation problems; see Kalkbrener (2005). A

classic result in risk sharing is that the Pareto-optimal allocation for risk averse agents is

comonotonic, as derived from the well-known comonotonic improvement theorem introduced

in Landsberger and Meilijson (1994). The appearance of pairwise counter-monotonicity in

Pareto-optimal allocation for quantile agents highlights the importance of this extremely
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negative dependence structure in risk sharing. This result inspired a natural question: what

types of decision models will exhibit counter-monotonicity in Pareto-optimal allocations?

In Chapter 8, we address the problem of sharing risk among agents whose preferences are

modeled by a general class of comonotonic additive and law-based functionals that are not

necessarily monotone or convex. These functionals are referred to as distortion risk metrics

and include many statistical measures of risk and variability used in portfolio optimization

and insurance (see Wang et al. (2020a)). We characterized the set of the Pareto-optimal

allocations under both comonotonic or general risk sharing frameworks. Specifically, for three

agents using variability measures of the Gini deviation, the mean-median deviation, and the

inter-quantile difference, we explicitly solve for Pareto-optimal allocations. An interesting

finding is that the Pareto-optimal allocation incorporates a mixture of pairwise counter-

monotonicity and conomotonicity for inter-quantile difference agents.

In Chapter 9, we further explore other decision models in risk sharing problem. Counter-

monotonic allocations take the form of either “winner-takes-all” lotteries or “loser-loses-all”

lotteries, which we respectively refer as jackpot and scapegoat allocations. We first present a

converse result of comonotonic improvement called counter-monotonic improvement theorem.

It states that one can always improve the allocated risks to each agents in convex order using

counter-monotonic allocations for a bounded risk. We investigate the appearance of counter-

monotonic allocations in risk-sharing problem for risk-seeking agents, Bernoulli utility agents

and rank-dependent expected utility (RDU) agents. The Pareto-optimal allocations, if they

exist, must be jackpot allocations when all agents are risk seeking. Scapegoat allocations

represent the only fair method to allocate indivisible goods among Bernoulli utility agents.

Under certain assumptions, RDU agents prefer jackpot allocations. We provide an applica-

tion to the mining of cryptocurrencies, showing that, unlike risk-averse miners, RDU miners

with limited computing power never join a mining pool. Finally, we characterize the compet-

itive equilibria with risk-seeking agents, providing the first and second fundamental theorems

of welfare economics in this context, where all equilibrium allocations are jackpot allocations.

We further explore other concepts of dependence modelling. A simple method to deter-

mine the dependence of a random vector is by examining the sign of the correlation coefficient.

A useful property of independent samples is that their correlation remains the same after ap-
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plying marginal transforms. This invariance property is fundamental in statistical inference

(see Bates et al. (2023)), but does not generally hold for dependent samples. In Chapter 10,

we are interested in characterizing (X, Y ) such that the correlation coefficient remains un-

changed after both variables are transformed by the same measurable function. We say that

such (X, Y ) has an invariant correlation under all transforms. For bivariate cases, we charac-

terize all models of such a random vector via a certain combination of comonotonicity—the

strongest form of positive dependence—and independence. In particular, we show that the

class of exchangeable copulas with invariant correlation is precisely described by what we

call positive Fréchet copulas. In the general multivariate case, we characterize the set of all

invariant correlation matrices via the clique partition polytope. Additionally, we propose a

positive regression dependent model that accommodates any prescribed invariant correlation

matrix. This model turns out to be the joint distribution of samples with duplicate records.

In this context, we provide an application of invariant correlation to the statistical inference

in the presence of sample duplication. Finally, we show that all our characterization results

of invariant correlation, except one special case, remain the same if the common marginal

transforms are confined to the set of increasing ones.

A well-known tool used to describe dependence of dependence is the copula. Sklar’s

theorem states that the copula is unique if and only if the marginals of a random vector

are continuous. However, in certain situations such as simulation, stress scenarios, and co-

risk measures computation when the marginal distributions exhibit discontinuities, selecting

an appropriate copula becomes essential. In Chapter 11, we address the choice of copula

when not all marginal distributions of a random vector are continuous. Among all possible

copulas, the checkerboard copula, characterized by uniform densities on regions of flexibility,

emerges as a natural choice. We demonstrate that the checkerboard copula possesses the

largest Shannon entropy, indicating that it carries the least information among all possible

copulas for a given random vector. Moreover, the checkerboard copula retains the dependence

information of the original random vector.

Chapter 12 concludes this thesis and discusses some open questions that are of potential

interest in this field. Each chapter can be read as a separate paper except for Chapters 4–5.
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1.2 Preliminaries

Below we give definitions and terminologies that will be used across different chapters.

Let (Ω,F ,P) be an atomless probability space, where F is a σ-field and P is a probability

measure. For p ∈ (0,∞), denote by Lp = Lp(Ω,F ,P) the set of all random variables X

with E[|X|p] < ∞ where E is the expectation under P. Furthermore, L∞ = L∞(Ω,F ,P) is

the space of all essentially bounded random variables, and L0 = L0(Ω,F ,P) is the space of

all random variables. Further, denote by R+ = [0,∞) and R = [−∞,∞]. Terms such as

increasing or decreasing functions are in the non-strict sense. Write X ∼ F if the random

variable X has the distribution function F under P. For X ∈ L0, ess-sup(X) and ess-inf(X)

are the essential supremum and the essential infimum of X, respectively. Two random

variables X and Y have the same distribution under P is denoted by X
d
= Y . We treat

almost surely (a.s.) equal random variables as identical; this means that all equalities and

inequality for random variables hold in the a.s. sense, and we omit “a.s.” in all our statements.

A random variable X is said to be smaller than a random variable Y in the convex order,

denoted by X ⩽cx Y , if E[ϕ(X)] ⩽ E[ϕ(Y )] for every convex function ϕ : R → R provided

that both expectations exist (see Rüschendorf (2013) and Shaked and Shanthikumar (2007)).

The order X ⩽cx Y means that X is less risky than Y in the sense of Rothschild and Stiglitz

(1970). Similarly, X is smaller than Y in the increasing convex order, denoted by X ⩽icx Y

if E[ϕ(X)] ⩽ E[ϕ(Y )] for every increasing convex function ϕ : R → R provided that both

expectations exist. The increasing convex order is referred to as second-order stochastic

dominance (SSD) in Chapters 4–5.

Let n be a fixed positive integer, and write [n] = {1, . . . , n}. We always write X =

(X1, . . . , Xn) and Y = (Y1, . . . , Yn). A random vector (X1, . . . , Xn) is comonotonic if there

exists a random variable Z and increasing functions f1, . . . , fn on R such that Xi = fi(Z)

a.s. for every i = 1, . . . , n. A random vector (X, Y ) is said to be counter-monotonic if (X,−Y )

is comonotonic. An equivalent formulation of comonotonicity is

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ⩾ 0 for (P× P)-almost every (ω, ω′) ∈ Ω2.

An equivalent formulation of counter-monotonicity is

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ⩽ 0 for (P× P)-almost every (ω, ω′) ∈ Ω2.
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For n ⩾ 3, a random vectorX taking values in Rn is (pairwise) counter-monotonic if each pair

of its components is counter-monotonic. A joint mix (Wang and Wang, 2016) is a random

vector X = (X1, . . . , Xn) satisfying X1 + · · ·+Xn = c almost surely (a.s.) for some constant

c, called a center of the joint mix. A random vector X = (X1, . . . , Xn) is exchangeable if

X
d
= Xπ for all π ∈ Πn, where Xπ = (Xπ(1), . . . , Xπ(n)).

Let X be a set of random variables on (Ω,F ,P). A risk measure ρ is a mapping from X

to R. The VaR and ES will be used frequently in this thesis. We use the “small α” through

out this thesis: The VaR at level α ∈ (0, 1) (typically very small) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ L0,

and the ES (also called CVaR, TVaR or AVaR) at level α ∈ (0, 1] is defined as

ESα(X) =
1

α

∫ α

0

VaRβ(X) dβ, X ∈ L1.

Moreover, let VaR0(X) = ES0(X) = ess-sup(X) and VaR1(X) = ess-inf(X). Note that

ES1(X) is the mean of X. In Chapter 2, the VaR is defined on L1 space to define PELVE.

Some standard properties of a risk measure ρ : X → R are collected below.

(i) Constant additivity: ρ(X + c) = ρ(X) + c for all c ∈ R and X ∈ X .

(ii) Positive homogeneity: ρ(λX) = ρ(X) for all λ ∈ (0,∞) and X ∈ X .

(iii) Subadditivity: ρ(X + Y ) ⩽ ρ(X) + ρ(Y ) for all X, Y ∈ X .

(iv) Monotonicity: ρ(X) ⩽ ρ(Y ) for X ⩽ Y .

(v) Comonotonic-additivity: ρ(X + Y ) = ρ(X) + ρ(Y ) for comonotonic (X, Y ).

(vi) Law invariance: ρ(X) = ρ(Y ) whenever X
d
= Y .

(vii) Continuity: ρ(Xn) → ρ(X) if Xn
Lp

−→ X, both as n→ ∞.

(viii) ⩽icx-consistency: ρ(X) ⩽ ρ(Y ) for all X, Y ∈ X whenever X ⩽icx Y .

(ix) Convex order consistency: ρ(X) ⩽ ρ(Y ) whenever X ⩽cx Y .
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Since SSD is equivalent to increasing convex order, ⩽SSD-consistency, mentioned in

Chapter 4–5, is equivalent to ⩽icx-consistency. In the framework of Artzner et al. (1999),

a risk measure is called a monetary risk measure if it satisfies monotonicity and constant

additivity; a risk measure is called a coherent risk measure if it satisfies monotonicity, constant

additivity, positive homogeneity, and subadditivity. For the case of presentation, we will

reintroduce and redefine some notation and important concepts, such as VaR and ES, in

each chapter to fit better the specific research problem.
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Chapter 2

Calibrating distribution models from

PELVE

2.1 Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES, also known as TVaR and CVaR) are

the most widely used risk measures for regulation in finance and insurance. The former has

gained its popularity due to its simplistic approach toward risk as the risk quantile, and the

second one is perceived to be useful as a modification of VaR with more appealing properties,

such as tail-sensitivity and subadditivity, as studied in the seminal work of Artzner et al.

(1999).

In the Fundamental Review of the Trading Book (FRTB), the Basel Committee on

Banking Supervision (BCBS (2019)) proposed to replace VaR at 1% confidence with ES

with a 2.5% confidence interval for the internal model-based approach.1 The main reason,

as mentioned in the FRTB, was that ES can better capture tail risk; see Embrechts et al.

(2018) for a concrete risk sharing model where tail risk is captured by ES and ignored by

VaR. On the other hand, VaR also has advantages that ES does not have, such as elicitability

(e.g., Gneiting (2011) and Kou and Peng (2016)) or backtesting tractability (e.g., Acerbi

1In this chapter, we use the “small α” convention for VaR and ES. Hence, “VaR at 1% confidence” and

“ES at 2.5% confidence” correspond to VaR99% and ES97.5% in BCBS (2019), respectively.
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and Székely (2014)), and the two risk measures admit different axiomatic foundations (see

Chambers (2009) and Wang and Zitikis (2021)). We refer to the reviews of Embrechts et

al. (2014) and Emmer et al. (2015) for general discussions on VaR and ES, and McNeil et

al. (2015) for a standard treatment on risk management including the use of VaR and ES.

The technical contrasts of the two risk measures and their co-existence in regulatory practice

give rise to great interest from both researchers and practitioners to explore the relationship

between them.

To understand the balancing point of VaR and ES during the transition in the FRTB,

Li and Wang (2022) proposed the Probability Equivalent Level of VaR-ES (PELVE). The

value of PELVE is the multiplier to the tail probability when replacing VaR with ES such

that the capital calculation stays unchanged. More precisely, the PELVE of X at level ϵ is

the multiplier c such that EScϵ(X) = VaRϵ(X); such c uniquely exists under mild conditions.

For instance, if VaR1%(X) = ES2.5%(X) for a future portfolio loss X, then PELVE of X

at probability level 0.01 is the multiplier 2.5. In this case, replacing VaR1% with ES2.5% in

FRTB does not have much effect on the capital requirement for the bank bearing the loss X.

Instead, if ES2.5%(X) > VaR1%(X), then the bank has a larger capital requirement under

the new regulatory risk measure; this is often the case for financial assets and portfolios as

shown by the empirical studies in Li and Wang (2022). The PELVE enjoys many convenient

properties, and it has been extended in a few ways. In particular, Fiori and Gianin (2022)

defined generalized PELVE by replacing VaR and ES with another pair of monotone risk

measures (ρ, ρ̃), and Barczy et al. (2022) extended PELVE by replacing ES with a higher-

order ES.

For a given distribution model or a data set, its PELVE can be computed or estimated

in a straightforward manner. As argued by Li and Wang (2022), the PELVE for a small

ϵ may be seen as a summarizing index measuring tail heaviness in a non-limit sense. As

such, one may like to generate models for a given PELVE, in a way similar to constructing

models for other given statistical information; see e.g., Embrechts et al. (2002, 2016) for

constructing multivariate models with a given correlation or tail-dependence matrix. Such

statistical information may be obtained either from data or from expert opinion, but there is

no a priori guarantee that a corresponding model exists. Since PELVE involves a parameter
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ϵ ∈ (0, 1), its information is represented by a curve. The calibration problem, that is, to find

a distribution model for given PELVE values or a given PELVE curve, turns out to be highly

non-trivial, and it is the main objective of this chapter.

From now on, suppose that we receive some information on the PELVE of a certain

random loss from an expert opinion, and we aim to build a distribution model consistent

with the supplied information. Since PELVE is location-scale invariant, such a distribution,

if it exists, is not unique.

The calibration problem is trivial if we are supplied with only one point on the PELVE

curve. As the PELVE curve of the generalized Pareto distribution is a constant when the

PELVE is well defined, we can use the generalized Pareto distribution to match the given

PELVE value, which has a tail index implied from the expert opinion. The calibration prob-

lem becomes more involved if we are supplied with two points on the PELVE curve, because

the value of the PELVE at two different probability levels interact with each other. The

situation becomes more complicated as the number of points increases, and we further turn

to the problem of calibration from a fully specified PELVE curve. Calibrating distribution

from the PELVE curve can be reformulated as solving for a function f via the integral equa-

tion
∫ y

0
f (s) ds = yf (z (y) y), where the curve z is computed from the PELVE curve. This

integral equation can be further converted to an advanced differential equation (see Bellman

and Cooke (1963)). For the case that z is a constant curve, we can explicitly obtain all

solutions for f . We find other distributions that also have constant PELVE curves other

than the simple ones with a Pareto or exponential distribution. As a consequence, a PELVE

curve does not characterize a unique location-scale family of distributions; this provides a

negative answer to a question posed by Li and Wang (2022, Section 7, Question (iv)). For

general function z, we develop a numerical method to compute f .

The calibrated distribution can be used to estimate the value of other risk measures such

as VaR and ES at different levels. We illustrate by an empirical example that two points of

PELVE give a quite good summary of the tail distribution of risk. Daily log-losses (negative

log-returns) of AAPL from Yahoo Finance are collected for the period from January 3, 2012

to December 31, 2021 within total of 2518 observations. We calculate the empirical PELVE

at levels 0.01 and 0.05 using the empirical PELVE estimator provided by Li and Wang (2022,
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Section 5) with a moving window of 500 trading days. For each pair of two points of PELVE

at levels 0.01 and 0.05, we produce a quantile curve from the two empirical PELVE points by

our calibration model in Section 2.3.2, which is scaled such that VaR0.01 and VaR0.05 are equal

to their empirical values.2 Figure 2.1 presents the empirical and calibrated quantile curves

on December 31, 2021 using 500 trading days prior to that date. The two quantile curves are

close to each other, with our calibrated curve being more smooth. We also report the values

of ES0.025 of the calibrated distribution, which we call the calibrated ES0.025, and compare

it with empirical ES0.025. The left panel of Figure 2.2 shows the curves of empirical and

calibrated ES0.025. In the right panel of Figure 2.2, we create a scatter plot using empirical

and calibrated ES0.025. Both figures show that the empirical and calibrated ES0.025 curves

are quite close.

Figure 2.1: Empirical VaR and calibrated VaR
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To further enrich the theory of PELVE, we study a few technical properties of PELVE,

such as monotonicity and convergence as the probability level goes to 0. A decreasing PELVE

indicates a relatively larger impact of ES in risk assessment than VaR moving towards the tail.

As we will see, while for the most known parametric distributions the PELVE is decreasing,

there exist some examples at some risk levels it is not decreasing. This means that for those

examples VaR becomes a stricter risk measure when moving towards the tail. To obtain

2Recall that PELVE is location-scale free, and hence we need to pick two free parameters to specify a

distribution calibrated from PELVE.
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Figure 2.2: Empirical ES0.05 and calibrated ES0.05
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conditions for monotonicity, we define the dual PELVE by moving the multiplier c from the

ES side to the VaR side. PELVE can be seen as a functional measure of tail heaviness in

the sense that a heavier-tailed distribution has a higher PELVE curve (Li and Wang (2022,

Theorem 1)). The hazard rate, on the other hand, is another functional measure of tail

heaviness. We show that the PELVE is decreasing (increasing) if the inverse of the hazard

rate is convex (concave). Monotonicity also leads to conditions for the PELVE to have a

limit at the tail, which from the risk management perspective, identifies the ultimate relative

positions of ES and VaR in the tail region. From a mathematical perspective, the limit of

PELVE at 0 allows us to extend the domain of PELVE to include 0 as a measure of tail

heaviness.

The rest of this chapter is organized as follows. Section 2.2 introduces the background

and examples of the PELVE. In Section 2.3 we calibrate a distribution from finitely many

points in the PELVE curve. Section 2.4 calibrates the distribution from given PELVE curves,

where we give a class of explicit solutions for constant PELVE functions and numerical so-

lutions for general PELVE functions. In Section 2.5, we study the monotonicity and conver-

gence of the PELVE. Section 2.6 presents two examples of the model calibration techniques

applied to datasets used in insurance. A conclusion is given in Section 2.7. Some technical

proofs of results in Sections 2.3, 2.4 and 2.5 are provided in Section 2.8 - 2.10.
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2.2 Definitions and background

Let us consider an atomless probability space (Ω,F ,P), where F is the set of the

measurable sets and P is the probability measure. Let L1 be the set of integrable random

variables, i.e., L1 = {X : E[|X|] <∞}, where E is the expectation with respect to P.

We first define VaR and ES in L1, the two most popular risk measures. The VaR and

at probability level p ∈ (0, 1) is defined as

VaRp(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− p} = F−1(1− p), X ∈ L1, (2.1)

where F is the distribution of X. The ES at probability level p ∈ [0, 1) is defined as

ESp(X) =
1

p

∫ p

0

VaRq(X) dq, X ∈ L1.

Note that we use the “small α” convention for VaR and ES, which is different from Liu and

Wang (2021). Let VaR0(X) = ES0(X) = ess-sup(X) and VaR1(X) = ess-inf(X). We have

that ES1(X) is the mean of X. We will also call p 7→ VaRp(X) the quantile function of X,

keeping in mind that in our convention this function is decreasing.3

For ϵ ∈ (0, 1), the PELVE at level ϵ, proposed by Li and Wang (2022), is defined as

ΠX(ϵ) = inf {c ∈ [1, 1/ϵ] : EScϵ(X) ⩽ VaRϵ(X)} , X ∈ L1,

where inf(∅) = ∞. Li and Wang (2022) used Πϵ(X) for our ΠX(ϵ), and our choice of notation

is due to the fact that the curve ϵ→ ΠX(ϵ) is the main quantity of interest in this chapter.

The PELVE of X is finite if and only if VaRϵ(X) ⩾ E[X]. The value of the PELVE is

the multiplier c such that EScϵ(X) = VaRϵ(X). If VaRp(X) is not a constant for p ∈ (0, ϵ],

then the PELVE is the unique solution for the multiplier. By Theorem 1 in Li and Wang

(2022), the PELVE is location-scale invariant. The distribution with a heavy tail will have

a higher PELVE value.

If X is a normal distributed random variable and ϵ = 1%, we have ΠX(ϵ) ≈ 2.5. It

means that ES2.5%(X) ≈ VaR1%(X). That is, the replacement suggested by BCBS is fair for

3Throughout the chapter, all terms like “increasing” and “decreasing” are in the non-strict sense.
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normally distributed risks. In other words, a higher PELVE will result in a higher capital

requirement after the replacement.

In this chapter, we are generally interested in the question of which distributions have

a specified or partially specified PELVE curve. We first look at a few simple examples.

Example 2.1 (Constant PELVE). We first list some distributions that have constant PELVE

curves. From the definition of the PELVE, we know that the PELVE should be larger than

1. As we can see from Table 2.1, the PELVE for the generalized Pareto distribution takes

values on (1,∞). For X ∼ GPD(ξ), we have 1 < ΠX(ϵ) < e when ξ < 0, ΠX(ϵ) = e when

ξ = 0 and ΠX(ϵ) > e when ξ > 0. Furthermore, if X follows the point-mass distribution δc

or the Bernoulli distribution, we have ΠX(ϵ) = 1.

Example 2.2. Here we present some non-constant PELVE examples. We write t(v) for

the t-distribution with parameter (0, 1, v), and LN(σ) for the log-normal distribution with

parameter (0, σ2). As we can see, for normal distribution and t-distribution, the PELVE curve

Figure 2.3: PELVE for normal distribution, t-distribution and lognormal distribution

ǫ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
E

L
V

E

2.35

2.4

2.45

2.5

2.55

2.6

N(0,1)

ǫ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
E

L
V

E

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

t(2)

ǫ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
E

L
V

E

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Lognormal

LN(1)
LN(0.2)

is decreasing as ϵ increasing. The monotonicity of the PELVE of the lognormal distribution

depends on the value of σ. The monotonicity of the PELVE will be further discussed in

Section 2.5. For more PELVE examples, see Li and Wang (2022).

2.3 Calibration from finite-point constraints

In this section, we discuss the calibration problem when some points of the PELVE are

given. We will focus on the case where one point or two points on the PELVE curve are

specified, for which we can explicitly construct a corresponding quantile function.
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Table 2.1: Example of constant PELVE

Distribution Distribution or probability function of X ΠX(ϵ)

δc P(X = c) = 1
ΠX(ϵ) = 1 for

ϵ ∈ (0, 1)

B(1, p) P(X = 1) = p and P(X = 0) = 1− p
ΠX(ϵ) = 1 for

ϵ ∈ (0, p)

U(0, 1) F (t) = t for t ∈ (0, 1)
ΠX(ϵ) = 2 for

0 < ϵ < 1/2

EXP(λ) F (t) = 1− exp(−λt), λ > 0
ΠX(ϵ) = e for

0 < ϵ < 1/e

GPD(ξ)1 F (x) =

1− (1 + ξx)−
1
ξ ξ ̸= 0

1− exp(−x) ξ = 0

ΠX(ϵ) = (1− ξ)−
1
ξ for

0 < ϵ < (1− ξ)
1
ξ

1 The distribution GPD(ξ) is called the standard generalized Pareto distribution. As E[X] < ∞

when ξ < 1, the PELVE exists only when ξ < 1. The support of GPD(ξ) is [0,∞) when

ξ > 0 and [0,− 1
ξ ] when ξ < 0. When ξ = 0, the GPD(ξ) is exactly exponential distribution

with λ = 1/σ. There is a three-parameter GPD(µ, σ, ξ), which is a location-scale transform

of standard GPD. Therefore, GPD(µ, σ, ξ) has the same PELVE as GPD(ξ).
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We first note that the calibrated distribution is not unique. For example, if we are

given ΠX(0.01) = 2.5, we can assume the distribution of X is the Normal distribution or the

generalized Pareto distribution with tail parameter ξ satisfying (1− ξ)−1/ξ = 2.5 from Table

2.3. Therefore, the distributions obtained in our results are only some possible choices, which

we choose to have a generalized Pareto tail, as Pareto tails are standard in risk management

applications.

2.3.1 Calibration from a one-point constraint

Based on Table 2.1, we can calibrate the distribution for X from one given PELVE point

(ϵ1, c1) such that ΠX(ϵ1) = c1. A simple idea is to take the generalized Pareto distribution

when c1 > 1 and δc when c1 = 1. We summarize the idea in the following Proposition.

Proposition 2.1. Let ϵ1 ∈ (0, 1) and c1 ∈ [1,∞) such that c1ϵ1 ⩽ 1. If c1 > 1, let ξ ∈ R

such that (1 − ξ)−
1
ξ = c1. Then, X ∼ GPD(ξ) has ΠX(ϵ1) = c1. If c1 = 1, then X = k for

some constant k ∈ R has ΠX(ϵ1) = c1.

The proof can be directly derived from Table 2.1 and it is omitted. By Proposition 2.1,

if we have the value of PELVE at point ϵ1, we can find a distribution of X which has the

same PELVE value at ϵ1. If we also have the value of VaR at ϵ1, we can determine the scale

parameter (σ) for the GPD distribution or the value of k to match the value of VaR. For

Table 2.1, we can see that the calibrated generalized Pareto distribution can also serve as a

solution for a more prudent condition ΠX(ϵ) ⩾ c1 when ϵ ∈ (0, ϵ1).

2.3.2 Calibration from a two-point constraint

The calibration problem would be much more difficult when we are given two points of

the PELVE curve. Given two points (ϵ1, c1) and (ϵ2, c2) such that ϵ1 < ϵ2, we want to find a

distribution for X ∈ L1 such that ΠX(ϵ1) = c1 and ΠX(ϵ2) = c2. Nevertheless, the choices of

(ϵ1, c1) and (ϵ2, c2) are not arbitrary. First, we need 1 ⩽ c1 ⩽ 1/ϵ1 and 1 ⩽ c2 ⩽ 1/ϵ2 by the

definition of the PELVE. Then, we will show that the value of c2 will be restricted if (ϵ1, c1)

and ϵ2 are given.
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Lemma 2.1. For any X ∈ L1, let ϵ1, ϵ2 ∈ (0, 1) be such that E[X] ⩽ VaRϵ2(X) and ϵ1 < ϵ2.

Then, we have ϵ1ΠX(ϵ1) ⩽ ϵ2ΠX(ϵ2).

By Lemma 2.1, for given ϵ1, ϵ2 and c1, the value of c2 is bounded below by both 1 and

c1ϵ1/ϵ2. We also note that if c2 = 1, then p 7→ VaRp(X) is constant on (0, ϵ2), which implies

c1 = 1. In Section 2.8, Proposition 2.6 shows that the above lower bound is achieved if and

only if VaRϵ1(X) = VaRϵ2(X).

From the definition of the PELVE and Lemma 2.1, for ϵ1 < ϵ2, the possible choices of

(ϵ1, c1) and (ϵ2, c2) should satisfy 1 ⩽ c1 ⩽ 1/ϵ1, 1 ⩽ c2 ⩽ 1/ϵ2 and c1ϵ1 ⩽ c2ϵ2. We denote

by ∆ the admissible set for (ϵ1, c1, ϵ2, c2), that is,

∆ = {(ϵ1, c1, ϵ2, c2) ∈ ((0, 1)× [1,∞))2 : ϵ1 < ϵ2, c1ϵ1 ⩽ 1, c2ϵ2 ⩽ 1, c1ϵ1 ⩽ c2ϵ2}.

We illustrate the possible region of (c1, c2) with given ϵ1 and ϵ2 in Figure 2.4. We divide the

region into 5 cases and calibrate the distribution for each case.

Figure 2.4: Admissible region of (c1, c2)
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The calibration process is to construct a continuous and decreasing quantile function

that can satisfy two equivalent conditions between VaR and ES, which are

ESc1ϵ1(X) = VaRϵ1(X) and ESc2ϵ2(X) = VaRϵ2(X). (2.2)
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As we can see, only the values of VaRϵ(X) for ϵ ∈ (0, c2ϵ2] matters for the equivalent condition

(2.2). Therefore, we focus on constructing VaRϵ(X) for ϵ ∈ (0, c2ϵ2]. In addition, we want a

continuous calibrated quantile function.

The case c1 = 1 or c2 = 1 is special, which means that VaRϵ(X) is a constant on the

tail part. If c1 > 1, we can set the tail distribution as the generalized Pareto distribution

from Table 2.3 such that ΠX(ϵ1) = c1.

For z = (ϵ1, c1, ϵ2, c2) ∈ ∆, we will construct a class of functions, denoted by Gz, in five

different cases according to Figure 2.4. The function t 7→ Gz(t) will be our desired quantile

function. If c1 = 1, let k̂, k̃ ∈ R be any two constants satisfying k̃ < k̂. If c1 > 1, let

ξ ∈ (−∞, 1) be such that (1− ξ)−1/ξ = c1,

k(ϵ) =


1

ξ
(ϵ−ξ − 1), ξ ̸= 0,

− log(ϵ), ξ = 0,

and k =
∫ ϵ1
0
k(ϵ) dϵ. We first claim that the function Gz can be any arbitrary continuous and

decreasing function on [c2ϵ2, 1) since the values of VaRt(X) for t ∈ [c2ϵ2, 1) do not affect its

PELVE at ϵ1 and ϵ2. The value of Gz on (0, c2ϵ2] is given by

(i) Case 1, c2 = 1 (which implies c1 = 1): Gz(ϵ) = k̂;

(ii) Case 2, c1 = 1 and 1 < c2 ⩽ 1/ϵ2:

Gz(ϵ) =


k̂, ϵ ∈ (0, ϵ1),

a1ϵ+ b1, ϵ ∈ [ϵ1, ϵ2),

a2ϵ+ b2, ϵ ∈ [ϵ2, c2ϵ2],

where



a1 =
k̃ − k̂

ϵ2 − ϵ1
,

b1 = k̂ − a1ϵ1,

a2 =
(k̃ − k̂)(ϵ1 + ϵ2)

(c2ϵ2 − ϵ2)2
,

b2 = k̃ − a2ϵ2;

(iii) Case 3, ϵ2/ϵ1 < c1 ⩽ 1/ϵ1 and c2 = c1ϵ1/ϵ2:

Gz(ϵ) =


k(ϵ), ϵ ∈ (0, ϵ1),

k(ϵ1), ϵ ∈ [ϵ1, ϵ2),

aϵ+ b, ϵ ∈ [ϵ2, c2ϵ2],

where


a =

2(k(ϵ1)ϵ1 − k)

(c2ϵ2 − ϵ2)2
,

b = k(ϵ1)− aϵ2;
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(iv) Case 4, 1 < c1 ⩽ ϵ2/ϵ1 and 1 < c2 ⩽ 1/ϵ2:

Gz(ϵ) =


k(ϵ), ϵ ∈ (0, c1ϵ1),

a1ϵ+ b1, ϵ ∈ [c1ϵ1, ϵ2),

a2ϵ+ b2, ϵ ∈ [ϵ2, c2ϵ2],

where



a1 = −(c1ϵ1)
−ξ−1,

b1 = k(c1ϵ1)− a1c1ϵ1,

a2 =
a1(ϵ

2
2 − (c1ϵ1)

2) + 2(k(c1ϵ1)− k(ϵ1))c1ϵ1
(c2ϵ2 − ϵ2)2

,

b2 = a1ϵ2 + b1 − a2ϵ2;

(v) Case 5, ϵ2/ϵ1 < c1 ⩽ 1/ϵ1 and c1ϵ1/ϵ2 < c2 ⩽ 1/ϵ2:

Gz(ϵ) =



k(ϵ), ϵ ∈ (0, ϵ1),

a1ϵ+ b1, ϵ ∈ [ϵ1, ϵ2),

a1ϵ2 + b1, ϵ ∈ [ϵ2, c1ϵ1),

a2ϵ+ b2, ϵ ∈ [c1ϵ1, c2ϵ2],

where



a1 =
k(ϵ1)ϵ1 − k

(ϵ2 − ϵ1)(c1ϵ1 − 1/2(ϵ1 + ϵ2))
,

b1 = k(ϵ1)− a1ϵ1,

a2 =
2c1ϵ1(a1ϵ2 + b1 − k(ϵ1))

(c1ϵ1 − c2ϵ2)2
,

b2 = a1ϵ2 + b1 − a2c1ϵ1.

An illustration of the functions Gz on [0, c2ϵ2] in Case 2 to Case 5 is presented in Figure

2.5, and we omit Case 1 in which Gz is a constant function on [0, c2ϵ2].

Theorem 2.1. For z = (ϵ1, c1, ϵ2, c2) ∈ ∆, the random variable X with a continuous quantile

function given by t 7→ VaRt(X) = Gz(t) satisfies ΠX(ϵ1) = c1 and ΠX(ϵ2) = c2.

Remark 2.1. As we can see from Figure 2.5, some parts of the calibrated quantile function

may be flat, corresponding to the existence of atoms in the distribution. This may be consid-

ered as undesirable from a modeling perspective, and indeed it is forced by the boundary cases

of (ϵ1, c1, ϵ2, c2) ∈ ∆ in Figure 2.4. The flat parts in Cases 1 to 3 are necessary due to Propo-

sitions 2.6. On the other hand, the flat part in Case 5 can be replaced by a strictly decreasing

function. For instance, we can replace the flat part with a strictly decreasing linear segment

as long as c2 satisfies the bounds shown in Propositions 2.7 in Section 2.8. Another way

is to set VaRϵ(X) as k(ϵ) for ϵ ∈ (0, c1ϵ1) if c2 ⩽
(
c1ϵ1(ϵ

−ξ
1 − (c1ϵ1)

−ξ)
)
/
(
ϵ−ξ
2 − (c1ϵ1)

−ξ
)
,

and this choice is applied in the numerical examples in the Introduction and Section 2.6.

The interested reader can see Propositions 2.6 and 2.7 in Section 2.8, where we show that

a strictly decreasing quantile function cannot attain the boundary cases (ϵ1, c1, ϵ2, c2), and

hence the flat parts are necessary to include and unify these cases.
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Figure 2.5: An illustration of Gz in cases 2 to 5
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We can easily get the distribution of X from VaRϵ(X). As the PELVE is scale-location

invariant, we can scale or move the distribution we get to match more information. For

example, if VaRϵ1(X) and VaRϵ2(X) are given, we can choose two constants λ and µ such

that λX + µ matches the specified VaR values. In a similar spirit, the calibration problem

can be extended to calibrate the distributions from some given ES and VaR values. The two

points calibration problem can be regarded as given two ES and VaR values. Calibrating

from only ES or VaR would be easy. However, the choices of ES values will also be limited

by VaR values if we consider them at the same time, which is the same as the choice of c1, c2

as we discussed in this section.
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2.3.3 Calibration from an n-point constraint

As we see above, the PELVE calibration problem is quite technical even when only two

points on the PELVE curve are given. By extending the constraint to more than two points,

the problem will in general become much more complicated. We briefly discuss this problem

in this section.

For the n-point constraint problem, we first need to figure out the admissible set for

(ϵi, ci)i=1,...,n. By Lemma 2.1, the admissible set for the n-point calibration problem is a

subset of

{(ϵi, ci)i=1,...,n : 0 < ϵ1 < · · · < ϵn < 1, c1, . . . , cn ⩾ 1, 0 < c1ϵ1 ⩽ . . . ⩽ cnϵn ⩽ 1}.

However, it is not clear whether each point in the above set is admissible. There are other

constraints for the admissible points such as Proposition 2.7. Once the admissible set is

determined, we need to divide the admissible set according to the position of ϵi and ciϵi,

i = 1, . . . , n. Furthermore, the case ci = 1 and ciϵi = cjϵj for i, j = 1, . . . , n need special

attention as Cases 1, 2 and 3 in the two-point constraint problem. For instance, in the

three-point constraint problem, we need to discuss over 10 separate cases.

Below, we only discuss some special cases of (ϵi, ci)i=1,...,n. First, if cn = 1, then the

problem becomes trivial, as the calibrated quantile functions satisfy VaRt(X) = k̂ for some

k̂ ∈ R in [0, cnϵn].

For the case ckϵk > ϵk ⩾ ck−1ϵk−1 for k = 3, . . . , n, we can set the calibrated quantile

function in (0, cnϵn] recursively. This is because such a configuration of (ϵi, ci)i=1,...,n allows

for separation of the constraints, in the sense that we can adjust the values of VaRt for

t ∈ [ϵk, ckϵk] to match PELVE at ϵk without disturbing VaRt for t ⩽ ck−1ϵk−1. Let VaR
k
t (X)

be the calibrated quantile function from the k-point constraint problem for k = 2, . . . , n where

VaR2
t (X) follows Theorem 2.1. The calibrated quantile function for the n-point constraint

problem is

VaRk
t (X) =


VaRk−1

t (X), t ∈ [0, ck−1ϵk−1],

ak−1t+ bk−1, t ∈ (ck−1ϵk−1, ϵk],

akt+ bk, t ∈ (ϵk, ckϵk],

where


ak =

ak−1(ϵ
2
k + c2k−1ϵ

2
k−1 − 2ck−1ϵ

2
k−1)

(ckϵk − ϵk)2
,

bk = ak−1ϵk + bk−1 − akϵk.
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In particular, for n = 3, and assuming c3ϵ3 > ϵ3 ⩾ c2ϵ2, the calibrated function is given by,

with z = (ϵ1, c1ϵ1, ϵ2, c2ϵ2) ∈ ∆,

VaRt(X) =


Gz(t), t ∈ [0, c2ϵ2],

a2t+ b2, t ∈ (c2ϵ2, ϵ3],

a3t+ b3, t ∈ (ϵ3, c3ϵ3],

where



a2 =
a1(ϵ

2
2 − (c1ϵ1)

2) + 2(k(c1ϵ1)− k(ϵ1))c1ϵ1
(c2ϵ2 − ϵ2)2

,

b2 = −(c1ϵ1)
−ξ−1(ϵ2 − c1ϵ1)− k(c1ϵ1)

a3 =
a2(ϵ

2
3 + c22ϵ

2
2 − 2c2ϵ

2
2)

(c3ϵ3 − ϵ3)2
,

b3 = a2ϵ3 + b2 − a3ϵ3.

In Figure 2.6, we show the calibrated quantile function for the case (ϵ1, ϵ2, ϵ3) = (0.005, 0.025, 0.1)

and (c1, c2, c3) = (4, 3, 2.5). Note that the condition c2ϵ2 ⩽ ϵ3 is needed here.

Figure 2.6: Calibrated quantile function when (ϵ1, ϵ2, ϵ3) = (0.005, 0.025, 0.1) and (c1, c2, c3) =

(4, 3, 2.5)
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Although we cannot solve the n-point constraint problem in general, we can instead

discuss calibration from a given PELVE curve, which is the problem addressed in the next

section.

2.4 Calibration from a curve constraint

By the location-scale invariance properties of the PELVE, we know that the solution

cannot be unique. Conversely, it would be interesting to ask whether all solutions can be

linearly transformed from a particular solution; that is, for a given function ϵ 7→ Π(ϵ), whether

23



the set {X ∈ X : ΠX = Π} is a location-scale class. This question, as well as identifying X

satisfying ΠX = Π, is the main objective of this section.

2.4.1 PELVE and dual PELVE

First, we note that calibrated distributions from an entire PELVE curve ϵ 7→ Π(ϵ) on

(0, 1) would be unnatural, because the existence of the PELVE requires E[X] ⩽ VaRϵ(X)

which may not hold for ϵ not very small. Thus, the PELVE curve ΠX does not behave

well on some parts of (0, 1). To address this issue, we introduce a new notion called the

dual PELVE and an integral equation which can help us to calibrate the distribution by

differential equations. The dual PELVE is defined by moving the multiplier in PELVE from

the ES side to the VaR side.

Definition 2.1. For X ∈ L1, the dual PELVE function of X at level ϵ ∈ (0, 1] is defined as

πX(ϵ) = inf
{
d ⩾ 1 : ESϵ(X) ⩽ VaRϵ/d(X)

}
, ϵ ∈ (0, 1].

The existence and uniqueness of πX(ϵ) can be shown in the same way as the existence

and uniqueness of the PELVE. There are advantages and disadvantages of working with both

notions; see Li and Wang (2022, Remark 2). In our context, the main advantage of using

the dual PELVE is that πX(ϵ) is finite for all ϵ ∈ (0, 1], while ΠX(ϵ) is finite only when

E[X] ⩽ VaRϵ(X).

Note that for X with a discontinuous quantile function, there may not exist d such that

ESϵ(X) = VaRϵ/d(X). In order to guarantee the above equivalence, we make the following

assumption for the quantile function, represented by general function f .

Assumption 2.1. The function f is strictly decreasing and continuous, and
∫ 1

0
|f(s)| ds <

∞.

Let X be the set of X ∈ L1 with quantile function satisfying Assumption 2.1. The re-

quirement that the quantile function ofX is continuous and strictly decreasing is equivalent to

that the distribution function is continuous and strictly increasing in (ess-inf(X), ess-sup(X));

see Embrechts and Hofert (2013). We limit our discussion to random variables X ∈ X , which

include the most common models in risk management.
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Proposition 2.2. For X with quantile function satisfying Assumption 2.1 and ϵ ∈ (0, 1),

we have ΠX(ϵ/πX(ϵ)) = πX(ϵ) and πX(ΠX(ϵ)ϵ) = ΠX(ϵ) if E[X] ⩽ VaRϵ(X). Furthermore,

πX(ϵ) is the unique solution d ⩾ 1 to the equation

ESϵ(X) = VaRϵ/d(X).

It is straightforward to verify Proposition 2.2. By Proposition 2.2, we can calibrate the

distribution functions from dual PELVE instead of PELVE, and the calibrated distributions

should satisfy the equation ESϵ(X) = VaRϵ/d(X).

2.4.2 An integral equation associated with dual PELVE

In order to calibrate distributions from the dual PELVE, we can equivalently focus on

quantile functions. Let us consider X ∈ X and f(s) = VaRs(X). Then, solving πX(ϵ) is the

same as solving z in following equation:∫ y

0

f (s) ds = yf (zy) (2.3)

for y = ϵ. The solution is z = 1/πX(y). As f(s) = VaRs(X), f satisfies Assumption 2.1.

Denote by C the set of all f satisfying Assumption 2.1. For any f ∈ C, the existence of

the solution z is guaranteed by the mean-value theorem and its uniqueness is obvious. For

y ∈ (0, 1], let zf (y) be the solution to (2.3) associated with f . Clearly, zf (y) ⩽ 1 and

y 7→ yzf (y) is strictly increasing. This is similar to Lemma 2.1 for the two-point case.

Obviously, zf (y) is also location-scale invariant under linear transformation on f ∈ C. That

is, zλf+b = zf for λ > 0 and b ∈ R. Furthermore, zf is continuous as f is continuous and

strictly decreasing. The next proposition is a simple connection between zf and πX .

Proposition 2.3. For any f satisfying Assumption 2.1, X = f(U) for some U ∼ U(0, 1)

has the dual PELVE πX(y) = 1/zf (y) for all y ∈ (0, 1) where zf is solution to (2.3). For

X with quantile function satisfying Assumption 2.1, there exists f satisfying Assumption 2.1

such that X = f(U) for some U ∼ U(0, 1) and the solution to (2.3) is zf (y) = 1/πX(y) for

all y ∈ (0, 1).
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Proof. For any f satisfying Assumption 2.1, let F (x) = 1−f−1(x). Hence, F is a continuous

and strictly increasing distribution function and F−1(s) = f(1 − s) for s ∈ (0, 1). Let

U ∼ U(0, 1) and X = F−1(U) = f(1−U). Then X ∈ X and X ∼ F . As F−1(1− s) = f(s),

we have πX(y) = 1/zf (y). Take U
′ = 1− U . We have X = f(U ′) and U ′ ∼ U(0, 1).

For X ∈ X , let f(s) = VaRs(X). Then, we have zf (y) = 1/πX(y) for y ∈ (0, 1].

Furthermore, we have F−1(s) = f(1 − s). Therefore, there exists U ∼ U(0, 1) such that

X = f(1− U). Let U ′ = 1− U . Then, we have X = f(U ′) and U ′ ∼ U(0, 1).

Proposition 2.3 allows us to study z instead of π for the calibration problem. The

integral equation (2.3) can be very helpful in characterizing the distribution from the dual

PELVE.

Some examples of πX and zf are listed in Table 2.2, which is corresponding to the

PELVE presented in Table 2.1.

Table 2.2: Example of πX and zf

X πX(ϵ) f zf

U(0, 1) πX(ϵ) = 2 f(x) = 1− x zf (y) = 1/2

Exp(λ) πX(ϵ) = e f(x) = − log(x)/λ zf (y) = 1/e

GPD(ξ) πX(ϵ) = (1− ξ)−
1
ξ f(x) =

1/ξ
(
x−ξ − 1

)
, ξ ̸= 0

− log(x), ξ = 0

zf = (1− ξ)
1
ξ

For a given dual PELVE curve π, we find the solution to the integral equation by the

following steps.

1. Let z(y) = 1
π(y)

for all y ∈ (0, 1].

2. Find f ∈ C that satisfies
∫ y

0
f(s) ds = yf (z(y)y) for all y ∈ (0, 1].

3. By Proposition 2.3, X = f(U) for some U ∼ U(0, 1) will have the given dual PELVE

π.
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Therefore, we will focus on characterizing f from a given z : (0, 1] → (0, 1] below.

Generally, it is hard to characterize f explicitly. We first formulate the problem as an

advanced differential equation, which helps us to find solutions.

2.4.3 Advanced differential equations

In this section, we show that the main objective (2.3) can be represented by a differential

equation. The use of differential equations in computing risk measures has not been actively

developed. The only paper we know is Balbás et al. (2020) which addresses a different

problem.

Let us recall the integral equation (2.3) from Section 2.4.2. For a function f ∈ C, we

solve the function zf : (0, 1) → R from (2.3). We represent (2.3) by an advanced differential

equation using the following steps.

1. Let ωf (y) = yzf (y). It is easy to see that zf (y) ⩽ 1. Hence, ωf is strictly increasing

and continuous on (0, 1] and ωf (y) ⩽ y.

2. Let uf be the inverse function of ωf . We have that uf : (0, zf (1)] 7→ (0, 1] is a continuous

and strictly increasing function and uf (w) ⩾ w.

3. Replacing y with uf (w) in (2.3), we have f(w) =
∫ uf (w)

0
f(w) ds/uf (w).

4. Assume uf is continuously differentiable. It is clear that f is continuously differentiable

on (0, zf (1)). Hence, we can represent (2.3) by the following advanced differential

equation

f ′ (w) +
u′f (w)

uf (w)
(f (w)− f (uf (w))) = 0.

For a given function z : (0, 1] → R, let u = ω−1 such that ω(y) = yz(y) for y ∈ (0, 1].

Then, we solve the function f by the following differential equation

f ′ (w) +
u′ (w)

u (w)
f (w)− u′ (w)

u (w)
f (u (w)) = 0. (2.4)

If z = 1/πX for some X ∈ X , then u is a strictly increasing and continuous function such

that u (w) ⩾ w. Furthermore, if z is continuously differentiable, then we can characterize
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all X ∈ X with πX = 1/z by (2.4). As u′ (w) /u (w) ⩾ 0 and u(w) ⩾ w, (2.4) is a linear

advanced differential equation which is well studied in the literature. In Berezansky and

Braverman (2011), it is shown that there exists a non-oscillatory solution for (2.4).

2.4.4 The constant PELVE curve

We first solve the case that z(y) = c for all y ∈ (0, 1] and some constant c ∈ (0, 1).

As we can see from Table 2.2, the power function and logarithm function have constant zf .

If f(x) = λxα + b for α > −1, we can see that (α + 1)−1/α = c. In this section, we can

characterize all the other solutions which can not be expressed as a linear transformation of

the power function. That is, we will see that the set

{f ∈ C : zf (y) = z(y), y ∈ (0, 1]}

is not a location-scale class. Hence, we can answer the question at the beginning of the

section; that is, in the case the PELVE is a constant, the set {X ∈ X : ΠX = c} is not a

location-scale class.

Theorem 2.2. For c ∈ (0, 1), any X with quantile function satisfying Assumption 2.1 and

πX(ϵ) = 1/c for ϵ ∈ (0, 1) can be written as X = f(U) for some U ∼ U(0, 1) and f satisfying

Assumption 2.1. Furthermore, such f has the form

f (y) = C1 + C2y
α +O

(
yζ
)
,

where α is the root of (α + 1)−1/α = c, ζ > max{0, α}, C1, C2 ∈ R, C2α < 0 and O(yζ) is a

function such that lim supy→0O(y
ζ)/yζ is a constant.

The proof of Theorem 2.2 is provided in Section 2.9. As we can see, Theorem 2.2

characterizes all X ∈ X such that πX(ϵ) = 1/c. If c ∈ (0, 1/e), α is negative. As ζ > 0, we

can see that X = f(U) is regularly varying of index α. Hence, one can then consider the

Pareto distribution with survival function S(x) = xα as a representative solution for the tail

behavior. An open question is that, in the general case that the PELVE is not necessarily

constant, whether all the solutions behave similarly regarding their tail behavior.

Another interesting implication of the theorem and its proof is that one can give a

non-trivial solution for z is a constant.
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Example 2.3. For c ∈ (0, 1), let (θ, η) be a solution ofc log c = −
η exp(− η

tan(η))
sin(η)

,

θ = − η
tan(η)

.

Then, the function f , given by

f(y) = C1 + C2y
α + C3y

ζ sin(−σ log(y)), 0 < y < 1, (2.5)

satisfies
∫ y

0
f(s) ds = yf(cy) and Assumption 2.1, where α solves (α + 1)−1/α = c, ζ =

θ/ log c−1, σ = −η/ log c, C2 is a constant such that C2α < 0 and 0 < C3 < −C2α/(ζ+ |σ|).

If we take C3 = 0, we get the simplest power function for z(x) = c. If C3 ̸= 0, the

solution (2.5) is not a linear transformation of the power function solution.

Let us look at the example where π(ϵ) = 2 for all ϵ ∈ (0, 1], which means z(y) = 1/2

for y ∈ (0, 1]. As we have seen in Table 2.2, f(y) = 1 − y can be a solution that leads to

X ∼ U(0, 1). Furthermore, according to Example 2.3, we can have another solution

f(y) = 1− yα + Cyζ sin(−σ log(y)),

where α = 1, C = 0.05096, ζ = 4.0184 and σ = −15.4090. In the left of Figure 2.7, we have

depicted the two solutions for f . We can see they are quite different when y goes to 1. In the

right of Figure 2.7, we numerically calculate zf for f(y) = 1− yα + Cyζ sin(−σ log(y)). We

can see its numerical value is almost 1/2 and the discrepancy is due to limited computational

accuracy.

By letting X = f(U), we get πX(ϵ) = 2 for all ϵ ∈ (0, 1] and such X does not follow the

uniform distribution.

2.4.5 A numerical method

In general, it is hard to get an explicit solution to (2.4). Here we present a numerical

method to solve (2.4). Let us introduce the following process.

1. Let a0 = 1, a1 = a, ...,an = u−1 (an−1).
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Figure 2.7: Non-unique calibrated functions for z(y) = 1/2.
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2. For a ∈ (0, 1), let ξ be the solution to (1− ξ)
1
ξ = a. Let

f0(x) =


1

ξ

(
x−ξ − 1

)
, ξ ̸= 0,

− log(x), ξ = 0,

(2.6)

on [a, 1].

3. We can solve the following ODE on [a2, a1]:

f ′
1 (w) +

u′ (w)

u (w)
f1 (w) =

u′ (w)

u (w)
f0 (u (w)) , w ∈ [a2, a1] .

4. Now we can repeat step 3 by induction on [an+1, an] for n > 1 by solving

f ′
n (w) +

u′ (w)

u (w)
fn (w) =

u′ (w)

u (w)
fn−1 (u (w)) , w ∈ [an+1, an] .

5. In general, the solution for differential equation dy
dx

+ P (x)y = Q(x) is

y = e−
∫ x P (λ) dλ

[∫ x

e
∫ λ P (ε) dεQ(λ) dλ+ C

]
.

So, we get the following solution for fn:

fn (w) = e
∫ an
w

u′(λ)
u(λ)

dλ

[
fn−1(an)−

∫ an

w

e−
∫ an
λ

u′(ε)
u(ε)

dεu
′(λ)

u(λ)
fn−1 (u (λ)) dλ

]
, w ∈ [an+1, an].

6. Finally, let f = fn on [an+1, an].

Note that since we start with a strictly decreasing function, then from equation (2.4) we have

f ′(w) =
u′ (w)

u (w)
(f (u(w))− f (w)) < 0,
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so f remains strictly decreasing.

The solution produced by the numerical method heavily relies on f0. The equation (2.4)

does not have a unique solution, but the solution from the above process is unique. We set f0

as (2.6) by assuming z can be extended from (0, 1] to R+ and set z(y) = a for all y > 1. We

use this assumption for simplification as we can know that (2.6) satisfies (2.4) for a constant

z from Section 2.4.4. This choice of f0 is the same as the choice of k(ϵ) in the two-point

calibration problem, and this reflects our subjective view of the importance of the Pareto

distribution in risk management. Especially, when z(y) = c for some constant c, we have

u(x) = x/c. Therefore, step 5 gives

fn(w) =
an
w

[
fn−1(an)−

∫ an

w

1

an
fn−1

(
λ

c

)
dλ

]
.

If we set f0 as (2.6), we can have f1 also in the form of (2.6). Then, it is obvious that

fn is also in the form of (2.6). Therefore, the numerical method gives the simplest power

function or logarithm function when z(y) is a constant on (0, 1] as Table 2.2, which leads to

the generalized Pareto distribution for X.

2.4.6 Numerical calibrated quantile function

Now let us explore the method in Section 2.4.5 with simulation. Here we present the

results for a few cases. In Figures 2.8 to 2.11, we compare the solution from the numerical

method with the standard formula in Table 2.2 in the left panel, and compare
∫ y

0
f(s) ds

with yf(z(y)y) to validate the equation (2.3) in the right panel.

We first try some examples where z is constant as shown in Table 2.2, i.e. z(x) = 1/2

(Figure 2.8), z(x) = 1/e (Figure 2.9) and z(x) = 0.910 (Figure 2.10). For Figure 2.8 to 2.10,

we can see that the numerical method provides exactly the same function f as Table 2.2.

In Figure 2.11, we check the case z(x) = log (x/(1− e−x)) /x. The function f(x) = e−x

satisfies (2.3). We can see that the solution from the numerical method is close to a function

of the form f(x) = λe−x + b, which is known to satisfy the integral equation.
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Figure 2.8: Calibrated function and validation for z(x) = 1/2
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Figure 2.9: Calibrated function and validation for z(x) = 1/e
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2.5 Technical properties of the PELVE

We now take a turn to study several additional properties of PELVE. In particular, we

will obtain results on the monotonicity and convergence of the dual PELVE as well as the

PELVE.

2.5.1 Basic properties of dual PELVE

The following proposition that shows the PELVE and dual PELVE share some basic

properties such as monotonicity (i), location-scale invariance (ii) and shape relevance (iii)-(iv)

below.
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Figure 2.10: Calibrated function and validation for z(x) = 0.910
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Figure 2.11: Calibrated function and validation for z(x) = log (x/(1− e−x)) /x
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Proposition 2.4. Suppose the quantile function of X satisfies Assumption 2.1 and ϵ ∈ (0, 1].

(i) ΠX(ϵ) is increasing (decreasing) in ϵ if and only if so is πX(ϵ).

(ii) For all λ > 0 and a ∈ R, πλX+a(ϵ) = πX(ϵ).

(iii) πf(X)(ϵ) ⩽ πX(ϵ) for all strictly increasing concave functions: f : R → R with f(X) ∈

X .

(iv) πg(X)(ϵ) ⩾ πX(ϵ) for all strictly increasing convex functions: g : R → R with g(X) ∈ X .

The statements (ii)-(iv) are parallel to the corresponding statements in Theorem 1 of Li

and Wang (2022) on PELVE. The proof of Proposition 2.4 is put in Section 2.10. Proposition
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2.4 allows us to study the monotonicity and convergence of the PELVE by analyzing the

corresponding properties of the dual PELVE, which is more convenient in many cases. In

the following sections, we focus on finding the conditions which make the dual PELVE

monotone and convergent at 0. By Proposition 2.4, those conditions can also apply to the

PELVE.

2.5.2 Non-monotone and non-convergent examples

In this section, we study the monotonicity and convergence of dual PELVE. For mono-

tonicity, we have shown that some well-known distributions such as normal distribution,

t-distribution and lognormal distribution have monotone PELVE curves in Example 2.3.

However, the PELVE is not monotone for all X ∈ X . Below we provide an example.

Example 2.4 (Non-monotone PELVE). Let us consider the following density function g on

[−2, 2],

g (x) =
1

2

(
(x+ 2)1{x∈[−2,−1]} − x1{x∈(−1,0]} + x1{x∈(0,1]} + (2− x)1{x∈(1,2]}

)
.

For X with density function g, Figure 2.12 presents the value of ΠX(ϵ) for ϵ ∈ (0, 0.5). As

one can see, the PELVE is not necessarily decreasing, and so is the dual PELVE.

Figure 2.12: PELVE for X with density g
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For the convergence, it is clear that πX(ϵ) is continuous in (0, 1) for X ∈ X . Therefore,

limϵ→p πX(ϵ) exists for all p ∈ (0, 1). However, both ΠX(ϵ) and πX(ϵ) are not well defined at

ϵ = 0. If limϵ→0 πX(ϵ) exists, we can define πX(0) as the limit, and ΠX(0) similarly. However,

the following example shows that the limit does not exist for some X ∈ X .

Example 2.5 (No limit at 0). We can construct a random variable X ∈ X such that

limϵ→0 πX(ϵ) does not exist from the integral equation (2.3) in Section 2.4.2. Equivalently,

we will find a continuous and strictly decreasing function f ∈ C such that limy→0 zf (y) does

not exist. Let c be the Cantor ternary function on [0, 1]. Note that x 7→ c(x) is continuous

and increasing on (0, 1) and c(x/3) = c(x)/2. Let f(x) = −c(x)− xlog 2/ log 3. It is clear that

f ∈ C and f(x/3) = f(x)/2. For each y ∈ (0, 1], we have

yf (zf (y)y) =

∫ y

0

f(x) dx

= 2

∫ y

0

f

(
1

3
x

)
dx = 6

∫ 1
3
y

0

f(x) dx = 2yf

(
1

3
yzf

(
1

3
y

))
= yf

(
yzf

(
1

3
y

))
.

Since f is strictly decreasing, zf (y) = zf (y/3) for y ∈ (0, 1]. It means that zf (y) is a constant

on (0, 1] if limy→0 zf (y) exists. Now, let us look at two particular points of zf (y). We can

show that zf (1) ̸= zf (4/9). Let z = (log 2/ log 3 + 1)−(log 3/ log 2). Then, we have 1/3 < z ≈

0.46 < 1/2. For y = 1, we have
∫ 1

0
c(s) ds = c(z) = 1/2 and

∫ c

0
slog 2/ log 3 ds = zlog 2/ log 3.

Therefore, we get zf (1) = z < 1/2. For y = 4/9, we have

f

(
4

9
zf

(
4

9

))
=

9

4

∫ 4/9

0

f(s) ds

= −9

4

(
1

log 2
log 3

+ 1

(
4

9

) log 2
log 3

+1

+
1

12
+

1

2

(
4

9
− 1

3

))
< −0.68 < f

(
2

9

)
≈ −0.64.

As f is strictly decreasing, we have (4/9)zf (4/9) > 2/9 which implies zf (4/9) > 1/2 >

zf (1). As a result, limy→0 zf (y) does not exist. Therefore, we have a continuous and strictly

decreasing f such that limy→0 zf (y) does not exist.

2.5.3 Sufficient condition for monotonicity and convergence

In risk management applications, for a random variable X modeling a random loss, the

behavior of its tail is the most important. Let F [p,1] be the upper p-tail distribution of F
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(see e.g., Liu and Wang (2021)), namely

F [p,1](x) =
(F (x)− p)+

1− p
, x ∈ R.

We will see that the dual PELVE of F [p,1] is a part of the dual PELVE of F .

Lemma 2.2. Let F be the distribution function of X with quantile function satisfying As-

sumption 2.1. For p ∈ (0, 1) and X ′ ∼ F [p,1], it holds

πX′(ϵ) = πX(ϵ(1− p)).

Proof. It is clear that VaRϵ(X
′) = VaRϵ(1−p)(X) and ESϵ(X

′) = ESϵ(1−p)(X). Therefore,

πX′(ϵ) = inf{d ⩾ 1 : ESϵ(X
′) ⩽ VaRϵ/d(X

′)}

= inf{d ⩾ 1 : ESϵ(1−p)(X
′) ⩽ VaRϵ(1−p)/d(X

′)} = πX(ϵ(1− p)).

Thus, we have the desired result.

The tail distribution can provide a condition to check whether the dual PELVE is

decreasing.

Proposition 2.5. Let F be the distribution function of X with quantile function satisfying

Assumption 2.1. If x 7→ F−1
(
(1− p)F (x)+ p

)
is convex (concave) for all p ∈ (0, 1), then πX

and ΠX are decreasing (increasing).

Proof. For any p ∈ (0, 1), let X ′ ∼ F [p,1]. By Lemma 2.2, we have πX′(ϵ) = πX(ϵ(1 − p)).

Furthermore, we have(
F [p,1]

)−1
(t) = F−1 ((1− p)t+ p) = F−1

(
(1− p)F

(
F−1(t)

)
+ p
)
, t ∈ [0, 1].

Let U ∼ U(0, 1), X = F−1(U) and X ′ = (F [p,1])−1(U).

We assume that x 7→ F−1
(
(1−p)F (x)+p

)
is a convex function on (ess-inf(X), ess-sup(X))

first. Let f : R → R be a strictly increasing convex function such that f(x) = F−1((1 −

p)F (x) + p) for x ∈ (ess-inf(X), ess-sup(X)). Then, we have X ′ = f(X). By Proposition

2.4, we get πX′(ϵ) ⩾ πX(ϵ). As πX′(ϵ) = πX(ϵ(1− p)), we have πX(ϵ(1− p)) ⩾ πX(ϵ) for all

p ∈ (0, 1). Thus, πX is decreasing. By Proposition 2.4, we have ΠX is also decreasing.

On the other hand, if x 7→ F−1
(
(1−p)F (x)+p

)
is concave, we have πX(ϵ(1−p)) ⩽ πX(ϵ)

for all p ∈ (0, 1) and πX is increasing. So is ΠX .
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The condition x 7→ F−1
(
(1−p)F (x)+p

)
is convex (concave) for all p ∈ (0, 1) is generally

hard to check. Intuitively, this condition means that F [p,1] has a less heavy tail compared

to F . We can further simplify this condition by using the hazard rate function. For X ∈ X

with distribution function F and density function f , let S = 1− F be the survival function

and η = f/S be the hazard rate function. As F is continuous and strictly increasing, S is

continuous and strictly decreasing.

Theorem 2.3. For X with quantile function satisfying Assumption 2.1, let η be the hazard

rate function of X. If 1/η is second-order differentiable and convex (concave), then πX and

ΠX are decreasing (increasing).

The proof of Theorem 2.3 is provided in Section 2.10.

Example 2.6. For the normal distribution, we can give a short proof of the convexity of

1/η. Let S be the survival function of the standard normal distribution and f its density.

Let I (x) = 1/η (x) = S(x)/f(x) = exp (x2/2)
∫ −x

−∞ exp (−s2/2) ds. One can easily see that

I ′ (x) = xI (x)− 1 (2.7)

which gives I ′′ (x) = xI ′ (x) + I (x). This with (2.7) implies that

I ′′ (x) =
(
1 + x2

)
I (x)− x. (2.8)

First, consider the negative line i.e., x < 0. In this case (2.7) and (2.8) imply I ′(x) =

xI(x)− 1 < 0, and I ′′(x) = (1 + x2)I(x) + (−x) > 0. The implication of the two relations is

that I is a convex and decreasing function on negative line. Now we consider the case x > 0.

In this case, let i (x) = I ′ (−x). From what we have proved it is clear that i is an increasing

function on x > 0. On the other hand, we have I (x) + I (−x) = 1/f (x) =
√
2π exp (x2/2).

This combined with (2.7) gives us

I ′ (x) = x (I (x) + I (−x)) + i (x) = x
√
2π exp

(
x2/2

)
+ i (x) , x > 0.

This means I ′ is an increasing function on x > 0 as it is a summation of two other increasing

functions, so I is convex on the positive line as well.
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Figure 2.13 presents the curve 1/η for the generalized Pareto distribution, the Normal

distribution, the t-distribution and the Lognormal distribution. For distributions GPD(1/2),

N(0, 1) and t(2), we can see that the curves 1/η are convex, and this coincides with decreasing

PELVE shown in Example 2.2. For the Lognormal distribution, the shape of 1/η depends on

σ. As shown in Example 2.2, the PELVE for LN(σ) is visibly decreasing for σ2 = 0.04 and

increasing for σ = 1. Corresponding to the above observations, we see that 1/η is convex for

σ2 = 0.04 and concave for σ2 = 1.

Figure 2.13: 1/η for GPD(1/2), N(0, 1), t(2), LN(0, 2) and LN(1) in blue curves; in the right

panel, the red curve is linear
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Corollary 2.1. If the hazard rate of a random variable X is second-order differentiable and

concave, then πX and ΠX are decreasing.

Proof. Just note that if η is concave, then ηη′′ is non-positive. It follows that(
1

η

)′′

=

(
− η′

η2

)′

=
2 (η′)2 − ηη′′

η3
⩾ 0.

Thus, 1/η is convex, and the desired statement follows from Theorem 2.3.

The corollary above is a result of the fact that the concavity of η implies convexity

of 1/η. Therefore, concave η always leads to decreasing PELVE. For example, the Gamma

distribution G(α, λ) with density f(x) = λαtα−1e−λt/Γ(α) has concave hazard rate function

when α > 1. Furthermore, by Theorem 2.3, we can easily find more well-known distributions

that have decreasing πX .

As the tail distribution determines πX around 0, we can focus on the tail distribution to

discuss the convergence of πX at 0. Note that if the survival distribution function is regularly
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varying, then its tail parameter one-to-one corresponds to the limit of ΠX at 0 as shown by

Theorem 3 of Li and Wang (2022). Hence, the limit of ΠX , if it exists, can be useful as

a measure of tail heaviness, and it is well defined even for distributions that do not have

a heavy tail. By the monotone convergence theorem, we have limϵ→0 πX(ϵ) exists if πX is

monotone. The limit may be finite or infinite.

Corollary 2.2. For X with quantile function satisfying Assumption 2.1, let η be the hazard

rate of X. If 1/η(x) is second-order differentiable and convex (concave) in (F−1(δ), ess-sup(X))

for some δ ∈ (0, 1), then limϵ→0 πX(ϵ) exists. In particular, this is true if η is second-order

differentiable and concave on (F−1(δ), ess-sup(X)).

Proof. Let X ′ ∼ F [δ,1]. Then, the survival function for X ′ is SX′(x) = S(x)/(1 − p) for

x ⩾ F−1(δ). The density function is fX′(x) = f(x)/(1 − p) for x ⩾ F−1(δ). Therefore, the

hazard rate function is ηX′(x) = f(x)/S(x) = η(x) for x ⩾ F−1(δ).

As 1/η(x) is convex (concave) when x > F−1(δ), we have 1/ηX′(x) is convex (concave).

By Theorem 2.3, we have πX′(ϵ) is decreasing (increasing) on (0, 1). As a result, we have

πX(ϵ) is decreasing (increasing) on (0, δ) and limϵ→0 πX(ϵ) exists.

By Corollary 2.1, if η is concave on (F−1(δ), ess-sup(X)), we have 1/η is convex on

(F−1(δ), ess-sup(X)) and limϵ→0 πX(ϵ) also exists.

Example 2.7. If limϵ→0 πX(ϵ) is a constant, we have limϵ→0Πϵ(X) = limϵ→0 πX(ϵ) as

πX(ΠX(ϵ)ϵ) = ΠX(ϵ). We give the numerical values of ΠX(ϵ) at very small probability

levels ϵ for normal, t, and log-normal distributions. These distributions do not have a con-

stant PELVE curve, and using Corollary 2.2 we can check that their PELVE have limits. As

we can see from Table 2.3, PELVE can still distinguish the heaviness of the tail even when ϵ

is very small. The heavier tailed distributions report a higher PELVE value. For the normal

distribution and the log-normal distribution with σ = 0.2, the value of PELVE is close to

e ≈ 2.7183 as ϵ ↓ 0. From the numerical values, it is unclear whether ΠX(ϵ) → e for all

log-normal distributions, but there is no practical relevance to compute ΠX(ϵ) for ϵ < 10−11

in applications.
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Table 2.3: Values of ΠX(ϵ)

Distribution N LN(1) LN(0.5) LN(0.2) t(2) t(3)

ϵ = 10−10 2.6884 2.9167 2.7944 2.7290 4.0000 3.3750

ϵ = 10−11 2.6909 2.9077 2.7920 2.7287 4.0000 3.3750

2.6 Applications to datasets used in insurance

In this section, we apply the PEVLE calibration techniques to datasets used in insur-

ance to show how to use the calibrated distribution in estimating risk measure values and

simulation.

2.6.1 Dental expenditure data

In this example, we apply the calibration model to the 6494 complete household com-

ponent’s total dental expenditure data from Medical Expenditure Panel Survey for 2020. An

earlier version of the same dataset is used by Behan et al. (2010) to study the relationship

between worker absenteeism and overweight or obesity. The main purpose of this experiment

is to construct tractable models, with continuous and simple quantile functions, which have

similar risk measure values as the original dataset, and the same PELVE at certain levels.

We present in Figure 2.14 two quantile functions calibrated from ΠX(ϵ1) and ΠX(ϵ2), with

(ϵ1, ϵ2) = (0.01, 0.05) and (ϵ1, ϵ2) = (0.05, 0.1), respectively. The two calibrated quantile

functions are scaled up according to the empirical VaRϵ1(X) and VaRϵ2(X). By Theorem

2.1, we can calibrate the quantile functions from Case 4 when (ϵ1, ϵ2) = (0.01, 0.05), and from

Case 5 when (ϵ1, ϵ2) = (0.05, 0.1). As mentioned before, for (ϵ1, ϵ2) = (0.05, 0.1), we set the

calibrated quantile function in (0, c1ϵ1) as the Pareto quantile function. Hence, there is no

flat part in the two calibrated quantile functions shown in Figure 2.14. As we can see, both

the two calibrated quantile functions fit the empirical quantile functions well. The calibrated

quantile function can be regarded as a special parameterized model for tail distribution,

which can fit the value of VaR and ES at specified levels. With the parameterized calibrated
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model, we can estimate the value of tail risk measures (see Liu and Wang (2021)) such as

ES, VaR, and Range-VaR (RVaR), amongst others. In Tables 2.4 and 2.5, we compute the

values of ES and RVaR for the calibrated model and compare them with empirical ES and

RVaR values, respectively, where the risk measure RVaR is defined as

RVaRα,β(X) =
1

β − α

∫ α

β

VaRγ(X) dγ

for 0 ⩽ α < β < 1; see Cont et al. (2010) and Embrechts et al. (2018). As we scale the

calibrated quantile function to empirical VaRϵ1(X) and VaRϵ2(X), the calibrated ES and

empirical ES are identical at levels ϵ1ΠX(ϵ1) and ϵ2ΠX(ϵ2) by the definition of PELVE. For

other probability levels, the calibrated ES and RVaR in Tables 2.4 and 2.5 are close to

their empirical counterparts. When (ϵ1, ϵ2) = (0.01, 0.05), it may only be useful to compute

calibrated ESp(X) for p < 0.05ΠX(0.05) = 0.11591 because the calibrated quantile function is

arbitrary beyond the level 0.11591. If we need to estimate ES or RVaR for a larger probability

level, we can choose a higher ϵ2 as long as E[X] ⩽ VaRϵ2(X) is satisfied. For this dataset,

the highest ϵ2 we can use is 0.1983.

Using the methods in Section 2.3, for quantile levels between (0, ϵ1), the distribution

calibrated from one point (ϵ1, c1) is the same as the one calibrated from two points (ϵ1, c1)

and (ϵ2, c2). Hence, the results for ESp of the one-point calibrated function are also shown

in Tables 2.4 and 2.5 in the cells p ⩽ ϵ1.

Table 2.4: Empirical ES and calibrated ES for the dental expenditure data

p 0.01 0.05 0.1 0.2 0.3

Empirical ESp 10073.1 5361.7 3624.8 2317.9 1696.7

Calibrated ESp from (ϵ1, ϵ2) = (0.01, 0.05) 11703.9 5357.7 3759.1 - -

Calibrated ESp from (ϵ1, ϵ2) = (0.05, 0.1) 10878.1 5439.6 3711.3 2293.7 1696.4
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Figure 2.14: Empirical and calibrated VaRϵ for the dental expenditure data
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Table 2.5: Empirical RVaR and calibrated RVaR for the dental expenditure data

(α, β) (0.01, 0.02) (0.02, 0.05) (0.05, 0.1)

Empirical RVaRα,β 5748.5 3662.4 1887.9

Calibrated RVaRα,β from (ϵ1, ϵ2) = (0.01, 0.05) 5003.7 3360.2 2160.6

Calibrated RVaRα,β from (ϵ1, ϵ2) = (0.05, 0.1) 5634.6 3561.8 1983.1

2.6.2 Hospital costs data

In this example, we apply the calibration process to the Hospital Costs data of Frees

(2009) which were originally from the Nationwide Inpatient Sample of the Healthcare Cost

and Utilization Project (NIS-HCUP). The data contains 500 hospital costs observations

with 244 males and 256 females which can be regarded as the losses of the health insurance

policies. Using the calibration model of the two-point constraint problem, we calibrate

quantile functions for females and males from PELVE at probability levels ϵ1 = 0.05 and

ϵ2 = 0.1, which are shown in Figure 2.15. Except for estimating the risk measure, the

calibrated distribution is useful in simulation. Assume the insurance company wants to know

the top 10% hospital costs; that isX|X > VaR0.1(X) whereX is the hospital costs. There are
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only 24 available data for males and 25 available data for females, which would be not enough

for making statistically solid decisions. To generate more pseudo-data points, we can simulate

data from the calibrated distribution; that is, we simulate data from F [p,1] where F is the

calibrated distribution in Figure 2.15. Taking p = 0.9, we have F [p,1](t) = VaR(1−p)(1−t)(X)

with VaRt(X) from Figure 2.15. We simulate 1000 data from the calibrated distributions

based on PELVE at ϵ1 = 0.05 and ϵ2 = 0.1. In Figure 2.16, we present two QQ plots

of simulated data against empirical data for females and males respectively. As we can

see, the simulated data has a similar distribution as the empirical data. Those simulated

pseudo-data points can be used for estimating risk measures or making other decisions. For

example, the simulated hospital cost can be used to design health insurance contrasts or set

the premium in complex systems, where sometimes methods based on simulated data are

more convenient to work with than methods relying on distribution functions. This may

be seen as an alternative, smoothed, version of bootstrap; recall that the classic bootstrap

sample can only take the values represented in the dataset. Furthermore, we compare the

simulated data of hospital costs for females and males in Figure 2.17, which shows that the

distribution of the hospital costs for females has a heavier tail than that for males.
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Figure 2.15: Empirical and calibrated VaRϵ for the hospital costs data
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Figure 2.16: QQ plot: simulated data VS empirical data

2.7 Conclusion

In this chapter, we offer several contributions to the calibration problem and properties

of the PELVE. The calibration problem concerns, with some given values from a PELVE

curve, how one can build a distribution that has this PELVE. We solve a few settings of

calibration based on a one-point constraint, a two-point constraint, or the entire curve con-

straint. In particular, the calibration for a given PELVE curve involves solving an integral

equation
∫ y

0
f (s) ds = yf (z (y) y) for a given function z, and this requires some advanced

analysis and a numerical method in differential equations. For the case that z is a constant

curve, we can identify all solutions, which are surprisingly complicated. In addition, we see

that if πX is a constant larger than e, which is observed from typical values in financial return

data (Li and Wang (2022)), X share the same tail behavior with the corresponding Pareto

solution. We also applied our calibration techniques to two datasets used in insurance.

On the technical side, we study whether the PELVE is monotone and whether it con-

verges at 0. We show that the monotonicity of the PELVE is associated with the shape of the

hazard rate. If the inverse of the hazard rate is convex (concave), the PELVE is decreasing

(increasing). The monotonicity at the tail part of the PELVE leads to conditions to check

the convergence of the PELVE at 0. If the inverse of the hazard rate is convex (concave) at

the tail of the distribution, the limit of the PELVE at 0 exists.
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Figure 2.17: QQ plot of simulated data of hospital costs: female VS male

There are several open questions related to PELVE that we still do not fully understand.

One particular such question is whether the tail behavior, e.g., tail index, of a distribution

is completely determined by its PELVE. We have seen that this holds true in the case of a

constant PELVE (see Theorem 2.2), but we do not have a general conclusion. In the case of

regularly varying survival functions, Li and Wang (2022, Theorem 3) showed that the limit

of PELVE determines its tail parameter, but it is unclear whether this can be generalized to

other distributions. Another challenging task is, for a specified curve π on [0, 1], to determine

whether there exists a model X with πX = π. The case of n-point constraints for large n may

require a new design of verification algorithms. This question concerns the compatibility of

given information with statistical models, which has been studied, in other applications of

risk management, by Embrechts et al. (2002, 2016) and Krause et al. (2018).

2.8 Omitted proofs in Section 2.3

Proof of Lemma 2.1. As E[X] ⩽ VaRϵ2(X) and ϵ1 < ϵ2, E[X] ⩽ VaRϵ2(X) ⩽ VaRϵ1(X). By

Proposition 1 in Li and Wang (2022), ΠX(ϵ1) <∞ and ΠX(ϵ2) <∞.
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For any ϵ ∈ (0, 1) satisfying E[X] ⩽ VaRϵ(X),

ϵΠX(ϵ) = ϵ inf{c ∈ [1, 1/ϵ] : EScϵ(X) ⩽ VaRϵ(X)}

= inf{ϵc ∈ [ϵ, 1] : EScϵ(X) ⩽ VaRϵ(X)}

= inf{k ∈ [ϵ, 1] : ESk(X) ⩽ VaRϵ(X)}.

Let A(ϵ) = {k ∈ [ϵ, 1] : ESk(X) ⩽ VaRϵ(X)}. For any k ∈ A(ϵ2), we have 1 ⩾ k ⩾ ϵ2 > ϵ1

and ESk(X) ⩽ VaRϵ2(X) ⩽ VaRϵ1(X). Hence, k ∈ A(ϵ1) and this gives A(ϵ2) ⊆ A(ϵ1).

Therefore, ϵ2ΠX(ϵ2) = inf A(ϵ2) ⩾ inf A(ϵ1) = ϵ1ΠX(ϵ1).

Proof of Theorem 2.1. We will check the equivalent condition (2.2) between VaR and ES.

Note that if t 7→ VaRt(X) is a constant on (0, ϵ), then ΠX(ϵ) = 1. If t 7→ VaRt(X) is not a

constant on (0, ϵ), then ΠX(ϵ) is the unique solution that satisfies ESϵΠX(ϵ)(X) = VaRϵ(X).

(i) Case 1, c2 = 1. It is clear that VaRt(X) is a constant for t ∈ (0, c2ϵ2] and (2.2) is

satisfied. Hence, ΠX(ϵ2) = 1. Moreover, VaRt(X) is also a constant for t ∈ (0, c1ϵ1],

which implies ΠX(ϵ1) = 1.

(ii) Case 2, c1 = 1 and 1 < c2 ⩽ 1/ϵ2. For t ∈ (0, ϵ1), VaRt(X) = Gz(t) is a constant for

t ∈ (0, c1ϵ1). Hence, ΠX(ϵ1) = 1. Next, we check whether ESc2ϵ2(X) = VaRϵ2(X). The

value of ESc2ϵ2(X) is

ESc2ϵ2(X)

=
1

c2ϵ2

(∫ ϵ1

0

k̂ dϵ+

∫ ϵ2

ϵ1

(a1ϵ+ b1) dϵ+

∫ c2ϵ2

ϵ2

(a2ϵ+ b2) dϵ

)
=

1

c2ϵ2

(
ϵ1k̂ +

1

2
a1(ϵ

2
2 − ϵ21) + b1(ϵ2 − ϵ1) +

1

2
a2(c

2
2ϵ

2
2 − ϵ22) + b2(c2ϵ2 − ϵ2)

)
=

1

c2ϵ2

(
1

2
a1(ϵ2 − ϵ1)

2 + k̂ϵ2 +
1

2
a2(c2ϵ2 − ϵ2)

2 + k̃(c2ϵ2 − ϵ2)

)
=

1

c2ϵ2

(
1

2
(k̃ − k̂)(ϵ2 − ϵ1) + k̂ϵ2 +

1

2
(k̃ − k̂)(ϵ1 + ϵ2) + k̃(c2ϵ2 − ϵ2)

)
= k̃

The value of VaRϵ2(X) is a2ϵ2 + b2 = k̃. Thus, (2.2) is satisfied. As VaRt(X) is not a

constant for t ∈ (0, c2ϵ2), we have ΠX(ϵ2) = c2.

(iii) Case 3, 1 < c1 ⩽ 1/ϵ1 and c2 =
c1ϵ1
ϵ2

. In this case, we have

VaRϵ1(X) = Gz(ϵ1) = k(ϵ1) = aϵ2 + b = Gz(ϵ2) = VaRϵ2(X)
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and ESc1ϵ1(X) = ESc2ϵ2(X) as c1ϵ1 = c2ϵ2. Thus, we only need to check whether

ESc2ϵ2(X) = VaRϵ2(X). The value of ESc2ϵ2(X) is

ESc2ϵ2(X) =
1

c2ϵ2

(∫ ϵ1

0

k(ϵ) dϵ+

∫ ϵ2

ϵ1

k(ϵ1) dϵ+

∫ c2ϵ2

ϵ2

aϵ+ b dϵ

)
=

1

c2ϵ2

(
k + k(ϵ1)(ϵ2 − ϵ1) +

1

2
a(c22ϵ

2
2 − ϵ22) + (k(ϵ1)− aϵ2)(c2ϵ2 − ϵ2)

)
=

1

c2ϵ2

(
k + k(ϵ1)(c2ϵ2 − ϵ1) +

1

2
a(c2ϵ2 − ϵ2)

2

)
=

1

c2ϵ2
(k + k(ϵ1)(c2ϵ2 − ϵ1) + k(ϵ1)ϵ1 − k) = k(ϵ1).

The value of VaRϵ2(X) is also k(ϵ1). Hence, (2.2) is satisfied and ΠX(ϵ1) = c1, ΠX(ϵ2) =

c2 because t 7→ VaRt(X) is not a constant on (0, ϵ1).

(iv) Case 4, 1 < c1 ⩽ ϵ2/ϵ1 and 1 < c2 ⩽ 1/ϵ2. The first equivalent condition of (2.2) for

VaRϵ1(X) and ESc1ϵ1(X) is satisfied because VaRt(X) = k(t) is the quantile function

for GPD(ξ) with PELVE c1 and t ∈ (0, c1ϵ1). Hence, we have ΠX(ϵ1) = c1. Moreover,

ESc1ϵ1(X) = VaRϵ1(X) = k(ϵ1). We choose a1 = k′(c1ϵ1) and b1 such that a1c1ϵ1 + b1 =

k(c1ϵ1). For the equivalent condition between ESc2ϵ2(X) and VaRϵ2(X), we can verify

ESc2ϵ2(X) =
1

c2ϵ2

(∫ c1ϵ1

0

k(ϵ) dϵ+

∫ ϵ2

c1ϵ1

a1ϵ+ b1 dϵ+

∫ c2ϵ2

ϵ2

(a2ϵ+ b2) dϵ

)
=

1

c2ϵ2

(
c1ϵ1k(ϵ1) +

1

2
a1(ϵ

2
2 − c21ϵ

2
1) + b1(ϵ2 − c1ϵ1) +

1

2
a2
(
c22ϵ

2
2 − ϵ22

)
+ b2 (c2ϵ2 − ϵ2)

)
=

1

c2ϵ2

(
c1ϵ1k(ϵ1) +

1

2
a1(2c2ϵ

2
2 − ϵ22 − c21ϵ

2
1) + b1(c2ϵ2 − c1ϵ1) +

1

2
a2 (c2ϵ2 − ϵ2)

2

)
=

1

c2ϵ2

(
a1c2ϵ

2
2 + b1c2ϵ2

)
= a1ϵ2 + b1 = VaRϵ2(X).

Thus, (2.2) is satisfied and we have ΠX(ϵ2) = c2.

(v) Case 5, ϵ2/ϵ1 < c1 ⩽ 1/ϵ1 and c1ϵ1
ϵ2

< c2 ⩽ 1/ϵ2. The equality between VaRϵ1(X) and

ESc1ϵ1(X) can be checked by

ESc1ϵ1(X) =
1

c1ϵ1

(∫ ϵ1

0

k(ϵ) dϵ+

∫ ϵ2

ϵ1

(a1ϵ+ b1) dϵ+ (a1ϵ2 + b1)(c1ϵ1 − ϵ2)

)
=

1

c1ϵ1

(
k +

1

2
a1(ϵ

2
2 − ϵ21) + (k(ϵ1)− a1ϵ1)(ϵ2 − ϵ1) + (a1ϵ2 + b1)(c1ϵ1 − ϵ2)

)
=

1

c1ϵ1
(k + a1(ϵ2 − ϵ1)(c1ϵ1 − 1/2(ϵ2 + ϵ1)) + k(ϵ1)(c1ϵ1 − ϵ1))

=
1

c1ϵ1
(k + k(ϵ1)ϵ1 − k + k(ϵ1)(c1ϵ1 − ϵ1)) = k(ϵ1) = Gz(ϵ1) = VaRϵ1(X).

47



The equality between VaRϵ2(X) and ESc2ϵ2(X) can be checked by

ESc2ϵ2(X) =
1

c2ϵ2

(∫ c1ϵ1

0

k(ϵ) dϵ+

∫ c2ϵ2

c1ϵ1

(a2ϵ+ b2) dϵ

)
=

1

c2ϵ2

(
c1ϵ1k(ϵ1) +

1

2
a2(c

2
2ϵ

2
2 − c21ϵ

2
1) + b2(c2ϵ2 − c1ϵ1)

)
=

1

c2ϵ2

(
c1ϵ1k(ϵ1) +

1

2
a2(c2ϵ2 − c1ϵ1)

2 + (a1ϵ2 + b1)(c2ϵ2 − c1ϵ1)

)
=

1

c2ϵ2
(c1ϵ1k(ϵ1) + c1ϵ1(a1ϵ2 + b1 − k(ϵ1)) + (a1ϵ2 + b1)(c2ϵ2 − c1ϵ1))

= a1ϵ2 + b1 = Gz(ϵ2) = VaRϵ2(X)

Hence, (2.2) is satisfied, and ΠX(ϵ1) = c1 and ΠX(ϵ2) = c2.

Therefore, it is checked that X satisfies ΠX(ϵ1) = c1 and ΠX(ϵ2) = c2 for all five cases.

The following propositions address the issue discussed in Remark 2.1 by showing that the

boundary cases of (ϵ1, c1, ϵ2, c2) cannot be achieved by strictly decreasing quantile functions,

and hence our construction of quantiles with a flat region in Figure 2.5 are needed.

Proposition 2.6. For any X ∈ L1, let ϵ1, ϵ2 ∈ (0, 1) be such that E[X] ⩽ VaRϵ2(X) and

ϵ1 < ϵ2. Then, ΠX(ϵ2) = max {1,ΠX(ϵ1)ϵ1/ϵ2} if and only if VaRϵ1(X) = VaRϵ2(X).

Proof. Using the same logic as in Lemma 2.1, we have that ΠX(ϵ1) and ΠX(ϵ2) are finite.

We first show the “if” statement. Assume VaRϵ1(X) = VaRϵ2(X). As VaRϵ(X) is

decreasing, we know that VaRϵ(X) is a constant on [ϵ1, ϵ2].

If VaRϵ(X) = VaRϵ1(X) for ϵ ∈ (0, ϵ1), then VaRϵ(X) is a constant on (0, ϵ2]. Therefore,

we can get ΠX(ϵ1) = ΠX(ϵ2) = 1. Note that ΠX(ϵ1)ϵ1/ϵ2 = ϵ1/ϵ2 < 1. Thus, we obtain

ΠX(ϵ2) = max {1,ΠX(ϵ1)ϵ1/ϵ2)}.

If there exists ϵ ∈ (0, ϵ1) such that VaRϵ(X) > VaRϵ1(X), then ESϵ(X) is strictly de-

creasing on [ϵ1, 1]. By the equivalent condition between VaR and ES, VaRϵ1(X) = VaRϵ2(X)

implies ESϵ1ΠX(ϵ1)(X) = ESϵ2ΠX(ϵ2)(X). Thus, ϵ1ΠX(ϵ1) = ϵ2ΠX(ϵ2). Furthermore, we have

VaRϵ1ΠX(ϵ1)(X) < ESϵ1ΠX(ϵ1)(X) = VaRϵ1(X) = VaRϵ2(X).

Thus, ϵ1ΠX(ϵ1) > ϵ2 and we get ΠX(ϵ2) = max {1,ΠX(ϵ1)ϵ1/ϵ2}.
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Next, we show the “only if” statement. Assume ΠX(ϵ2) = max {1,ΠX(ϵ1)ϵ1/ϵ2}.

If ΠX(ϵ2) = 1, then VaRϵ2(X) = ESϵ2(X). This implies that VaRϵ(X) is a constant on

(0, ϵ2], which gives VaRϵ1(X) = VaRϵ2(X).

If ΠX(ϵ2) = ΠX(ϵ1)ϵ1/ϵ2, then ϵ2ΠX(ϵ2) = ϵ1ΠX(ϵ1). Hence, we have

VaRϵ1(X) = ESϵ1ΠX(ϵ1)(X) = ESϵ2ΠX(ϵ2)(X) = VaRϵ2(X).

Thus, we complete the proof.

Proposition 2.7. For any X ∈ L1, let ϵ1, ϵ2 ∈ (0, 1) be such that E[X] ⩽ VaRϵ2(X) and

ϵ1 < ϵ2. Let c1 = ΠX(ϵ1) and c2 = ΠX(ϵ2). If VaRϵ1(X) > VaRϵ2(X), then

ĉ⩽c2⩽


min

{
1

ϵ2
,
c1ϵ1
ϵ2

(
VaRϵ1(X)− VaRc1ϵ1(X)

VaRϵ2(X)− VaRc1ϵ1(X)

)}
, VaRc1ϵ1(X)<VaRϵ2(X),

1

ϵ2
, VaRc1ϵ1(X)⩾VaRϵ2(X),

where

ĉ = inf

{
t ∈ (1, 1/ϵ2] :

(tϵ2 − c1ϵ1) (VaRϵ2(X)− VaRtϵ2(X))

c1ϵ1 (VaRϵ1(X)− VaRϵ2(X))
⩾ 1

}
.

Moreover, ĉ ⩾ max{1, c1ϵ1/ϵ2}.

Proof. As E[X] ⩽ VaRϵ2(X), we have c1 < ∞ and c2 < ∞. By definition, c2 ⩽ 1/ϵ2. From

Lemma 2.6, we get c2 > max {1, c1ϵ1/ϵ2}. Thus, c2 ∈ (max {1, c1ϵ1/ϵ2} , 1/ϵ2].

Note that c1, ϵ1, c2, ϵ2 satisfy the equivalent condition (2.2). We can rewrite (2.2) as∫ c1ϵ1

0

VaRϵ(X) dϵ = c1ϵ1VaRϵ1(X) and

∫ c2ϵ2

0

VaRϵ(X) dϵ = c2ϵ2VaRϵ2(X).

Therefore, we have ∫ c2ϵ2

c1ϵ1

VaRϵ(X) dϵ = c2ϵ2VaRϵ2(X)− c1ϵ1VaRϵ1(X).

Furthermore, by the monotonicity of VaR, we have

(c2ϵ2 − c1ϵ1)VaRc2ϵ2(X) ⩽
∫ c2ϵ2

c1ϵ1

VaRϵ(X) dϵ ⩽ (c2ϵ2 − c1ϵ1)VaRc1ϵ1(X).

The two inequality will provide an upper bound and a lower bound for c2.
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An upper bound on c2. Using c2ϵ2VaRϵ2(X)− c1ϵ1VaRϵ1(X) ⩽ (c2ϵ2− c1ϵ1)VaRc1ϵ1(X),

we have

c2ϵ2 (VaRϵ2(X)− VaRc1ϵ1(X)) ⩽ c1ϵ1 (VaRϵ1(X)− VaRc1ϵ1(X)) . (2.9)

If VaRc1ϵ1(X) ⩾ VaRϵ2(X), the left side of (2.9) is less or equal to 0 and the right side of

(2.9) is larger or equal to 0 because VaRϵ1(X) ⩾ VaRc1ϵ1(X). Therefore, (2.9) is satisfies for

any c2 ∈ (max {1, c1ϵ1/ϵ2} , 1/ϵ2]. The upper bound for c2 is unchanged.

On the other hand, if VaRc1ϵ1(X) < VaRϵ2(X), we have

c2 ⩽
c1ϵ1
ϵ2

(
VaRϵ1(X)− VaRc1ϵ1(X)

VaRϵ2(X)− VaRc1ϵ1(X)

)
.

Thus, an upper bound for c2 is min
{

1
ϵ2
, c1ϵ1

ϵ2

(
VaRϵ1 (X)−VaRc1ϵ1 (X)

VaRϵ2 (X)−VaRc1ϵ1 (X)

)}
.

A lower bound on c2. It holds that

(c2ϵ2 − c1ϵ1)VaRc2ϵ2(X) ⩽ c2ϵ2VaRϵ2(X)− c1ϵ1VaRϵ1(X).

Subtracting (c2ϵ2 − c1ϵ1)VaRϵ2(X) from both sides, we get

(c2ϵ2 − c1ϵ1) (VaRϵ2(X)− VaRc2ϵ2(X)) ⩾ c1ϵ1 (VaRϵ1(X)− VaRϵ2(X)) . (2.10)

For t ∈ (0, 1/ϵ2), let

f(t) = (tϵ2 − c1ϵ1) (VaRϵ2(X)− VaRtϵ2(X)) .

As we can see, f(1) = 0, f(c1ϵ1/ϵ2) = 0 and f(t) ⩽ 0 if t ∈ [min{1, c1ϵ1/ϵ2},max{1, c1ϵ1/ϵ2}].

The f is increasing in the interval (max{1, c1ϵ1/ϵ2}, 1/ϵ2), decreasing in (0,min{1, c1ϵ1/ϵ2}).

Hence, by (2.10), the lower bound for c2 is

ĉ = inf

{
t ∈ (1, 1/ϵ2] :

(tϵ2 − c1ϵ1) (VaRϵ2(X)− VaRtϵ2(X))

c1ϵ1 (VaRϵ1(X)− VaRϵ2(X))
⩾ 1

}
.

As c1ϵ1 (VaRϵ1(X)− VaRϵ2(X)) > 0, we have ĉ ⩾ max{1, c1ϵ1/ϵ2}.

2.9 Omitted proofs in Section 2.4.4

Proof of Theorem 2.2. By Proposition 2.3, for any X ∈ X , we can find f ∈ C satisfying (2.3)

such that zf (y) = 1/πX(y) = c and X = f(U). As z(y) = c is a continuously differentiable
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function, we know that all such f is characterized by the advanced differential equation (2.4).

First, we show for any strictly decreasing solution f to (2.4) can be represented as

f (y) = C0 + C1y
α +O

(
yζ
)
.

Let us start with (2.4). If z(y) = c, we need to solve f from

f(y) = f(cy) + cyf ′(cy), y ∈ (0, 1].

Even though f in the first place is considered on (0, 1], given that c < 1, and this final

equation, one can expand it to the whole positive line:

f(y) = f(cy) + cyf ′(cy), y > 0.

Next, let x (t) = e−tf (e−t) for t ∈ R and a = − log (c) > 0. This is equivalent to say that

f (y) = x (− log (y)) /y. This changing variable simply gives the following delayed differential

equation:

x′ (t) = −e−ax (t− a) , t ∈ R.

Since we have assumed that f is strictly decreasing, i.e., f ′ < 0, we have an extra restriction

on x. Note that

x′ (t) = −e−tf
(
e−t
)
− e−2tf ′ (et) = −x (t)− e−2tf ′ (et) .

Thus, we have f ′ < 0 ⇔ x′ + x > 0. Therefore, we are looking for a solution to the following

delay differential equation (DDE):x
′ (t) = −e−ax (t− a) ,

x′ (t) + x (t) > 0,

t ∈ R. (2.11)

A standard approach of finding the solutions is to assume that they are in the form of a

characteristic function t 7→ emt. Putting this solution inside the equation, we get

memt = −e−aem(t−a) =⇒ ameam = (−a) e(−a).

This means any solution is given by x (t) = emt where m solves the characteristic equation

l (ma) = l (−a) , (2.12)
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where l (x) = xex. Let b = l(−a). As a > 0, we have b ∈ [−1/e, 0). This equation has one

obvious real solution at m1 = −1. To find m, we need to know about the inverse of l. The

inverse of the function l is known as the Lambert W function and plays an essential role in

solving delayed and advanced differential equations.

From the Lambert W function, we know that l (z) = zez = b has two real solutions

when b ∈ (−1/e, 0) and one real solution when b = −1/e. As illustrated by Figure 2.18,

if 0 < c < 1/e, the two real solutions are z1 = −a < −1 and z2 = m2a > −1; thus,

−1 < m2 < 0. If 0 < c < 1/e, the two real solutions are −1 < z1 = −a < 0 and

z2 = m2a < −1; thus, m2 < −1. If c = 1/e, there is only one real solution z1 = z2 = −1;

thus m2 = m1 = −1.

Figure 2.18: Lambert W function.

It is important to note that in general an equation like l (z) = zez = b has infinite

complex roots. Let z = θ + iη, and b ∈ [−1/e, 0). In that regard, we have

b = zez = (θ + iη) eθ+iη

= (θ + iη) (cos (η) + i sin (η))

= (θ cos (η)− η sin (η)) + i (θ sin (η) + η cos (η)) .

This implies that θ sin (η) + η cos (η) = 0, and b = eθ (θ cos (η)− η sin (η)), leading to

η = 0, b = θeθ or θ = − η

tan (η)
, b = −

η exp
(
− η

tan(η)

)
sin (η)

.
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We plot the curves b = θeθ and

(
−

η exp(− η
tan(η))

sin(η)
,− η

tan(η)

)
to find out the relation between b

and the real part of the solution in Figure 2.19. The x-axis is b and the y-axis is θ. The blue

curve is associated with b = θeθ, which is essentially the principle branch of the Lambert W

function. For any b, one can find the real values of the roots by fixing b. For instance, the

green dashed line is associated with b = −0.12. As one can see, the curves intersect this line

in infinite negative values. For b ∈ [−1/e, 0), we can see that the real roots are greater than

the real part of the complex roots. For more explanation of this, see Siewert and Burniston

(1973).

Figure 2.19: The real part of the Lambert W roots.

Now assume that all the complex solutions for (am) eam = (−a) e(−a) are mk = λk +σki

for k = 1, 2, 3, . . . , where (λ1, σ1) = (−1, 0) and (λ2, σ2) = (m2, 0). Based on the above

discussions, we have

λ1 = −1 > λ2 = m2 > λ3 > λ4 > . . . when c ∈ (1/e, 1),

0 > λ2 = m2 > λ1 = −1 > λ3 > λ4 > . . . when c ∈ (0, 1/e),

and

λ1 = λ2 = −1 > λ3 > λ4 > . . . when c = 1/e.

Let

C =


λ −σ

σ λ

 = λ+ σi | λ, σ ∈ R
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be the set of all complex numbers. Then,

xC(t) = exp


λ −σ

σ λ

 t


is a complex solution that solves (2.11). It is clear that (2.11) still holds for the linear

transform of x(t). Therefore, for any two 2× 1 vector A and B,

x(t) = A′xC(t)B = eλt (C1 cos(σt) + C2 sin(σt))

is also a solution to (2.11).

In Bellman and Cooke (1963), it is shown that all complex solutions to (2.11) can be

represented as follows:

xC (t) =
∞∑
k=1

Cke
mkt.

Putting it in the real-valued context, we have that all real-valued solutions are in the following

form:

x (t) = C1e
−t + C2e

m2t +
∞∑
k=3

eλkt (Ck,1 cos (σkt) + Ck,2 sin (σkt)) .

Now let us check x′ + x > 0. This means that C2, {Ck,1}k⩾3 and {Ck,2}k⩾3 for all t must

satisfy

x′ (t) + x (t) = (1 +m2)C2e
m2t

+
∞∑
k=3

eλkt ((λkCk,1 + σkCk,2 + Ck,1) cos (σkt) + (λkCk,2 − σkCk,1 + Ck,2) sin (σkt)) > 0.

As λk < m2 for k ⩾ 3, we have limt→∞ (x′(t) + x(t)) /em2t = (1+m2)C2. Therefore, we need

C2 < 0 if m2 < −1 or C2 > 0 if m2 > −1. That is C2(1 +m2) > 0. Then the solution can

be written as

x (t) = C1e
−t + C2e

m2t +O
(
eλ3t
)
.

By a change of variable, we get

f (y) = C1 + C2y
α +O

(
yζ
)
,

where α = − (1 +m2) and ζ = − (1 + λ3). As λ3 < min{−1,m2} and C2(1 +m2) > 0, we

have ζ > max{0, α} and C2α < 0. Also note that since m2 solves (am) eam = (−a) e(−a), by

replacing m2 = −1− α and a = − log (c), we get (α + 1)−1/α = c.
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2.10 Omitted proofs in Section 2.5

Proof of Proposition 2.4. Before proving the statements in the proposition, we introduce the

following linking function, for X ∈ X ,

ΓX(ϵ) = 1− FX(ESϵ(X)), ϵ ∈ [0, 1].

As X ∈ X it is easy to check that ΓX satisfies Assumption 2.1 for any X ∈ X . The domain

of ΓX(ϵ) is [0, 1] and its range is [0, 1− FX(E[X])].

As ESϵ(X) = VaRΓX(ϵ)(X), we have

VaRΓX(ϵ)(X) = ESϵ(X) = VaRϵ/πX(ϵ)(X) for ϵ ∈ (0, 1].

Hence we have the simple relationship ΓX(ϵ) = ϵ/πX(ϵ). Therefore, ΠX(ϵ) = πX
(
Γ−1
X (ϵ)

)
and

πX(ϵ) = ΠX(ΓX(ϵ)). The function ΓX yields an association between a point on the PELVE

on (0, 1 − FX(E[X])] and a point on the dual PELVE curve on (0, 1] with the same value.

Furthermore, we have πX is continuous on (0, 1) as πX(ϵ) = ϵ/ΓX(ϵ) and ΓX is continuous.

Next, we show the statements (i)-(iv). The equivalence (i) of monotonicity of ΠX

and that of πX(·) follows from ΠX(ϵ) = πX
(
Γ−1
X (ϵ)

)
, πX(ϵ) = ΠX(ΓX(ϵ)) and that ΓX is

increasing.

For (ii), (iii) and (iv), we first show that ΓX is location-scale invariant and shape relevant

(in the sense of (2.13)). Assume that f : R → R is a strictly increasing concave function

such that f(X) ∈ X . By Jensen’s inequality and the dual representation of ESp, we have

ESp (f(X)) ⩽ f (ESp(X))

for all p ∈ (0, 1). This statement can be found in Appendices A.2 in Li and Wang (2022).

Therefore,

Γf(X)(ϵ) = 1− Ff(X) (ESϵ (f(X)))

⩾ 1− Ff(X) (f (ESϵ(X))) = 1− FX (ESϵ(X)) = ΓX(ϵ).
(2.13)

Then, we have Γf(X)(ϵ) ⩾ ΓX(ϵ) for all strictly increasing concave functions: f : R → R with

f(X) ∈ X .
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For any strictly increasing convex function g : R → R with g(X) ∈ X , we can take

f(x) = g−1(X), which is a strictly increasing concave function. Therefore, we have Γg(X)(ϵ) ⩽

ΓX(ϵ) for all strictly increasing convex functions g.

For λ > 0 and a ∈ R, we have that f(x) = λX + a is both convex and concave.

Therefore, ΓλX+a(ϵ) = ΓX(ϵ) for all ϵ ∈ [0, 1]. In conclusion, we have the following results

for Γ.

(1) For all λ > 0 and a ∈ R, ΓλX+a(ϵ) = ΓX(ϵ).

(2) Γf(X)(ϵ) ⩾ ΓX(ϵ) for all strictly increasing concave functions: f : R → R with f(X) ∈ X .

(3) Γg(X)(ϵ) ⩽ ΓX(ϵ) for all strictly increasing convex functions: g : R → R with g(X) ∈ X .

Then, we have (ii), (iii) and (iv) from πX(ϵ) = ϵ/ΓX(ϵ).

Proof of Theorem 2.3. The idea is to prove that if 1/η is convex (concave), then x 7→

F−1((1 − p)F (x) + p) is convex (concave) for all p ∈ (0, 1). Then, we can get the desired

result by Proposition 2.5. We will use the following steps to show this statement.

Step 1. Let s(x) = log (1− F (x)) for x ∈ (ess-inf(X), ess-sup(X)). Then, s is a con-

tinuous and strictly decreasing function and s(x) < 0. Let s−1 be the inverse function of s.

Now, we have

F (x) = 1− es(x), x ∈ (ess-inf(X), ess-sup(X))

and

F−1(t) = s−1(log(1− t)), t ∈ (0, 1).

Therefore,

F−1
(
(1− p)F (x) + p

)
= s−1

(
log(1− (1− p)F (x)− p)

)
= s−1

(
log
(
1− F (x)

)
+ log(1− p)

)
= s−1

(
log
(
es(x)

)
+ log(1− p)

)
= s−1

(
s(x) + log(1− p)

)
.

Let θ = log(1− p). It follows that the statement that x 7→ F−1
(
(1− p)F (x) + p

)
is convex

(concave) for all p ∈ (0, 1) is equivalent to the statement that x 7→ s−1 (s(x) + θ) is convex

(concave) for all θ < 0.
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Step 2. Let g(x) := −s−1(x). Then, g is strictly increasing. We will show that if 1/η is

convex (concave), log(g′(x)) is convex (concave).

As g(x) = −s−1(x) = −S−1(ex), we have

g′(x) =
ex

f (S−1(ex))
.

Let H(x) := log(g′(x)) = x− log (f (S−1(ex))). We have

H (log(S(x))) = log S(x)− log f(x) = − log η(x). (2.14)

Then, taking the derivative on both sides of (2.14), we get

−H ′( log(S(x)))η(x) = −η
′(x)

η(x)

⇐⇒ H ′( log(S(x))) = η′(x)

η2(x)
= − d

dx

(
1

η(x)

)
.

Taking a derivative in both sides again, we get

−H ′′( log(S(x)))η(x) = − d2

dx2

(
1

η(x)

)
.

Then, 1/η is a convex (concave) function means H ′′(x) ⩾ 0 (H ′′(x) ⩽ 0), which gives that

log g′(x) is convex (concave).

Step 3. For θ < 0, let Gθ(x) := s−1(s(x) + θ). We are going to show

lim
z→0

Gθ(x+ z)−Gθ(x)

z
⩽ lim

z→0

Gθ(x
′ + z)−Gθ(x

′)

z
(2.15)

for all x < x′.

We take z > 0 first. As s is strictly decreasing, s−1 is also strictly decreasing. Then,

Gθ is a continuous and strictly increasing function. As θ < 0, we also have Gθ(x) > x. Take

arbitrary x, x′, y and z such that x < x′, x < y and z > 0. Let θ = s(y) − s(x). Then, we

have Gθ(x) = y. Define

h = Gθ(x+ z)− y, y′ = Gθ(x
′) and h′ = Gθ(x

′ + z)− y′.

By the definition of Gθ, we have s(y + h) = s(x + z) + θ, s(y′) = s(x′) + θ and s(y′ + h′) =

s(x′ + z) + θ. As a result, we have

s(y + h)− s(y) = s(x+ z)− s(x) and s(y′ + h′)− s(y′) = s(x′ + z)− s(x′).
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By the mean-value theorem, there exists ζ ∈ (y, y + h), ζ ′ ∈ (y′, y′ + h′), ξ ∈ (x, x+ z)

and ξ′ ∈ (x′, x′ + z) such that

s′(ζ)h = s′(ξ)z and s′(ζ ′)h′ = s′(ξ′)z.

Furthermore, x, x′, y and y′ satisfy x < x′ < y′ and x < y < y′. If z is small enough, then

h and h′ will also be small enough as Gθ is continuous. Therefore, we have ξ < ξ′ < ζ ′ and

ξ < ζ < ζ ′ when z is small enough.

In Step 2, we have that log g′(x) is convex when 1/η is convex. Therefore, we get

log(g′(a)) + log(g′(b)) ⩾ log(g′(a′)) + log(g′(b′)),

for all a < a′ < b and a < b′ < b, which means

g′(a)g′(b) ⩾ g′(a′)g′(b′).

As g(x) = −s−1(x), we have

1

s′(s−1(a))s′(s−1(b))
⩾

1

s′(s−1(a′))s′(s−1(b′))
.

As s−1(x) is strictly decreasing, it means that

s′(α)s′(β) ⩽ s′(α′)s′(β′)

for α > α′ > β and α > β′ > β. Therefore, we have s′(ξ)s′(ζ ′) ⩽ s′(ξ′)s′(ζ) as ζ ′ > ζ > ξ

and ζ ′ > ξ′ > ξ. That is,

h =
s′(ξ)z

s′(ζ)
⩽
s′(ξ′)z

s′(ζ ′)
= h′.

On the other hand, h = Gθ(x+ z)−Gθ(x) and h
′ = Gθ(x

′ + z)−Gθ(x
′). Therefore,

Gθ(x+ z)−Gθ(x) ⩽ Gθ(x
′ + z)−Gθ(x

′)

when z is small enough. If z < 0, we can also get (2.15) by an analogous argument.

Hence, the second-order derivative of Gθ is increasing for each θ < 0, which means that

x 7→ F−1
(
(1− p)F (x) + p

)
is convex for all p ∈ (0, 1) if 1/η is convex.

An analogous argument yields that x 7→ F−1
(
(1−p)F (x)+p

)
is concave for all p ∈ (0, 1)

when 1/η is concave.
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Chapter 3

Joint mixability and notions of

negative dependence

3.1 Introduction

Dependence among multiple sources of randomness has always been an active topic

in operations research, statistics, transport theory, economics, and finance; see Denuit et

al. (2005), Joe (2014), Rüschendorf (2013), McNeil et al. (2015) and Galichon (2016) for

standard textbook treatment in different fields, and the recent work Blanchet et al. (2020)

for relevant examples in operations research. In contrast to positive, which received much

attention in the literature, considerably fewer studies are found on negative dependence,

partially due to its more complicated mathematical nature. For a review and historical

account on extremal positive and negative dependence concepts, we refer to Puccetti and

Wang (2015).

In the past decade, the notion of joint mixability proposed by Wang et al. (2013),

which generalizes complete mixability (Wang and Wang, 2011), has been shown useful for

solving many optimization problems involving the dependence of multiple risks. In particular,

joint mixability is essential to worst-case bounds on Value-at-Risk and other risk measures

under dependence uncertainty (Puccetti and Rüschendorf, 2013; Embrechts et al., 2013;

Bernard et al., 2014), as well as bottleneck assignment and scheduling problems (Coffman
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and Yannakakis, 1984; Hsu, 1984; Haus, 2015; Bernard et al., 2018).

Joint mixability concerns, for given marginal distributions, the existence of a random

vector which has a constant component-wise sum. Such a random vector is called a joint mix

supported by the given marginal distributions, and it represents a very simple concept of

dependence. A joint mix is commonly regarded as a notion of extremal negative dependence;

see the review of Puccetti and Wang (2015). The reason why a joint mix represents negative

dependence is that it minimizes many objectives which are maximized by comonotonicity.

For instance, for fixed marginal distributions of the risks, comonotonicity maximizes the

variance, the stop-loss premium, and the Expected Shortfall (ES) of the sum of the risks,

whereas a joint mix, if it exists, minimizes these quantities; see e.g., Rüschendorf (2013). As

such, joint mixability is seen as the safest dependence structure, as long as risk aggregation

is concerned (Embrechts et al., 2014).

Although a joint mix has been treated as a concept of negative dependence, it remains

unclear whether it is consistent with classic notions of negative dependence in statistics.

Popular notions of negative dependence include negative correlation dependence (NCD),

negative orthant dependence (NOD; Block et al., 1982; Lehmann, 1966) and negative associ-

ation (NA; Alam and Saxena, 1981; Joag-Dev and Proschan, 1983). The connection between

joint mixes and these negative dependence concepts is the main object that we address in

this chapter. We obtain some necessary and sufficient conditions for a joint mix to be NOD

or NA in Section 3.3. Some characterization results are obtained in Section 3.5 for the class

of elliptical distributions. In particular, among all elliptical classes, only the Gaussian family

supports NOD joint mixes of any dimension.

Since a joint mix may be either negatively dependent or not, a natural question is

whether there are special features of negatively dependent joint mixes which are useful in

applications. For this question, we consider a multi-marginal optimal transport problem

under uncertainty on the set of components. A few optimality results on negatively dependent

joint mixes are obtained, and they demonstrate an interesting interplay between joint mixes

and negative dependence. In particular, for the special case of quadratic cost, we show that

the optimizer has to be an NCD JM in some settings. This is the topic of Section 3.4.

The study of joint mixability was originally motivated by questions in risk manage-
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ment and operations research, and it has a strong connection to the theory of multi-marginal

optimal transport (Santambrogio, 2015; Pass, 2015) and variance reduction in random sam-

pling (Craiu and Meng, 2001, 2005); see also our Section 3.4. Recently, there is a growing

spectrum of applications of joint mixability outside the above fields, including multiple hy-

pothesis testing (Vovk et al., 2022), wireless communications (Besser and Jorswieck, 2020),

labor market matching (Boerma et al., 2021), and resource allocation games (Perchet et

al., 2022). Results in this chapter connect the two topics of joint mixability and negative

dependence, allowing us to bring tools from one area to the other.

This chapter is organized as follows. Section 3.2 introduces the concepts of negative

dependence and joint mixability, and summarizes their basic interrelationships. Section 3.3

explores conditions for joint mixes to be negatively dependent. Two results on decomposi-

tions of joint mixes into negatively dependent ones are also obtained. Section 3.4 studies a

multi-marginal optimal transport problem as an application of negatively dependent joint

mixes. Section 3.5 studies joint mixes within the elliptical family, and we obtain a new

characterization of the Gaussian family as the only one supporting a negatively dependent

elliptical distribution for every dimension. Section 3.6 concludes this chapter with some

open questions and potential directions for future research. All the proofs are deferred to

Section 3.7.

3.2 Notions of negative dependence

In this section we recall a few classic notions of negative dependence. Throughout,

denote by [n] = {1, . . . , n} and 1n the n-vector with all components being 1; the vector 0n is

defined analogously. All inequalities and equalities between (random) vectors are component-

wise. For an n-dimensional random vector X = (X1, . . . , Xn), denote by X⊥ = (X⊥
1 , . . . , X

⊥
n )

a random vector with independent components such that Xi
d
= X⊥

i , i ∈ [n], where
d
= stands

for equality in distribution. For a set A ⊆ [n], we denote by XA = (Xk)k∈A. A function

ψ : Rn → R is called supermodular if ψ(x∧y)+ψ(x∨y) ⩾ ψ(x)+ψ(y) for all x,y ∈ Rn, where

x ∧ y and x ∨ y are the component-wise minimum and maximum of x and y, respectively.

Definition 3.1. Let X = (X1, . . . , Xn) be an n-dimensional random vector.
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(i) X is negative correlation dependent (NCD) if cov(Xi, Xj) ⩽ 0 for all i, j ∈ [n] with

i ̸= j.

(ii) X is negative upper orthant dependent (NUOD) if P(X > t) ⩽ P(X⊥ > t) for all

t ∈ Rn; X is negative lower orthant dependent (NLOD) if P(X ⩽ t) ⩽ P(X⊥ ⩽ t)

for all t ∈ Rn. If X is both NLOD and NUOD, then it is negative orthant dependent

(NOD).

(iii) X is negative supermodular dependent (NSD) if E[ψ(X)] ⩽ E[ψ(X⊥)] for all supermod-

ular functions ψ : Rn → R such that the expectations exist.

(iv) X is negatively associated (NA) if

Cov(f(XA), g(XB)) ⩽ 0, (3.1)

for any disjoint subsets A,B ⊆ [n] and any real-valued, coordinate-wise increasing

functions f and g such that f(XA) and g(XB) have finite second moments.

(v) X is counter-monotonic (CT) if each pair of its component (Xi, Xj) for i ̸= j satis-

fies (Xi, Xj) = (f(Z),−g(Z)) almost surely (a.s.) for some random variable Z and

increasing functions f, g.

(vi) X is a joint mix (abbreviated as “X is JM”) if
∑n

i=1Xi = c a.s. for some constant

c ∈ R.

All abbreviations introduced in this section are also used as nouns to represent the

corresponding dependence concept. The next definition concerns properties of the marginal

distributions that allow for JM random vectors.

Definition 3.2. An n-tuple (F1, . . . , Fn) of distributions on R is called jointly mixable if there

exists a joint mix X = (X1, . . . , Xn) such that Xi ∼ Fi, i ∈ [n]. The constant c =
∑n

i=1Xi is

called a center of X. In this case, we also say that (F1, . . . , Fn) supports a joint mix X. A

distribution F is called n-completely mixable if the n-tuple (F, . . . , F ) is jointly mixable.

The following implications hold between the above concepts of negative dependence.

These implications are either checked directly by definition or shown in the literature, e.g.,
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Joag-Dev and Proschan (1983), Christofides and Vaggelatou (2004) and Chapter 7. The case

of n ⩾ 3 is different from the case n = 2.

n = 2 : JM =⇒ CT =⇒ NA ⇐⇒ NSD ⇐⇒ NOD ⇐⇒ NUOD ⇐⇒ NLOD =⇒ NCD;

(3.2)

general n : CT =⇒ NA =⇒ NSD =⇒ NOD =⇒ NUOD or NLOD =⇒ NCD. (3.3)

All one-direction implications in (3.2) and (3.3) are strict for n ⩾ 3; see Amini et al. (2013)

for some examples. In contrast to the case n = 2 in (3.2), JM no longer implies any of the

properties in (3.3). This can be observed by the following properties of Gaussian random

vectors.

Proposition 3.1. Let X ∼ Nn(µ,Σ) be a Gaussian random vector with mean vector µ ∈ Rn

and covariance matrix Σ = (σij)n×n.

(a) The followings are equivalent: (i) X is NA; (ii) X is NSD; (iii) X is NUOD; (iv) X is

NLOD; (v) X is NCD.

(b) The followings are equivalent: (i) X is JM; (ii) 1⊤
nΣ1n = 0.

(c) For n = 2, the followings are equivalent: (i) X is JM; (ii) X is CT and σ11 = −σ12.

(d) For n ⩾ 3, X is never CT unless at least n− 2 components of X are degenerate.

Proposition 3.1 shows the convenient property of the Gaussian distribution that the

concepts of NA, NSD, NOD, NLOD, NUOD and NCD are all equivalent for this class. Parts

(a) and (b) immediately tell that, for n ⩾ 3, JM does not imply any of these concepts, and

none of these concepts implies JM. We will focus mostly on NA, NOD and NCD given their

popularity and relative strength in the chains (3.2) and (3.3). For some other notions of

negative dependence, see Joe (2014).

3.3 JM and negative dependence

In this section, we explore the relation between JM and negative dependence concepts

introduced in Section 3.2 by means of several theoretical results. We first show that a joint
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mix is NA under some properties of conditional independence and monotonicity.

Theorem 3.1. Let X be a joint mix and write SA =
∑

i∈AXi for A ⊆ [n]. Suppose that

(a) XA and X[n]\A are independent conditionally on SA for every A ⊆ [n];

(b) E [f(XA)|SA] is increasing in SA for every increasing function f and A ⊆ [n].

Then X is NA.

Theorem 3.1 can be compared with Theorem 2.6 of Joag-Dev and Proschan (1983),

which says that if X is independent and satisfies (b), then the conditional distribution of X

given S[n] is NA. Since S[n] is a constant for JM and (a) is implied by independence, Theorem

3.1 means that the NA condition in Theorem 2.6 of Joag-Dev and Proschan (1983) holds if

the independence assumption is weakened to conditional independence (a), and in addition

we assume JM. Note, however, that JM and independence of X conflict each other unless X

is degenerate.

Most existing examples of NA random vectors are presented by Joag-Dev and Proschan

(1983). Although Theorem 3.1 does not directly give new examples of NA random vectors,

it can be used to check NA in popular examples.

Example 3.1. We use Theorem 3.1 to check that the uniform distribution on the standard

simplex ∆n = {(x1, . . . , xn) ∈ [0, 1]n :
∑n

i=1 xi = 1} is NA. Let X follow the uniform

distribution over ∆n which is JM. For every A ⊆ [n], we can check that (XA,X[n]\A)|{SA = s}

for s ∈ (0, 1) follows a uniform distribution on (s∆n)× ((1− s)∆n) and condition (a) holds.

Condition (b) follows by noting that XA|{SA = s} d
= sXA|{SA = 1} for s ∈ (0, 1) and thus

XA|{SA = s} is stochastically increasing in s.

Example 3.2. The multinomial distribution is known to be NA (Joag-Dev and Proschan,

1983). We show this by virtue of Theorem 3.1. Let X ∼ MNn(k,p) follow a multinomial dis-

tribution with k trails, n mutually exclusive events and event probabilities p = (p1, . . . , pn).

For s ∈ {0, . . . , k} and every A ⊆ [n] with B = [n] \ A, it holds that XA|{SA = s} ∼

MN|A|(s,pA/
∑

i∈A pi) and XB|{SA = s} ∼ MN|B|(k − s,pB/
∑

i∈B pi), where pA = (pi)i∈A

and pB = (pi)i∈B. Then conditions (a) and (b) can be checked directly by calculation.
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We next focus on exchangeable joint mixes, which exhibit some specific forms of negative

dependence. A random vector X = (X1, . . . , Xn) (or its distribution) is called exchangeable

if X
d
= Xπ for all π ∈ Sn, where Sn is the set of all permutations on [n] and Xπ =

(Xπ(1), . . . , Xπ(n)). First, we note that if X is CT with identical marginal distributions equal

to F , then the distribution ofX is explicitly given by P(X ⩽ x) = (F (x1)+· · ·+F (xn)−n+1)+

for x = (x1, . . . , xn) ∈ Rn; see, for example, Theorem 3.3 of Puccetti and Wang (2015).

Clearly, this distribution is exchangeable. Moreover, for any given marginal distribution F

which is n-completely mixable, there exists an exchangeable joint mix with marginals F ;

see Proposition 2.1 of Puccetti et al. (2019). Note that an exchangeable joint mix is NCD

because each bivariate correlation coefficient is equal to −1/(n − 1). The next proposition

states that such an exchangeable joint mix is also negatively dependent in the sense of NSD,

NUOD and NULD if so is X.

Proposition 3.2. If a univariate distribution function F supports an NSD n-joint mix, then

F supports an exchangeable NSD n-joint mix. The statement holds true if NSD is replaced

by NOD, NUOD or NLOD.

One may wonder whether Proposition 3.2 holds with NSD replaced by NA. Unfortu-

nately, this question remains open, as our proof for Proposition 3.2 does not extend to NA.

Next, we present a necessary condition for a tuple of distributions to support any nega-

tively dependent joint mixes. This condition is also sufficient when the marginal distributions

are Gaussian.

Proposition 3.3. If a tuple of distributions (F1, . . . , Fn) with finite variance vector (σ
2
1, . . . , σ

2
n)

supports an NCD joint mix, then

2max
i∈[n]

σ2
i ⩽

∑
i∈[n]

σ2
i . (3.4)

Since NCD is weaker than NOD and NA, the necessary condition (3.4) is also necessary

for NOD and NA joint mixes.

For a given tuple of distributions (F1, . . . , Fn) with finite variance vector (σ2
1, . . . , σ

2
n),

the condition (3.4) is not necessary for the existence of an NCD random vector, since an
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independent random vector supported by (F1, . . . , Fn) always exists and it is NCD. More

interestingly, the condition (3.4) is not necessary for the existence of a joint mix either.

Indeed, as shown by Wang and Wang (2016, Corollary 2.2), a useful necessary condition for

a joint mix supported by (F1, . . . , Fn) to exist is

2max
i∈[n]

σi ⩽
∑
i∈[n]

σi. (3.5)

We note that (3.4) is strictly stronger than (3.5), because for any j ∈ [n], (3.4) gives

σ2
j ⩽

∑
i∈[n]\{j}

σ2
i =⇒ σj ⩽

 ∑
i∈[n]\{j}

σ2
i

1/2

⩽
∑

i∈[n]\{j}

σi,

which implies (3.5). It is clear that (3.4) and (3.5) are not equivalent; for example, (σ1, σ2, σ3) =

(2, 2, 3) satisfies (3.5) but not (3.4).

By Proposition 2.4 of Wang et al. (2013), if the marginal distributions F1, . . . , Fn are

Gaussian, then the condition (3.5) is necessary and sufficient for a joint mix supported by

(F1, . . . , Fn) to exist. Hence, the condition (3.4), which is strictly stronger than (3.5), is not

necessary for a joint mix to exist. On the other hand, (3.4) is generally not sufficient for an

NCD joint mix to exist either, since it is well known that a joint mix may not exist even

if the marginal distributions are identical. Nevertheless, it turns out that (3.4) is necessary

and sufficient for an NCD or NA joint mix to exist for Gaussian marginals.

Theorem 3.2. A tuple of univariate Gaussian distributions with variance vector (σ2
1, . . . , σ

2
n)

supports an NCD or NA joint mix if and only if (3.4) holds, that is, 2maxi∈[n] σ
2
i ⩽

∑
i∈[n] σ

2
i .

Moreover, such an NCD or NA joint mix can be chosen as a Gaussian random vector.

The negative dependence concepts of NA, NSD, NOD, NLOD, NUOD and NCD are all

equivalent for multivariate Gaussian distributions, as we see in Proposition 3.1. Hence, (3.4)

is also necessary and sufficient for an NSD, NOD, NLOD, or NUOD joint mix to exist for

Gaussian marginals. For elliptical distributions (details in Section 3.5), the corresponding

statement to Theorem 3.2 holds for NCD but not the other forms of negative dependence;

see Proposition 3.7.
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Example 3.3. In case n = 3, for any marginals with variance vector (σ2
1, σ

2
2, σ

2
3), the covari-

ance of a joint mix X is uniquely given by

Σ =


σ2
1

1
2
(σ2

3 − σ2
1 − σ2

2)
1
2
(σ2

2 − σ2
1 − σ2

3)

1
2
(σ2

3 − σ2
1 − σ2

2) σ2
2

1
2
(σ2

1 − σ2
2 − σ2

3)

1
2
(σ2

2 − σ2
1 − σ2

3)
1
2
(σ2

1 − σ2
2 − σ2

3) σ2
3

 ;

see Xiao and Yao (2020, Corollary 6) for this statement. If X is Gaussian, it is clear that

X is NA if and only if (3.4) holds. In case n ⩾ 4, for Gaussian marginals we can obtain an

explicit covariance matrix of an NA joint mix from the proof of Theorem 3.2.

We end this section with two decomposition results of a joint mix into NA joint mixes,

one through a random vector decomposition, and one through a mixture decomposition.

We first establish a new result showing that any finitely supported discrete joint mix can

be decomposed into a linear combination of binary multinomial random vectors. A binary

multinomial random vector is a random vector (X1, . . . , Xn) taking values in {0, 1}n such

that
∑n

i=1Xi = 1; that is, exactly one of X1, . . . , Xn takes the value 1. By definition, binary

multinomial random vectors are CT (hence NA) and JM.

Theorem 3.3. Suppose that the random vector X takes values in a finite set. Then, X is

JM if and only if it can be represented as a finite linear combination of binary multinomial

random vectors.

Theorem 3.3 generalizes Theorem 2 of Wang (2015) which has a decomposition of a joint

mix taking nonnegative integer values as the sum of binary multinomial random vectors. The

assumption of finite support in Theorem 3.3 does not seem to be dispensable with the current

proof techniques.

Next, using the fact that the distribution of a joint mix can be written as a mixture of

discrete uniform (DU) distributions on n points in Rn, we obtain the following decomposition.

Proposition 3.4. The distribution of any exchangeable joint mix with center µ can be written

as a mixture of distributions of exchangeable NA joint mixes with center µ.
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3.4 A multi-marginal optimal transport problem

To connect JM and negative dependence, a natural question is whether in some appli-

cations negatively dependent joint mixes have additional attractive properties that are not

shared by other joint mixes. We present an optimal transport problem with uncertainty in

this section where a combination of negative dependence and JM naturally appears.

In the multi-marginal optimal transport theory (Santambrogio, 2015; Pass, 2015), a

general objective is

to minimize E[c(X1, . . . , Xn)] subject to Xi ∼ Fi, i ∈ [n],

where c : Rn → R is a cost function and F1, . . . , Fn are specified marginal distributions. This

problem is referred to as the Monge-Kantorovich problem. In the context of this chapter, the

distributions F1, . . . , Fn are on R. In all optimization problems we discussed in this section,

the constraint is always Xi ∼ Fi for each i ∈ [n] with F1, . . . , Fn given, and we assume that

F1, . . . , Fn have finite second moments throughout this section.

3.4.1 Optimal transport under uncertainty on the set of compo-

nents

We will consider a special class of cost functions, leading to the Monge-Kantorovich

problem

to minimize E

[
f

(
n∑

i=1

Xi

)]
subject to Xi ∼ Fi, i ∈ [n], (3.6)

where f : R → R is a convex function. This special setting is important to JM because,

assuming that a joint mix with marginal distributions F1, . . . , Fn exists, then any joint mix

is an optimizer of (3.6) due to Jensen’s inequality, and conversely, any optimizer of (3.6)

has to be a joint mix if f is strictly convex. As discussed by Puccetti and Wang (2015) and

Wang and Wang (2016), one of the main motivations of JM is to solve optimization problems

similar to (3.6).

Since joint mixes with given marginal distributions are not unique, we wonder whether

a negatively dependent joint mix plays a special role among optimizers to (3.6). This is our
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main question to address.

Although each joint mix minimizes (3.6), their distributions can be quite different. For

a concrete example, suppose that the marginal distributions are standard Gaussian, and

let n be even. With these marginals, XE ∼ Nn(0n, P
∗
n) is an NA joint mix, where P ∗

n

is a matrix with diagonal entries being 1 and off-diagonal entries being −1/(n − 1), and

XA = ((−1)iZ)i∈[n], Z ∼ N1(0, 1), is another joint mix which is not NA. Here, “E” stands

for “exchangeable” and “A” stands for “alternating”. These two joint mixes have the same

value f(0) for (3.6). Nevertheless, XA may be seen as undesirable in some situations, because

some subgroups of its components are comonotonic. Inspired by this, we consider the cost

of a subset K ⊆ [n] of risks f
(∑

i∈K Xi

)
. If K is known to the decision maker, then we are

back to (3.6) with (Xi)i∈[n] replaced by (Xi)i∈K .

In different applications, allowing a flexible choice of K may represent the absence of

some risks in a risk aggregation pool, missing particles in a quantum system, an unspecified

number of simulation sizes in a sampling program, or uncertainty on the participation of

some agents in a risk-sharing game. In each context above, a decision maker may not know

K a priori, and hence she may be interested in minimizing a weighted average of the cost,

that is

Cf
µ(X1, . . . , Xn) :=

∑
K⊆[n]

E

[
f

(∑
i∈K

Xi

)]
µ(K), (3.7)

where µ is a probability on the sample space 2[n], the power set of [n], and
∑

i∈K Xi is set

to 0 if K is empty; here we slightly abuse the notation by setting µ(K) = µ({K}), which

should not lead to any confusion.

We consider the formulation of uncertainty as in the framework of Gilboa and Schmeidler

(1989). With a probability on 2[n] uncertain, we consider a set M of probabilities on 2[n],

called an uncertainty set. The formulation of (3.7) with uncertainty set M is

to minimize sup
µ∈M

Cf
µ(X1, . . . , Xn) subject to Xi ∼ Fi, i ∈ [n]. (3.8)

The supremum represents a worst-case attitude towards uncertainty, which is axiomatized

by Gilboa and Schmeidler (1989) in decision theory. We explain two simple special cases of
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(3.8). First, by taking M as the set of all probabilities on 2[n], the objective in (3.8) becomes

sup
µ∈M

Cf
µ(X1, . . . , Xn) = max

K⊆[n]
E

[
f

(∑
i∈K

Xi

)]
, (3.9)

which represents the situation of having no information on K. Second, by taking M as the

set of all probabilities on 2[n] supported by sets K of cardinality |K| = k ∈ [n], the objective

in (3.8) becomes

sup
µ∈M

Cf
µ(X1, . . . , Xn) = max

K⊆[n], |K|=k
E

[
f

(∑
i∈K

Xi

)]
, (3.10)

which represents the situation where one knows how large the subset K is, but not precisely

how it is composed.

The problem (3.8) is generally difficult to solve. We will first focus on the homogeneous

case where F = F1 = · · · = Fn, and this will be relaxed in Section 3.4.3. With this

interpretation, it is natural to consider uncertainty sets M that are symmetric. We say that

M is symmetric if µ ∈ M implies µπ ∈ M for π ∈ Sn, where µπ is a permutation of µ,

defined by µπ(K) = µ({π(i) : i ∈ K}) for K ⊆ [n].

Recall that we are interested in whether a negatively dependent joint mix plays a special

role among other joint mixes. The next proposition provides a step in this direction. Also

recall that P ∗
n is the correlation matrix with off-diagonal entries equal to −1/(n− 1).

Proposition 3.5. Suppose that M is symmetric, and X is a joint mix with identical marginals

F . Then there exists an exchangeable NCD joint mix XE with marginals F and correlation

matrix P ∗
n such that

sup
µ∈M

Cf
µ(X

E) ⩽ sup
µ∈M

Cf
µ(X)

for all measurable functions f : R → R.

Proposition 3.5 illustrates the intuition that among all joint mixes, the NCD ones with

correlation matrix P ∗
n are better choices under uncertainty. However, this does not answer

whether such NCD joint mixes are optimizers to our main optimal transport problem (3.8).

In the next section, we consider the quadratic cost, and show that indeed those NCD joint

mixes are solutions to (3.8) for the quadratic cost.
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3.4.2 Quadratic cost

We consider the quadratic cost given by f(x) = x2. In this case, we denote by

C2
µ(X1, . . . , Xn) :=

∑
K⊆[n]

E

(∑
i∈K

Xi

)2
µ(K),

and (3.8) becomes, assuming homogeneous marginals,

to minimize sup
µ∈M

∑
K⊆[n]

E

(∑
i∈K

Xi

)2
µ(K), subject to Xi ∼ F , i ∈ [n]. (3.11)

Two other formulations related to the quadratic cost, the repulsive harmonic cost problem

and the variance minimization problem, are discussed below in Examples 3.4 and 3.5.

It is clear that, for µ ∈ M, its permutation µπ satisfies C2
µ(X) = C2

µπ
(X). We first show

that the exchangeable NCD joint mix is a minimizer to (3.11) if M is symmetric.

Theorem 3.4. Suppose that F is n-completely mixable with finite variance and M is sym-

metric. Then, each NCD joint mix with marginals F and correlation matrix P ∗
n minimizes

(3.11).

If the marginal distribution F is Gaussian, then we can replace NCD by NA, NSD

or NOD in Theorem 3.4, since for the Gaussian class NCD is equivalent to these notions

(Proposition 3.1).

Theorem 3.4 does not state that all the minimizers to (3.11) are NCD joint mixes. For

instance, if M contains only measures concentrated on K with |K| = n, then any joint mix

minimizes (3.11); see also Remark 3.1 below for other similar cases. Next, we study the

uniqueness of the optimizers for two special choices of M in (3.9) and (3.10), namely,

to minimize max
K⊆[n]

E

(∑
i∈K

Xi

)2
 subject to Xi ∼ F , i ∈ [n], (3.12)

and for a fixed k ∈ [n],

to minimize max
K⊆[n], |K|=k

E

(∑
i∈K

Xi

)2
 subject to Xi ∼ F , i ∈ [n]. (3.13)
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In Theorem 3.5 below, we will see that, assuming F has mean zero, negative dependence

yields more stable costs in the presence of uncertainty. The exchangeable joint mix with

correlation matrix P ∗
n minimizes (3.13) for each k ∈ [n], and this correlation matrix is unique

for all minimizers for each k ∈ [n] \ {1, n− 1, n}. As a consequence, all minimizers to (3.12)

have the same correlation matrix P ∗
n (this holds for n ⩾ 3).

Theorem 3.5. Suppose that n ⩾ 3 and the distribution F is n-completely mixable with mean

0 and finite positive variance. A random vector is a minimizer to (3.12) if and only if it is

an NCD joint mix with correlation matrix P ∗
n . The same conclusion holds true if (3.12) is

replaced by (3.13) with any k ∈ [n] \ {1, n− 1, n}.

Remark 3.1. We briefly comment on the three cases of k excluded from the statement regard-

ing the unique minimizer of (3.13), and it will be clear that uniqueness cannot be expected

in these cases. Recall that the marginal distributions of X are assumed identical.

1. If k = 1, then E[(
∑

i∈K Xi)
2] = E[X2

1 ] which does not depend on the dependence

structure of X, and hence any coupling minimizes (3.13).

2. If k = n, then K = [n] and thus any joint mix minimizes (3.13).

3. If k = n − 1, then E[(
∑

i∈K Xi)
2] = E[(c − X1)

2] for any joint mix X with center c.

Hence, any joint mix has the same value for (3.13).

Theorem 3.5 implies that for a standard Gaussian F , the exchangeable joint mix XE ∼

Nn(0n, P
∗
n) is a minimizer to both (3.12) and (3.13) for each k ∈ [n]. If n ⩾ 3, this minimizer

is unique among Gaussian vectors in both cases of (3.12) and (3.13) with k ∈ [n]\{1, n−1, n}.

Remark 3.2. As we have seen in Remark 3.1, if n = 3, then any joint mix minimizes (3.13) for

each k ∈ [n]. The uniqueness statement in Theorem 3.5 implies that the covariance structure

of a joint mix is unique for n = 3, as we see in Example 3.3.

Below we discuss two specific optimal transport problems related to the quadratic cost.

Example 3.4 (Variance minimization). The quadratic cost minimization problem is equiv-

alent to variance minimization with given marginals. It is clear that

C2
µ(X1, . . . , Xn) =

∑
K⊆[n]

var

(∑
i∈K

Xi

)
µ(K) +

∑
K⊆[n]

(∑
i∈K

E[Xi]

)2

µ(K),
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and the second term does not depend on the dependence structure of (X1, . . . , Xn). If

F1, . . . , Fn have zero mean, then the problem (3.11) can be written as

to minimize sup
µ∈M

∑
K⊆[n]

var

(∑
i∈K

Xi

)
µ(K) subject to Xi ∼ F , i ∈ [n].

Variance minimization is a classic problem in Monte Carlo simulation (Craiu and Meng,

2001, 2005) and risk management (Rüschendorf, 2013). The above arguments show that the

statements in Theorems 3.4 and 3.5 hold true if the objective of quadratic cost E[(
∑

i∈K Xi)
2]

is replaced by the variance var(
∑

i∈K Xi).

Example 3.5 (Repulsive harmonic cost). The repulsive harmonic cost function is defined

by

c(x1, . . . , xn) = −
n∑

i,j=1

(xi − xj)
2, (x1, . . . , xn) ∈ Rn.

This cost function originates from the so-called weak interaction regime in Quantum Me-

chanics; see e.g., Di Marino et al. (2017). Any joint mix minimizes the expected repulsive

harmonic cost. To see this, we can rewrite

E[c(X1, . . . , Xn)] = −2n
n∑

i=1

E[X2
i ] + 2E

( n∑
i=1

Xi

)2
 . (3.14)

Since the first terms on the right-hand side of (3.14) do not depend on the dependence struc-

ture of (X1, . . . , Xn), minimizing E[c(X1, . . . , Xn)] is equivalent to minimizing E[(
∑n

i=1Xi)
2],

which is clearly minimized if (X1, . . . , Xn) is a joint mix. Let cK(x1, . . . , xn) = −
∑

i,j∈K(xi−

xj)
2, (x1, . . . , xn) ∈ Rn, for K ⊆ [n]. The problem (3.11) can be written as

to minimize sup
µ∈M

∑
K⊆[n]

(
1

2
E[cK(X)] + |K|

∑
i∈K

E[X2
i ]

)
µ(K) subject to Xi ∼ F , i ∈ [n].

The statement in Theorem 3.4 remains true if the objective of quadratic cost E[(
∑

i∈K Xi)
2]

is replaced by the cost E[cK(X)].

3.4.3 Discussions on heterogeneous marginals

In Theorem 3.5, we assumed that the marginal distributions are identical. This assump-

tion is not dispensable, as the situation for heterogeneous marginals is drastically different
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and we do not have general results. In this section, we present a result in the simple case

n = 3 and provide several examples to discuss some subtle issues and open questions. To

illustrate these issues, we focus on the problems (3.12) and (3.13) for n = 3. In all examples,

we explain with Gaussian marginal distributions, but this assumption can be replaced as

long as the covariance matrices in the examples are compatible with the marginals.

Proposition 3.6. Let n = 3. For any tuple of marginal distributions with finite variance

vector and zero means, any joint mix, if it exists, minimizes (3.12). If an NCD joint mix

exists, then no random vector with any positive bivariate covariance can minimize (3.12).

Remark 3.3. Proposition 3.6 states that, if a Gaussian triplet supports an NCD joint mix,

then it minimizes (3.12), and all Gaussian minimizers must be NCD. It is not clear whether

this observation can be extended to n ⩾ 4.

Unlike the situation in Theorem 3.5, uniqueness of the covariance matrix does not hold

in the setting of Proposition 3.6, as illustrated in the following example.

Example 3.6. Consider Gaussian marginal distributions with variance vector (σ2
1, σ

2
2, σ

2
3) =

(2, 1, 1). In this case, (3.4) holds, and an NCD joint mix exists by Theorem 3.2. Both the

covariance matrices Σ and Σ′ defined by

Σ =


2 −1 −1

−1 1 0

−1 0 1

 and Σ′ =


2 −1/2 −1

−1/2 1 0

−1 0 1


minimize (3.12) subject to the marginal distributions. We can see that Σ corresponds to an

NCD joint mix, whereas Σ′ corresponds to an NCD random vector, but not a joint mix.

The next example illustrates that, although a joint mix generally minimizes (3.12) in

case n = 3, NCD may be more relevant than joint mixes for minimizing (3.13) with some

k ̸= n when the two dependence requirements cannot be simultaneously achieved.

Example 3.7. Consider Gaussian marginal distributions with variance vector (σ2
1, σ

2
2, σ

2
3) =

(4, 1, 1). In this case, (3.4) does not hold, and no NCD joint mix exists. Both the covariance
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matrices Σ and Σ′ defined by

Σ =


4 −2 −2

−2 1 1

−2 1 1

 and Σ′ =


4 −1 −1

−1 1 0

−1 0 1


minimize (3.12) subject to the marginal distributions. The covariance matrix Σ corresponds

to a joint mix, but not NCD. The covariance matrix Σ′ corresponds to an NCD random

vector, but not a joint mix. Thus, the problem (3.12) admits an NCD minimizing distribution

N3(03,Σ
′). Moreover, for (3.13) with k = 2, the NCD distribution N3(03,Σ

′) has a maximum

of 3 which is strictly better than the joint mix distribution N3(03,Σ) with a maximum of 4.

Example 3.7 suggests, informally, that there is a trade-off between a joint mix and

NCD when both cannot be attained simultaneously, with a joint mix minimizing (3.13) for

k = n, and an NCD random vector improving (3.13) from the case of a joint mix for some

1 < k < n. In fact, (3.13) is not always minimized by NCD random vectors as seen in the

following example.

Example 3.8. Consider marginal distributions with variance vector (σ2
1, σ

2
2, σ

2
3) = (σ2, 1, 1)

and zero means, where σ > 3. For any (X1, X2, X3) with the given marginals, we have

E
[
(X2 +X3)

2
]
⩽ 4 < (σ − 1)2 ⩽ min

(
E
[
(X1 +X2)

2
]
,E
[
(X1 +X3)

2
])
,

and hence

max
K⊆[3], |K|=2

E

(∑
i∈K

Xi

)2
 = σ2 + 1 + 2σmax(ρ12, ρ13), (3.15)

where ρij, i, j ∈ [3] is the correlation coefficient of (Xi, Xj). For Gaussian marginals, the

minimum of (3.15) is attained if and only if ρ12 = ρ13 = −1. In this case, ρ23 = 1 is the only

possible correlation, and thus the minimizer to (3.15) cannot be NCD.

On the other hand, the next example shows that, if n = 3, there always exists an NCD

minimizer to (3.12) for Gaussian marginals.

Example 3.9. Let (X1, X2, X3) follow a multivariate Gaussian distribution with equicor-

relation matrix P ∗
3 ; i.e., all pairwise correlation coefficients are −1/2. The variances σ2

1, σ
2
2

75



and σ2
3 are assumed to satisfy σ1 ⩽ σ2 ⩽ σ3 without the loss of generality and the means

for prescribed marginal distributions are assumed to be zero. We can easily verify that each

of E [(X1 +X2 +X3)
2] and E [(Xi +Xj)

2], i, j ∈ [3], is smaller than or equal to σ2
3. Hence,

(X1, X2, X3) attains the lower bound

max
K⊆[3]

E

(∑
i∈K

Xi

)2
 = σ2

3 = max
i∈[3]

σ2
i ,

and thus it minimizes (3.12).

Remark 3.4. For n ⩾ 4, it is not clear whether there always exists an NCD minimizer to

(3.12) under a general heterogeneous marginal constraint.

3.5 Elliptical distributions

Elliptical distributions form a tractable class of joint mixes for arbitrary dimensions. In

this section, we investigate negative dependence properties of such elliptical joint mixes.

An n-dimensional elliptical distribution is a family of multivariate distributions defined

through the characteristic function

ϕX(t) = E
[
exp

(
it⊤X

)]
= exp

(
it⊤µ

)
ψ(t⊤Σt), t ∈ Rn, (3.16)

for some location parameter µ ∈ Rn, n×n positive semi-definite symmetric matrix Σ ∈ Rn×n

and the so-called characteristic generator ψ : R+ → R, where R+ = {x ∈ R : x ⩾ 0}. See

Section 6 of McNeil et al. (2015) for more properties. We denote an elliptical distribution by

En(µ,Σ, ψ) and refer to µ as the location vector and Σ the dispersion matrix. We say that

an elliptical distribution En(µ,Σ, ψ) is non-degenerate if all its marginals are non-degenerate

(i.e., not a point-mass). Equivalently, the diagonal entries of Σ are positive. As presented in

Proposition 6.27 of McNeil et al. (2015), a random vector X ∼ En(µ,Σ, ψ) with rank(Σ) = k

admits the stochastic representation X = µ + RAS, where S is the uniform distribution

on the unit sphere on Rk, the radial random variable R ⩾ 0 is independent of S, and

A ∈ Rn×k is such that AA⊤ = Σ. With this representation, we have that E[X] = µ and

cov(X) = E[R2] Σ/k provided E[R2] <∞.
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We first present a simple lemma on elliptical joint mixes which will be useful for later

discussions.

Lemma 3.1. An n-dimensional elliptically distributed random vector X ∼ En(µ,Σ, ψ) is a

joint mix if and only if 1⊤
nΣ1n = 0 or ψ = 1 on R+.

Negative dependence of such an elliptical joint mix is the main topic of this section. We

next provide a characterization for NCD-JM as an extension to Theorem 3.2.

Proposition 3.7. Suppose that ψ is the characteristic generator of an n-dimensional ellip-

tical distribution. A tuple of univariate distributions (E1(µi, σ
2
i , ψ), i ∈ [n]) supports an NCD

joint mix if and only if (3.4) holds, that is, 2maxi∈[n] σ
2
i ⩽

∑
i∈[n] σ

2
i . Moreover, such an

NCD joint mix can be chosen to follow an elliptical distribution.

As we showed in Proposition 3.1, for Gaussian random vectors, NA, NSD and NOD

are all equivalent to NCD; that is, the bivariate correlations are non-positive. Recall that

P ∗
n is an n× n matrix whose diagonal entries are 1 and off-diagonal entries are −1/(n− 1).

Together with Lemma 3.1, the matrix P ∗
n is the only choice of Σ with diagonal entries being

1 such that X ∼ Nn(µ,Σ) is an exchangeable NA (and thus NSD and NOD) joint mix.

One may hope that non-Gaussian elliptical distributions can represent NOD, NSD and

NA joint mixes for n ⩾ 3. The following result states that Gaussian family is characterized as

the only elliptical family which admits such a negatively dependent n-joint mix for all n. For

a characteristic generator ψ, denote by E(ψ) the class of all non-degenerate random vectors

following an elliptical distribution with characteristic generator ψ. In what follows, a class

E(ψ) is a Gaussian variance mixture family if there exists a nonnegative random variable

W such that each member X admits the stochastic representation X
d
= µ+

√
WAZ, where

µ ∈ Rn, A ∈ Rn×k, and Z is a k-dimensional standard Gaussian independent of W .

Theorem 3.6. Let ψ be a characteristic generator.

(i) The class E(ψ) contains an NCD n-joint mix for all n ⩾ 2 if and only if the class E(ψ)

is a Gaussian variance mixture family.
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(ii) The class E(ψ) contains an NOD, NSD, or NA n-joint mix for all n ⩾ 2 if and only if

the class E(ψ) is Gaussian.

Theorem 3.6 shows a clear contrast between NCD and other concepts of negative de-

pendence. As seen in the proof of Theorem 3.6, NCD does not restrict the class of elliptical

distributions since ψ generates an n-dimensional elliptical distribution for every n ∈ N if

and only if the corresponding elliptical class is a Gaussian variance mixture family (Fang

et al., 1990, Section 2.6). Note that a class of multivariate t distributions (with a common

degree of freedom) is an example of a Gaussian variance mixture family. On the other hand,

NOD, NSD and NA characterize Gaussian. This result stems from the fact that multivariate

Gaussian distribution is the only one among elliptical distributions such that independence

is equivalent to uncorrelatedness.

3.6 Conclusion

This chapter has focused on the relationship between JM and classic notions of negative

dependence such as NOD and NA. Various connections between these concepts are obtained,

and some conditions for a joint mix to be negatively dependent are derived. In particular,

an exchangeable negatively dependent joint mix solves a multi-marginal optimal transport

problem for quadratic cost under uncertainty on the participation of agents.

Negative dependence is always studied with many technical challenges. Although our

main questions are addressed or partially addressed in this chapter, they give rise to many

questions that remain open. We list a few of them that we find particularly interesting.

1. Under what conditions, possibly stronger than exchangeability and NOD, is a joint

mix NA? An example of NOD joint mix that is not NA can be found in Section

3.2 of Malinovsky and Rinott (2023) in the context of knockout tournaments with a

nonrandom draw.

2. Under what general conditions, other than Gaussian, do we know a tuple of distribu-

tions supports an NA joint mix? For a fixed n ⩾ 3, this question is not clear even

within the elliptical class.
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3. It is unclear whether the decomposition result in Theorem 3.3 can be generalized to

joint mixes that take infinitely many values or that are continuously distributed.

4. Assuming homogeneous marginals, does an exchangeable joint mix solve problem (3.8)

for a general convex cost function f? In Theorem 3.4, we showed that this holds true for

quadratic cost. We also know that a joint mix is an optimizer for the general convex

cost problem without uncertainty. These observations seem to hint at the possible

optimality of some exchangeable joint mix for general convex cost under uncertainty,

but we do not have a proof.

5. Do negatively dependent joint mixes play an important role in optimization problems

other than the ones considered in Section 3.4? It is also unclear how results in Section

3.4 can be extended to heterogeneous marginal distributions with dimension higher

than 3. Two unsolved questions have already been mentioned in Remarks 3.3 and 3.4.

These questions yield new challenges to dependence theory and require future research.

3.7 Proofs of all results

Some notions of negative dependence introduced in Section 3.2 are related to stochastic

orders. We first introduce some concepts of stochastic order.

For two n-dimensional random vectors X and Y, X is said to be less than Y in lower

concordance order (denoted by X ⩽cL Y) if P(X ⩽ t) ⩽ P(Y ⩽ t) for all t ∈ Rn, upper con-

cordance order (denoted by X ⩽cU Y) if P(X > t) ⩽ P(Y > t) for all t ∈ Rn, concordance

order (denoted by X ⩽c Y) if X ⩽cL Y and X ⩽cU Y, and in supermodular order (denoted

by X ⩽sm Y) if E[ψ(X)] ⩽ E[ψ(Y)] for all supermodular functions ψ : Rn → R such that the

expectations exist. Using these notations of stochastic order, the notions of negative depen-

dence NLOD, NUOD, NOD and NSD for an n-dimensional random vector X = (X1, . . . , Xn)

are denoted by X ⩽cL X⊥, X ⩽cU X⊥, X ⩽c X⊥ and X ⩽sm X⊥, respectively, where we

recall that X⊥ = (X⊥
1 , . . . , X

⊥
n ) is a random vector with independent components such that

Xi
d
= X⊥

i , i ∈ [n].
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Proof of Proposition 3.1. In part (a), the implication from (v) to (i) is shown by Joag-Dev

and Proschan (1983). The other implications follow from (3.3). Parts (b) and (c) can be

easily checked by definition. Finally, part (d) follows from the fact that a CT random vector

for n ⩾ 3 cannot have continuous marginal distributions (Dall’Aglio, 1972; Puccetti and

Wang, 2015).

Proof of Theorem 3.1. Note that to show NA, it suffices to show (3.1) for A,B that form a

partition of [n], as we can choose increasing functions in (3.1) that only depend on a subset

of A and B. Let f and g be two increasing functions on Rd and Rn−d, respectively, where d

is the cardinality of A. Note that

cov(f(XA), g(XB)) = E[cov(f(XA), g(XB)|SA)] + cov(E[f(XA)|SA],E[g(XB)|SA]);

see (1.1) of Joag-Dev and Proschan (1983). Using conditional independence (a), we get

cov(f(XA), g(XB)) = cov(E[f(XA)|SA],E[g(XB)|SA]).

Since SA+SB is a constant, condition (b) implies that E[f(XA)|SA] is an increasing function

of SA, and E[g(XB)|SA] = E[g(XB)|SB] is a decreasing function of SA. This shows that their

covariance is non-positive. Therefore, X is NA.

Proof of Proposition 3.2. Denote by X = (X1, . . . , Xn) the NSD n-joint mix with joint dis-

tribution FX. Let X
Π = (XΠ(1), . . . , XΠ(n)) be an exchangeable joint mix, where Π follows a

uniform distribution on Sn and is independent of X. Obviously XΠ is a joint mix, and has

the same marginal distributions as X. Let F̄ = 1
n!

∑
π∈Sn

FXπ be the distribution function

of XΠ. Then F̄ is exchangeable. Moreover, F̄ is NSD since

E[ψ(XΠ)] =
1

n!

∑
π∈Sn

E[ψ(XΠ)] ⩽
1

n!

∑
π∈Sn

E[ψ(X⊥)] = E[ψ(X⊥)]

for every supermodular function ψ such that the expectations above exist. Other cases of

NOD, NUOD and NLOD are shown analogously.

Proof of Proposition 3.3. Without loss of generality, assume σ2
n is the maximum of {σ2

1, . . . , σ
2
n}.

Note that NCD implies that the bivariate correlations are non-positive. If (X1, . . . , Xn) is
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an NCD joint mix where Xi ∼ Fi, i ∈ [n], then

σ2
n = var(Xn) = var(X1 + · · ·+Xn−1) ⩽

n−1∑
i=1

var(Xi) =
n−1∑
i=1

σ2
i ,

which yields (3.4) by adding σ2
n to both sides.

Proof of Theorem 3.2. The necessity follows from Proposition 3.3, and below we show suf-

ficiency. Suppose that (3.4) holds. Without loss of generality, we can assume σn ⩾ σn−1 ⩾

· · · ⩾ σ1. It suffices to consider n ⩾ 3 and σn−1 > 0, and otherwise the problem is trivial.

Moreover, the location parameters of the Gaussian distributions are not relevant, and they

are assumed to be 0.

Let λ be a constant such that

λ2
n−1∑
i=1

σ2
i + (1− λ2)σ2

n−1 = σ2
n. (3.17)

By (3.4), we have
∑n−1

i=1 σ
2
i ⩾ σ2

n ⩾ σ2
n−1, and this ensures that we can take λ ∈ [0, 1].

Let P ∗
n be a matrix with diagonal entries being 1 and off-diagonal entries being −1/(n−

1), and let P⊥
n be a matrix with diagonal entries being 1 and off-diagonal entries being 0.

Take Y = (Y1, . . . , Yn−1) ∼ Nn−1(0n−1, P
⊥
n−1) and

Z(m) = (Z(m)
m , . . . , Z(m)

n ) ∼ Nn−m+1(0n−m+1, P
∗
n−m+1), m = 1, . . . , n− 1,

such thatY,Z(1), . . . ,Z(n−1) are independent. Note that Z(n−1) = (Z
(n−1)
n−1 , Z

(n−1)
n ) ∼ N2(02, P

∗
2 )

is 2-dimensional, and each Z(m) is a joint mix.

For notational simplicity, let the function d be given by d(a, b) = (a2 − b2)1/2 for a ⩾

b ⩾ 0. Note that a2 = d(a, b)2 + b2. Moreover, for k = 1, . . . , n− 1, let

αk = d(σk, σk−1) =
(
σ2
k − σ2

k−1

)1/2
,

with σ0 = 0, and thus α1 = σ1. For k = 1, . . . , n− 1, let

Xk = λσkYk + d(1, λ)
k∑

j=1

αjZ
(j)
k .
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Moreover, let

Xn = −λY ∗ + d(1, λ)
n−1∑
j=1

αjZ
(j)
n , where Y ∗ =

n−1∑
k=1

σkYk.

For k = 1, . . . , n− 1, using independence among Z
(1)
k , . . . , Z

(k)
k , we get

var

(
k∑

j=1

αjZ
(j)
k

)
=

k∑
i=1

α2
j = σ2

1 + d(σ2, σ1)
2 + · · ·+ d(σk, σk−1)

2 = σ2
k.

Hence,
∑k

j=1 αjZ
(j)
k ∼ N1(0, σ

2
k), and again using independence of Yk and

∑k
j=1 αjZ

(j)
k , we

get Xk ∼ N1(0, σ
2
k). By (3.17), we have

var(Xn) = var

(
λ

n−1∑
k=1

σkYk

)
+ var

(
d(1, λ)

n−1∑
j=1

αjZ
(j)
n

)
= λ2

n−1∑
i=1

σ2
i + (1− λ2)σ2

n−1 = σ2
n.

Hence, Xn ∼ N1(0, σ
2
n).

Next, we show that (X1, . . . , Xn) is a joint mix. We can directly compute

n∑
k=1

Xk =
n−1∑
i=k

λσkYk + d(1, λ)
n−1∑
k=1

k∑
j=1

αjZ
(j)
k − λ

n−1∑
k=1

σkYk + d(1, λ)
n−1∑
j=1

αjZ
(j)
n

= d(1, λ)
n−1∑
j=1

n∑
k=j

αjZ
(j)
k = 0,

where the last equality follows from the fact that Z(j) is a joint mix for each j = 1, . . . , n−1.

We check that (X1, . . . , Xn) is NA. This follows from the fact that (X1, . . . , Xn) is

the weighted sum of several independent NA random vectors (σ1Y1, . . . , σn−1Yn−1,−Y ∗) and

(0m−1,Z
(m)) for m = 1, . . . , n − 1. Alternatively, one can check that all non-zero terms in

cov(Xi, Xj) are negative for i ̸= j as follows. For Xk, Xl with k, l ⩽ n− 1 and k < l, we have

cov(Xk, Xl) = cov

(
λσkYk + d(1, λ)

k∑
j=1

αjZ
(j)
k , λσlYl + d(1, λ)

l∑
i=1

αiZ
(i)
l

)

= λ2σkσlcov(Yk, Yl) + λσkd(1, λ)
l∑

i=1

αicov(Z
(i)
l , Yk)

+ λσld(1, λ)
k∑

j=1

αjcov(Z
(j)
k , Yl) + d2(1, λ)

k∑
j=1

l∑
i=1

αjαicov(Z
(j)
k , Z

(i)
l )

= −d2(1, λ)
k∑

j=1

α2
j

n− j
⩽ 0.
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For Xk, Xn for all k ⩽ n− 1, we have

cov(Xk, Xn) = cov

(
λσkYk + d(1, λ)

k∑
j=1

αjZ
(j)
k ,−λ

n−1∑
i=1

σiYi + d(1, λ)
n−1∑
i=1

αiZ
(i)
n

)

= −λ2σk
n−1∑
i=1

σicov(Yk, Yi) + λσkd(1, λ)
n−1∑
i=1

αicov(Z
(i)
n , Yk)

− λd(1, λ)
k∑

j=1

n−1∑
i=1

σiαjcov(Z
(j)
k , Yi) + d2(1, λ)

k∑
j=1

n−1∑
i=1

αjαicov(Z
(j)
k , Z(i)

n )

= −λ2σ2
k − d2(1, λ)

k∑
j=1

α2
j

n− j
⩽ 0.

Finally, the joint mix can be chosen as multivariate Gaussian by the construction of

(X1, . . . , Xn) as the sum of Gaussian vectors.

Proof of Theorem 3.3. The “if” statement is straightforward, and we will check the “only if”

statement. Let X = (X1, . . . , Xn) be a joint mix and denote by c =
∑n

i=1Xi ∈ R. First,

suppose that each component of X is positive. Denote by V ⊂ R the set of all possible

values taken by random variables of the form
∑j

i=1Xi for j = 0, . . . , n, with the convention

that
∑0

j=1Xj = 0. Clearly, V is finite. The elements of V are denoted by v0, v1, . . . , vK such

that v0 < v1 < · · · < vK . Our assumptions imply that v0 = 0, v1 > 0 and vK = c because∑n
i=1Xi = c. For k ∈ [K] and i ∈ [n], let

Yk,i = 1{
∑i

j=1 Xj⩾vk} − 1{
∑i−1

j=1 Xj⩾vk}

and let Yk = (Yk,1, . . . , Yk,n). Since each Xj is positive, the value of Yk,i is either 0 or 1, and

n∑
i=1

Yk,i = 1{
∑n

j=1 Xj⩾vk} − 1{0⩾vk} = 1{c⩾vk} = 1.

Therefore, Yk follows a binary multinomial distribution for each k ∈ [K]. Let Xk = (vk −

vk−1)Yk for k ∈ [K] with v0 = 0. Note that for i ∈ [n],

K∑
k=1

Xk,i =
K∑
k=1

(vk − vk−1)
(
1{

∑i
j=1 Xj⩾vk} − 1{

∑i−1
j=1 Xj⩾vk}

)
=

i∑
j=1

Xj −
i−1∑
j=1

Xj = Xi,

where we used the identity
∑K

k=1(vk−vk−1)1{x⩾vk} = x for x ∈ V . Therefore,
∑K

k=1Xk = X,

showing that X can be represented as a finite linear combination of binary multinomial

random vectors.
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If some components of X are not positive, we can take m ∈ R such that Xi > m for each

i ∈ [n]. Applying the above result, we know that (X1−m, . . . , Xn−m) can be decomposed as

the sum of JM joint mixes. Note thatX = (X1−m, . . . , Xn−m)+(m, . . . ,m), and (m, . . . ,m)

is m times the sum of n binary multinomial random vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Hence, X admits a finite linear combination of binary multinomial random vectors.

Proof of Proposition 3.4. Let G be the joint distribution of an exchangeable joint mix. Let

us write

G̃(A) =

∫
Rn

δa(A) dG(a), A ∈ B(Rn),

where δa is the point-mass at a. By exchangeability, we have G(Aπ) = G(A) for π ∈ Sn and

A ∈ B(Rn), where Aπ is π applied to elements of A. Therefore,

G(A) =

∫
Rn

δaπ(A) dG(a).

Taking an average of the above formula over Sn, we have

G(A) =

∫
Rn

Ua(A) dG(a).

It is known that each Ua is NA (Joag-Dev and Proschan, 1983, Theorem 2.11). Moreover,

the center of the joint mix distributed as Ua is µ since G is supported on {(x1, . . . , xn) ∈ Rn :

x1 + · · ·+ xn = µ}.

Proof of Proposition 3.5. As M is symmetric, we have supµ∈MCf
µ(X) = supµ∈MCf

µ(X
π) for

all π ∈ Sn. Let Π be uniformly distributed on Sn and independent of X. Plugging XΠ in

the objective (3.7), we have

sup
µ∈M

Cf
µ(X

Π) = sup
µ∈M

∑
K⊆[n]

E

[
f

(∑
i∈K

XΠ
i

)]
µ(K)

= sup
µ∈M

∑
K⊆[n]

1

n!

∑
π∈Sn

E

[
f

(∑
i∈K

Xπ
i

)]
µ(K)

⩽
1

n!

∑
π∈Sn

sup
µ∈M

∑
K⊆[n]

E

[
f

(∑
i∈K

Xπ
i

)]
µ(K)

=
1

n!

∑
π∈Sn

sup
µ∈M

Cf
µ(X

π) = sup
µ∈M

Cf
µ(X).
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Hence, supµ∈MCf
µ(X

Π) ⩽ supµ∈MCf
µ(X). Furthermore, as X is a joint mix, we have that

XΠ is an exchangeable NCD joint mix with marginals F and correlation matrix P ∗
n .

Proof of Theorem 3.4. Without loss of generality, we assume that the variance of F is 1.

Using the same argument in the proof of Proposition 3.5, for any X with identical marginals

F , we have supµ∈MC2
µ(X

Π) ⩽ supµ∈MC2
µ(X), where Π is uniformly distributed on Sn.

Let Xρ be a random vector with identical marginals F and a correlation matrix whose off-

diagonal entries are all ρ. Since correlation matrices are positive semi-definite, we have

ρ ∈ [−1/(n − 1), 1], with ρ = −1/(n − 1) attainable since F is n-completely mixable. The

value of supµ∈MC2
µ(X) only depends on the correlation matrix. Therefore, it suffices to find

an optimizer of the form Xρ for some ρ ∈ [−1/(n− 1), 1]. Note that

sup
µ∈M

C2
µ(Xρ) = sup

µ∈M

∑
K⊆[n]

var

(∑
i∈K

Xi

)
+

(
E

[∑
i∈K

Xi

])2
µ(K)

= sup
µ∈M

n∑
k=1

∑
K⊆[n],|K|=k

(
k + (k2 − k)ρ+ kE[X1]

)
µ(K).

It is clear that supµ∈MC2
µ(Xρ) increases in ρ. Therefore, the minimum is achieved at ρ∗ =

−1/(n− 1), which implies that Xρ∗ is an NCD joint mix with correlation matrix P ∗
n . As the

value of (3.11) only depends on the correlation matrix, we have the desired result.

Proof of Theorem 3.5. The “if” part is shown by Theorem 3.4 by choosing M as both (3.12)

and (3.13) are special cases of (3.11). Next, we show the “only if” part by showing that the

correlation matrix of the minimizer to (3.12) or (3.13) with any k ∈ [n] \ {1, n− 1, n} is P ∗
n .

Without loss of generality, we assume that the variance of F is 1. As the mean of F

is zero, we have E[(
∑

i∈K Xi)
2] = var(

∑
i∈K Xi). By plugging an NCD joint mix XE with

correlation matrix P ∗
n into (3.12), the optimal value for (3.12) is

max
K⊆[n]

E

(∑
i∈K

Xi

)2
 = max

K⊆[n]
var

(∑
i∈K

XE
i

)
= max

k∈[n]

k(n− k)

n− 1
=
k∗(n− k∗)

n− 1
, (3.18)

where k∗ = ⌊n/2⌋.

First, we consider the case n = 3. In this case, [n] \ {1, n− 1, n} is empty, and we only

need to show that P ∗
n is the unique correlation matrix of the minimizer to (3.12). Suppose
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that X with covariance matrix Σ is a minimizer to (3.12). By (3.18), optimal value for (3.12)

is 1. Hence,

var

(∑
i∈K

Xi

)
⩽ 1 for each K with |K| = 2,

and this implies

σij ⩽ −1/2, for i ̸= j. (3.19)

Since Σ is positive semi-definite, we have
∑

i,j∈[3] σij ⩾ 0, which leads to 3+2σ12+2σ13+2σ23 ⩾

0, implying σ12 + σ13 + σ23 ⩾ −3/2. Together with (3.19), we get σ12 = σ13 = σ23 = −1/2,

and hence Σ = P ∗
n .

Next, we consider the case n ⩾ 4. We first show that the correlation matrix of the

minimizer to (3.13) is unique for 1 < k < n− 1. Fix k ∈ [n] \ {1, n− 1, n}. Suppose that X

with covariance matrix Σ is a minimizer to (3.13). Our goal is to show Σ = P ∗
n .

Let Kℓ, ℓ = 1, . . . , nk, be all subsets of [n] with cardinality k, where nk =
(
n
k

)
. Then we

have
1

nk

nk∑
ℓ=1

var

(∑
i∈Kℓ

Xi

)
⩾ k − k(k − 1)

n− 1
=
k(n− k)

n− 1
. (3.20)

As X is a minimizer, for each K with |K| = k, we have

var

(∑
i∈K

Xi

)
= E

(∑
i∈K

Xi

)2
 ⩽ max

K⊆[n], |K|=k
E

(∑
i∈K

XE
i

)2
 =

k(n− k)

n− 1
. (3.21)

Combining (3.20) and (3.21), we have

var

(∑
i∈K

Xi

)
=
k(n− k)

n− 1
for each K with |K| = k.

Take k = 2. For any i, j ∈ [n] such that i ̸= j, the above equation implies

var(Xi +Xj) = var(Xi) + var(Xj) + 2cov(Xi, Xj) =
2(n− 2)

n− 1
.

As a result, we have cov(Xi, Xj) = −1/(n − 1) for all i, j ∈ [n] such that i ̸= j. Hence, we

conclude that Σ = P ∗
n .

Finally, note that k∗ in (3.18) satisfies 1 < k∗ < n− 1 for n ⩾ 4. We have justified that

the correlation matrix for optimizers to (3.13) with k = k∗ is unique. Therefore, by using

(3.18), the correlation matrix for optimizers to (3.12) is also unique.
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The above arguments show that, for n ⩾ 3, if X is a minimizer to (3.12), then the

correlation matrix of X is P ∗
n , which implies that X is an NCD joint mix with correlation

matrix P ∗
n . The same conclusion holds true if (3.12) is replaced by (3.13) with any k ∈

[n] \ {1, n− 1, n}.

Proof of Proposition 3.6. As the given marginals have zero means, for any (Y1, . . . , Yn) with

variance vector (σ2
1, . . . , σ

2
n),

max
K⊆[n]

E

(∑
i∈K

Yi

)2
 = max

K⊆[n]
var

(∑
i∈K

Yi

)
⩾ max

i∈[n]
var(Yi) = max

i∈[n]
σ2
i .

In case n = 3, a joint mix X with variance vector (σ2
1, . . . , σ

2
n) satisfies

max
K⊆[3], |K|=1

var

(∑
i∈K

Xi

)
= max

K⊆[3], |K|=2
var

(∑
i∈K

Xi

)
= max

i∈[3]
var(Xi) = max

i∈[3]
σ2
i ,

and var(X1 +X2 +X3) = 0. Hence, the joint mix minimizes (3.12).

To show that no positive covariance is allowed, suppose that (X1, X2, X3) is a minimizer

to (3.12) and cov(Xi, Xj) > 0 for some i ̸= j. We have

max
K⊆[n]

E

(∑
i∈K

Xi

)2
 ⩾ E

[
(Xi +Xj)

2] = var(Xi+Xj) > σ2
i+σ

2
j ⩾ max

(
σ2
1, σ

2
2, σ

2
3

)
, (3.22)

where the last inequality follows from the necessary condition (3.4) of the existence of an

NCD joint mix. Since we have seen that the optimal value of (3.12) is maxi∈[3] σ
2
i , (3.22)

implies that (X1, X2, X3) does not minimize (3.12).

Proof of Lemma 3.1. One of the key properties of elliptical distributions is that they are

closed under linear transformations, which is clear from (3.16). Hence, for X ∼ En(µ,Σ, ψ),

the random variable
∑n

i=1Xi follows En(1
⊤
nµ,1

⊤
nΣ1n, ψ), which is degenerate if and only if

1⊤
nΣ1n = 0. Hence, X is a joint mix if and only if 1⊤

nΣ1n = 0 or ψ = 1 on R+.

Proof of Proposition 3.7. Necessity follows from Proposition 3.3. To show sufficiency, let

X ∼ En(µ,Σ, ψ), where Σ is the dispersion matrix of the multivariate Gaussian distribution

constructed in the proof of Theorem 3.2. Then Xi ∼ E1(µi, σi, ψ), i ∈ [n]. Moreover, it is

checked in the proof of Theorem 3.2 that 1⊤
nΣ1n = 0 and σij ⩽ 0 for i, j ∈ [n] such that

i ̸= j. Therefore, X is the desired NCD joint mix.
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Proof of Theorem 3.6. The statement (i) immediately follows from the facts that ψ generates

an n-dimensional elliptical distribution for every n ∈ N if and only if the corresponding

elliptical class is a Gaussian variance mixture family (Fang et al., 1990, Section 2.6), and

that En(0n, P
∗
n , ψ) is an NCD joint mix, where P ∗

n is an n× n matrix whose diagonal entries

are 1 and off-diagonal entries are −1/(n− 1).

To show (ii), we need two lemmas.

Lemma 3.2 (Corollary 4 of Yin (2021)). Let X ∼ En(µ,Σ, ψ) and Y ∼ En(µ,Σ
′, ψ) be two

elliptical distributions such that Σ = (σij) and Σ′ = (σ′
ij) satisfy σii = σ′

ii for all i ∈ [n].

Then X ⩽cU Y if and only if σij ⩽ σ′
ij for all i ̸= j.

Let P⊥
n be the identity matrix, which is the correlation matrix of an independent random

vector. Although Lemma 3.2 implies that En(µ, P
∗
n , ψ) ⩽c En(µ, P

⊥
n , ψ) for general elliptical

distributions, En(µ, P
∗
n , ψ) is not necessarily NOD in general since En(0n, P

⊥
n , ψ) does not

have independent components. In fact, an elliptical distribution En(0n, P
⊥
n , ψ) is not NOD

unless it is Gaussian.

Lemma 3.3. The elliptical distribution En(µ,Σ, ψ) where Σ is diagonal is not NOD unless

it is Gaussian.

Proof. Assume that X ∼ En(µ,Σ, ψ) is NOD. Since NOD is location invariant, it suffices to

show the case when µ = 0n. When X is NOD, then so is (X1, X2), that is,

P(X1 ⩽ x1, X2 ⩽ x2) ⩽ P(X1 ⩽ x1)P(X2 ⩽ x2) for all (x1, x2) ∈ R2.

Since (X1, X2) and (−X1, X2) are identically distributed, we have

P(X1 ⩾ x1, X2 ⩽ x2) ⩽ P(X1 ⩾ x1)P(X2 ⩽ x2) for all (x1, x2) ∈ R2,

and similarly, by symmetry,

P(X1 ⩾ x1, X2 ⩾ x2) ⩽ P(X1 ⩾ x1)P(X2 ⩾ x2) for all (x1, x2) ∈ R2,

P(X1 ⩽ x1, X2 ⩾ x2) ⩽ P(X1 ⩽ x1)P(X2 ⩾ x2) for all (x1, x2) ∈ R2.

Adding the above four inequalities together, we get 1 ⩽ 1. Hence, each of them is an equality.

However, (X1, X2) follows a bivariate elliptical distribution with generator ψ, and thus X1

88



and X2 are not independent unless it is Gaussian; see Theorem 4.11 of Fang et al. (1990).

Therefore, X cannot be NOD unless it is Gaussian.

Now we are ready to prove Theorem 3.6. The “if” statement follows from Proposition

3.1. It remains to show the “only if” statement. Let ψ be a characteristic generator different

from that of the Gaussian distribution. For n ⩾ 2, let X ∼ En(µ,Σ, ψ) be an NOD joint

mix where Σ has positive diagonal entries. We start by observing from Lemma 3.2 that if

σij > 0 for i ̸= j, then the bivariate projection (Xi, Xj) of X satisfies (Xi, Xj) ⩾c (X
′
i, X

′
j)

where (X ′
i, X

′
j) ∼ En(µ,Σ

′
ij, ψ) with

Σ′
ij =

σii 0

0 σjj

 .

Using Lemma 3.3, we know that (X ′
i, X

′
j) is not NOD, that is, there exists (xi, xj) ∈ R2 such

that

P(X ′
i ⩽ xi, X

′
j ⩽ xj) > P(X ′

i ⩽ xi)P(X ′
j ⩽ xj); (3.23)

note that it suffices to consider the inequality needed for NLOD (not NUOD) by symmetry

of the elliptical distribution and location invariance of NOD. Therefore, we have that

P(Xi ⩽ xi, Xj ⩽ xj) > P(X ′
i ⩽ xi, X

′
j ⩽ xj). (3.24)

The two inequalities (3.23) and (3.24) imply that

P(Xi ⩽ xi, Xj ⩽ xj) > P(Xi ⩽ xi)P(Xj ⩽ xj),

that is, (Xi, Xj) is not NOD. This leads to a contradiction.

Next, we assume σij ⩽ 0 for all i ̸= j. Since a⊤Σa ⩾ 0 for all a ∈ Rn and Σ has positive

diagonal entries, we can take a = (1/
√
σ11, . . . , 1/

√
σnn), and this yields

n∑
i,j=1

σij√
σiiσjj

= n+
∑
i ̸=j

σij√
σiiσjj

⩾ 0.

Hence, there exist i, j with i ̸= j such that

ρij :=
σij√
σiiσjj

⩾ − 1

n− 1
.
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Since NOD is location-scale invariant, the NOD of (Xi, Xj) implies that E2(02, Pij, ψ) is

NOD, where

Pij =

 1 ρij

ρij 1

 .

Taking a limit as n → ∞, and noting that NOD is closed under weak convergence (Muller

and Stoyan, 2002), we conclude that E2(02, P
⊥
2 , ψ) is also NOD, which contradicts Lemma 3.3

if E(ψ) is not Gaussian.

Finally, by Proposition 3.1, this characterization result follows if NOD is replaced by

NSD or NA.
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Chapter 4

Diversification quotients: Quantifying

diversification via risk measures

4.1 Introduction

Portfolio diversification refers to investment strategies that spread out among many

assets, usually with the hope to reduce the volatility or risk of the resulting portfolio.

A mathematical formalization of diversification in a portfolio selection context was made

by Markowitz (1952), and some early literature on diversification includes Sharpe (1964),

Samuelson (1967), Levy and Sarnat (1970) and Fama and Miller (1972), amongst others.

Although diversification is conceptually simple, the question of how to measure diver-

sification quantitatively is never well settled. An intuitive, but non-quantitative, approach

is to simply count the number of distinct stocks or industries of substantial weight in the

portfolio; see e.g., Green and Hollifield (1992), Denis et al. (2002) and DeMiguel et al. (2009)

in different contexts. This approach is heuristic as it does not involve statistical or stochastic

modeling. The second approach is to compute a quantitative index of the portfolio model,

based on e.g., the volatility, variance, an expected utility, or a risk measure; this idea is

certainly along the direction of Markowitz (1952). In addition, one may empirically address

diversification by combining both approaches; see e.g., Tu and Zhou (2011) for the perfor-

mance of different diversified portfolio strategies, D’Acunto et al. (2019) in the context of
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robo-advising, and Berger and Eeckhoudt (2021) from the perspective of risk aversion and

ambiguity aversion. Green and Hollifield (1992) studied conditions under which the two

approaches are roughly in-line with each other.

In this chapter, we take the second approach by assigning a quantifier, called a diversifi-

cation index, to each modeled portfolio. Carrying the idea of Markowitz (1952), we start our

journey with a simple index, the diversification ratio (DR) based on the standard deviation

(SD). For a random vector X = (X1, . . . , Xn) representing future random losses and profits

of individual components in a portfolio in one period,1 DR based on SD is defined as

DRSD(X) =
SD (

∑n
i=1Xi)∑n

i=1 SD(Xi)
; (4.1)

see Choueifaty and Coignard (2008). One can also replace SD by variance. Intuitively,

with a smaller value indicating a stronger diversification, the index DRSD quantifies the

improvement of the portfolio SD over the sum of SD of its components, and it has several

convenient properties. Nevertheless, it is well-known that SD is a coarse, non-monotone and

symmetric measurement of risk, making it unsuitable for many risk management applications,

especially in the presence of heavy-tailed and skewed loss distributions; see Embrechts et al.

(2002) for thorough discussions.

Risk measures, in particular the Value-at-Risk (VaR) and the Expected Shortfall (ES),

are more flexible quantitative tools, widely used in both financial institutions’ internal risk

management and banking and insurance regulatory frameworks, such as Basel III/IV (BCBS

(2019)) and Solvency II (EIOPA (2011)). ES has many nice theoretical properties and

satisfies the four axioms of coherence (Artzner et al. (1999)), whereas VaR is not subadditive

in general, but it enjoys other practically useful properties; see Embrechts et al. (2014, 2018),

Emmer et al. (2015) and the references therein for more discussions on the issues of VaR

versus ES.

Some indices of diversification based on various risk measures have been proposed in

the literature. For a given risk measure ϕ, an example of a diversification index is DR in

(4.1) with SD replaced by ϕ; see Tasche (2007). For a review of diversification indices, see

1We focus on the one-period losses to establish the theory. This is consistent with the vast majority of

literature on risk measures and decision models.
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Koumou (2020). We find several demerits of DR built on a general risk measure ϕ such as

VaR or ES in Section 4.2. A natural question is whether we can design a suitable index based

on risk measures to quantify the magnitude of diversification, which avoids the deficiencies

of DR. Answering this and related questions is the main purpose of this chapter.

We take an axiomatic approach to find our desirable diversification indices. Axiomatic

approaches for risk and decision indices have been prolific in economic and statistical decision

theories; see e.g., the recent discussions of Gilboa et al. (2019) and the monographs Gilboa

(2009) andWakker (2010). Closely related to diversification indices, risk measures (Artzner et

al. (1999); Frittelli and Rosazza Gianin (2002); Föllmer and Schied (2016)) and acceptability

indices (Cherny and Madan (2009)) also admit sound axiomatic foundation; the particular

cases of VaR and ES are studied by Chambers (2009) and Wang and Zitikis (2021).

In Section 4.3, as our main contributions, we establish the first axiomatic foundation of

diversification indices.2 This axiomatic theory leads to the class of diversification quotients

(DQs), the main object of this chapter, which have an interpretation parallel to DR. Six sim-

ple axioms—non-negativity, location invariance, scale invariance, rationality, normalization,

and continuity—are introduced and justified for their desirability in quantifying diversifica-

tion. Their interpretations are self-evident and they describe the basic requirements for a

diversification index. In Theorem 4.1, these six axioms characterize DQ based on monetary

and positive homogeneous risk measures. A seventh axiom of portfolio convexity, planting an

intuitive ordering over portfolio weights in the index, further pins down DQ based on coher-

ent risk measures in Theorem 4.2. Further, Proposition 4.1 gives conditions for which such

DQ has the range of a standard interval. Portfolio convexity means that, with a given list of

assets, combining a portfolio with a better-diversified one does not lead to worse diversifica-

tion than the original portfolio, reflecting a fundamental principle in economics (Mas-Colell

et al. (1995)). The financial interpretation of DQ is that it quantifies the improvement of

a risk-level parameter (such as the parameter in VaR or ES) caused by pooling assets, and

2A different list of desirable axioms for diversification indices is studied by Koumou and Dionne (2022).

Their framework is mathematically different from ours as their diversification indices are mappings of portfolio

weights, instead of mappings of portfolio random vectors. They did not provide axiomatic characterization

results.
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this is discussed in Section 4.3.4.

A detailed analysis of the properties of DQ based on general risk measures is discussed

in Section 4.4, which reveals that DQ has many appealing features, both theoretically and

practically. In addition to standard operational properties (Proposition 4.2), DQ has intuitive

behaviour for several benchmark portfolio scenarios (Theorem 4.3). Moreover, DQ allows

for consistency with stochastic dominance (Proposition 4.3) and a fair comparison across

portfolio dimensions (Proposition 4.4). We proceed to focus on VaR and ES in Section

4.5. It turns out that DQs based on VaR and ES have convenient alternative formulations

(Theorem 4.4) and a natural range of [0, n] and [0, 1], respectively (Proposition 4.5). Further,

they report intuitive comparisons between normal and t-models and it has the nice feature

that it can capture heavy tails and common shocks.

In Section 4.6, efficient algorithms for DQs based on VaR and ES in portfolio optimiza-

tion based on empirical observations are obtained (Proposition 4.6). Our new diversification

index is applied to financial data in Section 4.7, where several empirical observations high-

light the advantages of DQ. We conclude this chapter in Section 4.8 by discussing a number

of implications and promising future directions for DQ. Some additional results, proofs, and

some omitted numerical results are relegated to the E-Companion.

Notation. Throughout this chapter, (Ω,F ,P) is an atomless probability space, on

which almost surely equal random variables are treated as identical. A risk measure ϕ is a

mapping from X to R, where X is a convex cone of random variables on (Ω,F ,P) representing

losses faced by a financial institution or an investor (i.e., a sign flip from Artzner et al. (1999)),

and X is assumed to include all constants (i.e., degenerate random variables). For p ∈ (0,∞),

denote by Lp = Lp(Ω,F ,P) the set of all random variables X with E[|X|p] < ∞ where E

is the expectation under P. Furthermore, L∞ = L∞(Ω,F ,P) is the space of all (essentially)

bounded random variables, and L0 = L0(Ω,F ,P) is the space of all random variables. Write

X ∼ F if the random variable X has the distribution function F under P, and X d
= Y if two

random variables X and Y have the same distribution. Further, denote by R+ = [0,∞) and

R = [−∞,∞]. Terms such as increasing or decreasing functions are in the non-strict sense.

For X ∈ L0, ess-sup(X) and ess-inf(X) are the essential supremum and the essential infimum

of X, respectively. Let n be a fixed positive integer representing the number of assets in a
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portfolio, and write [n] = {1, . . . , n}. It does not hurt to think about n ⩾ 2 although our

results hold also (trivially) for n = 1. The vector 0 represents the n-vector of zeros, and we

always write X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).

4.2 Preliminaries and motivation

The main object of this chapter, a diversification index D is a mapping from X n to

R, which is used to quantify the magnitude of diversification of a risk vector X ∈ X n

representing portfolio losses. Our convention is that a smaller value of D(X) represents a

stronger diversification in a sense specified by the design of D.

As the evaluation of diversification is closely related to that of risk, diversification indices

in the literature are often defined through risk measures. An example of a diversification

index is the diversification ratio (DR) mentioned in the Introduction based on measures of

variability such as the standard deviation (SD) and variance (var):

DRSD(X) =
SD (

∑n
i=1Xi)∑n

i=1 SD(Xi)
and DRvar(X) =

var (
∑n

i=1Xi)∑n
i=1 var(Xi)

,

with the convention 0/0 = 0. We refer to Rockafellar et al. (2006), Furman et al. (2017) and

Bellini et al. (2022) for general measures of variability. DRs based on SD and var satisfy the

three simple properties below, which can be easily checked.

[+] Non-negativity: D(X) ⩾ 0 for all X ∈ X n.

[LI] Location invariance: D(X+ c) = D(X) for all c = (c1, . . . , cn) ∈ Rn and all X ∈ X n.

[SI] Scale invariance: D(λX) = D(X) for all λ > 0 and all X ∈ X n.

The first property, [+], simply means that diversification is measured in non-negative values,

where 0 typically represents a fully diversified or hedged portfolio (in some sense). The

property [LI] means that injecting constant losses or gains to components of a portfolio,

or changing the initial price of assets in the portfolio,3 does not affect its diversification

index. The property [SI] means that rescaling a portfolio does not affect its diversification

3Recall that Xi represents the loss from asset i. Suppose that two agents purchased the same portfolio of
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index. The latter two properties are arguably natural, although they are not satisfied by

some diversification indices used in the literature (see (4.2) below). A diversification index

satisfying both [LI] and [SI] is called location-scale invariant.

Next, we define the two popular risk measures in banking and insurance practice. The

VaR at level α ∈ [0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ L0,

and the ES (also called CVaR, TVaR or AVaR) at level α ∈ (0, 1) is defined as

ESα(X) =
1

α

∫ α

0

VaRβ(X) dβ, X ∈ L1,

and ES0(X) = ess-sup(X) = VaR0(X), which may be ∞. The probability level α above

is typically very small, e.g., 0.01 or 0.025 in BCBS (2019); note that we use the “small α”

convention. Artzner et al. (1999) introduced coherent risk measures ϕ : X → R as those

satisfying the following four properties.

[M] Monotonicity: ϕ(X) ⩽ ϕ(Y ) for all X, Y ∈ X with X ⩽ Y .4

[CA] Constant additivity: ϕ(X + c) = ϕ(X) + c for all c ∈ R and X ∈ X .

[PH] Positive homogeneity: ϕ(λX) = λϕ(X) for all λ ∈ (0,∞) and X ∈ X .

[SA] Subadditivity: ϕ(X + Y ) ⩽ ϕ(X) + ϕ(Y ) for all X, Y ∈ X .

ES satisfies all four properties above, whereas VaR does not satisfy [SA]. We say that a risk

measure is monetary if it satisfies [CA] and [M], and it is MCP if it satisfies [M], [CA] and

[PH]. For discussions and interpretations of these properties, we refer to Föllmer and Schied

(2016).

Some diversification indices are defined via risk measures, such as DR (e.g., Bürgi et al.

(2008), Mainik and Rüschendorf (2010) and Embrechts et al. (2015)) and the diversification

assets but at different prices of each asset. Denote by X the portfolio loss vector of agent 1. The portfolio

loss vector of agent 2 is X + c, where c is the vector of differences between their purchase prices. The two

agents should have the same level of diversification regardless of their purchase prices, as they hold the same

portfolio.
4The inequality X ⩽ Y between two random variables X and Y is pointwise.
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benefit (DB, e.g., Embrechts et al. (2009) and McNeil et al. (2015)). For a risk measure ϕ,

DR and DB based on ϕ are defined as5

DRϕ(X) =
ϕ (
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

and DBϕ(X) =
n∑

i=1

ϕ(Xi)− ϕ

(
n∑

i=1

Xi

)
. (4.2)

In contrast to DR, a larger value of DB represents a stronger diversification, but this con-

vention can be easily modified by flipping the sign to consider −DBϕ. By definition, DR is

the ratio of the pooled risk to the sum of the individual risks, and thus a measurement of

how substantially pooling reduces risk; similarly, DB measures the difference instead of the

ratio.

DR has a number of deficiencies. First, the value of DRϕ is not necessarily non-negative,

violating [+]. Since the risk measure ϕ may take negative values,6 it would be difficult to

interpret the case where either the numerator or denominator in DR is negative, and this

makes optimization of DR troublesome. An example is a portfolio of credit default losses,

where VaR of individual losses is often 0 or negative but VaR of the portfolio loss is positive;

see McNeil et al. (2015, Example 2.25). Second, for common risk measures, DR violates [LI],

meaning that adding a risk-free asset changes the value of DR. Third, DR is not necessarily

quasi-convex in portfolio weights; this point is more subtle and will be explained later. In

addition to the above drawbacks, we also find that DR has wrong incentives for some simple

models; for instance, it suggests that an iid portfolio of t-distributed risks is less diversified

than a portfolio with a common shock and the same marginals; see Section 4.5.2 for details.

Similarly to DR, the index DB satisfies [LI] for ϕ satisfying [CA], but it does not satisfy [SI]

for common risk measures, and it may take both positive and negative values.

In financial applications, the risk measures VaR and ES are specified in regulatory

documents such as BCBS (2019) and EIOPA (2011), and therefore it is beneficial to stick

to VaR or ES as the risk measure when assessing diversification. Both DRVaRα and DRESα

satisfy [SI], but they do not satisfy [+] or [LI].7 It remains unclear how one can define a

5If the denominator in the definition of DRϕ(X) is 0, then we use the convention 0/0 = 0 and 1/0 = ∞.
6A negative value of a risk measure has a concrete meaning as the amount of capital to be withdrawn

from a portfolio position while keeping it acceptable; see Artzner et al. (1999).
7An impossibility result (Proposition 5.1) is presented in Section 5.3, which suggests that it is not possible

to construct non-trivial diversification indices like DR and DB satisfying [+], [LI] and [SI].
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diversification index based on VaR or ES satisfying these properties. In the remainder of

this chapter, we will introduce and study a new index of diversification to bridge this gap.

4.3 Diversification indices: An axiomatic theory

In this section, we fix X = L∞ as the standard choice in the literature of axiomatic

theory of risk measures. In addition to [+], [LI] and [SI] introduced in Section 4.2, we propose

four new axioms. The first six axioms together characterize a new class of diversification

indices, that is, diversification quotients (DQ) based on MCP risk measures. With the

seventh axiom of portfolio convexity, we further pin down the class of DQ based on coherent

risk measures.

4.3.1 Axioms of rationality, normalization, and continuity

We first present three axioms, which depend on a risk measure ϕ. These three axioms

are standard and weak in the sense that they do not impose a specific functional structure

on D other than some forms of monotonicity, normalization, and continuity.

For a risk measure ϕ, we say that two vectors X,Y ∈ X n are ϕ-marginally equivalent

if ϕ(Xi) = ϕ(Yi) for each i ∈ [n], and we denote this by X
m≃ Y. In other words, if an agent

evaluates risks using the risk measure ϕ, then she would view the individual components of

X and those of Y as equally risky. Similarly, denote by X
m

⪰ Y if ϕ(Xi) ⩽ ϕ(Yi) for each

i ∈ [n], and by X
m
≻ Y if ϕ(Xi) < ϕ(Yi) for each i ∈ [n]. The other three desirable axioms are

presented below, and they are built on a given risk measure ϕ, such as VaR or ES, typically

specified exogenously by financial regulation.

[R]ϕ Rationality: D(X) ⩽ D(Y) for X,Y ∈ X n satisfying X
m≃ Y and

∑n
i=1Xi ⩽

∑n
i=1 Yi.

To interpret the axiom [R]ϕ, consider two portfolios X and Y satisfying X
m≃ Y. If

further
∑n

i=1Xi ⩽
∑n

i=1 Yi holds, then the total loss from portfolioX is always less or equal to

that from portfolio Y, making the portfolio X safer than Y. Since the individual components
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in X and those in Y are equally risky, the fact that X is safer in aggregation is a result of the

different diversification effects in X and Y, leading to the inequality D(X) ⩽ D(Y). This

axiom is called rationality because a rational agent always prefers to have smaller losses.

Next, we formulate our idea about normalizing representative values of the diversifica-

tion index. First, we assign the zero portfolio 0 the value D(0) = 0, as it carries no risk in

every sense.8 A natural benchmark of a non-diversified portfolio is one in which all compo-

nents are the same. Such a portfolio Xdu = (X, . . . , X) will be called a duplicate portfolio,

and we may, ideally, wish to assign the value D(Xdu) = 1. However, since the zero portfolio

0 is also duplicate but D(0) = 0, we will require the weaker assumption D(Xdu) ⩽ 1 for

duplicate portfolios.9 Lastly, we should understand for what portfolios D(X) ⩾ 1 needs to

occur. We say that a portfolio Xwd = (X1, . . . , Xn) is worse than duplicate, if there exists a

duplicate portfolio Xdu = (X, . . . , X) such that Xwd
m
≻ Xdu and

∑n
i=1Xi ⩾ nX. Intuitively,

this means that each component of Xwd is strictly less risky than X, but putting them

together always incurs a larger loss than nX; in this case, diversification creates nothing

but a penalty to the risk manager, and we assign D(Xwd) ⩾ 1.10 Existence of worse-than-

duplicate portfolios is characterized in Section 5.4.1. Putting all of the considerations above,

we propose the following normalization axiom.

[N]ϕ Normalization: D(0) = 0, D(X) ⩽ 1 if X is duplicate, and D(X) ⩾ 1 if X is worse

than duplicate.

Finally, we propose a continuity axiom which is mainly for technical convenience.

[C]ϕ Continuity: For {Yk}k∈N ⊆ X n andX ∈ X n satisfyingYk m≃ X for each k, if (
∑n

i=1Xi−∑n
i=1 Y

k
i )+

L∞
−→ 0 as k → ∞, then (D(X)−D(Yk))+ → 0.

The axiom [C]ϕ is a special form of semi-continuity. To interpret it, consider portfoliosX

and Y that are marginally equivalent. If the sum of components of X is not much worse than

8Indeed, the value of D(0) may be rather arbitrary; this is the case for DR where 0/0 occurs.
9Theorem 4.3 gives some mild conditions that yield D(Xdu) = 1 for the class D characterized in this

section.
10Such situations may be regarded as diversification disasters; see Ibragimov et al. (2011).

99



that of Y in L∞, then the axiom says that the diversification of X is not much worse than

the diversification of Y. This property allows for a special form of stability or robustness11

with respect to statistical errors when estimating the distributions of portfolio losses.

One can check that the axioms [R]ϕ, [N]ϕ and [C]ϕ are satisfied by DRVaRα and DRESα

if we only consider positive portfolio vectors. The axioms are not satisfied by DRSD because

SD is not monotone and hence the inequalities
∑n

i=1Xi ⩽
∑n

i=1 Yi and
∑n

i=1Xi ⩾ nX used

in [R]ϕ and [N]ϕ are not relevant for SD.

4.3.2 Portfolio convexity

The next axiom, different from the three above, imposes a natural form of convexity on

the diversification index. Portfolio diversification is intrinsically connected to convexity of

ordering relations. Quoting Mas-Colell et al. (1995, p. 44), “Convexity can also be viewed as

the formal expression of a basic inclination of economic agents for diversification.” For this

purpose, we propose an axiom of portfolio convexity in this section.

Let a random vectorX ∈ X n represent losses from n assets and a vectorw = (w1, . . . , wn) ∈

∆n of portfolio weights, where ∆n is the standard n-simplex, given by

∆n = {x ∈ [0, 1]n : x1 + · · ·+ xn = 1} .

The total loss of the portfolio is w⊤X. We write w ⊙X = (w1X1, . . . , wnXn), which is the

portfolio loss vector with the weight w. The portfolio convexity axiom is formulated below.

[PC] Portfolio convexity: The set {w ∈ ∆n : D(w ⊙X) ⩽ d)} is convex for each X ∈ X n

and d ∈ R.

Intuitively, portfolio convexity means that, for a given vector X of assets, combining a

portfolio strategy with a better-diversified one on the same set of assets does not result in

a portfolio that is less diversified than the original portfolio. As convexity is the decision-

theoretic counterpart of diversification, [PC] is desirable for diversification indices.

11In the literature of statistical robustness, often a different metric than the L∞ metric is used; see Huber

and Ronchetti (2009) for a general treatment. Our choice of formulating continuity via the L∞ metric is

standard in the axiomatic theory of risk mappings on L∞.
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Remark 4.1. Axiom [PC] is equivalent to quasi-convexity of w 7→ D(w⊙X) for each X ∈ X n;

that is, D((λw + (1 − λ)w′) ⊙X) ⩽ D(w ⊙X) ∨D(w′ ⊙X) for all λ ∈ [0, 1], w,w′ ∈ ∆n

and X ∈ X n.

Remark 4.2. Convexity or quasi-convexity of X 7→ D(X) is not natural or desirable. For

instance, combining two diversified portfolios (X, Y ) and (Y,X) may result in a duplicate

portfolio; see Example 5.1 in Section 5.4.2. Convexity of w 7→ D(w ⊙X), which is stronger

than [PC], is not desirable either; see Example 5.2 in Section 5.4.2.

The four axioms introduced above, together with the three in Section 4.2, lead to a

class of diversification indices, which we define next.

4.3.3 Characterization results

We first formally introduce the diversification index DQ relying on a parametric class

of risk measures, which will be characterized in two results below.

Definition 4.1. Let ρ = (ρα)α∈I be a class of risk measures indexed by α ∈ I = (0, α) with

α ∈ (0,∞] such that ρα is decreasing in α. For X ∈ X n, the diversification quotient based

on the class ρ at level α ∈ I is defined by

DQρ
α(X) =

α∗

α
, where α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}
, (4.3)

with the convention inf(∅) = α.

We first characterize DQ based on MCP risk measures by six axioms without [PC].

Theorem 4.1. A diversification index D : X n → R satisfies [+], [LI], [SI], [R]ϕ, [N]ϕ and

[C]ϕ for some MCP risk measure ϕ if and only if D is DQρ
α for some α and decreasing class

ρ of MCP risk measures. Moreover, in both directions of the above equivalence, it can be

required that ρα = ϕ.

Theorem 4.1 gives the first axiomatic characterization of diversification indices, to the

best of our knowledge. The proof techniques to show the important “only if” statement of
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Theorem 4.1 are based on a sophisticated analysis of an auxiliary mapping

R : X → [0,∞], R(X) = inf

{
D(X) : X ⩽

n∑
i=1

Xi, X
m≃ 0

}
,

and this is explained in Section 5.2.

Next, we incorporate portfolio convexity into our axiomatic framework. For this pur-

pose, it is natural to build the diversification indices based on risk measures with convexity.

When formulated on monetary risk measures, convexity represents the idea that diversifica-

tion reduces the risk; see Föllmer and Schied (2016). For risk measures that are not constant

additive, Cerreia-Vioglio et al. (2011) argued that quasi-convexity is more suitable than con-

vexity to reflect the consideration of diversification; moreover, convexity and quasi-convexity

are equivalent if [CA] holds. A risk measure is linear if it satisfies ϕ(aX+bY ) = aϕ(X)+bϕ(Y )

for all X, Y ∈ X and a, b ∈ R. Since linear risk measures correspond to expectations (under

monotonicity), which do not reflect diversification, we will focus on non-linear ones. The

next theorem characterizes DQ based on coherent risk measures.

Theorem 4.2. Suppose n ⩾ 4 and ϕ is a non-linear coherent risk measure. A diversification

index D : X n → R satisfies [+], [LI], [SI], [R]ϕ, [N]ϕ, [C]ϕ and [PC] if and only if D is DQρ
α

for some α and decreasing class ρ of coherent risk measures with ρα = ϕ.

The conditions n ⩾ 4 and non-linearity of ϕ are essential to the proof of Theorem 4.2.

They are harmless for financial applications since typical portfolios have more than a few

components, and common risk measures are not linear.

Although portfolio convexity is crucial for diversification indices, making Theorem 4.2

a central result, we present Theorem 4.1 separately for the following reasons. First, Theorem

4.1 reveals the fundamental properties needed to pin down the form of DQ and this helps to

clarify the role of [PC]. Second, the proof of Theorem 4.2 is technically built on Theorem 4.1.

Third, the class of DQ characterized by Theorem 4.1 allows for DQ based on VaR, which is

popular in financial regulation.

In the next proposition, we show that for sub-linear risk measures, DQ satisfies [PC]

(thus, the “if” direction of Theorem 4.2 does not need [M] and [CA] for ρ), and its range

is [0, 1] under mild conditions, avoiding non-degeneracy. A risk measure is sub-linear if it
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Table 4.1: Summary of axioms satisfied by diversification indices DRϕ, DBϕ and DQρ
α (with

ϕ = ρα), where X+ is the set of non-negative elements in X and α ∈ (0, 1)

Index Domain [+] [LI] [SI] [R]ϕ [N]ϕ [C]ϕ [PC]

DRVaRα and DRESα X n × × √ × × × ×

DRVaRα X n
+

√ × √ √ √ √ ×

DRESα X n
+

√ × √ √ √ √ √

DRSD X n √ √ √ × × × √

DRvar X n √ √ √ × × × ×

−DBVaRα X n × √ × √ × √ ×

−DBESα X n × √ × √ × √ √

DQVaR
α X n √ √ √ √ √ √ ×

DQES
α X n √ √ √ √ √ √ √

satisfies subadditivity and positive homogeneity (equivalently, convexity and positive homo-

geneity).

Proposition 4.1. Let ρ = (ρβ)β∈I be a decreasing class of sub-linear risk measures and

α ∈ I. Then DQρ
α satisfies [PC]. If n ⩾ 3, ρα is non-linear and there exists X ∈ X such

that β 7→ ρβ(X) is strictly decreasing, then {DQρ
α(X) : X ∈ X n} = [0, 1].

Given a sub-linear risk measure ρα, the conditions in Proposition 4.1 for {DQρ
α(X) :

X ∈ X n} = [0, 1] are mild and satisfied by e.g., DQ based on the family of ES. In contrast

to DQ, DR based on sub-linear risk measures may not satisfy [PC] since the denominator

in (4.2) may be negative. For a clear comparison, we summarize in Table 4.1 the axioms

satisfied by the diversification indices that appear in this chapter.

4.3.4 Interpretation of DQ

DQ based on MCP or coherent risk measures have been characterized axiomatically,

but we have not interpreted the meaning of DQ in (4.3). For an interpretation, consider a

decreasing class of risk measures (ρβ)β∈I . The values of risk measures typically represent the
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Figure 4.1: Conceptual symmetry between DQ and DR

ρβ (
∑n

i=1Xi)

DRρα(X) =
ρα (

∑n
i=1Xi)∑n

i=1 ρα (Xi)

β

∑n
i=1 ρα(Xi)

α∗ α0

ρα (
∑n

i=1Xi)

DQρ
α(X) = α∗/α

capital requirement of a risky asset, and hence β is interpreted as a parameter of risk level

(as in VaRβ or ESβ), that is, a smaller β means a larger capital requirement for the same

risk. Notice from (4.3) that, under mild conditions, α∗ is uniquely determined by

ρα∗

(
n∑

i=1

Xi

)
=

n∑
i=1

ρα(Xi).

Therefore, α∗ is the parameter of risk level achieved by pooling, assuming that the portfolio

maintains the same total capital requirement assessed by ρα when there is no pooling, that

is,
∑n

i=1 ρα(Xi). As DQ
ρ
α(X) = α∗/α, DQ is the ratio of the risk-level parameters before and

after pooling. To summarize,

the index DQ quantifies the improvement of the risk-level parameter caused by pooling

assets.

In the most relevant case ρα (
∑n

i=1Xi) <
∑n

i=1 ρα(Xi), we present in Figure 4.1 the con-

ceptual symmetry between DQ, which measures the improvement by pooling in the horizontal

direction, and DR, which measures an improvement in the vertical direction. In particular,

in the case of VaR, DQ measures the probability improvement, whereas DR measures the

quantile improvement; see Theorem 4.4 and (4.7) below.

Remark 4.3. The idea of improvement of risk level is closely related to acceptability indices,

proposed by Cherny and Madan (2009). More precisely, an acceptability index for a loss
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X ∈ X is defined by AIρ(X) = sup{γ ∈ R+ : ρ1/γ(X) ⩽ 0} for a decreasing class of coherent

risk measures (ργ)γ∈R+ , which has visible similarity to α∗ in (4.3); see Kováčová et al. (2020)

for optimization of acceptability indices. If ρ is a class of risk measures satisfying [CA], then

DQρ
α(X) =

1

α

(
AIρ

(
n∑

i=1

(Xi − ρα(Xi))

))−1

.

Dhaene et al. (2012) studied several methods for capital allocation, among which the quan-

tile allocation principle computes a capital allocation (C1, . . . , Cn) such that
∑n

i=1Ci =

VaRα(
∑n

i=1Xi) and Ci = VaRcα(Xi) for some c > 0. The constant c appearing as a nuisance

parameter in the above rule has a visible mathematical similarity to DQVaR
α . Mafusalov and

Uryasev (2018) studied the so-called buffered probability of exceedance, which is the inverse

of the ES curve β 7→ ESβ(X) at a specific point x ∈ R; note that α∗ in (4.3) is obtained by

inverting the ES curve β 7→ ESβ(
∑n

i=1Xi) at
∑n

i=1 ESα(Xi).

We close the section with discussions on the construction of DQ. First, DQ can be

constructed from any monotonic parametric family of risk measures. All commonly used risk

measures belong to a monotonic family, as this includes VaR, ES, expectiles (e.g., Bellini

et al. (2014)), mean-variance (e.g., Markowitz (1952) and Maccheroni et al. (2009)), and

entropic risk measures (e.g., Föllmer and Schied (2016)); some choices do not guarantee all

axioms to hold. Our results imply that using ES or expectiles guarantees all axioms and non-

degeneracy for DQ. In addition, there are ways to construct DQ from a single risk measure;

see Section 5.4.3. DQ can also be axiomatized using preferences instead of risk measures; see

Section 5.4.4.

DQ can be used as a normative tool for measuring diversification. In this context, the

choice of the parametric family of risk measures is up to the user, and DQ serves as a versatile

tool that accommodates various risk attitudes. The choice of risk measures (e.g., VaR, ES)

and the determination of the confidence level (α) should be aligned with the risk tolerance,

objectives, and regulatory requirements of the decision maker. For instance, conservative

investors, prioritizing capital preservation, may gravitate towards the family of ES at a high

level α, which reflects an assessment of downside risk, whereas those with aggressive risk

preferences may opt for VaR or ES at a lower level α. Most generally, we would recommend

the use of DQ based on ES, which has a natural and strong connection to financial regulation
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and tail risk management, and the parameter α allows for flexibility in the assessment of tail

risk.

4.4 Properties of DQ

In this section, we study the properties of DQ defined in Definition 4.1. For the greatest

generality, we do not impose any properties of risk measures in the decreasing family ρ =

(ρα)α∈I , i.e., the family ρ is not limited to MCP or coherent risk measures, so that our results

can be applied to more flexible contexts in which some of the seven axioms are relaxed. In

this section, X is not restricted to L∞.

4.4.1 Basic properties

We first make a few immediate observations by the definition of DQ. From (4.3), we

can see that computing DQρ
α is to invert the decreasing function β 7→ ρβ(

∑n
i=1Xi) at∑n

i=1 ρα(Xi). For the cases of VaR and ES, I = (0, 1), α∗ ∈ [0, 1], and DQ has simple

formulas; see Theorem 4.4 in Section 4.5. For a fixed value of
∑n

i=1 ρα(Xi), DQ is larger if

the curve β 7→ ρβ(
∑n

i=1Xi) is larger, and DQ is smaller if the curve β 7→ ρβ(
∑n

i=1Xi) is

smaller. This is consistent with our intuition that a diversification index is large if there is

little or no diversification, thus a large value of the portfolio risk, and a diversification index

is small if there is strong diversification.

In Theorem 4.1, we have seen that DQ satisfies [SI] and [LI] if ρ is a class of MCP

risk measures. These properties of DQ can be obtained based on a more general version of

properties [CA] and [PH] of risk measures, allowing us to include SD and the variance. The

results are summarized in Proposition 4.2, which are straightforward to check by definition.

[CA]m Constant additivity with m ∈ R: ϕ(X + c) = ϕ(X) +mc for all c ∈ R and X ∈ X .

[PH]γ Positive homogeneity with γ ∈ R: ϕ(λX) = λγϕ(X) for all λ ∈ (0,∞) and X ∈ X .

Proposition 4.2. Let ρ = (ρα)α∈I be a class of risk measures decreasing in α. For each

α ∈ I,
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(i) if ρβ satisfies [PH]γ with the same γ across β ∈ I, then DQρ
α satisfies [SI].

(ii) if ρβ satisfies [CA]m with the same m across β ∈ I, then DQρ
α satisfies [LI].

(iii) if ρα satisfies [SA], then DQρ
α takes value in [0, 1].

It is clear that [CA] is [CA]m with m = 1 and [PH] is [PH]γ with γ = 1. More properties

of DQs on the important families of VaR and ES will be discussed in Section 4.5. In particular,

we will see that the ranges of DQVaR
α and DQES

α are [0, n] and [0, 1], respectively.

Example 4.1 (Liquidity and temporal consistency). In risk management practice, liquidity

and time-horizon of potential losses need to be taken into account; see BCBS (2019, p.89).

If liquidity risk is of concern, one may use a risk measure with [PH]γ with γ > 1 to penalize

large exposures of losses. For such risk measures, DQρ
α remains scale invariant, as shown by

Proposition 4.2. On the other hand, if the risk associated to the loss X(t) at different time

spots t > 0 is scalable by a function f > 0 (usually of the order f(t) =
√
t in standard models

such as the Black-Scholes), then DQ is consistent across different horizons in the sense that

DQρ
α(X(t)) = DQρ

α(X(s)) for two time spots s, t > 0, given that ρβ(Xi(t)) = f(t)ρβ(Xi(1))

for i ∈ [n], t > 0 and β ∈ I.

Next, we explain that the values taken by DQ are consistent with our usual perceptions

of portfolio diversification. For a given risk measure ϕ and a portfolio risk vector X, we

consider the following three situations which yield intuitive values of DQ.

(i) There is no insolvency risk with pooled individual capital, i.e.,
∑n

i=1Xi ⩽
∑n

i=1 ϕ(Xi)

a.s.;

(ii) diversification benefit exists, i.e., ϕ (
∑n

i=1Xi) <
∑n

i=1 ϕ(Xi);

(iii) the portfolio relies on a single asset, i.e., X = (λ1X, . . . , λnX) for some X ∈ X and

λ1, . . . , λn ∈ R+. A duplicate portfolio relies on a single asset.

The above three situations receive special attention because they intuitively correspond to

very strong diversification, some diversification, and no diversification, respectively. Natu-

rally, we would expect DQ to be very small for (i), DQ to be smaller than 1 for (ii), and
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DQ to be 1 for (iii). It turns out that the above intuitions all check out under very weak

conditions that are satisfied by commonly used classes of risk measures.

Before presenting this result, we fix some technical terms. For a class ρ of risk measures

ρα decreasing in α, we say that ρ is non-flat from the left at (α,X) if ρβ(X) > ρα(X)

for all β ∈ (0, α), and ρ is left continuous at (α,X) if α 7→ ρα(X) is left continuous. A

random vector (X1, . . . , Xn) is comonotonic if there exists a random variable Z and increasing

functions f1, . . . , fn on R such that Xi = fi(Z) a.s. for every i ∈ [n]. A risk measure is

comonotonic-additive if ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for comonotonic (X, Y ). Each of ES

and VaR satisfies comonotonic-additivity, as well as any distortion risk measures (Yaari

(1987), Kusuoka (2001)) and signed Choquet integrals (Wang et al. (2020b)). We denote by

ρ0 = limα↓0 ρα. Note that ρ0 = ess-sup for common classes ρ such as VaR, ES, expectiles,

and entropic risk measures.

Theorem 4.3. For given X ∈ X n and α ∈ I, if ρ is left continuous and non-flat from the

left at (α,
∑n

i=1Xi), the following hold.

(i) Suppose ρ0 ⩽ ess-sup. If for ρα there is no insolvency risk with pooled individual capital,

then DQρ
α(X) = 0. The converse holds true if ρ0 = ess-sup.

(ii) Diversification benefit exists if and only if DQρ
α(X) < 1.

(iii) If ρα satisfies [PH] and X relies on a single asset, then DQρ
α(X) = 1.

(iv) If ρα is comonotonic-additive and X is comonotonic, then DQρ
α(X) = 1.

In (i), we see that if there is no insolvency risk with pooled individual capital, then

DQρ
α(X) = 0. In typical models, such as some elliptical models in Section 4.5.2,

∑n
i=1Xi is

unbounded from above unless it is a constant. Hence, for such models and ρ satisfying ρ0 =

ess-sup, DQρ
α(X) = 0 if and only if

∑n
i=1Xi is a constant, thus full hedging is achieved. This

is also consistent with our intuition of full hedging as the strongest form of diversification.

The existence of diversification benefit is the main idea behind coherent risk measures of

Artzner et al. (1999). By (ii), DQ and DR agree on whether diversification benefit exists

under mild conditions, and this intuition is consistent with Artzner et al. (1999).
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Remark 4.4. We require ρ to be left continuous and non-flat from the left to make the

inequality in (ii) holds strictly. This requirement excludes, in particular, trivial cases like

X = c ∈ Rn which gives DQVaR
α (X) = 0 by definition. In case the conditions fail to hold,

DQρ
α(X) < 1 may not guarantee ρα (

∑n
i=1Xi) <

∑n
i=1 ρα(Xi), but it implies the non-strict

inequality ρα (
∑n

i=1Xi) ⩽
∑n

i=1 ρα(Xi), and thus the portfolio risk is not worse than the sum

of the individual risks.

4.4.2 Stochastic dominance and dependence

In this section, we discuss the consistency of DQ with respect to stochastic dominance,

as well as the best and worst cases for DQ among all dependence structures with given

marginal distributions of the risk vector.

For a diversification index, monotonicity with respect to stochastic dominance yields

consistency with common decision-making criteria such as the expected utility model and the

rank-dependent utility model. A random variable X (representing random loss) is dominated

by a random variable Y in second-order stochastic dominance (SSD) if E[f(X)] ⩽ E[f(Y )]

for all decreasing concave functions f : R → R provided that the expectations exist, and

we denote this by X ⩽SSD Y .12 A risk measure ϕ is SSD-consistent if ϕ(X) ⩾ ϕ(Y ) for all

X, Y ∈ X whenever X ⩽SSD Y . SSD consistency is known as strong risk aversion in the

classic decision theory literature (Rothschild and Stiglitz (1970)). SSD-consistent monetary

risk measures, which include all law-invariant convex risk measures such as ES, admit an

ES-based characterization (Mao and Wang (2020)).

Proposition 4.3. Assume that ρ = (ρα)α∈I is a decreasing class of SSD-consistent risk

measures. For X,Y ∈ X n and α ∈ I, if
∑n

i=1 ρα(Xi) ⩽
∑n

i=1 ρα(Yi) and
∑n

i=1Xi ⩽SSD∑n
i=1 Yi, then DQρ

α(X) ⩾ DQρ
α(Y).

Proposition 4.3 follows from the simple observation that{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}
⊆

{
β ∈ I : ρβ

(
n∑

i=1

Yi

)
⩽

n∑
i=1

ρα(Yi)

}
,

12IfX and Y represent gains instead of losses, then SSD is typically defined via increasing concave functions.
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and we omit the proof.

Assume ρ is a class of SSD-consistent risk measures (e.g., law-invariant convex risk

measures). Proposition 4.3 implies that if the sum of marginal risks is the same for X and

Y (this holds in particular if X and Y have the same marginal distributions), then DQ is

decreasing in SSD of the total risk. The dependence structures which maximize or minimize

DQ for X with specified marginal distributions are discussed in Section 5.5.1. For instance,

a comonotonic portfolio has the largest DQ (thus the smallest diversification) among all

portfolios with the same marginal distributions; this observation is related to Proposition 4.2

(iii) and Theorem 4.3 (iv).

4.4.3 Consistency across dimensions

All properties in the previous sections are discussed under the assumption that the

dimension n ∈ N is fixed. Letting n vary allows for a comparison of diversification between

portfolios with different dimensions. In this section, we slightly generalize our framework by

considering a diversification index D as a mapping on
⋃

n∈N X n; note that the input vector X

of DQ and DR can naturally have any dimension n. We present two more useful properties

of DQ in this setting. For X ∈ X n and c ∈ R, (X, c) is the (n+1)-dimensional random vector

obtained by pasting X and c, and (X,X) is the (2n)-dimensional random vector obtained

by pasting X and X.

[RI] Riskless invariance: D(X, c) = D(X) for all n ∈ N, X ∈ X n and c ∈ R.

[RC] Replication consistency: D(X,X) = D(X) for all n ∈ N and X ∈ X n.

Riskless invariance means that adding a risk-free asset into the portfolio X does not affect

its diversification. For instance, the Sharpe ratio of the portfolio does not change under such

an operation. Replication consistency means that replicating the same portfolio composition

does not affect D. Both properties are arguably desirable in most applications due to their

natural interpretations.

Proposition 4.4. Let ρ = (ρα)α∈I be a class of risk measures decreasing in α. For α ∈ I,
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(i) If ρβ satisfies [CA]m with m ∈ R for β ∈ I and ρα(0) = 0 then DQρ
α satisfies [RI].

(ii) If ρβ satisfies [PH] for β ∈ I, then DQρ
α satisfies [RC].

We further show in Proposition 5.7 that if [RI] is assumed, then the only option for DR

is to use a non-negative ϕ (which is a subclass of DQ). Thus, if [RI] is considered as desirable,

then DQ becomes useful compared to DR as it offers more choices, and in particular, it works

for any classes ρ of monetary risk measures with ρα(0) = 0 including VaR and ES. Both DQ

and DR satisfy [RC] and [RI] for MCP risk measures.

Example 4.2. Let ϕ be a risk measure satisfying [CA], such as ESα or VaRα. Suppose that

ϕ(
∑n

i=1Xi) = 1 and
∑n

i=1 ϕ(Xi) = 2, and thus DRϕ(X) = 1/2. If a non-random payoff of

c > 0 is added to the portfolio, then DRϕ(X,−c) = (1− c)/(2− c), which turns to 0 as c ↑ 1,

and it becomes negative as soon as c > 1. Hence, DRϕ is improved or made negative by

including constant payoffs (either as a new asset or added to an existing asset). This creates

problematic incentives in optimization. On the other hand, DQ does not suffer from this

problem due to [LI] and [RI].

4.5 DQ based on the classes of VaR and ES

Since VaR and ES are the two most common classes of risk measures in practice, we

focus on the theoretical properties of DQVaR
α and DQES

α in this section. We fix the parameter

range I = (0, 1), and we choose X n to be (L0)n when we discuss DQVaR
α and (L1)n when we

discuss DQES
α , but all results hold true if we fix X = L1.

4.5.1 General properties

We first provide alternative formulations of DQVaR
α and DQES

α . The formulations offer

clear interpretations and simple ways to compute the values of DQs. The formula (4.6) below

can be derived from the optimization formulation for the buffered probability of exceedance

in Proposition 2.2 of Mafusalov and Uryasev (2018).
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Theorem 4.4. For a given α ∈ (0, 1), DQVaR
α and DQES

α have the alternative formulas

DQVaR
α (X) =

1

α
P

(
n∑

i=1

Xi >

n∑
i=1

VaRα(Xi)

)
, X ∈ X n, (4.4)

and

DQES
α (X) =

1

α
P

(
Y >

n∑
i=1

ESα(Xi)

)
, X ∈ X n, (4.5)

where Y = ESU(
∑n

i=1Xi) and U ∼ U[0, 1]. Furthermore, if P(
∑n

i=1Xi >
∑n

i=1 ESα(Xi)) >

0, then

DQES
α (X) =

1

α
min

r∈(0,∞)
E

[(
r

n∑
i=1

(Xi − ESα(Xi)) + 1

)
+

]
, (4.6)

and otherwise DQES
α (X) = 0.

As a first observation from Theorem 4.4, it is straightforward to compute DQVaR
α and

DQES
α on real or simulated data by applying (4.4) and (4.5) to the empirical distribution of

the data.

Theorem 4.4 also gives DQVaR
α a clear economic interpretation as the improvement of

insolvency probability when risks are pooled, making the discussion in Section 4.3.4 more

concrete. Suppose that X1, . . . , Xn are continuously distributed and they represent losses

from n assets. The total pooled capital is sα =
∑n

i=1VaRα(Xi), which is determined by the

marginals of X but not the dependence structure. An agent investing only in asset Xi with

capital computed by VaRα has an insolvency probability α = P(Xi > VaRα(Xi)). On the

other hand, by Theorem 4.4, α∗ is the probability that the pooled loss
∑n

i=1Xi exceeds the

pooled capital sα. The improvement from α to α∗, computed by α∗/α, is precisely DQVaR
α (X).

From here, it is also clear that DQVaR
α (X) < 1 is equivalent to P (

∑n
i=1Xi > sα) < α.

To compare DQVaR
α with DRVaRα , recall that the two diversification indices can be

rewritten as

DQVaR
α (X) =

P (
∑n

i=1Xi > sα)

α
and DRVaRα(X) =

VaRα (
∑n

i=1Xi)

sα
. (4.7)

From (4.7), we can see a clear symmetry between DQ, which measures the probability im-

provement, and DR, which measures the quantile improvement. DQ and DR based on ES

have a similar comparison.
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The range of DQ based on VaR is different from that based on ES, which is [0, 1] by

Proposition 4.1. We summarize them below.

Proposition 4.5. For α ∈ (0, 1) and n ⩾ 2, {DQVaR
α (X) : X ∈ X n} = [0,min{n, 1/α}] and

{DQES
α (X) : X ∈ X n} = [0, 1].

Both DQVaR
α and DQES

α take values on a bounded interval. In contrast, the diversification

ratio DRVaRα is unbounded, and DRESα is bounded above by 1 only when the ES of the total

risk is non-negative.

Remark 4.5. It is a coincidence that DQVaR
α for α < 1/n and DRvar both have a maximum

value n. The latter maximum value is attained by a risk vector (X/n, . . . , X/n) for any

X ∈ L2.

4.5.2 Capturing heavy tails and common shocks

In this section, we analyze three simple normal and t-models to illustrate some features

of DQ regarding heavy tails and common shocks in the portfolio models. Here, we only

present some key observations. A detailed study of DQs based on VaR and ES for ellip-

tical distributions and multivariate regularly varying models, including explicit formulas to

compute DQ for these models, can be found in Chapter 6.

Let Z = (Z1, . . . , Zn) be an n-dimensional standard normal random vector, and let ξ2

have an inverse gamma distribution independent of Z. Denote by itn(ν) the joint distribution

with n independent t-marginals t(ν, 0, 1), where the parameter ν represents the degrees of

freedom; see McNeil et al. (2015) for t-models. The model Y = (Y1, . . . , Yn) ∼ itn(ν) can be

stochastically represented by

Yi = ξiZi, for i ∈ [n], (4.8)

where ξ1, . . . , ξn are iid following the same distribution as ξ, and independent of Z. In

contrast, a joint t-distributed random vector Y′ = (Y ′
1 , . . . , Y

′
n) ∼ t(ν,0, In) has a stochastic

representation Y′ = ξZ, that is,

Y ′
i = ξZi, for i ∈ [n]. (4.9)
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Table 4.2: DQs/DRs based on VaR, ES, SD and var, where α = 0.05, n = 10 and ν = 3;

numbers in bold indicate the most diversified among Z,Y,Y′ according to the index D

D DQVaR
α DQES

α DRVaRα DRESα DRSD DRvar

Z ∼ N(0, In) 2.0× 10−6 1.9× 10−9 0.3162 0.3162 0.3162 1

Y ∼ itn(3) 0.0235 0.0124 0.3569 0.2903 0.3162 1

Y′ ∼ t(3,0, In) 0.0502 0.0340 0.3162 0.3162 0.3162 1

D(Z) < D(Y) Yes Yes Yes No No No

D(Y) < D(Y′) Yes Yes No Yes No No

In other words, Y′ is a standard normal random vector multiplied by a heavy-tailed common

shock ξ. All three models Z,Y,Y′ have the same correlation matrix, the identity matrix In.

Because of the common shock ξ in (4.9), large losses from components of Y′ are more

likely to occur simultaneously, compared to Y in (4.8), which does not have a common

shock. Indeed, Y′ is tail dependent (Example 7.39 of McNeil et al. (2015)) whereas Y is

tail independent. As such, at least intuitively (if not rigorously), diversification for portfolio

Y′ should be considered as weaker than Y, although both models are uncorrelated and

have the same marginals.13 By the central limit theorem, for ν > 2, the component-wise

average of Y (scaled by its variance) is asymptotically normal as n increases, whereas the

component-wise average of Y′ is always t-distributed. Hence, one may intuitively expect the

order D(Z) < D(Y) < D(Y′) to hold.

In Tables 4.2 and 4.3, we present DQ and DR for a few different models based on

N(0, In), t(ν,0, In), and itn(ν). We choose n = 10 and ν = 3 or 4,14 and thus we have five

models in total. As we see from Tables 4.2 and 4.3, DQs based on both VaR and ES report a

lower value for itn(ν) and a larger value for t(ν,0, In), meaning that diversification is weaker

for the common shock t-model (4.9) than the iid t-model (4.8). For the iid normal model, the

13On a related note, as discussed by Embrechts et al. (2002), correlation is not a good measure of diversi-

fication in the presence of heavy-tailed and skewed distributions.
14Most financial asset log-loss data have a tail-index between [3, 5], which corresponds to ν ∈ [3, 5]; see

e.g., Jansen and De Vries (1991).
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Table 4.3: DQs/DRs based on VaR, ES, SD and var, where α = 0.05, n = 10 and ν = 4;

numbers in bold indicate the most diversified among Z,Y,Y′ according to the index D

D DQVaR
α DQES

α DRVaRα DRESα DRSD DRvar

Z ∼ N(0, In) 2.0× 10−6 1.9× 10−9 0.3162 0.3162 0.3162 1

Y ∼ itn(4) 0.0050 0.0017 0.3415 0.2828 0.3162 1

Y′ ∼ t(4,0, In) 0.0252 0.0138 0.3162 0.3162 0.3162 1

D(Z) < D(Y) Yes Yes Yes No No No

D(Y) < D(Y′) Yes Yes No Yes No No

diversification is the strongest according to DQ. In contrast, DR sometimes reports that the

iid t-model has a larger diversification than the common shock t-model, which is counter-

intuitive. In the setting of both Tables 4.2 and 4.3, a risk manager governed by DQVaR
α

would prefer the iid portfolio over the common shock portfolio, but the preference is flipped

if the risk manager uses DRVaRα . A more detailed analysis on this phenomenon for varying

α ∈ (0, 0.1] is presented in Figure 5.1 in Section 5.6, and consistent results are observed.

4.6 Portfolio selection with DQ

Next, we focus on the optimal diversification problem

min
w∈∆n

DQVaR
α (w ⊙X) and min

w∈∆n

DQES
α (w ⊙X); (4.10)

recall that a smaller value of DQ means better diversification.15 Recall from Table 4.1 that the

first optimization is not quasi-convex and the second one is quasi-convex (Proposition 4.1).

We do not say that optimizing a diversification index has a decision-theoretic benefit; here we

simply illustrate the advantage of DQ in computation and optimization. Whether optimizing

diversification is desirable for individual or institutional investors is an open-ended question

15A possible alternative formulation to (4.10) is to use DQ as a constraint instead of an objective in the

optimization. This is mathematically similar to a risk measure constraint (e.g., Basak and Shapiro (2001),

Rockafellar and Uryasev (2002) and Mafusalov and Uryasev (2018)), but with a different interpretation, as

DQ is not designed to measure or control risk.
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which goes beyond this chapter; we refer to Van Nieuwerburgh and Veldkamp (2010), Boyle

et al. (2012) and Choi et al. (2017) for relevant discussions.

For the portfolio weight w, DQ based on VaR at level α ∈ (0, 1) is given by

DQVaR
α (w ⊙X) =

1

α
inf

{
β ∈ (0, 1) : VaRβ

(
n∑

i=1

wiXi

)
⩽

n∑
i=1

wiVaRα(Xi)

}
,

and DQ based on ES is similar. In what follows, we fix α ∈ (0, 1) andX = (X1, . . . , Xn) ∈ X n,

where X is L0 for VaR and L1 for ES, as in Section 4.5. Write 0 = (0, . . . , 0) ∈ Rn and

xρ
α = (ρα(X1), . . . , ρα(Xn)) for a given risk measure ρ.

Proposition 4.6. Fix α ∈ (0, 1) and X ∈ X n. The optimization of DQVaR
α (w⊙X) in (4.10)

can be solved by

min
w∈∆n

P
(
w⊤ (X− xVaR

α

)
> 0
)
. (4.11)

Assuming P(Xi > ESα(Xi)) > 0 for each i ∈ [n], the optimization of DQES
α (w⊙X) in (4.10)

can be solved by the convex program

min
v∈Rn

+\{0}
E
[(
v⊤ (X− xES

α

)
+ 1
)
+

]
, (4.12)

and the optimal w∗ is given by v/∥v∥1.

Proposition 4.6 offers efficient algorithms to optimize DQVaR
α and DQES

α in real-data

applications. The values of xVaR
α and xES

α can be computed by many existing estimators

of the individual losses (see e.g., McNeil et al. (2015)). In particular, a simple way to

estimate these risk measures is to use an empirical estimator. More specifically, if we have

data X(1), . . . ,X(N) sampled from X satisfying some ergodicity condition (being iid would

be sufficient), then the empirical version of the problem (4.11) is

minimize
N∑
j=1

1{w⊤(X(j)−x̂VaR
α )>0} over w ∈ ∆n, (4.13)

where x̂VaR
α is the empirical estimator of xVaR

α based on sample X(1), . . . ,X(N); see McNeil et

al. (2015). Write y(j) = X(j)− x̂VaR
α and zj = 1{w⊤y(j)>0} for j ∈ [n]. Problem (4.13) involves

a chance constraint (see e.g., Luedtke (2014) and Liu et al. (2016)). By using the big-M
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method (see e.g., Shen et al. (2010)) via choosing a sufficient large M (e.g., it is sufficient if

M is larger than the components of y(j) for all j), (4.13) can be converted into the following

linear integer program:

minimize
∑N

j=1 zj

subject to w⊤y(j) −Mzj ⩽ 0,
∑n

i=1wi = 1,

zj ∈ {0, 1}, wi ⩾ 0 for all j ∈ [N ] and i ∈ [n].

(4.14)

Similarly, the optimization problem (4.12) for DQES
α can be solved the empirical version of

the problem (4.12), which is a convex program:

minimize
N∑
j=1

max
{
v⊤ (X(j) − x̂ES

α

)
+ 1, 0

}
over v ∈ R+, (4.15)

where x̂ES
α is the empirical estimator of xES

α based on sample X(1), . . . ,X(N). Both problems

(4.14) and (4.15) can be efficiently solved by modern optimization programs, such as CVX

programming (see e.g., Matmoura and Penev (2013)).

Additional linear constraints, such as those on budget or expected return, can be eas-

ily included in (4.11)-(4.15), and the corresponding optimization problems can be solved

similarly.

Tie-breaking needs to be addressed when working with (4.13) since its objective function

takes integer values. In dynamic portfolio selection, it is desirable to avoid adjusting positions

too drastically or frequently. Therefore, in the real-data analysis in Section 4.7.3, among tied

optimizers, we pick the closest one (in L1-norm ∥ · ∥1 on Rn) to a given benchmark w0, the

portfolio weight of the previous trading period. With this tie-breaking rule, we solve

minimize ∥w −w0∥1 over w ∈ ∆n subject to
N∑
j=1

1{w⊤y(j)>0} ⩽ m∗, (4.16)

where m∗ is the optimum of (4.13). A tie-breaking for (4.15) may need to be addressed

similarly since (4.15) is not strictly convex.

4.7 Numerical illustrations

To illustrate the performance of DQ, we collect historical asset prices from Yahoo Fi-

nance and conduct three sets of numerical experiments based on the data. We use the period
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Figure 4.2: DQs and DRs based on VaR and ES with α = 0.05
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from January 3, 2012, to December 31, 2021, with a total of 2518 observations of daily losses

and 500 trading days for the initial training. In Section 4.7.1, we first compare DQs and DRs

based on VaR and ES. In Section 4.7.2, we calculate the values of DQVaR
α and DQES

α under

different selections of stocks. Finally, we construct portfolios by minimizing DQVaR
α , DQES

α

and DRSD and by the mean-variance criterion in Section 4.7.3.

4.7.1 Comparing DQ and DR

We first identify the largest stock in each of the S&P 500 sectors ranked by market cap

in 2012. Among these stocks, we select the 5 largest stocks16 to build our portfolio. We

compute DQVaR
α , DQES

α , DRVaRα and DRESα on each day using the empirical distribution in

a rolling window of 500 days, where we set α = 0.05.

Figure 4.2 shows that the values of DQ and DR are between 0 and 1. This corresponds to

the observation in Theorem 4.3 that DQρ
α < 1 is equivalent to DRρα < 1. DQ has a similar

temporal pattern to DR in the above period of time, with a large jump when COVID-19

exploded, which is more visible for DQ than for DR. We remind the reader that DQ and

DR are not meant to be compared on the same scale, and hence the fact that DQ has a

larger range than DR should be taken lightly. We also note that the values of DQVaR
α are in

discrete grids. This is because the empirical distribution function takes value in multiples of

16XOM from ENR, AAPL from IT, BRK/B from FINL, WMT from CONS, and GE from INDU.
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1/N there N is the sample size (500 in this experiment) and hence DQVaR
α takes the values

k/(Nα) for an integer k; see (4.4). If a smooth curve is preferred, then one can employ a

smoothed VaR through linear interpolation. This is a standard technique for handling VaR;

see McNeil et al. (2015, Section 9.2.6) and Li and Wang (2022, Remark 8 and Section B).

4.7.2 DQ for different portfolios

In this section, we fix α = 0.05 and calculate the values of DQVaR
α and DQES

α under

different portfolio compositions of stocks. We consider portfolios with the following stock

compositions:

(A) the two largest stocks from each of the 10 different sectors of S&P 500;

(B) the largest stock from each of 5 different sectors of S&P 500 (as in Section 4.7.1);

(C) the 5 largest stocks, AAPL, MSFT, IBM, GOOGL and ORCL, from the Information

Technology (IT) sector;

(D) the 5 largest stocks, BRK/B, WFC, JPM, C and BAC, from the Financials (FINL)

sector.

Figure 4.3: DQs based on VaR (left) and ES (right) with α = 0.05
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We make a few observations from Figure 4.3. Both DQVaR
α and DQES

α provide similar
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comparative results. The order (A)⩽(B)⩽(C)⩽(D) is consistent with our intuition.17 First,

portfolio (A) of 20 stocks has the strongest diversification effect among the four compositions.

Second, portfolio (B) across 5 sectors has stronger diversification than (C) and (D) within

one sector. Third, portfolio (C) of 5 stocks within the IT sector has a stronger diversification

than portfolio (D) of 5 stocks within the FINL sector, consistent with the fact that the

stocks in the IT sector are less correlated. Moreover, DQVaR
α for the FINL sector is larger

than 1 during some period of time, which means that there is no diversification benefit if

risk is evaluated by VaR. All DQ curves based on ES show a large up-ward jump around

the COVID-19 outbreak; such a jump also exists for curves based on VaR but it is less

pronounced.

4.7.3 Optimal diversified portfolios

In this section, we fix α = 0.1 and build portfolios via DQVaR
α , DQES

α , DRSD, and the

mean-variance criterion in the Markowitz (1952) model.18 The optimal portfolio problems

using DRSD and the Markowitz model are well studied in literature; see e.g. Choueifaty

and Coignard (2008). We compare these portfolio wealth with the equal weighted (EW)

portfolio and the simple buy-and-hold (BH) portfolio. For an analysis on the EW strategy,

see DeMiguel et al. (2009).

We apply the algorithms in Proposition 4.6 to optimize DQVaR
α and DQES

α , which are

extremely fast. A tie-breaking is addressed for each objective as in (4.16). Minimization of

DRSD and the Markowitz model can be solved by existing algorithms. The initial wealth is

set to 1, and the risk-free rate is r = 2.84%, which is the 10-year yield of the US treasury bill

in Jan 2014. The target annual expected return for the Markowitz portfolio is set to 10%.

We optimize the portfolio weights in each month with a rolling window of 500 days. That is,

in each month, roughly 21 trading days, starting from January 2, 2014, we use the preceding

500 trading days to compute the optimal portfolio weights using the method described above.

17The observations here are consistent with those from applying DRSD (which is also a DQ) in the same

setting; see Section 5.8.
18One may try other portfolio criteria other than mean-variance. For instance, Levy and Levy (2004)

found that portfolio strategies based on prospect theory perform similarly to the mean-variance strategies.
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The portfolio is rebalanced every month. We choose the 4 largest stocks from each of the

10 different sectors of S&P 500 ranked by market cap in 2012 as the portfolio compositions

(40 stocks in total). The portfolio performance is reported in Figure 4.4, and the cumulative

distribution of the sorted portfolio weights, averaged over each month, is shown in Figure 4.5.

Summary statistics, including the annualized return (AR), the annualized volatility (AV),

the Sharpe ratio (SR), and the average trading proportion (ATP), are reported in Table

4.4.19

From these results, we can see that the portfolio optimization strategies based on min-

imizing DQ perform quite well, similarly to those based on DRSD, and better than the

Markowitz strategy. Moreover, ATP and portfolio weight distribution are similar across the

strategies based on the three diversification indices and the Markowitz strategy. In contrast,

the EW and BH strategies have more uniform portfolio weight distributions and smaller

ATP, as anticipated. We remark that it is not our intention to analyze which diversification

strategy generates the highest return, which is a challenging question that needs a separate

study; also, we do not suggest diversification should or should not be optimized in practice.

The empirical results here are presented to illustrate how our proposed diversification indices

work in the context of portfolio selection. More empirical results with some other datasets

and portfolio strategies are given in Section 5.8, and the results show similar patterns.

4.8 Concluding remarks

In this chapter, we put forward six axioms to jointly characterize a new class of indices

of diversification, and a seventh axiom to specialize this class. The new diversification index

DQ has favourable features both theoretically and practically, and it is contrasted with its

competitors, in particular DR. At a high level, because of the conceptual symmetry in Figure

19ATP is an approximation of trading costs, and it is computed as the average of
∑T

t=1 |wt
i − wt−

i | over

i = 1, . . . , n, where T = 96 is the total number of months, wt
i is the portfolio weight of asset i at the beginning

of month t, and wt−
i is the portfolio weight of asset i at the end of month t − 1, with w1−

i set to w1
i . Note

that for BH, ATP is 0 because there is no trading, whereas for EW, ATP is positive, as rebalancing occurs

at the end of each month.
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Figure 4.4: Wealth processes for portfolios, 40 stocks, Jan 2014 - Dec 2021
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Figure 4.5: Cumulative portfolio weights, 40 stocks, Jan 2014 - Dec 2021
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4.1 (see also (4.7)), we expect both DQ and DR to have advantages and disadvantages in

different applications, and none should fully dominate the other. Nevertheless, we find many

attractive features of DQ through the results in this chapter, which suggest that DQ may be

a better choice in many situations.

We summarize these features below. Some of these features are shared by DR, but

many are not. (i) DQ defined on a class of MCP risk measures can be uniquely characterized

by six intuitive axioms (Theorem 4.1). DQ defined on a class of coherent risk measures can

be uniquely characterized by further adding the axiom of portfolio convexity (Theorem 4.2).
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Table 4.4: Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR), and aver-

age trading proportion (ATP) for different portfolio strategies from Jan 2014 to Dec 2021

% DQVaR
α DQES

α DRSD Markowitz EW BH

AR 12.56 14.59 14.36 7.93 11.91 12.88

AV 14.64 15.74 14.99 12.98 15.92 14.34

SR 66.40 74.66 76.85 39.22 56.95 70.02

ATP 19.29 14.75 15.61 18.79 4.43 0

These two results lay an axiomatic foundation for using DQ as a diversification index. (ii)

DQ further satisfies many properties for common risk measures (Propositions 4.1-4.4). These

properties are not shared by the corresponding DR. (iii) DQ is intuitive and interpretable

with respect to dependence and common perceptions of diversification (Theorem 4.3). (iv)

DQ can be applied to a wide range of risk measures, such as the regulatory risk measures

VaR and ES, as well as expectiles. In cases of VaR and ES, DQ has simple formulas and

convenient properties (Theorem 4.4 and Proposition 4.5). (v) Portfolio optimization of DQs

based on VaR and ES can be computed very efficiently (Proposition 4.6). (vi) DQ can

be easily applied to real data and it produces results that are consistent with our usual

perception of diversification (Section 4.7).

Among the class of DQ, for most applications, we generally recommend the use of DQ

based on ES for the following reasons: (a) it satisfies all seven axioms of intuitive appeal; (b)

it has a simple optimization formula that is very convenient in portfolio optimization; (c) it

is closely connected to financial regulation as ES is the standard risk measure of Basel IV;

(d) it has a flexible parameter α that allows for reflecting the sensitivity to the tail risk of

the decision maker; (e) it is conceptually easy to interpret as the (usually unique) level β of

the ES family such that ESβ(
∑n

i=1Xi) =
∑n

i=1 ESα(Xi).

We also mention a few interesting questions on DQ, which call for thorough future study.

(i) DQ is defined through a class of risk measures. It would be interesting to formulate DQ

using expected utility or behavioral decision models, to analyze the decision-theoretic im-

plications of DQ. For instance, DQ based on entropic risk measures can be equivalently
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formulated using exponential utility functions. Alternatively, one may also build DQ di-

rectly from acceptability indices (see Remark 4.3). (ii) To compute DQ, one needs to invert

the decreasing function β 7→ ρβ(
∑n

i=1Xi). In the case of VaR and ES, the formula for this

inversion is simple (Theorem 4.4). For more complicated classes of risk measures, this com-

putation may be complicated and requires detailed analysis. (iii) For general distributions

and risk measures other than VaR and ES, finding analytical formulas or efficient algorithms

for optimal diversification using either DQ or DR is a challenging task. (iv) Further analysis

of DQ without scale-invariance, such as those built on star-shaped risk measures (Castagnoli

et al. (2022)), may further generalize the domain of application.
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Chapter 5

Diversification quotients: Technical

details and illustrations

5.1 Outline

We organize this chapter as follows. The proofs of the main results in Chapter 4,

Theorems 4.1–4.4, are presented in Section 5.2. Additional results, discussions, and proofs

of propositions are presented in Section 5.3 (for Section 4.2), 5.4 (for Section 4.3), 5.5 (for

Section 4.4), 5.6 (for Section 4.5), and 5.7 (for Section 4.6). Finally, in Section 5.8, we present

other examples for the optimal portfolio problem that complement the empirical studies in

Section 4.7.3.

5.2 Proofs of Theorems 4.1–4.4

Proof of Theorem 4.1. For X ∈ X n and a risk measure ϕ : X → R, denote by S(X) =∑n
i=1Xi and Xϕ = (X1 − ϕ(X1), . . . , Xn − ϕ(Xn)).

We first verify the “if” statement. Using the definition of DQ and properties of MCP

risk measures, it is straightforward to verify [+], [LI], [SI]. Below we check the other three

axioms.
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To show [R]ϕ, for X,Y ∈ X n such that X
m≃ Y and

∑n
i=1Xi ⩽

∑n
i=1 Yi, we have∑n

i=1 ρα(Xi) =
∑n

i=1 ρα(Yi) and ρβ(
∑n

i=1Xi) ⩽ ρβ(
∑n

i=1 Yi) for all β ∈ I. Hence,

DQρ
α(X) =

1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}

⩽
1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Yi

)
⩽

n∑
i=1

ρα(Yi)

}
= DQρ

α(Y).

To show [N]ϕ, it is straightforward that DQρ
α(0) = 0. Let X = (X, . . . , X) for any

X ∈ X . We have

DQρ
α(X) =

1

α
inf{β ∈ I : ρβ(nX) ⩽ nρα(X)} ⩽

α

α
= 1.

If Y
m
≻ (X, . . . , X) and

∑n
i=1 Yi ⩾ nX, then

∑n
i=1 ρα(Yi) < nρα(X) ⩽ ρα(

∑n
i=1 Yi). Hence,

DQρ
α(Y) ⩾ 1.

To show [C]ϕ, for X ∈ X n, we have a∗X = inf{β ∈ I : ρβ(S(Xρα)) ⩽ 0}. If a∗X = 0,

it is clear that DQρ
α(X) = 0 and [C]ϕ holds as DQρ

α(Y
k) ⩾ 0 for any Yk ∈ X n. Now,

we assume a∗X > 0. For any 0 ⩽ β < a∗X, we have ρβ(S(Xρα)) > 0. Since Yk m≃ X for

each k and (S(X) − S(Yk))+
L∞
−→ 0 as k → ∞, for any ϵ > 0, there exists K such that

S(Xρα) − S(Yk
ρα) ⩽ ϵ for all k ⩾ K. For any 0 < δ < a∗X, let 0 < ϵ < ρa∗X−δ(S(Xρα)). It

is clear that 0 < ϵ < ρβ(S(Xρα)) for all 0 < β < a∗X − δ. Hence, for all 0 < β < a∗X − δ,

there exists K such that 0 < ρβ(S(Xρα)) − ϵ ⩽ ρβ(S(Y
k
ρα)) for all k ⩾ K, which implies

a∗
Yk ⩾ a∗X − δ. Therefore, (DQρ

α(X)−DQρ
α(Y

k))+ → 0.

Next, we show the “only if” statement. Assume that D : X n → R satisfies [+], [LI],

[SI], [R]ϕ, [N]ϕ and [C]ϕ. Note that Xϕ
m≃ Yϕ for all X,Y ∈ X n since ϕ(X − ϕ(X)) = 0 for

any X ∈ X . Hence, by using [R]ϕ, we know that S(Xϕ) = S(Yϕ) implies D(Xϕ) = D(Yϕ).

Further, by [LI], we have D(X) = D(Y) if S(Xϕ) = S(Yϕ). This means that D(X) is

determined by S(Xϕ). Define the mapping

R : X → [0,∞], R(X) = inf{D(X) : X ⩽ S(Xϕ), X ∈ X n}, (5.1)

with the convention inf ∅ = ∞. Next, we will verify several properties of R.

(a) R(S(Xϕ)) = D(X) for X ∈ X n. The inequality R(S(Xϕ)) ⩽ D(X) follows directly

from (5.1). To see the opposite direction of the inequality, suppose R(S(Xϕ)) < D(X).
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By (5.1), there exists Y ∈ X n such that D(Y) < D(X) and S(Xϕ) ⩽ S(Yϕ). This

contradicts [R]ϕ of D.

(b) R(λX) = R(X) for all λ > 0 and X ∈ X . This follows directly from (5.1), [SI] of D and

positive homogeneity of ϕ which gives (λX)ϕ = λXϕ.

(c) R(X) ⩽ R(Y ) for all X, Y ∈ X with X ⩽ Y . This follows directly from (5.1).

(d) R(0) = 0. This follows directly from (5.1) and D(0) = 0 in [N]ϕ.

(e) limc↓0R(S(Xϕ) − c) = R(S(Xϕ)) for X ∈ X n. Let X = S(Xϕ). By (c), we have

limc↓0R(X − c) ⩽ R(X). Assume limc↓0R(X − c) < R(X); that is, there exists δ > 0

such that R(X − c) < R(X) − δ for all c > 0. Let ck = 1/k for k ∈ N. By (5.1), there

exists a sequence {Yk}k∈N such that X − ck ⩽ S(Yk
ϕ) and D(Yk

ϕ) < D(Xϕ) − δ. For

{Yk
ϕ}k∈N, we have 0 ⩽ (S(Xϕ)− S(Yk

ϕ))+ ⩽ ck, which implies (S(Xϕ)− S(Yk
ϕ))+

L∞
−→ 0

as k → ∞. By [C]ϕ, we have (D(Xϕ)−D(Yk
ϕ))+ → 0; that is, for any δ > 0, there exists

K ∈ N such that D(Xϕ)−δ ⩽ D(Yk
ϕ) for all k > K, which is a contradiction. Therefore,

we have limc↓0R(S(Xϕ)− c) = R(S(Xϕ)).

Let I = (0,∞). For each β ∈ (0,∞), let Aβ = {X ∈ X : R(X) ⩽ β}. Since R is

monotone, Aβ is a decreasing set; i.e., X ∈ Aβ implies Y ∈ Aβ for all Y ⩽ X. Moreover, Aβ

is conic; i.e., X ∈ Aβ implies λX ∈ Aβ for all λ > 0. Moreover, we have Aβ ⊆ Aγ for β ⩽ γ,

and Aβ ̸= ∅ since 0 ∈ A0.

Let ρβ(X) = inf{m ∈ R : X − m ∈ Aβ} for β ∈ I. Since ρβ is defined via a conic

acceptance set, (ρβ)β∈I is a class of MCP risk measures; see Föllmer and Schied (2016). It is

also clear that ρβ is decreasing in β. Note that X ∈ Aβ implies ρβ(X) ⩽ 0. Hence,

R(X) = inf{β ∈ I : R(X) ⩽ β} = inf{β ∈ I : X ∈ Aβ} ⩾ inf{β ∈ I : ρβ(X) ⩽ 0}.

For X ∈ {S(Xϕ) : X ∈ X n}, using (e), we have R(X − m) ⩽ β for all m > 0 implies

R(X) ⩽ β. Then we have

inf{β ∈ I : ρβ(X) ⩽ 0} = inf{β ∈ I : R(X−m) ⩽ β for all m > 0} ⩾ inf{β ∈ I : R(X) ⩽ β}.
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Therefore, inf{β ∈ I : ρβ(S(Xϕ)) ⩽ 0} = inf{β ∈ I : R(S(Xϕ)) ⩽ β} = R(S(Xϕ)) for all

X ∈ X n. Using (a), we get, for all X ∈ X n,

D(X) = R(S(Xϕ)) = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ϕ(Xi)

}
.

Take a duplicate portfolio X = (X, . . . , X). Together with [PH] of ρβ, D(X) ⩽ 1 implies

D(X, . . . , X) = inf {β ∈ I : ρβ(X) ⩽ ϕ(X)} ⩽ 1,

which is equivalent to ρβ(X) ⩽ ϕ(X) for β > 1. For m < ϕ(X), take any Y = (Y1, . . . , Yn)

satisfying S(Yϕ) ⩾ X−m; suchY may not exist. Let Z = (Y1−ϕ(Y1)+m/n, . . . , Yn−ϕ(Yn)+

m/n), yielding
∑n

i=1 Zi =
∑n

i=1 Yi−
∑n

i=1 ϕ(Yi)+m ⩾ X and (Z1 . . . , Zn)
m
≻ (X/n, . . . , X/n).

Hence, Z is worse than duplicate. By [LI] and [N]ϕ, we have D(Y) = D(Z) ⩾ 1. Since

D(Y) ⩾ 1 for all such Y, by (5.1), we have R(X −m) ⩾ 1. The above observation implies

ρ1−ϵ(X) ⩾ ϕ(X) for any ϵ > 0 since ρ1−ϵ(X) = inf{m ∈ R : R(X −m) ⩽ 1− ϵ}. Therefore,

we get ρ1−ϵ ⩾ ϕ ⩾ ρ1+ϵ for all ϵ > 0. Let ρ̃1 = ϕ, and ρ̃β = ρβ for β ̸= 1. The class

ρ̃ = (ρ̃β)β∈I of MCP risk measures is decreasing in β by the above argument. Moreover, for

any X ∈ X , since the two decreasing curves β 7→ ρβ(X) and β 7→ ρ̃β(X) differ at only one

point, their (left) inverses coincide, and we have, for all X ∈ X n,

inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ϕ(Xi)

}
= inf

{
β ∈ I : ρ̃β

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρ̃1(Xi)

}
,

which implies D = DQρ̃
1 on X n. A reparametrization via ρ̂β = ρ̃β/α leads to D = DQρ̂

α and

ρ̂α = ϕ.

The next two remarks are useful in the proof of Theorem 4.2.

Remark 5.1. In the proof of Theorem 4.1, the constructed class of risk measures (ρβ)β∈I

exhibits right continuity in β. This is established based on the condition
⋂

β>β∗ Aβ = Aβ∗ .

Remark 5.2. For a non-linear coherent risk measure ϕ, there exists Y ∈ X such that ϕ(Y ) +

ϕ(−Y ) > 0. Suppose otherwise. Since ϕ is coherent risk measure, we have ϕ(Y )+ϕ(−Y ) ⩾ 0,

and this implies ϕ(Y ) + ϕ(−Y ) = 0 for all Y ∈ X . We obtain ϕ(Y ) ⩽ ϕ(X + Y ) + ϕ(−X) =

ϕ(X+Y )−ϕ(X) and ϕ(X+Y ) ⩽ ϕ(X)+ϕ(Y ) for any X, Y ∈ X . This implies ϕ(X+Y ) =

ϕ(X) + ϕ(Y ) for any X, Y ∈ X , contradicting the non-linearity of ϕ.
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Proof of Theorem 4.2. For the“if” statement, since a coherent risk measure is also MCP, it

follows that DQρ
α satisfies [+], [LI], [SI], [R]ϕ and [N]ϕ, [C]ϕ by Theorem 4.1. Next, we show

that DQρ
α satisfies [PC].

For any X ∈ X n, let rXβ : ∆n → R be given by

rXβ (w) = ρβ

(
n∑

i=1

wiXi

)
−

n∑
i=1

ρα (wiXi)

for β ∈ I. From [PH] of ρα, we have rXβ (w) = ρβ (
∑n

i=1wiXi) − w⊤xρ
α. Convexity of ρβ

implies convexity of w 7→ rXβ (w). Hence, for the portfolio weight λw + (1 − λ)v ∈ ∆n, DQ

based on ρ at level α ∈ (0, 1) is given by

DQρ
α((λw + (1− λ)v)⊙X) =

1

α
inf
{
β ∈ I : rXβ (λw + (1− λ)v) ⩽ 0

}
⩽

1

α
inf
{
β ∈ I : λrXβ (w) + (1− λ)rXβ (v) ⩽ 0

}
⩽

1

α
max

{
inf{β ∈ I : rXβ (w) ⩽ 0}, inf{β ∈ I : rXβ (v) ⩽ 0}

}
= max {DQρ

α(w ⊙X),DQρ
α(v ⊙X)} ,

which gives us quasi-convexity of w 7→ DQρ
α(w ⊙ X). By Remark 4.1, we have that DQρ

α

satisfies [PC].

For the “only if” statement, we have constructed a class of MCP risk measures ρ =

(ρβ)β∈(0,∞) with ρα = ϕ in the proof of Theorem 4.1. We will further show that ρ is a class

of convex risk measures using [PC].

For any λ ∈ [0, 1],w,v ∈ ∆n,X ∈ X n and β ∈ (0,∞), if rXβ (w) ⩽ 0 and rXβ (v) ⩽ 0, then

we have DQρ
α(w⊙X) ⩽ β and DQρ

α(v⊙X) ⩽ β. By [PC], we have DQρ
α((λw+(1−λ)v)⊙X) ⩽

β. As discussed in Remark 5.1, ρβ is right-continuous for any X ∈ X . Hence, we have

rXβ (λw + (1 − λ)v) ⩽ 0. That is, the set {w ∈ ∆n : rXβ (w) ⩽ 0} is convex for any X ∈ X n

and β ∈ I.

Let Conv{X − ρα(X) : X ∈ X} be the convex hull of {X − ρα(X) : X ∈ X}. Next,

we show that Conv{X − ρα(X) : X ∈ X} = {X ∈ X : ρα(X) ⩽ 0}. For any Z ∈

Conv{X − ρα(X) : X ∈ X}, there exist (λ1, . . . , λn) ∈ ∆n and X1, . . . , Xn ∈ X such that

Z =
∑n

i=1 λi(Xi − ρα(Xi)). Since ρα is convex, we have

ρα(Z) = ρα

(
n∑

i=1

λi(Xi − ρα(Xi))

)
⩽

n∑
i=1

λiρα(Xi − ρα(Xi)) = 0.
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Hence, Conv{X − ρα(X) : X ∈ X} ⊆ {X ∈ X : ρα(X) ⩽ 0}.

On the other hand, since ρα is a non-linear coherent risk measure, as noted in Remark

5.2, there exists Y such that ρα(Y ) + ρα(−Y ) > 0. Let Y ′ = 1 − Y . For any Z ∈ X with

ρα(Z) ⩽ 0, we can find θ > 0 such that

Z = (1− 2λ)(X − ρα(X)) + λ(θY − ρα(θY )) + λ(θY ′ − ρα(θY
′))

with λ = −ρα(Z)/(θρα(Y ) + θρα(−Y )) and X = 1/(1 − 2λ)Z. It is clear that λ ∈ [0, 1/2]

holds if θ is sufficiently large. Hence, Z ∈ Conv{X − ρα(X) : X ∈ X}. This implies

Conv{X − ρα(X) : X ∈ X} ⊇ {X ∈ X : ρα(X) ⩽ 0}.

Therefore, for any X, Y ∈ X with ρα(X) ⩽ 0 and ρα(Y ) ⩽ 0, we can find w,v ∈ ∆n

and X ∈ X n with n ⩾ 4 such that X = w⊤(X − xρ
α) and Y = v⊤(X − xρ

α). Since

rβ(w) = ρβ
(
w⊤(X− xρ

α)
)
, we have ρβ(X) = rXβ (w), ρβ(Y ) = rXβ (v) and ρβ(λX+(1−λ)Y ) =

rXβ (λw + (1 − λ)v). If ρβ(X) ⩽ 0 and ρβ(Y ) ⩽ 0, we have rXβ (λw + (1 − λ)v) ⩽ 0 for any

λ ∈ [0, 1]; that is ρβ(λX + (1 − λ)Y ) ⩽ 0. Hence, ρβ is quasi-convex. Since ρβ is MCP, we

further have ρβ is coherent.

Proof of Theorem 4.3. (i) As
∑n

i=1Xi ⩽
∑n

i=i ρα(Xi) a.s. and ρ0 ⩽ ess-sup, it is clear that

α∗ = 0 in (4.3), which implies DQρ
α(X) = 0. Conversely, if DQρ

α(X) = 0, then α∗ = 0. By

definition of ρ0 and DQρ
α, this implies ρ0(

∑n
i=1Xi) ⩽

∑n
i=1 ρα(Xi), and hence

∑n
i=1Xi ⩽∑n

i=1 ρα(Xi) a.s.

(ii) We first show the “only if” statement. As ρ is left continuous and non-flat from the

left at (α,
∑n

i=1Xi) and
∑n

i=1 ρα(Xi)− ρα (
∑n

i=1Xi) > 0, there exists δ > 0 such that

ρβ

(
n∑

i=1

Xi

)
− ρα

(
n∑

i=1

Xi

)
<

n∑
i=1

ρα(Xi)− ρα

(
n∑

i=1

Xi

)

for all β ∈ (α− δ, α). Hence, we have α∗ ⩽ α− δ < α, which leads to DQρ
α(X) < 1.

Next, we show the “if” statement. As DQρ
α(X) < 1, we have α > α∗. By (4.3), there

exists β ∈ (α∗, α) such that
n∑

i=1

ρα(Xi) ⩾ ρβ

(
n∑

i=1

Xi

)
.
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Because ρ is non-flat from the left at (α,
∑n

i=1Xi), we have

n∑
i=1

ρα(Xi) ⩾ ρβ

(
n∑

i=1

Xi

)
> ρα

(
n∑

i=1

Xi

)
.

(iii) If ρα satisfies [PH], for X = (λ1X, . . . , λnX) where λ1, . . . , λn ⩾ 0, we have

α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

λiX

)
⩽

n∑
i=1

λiρα(X)

}
.

It is clear that ρα (
∑n

i=1 λiX) = (
∑n

i=1 λi)ρα(X). Together with the non-flat condition and

ρβ (
∑n

i=1 λiX) >
∑n

i=1 λiρα(X) for all β < α, we have α∗ = α, and thus DQρ
α(X) = 1.

(iv) If ρα is comonotonic-additive and X is comonotonic, then

α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi) = ρα

(
n∑

i=1

Xi

)}
,

which, together with the non-flat condition, implies that α∗ = α, and thus DQρ
α(X) = 1.

Proof of Theorem 4.4. We first show (4.4). For any X ∈ X , t ∈ R and α ∈ (0, 1), by Lemma

1 of Guan et al. (2022), P(X > t) ⩽ α if and only if VaRα(X) ⩽ t. Hence,

P

(
n∑

i=1

Xi >
n∑

i=1

VaRα(Xi)

)
= inf

{
β ∈ (0, 1) : P

(
n∑

i=1

Xi >
n∑

i=1

VaRα(Xi)

)
⩽ β

}

= inf

{
β ∈ (0, 1) : VaRβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi)

}
,

and (4.4) follows. The formula (4.5) for DQES
α follows from a similar argument to (4.4) by

noting that Y is a random variable with VaRα(Y ) = ESα(
∑n

i=1Xi).

Next, we show the last statement of the theorem. If P(
∑n

i=1Xi >
∑n

i=1 ESα(Xi)) = 0,

then DQES
α (X) = 0 by Theorem 4.3 (i).

Below, we assume P(
∑n

i=1Xi >
∑n

i=1 ESα(Xi)) > 0. The formula (4.6) is very similar

to Proposition 2.2 of Mafusalov and Uryasev (2018), where we additionally show that the

minimizer to (4.6) is not 0. Here we present a self-contained proof based on the well-known

formula of ES (Rockafellar and Uryasev (2002)),

ESβ(X) = min
t∈R

{
t+

1

β
E [(X − t)+]

}
, for X ∈ X and β ∈ (0, 1).
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Using this formula, we obtain, by writing X ′
i = Xi − ESα(Xi) for i ∈ [n],

DQES
α (X) =

1

α
inf

{
β ∈ (0, 1) : ESβ

(
n∑

i=1

Xi

)
−

n∑
i=1

ESα(Xi) ⩽ 0

}

=
1

α
inf

{
β ∈ (0, 1) : min

t∈R

{
t+

1

β
E

[(
n∑

i=1

X ′
i − t

)
+

]}
⩽ 0

}

=
1

α
inf

{
β ∈ (0, 1) :

1

β
E

[(
n∑

i=1

X ′
i − t

)
+

]
⩽ −t for some t ∈ R

}

=
1

α
inf

{
β ∈ (0, 1) : E

[(
r

n∑
i=1

X ′
i + 1

)
+

]
⩽ β for some r ∈ (0,∞)

}

=
1

α
inf

r∈(0,∞)
E

[(
r

n∑
i=1

X ′
i + 1

)
+

]
.

Let f : [0,∞) → [0,∞), r 7→ E[(r
∑n

i=1X
′
i + 1)+]. It is clear that f(0) = 1. Moreover,

f(r) ⩾ rE
[
(X ′

i)+
]
→ ∞ as r → ∞.

By Theorem 4.1 (iii), we have DQES
α (X) ⩽ 1, and hence infr∈(0,∞) f(r) ⩽ α < 1. The

continuity of f yields infr∈(0,∞) f(r) = minr∈(0,∞) f(r), and thus (4.6) holds.

5.3 Additional results for Section 4.2

In this section, we present an impossibility result showing a conflicting nature of the

three natural properties [+], [LI] and [SI] for some diversification indices defined via risk

measures. As mentioned in Section 4.2, the most commonly used diversification indices

depend on X through its values assessed by some risk measure ϕ. That is, given a risk

measures ϕ and a portfolio X, the diversification index can be written as

D(X) = R

(
ϕ

(
n∑

i=1

Xi

)
, ϕ(Xi), . . . , ϕ(Xn)

)
for some function R : Rn+1 → R. (5.2)

We will say that D is ϕ-determined if (5.2) holds. Often, one may further choose R so

that D(X) decreases in ϕ(
∑n

i=1Xi) and increases in ϕ(Xi) for each i ∈ [n], for a proper

interpretation of measuring diversification.

We show that a diversification index based on an MCP risk measure, such as VaR or

ES satisfying all three properties [+], [LI] and [SI] can take at most 3 different values. In
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this case, we will say that the diversification index D is degenerate. In fact, this result can

be extended to more general properties [PH]γ and [CA]m with γ ∈ R and m ∈ R of the risk

measure ϕ, with definitions given at the beginning of Section 4.4.

Proposition 5.1. Fix n ⩾ 1. Suppose that a risk measure ϕ satisfies [PH]γ and [CA]m with

γ ∈ R and m ̸= 0. A diversification index D is ϕ-determined and satisfies [+], [LI] and [SI]

if and only if for all X ∈ X n,

D(X) = C11{d<0} + C21{d=0} + C31{d>0}, (5.3)

where d = DBϕ(X) =
∑n

i=1 ϕ(Xi)− ϕ (
∑n

i=1Xi) for some C1, C2, C3 ∈ R+ ∪ {∞}.

We first present a lemma to prepare for the proof of Proposition 5.1.

Lemma 5.1. A function R : Rn+1 → R satisfies, for all x0 ∈ R, x = (x1, . . . , xn) ∈ Rn,

c = (c1, . . . , cn) ∈ Rn and λ > 0, (i) R (x0 +
∑n

i=1 ci,x+ c) = R(x0,x) and (ii) R(λx0, λx) =

R(x0,x), if and only if there exist C1, C2, C3 ∈ R such that

R(x0,x) = C11{r<0} + C21{r=0} + C31{r>0}, (5.4)

where r =
∑n

i=1 xi − x0, for all x0 ∈ R and x ∈ Rn.

Proof. First, we show that R in (5.4) satisfies (i) and (ii). Assume r < 0. For any c ∈ Rn

and λ > 0, it is clear that x0 +
∑n

i=1 ci <
∑n

i=1(xi + ci) and λx0 <
∑n

i=1 λxi. Therefore, (i)

and (ii) are satisfied. The cases of r = 0 and r > 0 follow by the same argument.

Next, we verify the “only if” part. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) satisfying∑n
i=1 xi =

∑n
i=1 yi, let c = y − x. For any x0 ∈ R, we have

∑n
i=1 ci =

∑n
i=1(yi − xi) = 0.

Therefore,

R(x0,x) = R

(
x0 +

n∑
i=1

ci,x+ c

)
= R(x0,y).

Thus, the value of R(x0,x) only depends on x0 and
∑n

i=1 xi. Let R̃ : R2 → R be a function

such that R̃ (x0,
∑n

i=1 xi) = R(x0,x). From the properties of R, R̃ satisfies R̃(a+ c, b+ c) =

R̃(a, b) for any c ∈ R, and R̃(λa, λb) = R(a, b) for any λ > 0. Hence, we have

R̃(a, b) = R̃(a− b, 0) = R̃(1, 0) for a > b,
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R̃(a, b) = R̃(0, b− a) = R̃(0, 1) for a < b,

and

R̃(a, b) = R̃(a− a, b− a) = R̃(0, 0) for a = b.

Let C1 = R̃(1, 0), C2 = R̃(0, 0) and C3 = R̃(0, 1). We have R(x0,x) = R̃(x0,
∑n

i=1 xi), which

has the form in (5.4).

Proof of Proposition 5.1. Let us first prove sufficiency. By definition, D satisfies [+] and D

is ϕ-determined. Next, we prove D satisfies [LI] and [SI]. Similarly to Lemma 5.1, we only

prove the case d < 0. It is straightforward that

ϕ

(
n∑

i=1

λXi

)
= λγϕ

(
n∑

i=1

Xi

)
< λγ

n∑
i=1

ϕ(Xi) =
n∑

i=1

ϕ(λXi),

and

ϕ

(
n∑

i=1

(Xi + ci)

)
= ϕ

(
n∑

i=1

Xi

)
+m

n∑
i=1

ci <
n∑

i=1

(ϕ(Xi) +mci) =
n∑

i=1

ϕ(Xi + ci).

Thus, we have D(λX) = C1 and D(X+ c) = C1, which completes the proof of sufficiency.

Next, we show the necessity. Define the set

A =

{(
ϕ

(
n∑

i=1

Xi

)
, ϕ(X1), . . . , ϕ(Xn)

)
: (X1, . . . , Xn) ∈ X n

}
.

Note that ϕ satisfies [PH]γ with γ ̸= 0 since [CA]m for m ̸= 0 implies ρ(2) ̸= ρ(1), which in

turn implies γ ̸= 0. We always write x = (x1, . . . , xn) and c = (c1, . . . , cn). Consider the two

operations (x0,x) 7→ (x0 +
∑n

i=1 ci,x+ c) for some c ∈ Rn and (x0,x) 7→ (λx0, λx) for some

λ > 0. Let r(x0,x) =
∑n

i=1 xi−x0. By using [CA]m and [PH]γ of ϕ, we have that (see also the

proof of Lemma 5.1) the regions A+ := {(x0,x) : r(x0,x) > 0}, A0 := {(x0,x) : r(x0,x) = 0}

and A− := {(x0,x) : r(x0,x) < 0} are closed under the above two operations, and each of

them is connected via the above two operations. Therefore, A is the union of some of A+,

A0 and A−.

We define a function R : Rn+1 → R. For (x0,x) ∈ A, let R(x0,x) = D(X1, . . . , Xn),

where (X1, . . . , Xn) is any random vector with x0 = ϕ(
∑n

i=1Xi) and x = (ϕ(X1), . . . , ϕ(Xn)).

The choice of (X1, . . . , Xn) is irrelevant since D is ϕ-determined. For (x0,x) ∈ Rn+1 \ A, let

R(x0,x) = 0. We will verify that R satisfies conditions (i) and (ii) in Lemma 5.1.
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For (x0,x) ∈ A, there exists X = (X1, . . . , Xn) ∈ X n such that x0 = ϕ(
∑n

i=1Xi) and

x = (ϕ(X1), . . . , ϕ(Xn)). For any c ∈ Rn, using [CA]m with m ̸= 0 of ϕ and [LI] of D, we

obtain

R

(
x0 +

n∑
i=1

ci,x+ c

)
= R

(
ϕ

(
n∑

i=1

Xi

)
+

n∑
i=1

ci, ϕ(X1) + c1, . . . , ϕ(Xn) + cn

)

= R

(
ϕ

(
n∑

i=1

(
Xi +

ci
m

))
, ϕ
(
X1 +

c1
m

)
, . . . , ϕ

(
Xn +

cn
m

))
= D (X+ c/m) = D(X) = R (x0,x) .

Using [PH]γ with γ ̸= 0 of ϕ and [SI] of D, for any λ > 0, we obtain

R(λx0, λx) = R

(
λϕ

(
n∑

i=1

Xi

)
, λϕ(X1), . . . , λϕ(Xn)

)

= R

(
ϕ

(
n∑

i=1

λ1/γXi

)
, ϕ(λ1/γX1), . . . , ϕ(λ

1/γXn)

)
= D(λ1/γX) = D(X) = R (x0,x) .

Hence, R satisfies (i) and (ii) in Lemma 5.1 on A. By definition, R satisfies (i) and (ii) also

on Rn+1 \A. Since A and Rn+1 \A are both closed under the two operations, we know that

R satisfies (i) and (ii) on Rn+1.

Using Lemma 5.1, we have R has the representation (5.4), which gives

D(X) = C11{d<0} + C21{d=0} + C31{d>0}

with d =
∑n

i=1 ϕ(Xi)− ϕ (
∑n

i=1Xi) and C1, C2, C3 ∈ R for all X ∈ Xn. As D satisfying [+],

we have C1, C2, C3 ∈ R+ ∪ {∞}.

5.4 Additional results and proofs for Section 4.3

5.4.1 Existence of worse-than-duplicate portfolios

We discuss the existence of worse-than-duplicate portfolios. First, note that if a vector

Xwd = (Xwd
1 , . . . , Xwd

n ) is worse than a duplicate portfolio Xdu = (X, . . . , X) under a given
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MCP risk measure ϕ, then we have

ϕ

(
n∑

i=1

Xwd
i

)
⩾ ϕ(nX) = nϕ(X) >

n∑
i=1

ϕ(Xwd
i )

and thus ϕ violates subadditivity withXwd. Therefore, a necessary condition for the existence

of a vector that is worse than a duplicate under a MCP risk measure ϕ is that ϕ violates

subadditivity.

We further provide a necessary and sufficient condition for the existence or non-existence

of duplicate portfolios.

Lemma 5.2. For a monotone risk measure ϕ, there exists a worse-than-duplicate portfolio if

and only if there exist X,X1, . . . , Xn ∈ X with X1 + · · ·+Xn = nX such that ϕ(X) > ϕ(Xi)

for i ∈ [n].

Proof. This follows directly by monotonicity.

A risk measure ϕ : X → R is scale-continuous if the mapping λ 7→ ϕ(λX) on (0, 1) is

continuous for every X. This condition is very weak; for instance it is weaker than continuity

on any Lp-space X .

Proposition 5.2. For a monotone risk measure ϕ scale-continuous on X = L∞, there exists

no worse-than-duplicate portfolio if and only if ϕ is quasi-convex.

Proof. If ϕ is quasi-convex, then for any X1, . . . , Xn,

ϕ

(
X1

n
+ · · ·+ Xn

n

)
⩽ max{ϕ(X1), . . . , ϕ(Xn)}. (5.5)

By Lemma 5.2, there exists no worse-than-duplicate portfolio. Conversely, if exists no worse-

than-duplicate portfolio, then (5.5) holds for all X1, . . . , Xn. It suffices to verify that this

implies quasi-convexity of ϕ. That is, we need to show that for λ ∈ (0, 1) and X1, X2,

ϕ(λX1 + (1− λ)X2) ⩽ max{ϕ(X1), ϕ(X2)}. (5.6)

First, suppose that λ = p/nq where p, q ∈ N. Repeatedly applying (5.5) q times, we get, for

all Y1, . . . , Ym where m = nq,

ϕ

(
m∑
i=1

Yi
m

)
⩽ max{ϕ(Y1), . . . , ϕ(Ym)}. (5.7)
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Letting Yi = X1 for i ⩽ p and Yi = X2 for i > p in (5.7), we get (5.6). Next, consider a

general λ ∈ (0, 1). Let X ′
1 = λX1/t and X

′
2 = (1− λ)X2/(1− t), where t = p/nq ∈ (0, 1) for

some p, q ∈ N. Using (5.7), we get

ϕ(λX1 + (1− λ)X2) = ϕ(tX ′
1 + (1− t)X ′

2) ⩽ max{ϕ(X ′
1), ϕ(X

′
2)}. (5.8)

Sending t→ λ and using continuity we obtain the desired result.

5.4.2 Examples and proofs related to portfolio convexity

In the first example, we show that convexity or quasi-convexity of X 7→ D(X) should

not hold for a diversification index D.

Example 5.1 (Quasi-convexity on X n is not desirable). Let (X, Y ) ∈ X 2 represent any

diversified portfolio (e.g., with iid normal components), and assume that Z := (X + Y )/2 is

not a constant. Since the portfolio (Z,Z) relies only on one asset and has no diversification

benefit, for a good diversification index D we naturally want D(Z,Z) to be larger than both

D(X, Y ) and D(Y,X); recall that D(Z,Z) = 1 in the setting of Theorem 4.3 (iii). This

argument shows that it is unnatural to require D to be convex or quasi-convex on X 2; the

case of X n is similar. Indeed, if a real-valued D satisfies [SI] and convexity on X n, then it is

a constant; this is shown in the proposition below.

Proposition 5.3. A mapping D : X n → R satisfies [SI] and convexity if and only if D(X) =

c for all X ∈ X and some constant c ∈ R.

Proof. If D is a constant for all X ∈ X n, it is clear that D satisfies [SI] and convexity. Next

we will show the “only if” part. Let d0 = D(0) ∈ R.

(i) If d0 ⩾ D(X) for all X ∈ X n and there exists X0 such that D(X0) < d0, then

D

(
1

2
X0 +

1

2
(−X0)

)
= D(0) >

1

2
D(X0) +

1

2
D(−X0),

which contradicts the convexity of D.
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(ii) If there exists X0 such that d0 < D(X0), then, by [SI] of D,

D

(
1

2
0+

1

2
X0

)
= D(X0) >

1

2
D(0) +

1

2
D(X0),

which contradicts the convexity of D.

By (i) and (ii), we can conclude that D only takes the value d0.

From the proof of Proposition 5.3, we see that the conflict between convexity and [SI]

holds for real-valued mappings on any closed convex cone, not necessarily on X n.

In the second example, we see that convexity of w 7→ D(w⊙X) is not desirable either

for a good diversification index.

Example 5.2 (Convexity in w is not desirable). Let Z be standard normal and ϵ > 0 be

a small constant. Consider a portfolio vector X = ((1 − ϵ)Z,−ϵZ). Let w = (1, 0) and

v = (ϵ, 1− ϵ). Note that w⊙X = (1− ϵ)(Z, 0) and v⊙X = (ϵ− ϵ2)(Z,−Z). The portfolio

w ⊙X is not diversified since it has only one non-zero component, and the portfolio v ⊙X

is perfectly hedged since the sum of its components is 0. Hence, for a good diversification

index D, it should hold that D(w ⊙X) = 1 and D(v ⊙X) = 0; Theorem 4.3 confirms this.

On the other hand, the portfolio(
1

2
w +

1

2
v

)
⊙X =

1

2

(
(1− ϵ2)Z,−(ϵ− ϵ2)Z

)
is not well diversified since its second component is very small compared to its first compo-

nent. Intuitively, for ϵ ≈ 0, we expect D((w/2+v/2)⊙X) ≈ 1 > D(w⊙X)/2+D(v⊙X)/2.

This shows that w 7→ D(w ⊙X) is not convex. One can verify that this is indeed true if D

is DQ or DR based on commonly used risk measures such as SD, VaR (α < 1/2) and ES.

Proof of Proposition 4.1. Since the proof of Theorem 4.2 solely relies on convexity and pos-

itive homogeneity of ρα to show [PC], it is clear that DQρ
α satisfies [PC].

The subadditivity of ρα implies that DQρ
α takes value in [0, 1]. Consequently, {DQρ

α(X) :

X ∈ X n} ⊆ [0, 1]. We only need to show [0, 1] ⊆ {DQρ
α(X) : X ∈ X n}.
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Since ρα is non-linear and sub-linear, there exists Y such that ρα(Y ) + ρα(−Y ) > 0

following the argument of Remark 5.2. Consider Xθ = (X, θY,−θY, 0, . . . , 0) with θ ⩾ 0. We

have

DQρ
α(X

θ) =
1

α
inf{β ∈ I : ρβ(X) ⩽ ρα(X) + θρα(Y ) + θρα(−Y )}.

It is clear that DQρ
α(X

0) = 1, and there exists θ̃ such that DQρ
α(X

θ̃) = 0 with ρα(X) +

θ̃ρα(Y ) + θ̃ρα(−Y ) > ρ0(X). Since β 7→ ρβ(X) is strictly decreasing, its generalized inverse

is continuous and we can conclude {DQρ
α(X

β) : β ∈ [0, θ̃]} = [0, 1]. Hence, [0, 1] ⊆ {DQρ
α(X) :

X ∈ X n}.

5.4.3 Constructing DQ from a single risk measure

In this section, we discuss how to construct DQ from only a single risk measure ϕ. For

commonly used risk measures like VaR and ES, a natural family ρ with ρα = ϕ exists. If in

some applications one needs to use a different ϕ which does not belong to an existing family,

we will need to construct a family of risk measures for ϕ.

First, suppose that ϕ is MCP. A simple approach is to take ρα = (1−α)ess-sup+αϕ for

α ∈ (0, 1). Clearly, ρ1 = ϕ. As ϕ is MCP, we have ϕ(X) ⩽ ϕ(ess-sup(X)) = ess-sup(X) for

all X ∈ L∞. Hence, ρ is a decreasing class of MCP risk measures. Therefore, DQρ
1 satisfies

the six axioms in Theorem 4.1. Moreover, by checking the definition, this DQ has an explicit

formula

DQρ
1(X) =

(
ess-sup (

∑n
i=1Xi)−

∑n
i=1 ϕ(Xi)

ess-sup (
∑n

i=1Xi)− ϕ (
∑n

i=1Xi)

)
+

.

If
∑n

i=1Xi ⩽
∑n

i=1 ϕ(Xi), we have ess-sup(
∑n

i=1Xi) ⩽
∑n

i=1 ϕ(Xi) and DQρ
1(X) = 0; this is

also reflected by Theorem 4.3 when ess-sup(
∑n

i=1Xi) > ϕ(
∑n

i=1Xi).

For any arbitrary risk measure ϕ, we can always define the decreasing family {ϕ+/α :

α ∈ I} for constructing DQ; here ϕ+ is the positive part of ϕ. This approach leads to DQs

that are also DRs.

Proposition 5.4. For a given ϕ : X → R+, let ρ = (ϕ/α)α∈(0,∞). For α ∈ (0,∞), we have

DQρ
α = DRϕ. The same holds if ρ = (bE + cϕ/α)α∈(0,∞) for some b ∈ R and c > 0 and

X = L1.
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Proof. First, we compute α∗ by the definition of DQρ
α. For any X ∈ (L1)n,

α∗ = inf

{
β ∈ (0,∞) : bE

[
n∑

i=1

Xi

]
+
c

β
ϕ

(
n∑

i=1

Xi

)
⩽ b

n∑
i=1

E [Xi] +
n∑

i=1

c

α
ϕ(Xi)

}

= inf

{
β ∈ (0,∞) :

ϕ (
∑n

i=1Xi)

β
⩽

∑n
i=1 ϕ(Xi)

α

}
.

If ϕ(
∑n

i=1Xi) = 0 and
∑n

i=1 ϕ(Xi) = 0, then α∗ = 0. If ϕ(
∑n

i=1Xi) > 0 and
∑n

i=1 ϕ(Xi) = 0,

then α∗ = ∞ because the set on which the infimum is taken is empty. If ϕ(
∑n

i=1Xi) > 0 and∑n
i=1 ϕ(Xi) > 0, then α∗ = αϕ(

∑n
i=1Xi)/

∑n
i=1 ϕ(Xi). Hence, DQ

ρ
α(X) = DRϕ(X) holds for

all X ∈ (L1)n. By the same argument, for ρ = (ϕ/α)α∈(0,∞), we get DQρ
α(X) = DRϕ(X) for

all X ∈ X n.

As a result of Proposition 5.4, DQ built on the family ρ of the mean-SD functions given

by ρα(X) = E[X] + SD(X)/α is precisely DRSD.

5.4.4 Axiomatization of DQ using preferences

The axioms [R]ϕ, [N]ϕ and [C]ϕ are formulated based on an exogenously specified risk

measure ϕ, usually by financial regulation. This choice can also be endogenized in the context

of internal decision making. In this section, we provide an axiomatization of DQ as in

Theorem 4.1 without specifying a risk measure ϕ. We first define the preference of a decision

maker over risks. A preference relation ⪰ is defined by a non-trivial total preorder1 on X .

As usual, ≻ and ≃ correspond to the antisymmetric and equivalence relations, respectively.

On the preference ⪰ of risk, the relation X ⪰ Y means the agent prefers X to Y for any

X, Y ∈ X . We will use the following axioms.

[A1] X ⩽ Y =⇒ X ⪰ Y .

[A2] X ⪰ Y =⇒ X + c ⪰ Y + c for any c ∈ R.
1A preorder is a binary relation on X , which is reflexive and transitive. A binary relation ⪰ is reflexive

if X ⪰ X for all X ∈ X , and transitive if X ⪰ Y and Y ⪰ Z imply X ⪰ Z. A non-trivial total preorder is

a preorder that in addition is complete, that is, X ⪰ Y or Y ⪰ X for all X,Y ∈ X , and there exist at least

two alternatives X, Y such that X is preferred over Y strictly.
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[A3] X ⪰ Y =⇒ λX ⪰ λY for any λ > 0.

[A4] For any X ∈ X , there exists c ∈ R such that X ≃ c.

The four axioms are rather standard and we only briefly explain them. The axiom [A1]

means that the agent always prefers a smaller loss. The axioms [A2] and [A3] mean that

if the agent prefers one random loss over another, then this is preserved under any strictly

increasing linear transformations. The axiom [A4] implies that any random losses can be

equally favourable as a constant loss which is commonly referred to as a certainty equivalence.

A numerical representation of a preference ⪰ is a mapping ϕ : X → R, such that

X ⪰ Y ⇐⇒ ϕ(X) ⩽ ϕ(Y ) for all X, Y ∈ X . In other words, ⪰ is the preference of an

agent favouring less risk evaluated via ϕ. There is a simple relationship between preferences

satisfying [A1]-[A4] and MCP risk measures.

Lemma 5.3. A preference satisfies [A1]–[A4] if and only if it can be represented by an MCP

risk measure ϕ.

Proof. The “if” statement is straightforward to check, and we will show the “only if” state-

ment. The preference ⪰ can be represented by a risk measure ϕ through X ⪰ Y ⇐⇒ ϕ(X) ⩽

ϕ(Y ) for all X, Y ∈ X since ⪰ is separable by [A1] and [A4]; see Debreu (1954) and Drapeau

and Kupper (2013). If ϕ(0) = ϕ(1), then by using [A1]–[A3], the preference ⪰ is trivial, con-

tradicting our assumption on ⪰. Hence, using [A1], ϕ(0) < ϕ(1), we can further let ϕ(0) = 0

and ϕ(1) = 1. It is then straightforward to verify that ϕ is MCP from [A1]-[A3].

Similarly to Section 4.3, but with the preference ⪰ replacing the risk measure ϕ, we

denote by X
m≃ Y if Xi ≃ Yi for each i ∈ [n], by X

m

⪰ Y if Xi ⪰ Yi for each i ∈ [n], and by

X
m
≻ Y if Xi ≻ Yi for each i ∈ [n]. With this new formulation and everything else unchanged,

the axioms of rationality, normalization and continuity are now denoted by [R]⪰, [N]⪰ and

[C]⪰.

Proposition 5.5. A diversification index D : X n → R satisfies [+], [LI], [SI], [R]⪰, [N]⪰ and

[C]⪰ for some preference ⪰ satisfying [A1]–[A4] if and only if D is DQρ
α for some decreasing

families ρ of MCP risk measures. Moreover, in both directions of the above equivalence, it

can be required that ρα represents ⪰.
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Proof. The proof follows from Theorem 4.1 by noting that Lemma 5.3 allows us to convert

between a preference ⪰ satisfying [A1]-[A4] and an MCP risk measure ϕ.

Theorem 4.2 also admits a formulation via preferences similar to Proposition 5.5.

5.4.5 Uniqueness of the risk measure family representing a DQ

Proposition 5.6 below shows that the choice of the risk measure family is unique up

to strictly increasing transformation of the parameter if the ordering structure on portfolio

diversification is specified by a given ordering relation ⪰ on X n that can be numerically

represented by a DQ.

Proposition 5.6. Let n ⩾ 3, I = [0, 1], α ∈ I and ϕ is a positively homogeneous risk

measure with ϕ(Y )+ϕ(−Y ) > 0 for some Y ∈ X . Suppose that a weak order ⪰ is numerically

represented by both DQρ
α and DQτ

α such that {DQρ
α(X) : X ∈ X n} = {DQτ

α(X) : X ∈ X n} =

[0, 1], where ρ = (ρβ)β∈I and τ = (τβ)β∈I are continuous decreasing families of risk measures

satisfying ϕ = ρα = τα. Then, there exists a strictly increasing f : (0, α) → (0, α) such that

τβ = ρf(β) for all β ∈ (0, α).

Proof. Since ⪰ is represented by both DQρ
α and DQτ

α, there exists a strictly increasing func-

tion g : [0, 1] → [0, 1] such that DQρ
α = g(DQτ

α). Let f(β) = g(β/α) for β ∈ (0, α).

Assume that there exists β∗ ∈ (0, α) such that τβ∗(X) > ρf(β∗)(X). By positive homo-

geneity of ϕ and ϕ(Y ) + ϕ(−Y ) > 0, there exists ϵ > 0 such that τβ∗(X) > ϕ(X) + ϕ(ϵY ) +

ϕ(−ϵY ) > ρf(β∗)(X). Let X = (X, ϵY,−ϵY, 0, . . . , 0). Since β 7→ ρβ(X) and β 7→ τβ(X) are

continuous, we have

g(DQτ
α(X)) = f (inf {β ∈ I : τβ(X) ⩽ ϕ(X) + ϕ(ϵY ) + ϕ(−ϵY )}) > f(β∗)

and

DQρ
α(X) = inf {β ∈ I : ρβ(X) ⩽ ϕ(X) + ϕ(ϵY ) + ϕ(−ϵY )} ⩽ f (β∗) ,

which contradicts DQρ
α(X) = g(DQτ

α(X)).
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5.5 Additional results and proofs for Section 4.4

In this section, we present additional results, proofs, and discussions supplementing

Sections 4.4.2 and 4.4.3.

5.5.1 Worst-case and best-case dependence for DQ (Section 4.4.2)

We assume that two random vectorsX andY have the same marginal distributions, and

we study the effect of the dependence structure. We will assume that a tuple of distributions

F = (F1, . . . , Fn) is given and each component has a finite mean. Let

YF = {(X1, . . . , Xn) : Xi ∼ Fi for each i = 1, . . . , n} .

For X,Y ∈ YF, we say that X is smaller than Y in sum-convex order, denoted by X ⩽scx Y,

if
∑n

i=1Xi ⩾SSD

∑n
i=1 Yi; see Corbett and Rajaram (2006). We refer to Shaked and Shan-

thikumar (2007) for a general treatment of multivariate stochastic orders. With arbitrary

dependence structures, the best-case value and worst-case value of DQρ
α are given by

inf
X∈YF

DQρ
α(X) and sup

X∈YF

DQρ
α(X).

For some mapping on X n, finding the best-case and worst-case values and structures over

YF is known as a problem of risk aggregation under dependence uncertainty; see Bernard et

al. (2014) and Embrechts et al. (2015).

If ρ = (ρα)α∈I is a class of SSD-consistent risk measures such as ES, then, by Propo-

sition 4.3, DQρ
α is consistent with the sum-convex order on YF. This leads to the following

observations on the corresponding dependence structures.

(i) It is well-known (e.g., Rüschendorf (2013)) that the ⩽scx-largest element of YF is

comonotonic, and thus a comonotonic random vector has the largest DQρ
α in this case.

Note that such ρ does not include VaR. Indeed, as we have seen from Proposition 4.5,

DQVaR
α (X) = 1 for comonotonic X under mild conditions, which is not equal to its

largest value n.
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(ii) In case n = 2, the ⩽scx-smallest element of YF is counter-comonotonic, and thus a

comonotonic random vector has the smallest DQρ
α.

(iii) For n ⩾ 3, the ⩽scx-smallest elements of YF are generally hard to obtain. If each pair

(Xi, Xj) is counter-monotonic for i ̸= j, then X is a ⩽scx-smallest element of YF. Pair-

wise counter-monotonicity puts very strong restrictions on the marginal distributions.

For instance, it rules out all continuous marginal distributions; see Puccetti and Wang

(2015).

(iv) If a joint mix, i.e., a random vector with a constant component-wise sum, exists in

YF, then any joint mix is a ⩽scx-smallest element of YF by Jensen’s inequality. See

Puccetti and Wang (2015) and Wang and Wang (2016) for results on the existence of

joint mixes. In case a joint mix does not exist, the ⩽scx-smallest elements are obtained

by Bernard et al. (2014) and Jakobsons et al. (2016) under some conditions on the

marginal distributions such as monotonic densities.

In optimization problems over dependence structures (see e.g., Rüschendorf (2013) and Em-

brechts et al. (2015)), the above observations yield guidelines on where to look for the opti-

mizing structures.

5.5.2 Proofs and related discussions on RI and RC (Section 4.4.3)

Here we present the proof of Proposition 4.4 and an additional result (Proposition 5.7)

on the properties RI and RC.

Proof of Proposition 4.4. (i) For any n ∈ N, X ∈ (Lp)n and c ∈ R, by [CA]m of (ρα)α∈I ,

DQρ
α(X, c) =

1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi + c

)
⩽

n∑
i=1

ρα(Xi) + ρα(c)

}

=
1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
+mc ⩽

n∑
i=1

ρα(Xi) +mc

}
= DQρ

α(X),

and hence DQρ
α satisfies [RI].
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(ii) For any n ∈ N and X ∈ (Lp)n, by [PH] of (ρα)α∈I ,

DQρ
α(X,X) =

1

α
inf

{
β ∈ I : ρβ

(
2

n∑
i=1

Xi

)
⩽ 2

n∑
i=1

ρα(Xi)

}
= DQρ

α(X),

and hence DQρ
α satisfies [RC].

Proposition 5.7. Let ϕ : Lp → R be a continuous and law-invariant risk measure.

(i) Suppose that DRϕ is not degenerate for some input dimension. Then DRϕ satisfies [RI]

and [+] if and only if ϕ satisfies [CA]0, [±] and ϕ(0) = 0.

(ii) If ϕ satisfies [PH], then DRϕ satisfies [RC].

Proof. (i) We first show the “if” part. If ϕ satisfies [CA]0 and ϕ(0) = 0, then ϕ(c) = ϕ(0) =

0 for all c ∈ R. For any n ∈ N, X ∈ (Lp)n and c ∈ R,

DRϕ(X, c) =
ϕ (
∑n

i=1Xi + c)∑n
i=1 ϕ(Xi) + ϕ(c)

=
ϕ (
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

= DRϕ(X).

Thus, DRϕ satisfies [RI].

For the “only if” part, we first assume ϕ(0) ̸= 0. Since DRϕ satisfies [RI], for all n ∈ N,

c ∈ R and X = 0 ∈ Rn, we have

DRϕ(X, c) =
ϕ (c)

nϕ(0) + ϕ(c)
= DRϕ(X) =

ϕ (0)

nϕ(0)
=

1

n
.

The above equality means that ϕ(c) = nϕ(0)/(n − 1) holds for any n ∈ N and c ∈ R,

and thus we have ϕ(0) = 0, which violates the assumption ϕ(0) ̸= 0. Hence, ϕ(0) = 0.

If there exists c1 ∈ R such that ϕ(c1) ̸= 0, then by [RI] and ϕ(0) = 0, we have

DRϕ(c1, 0, 0, . . . , 0, c) =
ϕ(c1 + c)

ϕ(c1) + ϕ(c)
= DRϕ(c1, 0, 0, . . . , 0) =

ϕ(c1)

ϕ(c1)
= 1,

and thus ϕ(c1 + c) = ϕ(c1) + ϕ(c) as long as ϕ(c1) or ϕ(c) is not zero. If both of ϕ(c1)

and ϕ(c) are 0, then ϕ(c1 + c) = 0. To sum up, ϕ is additive on R. Since ϕ is also

continuous on R, we know that ϕ is linear, that is, ϕ(c) = βc for some β ∈ R.

Suppose that there exists X such that ϕ(X) ̸= 0; otherwise there is nothing to show.

Using [RI] and ϕ(0) = 0, we have, for c ∈ R,

DRϕ(X, 0, 0, . . . , 0, c) =
ϕ(X + c)

ϕ(X) + ϕ(c)
= DRϕ(X, 0, . . . , 0) = 1,
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which implies ϕ(X + c) = ϕ(X) + ϕ(c) = ϕ(X) + βc.

Using the fact that DRϕ is not degenerate for some dimension n, there exists X =

(X1, . . . , Xn) such that DRϕ(X) ∈ R\{0, 1}. Note that ϕ(
∑n

i=1Xi) ̸= 0 and
∑n

i=1 ϕ(Xi) ̸=

0. Hence,

DRϕ(X, 1) =
ϕ(
∑n

i=1Xi + 1)∑n
i=1 ϕ(Xi) + ϕ(1)

=
ϕ(
∑n

i=1Xi) + β∑n
i=1 ϕ(Xi) + β

= DRϕ(X) =
ϕ(
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

.

This implies β = 0, ϕ(c) = 0 for all c ∈ R and ϕ(X + c) = ϕ(X) for all X ∈ Lp such

that ϕ(X) ̸= 0. For any X ∈ Lp such that ϕ(X) = 0 and c ∈ R, we have

DRϕ(X, 0, . . . , 0, c) =
ϕ(X + c)

ϕ(X) + ϕ(c)
=
ϕ(X + c)

ϕ(X)
=
ϕ(X)

ϕ(X)
= DRϕ(X, 0, . . . , 0),

which implies ϕ(X + c) = 0 = ϕ(X). Therefore, ϕ satisfies [CA]0.

Finally, we show ϕ is either non-negative or non-positive by considering the following

three cases.

(a) Assume that there exists X ∈ Lp such that ϕ(X) + ϕ(−X) > 0. If there exists

Y ∈ Lp such that ϕ(Y ) < 0, then by continuity of ϕ and ϕ(0) = 0, there exists

m > 0 such that 0 < −ϕ(mY ) < ϕ(X) + ϕ(−X). We have

DRϕ(mY,X,−X, 0, . . . , 0) = ϕ(mY )

ϕ(mY ) + (ϕ(X) + ϕ(−X))
< 0,

which contradicts the fact that DRϕ is non-negative. Hence, ϕ(Y ) ⩾ 0 for all

Y ∈ L∞.

(b) By the same argument, if there exists X ∈ Lp such that ϕ(X) + ϕ(−X) < 0, then

ϕ(Y ) ⩽ 0 for all Y ∈ L∞.

(c) Assume ϕ(X) + ϕ(−X) = 0 for all X ∈ L∞. Suppose that there exists Y ∈ L∞

such that ϕ(Y ) < 0. Using Lemma 1 of Wang and Wu (2020) again, there exist

Z,Z ′ ∈ L∞ satisfying Z
d
= Z ′ and Z − Z ′ d

= Y − E[Y ]. For Z = (Z,−Z ′, 0, . . . , 0),

using the law invariance of ϕ, we have

DRϕ(Z) =
ϕ (Z − Z ′)

ϕ(Z) + ϕ(−Z ′)
=

ϕ (Y − E[Y ])

ϕ(Z) + ϕ(−Z ′)
=

ϕ (Y )

ϕ(Z) + ϕ(−Z)
=
ϕ(Y )

0
= −∞,

which contradicts DRϕ(Z) ⩾ 0. Hence, ϕ(X) ⩾ 0 for all X ∈ L∞. Together

with ϕ(X) + ϕ(−X) = 0, we get ϕ(X) = 0. To extend this to Lp, we simply
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use continuity. For X ∈ Lp, let YM = (X ∧M) ∨ (−M). Hence, YM ∈ L∞ and

YM
Lp

−→ X as M → ∞. As a result, we have ϕ(X) = limM→∞ ϕ(YM) = 0.

In conclusion, we have ϕ(Y ) ⩾ 0 or ϕ(Y ) ⩽ 0 for all X ∈ Lp. Case (c) is not possible

because it contradicts that DRϕ is not degenerate. Cases (a) and (b) are possible,

corresponding to, for instance, (a) ϕ = SD; (b) ϕ = −SD.

(ii) If ϕ satisfies [PH], then for any n ∈ N and X ∈ (Lp)n,

DRϕ(X,X) =
ϕ (2

∑n
i=1Xi)

2
∑n

i=1 ϕ(Xi)
=
ϕ (
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

= DRϕ(X).

Hence, DRϕ satisfies [RC].

In Proposition 5.7, we show that if [RI] is assumed, then the only option for DR is to

use a non-negative ϕ (we can use −ϕ if ϕ is non-positive) such as var or SD. By Proposition

5.4, all such DRs belong to the class of DQs.

5.6 Additional results and proofs for Section 4.5

In this section, we present the proof for Proposition 4.5 and an additional numerical

result to complement those in Section 4.5.2.

Proof of Proposition 4.5. This statement on ES follows from Proposition 4.1; for the one on

VaR, see Theorem 1 (i) of Chapter 6.

We look at the models Y′ and Y in the setting of Tables 4.2 and 4.3. In Figure 5.1, we

observe that the values of D(Y′)/D(Y) for D = DQVaR
α or DQES

α are always smaller than 1

for α ∈ (0, 0.1], while the values of D(Y′)/D(Y) for D = DRVaRα are only smaller than 1

when α is relatively small. We always observe that, if the desired relation D(Y′)/D(Y) < 1

holds for D = DRVaRα or DRESα then it holds for D = DQVaR
α or DQES

α , but the converse

does not hold. This means that if the iid model is preferred to the common shock model by

DR, then it is also preferred by DQ, but in many situations, it is only preferred by DQ not

by DR. Similarly to Tables 4.2 and 4.3, the iid normal model shows a stronger diversification

according to DQ, and this is not the case for DR.
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Figure 5.1: D(Y′)/D(Y) based on VaR and ES for α ∈ (0, 0.1] with fixed n = 10
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5.7 Proofs for Section 4.6

Proof of Proposition 4.6. For the case of DQVaR
α (X), (4.4) in Theorem 4.4 gives that to min-

imize DQVaR
α (X) is equivalent to minimize

P
(
w⊤X > w⊤xVaR

α

)
= P

(
w⊤ (X− xVaR

α

)
> 0
)

over w ∈ ∆n.

Next, we discuss the case of DQES
α (X). Let f(v) = E[(v⊤(X− xES

α ) + 1)+] for v ∈ Rn
+.

It is clear that f is convex. Furthermore, for any i ∈ [n], we have, for almost every v ∈ Rn
+,

∂f

∂vi
(v) = E

[
(Xi − ESα(Xi))1{v⊤(X−xES

α )+1>0}
]

= E
[
(Xi − ESα(Xi))1{{v⊤(X−xES

α )+1>0}∩{Xi−ESα(Xi)>0}}
]

+ E
[
(Xi − ESα(Xi))1{{v⊤(X−xES

α )+1>0}∩{Xi−ESα(Xi)<0}}
]
.

The set {(v⊤X− xES
α ) + 1 > 0} ∩ {Xi − ESα(Xi) > 0} increases in vi and the set {(v⊤X−

xES
α ) + 1 > 0} ∩ {Xi − ESα(Xi) < 0} decreases in vi. Hence, vi 7→ ∂f/∂vi(v) is increas-

ing. Furthermore, ∂f/∂vi(v) → E[(Xi − ESα(Xi))1{Xi−ESα(Xi)>0}] > 0 as vi → ∞. Also,

∂f/∂vi(v) → E[Xi−ESα(Xi)] < 0 as v ↓ 0 component-wise. Hence, there exists a minimizer

v∗ of the problem minv∈Rn
+\{0} E[(v⊤(X− xES

α ) + 1)+].

Let A = {v ∈ Rn
+ \ {0} : P(v(X − xES

α ) > 0) > 0} and B = {v ∈ Rn
+ \ {0} :

P(v(X − xES
α ) > 0) = 0}. If B is empty, it is clear that minw∈∆n DQ

ES
α (w ⊙ X) =

minv∈Rn
+\{0} E[(v⊤(X− xES

α ) + 1)+] by Theorem 4.4.

148



If B is not empty, assume v∗ ∈ A. For any vA ∈ A, vB ∈ B and k > 0, we have

E
[(
(vA + kvB)

⊤(X− xES
α ) + 1

)
+

]
⩽ E

[(
v⊤
A(X− xES

α ) + 1
)
+

]
.

This implies f(v∗+kvB) = f(v∗) for all k > 0, which contradicts ∂f/∂vi(v) > 0 as vi → ∞.

Hence, we have v∗ ∈ B. For w∗ = v∗/∥v∗∥, we have P((w∗)⊤(X − xES
α ) > 0) = 0 and

DQES
α (w∗ ⊙X) = 0 by Theorem 4.4, which means that w∗ is the minimizer of the problem

minw∈∆n DQ
ES
α (w ⊙X).

5.8 Additional empirical results for Section 4.7

In this section, we present some omitted empirical results to complement those in Sec-

tions 4.7.2 and 4.7.3. In Section 4.7.2, the values of DQs based on VaR and ES are reported

under different portfolio compositions of stocks during the period from 2014 to 2022. Using

the same stock compositions in (A)-(D), we calculate the values of DRs based on SD and var

(recall that they are also DQs), to see how they perform. The results are reported in Figure

5.2.

Figure 5.2: DRs based on SD (left) and var (right)
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We can see that the same intuitive order (A)⩽(B)⩽(C)⩽(D) as in Figure 4.3 in Section

4.7.2 holds for DRSD, showing some consistency between DQs based on VaR and ES and

DRSD. The values of DRSD are between 0 and 1. On the other hand, the values of DRvar are
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all larger than 1, and portfolio (A) of 20 stocks has the weakest diversification effect according

to DRvar among the four compositions. This is not in line with our intuition, but is to be

expected since variance has a different scaling effect than SD, and more correlated stocks

lead to a larger value of DRvar in general. For example, DRvar equals 1 even for an iid normal

model of arbitrarily large dimension (which is often considered as quite well-diversified), and

DRvar equals n if the portfolio has one single asset. These observations show that DRvar is

difficult to interpret if it is used to measure diversification across dimensions.

In Section 4.7.3, we used the period from January 3, 2012, to December 31, 2021, to

build up the portfolios. Next, we consider two different datasets from Section 4.7.3, first

using the period 2002-2011 and second using 20 instead of 40 stocks, to see how the results

vary.

Figure 5.3: Wealth processes for portfolios, 40 stocks, Jan 2004 - Dec 2011
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For the first experiment, we choose the four largest stocks from each of the 10 different

sectors of S&P 500 ranked by market cap in 2002 as the portfolio compositions and use the

period from January 3, 2002, to December 31, 2011, to build up the portfolio. The risk-free

rate r = 4.38%, and the target annual expected return for the Markowitz portfolio is set to

5% due to infeasibility of setting 10%. The results are reported in Figures 5.3, 5.4 and Table

5.1.

For the second experiment, we choose the top two stocks from each sector to build the
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Figure 5.4: Cumulative portfolio weights, 40 stocks, Jan 2004 - Dec 2011
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Table 5.1: Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR) and average

trading proportion (ATP) for different portfolio strategies from Jan 2004 to Dec 2011

% DQVaR
α DQES

α DRSD Markowitz EW BH

AR 9.46 8.13 9.10 7.98 5.30 6.23

AV 16.65 21.45 20.92 11.98 20.15 15.53

SR 30.48 17.47 22.58 30.06 4.57 11.94

ATP 37.23 28.59 20.24 24.56 5.04 0

Table 5.2: Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR) and average

trading proportion (ATP) for different portfolio strategies from Jan 2014 to Dec 2021

% DQVaR
α DQES

α DRVaRα DRESα DRSD Markowitz EW BH

AR 13.54 14.79 12.77 13.85 14.37 8.59 12.74 14.22

AV 13.43 15.90 14.41 14.53 14.29 12.74 14.68 13.96

SR 79.69 75.17 68.89 75.79 80.67 45.14 67.40 81.54

ATP 16.07 19.24 64.77 57.56 11.81 15.19 4.45 0
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Figure 5.5: Wealth processes for portfolios, 20 stocks, Jan 2014 - Dec 2021
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Figure 5.6: Cumulative portfolio weights, 20 stocks, Jan 2014 - Dec 2021
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portfolios, and all other parameters are the same as in Section 4.7.3. The results, including

two other portfolios built by DRVaRα and DRESα , are reported in Figures 5.5 and 5.6 and

Table 5.2. Since we do not find an efficient algorithm for computing DRVaRα and DRESα ,

we use the preceding 500 trading days to compute the optimal portfolio weights using the

random sampling method, which is relatively slow and not very stable. (If the previous month

has an optimal weight w∗
t−1, then 105 new weights are sampled from λw∗

t−1+(1−λ)∆n, where

λ is chosen as 0.9. Tie-breaking is done by picking the one that is closest to w∗
t−1. We set

w∗
0 = (1/n, . . . , 1/n).) The results show similar observations to those in Section 4.7.3. The
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additional observation from Table 5.2 is that DR strategies have much larger ATP than the

others, but this may be partially caused by our random sampling algorithms to optimize DR.
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Chapter 6

Diversification quotients based on

VaR and ES

6.1 Introduction

In order to mitigate risks in portfolios of financial investment quantitatively, a common

approach is to compute a quantitative index of the portfolio model, based on e.g., the volatil-

ity, variance, an expected utility or a risk measure, following the seminal idea of Markowitz

(1952) on portfolio diversification. In the literature, one of the most prominent examples of

the diversification index based on a general risk measure is defined by Tasche (2007) which

is referred as diversification ratio (DR). Choueifaty and Coignard (2008) investigated the

theoretical and empirical properties of DR in portfolio construction and compared the be-

havior of the resulting portfolio to common, simple strategies. See Embrechts et al. (2015)

and Koumou and Dionne (2022) for theories of DR and other diversification indices. Bürgi

et al. (2008) defined a closely related notion of DR which is called the diversification gain

and explored various methods of modeling dependence and their influence on diversification

gain.

Different from the traditional diversification indices such as DR in the above literature,

Chapter 4 proposed six axioms – non-negativity, location invariance, scale invariance, ratio-

nality, normalization and continuity – which jointly characterize a new diversification index,
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called the diversification quotient (DQ), whose definition is based on a class of risk measures

decreasing in an index α. All commonly used risk measures belong to a monotonic paramet-

ric family, and this includes VaR, ES, expectiles, mean-variance, and entropic risk measures.

They argued that DQ has many appealing features both theoretically and practically, while

these properties, in particular the six axioms above, are not shared by DR based on VaR, ES,

or any other commonly used risk measure. Moreover, portfolio optimization of DQs based

on VaR and ES can be computed very efficiently, and thus DQ can be easily applied to real

data.

Most properties of DQ are studied by Chapter 4 for a general class of risk measures.

In this chapter, we focus on specific risk measures, in particular, the Value-at-Risk (VaR)

and the Expected Shortfall (ES). Even though VaR has been criticized because of its lack of

subadditivity and ES requires the loss to have a finite mean, VaR and ES are still the two most

common classes of risk measures in practice, widely employed in global banking and insurance

regulatory frameworks; see Basel III/IV (BCBS (2019)) and Solvency II (EIOPA (2011)).

More theoretical properties and discussions of VaR and ES can be found in, e.g., Artzner et

al. (1999), Embrechts et al. (2014, 2018), Emmer et al. (2015) and the references therein. We

pay particular attention to two popular models in finance and insurance, namely, elliptical

and multivariate regular variation (MRV) distributions. Elliptical distributions, including

normal and t-distributions as special cases, are the most standard tools for quantitative

risk management (McNeil et al. (2015)). They have been studied for DR with convenient

properties; see Cui et al. (2022) and the references therein. The MRV model is widely used

in Extreme Value Theory for investigating the portfolio diversification; see, e.g., Mainik and

Rüschendorf (2010), Mainik and Embrechts (2013) and Bignozzi et al. (2016).

This chapter is an extension of Chapter 4 in which an axiomatic framework of diversi-

fication indices is proposed and general properties of DQ are studied. As a new concept of

diversification index, studying properties such as explicit formulas and limiting behavior of

DQ under specific risk measures and special risk models will help us to better understand

and use DQ in risk management applications. In addition, the advantages of DQ and the

connection between DQ and DR are clearer under the elliptical and MRV models, reveal-

ing many attractive features of choosing DQ instead of DR to quantify diversification risk,
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especially for tail heaviness and common shocks.

The chapter is organized as follows. In Section 6.2, the definition of DQ and some

preliminaries on risk measures are collected. In Section 6.3, we study general properties for

DQs based on VaR and ES. Since DQs based on VaR and ES have natural ranges of [0, n]

and [0, 1], respectively, some special dependence structures of the portfolio that correspond

to the special values of 0, 1, and n are constructed with clear interpretation for values in

between (Theorem 6.1). In Section 6.4, we focus on DQ for large portfolios. By the Law

of Large Numbers, we show that DQs based VaR and ES for a portfolio with independent

components tend to 0 as the number of assets in the portfolio increases to infinity (Theorem

6.2). The limits for DQs based on VaR and ES for portfolios with exchangeable components

do not necessarily tend to 0. We show that the upper bound for the limit decreases in

the bivariate correlation coefficient. (Proposition 6.1). In Section 6.5, DQ is applied to

elliptical models; explicit formulas and the limiting behavior of DQs based on VaR and ES

are available (Proposition 6.2 and Theorem 6.3). Moreover, we present several numerical

results for the two most important elliptical distributions used in finance and insurance,

namely the multivariate normal distribution and the multivariate t-distribution, and show

that DQ can properly capture tail heaviness. As a popular tool for modeling heavy-tailed

phenomena, MRV models for DQ are studied in Section 6.6. Furthermore, we generalize the

results to the optimal portfolio selection problem in Section 6.7. Under elliptical models,

the optimization problem can boil down to a well-studied problem (see e.g., Choueifaty and

Coignard (2008)) and a limiting result in MRV models is also derived (Theorem 6.4 and

Proposition 6.5). We conclude the chapter in Section 6.8.

6.2 Diversification quotients

Throughout this chapter, (Ω,F ,P) is an atomless probability. The atomless assumption

in our context is very weak and it is widely used in statistics and risk management; see Del-

baen (2002) and Section A.3 of Föllmer and Schied (2016) for details of atomless probability

spaces. Almost surely equal random variables are treated as identical. A risk measure ϕ is

a mapping from X to R, where X is a convex cone of random variables on (Ω,F ,P) repre-
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senting losses faced by a financial institution or an investor, and X is assumed to include all

constants (i.e., degenerate random variables). For p ∈ (0,∞), denote by Lp = Lp(Ω,F ,P)

the set of all random variables X with E[|X|p] < ∞ where E is the expectation under P.

Furthermore, L∞ = L∞(Ω,F ,P) is the space of all essentially bounded random variables,

and L0 = L0(Ω,F ,P) is the space of all random variables. Write X ∼ F if the random

variable X has the distribution function F under P, and X d
= Y if two random variables X

and Y have the same distribution. We always write X = (X1, . . . , Xn) and 0 for the n-vector

of zeros. Further, denote by [n] = {1, . . . , n}, R+ = [0,∞) and R = [−∞,∞]. Terms such

as increasing or decreasing functions are in the non-strict sense. For X ∈ X , ess-sup(X) and

ess-inf(X) are the essential supremum and the essential infimum of X, respectively.

A diversification index D is a mapping from X n to R, which is used to quantify the

magnitude of diversification of a risk vector X ∈ X n representing portfolio losses. Our

convention is that a smaller value of D(X) represents a stronger diversification. Measuring

diversification is closely related to risk measures. Some standard properties of a risk measure

ϕ : X → R are collected below.

[M] Monotonicity: ϕ(X) ⩽ ϕ(Y ) for all X, Y ∈ X with X ⩽ Y .

[CA] Constant additivity: ϕ(X + c) = ϕ(X) + c for all c ∈ R and X ∈ X .

[PH] Positive homogeneity: ϕ(λX) = λϕ(X) for all λ ∈ (0,∞) and X ∈ X .

[SA] Subadditivity: ϕ(X + Y ) ⩽ ϕ(X) + ϕ(Y ) for all X, Y ∈ X .

The two popular classes of risk measures in banking and insurance practice are VaR

and ES. The VaR at level α ∈ [0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ L0,

and the ES (also called CVaR, TVaR or AVaR) at level α ∈ (0, 1) is defined as

ESα(X) =
1

α

∫ α

0

VaRβ(X) dβ, X ∈ L1,

and ES0(X) = ess-sup(X) = VaR0(X) which may be ∞. The probability level α above is

typically very small, e.g., 0.01 or 0.025 in BCBS (2019); note that we use the “small α”
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convention as in Chapter 4. Both VaR and ES satisfy the properties [M], [CA] and [PH],

while ES also satisfies the property [SA].

To measure diversification quantitatively, we recall a new index, called diversification

quotient (DQ), as follows.

Definition 6.1. Let ρ = (ρα)α∈I be a class of risk measures indexed by α ∈ I = (0, ᾱ) with

ᾱ ∈ (0,∞] such that ρα is decreasing in α. For X ∈ X n, the diversification quotient based

on the class ρ at level α ∈ I is defined by

DQρ
α(X) =

α∗

α
, where α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα (Xi)

}

with the convention inf(∅) = ᾱ.

Remark 6.1. The value of DQρ
α depends on how the class ρ = (ρα)α∈I is parametrized. For

instance, one could, hypothetically, use a different parametrization VaR′
α = VaRα2 for the

class VaR, although there is no real reason to do so. The value of DQVaR′

α is generally

different from DQVaR
α2 , but they generate the same order; that is, DQVaR′

α (X) ⩽ DQVaR′

α (Y) if

and only if DQVaR
α2 (X) ⩽ DQVaR

α2 (Y), which can be checked by definition. Therefore, different

parametrizations do not affect the application of DQ in portfolio optimization.

Theorem 4.1 in Chapter 4 characterized a subclass of DQ via six axioms: non-negativity,

location invariance, scale invariance, rationality, normalization and continuity; such DQs are

defined on the class of risk measures satisfying [M], [CA] and [PH]. DQ is defined based on a

monotonic parametric class of risk measures. All commonly used risk measures belong to a

monotonic parametric family; for instance, this includes VaR, ES, expectiles, mean-variance,

and entropic risk measures; see Föllmer and Schied (2016) for a general treatment of risk

measures.

In finance and insurance, the risk measures VaR and ES play prominent roles, as they

are specified in regulatory documents such as BCBS (2019) and EIOPA (2011). We will

focus on VaR or ES as the risk measures assessing diversification by DQ in this chapter. In

particular, both VaR and ES satisfy the properties [M], [CA] and [PH], and hence DQVaR
α

and DQES
α satisfy the six above axioms.
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Another popular diversification index is the diversification ratio (see e.g., Tasche (2007)

and Embrechts et al. (2015)), defined as

DRϕ(X) =
ϕ (
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

, (6.1)

where ϕ is a suitably chosen risk measure, such as VaRα, ESα, variance (var), or standard

deviation (SD). Although DR generally does not satisfy some of the six axioms, we will

compare DQ and DR in several parts of the chapter.

6.3 DQ based on VaR and ES

In this section, we will focus on the theoretical properties of DQVaR
α and DQES

α . For

VaR and ES, the interval in Definition 6.1 has a natural range of I = (0, 1). Similarly to

Chapter 4, we let X n be (L0)n when we discuss DQVaR
α and (L1)n when we discuss DQES

α . To

compute DQES
α , we first define the superquantile transform (Liu et al. (2021, Example 4)).

The term “superquantile” is an alternative name for ES; see Rockafellar et al. (2014).

Definition 6.2. The superquantile transform of a distribution F with finite mean is a dis-

tribution F̃ with quantile function p 7→ ES1−p(X) for p ∈ (0, 1), where X ∼ F .

The following alternative formulas for DQs based on VaR and ES will be useful later.

They are shown in Theorem 4.4 of Chapter 4 For a given α ∈ (0, 1), DQVaR
α and DQES

α can

be computed by

DQVaR
α (X) =

1− F (
∑n

i=1 VaRα(Xi))

α
and DQES

α (X) =
1− F̃ (

∑n
i=1 ESα(Xi))

α
, (6.2)

where F is the distribution of
∑n

i=1Xi and F̃ is the superquantile transform of F .

Remark 6.2. Let S =
∑n

i=1Xi. If S has a continuous and strictly monotone quantile function,

then (6.2) can be rewritten as

DQVaR
α (X) =

1

α
P

(
S >

n∑
i=1

VaRα(Xi)

)
, X ∈ X n,

and

DQES
α (X) =

1

α
Q

(
S >

n∑
i=1

ESα(Xi)

)
, X ∈ X n,
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for some probability measure Q. To give a formula for Q, let F be the distribution of S, and

α0 = 1− F (E[S]). There exists an increasing and continuous function g : (0, 1) → [0, 1] such

that ESg(α)(S) = VaRα(S) for all α ∈ (0, α0) and g(α) = 1 for α ∈ [α0, 1). We can express

Q by dQ/ dP = g′(1− F (S)).

Remark 6.3. DQ based on ES admits another convenient formula in Theorem 4.4. If we have

P(
∑n

i=1Xi >
∑n

i=1 ESα(Xi)) > 0, then

DQES
α (X) =

1

α
min

r∈(0,∞)
E

[(
r

n∑
i=1

(Xi − ESα(Xi)) + 1

)
+

]
, (6.3)

and otherwise DQES
α (X) = 0. The main advantage of this formula of DQES

α is computation

and optimization. In particular, this formula allows us to write the portfolio optimization

problem of DQES
α as a convex program; this is shown in Proposition 4.6 of Chapter 4.

Next, we see that if α ∈ (0, 1/n), there are three special values of DQVaR
α , which are 0,

1 and n, corresponding to different representative dependence structures. The last value of

n is based on a useful inequality

VaRnα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi) (6.4)

from Corollary 1 of Embrechts et al. (2018), and its sharpness is stated in Corollary 2 therein.

For DQES
α , there are two special numbers, 0 and 1, because ES is a class of subadditive risk

measures. As a natural question, we wonder for what types of dependence structures these

special values are attained. Next, we address this question.

We first present the concept of risk concentration in Wang and Zitikis (2021) which will

be useful to understand the dependence structures corresponding to special values of DQVaR
α

and DQES
α .

Definition 6.3 (Tail event and α-concentrated). Let X be a random variable and α ∈ (0, 1).

(i) A tail event of X is an event A ∈ F with 0 < P(A) < 1 such that X(ω) ⩾ X(ω′) holds

for a.s. all ω ∈ A and ω′ ∈ Ac, where Ac stands for the complement of A.
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(ii) A random vector (X1, . . . , Xn) is α-concentrated if its component share a common tail

event of probability α.1

Theorem 4 of Wang and Zitikis (2021) gives that a random vector (X1, . . . , Xn) is α-

concentrated for all α ∈ (0, 1) if and only if it is comonotonic, and hence the dependence

notion of α-concentration is weaker than comonotonicity. A random vector (X1, . . . , Xn) is

comonotonic if there exists a random variable Z and increasing functions f1, . . . , fn on R

such that Xi = fi(Z) a.s. for every i ∈ [n].

We first address the case that DQVaR
α (X) = n, which involves the dependence concepts

of both risk concentration and mutual exclusivity (see Dhaene et al. (1999)). Thus, to arrive

at the maximum value of DQVaR
α (X) = n, one requires a dependence structure that is a

combination of positive and negative dependence. This phenomenon is common in problems

in VaR aggregation; see Puccetti and Wang (2015) for extremal dependence concepts. For

this purpose, we propose the α-concentration-exclusion (α-CE) model for α ∈ (0, 1/n), which

is a random vector X ∈ X n satisfying four conditions:

(i) P (Xi > VaRα(Xi)) = α;

(ii) P(Xi ⩾ VaRα(Xi)) ⩾ nα;

(iii) {Xi > VaRα(Xi)}, i ∈ [n], are mutually exclusive;

(iv) (X1, . . . , Xn) are (nα)-concentrated.

For a class ρ of risk measures ρα decreasing in α, we say that ρ is non-flat from the left at

(α,X) if ρβ(X) > ρα(X) for all β ∈ (0, α), and ρ is left continuous at (α,X) if α 7→ ρα(X)

is left continuous.

Remark 6.4. For any given X ∈ L0, if VaR is non-flat from the left at (nα,X), then

there exists α-CE random vector X ∈ X n such that
∑n

i=1Xi = X. For instance, let

A = {X > VaRnα(X)}. As VaR is non-flat from the left at (nα,X), we have P(A) = nα.

1Wang and Zitikis (2021) used the “large α” convention, and hence our α-concentration corresponds to

their (1− α)-concentration.
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Let (A1, . . . , An) be a partition of A with P (Ai) = α for i ∈ [n]. Also, let Xi = (X −m)1Ai

for i ∈ [n − 1] and Xn = (X − m)1{An∪Ac} + m where m = VaRnα(X) is a constant. It

follows that
∑n

i=1Xi = X, and it is clear that X = (X1, . . . , Xn) is an α-CE model; such a

construction is essentially the one in Embrechts et al. (2018, Theorem 2). More generally, we

give a sufficient condition for X to satisfy the α-CE model. A random vector (X, Y ) is said to

be counter-monotonic if (X,−Y ) is comonotonic. If each pair (Xi, Xj) is counter-monotonic

for i ̸= j, and for each i ∈ [n], P(Xi > VaRα(Xi)) = α and VaRα(Xi) = ess-inf(Xi), then X

follows an α-CE model. For recent results on pairwise counter-monotonicity, see Chapter 7.

In the next result, we summarize several dependence structures that correspond to

special values 0, 1 and n of DQVaR
α and the special values 0 and 1 of DQES

α .

Theorem 6.1. For α ∈ (0, 1) and n ⩾ 2, the following hold:

(i)
{
DQVaR

α (X) | X ∈ X n
}
= [0,min{n, 1/α}] and

{
DQES

α (X) | X ∈ X n
}
= [0, 1].

(ii) For ρ being VaR or ES, DQρ
α(X) = 0 if and only if

∑n
i=1Xi ⩽

∑n
i=1 ρα(Xi) a.s. In

case
∑n

i=1Xi is a constant, DQVaR
α (X) = 0 if α < 1/n and DQES

α (X) = 0.

(iii) For ρ being VaR or ES, if X is α-concentrated, then DQρ
α(X) ⩽ 1. If, in addition, ρ is

continuous and non-flat from the left at (α,
∑n

i=1Xi), then DQρ
α(X) = 1.

(iv) If α < 1/n and X has an α-CE model, then DQVaR
α (X) = n and DQES

nα(X) = 1.

Proof. (i) We first prove the case of VaR. By Corollary 1 of Embrechts et al. (2018), we have

VaRnα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi),

which implies α∗ ⩽ nα, and hence DQVaR
α (X) ⩽ n. By definition, α∗ ∈ [0, 1], and hence

0 ⩽ DQVaR
α (X) ⩽ 1/α. To summarize,

{
DQVaR

α (X) | X ∈ X n
}
⊆ [0,min{n, 1/α}].

Next, we show that every point in the interval [0,min{n, 1/α}] is attainable by DQVaR
α .

Take any X ∈ X n and let a = DQVaR
α (X). Since DQVaR

α satisfies [LI], we can replace each

component Xi of X with Xi − VaRα(Xi) for i ∈ [n]. Hence, it is safe to assume that

VaRα of each component of X is 0. Let Z = X1A where A ∈ F is independent of X and
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P(A) = p ∈ (0, 1). Since the mapping F 7→ VaRα(X) where X ∼ F has convex level sets

(e.g., Gneiting (2011)), VaRα of each component of Z is 0. By (6.2), we have

DQVaR
α (Z) =

1

α
P

(
n∑

i=1

Zi > 0

)
=
p

α
P

(
n∑

i=1

Xi > 0

)
= pDQVaR

α (X).

Since p ∈ (0, 1) is arbitrary, any point in [0, a] belongs to the range of DQVaR
α . To complete

the proof, it suffices to construct X such that DQVaR
α (X) = min{n, 1/α}.

In case α ⩾ 1/n, letX follow an n-dimensional multinomial distribution with parameters

(1/n, . . . , 1/n). It is clear that
∑n

i=1Xi = 1. Since α ⩾ 1/n, then VaRα(Xi) = 0. In this

case, by (6.2), DQVaR
α (X) = 1/α. In case α < 1/n, we can find X satisfying DQVaR

α (X) = n,

which is constructed in part (iv) of the proof below.

Next, we prove the case of ES. Since ES satisfies [SA], the range of DQES
α is contained

in [0, 1]. Take any t ∈ [0, 2], and let each of X1 and X2 follow a uniform distribution on

[−1, 1] such that X1 +X2 is uniformly distributed on [−t, t]. The existence of such (X1, X2)

is shown by Theorem 3.1 of Wang and Wang (2016). Let Xi = 0 for i = 3, . . . , n. We can

easily compute ESα(X1) = ESα(X2) = 1− α and ESβ(X1 +X2) = t(1− β). Hence,

DQES
α (X1, . . . , Xn) =

1

α
inf{β ∈ (0, 1) : t(1− β) ⩽ 2− 2α} =

1

α

(
1− 2− 2α

t

)
+

.

For letting t vary in [0, 2], we get that every point in [0, 1] is attained by DQES
α .

(ii) The first part follows directly from Theorem 4.3 (i) of Chapter 4. In particular, if∑n
i=1Xi is a constant, we have VaR0 (

∑n
i=1Xi) = VaRnα (

∑n
i=1Xi) ⩽

∑n
i=1VaRα(Xi) for

α < 1/n, and ES0 (
∑n

i=1Xi) = ESα (
∑n

i=1Xi) ⩽
∑n

i=1 ESα(Xi). Thus, we have DQES
α (X) =

0 if α < 1/n and DQES
α (X) = 0.

(iii) By Theorem 6 in Wang and Zitikis (2021), if X is α-concentrated, we have

VaRα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα (Xi) ,

which implies α∗ ⩽ α and then DQVaR
α (X) ⩽ 1. Further, as VaR is continuous and non-flat

from the left at (α,
∑n

i=1Xi), by Theorem 6 in Wang and Zitikis (2021), the inequality above

is an equality. Thus, we have α∗ = α, which leads to DQVaR
α (X) = 1. Moreover, from

Theorem 5 of Wang and Zitikis (2021), we know that ESα (
∑n

i=1Xi) =
∑n

i=1 ESα (Xi) if

163



(X1, . . . , Xn) is α-concentrated. Combining with the fact that ESα(
∑n

i=1Xi) is non-flat from

left at (α,X), we have DQES
α (X) = 1.

(iv) As X1, . . . , Xn are (nα)-concentrated, there exists an event B such that B is a tail

event for all Xi and P(B) = nα. Let Bi = {Xi > VaRα(Xi)}. By Lemma A.3 of Wang

and Zitikis (2021), we have {Xi > VaRnα(Xi)} ⊆ B. As VaRα(Xi) ⩾ VaRnα(Xi), it gives

Bi ⊆ B for all i ∈ [n]. From P(Xi ⩾ VaRα(Xi)) ⩾ nα, we know that Xi(ω) ⩾ VaRα(Xi)

for all ω ∈ B. Further, as B1, . . . , Bn are mutually exclusive, we have Xi(ω) > VaRα(Xi)

and Xj(ω) = VaRα(Xj) for all ω ∈ Bi and j ̸= i. Hence, for all ω ∈
⋃n

i=1B, we have∑n
i=1Xi(ω) >

∑n
i=1VaRα(Xi) while

∑n
i=1Xi(ω) ⩽

∑n
i=1VaRα(Xi) for ω ∈ (

⋃n
i=1Ai)

c
=⋂n

i=1A
c
i . Therefore, if α < 1/n,

P

(
n∑

i=1

Xi >
n∑

i=1

VaRα(Xi)

)
= P

(
n⋃

i=1

Bi

)
=

n∑
i=1

P(Bi) = nα.

By (6.2), we have DQVaR
α (X) = n.

For the case of ES, as X1, . . . , Xn are (nα)-concentrated, by Theorem 5 of Wang and

Zitikis (2021), we have ESnα (
∑n

i=1Xi) =
∑n

i=1 ESnα (Xi). Together with the fact that

β 7→ ESβ (
∑n

i=1Xi) is strictly decreasing at β = nα, we get that DQES
nα(X) = 1.

Note that comonotonicity is stronger than α-concentration, and hence it is a sufficient

condition for (iii) in Theorem 6.1 replacing α-concentration.

In summary, both DQVaR
α and DQES

α take values on a bounded interval. In contrast,

the diversification ratio DRVaRα is unbounded, and DRESα is bounded above by 1 only when

the ES of the total risk is non-negative. The continuous ranges of DQs also give more

information on diversification. Moreover, similarly to the continuity axiom of preferences

(e.g., Föllmer and Schied (2016)), a bounded interval can provide mathematical convenience

for applications. The values of DQs are simple to interpret. To be specific, for DQVaR
α , its

value is 0 if there is a very good hedge in the sense of Theorem 6.1 (ii); its value is 1 if there

is strong positive dependence such as comonotonicity, and its value is n if there is strong

negative dependence conditional on the tail event. For DQES
α , its value is 0 if there is a

very good hedge in the sense of Theorem 6.1 (ii) and its value is 1 if there is strong positive

dependence such as comonotonicity or α-concentration.
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6.4 Diversification for large portfolios

In this section, we will focus on the asymptotic behavior of DQ for large portfolios. First,

since the independent portfolio is widely recognized as an effectively diversified portfolio, we

anticipate that DQ for this type of portfolio would be close to zero as n tends to ∞.

Theorem 6.2. Let X1, X2, . . . be a sequence of uncorrelated random variables in L2. Assume

supi∈N var(Xi) <∞ and infi∈N{ρα(Xi)−E[Xi]} > 0. For α ∈ (0, 1) and ρ being VaR or ES,

lim
n→∞

DQρ
α(X1, . . . , Xn) = 0. (6.5)

Proof. Let Xn = (X1, . . . , Xn) and Sn =
∑n

i=1Xi. As DQρ
α is location invariant, we can

assume that E[Xi] = 0 for i = 1, 2, . . . . Hence, by the L2-Law of Large Numbers in the form

of Durrett (2019, Theorem 2.2.3), we have Sn/n
L2

→ 0. (In fact, L1 convergence is sufficient

to prove our result.)

We first prove the case of VaR. Note that Sn/n
L2

→ 0 implies limn→∞ P(Sn/n > x) = 0

for all x > 0. Let ϵ = infi∈N{ρα(Xi)− E[Xi]}. As VaRα(Xi) > ϵ, i = 1, 2, . . . , we have

P

(
Sn >

n∑
i=1

VaRα(Xi)

)
⩽ P (Sn/n > ϵ) → 0.

Thus, limn→∞ P(Sn >
∑n

i=1VaRα(Xi)) = 0. By (6.2), we have

lim
n→∞

DQVaR(Xn) = lim
n→∞

1

α
P

(
Sn >

n∑
i=1

VaRα(Xi)

)
= 0.

Next, we prove the case of ES. As ES is a convex distortion risk measure, ES is L1-

continuous (see Rüschendorf (2013, Corollary 7.10)). Further, since ESβ(0) = 0, we have

ESβ(Sn/n) → 0 as n→ ∞ for all β ∈ (0, 1). As a result, for every β ∈ (0, 1), there exists Nβ

such that ESβ(Sn/n) < ϵ for all n > Nβ. Therefore, we have

α∗ = inf

{
β ∈ (0, 1) : ESβ(Sn) ⩽

n∑
i=1

ESα(Xi)

}
⩽ inf {β ∈ (0, 1) : ESβ(Sn/n) ⩽ ϵ)} → 0

as n→ ∞. Hence, we have DQES
α (Xn) = α∗/α → 0 as n→ ∞.
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Note that Theorem 6.2 does not imply that all independent portfolios are good hedges,

because (6.5) holds under some assumptions. In case the components of the portfolio have

very heavy tails, DQ based on VaR can be close to n even if the individual losses are iid, as

we will see in Theorem 6.3 below.

Remark 6.5. In the special case thatX1, X2, . . . are iid, Theorem 6.2 implies that, if ρα(X1) >

E[X1], we have

lim
n→∞

DQρ
α(X1, . . . , Xn) = 0

for ρ being VaR or ES.

Next, we focus on portfolios with exchangeable components, which may represent a

homogeneous subgroup of assets from a large asset pool. An infinite sequence of random

variablesX1, X2, . . . is said to be exchangeable if (X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)) for all n ⩾

2 and π ∈ Sn, where Sn is the set of permutations of [n]. Exchangeability is closely related

to iid sequence of random variables due to de Finetti’s theorem, which says that any infinite

exchangeable sequence is conditionally iid. However, for the exchangeable portfolio, the value

of DQ does not necessarily converge to 0 as n goes to infinity. By the Birkhoff–Khinchin

theorem (see Aleksandr and Khinchin (1949)), if E[|X1|] <∞, we have
∑n

i=1Xi/n→ E[X1|G]

a.s. for some sub-σ-algebra G ⊆ F . By (6.2), we get

DQVaR
α (X1, . . . , Xn) →

1− F (VaRα(X1))

α
as n→ ∞,

and

DQES
α (X1, . . . , Xn) →

1− F̃ (ESα(X1))

α
as n→ ∞,

where F is the distribution of E[X1|G] and F̃ is the superquantile transform of F .

The above formulas depend on G which may not be explicit. In the next proposition,

we derive an upper bound on the limit.

Proposition 6.1. Let X1, X2, . . . be a sequence of exchangeable random variables in L2.

Denote by µ = E[X1], σ
2 = var(X1) and r = corr(X1, X2). For α ∈ (0, 1) and ρ being VaR

or ES, if ρα(X1) > µ, then

lim
n→∞

DQρ
α(X1, . . . , Xn) ⩽

1

α

rσ2

rσ2 + (ρα(X1)− µ)2
. (6.6)
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Proof. Let Sn =
∑n

i=1Xi. As (X1, . . . , Xn) is exchangeable, we have E[Sn] = nµ and

var(Sn) = (n+ n(n− 1)r)σ2. The mean and variance of Sn imply the bound

ρβ(Sn) ⩽ nµ+ σ
√
n+ n(n− 1)r

√
1− β

β

for all β ∈ (0, 1); see Table 1 of Li et al. (2018). As a result, we have

DQρ
α(X1, . . . , Xn) ⩽

1

α
inf

{
β ∈ (0, 1) : nµ+ σ

√
n+ n(n− 1)r

√
1− β

β
⩽ nρα(X1)

}

=
1

α

1+(n−1)r
n

σ2

1+(n−1)r
n

σ2 + (ρα(X1)− µ)2
.

Sending n→ ∞, we get the desired result.

The upper bound (6.6) on limn→∞ DQρ
α(X1, . . . , Xn) in Proposition 6.1 decreases as the

correlation r between assets decreases. Intuitively, this means that less positive dependence

leads to greater diversification. In particular, if r ↓ 0, then limn→∞DQρ
α(X1, . . . , Xn) → 0.

The upper bound (6.6) holds true also without exchangeability, as long as the average of the

bivariate correlations of assets converges to r and all assets are identically distributed.

6.5 Elliptical models

The most commonly used classes of multivariate distributions are the elliptical models

which include the multivariate normal and t-distributions as special cases. For a general

treatment of elliptical models in risk management, see McNeil et al. (2015). In this section,

we study DQs based on VaR and ES for elliptical models.

6.5.1 Explicit formulas for DQ

A random vector X is elliptically distributed if its characteristic function can be written

as

ψ(t) = E
[
exp

(
it⊤X

)]
= exp

(
it⊤µ

)
τ
(
t⊤Σt

)
,
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for some µ ∈ Rn, positive semi-definite matrix Σ ∈ Rn×n, and τ : R+ → R called the

characteristic generator. We denote this distribution by En(µ,Σ, τ). We will assume that

Σ is not a matrix of zeros. Each marginal distribution of an elliptical distribution is a

one-dimensional elliptical distribution with the same characteristic generator. The most

common examples of elliptical distributions are normal and t-distributions. An n-dimensional

t-distribution t(ν,µ,Σ) with ν > 0 has density function f given by (if |Σ| > 0)

f(x) =
Γ ((ν + n)/2)

Γ(ν/2)νn/2πn/2 |Σ|1/2

(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)−(ν+n)/2

,

where Γ is the gamma function and |Σ| is the determinant of the dispersion matrix Σ.

We remind the reader that for elliptical models, VaR and ES behave very similarly.

For instance, VaRα is subadditive for α ∈ (0, 1/2) in this setting; see McNeil et al. (2015,

Theorem 8.28). Moreover, for X ∼ En(µ,Σ, τ) and a ∈ Rn, both VaRα(a
⊤X) and ESα(a

⊤X)

have the form y
√
a⊤Σa+a⊤µ for some constant y being yVaRα := VaRα(Y ) or yESα := ESα(Y )

where Y ∼ E1(0, 1, τ). As a consequence, the behaviour of DQ based on VaR is similar to

that based on ES, except for the case of infinite mean.

For a positive semi-definite matrix Σ, we write Σ = (σij)n×n, σ
2
i = σii, and σ =

(σ1, . . . , σn), and define the constant

kΣ =

∑n
i=1

(
e⊤i Σei

)1/2
(1⊤Σ1)1/2

=

∑n
i=1 σi(∑n

i,j σij

)1/2 ∈ [1,∞), (6.7)

where 1 = (1, . . . , 1) ∈ Rn and e1, . . . , en are the column vectors of the n × n identity

matrix In. Moreover, kΣ = 1 if and only if Σ = σσ⊤, which means that X ∼ En(µ,Σ, τ) is

comonotonic.

Explicit formulas and the limiting behavior of DQs based on VaR and ES for elliptical

models are given by the following few results.

Proposition 6.2. Suppose that X ∼ En(µ,Σ, τ). We have, for α ∈ (0, 1),

DQVaR
α (X) =

1− F (kΣVaRα(Y ))

α
and DQES

α (X) =
1− F̃ (kΣESα(Y ))

α
,

where Y ∼ E1(0, 1, τ) with distribution function F , and F̃ is the superquantile transform of

F in (6.2). Moreover,
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(i) α 7→ DQVaR
α (X) takes value in [0, 1] on (0, 1/2] and it takes value in [1, 2] on (1/2, 1);

(ii) kΣ 7→ DQVaR
α (X) is decreasing for α ∈ (0, 1/2] and increasing for α ∈ (1/2, 1);

(iii) kΣ 7→ DQES
α (X) is decreasing for α ∈ (0, 1).

Proof. We first consider the case of VaR. Since X ∼ En(µ,Σ, τ), the linear structure of

ellipitical distributions gives
∑n

i=1Xi ∼ E1(I
⊤µ, I⊤ΣI, τ). That is,

∑n
i=1Xi

d
=
∑n

i=1 µi +

∥1⊤A∥2Y , where A is the Cholesky decomposition of Σ. Also, we have VaRα(Xi) = µi +

∥e⊤i A∥2VaRα(Y ). By (6.2),

DQVaR
α (X) =

1

α
P

(
n∑

i=1

Xi >

n∑
i

µi + ∥e⊤i A∥2VaRα(Y )

)

=
1

α
P

(
n∑

i=1

µi + ∥1⊤A∥2Y >
n∑
i

µi + ∥e⊤i A∥2VaRα(Y )

)
=

1− F (kΣVaRα(Y ))

α
.

By replacing VaR with ES and
∑n

i=1Xi with ESU(
∑n

i=1Xi), we can get the first formula of

DQES
α (X).

(i) For α ∈ (0, 1/2], we have VaRα (Y ) ⩽ kΣVaRα(Y ) and 1 − α ⩽ F (kΣVaRα(Y )) ⩽ 1.

Hence, 0 ⩽ DQVaR
α (X) ⩽ 1.

For α ∈ (1/2, 1), VaRα (Y ) ⩾ kΣVaRα(Y ) and α ⩽ 1 − F (kΣVaRα(Y )) ⩽ 1. Hence,

1 ⩽ DQVaR
α (X) ⩽ 1/α ⩽ 2.

(ii) If α ∈ (0, 1/2], then VaRα(Y ) ⩾ 0, and thus DQVaR
α (X) decreases in kΣ. If α ∈ (1/2, 1),

then VaRα(Y ) ⩽ 0, and thus DQVaR
α (X) increases in kΣ.

(iii) For α ∈ (0, 1), ESα(Y ) ⩾ 0. Hence, DQES
α (X) increases in kΣ.

In the discussions below, we will assume α ∈ (0, 1/2), which is the most common setting

in risk management. In Proposition 6.2, we see that, for α ∈ (0, 1/2), DQVaR
α (X) ∈ [0, 1].

This is in contrast to Theorem 6.1, where the range of DQVaR
α is [0, n] instead of [0, 1], when

we do not restrict to elliptical models. This phenomenon should not be surprising, because,

as we mentioned before, VaRα for α ∈ (0, 1/2) is similar to ESα for elliptical models, and

DQES
α has range [0, 1].
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In case Y ∼ E1(0, 1, τ) has a positive density on R, we can see from Proposition 6.2

that DQVaR
α (X) = 1 if and only if kΣ = 1 (i.e., X is comonotonic) or VaRα(Y ) = 0 (i.e.,

α = 1/2). Similarly, DQES
α (X) = 1 if and only if kΣ = 1.

In case the elliptical distribution is asymptotically uncorrelated, we will see that, as n→

∞, DQVaR
α (X) → 0 and DQES

α (X) → 0. This is consistent with our intuition that, if the indi-

vidual risks are asymptotically uncorrelated, then full diversification can be achieved asymp-

totically, thus the diversification index goes to 0. The value ACΣ =
∑n

i,j σij/(
∑n

i=1 σi)
2 =

1/k2Σ will be called the average correlation (AC) of Σ.

Proposition 6.3. Suppose that X ∼ En(µ,Σ, τ).

(i) Let Y ∼ E1(0, 1, τ) and f be the density function of Y . We have

lim
α↓0

DQVaR
α (X) = lim

x→∞
kΣ
f(kΣx)

f(x)
if VaR0(Y ) = ∞ and the limit exists, (6.8)

and limα↓0DQ
VaR
α (X) = 0 if VaR0(Y ) <∞.

(ii) If limn→∞ACΣ = 0, then

lim
n→∞

DQVaR
α (X) = lim

n→∞
DQES

β (X) = 0

for α ∈ (0, 1/2) and β ∈ (0, 1).

Proof. (i) If VaR0(Y ) <∞, then VaR0(Y ) ⩽ kΣVaR0(Y ) as kΣ ⩾ 1. Hence, DQVaR
0 (X) = 0.

If VaR0(Y ) = ∞, then VaR0(Y ) > kΣVaRα(Y ) for α > 0. Therefore,

lim
α→0

DQVaR
α (X) = lim

α→0

1− F (kΣVaRα(Y )))

α
= lim

α→0
kΣ
f (kΣVaRα(Y )))

f(VaRα(Y )))
= lim

x→∞
kΣ
f (kΣx)

f(x)
,

and we get the desired result.

(ii) We only show the proof of DQVaR
α as the result for DQES

β can be obtained along

the same analogy. By Proposition 6.2, it is clear that ACΣ → DQVaR
α (X) is increasing for

α ∈ (0, 1/2) and ACΣ → DQES
β (X) is increasing for α ∈ (0, 1). Moreover, if ACΣ goes to 0 as

n→ ∞, we have limn→∞ kΣ = ∞. Thus, we have DQVaR
α (X) → 0 as n→ ∞ by Proposition

6.2.
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Explicit formulas of (6.8) for normal and t-distributions are provided in Section 6.5.2.

Remark 6.6. In general, we do not have a limiting result for DQES
α in the form of Proposition

6.3 (i). If X ∼ t(ν,µ,Σ) for ν > 1, then DQES
α has the same limit as DQVaR

α in (6.8) as

α ↓ 0 because VaRα(Y )/ESα(Y ) has a constant limit (ν − 1)/ν for a t-distributed Y by the

Karamata theorem; see Theorem A.7 of McNeil et al. (2015).

From the results above, DQVaR
α (X) and DQES

α (X) depend on both τ and α. In sharp

contrast, DR of a centered elliptical distribution is always 1/kΣ, which ignores the shape of

the distribution. More precisely, for X ∼ En(0,Σ, τ) and α ∈ (0, 1/2), we have

DRVaRα(X) =
VaRα(

∑n
i=1Xi)∑n

i=1 VaRα(Xi)
=

(∑n
i,j σij

)1/2
VaRα(Y )∑n

i=1 σiVaRα(Y )
=

1

kΣ
, (6.9)

and similarly, DRESα(X) = 1/kΣ. Note that in this case, DRVaRα and DRESα do not depend

on τ , α or whether the risk measure is VaR or ES. Indeed, DR based on var or SD also has

the same value 1/kΣ.

For X ∼ En(µ,Σ, τ) with µ ̸= 0, DRVaRα(X) and DRESα(X) depend also on µ, which

is arguably undesirable as it conflicts location invariance. Nevertheless, limα↓0DR
VaRα(X) =

1/kΣ if VaR0(Y ) = ∞ (i.e., the value taken by Y is unbounded from above), and this limit

does not depend on µ. On the other hand, DQVaR
α (X) has a limit in (6.8) which depends on

both kΣ and τ . The above observations suggest that DQ is more comprehensive than DR by

utilizing the information on the shape of the distribution.

A similar result to Proposition 6.3 (ii) holds for DR of centered elliptical distribu-

tions. More precisely, If α ∈ (0, 1/2), µ = 0, and limn→∞ACΣ = 0, then we have

limn→∞ DRVaRα(X) = 0 by (6.9), and similarly, limn→∞DRESα(X) = 0. These limits do

not hold if µ ̸= 0.

6.5.2 Normal and t-distributions

Next, we take a close look at the two most important elliptical distributions used in

finance and insurance, namely the multivariate normal distribution and the multivariate t-

distribution. The explicit formulas for DQ for these distributions are available through the

explicit formulas of VaR and ES; see Examples 2.14 and 2.15 of McNeil et al. (2015).
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Chapter 4 proposed three simple models where the components of portfolio vectors

follow the iid normal model, iid t-model and the common shock t-model, respectively, and

showed that the diversification is the strongest according to DQ for the iid normal model and

the iid t-model has a smaller DQ than the common shock t-model. In contrast, DR reports

a similar value for all three models; see their Section 5.2 for details. Therefore, DQ has the

nice feature that it can capture heavy tails and common shocks.

We present some formulas and numerical results for correlated normal and t-models.

We focus our discussions mainly on DQVaR
α as the case of DQES

α is similar. We first compute

the limit of DQ as α ↓ 0 according to (6.8). By direct calculation,

lim
α↓0

DQVaR
α (X) = 1{kΣ=1} if X ∼ N(µ,Σ); (6.10)

lim
α↓0

DQVaR
α (X) = k−ν

Σ if X ∼ t(ν,µ,Σ). (6.11)

The above two values properly reflect the fact that the normal distribution is tail independent

unless kΣ = 1 (i.e., comonotonic), whereas the t-distribution is tail dependent; see Examples

7.38 and 7.39 of McNeil et al. (2015). DQ is able to capture this phenomenon well, by

providing, for α close to 0, DQVaR
α ≈ 0 (strong diversification) for normal distribution and

DQVaR
α ≈ k−ν

Σ (moderate diversification for common choices of Σ and ν; see Figure 6.3) for a

t-distribution. On the other hand, DR of centered normal and t-distributions is always 1/kΣ,

which fails to distinguish the tail of the t-distribution from that of the normal distribution

(see (6.9)).

For numerical illustrations, we consider two specific dispersion matrices, parameterized

by r ∈ [0, 1] and n ∈ N,

Σ1 = (σij)n×n, where σii = 1 and σij = r for i ̸= j, and

Σ2 = (σij)n×n, where σii = 1 and σij = r|j−i| for i ̸= j.

Note that Σ1 represents an equicorrelated model and Σ2 represents an autoregressive

model AR(1). For r = 0, r = 1 or n = 2, these two dispersion matrices are identical. We take

four models Xi ∼ N(µ,Σi) and Yi ∼ t(ν,µ,Σi), i = 1, 2, and we will let r, ν, α, n vary. Note

that the location µ does not matter in computing DQ, and we can simply take µ = 0. The

default parameters are set as r = 0.3, n = 4, ν = 3 and α = 0.05 if not explained otherwise.
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Figure 6.1: DQ and DR based on VaR for ν ∈ (0, 10] and ES for ν ∈ (1, 10] with fixed

α = 0.05, r = 0.3 and n = 4
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Figure 6.2: DQ based on VaR and ES for r ∈ [0, 1] with fixed α = 0.05, ν = 3, and n = 4
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DQ for the t-models as the parameter of degrees of freedom ν varies

Figure 6.1 presents the values of DQ for the t-models with varying ν, where ν ∈ (0, 10]

for VaR and ν ∈ (1, 10] for ES. We observe a monotonic relation that DQVaR
α and DQES

α are

decreasing in ν. In particular, if ν is close to 0, we see that DQVaR
α ≈ 1 which means there is

almost no diversification effect for such super heavy-tailed models. On the other hand, DR

completely ignores ν and always reports the same value. Note that the values of DQ and

DR are not directly comparable as they are not on the same scale.
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Figure 6.3: DQ based on VaR and ES for α ∈ (0, 0.1) with fixed ν = 3, r = 0.3 and n = 4
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DQ for elliptical models as the correlation parameter r varies

In Figure 6.2, we report how DQ changes over r ∈ [0, 1] in the four models. Intuitively,

for r close to 1 which corresponds to comonotonicity, DQ is close to 1 in all models since there

is no or very weak diversification in this case. More interestingly, for r close to 0, there is very

strong diversification for the normal models, meaning DQVaR
α ≈ 0 and DQES

α ≈ 0, whereas

for the t-models, DQVaR
α and DQES

α are clearly away from 0. Note that the components of

a t-distribution are tail dependent even for zero or negative correlation (see Example 7.39

of McNeil et al. (2015)). Hence, DQ is able to capture dependence created by the common

factor in the t-model, in addition to its correlation structure.

DQ for varying α and its limit

In Figure 6.3, we report DQVaR
α and DQES

α for α ∈ (0, 1) in the four models with

correlation matrices specified in Section 6.5.2. We can see from Figure 6.3 that DQ can

be non-monotonic with respect to α (see the curves of DQES
α for Xi ∼ t(ν,µ,Σi)). In

addition, we can compute kΣ1 = 1.4510 and kΣ2 = 1.6046. Hence, it can be anticipated from

Proposition 6.2 that, since DQ is decreasing in kΣ, models with Σ1 has larger DQ than the

corresponding models with Σ2. Moreover, as α ↓ 0, we can see that DQVaR
α converges to its

corresponding limits in (6.10) and (6.11); also note that DQES
α has the same limits as DQVaR

α

for t-distributions as discussed in Remark 6.6.
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DQ for elliptical models as the dimension n varies

Figure 6.4 is related to Section 6.5.2 and reports how DQ changes over n ∈ [2, 100]

in the four models. We choose r = 0.5 in this experiment for better visibility. As we can

see, DQ decreases to 0 for models with the AR(1) dispersion Σ2, and DQ converges to a

non-zero constant for models with the equicorrelated dispersion Σ1. This is consistent with

Proposition 6.3 (ii) because ACΣ1 → r and ACΣ2 → 0 as n→ ∞.

Figure 6.4: DQs based on VaR and ES for n ∈ [2, 100] with fixed α = 0.05, r = 0.5 and

ν = 3
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Cross-comparison between DQ based on VaR and ES

One may be tempted to compare values of DQ based on VaR to those based on ES.

Although we see from Figure 6.3 that the curve DQVaR
α often dominates the curve DQES

α for

the same model, such a comparison is not meaningful, since VaR and ES are not meant to be

compared at the same level α. For a fair comparison, one needs to associate a VaR level α to

an ES level cα where c ⩾ 1 is PELVE of Li and Wang (2022) defined via EScα(X) = VaRα(X)

for X being normally or t-distributed; note that the location and scale of X do not matter.

The values of c, DQVaR
α and DQES

cα for α = 0.01 are summarized in Table 6.1. As we observe

from Table 6.1, the values of DQs based on VaR and ES are quite close when the probability

level is calibrated via PELVE. This is consistent with the afore-mentioned fact that VaR

behaves similarly to ES in the setting of elliptical models.
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Table 6.1: Values of DQs based on VaR at level α = 0.01 and ES at level cα, where n = 4

and r = 0.3

c cα DQVaR
α DQES

cα

X1 ∼ N(µ,Σ1) 2.58 0.0258 0.0369 0.0377

X2 ∼ N(µ,Σ2) 2.58 0.0258 0.0024 0.0025

Y1 ∼ t(3,µ,Σ1) 3.31 0.0331 0.3558 0.3373

Y2 ∼ t(3,µ,Σ2) 3.31 0.0331 0.2094 0.1961

6.6 Multivariate regularly varying models

Heavy-tailed distributions are known to exhibit complicated and even controversial phe-

nomena in finance (see e.g., Ibragimov et al. (2011)), and they are typically modelled via

multivariate regularly varying (MRV) models, important objects in Extreme Value Theory.

Such models are particularly relevant for tail risk measures such as VaR and ES at high

levels (McNeil et al. (2015)). In particular, MRV models have been applied to DR based

on VaR (e.g., Mainik and Rüschendorf (2010) and Mainik and Embrechts (2013)). Since

VaRα(X)/ESα(X) → (γ − 1)/γ as α ↓ 0 for X ∈ RVγ with finite mean (see e.g., McNeil et

al. (2015, p.154)), we only present the case of VaR.

Definition 6.4. A random vector X ∈ X n has an MRV model with some γ > 0 if there

exists a Borel probability measure Ψ on the unit sphere Sn := {s ∈ Rn : ∥s∥ = 1} such that

for any t > 0 and any Borel set S ⊆ Sn with Ψ(∂S) = 0,

lim
x→∞

P(∥X∥ > tx, X/∥X∥ ∈ S)

P(∥X∥ > x)
= t−γΨ(S),

where ∥·∥ is the L1-norm (one could use any other norm equivalent to the L1-norm). We call

γ the tail index of X and Ψ the spectral measure of X. This is written as X ∈ MRVγ(Ψ).

The univariate regular variation with tail index γ is defined as

for all t > 0, lim
x→∞

1− FX(tx)

1− FX(x)
= t−γ,
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where F is the distribution function of X. We write X ∈ RVγ for this property. As a

consequence of X ∈ MRVγ(Ψ), ∥X∥ satisfies univariate regular variation with the same tail

index γ.

Regular variation is one of the basic notions for describing heavy-tailed distributions

and dependence in the tails. In what follows, we limit our discussion to X ∈ MRVγ(Ψ) under

the non-degeneracy condition:

Ψ ({s ∈ Sn : s ∈ (0,∞)n}) > 0.

Note that if X ∈ MRVγ(Ψ) satisfies non-degeneracy condition, we have w⊤X ∈ RVγ (See

Mainik and Embrechts (2013)).

Let X ∈ MRVγ(Ψ) be a random vector with identical marginals. If X1, . . . , Xn have a

finite mean, then VaR is asymptotically subadditive in the following sense (see e.g., Embrechts

et al. (2009))

VaRα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi) for α close enough to 0,

but the inequality is reversed if X1, . . . , Xn do not have a finite mean. Next, in contrast to

Proposition 6.2 and Remark 6.5, we will show that DQ based on VaR can be arbitrarily close

to n even if the individual losses are iid.

Theorem 6.3. Suppose that X ∈ MRVγ(Ψ) and X has positive joint density on the support

of X. Then,

lim
α↓0

DQVaR
α (X) = η1

(
n∑

i=1

η1/γei

)−γ

, (6.12)

where ηx =
∫
Sn
(
x⊤s

)γ
+
Ψ(ds) for x ∈ Rn. Moreover, if X1, . . . , Xn are iid random variables,

then DQVaR
α (X) → n1−γ as α ↓ 0.

Proof. A more general result of (6.12) and its proof are shown in Proposition 6.5, where

the asymptotic behavior of DQVaR
α for weighted portfolios is investigated. Since DQ is scale-

invariant, by taking w = (1/n, . . . , 1/n) in Proposition 6.5, it gives

lim
α↓0

DQVaR
α (X) = lim

α↓0
DQVaR

α (1/nX1, . . . , 1/nXn) =
ηw(∑n

i=1wiη
1/γ
ei

)γ ,
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where ηw = n−γ
∫
Sn
(
1⊤s

)γ
+
Ψ(ds) = n−γη1. As a result, we have

lim
α↓0

DQVaR
α (X) = η1

(
n∑

i=1

η1/γei

)−γ

.

If X1, . . . , Xn are iid non-negative random variables, by Example 3.1 of Embrechts et

al. (2009), we have

η
1/γ
1 = lim

α↓0

VaRα (
∑n

i=1Xi)

VaRα(X1)
= n1/γ,

which implies that η1 = n. Moreover,

(ηei)
1/γ = lim

α↓0

VaRα(Xi)

VaRα(X1)
= 1.

Hence, limα↓0DQ
VaR
α (X) = n1−γ. Further, if γ ↓ 0, then DQVaR

α (X) → n.

The α-CE model in Theorem 6.1 with DQVaR
α (X) = n is complicated and involves

both positive and negative dependence. Theorem 6.3 suggests that DQVaR
α (X) ≈ n can be

obtained for some very heavy-tailed iid model with γ close to 0. Therefore, the upper bound

n on DQVaR
α is relevant when analyzing very heavy-tailed risks such as catastrophe losses;

we refer to Embrechts et al. (1997) for a general treatment of heavy-tailed risks in insurance

and finance.

Remark 6.7. Suppose that X1, . . . , Xn are iid random variables with X1 ∈ RVγ having posi-

tive density over its support. We have X = (X1, . . . , Xn) ∈ MRVγ(Ψ) by Kulik and Soulier

(2020, Example 2.1.4), and thus DQVaR
α (X) → n1−γ as α ↓ 0.

Remark 6.8. We note that the intersection between elliptical distributions and MRV distri-

butions is non-empty. For X ∼ En(µ,Σ, τ), we have

X
d
= µ+RAU,

where A ∈ Rn×n satisfying AA⊤ = Σ, U is uniformly distributed on the Euclidean sphere Sd
2

and R is a non-negative random variable that is independent of U . Theorem 4.3 of Hult and

Lindskog (2002) showed that X has an MRV model if and only if R ∈ RVγ for some γ > 0.

Assume that the elliptically distributed X is in MRVγ(Ψ) with γ > 0. As a result, we have
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Y ∼ E1(0, 1, τ) ∈ RVγ. Let f be the density of Y . Following Proposition 6.3 (i) and the fact

that VaRα(Y )/ESα(Y ) → (γ − 1)/γ as α ↓ 0 for Y ∈ RVγ with finite mean, we have

lim
α↓0

DQES
α (X) = lim

α↓0
DQVaR

α (X) = lim
x→∞

kΣ
f(kΣx)

f(x)
= k−γ

Σ .

If X follows an elliptical distribution in the MRV class, then DQES
α (X) has the same limit as

DQVaR
α (X). For example, if X ∼ t(ν, µ,Σ), we have X ∈ MRVγ(Ψ) with γ = ν as we have

shown in (6.11) that limα↓0DQ
VaR
α (X) = limα↓0DQ

ES
α (X) = k−ν

Σ .

To end this section, we show that if there exists an asset with a strictly heavier tail

than the other assets in the portfolio, then DQ based on VaR tends to 1 as α ↓ 0.

Proposition 6.4. Suppose Xi ∈ RVγi for i ∈ [n] such that γ1 < mini=2,...,n γi. If X1, . . . , Xn

have positive densities on their support, then limα↓0DQ
VaR
α (X) = 1.

Proof. Since γ1 < mini=2,...,n γi, X1 has a heavier tail than X2, . . . , Xn. As a result, we have∑n
i=1Xi ∈ RVγ1 regardless of the dependence between all random variables (See Kulik and

Soulier (2020, Lemma 1.3.2)), that is,

lim
x→∞

P (
∑n

i=1Xi > x)

P(X1 > x)
= 1.

Moreover,X1 having a heavier tail thanX2, . . . , Xn also implies that limα↓0VaRα(Xi)/VaRα(X1) =

0 for all i = 2, . . . , n, and thus limα↓0
∑n

i=1VaRα(Xi)/VaRα(X1) = 1. Therefore, we have

lim
α↓0

DQVaR
α (X) = lim

α↓0

P (
∑n

i=1Xi >
∑n

i=1VaRα(Xi))

α

= lim
α↓0

P (
∑n

i=1Xi >
∑n

i=1VaRα(Xi))

P(X1 > VaRα(X1))

= lim
α↓0

P (
∑n

i=1Xi >
∑n

i=1VaRα(Xi))

P(X1 >
∑n

i=1VaRα(Xi))

P(X1 >
∑n

i=1VaRα(Xi))

P(X1 > VaRα(X1))

= lim
α↓0

(∑n
i=1VaRα(Xi)

VaRα(X1)

)−γ1

= 1.

Thus, we get the desired result.

Proposition 6.4 illustrates the intuitive fact that, if the tail of one asset is strictly heavier

than the others, then the portfolio has no diversification in the tail region, i.e., as α ↓ 0.
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6.7 Optimization for the elliptical models and MRV

models

We analyze portfolio diversification for a random vector X ∈ X n representing losses

from n assets and a vector w = (w1, . . . , wn) ∈ ∆n of portfolio weights, where

∆n := {x ∈ [0, 1]n : x1 + · · ·+ xn = 1} .

The total loss of the portfolio is w⊤X. We write w ⊙X = (w1X1, . . . , wnXn) which is the

portfolio loss vector with the weight w. For a portfolio selection problem, we need to treat

DQρ
α(w ⊙X) as a function of the portfolio weight w.

Chapter 4 studied the following optimization diversification problem

min
w∈∆n

DQVaR
α (w ⊙X) and min

w∈∆n

DQES
α (w ⊙X); (6.13)

for general X. Moreover, efficient algorithms are obtained to optimize DQVaR
α and DQES

α in

real-data applications; see their Sections 6.2 and 7. In this section, we focus on the portfolio

optimization problems for elliptical and MRV models.

For the elliptical models, the optimization of DQVaR
α , DQES

α boils down to maximizing

kwΣw⊤ in (6.7) since DQ of w ⊙X is decreasing in kwΣw⊤ . We assume that Σ is invertible,

and write Σ = (σij)n×n, with diagonal entries σii = σ2
i , i ∈ [n], and σ = (σ1, . . . , σn). Note

that

kwΣw⊤ =
w⊤σ√
w⊤Σw

,

and we immediately give the optimizer of (6.13) for the elliptical models.

Theorem 6.4. Suppose that X ∼ En(µ,Σ, τ), Σ is invertible and α ∈ (0, 1/2), then the

vector

w∗ = argmax
w∈∆n

w⊤σ√
w⊤Σw

(6.14)

minimizes (6.13), that is,

min
w∈∆n

DQρ
α(w ⊙X) = DQρ

α(w
∗ ⊙X) (6.15)

for ρ being VaR or ES.
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The optimization problem (6.14) is well studied in the literature, and the existence and

uniqueness of the solution can be verified if Σ is invertible, see, e.g. Choueifaty and Coignard

(2008). Note that the optimizer for problem (6.15) does not depend on the tail probability

level α. It is straightforward to see that

argmin
w∈∆n

DRρα(w ⊙X) = argmax
w∈∆n

w⊤µ+w⊤σρα(Y )

w⊤µ+
√
w⊤Σwρα(Y )

for ρ being VaR or ES and Y ∼ E1(0, 1, τ). This optimizer is the same as that of (6.15) if

µ = 0. This shows that for centered elliptical models, optimizing DQ and optimizing DR

are equivalent problems, both of which are further equivalent to optimizing DR based on SD

(assuming it exists). This is intuitive as for a fixed τ , centered elliptical distributions are

parameterized by their dispersion matrices.

Example 6.1. Assume that X ∼ t(ν,µ,Σ) where ν = 3 and the dispersion matrix is given

by

Σ =

 1 0.5

0.5 2

 .

Clearly, DQ does not depend on µ. We show the curves of DQVaR
α (w⊙X) and DQES

α (w⊙X)

against the weight w1 with various values of α = 0.001, 0.01, 0.025, 0.05. It can be anticipated

from (6.14) that although DQ depends on α, the optimizer does not. By solving (6.14), we

get w∗
1 = 0.5860 and w∗

2 = 0.4140, which corresponds to the observations in Figure 6.5.

Recall that DQES
α is quite flat when α varies in Figure 6.3, and hence curves of DQES

α (w⊙X)

look similar for different α.

Figure 6.5: Values of DQVaR
α (w ⊙X) and DQES

α (w ⊙X) for w1 ∈ [0, 1]
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Next, we turn to the MRV model. The following result gives the limit of DQ of the

portfolio w ⊙X where X follows an MRV model. Due to the same reason stated in Section

6.6, we only present the case of VaR. In the proofs below, for any positive functions f and

g, we write f(x) ≃ g(x) as x→ x0 to represent limx→x0 f(x)/g(x) = 1.

Proposition 6.5. Suppose that X ∈ MRVγ(Ψ) and X has positive joint density on the

support of X. Then, for w ∈ ∆n,

lim
α↓0

DQVaR
α (w ⊙X) = f(w),

where f(w) = ηw/
(∑n

i=1wiη
1/γ
ei

)γ
and ηx =

∫
Sn
(
x⊤s

)γ
+
Ψ(ds) for x ∈ Rn.

Proof. If X ∈ MRVγ(Ψ) with γ ∈ (0, 1), we have (Lemma 2.2 of Mainik and Embrechts

(2013))

lim
α↓0

VaRα (
∑n

i=1wiXi)

VaRα (∥X∥1)
= η1/γw ,

and

lim
α↓0

n∑
i=1

wiVaRα (Xi)

VaRα (∥X∥1)
=

n∑
i=1

wiη
1/γ
ei
,

where ∥X∥1 =
∑n

i=1 |Xi|. As X has positive joint density, VaRα is continuous for
∑n

i=1wiXi.

Then we have VaRα∗(
∑n

i=1wiXi) =
∑n

i=1wiVaRα(Xi). Thus, it follows that

VaRα (
∑n

i=1wiXi)

VaRα∗(
∑n

i=1wiXi)
→ η

1/γ
w∑n

i=1wiη
1/γ
ei

as α ↓ 0.

Since
∑n

i=1wiXi ∈ RVγ, for c > 0,

VaRα (
∑n

i=1wiXi)

VaRcα (
∑n

i=1wiXi)
≃
(
1

c

)−1/γ

as α ↓ 0.

Let c = α∗/α, we have ( α
α∗

)−1/γ

→ η
1/γ
w∑n

i=1wiη
1/γ
ei

.

Hence,

DQVaR
α (w ⊙X) =

α∗

α
→ ηw(∑n

i=1wiη
1/γ
ei

)γ .
The desired result is obtained.
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Proposition 6.5 allows us to approximately optimize DQVaR
α by minimizing f(w). For

X ∈ MRVγ(Ψ) with γ > 1, by assuming Ψ
({

x ∈ Rn : a⊤x = 0
})

= 0 for any a ∈ Rn,

which means that all components are relevant for the extremes of X, the existence and

uniqueness of w∗ = argminw∈∆n
f(w) are guaranteed. In fact, the existence of w∗ is due to

the continuity of f(w) and the compactness of ∆n. To show uniqueness, we can rewrite the

above minimization problem as

min
w∈∆n

ηw s.t.
d∑

i=1

wiη
1/γ
ei

= 1.

Note that the set of constraints is compact and ηw is strictly convex, and hence w∗ is unique.

Example 6.2. Assume that Y1 and Y2 are iid following a standard t-distribution with ν > 1

degrees of freedom. A random vector X = (X1, X2) is defined as

X = AY with A =

 1 0

r
√
1− r2

 .

The random vectors X and Y are not elliptically distributed. Using the results in Mainik

and Embrechts (2013), we have

ηw
η11

= (w1 + w2r)
ν +

(
w2

√
1− r2

)ν
,

and
ηw
η12

=
(w1 + w2r)

ν +
(
w2

√
1− r2

)ν
rν +

√
1− r2

ν .

Hence,

f(w) =

w1

(
(w1 + w2r)

ν+
(
w2

√
1− r2

)ν)− 1
ν

+ w2

(
(w1+ w2r)

ν+
(
w2

√
1− r2

)ν
rν+

√
1− r2

ν

)− 1
ν

−ν

.

Take r = 0.3. We show the curves of DQVaR
α (w ⊙ X) against w1 for α = 0.001, 0.01, 0.025

and ν = 2, 4. Also, we use f(w) to approximate DQVaR
α (w ⊙ X) as α tends to 0. From

Figure 6.6, we can see that the optimizer w∗
1 is converging to the one that maximizes f(w)

as α tends to 0.

Remark 6.9. Some negative dependence concepts yield small values of DQ. The joint mix

dependence usually leads to a zero DQ as we see in Theorem 6.1 (ii). The negative dependence
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Figure 6.6: Values of DQVaR
α (w ⊙X) with ν = 2 (left) and ν = 4 (right)
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concept of Lee and Ahn (2014), weaker than joint mix dependence, does not necessarily lead

to a small value of DQ. For instance, the portfolio vectorX = (X,−ϵX) is counter-monotonic

for ϵ > 0, but its DQ can be close to 1 for small ϵ. In particular, we have DQVaR
α (X) ≈ 0.9333

and DQES
α (X) ≈ 0.9044 for α = 0.05 and ϵ = 0.01 when X follows a standard normal

distribution.

6.8 Conclusion

The DQs based on VaR and ES are investigated in this chapter, following the theory

of DQ in Chapter 4. In particular, for elliptical and MRV models, these DQs have simple

forms. Comparisons between DQ and DR illustrate some attractive features of DQ. These

results enhance the theory and applications of DQ.

We summarize some features below. (i) In cases of VaR and ES, DQs have simple

formulas, in a way comparable to DRs. (ii) DQs based on VaR and ES take values in bounded

intervals and have natural ranges of [0, n] and [0, 1], respectively. The special values 0, 1 and

n which correspond to special dependence structures can be constructed. (iii) DQs based

on VaR and ES for elliptical distributions and MRV models have convenient expressions

and it can capture heavy tails in an intuitive way. (iv) Portfolio optimization for elliptical

models boils down to a well-studied problem in the literature. For centered elliptical models,

optimizing DQ and optimizing DR are equivalent problems.
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We discuss some future directions for the research of DQ. As a potential alternative to

ES, expectiles (Bellini et al. (2014)) have received increasing attention in the recent literature;

indeed, they are the only elicitable coherent risk measures (Ziegel (2016)). It would be inter-

esting to formulate DQ based on expectiles and investigate its properties that are different

from DQ based on ES or VaR. As another interesting class of risk measures, the optimized

certainty equivalents (Ben-Tal and Teboulle (2007)) are introduced from decision-theoretic

criterion based on utility functions. It would be useful to construct DQ based on utility

functions or optimized certainty equivalents and analyze the decision-theoretic implications

of DQ.
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Chapter 7

Pairwise counter-monotonicity

7.1 Introduction

Dependence modelling is a crucial part of modern quantitative studies in economics,

finance, and insurance (McNeil et al. (2015)). Comonotonicity and counter-monotonicity are

known as the strongest forms of positive and negative dependence, respectively. In quanti-

tative risk management, assuming knowledge of the marginal distributions, comonotonicity

corresponds to the most dangerous dependence structure (Denneberg (1994) and Dhaene et

al. (2002, 2006)) for the aggregate risk, whereas counter-monotonicity corresponds to the

safest. In dimensions higher than 2, by counter-monotonicity we mean pairwise counter-

monotonicity (Dall’Aglio (1972)), which has been studied under the name of mutual exclu-

sivity in the actuarial literature (Dhaene et al. (1999) and Cheung and Lo (2014)).1

Despite the obvious similarity in their definitions, comonotonicity and counter-monotonicity

are asymmetric in several major senses. For instance, comonotonicity admits a stochastic

representation (see Lemma 7.1 below), but such a representation is not known for pairwise

counter-monotonicity. Moreover, for any given tuple of marginal distributions, a comono-

tonic random vector with these marginal distributions always exists, but a pairwise counter-

1Mutual exclusivity is defined using joint exceedance probability (see Section 7.2). The two definitions

are shown to be equivalent first by Dall’Aglio (1972, Lemma 2) and in a more precise form by Cheung and

Lo (2014, Theorem 4.1).
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monotonic one may not exist unless quite restrictive conditions on the marginal distributions

are satisfied, as first studied by Dall’Aglio (1972). In particular, a pairwise counter-monotonic

random vector cannot have continuous marginal distributions. Comonotonicity has many im-

portant roles in economics, finance and actuarial science, and as such it has received great

attention in the literature, as in axiomatization of preferences (Yaari (1987); Schmeidler

(1989)), risk measures (Kusuoka (2001)) and premium principles (Wang et al. (1997)), risk

sharing (Landsberger and Meilijson (1994); Jouini et al. (2008)), insurance design (Huber-

man et al. (1983); Carlier and Dana (2003)), risk aggregation (Embrechts et al. (2015)), and

optimal transport (Rüschendorf (2013)).

In sharp contrast to the rich literature on comonotonicity, research on pairwise counter-

monotonicity is quite limited. As a dependence concept, pairwise counter-monotonicity has

been studied by Dall’Aglio (1972), Hu and Wu (1999), Dhaene et al. (1999) and Cheung and

Lo (2014), but the list of relevant studies do not grow much longer. In contrast to the rel-

atively limited studies on pairwise counter-monotonicity, this dependence structure appears

naturally in many economic contexts, such as lottery tickets, Bitcoin mining, gambling, and

mutual aid platforms, whenever payment events are mutually exclusive. In particular, the

interest in studying pairwise counter-monotonicity has grown in the recent risk sharing liter-

ature. A pairwise counter-monotonic structure is the essential building block of any optimal

allocation for agents using Value-at-Risk (VaR, which are quantiles) and quantile-related

risk measures; such problems are studied by Embrechts et al. (2018) and generalized by

Weber (2018), Embrechts et al. (2020), Liu et al. (2022) and Xia et al. (2023). Moreover,

counter-monotonicity, when possible, serves as the best-case dependence structure in risk

aggregation for some common risk measures, and, in some contexts, it also serves as the

worst-case dependence structure for VaR (see Example 7.1 in Section 7.2).

This chapter is dedicated to a systematic study of pairwise counter-monotonicity. As

comonotonicity and counter-monotonicity are classic and prominent concepts in mathematics

and its applications with a long history, at least since the seminal work of Hardy et al. (1934),

one may guess that there is not much more to discover about them. To our pleasant surprise,

we offer, through the development of this chapter, many new results on counter-monotonicity,

some of which are motivated by recent developments in risk management.
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We obtain a new stochastic representation for pairwise counter-monotonic random vec-

tors using their component-wise sum in Theorem 7.1, which will be useful for many other re-

sults in this chapter. The second result, Theorem 7.2, establishes that counter-monotonicity

is preserved under increasing transforms on disjoint sets of components of a random vec-

tor, which is an invariance property proposed by Joag-Dev and Proschan (1983) satisfied

by negative association (Alam and Saxena (1981)). Using this invariance property, we ob-

tain in Theorem 7.3 that counter-monotonicity implies negative association. The notion of

negative association is stronger than many other forms of negative dependence, such as neg-

ative orthant dependence (Block et al. (1982)) and negative supermodular dependence (Hu

(2000)). In particular, Theorem 7.3 surpasses a result of Dhaene et al. (1999) showing that

counter-monotonicity implies negative supermodular dependence.

Another negative dependence concept is joint mix dependence (Wang and Wang (2011,

2016)), which can be used to optimize many quantities in risk aggregation; see Wang et al.

(2013) and Rüschendorf (2013). To connect counter-monotonicity and joint mix dependence,

we fully characterize all Fréchet classes (Joe (1997)) which are compatible with both depen-

dence concepts in Theorem 7.4; it turns out that the two notions, when both exist in the

same Fréchet class, are equivalent. Finally, we show in Theorem 7.5 that in the context of

risk sharing for quantile agents (Embrechts et al. (2018)), under some mild conditions on

the total loss, there always exists a pairwise counter-monotonic Pareto-optimal allocation,

and any pairwise counter-monotonic allocation is Pareto optimal for some agents. As a con-

sequence, pairwise counter-monotonic random vectors are natural for agents that are not

risk averse. This is in stark contrast to comonotonic allocations, which appear prominently

for risk-averse agents (in the sense of Rothschild and Stiglitz (1970)) as a consequence of

comonotonic improvements introduced by Landsberger and Meilijson (1994).

7.2 Preliminaries

We first define comonotonicity and counter-monotonicity for bivariate random variables.

Fix a probability space (Ω,A,P). The probability space does not need to be atomless in

Sections 7.2-7.4. We treat almost surely (a.s.) equal random variables as identical; this
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means that all equalities and inequality for random variables hold in the a.s. sense, and we

omit “a.s.” in all our statements. Terms like “increasing” are in the non-strict sense. Let n

be a positive integer and [n] = {1, . . . , n}. Throughout, we consider n ⩾ 2.

A bivariate random vector (X, Y ) is comonotonic if there exist increasing functions

f, g and a random variable Z such that (X, Y ) = (f(Z), g(Z)). A bivariate random vec-

tor (X, Y ) is counter-monotonic if (X,−Y ) is comonotonic. An equivalent formulation of

comonotonicity is

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ⩾ 0 for (P× P)-almost every (ω, ω′) ∈ Ω2.

An equivalent formulation of counter-monotonicity is

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ⩽ 0 for (P× P)-almost every (ω, ω′) ∈ Ω2.

Next, we define these concepts in dimensions higher than 2. For n ⩾ 3, a random vector

X taking values in Rn is (pairwise) comonotonic if each pair of its components is comonotonic,

and it is (pairwise) counter-monotonic if each pair of its components is counter-monotonic.2

We will say “pairwise counter-monotonicity” to emphasize the case n ⩾ 3 and simply say

“counter-monotonicity” when we also include dimension 2. We always omit “pairwise” for

comonotonicity, for which the distinction between dimensions n = 2 and n ⩾ 3 is unnecessary.

There are many equivalent ways of formulating comonotonicity and counter-monotonicity;

see Puccetti and Wang (2015, Section 3.2) for a review. For instance, they can be formulated

using joint distributions. A comonotonic random vector and a counter-monotonic random

vector have, respectively, the largest and the smallest joint distribution functions among all

random vectors with the same marginals. With given marginals, the largest (resp. smallest)

joint distribution function is known as the Fréchet-Hoeffding upper (resp. lower) bound.

A stochastic representation of comonotonicity, which follows from Denneberg (1994,

Proposition 4.5), is presented in the next lemma.

Lemma 7.1 (Denneberg (1994)). Let (X1, . . . , Xn) be a random vector and denote by S =∑n
i=1Xi. The following are equivalent.

2We also say that random variables X1, . . . , Xn are comonotonic (counter-monotonic), which means that

the random vector (X1, . . . , Xn) is comonotonic (counter-monotonic).
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(i) (X1, . . . , Xn) is comonotonic.

(ii) There exist increasing functions f1, . . . , fn and a random variable Z such that Xi =

fi(Z) for all i ∈ [n].

(iii) There exist continuously increasing functions f1, . . . , fn such that Xi = fi(S) for all

i ∈ [n].

Lemma 7.1 implies that a comonotonic vector can be represented by increasing functions

of the sum S. Such a representation result does not exist for pairwise counter-monotonicity,

since the sum S cannot determine the components (X1, . . . , Xn) in the presence of negative

dependence.

Although quite different from comonotonicity, pairwise counter-monotonicity also has

a special structure, presented below in Lemma 7.2, which is a restatement of Lemma 2 and

Theorem 3 of Dall’Aglio (1972). This result will be useful in a few places in the chapter.

The current form of this lemma can be found in Theorem 4.1 of Cheung and Lo (2014) and

Proposition 3.2 of Puccetti and Wang (2015). Denote by ess-infX and ess-supX the essential

infimum and essential supremum of a random variable X, respectively.

Lemma 7.2 (Dall’Aglio (1972)). If at least three of X1, . . . , Xn are non-degenerate, pairwise

counter-monotonicity of (X1, . . . , Xn) means that one of the following two cases holds true:

P(Xi > ess-infXi, Xj > ess-infXj) = 0 for all i ̸= j; (7.1)

P(Xi < ess-supXi, Xj < ess-supXj) = 0 for all i ̸= j. (7.2)

A necessary condition for (7.1) is
∑n

i=1 P(Xi > ess-infXi) ⩽ 1, and a necessary condition

for (7.2) is
∑n

i=1 P(Xi < ess-supXi) ⩽ 1.

In the actuarial literature, mutual exclusivity of (X1, . . . , Xn) is defined as either (7.1)

or (7.2); see Cheung and Lo (2014).

Pairwise counter-monotonicity imposes strong constraints on the marginal distribu-

tions. For instance, the necessary condition in case of (7.1) is equivalent to
∑n

i=1 P(Xi =

ess-infXi) ⩾ n − 1, and it implies, in particular, that X1, . . . , Xn are bounded from below.
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Moreover, given n ⩾ 3 non-degenerate marginal distributions, a pairwise counter-monotonic

random vector exists if and only if one of the two necessary conditions on the marginal

distributions holds (Theorem 3 of Dall’Aglio (1972)).

Example 7.1. We illustrate the special role of counter-monotonicity in risk aggregation with

a simple model. Let F1, . . . , Fn be Bernoulli distributions with mean ϵ ∈ (0, 1/n). These

distributions may represent losses from credit default events in a pre-specified period, which

usually occur with a small probability. In risk aggregation problems (e.g., Embrechts et al.

(2013, 2015)), we are interested in the minimum (best-case) value or maximum (worst-case)

value of

ρ

(
n∑

i=1

Xi

)
with the marginal condition Xi ∼ Fi, i ∈ [n], (7.3)

where ρ is a risk measure, and
∑n

i=1Xi represents the total loss from a portfolio of defaultable

bonds, with the probability of default ϵ estimated from the credit rating of these bonds,

assumed to be equal for simplicity. We consider two choices of ρ, which lead to opposite

conclusions.

(a) Let ρ be a risk measure that is consistent with convex order. Such risk measures are

characterized by Mao and Wang (2020), and they include all law-invariant coherent,

as well as convex, risk measures, such as the Expected Shortfall (Föllmer and Schied

(2016)). The minimum value of (7.3) is obtained by a counter-monotonic random vector

(X1, . . . , Xn). This result holds for other marginal distributions as long as a counter-

monotonic random vector with these marginal distributions exists; see e.g., Lemma 3.6

of Cheung and Lo (2014).

(b) Let ρ : X 7→ inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, which is the risk measure VaRα in Section

7.6. Further, assume that α/ϵ ∈ (n/2, n). The maximum value of (7.3) is obtained by a

counter-monotonic random vector (X1, . . . , Xn), as explained below. First, since
∑n

i=1Xi

only takes integer values, so does ρ(
∑n

i=1Xi). If (X1, . . . , Xn) is counter-monotonic, then∑n
i=1Xi follows a Bernoulli distribution with mean nϵ > α, and hence ρ(

∑n
i=1Xi) = 1.

Moreover, for anyX1, . . . , Xn with the specified marginal distributions, if ρ(
∑n

i=1Xi) ⩾ 2

then E[
∑n

i=1Xi] ⩾ 2α > nϵ, a contradiction, thus showing ρ(
∑n

i=1Xi) ⩽ 1.
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The interpretation of the above two cases is that, for credit default losses, using a coherent

risk measure and using VaR may lead to opposite conclusions on which dependence structure

is safe or dangerous, and both cases highlight the important role of counter-monotonicity.

7.3 Stochastic representation

We provide in this section a stochastic representation of pairwise counter-monotonicity.

To explain the result, let Πn be the set of all n-compositions of Ω, that is,

Πn =

(A1, . . . , An) ∈ An :
⋃
i∈[n]

Ai = Ω and A1, . . . , An are disjoint

 .

In other words, a composition of Ω is a partition of Ω with order. Denote by X± the set of

all nonnegative random variables and nonpositive random variables.

Theorem 7.1. Let (X1, . . . , Xn) be a random vector and denote by S =
∑n

i=1Xi. Suppose

that at least three of X1, . . . , Xn are non-degenerate. The following are equivalent.

(i) (X1, . . . , Xn) is pairwise counter-monotonic.

(ii) There exist m1, . . . ,mn ∈ R, (A1, . . . , An) ∈ Πn and Z ∈ X± such that

Xi = Z1Ai
+mi for all i ∈ [n]. (7.4)

(iii) There exists (A1, . . . , An) ∈ Πn such that

Xi = (S −m)1Ai
+mi for all i ∈ [n], (7.5)

where either mi = ess-infXi for i ∈ [n] or mi = ess-supXi for i ∈ [n], and m =
∑n

i=1mi.

Proof. The implication (iii)⇒(ii) is straightforward. To see (ii)⇒(i), take i, j ∈ [n] with

i ̸= j, and we check a few cases of ω, ω′ ∈ Ω. If ω, ω′ ̸∈ Ai, then Xi(ω) = Xi(ω
′) = mi, and

hence

(Xi(ω)−Xi(ω
′))(Xj(ω)−Xj(ω

′)) = 0. (7.6)
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Similarly, (7.6) holds if ω, ω′ ̸∈ Aj. If (ω, ω
′) ∈ Ai × Aj or (ω, ω

′) ∈ Aj × Ai, then

(Xi(ω)−Xi(ω
′))(Xj(ω)−Xj(ω

′)) = −Z(ω)Z(ω′) ⩽ 0.

This shows that (Xi, Xj) is counter-monotonic, and hence, (X1, . . . , Xn) is pairwise counter-

monotonic.

Next, we show the implication (i)⇒(iii). By Lemma 7.2, it suffices to consider (7.1) and

(7.2). Suppose that (7.1) holds. Let Bi = {Xi > ess-infXi} and mi = ess-infXi for i ∈ [n].

Clearly B1, . . . , Bn are (a.s.) disjoint events, and S ⩾
∑n

i=1mi = m. Using (7.1), if event

Bi occurs, then Xj = mj for j ̸= i, and S = Xi +
∑n

j=1mj −mi. Moreover, if Bi does not

occur, then Xi = mi. Therefore, we have

Xi = (S −m+mi)1Bi
+mi1Bc

i
= (S −m)1Bi

+mi, for i ∈ [n]. (7.7)

Let B = {S = m} and it is clear that (B,B1, . . . , Bn) is a composition of Ω. Let A1 = B1∪B,

and A2 = B2, . . . , An = Bn. Since S −m = 0 on B, (7.7) yields (7.5). If (7.2) holds instead

of (7.1), then we can analogously show (7.5) with mi = ess-supXi for i ∈ [n].

Theorem 7.1 shows that pairwise counter-monotonicity can be represented by the sum S

and a composition (A1, . . . , An). In contrast, comonotonicity can be represented by the sum

S and increasing continuous functions f1, . . . , fn, as in Lemma 7.1. This representation result

will be instrumental in proving the other results of this chapter. Another direct consequence

of Theorem 7.1 is that if at least three components of a pairwise counter-monotonic random

vector are non-degenerate, then either the components are all bounded from below or they

are all bounded from above; this can also be seen from Lemma 7.2.

Example 7.2. A simple pairwise counter-monotonic random vector in the form of (7.4) and

(7.5), which will be referred to repeatedly in the following sections, is given by

Xi = 1Ai
for i ∈ [n] where (A1, . . . , An) ∈ Πn. (7.8)

Such (X1, . . . , Xn) may represent the outcome of n lottery tickets, exactly one of which

randomly wins a reward of 1, or the reward to Bitcoin miners computing the next block in

the Bitcoin blockchain; see Leshno and Strack (2020).
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Remark 7.1. In parts (ii) and (iii) of Theorem 7.1, we can replace (A1, . . . , An) ∈ Πn by

A1, . . . , An being disjoint events, and the equivalence relations in the theorem remain true.

In the case at most two components of (X1, . . . , Xn) are non-degenerate, the stochastic

representation of counter-monotonicity is quite different from Theorem 7.1. When n = 2,

(X1, X2) is counter-monotonic if and only if there exist increasing functions f1, f2 such that

X1 = f1(X1 −X2) and X2 = f2(X2 −X1);

this statement follows by applying Lemma 7.1 to the comonotonic random vector (X1,−X2).

Note that the difference X1 −X2 replaces the summation S = X1 +X2 in Lemma 7.1. The

sum of two counter-monotonic random variables represents the loss from a hedged portfolio

and it has been studied by Cheung et al. (2014) and Chaoubi et al. (2020).

7.4 Invariance property and negative association

Negative association appears in various natural probabilistic and statistical contexts,

such as permutation distributions, sampling without replacement, negatively correlated Gaus-

sian distributions and tournament scores; see Joag-Dev and Proschan (1983) and the more

recent paper Chi et al. (2022) for many examples.

A random vector X = (X1, . . . , Xn) is said to be negatively associated if for any disjoint

subsets I, J ⊆ [n], and any real-valued, coordinate-wise increasing functions f, g, we have

Cov(f(XI), g(XJ)) ⩽ 0, (7.9)

where XI = (Xk)k∈I and XJ = (Xk)k∈J , provided that f(XI) and g(XJ) have finite second

moments. Negative association is stronger than many other notions of negative dependence,

such as negative supermodular dependence (shown by Christofides and Vaggelatou (2004))

and negative orthant dependence (shown by Joag-Dev and Proschan (1983)).

Remark 7.2. Negative association is invariant under increasing marginal transforms. There-

fore, if f(XI) and g(XJ) are continuously distributed, then NA implies that (7.9) holds

with the covariance operator replaced by Spearman’s rank correlation coefficient or another

similar concordance measure; see McNeil et al. (2015, Chapter 7).
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We first present a self-consistency property of both comonotonicity and counter-monotonicity

in the spirit of Property P6 of Joag-Dev and Proschan (1983) for negative association. To

the best of our knowledge, this self-consistency property is not found in the literature even

for the case of comonotonicity, although its proof is straightforward.

Theorem 7.2. The following statements hold.

(i) Increasing functions of subsets of a set of comonotonic random variables are comono-

tonic.

(ii) Increasing functions of disjoint subsets of a set of counter-monotonic random variables

are counter-monotonic.

Proof. (i) Let X = (X1, . . . , Xn) be a comonotonic random vector. By Lemma 7.1, there

exist increasing functions f1, . . . , fn and a random variable Z such that Xi = fi(Z) for all

i ∈ [n]. For I1, . . . , Im ⊆ [n] and increasing functions gj : R|Ij | → R, j ∈ [m], let Yj = gj(XIj),

j ∈ [m], where | · | is the cardinality of a set. That is, Yj = gj ◦ fIj(Z) where fIj = (fi)i∈Ij .

As the composition of increasing functions, gi ◦ fIj is increasing on R. Thus, (Y1, . . . , Ym) is

a comonotonic vector.

(ii) Let X = (X1, . . . , Xn) be a pairwise counter-monotonic random vector. If at most

two of X1, . . . , Xn are non-degenerate, the desired statement holds trivially. Next, we assume

that at least three of X1, . . . , Xn are non-degenerate. For disjoint subsets I1, . . . , Im of [n] and

increasing functions gj : R|Ij | → R, j ∈ [m], let Yj = gj(XIj), j ∈ [m]. By Theorem 7.1, there

exist m = (m1, . . . ,mn) ∈ Rn, (A1, . . . , An) ∈ Πn and Z ∈ X± such that Xi = Z1Ai
+mi for

all i ∈ [n]. Without loss of generality, assume Z ⩾ 0. For i ∈ [n] and j ∈ [m], if Ai occurs,

then Xi = Z +mi and Xk = mk for k ̸= i, which means Yj = gj(XIj) ⩾ gj(mIj). If Ai does

not occur, then Yj = gj(mIj). Let Zj =
∑

i∈Ij

(
gj(XIj)− gj(mIj)

)
1Ai

⩾ 0. It follows that

Yj =
∑
i∈Ij

gj(XIj)1Ai
+ gj(mIj)

1−
∑
i∈Ij

1Ai


= Zj1

⋃
i∈Ij

Ai
+ gj(mIj) =

(
m∑
k=1

Zk

)
1⋃

i∈Ij
Ai

+ gj(mIj).
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By using Theorem 7.1 and the fact that
∑m

k=1 Zk ⩾ 0, we conclude that (Y1, . . . , Ym) is

pairwise counter-monotonic.

Remark 7.3. For Theorem 7.2 (i), an equivalent statement is that increasing functions of

comonotonic random variables are comonotonic. This is because one can choose the subsets

as [n] and take functions on Rn which are constant in some dimensions. We use the current

presentation of statement (i) to show a contrast to statement (ii).

What we will use from Theorem 7.2 is the second statement, which leads to the next

result in this section; that is, counter-monotonicity implies negative association. Since neg-

ative association is stronger than negative supermodular dependence, this result surpasses

Theorem 12 of Dhaene et al. (1999), which states that counter-monotonicity is stronger than

negative supermodular dependence.

Theorem 7.3. Counter-monotonicity implies negative association.

Proof. Let X be an n-dimensional counter-monotonic random vector. Take disjoint sub-

sets I, J ⊆ [n] and coordinate-wise increasing functions f : R|I| → R and g : R|J | → R,

where | · | is the cardinality of a set. By Theorem 7.2 (ii), f(XI) and g(XJ) are counter-

monotonic. The Fréchet-Hoeffding inequality (see e.g., Corollary 3.28 of Rüschendorf (2013))

yields E[f(XI)g(XJ)] ⩽ E[f(XI)]E[g(XJ)] provided that the expectations exist. Hence, X

is negatively associated.

Joag-Dev and Proschan (1983, Theorem 2.11) already noted that the lottery-type ran-

dom vector (7.8) in Example 7.2 is negatively associated.

The result in Theorem 7.3 has a straightforward interpretation, as counter-monotonicity

is the extreme form of negative dependence, which intuitively should imply other notions of

negative dependence, among which negative association is considered a strong notion; see

Amini et al. (2013) for a comparison of several notions of negative dependence.

Counter-monotonicity is also stronger than several other notions of negative dependence

which are not implied by negative association. These notions include conditional decreasing

in sequence and negative dependence in sequence (see Joag-Dev and Proschan (1983, Remark

196



2.16)) and negative dependence through stochastic ordering (see Block et al. (1985)). These

implications can be checked directly with Theorem 7.2, thus highlighting its usefulness.

Remark 7.4. A random vector X is positively associated if Cov(f(X), g(X)) ⩾ 0 for all

real-valued, coordinate-wise increasing functions f, g (Esary et al. (1967)). Comonotonicity

implies positive association because (f(X), g(X)) is comonotonic by Theorem 7.2, and the

covariance of a comonotonic pair of random variables is non-negative due to the Fréchet-

Hoeffding inequality.

7.5 Joint mix dependence and Fréchet classes

Another type of extremal negative dependence structure is the notion of joint mixes.

In this section, we study the connection between counter-monotonicity and joint mix depen-

dence.

From now on, assume that the probability space (Ω,A,P) is atomless. A random vector

(X1, . . . , Xn) is a joint mix if
∑n

i=1Xi is a constant c, and in this case we say that joint

mix dependence holds for (X1, . . . , Xn). The constant c is called the center of (X1, . . . , Xn),

and it is obvious that c =
∑n

i=1 E[Xi] if the expectations of X1, . . . , Xn are finite. Joint mix

dependence is regarded as a concept of extremal negative dependence due to its opposite role

to comonotonicity in risk aggregation problems; see Puccetti and Wang (2015) and Wang

and Wang (2016).

The lottery-type random vector in Example 7.2 satisfies both counter-monotonicity and

joint mix dependence. In the case n = 2, joint mix dependence is strictly stronger than

counter-monotonicity. This result cannot be extended to n ⩾ 3. For example, (X,X,−2X)

is a joint mix that is not counter-monotonic. A weaker notion than joint mix dependence

is proposed by Lee and Ahn (2014), which does not imply, and is not implied by, counter-

monotonicity in dimension n ⩾ 3.

Joint mix dependence and counter-monotonicity share some similarities. First, for a

random vector (X1, . . . , Xn) with its sum S = X1 + · · · + Xn, if either pairwise counter-

monotonicity or joint mix dependence holds, then Xi and S − Xi are counter-monotonic
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for each i ∈ [n]. The case of pairwise counter-monotonicity is verified by Theorem 7.2,

and the case of joint mix dependence is verified by definition. Second, both dependence

notions impose strong conditions on the marginal distributions. The condition for pairwise

counter-monotonicity is given in Lemma 7.2, and that for joint mix dependence is much more

sophisticated; see Wang and Wang (2016) for some sufficient conditions as well as necessary

ones. This is in contrast to concepts such as comonotonicity, independence, and negative

association, for which the existence of the corresponding random vectors is always guaranteed

for any given marginal distribution. Both joint mix dependence and counter-monotonicity

are used in the tail region to obtain lower bounds for risk aggregation with given marginal

distributions, as studied by Bernard et al. (2014) and Cheung et al. (2017), respectively.

The next result characterizes marginal distributions that are compatible with both

counter-monotonicity and joint mix dependence. For this, we need some notation and ter-

minology. In what follows, we will use distribution functions to represent distributions. For

an n-tuple (F1, . . . , Fn) of distributions on R, a Fréchet class (see Joe (1997, Chapter 3)) is

defined as

Fn(F1, . . . , Fn) = {distribution of (X1, . . . , Xn) : Xi ∼ Fi, i ∈ [n]}.

We say that a Fréchet class Fn(F1, . . . , Fn) supports counter-monotonicity (resp. joint mix

dependence) if there exists a counter-monotonic random vector (resp. a joint mix) whose

distribution is in this class. Let δx be the distribution function of a point-mass at x ∈ R, and

denote by Θn the standard n-simplex, that is, Θn = {(p1, . . . , pn) ∈ [0, 1]n :
∑n

i=1 pi = 1}.

Two distributions F and G are symmetric if F (x) = 1−G(c− x), x ∈ R for some c ∈ R. In

other words, if X has distribution F , then c−X has distribution G.

It turns out that all Fréchet classes Fn(F1, . . . , Fn) which support both counter-monotonicity

and joint mix dependence can be characterized explicitly. If at least three of F1, . . . , Fn are

non-degenerate, then F1, . . . , Fn are two-point distributions given by

Fi = piδa+mi
+ (1− pi)δmi

for i ∈ [n], where a,m1, . . . ,mn ∈ R and (p1, . . . , pn) ∈ Θn.

(7.10)
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If at most two of F1, . . . , Fn are non-degenerate, then

Fi and Fj are symmetric for some i, j ∈ [n], and Fk is degenerate for all k ∈ [n] \ {i, j}.

(7.11)

Theorem 7.4. A Fréchet class supports both counter-monotonicity and joint mix dependence

if and only if one of (7.10) and (7.11) holds. In case both are supported, counter-monotonicity

and joint mix dependence are equivalent for this Fréchet class.

Proof. We first prove the equivalence statement in the last part of the theorem. Suppose

that the Fréchet class Fn(F1, . . . , Fn) supports both counter-monotonicity and joint mix

dependence. Puccetti and Wang (2015, Theorem 3.8) shows that if a Fréchet class supports

a counter-monotonic random vector, then a random vector is counter-monotonic if and only if

it is Σ-counter-monotonic, and moreover, a joint mix is always Σ-counter-monotonic. Using

these two facts, a joint mix is counter-monotonic for this Fréchet class. For the conserve

statement, note that in Fn(F1, . . . , Fn) there exists a unique distribution function

F (x1, . . . , xn) =

(
n∑

i=1

Fi(xi)− d+ 1

)
+

, (x1, . . . , xn) ∈ Rn

of a counter-monotonic random vector (Theorem 3.3 of Puccetti and Wang (2015)). Since a

joint mix with marginal distributions F1, . . . , Fn is counter-monotonic, its distribution must

coincide with F . This shows that F is the distribution of a joint mix.

Next, we prove the first part of the theorem. For the “if” statement, assume that a

Fréchet class Fn(F1, . . . , Fn) supports both counter-monotonicity and joint mix dependence.

By the above argument, Fn(F1, . . . , Fn) supports a pairwise counter-monotonic joint mix

(X1, . . . , Xn). First, consider the case that at least three of F1, . . . , Fn are non-degenerate.

Using (7.5),

Xi = (c−m)1Ai
+mi, for i ∈ [n],

where (A1, . . . , An) ∈ Πn, c is the center of (X1, . . . , Xn), either mi = ess-inf(Xi) for all

i ∈ [n] or mi = ess-sup(Xi) for all i ∈ [n], and m =
∑n

i=1mi. It is clear that Fi has the

form (7.10) by setting a = c−m. If at most two of F1, . . . , Fn are degenerate, say Fi and Fj,

then a joint mix (X1, . . . , Xn) with marginal distributions F1, . . . , Fn satisfies Xi = c − Xj

for some c ∈ R, and Xk is a constant for each k ∈ [n] \ {i, j}. This implies (7.11).
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Finally, we verify the converse statement. If (F1, . . . , Fn) has the form (7.10), then

take Xi = a1Ai
+ mi with (A1, . . . , An) ∈ Πn satisfying P(Ai) = pi for i ∈ [n], and we

have (X1, . . . , Xn) is counter-monotonic by Theorem 7.1 and
∑n

i=1Xi = a +
∑n

i=1mi. If

(F1, . . . , Fn) has the form (7.11), then by taking Xi with distribution Fi, Xj = c −Xi with

distribution Fj and c ∈ R, and Xk with distribution Fk for each k ∈ [n] \ {i, j}, we can

directly verify that (X1, . . . , Xn) is a counter-monotonic joint mix.

From the proof of Theorem 7.4 (ii), if at least three components of a pairwise counter-

monotonic joint mix X = (X1, . . . , Xn) are non-degenerate, then it has the form

Xi = a1Ai
+mi, for i ∈ [n]

where (A1, . . . , An) ∈ Πn, a ∈ R and m = (m1, . . . ,mn) ∈ Rn. If a ̸= 0, then the random

vector (X − m)/a has a categorical distribution with n categories and probability vector

(P(A1), . . . ,P(An)).

Remark 7.5. Theorem 7.4 characterizes a Fréchet class that supports both counter-monotonicity

and joint mix dependence. Fréchet classes that support (non-degenerate) pairwise counter-

monotonicity are fully described by the conditions in Lemma 7.2. Whether a given Fréchet

class supports joint mix dependence is a very challenging problem, with existing result sum-

marized in Puccetti and Wang (2015) and Wang and Wang (2016). In risk aggregation

problems, the notion of joint mix dependence is more relevant, because a joint mix usually

“approximately exists” for large dimensions, which leads to the main idea behind the Rear-

rangement Algorithm; see Embrechts et al. (2013, 2014), Bernard and Vanduffel (2015) and

Bernard et al. (2017). In contrast, counter-monotonicity is more relevant for risk sharing

problems, which we discuss in the next section.

7.6 Optimal allocations in risk sharing for quantile agents

We now formally establish the link between counter-monotonicity and Pareto-optimal

allocations in risk sharing problems for quantile agents.
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We first describe the basic setting. A quantile agent assesses risk by its quantile, also

known as the risk measure Value-at-Risk (VaR) in risk management. Following the conven-

tion of Embrechts et al. (2018), the VaR at level α ∈ (0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ X ,

where X is the set of all random variables in the probability space. Moreover, write VaRα =

−∞ on X for α ⩾ 1, although our agents use VaRα for α ∈ (0, 1). It is important to highlight

that quantile agents with level α ∈ (0, 1) are not risk averse (Rothschild and Stiglitz (1970)).

We consider the risk sharing problem for n ⩾ 3 quantile agents with levels α1, . . . , α ∈

(0, 1). For a given S ∈ X , the set of allocations of S is

An(S) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = S

}
.

An allocation (X1, . . . , Xn) ∈ An(S) is Pareto optimal if for any (Y1, . . . , Yn) ∈ An(S) satis-

fying VaRαi
(Yi) ⩽ VaRαi

(Xi) for all i ∈ [n], we have VaRαi
(Yi) = VaRαi

(Xi) for all i ∈ [n].

Pareto optimality of (X1, . . . , Xn) ∈ An(S) is equivalent to

n∑
i=1

VaRαi
(Xi) = inf

{
n∑

i=1

VaRαi
(Yi) : (Y1, . . . , Yn) ∈ An(S)

}
= VaR∑n

i=1 αi
(S), (7.12)

where the first equality is Embrechts et al. (2018, Proposition 1) and the second equality is

Embrechts et al. (2018, Corollary 2). Using (7.12), we obtain that the existence of a Pareto-

optimal allocation is equivalent to
∑n

i=1 αi < 1; this is also given by Theorem 3.6 of Wang and

Wu (2020). For this reason, we say that the n quantile agents are compatible if
∑n

i=1 αi < 1

holds, meaning that a Pareto-optimal allocation exists for some S, and equivalently, for every

S.

The following theorem shows that, under some conditions of the total risk S to share, the

risk sharing problem for any quantile agents admits a pairwise counter-monotonic Pareto-

optimal allocation, and every pairwise counter-monotonic allocation is Pareto optimal for

some agents. Moreover, comonotonic allocations are never Pareto optimal. Recall that by

Lemma 7.2, a pairwise counter-monotonic random vector (X1, . . . , Xn) satisfies either (7.1)

or (7.2).
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Theorem 7.5. For S ∈ X , the following hold.

(i) If S is bounded from below, then for any compatible quantile agents there exists a pair-

wise counter-monotonic allocation of S which is Pareto optimal.

(ii) If P(S = ess-infS) > 0, then every type-(7.1) pairwise counter-monotonic allocation of

S is Pareto optimal for some quantile agents.

(iii) If S is continuously distributed, then a comonotonic allocation of S is never Pareto

optimal for any quantile agents.

Proof. (i) Let α1, . . . , αn ∈ (0, 1) be the VaR levels of the quantile agents. Compatibility of

the agents means
∑n

i=1 αi < 1. In this case, a Pareto-optimal allocation (X1, . . . , Xn) of S is

given by Theorem 2 of Embrechts et al. (2018), with the form

Xi = (X −m)1Ai
, i ∈ [n− 1] and Xn = (X −m)1An +m

for some (A1, . . . , An) ∈ Πn. By setting m = ess-infS, (X1, . . . , Xn) is pairwise counter-

monotonic by Theorem 7.1.

(ii) Note that shifting X1, . . . , Xn by arbitrary constants, and adjusting S correspond-

ingly, does not affect its Pareto optimality due to (7.12). Moreover, (7.1) guarantees that

at most one of X1, . . . , Xn is not bounded from below, and further P(S = ess-infS) > 0

guarantees that this can only happen if all X1, . . . , Xn are bounded from below. Therefore,

we can, without loss of generality, assume ess-infXi = 0 for each i ∈ [n].

Let B = {S = ess-infS} and A =
⋃n

i=1{Xi > 0}. First, if P(B ∩ A) = 0, then we let

αi = P(Xi > 0) + P(B)/(2n) > 0 for i ∈ [n]. Note that

n∑
i=1

αi =
n∑

i=1

P(Xi > 0) +
1

2
P(B) = P(A) +

1

2
P(B) < P(A) + P(B) = P(A ∪B) ⩽ 1.

It is clear that VaRαi
(Xi) = 0 for each i ∈ [n], leading to

∑n
i=1 VaRαi

(Xi) = 0 ⩽ ess-infS ⩽

VaR∑n
i=1 αi

(S). Note that

n∑
i=1

VaRαi
(Xi) ⩽ VaR∑n

i=1 αi
(S) =⇒ (X1, . . . , Xn) is Pareto optimal. (7.13)
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This is because Corollary 1 of Embrechts et al. (2018) gives
∑n

i=1VaRαi
(Xi) ⩾ VaR∑n

i=1 αi
(S),

and this leads to
∑n

i=1VaRαi
(Xi) = VaR∑n

i=1 αi
(S) in (7.12), which gives Pareto optimality

of (X1, . . . , Xn) as we see in part (i).

Next, assume P(B ∩A) > 0. Then there exists j ∈ [n] such that P(B ∩ {Xj > 0}) > 0.

Let ϵ = P(B ∩ {Xj > 0})/(2n). Take αi = P(Xi > 0) + ϵ > 0 for i ∈ [n] \ {j} and

αj = P({Xj > 0} \B) + ϵ. By Lemma 7.2,

1 ⩾
n∑

i=1

P(Xi > 0) =
n∑

i=1

(αi − ϵ) + P(B ∩ {Xj > 0}) =
n∑

i=1

αi + nϵ,

and hence
∑n

i=1 αi < 1. By definition of α1, . . . , αn, we have VaRαi
(Xi) = 0 for i ∈ [n] \ {j}.

Moreover, note that Xj = S on {Xj > 0} and

P({Xj = ess-infS} ∩ {Xj > 0}) = P(B ∩ {Xj > 0}) = 2nϵ,

which implies P(Xj > ess-infS) = P(Xj > 0)− 2nϵ < αj. Therefore, VaRαj
(Xj) ⩽ ess-infS,

leading to
∑n

i=1VaRαi
(Xi) ⩽ ess-infS ⩽ VaR∑n

i=1 αi
(S). Hence, we obtain Pareto optimality

of (X1, . . . , Xn) via (7.13).

(iii) For a comonotonic allocation (X1, . . . , Xn) of S, using decreasing monotonicity of

α 7→ VaRα and comonotonic additivity of VaRα, we have

n∑
i=1

VaRαi
(Xi) ⩾

n∑
i=1

VaRβ(Xi) = VaRβ(S),

where we write β = max{α1, . . . , αn}. As S is continuously distributed, VaRα(S) is strictly

decreasing in α. Noting that β <
∑n

i=1 αi, we have VaRβ(S) > VaR∑n
i=1 αi

(S). Therefore,

the comonotonic allocation (X1, . . . , Xn) is not Pareto optimal by (7.12).

Theorem 7.5 states that allocations with a pairwise counter-monotonic structure solve

the problem of sharing risk among quantile agents. For instance, the lottery-type allocation

in Example 7.2 is Pareto optimal for some quantile agents. Further, Theorem 7.5 (iii) states

that comonotonic allocations can never be Pareto optimal for quantile agents if the total

risk is continuously distributed. As mentioned, this is in stark contrast with the risk sharing

problem with risk-averse agents, for which comonotonic allocations are always optimal. The

latter result, due to the comonotonic improvements of Landsberger and Meilijson (1994), is
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well-known; see also Jouini et al. (2008) and Rüschendorf (2013). Moreover, when all agents

are strictly risk averse, only comonotonic allocations are Pareto optimal (see Proposition

8.5 of Chapter 8 for the case when preferences are modelled by strictly concave distortion

functions).

As a symmetric statement to Theorem 7.5, if a random vector (X1, . . . , Xn) is pairwise

counter-monotonic of type (7.2), then it is the maximizer of a risk sharing problem for some

quantile agents.

Theorem 7.5 (i) assumes that S is bounded from below. This is needed because any

type-(7.1) pairwise counter-monotonic allocation is bounded from below. Theorem 7.5 (ii)

assumes P(S = ess-infS) > 0. In case P(S > ess-infS) = 0, a pairwise counter-monotonic

allocation of type (7.1) may not be Pareto optimal for any quantile agents with levels in

(0, 1). A counter-example is provided in Example 7.3 below. Theorem 7.5 (iii) assumes

that S is continuously distributed. This condition is also needed for the result to hold. For

instance, if S = 1, then the allocation (1/n, . . . , 1/n) is Pareto optimal for any compatible

quantile agents, violating the impossibility statement on Pareto optimality.

Example 7.3. Suppose that S is uniformly distributed on [0, 1], and Xi = S1Ai
with

(A1, . . . , An) ∈ Πn independent of S with P(Ai) > 0 for each i ∈ [n]. We will see that the

pairwise counter-monotonic allocation (X1, . . . , Xn) is not Pareto optimal for any quantile

agents with levels α1, . . . , αn ∈ (0, 1). If
∑n

i=1 αi ⩾ 1, there does not exist any Pareto-optimal

allocation. If
∑n

i=1 αi < 1, then

n∑
i=1

VaRαi
(Xi) =

n∑
i=1

(
1− αi

P(Ai)

)
+

=
n∑

i=1

(
P(Ai)− αi

P(Ai)

)
+

and

VaR∑n
i=1 αi

(S) = 1−
n∑

i=1

αi =
n∑

i=1

(P(Ai)− αi) ⩽
n∑

i=1

(
P(Ai)− αi

P(Ai)

)
+

=
n∑

i=1

VaRαi
(Xi).

Using the condition (7.12), if (X1, . . . , Xn) is Pareto optimal, then the inequality above

is an equality; this implies αi = P(Ai) for each i ∈ [n]. However, this further implies∑n
i=1 αi =

∑n
i=1 P(Ai) = 1 conflicting

∑n
i=1 αi < 1.

The next example illustrates that for the same S in Example 7.3 and compatible quantile
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agents, a pairwise counter-monotonic Pareto-optimal allocation exists as implied by Theorem

7.5 (i).

Example 7.4. Let S be uniformly distributed on [0, 1] and α1, . . . , αn ∈ (0, 1) with
∑n

i=1 αi <

1. Take (A1, . . . , An) ∈ Πn such that
⋃n−1

i=1 Ai = {S ⩾ 1 −
∑n−1

i=1 αi} and P(Ai) = αi for

i ∈ [n− 1]. Let Xi = S1Ai
for i ∈ [n]. We can verify that VaRαi

(Xi) = 0 for i ∈ [n− 1] and

VaRαn(Xn) = VaRαn

(
S1{S<1−

∑n−1
i=1 αi}

)
= 1−

n∑
i=1

αi = VaR∑n
i=1 αi

(S).

This shows that (X1, . . . , Xn) is Pareto optimal. It is also pairwise counter-monotonic

by Theorem 7.1. Note that although the allocation (X1, . . . , Xn) here has the same form

(S1A1 , . . . , S1An) as the one in Example 7.3, the specification of (A1, . . . , An) is different in

the two examples, leading to opposite conclusions on optimality.

Remark 7.6. One may notice that the condition on S in Theorem 7.5 part (ii) and that in part

(iii), although both quite weak, are actually conflicting. This is not a coincidence, because

comonotonicity and counter-monotonicity have a non-empty intersection: A random vector

is both comonotonic and counter-monotonic if and only if it has at most one non-degenerate

component. Therefore, we cannot have both conclusions in parts (ii) and (iii) for the same

S.

Remark 7.7. As shown by Embrechts et al. (2018), the same pairwise counter-monotonic allo-

cation which is Pareto optimal for quantile agents is also optimal for the more general Range

Value-at-Risk (RVaR) agents. Therefore, the conclusion in Theorem 7.5 also applies to the

RVaR agents. Another appearance of pairwise counter-monotonicity in optimal allocations

is obtained by Chapter 8, where it is shown that for agents using inter-quantile differences, a

Pareto-optimal allocation is the sum of two pairwise counter-monotonic random vectors. All

discussions above assume homogeneous beliefs; that is, all agents use the same probability

measure P. In the setting of heterogeneous beliefs, Embrechts et al. (2020) showed that for

Expected Shortfall agents, a Pareto-optimal allocation above certain constant level also has

a pairwise counter-monotonic structure; see their Proposition 3. Generally, agents using the

dual utility model of Yaari (1987), including the quantile-based models above, have quite

different features in risk sharing and other optimization problems compared to those with
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expected utility agents. For the optimal payoff of Yaari agents in portfolio choice, see Boudt

et al. (2022).

Example 7.5. We illustrate that counter-monotonicity may also be the structure of an

optimal allocation outside the dual utility of Yaari (1987). Let (Ω,A,P) be an atomless

probability space, S = 1 and α > 0. Consider the problem

to maximize
n∑

i=1

E
[
α1{Xi⩾1}

]
subject to (X1, . . . , Xn) ∈ An(S) and Xi ⩾ 0, for i ∈ [n].

It is straightforward to verify that the set of maximizers is

A∗ = {(1A1 , . . . ,1An) ∈ An(S) : (A1, . . . , An) ∈ Πn} ,

which contains only counter-monotonic allocations. This problem can be interpreted as the

problem of sharing S = 1 among n expected utility maximizers with common utility function

u(x) = α1{x⩾1} for α > 0. The optimization problem is thus a social planner’s problem, and

the set A∗ contains all Pareto-optimal allocations for this problem. The allocations satisfying

P(Ai) = P(Aj) for every i ̸= j are of particular interest, as they are common in auction theory

as the random tie-breaking rule. The variable S can be understood as an indivisible good that

was auctioned, and the parameter α as the net utility of a series of n agents with quasi-linear

utilities v(X, t) = θX − t having bid the same amount 0 ⩽ t < θ. It is straightforward to

see that these allocations are the only fair allocations, in the sense that all agents have the

same expected utility. In other words, a fair lottery (which is counter-monotonic) is the only

fair way to distribute the indivisible good among people who value it equally.

7.7 Conclusion

We provide a series of technical results on the representation (Theorem 7.1) and invari-

ance property (Theorem 7.2) of pairwise counter-monotonicity, as well as their connection

to negative association (Theorem 7.3), joint mix dependence (Theorem 7.4), and optimal

allocations for quantile agents (Theorem 7.5). This chapter is motivated by the recently

increasing attention in counter-monotonicity and negative dependence, and it fills the gap

between the relatively scarce studies on pairwise counter-monotonicity in the literature and
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the wide appearance of this dependence structure in modern applications, in particular, in

risk sharing problems with agents that are not using expected utilities.

In general, studies of negative dependence and positive dependence are highly asym-

metric in nature, with negative dependence being more challenging to study in various appli-

cations of risk management and statistics. In addition to the negative dependence concepts

we considered in this chapter, some other notions have been studied in the recent literature,

and the interested reader is referred to Amini et al. (2013), Lee and Ahn (2014), Lee et al.

(2017) and Chi et al. (2022), as well as the monographs of Joe (1997, 2014).
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Chapter 8

Risk sharing, measuring variability,

and distortion riskmetrics

8.1 Introduction

Anne, Bob and Carole are sharing a random financial loss. After negotiating their re-

spective expected returns, each of them prefers to minimize a statistical measure of variability

of their allocated risk. While agreeing on the distribution of the total loss, and that the vari-

ance is a poor metric of riskiness, each of them has their own favourite tool for measuring

risks. Anne, as an economics student, likes the Gini deviation (GD) because of its intuitive

appearance as an economic index. Bob, as a computer science student, prefers the mean-

median deviation (MMD) because it minimizes the mean absolute error. Finally, Carole, as

a statistics student, finds that an inter-quantile difference (IQD) is the most representative

of her preference, as she does not worry about extreme events for this particular risk. How

should Anne, Bob and Carole optimally share risks among themselves?

The reader familiar with risk sharing problems may immediately realize two notable

features of such a problem. First, the preferences are not monotone, different from standard

decision models in the literature. Second, and most crucially, Carole’s preference is neither

convex nor consistent with second-order stochastic dominance. This alludes to the possibility

of non-comonotonic Pareto-optimal allocations, in contrast to the comonotonic ones, which
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are well studied in the literature (e.g., Landsberger and Meilijson, 1994; Jouini et al., 2008;

Carlier et al., 2012; Rüschendorf, 2013).

The GD, the MMD and the IQD are measures of distributional variability. Variability

is used to characterize the concept of risk as in the classic work of Markowitz (1952) and

Rothschild and Stiglitz (1970). For this reason, we also call them riskmetrics, which include

also risk measures in the literature, often associated with monotonicity (e.g., Föllmer and

Schied, 2016). As the most popular measure of variability, the variance is known to be a

coarse metric; Embrechts et al. (2002) discussed various flaws of using variance and corre-

lation in financial risk management. Anne’s decision criterion has been proposed in Shalit

and Yitzhaki (1984), which considers an optimal portfolio problem à la Markowitz (1952),

but with the variance replaced by the GD.1 Formally, the authors analyze the investor’s

problem minX GD(X) subject to E[X] ⩾ R, for a given rate R ⩾ 0 of return proportional

to the investor’s risk aversion. As with mean-variance preferences (e.g., Markowitz, 2014;

Maccheroni et al., 2013), the decision criterion can thus be viewed as the problem of maxi-

mizing E[X]− ηGD(X), for η ⩾ 0 being the Lagrange multiplier of the problem. While the

decision criterion E[X]− ηGD(X) seems natural, it is not monotone unless η is less than or

equal to one, in which case the investor’s preference belongs to those of Yaari (1987). The

other measures MMD and IQD also have sound foundations and long history in statistics and

its applications (Yule, 1911, Chapter 6). Slightly different from MMD, Konno and Yamazak

(1991) studied portfolio optimization using the mean-absolute deviation from the mean. Risk

sharing problems with convex risk measures are well studied (e.g., Barrieu and El Karoui,

2005, Jouini et al., 2008 and Filipović and Svindland, 2008), but the classes of riskmetrics

mentioned above do not belong to convex risk measures in general.

In this chapter, we address the problem of sharing risk among agents that uses distortion

riskmetrics as their preferences. Distortion riskmetrics are evaluation functionals that are

characterized by comonotonic additivity and law invariance (Wang et al., 2020a). This rich

family includes many measures of risk and variability, and in particular, the mean, the GD,

the MMD, the IQD, and their linear combinations. Distortion riskmetrics are closely related

to Choquet integrals and rank-dependent utilities widely used in decision theory (e.g., Yaari,

1The authors use the term Gini’s mean difference.
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1987; Schmeidler, 1989; Carlier and Dana, 2003); for a comprehensive treatment of distortions

in decisions and economics, see Wakker (2010). The combination of the mean and GD or

that of the mean and MMD, as well as other distortion riskmetrics, are used as premium

principles in the insurance literature; see Denneberg (1990). Several variability measures

within the class of distortion riskmetrics are studied by Grechuk et al. (2009), Furman et al.

(2017) and Bellini et al. (2022).

While we analyze the general problem of sharing risk amongst distortion riskmetrics

agents, non-monotone and non-cash-additive evaluation functionals receive greater attention.

This is for a few reasons. First, the special case of sharing risk with cash-additive and law-

invariant functional is well studied, and more so when the functionals are monotone, but the

general case is less understood. Second, the formalism we introduce allows us to generalize

the example above and consider individuals that analyze their risks with different variability

measures. This is critical because we aim to understand how the act of measuring risk

differently gives rise to incentives to trade it. Third, technically, relaxing monotonicity and

convexity allows us to deal with maximization and minimization problems of risk in a unified

framework.

The following simple example, by considering the GD and MMD agent only, illustrates

the structure of a Pareto-optimal allocation as an insurance contract.

Example 8.1. Consider the problem of sharing a random loss X between Anne (A) and

Bob (B) only. Recall that Bob evaluates its allocation XB using the mean-median deviation

MMD(XB). Similarly, Anne’s allocation is XA which she evaluates with the Gini deviation

GD(XA). We will show (in Section 8.6) that any Pareto-optimal allocation takes the form

XA = X ∧ ℓ−X ∧ d, XB = X −XA,

where ℓ ⩾ d will be specified later. We can interpret this as a situation where X is Bob’s

potential loss and Anne provides some degree of insurance for Bob. The contract (transfer

function) is thus simply the random variable XA. Notice that (i) when ℓ ⩾ X ⩾ d = 0 there

is full insurance, (ii) when ℓ = d there is no insurance and (iii) for other choices of ℓ > d,

the contract is a simple deductible d with an upper limit ℓ. Further, we show that each

Pareto-optimal allocation minimizes λMMD(XB) + (1− λ)GD(XA) for some λ ∈ [0, 1].
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The previous example is interesting because it confirms the intuition that the act of

measuring risk differently leads to incentives to trade it. Yet, the “shape” of the solution

above is not surprising, as both the Gini deviation and mean-median deviation are convex

order consistent functionals, and so exhibit risk aversion of Rothschild and Stiglitz (1970).

Just as in the increasing distortion case, risk-minimizing (utility-maximizing) Pareto-optimal

allocations are comonotonic when the distortion riskmetrics’ distortion function is concave

(convex), because concavity of the distortion function is equivalent to convex order consis-

tency.

The situation for IQD agents like Carole is more sophisticated. The distortion function

of IQD is discontinuous, non-concave, non-monotone, and takes value zero on both tails of

the distribution. The preference induced by IQD does not correspond to decision criterion

typically considered in the literature, whereas the preferences induced by quantiles, called

quantile maximization, have been axiomatized by Rostek (2010). IQD is a standard measure

of dispersion used in statistics such as in box plots, and its most popular special case in

statistics is the inter-quartile difference, which measures the difference between the 25% and

75% quantiles of data.

The general theory of risk sharing between agents using distortion riskmetrics is laid

out in Section 8.3. A convenient feature of distortion riskmetrics is that they are convex

order consistent if and only if the distortion function is concave (Wang et al., 2020a, Theo-

rem 3). This enables the characterization of Pareto-optimal allocations for such agents using

the comonotonic improvement, a notion introduced in Landsberger and Meilijson (1994)

to characterize the optimal sharing of risk among risk-averse expected utility maximizers;

see also Ludkovski and Rüschendorf (2008) and Rüschendorf (2013). Non-concave distor-

tion functions lead to substantial challenges and to non-comonotonic optimal allocations,

with limited recent results obtained by Embrechts et al. (2018) and Weber (2018) for some

increasing distortion riskmetrics.

We study optimality within the subset of comonotonic allocations, which we refer to

as the comonotonic risk sharing problem, for general distortion riskmetrics which are not

necessarily convex in Section 8.4. We show that the utility possibility frontier of distortion

riskmetrics is always a convex set when restricted to the subset of comonotonic allocations.
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By the Hanh-Banach Theorem, we can always find comonotonic Pareto-optimal allocations

by optimizing a linear combination of the agents’ welfare. This simple but valuable result

“essentially comes for free” by the comonotonic additivity and positive homogeneity of distor-

tion riskmetrics. In particular, it does not require the convexity of the evaluation functionals.

Moreover, this comonotonic setting allows us to easily incorporate heterogeneous beliefs as

in the setting of Embrechts et al. (2020), which we study in Section 8.11 for the interested

reader.

With IQD agents, the set of optimal allocations can dramatically differ when defined on

the whole set of allocations or the subset of comonotonic ones, as shown by results in Sections

8.3.2 and 8.4.2. We show the surprising result that Pareto-optimal allocations are precisely

those which solve a sum optimality problem, which is not true for other variability measures

such as GD or MMD. Closed-form Pareto-optimal allocations are obtained, which can be

decomposed as the sum of two pairwise counter-monotonic allocations. This observation

complements the optimal allocations for quantile agents obtained by Embrechts et al. (2018)

which are pairwise counter-monotonic.

Combining results obtained in Sections 8.3 and 8.4, the general problem of sharing

risks between IQD agents (like Carole) and agents with concave and symmetric distortion

functions (like Anne and Bob) mentioned in the beginning of the chapter is solved in Section

8.5 and further illustrated in Section 8.6. We obtain a sum-optimal allocation which features a

combination of comonotonicity and pairwise counter-monotonicity. These two structures are,

respectively, regarded as extremal positive and negative dependence concepts; see Puccetti

and Wang (2015) for an overview of these dependence concepts and Chapter 7 for a stochastic

representation of pairwise counter-monotonicity. More specifically, there exists an event on

which the obtained Pareto-optimal allocation is comonotonic, and two events on which the

sum-optimal allocation is pairwise counter-monotonic. To the best of our knowledge, this is

the first article to obtain such a type of sum-optimal or Pareto-optimal allocation. Moreover,

none of our results relies on continuity of the distortion functions. We conclude the chapter

in Section 8.7 with a few remarks, and all proofs are put in Sections 8.3 - 8.12.
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8.2 Preliminaries

8.2.1 Distortion riskmetrics

For a measurable space (Ω,F) and a finite set function ν : F → R with ν(∅) = 0, the

signed Choquet integral of a random variable X : Ω → R is the integral∫
X dν =

∫ ∞

0

ν(X > x) dx+

∫ 0

−∞
(ν(X > x)− ν(Ω)) dx, (8.1)

provided these integrals are finite. Let n be a positive integer and let [n] = {1, . . . , n}.

The random variables X1, . . . , Xn are comonotonic if there exists a collection of increasing

functions fi : R → R, i ∈ [n], and a random variable Z such that Xi = fi(Z) for all i ∈ [n].

Two random variables X1, X2 are counter-monotonic if X1,−X2 are comonotonic. The

random variablesX1, . . . , Xn are pairwise counter-monotonic ifXi, Xj are counter-monotonic

for each pair of distinct i, j (see Puccetti and Wang (2015) and Chapter 7). Terms like

“increasing” or “decreasing” are in the non-strict sense.

Assume that (Ω,F ,P) is an atomless probability space where almost surely equal ran-

dom variables are treated as identical. Let X be a set of random variables on this space.

For simplicity, we assume throughout that X = L∞, the set of essentially bounded random

variables, and we will inform the reader when a result can be extended to larger spaces. A

distortion riskmetric ρh is the mapping from X to R,

ρh(X) =

∫
X d (h ◦ P) =

∫ ∞

0

h(P(X > x)) dx+

∫ 0

−∞
(h(P(X > x))− h(1)) dx, (8.2)

where h is in the set HBV of all possibly non-monotone distortion functions, i.e.,

HBV = {h : [0, 1] → R | h is of bounded variation and h(0) = 0}.

We now recall some properties of distortion riskmetrics that we use throughout. Any

distortion riskmetric ρh always satisfies the following four properties as a function ρ : X → R.

1. Law invariance: ρ(X) = ρ(Y ) for X
d
= Y .

2. Positive homogeneity: ρ(λX) = λρ(X) for all λ > 0 and X ∈ X .
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3. Comonotonic additivity: ρ(X+Y ) = ρ(X)+ρ(Y ) whenever X and Y are comonotonic.

4. Translation invariance: ρ(X + c) = ρ(X) + cρ(1) for all c ∈ R and X ∈ X .

As a special case of translation invariance with ρ(1) = 1, ρ is cash additive if ρ(X + c) =

ρ(X)+c for x ∈ R andX ∈ X . For a distortion riskmetric ρh, cash additivity means h(1) = 1.

We also say location invariance for h(1) = 0 and reverse cash additivity for h(1) = −1.

We note that although we use the general term “cash additivity” as in the literature of risk

measures, the values of random variables may be interpreted as non-monetary, such as carbon

dioxide emissions, as long as they can be transferred between agents in an additive fashion.

A distortion riskmetric ρh may also satisfy the following properties depending on h.

A random variable X is said to be smaller than a random variable Y in the convex order,

denoted by X ⩽cx Y , if E[ϕ(X)] ⩽ E[ϕ(Y )] for every convex function ϕ : R → R, provided

that both expectations exist.

5. Increasing monotonicity : ρ(X) ⩽ ρ(Y ) whenever X ⩽ Y .

6. Convex order consistency : ρ(X) ⩽ ρ(Y ) whenever X ⩽cx Y .

7. Subadditivity : ρ(X + Y ) ⩽ ρ(X) + ρ(Y ) for every X, Y ∈ X .

We also say that ρ is monotone if either ρ or −ρ is increasing. Increasing and cash-additive

functionals are calledmonetary risk measure (Föllmer and Schied, 2016) or niveloids (Cerreia-

Vioglio et al., 2014). For a distortion riskmetric ρh, increasing monotonicity means that h is

increasing, and either subadditivity or convex order consistency is equivalent to the concavity

of h by Theorem 3 of Wang et al. (2020a).

Distortion riskmetrics are precisely all law-invariant and comonotonic-additive map-

pings satisfying a form of continuity; see Wang et al. (2020b) on L∞ and Wang et al. (2020a)

on general spaces. The subset of increasing normalized distortion functions is denoted by

HDT, that is,

HDT = {h : [0, 1] → R | h is increasing, h(0) = 0 and h(1) = 1}.
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If h ∈ HDT, then ρh is called a dual utility of Yaari (1987). Recall that a Yaari agent

is strongly risk averse when the distortion function h is concave (Yaari, 1987). Hence, we

slightly abuse nomenclature and simply say that a distortion riskmetric agent is risk averse

when its distortion function is concave, regardless of whether it is increasing or not. This is

consistent with the concept of increasing in risk introduced by Rothschild and Stiglitz (1970).

Any distortion riskmetric admits a quantile representation (Lemma 1 of Wang et al.

(2020a)). For a concise presentation of results, we define quantiles by counting losses from

large to small.2 Formally, we define the left quantile of a random variable X ∈ X as Q−
t (X) =

inf{x ∈ R : P(X ⩽ x) ⩾ 1− t}, and the right quantile as Q+
t (X) = inf{x ∈ R : P(X ⩽ x) >

1− t}, where inf ∅ = ∞, ess-sup = Q−
0 and ess-inf = Q+

1 by convention.

Lemma 8.1. For h ∈ HBV and X ∈ X such that ρh(X) is well-defined (it may take values

±∞),

(i) if h is right-continuous, then
∫
X d(h ◦ P) =

∫ 1

0
Q+

t (X) dh(t);

(ii) if h is left-continuous, then
∫
X d(h ◦ P) =

∫ 1

0
Q−

t (X) dh(t);

(iii) if Q−
t (X) is continuous on (0, 1), then

∫
X d(h◦P) =

∫ 1

0
Q−

t (X) dh(t) =
∫ 1

0
Q+

t (X) dh(t).

There are two main advantages of working with non-monotone distortion functions.

First, as monotonicity is not assumed, results on maxima and minima are symmetric; we only

need to analyze one of them. Second, distortion riskmetrics include many more functionals

in risk management, such as variability measures, which never have a monotone distortion

function. We will make extensive use of three variability measures which appeared in the

introduction. They are well defined on spaces larger than L∞, although we state our main

results on X = L∞.

The first measure of variability we use extensively is the Gini deviation (GD)

GD(X) =
1

2
E[|X∗ −X∗∗|] =

∫
X d(hGD ◦ P)

2It will be clear from Theorem 8.2 that this nontraditional choice of notation significantly simplifies the

presentation of several results; this is also the case in Embrechts et al. (2018).
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for X ∈ L1, hGD(t) = t − t2, t ∈ [0, 1] and X∗, X∗∗ independent copies of X. Its distortion

function is depicted in Figure 8.1 (a). As our second measure of variability, the mean-median

deviation (MMD) is defined by

MMD(X) = min
x∈R

E[|X − x|] = E[|X −Q−
1/2(X)|] =

∫
X d(hMMD ◦ P)

for X ∈ L1 and hMMD(t) = t ∧ (1 − t), t ∈ [0, 1]; see Figure 8.1 (b). The mean-median

deviation is sometimes called the mean (or average) absolute deviation from the median

and is well known for its statistical robustness. Both the mean-median deviation and the

Gini deviation have concave distortions and thus are convex order consistent. Lastly, the

inter-quantile difference (IQD) is defined by

IQDα(X) = Q−
α (X)−Q+

1−α(X) =

∫
X d(hIQD ◦ P)

for X ∈ L0 and hIQD(t) = 1{α<t<1−α}, t ∈ [0, 1] and α ∈ [0, 1/2). See Figure 8.1 (c) for

its distortion function. We further set IQDα = 0 for α ∈ [1/2,∞), but this is only for

the purpose of unifying the presentation of some results. Our formulation of IQD is slightly

different from the definition used by Bellini et al. (2022) where IQDα is defined as Q+
α −Q−

1−α,

but this difference is minor. For X ∈ X and α ∈ [0, 1/2), a convenient formula (see Theorem

1 of Bellini et al. (2022)) is

IQDα(X) = Q−
α (X) +Q−

α (−X), (8.3)

and this is due to Q+
1−α(X) = −Q−

α (−X).

Consider now a preference functional I of the form

I(X) = θE(X) + γD(X)

for θ ⩾ 0, γ ∈ R and D(X) a variability measure. The version of I with θ = 1 and γ < 0

is widely used in modern portfolio theory (as an objective to maximize). There, the random

variable X denotes the gains, the parameter γ indicates the degree of risk aversion and D(X)

is a variability measure chosen to replace the variance. This yields the “Mean-D” preferences

nomenclature common in the literature. The version of I withX being a loss, θ ⩾ 1 and γ ⩾ 0

is common in the insurance/reinsurance literature, where it is called a distortion-deviation
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Figure 8.1: Distortion functions for GD, MMD, IQD and E+ γD, where γ = 1/2
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premium principle. For instance, Denneberg (1990) suggests the premium principle θ = 1

and D(X) = MMD(X). The functional I is a distortion riskmetric as long as D is one, and

so we adopt the convention of denoting such functional by ρh and interpreting X as losses.

Panels (d)-(f) of Figure 8.1 illustrate the distortion functions of E+ γD.

8.2.2 Risk sharing problems

There are n agents sharing a total loss X ∈ X . Suppose that agent i ∈ [n] has

a preference modelled by a distortion riskmetric ρhi
with smaller values preferred. Given

X ∈ X , we define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (8.4)

The inf-convolution □n
i=1 ρhi

of n distortion riskmetrics ρh1 , . . . , ρhn is defined as

n

□
i=1

ρhi
(X) := inf

{
n∑

i=1

ρhi
(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, X ∈ X .

That is, the inf-convolution of n distortion riskmetrics is the infimum over aggregate wel-

fare for all possible allocations. For a general treatment of inf-convolution in risk sharing

problems, see Rüschendorf (2013).
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Let ρh1 , . . . , ρhn be distortion riskmetrics and X ∈ X . The allocation (X1, . . . , Xn) is

sum optimal in An(X) if □n
i=1 ρhi

(X) =
∑n

i=1 ρhi
(Xi). An allocation (X1, . . . , Xn) ∈ An(X)

is Pareto optimal in An(X) if for any (Y1, . . . , Yn) ∈ An(X) satisfying ρhi
(Yi) ⩽ ρhi

(Xi) for

all i ∈ [n], we have ρhi
(Yi) = ρhi

(Xi) for all i ∈ [n].

Part of our analysis is conducted for the constrained problem where the allocations are

confined to the set of comonotonic allocations, that is,

A+
n (X) = {(X1, . . . , Xn) ∈ An(X) : X1, . . . , Xn are comonotonic} ,

We first make a useful observation about A+
n (X) below, which is a generalization of

Denneberg (1994, Proposition 4.5) in the case of n = 2.

Proposition 8.1. The random variables X1, . . . , Xn are comonotonic if and only if there

exist increasing functions fi : R → R such that Xi = fi(
∑n

i=1Xi), i ∈ [n] and
∑n

i=1 fi(x) = x

for x ∈ R.

Proof. We first show that the statement holds for n = 3. Assume that X1, X2 and X3

are comonotonic. We have that X1 + X2 and X3 are comonotonic by the definition of

comonotonicity. By Denneberg (1994, Proposition 4.5), there exist increasing functions u

and v such that

X1 +X2 = u (X1 +X2 +X3) , X3 = v (X1 +X2 +X3)

and u(x) + v(x) = x for all x ∈ R. Since X1 and X2 are comonotonic, there exist increasing

functions g1 and g2 such that X1 = g1(X1 +X2), X2 = g2(X1 +X2) and g1(x) + g2(x) = x

for x ∈ R. Let f1 = g1 ◦ u, f2 = g2 ◦ u and f3 = v. It is clear that X1 = f1(X1 +X2 +X3),

X2 = f2(X1 +X2 +X3), X3 = f3(X1 +X2 +X3) and f1(x)+ f2(x)+ f3(x) = x for all x ∈ R.

By repeating the above argument, we can show the “only if” part for n ⩾ 3. The “if” part

follows directly from the definition of comonotonicity.

Proposition 8.1 implies that if (X1, . . . , Xn) ∈ A+
n (X), then we can set X = Z in the

definition of comonotonicity while guaranteeing that for every ω ∈ Ω it is
∑n

i=1Xi(ω) =

X(ω).
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The comonotonic inf-convolution ⊞n
i=1 ρhi

of distortion riskmetrics ρh1 , . . . , ρhn is defined

as

n

⊞
i=1

ρhi
(X) := inf

{
n∑

i=1

ρhi
(Xi) : (X1, . . . , Xn) ∈ A+

n (X)

}
.

Let ρh1 , . . . , ρhn be distortion riskmetrics and X ∈ X . An allocation (X1, . . . , Xn) is sum

optimal in A+
n (X) when ⊞n

i=1 ρhi
(X) =

∑n
i=1 ρhi

(Xi). An allocation (X1, . . . , Xn) ∈ A+
n (X)

is Pareto optimal in A+
n (X) if for any (Y1, . . . , Yn) ∈ A+

n (X) satisfying ρhi
(Yi) ⩽ ρhi

(Xi) for

all i ∈ [n], we have ρhi
(Yi) = ρhi

(Xi) for all i ∈ [n].

The set of comonotonic allocations A+
n (X) is a strict subset of the set of all possible

allocations An(X). Hence, the sequel refers to the problem of sharing risk in An(X) and

A+
n (X) as unconstrained and comonotonic risk sharing, respectively.

8.3 Unconstrained risk sharing

This section tackles the unconstrained risk sharing problem. It is divided into two sub-

sections. The first aims at providing general results and the second subsection characterizes

the unconstrained risk sharing problem with IQD agents. There, we show that sum-optimal

allocations involve pairwise counter-monotonicity, an extreme form of negative dependence

between the agents’ risk.

8.3.1 Pareto optimality, sum optimality, and comonotonic improve-

ment

In all results, we will always assume that agents have preferences modelled by ρh1 , . . . , ρhn

where h1, . . . , hn ∈ HBV, with one exception which will be specified clearly. The value of

h(1) is important for a distortion riskmetric ρh because, by translation invariance, it pins

down the value attributed to a sure gain or loss.

Proposition 8.2. Let X ∈ X . Then
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(i) If a Pareto-optimal allocation in either A+
n (X) or An(X) exists then hi(1), i ∈ [n], are

all 0, all positive, or all negative;

(ii) If ⊞n
i=1 ρhi

(X) > −∞, then h1(1) = · · · = hn(1).

The proof of Proposition 8.2 highlights the role of translation invariance. Notice that

since distortion riskmetrics are positively homogeneous, the value of h(1) can be interpreted

as a constant marginal utility of money. For (i), we thus assume by contradiction that

(X1, . . . , Xn) is Pareto optimal but that hi(1), i ∈ [n], are not all zero or all of the same

sign. We can organize a (cash) transfer c1, . . . , cn between agents such that
∑n

i=1 ci = 0 and

the allocation (X1 + c1, . . . , Xn + cn) strictly improves upon (X1, . . . , Xn), an absurd. This

condition implies that, in order for the risk sharing problem to be meaningful, all agents

must agree on whether they like or dislike an increase of their allocation. In the former

case, X1, . . . , Xn may represent a good like monetary gains, and in the latter case, they may

represent bad, like carbon dioxide emissions. For (ii), when the value of h(1) differs between

agents, a similar type of transfer strictly reduces the sum of welfare
∑n

i=1 ρhi
, and so the

value attained by the inf-convolution ⊞n
i=1 ρhi

is arbitrarily small.

For h ∈ HBV, we write h̃ = h/|h(1)| if h(1) ̸= 0 and h̃ = h if h(1) = 0. If h(1) ̸= 0,

then h̃(1) = ±1. Note that replacing hi with its normalized version h̃i does not change the

preference of agent i. Hence, we sometimes consider in our proofs distortion riskmetrics that

are either all cash additive or all reverse cash additive. While this normalization does change

the value attained by the inf-convolution, it is without loss of generality for characterizing

Pareto optimality.

We now state our first theorem, a generalization of Proposition 1 of Embrechts et al.

(2018) stated for monetary risk measures.

Theorem 8.1. Suppose that hi(1) ̸= 0 for some i ∈ [n]. An allocation (X1, . . . , Xn) ∈ An(X)

is Pareto optimal in An(X) if and only if
∑n

i=1 ρh̃i
(Xi) = □n

i=1 ρh̃i
(X).

Theorem 8.1 states that Pareto optimality and sum optimality can be translated into

each other via normalization whenever the distortion riskmetrics are not location invariant.

The picture for location-invariant distortion riskmetrics is, however, drastically different,
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as we only have one direction. The next statement considers this setting. Its proof is

straightforward and thus omitted.

Proposition 8.3. Suppose that hi(1) = 0 for all i ∈ [n]. For an allocation (X1, . . . , Xn) ∈

An(X), it holds that (i)⇒(ii):

(i)
∑n

i=1 λiρhi
(Xi) = □n

i=1(λiρhi
)(X) for some (λ1, . . . , λn) ∈ (0,∞)n;

(ii) (X1, . . . , Xn) is Pareto optimal in An(X).

One might be interested in the converse statement of Proposition 8.3, asking whether the

Pareto optimality of (X1, . . . , Xn) implies the existence of a set of (λ1, . . . , λn) ∈ [0,∞)n\{0}

such that
∑n

i=1 λiρhi
(Xi) = □n

i=1(λiρhi
)(X). We see in this chapter that this claim holds in

three cases: when agents have hi(1) > 0 or hi(1) < 0 (Theorem 8.1); when all agents are IQD

(Theorem 8.2); when they have concave distortion functions (a combination of Propositions

8.4 and 8.7). However, we do not know whether this holds true for general distortion functions

with h1(1) = · · · = hn(1) = 0; see also the discussion after Proposition 8.7.

In view of Proposition 8.3, we say that an allocation (X1, . . . , Xn) of X is λ-optimal if

n

□
i=1

ρλihi
(X) =

n∑
i=1

ρλihi
(Xi). (8.5)

where λ = (λ1, . . . , λn). Clearly, λ-optimality is equivalent to sum optimality when the

preferences are specified as (λ1ρh1 , . . . , λnρhn), and conversely, sum optimality is (1, . . . , 1)-

optimality. Therefore, we encounter no additional technical complications when solving either

of them.

The following result follows from the well-known result of comonotonic improvement of

Landsberger and Meilijson (1994)3 and the fact that distortion riskmetrics are convex order

consistent when the distortion functions hi are concave (Theorem 3 of Wang et al. (2020a)). A

comonotonic improvement of (X1, . . . , Xn) ∈ An(X) is a random vector (Y1, . . . , Yn) ∈ A+
n (X)

such that Yi ⩽cx Xi for all i ∈ [n]. Such a comonotonic improvement always exists for any

(X1, . . . , Xn).

3See Rüschendorf (2013) for this result on general spaces.
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Proposition 8.4. Suppose that h1, . . . , hn are concave. It holds that □n
i=1 ρhi

= ⊞n
i=1 ρhi

.

Moreover, for any X ∈ X , if there exists a Pareto-optimal allocation in An(X), then there

exists a comonotonic Pareto-optimal allocation in An(X).

Next, we prove that if h1, . . . , hn are strictly concave, then the set of optimal allocations

in An(X) is exactly that of those in A+
n (X). This is because comonotonic improvements lead

to a strict increase in welfare when the probability distortions hi are strictly concave. We

state this result formally in Corollary 8.1 as a consequence of the following ancillary lemma:

Lemma 8.2. For two random variables X, Y ∈ X , the following are equivalent:

(i) X
d
= Y ;

(ii) ρh(X) = ρh(Y ) for all concave h ∈ HBV;

(iii) ρh(X) ⩽ ρh(Y ) for all concave h ∈ HBV, in which the equality holds for a strictly

concave h;

(iv) X ⩽cx Y and ρh(X) = ρh(Y ) for a strictly concave h ∈ HBV.

Corollary 8.1. If X ⩽cx Y and X ̸ d= Y , then ρh(X) < ρh(Y ) for any strictly concave h.

Remark 8.1. The equivalence in Lemma 8.2 holds true for any random variables X, Y with

finite mean, by requiring that ρh(X) and ρh(Y ) are finite for the strictly concave function h

in (iii) and (iv). This follows by noting that we did not use the boundedness of X and Y in

the proof.

Proposition 8.5. Suppose that h1, . . . , hn are strictly concave and X ∈ X .

(i) Every Pareto-optimal allocation in An(X) is comonotonic.

(ii) If for each i ∈ [n], hi = aih1 for some ai > 0 then an allocation is Pareto optimal in

An(X) if and only if it is comonotonic.

As mentioned previously, Proposition 8.4 and 8.5 are generalizations of well-known

results in the literature. Both can easily be extended to Lp for p ⩾ 1 instead of X = L∞

provided that every ρhi
is finite when defined on Lp.4

4Conditions for the finiteness of ρh on Lp are provided in Proposition 1 of Wang et al. (2020a).
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8.3.2 IQD agents and negatively dependent optimal allocations

We characterize the sum-optimal allocations on general spaces when agents evaluate

their risk with the IQD measure of variability. We start with the problem of sharing risk

among IQD agents only. In this setting, agent i ∈ [n] has IQDαi
as their preference where

αi ∈ [0, 1/2).

For a random variable X on the probability space (Ω,F ,P), we define tail events as in

Wang and Zitikis (2021). For β ∈ [0, 1], we say that an event A ∈ F is a right (resp. left)

β-tail event of X if P(A) = β and X(ω) ⩾ X(ω′) (resp. X(ω) ⩽ X(ω′)) holds for a.s. all

ω ∈ A and ω′ ∈ Ac, where Ac stands for the complement of A.

Theorem 8.2. For X ∈ X and the IQD risk sharing problem in An(X) with α1, . . . , αn ∈

[0, 1/2), let α =
∑n

i=1 αi.

(i) An allocation of X is Pareto optimal if and only if it is sum optimal.

(ii) For λ1, . . . , λn ⩾ 0 and λ =
∧n

i=1 λi,

n

□
i=1

(λiIQDαi
) =

(
n∧

i=1

λi

)
IQD∑n

i=1 αi
= λIQDα. (8.6)

In particular, □n
i=1 IQDαi

= IQDα.

(iii) A class of Pareto-optimal allocations of X ∈ X for IQD agents is given by

Xi = (X − c)1Ai∪Bi
+ ai(X − c) (1− 1A∪B) + ci, i ∈ [n], (8.7)

where, by setting β = α ∧ (1/2),

(a) {Ai}ni=1 and {Bi}ni=1 are partitions of a right β-tail event A and a left β-tail event

B of X with A,B disjoint, respectively, satisfying P(Ai) = P(Bi) = αiβ/α, i ∈ [n];

(b) ai ⩾ 0 for i ∈ [n] and
∑n

i=1 ai = 1;

(c) c ∈ [Q−
1/2(X), Q+

1/2(X)] and
∑n

i=1 ci = c.

Remark 8.2. The allocation (8.7) satisfies
∑n

i=1 λiIQDαi
(Xi) = □n

i=1(λiIQDαi
)(X) by setting

ai = 0 for i ∈ [n] such that λi > λ.
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The surprising ingredient of Theorem 8.2, part (i) is that, for IQD agents, sum optimal-

ity is indeed equivalent to Pareto optimality, which is the case for cash-additive distortion

riskmetrics (Theorem 8.1). However, for general agents with h1(1) = · · · = hn(1) = 0,

Pareto optimality is not necessarily equivalent to sum optimality, because different choices

of (λ1, . . . , λn) in Proposition 8.3 lead to different Pareto-optimal allocations, which are not

necessarily sum optimal (see Proposition 8.3 as well as Section 8.6). As a consequence of

this result, Pareto-optimal allocations for IQD agents are precisely those for agents using the

mean-risk preferences with risk measured by IQD,

ρhi
(Xi) = E[Xi] + IQDαi

(Xi), i ∈ [n],

because both solve the same sum optimality problem by noting that
∑n

i=1 E[Xi] = E[X] for

any allocation (X1, . . . , Xn) of X.

In part (ii) of Theorem 8.2, we see that the inf-convolution of several IQD is an IQD.

Related to this observation, Embrechts et al. (2018) showed that the inf-convolution of several

quantiles is again a quantile.

Figure 8.2 illustrates an example of the Pareto-optimal allocation (8.7) in Theorem 8.2,

part (iii). The dependence structure of this allocation warrants some further discussion.

Without loss of generality, assume c1 = · · · = cn = 0 (this implies that a median of X is

c = 0), and assume that X is continuously distributed. Note that (a.s.) X > 0 if event A

occurs and X < 0 if event B occurs.

First, suppose α ⩾ 1/2 so that P(A ∪B) = 1. In this case, we have Xi = X1Ai∪Bi
for

i ∈ [n]. The random vector (X1Ai
, X1Aj

) for i ̸= j is counter-monotonic because Ai∩Aj = ∅

and X > 0 on A. This implies (X1A1 , . . . , X1An) is pairwise counter-monotonic. From the

above analysis, we can see that conditional on A, (X1, . . . , Xn) is pairwise counter-monotonic,

and so is it conditional on B; that is (X1, . . . , Xn) is a mixture of two pairwise counter-

monotonic vectors. Moreover, (X1, . . . , Xn) is also the sum of the two pairwise counter-

monotonic vectors (X1A1 , . . . , X1An) and (X1B1 , . . . , X1Bn). We can check that (Xi(ω) −

Xj(ω))(Xi(ω
′)−Xj(ω

′)) < 0 for ω ∈ Ai and ω
′ ∈ Aj, and (Xi(ω)−Xj(ω))(Xi(ω

′)−Xj(ω
′)) >

0 for ω ∈ Ai and ω′ ∈ Bj. Therefore, the allocation (X1, . . . , Xn) is not comonotonic, yet

it is not pairwise counter-monotonic either. This is illustrated by the “vertical slicing” in
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Figure 8.2: A Pareto-optimal allocation in (8.7), where the shaded area represents the allo-

cation to agent 1 minus c1, that is, X1 − c1 = (X − c)1Ai∪Bi
+ ai(X − c)1(A∪Bc)

B1
. . .

B

Bn

A1
. . .

A

An
ω

X(ω)

a1(X − c)1(A∪B)c(X − c)1B1

(X − c)1A1

Q−
1−α1

(X)

Q−
1−α(X)

Q−
α1
(X)

Q−
α (X)

c = Q−
1/2(X)

Figure 8.2, where on A and B pairwise counter-monotonicity holds.

As discussed above, we can describe (X1, . . . , Xn) as either the sum or the mixture of

two pairwise counter-monotonic vectors. Pairwise counter-monotonicity is a form of extreme

negative dependence that extends the concept of counter-monotonicity to the case of n ⩾ 3

agents; see Puccetti and Wang (2015) and Chapter 7 for more details. This observation is

in contrast to the optimal allocations for quantile agents in Theorem 1 of Embrechts et al.

(2018), which are indeed pairwise counter-monotonic.

If 0 < α < 1/2, then the term aiX1(A∪B)c appears in the allocation of every agent.

Note that conditional on (A ∪ B)c, (X1, . . . , Xn) becomes comonotonic. This is illustrated

by “proportional slicing” in the middle part of Figure 8.2. This local comonotonicity will

become crucial in Section 8.5, where we study the risk sharing problem among several IQD

agents and risk-averse agents.

As hinted by Propositions 8.4 and 8.5, solving Pareto-optimal allocations for risk-averse

agents requires us to study comonotonic risk sharing, which is the topic of the next section.
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8.4 Comonotonic risk sharing

We now turn to the important case of comonotonic risk sharing. As before, we first

provide theoretical results and then proceed to analyze further the special case of sharing

risks with IQD agents.

8.4.1 Pareto optimality, sum optimality, and explicit allocations

The next result is similar to Theorem 8.1, but for comonotonic risk sharing. We omit

its proof because it does not provide new insights.

Proposition 8.6. Suppose that hi(1) ̸= 0 for some i ∈ [n]. Then, (X1, . . . , Xn) ∈ A+
n (X) is

Pareto optimal in A+
n (X) if and only if

∑n
i=1 ρh̃i

(Xi) = ⊞n
i=1 ρh̃i

(X).

We now show that λ-optimality in A+
n (X) pins down Pareto optimality. This result is

stated in a stronger form than Proposition 8.3 for the corresponding notions of optimality in

An(X).

Proposition 8.7. Suppose that hi(1) = 0 for all i ∈ [n]. For an allocation (X1, . . . , Xn) ∈

A+
n (X), it holds that (i)⇒(ii)⇒(iii):

(i)
∑n

i=1 λiρhi
(Xi) = ⊞n

i=1(λiρhi
)(X) for some (λ1, . . . , λn) ∈ (0,∞)n;

(ii) (X1, . . . , Xn) is Pareto optimal in A+
n (X);

(iii)
∑n

i=1 λiρhi
(Xi) = ⊞n

i=1(λiρhi
)(X) for some (λ1, . . . , λn) ∈ [0,∞)n \ {0}.

Comonotonicity plays an important role in the proof of Proposition 8.7. The comono-

tonic additivity of distortion riskmetrics guarantees that the utility possibility frontier S is

a convex set when restricted to A+
n (X). This needs not be true on An(X). In this case,

we cannot use the Hanh-Banach Theorem to obtain the existence of the Pareto weights

(λ1, . . . , λn), which is the reason why we did not state a “converse statement” in Proposi-

tion 8.3. Propositions 8.4 and 8.7 together yield that if all agents have concave distortion

functions, then any Pareto-optimal allocation in An(X), which yields the same welfare for
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all agents as a Pareto-optimal allocation in A+
n (X), must satisfy (iii). If their distortion

functions are strictly concave, then by Proposition 8.5, every Pareto-optimal allocation can

be found through an inf-convolution.

We now aim to characterize further the set of Pareto-optimal allocations in A+
n (X). The

following result generalizes Proposition 5 of Embrechts et al. (2018) for dual utilities.

Theorem 8.3. Suppose that h1(1) = · · · = hn(1). Then

n

⊞
i=1

ρhi
= ρh∧ ,

where h∧(t) = min{h1(t), . . . , hn(t)}, and ρh∧ is finite on X . Moreover, a sum-optimal

allocation (X1, . . . , Xn) in A+
n (X) is given by Xi = fi(X), i = 1, . . . , n, where

fi(x) =

∫ x

0

gi(t) dt, and gi(x) =
1

|Mx|
1{i∈Mx}, x ∈ R, (8.8)

and where Mx = {j ∈ [n] : hj(P(X > x)) = h∧(P(X > x))}. The sum-optimal allocation

is unique up to constant shifts almost surely if and only if |Mx| = 1 for µX-almost every x,

where µX is the distribution measure of X.

A key step in the proof of Theorem 8.3 is the following lemma, which gives a convenient

alternative formula for ρh(f(X)). The lemma generalizes Lemma 2.1 of Cheung and Lo

(2017) for dual utilities in the context of optimal reinsurance design.

Lemma 8.3. For any h ∈ HBV, random variable X bounded from below, and increasing

Lipschitz function f with right-derivative g, we have

ρh(f(X)) =

∫ ∞

0

g(x)h(P(X > x)) dx+

∫ 0

−∞
g(x)(h(P(X > x)− h(1)) dx. (8.9)

The results in Theorem 8.3 can be extended to domains like {X ∈ Lp : X− ∈ L∞}

for p ⩾ 0 as long as ρh1 , . . . , ρhn are finite on this domain. This is because Lemma 8.3 only

requires boundedness from below. The next example illustrates the uniqueness statement

in Theorem 8.3, which gives not only unique sum-optimal allocations in A+
n (X), but also

unique Pareto-optimal ones, up to constant shifts.
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Example 8.2. Suppose that ρh1 = β1E+γ1GD, ρh2 = β2E+γ2MMD and ρh3 = β3E+γ3IQDα

for some βi, γi > 0, i = 1, 2, 3, and α ∈ [0, 1/2). For any continuously distributed X ∈ X , the

Pareto-optimal allocation in A+
3 (X) is unique up to constant shifts. To see this, by Propo-

sition 8.6, any Pareto-optimal allocation (X1, X2, X3) in A+
3 (X) satisfies

∑3
i=1 ρh̃i

(Xi) =

⊞3
i=1 ρh̃i

(X). Noting that for each 1 ⩽ i < j ⩽ 3, h̃i(t) = h̃j(t) for at most two points

t ∈ (0, 1), by Theorem 8.3, the allocation (X1, X2, X3) is unique up to constant shifts.

By replacing hi with λihi for some λi ⩾ 0, we obtain the following corollary, which helps

to identify λ-optimal allocations in conjunction with Theorem 8.3.

Corollary 8.2. Let λ ∈ Rn
+ \{0} be a vector and ⊞n

i=1 ρλihi
be finite. Then ⊞n

i=1 ρλihi
= ρhλ

,

where hλ(t) = min{λ1h1(t), . . . , λnhn(t)} for t ∈ [0, 1].

By Proposition 8.2, the inf-convolution ⊞n
i=1 ρλihi

being finite implies that λihi(1) are

equal for all i ∈ [n]. Corollary 8.2 is thus only useful for the case of location-invariant

distortion riskmetrics (hi(1) = 0, i ∈ [n]), as otherwise we simply normalize λi = 1, i ∈

[n]. Theorem 8.3’s characterization of λ-optimality in A+
n (X) extends to location-invariant

distortion riskmetrics by setting Mx = {i ∈ [n] : λihi(P(X > x)) = hλ(P(X > x))} in (8.8).

For cash-additive and reverse cash-additive distortion riskmetrics, Proposition 8.6 and

Theorem 8.3 together yield a full characterization of Pareto-optimal allocations in A+
n . It

remains to characterize those for location-invariant distortion riskmetrics. The next propo-

sition gives an answer for a large class of such distortion riskmetrics.

Proposition 8.8. Suppose hi(1) = 0 and hi(t) > 0 for all i ∈ [n] and all t ∈ (0, 1). Then the

allocation (X1, . . . , Xn) ∈ A+
n (X) is Pareto optimal if and only if there exists K ⊆ [n] and a

vector λ ∈ (0,∞)#K such that (Xi)i∈K solves ⊞i∈K ρλihi
(X), and Xi, i ̸∈ K are constants.

The assumption that hi(t) > 0 for all i ∈ [n] and all t ∈ (0, 1) is critical for the

characterization of Proposition 8.8. This condition has a natural interpretation, as it is

equivalent to ρhi
(X) > 0 for all non-degenerate X and it is satisfied by many variability

measures; it is part of the definition of deviation measures of Rockafellar et al. (2006). But

this assumption rules out IQD, which we study in the next section.

228



8.4.2 IQD agents and positively dependent optimal allocations

We start with the comonotonic risk sharing problem among IQD agents. The following

proposition gives the corresponding statements, parallel to Theorem 8.2, on Pareto optimality

and inf-convolution in this setting. The sum-optimal allocations are given by Theorem 8.3.

Proposition 8.9. Consider X ∈ X and the IQD risk sharing problem in A+
n (X) with

α1, . . . , αn ∈ [0, 1/2).

(i) An allocation of X is Pareto optimal if and only if it is sum optimal.

(ii) For λ1, . . . , λn ⩾ 0,
n

⊞
i=1

(λiIQDαi
) =

(
n∧

i=1

λi

)
IQD∨n

i=1 αi
.

In particular, ⊞n
i=1 IQDαi

= IQD∨n
i=1 αi

.

Comparing Theorem 8.2 with Proposition 8.9, we note that for α1, . . . , αn ∈ (0, 1/2),

we have
∑n

i=1 αi >
∨n

i=1 αi, which implies that

n

⊞
i=1

(λiIQDαi
)(X)−

n

□
i=1

(λiIQDαi
)(X) > 0 (8.10)

for any continuously distributed X. This further implies that the Pareto-optimal allocations

in An(X) are disjoint from those in A+
n (X). The difference in (8.10) can be interpreted as

the welfare gain of allowing agents to share risks in non-comonotonic arrangements.

8.5 Several IQD and risk-averse agents

Combining results established in Sections 8.3 and 8.4, we are now able to tackle the

unconstrained risk sharing problem for IQD and risk-averse agents. We consider agents from

the following two sets: the IQD agents, modelled by distortion functions in

HIQD = {t 7→ 1{α<t<1−α} : α ∈ [0, 1/2)}

and the risk-averse agents, modelled by distortion functions in

HC = {h ∈ HBV| h(1) = 0, h is concave}.
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Figure 8.3: An illustration of the transform Gα
λ

t

h(t)

0 1

(a) h

t

Gα
λ(h)(t)

α 1− α−α 1 + α

λ

(b) Gα
λ(h)

That is, HIQD is the set of all distortion functions for IQD variability measures and HC

is the set of location-invariant concave distortion functions h ∈ HBV. Notice that each

h ∈ HC is increasing in [0, s] and decreasing [s, 1] for some s ∈ (0, 1). Define the mapping

Gα
λ : HC → HBV for α ∈ [0, 1/2) and λ ⩾ 0 as

Gα
λ(h)(t) = (h(t− α) ∧ h(t+ α) ∧ λ)1{α<t<1−α} for t ∈ [0, 1].

The mapping Gα
λ transforms a concave distortion function to another distortion function

with value 0 on [0, α] ∪ [1 − α, 1]. See Figure 8.3 for an illustration of this transform. For

α ⩾ 1/2, we define Gα
λ(h) = 0.

We will see in the next proposition that the function Gα
λ plays an important role because

of the inf-convolution of λIQDα and ρh for h ∈ HC satisfies

(λIQDα)□ρh = ρGα
λ(h)

.

This formula is a special case of (8.11) in Theorem 8.4 below.

Theorem 8.4. Let C ⊆ [n] and I = [n] \C. Suppose that hi ∈ HC for i ∈ C and hi ∈ HIQD

for i ∈ I with IQD parameter αi. Denote by α =
∑

i∈I αi.

(i) For λ1, . . . , λn ⩾ 0, denoting by λ =
∧

i∈I λi and h =
∧

i∈S(λihi), we have

n

□
i=1

(λiρhi
) = ρGα

λ(h)
. (8.11)
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(ii) A Pareto-optimal allocation is given by

Xi = (X − c)1Ai∪Bi
+ Yi + ci, (8.12)

where, by denoting by β = α ∧ (1/2),

(a) {Ai}ni=1 and {Bi}ni=1 are partitions of a right β-tail event A and a left β-tail event

B of X with A,B disjoint, respectively, satisfying P(Ai) = P(Bi) = αiβ/α for i ∈ I

and Ai = Bi = ∅ for i ∈ C;

(b) (Y1, . . . , Yn) is a Pareto-optimal allocation of (X − c)1(A∪B)c for preferences with

distortion functions h′1, . . . , h
′
n where h′i = hi if i ∈ C and hi(t) = 1{t∈(0,1)} for

i ∈ I.

(c) c ∈ [Q−
1/2(X), Q+

1/2(X)] and
∑n

i=1 ci = c.

The type of allocation characterized in Theorem 8.4 has some special features. In

contrast to the allocation with several IQD agents only in Theorem 8.2, the risk in case of

the event (A ∪ B)c are optimally shared among risk-averse agents with distortion functions

h′1, . . . , h
′
n, which are all concave. To solve for the allocation (Y1, . . . , Yn) in (b) of Theorem

8.4, we can conveniently convert the problem into a comonotonic allocation problem as

guaranteed by Proposition 8.4, and this allocation is fully solved by Theorem 8.3, Corollary

8.2, and Proposition 8.8, thus yielding an explicit solution to the problem in this section.

Remark 8.3. Let C ⊆ [n] and I = [n] \ C. Suppose that hi ∈ HC for i ∈ C and hi ∈ HIQD

for i ∈ I with IQD parameter αi. For any λ1, . . . , λn ⩾ 0 it is ⊞n
i=1(λiρhi

) = ρhλ
, where

hλ =
∧

i∈[n] λihi. The distortion function hλ takes value 0 on [0,
∨

i∈I αi]∪ [
∨

i∈I αi, 1]; on the

other hand, the distortion function Gα
λ(h) from Theorem 8.4 takes value 0 on [0,

∑
i∈I αi] ∪

[
∑

i∈I αi, 1].

8.6 GD, MMD and IQD agents

We now provide examples of the results obtained in Section 8.3 and 8.4. Some calcu-

lation details are put in Section 8.12. The following two subsections come back on the risk
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sharing problem with several IQD agents and explains further the allocations found in Sec-

tion 8.3.2. The last two subsections analyze the risk sharing problem when agents consider

the Gini and mean-median deviations as the relevant statistical measures of risk.

8.6.1 Several IQD agents

The difference between the two sum-optimal allocations found in Theorem 8.2 and

Proposition 8.9 is important.

In contrast, Figure 8.4 illustrates some comonotonic allocations that are λ-optimal (and

also Pareto optimal and sum optimal; see Proposition 8.9) when restricted to the subset

A+
n (X). The solution for ⊞n

i=1(λiIQDαi
) is not unique as |Mx| can be larger than 1. The

figure depicts a particular case when simultaneously α1 < α2 < α3 and λ1 < λ2 < λ3. The

left panel shows the distortion function of each agent multiplied by the corresponding λ,

and the lower envelope hλ(t). Figure 8.4b presents a sum-optimal allocation where all three

agents take non-zero risks. Comonotonic sum-optimal allocations are not unique, because

the allocation where agent 3 takes all risks in the α3-tails and agent 1 takes the rest is also

sum optimal. As discussed before, comonotonic sum-optimal allocations are generally not

sum optimal in An(X).

Figure 8.4: Distortion functions and the sum-optimal allocation for ⊞n
i=1 λiIQDαi

t

λihi(t)

0 1

λ1

α1 1− α1

λ2

α2 1− α2

λ3

α31− α3

(a) Distortion functions for λiIQDαi
, i =

1, 2, 3

x

fi(x)

0

X2

X3

X1

Q−
1−α2

(X)Q−
1−α3

(X) Q−
α3
(X)Q−

α2
(X)

(b) Allocation for ⊞n
i=1 λiIQDαi
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8.6.2 The GD, MMD, and IQD problem

We now turn to the allocations characterized by Theorem 8.4. Consider the problem of

sharing risk between Anne, Bob and Carole, i.e., the case when there is only one GD agent,

one MMD and IQD agent. Let α < 1/2 and λ1, λ2, λ3 > 0 and consider the inf-convolution

inf
(X1,X2,X3)∈A(X)

{λ1GD(X1) + λ2MMD(X2) + λ3IQDα(X3)} .

Without loss of generality we assume Q−
1/2(X) = 0 for the convenience of presentation, so

that c in Theorem 8.4 is taken as 0.

Let A be a right α-tail event and B ⊊ Ac be a left α-tail event of X, where A and B

are disjoint sets. All the α-tail risks must go to the IQD agent. That is, every sum-optimal

allocation requires that the IQD agent takes the whole risk on A ∪B.

It remains to share risk “in the middle”, that is, on the event (A ∪ B)c. We note

by Y = X1(A∪B)c , which has an optimal allocation (Y1, . . . , Yn) in Theorem 8.4 which is

comonotonic on (A ∪ B)c. This is done in the same fashion as we do later for comonotonic

risk sharing, with the caveat that the IQD agent might take on some risk depending on

the weights λ1, λ2 and λ3. Define c1 = 1/2 −
√
1/4− λ3/λ1 + α, c2 = λ3/λ2 + α and

c3 = 1 − λ2/λ1 + α. If c1 ∈ (α, 1/2), then λ1hGD(t) and λ3hIQD(t) cross twice on (0, 1),

once at c1 − α and then once again at 1 − c1 + α. If c2 ∈ (α, 1/2), then λ2hMMD(t) and

λ3hIQD(t) cross twice on (0, 1), once at c2−α and then once again at 1− c2+α. Similarly, if

c3 ∈ (α, 1/2) then λ1hGD(t) and λ2hMMD(t) cross at c3 − α and 1− c3 + α. Note that c2 > α

and α ⩽ c1 ⩽ 1/2 + α whenever 1/4 ⩾ λ3/λ1.

We have six cases to handle; the details can be found in Section 8.12. Figure 8.5 plots

the function Gα
λ(h) for h = min{λ1hGD, λ2hMMD}. The red, blue and black colour denote the

risk that goes to the GD agent, the MMD agent and the IQD agent, respectively.

We present the Pareto-optimal allocations (X1, X2, X3) in the six cases below. These

allocations are generally not comonotonic, but they are comonotonic on the event (A ∪B)c.

Recall that Y stands for X1(A∪B)c .

Case 1, c1 ⩾ 1/2 and c3 ⩽ α: X1 = Y, X2 = 0 and X3 = X1A∪B.

Case 2, c2 ⩾ 1/2 and c3 ⩾ 1/2: X1 = 0, X2 = Y and X3 = X1A∪B.
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Figure 8.5: The function Gα
λ(h)
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(b) case 2

t

Gα
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(c) case 3

t

Gα
λ(h)(t)

α 1− αc2

(d) case 4

t

Gα
λ(h)(t)

c3α 1− α

(e) case 5

t

Gα
λ(h)(t)

α 1− α

(f) case 6

Case 3, c3 ⩽ α < c1 < 1/2: X1 = X −X3, X2 = 0 and X3 = X1A∪B + Y ∧ Q−
c1
(X) − Y ∧

Q−
1−c1

(X).

Case 4, either α < c1 < c3 < 1/2 or α < c2 < 1/2 < c3: X1 = 0, X2 = X −X3 and

X3 = X1A∪B + Y ∧Q−
c2
(X)− Y ∧Q−

1−c2
(X).

Case 5, α < c3 < 1/2 < c1: X2 = X −X1 −X3, X3 = X1A∪B and X1 = Y ∧Q−
c3
(X)− Y ∧

Q−
1−c3

(X).

Case 6, α < c3 ⩽ c1 < 1/2: X1 = Y ∧Q−
c3
(X)−Y ∧Q−

c1
(X)+Y ∧Q−

1−c1
(X)−Y ∧Q−

1−c3
(X),

X2 = X −X1 −X3 and X3 = X1A∪B + Y ∧Q−
c1
(X)− Y ∧Q−

1−c1
(X).

The allocation in case 6 is showing a particularly rich feature, and we depict it in Figure

8.6.

8.6.3 Insurance between two GD and MMD agents

We next solve the insurance example (Example 8.1) presented in the introduction. Con-

sider two individuals, Anne and Bob, who evaluate their risk with GD and MMD, respectively.
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Figure 8.6: A Pareto-optimal allocation for Anne, Bob and Carole, where the red, blue

and gray areas represent the allocations to Anne (GD), Bob (MMD) and Carole (IQD)

respectively, up to constant shifts

Q−
1−α(X)

Q−
α (X)

Q−
1/2(X)

B

A
ω

X(ω)

That is, set h1 = hGD and h2 = hMMD. (Or, they could use E + λ1GD and E + λ2MMD,

which would not change our analysis.) This setting is simpler than the three-agent problem

in Section 8.6.2, and it offers a clearer visualization of the Pareo-optimal allocation.

Both h1 and h2 are strictly concave, and, by Proposition 8.5, any Pareto-optimal allo-

cation in An(X) is comonotonic. By Proposition 8.7, each Pareto-optimal allocation can

be found by solving the inf-convolution ⊞2
i=1(λiρhi

) for some Pareto weights (λ1, λ2) ∈

[0,∞)2 \ {0}. Consider the normalized ones λ1 = λ ∈ [0, 1] and λ2 = 1 − λ. Figure 8.7

depicts the functions hi(t) and λihi(t).

By positive homogeneity it is λρh1(X1) = ρλh1(X1) for Anne, and similarly for Bob. By

Corollary 8.2, we have ⊞2
i=1 ρλihi

= ρhλ
, where hλ(t) = min{λh1(t), (1 − λ)h2(t)}. That is,

the sum-optimal allocation gives all the marginal t-quantile risk to the individual with the

lowest λihi(t).

The condition of Theorem 8.3 is satisfied, and so the (λ1, λ2)-optimal allocation is unique
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Figure 8.7: Distortion functions of GD and MMD agents

t

hi(t)

h1(t) = t− t2

h2(t) = t ∧ (1− t)

(a) h1 is GD, h2 is MMD

t

λihi(t)

0.6h1(t)

0.4h2(t)

(b) λh2 and (1− λ)h1 when λ = 0.4

up to constant shifts. Any Pareto-optimal allocation takes the form

X1 = X ∧Q−
c (X)−X ∧Q−

1−c(X) + k and X2 = X −X1,

where c ∈ [0, 1/2] and k ∈ R is a constant. We can interpret this as a situation where the first

individual insures the potential lossesX of the second one. The contract (transfer function) is

the random variable X1, while its price is k, the latter which needs to be negotiated between

the two agents. Next, we argue that the mapping λ 7→ c is surjective.

(i) If λ < 1/2 we have λh1 < (1−λ)h2 everywhere and so c = 0. That is, the GD agent

bears all the risk and provides full insurance. (ii) Similarly, if λ > 2/3 we have λh1 > (1−λ)h2
everywhere and so c = 1/2. It is the MMD agent that bears all the risk and no insurance is

provided. Finally, (iii) if 1/2 < λ < 2/3 then λh1 > (1 − λ)h2 on both (0, (2λ − 1)/λ) and

((1−λ)/λ, 1) and λh1 < (1−λ)h2 on ((2λ− 1)/λ, (1−λ)/λ). Hence, c = (2λ− 1)/λ and the

contract is a simple deductible Q−
1−c(X) with an upper limit Q−

c (X). This type of allocation

is depicted in Figure 8.8.

The constant k can take any value because by location invariance, for any k ∈ R, we

have ρhi
(Xi + k) = ρhi

(Xi) + hi(1)k = ρhi
(Xi) and the price of the insurance does not affect

Pareto optimality. This observation remains true if agents use E+ λiρhi
instead of ρhi

.
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Figure 8.8: A Pareto-optimal allocation for the MMD and GD pair
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8.6.4 Risk sharing with several mixed GD-MMD agents

We conclude with the problem of sharing risk among many agents i ∈ [n] evaluating

their risks with the variability measure

ρhi
(Xi) =

∫
Xi d ((aihGD + (1− ai)hMMD) ◦ P) = aiGD(Xi) + (1− ai)MMD(Xi),

ai ∈ [0, 1]. It is easily verified that for every i ∈ [n] the distortion function hi = aihGD +

(1 − ai)hMMD is strictly concave and satisfies hi(1) = 0. We can therefore invoke Theorem

8.3, Corollary 8.2 and Proposition 8.8 to characterize the set of Pareto-optimal allocations.

Consider the usual normalization of the Pareto weights
∑n

i=1 λi = 1 with λi > 0 and notice

that
n

⊞
i=1

ρλihi
= ρhλ

,

where hλ(t) = min{λ1h1(t), . . . , λnhn(t)}.

Deriving every agent’s allocation (contract) in a closed-form solution is a bit more

cumbersome. Yet, Theorem 8.3 and Corollary 8.2 still fully pin down the shape of the

optimal allocation, and we can visualize it easily. Consider the case when 0 < λ1a1 < λ2a2 <

· · · < λnan and set Mx = {i ∈ [n] : λihi(P(X > x)) = hλ(P(X > x))} as before. We have

that |Mx| = 1 µX-almost surely, so the sum-optimal allocation is unique up to constant shifts

for any λ. Figure 8.9 shows an example with three agents.
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Figure 8.9: Distortion functions for mixed GD-MMD agents, where a1 = 1/4, a2 = 1/2, a3 =

3/4 and λ = (0.31, 0.32, 0.37)
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λ1h1

λ2h2

λ3h3

(a) Distortion function λihi

t

hλ(t)

λ1h1 λ2h2 λ3h3 λ2h2 λ1h1

(b) Lower envelope: hλ(t) = mini∈[3] λihi(t)

As we obtained in the previous application, hλ induces a partition of the state space on

which only one agent takes the full marginal risk. That is, the Pareto-optimal allocation’s

shape is similar to the payoff obtained with a collection of straight deductibles insurance

contracts with upper limits. For instance, the part of the risk that goes to agent 2 is

X2 = X ∧ b−X ∧ a+X ∧ d−X ∧ c

for 0 < a < b < c < d <∞ implicitly defined through the lower envelope hλ(t).

8.7 Conclusion

We summarize the chapter with a few remarks on the results that we obtained. While

we focused on the case X = L∞, all the results of this article generalize to larger spaces

provided all the decision criteria ρhi
and the inf-convolution □n

i=1 ρhi
(X) are finite on the

larger space. We emphasized when key results can be readily generalized, but this finiteness

property must often be verified case-by-case. For example, the results on risk sharing with

IQD agents can be extended to L0 because the IQD is bounded from below. This property

does not generalize to other functionals.
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The unconstrained risk sharing problem for non-concave distortion functions typically

leads to non-comonotonic sum-optimal allocations without explicit forms, and they can be

difficult to analyze. Although we obtained several results on necessary or sufficient conditions

for Pareto and sum optimality (Theorem 8.1 and Propositions 8.2-8.5), a full characterization

of the Pareto-optimal or sum-optimal allocations for arbitrary distortion riskmetrics is beyond

the current techniques.

The case of IQD agents is, nevertheless, special, although they do not have concave

distortion functions. For this setting, we can fully characterize all Pareto-optimal allocations

via sum-optimal ones, and the inf-convolution for such distortion riskmetrics admit concise

formulas (Theorem 8.2 and Proposition 8.9):

n

□
i=1

(λiIQDαi
) =

(
n∧

i=1

λi

)
IQD∑n

i=1 αi
and

n

⊞
i=1

(λiIQDαi
) =

(
n∧

i=1

λi

)
IQD∨n

i=1 αi
,

and their particular instances

n

□
i=1

IQDαi
= IQD∑n

i=1 αi
and

n

⊞
i=1

IQDαi
= IQD∨n

i=1 αi
.

These formulas may be compared with the quantile inf-convolutions formulas obtained by

Embrechts et al. (2018) and Liu et al. (2022)

n

□
i=1

Q−
αi

= Q−∑n
i=1 αi

,
n

□
i=1

Q+
αi

= Q+∑n
i=1 αi

, and
n

⊞
i=1

Q−
αi

= Q−∨n
i=1 αi

and
n

⊞
i=1

Q+
αi

= Q+∨n
i=1 αi

.

In the context of risk sharing, these results show that a representative agent (using the inf-

convolution as its reference) of several IQD agents is again an IQD agent, and similarly, the

representative agent of several quantile agents is again a quantile agent.

When the distortion functions are concave, or, when we constrain ourselves to the set

of comonotonic allocations, the risk sharing problem becomes much more tractable, and we

obtain explicit allocations which are Pareto optimal or sum optimal (Theorem 8.3). This

builds on the comonotonic improvement à la Landsberger and Meilijson (1994), when the

distortion riskmetrics are convex order consistent. A high-level summary is that all results

that were established for increasing distortion riskmetrics, in particular, Yaari (1987)’s dual

utilities, can be extended in parallel to non-increasing ones without extra efforts (these results

are summarized in Propositions 8.6-8.8). This opens up various application areas where risks

are traditionally studied with only increasing distortion riskmetrics.
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Combining the results for IQD agents and for risk-averse agents, we are able to solve risk

sharing problems among these agents, whose Pareto-optimal allocations are found explicitly

(Theorem 8.4). Various examples of risk sharing among these agents are presented in Section

8.6.

It remains unclear to us whether our analysis can be generalized to distortion riskmetrics

other than IQD, which are not convex (i.e., with non-concave distortion functions), and how

large the class of such tractable risk functionals is. As far as we are aware, the unconstrained

risk sharing problems for non-convex risk measures and variability measures have very limited

explicit results (e.g., Embrechts et al. (2018), Weber (2018) and Liu et al. (2022)), and further

investigation is needed for a better understanding of the challenges and their solutions.

8.8 Proofs of results in Section 8.3

Proof of Proposition 8.2. (i) Let (X1, . . . , Xn) be a Pareto-optimal allocation in An(X). We

will show, without loss of generality, that any of the three following hypotheses leads to a

contradiction of the Pareto optimality of (X1, . . . , Xn): (1) if simultaneously h1(1) = 0 and

h2(1) > 0; (2) if simultaneously h1(1) < 0 and h2(1) > 0 and (3) if simultaneously h1(1) = 0

and h2(1) < 0.

Consider the allocation (X1 + c,X2 − c,X3, . . . , Xn). Clearly, the allocation belongs

to An(X). Recall that by translation invariance it is ρh1(X1 + c) = ρh1(X1) + ch1(1) and

ρh2(X2 − c) = ρh2(X2)− ch2(1).

Suppose (1) first so that h1(1) = 0 and h2(1) > 0. Setting c > 0 we have that

ρh1(X1 + c) = ρh1(X1) and ρh2(X2 − c) < ρh2(X2) contradicting the Pareto optimality

of (X1, . . . , Xn). For (2), we have ρh1(X1 + c) < ρh1(X1) and ρh2(X2 − c) < ρh2(X2) as

h1(1) < 0 and h2(1) > 0. For (3), the case when h1(1) = 0 and h2(1) < 0, we can choose

c < 0, which leads to a similar contradiction of the Pareto optimality of (X1, . . . , Xn).

The case when (X1, . . . , Xn) is Pareto optimal in A+
n (X) is identical, and we conclude

that hi(1) are either all zero, all positive, or all negative.

(ii) We show that if there exist i, j ∈ [n] such that hi(1) ̸= hj(1), then⊞n
i=1 ρhi

(X) = −∞
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for any X ∈ X . Without loss of generality, let h1(1) < h2(1) and consider a c > 0. Given

X ∈ X , for any allocation (X1, . . . , Xn) ∈ A+
n (X) we have that

ρh1(X1 + c) + ρh2(X2 − c) = ρh1(X1) + ρh2(X2) + c(h1(1)− h2(1)).

Consider now the allocation (X1 + c,X2 − c,X3, . . . , Xn). Taking the limit c → ∞ we have∑n
i=1 ρhi

(Xi) = −∞ and so ⊞n
i=1 ρhi

(X) = −∞.

Proof of Theorem 8.1. For the “if” part, since every ρh̃i
, i ∈ [n], are finite and

∑n
i=1 ρh̃i

(Xi) =

□n
i=1 ρh̃i

(X) it holds that □n
i=1 ρh̃i

(X) is finite. It is thus clear that, by definition, the allo-

cation (X1, . . . , Xn) is Pareto optimal for agents using ρh̃1
, . . . , ρh̃n

as their preferences. We

now show that (X1, . . . , Xn) is also Pareto optimal for agents using ρh1 , . . . , ρhn as their pref-

erences. Since h̃i = hi/|hi(1)| for i ∈ [n], we have ρhi
(X) = |hi(1)|ρh̃i

(X) for all X ∈ X and

i ∈ [n]. Suppose (Y1, . . . , Yn) ∈ An(X) is such that ρhi
(Yi) ⩽ ρhi

(Xi) for all i ∈ [n]; we obtain

that ρh̃i
(Yi) ⩽ ρh̃i

(Xi) for all i ∈ [n]. As (X1, . . . , Xn) is Pareto optimal for agents using

ρh̃1
, . . . , ρh̃n

as their preferences, it holds that ρh̃i
(Yi) = ρh̃i

(Xi). Hence, ρhi
(Yi) = ρhi

(Xi)

for all i ∈ [n], and (X1, . . . , Xn) is Pareto optimal for agents using ρh1 , . . . , ρhn as their

preferences.

Next, we show the “only if” part. Let (X1, . . . , Xn) ∈ An(X) be a Pareto-optimal

allocation in An(X). By Proposition 8.2, we have hi(1), i ∈ [n], are either all positive or all

negative; that is h̃i(1), i ∈ [n], are all 1 or −1. We first consider the case where h̃i(1) = 1 for

i ∈ [n]. Assume by contradiction that
∑n

i=1 ρh̃i
(Xi) > □n

i=1 ρh̃i
(X). There exists an allocation

(Y1, . . . , Yn) ∈ An(X) such that
∑n

i=1 ρh̃i
(Yi) <

∑n
i=1 ρh̃i

(Xi). Set ci = ρh̃i
(Xi) − ρh̃i

(Yi),

i = 1, . . . , n and notice that c =
∑n

i=1 ci > 0. Hence,

(Y1 + c1 − c/n, . . . , Yn + cn − c/n) ∈ An(X)

and by translation invariance for every i ∈ [n] it is

ρh̃i
(Yi + ci − c/n) = ρh̃i

(Yi + ci)− c/n < ρh̃i
(Yi + ci) = ρh̃i

(Xi),

contradicting the Pareto optimality of (X1, . . . , Xn). The case h̃i(1) = −1, i ∈ [n], is analo-

gous.
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Proof of Lemma 8.2. The implications (i)⇒(ii)⇒(iii)⇒(iv) are all straightforward, where

(iii)⇒(iv) follows from the fact that X ⩽cx Y is equivalent to ρh(X) ⩽ ρh(Y ) holding for all

concave h ∈ HBV by Theorem 2 of Wang et al. (2020b).

We next show (iv)⇒(i). Suppose for the purpose of contradiction that h is strictly

concave, X ⩽cx Y , ρh(X) = ρh(Y ), and X ̸ d= Y . For t ∈ (0, 1) and ϵ > 0 with [t −

ϵ, t+ ϵ] ⊆ (0, 1), let Yt,ϵ be a random variable such that Q−
s (Yt,ϵ) = (2ϵ)−1

∫ t+ϵ

t−ϵ
Q−

r (Y ) dr for

s ∈ [t− ϵ, t+ ϵ], and Q−
s (Yt,ϵ) = Q−

s (Y ) otherwise. By construction, Yt,ϵ ⩽cx Y .

We claim that there exist t ∈ (0, 1) and ϵ > 0 such that X ⩽cx Yt,ϵ ̸
d
= Y. To see this,

consider the function µZ : [0, 1] → R, t 7→
∫ t

0
Q−

s (Z) ds for Z ∈ X . Note that X ⩽cx Y if and

only if µX ⩾ µY and µX(1) = µY (1); see e.g., Theorem 3.A.5 of Shaked and Shanthikumar

(2007). Note that µX and µY are continuous convex functions. Since X ̸ d= Y , we have

µX(t) > µY (t) for some t ∈ (0, 1). Because µX is concave and µX(1) = µY (1), we can and

will choose t such that µY is not locally linear at t; this gives Yt,ϵ ̸
d
= Y . Since µY and µX are

continuous and µX(t) > µY (t), there exists ϵ > 0 small enough such that

inf
s∈[t−ϵ,t+ϵ]

µX(s) > sup
s∈[t−ϵ,t+ϵ]

µY (s) + 4ϵM,

where M = sups∈(t−ϵ,t+ϵ) |Q−
s (Y )|. Using the above inequality and

|µYt,ϵ − µY | ⩽
∫ t+ϵ

t−ϵ

|Q−
s (Yt,ϵ)−Q−

s (Y )| ds ⩽ 4ϵM,

we get µX(s) > µY (s)+4ϵM ⩾ µYt,ϵ(s) for s ∈ [t−ϵ, t+ϵ]. Moreover, µYt,ϵ(s) = µY (s) ⩽ µX(s)

for s ∈ [0, 1] \ [t− ϵ, t+ ϵ]. Therefore, we get X ⩽cx Yt,ϵ.

Note that X ⩽cx Yt,ϵ ⩽cx Y implies ρh(X) ⩽ ρh(Yt,ϵ) ⩽ ρh(Y ), and further ρh(X) =

ρh(Yt,ϵ) = ρh(Y ) since ρh(X) = ρh(Y ). Since h is concave, it is continuous on [t− ϵ, t+ ϵ] ⊆

(0, 1). Using Lemma 3 of Wang et al. (2020b), we get

ρh(Y )− ρh(Yt,ϵ) =

∫ t+ϵ

t−ϵ

(
Q−

s (Y )−Q−
s (Yt,ϵ)

)
dh(s) =

∫ t+ϵ

t−ϵ

(
Q−

s (Y )−Q−
s (Yt,ϵ)

)
h′(s) ds,

where h′ represents the right derivative of h. Since Q−
s (Y ) is not a constant for s ∈ [t−ϵ, t+ϵ],

and h is strictly concave, by the Fréchet-Hoeffding inequality, we have∫ t+ϵ

t−ϵ

(
Q−

s (Y )−Q−
s (Yt,ϵ)

)
h′(s) ds >

1

2ϵ

∫ t+ϵ

t−ϵ

(
Q−

s (Y )−Q−
s (Yt,ϵ)

)
ds

∫ t+ϵ

t−ϵ

h′(s) ds = 0.
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Hence, ρh(Y )− ρh(Yt,ϵ) > 0, a contradiction to ρh(Yt,ϵ) = ρh(Y ). Therefore, (iv)⇒(i) holds.

Proof of Proposition 8.5. (i) follows from Corollary 8.1 observing that comonotonic improve-

ments strictly improve welfare. For (ii), the “only if” part is directly shown by (i). We only

show the “if” part. As the normalization of hi, i ∈ [n], will not change the preferences,

we only consider the case when ai = aj = a for all i, j ∈ [n]. Let (X1, . . . , Xn) ∈ A+
n (X).

By comonotonic additivity and positive homogeneity it is
∑n

i=1 ρaih1(Xi) = aρh1(X). Let

(Y1, . . . , Yn) ∈ An(X). By subadditivity we have
∑n

i=1 ρaih1(Yi) ⩾ aρh1 (
∑n

i=1 Yi) = aρh1(X).

Hence, a comonotonic allocation (X1, . . . , Xn) always solves □n
i=1 ρaih(X), and thus it is

Pareto optimal.

Proof of Theorem 8.2. We first prove part (ii) and then use it to prove part (i). Let us first

verify □n
i=1(λiIQDαi

) ⩾ λIQDα. Using (8.3) and the fact that an IQD is non-negative, if

α < 1/2, then for X ∈ X ,

n

□
i=1

(λiIQDαi
) ⩾ λ

n

□
i=1

IQDαi
(X)

= λ inf

{
n∑

i=1

Q−
αi
(Xi) +

n∑
i=1

Q−
αi
(−Xi) : (X1, . . . , Xn) ∈ An(X)

}
⩾ λ

n

□
i=1

Q−
αi
(X) + λ

n

□
i=1

Q−
αi
(−X)

= λQ−∑n
i=1 αi

(X) + λQ−∑n
i=1 αi

(−X) = λIQDα(X),

where the second-last equality is due to Corollary 2 of Embrechts et al. (2018). If α ⩾ 1/2,

then □n
i=1(λiIQDαi

) ⩾ 0 = λIQDα holds automatically.

Next, we verify □n
i=1(λiIQDαi

) ⩽ λIQDα by showing that the construction of the alloca-

tion (X1, . . . , Xn) of X ∈ X in (8.7) satisfies
∑n

i=1 λiIQDαi
(Xi) = λIQDα(X). This will prove

part (ii) as well as Remark 8.2. First, it is straightforward to verify (X1, . . . , Xn) ∈ An(X).

Since IQD is location invariant, we can, without loss of generality, assume c = c1 = · · · =

cn = 0; i.e., 0 is a median of X. Note that this leads to the simplified form

Xi = X1Ai∪Bi
+ aiX (1− 1A∪B) , i ∈ [n].
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If α ⩾ 1/2, then it suffices to verify that IQDαi
(Xi) = 0, which follows because P(Xi >

0) ⩽ P(Ai) ⩽ αi and symmetrically, P(Xi < 0) ⩽ P(Bi) ⩽ αi.

Next, assume α < 1/2. We have P({X > Q−
α (X)} ∩ Ac) = 0 by Lemma A.3 of Wang

and Zitikis (2021). For i ∈ [n], we can compute

P(Xi > aiQ
−
α (X)) ⩽ P(Ai) + P({Xi > aiQ

−
α (X)} \ Ai) ⩽ αi + P({X > Q−

α (X)} ∩ Ac) ⩽ αi.

This impliesQ−
αi
(Xi) ⩽ aiQ

−
α (X).Using a symmetric argument, we getQ+

1−αi
(Xi) ⩾ aiQ

+
1−α(X).

It follows that

IQDαi
(Xi) = aiQ

−
α (X)− aiQ

+
1−α(X) ⩽ aiIQDα(X).

Therefore,
∑n

i=1 λiIQDαi
(Xi) ⩽

∑n
i=1 λiaiIQDα(X). Taking ai = 0 for all i ∈ [n] with λi > λ

gives the desired inequality
∑n

i=1 λiIQDαi
(Xi) ⩽ λIQDα(X).

Putting the above arguments together, we prove (ii), that is, □n
i=1 λiIQDαi

(X) =

λIQDα(X). In particular,

IQDαi
(Xi) = aiIQDα(X) and

n∑
i=1

IQDαi
(Xi) = IQDα(X) =

n

□
i=1

IQDαi
(X), (8.13)

and thus (X1, . . . , Xn) is sum optimal.

Next, we show part (i). The “if” statement follows from Proposition 8.3, and we will

show the “only if” statement. Take any Pareto-optimal allocation (Y1, . . . , Yn) of X. Write

x = IQDα(X), yi = IQDαi
(Yi) for i ∈ [n], and y =

∑n
i=1 yi. It suffices to show y = x. If

y = 0, there is nothing to show; next we assume y > 0. For the allocation (X1, . . . , Xn) in

(8.7), we have IQDαi
(Xi) = aiIQDα(X) = aix by (8.13). Let ai = yi/y for i ∈ [n], which

sums up to 1. If x < y, then IQDαi
(Xi) = xyi/y ⩽ yi = IQDαi

(Yi) for i ∈ [n], and strict

inequality holds as soon as yi > 0, conflicting Pareto optimality of (Y1, . . . , Yn). Hence, we

obtain x = y.

Finally, part (iii) on Pareto optimality of (X1, . . . , Xn) follows by combining (i) and

(8.13).

8.9 Proofs of results in Section 8.4

Proof of Proposition 8.7. (i) ⇒ (ii) is analogous to Theorem 8.1.
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(ii) ⇒ (iii) Let S = {(ρh1(X1), . . . , ρhn(Xn) : (X1, . . . , Xn) ∈ A+
n (X)} be the utility

possibility frontier of the set of comonotonic allocations. We claim that S is a convex set.

First, notice that A+
n (X) is a convex set, as for any two allocations X = (X1, . . . , Xn),Y =

(Y1, . . . , Yn) ∈ A+
n (X) and every ξ ∈ [0, 1] we have ξX + (1 − ξ)Y ∈ A+

n (X). Set x =

(ρh1(X1), . . . , ρhn(Xn)) ∈ S and y = (ρh1(Y1), . . . , ρhn(Yn)) ∈ S two vectors of utility achieved

by allocation X and Y. By comonotonic additivity and positive homogeneity for every

ξ ∈ [0, 1] and for every i ∈ [n] it is

ρhi
(ξXi + (1− ξ)Yi) = ρhi

(ξXi) + ρhi
((1− ξ)Yi)

= ξρhi
(Xi) + (1− ξ)ρhi

(Yi)

= ξxi + (1− ξ)yi

and ξx + (1 − ξ)y ∈ S. Notice now that the utility vector (ρh1(X1), . . . , ρhn(Xn)) of a

Pareto-optimal allocation always belongs to the boundary of S.

Let V = {(v1, . . . , vn) : vi ⩽ ρhi
(Xi) for i ∈ [n]} where (X1, . . . , Xn) is Pareto optimal.

It is clear that V is a non-empty convex set. Next, we clarify that V ∩ S = {x}. Assume

v = (v1, . . . , vn) ∈ V ∩ S. As v ∈ S, there exists an allocation (Y1, . . . , Yn) ∈ A+
n (X) such

that ρhi
(Yi) = vi for all i ∈ [n]. Furthermore, as v ∈ V , we have ρhi

(Yi) = vi ⩽ ρhi
(Xi) for all

i ∈ [n]. As (X1, . . . , Xn) is a Pareto-optimal allocation, we get vi = ρhi
(Yi) = ρhi

(Xi) = xi

for all i ∈ [n]. Hence, v = x and V ∩ S = {x}.

Therefore, by the Separating Hyperplane Theorem, there exists (λ1, . . . , λn) ∈ Rn \ 0

such that
∑n

i=1 λiρhi
(Xi) = infx∈S

∑n
i=1 λixi = infX∈A+

n (X)

∑n
i=1 λiρhi

(Xi) and
∑n

i=1 λvi ⩽∑n
i=1 λiρhi

(Xi) for any (v1, . . . , vn) ∈ V .

We are left to show that λi ⩾ 0 for every i ∈ [n]. Let v = x − (1, 0, . . . , 0). We have

v ∈ V . Hence, we have λ1 ⩾ 0 as
∑n

i=1 λvi ⩽
∑n

i=1 λiρhi
(Xi). Similarly, we obtain λi ⩾ 0

for all i ∈ [n].

Proof of Theorem 8.3. We first show that ⊞n
i=1 ρhi

= ρh∧ . Let h∧(t) = min{h1(t), . . . , hn(t)}.

For every i ∈ [n], we have hi(1) = h∧(1) and hi ⩽ h∧ on [0, 1]; hence, it is ρh∧(X) ⩽ ρhi
(X)

for every X ∈ X . By comonotonic additivity of ρh∧ , for every (X1, . . . , Xn) in A+
n (X) we
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have
n∑

i=1

ρhi
(Xi) ⩾

n∑
i=1

ρh∧(Xi) = ρh∧

(
n∑

i=1

Xi

)
= ρh∧(X)

and thus ⊞n
i=1 ρhi

⩾ ρh∧ . Conversely, notice that for every i ∈ [n] the function fi in (8.8)

is Lipschitz continuous and non-decreasing because gi is non-negative and bounded. Using

Lemma 8.3, we get

ρhi
(fi(X)) =

∫ ∞

0

gi(s)hi(P(X > s)) ds+

∫ 0

−∞
gi(s)(hi(P(X > s)− hi(1)) ds. (8.14)

It follows that

n∑
i=1

ρhi
(fi(X)) =

n∑
i=1

∫ ∞

0

gi(s)hi(P(X > s)) ds+

∫ 0

−∞
gi(s)(hi(P(X > s)− hi(1)) ds

=

∫ ∞

0

n∑
i=1

gi(s)hi(P(X > s)) ds+

∫ 0

−∞

n∑
i=1

gi(s)(hi(P(X > s)− hi(1)) ds

=

∫ ∞

0

h∧(P(X > s)) ds+

∫ 0

−∞
(h∧(P(X > s)− h∧(1)) ds

= ρh∧(X) ⩾
n

⊞
i=1

ρhi
(X).

Hence, ⊞n
i=1 ρhi

= ρh∧ .

Next, we show that the solution is unique up to constant shifts almost surely if and

only if |Mx| = 1 for µX-almost every x, where µX is the distribution measure of X.

Since the above argument of
∑n

i=1 ρhi
(fi(X)) = ⊞n

i=1 ρhi
(X) only requires

∑
i∈Mx

gi(x) =

1 for almost every x, any allocation (f1(X), . . . , fn(X)) in (8.8) with gi replaced by

gi(x) = 1{i=minMx} or gi(x) = 1{i=maxMx}, x ∈ R,

also satisfies sum optimality. Therefore, if |Mx| = 1 does not hold almost surely, there are

multiple optimal allocations that are not constant shifts from each other.

Conversely, we show that if |Mx| = 1 for µX-almost every x then every sum-optimal

allocation is almost surely equal to the one in (8.8).

For any increasing and Lipschitz function k with right-derivative w, we have, by Lemma

8.3,

ρh(k(X))− ρg(k(X)) =

∫ ∞

−∞
w(s)(h(P(X > s))− g(P(X > s))) ds.
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This means ρh(k(X)) = ρg(k(X)) with h ⩾ g if and only if k′(s) = 0 almost surely for s such

that h(P(X > s)) > g(P(X > s)). Note that if (k1(X), . . . , kn(X)) ∈ A+
n (X) is sum optimal,

then
n∑

i=1

ρhi
(ki(X)) = ρh∧(X) =

m∑
i=1

ρh∧(ki(X)).

This implies that wi(x) = 0 as soon as hi(P(X > x)) > h∧(P(X > x)), where wi is the right-

derivative of ki. Moreover, wi(x) = 1 if hi(P(X > x)) = h∧(P(X > x)) since
∑n

j=1wj(x) = 1

for almost every x. and thus wi is uniquely determined µX-a.s., implying that ki is unique

µX-a.s. up to a constant shift.

Proof of Lemma 8.3. Without loss of generality we assume X ⩾ 0 and f(X) ⩾ 0. Denote

by ν = h ◦ P. We have

ρh(f(X))−
∫ ∞

0

g(x)h(P(X > x)) dx =

∫ ∞

0

ν(f(X) > y) dy −
∫ ∞

0

g(x)ν(X > x) dx

=

∫ ∞

0

g(x)ν(f(X) > f(x)) dx−
∫ ∞

0

g(x)ν(X > x) dx

=

∫ ∞

0

g(x)(ν(f(X) > f(x))− ν(X > x)) dx.

Note that P(f(X) > f(x)) ⩽ P(X > x) for all x. If P(f(X) > f(x)) < P(X > x), then

there exists z > x such that f(z) = f(x). This implies that g(x) = 0 for any point x with

ν(f(X) > f(x))− ν(X > x) ̸= 0. Therefore,

ρh(f(X))−
∫ ∞

0

g(x)h(P(X > x)) dx = 0.

The case of general X bounded from below can be obtained by constant shifts on both X

and f .

Proof of Proposition 8.8. It is clear that since hi(1) = 0 and hi(t) > 0 for all i ∈ [n] and all

t ∈ (0, 1), we have that ρhi
(X) ⩾ 0 for all i ∈ [n], with equality only if X is a constant. We

first show the “if” statement. Suppose, by contradiction, that (X1, . . . , Xn) ∈ A+
n (X) is not

Pareto optimal but that it solves ⊞i∈K ρλihi
(X −

∑
i/∈K Xi) for K = {i ∈ [n] : Xi /∈ R} and

λ ∈ (0,∞)#K . Our contradiction hypothesis implies that there exists a (Y1, . . . , Yn) ∈ A+
n (X)

such that simultaneously ρhi
(Yi) ⩽ ρhi

(Xi) for every i ∈ [n] and ρhj
(Yj) < ρhj

(Xj) for some

j ∈ [n]. Notice that if i /∈ K it is

0 ⩽ ρhi
(Yi) ⩽ ρhi

(Xi) = 0
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and so it must be the case that ρhi
(Yi) < ρhi

(Xi) for some i ∈ K, a contradiction with the

hypothesis that (Xi)i∈K solves ⊞i∈K ρλihi
(X −

∑
i/∈K ci) = ⊞i∈K ρλihi

(X), where the equality

follows because of location invariance of ⊞i∈K ρλihi
.

Conversely, let (X1, . . . , Xn) ∈ A+
n (X) be Pareto optimal and define K = {i ∈ [n] :

Xi /∈ R}; this gives that
∑

i ̸∈K Xi is a constant. Recall that ρhi
(Xi) = 0 for every i /∈ K,

and ρhi
(Xi) > 0 for every i ∈ K. It is clear that (Xi)i∈K is a Pareto-optimal allocation of

X−
∑

i/∈K Xi for the collection (ρhi
)i∈K . By Proposition 8.7, there exists a λ ∈ [0,∞)#K\{0}

such that
∑

i∈K λiρhi
(Xi) = ⊞i∈K(λiρhi

)(X −
∑

j /∈K Xj) = ⊞i∈K ρλihi
(X). As ρhi

(Xi) > 0

for i ∈ K, we have ⊞i∈K(λiρhi
)(X) > 0. It must be the case that λi > 0 for all i ∈ K, as

otherwise, we have ⊞i∈K(λiρhi
)(X) = 0, a contradiction.

Proof of Proposition 8.9. Part (ii) follows directly from Corollary 8.2, so it remains to show

part (i). Let (X1, . . . , Xn) ∈ A+
n (X) be Pareto optimal. Then there exists (λ1, . . . , λn) ∈

[0,∞)n, with λ =
∧n

i=1 λi > 0, such that

n∑
i=1

(λiIQDαi
)(Xi) = λIQD∨n

i=1 αi
(X).

Using the fact that an IQD is non-negative and part (ii), we get

λ
n

⊞
i=1

IQDαi
(X) ⩽

n∑
i=1

(λIQDαi
)(Xi) ⩽

n∑
i=1

(λiIQDαi
)(Xi) = λIQD∨n

i=1 αi
(X) = λ

n

⊞
i=1

IQDαi
(X),

and so (X1, . . . , Xn) is sum optimal.

8.10 Proofs of results in Section 8.5

We first present a lemma that we will use in the proof of Theorem 8.4.

Lemma 8.4. For α ∈ [0, 1/2), λ > 0 and h ∈ HC it is

(λIQDα)□ρh = ρGα
λ(h)

. (8.15)

Proof of Lemma 8.4. We first verify that λIQDα(X1)+ρh(X2) ⩾ ρGα
λ(h)

(X) for any (X1, X2) ∈

A2(X). As both IQDα and ρh are location invariant, we can, without loss of generality, as-

sume the allocation (X1, X2) satisfies Q
−
1/2(X1) = 0. Let A be a right α-tail event of X1 and
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B ⊆ Ac be a left α-tail event ofX1. Hence, P(A) = P(B) = α andX1(ωB) ⩽ X1(ω) ⩽ X1(ωA)

for a.s. ωA ∈ A, ωB ∈ B and ω ∈ (A ∪ B)c. Let X∗
1 = X11{(A∪B)c} and h∗ = h ∧ λ. Re-

call that IQD0 = Q−
0 − Q+

1 is the range functional. It is straightforward to verify that

IQDα(X1) = IQD0(X
∗
1 ) and that h∗ is concave. Further, notice that λIQD0 ⩾ ρh∗ , ρh ⩾ ρh∗

and ρh∗ is subadditive. Therefore,

λIQDα(X1) + ρh(X2) = λIQD0(X
∗
1 ) + ρh(X2) ⩾ ρh∗(X∗

1 ) + ρh∗(X2) ⩾ ρh∗ (X∗
1 +X2) .

As Q−
1/2(X1) = 0, we have, in the a.s. sense, X1 ⩾ 0 on A and X1 ⩽ 0 on B; that is,

X∗
1 +X2 = X on (A∪B)c, X∗

1 +X2 ⩾ X on B, and X∗
1 +X2 ⩽ X on A. For any x ∈ R, we

have

P (X∗
1 +X2 > x) ⩾ P (X > x, (A ∪B)c) + P (X > x, B)

⩾ P (X > x)− P (A) = P (X > x)− α,

and similarly, P (X∗
1 +X2 ⩽ x) ⩾ P (X ⩽ x)− α. Therefore,

P (X > x)− α ⩽ P (X∗
1 +X2 > x) ⩽ P (X > x) + α.

Let s ∈ R be such that x 7→ h∗(P(X∗
1 +X2 > x)) is increasing on (−∞, s] and decreasing on

[s,∞). Such s exists since h∗ is first increasing and then decreasing. By treating h∗(t) = 0

if t is outside [0, 1], we have

ρh∗(X∗
1 +X2) =

∫ s

−∞
h∗(P(X∗

1 +X2 > x)) dx+

∫ ∞

s

h∗(P(X∗
1 +X2 > x)) dx

⩾
∫ s

−∞
h∗(P(X > x)− α) dx+

∫ ∞

s

h∗(P(X > x) + α) dx

⩾
∫ ∞

−∞
min {h∗ (P(X > x) + α) , h∗(P(X > x)− α)} dx = ρGα

λ(h)
(X).

Therefore, we have λIQDα(X1) + ρh(X2) ⩾ ρGα
λ(h)

(X).

Next, we give an allocation (X1, X2) ∈ A2(X) that attains the lower bound ρGα
λ(h)

(X).

Define the function f(s) = h∗(P(X > x) + α) − h∗(P(X > x) − α) where h∗(t) = 0 if t is

outside [0, 1]. Since h∗ is concave, the function s 7→ f(s) is increasing on the set of s with

P(X > s) ∈ [α, 1 − α]. Moreover, f(s) ⩽ 0 for s ⩽ Q−
1−α(X) and f(s) ⩾ 0 for s ⩾ Q+

α (X).

Hence, there exists s∗ ∈ [Q−
1−α(X), Q+

α (X)] such that f(s) ⩾ 0 for s < s∗ and f(s) ⩽ 0 for

s > s∗.
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Let A be a right α-tail event of X and B ⊆ Ac be a left α-tail event of X. Write

T = A ∪ B. Let (Y1, Y2) ∈ A+
2 (X1T c + s∗1T ) be a (λ, 1)-optimal allocation for (IQDα, ρh).

Define X1 = (X − s∗)1T + Y1 and X2 = Y2; clearly (X1, X2) ∈ A2(X). By Theorem 8.3, we

have

λIQDα(X1) + ρh(X2) = λIQD0(Y1) + ρh(Y2) = ρh∗(X1T c + s∗1T ).

Note that

ρh∗(X1T c + s∗1T ) =

∫ Q+
α (X)

Q−
1−α(X)

h∗(P(X1T c + s∗1T > x)) dx

=

∫ s∗

Q−
1−α(X)

h∗(P(X > x, T c) + 2α) dx+

∫ Q+
α (X)

s∗
h∗(P(X > x, T c)) dx

=

∫ s∗

Q−
1−α(X)

h∗(P(X > x) + α) dx+

∫ Q+
α (X)

s∗
h∗(P(X > x)− α) dx

=

∫ Q+
α (X)

Q−
1−α(X)

min{h∗(P(X > x) + α), h∗(P(X > x)− α)} dx = ρGα
λ(h)

(X),

where the second-last equality is due to the definition of s∗. Therefore, the lower bound

ρGα
λ(h)

(X) can be attained. Thus, (λIQDα)□ρh = ρGα
λ(h)

(X).

Proof of Theorem 8.4. As the cases I = [n] and S = [n] follow from Theorems 8.2 and 8.3

respectively, we assume that the sets I and S are non-empty.

(i) The equality □n
i=1(λiρhi

) = ρGα
λ(h)

follows from Lemma 8.4, Theorems 8.2 and 8.3,

and the fact that the inf-convolution is associative (Lemma 2 of Liu et al. (2020)), which

together yield

n

□
i=1

(λiρhi
) =

(
□
i∈I

(λiρhi
)

)
□

(
□
i∈S

(λiρhi
)

)
= (λIQDα)□ρh = ρGα

λ(h)
.

(ii) Without loss of generality, we assume c = c1 = · · · = cn = 0 and let Y = X1(A∪B)c .

If α ⩾ 1/2, it is straightforward to check that (X1, . . . , Xn) is Pareto optimal as ρhi
(Xi) = 0

for i ∈ [n]. Now, we assume α < 1/2.

We first show that ρhi
(Xi) ⩽ ρh′

i
(Yi) for all i ∈ [n]. Note that ρhi

(Xi) = ρhi
(Yi) = ρh′

i
(Yi)

for all i ∈ C. We are left to show IQDαi
(Xi) ⩽ IQD0(Yi) for all i ∈ I. As X(ω) ⩽ 0 a.s. for

ω ∈ Bi,

P(Xi ⩽ Q−
0 (Yi)) = P(X1Ai∪Bi

+Yi ⩽ Q−
0 (Yi)) ⩾ P(Bi)+P((Ai∪Bi)

c) = αi+1−2αi = 1−αi.
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That is, Q−
αi
(Xi) ⩽ Q−

0 (Yi). Similarly, Q+
1−αi

(Xi) ⩾ Q+
1 (Yi). Hence, ρhi

(X) = IQDαi
(Xi) ⩽

IQD0(Yi) = ρh′
i
(Yi) for all i ∈ I.

Let (Y ′
1 , . . . , Y

′
n) be a comonotonic improvement of (Y1, . . . , Yn). The definition of

comonotonic improvement and Pareto optimality of (Y1, . . . , Yn) imply that ρh′
i
(Yi) = ρh′

i
(Y ′

i )

for all i ∈ [n]. First, if there exists some i ∈ C such that hi(t) = 0 on [0, 1], then Pareto

optimality of (Y ′
1 , . . . , Y

′
n) implies that ρh′

i
(Y ′

i ) = 0 for each i ∈ [n]. This in turn implies that

ρhi
(Xi) = 0 for each i ∈ [n], and hence (X1, . . . , Xn) is Pareto optimal. Below, we assume

for each i ∈ C, hi(t) > 0 for some t ∈ (0, 1), which gives that hi(t) > 0 for all t ∈ (0, 1) due

to concavity.

As h′i(1) = 0 and h′i(t) > 0 for all i ∈ [n] and t ∈ (0, 1), by Proposition 8.8, Pareto

optimality of (Y ′
1 , . . . , Y

′
n) implies that there exist K ⊆ [n] and a vector λ ∈ (0,∞)#K such

that (Y ′
i )i∈K solves ⊞i∈K ρλih′

i
(Y ), and Y ′

i , i ̸∈ K are constants. Denote by h∗ =
∧

i∈C∩K(λihi)

and λ∗ =
∧

i∈I∩K λi > 0; here, we set inf ∅ = ∞. Putting together several observations above,

we get ∑
i∈K

λiρhi
(Xi) ⩽

∑
i∈K

ρλih′
i
(Yi) =

∑
i∈K

ρλih′
i
(Y ′

i ) = ⊞
i∈K

ρλih′
i
(Y ) = ρh∗∧λ∗(Y ), (8.16)

where the first inequality holds because ρhi
(Xi) ⩽ ρh′

i
(Yi) for all i ∈ [n], the first equality

holds because ρh′
i
(Yi) = ρh′

i
(Y ′

i ) for all i ∈ [n], the second equality is due to λ-optimality

of (Y ′
i )i∈K whose component-wise sum is Y plus a constant, and the last equality is due to

Theorem 8.3. Furthermore, for i /∈ K, we have 0 ⩽ ρhi
(Xi) ⩽ ρh′

i
(ci) = 0; that is ρhi

(Xi) = 0.

Note that

ρh∗∧λ∗(Y ) = ρh∗∧λ∗(X1(A∪B)c) = ρGα
λ∗ (h

∗)(X). (8.17)

Take β ⩾ λ∗. If i ∈ C \K, then Xi = Y ′
i is a constant. Write Z =

∑
i∈I∪K Xi. Using (8.16)

and (8.17), we get

∑
i∈K

λiρhi
(Xi) +

∑
i∈I\K

βρhi
(Xi) ⩽ ρGα

λ∗ (h
∗)(X) = ρGα

λ∗ (h
∗)

X −
∑

i∈C\K

Xi

 = ρGα
λ∗ (h

∗)(Z).

(8.18)

Using part (i), we have (
□
i∈K

(λiρhi
)

)
□

(
□

i∈I\K
(βρhi

)

)
= ρGα

λ∗ (h
∗).
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Therefore, (8.18) implies that (Xi)i∈I∪K ∈ An(Z) minimizes
∑

i∈K λiρhi
(Xi)+

∑
i∈I\K βρhi

(Xi).

Since also ρ(Xi) = 0 for i /∈ K, we conclude that (X1, . . . , Xn) is Pareto optimal.

8.11 Heterogeneous beliefs in comonotonic risk sharing

We considered throughout an atomless probability space (Ω,F ,P). This assumption

entails that every individual i ∈ [n] agrees on the fundamentals of the risk to be shared.

We explain in this section that all our results on comonotonic risk sharing can be extended

to incorporate heterogeneous beliefs with almost no extra effort; this is not true for the

unconstrained setting of risk sharing in Section 8.3. Our characterization of comonotonic

risk sharing extends the main results of Liu (2020), which focus on dual utilities. See also

Embrechts et al. (2020), Boonen and Ghossoub (2020) and Liebrich (2021) for risk sharing

with risk measures and heterogeneous beliefs.

Let (Ω,F) be a measurable space that allows for atomless probability measures and

denote by Pi the atomless probability measure that agent i ∈ [n] considers. That is, every

individual i ∈ [n] believes the probability space (Ω,F ,Pi) is the true one. Let P be the set

of atomless probability measures on the measurable space (Ω,F) and let ≪ denote absolute

continuity. As before, every individual evaluates their risk with the distortion riskmetric

ρPi
hi
(X) =

∫
X d (hi ◦ Pi) .

For a probability measure P, we define the corresponding left quantile as QP
t (X) = inf{x ∈

R : P(X ⩽ x) ⩾ 1− t}.

The next lemma is instrumental in proving this section’s main result:

Lemma 8.5. Let P0,P ∈ P be such that P0 ≪ P, let h ∈ HBV and let X ∈ X admits a density

under P. The function g(t) = h(P0(X > QP
t (X))), t ∈ [0, 1], satisfies ρP0

h (f(X)) = ρPg(f(X))

for any increasing functions f : R → R.

Proof of Lemma 8.5. Let g(t) = h(P0(X > QP
t (X))) for t ∈ [0, 1], where QP

t (X) is the

left quantile under the measure P. We first show that g(P(X > x)) = h(P0(X > x)) for

all x ∈ R. It is clear that g(P(X > x)) = h(P0(X > QP
P(X⩽x)(X))). By the definition
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of QP
t , we have QP

P(X>x)(X) ⩽ x. For x ∈ R, if QP
P(X>x)(X) = x, then it is clear that

g(P(X > x)) = h(P0(X > x)). If QP
P(X>x)(X) < x, we have P(QP

P(X>x)(X) < X ⩽ x) = 0.

As P0 ≪ P, we have P0(Q
P
P(X>x)(X) < X ⩽ x) = 0. Hence,

h(P0(X > QP
P(X>x)(X))) = h

(
P0(x ⩾ X > QP

P(X>x)(X)) + P0(X > x)
)
= h(P0(X > x)).

Taking t ↑ 1, we obtain g(1) = h(1).

Next, let show that ρP0
h (f(X)) = ρPg(f(X)) for any increase function f : R → R. Denote

by f−1(x) = inf{y : f(y) > x} the inverse function of f . As P(X = x) = 0 and P0 ≪ P, we

have P(X = x) = P0(X = x) for all x ∈ R. Hence,

ρP0
h (f(X)) =

∫ ∞

0

h(P0(f(X) > x)) dx+

∫ 0

−∞
(h(P0(f(X) > x))− h(1)) dx

=

∫ ∞

0

h
(
P0(X > f−1(x)) + P0(X = f−1(x))1{f(f−1(x))>x}

)
dx

+

∫ 0

−∞

(
h
(
P0(X > f−1(x)) + P0(X = f−1(x))1{f(f−1(x))>x}

)
− h(1)

)
dx

=

∫ ∞

0

h
(
P0(X > f−1(x))

)
dx+

∫ 0

−∞
(h(P0(X > f−1(x)))− h(1)) dx

=

∫ ∞

0

g(P(X > f−1(x))) dx+

∫ 0

−∞
(g(P(X > f−1(x)))− h(1)) dx = ρPg(f(X)),

as desired.

Lemma 8.5 states that if a belief P0 is absolutely continuous with respect to a probability

measure P and if a random variable X is continuous under P, then we can always find a

distortion function g such that the two distortion riskmetrics ρP0
h and ρPg are exactly the same

for every random variable Y = f(X) comonotonic with X.

Our last result states that when every belief is sufficiently “well-behaved”, then the

comonotonic risk sharing problem with heterogeneous beliefs is equivalent to a comonotonic

risk sharing problem with homogeneous belief P.

Proposition 8.10. Let P1, . . . ,Pn ∈ P, h1, . . . , hn ∈ HBV be given and let X ∈ X admit

a density under all P1, . . . ,Pn. There exist a probability measure P ∈ P and a collection

of distortion functions g1, . . . , gn ∈ HBV such that the allocation (X1, . . . , Xn) ∈ A+
n (X) is

Pareto optimal for (ρP1
h1
, . . . , ρPn

hn
) if and only if it is Pareto optimal for (ρPg1 , . . . , ρ

P
gn).
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The proof of Proposition 8.10 is straightforward. The essential step is to notice that

we can find a probability measure P such that X admits a density under P and for which

Pi ≪ P, i ∈ [n], and then invoke Lemma 8.5. The proof simply takes P as an average of the

beliefs Pi, although other such P would have worked.

Proof of Proposition 8.10. Let P = 1/n
∑n

i=1 Pi and gi(t) = hi(Pi(X > QP
t (X))) for t ∈ [0, 1].

It is clear thatX also has a density function under P and ρPi
hi
(f(X)) = ρPgi(f(X)) for increasing

functions f and i ∈ [n] by Lemma 8.5. Hence, (ρP1
h1
, . . . , ρPn

hn
) and (ρPg1 , . . . , ρ

P
gn) have the same

class of Pareto-optimal allocations.

8.12 Omitted details in Section 8.6

We present the functions Gα
λ(h) for Cases 1 to 6 in Section 8.6.2 which yield the alloca-

tions that we present in that section.

Case 1: When c1 ⩾ 1/2 and c3 ⩾ 1/2 it is

Gα
λ(h)(t) = λ2 ((t− α) ∧ (1− t− α))1{α<t<1−α}.

Case 2: When c2 ⩾ 1/2 and c3 ⩽ α it is

Gα
λ(h)(t) = λ3 ([(t− α)(1 + α− t)] ∧ [(t+ α)(1− α− t)])1{α<t<1−α}.

Case 3: When either α < c2 < c3 < 1/2 or α < c1 < 1/2 < c3 it is

Gα
λ(h)(t) = (λ2[(t− α) ∧ (1− t− α)] ∧ λ1)1{α<t<1−α}.

Case 4: When c3 ⩽ α < c2 < 1/2 it is

Gα
λ(h)(t) = (λ3[(t− α)(1 + α− t)] ∧ [(t+ α)(1− α− t)] ∧ λ1)1{α<t<1−α}.
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Case 5: When α < c3 < 1/2 < c2, it is

Gα
λ(h)(t) =



0, t ∈ [0, α] ∪ [1− α, 1],

λ2(t− α), t ∈ (α, c3),

λ3(t− α)(1− t+ α), t ∈ [c3, 1/2),

λ3(t+ α)(1− t− α), t ∈ [1/2, 1− c3),

λ2(1− α− t), t ∈ [1− c3, 1− α).

Case 6: When α < c3 ⩽ c2 < 1/2 it is

Gα
λ(h)(t) =



0, t ∈ [0, α] ∪ [1− α, 1],

λ2(t− α), t ∈ (α, c3),

λ3(t− α)(1− t+ α), t ∈ [c3, c2),

λ1 t ∈ [c2, 1− c2),

λ3(t+ α)(1− t− α), t ∈ [1− c2, 1− c3),

λ2(1− t− α), t ∈ [1− c3, 1− α).
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Chapter 9

Negatively dependent optimal risk

sharing

9.1 Introduction

The problem of sharing risk and its mathematical underpinnings are pivotal in under-

standing the economic behaviours of agents. When agents are risk-averse expected utility

maximizers, the risk sharing problem behaves similarly to the general equilibrium of an ex-

change economy with aggregate risks (Arrow and Debreu, 1954; Arrow, 1964; Radner, 1968).

An important observation from this literature is that, under strict risk aversion, Pareto-

optimal allocations are comonotonic, i.e., they are increasing functions of the total wealth.

This can be interpreted as agents being “on the same boat” when losses or gains occur.

As comonotonicity is an extreme form of positive dependence, one might wonder if a

converse statement exists for risk-seeking agents, i.e., the agents in an optimal allocation

being “in opposite boats” when losses or gains occur. Unfortunately, it is well known that

the most extreme form of negative dependence is generally not tractable with three or more

random variables, and thus, the question is technically very challenging and not well under-

stood.

This article addresses this gap by investigating negative dependence in risk sharing,

and in particular, the extreme form of negative dependence, which we refer to as counter-
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monotonicity. To establish comonotonic optimal allocations in the classic literature, a central

mathematical tool is the comonotonic improvement theorem of Landsberger and Meilijson

(1994), which states that for any random vector, there exists a comonotonic random vector

whose components are less risky than those of the given random vector, in the sense of

Rothschild and Stiglitz (1970). This establishes the important intuition that risk-averse

agents always prefer comonotonic allocations.

Parallel to this classic finding, our main result, Theorem 9.1, referred to as the counter-

monotonic improvement theorem, states that for any random vector bounded from below

(or above), there exists a counter-monotonic random vector whose components are riskier

than those of the given random vector. The counter-monotonic improvement theorem uses

the stochastic representation of counter-monotonicity recently obtained by Chapter 7. In

Proposition 9.2, we provide a simplification of this stochastic representation that makes

transparent that any counter-monotonic allocation resembles extreme forms of gambling as

either “winner-takes-all” or “loser-loses-all” (drawing straws) lotteries. We respectively define

the normalized version of “winner-takes-all” and “loser-loses-all” allocations as jackpot and

scapegoat allocations.

To appreciate the optimality of the jackpot and the scapegoat allocations, we need to

depart from the standard utility theory of risk-averse agents. An immediate consequence of

our main theorem is that for the problem of sharing risk among strictly risk-seeking agents, all

Pareto-optimal allocations are jackpot allocations. However, this set may be empty in some

situation, and this can be resolved by imposing constraints on the allocations or restricting

the effective domain of their Bernoulli utility function.

To understand the role of scapegoat allocations, we then analyze the problem of sharing

risk among agents that have the same discontinuous utility function. We first consider the

problem of sharing risk among Dirac utility agents, defined as expected utility maximizers for

which the Bernoulli utility function is an indicator function. A key property of this problem

is that allocations which give a constant endowment to all agents but one are always Pareto

optimal. The choice of whose allocation varies can be random, as if all agents were “drawing

straws”. The optimal allocations must thus be (payoff equivalent to) scapegoat allocations

when the endowment is probabilistically too small. In this case, Pareto-optimal allocations
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cannot be simultaneously comonotonic and fair, where we define fairness as all agents having

the same expected utility.1 We show that a similar result holds for agents with piecewise

linear Bernoulli utility function with one jump, demonstrating that this result does not rely

on the satiation of the underlying preference relation.

We proceed to consider agents modelled by rank-dependent expected utility (RDU)

of Quiggin (1993), with a particular focus on agents with inverted S-shaped probability

distortions as in the cumulative prospect theory of Tversky and Kahneman (1992). RDU

agents with inverted S-shaped distortion can exhibit a combination of risk-averse and risk-

seeking behaviours. Assuming that all agents are modelled by the same RDU, we find

conditions where these agents prefer fair jackpot allocations to any other fair allocations.

We show that if the number of agents is large, then only jackpot allocations can be both fair

and Pareto optimal; as a consequence, comonotonic and fair allocations cannot be Pareto

optimal.

We conclude with a simplified game-theoretical model of cryptocurrency mining where

agents can choose to form a mining pool. Leshno and Strack (2020) already observed that

risk-averse agents have an incentive to form mining pools because it allows them to reduce

the variability of their payoff. Clearly, the payoff of joining the pool is a mean-preserving

contraction of the payoff for mining alone when at least another agent joins the pool. Joining

the pool is thus a weakly dominant strategy for risk-averse agents, with strict dominance if at

least one other agent joins. However, RDU agents can behave the opposite depending on the

size of their computing power. RDU agents with large computing power behave as risk-averse

agents. But if their computing power is small so that their probability of mining the coin

is also small, then mining alone can be a weakly dominant strategy, with strict dominance

whenever at least one agent joins the pool. These novel results suggest that a richer model

of pool formation is required to better understand the interaction between crypto-miners.

It is natural to ask if and how the counter-monotone improvement theorem can be

used in other contexts than risk-sharing. We investigate competitive equilibria with risk-

seeking agents and obtain all results of typical interest in general equilibrium, including the

first and second fundamental theorem of welfare economics. We also show that all jackpot

1Fair allocations maximize the Rawlsian social welfare function in this particular setup.
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allocations are Pareto optimal, hereby extending the results of Section 9.4. The second

welfare theorem thus implies that all jackpot allocations are competitive equilibrium for

some initial endowments. The analysis of competitive equilibria is highly technical and is

thus relegated in Section 9.9. We emphasize that we do not know if a similar analysis can be

performed for agents with other types of risk-seeking decision criteria, as the construction of

the equilibrium pricing measure is quite delicate and tailored to the specific setting we study.

Next, we review the literature. Section 9.2 contains all preliminaries, including a formal

statement of the classic result of comonotonic improvement. Section 9.3 states and proves

our main result, the counter-monotonic improvement theorem. This is also where we re-

view the stochastic representation of counter-monotonicity and define jackpot and scapegoat

allocations. Sections 9.4, 9.5 and 9.6 consider respectively the risk sharing problem with

risk-seeking agents, agents with a discontinuous Bernoulli utility function and RDU agents.

Section 9.7 analyzes the choice of joining a crypto-currency mining pool, and the conclu-

sion discusses avenues for further research. Section 9.9 analyzes competitive equilibria with

risk-seeking agents, and Section 9.10 contains the proofs.

9.1.1 Literature review

The technique of comonotonic improvement was initially introduced in Landsberger and

Meilijson (1994), and subsequently extended in Dana and Meilijson (2003), Ludkovski and

Rüschendorf (2008) and Carlier et al. (2012). We refer to Rüschendorf (2013) for an up-to-

date formal treatment and Section 9.2 for more details. For the formal treatment of counter-

monotonicity, we refer to Puccetti and Wang (2015) for a general overview and to Chapter 7

for the stochastic representation of counter-monotonicity. In the actuarial literature, counter-

monotonicity in dimension greater than two is also called mutual exclusivity; see Dhaene et

al. (1999) and Cheung and Lo (2014). See also our discussion in Section 9.3.

While the economics and finance literature does not always employ the terms comono-

tonicity and comonotonic allocations, these concepts have long been a subject of interest in

these fields. Of direct relevance is the case of economies with a constant aggregate endow-

ment, where all allocations that are constant across states are comonotonic. In this context,
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comonotonic allocations are sometimes called “no-betting” or “risk-free allocations.” See,

for instance, in the literature on risk sharing under heterogeneous beliefs and ambiguity:

Billot et al. (2000), Rigotti et al. (2008), and Strzalecki and Werner (2011). More recently,

Beissner et al. (2023) analyzes no-betting allocations on probability spaces with two RDU

agents. Chateauneuf et al. (2000) analyzes comonotonic allocations with aggregate risk when

all agents are ambiguity-averse Choquet expected utility maximizers.

In contrast to comonotonicity, the concept of counter-monotonicity received much less

attention in the economics and finance literature related to risk sharing. A notable excep-

tion is quantile-based risk sharing. A key property of counter-monotonic allocations and,

more generally, of negatively dependent allocations is their optimality in this setting. See

Embrechts et al. (2018) and Weber (2018) for quantile-based risk sharing problems on proba-

bility spaces with Pareto-optimal counter-monotonic allocations and Embrechts et al. (2020)

for the case of heterogeneous beliefs. Chapter 8 contains a risk sharing problem where the

optimal allocations entail both positive and negative dependence. Specifically, the authors

show that when sharing risk with agents that consider the inter-quantile difference as their

measure of variability, any Pareto-optimal allocation entails counter-monotonicity on the

tails of the distribution of the aggregate risk.

We refer to Quiggin (1993) for RDU agents, although we are mostly interested in the

inverted S-shaped probability distortion functions considered in the cumulative prospect

theory of Tversky and Kahneman (1992) (and Kahneman and Tversky (1979)). We show

that RDU agents using the Kahnmenan-Tversky inverted S-shaped distortion function can

behave as risk-seeking agents provided the risk is to be shared among a large number of

individuals.

Our crypto-currency example is inspired by the axiomatic characterization of Leshno

and Strack (2020), which obtains an impossibility result for risk-averse miners. In a nutshell,

mining pools can provide a reward scheme that is a mean-preserving contraction of the payoff

of individual mining. Risk-averse agents always prefer to mine in a pool. On the opposite,

we find conditions for which RDU agents behave as risk-seeking agents and prefer to mine

alone despite having a concave Bernoulli utility function.

260



9.2 Preliminaries: risk sharing and comonotonic im-

provements

Fix a probability space (Ω,F ,P), and denote by X a corresponding Lp space, where

almost surely equal objects are treated as equal. While Sections 9.2 and 9.3 consider X = L1

for generality, Sections 9.4, 9.5 and 9.6 consider the more standard setting X = L∞, the set

of all bounded random variables. Let n be a positive integer and write [n] := {1, . . . , n}. We

are mainly interested in the situation where n ⩾ 3 agents share a random outcome X ∈ X .

Definition 9.1. An allocation of X ∈ X is an element of the set

An(X) :=

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
.

A foundational idea of risk sharing is that if all agents are strictly risk averse and

know the probability measure P, then all Pareto-optimal allocations are comonotonic (see

e.g., Rüschendorf (2013)). At a formal level, this is typically proved using the technique of

comonotonic improvements, as introduced in Landsberger and Meilijson (1994) for a finite

state space. The result was subsequently extended to L∞ (Dana and Meilijson, 2003) and L1

(Ludkovski and Rüschendorf, 2008). We provide some background to understand the scope

of the comonotonic improvement technique.

The two random variables X, Y are said to be comonotonic if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ⩾ 0 for (P× P)-almost every (ω, ω′) ∈ Ω2,

and the collection of random variables X1, . . . , Xn is comonotonic if all its component are

pairwise comonotonic. Alternatively, the random variables X1, . . . , Xn are comonotonic if

there exists a collection of increasing functions fi : R → R, i ∈ [n], and a random variable

Z such that Xi = fi(Z) for all i ∈ [n] (recall that equalities are in the P-almost sure sense).

The latter definition comes from the stochastic representation of comonotonicity given by

Denneberg’s Lemma (see Denneberg, 1994, Proposition 4.5), and if (X1, . . . , Xn) ∈ An(X),

then one can set Z = X in the preceding definition.

A random variable X is said to be smaller than a random variable Y in the convex order,

denoted by X ⩽cx Y , if E[ϕ(X)] ⩽ E[ϕ(Y )] for every convex function ϕ : R → R provided
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that both expectations exist (see Rüschendorf (2013) and Shaked and Shanthikumar (2007)).

The order X ⩽cx Y means that X is less risky than Y in the sense of Rothschild and Stiglitz

(1970). Notice that if X ⩽cx Y , then E[X] = E[Y ], meaning that the convex order compares

random variable with the same mean. Similarly, X is smaller than Y in the increasing

convex order, denoted by X ⩽icx Y , if E[ϕ(X)] ⩽ E[ϕ(Y )] for every increasing convex

function ϕ : R → R provided the expectations exist. The proof of the next proposition is in

Rüschendorf (2013, Theorem 10.50).

Proposition 9.1 (Comonotonic improvements). Let X1, . . . , Xn ∈ L1 and X =
∑n

i=1Xi.

Then there exists a (Y1, . . . , Yn) ∈ An(X) such that (i) (Y1, . . . , Yn) is comonotonic and (ii)

for every i ∈ [n] it is Yi ⩽cx Xi.

Now, assume that X represents a monetary payoff so that greater values are preferred,

and let ρi : X → R denote the decision criterion used by agent i ∈ [n]. An allocation

(X1, . . . , Xn) ∈ An(X) is Pareto-optimal in An(X) if for any (Y1, . . . , Yn) ∈ An(X) satisfy-

ing ρi(Yi) ⩾ ρi(Xi), all i ∈ [n], we have ρi(Yi) = ρi(Xi), all i ∈ [n]. Let (λ1, . . . , λn) be

a vector of positive numbers, usually called a Negishi weight vector. We say that an allo-

cation (X1, . . . , Xn) ∈ An(X) is sum-optimal in An(X) with respect to λ = (λ1, . . . , λn) if

(X1, . . . , Xn) maximizes
∑n

i=1 λiρi(Xi) subject to the constraint (X1, . . . , Xn) ∈ An(X). We

use the term sum optimality for the case λi = 1, all i ∈ [n].

Let (Ω,F ,P) be a probability space and let all agents have homogeneous beliefs, i.e.,

everyone agrees on the probability measure P. The concept of strict risk aversion translates

to a strict preference for random variables that are lower in the convex order. That is,

if Xi <cx Yi (meaning Xi ⩽cx Yi but Yi ̸⩽cx Xi) then ρi(Xi) > ρi(Yi). We can derive

from Proposition 9.1 that the set of Pareto-optimal allocations contains only comonotonic

allocations when all agents are strictly risk averse.
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9.3 Counter-monotonicity and counter-monotonic im-

provement

Comonotonicity is an extreme type of positive dependence. This article contends with

the opposite situation: negatively dependent optimal allocations, which are much less studied

in the literature. We first define this dependence concept. In all statements, X represents a

random wealth, so greater values are preferred; negative values of X are allowed.

Throughout this section, we consider a fixed probability space (Ω,F ,P). Two random

variables X, Y are counter-monotonic if the two random variables X,−Y are comonotonic.

An allocation (X1, . . . , Xn) ∈ An(X) is pairwise counter-monotonic if for every i ̸= j the ran-

dom variables Xi, Xj are counter-monotonic. Pairwise counter-monotonicity is the general-

ization of counter-monotonicity for the case n ⩾ 3, but the concept is not always well-defined

for dimensions n ⩾ 3. We use the simpler term counter-monotonicity throughout.

The next lemma, due to Dall’Aglio (1972), gives necessary conditions for a random

vector (X1, . . . , Xn) to be counter-monotonic.

Lemma 9.1 (Dall’Aglio (1972)). If at least three of X1, . . . , Xn are non-degenerate, counter-

monotonicity of (X1, . . . , Xn) means that one of the following two cases holds true:

P(Xi > ess-infXi, Xj > ess-infXj) = 0 for all i ̸= j; (9.1)

P(Xi < ess-supXi, Xj < ess-supXj) = 0 for all i ̸= j. (9.2)

A necessary condition for (9.1) is
∑n

i=1 P(Xi > ess-infXi) ⩽ 1, and a necessary condition

for (9.2) is
∑n

i=1 P(Xi < ess-supXi) ⩽ 1.

Let Πn be the set of all n-compositions of Ω, that is,

Πn =

(A1, . . . , An) ∈ Fn :
⋃
i∈[n]

Ai = Ω and A1, . . . , An are disjoint

 .

In other words, a composition of Ω is a partition of Ω with order. The next proposition sim-

plifies the stochastic representation of counter-monotonicity given in Theorem 7.1 of Chapter

7.
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Proposition 9.2. For X ∈ X , suppose that at least three of (X1, . . . , Xn) ∈ An(X) are

non-degenerate. Then, (X1, . . . , Xn) is counter-monotonic if and only if there exist constants

m1, . . . ,mn and (A1, . . . , An) ∈ Πn such that

Xi = (X −m)1Ai
+mi for all i ∈ [n] with m =

n∑
i=1

mi ⩽ ess-infX, (9.3)

or

Xi = (X −m)1Ai
+mi for all i ∈ [n] with m =

n∑
i=1

mi ⩾ ess-supX. (9.4)

Remark 9.1. As in Denneberg’s Lemma, the underlying probability measure P is not used

in the stochastic representation of counter-monotonicity of Chapter 7, and so the allocations

characterized in Proposition 9.2 are also well defined on measurable spaces without specified

probability, as long as the null sets are specified.

The allocation (X, 0, . . . , 0) is counter-monotonic by taking A = Ω and m = m1 =

ess-infX, and it is trivial to verify that it is also comonotonic. Notice now that the allocations

defined in equation (9.3) and (9.4) echo the allocations in Lemma 9.1. In (9.3), for every

ω ∈ Ω, at most one agent receives more than their essential infimum. Conversely, in (9.4),

at most one agent receives less than their essential supremum. This is the “winner-takes-all”

and “loser-loses-all” structure of counter-monotonic allocations.

The most curious case of both (9.3) and (9.4) when m1 = · · · = mn = 0, given by

Xi = X1Ai
for all i ∈ [n], where (A1, . . . , An) ∈ Πn, (9.5)

will draw our special attention. Note that m = 0 implies that either X ⩾ 0 or X ⩽ 0 holds,

resulting in two different cases.

Definition 9.2. An allocation (X1, . . . , Xn) is a jackpot allocation if (9.5) holds for some

X ⩾ 0, and it is a scapegoat allocation if (9.5) holds for some X ⩽ 0.

A comparison of a jackpot allocation and a comonotonic allocation is illustrated in Fig-

ure 9.1. Although sharing the formula (9.5), a jackpot allocation and a scapegoat allocation

have very different meanings. In a jackpot allocation, the total wealth X is nonnegative (e.g.,
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10

X(ω)

Figure 9.1: An illustration of positively and negatively dependent allocations, where a

comonotonic allocation is Xi = X/n for i ∈ [n] (the area between two dotted curves) and

a jackpot allocation is Xi = X1Ai
for i ∈ [n] with Ω = [0, 1] (the area between two dashed

lines).

a prize), and for each realization of the world ω, only one agent “wins”, i.e., receives all pos-

itive payoff, and all other agents receive nothing. In a scapegoat allocation, the total wealth

is nonpositive (e.g., a loss), and only one agent “loses”, i.e., suffers the loss. Both types of

allocations are often observed in daily life. For instance, the simple lottery ticket (only one

winner) is a jackpot allocation, and the “designated driving” is a scapegoat allocation.

The next result shows a special role of the jackpot and the scapegoat allocations among

all counter-monotonic allocations. Using Lemma 9.1, an allocation (X1, . . . , Xn) is a jackpot

allocation if and only if

Xi ⩾ 0 and P(Xi ∧Xj > 0) = 0 for all i ̸= j, (9.6)

where a∧ b means min{a, b}. Therefore, being a jackpot allocation is a property of the joint

distribution of (X1, . . . , Xn). The probabilistic mixture of two random vectors with joint

distributions F and G is another random vector with joint distribution λF + (1 − λ)G for

some λ ∈ [0, 1]. The next result yields that jackpot allocations are closed under probabilistic

mixtures. The same holds for scapegoat allocations by symmetry.
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Proposition 9.3. A probabilistic mixture of two jackpot allocations is again a jackpot allo-

cation.

For two general counter-monotonic allocations other than jackpot and scapegoat allo-

cations, their mixture is not necessarily counter-monotononic, even if they both belong to

the same type (9.3) or (9.4).

Next is our main result.

Theorem 9.1. Let X1, . . . , Xn ∈ L1 be nonnegative and X =
∑n

i=1Xi. Assume that there

exists a uniform random variable U independent of X. Then, there exists (Y1, . . . , Yn) ∈

An(X) such that (i) (Y1, . . . , Yn) is counter-monotonic; (ii) Yi ⩾cx Xi for i ∈ [n]; (iii)

Y1, . . . , Yn are nonnegative. Moreover, (Y1, . . . , Yn) can be chosen as a jackpot allocation.

Remark 9.2. The boundedness from below of X1, . . . , Xn is necessary to obtain the existence

of jackpot allocations. A similar statement can be made for scapegoat allocations, which

then requires the boundedness of X1, . . . , Xn from above instead (e.g., Xi ⩽ 0 for all i ∈ [n]).

The proof follows from observing that in this case, −X1, . . . ,−Xn satisfies the assumptions

of Theorem 9.1 and is thus omitted.

Theorem 9.1 gives a converse to the comonotonic improvements for bounded random

variables. We obtain that jackpot allocations will always be preferred by risk-seeking agents.

Before moving on, we emphasize that the technical assumption that there exists a

uniform random variable U independent of X is not completely innocuous. Intuitively, we

can interpret it as assuming that any allocation (X1, . . . , Xn) ∈ An(X) can be “implemented”

with randomization devices like flipping coins or spinning roulette wheels. At a technical

level, this assumption guarantees that the inf-(sup-)convolution of law-invariant functionals

is law-invariant Liu et al. (see 2020).

9.4 Risk-seeking agents in expected utility theory

From now on, let us focus on X = L∞. Counter-monotonic allocations on probability

spaces are not necessarily interesting when we restrict our attention to the most popular
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preferences, which are modelled by concave Bernoulli utility functions. To see why, let

ui : R → R be a twice-differentiable Bernoulli utility function, assume that every individual

i ∈ [n] shares the same risk attitude and consider the expected utility criterion ρi(Xi) =

E [u (Xi)]. We can always trivially find counter-monotonic Pareto-optimal allocations when

all individuals are risk neutral. The reader can convince themselves by simply setting ui

as the identity and observing that any allocation (X1, . . . , Xn) ∈ An(X) is Pareto optimal.2

Thus, anything goes with risk-neutrality, and there is little to say about counter-monotonicity

in this context.

As mentioned, a foundational result in risk-sharing is the comonotonicity of Pareto opti-

mal allocations when individuals are strictly risk averse. This result implies that there cannot

be counter-monotonic Pareto-optimal allocations (besides the trivial counter-monotonic al-

locations) when the utility functions are strictly concave. It thus seems natural to consider

strictly risk-seeking individuals. However, the next informal argument shows that Pareto-

optimal allocations do not exist in the general case.

Suppose that (X1, . . . , Xn) ∈ An(X) is Pareto optimal and consider two strictly risk-

seeking individuals i ̸= j. We can construct another feasible allocation (X ′
1, . . . , X

′
n) ∈ An(X)

by finding a non-trivial partition A∪B of Ω on which we create an arbitrary transfer of wealth

between i and j. Say, if ω ∈ A, then i gives one billion dollars to j and vice-versa if ω ∈ B.

The strict convexity of ui and uj implies, by Jensen’s inequality, that both individuals are

strictly better off, contradicting the Pareto optimality of (X1, . . . , Xn).

We know of two ways to make the problem sensible. The first is to impose lower

bounds on the allocation, so Xi ⩾ a for a ∈ R and i ∈ [n]. The case a = 0 is of particular

interest because it can be interpreted as a no-short selling/borrowing constraint. The second

approach is to restrict the set of allocations by restricting the effective domain of u; we

emphasize that this is a common strategy in the empirical literature, where concave power

utilities u(x) = xα, 0 < α ⩽ 1, are used extensively. In what follows, all utility functions are

mappings from R to R ∪ {−∞} and not constantly −∞.

Theorem 9.2. Let X ⩾ 0 in L∞ and such that there is a uniform independent of it and let

2We implicitly consider a.s. bounded allocations.
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ui be increasing and strictly convex on [0,∞) and taking value −∞ for all x < 0 for each i.

Then all Pareto-optimal allocations are jackpot allocations.

It is straightforward to see that we obtain a similar result for risk-seeking agents if we

restrict the set of feasible allocations to allocations satisfying Xi ⩾ 0, all i ∈ [n].

Theorem 9.2 obtains that all Pareto-optimal allocations must be counter-monotonic

allocations withmi = 0 for all i ∈ [n], i.e., jackpot allocation. It is natural to wonder whether

the converse is true, that is, whether all counter-monotonic allocations ofX satisfyingmi = 0,

all i ∈ [n], are Pareto optimal. Proposition 9.12 in Section 9.9 shows that the answer is “Yes”

in the general case. However, the construction is technical, and the next proposition shows

the simplified case X = x > 0.

Proposition 9.4. Let x > 0 be given.

(i) If u1, . . . , un are strictly increasing and concave functions, then all comonotonic alloca-

tions of x are Pareto optimal.

(ii) If u1, . . . , un are increasing functions with ui(x) > ui(0), all i ∈ [n] that are convex

on [0,∞) and taking value −∞ for all x < 0, then all jackpot allocations are Pareto

optimal.

While all the allocations found above are Pareto optimal, not all are equal from a welfare

point of view. When all agents use the same decision criterion and have the same Bernoulli

utility, we say that an allocation is fair if all agents achieve the same (Ex-ante) welfare.

Definition 9.3. Let all agents have the same decision criterion ρ and the same Bernoulli

utility function u. Then an allocation (X1, . . . , Xn) is fair if ρi(Xi) = ρi(Xj) for all i ̸= j.

We emphasize that this notion of fairness is cardinal, and so we only define it for the

case where every agent is identical in order to avoid general interpersonal comparisons of

welfare.

Definition 9.4. An allocation (X1, . . . , Xn) is distributionally fair if Xi
d
= Xj for all i ̸= j.
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For a counter-monotonic allocation to be distributionally fair, one must thus require

that the underlying (A1, . . . , An) ∈ Πn be such that P(Ai) = P(Aj) = 1/n, all i ̸= j. Clearly,

a counter-monotonic allocation is fair if it is distributionally fair, and all distributionally fair

allocations are fair when all agents share the same decision criterion and Bernoulli utility.

Equipped with this distinction, we close this section with an example that highlights the role

of counter-monotonic allocations as a different way to take convex combinations.

Example 9.1. Set x = 1 and consider the problem

to maximize
n∑

i=1

E[u(Xi)] subject to (X1, . . . , Xn) ∈ An(1) and X1, . . . , Xn ⩾ 0.

Set ai ∈ Rn as a1 = (1, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), . . . , an = (0, . . . , 1), and denote by

δ the Dirac delta function. The collection (ai, δai)i∈[n] denotes all the allocations giving the

whole x = 1 to one agent with certainty and corresponds to all the extreme points of the

utility possibility set. With risk-averse agents, one must have comonotonic allocation, and

we are taking “convex combinations along the ais”. In this case, the only fair comonotonic

allocation is the pair
(
(1/n, . . . , 1/n), δ(1/n,...,1/n)

)
that gives everyone xi = 1/n with certainty.

Counter-monotonic allocations are like “taking convex combination along the δais”.

In this case, all fair allocations must be like the allocation (ai, δai/n)i∈[n], i.e. they must

give xi = 1 to one agent with probability 1/n. With strictly risk-seeking agents, only this

type of “convex combination” preserves Pareto optimality. In the general case, the non-

atomicity of the probability space combined with the assumption that there exists a uniform

independent of X precisely guarantees that we can find these “convex combinations along

the probabilities”.

9.5 Discontinuous Bernoulli utilities

The previous section obtained the optimality of jackpot allocations when all agents

are risk-seeking (provided that Pareto-optimal allocations exist). These allocations have a

direct interpretation as a “winner-takes-all” lottery where a (random) prize is (potentially

non-randomly) given to only one winner. We now turn our attention to scapegoat allocations
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and present situations where they are optimal. In order to simplify the treatment, consider

the following:

Assumption 9.1. The probability space (Ω,F ,P) is atomless, the set of random variables

is X = L∞, and X ∈ X is such that there exists a uniform U independent of X.

The sequel always assumes Assumption 9.1.

9.5.1 Pareto optimal allocations with Dirac utility

For every i ∈ [n] set the decision criterion ρi : X → R as ρi(Xi) = E
[
α1{Xi⩾1}

]
; we

will refer to these agents as Dirac agents. In Chapter 7, we considered the special case of

the risk-sharing problem with Dirac agents where X = 1 and Xi ⩾ 0. We interpreted the

variable X = 1 as an indivisible good that was auctioned and the utility function as the

net utility of n agents with the quasi-linear utilities v(X, t) = θX − t having bid the same

amount θ − t = α.

It is straightforward to see that the set

{(1A1 , . . . ,1An) ∈ An(X) : (A1, . . . , An) ∈ Πn}

consists of Pareto-optimal jackpot allocations. We thus interpreted the allocations satisfying

P(Ai) = P(Aj) for every i ̸= j as the random tie-breaking rule. Those are distributionally

fair, and thus, they also are fair allocations because all agents have the same expected utility.

We observed that a fair lottery (which is counter-monotonic) is the only fair way to distribute

the indivisible good among people who value it equally.

This section analyzes further the problem of sharing risk among Dirac agents. We

assume α = 1 for simplicity and without loss of generality. We first establish that for every

X ∈ X there exists a counter-monotonic allocation which is Pareto optimal. Let us first set

the Negishi weights to one so that we search for the allocations (X1, . . . , Xn) that solve

to maximize
n∑

i=1

ρi(Xi) subject to (X1, . . . , Xn) ∈ An(X).

Proposition 9.5. The allocation X1 = X2 = · · · = Xn−1 = 1 and Xn = X − (n − 1) is

Pareto optimal.
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The trivial counter-monotonic allocation in Proposition 9.5 has the characteristic that

agent n above potentially gives everything to its peers. Notice now that

Υ(X) :=
{(
1A1(X − (n− 1)) + 1Ac

1
, . . . ,1An(X − (n− 1)

)
+ 1Ac

n
) ∈ An(X) : (A1, . . . , An) ∈ Πn

}
consist exclusively of sum-optimal allocations. We can interpret this set as the set of all

allocations that “randomizes who gets or loses everything”, much like drawing straws but

with potentially unfair probabilities. When P(X ⩽ n) = 1, the set Υ(X) boils down to

T (X) := {(1A1(X − n) + 1, . . . ,1An(X − n) + 1) ∈ An(X) : (A1, . . . , An) ∈ Πn} ,

the set of scapegoats allocations of X that are shifted so that it satisfies mi = 1, all i ∈ [n].

Let λ = (λ1, . . . , λn), λi > 0, be a vector of Negishi weights and f : X n × Rn
++ → R be

fλ (X) = E

[
n∑

i=1

λi1{Xi⩾1}

]

for X = (X1, . . . , Xn) ∈ An(X). By convention, we consider λ1, . . . , λn in decreasing order.

Proposition 9.6. If X∗ maximizes fλ(X) then X∗ also maximizes f1(X).

Proposition 9.6 informs us that with Dirac agents, it suffices to characterize the set of

sum-optimal allocations in order to understand the whole set of allocations that are sum-

optimal for some Negishi weights λ. This, of course, means that Υ(X) contains all allocations

of interest.

While all the allocations in Υ(X) maximize the sum of expected utilities, not all are

equal from a welfare point of view. Recall that a Rawlsian social welfare function considers

only the utility of the worst-off agent and that maximizing a Rawlsian social welfare function

involves focusing on allocations where ρi = ρj, all i ̸= j.3 This motivates our focus on fair

allocations, where in our case we have that an allocation (X1, . . . , Xn) ∈ An(X) is fair if for

every i ̸= j, i, j ∈ [n], it is ρi(Xi) = ρi(Xj).

3In our context, a social welfare function W is a mapping (ρi)i∈[n] = ρ 7→ W(ρ) ∈ R that ranks allocation,

so higher value are better. The Rawlsian social welfare function is W(ρ) = mini∈[n]{ρi}. Thus if two

allocations X,Y are such that
∑n

i=1 ρi(Xi) =
∑n

i=1 ρi(Yi), but X is fair and Y is not, then a Rawlsian

social welfare function ranks X strictly higher than Y .
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Since we assumed that there exists a uniform U independent of X, we can always find

a partition (A1, . . . , An) ∈ Πn independent of X such that P(Ai) = 1/n for all i ∈ [n]. Thus,

the set Υ(X) always contains distributionally fair allocations that give the same expected

utility to all agents, and Υ(X) always contains a fair allocation.

Proposition 9.7. If P(X < n) > 0 then there exists no allocation which is simultaneously

comonotonic, fair and sum-optimal.

To summarize, we obtained that the Pareto optimality of an allocation (X1, . . . , Xn)

requires that for every ω ∈ Ω, there is at most one agent i ∈ [n] for which Xi(ω) < 1. If

P(X < n) = 0, one can always find comonotonic allocations (satisfying Xi ⩾ 1, all i ∈ [n])

that are Pareto optimal. In particular, fair ones exist. But when P(X < n) > 0, it is

no longer possible for a fair comonotonic allocation to have at most one agent i for which

Xi(ω) < 1.

The idea of a scapegoat allocation and of drawing straws to randomize the scapegoat

is quite alien to standard welfare analysis, and one might be interested in imposing a lower

bound on the allocation. Once again, the constraint Xi ⩾ 0, all i ∈ [n], is particularly inter-

esting because it can be interpreted as a borrowing constraint. Clearly, imposing constraints

on the allocation can impact the aggregate welfare when P(X < n) > 0. While we do not

fully characterize the impacts of such constraints, we observe that they sometimes imply that

jackpot allocations are Pareto optimal, as in the auction example above.

Corollary 9.1. Let X ⩾ 0 and consider the constraints Xi ⩾ 0, all i ∈ [n]. If P(X <

2) = 1 then all Pareto-optimal allocations are payoff equivalent to a jackpot allocation: if

(X1, . . . , Xn) is constrained Pareto optimal then there exists a feasible counter-monotonic

allocation (Y1, . . . , Yn) such that ρi(Xi) = ρ(Yi) for all i ∈ [n].

Next, we extend our analysis to piecewise linear Bernoulli utility with one jump.

9.5.2 Piecewise linear Bernoulli utility with one jump

Assume now that piecewise linear Bernoulli utility functions ui(Xi) = aiXi + bi1{Xi⩾1},

so that ρi(Xi) = E[ui(Xi)] = aiE[Xi] + biP(Xi ⩾ 1). For simplicity, we assume that ai = a
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and bi = 1, for all i ∈ [n]. These agents are a combination of risk-neutral agents and Dirac

agents, and it is easy to verify that ρi is monotone.

Consider once again the set

Υ(X) =
{(
1A1(X − (n− 1)) + 1Ac

1
, . . . ,1An(X − (n− 1)

)
+ 1Ac

n
) ∈ An(X) : (A1, . . . , An) ∈ Πn

}
.

As before, when P(X ⩽ n) = 1, the set Υ(X) boils down to

T (X) = {(1A1(X − n) + 1, . . . ,1An(X − n) + 1) ∈ An(X) : (A1, . . . , An) ∈ Πn} ,

the set of Pareto-optimal scapegoat allocations satisfying mi = 1, all i ∈ [n]. Once again

by Assumption 9.1 we can find a partition (A1, . . . , An) ∈ Πn independent of X such that

P(Ai) = 1/n for all i ∈ [n], so Υ(X) contains a fair allocation.

Suppose first that P(X < n) = 0. It is easy to verify that the comonotonic allocation

Xi = X/n, i ∈ [n], is Pareto optimal and fair. In other words, when P(X < n) = 0, the

problem goes in a similar fashion to the problem of sharing risk among Dirac agents. Our

interest thus lies again in the case where P(X < n) > 0. Let (X1, . . . , Xn) ∈ Υ(X) be fair,

and for simplicity chose it so that (A1, . . . , An) ∈ Πn is independent of X. Computing the

expected utility for all i ∈ [n] we have

E[ui(Xi)] = aE[Xi] + P(Xi ⩾ 1)

= aE[1AC
i
+ 1Ai

(X − (n− 1))] + P(AC
i ) + P(Ai)P(X ⩾ n)

= a
(
P(AC

i ) + P(Ai)E[X]− P(Ai)(n− 1)
)
+ P(AC

i ) + P(Ai)P(X ⩾ n)

=
aE[X] + (n− 1) + P(X ⩾ n)

n

since P(AC
i ) = (n− 1)/n = P(Ai)(n− 1). Summing over i ∈ [n] we obtain

n∑
i=1

E[ui(Xi)] = aE[X] + (n− 1) + P(X ⩾ n).

Proposition 9.8. Let P(X < n) > 0. Then a comonotonic and fair allocation (X1, . . . , Xn)

cannot be Pareto optimal.

To summarize, the key property of the jump in the Bernoulli utility function is that it

creates an incentive to concentrate losses on at most one agent. This property is not driven
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by the satiation of preferences, as was implicitly suggested by the risk-sharing problem with

Dirac agents, but rather by the sharp gains in utility at the discontinuity threshold. Thus,

when there is a positive probability of not having enough to share, the corresponding optimal

allocation cannot be simultaneously comonotonic and fair if it is to be Pareto optimal, as

the latter requires concentrating the losses.

9.6 Rank-dependent utility agent

We now analyze the problem of sharing risk among RDU agents. A function h : [0, 1] →

[0, 1] is called a probability distortion if it is non-decreasing and satisfies h(0) = 0 and

h(1) = 1. An agent is RDU if its decision criterion is ρh(X) =
∫
u(X) dh◦P, where u : R → R

is a Bernoulli utility function, h is a probability distortion and where the integral is in the

sense of Choquet. When the Bernoulli utility function is linear, we obtain Yaari (1987)’s

dual utility with decision criterion ρh(X) =
∫
X dh ◦ P. Yaari agents are risk seeking (risk

averse) if the probability distortion function h is concave (convex). We remind the reader

that when 0 < γ < 1 the Kahneman-Tversky (KT) distortion function hKT(t) =
tγ

(tγ+(1−t)γ)1/γ

is inverted S-shaped, i.e. concave-convex.

Assumption 9.2. The utility Bernoulli function u : R → R is increasing and differentiable

on [0,∞), weakly concave, satisfies u(0) = 0 and such that u(x) = −∞ for all x < 0. The

probability distortion function h : [0, 1] → [0, 1] is concave-convex.

Notice that the exponential Bernoulli utility u(x) = xα for 0 < α ⩽ 1 satisfies Assump-

tion 9.2. We emphasize that RDU agents satisfying Assumption 9.2 with u linear on [0,∞)

are not Yaari agents. This distinction will come back in our later discussion.

Denoting by F−1
X (1− t) the quantile function of X, the quantile representation of ρh(X)

is

ρh(X) =

∫
u(X) dh ◦ P =

∫ ∞

0

h (P (u (X) > t)) dt =

∫ 1

0

u
(
F−1
X (1− t)

)
dh(t).

We denote by h : [0, 1] → [0, 1] the concave envelope of h, which we define as the

smallest concave function such that h(t) ⩽ h(t) for all t ∈ [0, 1]. We have that h = h∗∗ for
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h∗∗ the biconjugate of h; clearly h is a probability distortion. Since h dominates h pointwise

for any X ∈ X we have

ρh(X) =

∫ 1

0

u
(
F−1
X (1− t)

)
dh(t) ⩾

∫ 1

0

u
(
F−1
X (1− t)

)
dh(t) = ρh(X)

and ρh gives an upper-bound to the value attained by ρh. By construction, if the Bernoulli

utility is linear, then the decision criterion ρh behaves as a risk-seeking agent, similarly to

Section 9.4. Recalling the KT distortion hKT is always concave-convex when 0 < γ < 1, with

strict concavity on a subset, we obtain that its concave envelope hKT is strictly concave on

a subset.

Our goal now is to find conditions guaranteeing the Pareto-optimality of fair jackpot

allocations. To do so we introduce a strengthening of the notion of distributional fairness:

Definition 9.5. A random vector (X1, . . . , Xn) ∈ X n is exchangeable if (X1, . . . , Xn)
d
=(

Xπ(1), . . . , Xπ(n)

)
for all permutation π ∈ Sn where Sn is the set of all permutations on [n].

Clearly if (X1, . . . , Xn) ∈ X n is exchangeable then Xi
d
= Xj for all i ̸= j, so (X1, . . . , Xn)

is distributionally fair. Suppose that Xi ⩾ 0 for all i ∈ [n] and that there is a uniform

distribution independent of (X1, . . . , Xn). Then (X1, . . . , Xn) has an exchangeable counter-

monotonic improvement (Y1, . . . , Yn) such that for all i ∈ [n], Yi ⩾ 0 and P(Yi > 0) = 1/n.

That is:

Corollary 9.2. In the setting of Theorem 9.1, we further assume that (X1, . . . , Xn) is ex-

changeable. Then, there exists an exchangeable jackpot allocation (Y1, . . . , Yn) ∈ An(X) such

that Yi ⩾cx Xi and P(Yi > 0) ⩽ 1/n for i ∈ [n].

Having established that the counter-monotonic improvement of an exchangeable allo-

cation can be exchangeable, we now consider the risk-sharing problem with agents that have

a linear Bernoulli utility function on [0,∞).

Theorem 9.3. Assume Assumptions 9.1 and 9.2. Let all agents be RDU agents with the

same utility function u(x) = ax for some a > 0 and probability distortion h such that h = h̄

for t ∈ [0, 1/n]. Let (X1, . . . , Xn) ∈ An(X) be a non-negative exchangeable allocation. Then

there exists an exchangeable jackpot allocation (Y1, . . . , Yn) ∈ An(X) that Pareto improves

upon (X1, . . . , Xn).
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Theorem 9.4. Assume Assumptions 9.1 and 9.2. Let all agents be RDU agents with the

same utility function u(x) = ax for some a > 0 and probability distortion h such that h = h̄

for t ∈ [0, 1/n]. For X > 0, there exists an exchangeable jackpot Pareto-optimal allocation.

Proof. We say an allocation (X1, . . . , Xn) ∈ An(X) satisfying the following equation is a sum

optimal allocation for ρh̄:

n∑
i=1

ρh̄(Xi) = max
(X1,...,Xn)∈An(X)

n∑
i=1

ρh̄(Xi).

We first show that there exists a sum optimal allocation (X1, . . . , Xn) ∈ An(X) for ρh̄.

As u(x) = −∞ for x < 0, it is clear that ρh̄(Xi) ⩽ ρh̄(X) for all i ∈ [n]. Hence,
∑n

i=1 ρh̄(Xi) ⩽

nρh̄(X) < ∞ for all (X1, . . . , Xn) ∈ An(X). Let u∗ = sup{
∑n

i=1 ρh̄(Xi); (X1, . . . , Xn) ∈

An(X)}. For any ϵ > 0, we can find Xϵ = (Xϵ
1, . . . , X

ϵ
n) such that

∑n
i=1 ρh̄(X

ϵ
i ) ⩾ u∗ −

ϵ. Now, take ϵ = 1/m for m ∈ N, we can get a sequence of random vectors {Xm =

(Xm
1 , . . . , X

m
n )}m∈N such that

∑n
i=1 ρh̄(X

m
i ) ⩾ u∗ − 1/m for all m ∈ N. By Helly’s Selection

Theorem, we can find a subsequence {Xmk}k∈N such that {Xmk}k∈N converges in distribution

to X = (X1, . . . , Xn). For any i ∈ [n], we have {Xmk
i }k∈N converges in distribution to Xi

and ess-sup(Xmk
i ) ⩽ ess-sup(X) for all k ∈ N. Hence, {X,Xm1

i , Xm2
i , . . . } is h-uniformly

integrable and ρh̄(X
mk
i ) → ρh̄(Xi) as k → ∞ for all i ∈ [n] by Wang et al. (2020b, Theorem

6). Furthermore, as
∑n

i=1X
mk
i = X for all k ⩾ 1, we have

∑n
i=1Xi

d
= X. Hence, we can

always find (X∗
1 , . . . , X

∗
n) with the same distribution as (X1, . . . , Xn) and

∑n
i=1X

∗
i = X such

that

u∗ ⩾
n∑

i=1

ρh̄(X
∗
i ) = lim

k→∞

n∑
i=1

ρh̄(X
mk
i ) ⩾ lim

k→∞

(
u∗ − 1

mk

)
= u∗.

Therefore, (X∗
1 , . . . , X

∗
n) is a sum optimal allocation for ρh̄.

Let XΠ = (X∗
π(1), . . . , X

∗
π(n)) where (π(1), . . . , π(n)) is a random vector uniformly dis-

tributed in Sn. Hence, it is clear that XΠ is an exchangeable allocation in An(X) and the

marginals of XΠ are

FXΠ
i
(x) =

1

n

n∑
i=1

Fi(x) for all i ∈ [n] and x ∈ R.

That is, the distribution of XΠ
i is a mixture of the distributions of X∗

1 , . . . , X
∗
n. Since h̄

is concave, we have ρh̄ concave on mixtures by Wang et al. (2020b, Theorem 3). Hence,
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ρh̄(X
Π
i ) ⩾ (1/n)

∑n
i=1 ρh̄(X

∗
i ) for all i ∈ [n]. As a result, we have

n∑
i=1

ρh̄(X
Π
i ) = nρh̄(X

Π
1 ) ⩾

n∑
i=1

ρh̄(X
∗
i ) = max

(X1,...,Xn)∈An(X)

n∑
i=1

ρh̄(Xi).

Hence, XΠ is also a sum optimal allocation for ρh̄.

Let Y = (Y1, . . . , Yn) be an exchangeable jackpot Pareto improvement allocation of XΠ

in Theorem 9.3. By the proof of Theorem 9.3, we have

n∑
i=1

ρh(Yi) =
n∑

i=1

ρh̄(Yi) ⩾
n∑

i=1

ρh̄(X
Π
i ) = max

(X1,...,Xn)∈An(X)

n∑
i=1

ρh̄(Xi) ⩾ max
(X1,...,Xn)∈An(X)

n∑
i=1

ρh(Xi).

where the last inequality comes from h̄ ⩾ h. As a result, we have Y satisfies

n∑
i=1

ρh(Yi) = max
(X1,...,Xn)∈An(X)

n∑
i=1

ρh(Xi).

That is, Y is a sum optimal allocation for ρh. Hence, it is clear that Y is a Pareto optimal

allocation.

A direct implication of Theorem 9.3 is that if an agent with a linear Bernoulli utility

uses a distortion function h that is strictly concave on the segment [0, 1/n], then the same

agent precisely behaves as the risk-seeking agent of Section 9.4 when comparing the two

allocations.

When is n large and all agents have a linear Bernoulli utility, all fair Pareto-optimal

allocations are counter-comonotonic, and the exchangeable jackpot allocation strictly Pareto

dominates the exchangeable comonotonic allocation. Fair Pareto-optimal allocations thus

cannot be comonotonic. However, we can have non-trivial unfair comonotonic allocations

that are Pareto optimal:

Example 9.2. Assume all RDU agents have a linear Bernoulli utility function and the same

distortion function h. Let X ⩾ 0 and consider the following allocation: X1 = X2 = X/2

and for all i ̸= 1, 2, Xi = 0. This allocation is non-trivially comonotonic, and one can build

a jackpot allocation where Y1 = X1A1 and Y2 = X1A2 with P(A1) = P(A2) = 1/2. Yet,

the jackpot allocation need not improve upon the original allocation. This happens when

the condition h = h for t ∈ [0, 1/2] is not satisfied. The economic intuition is that the
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Pareto optimality of comonotonic allocations can happen when some agents have a large

enough share of the aggregate endowment so that gambling with others does not create a

high enough reward.

The symmetry of behaviour between RDU agents and the risk-seeking agents of Section

9.4 goes beyond the cases considered above. Yaari agents are strictly risk seeking when the

distortion function h is strictly concave, and we can reproduce the argument of Section 9.4

to show that Pareto-optimal allocations do not exist with strictly risk-seeking Yaari agents.

Pareto-optimal allocations also do not exist for Yaari agents with concave-convex distortions

when the number of agents n is large. This is seen by concavifying the distortion function

h and observing that if h is concave and n, our Yaari agents behave as risk-seeking agents.

Once again, the assumption that u(x) = −∞ for x < 0 in Assumption 9.2 is instrumental in

guaranteeing that Pareto-optimal allocations exist; it might be replaced by constraining the

set of feasible allocations to non-negative allocations.

The observation that the exchangeable jackpot allocation sometimes leads to strict

Pareto improvements hints at the possibility that Theorem 9.3 might be extended to some

cases where the Bernoulli utility is strictly concave on [0,∞). While the general case is still

an open question, the next section’s cryptocurrency example shows that counter-monotonic

payoff can indeed be preferred by RDU agents with concave Bernoulli utility when we restrict

their choice set.

9.7 Cryptocurrency mining: to pool or not to pool

Let us consider n miners who need to decide whether they mine by themselves or join a

mining pool. For all i ∈ [n], the actions set is Ai = A = {H,P}, where H denotes mining by

themselves (from “Home”), and P denotes joining the pool. We consider two types of miners.

The first type of miner is behavioural, which we define as an RDU agent with concave-convex

probability distortion functions. Let y ∈ R and let ϕy : [0, 1] → R be ϕy(x) = h(x)u(y/x).

Behavioural miners satisfy the following assumption:
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Assumption 9.3. The utility Bernoulli function u : R → R is increasing and differentiable

on [0,∞), weakly concave, satisfies u(0) = 0 and such that u(x) = −∞ for all x < 0. The

probability distortion function h : [0, 1] → [0, 1] is concave-convex. Further, there exists a

unique a p0 ∈ (0, 1) such that for every y ⩾ 0, ϕy(x) decreases on (0, p0) and ϕy(p0) ⩾ ϕy(z)

for all z > p0.

The second type of miner is the strictly risk-averse miner. We still denote by ρ(X) =∫
u(X) dh ◦ P their decision criterion to unify notation, but do not specify the shape of u or

h and simply assume that ρ is strictly risk-averse.4

Let k ∈ N+ denote the number of behavioural miners so that there are n − k miners

risk-averse miners. Each miner i ∈ [n] has a computational power ci, and the probability of

mining the next coin is proportional to the total computing power as in Leshno and Strack

(2020). Normalizing
∑n

i=1 ci = 1 we can take an atomless probability space (Ω,F ,P) and

define the event

Ai := {ω ∈ Ω : agent i mines the coin}

so that P(Ai) = ci, all i ∈ [n], and (A1, . . . , An) ∈ Πn. Let v > 0 denote the given value of

the coin. For all i ∈ [n] we normalize the monetary payoff of mining from home as v1Ai
and

set ui(0) = 0 so that the expected payoff of a home miner i is

ρi(H) = hi(ci)ui(v) + (1− h(ci))ui(0) = hi(ci)ui(v).

Let Po denote the set of agents that join the pool, i.e. Po = {i ∈ [n] : ai = P}. We

assume that the pool uses the conditional mean risk-sharing rule so that the monetary payoff

of agent i ∈ Po conditional on the pool mining the coin is vci∑
j∈Po cj

. Note that
⋃

j∈PoAj is the

event that the pool mines the coin, and the unconditional monetary payoff of agent i ∈ Po is

vci∑
j∈Po cj

1⋃
j∈Po Aj

.

When Po is given the expected utility of miner i ∈ Po is thus

ρi(P ) = h

(∑
j∈Po

cj

)
u

(
vci∑
j∈Po cj

)
.

4The criterion ρ(X) =
∫
u(X) dh ◦ P can be risk-averse in the following three cases: (1) u concave and h

the identity; (2) u linear and h convex and (3) u concave can h convex.
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Since we focus on pure-strategy Nash equilibria, we slightly abuse notation and denote

by ai the strategy profile of agent i ∈ [n] playing action ai with probability one.5 Let

a−i = (aj)j ̸=i ∈ An−1 and let ρi (ai, a−i) be the expected utility of action ai given the action

profile a−i. We let σi : An−1 ⇒ A be the best-reply correspondence of agent i so that

σi (a−i) = argmaxai∈A ρi(ai, a−i). A pure-strategy Nash equilibrium of the crypto mining

game is a profile of actions (a∗1, . . . , a
∗
n) ∈ An such that for every i ∈ [n], a∗i ∈ σi

(
a∗−i

)
.

Notice now that

E

[
vci∑
j∈Po cj

1⋃
j∈Po Aj

]
=

vci∑
j∈Po cj

P

(⋃
j∈Po

Aj

)
= vci = E [v1Ai

]

and v1Ai
is a mean-preserving spread of vci∑

j∈Po cj
1⋃

j∈Po Aj
since both are Bernoulli random

variables.

Clearly if a−i = (H, . . . , H) we have

vci∑
j∈Po cj

1⋃
j∈Po Aj

= v1Ai

and ρi (H, a−i) = ρ (P, a−i). The following lemma is thus trivial:

Lemma 9.2. The action profile a∗ = (H, . . . , H) ∈ An constitutes a Nash equilibrium.

The lemma means that it can happen that the pool never forms in equilibrium.

Proposition 9.9. Let agent i be strictly risk averse. Then

σi(a−i) =

{H,P} if aj = H for all j ̸= i

P otherwise

and P is a weakly dominant strategy for agent i.

Of course, this implies that H is a weakly dominated strategy for risk-averse agents and

the Nash equilibrium (H, . . . , H) ∈ An does not survive the iterated elimination of weakly

dominated strategies. Further, if at least one agent chooses P , then all strictly risk-averse

agents choose P . The equilibria where all risk-averse agents choose P are thus of greater

interest.

5That is, we denote by ai the strategy profile δai
, where δ is again the Dirac delta function.
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Proposition 9.10. Let agent i be a RDU agent with decision criterion ρh(X) satisfying

Assumption 9.3. Then

(i) If ci ⩽ p0 and ϕy(x) strictly decreases on (0, p0) we have

σi(a−i) =

{H,P} if aj = H for all j ̸= i

H otherwise.

(ii) If there is a p∗ ∈ [0, 1] for which h(t)/t is strictly increasing for t > p∗ and if ci ⩾ p∗,

then

σi(a−i) =

{H,P} if aj = H for all j ̸= i

P otherwise.

We immediately obtain the following corollary:

Corollary 9.3. Let all behavioural agents j ∈ [k] be such that ϕy(x) strictly decreases on

(0, p0) and such that cj ∈ (0, p0). Then the action profile (a∗i )i∈[n] is a pure-strategy Nash

Equilibrium, where

a∗i =

H if j ∈ k

P otherwise.

Moreover, (a∗i )i∈[n] is the unique pure-strategy Nash Equilibrium left after performing the

iterated deletion of weakly dominated strategies.

The takeaway of Proposition 9.10 and its corollary is that behavioural agents can have

somewhat “bang-bang” strategies. On the one hand, they can behave as risk-seeking agents

and mine from home. This happens when they have proportionally small computing power

so that ci is in (0, p0) a subset of the concave part of h. This result both complements and

contrasts the results of the previous section, as RDU agents with strictly concave Bernoulli

utility functions can behave as risk-seeking agents when their choice set is restricted.

On the other hand, behavioural agents can strictly prefer to join the pool when their

computing power is large in proportion to the total computer power and their probability
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of winning is high. This happens for two reasons. First, when h(t)/t strictly increases for

t ∈ [p∗, 1], we have that ci ∈ [p∗, 1] corresponds to a set of probability where the agent is

risk-averse. While the effect of risk aversion is clear, a second, less obvious reason comes from

our assumption that the pool uses the conditional mean risk-sharing rule. This assumption

implies that the high contribution of player i to the pool’s computing power translates into

a large share of the value of the coin. In other words, joining the pool lets player i “hedge”

some of its risk. This property would not be obvious if the pool had a different risk-sharing

rule. For instance, imposing an upper bound on the share that each individual miner can

impact the equilibria.

The optimal strategy of behavioural agents is unclear when ci ∈ (p0, p
∗). This is because

the best-reply of agent i can now vary as a function of the other agents’ action. A complete

equilibrium analysis is out of the scope of this article, but we believe it would be interesting

to analyze the optimal pool formation as a function of both the computing power of the

agents, the risk-sharing rule and the ability to divide its computing power among different

pools.

9.8 Conclusion

Our main result, the counter-monotonic improvement theorem, lays the foundation

for analyzing risk sharing with counter-monotonic allocations, the most extreme forms of

negatively dependent allocation. This theorem allowed us to shed light on Pareto-optimal

allocations when the risk is to be shared among risk-seeking agents, agents with a discontinu-

ous Bernoulli utility function and RDU agents with inverted S-shaped probability distortion

functions.

However, these characterizations of counter-monotonic Pareto-optimal allocations beg

for more questions than it answers. Can competitive equilibria be counter-monotonic? If

yes, under which conditions? What happens if we lift the assumption of the underlying risk

and probability space that is well-understood by everyone?

The first two questions are natural extensions of our analysis of counter-monotonic risk

sharing. While we analyze the competitive equilibria with risk-seeking agents in Section
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9.9, it is unclear to us if and how these questions can be answered in the general case.

The key issue is finding a price vector, as this is usually done using fixed-point theorems

relying on some continuity property of the excess demand correspondence. Unfortunately,

we do not currently know how the excess demand correspondences behave in general, as the

Pareto optimality of counter-monotonic allocations requires “bang-bang” behaviour of the

underlying preferences of agents.

We have many reasons to believe that the counter-monotonicity of Pareto-optimal allo-

cations is possible when sharing risk under heterogeneous beliefs or ambiguity. Our stochastic

representation of counter-monotonicity holds on general measurable spaces, and a superficial

look at the no-betting allocations literature suggests that imposing strong assumptions on

the beliefs held by agents might do the trick. In the case of ambiguity-averse agents, Billot

et al. (2000) suggests that the emptiness of the intersection of the core of the agents’ ca-

pacity is likely to be a necessary condition for the Pareto optimality of counter-monotonic

allocations. This condition is unlikely to be sufficient, as this assumption does not rule out

the comonotonicity of some agents’ allocation. We hope that further investigations will shed

light on this issue, as a characterization of extreme betting behaviour with ambiguity-averse

agents would be highly counter-intuitive.

9.9 Competitive equilibria with risk-seeking agents

Fix an atomless probability space (Ω,F ,P). Let L∞
+ be the set of nonnegative random

variables in L∞ which are not constantly 0.

Assumption 9.4. All agents are expected utility agents with a common utility function u,

which is convex on [0,∞). The total wealth in the economy is X ∈ L∞
+ , and the vector of

initial endowment, denoted by (ξ1, . . . , ξn) ∈ An(X), has nonnegative components.

We always make the above assumption.
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9.9.1 Explicit construction of the equilibria

A pricing measure is a probability measure Q with Q(X > 0) = 1. Consider the

individual optimization problem for agent i ∈ [n]:

maximize E[u(Xi)] subject to EQ[Xi] ⩽ EQ[ξi]; 0 ⩽ Xi ⩽ X. (9.7)

The tuple (X1, . . . , Xn, Q) is a competitive equilibrium if (a) individual optimality: Xi solves

(9.7) for each i ∈ [n]; and (b) market clearance:
∑n

i=1Xi = X. In this case, (X1, . . . , Xn) is

an equilibrium allocation, and Q is an equilibrium pricing measure.

Proposition 9.11. Let Q be given by

dQ

dP
=
u(X)

X

1

E[u(X)/X]
with the convention 0/0 = 0, (9.8)

and let

(X1, . . . , Xn) = (X1A1 , . . . , X1An)

for some (A1, . . . , An) ∈ Πn such that EQ[X1Ai
] = EQ[ξi] for i ∈ [n].

(9.9)

Then (X1, . . . , Xn, Q) is a competitive equilibrium.

Proof. Denote by xi = EQ[ξi] and z = E[u(X)/X] ⩾ 0. It follows that

EQ[Xi] = EQ[X1Ai
] = xi,

and hence the budget constraint is satisfied for each i ∈ [n]. Moreover,

E[u(Xi)] = E[u(X)1Ai
] = E

[
X
u(X)

X
1Ai

]
= zEQ[X1Ai

] = zxi.

For any Yi satisfying 0 ⩽ Yi ⩽ X and the budget constraint EQ [Yi] ⩽ xi, using the fact that

x 7→ u(x)/x is increasing, we have

E[u(Yi)] = E
[
Xi
u(Yi)

Yi

]
⩽ E

[
Yi
u(X)

X

]
= zEQ [Yi] ⩽ zxi = E[u(Xi)].

Therefore, (X1, . . . , Xn, Q) satisfies individual optimality. Market clearance also holds, be-

cause
∑n

i=1 1Ai
= 1.

Remark 9.3. The proof of Proposition 9.11 only requires x 7→ u(x)/x to be an increasing

function. Under our assumption u(0) = 0, this is a weaker condition than convexity of u.
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9.9.2 Uniqueness of the equilibrium

Let L be the set of random variables Y in L∞
+ such that there exists a standard uniform

random variable independent of Y .

Theorem 9.5. Suppose that u is strictly convex on [0,∞) and X ∈ L.

(i) All equilibrium allocations (X1, . . . , Xn) have the form (9.9).

(ii) If at least two of ξ1, . . . , ξn are not 0, then the equilibrium pricing measures is uniquely

given by (9.8).

Proof. (i) Let (X1, . . . , Xn, Q) be a competitive equilibrium. By the counter-monotonic im-

provement theorem, there exists an allocation (Y1, . . . , Yn) ∈ An(X) such that Yi ⩾cx Xi and

Yi ⩾ 0 for each i ∈ [n]. If EQ[Yi] < EQ[ξi] for some i ∈ [n], then there exists b > 0 such that

EQ[Yi + b(X − Yi)] ⩽ EQ[ξi]. Hence, Yi + b(X − Yi) satisfies the budget constraint for agent

i. Moreover, by strict convexity of u (implying strict increasing monotonicity), we have

E[u(Yi + b(X − Yi))] > E[u(Yi)] ⩾ E[u(Xi)],

and henceXi is not optimal for agent i, a contradiction. Therefore, we conclude that EQ[Yi] ⩾

EQ[ξi] for all i ∈ [n]. Since
∑n

i=1 EQ[Yi] = EQ[X] =
∑n

i=1 EQ[Xi], we further obtain EQ[Yi] =

EQ[ξi] for all i ∈ [n]. Hence, (Y1, . . . , Yn) satisfies the budget constraint. For each i ∈ [n],

individual optimality gives E[u(Xi)] ⩾ E[u(Yi)] and convex order gives E[u(Xi)] ⩽ E[u(Yi)],

together leading to E[u(Xi)] = E[u(Yi)], and thus Yi
d
= Xi. The rest of the proof follows from

the same argument as Theorem 9.2, justifying that (X1, . . . , Xn) is a jackpot allocation, thus

with the form (X1A1 , . . . , X1An) in (9.9).

(ii) Suppose that (X1, . . . , Xn, Q) is a competitive equilibrium. Using (i), we can write

(X1, . . . , Xn) = (X1A1 , . . . , X1An) for some (A1, . . . , An) ∈ Πn in (9.9). Let P be the condi-

tional probability measure of P on {X > 0}, and let p = P(X > 0). Let η = dQ/ dP and

define a probability measure R by

dR

dQ
=
X

c
, where c = EQ[X],
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and Note that for any A ∈ F , we have

E[u(X1A)] =
1

p
EP [u(X1A)] =

1

p
ER

[
dP

dQ

dQ

dR
u(X)1A

]
=

1

p
ER

[
cu(X)

ηX
1A

]
.

Denote by Z = cu(X)/(ηX). Individual optimality of (X1, . . . , Xn) implies that for any

i ∈ [n] and any A ∈ F satisfying EQ[X1A] ⩽ EQ[X1Ai
], we have

ER [Z1A] = pE[u(X1A)] ⩽ pE[u(X1Ai
)] = ER [Z1Ai

] .

Note that EQ[X1A] ⩽ EQ[X1Ai
] is equivalent to R(A) ⩽ R(1Ai

). Take A ∈ F such that

R(A) = R(1Ai
) and Z and 1A are comonotonic. Suppose that Z is not a constant. The

Fréchet-Hoeffding inequality gives

cov(Z,1Ai
) ⩾ cov(Z,1A) ⩾ 0,

and cov(Z,1A) > 0 if R(A) ∈ (0, 1). Since at least two of ξ1, . . . , ξn are not 0, by (9.9), at

least two of A1, . . . , An have positive probability under R. Therefore, cov(Z,1Ai
) > 0 for

at least one i. However,
∑n

i=1 cov(Z,1Ai
) = cov(Z, 1) = 0, a contradiction. Hence, Z is a

constant. Therefore, η is equal to a constant times u(X)/X, showing that Q has the form

(9.8).

In case only one of ξ1, . . . , ξn is not 0, say ξi, the equilibrium allocation is Xi = X and

Xj = 0 for j ∈ [n] \ {i}, and the equilibrium pricing measure is arbitrary.

The equilibrium pricing density dQ/ dP is increasing in X, and which is more expensive

for states with larger X. This is in sharp contrast to the case of risk-averse expected utility

agents, where the pricing density is cheaper for states with larger X.

9.9.3 Existence of the equilibrium

The next lemma shows that the competitive equilibrium in Proposition 9.11 always

exists even without assuming the existence of a uniform random variable independent of X.

Lemma 9.3. For any probability Q, there exists (A1, . . . , An) ∈ Πn satisfying (9.9).
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Proof. Let U be a uniform transform of X (i.e., F−1
X (U) = X a.s. and U is uniformly

distributed on [0, 1]), and let A1 = {0 ⩽ U ⩽ a1} where a1 satisfies∫
X1{0⩽U⩽a1} dQ = EQ[ξ1].

Since a 7→
∫
X1{0⩽U⩽a} dQ is continuous on [0, 1] and takes value in [0,EQ[X]], such a1 exists.

Next, let A2 = {a1 ⩽ U ⩽ a2} where a2 satisfies∫
X1{a1⩽U⩽a2} dQ = EQ[ξ2].

Since a 7→
∫
X1{a1⩽U⩽a} dQ is continuous on [a1, 1] and takes value in [0,EQ[X] − EQ[ξ1]]

(note that EQ[X] − EQ[ξ1] ⩾ EQ[ξ2]), such a2 exists. Repeating this procedure yields the

desirable (A1, . . . , An).

Let Q be given in (9.8). Suppose X ∈ L. In this case, the composition in Lemma 9.3 is

much simpler: we can take Ai as an event independent of X with probability EQ[ξi]/EQ[X]

for each i ∈ [n]. Then, (X1A1 , . . . , X1An , Q) is a competitive equilibrium. It has a simple

interpretation: the probability of winning the jackpot reward for agent i is EQ[ξi], which is

proportional to E[ξiu(X)/X]. In particular, if ξi = X/n for each i ∈ [n], then we obtain a

fair (exchangeable) jackpot allocation.

9.9.4 Welfare theorems

We now establish the first welfare theorem.

Proposition 9.12. Every equilibrium allocation of X ∈ L is Pareto optimal.

Proof. By Theorem 9.5, any equilibrium allocation (X1, . . . , Xn) has the form (X1, . . . , Xn) =

(X1A1 , . . . , X1An) for some (A1, . . . , An) ∈ Πn. Note that

n∑
i=1

E[u(Xi)] =
n∑

i=1

E[u(X)1Ai
] = E[u(X)].

Convexity of u implies u(x+y) ⩾ u(x)+u(y) for all x, y ⩾ 0. For any allocation (Y1, . . . , Yn) ∈

An(X),
n∑

i=1

E[u(Yi)] = E

[
n∑

i=1

u(Yi)

]
⩽ E

[
u

(
n∑

i=1

Yi

)]
= E[u(X)].

Therefore, (X1, . . . , Xn) is sum-optimal, and hence Pareto optimal.
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Proposition 9.12 also shows that all jackpot allocations are Pareto optimal in this setting.

Next we establish the second welfare theorem.

Proposition 9.13. Suppose that u is strictly convex on [0,∞). Every Pareto-optimal allo-

cation of X ∈ L is an equilibrium allocation for some initial endowments.

Proof. Suppose that (X1, . . . , Xn) is a Pareto-optimal allocation of X. By Theorem 9.2,

every Pareto-optimal allocation is a jackpot allocation; that is, it admits a representation

(X1, . . . , Xn) = (X1A1 , . . . , X1An) for some (A1, . . . , An) ∈ Πn. Let Q be given by (9.8).

Further, let

ai =
EQ[X1Ai

]

EQ[X]

and ξi = aiX for each i ∈ [n]. It follows that

EQ[Xi] = EQ[X1Ai
] = aiEQ[X] = EQ[ξi].

Therefore, (9.9) is satisfied. Using Proposition 9.11, we get that (X1, . . . , Xn, Q) is a com-

petitive equilibrium.

To summarize all results, we obtain the following theorem.

Theorem 9.6. Suppose that u is strictly convex on [0,∞). For an allocation of X ∈ L, the

following are equivalent.

(i) It is Pareto optimal;

(ii) it is an equilibrium allocation for some initial endowments;

(iii) it is a jackpot allocation.

9.10 Omitted proofs

9.10.1 Proofs of Section 9.3

Proof of Proposition 9.2. The “if” part follows from the fact that
∑n

i=1Xi = X and Theorem

7.1 of Chapter 7. We will show the “only if” part.
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Assume (X1, . . . , Xn) ∈ An(X) is counter-monotonic. By Theorem 7.1 of Chapter 7.1,

there exists (A1, . . . , An) ∈ Πn such that

Xi = (X −m)1Ai
+mi for all i ∈ [n],

where either mi = ess-infXi for i ∈ [n] or mi = ess-supXi for i ∈ [n], and m =
∑n

i=1mi. If

mi = ess-infXi for all i ∈ [n], we have m =
∑n

i=1 ess-inf(Xi) ⩽ ess-inf(
∑n

i=1Xi) ⩽ ess-infX.

If mi = ess-supXi for all i ∈ [n], we have m =
∑n

i=1 ess-sup(Xi) ⩾ ess-sup(
∑n

i=1Xi) ⩾

ess-supX.

Proof of Proposition 9.3. Let (Z1, . . . , Zn) be a probabilistic mixture of (X1, . . . , Xn) and

(Y1, . . . , Yn), which are two jackpot allocations. It follows that Zi ⩾ 0 for all i ∈ [n] and

P(Zi ∧ Zj > 0) = λP(Xi ∧Xj > 0) + (1 − λ)P(Yi ∧ Yj > 0) = 0 for i ̸= j. Therefore, using

(9.6) we know that (Z1, . . . , Zn) is a jackpot allocation.

Proof of Theorem 9.1. The case X = 0 is trivial and will be excluded below. Let U be a

standard uniform random variable independent of X. First we argue that we can assume that

U is independent of X1, . . . , Xn. Otherwise, we can find two iid standard uniform random

variables U and V independent of X, and (X̂1, . . . , X̂n) measurable to σ(X, V ) such that

(X̂1, . . . , X̂n, X) is identically distributed to (X1, . . . , Xn, X). Clearly, U is independent of

(X̂1, . . . , X̂n, X), and all desired statements follow if we could prove them for (X̂1, . . . , X̂n).

Write

Zi =

∑i
j=1Xj

X
1{X>0} for i ∈ [n] and Z0 = 0.

Define the event Ai = {Zi−1 ⩽ U < Zi} for i ∈ [n]. Clearly, A1, . . . , An are disjoint and

P(
⋃

i∈[n]Ai) = 1. Let Yi = X1Ai
for i ∈ [n]. It is clear that (Y1, . . . , Yn) is counter-monotonic.

For i ∈ [n],

E [Yi | X1, . . . , Xn] = E
[
X1{Zi−1⩽U<Zi} | X1, . . . , Xn

]
= E [X(Zi − Zi−1) | X1, . . . , Xn] = X

Xi

X
1{X>0} = Xi,

where in the last equality we used the fact thatXi = 0 ifX = 0. Therefore, Xi is a conditional

expectation of Yi, yielding the desired order Xi ⩽cx Yi via Jensen’s inequality.
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9.10.2 Proofs of Section 9.4

Proof of Theorem 9.2. Suppose (X1, . . . , Xn) ∈ An(X) is a Pareto-optimal allocation. By

Theorem 9.1, there is a jackpot allocation (Y1, . . . , Yn) ∈ An(X) such that for all i ∈ [n]

and Yi ⩾cx Xi. As ui is strictly convex, we have E[u(Yi)] = E[u(Xi)] by Pareto optimality

of (X1, . . . , Xn). By Shaked and Shanthikumar (2007, Theorem 3.A.43), we obtain that

Yi =st Xi in the usual stochastic order, and thus Yi
d
= Xi.

We now want to show that (X1, . . . , Xn) is counter-monotonic. Let var and cov denote

respectively the variance and covariance. For any given 1 ⩽ i < j ⩽ n, we have that Yi

and Yj are counter-monotonic, Xi
d
= Yi and Xj

d
= Yj. Therefore, cov(Xi, Xj) ⩾ cov(Yi, Yj).

Furthermore, by the fact that
∑n

i=1Xi =
∑n

i=1 Yi = X, we have

var(X) = var

(
n∑

i=1

Yi

)
=

n∑
i=1

n∑
j=1

cov(Yi, Yj) ⩽
n∑

i=1

n∑
i=1

cov(Xi, Xj) = var

(
n∑

i=1

Xi

)
= var (X) .

Hence, cov(Xi, Xj) = cov(Yi, Yj) for i, j ∈ [n].

By the Hoeffding’s identity, we have for all i ̸= j and∫∫
(P (Xi ⩽ t,Xj ⩽ s)− P (Yi ⩽ t)P (Yj ⩽ s)) dt ds

=

∫∫
(P (Yi ⩽ t, Yj ⩽ s)− P (Xi ⩽ t)P (Xj ⩽ s)) dt ds.

Given that (Yi, Yj) and (Xi, Xj) have the same marginals and (Yi, Yj) is counter-monotonic,

we have P (Xi ⩽ t,Xj ⩽ s) ⩾ P (Yi ⩽ t, Yj ⩽ s). Therefore, we have P (Xi ⩽ t,Xj ⩽ s) =

P (Yi ⩽ t, Yj ⩽ s) for almost every t, s ∈ R. Thus, for every i ̸= j, it is P (Xi > 0, Xj > 0) =

P (Yi > 0, Yj > 0) = 0 and (X1, . . . , Xn) is counter-monotonic, and further it is a jackpot

allocation by (9.6), as desired.

Proof of Proposition 9.4. (i) It is clear that any comonotonic allocation of x is the set of

(x1, . . . , xn) ∈ Rn such that
∑x

i=1Xi = x. We first assume that the allocation (x1, . . . , xn) ∈

Rn is not Pareto optimal; that is, there exists (Y1, . . . , Yn) ∈ An(x) such that E[ui(Yi)] ⩾

E[u(xi)] = u(xi) for all i ∈ [n], with strict inequality for some i ∈ [n]. Let yi = E[Yi] for

i ∈ [n]. We have that (y1, . . . , yn) ∈ An(X) because

n∑
i=1

yi =
n∑

i=1

E[Yi] = E

[
n∑

i=1

Yi

]
= E[x] = x.
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Since ui is concave we obtain that u(yi) ⩾ E[u(Yi)] ⩾ u(xi) for all i ∈ [n], with u(yi) > u(xi)

for some i ∈ [n]. Furthermore, as ui is strictly increasing, we have yi ⩾ xi for all i ∈ [n]

and yi > xi for some i ∈ [n]. Therefore,
∑n

i=1 yi >
∑n

i=1 xi = x, a contradiction. Hence, the

allocation (x1, . . . , xn) ∈ Rn is Pareto optimal.

(ii) Let (X1, . . . , Xn) ∈ An(x) be a counter-monotonic allocation of x satisfying mi = 0

for all i ∈ [n]. By Proposition 9.2 we have

(X1, . . . , Xn) = (x1A1 , . . . , x1An) for some (A1, . . . , An) ∈ Πn.

Let pi = P(Xi) for i ∈ [n]. We have
∑n

i=1 pi = 1.

Assume that (X1, . . . , Xn) ∈ An(x) is not Pareto optimal. There is a (Y1, . . . , Yn) ∈

An(x) such that E[ui(Yi)] ⩾ E[ui(Xi)] = piui(x) + (1 − pi)u(0) for all i ∈ [n], with strict

inequalities for some i ∈ [n]. It is clear that Yi ⩾ 0 for all i ∈ [n]. By Theorem 9.1, we

can always find a nonnegative counter-monotonic allocation (Y ′
1 , . . . , Y

′
n) ∈ An(x) such that

Y ′
i ⩾cx Yi. As

∑n
i=1 Y

′
i = x, we have

Y ′
i = (x−m)1Bi

+mi for some m1, . . .mn ⩾ 0,m =
n∑

i=1

m ⩽ x, and (B1, . . . , Bn) ∈ Πn.

Furthermore, it is clear that the allocation
(
Ŷ1, . . . , Ŷn

)
= (x1B1 , . . . , x1Bn) ∈ An(x) satisfies

E
[
ui

(
Ŷi

)]
⩾ E [ui (Y

′
i )] ⩾ E[ui(Xi)] for all i ∈ [n] and E

[
ui

(
Ŷi

)]
> E[ui(Xi)] for some

i ∈ [n]. Let qi = P(Bi) for i ∈ [n] so we have
∑n

i=1 qi = 1. On the other hand, we also have

qiui(x) + (1− qi)ui(0) = E
[
ui

(
Ŷi

)]
⩾ E[u(Xi)] = piui(x) + (1− pi)ui(0)

for all i ∈ [n] and strictly inequalities hold for some i ∈ [n]. That is, we have qi ⩾ pi for all

i ∈ [n] and qi > pi for some i ∈ [n]. As a result,
∑n

i=1 qi >
∑n

i=1 pi = 1, a contradiction.

Hence, (X1, . . . , Xn) is Pareto optimal.

9.10.3 Proofs of Section 9.5

Proof of Proposition 9.5. The allocation (X1, . . . , Xn) is feasible because
∑n

i=1Xi = n− 1+

(X − (n − 1)) = X. Notice that since for all i ∈ [n − 1] it is P(Xi = 1) = 1 and since
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P(Xn ⩾ 1) = P(X ⩾ n) it holds that

n∑
i=1

ρi(Xi) =
n∑

i=1

P(Xi ⩾ 1) = n− 1 + P(X ⩾ n).

Consider an alternative allocation (Y1, Y2, . . . , Yn) that satisfies the feasibility condition
∑n

i=1 Yi =

X. It is

n∑
i=1

ρi(Yi) =
n∑

i=1

P(Yi ⩾ 1) = E

[
n∑

i=1

1{Yi⩾1}

]
⩽ n− 1 + P(X ⩾ n)

and (Y1, . . . , Yn) cannot strictly improve upon (X1, . . . , Xn).

Proof of Proposition 9.6. Suppose by contraposition that X∗ does not maximize f1(X). Re-

calling that maxX f1(X) = n− P(X < n) we have that

n− P(X < n) > E

[
n∑

i=1

1{X∗
i ⩾1}

]
=

n∑
i=1

pi

for pi = P(Xi ⩾ 1) ∈ [0, 1]. Rearranging the previous inequality yields
∑n

i=1(1−pi) > P(X <

n). Let λ1, . . . , λn be in decreasing order and notice that

n∑
i=1

λi(1− pi) ⩾
n∑

i=1

λn(1− pi) > λnP(X < n).

Rearranging the previous inequality we have

max
X

fλ (X) ⩾
n∑

i=1

λi − λnP(X < n) >
n∑

i=1

λipi = E

[
n∑

i=1

λi1{X∗
i ⩾1}

]
= fλ(X

∗),

and hence X∗ does not maximize fλ(X).

Proof of Proposition 9.7. Suppose by contradiction that (X1, . . . , Xn) is a comonotonic, fair

and optimal allocation.

Fairness implies that P(X1 ⩾ 1) = · · · = P(Xn ⩾ 1). We claim that comonotonicity of

X1, . . . , Xn implies that {Xi ⩾ 1} = {Xj ⩾ 1} for any i, j = 1, . . . , n; otherwise, there exist

ω ∈ {Xi ⩾ 1} \ {Xj ⩾ 1} and ω′ ∈ {Xj ⩾ 1} \ {Xi ⩾ 1} such that (Xi(ω)−Xj(ω))(Xi(ω
′)−

Xj(ω
′)) < 0. Therefore, P(Xi ⩾ 1) = P(X ⩾ n) for all i = 1, . . . , n. This implies

E

[
n∑

i=1

1{Xi⩾1}

]
= n(1− P(X < n)) < n− P(X < n)

which shows that (X1, . . . , Xn) is not optimal.
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Proof of Corollary 9.1. Assume that (X1, . . . , Xn) ∈ An(X) is a constrained Pareto-optimal

allocation. Let Ai = {Xi ⩾ 1}. As Xi ⩾ 0 and P(X < 2) = 1, we have P(Ai ∩Aj) = 0 for all

i, j ∈ [n] such that i ̸= j; otherwise, we will have P(X ⩾ 2) > 0. Let Bi =
(⋂n

j ̸=iA
c
j

)
∩ Ai.

It is clear that B1, . . . , Bn are disjoint. Furthermore,

P(Ai) = P(Bi) + P

(
Ai ∩

(
n⋃

j ̸=i

Aj

))
= P(Bi) + P

(
n⋃

j ̸=i

Ai ∩ Aj

)
= P(Bi).

Let X =
∑n

i=1Xi. Take the allocation

Yi = X1Bi
for i ∈ [n− 1] and Yn = X1Ω\

⋃n−1
i=1 Bi

.

It is clear that (Y1, . . . , Yn) ∈ An(X). Note that Bi ⊆ Ai ⊆ {X ⩾ 1} for i ∈ [n]. For

i ∈ [n− 1],

P(Yi ⩾ 1) = P(X1Bi
⩾ 1) = P ({X ⩾ 1} ∩Bi) = P(Bi) = P(Xi ⩾ 1).

For i = n, as Bn ⊆ Ω \
⋃n−1

i=1 Bi, we have

P(Yn ⩾ 1) = P

(
{X ⩾ 1} ∩

(
Ω \

n−1⋃
i=1

Bi

))
⩾ P(Bn) = P(Xn ⩾ 1).

Hence, ρi(Yi) ⩾ ρi(Xi) for all i ∈ [n]. As (X1, . . . , Xn) is Pareto optimal, we have ρi(Yi) =

ρi(Xi) for all i ∈ [n]

Proof of Proposition 9.8. Fairness implies that aE[X1]+P(X1 ⩾ 1) = · · · = aE[Xn]+P(Xn ⩾

1). We claim that comonotonicity of X1, . . . , Xn implies that {Xi ⩾ 1} = {Xj ⩾ 1} for any

i, j = 1, . . . , n; otherwise, there exist ω ∈ {Xi ⩾ 1}\{Xj ⩾ 1} and ω′ ∈ {Xj ⩾ 1}\{Xi ⩾ 1}

such that (Xi(ω) −Xj(ω))(Xi(ω
′) −Xj(ω

′)) < 0. Therefore, P(Xi ⩾ 1) = P(X ⩾ n) for all

i = 1, . . . , n. Summing we have

n∑
i=1

(aE[Xi] + P(Xi ⩾ 1)) = aE[X] +
n∑

i=1

P(Xi ⩾ 1) = aE[X] + nP(X ⩾ n).

Since P(X ⩾ n) < 1, the allocation (Y1, . . . , Yn) = (1AC
i
+ 1Ai

(X − (n − 1)))i∈[n] Pareto

dominates (X1, . . . , Xn), where (A1, . . . , An) ∈ Πn is such that P(Ai) = 1/n for all i ∈ [n].
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9.10.4 Proofs of Section 9.6

Proof of Corollary 9.2. Following the proof of Theorem 9.1, we have

P(Ai) = E[E[1Zi−1⩽U<Zi
|X1, . . . , Xn]] = E

[
Xi

X
1{X>0}

]
.

Since (X1, . . . , Xn) is exchangeable, we have P(Ai) = P(Aj) for all i ̸= j. Hence, (Y1, . . . , Yn) =

(X1A1 , . . . , X1An) is an exchangeable jackpot allocation with Yi ⩾cx Xi for all i ∈ [n]. As

A1, . . . , An are disjoint and (Y1, . . . , Yn) is exchangeable, we have

nP(Yi > 0) =
n∑

j=1

P(Yj > 0) ⩽ P

(
n⋃

i=1

Ai

)
= 1

for all i ∈ [n]. Hence, we have (iv).

Proof of Theorem 9.3. By Corollary 9.2, there exists an exchangeable jackpot allocation

(Y1, . . . , Yn) ∈ An(X) such that Yi ⩾cx Xi and P(Yi > 0) ⩽ 1/n for all i ∈ [n].

As h̄ ⩾ h, we have ρh(X) ⩽ ρh̄(X). Since P(Yi > 0) ⩽ 1/n, we have P(u(Yi) > 0) =

P(Yi > 0) ⩽ 1/n. Given that h = h̄ for t ∈ [0, 1/n], we have

ρh(Yi) =

∫ ∞

0

h (P (u(Yi) > t)) dt =

∫ ∞

0

h (P (u(Yi) > t)) dt = ρh(Yi).

As Yi ⩾cx Xi, we have u(Yi) = aYi ⩾cx aXi = u(Xi). By the fact that h̄ is concave, we

get ρh̄(Yi) ⩾ ρh̄(Xi). In conclusion, we have ρh(Xi) ⩽ ρh̄(Xi) ⩽ ρh̄(Yi) = ρh(Yi) for all

i ∈ [n].

9.10.5 Proofs of Section 9.7

Proof of Proposition 9.9. Suppose there is a j ̸= i such that aj = P . Then, it is clear

that v1Ai
>cx

vci∑
j∈Po cj

1⋃
j∈Po Aj

and by strict risk-aversion we have ρi (P, a−i) > ρi (H, a−i), as

desired.

Proof of Proposition 9.10. (i) If ci ⩽ p0 then by Assumption 9.3 we have

ρi(H, a−i) = ui(v)hi(ci) = ui

(
vci
ci

)
hi(ci) ⩾ ui

(
vci∑
j∈Po cj

)
hi

(∑
j∈Po

cj

)
= ρi(P, a−i).
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If there is at least one coplayer j ̸= i such that aj = P then the strict inequality obtains

whenever ϕy strictly decreases on (0, p0).

(ii) By concavity of u we have au(x/a) ⩾ bu(x/b) for a > b. Suppose there is a p∗ ∈ [0, 1]

for which h(t)/t is strictly increasing for t > p∗. If ci ⩾ p∗ and there is at least one agent in

the pool, we obtain

ρi(H, a−i) = ciui

(
vci
ci

)
hi(ci)

ci
<

(∑
j∈Po

cj

)
ui

(
vci∑
j∈Po cj

)
hi

(∑
j∈Po cj

)
∑

j∈Po cj
= ρi(P, a−i).

Hence, σi(a−i) = P .
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Chapter 10

Invariant correlation under marginal

transforms

10.1 Introduction

The (Pearson) correlation coefficient is one of the most popular measures of quantifying

the strength of statistical dependence. It is also called the linear correlation coefficient,

reflecting on the fact that it measures linear dependence among random variables. As such,

the correlation coefficient is preserved under common linear transforms. When non-linear

transforms are applied, the correlation coefficient typically changes except some specific

dependence structures such as independence. In fact, this invariance is a useful and notable

property of independent samples, and plays a fundamental role in statistics and probability

theory.

To define this invariance property more formally, a d-dimensional random vector X =

(X1, . . . , Xd) with Var(Xi) ∈ (0,∞), i ∈ [d] = {1, . . . , d}, is said to have an invariant

correlation matrix R = (rij)d×d if

Corr(Xi, Xj) = Corr(g(Xi), g(Xj)) = rij (10.1)

for all measurable functions g : R → R such that Corr(g(Xi), g(Xj)) is well defined for all

i, j ∈ [d]. Although this property appears strong, it is satisfied by some specific models
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existing in the literature. One example is the dataset with duplicate records, where some

individuals appear multiple times. Such a dataset may arise when the data are collected

from multiple sources and curated by multiple groups. This phenomenon of sample duplica-

tion also occurs in bootstrap samples where observations are resampled with replacement.

Another example is the conformal p-value, a useful statistical tool in machine learning and

non-parametric inference (Vovk et al., 2005). The recent work Bates et al. (2023) showed

that (10.1) holds for a set of null conformal p-values to discuss a broad class of combination

tests.

Motivated by these specific models, this chapter addresses the following questions. (i)

How large is the class of models with this invariance property? (ii) Whether and how is this

property connected to other dependence concepts? (iii) How can we leverage this property

in statistical applications? (iv) What if the invariance property is confined to a smaller class

of transforms relevant for applications, such as the class of monotone transforms?

Since (10.1) is essentially a bivariate property, we first focus on the case when d = 2. It

is straightforward to check that a pair of random variables (X, Y ) has an invariant correlation

r ∈ [−1, 1] if X and Y have an identical marginal F and their joint distribution H is given

by

H(x, y) = rmin(F (x), F (y)) + (1− r)F (x)F (y), x, y ∈ R. (10.2)

We say that this model or its distribution is r-Fréchet due to its connection to the Fréchet

copulas; see Denuit et al. (2005); Yang et al. (2006) for applications in risk modeling. If

r ∈ [0, 1], this model is a probabilistic mixture of comonotonic and independent cases, where

two random variables X and Y are said to be comonotonic if X = f(Z) and Y = h(Z)

for some random variable Z and two increasing functions f, h : R → R. All terms like

“increasing” and “decreasing” are in the non-strict sense in this chapter.

Since invariant correlation is a strong property, one may wonder whether models of

the form (10.2) are exhaustive. It turns out that this is not the case, but not far away

from the truth. As one of our main contributions, we give a complete characterization of all

bivariate random vectors having an invariant correlation (10.1) using the asymmetric analogs

of independence and the r-Fréchet model, which we call quasi-independence (Definition 10.2)
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Table 10.1: Summary of characterization results for bivariate distributions with invariant

correlation, where QI stands for quasi-independence, QF stands for the quasi-Fréchet model,

IN stands for independence, IS stands for models with identical marginal supports, and ∅

means no such model.

marginals F,G r = 0 r ̸= 0

F = G QI (Theorem 10.1/10.3) QF (Theorem 10.3)

F ̸= G

both are bi-atomic
IN (Proposition 10.4)

IS (Proposition 10.5)

precisely one is bi-atomic
∅ (Theorem 10.2)

both are not bi-atomic QI (Theorem 10.1)

and the quasi-r-Fréchet model (Definition 10.3), respectively. Our characterization results

are summarized in Table 10.1. We prove that zero invariant correlation is equivalent to quasi-

independence if neither of the marginals is bi-atomic (i.e., supported on two-points), and to

independence otherwise. We also find that, for non-identical marginals, non-zero invariant

correlation is not possible except when both marginals are bi-atomic. For the case of identical

marginals, it turns out that a model has a non-zero invariant correlation r if and only if it

is quasi-r-Fréchet. In particular, when X and Y are exchangeable (i.e., (X, Y )
d
= (Y,X),

where
d
= stands for equality in distribution), then the r-Fréchet model (10.2) characterizes

the model (X, Y ) with invariant correlation r.

Such a complete characterization cannot be expected for a general multivariate case

since (10.1) is a requirement on bivariate margins. For a general d ⩾ 2, we prove that the set

of all invariant correlation matrices attained by random vectors with continuous marginals

coincides with the clique partition polytope (Grötschel and Wakabayashi, 1990). Based on

this characterization, we provide a numerical procedure to check whether a given matrix is

admissible as an invariant correlation matrix. For k ∈ N and iid observations Y1, . . . , Yk from
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a continuous and strictly increasing distribution F , we then consider the model:

X = ΓY = (Z⊤
1 Y, . . . ,Z

⊤
d Y), where Γ = (Z1, . . . ,Zd)

⊤ and Y = (Y1, . . . , Yk)
⊤, (10.3)

with Zi, i ∈ [d], being {0, 1}k-valued Bernoulli random vector such that Z⊤
i Zi = 1 and

Γ being independent of Y. We show that the model (10.3) has an identical marginal F

and an invariant correlation matrix; moreover, for k ⩾ d, this model accommodates any

admissible invariant correlation matrix. In addition, we show that this model has positive

regression dependence (Lehmann, 1966), an important dependence concept for controlling

p-values in the context of multiple testing (Benjamini and Yekutieli, 2001). By associating

the model (10.3) with a dataset containing duplicate records, we then apply our results to the

problem of sample duplication, which is known to have adverse effects in statistical inference

and machine learning (Allamanis, 2019; Zhao et al., 2021). We exemplify how to leverage

the invariant correlation property of such a dataset for more efficient statistical inference.

In many applications, only increasing transforms of the random variables are relevant

since non-increasing transforms do not preserve the joint distribution of the ranks of the vari-

ables. In view of this, we also study a variant of invariant correlation where we require (10.1)

to hold only for increasing transforms instead of all transforms. By definition, this require-

ment is weaker than the original invariant correlation property (10.1). A natural question is

whether this formulation allows for more models than those characterized by (10.1). It turns

out that invariant correlation confined to increasing transforms does not accommodate more

models except for the case when both random variables are bi-atomic.

This chapter is organized as follows. In Section 10.2, we begin with introducing nota-

tion, definitions and basic properties of invariant correlation. Section 10.3 is then devoted to

a full characterization of invariant correlation in the bivariate setting. Invariant correlation

matrix is studied in Section 10.4, where a model admitting any prescribed invariant corre-

lation matrix is proposed. This section also explores positive regression dependence of this

model and an application to the problem of sample duplication. Section 10.5 provides the

characterization of invariant correlation under increasing transforms. Discussion and direc-

tions for future research are given in Section 10.6. Proofs and auxiliary results are deferred

to Sections 10.7 and 10.8.
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10.2 Definitions and basic properties

In this section, we provide definitions and basic properties of invariant correlation and

related models. We fix an atomless probability space (Ω,A,P) throughout this chapter.

Denote by L2 the set of all non-degenerate real-valued random variables with finite variance.

For d ∈ N, denote by B(Rd) the Borel σ-algebra on Rd. We also write 0d = (0, . . . , 0)⊤ and

1d = (1, . . . , 1)⊤ for the d-dimensional vector of zeros and ones, respectively. For a random

vector X, denote by FX its distribution function.

For X, Y ∈ L2, the Pearson correlation coefficient of (X, Y ) is

Corr(X, Y ) =
cov(X, Y )√
var(X)var(Y )

.

We are interested in the following invariance of correlation under certain transforms of (X, Y ).

In this context, we call a function g : R → R admissible (for (X, Y ), omitted if clear) if it is

measurable and Corr(g(X), g(Y )) is well defined, i.e., g(X), g(Y ) ∈ L2. Strictly monotone

functions with bounded derivatives are always admissible.

Definition 10.1. Let r ∈ [−1, 1]. A bivariate random vector (X, Y ) is said to have an

invariant correlation r if

Corr(X, Y ) = Corr(g(X), g(Y )) = r for all admissible functions g. (10.4)

The set of all bivariate random vectors with invariant correlation r is denoted by ICr.

Moreover, let IC =
⋃

r∈[−1,1] ICr, which is the set of all bivariate random vectors having any

invariant correlation.

The concept of invariance correlation can be naturally formulated dimension larger than

2. For d ⩾ 2, a d-dimensional random vectorX is said to have an invariant correlation matrix

R = (rij)d×d if (Xi, Xj) ∈ ICrij for every pair (i, j) ∈ [d]2. The set of all such random vectors

is denoted by ICR. For a distribution function H on Rd, we write X ∼ H if X is distributed

according to H, and H ∼ ICR means X ∈ ICR for some X ∼ H. Denote by ICd =
⋃

R∈Pd
ICR

the collection of all d-dimensional random vectors with invariant correlation matrix, where

Pd is the set of all d × d correlation matrices. A measurable function g is admissible for X

if g(Xi) ∈ L2 for each i ∈ [d]. Note that IC2 = IC is a special case. Although the problem
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of invariance correlation is more general in dimension d ⩾ 2, its theoretical challenge lies

mostly in the case d = 2, because the correlation coefficient is naturally a bivariate concept.

Let us first look at a few basic examples of invariant correlation.

Example 10.1. If a d-dimensional random vector X = (X1, . . . , Xd) is independent, then so

is (g(X1), . . . , g(Xd)) for every measurable g. Hence, we have X ∈ ICId , where Id = diag(1d).

In dimension d = 2, we have (X1, X2) ∈ IC0.

Example 10.2. Suppose that A is a random event with P(A) = r ∈ I, and let X =

(X, . . . , X) and X⊥ = (X1, . . . , Xd), where X,X1, . . . , Xd are iid random variables indepen-

dent of A. Let

Y = (Y1, . . . , Yd) = X1A +X⊥1Ac . (10.5)

It is easy to verify that, for i, j ∈ [d], i ̸= j, and for every admissible g,

Corr(g(Yi), g(Yj)) =
cov(g(Yi), g(Yj))

var(g(X))
=

var(g(X))P(A)
var(g(X))

= P(A) = r.

Hence, we have Y ∈ ICd where all off-diagonal elements in the invariant correlation matrix

equal r.

The following simple properties follow directly from the definition of invariant correla-

tion, and will be used repeatedly in the subsequent analyses.

Proposition 10.1. If X = (X1, . . . , Xd) ∈ ICR for R ∈ Pd and h is an admissible function

for X, then (h(X1), . . . , h(Xd)) ∈ ICR.

For a d-dimensional random vector X, its copula C is a distribution function on [0, 1]d

with standard uniform marginals such that FX(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) for

(x1, . . . , xn) ∈ Rn, where F1, . . . , Fn are the marginals of X; see Joe (2014) for background

on copulas. A copula of X is unique on Ran(F1)×· · ·×Ran(Fd), where Ran(F ) is the range

of a distribution funtion F . In particular, if X has continuous marginals, then its copula

is unique. It is known that every d-dimensional copula C satisfies Wd(u) ⩽ C(u) ⩽ Md(u)

for all u = (u1 . . . , ud) ∈ Id, where Wd(u) = max(u1 + · · · + ud + 1 − d, 0) and Md(u) =

min(u1, . . . , ud) are called Fréchet bounds. Note that Md is a d-dimensional copula for every
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d ⩾ 2, and Wd is a copula only when d = 2. These bounds, together with the independence

copula Πd(u) =
∏d

i=1 ui, u ∈ Id, play fundamental roles in dependence analysis.

For d = 2, we write M = M2, Π = Π2 and W = W2 in short. A (bivariate) Fréchet

copula is a 2-dimensional copula defined as

CF
r,s(u, v) = rM(u, v) + sW (u, v) + (1− r − s)Π(u, v), (u, v) ∈ I2, (10.6)

which is parametrized by r, s ∈ I such that r + s ⩽ 1. If s = 0 in (10.6), a Fréchet copula

is called positive and we denote it by CF
r . In fact, when d = 2 and the identical distribution

of X,X1, X2 in Example 10.2 is continuous, then X and X⊥ has the copula M and Π,

respectively. Moreover, the copula of Y is the positive Fréchet copula CF
r . It is easy to see

that a bivariate random vector (Y1, Y2) has a positive Fréchet copula CF
r if and only if the

stochastic representation (10.5) with d = 2 holds almost surely for some event A such that

P(A) = r.

Let X be a random vector with continuous and identical marginals. A useful conse-

quence of Proposition 10.1 is that it suffices to consider the copula of X to analyze invariant

correlation of X.

Corollary 10.1. Suppose that X ∼ H has identical continuous and strictly increasing

marginals, a correlation matrix R ∈ Pd and a copula C. Then H ∼ ICR if and only if

C ∼ ICR.

We next introduce some special structures on bivariate distributions, which turn out to

be equivalent to invariant correlation in Sections 10.3 and 10.5. We first present a concept

of dependence which is close to independence.

Definition 10.2. We say that a random vector (X, Y ) ∼ H with marginals F and G is

quasi-independent if

H(x, y) +H(y, x) = F (x)G(y) + F (y)G(x) for all x, y ∈ R. (10.7)

By a standard probabilistic argument, (10.7) is equivalent to

P(X ∈ A, Y ∈ B) + P(X ∈ B, Y ∈ A) = P(X ∈ A)P(Y ∈ B) + P(X ∈ B)P(Y ∈ A) (10.8)
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for all A,B ∈ B(R); see Lemma 10.1 in Section 10.8.1. Clearly, independence implies quasi-

independence, but the opposite implication is not true. Quasi-independence plays an impor-

tant role in characterizing the dependence structure for (X, Y ) ∈ IC0.

We then consider an extension of the positive Fréchet copula so that the marginals are

not standard uniform and the dependence structure is not exchangeable. Note, however,

that the marginal distributions are assumed to be identical in the following concept.

Definition 10.3. Let (X, Y ) be a random vector with identical marginal F and joint distri-

bution H. We say that (X, Y ) is quasi-r-Fréchet for some r ∈ [−1, 1] if

H(x, y) +H(y, x)

2
= rmin(F (x), F (y)) + (1− r)F (x)F (y), for all x, y ∈ R. (10.9)

The need to introduce quasi-independence and quasi-Fréchet model stems from the

permutation invariance of the correlation coefficient Corr(X, Y ) = Corr(Y,X), that is, corre-

lation coefficient does not capture directional (non-exchangeable) dependence. Note that we

require identical marginals of (X, Y ) in the quasi-Fréchet model, but no such requirement is

imposed on quasi-independence. When (X, Y ) has an identical marginal, the quasi-Fréchet

model with r = 0 reduces to quasi-independence.

Denote by µ, µ+ and µ⊥ the probability measures induced by the cumulative distribution

functions H, H+ and H⊥, respectively, where H+(x, y) = min(F (x), F (y)) and H⊥(x, y) =

F (x)F (y), (x, y) ∈ R. By the standard measure-theoretic argument (see Lemma 10.2 in

Section 10.8.1), we have that the condition (10.9) is equivalent to

µ(A×B) + µ(B × A)

2
= rµ+(A×B) + (1− r)µ⊥(A×B), for all A,B ∈ B(R). (10.10)

The term “quasi-Fréchet” reflects its connection to the Fréchet copula in (10.6), although

here r may be negative. When (X, Y ) is exchangeable, the quasi-r-Fréchet model reduces

to (10.2), which again yields the positive Fréchet copula CF
r when the identical marginal is

the standard uniform.
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10.3 Bivariate invariant correlation

In this section we focus on the bivariate case d = 2. We will characterize dependence

structures of bivariate random vectors (X, Y ) with invariant correlation. The main results

of this section are summarized in Table 10.1. For a random variable X, the support of the

distribution of X is given by Supp(X) = {x ∈ R : P(x− ϵ < X ⩽ x+ ϵ) > 0 for all ϵ > 0}.

10.3.1 Zero invariant correlation

We first characterize the joint distribution in the case (X, Y ) has an invariant correlation

0. As we will see later, this case is fundamentally different from the case r ̸= 0.

In Example 10.1, we have seen that (X, Y ) ∈ IC0 if (X, Y ) is independent. A natural

first question is whether independence is the only possibility for IC0. In the next result, we

show that zero invariant correlation is equivalent to quasi-independence.

Theorem 10.1. For X, Y ∈ L2, (X, Y ) ∈ IC0 if and only if (X, Y ) is quasi-independent.

For a random vector (X1, X2), we call (Xπ1 , Xπ2) the random rearrangement of (X1, X2),

where (π1, π2) is a random vector uniformly distributed on {(1, 2), (2, 1)} independent of

(X1, X2). Although quasi-independence does not imply independence, the following propo-

sition shows that quasi-independence of (X1, X2) implies independence of its random rear-

rangement if X1 and X2 have the same distribution.

Proposition 10.2. Suppose that X1, X2 ∈ L2 have the same distribution. Then (X1, X2) ∈

IC0 if and only if its random rearrangement is independent.

In particular, if (X1, X2) is exchangeable, that is, (X2, X1)
d
= (X1, X2), then zero invari-

ant correlation is equivalent to independence.

Let |A| be the cardinality of a set A ⊆ R; |A| = ∞ if A is infinite. A random variable

X is n-atomic if |Supp(X)| = n; that is, its distribution is supported on n distinct points.

We use the term “bi-atomic” in case n = 2 and “tri-atomic” in case n = 3. These terms are

applied to both random variables and their distributions. Theorem 10.1 identifies the joint

distribution of (X, Y ) ∈ IC0 when X and Y are atomic random variables.
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Proposition 10.3. Suppose X is m-atomic and Y is n-atomic with 2 ⩽ m ⩽ n. Let

P = (pij)n×n with pij = P(X = xi, Y = yj) for i ∈ [m], j ∈ [n] and pij = 0 for m < i ⩽ n,

j ∈ [n], p = P1n and q = P⊤1n. Then the followings are equivalent.

(i) (X, Y ) ∈ IC0.

(ii) P + P⊤ = pq⊤ + qp⊤.

(iii) P = pq⊤ + S, where S = (sij)n×n satisfies: (a) piqj + sij ⩾ 0 for each (i, j); (b) each

of its row sums and column sums is 0; and (c) sij = −sji for each (i, j), i.e., S is

anti-symmetric.

For the special casem = n = 3 and xi = yi for i ∈ [3], we have an explicit representation

for the probability matrix P in Example 10.3.

Example 10.3. Assume that X and Y are tri-atomic random variables with identical sup-

ports. Then, (X, Y ) ∈ IC0 if and only if the probability matrix is given by P = pq⊤ + S,

where S = (sij)3×3 is an anti-symmetric matrix such that sii = 0 for i ∈ [3] and s12 = s23 =

s31 = ϵ ∈ [−min(p1q2, p2q3, p3q1),min(p1q3, p2q1, p3q2)].

By taking p1 ↓ 0, we have ϵ → 0 in Example 10.3. Hence, it is expected that zero

invariant correlation is characterized by independence if one of the marginals is bi-atomic.

This is formally stated in the next proposition.

Proposition 10.4. Let X, Y ∈ L2 where X is bi-atomic. If (X, Y ) is quasi-independent,

then (X, Y ) is independent. In particular, (X, Y ) ∈ IC0 if and only if (X, Y ) is independent.

At this point, we have fully characterized zero invariant correlation and its relation to

independence. Next, we consider general invariant correlation r for r ∈ [−1, 1].

10.3.2 Invariant correlation with non-identical marginals

The main message of this section is that, for X and Y with different marginals, having

a non-zero invariant correlation is impossible, except for the very special case of bi-atomic

distributions.
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First, suppose that X and Y are bi-atomic random variables. The following result shows

that (X, Y ) ∈ IC ifX and Y have the same support. In this case, the invariant correlation can

be any number in [−1, 1]. In particular, we have that Corr(X, Y ) = 1 implies comonotonicity,

Corr(X, Y ) = 0 implies independence, and Corr(X, Y ) = −1 implies counter-monotonicity

(i.e., X and −Y are comonotonic). However, if X and Y have different supports, then

independence is the only possible case of invariant correlation.

Proposition 10.5. Let X and Y be bi-atomic random variables. Then (X, Y ) ∈ IC if and

only if either (i) X and Y have the same support, or (ii) (X, Y ) is independent.

Note that case (ii) in Proposition 10.5 is equivalent to zero invariant correlation. There-

fore, for a pair of bi-atomic random variables, ICr for r ̸= 0 is characterized as the set of all

models with identical marginal supports.

Next, we obtain the following observations by carefully investigating tri-atomic models;

see Lemma 10.4 in Section 10.8.3 for details.

(i) For bi-atomic X and tri-atomic Y such that Supp(X) ⊊ Supp(Y ), we have (X, Y ) ∈ IC

if and only if (X, Y ) ∈ IC0.

(ii) Let X and Y be tri-atomic random variables with the same support. If (X, Y ) ∈ IC,

then FX = FY or Corr(X, Y ) = 0.

If X and Y are general random variables with different distributions, then we can take h

in Proposition 10.1 to transform X and Y into bi-atomic or tri-atomic random variables, so

that we can apply Proposition 10.5 and the above observations (i) and (ii). This argument

leads to the main result of this section.

Theorem 10.2. Suppose that X, Y ∈ L2 have different distributions and |Supp(Y )| > 2.

Then (X, Y ) ∈ IC if and only (X, Y ) ∈ IC0 (which is characterized in Theorem 10.1).

Together with Proposition 10.5, Theorem 10.2 characterizes all (X, Y ) ∈ IC with

different marginals. In particular, the only possibility for having different marginals in

(X, Y ) ∈ ICr, r ̸= 0, is that X and Y are both bi-atomic.
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10.3.3 Invariant correlation with identical marginals

In this section we explore the remaining case of (X, Y ) ∈ IC where FX = FY . We

start with n-atomic random variables X and Y . Assume that X and Y take values in X =

{x1, . . . , xn}, n ∈ N, with x1 < · · · < xn. Define the n×n probability matrix P = (pij)n×n of

(X, Y ) as pij = P(X = xi, Y = xj). Let p = P1n be the marginal probability ofX and Y . Let

D = diag(p). For x = (x1, . . . , xn)
⊤, we have E[X] = E[Y ] = x⊤p, E[X2] = E[Y 2] = x⊤Dx,

E[XY ] = x⊤Px, and thus the Pearson correlation coefficient of (X, Y ) is given by

Corr(X, Y ) =
x⊤Px− x⊤pp⊤x√

x⊤Dx− x⊤pp⊤x
√
x⊤Dy − x⊤pp⊤x

=
x⊤(P − pp⊤)x

x⊤(D − pp⊤)x
.

Proposition 10.6. Let X and Y be identically distributed n-atomic random variables. Then

(X, Y ) ∈ ICr for some r ∈ [−1, 1] if and only if (X, Y ) is quasi-r-Fréchet, that is, the

probability matrix P satisfies

P + P⊤

2
= rD + (1− r)pp⊤. (10.11)

Furthermore, the invariant correlation r satisfies

rp ⩽ r ⩽ 1, where rp = max

(
max
j∈[n]

(
− pj
1− pj

)
, max
i,j∈[n],i ̸=j

(
1− 1

pipj

))
. (10.12)

If (X, Y ) in Proposition 10.6 is exchangeable, then P⊤ = P in (10.11), which yields

P = rD + (1− r)pp⊤. That is, P is r-Fréchet as defined in (10.2).

Remark 10.1. We show that −1/(n − 1) ⩽ rp < 0 for any p. The upper bound for rp is

trivial since all terms in rp are negative. Since

max
j∈[n]

(
− pj
1− pj

)
= −

(
1

min(p1, . . . , pn)
− 1

)−1

, (10.13)

we have rp ↑ 0 if min(p1, . . . , pn) ↓ 0. To show the lower bound for rp, notice that the

minimum of (10.13) is −1/(n − 1) when min(p1, . . . , pn) = 1/n, and this is attained if and

only if pi = 1/n, i ∈ [n]. Consequently, we have the lower bound −1/(n− 1). Note that, for

p ̸= (1/n)1n, (10.13) is strictly greater than −1/(n− 1) and thus rp > −1/(n− 1).

We next present the main result of this section, which covers the case when X and Y

have identical marginals.
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Theorem 10.3. Let X, Y ∈ L2 be identically distributed. Then (X, Y ) ∈ ICr if and only if

(X, Y ) is quasi-r-Fréchet.

As seen in Proposition 10.6 and Remark 10.1, the invariant correlation r can be negative

when the support of F is finite. On the other hand, we will see that r ⩾ 0 if X ∼ F is

continuous or the support of X is countable but infinite.

Next, we consider the case when the support of X and Y is discrete, that is, X = {xi :

i ∈ I}, I ⊆ N. Write P(X = xi, Y = xj) = pij > 0, i, j ∈ I, and P(X = xi) = pi > 0, i ∈ I.

In this special case, Theorem 10.3 can be stated in the following form, which is more general

than Proposition 10.6 since |X | = ∞ is allowed. For identically distributed discrete random

variables X and Y , we have (X, Y ) ∈ ICr for some r ∈ [−1, 1] if and only if

pij + pji
2

= rpi1{i=j} + (1− r)pi pj for all i, j ∈ I, (10.14)

with rp ⩽ r ⩽ 1, where

rp = max

{
sup
j∈I

(
− pj
1− pj

)
, sup
i,j∈I,i ̸=j

(
1− 1

pipj

)}
.

In particular, if |X | = ∞, we have infi∈I pi = 0, and hence rp = 0 and 0 ⩽ r ⩽ 1.

Next, we consider the case when FX = FY = F for a continuous and strictly increasing

distribution F . Let (U, V ) = (F (X), F (Y )) ∼ C be the unique copula of (X, Y ). By using

Corollary 10.1, Theorem 10.3 can be stated as follows.

Corollary 10.2. Suppose that X and Y have identical continuous and strictly increasing

marginals. Then the following are equivalent:

(i) (X, Y ) ∈ ICr;

(ii) the copula C of (X, Y ) satisfies

C(u, v) + C(v, u)

2
= rM(u, v) + (1− r)Π(u, v) for all (u, v) ∈ I; (10.15)

(iii) r ∈ [0, 1] and the positive Fréchet copula CF
r is the copula of the random rearrangement

of (X, Y ).

308



Unlike the case of atomic random variables, negative invariant correlation is not possible

when the support of X and Y is uncountable. By Corollary 10.2, the positive Fréchet copula

CF
r is characterized as an exchangeable copula with invariant correlation r. Non-exchangeable

copulas satisfying (10.15) are constructed in the next example.

Example 10.4. For r ∈ I, let P be a 3 × 3 stochastic matrix such that (P + P⊤)/2 =

(1/9)131
⊤
3 . Let CP be the checkerboard copula (see Section 4.1.1 of Durante and Sempi

(2016)) associated with P with the interior of each grid filled by the independence copula. Let

C = rM +(1− r)CP . Then it is straightforward to check that the copula C satisfies (10.15).

On the other hand, C may not be a Fréchet copula since CP is not exchangeable when P is

not symmetric.

10.4 Invariant correlation matrices

In this section, we study invariant correlation matrices as the multivariate extension of

invariant correlation in dimension 2.

10.4.1 Characterization of invariant correlation matrices

Recall that a d-dimensional random vector X has an invariant correlation matrix R =

(rij)d×d if every pair (i, j) of its components has an invariant correlation rij for i, j ∈ [d]. We

confine ourselves to the case when X is continuous and its marginals are identical. Denote

by Θd the set of all possible d × d invariant correlation matrices of continuous random

vectors with identical marginals. Our goal in this section is to understand the set Θd and its

corresponding models.

For continuous marginals, Corollary 10.2 immediately leads to the following result. For

a d-copula C and i, j ∈ [d], i ̸= j, its (i, j)th marginal is denoted by Cij.

Proposition 10.7. For a continuous d-dimensional random vector X with identical marginals,

X ∈ ICd holds if and only if for every i, j ∈ [d] with i ̸= j, there exists rij ∈ [0, 1] such that

309



the copula Cij of (Xi, Xj) satisfies

Cij + Cji

2
= rijM + (1− rij)Π.

Let k ∈ N. For i ∈ [d], let Zi = (Zi1, . . . , Zik)
⊤ be a {0, 1}k-valued Bernoulli random

vector with Z⊤
i Zi = 1. In other words, Zi has a categorical distribution with

∑k
j=1 Zij = 1.

Write the matrix Γ = (Zij)d×k, and call it a d × k categorical random matrix. Let U be

an independent uniform random vector on [0, 1]k independent of Γ. Consider the following

model

X = ΓU = (Z⊤
1 U, . . . ,Z

⊤
d U). (10.16)

We first show that X has an invariant correlation matrix.

Proposition 10.8. For X in (10.16), the following statements hold:

(i) X has standard uniform marginals;

(ii) X has an invariant correlation matrix;

(iii) The correlation matrix of X (equal to its tail-dependence matrix) is given by E[ΓΓ⊤].

Example 10.5. Take k = d+1 and let Zij = 0 for all j ∈ [d]\{i}. This implies Zik = 1−Zii

for i ∈ [d]. For this model, we have Xi = ZiiUi + ZikUd+1 = (1 − Zik)Ui + ZikUd+1, i ∈ [d],

and the correlation coefficient between Xi and Xj is given by E[ZikZjk].

Remark 10.2. Let Y = (Y1, . . . , Yk)
⊤ be iid observations from a continuous and strictly

increasing distribution F , and let Γ be as in (10.16) independent of Y. As an immediate

consequence from Proposition 10.8, the model

ΓY = (Z⊤
1 Y, . . . ,Z

⊤
d Y) (10.17)

has an identical marginal distribution F and an invariant correlation matrix E[ΓΓ⊤].

Denote by Zd,k the set of all matrices of the form E[ΓΓ⊤] for some d × k categorical

random matrix Γ. Proposition 10.8 indicates that Zd,k is a subset of Θd. Lemma 10.6 in

Section 10.8.5 shows that Zd,k is the convex hull of the collection of all clique partition
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points (Grötschel and Wakabayashi, 1990; Fiebig et al., 2017), which we will explain below.

Let A = (A1, . . . , Ak) be a partition of [d], where some of As, s ∈ [k], may be empty. The

clique partition point ΣA = (ΣA
ij )d×d for the partition A = (A1, . . . , Ak) of [d] is defined as

ΣA
ij =

k∑
s=1

1{i,j∈As}, i, j ∈ [d]. (10.18)

In other words, ΣA can be decomposed into disjoint submatrices of all entries 1 and the other

entries are 0. We can verify that ΣA ∈ Zd,k, as it is the correlation matrix of the following

model of the form (10.16):

XA
i =

k∑
s=1

1{i∈As}Us, i ∈ [d]. (10.19)

Denote by Sd,k the collection of all possible clique partition points (10.18) for all possible

k partitions of [d]. In what follows we characterize Θd in terms of Zd,k and Sd,k.

Theorem 10.4. For d ⩾ 2, Θd = Zd,d =
⋃

k∈N Zd,k = Conv(Sd,d).

The set Conv(Sd,d) is called the clique partition polytope in dimension d, which is known

to be relevant to matrix compatibility of other dependence measures; see Section 10.7.1 for

details. Theorem 10.4 implies that all invariant correlation matrices are realized by the model

(10.16). Nevertheless, not all exchangeable random vectors with an invariant correlation

matrix can be represented by (10.16). For instance, any d-dimensional random vector with

pairwise independent components has an invariant correlation matrix Id but is not necessarily

modelled by (10.16). Generally, it is not possible to completely identify a multivariate model

from bivariate properties. A class of copulas whose bivariate marginals are Fréchet copulas

is studied by Yang et al. (2009).

We next consider the membership testing problem of Θd, which aims at determining

whether a given correlation matrix R = (rij)d×d belongs to Θd; that is, R is realized as an

invariant correlation matrix of some d-dimensional random vector. Note that the number of

vertices of the clique partition polytope equals the number of different partitions of [d], and

this number is known as the Bell number Nd, which can be computed explicitly (Grötschel

and Wakabayashi, 1990). The number Nd grows rapidly in d. For example, N3 = 5, N4 = 15,

311



N5 = 52 and N10 > 105. By Theorem 10.4, we have R = (rij)d×d ∈ Θd if and only if

there exists α1, . . . , αNd
⩾ 0 such that

∑Nd

k=1 αk = 1 and
∑Nd

k=1 αkΣ
(k) = R, where Sd,d ={

Σ(k) : k ∈ [Nd]
}
, Σ(k) = (σ

(k)
ij )d×d, is a collection of all vertices of the clique correlation

polytope. These linear constraints on α can be summarized into Vdα = r̃, where r̃ ∈ [0, 1]d̃

and Vd ∈ {0, 1}d̃×Nd are defined in (10.21) and (10.22) below with d̃ = 1 + d(d − 1)/2. By

introducing an auxiliary variable z ∈ Rd̃, a given correlation matrix R = (rij)d×d ∈ [0, 1]d×d

is in Θd if and only if the following linear program attains zero:

min
z∈Rd̃,α∈RNd

1⊤
d̃
z subject to

Vdα+ z = r̃,

α ⩾ 0Nd
and z ⩾ 0d̃,

(10.20)

where

r̃ = (r12, r13, r23, . . . , rd−1 d, 1) (10.21)

and

Vd =



σ
(1)
12 σ

(2)
12 · · · σ

(Nd)
12

σ
(1)
13 σ

(2)
13 · · · σ

(Nd)
13

σ
(1)
23 σ

(2)
23 · · · σ

(Nd)
23

...
...

...
...

σ
(1)
(d−1) d σ

(2)
(d−1) d · · · σ

(Nd)
(d−1) d

1 1 · · · 1


. (10.22)

Note that any correlation matrix with at least one negative entry is immediately excluded

from Θd. For R = (rij)d×d ∈ [0, 1]d×d, the set of constraints in (10.20) is always nonempty

since it contains the pair (α, z) = (0Nd
, r̃). The above linear program is solved, for example,

with the R package lpSolve although it can be computationally demanding for large d.

Remark 10.3. Suppose that the linear program (10.20) attains 0 at α = α∗ for a given

correlation matrix R = (rij)d×d. Then one can simulate a d-dimensional random vector with

invariant correlation R as a mixture of the models of the form (10.19) with α∗ being the

vector of mixture weights to {Σ(k) : k ∈ [Nd]}.

10.4.2 Relationship to positive regression dependence

Positive regression dependence (Lehmann, 1966) is a concept of dependence known to
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be useful to control the false discovery rate (FDR) through the procedure of Benjamini

and Hochberg (1995) in the context of multiple testing (Benjamini and Yekutieli, 2001). In

this section, we explore the relationship between this dependence property and invariant

correlation.

We start with the definition. A set A ⊆ Rd is said to be increasing if x ∈ A implies

y ∈ A for all y ⩾ x.

Definition 10.4. A d-dimensional random vector X = (X1, . . . , Xd) is said to have positive

regression dependence on the subset N ⊆ [d] (PRDS) if for any index i ∈ N and increasing

set A ⊆ Rd, the function x 7→ P(X ∈ A | Xi = x) is increasing. The case of N = [d] is

simply called positive regression dependence (PRD).

Let us first consider d = 2. A direct consequence from Lemma 10.2 in Section 10.8.1

is that every exchangeable random vector (X1, X2) with invariant correlation r ⩾ 0 is PRD

since (10.10) implies that, for every increasing set A and x ∈ R, P ((X1, X2) ∈ A | X1 = x) =

r1{(x,x)∈A}+(1−r)P ((x,X2) ∈ A), which is increasing in x. Note, however, that without ex-

changeability PRD is not implied by invariant correlation; see Example 10.8 in Section 10.7.3.

For d ⩾ 3, there also exists an exchangeable model which has an invariant correlation

matrix with non-negative entries but does not have PRD; this is reported in Example 10.9

in Section 10.7.3. Therefore, a dependence structure admitting an invariant correlation

matrix does not imply PRD even if exchangeability is additionally assumed. This is not

surprising as invariant correlation is essentially a pairwise property, and pairwise dependence

does not determine overall dependence. Nevertheless, the next proposition shows that the

model (10.16) has PRD, and hence also PRDS for any subset N ⊆ [d]. Together with

Theorem 10.4, this result indicates that every invariant correlation matrix admits a model

with PRD.

Proposition 10.9. The random vector X = ΓU in (10.16) has PRD.

Since both the properties of PRD and invariance correlation are preserved under in-

creasing transforms, we immediately obtain that the model

X = ΓV, where V = (V1, . . . , Vd)
⊤ and Vi = g(Ui) for i ∈ [d], (10.23)
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has PRD and an invariant correlation matrix for any increasing and admissible g with g(0) =

0. For example, by choosing g(x) = ⌈nx⌉/n, we obtain the discrete version of (10.16) where

V1, . . . , Vd are independent and uniformly distributed on [n]/n.

10.4.3 Application to the problem of sample duplication

Sample duplication is the phenomenon that some sample is repeated several times in

the dataset. It occurs typically when the data is collected from multiple sources and curated

by multiple groups. The presence of duplicate records has adverse effects when, for example,

training or testing machine learning algorithms (Allamanis, 2019; Zhao et al., 2021). A

simple solution to this problem is to de-duplicate the data by deleting such multiple records,

which is also referred to as record linkage, reference matching and copy detection; see Heidari

et al. (2020) and the references therein. However, de-duplication is not always feasible due

to the time complexity where it commonly requires to measure similarity of samples for each

pair of records. To solve this issue, various alternative approaches have been considered by

leveraging some structures and specific assumptions on the frequency of sample duplication.

Yet, it is a non-trivial task to verify these specific structures and assumptions Xie et al.

(2013); Heidari et al. (2020). In this section, we demonstrate the benefit of modeling the

correlation matrix of the duplication structure for stable statistical inference in the presence

of sample duplication.

We focus on the approach of using the original dataset with duplicate records, and

propose a versatile method to reduce adverse effects of sample duplication in the general

context of optimization problem. We associate the dataset X = (X1, . . . , Xd), possibly

containing duplicate records, with the form (10.17). For a continuous and strictly increasing

function F , suppose that we are interested in estimating E[S(Y ;θ)] =
∫
S(y;θ)F (dy) based

on the observations from F , where θ ∈ Rq is a vector of parameters and S : R× Rq → R is

a loss function.

We define several random elements. For the random set of indices I = {j ∈ [k] :

there exists i ∈ [d] such that Zij = 1}, the size of iid samples with no duplicate record is

given by N = |I|. In addition, let Wj =
∑d

i=1 Zij be the number of times the jth sample in
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Y appears in the dataset X. By its definition, it holds that
∑

j∈[k]Wj = d.

The empirical average score based on the dataset X can be decomposed as follows (Al-

lamanis, 2019; Zhao et al., 2021):

1

d

∑
i∈[d]

S(Xi;θ) =
1

d

∑
j∈[k]

Wj S(Yj;θ) =
N

d

1

N

∑
j∈I

S(Yj;θ) +
d−N

d

1

d−N

∑
j∈I

(Wj − 1) S(Yj;θ),

(10.24)

where the terms (d−N)/d and (1/(d−N))
∑

j∈I(Wj−1) S(Yj;θ) are called duplication factor

and duplication bias, respectively. Moreover, (1/N)
∑

j∈I S(Yj;θ) is the term estimating the

score with iid observations.

Despite these terms used in the literature, any convex combination of the form:∑
i∈[d]

λi S(Xi;θ) where λ = (λ1, . . . , λd) ∈ Rd are such that
∑
i∈[d]

λi = 1, (10.25)

which includes (10.24) with λ = 1d/d, is an unbiased estimator of E[S(Y ;θ)] by Remark 10.2.

However, an adverse effect of sample duplication lies in the variance of the estimator since

the variance of (10.24) is inflated as follows:

Var

1

d

∑
i∈[d]

S(Xi;θ)

 =

1 +
2

d

∑
i,j∈[d] i<j

Corr(Xi, Xj)

Var

1

d

∑
i∈[d]

S(Yi;θ)

 .

Let Σ = Cov(X) and P = Corr(X). It is well-known that the minimum variance

unbiased estimator among those of the form (10.25) is uniquely attained when

λ∗ =
1⊤
d Σ

−1

1⊤
d Σ

−11d

=
1⊤
d P

−1

1⊤
d P

−11d

,

with the minimum variance given by (1⊤
d Σ

−11d)
−1. This optimally weighted estimator is

available when we specify the correlation structure of the dataset, for example, by assuming or

inferring the underlying duplication structure. Since the correlation matrix of X is invariant

under any transform as in Remark 10.2, the same optimal weight λ∗ can be used for any

scoring function S evaluated at any point θ.

Example 10.6 (A small simulation study). Suppose that X follows the model (10.17),

where d = k = 1000 and F is the standard normal distribution. For k∗ ∈ [k], let Z1, . . . ,Zd
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independently follow Multi(1,pi) with pi = (1k∗ ,0k−k∗)/k
∗ for i ∈ [d/2] and pi = ei for

i ∈ [d]\[d/2]. In this model, the first group [d/2] contains duplicate records and the second

group [d]\[d/2] consists of iid observations. With this duplication structure, Corr(Xi, Xj)

is 1/k∗ if i, j ∈ [d/2] and is 0 otherwise. Let S(x; θ) = (x − θ)2, x, θ ∈ R, be the squared

loss. We then estimate E[S(X; θ)], X ∼ F , evaluated at θ = 0 by (10.25) with λ = 1d/d

and λ = λ∗, respectively. To check the stability of these estimators, we generate n = 1000

independent replications of these estimates. For k∗ = 10, 50, 100, we find that the sample

variances of the estimates with the optimal weight λ = λ∗ are reduced by 92%, 71%, 51%,

respectively, compared to those with λ = 1d/d.

When the correlation matrix is estimated or given externally, it may be necessary to

check its eligibility, that is, the existence of a model of duplication structure admitting

the specified correlation matrix. Such a numerical procedure is provided in Section 10.4.1

although it turned out to be computationally demanding if no specific structure of correlation

matrix is assumed.

10.5 Invariant correlation under increasing transforms

In many applications, only increasing transforms of the random variables are relevant,

as non-increasing transforms do not preserve the copula among random variables. In view

of this, we study a variant of invariant correlation where we require (10.4) to hold only for

increasing transforms, instead of all transforms. By definition, this requirement is weaker

than invariant correlation defined in Section 10.2. The interesting question is then whether

this formulation allows for more models than those characterized in Section 10.3.

Definition 10.5. Let r ∈ [−1, 1]. A bivariate random vector (X, Y ) is said to have an in-

variant correlation r under increasing transforms if (10.4) holds for all admissible increasing

functions g. The set of all such random vectors is denoted by IC↑
r.

Denote by IC↑ =
⋃

r∈[−1,1] IC
↑
r. Note that ICr ⊆ IC↑

r for every r ∈ [−1, 1], and IC ⊆ IC↑

by their definitions.
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Table 10.2: Relationship between IC and IC↑, where IC ⊆ IC↑ always holds. The abbrevia-

tions mean sets corresponding to those in Table 10.1. Note that QI is equivalent to IN if at

least one of the marginals is bi-atomic (Proposition 10.4). We slightly abuse the notation so

that equality is understood between corresponding subsets.

Marginals F,G r = 0 r ̸= 0

F = G

IC0 = IC↑
0 = QI

(Theorem 10.5)

ICr = IC↑
r = QF (Theorem 10.5)

F ̸= G
both bi-atomic ICr ̸= IC↑

r (Example 10.7)

not both bi-atomic ICr = IC↑
r = ∅ (Theorem 10.5)

We summarize in Table 10.2 the results on the relationship between IC and IC↑. Our

main message is that invariant correlation confined to increasing transforms does not ac-

commodate more models except for the case when both random variables are bi-atomic.

Therefore, in most cases, we can safely treat the two formulations as equivalent.

The results of Proposition 10.1 and Corollary 10.1 can be easily extended to IC↑
r. We

collect these useful properties in the following corollary. The proofs are analogous to those

of Proposition 10.1 and Corollary 10.1, and thus omitted.

Corollary 10.3. The following statements hold.

(i) Let (X, Y ) ∈ IC↑
r for some r ∈ [−1, 1], and let h be an admissible increasing function

for (X, Y ). Then, (h(X), h(Y )) ∈ IC↑
r.

(ii) Suppose that (X, Y ) ∼ H has identical continuous and strictly increasing marginal

distributions, a correlation coefficient r ∈ [−1, 1], and a copula C. Then H ∼ IC↑
r if

and only if C ∼ IC↑
r.

We first show in the following example that the property of invariant correlation under

increasing transforms is not always equivalent to that under all transforms.
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Example 10.7. Let X and Y be non-identically distributed bi-atomic random variables.

In contrast to the result in Proposition 10.5, (X, Y ) always admits an invariant correlation

under increasing transforms. This is because the increasingness of g implies that g(X) and

g(Y ) are increasing linear functions of X and Y , respectively. Hence, (X, Y ) ∈ IC↑ regardless

of the dependence structure of (X, Y ). As a result, we have IC ⊊ IC↑.

Except for the bi-atomic distributions, we show in the next theorem that ICr and IC↑
r

are equivalent.

Theorem 10.5. Let X, Y ∈ L2 and r = Corr(X, Y ). Assume that one of the following

conditions holds: (i) r = 0; (ii) X and Y have identical distributions; (iii) X and Y have

different distributions and |Supp(Y )| > 2. Then (X, Y ) ∈ ICr if and only if (X, Y ) ∈ IC↑
r.

In particular, if (iii) holds, then r = 0.

Remark 10.4. By Item (ii) in Corollary 10.3, the result in Corollary 10.2 remains valid with

ICr in the statements replaced by IC↑
r.

Under the condition (iii), Theorem 10.5 further implies that, for r ̸= 0, there is no

model (X, Y ) in IC↑
r or ICr.

10.6 Concluding remarks

Our main results on a full characterization of models with invariant correlation can be

briefly summarized below. Except for the very special case of bi-atomic distributions, in-

variant correlation is characterized by quasi-independence (Theorem 10.1) and quasi-Fréchet

models (Theorem 10.3), with non-identical marginal distributions excluded unless the cor-

relation is zero (Theorem 10.2). The same holds true when transforms are confined to be

increasing (Theorem 10.5). We also identify the set of all compatible invariant correlation

matrices (Theorem 10.4).

Several aspects and generalizations of invariant correlation require further research.

For instance, it would be interesting to understand whether a higher dimensional correlation

measure, instead of the matrix of bivariate correlations, can be used to naturally formulate
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an invariant correlation property, and whether it has interesting implications similar to our

results in the bivariate case. Since PRD and PRDS are dependence concepts that are not

determined by their bivariate marginals, a higher dimensional notion of invariant correlation

may be more naturally connected to PRD and PRDS. Although a connection of invariant

correlation to multiple testing and FDR control has been briefly discussed in Section 10.7.2,

its applications and relevance for statistics are not yet clear. A further question concerns

whether restricting the marginal transforms to a smaller but practically relevant class would

characterize different and potentially useful models. These questions require further studies.

10.7 Auxiliary results

10.7.1 Invariant correlation matrices and other dependence ma-

trices

In this section, we summarize the connection of Θd, the set of all possible d×d invariant

correlation matrices of continuous random vectors with identical marginals, to the collection

of tail-dependence matrices and other dependence matrices. Let (X1, X2) be a bivariate

random vector with continuous marginal distributions F1 and F2. The (lower) tail-dependence

coefficient of (X1, X2) is defined by λ = limu↓0 P (F1(X1) ⩽ u, F2(X2) ⩽ u) /u given that the

limit exists. For a function g : R → R, the g-transformed rank correlation of (X1, X2) is

defined by κg(X1, X2) = Corr(g(F1(X1)), g(F2(X2))), provided that it is well defined. The

tail-dependence matrix of a d-dimensional random vector X = (X1, . . . , Xd) with continuous

marginal distributions has the tail-dependence coefficient of (Xi, Xj) in its (i, j)th entry

for i, j ∈ [d]. Analogously, the κg-matrix of X is a d × d matrix whose (i, j)th entry is

κg(Xi, Xj) for i, j ∈ [d]. The set of all possible d × d tail-dependence matrices is called the

tail-dependence compatibility set and is denoted by Td; see Embrechts et al. (2016); Fiebig et

al. (2017); Krause et al. (2018); Shyamalkumar and Tao (2020) for recent studies. Similarly,

the d-dimensional compatibility set of κg, denoted by Kd(g), is the collection of all possible

κg-matrices in dimension d.

The next proposition shows that, for X with identical continuous marginals and an
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invariant correlation matrix R, the model X has the same tail-dependence matrix and κg-

matrix R.

Proposition 10.10. Let X be a d-dimensional continuous random vector with identical

marginals. If X ∈ ICd, then its correlation matrix and its tail-dependence matrix coincide,

as well as its κg-matrices for any g admissible for the standard uniform distribution.

Proposition 10.10 implies that Θd ⊂ Td and that Θd ⊂ Kd(g) for wide varieties of g.

For instance, Θd is a subset of the compatibility sets of Blomqvist’s beta and Spearman’s

rho, studied by Hofert and Koike (2019) and Wang et al. (2019), respectively. Since the

compatibility set of Blomqvist’s beta is equal to that of Kendall’s tau (McNeil et al., 2022)

and is smaller than that of Gini’s gamma (Koike and Hofert, 2023), our result implies that

Θd is contained in all of these compatibility sets. The connection of the clique partition

polytope to Td is given in Proposition 22 of Fiebig et al. (2017). This result, together with

Theorem 10.4 and Proposition 10.10, leads to the following relationship between Θd and Td:

Θd = Td for d ⩽ 4, and Θd ⊊ Td for d ⩾ 5.

10.7.2 Conformal p-values

Conform p-value, studied by Bates et al. (2023) in the context of outlier detection, is

an interesting example of invariant correlation. Let S1, . . . , Sn be scores of the null training

sample (computed from some score function on the data), where n is a fixed positive integer.

Scores of the test sample are denoted by Sn+i, i ∈ [d], and the corresponding conformal

p-value is given by

Pi =
1

n+ 1
+

1

n+ 1

n∑
k=1

1{Sk⩽Sn+i}. (10.26)

Assume that {Si : i ∈ [n + d]} is a sequence of independent random variables and Sk ∼ F0,

k ∈ [n]. The above p-values are testing the sequence of null hypotheses H0,i : Sn+i ∼ F0,

i ∈ [d].

Proposition 10.11. Let N ⊆ [d] be any set of null indices, that is, H0,i is true for i ∈ N .
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Then,

P
(
Pi =

ji
n+ 1

, i ∈ N
)

=
N1! · · ·Nn+1!

(n+m)(n+m− 1) · · · (n+ 1)
, ji ∈ [n+ 1],

where m = |N | and Nj = |{i ∈ N : ji = j}|, j ∈ [n + 1]. In particular, Pi is uniformly

distributed on [n+1]/(n+1) for every i ∈ N . Moreover, (Pi)i∈N has the invariant correlation

matrix (rij)m×m such that rij = 1/(n+ 2) for every i, j ∈ [m], i ̸= j.

We can take N to be the set of all null indices in Proposition 10.11. The fact that

(Pi)i∈N has an invariant correlation matrix has been shown in Lemma 2.1 of Bates et al.

(2023), which also contains the joint distribution of (Pi, Pj) for i, j ∈ N . Proposition 10.11

further gives the joint distribution of (Pi)i∈N . On the other hand, the full vector of p-values,

(Pi)i∈[d] does not have an invariant correlation matrix in general. Note that the marginal

distributions of (Pi)i∈[d] are generally different for null and non-null components, and there

is some positive correlation between them by design in (10.26). Hence, our results in Section

10.3 explain that invariant correlation for (Pi)i∈[d] is not possible. Nevertheless, the vector

of conformal p-values has PRDS on N as shown by Theorem 2.4 of Bates et al. (2023).

Form = 2, the vector of null conformal p-values follows the model (10.23) with k = n+2,

g(x) = ⌊(n+1)x⌋/(n+1) and Z1,Z2 being iid multinomials with the number of trials 1 and

uniform event probabilities on [k]. It is left open whether the vector of null conformal p-values

can be written of the form (10.23) for m ⩾ 3.

10.7.3 Invariant correlaton and concepts of dependence

In Section 10.4.2, we have explored the relationship between invariant correlation and

positive regression dependence (PRD). In this section, we show by examples that models

with invariant correlation matrix do not always have PRD.

We start from the bivariate case d = 2. Following Lehmann (1966), a random vector

(X, Y ) is called positive quadrant dependent (PQD) (also called positive orthant dependent),

if P(X ⩽ x, Y ⩽ y) ⩾ P(X ⩽ x)P(Y ⩽ y) for every (x, y) ∈ R2. Negative quadrant

dependence (NQD) is analogously defined by P(X ⩽ x, Y ⩽ y) ⩽ P(X ⩽ x)P(Y ⩽ y) for

every (x, y) ∈ R2. It is shown in Lemma 4 of Lehmann (1966) that PRD implies PQD. In the
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next example, we construct a random vector that has zero invariant correlation but is neither

PQD nor NQD. This example particularly indicates that non-negative invariant correlation

does not lead to PRD.

Example 10.8. Let (X, Y ) be the model in Example 10.3 with the identical marginal support

[3], pi = qi = 1/3 for i ∈ [3] and ϵ = 1/9. Then P(X ⩽ 2, Y ⩽ 1) = 1/9, P(X ⩽ 1, Y ⩽ 2) =

1/3 and P(X ⩽ 1)P(Y ⩽ 2) = P(X ⩽ 2)P(Y ⩽ 1) = 2/9. Hence (X, Y ) is neither PQD nor

NQD.

We have seen in Section 10.4.2 that, for the bivariate case, invariant correlation implies

PRD under the additional assumption of exchangeability. The next example shows that

this is not the case for d = 3, that is, there exists an exchangeable model which admits a

non-negative invariant correlation matrix but does not have PRD.

Example 10.9. Let d = 3 and consider a member of the Farlie-Gumbel-Morgenstein family

of copulas:

Cθ(u1, u2, u3) = u1u2u3 + θu1u2u3(1− u1)(1− u2)(1− u3), θ ∈ [−1, 1].

Note that Cθ is an exchangeable copula for any θ ∈ [−1, 1]. Moreover, all bivariate marginals

of Cθ are Π, and thus it has an invariant correlation matrix I3.

We will show that the model U ∼ Cθ does not satisfy the following weaker version of

PRDS than that in Definition 10.4:

s 7→ P(U ∈ A | Ui ⩽ s) is increasing in s for any index i ∈ N and increasing set A ⊆ Rd.

To this end, let i = 1, s ∈ [0, 1], t = (t1, t2, t3) ∈ [0, 1]3, t1 = 0, and A = (t1,∞)× (t2,∞)×

(t3,∞). Then A is an increasing set and

P(U ∈ A | U1 ⩽ s) = P(U > t | U1 ⩽ s)

=
1

s
P(U1 ⩽ s , t2 < U2, t3 < U3) =

1

s

{
(1− t2)(1− t3)− C(s, t2, t3)

}
,

where C(u) = P(U > u) is the joint survival function of C. By calculation, we have that

P(U ∈ A | U1 ⩽ s) = 1 − t2 − t3 + C(s, t2, t3)/s. Therefore, (∂/∂s)P(U ∈ A | U1 ⩽ s) =

{s ∂1C(s, t2, t3) − C(s, t2, t3)}/(s2). When t2 = t3 = 0.5 and θ = 1, this derivative is a

constant −1/16 by a simple calculation. Therefore, P(U ∈ A | U1 ⩽ s) is a decreasing

function in s ∈ [0, 1].
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10.8 Proofs of all results

10.8.1 Proofs in Section 10.2

Proof of Proposition 10.1. Let (X, Y ) ∈ ICr and g be an admissible function for the

pair (h(X), h(Y )). The function g ◦h is admissible for (X, Y ). Since (X, Y ) has an invariant

correlation r, we have Corr(g◦h(X), g◦h(Y )) = Corr(X, Y ) = r. Since an admissible function

g is arbitrary, we have that (h(X), h(Y )) ∈ ICr. Applying this observation to all pairs of

components of (X1, . . . , Xd) establishes the desired result.

Proof of Corollary 10.1. Suppose that X ∈ ICd with continuous and strictly increasing

marginals F . By taking h = F in Proposition 10.1, we have that (F (X1), . . . , F (Xn)) ∈ ICd;

hence C ∼ ICd. Suppose next that C ∼ ICd. There exists a uniform random vector

U = (U1, . . . , Un) ∈ ICd. Let X = (F−1(U1), . . . , F
−1(Un)). By taking h = F−1 in Proposi-

tion 10.1, we have that X ∈ ICd.

The next lemma justifies that the formulations of quasi-independence via (10.7) and

(10.8) are equivalent.

Lemma 10.1. For a random vector (X, Y ) ∼ H with marginals F and G, (X, Y ) is quasi-

independent if and only if (10.8) holds for all A,B ∈ B(R).

Proof of Lemma 10.1. It is clear that (10.8) implies quasi-independence. We will show the

“only if” part. Assume that (X, Y ) is quasi-independent. For B ∈ B(R), define DB(X, Y ) =

{A ∈ B(R) : (10.8) holds for A,B}. In what follows, we check that DB(X, Y ) is a λ-system

for any B ∈ B(R).

1. It is clear that R ∈ DB(X, Y ).
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2. Let A1, A2 ∈ DB(X, Y ) such that A1 ⊆ A2. For A2 \ A1, we have

P(X ∈ A2 \ A1, Y ∈ B) + P(X ∈ B, Y ∈ A2 \ A1, )

= P(X ∈ A2, Y ∈ B)− P(X ∈ A1, Y ∈ B) + P(X ∈ B, Y ∈ A2)− P(X ∈ B, Y ∈ A1)

= P(X ∈ A2)P(Y ∈ B)− P(X ∈ A1)P(Y ∈ B)

+ P(X ∈ B)P(Y ∈ A2)− P(X ∈ B)P(Y ∈ A1)

= P(X ∈ A2 \ A1)P(Y ∈ B) + P(X ∈ B)P(Y ∈ A2 \ A1).

Hence, A2 \ A1 ∈ DB(X, Y ).

3. Let A1 ⊆ A2 ⊆ A3 ⊆ . . . be an increasing sequence of sets in DB(X, Y ). For
⋃∞

i=1Ai,

we have

P

(
A ∈

∞⋃
i=1

Ai, Y ∈ B

)
+ P

(
A ∈ B, Y ∈

∞⋃
i=1

Ai

)
= lim

n→∞
P(A ∈ An, Y ∈ B) + lim

n→∞
P(A ∈ B, Y ∈ An)

= lim
n→∞

P(A ∈ An)P(Y ∈ B) + lim
n→∞

P(A ∈ B)P(Y ∈ An)

= P

(
A ∈

∞⋃
i=1

Ai

)
P(Y ∈ B) + P(A ∈ B)P

(
Y ∈

∞⋃
i=1

Ai

)
.

Hence,
⋃∞

i=1Ai ∈ DB(X, Y ).

Let B = (−∞, y] for some y ∈ R. Then quasi-independence of (X, Y ) implies that

L := {(−∞, x] : x ∈ R} ⊆ DB(X, Y ). It is straightforward to check that L is a π-system.

Therefore, Sierpiński–Dynkin’s π-λ theorem yields σ(L) ⊆ DB(X, Y ), where σ(L) is the

smallest σ-algebra containing L. As σ(L) = B(R), we have DB(X, Y ) = B(R) for any

B = (−∞, y] with y ∈ R.

Next, let D(X, Y ) = {B ∈ B(R) : DB(X, Y ) = B(R)}. It is clear that D(X, Y ) is a

λ-system and L ⊆ D(X, Y ). Hence, we have D(X, Y ) = B(R) by the same argument as

above. Therefore, we obtain (10.8) for all A,B ∈ B(R).

The next lemma justifies the formulations of the quasi-Fréchet model via (10.9) and

(10.10). We omit the proof since it is analogous to that of Lemma 10.1.

Lemma 10.2. For a random vector (X, Y ) ∼ H with the marginals F , (X, Y ) is quasi-r-

Fréchet if and only if (10.10) holds.
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10.8.2 Proofs in Section 10.3.1

Proof of Theorem 10.1. We first show the “only if” part. As (X, Y ) ∈ IC0, we have

cov(g(X), g(Y )) = 0 for any admissible g. For any A ∈ B(R), taking g(x) = 1A(x), we have

cov(g(X), g(Y )) = cov(1A(X),1A(Y )) = 0. For any A,B ∈ B(R), let g(x) = 1A(x) + 1B(x),

which leads to

cov(g(X), g(Y )) = cov (1A(X) + 1B(X),1A(Y ) + 1B(Y ))

= cov (1A(X),1B(Y )) + cov (1B(X),1A(Y ))

= P (X ∈ A, Y ∈ B) + P (X ∈ B, Y ∈ A)

− P (X ∈ A)P (Y ∈ B)− P (X ∈ B)P (Y ∈ A) .

As cov(g(X), g(Y )) = 0, we have that (X, Y ) satisfies (10.8) for all A,B ∈ B(R). Hence,

(X, Y ) is quasi-independent by Lemma 10.1.

Next, we show that quasi-independence implies cov(g(X), g(Y )) = 0 for any admissible

g. As quasi-independence implies (10.8), by taking A = B, we have P(X ∈ A, Y ∈ A) =

P(X ∈ A)P(Y ∈ A) for any A ∈ B(R). Hence, cov(g(X), g(Y )) = 0 for any indicator

functions g = 1A.

First, let g(x) =
∑n

i=1 ci1Ai
(x) be an admissible simple function where A1, . . . , An ⊆ R

are disjoint measurable sets, and c1, . . . cn ∈ R are real numbers. For the simple function g,

we have

cov(g(X), g(Y )) =
n∑

i=1

n∑
j=1

cicjcov
(
1Ai

(X),1Aj
(Y )
)

=
∑

1⩽i<j⩽n

(
cicjcov

(
1Ai

(X),1Aj
(Y )
)
+ cjcicov

(
1Aj

(X),1Ai
(Y )
))

=
∑

1⩽i<j⩽n

cicj

(
P (X ∈ Ai, Y ∈ Aj)− P (X ∈ Ai)P (Y ∈ Aj)

+ P (X ∈ Aj, Y ∈ Ai)− P (X ∈ Aj)P (Y ∈ Ai)

)
= 0.

Therefore, we have cov(g(X), g(Y )) = 0 for all admissible simple functions g.

Second, let g be an admissible non-negative function. Admissibility of g implies that

E[g(X)] < ∞, E[g(Y )] < ∞ and E[g(X)g(Y )] < ∞. For a non-negative admissible function
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g, there exists a sequence of non-negative simple functions {gn}n⩾1 such that gn ↑ g pointwise.

Thus, we can get

cov (g(X), g(Y )) = cov
(
lim
n→∞

gn(X), lim
n→∞

gn(Y )
)

= E
[
lim
n→∞

gn(X) lim
n→∞

gn(Y )
]
− E

[
lim
n→∞

gn(X)
]
E
[
lim
n→∞

gn(Y )
]

= E
[
lim
n→∞

gn(X)gn(Y )
]
− E

[
lim
n→∞

gn(X)
]
E
[
lim
n→∞

gn(Y )
]

= lim
n→∞

E [gn(X)gn(Y )]− lim
n→∞

E [gn(X)]E [gn(Y )]

= lim
n→∞

{E [gn(X)gn(Y )]− E [gn(X)]E [gn(Y )]}

= lim
n→∞

cov(gn(X), gn(Y )) = 0.

Therefore, we have cov(g(X), g(Y )) = 0 for all admissible non-negative function g.

Finally, let g be an admissible function. Define g+ = max(g, 0) and g− = −min(g, 0).

It is clear that g+ and g− are non-negative admissible functions and g = g+ − g−. Let

G = g+ + g−. We have that G is also a non-negative admissible function. Hence, we get

cov(g+(X), g+(Y )) = 0, cov(g−(X), g−(Y )) = 0 and cov(G(X), G(Y )) = 0, which imply

that cov(g+(X), g−(Y )) + cov(g−(X), g+(Y )) = 0. As a result, we have cov (g(X), g(Y )) =

cov(g+(X)− g−(X), g+(Y )− g−(Y )) = 0. Therefore, we can conclude (X, Y ) ∈ IC0.

Proof of Proposition 10.2. For all A,B ∈ B(R), we have

P(Xπ1 ∈ A,Xπ2 ∈ B) =
1

2
P(X1 ∈ A,X2 ∈ B) +

1

2
P(X1 ∈ B,X2 ∈ A).

Since X1 and X2 have the same distribution, independence of (Xπ1 , Xπ2) is equivalent to

P(Xπ1 ∈ A,Xπ2 ∈ B) = P(Xπ1 ∈ A)P(Xπ2 ∈ B)

= P(X1 ∈ A)P(X2 ∈ B) = P(X1 ∈ B)P(X2 ∈ A).

Hence, independence of (Xπ1 , Xπ2) is equivalent to

P(X1 ∈ A,X2 ∈ B) + P(X1 ∈ B,X2 ∈ A) = P(X1 ∈ A)P(X2 ∈ B) + P(X1 ∈ B)P(X2 ∈ A),

which is also equivalent to (X1, X2) ∈ IC0 by Theorem 10.1.
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Proof of Proposition 10.3. We can get “(i) ⇔ (ii)” from Theorem 10.1. We only show

“(ii) ⇔ (iii)”.

Suppose that P +P⊤ = pq⊤+qp⊤. Let S = P⊤−qp⊤. We first verify that S satisfies

(a), (b) and (c).

1. As sij + piqj = pij ⩾ 0, we have that S satisfies (a).

2. The jth row sum of S is
∑n

i=1 pij −
∑n

i=1 qjpi = qj − qj = 0. The ith column sum of S is∑n
j=1 pij −

∑n
j=1 piqj = pi − pi = 0. Hence, S satisfies (b).

3. We have S+S⊤ = P⊤+P −qp⊤−pq⊤ = O where O is an n×n matrix with all elements

equal to 0. Hence, S satisfies (c).

Next, let P = pq⊤ + S with S satisfies (a), (b) and (c). We verify that P is a valid

probability matrix and satisfies (ii). First, it is clear that pij ⩾ 0 as pij = piqj + sij ⩾ 0.

Second, the marginals is q and p as
∑n

j=1 pij =
∑n

j=1(piqj + sij) = pi and
∑n

i=1 pij =∑n
i=1(piqj + sij) = qj. Finally, since S +S⊤ = O, we have P +P⊤ = pq⊤ +S +qp⊤ +S⊤ =

pq⊤ + qp⊤. Therefore, we can conclude “(ii) ⇔ (iii)”.

Proof of Proposition 10.4. It is clear that independent (X, Y ) satisfies invariant correla-

tion with Corr(X, Y ) = 0. By Theorem 10.1, we only need to show that quasi-independence

implies independence under the condition of Proposition 10.4. Without loss of generality,

assume that the support of X is {1, 2}. To show that X and Y are independent, it is enough

to show that P(X = 1, Y ∈ A) = P(X = 1)P(Y ∈ A) for all A ∈ R. We show this statement

in each of the following 4 cases.

Case 1 : Assume {1, 2} ⊆ A. We have P(X ∈ A) = 1 and P(X ∈ A, Y = 1) = P(Y = 1).

Hence, P(X ∈ A, Y = 1) = P(X ∈ A)P(Y = 1). In this case, quasi-independence means

P(X = 1, Y ∈ A) + P(X ∈ A, Y = 1) = P(X = 1)P(Y ∈ A) + P(X ∈ A)P(Y = 1). Thus, we

can get P(X = 1, Y ∈ A) = P(X = 1)P(Y ∈ A).

Case 2 : Assume 1 /∈ A and 2 /∈ A. We have P(X ∈ A) = 0 and P(X ∈ A, Y = 1) = 0.

Hence, P(X ∈ A, Y = 1) = P(X ∈ A)P(Y = 1). Therefore, we have P(X = 1, Y ∈ A) =

P(X = 1)P(Y ∈ A) using the same argument as in Case 1.
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Case 3 : Assume 1 ∈ A, 2 /∈ A. First, using Case 2, we have P(X = 1, Y ∈ A \ {1}) =

P(X = 1)P(Y ∈ A \ {1}). Furthermore, quasi-independence implies P(X = 1, Y = 1) =

P(X = 1)P(Y = 1). Therefore,

P(X = 1, Y ∈ A) = P(X = 1, Y = 1) + P(X = 1, Y ∈ A \ {1}) = P(X = 1)P(Y ∈ A).

Case 4 : Assume 1 /∈ A, 2 ∈ A. By the same argument as in Case 3, we have P(X =

2, Y ∈ A) = P(X = 2)P(Y ∈ A). Hence,

P(X = 1, Y ∈ A) = P(Y ∈ A)− P(X = 2, Y ∈ A)

= P(Y ∈ A)− P(X = 2)P(Y ∈ A) = P(X = 1)P(Y ∈ A).

In conclusion, we have P(X = 1, Y ∈ A) = P(X = 1)P(Y ∈ A) for all A ⊆ R. As

P(X = 1) + P(X = 2) = 1, we can also obtain P(X = 2, Y ∈ A) = P(X = 2)P(Y ∈ A) for

all A ⊆ R. Hence, X and Y are independent.

10.8.3 Proofs in Section 10.3.2

The proof of Proposition 10.5 is built on the following lemma.

Lemma 10.3. If X and Y are bi-atomic random variables with the same support, then

(X, Y ) ∈ IC.

Proof of Lemma 10.3. As the support of X and Y has only two points, g(X) and g(Y ) are

linear transformations ofX and Y . Therefore, we have Corr(g(X), g(Y )) = Corr(aX+b, aY +

b) = Corr(X, Y ) for any admissible g. Hence, (X, Y ) ∈ IC regardless of the dependence

structure of (X, Y ).

Proof of Proposition 10.5. The “if” part of (ii) is clear from Example 10.1 and Lemma 10.3.

We show the “only if” part below.

Let {x1, x2} and {y1, y2} be the support of X and Y , respectively, with x1 < x2 and

y1 < y2. Assume X and Y have different supports. We can easily find a function g such

that g(x1) < g(x2) and g(y1) > g(y2). Then Corr(g(X), g(Y )) = −Corr(X, Y ) since g(X)
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is an increasing linear transformation of X and g(Y ) is a decreasing linear transformation

of Y . Therefore, (X, Y ) ∈ IC implies Corr(X, Y ) = 0. For r ̸= 0, (X, Y ) ∈ ICr implies

that X and Y have the same support. If (X, Y ) ∈ IC0, by Proposition 10.4, X and Y are

independent.

Before showing Theorem 10.2 for the general case, we first analyze the case of the

tri-atomic distribution in the following lemma.

Lemma 10.4. Suppose Supp(X) ⊆ Supp(Y ) = {x1, x2, x3}. If (X, Y ) ∈ IC, then FX = FY

or Corr(X, Y ) = 0.

Proof of Lemma 10.4. Since a linear transform of g does not change Corr(g(X), g(Y )),

it suffices to consider the case g(x1) = a, g(x2) = 0, and g(x3) = 1. Let pi = P(X = xi),

qj = P(Y = xj), pij = P(X = xi, Y = xj) and sij = pij − piqj for i, j ∈ [3]. As Supp(X) ⊆

Supp(Y ) = {x1, x2, x3}, we can assume that 0 < pi < 1 for i = 1, 3 and 0 < qi < 1 for j ∈ [3].

Write the matrices P = (pij)3×3 and S = (sij)3×3, and they are connected by P = pq⊤ + S,

where p = (p1, p2, p3)
⊤ and q = (q1, q2, q3)

⊤. Note that each of the row sums and column

sums of S is 0, that is,
∑3

k=1 skj = 0 =
∑3

k=1 sik, i, j ∈ [3].

Define the function f : R → R as

f(a) : = Corr(g(X), g(Y )) =
a2p11 + a(p13 + p31) + p33 − (ap1 + p3)(aq1 + q3)√
a2p1 + p3 − (ap1 + p3)2

√
a2q1 + q3 − (aq1 + q3)2

=
a2s11 + a(s13 + s31) + s33√

a2(p1 − p21)− 2ap1p3 + (p3 − p23)
√
a2(q1 − q21)− 2aq1q3 + (q3 − q23)

.

If (X, Y ) ∈ ICr, the equation f(a) = r holds for all a ∈ R. Hence, by matching the coefficients

in front of ak, k ∈ [4], in the equation f(a) = r, we obtain the follow equations:

s211 = r2(p1 − p21)(q1 − q21), (10.27a)

s11(s13 + s31) = −r2
(
q1q3(p1 − p21) + p1p3(q1 − q21)

)
, (10.27b)

2s11s33 + (s13 + s31)
2 = r2

(
(p1 − p21)(q3 − q23) + (p3 − p23)(q1 − q21) + 4p1q1p3q3

)
, (10.27c)

s33(s13 + s31) = −r2
(
p1p3(q3 − q23) + q1q3(p3 − p23)

)
, (10.27d)

s233 = r2(p3 − p23)(q3 − q23). (10.27e)
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Next, we will show that if r ̸= 0, we have p = q.

As p1, p3, q1q3 take values in (0, 1) and r ̸= 0, we have that s11, s33 and s13 + s31 are

non-zero. Hence, (10.27a), (10.27b), (10.27d) and (10.27e) yield

s211
s233

=
(q1q3(p1 − p21) + p1p3(q1 − q21))

2

(p1p3(q3 − q23) + q1q3(p3 − p23))
2 =

(p1 − p21)(q1 − q21)

(p3 − p23)(q3 − q23)
.

Simplifying the equation, we get

{
q21q

2
3(p1 − p21)(p3 − p23)− p21p

2
3(q1 − q21)(q3 − q23)

}{
(p1 − p21)(q3 − q23)− (p3 − p23)(q1 − q21)

}
= 0.

This equation is further simplified to

(q1q3p2 − p1p3q2) (p2q3 − q2p3) = 0, (10.28)

by using p1 + p2 + p3 = 1 and q1 + q2 + q3 = 1. We can observe that if p2 = 0, then (10.28)

cannot hold. Hence, we consider the case when 0 < p2 < 1 below.

In this case, we can switch the roles of indices 1, 2, 3 as pi and qi take value in (0, 1) for

all i ∈ [3]. Hence, we have f(a) = r for all a ∈ R if and only if

(q1q3p2 − p1p3q2) (p2q3 − q2p3) = 0, (10.29)

(q2q1p3 − p2p1q3) (p3q1 − q3p1) = 0, (10.30)

(q3q2p1 − p3p2q1) (p1q2 − q1p2) = 0. (10.31)

Now we consider all possible cases when (10.29), (10.30) and (10.31) hold simultaneously.

First, assume that all the first terms in (10.29), (10.30) and (10.31) equal 0; that is

q1q3p2 = p1p3q2, q2q1p3 = p2p1q3 and q3q2p1 = p3p2q1. Thus, we have q1q2q3 = p1p2p3. As a

result, we get p21 = q21, p
2
2 = q22 and p23 = q23, which lead to p1 = q1, p2 = q2 and p3 = q3.

Second, assume that all the second terms in (10.29), (10.30) and (10.31) equal 0; that is

p2q3 = q2p3, p3q1 = q3p1 and p1q2 = q1p3. Thus, we have q1/p1 = q2/p2 = q3/p3, which leads

to p1 = q1, p2 = q2 and p3 = q3. We observe that one of the three equations p2q3 = q2p3,

p3q1 = q3p1 and p1q2 = q1p3 is redundant. Hence, if two of the second terms in (10.29),

(10.30) and (10.31) equal 0, the third one also equals 0.
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In the final step, we consider the case that two of the first terms in (10.29), (10.30)

and (10.31) equal 0. Without loss of generality, we assume q1q3p2 = p1p3q2, q2q1p3 = p2p1q3

and p1q2 = q1p2. By q1q3p2 = p1p3q2 and p1q2 = q1p2, we get p3 = q3. Combining with

q2q1p3 = p2p1q3 , we have p21 = q21 and p22 = q22, which gives p1 = q1 and p2 = q2.

In conclusion, if (X, Y ) ∈ ICr with r ̸= 0, then p = q, or equivalently, FX = FY .

Proof of Theorem 10.2. The “if” part is clear. For the “only if” part, we will show that

if (X, Y ) ∈ IC, then Corr(X, Y ) = 0. We first discuss the case X and Y have different

supports. Let A = Supp(X) and B = Supp(Y ).

(a) Suppose A∩B ̸= A and A∩B ̸= B. In this case, we can find a function g such that g(X)

and g(Y ) are bi-atomic random variables with different supports. By Proposition 10.1

and Proposition 10.5, we have that (g(X), g(Y )) ∈ IC and g(X) and g(Y ) are indepen-

dent, which gives Corr(g(X), g(Y )) = 0. As (X, Y ) ∈ IC, we have Corr(X, Y ) = 0.

(b) Suppose A ⊊ B. We can find a function such that g(X) is a bi-atomic random variable

and g(Y ) is a tri-atomic random variable. By Proposition 10.1 and Lemma 10.4, we have

that (g(X), g(Y )) ∈ IC and Corr(g(X), g(Y )) = 0. Hence, Corr(X, Y ) = 0. If B ⊊ A,

we can also have Corr(X, Y ) = 0.

Next, we discuss the case X and Y have the same support. Let S = Supp(X) = Supp(Y ).

Because X and Y have different distributions, there exists a set A ⊊ S such that P(X ∈ A) ̸=

P(Y ∈ A). Furthermore, we can also find B ⊊ S such that B ∩ A = ∅ and A ∪ B ⊊ S as S

contains more than two points. Thus, the sets A, B and S/(A∪B) are three non-empty and

exclusive sets. Let g(x) = 1A+21B+31S/(A∪B). It is clear that g(X) and g(Y ) are tri-atomic

random variables with the same support [3] but have different distributions. Therefore, by

Lemma 10.4, we have Corr(g(X), g(Y )) = 0, and thus Corr(X, Y ) = 0.

10.8.4 Proofs in Section 10.3.3

Proof of Proposition 10.6. We first show the necessity. If (X, Y ) ∈ ICr, then

Corr(g(X), g(Y )) =
z⊤(P − pp⊤)z

z⊤(D − pp⊤)z
= r, z = g(x) = (g(x1), . . . g(xn))

⊤, (10.32)
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holds for all admissible function g, that is, for all real vectors z ∈ R̆n with R̆n = Rn\{c1n :

c ∈ R}. Equation (10.32) is equivalent to

z⊤(P − rD − (1− r)pp⊤)z = 0 for all z ∈ R̆n. (10.33)

This implies that (P + P⊤ − 2rD− 2(1− r)pp⊤)z = 0n for all z ∈ R̆n. By taking z = ei for

i ∈ [n], we have that P + P⊤ − 2rD − 2(1− r)pp⊤ = O, and thus we obtain (10.11).

Next, we show the sufficiency. Suppose that the probability matrix P satisfies (10.11).

Then we have that

P − rD − (1− r)pp⊤ + P⊤ − rD − (1− r)pp⊤ = O.

Therefore, for every z ∈ Rn, we have

z⊤(P − rD − (1− r)pp⊤)z = z⊤(P − rD − (1− r)pp⊤)⊤z = z⊤(P⊤ − rD − (1− r)pp⊤)z

= −z⊤(P − rD − (1− r)pp⊤)z,

and thus z⊤(P − rD − (1− r)pp⊤)z = 0. Therefore, we have (X, Y ) ∈ ICr.

In order for rD + (1 − r)pp⊤ to be a probability matrix, r ∈ [−1, 1] has to satisfy

0 ⩽ rpj + (1 − r)p2j ⩽ 1 for all j ∈ [n] and 0 ⩽ (1 − r)pipj ⩽ 1 for all i, j ∈ [n], i ̸= j,

Equivalently, −pj/(1 − pj) ⩽ r ⩽ 1 + 1/pj for all j ∈ [n], and 1 − 1/(pipj) ⩽ r for all

i, j ∈ [n], i ̸= j. Therefore, r satisfies (10.12).

Proof of Theorem 10.3. We first show the necessity. It suffices to show (10.9) for every

x, y ∈ Supp(X) since the cumulative distribution functions change only at such points.

The case that X and Y are bi-atomic is verified in Proposition 10.6. In what follows,

we suppose X, Y ∈ L2 are not bi-atomic. Let x and y be any two distinct points in Supp(X).

In view of Proposition 10.6, it suffices to consider the case when there exist three distinct

points z1, z2, z3 ∈ Supp(X), z1 < z2 < z3, with two of them equal x and y. Let z0 = −∞

and z4 = ∞. Define

h(t) =
3∑

i=0

1{t>zi}, t ∈ R. (10.34)
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Since h is admissible, Proposition 10.1 implies that (h(X), h(Y )) ∈ ICr. Note that h(X) and

h(Y ) are identical random variables taking the value i with probability pi = P(zi−1 < X ⩽ zi)

for i ∈ [4], respectively. Since z1, z2, z3 ∈ Supp(X), we have p1, p2, p3 > 0. We exclude the

index i = 4 in the following proof when p4 = 0. The joint probability matrix of (h(X), h(Y )),

denoted by P = (pij)4×4, is then given by

pij = P (h(X) = i, h(Y ) = j) = P(zi−1 < X ⩽ zi, zj−1 < Y ⩽ zj)

= H(zi, zj)−H(zi−1, zj)−H(zi, zj−1) +H(zi−1, zj−1) =: pij(H)

for i, j ∈ [4]. Let H⊤(x, y) = H(y, x) be the distribution function of (Y,X). By Proposi-

tion 10.6, we have that

pij(H) + pij(H
⊤)

2
= rpi1{i=j} + (1− r)pipj for all i, j ∈ [4]. (10.35)

Since p11(H) = p11(H
⊤) = H(z1, z1) and p1 = F (z1), we haveH(z1, z1) = rmin(F (z1), F (z1))+

(1− r)F (z1)F (z1). Next, by taking (i, j) = (1, 2) in (10.35), we have

H(z1, z2) +H(z2, z1)

2
= H(z1, z1) +

p12(H) + p12(H
⊤)

2

= rmin(F (z1), F (z1)) + (1− r)F (z1)F (z1) + (1− r)F (z1){F (z2)− F (z1)}

= rmin(F (z1), F (z2)) + (1− r)F (z1)F (z2).

By repeating this calculation for all pairs of indices (i, j) ∈ [4]2, we eventually obtain

H(zi, zj) +H(zi, zj)

2
= rmin(F (zi), F (zj)) + (1− r)F (zi)F (zj),

for all (i, j) ∈ [4]2. Since the set {z1, z2, z3} includes x and y, we have (10.9) for (x, x), (x, y),

(y, x) and (y, y). Since x and y, x ̸= y are taken arbitrary in Supp(X), we obtain the desired

identity (10.9).

Next, we show the sufficiency. We show (X, Y ) ∈ ICr when (X, Y ) ∼ H satisfies (10.9).

Let g be an admissible function. Denote by Hg and Fg the joint and marginal distri-

butions of (g(X), g(Y )), respectively. By taking A = {t ∈ R : g(t) ⩽ x} and B = {t ∈ R :

g(t) ⩽ y} in (10.10), we have that

Hg(x, y) +Hg(y, x)

2
= rmin(Fg(x), Fg(y)) + (1− r)Fg(x)Fg(y), (x, y) ∈ R. (10.36)
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Note that (x, y) 7→ Hg(y, x) is the distribution function of (g(Y ), g(X)) and the correlation

coefficient is invariant under permutation, that is, cov(g(X), g(Y )) = cov(g(Y ), g(X)). To-

gether with the Fréchet-Hoeffding identity (Lemma 2 of Lehmann, 1966), (10.36) implies

that

cov(g(X), g(Y )) + cov(g(X), g(Y ))

= 2

∫
R

∫
R
{rmin(Fg(x), Fg(y)) + (1− r)Fg(x)Fg(y)− Fg(x)Fg(y)} dx dy

= 2r

∫
R

∫
R
{min(Fg(x), Fg(y))− Fg(x)Fg(y)} dx dy

= 2rvar(g(X)) <∞.

Therefore, we have Corr(g(X), g(Y )) = r and we conclude (X, Y ) ∈ IC↑
r.

Proof of Corollary 10.2. It suffices to show that the range of the admissible invariant

correlation is 0 ⩽ r ⩽ 1. Suppose (10.15) holds. Since the LHS of (10.15) is a copula, so

is the RHS. Therefore, we have that VrM+(1−r)Π([a, a] × [b, b]) ⩾ 0 for all a, a, b, b ∈ I such

that a ⩽ a and b ⩽ b, where VC is a C-volume of a copula C. Consider the case when

a ⩽ b ⩽ b ⩽ a. Then, for l := a− a, we have that

VrM+(1−r)Π([a, a]× [b, b]) = r(b− b) + (1− r)(a− a)(b− b) ⩾ 0,

that is, r + (1 − r)l ⩾ 0. Equivalently, we have r ⩾ −l/(1 − l). By letting l ↓ 0, we obtain

r ⩾ 0.

10.8.5 Proofs in Section 10.4.1

Proof of Proposition 10.8. (i) For i ∈ [d] and t ∈ [0, 1], we have

P(Xi ⩽ t) =
k∑

j=1

P(Zij = 1)P(Uj ⩽ t) = t

k∑
j=1

E[Zij] = t.

Hence, Xi has the standard uniform distribution.

(ii) We can check that the copula of (X1, X2) is given by

P(X1 ⩽ u1, X2 ⩽ u2) =
k∑

j=1

P(Z1jZ2j = 1)min(u1, u2) +

(
1−

k∑
j=1

P(Z1jZ2j = 1)

)
u1u2

= E[Z⊤
1 Z2] min(u1, u2) +

(
1− E[Z⊤

1 Z2]
)
u1u2,
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and this argument also applies to the other pairs. Therefore, each pair of components

of X has a positive Fréchet copula, and hence it has an invariant correlation. By

Proposition 10.7, we know that X has an invariant correlation matrix.

(iii) From (ii), we know that the correlation between X1 and X2 is E[Z⊤
1 Z2], and similarly

for the other pairs. Therefore, the correlation matrix of X is E[ΓΓ⊤].

For the proof of Theorem 10.4, we first present the following two lemmas.

Lemma 10.5. For k ∈ N, the following statements hold:

(i) Zd,k is increasing in k;

(ii) Zd,k is convex;

(iii) Zd,k ⊆ Θd. In particular, any matrix in Zd,k is a correlation matrix.

Proof of Lemma 10.5. (i) It suffices to note Zd,k−1 ⊆ Zd,k for k ⩾ 2, which can be

checked by taking Zik = 0 for all i ∈ [d] in (10.16).

(ii) This can be checked by the fact that for any event A independent of two d×k categorical

random matrices Γ and Γ′, the matrix 1AΓ + (1− 1A)Γ
′ is a d× k categorical random

matrix.

(iii) This follows from Proposition 10.8.

Lemma 10.6. Zd,k = Conv(Sd,k).

Proof of Lemma 10.6. We have that Zd,k ⊇ Conv(Sd,k) since Zd,k ⊇ Sd,k and the set Zd,k

is convex. Therefore, it suffices to prove that Zd,k ⊆ Conv(Sd,k).

Let Γ be a d × k categorical random matrix such that E[ΓΓ⊤] ∈ Zd,k. Let γ =

(γ1, . . . ,γd)
⊤ ∈ {0, 1}d×k be any realization of the random matrix Γ. Define A(γ) =

(A1(γ), . . . , Ak(γ)), where As(γ) = {i ∈ [d] : γis = 1}, s ∈ [k]. Then A(γ) is a partition
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of [d] into k subsets since
∑k

s=1 γis = 1 and thus every i ∈ [d] belongs to only one of the

partitioned subsets. Moreover, we have γ⊤γ ∈ Sd,k since

(γ⊤γ)ij = γ⊤
i γj =

k∑
s=1

γisγjs =
k∑

s=1

1{γis=1 γjs=1} =
k∑

s=1

1{i,j∈As(γ)}.

Therefore, we have that E[ΓΓ⊤] =
∑

γ γγ
⊤P(Γ = γ) ∈ Conv(Sd,k). As a result, we have

Zd,k = Conv(Sd,k).

Proof of Theorem 10.4. The last two equalities follow directly from Part (i) of Lemma 10.5,

Lemma 10.6 and the fact that Sd,k = Sd,d for k ⩾ d. Moreover, Proposition 10.8 implies that

Θd ⊇ Zd,d. Therefore, it suffices to prove Θd ⊆ Conv(Sd,d).

Let Y = (Y1, . . . , Yd)
⊤ be a continuous random vector with standard uniform marginals

and invariant correlation R = (rij)d×d. Let L = {(u, v) ∈ [0, 1] : u < v}. Then its volume

with respect toM and Π are VM(L) = 0 and VΠ(L) = 1/2, respectively. By Proposition 10.7,

we have that

P(Yi ̸= Yj) = P((Yi, Yj) ∈ L) + P((Yj, Yi) ∈ L) = 2rijVM(L) + 2(1− rij)VΠ(L) = 1− rij,

and hence P(Yi = Yj) = rij for all i, j ∈ [d].

For y ∈ [0, 1]d, let A(y) = (A1(y), . . . , Ad(y)) be any partition of [d] with d sets such

that two indices i and j are in the same partitioned subset if and only if yi = yj. In addition,

define the matrix Σ(y) = (Σij(y))d×d by Σij(y) =
∑d

s=1 1{i,j∈As(y)}. Note that, although y

takes a value on the uncountable set [0, 1]d, there is only a finite number of different partitions

of [d], and thus so is Σ(y). Let Σ(1), . . . ,Σ(N), N ∈ N, be all possible such matrices. For the

given random vector Y, let αn = P(Σ(Y) = Σ(n)), n ∈ [N ]. Then

rij = P(Yi = Yj) = E[1{Yi=Yj}] = E

[
d∑

s=1

1{i,j∈As(Y)}

]
= E[Σij(Y)].

Since Σ(n) ∈ Sd,d for every n ∈ [N ] and
∑N

n=1 αn = 1, we conclude that R = E[Σ(Y)] =∑N
n=1 αnΣ

(n) ∈ Conv(Sd,d). Therefore, we obtain the desired result.
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10.8.6 Proofs in Section 10.4.2

Proof of Proposition 10.9. Fix i ∈ [d] and an increasing set A ⊆ Rd. For every s ∈ [k],

the joint law of (Zis, Xi) is identical to that of (Zis, Us), where Zis is the (i, s)th element of

Γ. Indeed, for any A ⊆ [0, 1], we have that

P(Zis = 1, Xi ∈ A) = P

(
Zis = 1,

k∑
l=1

ZilUl ∈ A

)
= P(Zis = 1, Us ∈ A).

This implies the independence between Zis and Xi since

P(Zis = 1, Xi ∈ A) = P(Zis = 1, Us ∈ A) = P(Zis = 1)P(Us ∈ A) = P(Zis = 1)P(Xi ∈ A).

Therefore, we have that, for x ∈ [0, 1],

P(X ∈ A | Xi = x) =
k∑

s=1

P(X ∈ A | Xi = x, Zis = 1)P(Zis = 1 | Xi = x)

=
k∑

s=1

P(X ∈ A | Us = x, Zis = 1)P(Zis = 1),

and hence it suffices to prove that x 7→ P(X ∈ A | Us = x, Zis = 1) is increasing for every

s ∈ [k]. Let γ−s be a d× (k − 1) matrix obtained from deleting the sth column from γ, and

u−s be a (k − 1)-dimensional vector obtained from deleting the sth element from u. Since

Us is independent of Γ and U−s, we have that

P(X ∈ A | Us = x, Zis = 1) = P(Γ−sU−s + x(Zis, . . . , Zds)
⊤ ∈ A | Us = x, Zis = 1)

= P(Γ−sU−s + x(Zis, . . . , Zds)
⊤ ∈ A | Zis = 1).

The probability in the last expression is increasing in x since (Zis, . . . , Zds) ⩾ 0d and A is an

increasing set.

10.8.7 Proofs in Section 10.5

We first present some lemmas for the proof of Theorem 10.5.

Lemma 10.7. Suppose that X is bi-atomic and Y is tri-atomic. If (X, Y ) ∈ IC↑
r for some

r ∈ [−1, 1], then r = 0.
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Proof of Lemma 10.7. Assume Supp(X) = {x1, x2} for some x1 < x2 and Supp(Y ) =

{y1, y2, y3} for some y1 < y2 < y3. Let P = (pij)2×3 be the probability matrix, p = (p1, p2)
⊤

and q = (q1, q2, q3)
⊤ be the marginal distributions of X and Y , respectively, with pi = P(X =

xi) and qj = P(Y = yj) for i ∈ [2] and j ∈ [3] and S = (sij)2×3 = P − p⊤q. We have pi > 0

for i = 1, 2 and qj > 0 for j ∈ [3].

Since a linear transform of g does not change Corr(g(X), g(Y )), we can fix g(x1) = 0

and g(x2) = 1. Assume g(y1) = z1, g(y2) = z2 and g(y3) = z3 with z1 ⩽ z2 ⩽ z3. As

(X, Y ) ∈ IC↑
r, we have

Corr(g(X), g(Y )) =
z1s21 + z2s22 + z3s23√

p2 − p22
√
z21q1 + z22q2 + z23q3 − (z1q1 + z2q2 + z3q3)2

= r.

By matching the coefficients in front of z21 , z
2
2 , z

2
3 , z1z2, z1z3 and z2z3 terms, we get the

system

s221 = r2(p2 − p22)(q1 − q21), (10.37a)

s222 = r2(p2 − p22)(q2 − q22), (10.37b)

s232 = r2(p2 − p22)(q3 − q23), (10.37c)

s21s22 = r2(p2 − p22)q1q2, (10.37d)

s21s23 = r2(p2 − p22)q1q3, (10.37e)

s22s23 = r2(p2 − p22)q2q3. (10.37f)

As g can be any increasing function, at most one of z1, z2, z3 can be fixed as 0. If z3 = 0,

we have (10.37a), (10.37b) and (10.37d) hold simultaneously. Thus, r ̸= 0 implies q3 = 0.

If z2 = 0, we have (10.37a), (10.37c) and (10.37e) hold simultaneously. Thus, r ̸= 0 implies

q2 = 0. If z1 = 0, we have (10.37b), (10.37c) and (10.37f) hold simultaneously. Thus, r ̸= 0

implies q1 = 0. If none of z1, z2, z3 is 0, then we have q1 = q2 = q3 = 0. As q1, q2, q3 > 0, we

have r = 0.

Lemma 10.8. Suppose both X and Y are tri-atomic random variables with the same support.

If (X, Y ) ∈ IC↑
r for some r ∈ [−1, 1], then r = 0 or FX = FY .

Proof of Lemma 10.8. As pi = P(X = xi) > 0 and qi = P(Y = yj) > 0 for all i, j ∈ [3],

we can use the similar argument in the proof of Lemma 10.4 to show that if (X, Y ) ∈ IC↑
r

with r ̸= 0, then FX = FY .
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Lemma 10.9. Suppose X is m-atomic and Y is n-atomic with m ⩾ 2, n > 2 and Supp(X) ̸=

Supp(Y ). If (X, Y ) ∈ IC↑
r for some r ∈ [−1, 1], then r = 0.

Proof of Lemma 10.9. It suffices to show that, for suchX and Y , there exists an increasing

function g such that g(X) is bi-atomic and g(Y ) is tri-atomic, or g(X) is tri-atomic and g(Y )

is bi-atomic. Then, we can use Lemma 10.7 to get r = 0. The existence of g can be checked

directly by exhausting all possibilities of the supports of X and Y . For instance, if there

exists y0 ∈ Supp(Y ) but not in Supp(X), and each of the events {X < y0}, {X > y0},

{Y < y0} and {Y > y0} has non-zero probability, then the function g : y 7→ 1{y>y0}+1{y⩾y0}

is sufficient. We omit the details of all other cases here.

Proof of Theorem 10.5. It is clear that ICr ⊆ IC↑
r for all r ∈ [−1, 1], which implies the

“only if” part. We will show the “if” part below.

(i) If (X, Y ) ∈ IC↑
0, then cov(g(X), g(Y )) = 0 for all admissible decreasing functions g.

By taking g(x) = 1{x⩽a}, we have cov(1{X⩽a},1{Y ⩽a}) = 0 for every a ∈ R. For

every fixed a, b ∈ R, let g(x) = 1{x⩽a} + 1{x⩽b}. As cov(1{X⩽a},1{Y ⩽a}) = 0 and

cov(1{X⩽b},1{Y ⩽b}) = 0, we have from cov(g(X), g(Y )) = 0 that cov
(
1{X⩽a},1{Y ⩽b}

)
+

cov
(
1{X⩽b},1{Y ⩽a}

)
= 0. Hence (X, Y ) is quasi-independent, and thus (X, Y ) ∈ IC0 by

Theorem 10.1.

(ii) Assume X and Y have identical distributions. By Theorem 10.3, it only remains to

show that (10.9) holds when (X, Y ) ∈ IC↑
r.

Notice that the necessity part of the proof of Theorem 10.3 directly applies with a few

modifications since, for example, the function (10.34) is increasing and admissible, and

thus Item (i) in Corollary 10.3 is used instead of Proposition 10.1. By carefully checking

the proof of Theorem 10.3, we only need to show that Proposition 10.6 holds for the

case of IC↑
r. Using IC↑

r ⊆ ICr, we know that n-atomic identically distributed random

variables X and Y satisfy (X, Y ) ∈ IC↑
r if r satisfies (10.12) and the probability matrix

P satisfies (10.11). We show the remaining “only if” part of this statement.
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To this end, let X and Y be n-atomic identically distributed random variables taking

values in X = {x1, . . . , xn}, n ∈ N, with x1 < · · · < xn. Write P = (pij)n×n, pij =

P(X = xi, Y = xj), with p = P1n and D = diag(p).

Suppose that (X, Y ) ∈ IC↑
r and let A := P + P⊤ − 2rD − 2(1 − r)pp⊤. Since (10.32)

holds for all admissible increasing functions g, (10.33) holds for all z ∈ R̆n such that

z1 < · · · < zn. Therefore, for such z’s, we have Az = 0n. For z ∈ R̆n such that

z1 < · · · < zn, there exists a sufficiently small δ > 0 such that z + ϵej ∈ R̆n is still

increasing for all ϵ < δ and j ∈ [n]. Since Az = A(z+ϵej) = 0n, we obtain Aej = 0n for

all j ∈ [n], and thus A = O. Therefore, we have (10.11). The range condition (10.12)

of r necessarily holds for rD + (1− r)pp⊤ to be a probability matrix.

(iii) For X, Y ∈ L2 with different distributions and |Supp(Y )| > 2, we will show that

(X, Y ) ∈ IC↑
0 implies r = 0.

As X and Y have different distributions, there exists (a, b] such that P(X ∈ (a, b]) ̸=

P(Y ∈ (a, b]). Hence, we can find an increasing function g such that g(X) is m-atomic

and g(Y ) is n-atomic for some m ⩾ 2 and n > 2 where g(X) and g(Y ) have different

distributions. Hence, without loss of generality, we can assume X is m-atomic and Y

is n-atomic for some m ⩾ 2 and n > 2 with different distributions.

If Supp(X) ̸= Supp(Y ), we have r = 0 by Lemma 10.9. Assume Supp(X) = Supp(Y ).

As X, Y have different distributions, we can always find a ∈ Supp(X) such that P(X >

a) ̸= P(Y > a). For such a, let g(x) = 1{x>a}+1{x>b}+1{x>c} for some b, c ∈ Supp(X)

with a < b < c. Thus, g(X) and g(Y ) are tri-atomic random variables with the same

support but different distribution. By Lemma 10.8, we have r = 0.

Therefore, we have (X, Y ) ∈ IC↑
0. Using Item (i) above, we have (X, Y ) ∈ IC0.

10.8.8 Proofs in Section 10.7

Proof of Proposition 10.10. Since the statement on κg-matrices is obvious, we will show

that X has the tail-dependence matrix R. Without loss of generality, we can assume that the

identical marginal of X is the standard uniform distribution. Fix i, j ∈ [d]. Since λij = λji,
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Proposition 10.7 leads to

λij =
λij + λji

2
= lim

u↓0

Cij(u, u) + Cji(u, u)

2u
= lim

u↓0

rijM(u, u) + (1− rij)Π(u, u)

u
= rij.

Proof of Proposition 10.11. Since Sn+1, . . . , Sn+d are independent conditional on the null

training sample D = {Si : i ∈ [n]}, we have

P
(
Pi =

ji
n+ 1

, i ∈ N
)

= ED

[
P
(
Pi =

ji
n+ 1

, i ∈ N
∣∣∣∣ D)]

= ED

[∏
i∈N

P
(
Pi =

ji
n+ 1

∣∣∣∣ D
)]

= ED

[∏
i∈N

(
S(ji) − S(ji−1)

)]

for ji ∈ [n + 1], where 0 = S(0) < S(1) < · · · < S(n) < S(n+1) = 1 are the order statistics of

the null training sample (S1 . . . , Sn). Since the conformal p-values are independent of the

distribution of scores, we can assume without loss of generality that S1, . . . , Sn are indepen-

dently distributed of the standard uniform distribution. Let Tj = S(j) − S(j−1), j ∈ [n + 1].

Then (T1, . . . , Tn+1) follows the Dirichlet distribution with the parameter vector 1n+1 ∈ Rn+1.

Therefore,

ED

[∏
i∈N

(
S(ji) − S(ji−1)

)]
= ED

[
TN1
1 · · ·TNn+1

n+1

]
=
B(1 +N1, . . . , 1 +Nn+1)

B(1n+1)
=

N1! · · ·Nn+1!

(n+m)(n+m− 1) · · · (n+ 1)
,

where B is the (n+ 1)-dimensional Beta function.

In particular, when m = 1, we have P(Pi = j/(n + 1)) = 1/(n + 1), j ∈ [n + 1]. When

m = 2, we have

P
(
Pi =

j

n+ 1
, Pi′ =

j′

n+ 1

)
=

1

n+ 2
· 1

n+ 1
1{j=j′} +

(
1− 1

n+ 2

)
· 1

n+ 1
· 1

n+ 1
,

which is the exchangeable case of the model (10.14) and thus has the invariant correlation

1/(n+ 2).
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Chapter 11

The checkerboard copula and

dependence concepts

11.1 Introduction

The copula theory has been actively studied over the past few decades with many

applications in statistics, finance, engineering, and the natural sciences; for an introduction,

see the monographs of Nelsen (2006) and Joe (2014).

It is well known through Sklar’s theorem (Nelsen (2006, Theorem 2.10.9)) that the

copula of a random vector is unique if and only if it has continuous marginal distributions.

Genest and Nešlehová (2007) discussed difficulties in identifying copulas for discrete distri-

butions. The purpose of this chapter is to understand whether it is possible to identify a

canonical copula for a random vector in some sense if it does not have continuous marginal

distributions.

To answer this question, we seek inspiration from three applications. LetX = (X1, . . . , Xd)

be a d-dimensional random vector with d ⩾ 2, which may have non-unique copulas. Denote

by CX the set of all copulas of X. For a random variable X, its probability integral transform

U is a uniform random variable on [0, 1] satisfying F−1(U) = X almost surely (a.s.), where

F is the distribution function of X and F−1 is the quantile function of X. Let (U1, . . . , Ud)

be any vector of probability integral transforms of X1, . . . , Xd with a joint distribution C;
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certainly, C is a copula of X. All random variables live in an atomless probability space

(Ω,F ,P).

1. Simulating from the copula of X. One of the most popular applications of copulas

in finance is to model default correlation, as famously done by Li (2000); see McNeil et

al. (2015) for discussions. In such applications, one needs to simulate from the copula of

X, where X may have non-continuous marginal distributions (e.g., losses from default

events). Assume that we can simulate X, and we also have knowledge of all marginal

distributions of X. How can we find a reasonable copula C ∈ CX to simulate from,

that is determined only by X but not by any particular modeling choices (such as the

Gaussian copula)?

2. Stressing the distribution of X. In sensitivity analysis and risk management,

it is often necessary to stress, or distort, the distribution of X to obtain post-stress

distributions. In the stressing mechanisms studied by Millossovich et al. (2021), one

needs to find a stressed probability measure Q1 by using dQ1/ dP = g(U1) for a non-

negative increasing function g with
∫ 1

0
g(u) du = 1, such as g(u) = 2u. The simple

interpretation of Q1 is to gradually increase the weight of realizations ω ∈ Ω at which

X1 is large. Similarly, one can simultaneously stress all components ofX by considering

a measure Q such that dQ/ dP = (1/d)
∑d

i=1 gi(Ui) or dQ/ dP = c
∏d

i=1 gi(Ui) with

a normalizing constant c > 0 (c = 1 if U1, . . . , Ud are independent), where gi are

non-negative increasing functions with
∫ 1

0
gi(u) du = 1. If we are only interested in

the post-stress distribution F̂Q1

1 of X1 under Q1, the choice of the copula C ∈ CX is

irrelevant. However, the choice of the copula C ∈ CX matters for the distribution F̂Q
i

of Xi under Q, as well as for the distribution F̂Q1

i of Xi under Q1.

3. Computing a co-risk measure. Co-risk measures (e.g., Adrian and Brunnermeier

(2016)) are calculated for the conditional distribution of a random variable X2 given

some event related to X1. A classic example is the Marginal Expected Shortfall at level

p ∈ (0, 1), which is defined as, assuming that X1 is continuously distributed,

ρ(X2|X1) := E[X2|X1 > F−1
1 (p)] = E[X2|U1 > p].
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Generally, ρ is the mean of X2 given a (not necessarily unique) p-tail event of X1 in the

sense of Wang and Zitikis (2021). This risk measure ρ does not depend on the choice

of C ∈ CX if X1 is continuously distributed (p-tail event is unique a.s.); however, it

may depend on C ∈ CX if X1 has some points of mass. Other co-risk measures, such

as CoVaR (Adrian and Brunnermeier, 2016), also face the same issue.

All of the above contexts point to the question of choosing a good copula C ∈ CX, which

we address in this chapter. We first offer a new characterization of all copulas of a given

random vector in Section 11.2 in Theorem 11.1. In Section 11.3, we give some intuitive and

heuristic arguments for the questions above, leading to the proposal of using the checkerboard

copula, that is, the unique copula of X that is as uniform as possible in regions where the

copulas of X are not uniquely determined, formally defined in Definition 11.1. Although

the arguments in Section 11.3 are heuristic, the use of the checkerboard copula indeed has

a theoretical justification, which we present in Section 11.4. The checkerboard copula has

the maximum Shannon entropy among all possible copulas of X, as shown in Theorem 11.2.

In Section 11.5, we show in Theorem 11.3 that the checkerboard copula preserves various

dependence concepts that are satisfied by X. This result is intuitive, but the proof requires

serious technical analysis. We discuss two applications of our results in diversification penalty

and induced order statistics in Section 11.6. Section 11.7 concludes this chapter.

11.2 Copulas for a discrete random vector

Let d ⩾ 2 be an integer and [d] = {1, . . . , d}. All inequalities are interpreted component-

wise when applied to vectors. All random variables live in an atomless probability space

(Ω,F ,P). Let X = (X1, . . . , Xd) be a d-dimensional random vector, F1, . . . , Fd be the

marginal distributions of X, and Ran(Fi) be the range of Fi for i ∈ [d]. By Sklar’s the-

orem, the copula of X is uniquely determined on Ran(F1)×· · ·×Ran(Fd) but undetermined

in other regions. Therefore, when the marginal distribution Fi is not continuous for some

i ∈ [d], the copula of X may not be unique. In this section, we give a concrete representation

for any copulas of X.
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We start with the observation that, if a random variable X is continuously distributed,

the random variable

UX := FX(X)

will be uniformly distributed over [0, 1], where FX is the cumulative distribution function of

X. More generally, regardless of whether X is continuously distributed, we can define its

probability integral transform

UX := FX(X−) + VX(FX(X)− FX(X−)), (11.1)

where FX(x−) = limy↑x FX(x) = P(X < x) for x ∈ R and VX ∼ U[0, 1] is independent

of X, assumed to exist.1 The probability integral transform UX satisfies UX ∼ U[0, 1] and

F−1
X (UX) = X a.s. (see e.g., Rüschendorf (2013, Proposition 1.3)). Therefore, the probability

integral transform (11.1) converts any random variable X to a U[0, 1] distributed random

variable UX using VX .

We extend this idea to the case of a random vectorX. LetV = (V1, . . . , Vd) be a random

vector with U[0, 1] marginals such that Vi is independent of Xi for each i ∈ [d]. Denote the

set of such V by VX. Similar to (11.1), let us define the probability integral transform for

X = (X1, . . . , Xd):

Ui := Fi(Xi−) + Vi(Fi(Xi)− Fi(Xi−)), i ∈ [d]. (11.2)

It immediately follows that Ui ∼ U[0, 1] and F−1
i (Ui) = Xi a.s.. Therefore, U = (U1, . . . , Ud)

is a random vector with uniform marginals. This technique of constructing random vectors

with uniform marginals has been used in the literature; see e.g., Moore and Spruill (1975)

and Nešlehová (2007).

Let CV
X be the copula of U. Because F−1

i (Ui) = Xi a.s. for each i ∈ [d], we have

CV
X (F1(x1), . . . , Fd(xd)) = P(U1 ⩽ F1(x1), . . . , Ud ⩽ Fd(xd)) = P(X1 ⩽ x1, . . . , Xd ⩽ xd)

for any (x1, . . . , xd) ∈ Rd. Hence, CV
X is a copula of X.

1This assumption is safe as we are interested in distributional properties, and we can extend the probability

space to include such independent VX , if necessary.
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According to (11.2), the copula CV
X is determined by the joint distribution of (X,V).

In particular, the copula CV
X does not depend on the choice of Vi for i such that Xi is

continuously distributed because, for these i, Ui in (11.2) is a.s. equal to Fi(Xi). While for i

such that Xi is discrete, Vi does have an impact on the copula CV
X .

In general, the choice of V ∈ VX for constructing the copula CV
X may not be unique.

This is because VX allows two types of dependence that might be present in the construction

of V: First, the components of V may be mutually dependent. Second, Vi may depend on

Xj for i ̸= j. Naturally, a different choice of V ∈ VX often leads to a different copula CV
X ;

see the following example.

Example 11.1. Assume that d = 2, X1 is a constant, and X2 is continuously distributed.

It is well known that any copula is a copula of X in this case. For instance, by choosing V1

to be independent of X2, C
V
X is the independence copula, and by choosing V1 = F2(X2), C

V
X

is the comonotonic copula.

The following result says that all copulas of X can be realized by some CV
X . Hence,

(11.2) gives a stochastic representation for any copula of X. The representation is quite

intuitive, but we did not find it in the literature, so we provide a self-contained proof.

Theorem 11.1. Assume that there exists a continuously distributed random variable inde-

pendent of a random vector X. A copula C is a copula of X if and only if C = CV
X for some

V ∈ VX.

Proof. We have seen that CV
X is a copula ofX. It suffices to show the “only if” statement. Let

C be a copula of X, take U′ = (U ′
1, . . . , U

′
d) ∼ C, and write X′ =

(
F−1
1 (U ′

1), . . . , F
−1
d (U ′

d)
)
.

Because C is a copula of X, for x = (x1, . . . , xd) ∈ Rd, we have

P(X ⩽ x) = C (F1(x1), . . . , Fd(xd)) = P (U ′
1 ⩽ F1(x1), . . . , U

′
d ⩽ Fd(xd))

= P
(
F−1
1 (U ′

1) ⩽ x1, . . . , F
−1
d (U ′

d) ⩽ xd
)
= P(X′ ⩽ x).

Hence, X
d
= X′. Take U∗ = (U∗

1 , . . . , U
∗
d ) such that (X,U∗)

d
= (X′,U′), and we then have

X =
(
F−1
1 (U∗

1 ), . . . , F
−1
d (U∗

d )
)
a.s.. Furthermore, take V ′ ∼ U[0, 1] which is independent of

(X,U∗). The existence of U∗ and V ′ is guaranteed by the assumption of the existence of a
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continuously distributed random variable independent of X. For i ∈ [d], let V = (V1, . . . , Vd)

be given by

Vi =
U∗
i − Fi(Xi−)

Fi(Xi)− Fi(Xi−)
1{Fi(Xi)>Fi(Xi−)} + V ′1{Fi(Xi)=Fi(Xi−)}.

Fix i ∈ [d] below. Let Di be the set of discontinuity points of Fi. Note that for x ∈ Di, we

have

P
(
U∗
i ∈ [Fi(x−), Fi(x)]

∣∣Xi = x
)
= 1 and P

(
U∗
i ∈ [Fi(x−), Fi(x)]

∣∣Xi ̸= x
)
= 0.

Because U∗
i is uniformly distributed over [0, 1], U∗

i is uniform on [Fi(x−), Fi(x)] conditional

on Xi = x ∈ Di. Thus,

P(U∗
i ⩽ u|Xi = x) =

u− Fi(x−)

Fi(x)− Fi(x−)
, u ∈ [F−1

i (x−), F−1
i (x)].

Therefore, for u ∈ [0, 1],

P(Vi ⩽ u|Xi) = P
(

U∗
i − Fi(Xi−)

Fi(Xi)− Fi(Xi−)
⩽ u

∣∣∣Xi

)
1{Xi∈Di} + P(V ′ ⩽ u)1{Xi ̸∈Di}

= P
(
U∗
i ⩽ u(Fi(Xi)− Fi(Xi−)) + Fi(Xi−)

∣∣Xi

)
1{Xi∈Di} + u1{Xi ̸∈Di}

= u1{Xi∈Di} + u1{Xi ̸∈Di} = u.

Hence, Vi follows U[0, 1] and is independent of Xi. Note that, by the construction, U∗
i , Vi,

and Xi satisfy U
∗
i = Fi(Xi−) + Vi(Fi(Xi)− Fi(Xi−)) a.s., and hence U∗ ∼ CV

X . This shows

C = CV
X .

Theorem 11.1 implies CX = {CV
X : V ∈ VX}. Note that CX is a singleton if and only if

all marginal distributions of X, F1, . . . , Fd, are continuous functions.

11.3 Motivating arguments for the checkerboard cop-

ula

Theorem 11.1 gives the entire class of copulas for X. We now consider which V ∈ VX

can answer the three motivating questions in Section 11.1, which all point to the same unique

choice of V ∈ VX.
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1. Simulating from the copula of X. A natural approach to simulating from the

copula of X with some atoms in the marginal distributions is by first simulating a pair

of (X,V), and then applying the probability integral transform using (11.2). Theorem

11.1 shows that all copulas of X can be simulated this way. For this purpose, the

simplest and most natural choice of V is V ∼ U
(
[0, 1]d

)
which is independent of X.

In fact, we could not think of an argument against the use of this particular V in the

context of simulation.

2. Stressing the distribution of X. To understand how the choice of V affects the

stressed distribution of X2, we look at the simple example in Example 11.1 with g(u) =

2u. Choosing V1 independent of X2 would lead to F̂Q1

2 = F2, whereas choosing V1 =

F2(X2) would lead to F̂Q1

2 = (F2)
2. Because we are interested in the effect of stressing

X1 on X2, and X1 is a constant in this example, it is natural to choose a V1 that

affects the distribution of X2 minimally, which is achieved when V1 is independent of

X2. Translating this argument into the general d-dimensional setting suggests choosing

V ∼ U
(
[0, 1]d

)
independent of X.

3. Computing a co-risk measure. To understand how the choice of V affects the value

of the co-risk measure, we again look at Example 11.1. We have ρ(X2|X1) = E[X2] if

V1 is independent of X2, and ρ(X2|X1) = ESp(X2) if V1 = F2(X2), where ESp(X2) =

E[X2|U2 > p] is the Expected Shortfall of X2 at level p. The interpretation of ρ as the

mean of X2 on a tail event of X1 suggests that it is natural to choose V1 independent

of X2, because X1 is a constant and its tail event should not affect X2.

In all the considerations above, V ∼ U
(
[0, 1]d

)
independent of X appears to be a good

choice. Let us denote this by V⊥
X and the corresponding copula by C⊥

X, where ⊥ reflects that

independence is used twice to construct V (within components of V and between V and X).

From the three motivating examples above, the choice of the particular copula C⊥
X is natural

and has several unique features. This choice has been known as the checkerboard copula.

Definition 11.1. The copula C⊥
X is called the checkerboard copula of X.

The copula C⊥
X is also called the multilinear extension copula of X; see Genest et al.
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(2017) for its properties, its empirical process, and a history. One notable property is that

X1, . . . , Xd are independent if and only if C⊥
X is the independence copula.

The rest of this chapter focuses on the properties and applications of the checkerboard

copula.

11.4 Entropy maximization

Given the natural choice of C⊥
X in the applications in Section 11.3, it should have some

unique properties within the class CX. The applications seem to suggest that C⊥
X relies less

on external information compared to other choices of V. Such consideration is typically

studied via entropy. Indeed, as argued by Jaynes (1957), the maximum-entropy distribution

should be the only unbiased choice given available information. If a copula C has a density

function c, then its Shannon (differential) entropy is defined as

H(C) = −
∫
[0,1]d

c(u) log c(u) du.

One problem with the above formulation is that a copula C often does not have a density.

We set H(C) = −∞ if C does not have a density, which is intuitive and can be seen as

a limiting case. However, even the checkerboard copula C⊥
X may not have a density if the

distribution of X has some singular continuous part. This issue may be solved by considering

other measures of information, but for now, let us stick to the Shannon entropy, which is the

most popular notion in information theory. We would like to compare H(C⊥
X) with H(C) for

C ∈ CX, or equivalently, H(CV
X ) for other choices of V ∈ VX. The main result of this section

is to show that H(C⊥
X) has the largest entropy among all other choices.

Theorem 11.2. For C ∈ CX, we have H(C⊥
X) ⩾ H(C).

The proof of Theorem 11.2 essentially boils down to showing the following lemma,

which states that the density of the checkerboard copula can be expressed as the conditional

expectation for the density of other possible copulas in CX. From this lemma and Jensen’s

inequality, Theorem 11.2 follows.
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Lemma 11.1. For C ∈ CX, if the density c of C exists, then the density c⊥ of C⊥
X ex-

ists. Moreover, we have c⊥(U) = E[c(U)|X̂], where U = (U1, . . . , Ud) ∼ U
(
[0, 1]d

)
, X̂ =(

F−1
1 (U1), . . . , F

−1
d (Ud)

)
, and F1, . . . , Fd are the marginals of X.

Proof. Since E[c(U)|X̂] is σ(X̂)-measurable, there exists a function f : Rd → [0, 1] such that

f(X̂) = E[c(U)|X̂] (in the almost sure sense). Let c⊥ be a function [0, 1]d → [0, 1] defined as

c⊥(u) = f
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
for any u = (u1, . . . , ud) ∈ [0, 1]d. We claim that c⊥ is the

density of C⊥
X. This claim implies that c⊥ exists and c⊥(U) = E[c(U)|X̂].

To prove this claim, let Uc ∼ C, U⊥ ∼ C⊥
X, and R =

∏d
i=1Ran(Fi). We first show that∫

A
c⊥(u) du = P(U⊥ ∈ A) for the following two types of the set A.

(i) LetA =
∏d

i=1[0, ai] with a = (a1, . . . , ad) ∈ R. We have 1{U⩽a} = 1{X̂⩽(F−1
1 (a1),...,F

−1
d (ad))}.

Therefore, ∫
A

c⊥(u) du =

∫
∏d

i=1[0,ai]

f
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
du1 · · · dud

= E
[
f(X̂)1{U⩽a}

]
= E

[
E[c(U)|X̂]1{X̂⩽(F−1

1 (a1),...,F
−1
d (ad))}

]
= E

[
c(U)1{U⩽a}

]
= P(Uc ⩽ a) = P(U⊥ ⩽ a),

where the last equality holds because

P (Uc ⩽ a) = P
(
X ⩽

(
F−1
1 (a1), . . . , F

−1
d (ad)

))
= P(U⊥ ⩽ a).

This further implies that
∫
A
c⊥(u) du = P(U⊥ ∈ A) for any A =

∏d
i=1Ai such that

Ai ∈ {[0, ai] : ai ∈ Ran(Fi)} ∪ {(Fi(xi−), Fi(xi)] : xi is a discontinuity point of Fi} for

i ∈ [d].

(ii) Let A =
∏k

i=1[0, ai] ×
∏d

j=k+1(sj, tj] with k ∈ {0, 1, . . . , d} such that ai ∈ Ran(Fi)

for i ∈ [k] and (sj, tj] ∩ Ran(Fj) = ∅ for j ∈ [d] \ [k]. For j ∈ [d] \ [k], denote by

xj = F−1
j (sj), and thus (sj, tj] ⊆ (Fj(xj−), Fj(xj)). By the definition of c⊥, for fixed

ui ∈ [0, ai] and i ∈ [k], c⊥(u1, . . . , uk, vk+1, . . . , vd) is a constant for all (vk+1, . . . , vd) ∈
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∏d
j=k+1(Fj(xj−), Fj(xj)). Therefore, let B =

∏k
i=1[0, ai]×

∏d
j=k+1(Fj(xj−), Fj(xj)), we

have ∫
A

c⊥(u) du =

(
d∏

j=k+1

tj − sj
Fj(xj)− Fj(xj−)

)∫
B

c⊥(u) du.

Let V = (V1, . . . , Vd) ∼ U
(
[0, 1]d

)
be independent of X, and for j ∈ [d] \ [k], denote by

s′j = (sj − Fj(xj−))/(Fj(xj)− Fj(xj−)) and t′j = (tj − Fj(xj−))/(Fj(xj)− Fj(xj−)).

Hence,
d∏

j=k+1

tj − sj
Fj(xj)− Fj(xj−)

= P
(
Vj ∈ (s′j, t

′
j] for all j ∈ [d] \ [k]

)
.

In addition, by (i), we can get∫
B

c⊥(u) du = P(U⊥ ∈ B) = P
(
Xi ⩽ F−1(ai), Xj = xj for all i ∈ [k], j ∈ [d] \ [k]

)
.

Therefore,∫
A

c⊥(u) du = P

 ⋂
j∈[d]\[k]

{Vj ∈ (s′j, t
′
j]}

P

 ⋂
i∈[k],j∈[d]\[k]

{Xi ⩽ F−1(ai), Xj = xj}


= P

 ⋂
i∈[k],j∈[d]\[k]

{
Xi ⩽ F−1(ai), Xj = xj, Vi ∈ [0, 1], Vj ∈ (s′j, t

′
j]
}

= P

(
U⊥ ∈

k∏
i=1

[0, ai]×
d∏

j=k+1

(sj, tj]

)
= P(U⊥ ∈ A).

By the same argument, we have
∫
A
c⊥(u) du = P(U⊥ ∈ A) for any A =

∏d
i=1Ai such

that Ai ∈ {[0, ai] : ai ∈ Ran(Fi)} ∪ {(si, ti] : (si, ti] ∩ Ran(Fi) = ∅} for i ∈ [d].

For any a = (a1, . . . , ad) ∈ [0, 1]d, the region
∏d

i=1[0, ai] can always be represented by

an at most countable disjoint union of regions studied in (i) and (ii). Hence, we can obtain∫
∏d

i=1[0,ai]

c⊥(u) du = P(U⊥ ⩽ a).

This proves our claim that c⊥ is the density of C⊥
X.

Proof of Theorem 11.2. If H(C) = −∞, there is nothing to show. Hence, it suffices to

consider the case that C has a density, which we denote by c. By Lemma 11.1, we have

c⊥(U) = E[c(U)|X̂] where c⊥ is the density of C⊥
X, U = (U1, . . . , Ud) ∼ U

(
[0, 1]d

)
, and
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X̂ =
(
F−1
1 (U1), . . . , F

−1
d (Ud)

)
with F1, . . . , Fd as the marginals of X. Define a function g(x) =

x log x for x ∈ (0,∞). It is clear that g is convex. By the fact that E[c(U)|X̂] = c⊥(U) and

Jensen’s inequality, we have

H(C⊥
X) = −E[g(c⊥(U))] = −E[g(E[c(U)|X̂])] ⩾ −E[E[g(c(U))|X̂]] = −E[g(c(U))] = H(C).

Thus, H(C⊥
X) ⩾ H(C) for all C ∈ CX.

11.5 Checkerboard copula and dependence concepts

In this section, we study how the checkerboard copula preserves dependence concepts.

This question is motivated by a problem raised in the context of diversification in Chen et

al. (2024b), which we describe in Section 11.6.1.

11.5.1 Dependence concepts

We first define several notions of positive dependence, introduced and studied by Lehmann

(1966), Esary et al. (1967), and Benjamini and Yekutieli (2001), and the corresponding no-

tions of negative dependence, introduced and studied by Lehmann (1966), Alam and Saxena

(1981), Block et al. (1982, 1985), Joag-Dev and Proschan (1983), and Chen et al. (2024a).

In what follows, for i ∈ [d] and an d-dimensional random vector X = (X1, . . . , Xd),

write X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd), and for A,B ⊆ [d], write XA = (Xk)k∈A and

XB = (Xk)k∈B. A set S ⊆ Rd is decreasing if x ∈ S implies y ∈ S for all y ⩽ x.

Definition 11.2. A random vector X is

(i) (a) positively associated (PA) if for every pair of subsets A,B of [d] and any functions f

and g both increasing or decreasing coordinatewise, provided the covariance below

exists,

cov(f(XA), g(XB)) ⩾ 0;
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(b) negatively associated (NA) if for every pair of disjoint subsets A,B of [d] and any

functions f and g both increasing or decreasing coordinatewise, provided the co-

variance below exists,

cov(f(XA), g(XB)) ⩽ 0;

(ii) (a) positively regression dependent (PRD) if for every i ∈ [d], the random variable

E[g(X−i)|Xi] is an increasing function of Xi for any coordinatewise increasing func-

tion g such that the conditional expectation exists;

(b) negatively regression dependent (NRD) if for every i ∈ [d], the random variable

E[g(X−i)|Xi] is a decreasing function of Xi for any coordinatewise increasing func-

tion g such that the conditional expectation exists;

(iii) (a) weakly positively associated (WPA) if for any i ∈ [d], decreasing set S ⊆ Rd−1, and

x ∈ R with P(Xi ⩽ x) > 0,

P(X−i ∈ S | Xi ⩽ x) ⩾ P(X−i ∈ S);

(b) weakly negatively associated (WNA) if for any i ∈ [d], decreasing set S ⊆ Rd−1, and

x ∈ R with P(Xi ⩽ x) > 0,

P(X−i ∈ S | Xi ⩽ x) ⩽ P(X−i ∈ S);

(iv) (a) positively orthant dependent (POD) if for all x = (x1, . . . , xd) ∈ Rd, P(X ⩽ x) ⩾∏d
i=1 P(Xi ⩽ xi) and P(X > x) ⩾

∏d
i=1 P(Xi > xi);

(b) negatively orthant dependent (NOD) if for all x = (x1, . . . , xd) ∈ Rd, P(X ⩽ x) ⩽∏d
i=1 P(Xi ⩽ xi) and P(X > x) ⩽

∏d
i=1 P(Xi > xi).

Moreover, we say that a distribution or a copula is PA, PRD, WPA, POD, NA, NRD, WNA,

or NOD if the corresponding random vector is.

Note that the definition of PA does not require A and B to be disjoint, whereas the

definition of NA requires this.
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The relationship between the above notions is summarized below (see e.g., Chen et al.

(2024a)).

PA =⇒ WPA; PRD =⇒ WPA; WPA =⇒ POD;

NA =⇒ WNA; NRD =⇒ WNA; WNA =⇒ NOD.

Within the class of multivariate normal distributions, the four concepts of positive depen-

dence are equivalent, and each is equivalent to having nonnegative bivariate correlation

coefficients; similarly, the four concepts of negative dependence are equivalent, and each is

equivalent to having nonpositive bivariate correlation coefficients.

In the sequel, we use D to represent one of the following: PA, PRD, WPA, POD, NA,

NRD, WNA, or NOD. Our question is whether these properties are properties purely based

on copulas. It turns out that the checkerboard copula can help answer this question.

11.5.2 The checkerboard copula preserves dependence

We first present a self-consistency property of those negative dependence concepts in

the spirit of Joag-Dev and Proschan (1983, Property P6) for NA.

Lemma 11.2. If f1, . . . , fd are increasing functions and X satisfies D, (f1(X1), . . . , fd(Xd))

also satisfies D.

Proof. We only show the result for the concepts of negative dependence, as the case of

positive dependence is similar.

The self-consistency properties of NA and NOD are shown in Joag-Dev and Proschan

(1983, Property P6) and Lehmann (1966, Lemma 1), respectively. We will show the properties

for NRD and WNA. Let Y = (f1(X1), . . . , fd(Xd)).

1. Assume X is NRD. Fix i ∈ [d]. Let g be a coordinatewise increasing function and

g′ = g◦(f1, . . . , fi−1, fi+1, . . . , fd). As a result, we have g′ is a coordinatewise increasing

function and g(Y−i) = g′(X−i). For any y ∈ R, let Ay = {x : fi(x) = y}. We have

{Yi = y} = {Xi ∈ Ay}. Therefore, E[g(Y−i)|Yi = y] = E[g′(X−i)|Xi ∈ Ay]. Assume
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y1 < y2. For any x1 ∈ Ay1 and x2 ∈ Ay2 , we have x1 ⩽ x2; hence, E[g′(X−i)|Xi = x1] ⩾

E[g′(X−i)|Xi = x2]. Thus,

E[g′(X−i)|Xi ∈ Ay1 ] = E[E[g′(X−i)|Xi]|Xi ∈ Ay1 ]

⩾ E[E[g′(X−i)|Xi]|Xi ∈ Ay2 ] = E[g′(X−i)|Xi ∈ Ay2 ],

which implies that E[g(Y−i)|Yi = y1] ⩾ E[g(Y−i)|Yi = y2]; hence Y is NRD.

2. Assume X is WNA. For i ∈ [d], let S ⊆ Rd−1 be a decreasing set, and

Sf
i = {(x1, . . . xi−1, xi+1, . . . , xd) : (f1(x1), . . . , fi−1(xi−1), fi+1(xi+1), . . . , fd(xd)) ∈ S}.

It is clear that {Y−i ∈ S} = {X−i ∈ Sf
i }. For any x1 ⩽ x2 and x2 ∈ Sf

i , we have

fk(x1,k) ⩽ fk(x2,k) for all k ∈ [d] \ {i}. Furthermore, because S is decreasing, we have

x1 ∈ Sf
i , which implies Sf

i is a decreasing set. For any y ∈ R with P(Yi ⩽ y) > 0,

let x = sup{t ∈ R : fi(t) ⩽ y}. If fi(x) ⩽ y, we have {Yi ⩽ y} = {Xi ⩽ x} and

P(Xi ⩽ x) > 0. Therefore,

P(Y−i ∈ S|Yi ⩽ y) = P
(
X−i ∈ Sf

i |Xi ⩽ x
)
⩽ P

(
X−i ∈ Sf

i

)
= P(Y−i ∈ S),

which implies that Y is WNA. If fi(x) > y, we have {Yi ⩽ y} = {Xi < x} and

P(Xi < x) > 0. Therefore,

P(Y−i ∈ S, Yi ⩽ y) = P
(
X−i ∈ Sf

i , Xi < x
)

= lim
t↑x

P
(
X−i ∈ Sf

i , Xi ⩽ t
)

⩽ lim
t↑x

P
(
X−i ∈ Sf

i

)
P(Xi ⩽ t)

= P
(
X−i ∈ Sf

i

)
lim
t↑x

P(Xi ⩽ t)

= P
(
X−i ∈ Sf

i

)
P(Xi < x) = P(Y−i ∈ S)P(Yi ⩽ y),

which implies that P(Y−i ∈ S|Yi ⩽ y) ⩽ P(Y−i ∈ S) and Y is WNA.

The following theorem demonstrates that the checkerboard copula of X preserves the

dependence information of X.
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Theorem 11.3. A random vector X satisfies D if and only if it has a copula that satisfies

D. Moreover, the copula can be chosen as the checkerboard copula C⊥
X.

Proof. The “if” part follows from Lemma 11.2 because, for U = (U1, . . . , Ud) following the

copula of X that satisfies D, we have (X1, . . . , Xd) =
(
F−1
1 (U1), . . . , F

−1
d (Ud)

)
and F−1

i is

increasing for all i ∈ [d].

Now we show the “only if” part. Let U = (U1, . . . , Ud) be the random vector given by

(11.2) with V = (V1, . . . , Vd) ∼ U
(
[0, 1]d

)
independent of X. Hence, we have U ∼ C⊥

X and

C⊥
X is a copula of X. Note that, for any i ∈ [d], given Vi, we have that Ui is an increasing

function of Xi. Hence, by Lemma 11.2, X satisfies D implies that U|V also satisfies D.

Assume X is NA. For any given pair of disjoint subsets A, B of [d] and any given

functions f and g both increasing or decreasing coordinatewise, we have

cov(f(UA), g(UB)) = E[cov(f(UA), g(UB)|V)] + cov (E[f(UA)|V],E[g(UB)|V])

⩽ 0 + cov (E[f(UA)|VA],E[g(UB)|VB]) = 0,

where the inequality follows from U|V is NA, and the last equality follows from the inde-

pendence between VA and VB. Hence, U is NA.

Assume X is NRD. For any fixed i and k, by (11.2), there exist x and v such that

{Ui = k} = {Xi = x, Vi = v}. Then, for any coordinatewise increasing function g, by the

independence between Vi and (Xi,U−i), we have

E[g(U−i)|Ui = k] = E[g(U−i)|Xi = x, Vi = v] = E[g(U−i)|Xi = x].

Because U−i is a function of X−i and V−i, we can let h be the function such that g(U−i) =

h(X−i,V−i). Then, due to the independence between V−i and X,

E[g(U−i)|Xi = x] = E[h(X−i,V−i)|Xi = x] =

∫
[0,1]d−1

E[h(X−i,v−i)|Xi = x]dv−i,

where v−i = (v1, . . . , vi−1, vi+1, . . . , vd). Therefore, for any k1 ⩽ k2, there exist x1 and x2

such that

E[g(U−i)|Ui = k1] =

∫
[0,1]d−1

E[h(X−i,v−i)|Xi = x1]dv−i,

E[g(U−i)|Ui = k2] =

∫
[0,1]d−1

E[h(X−i,v−i)|Xi = x2]dv−i.
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In addition, by (11.2), we must have x1 ⩽ x2. Note that given v−i, h(X−i,v−i) is a

coordinatewise increasing function of X−i. Hence, we have E[h(X−i,v−i)|Xi = x1] ⩾

E[h(X−i,v−i)|Xi = x2] for any v−i. Therefore, E[g(U−i)|Ui = k1] ⩾ E[g(U−i)|Ui = k2]

and U is NRD.

Assume X is WNA. For any i ∈ [d], decreasing set S ⊆ Rd−1, and x ∈ R with P(Ui ⩽

x) > 0,

P(U−i ∈ S, Ui ⩽ x) = E[P(U−i ∈ S, Ui ⩽ x | V)]

⩽ E[P(U−i ∈ S|V−i)P(Ui ⩽ x | Vi)]

= E[P(U−i ∈ S|V−i)]E[P(Ui ⩽ x | Vi)]

= P(U−i ∈ S)P(Ui ⩽ x).

Hence, U is WNA.

Assume X is NOD. For any t1, . . . , td ∈ R, we have

P(U1 ⩽ t1, . . . , Ud ⩽ td) = E[P(U1 ⩽ t1, . . . , Ud ⩽ td|V1, . . . , Vd)]

⩽ E[P(U1 ⩽ t1|V1) · · ·P(Ud ⩽ td|Vd)]

= E[P(U1 ⩽ t1|V1)] · · ·E[P(Ud ⩽ td|Vd)]

= P(U1 ⩽ t1) · · ·P(Ud ⩽ td).

Similarly, we can show

P(U1 > t1, . . . , Ud > td) ⩽ P(U1 > t1) · · ·P(Ud > td).

Hence, U is NOD.

In conclusion, if X satisfies D, then U satisfies D, where D is one of the four concepts

of negative dependence.

To show the case of positive dependence, we follow a similar route. We take the same

U as above. Assume X is PA. Because Ui|Vi is an increasing function of Xi, by Lemma 11.2,

U|V is also PA. Thus, for any given pair of subsets A,B of [d] and any given functions f

and g both coordinatewise increasing or decreasing, we have

cov(f(UA), g(UB)) = E[cov(f(UA), g(UB)|V)] + cov (E[f(UA)|V],E[g(UB)|V])

⩾ cov (E[f(UA)|VA],E[g(UB)|VB]) .
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Moreover, givenX, Ui is an increasing function of Vi. Hence, E[f(UA)|VA] and E[f(UB)|VB]

are coordinatewise increasing (or decreasing) with respect to VA and VB, respectively, if f

and g are both coordinatewise increasing (or decreasing). Because V is PA, we have

cov (E[f(UA)|VA],E[g(UB)|VB]) ⩾ 0,

implying that U is PA. The proofs for other positive dependence concepts are similar.

11.6 Two applications

We provide two applications in this section to highlight the usefulness of Theorem 11.3.

11.6.1 An application on diversification penalty

For random variables X and Y , let X ⩾st Y represent P(X > x) ⩾ P(Y > x) for

all x ∈ R; this is called the stochastic order. Chen et al. (2024a,b) studied the problem of

diversification penalty; that is, whether

X ⩽st

d∑
i=1

θiXi for all (θ1, . . . , θd) ∈ ∆d, where X,X1, . . . , Xd are identically distributed,

(11.3)

holds under certain marginal distributions and dependence structures. Here, ∆d is the stan-

dard simplex defined by ∆d = {(θ1, . . . , θd) ∈ [0, 1]d : θ1+· · ·+θd = 1}. WhenX is interpreted

as a loss, (11.3) intuitively means that the non-diversified portfolio X is less dangerous than

the diversified portfolio
∑d

i=1 θiXi. This seems counter-intuitive at first glance, but it indeed

happens in the model of Chen et al. (2024a), where X has infinite mean.

Define the set, for some dependence concept D in Section 11.5.1,

FD = {distribution of X : (11.3) holds for all (X1, . . . , Xd) that satisfy D}.

Chen et al. (2024a) showed that the Pareto(1) distribution belongs to FWNA, and hence

also to FNA, FNRD, and FIN, where IN stands for independence. Moreover, Chen et al.

(2024b, Proposition 1) showed that FD for D being WNA, NA, or IN is closed under strictly
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increasing convex transforms on the random variables. Our next result, which relies on our

Theorem 11.3, addresses non-strictly increasing f and other notions of dependence, thus

generalizing the above result.

Proposition 11.1. Each of FD is closed under increasing convex transforms on the random

variable.

Proof. Below we first show that each of FD is closed under strictly increasing convex trans-

forms on the random variable, that is, if the distribution of X is in FD, so is the distribution

of f(X) for a strictly increasing convex f . Assume that F ∈ FD, X follows F , and Y = f(X),

where f is strictly increasing and convex. Because f is strictly increasing, if (Y1, . . . , Yd) sat-

isfies D, so does (X1, . . . , Xd), where Xi = f−1(Yi) for i ∈ [d], by Lemma 11.2. Because each

of X,X1, . . . , Xd has a distribution F ∈ FD, we have X ⩽st

∑d
i=1 θiXi, and this gives, using

the convexity of f ,

Y = f(X) ⩽st f

(
d∑

i=1

θiXi

)
⩽

d∑
i=1

θif(Xi) =
d∑

i=1

θiYi. (11.4)

To address the case that f is not strictly increasing, Theorem 11.3 allows us to find

the above (X1, . . . , Xd) that satisfies D and such that Yi = f(Xi) for i ∈ [d]. In particular,

using Theorem 11.3, we can construct (U1, . . . , Ud) that follows the checkerboard copula of

(Y1, . . . , Yd) and satisfies D, such that

(Y1, . . . , Yd) = (f ◦ g(U1), . . . , f ◦ g(Ud)),

where g is the quantile function of X and f ◦ g is the quantile function of Y . Setting

(X1, . . . , Xd) = (g(U1), . . . , g(Ud)), we get that (X1, . . . , Xd) satisfies D, and this leads to

(11.4).

11.6.2 An application on induced order statistics

Here we demonstrate another application of Theorem 11.3 in characterizing the dis-

tribution of induced order statistics. Consider N independent and identically distributed

bivariate random vectors ξ1
η1

 ,

ξ2
η2

 , . . . ,

ξN
ηN

 .
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Note that, for i ̸= j, (ξi, ηi) and (ξj, ηj) are independent and identically distributed, but ξi

and ηi may be correlated and have different marginal distributions. We rank these bivariate

vectors according to their first components, ξi: ξ1:N

η[1:N ]

 ,

 ξ2:N

η[2:N ]

 , . . . ,

 ξN :N

η[N :N ]

 , (11.5)

where ξ1:N ⩽ ξ2:N ⩽ · · · ⩽ ξN :N are the order statistics of ξ1, ξ2, . . . , ξN . The notation η[i:N ]

represents the i-th induced order statistic (Bhattacharya, 1974), where the order is induced

by another variable ξi. The induced order statistics η[1:N ], . . . , η[N :N ] are also referred to as

concomitants of the order statistics ξ1:N , . . . , ξN :N (David, 1973).

In the context of constructing impact portfolios, Lo et al. (2024) investigated the joint

distribution of (η[1:N ], . . . , η[N :N ]). In particular, they proved a representation theorem for the

joint distribution of (η[1:N ], . . . , η[N :N ]) using the copula of (ξi, ηi). Furthermore, they demon-

strated that if ξi is not continuously distributed, the representation theorem holds if and

only if the copula of (ξi, ηi) is chosen as the (bivariate) checkerboard copula in this chapter.

This reveals a potential application of the checkerboard copula in portfolio construction.

Lo et al. (2024) also showed that the rank of the odd-order moments of induced order

statistics relies on the copula of (ξi, ηi). Assume that C is a copula of (ξi, ηi). Lo et al. (2024,

Theorem EC.5) proved that, for any k = 0, 1, . . . , if C is PRD, we have

E
(
η2k+1
[1:N ]

)
⩽ E

(
η2k+1
[2:N ]

)
⩽ · · · ⩽ E

(
η2k+1
[N :N ]

)
, (11.6)

and if C is NRD, we have

E
(
η2k+1
[1:N ]

)
⩾ E

(
η2k+1
[2:N ]

)
⩾ · · · ⩾ E

(
η2k+1
[N :N ]

)
. (11.7)

In particular, the copula C can be chosen as the checkerboard copula. Therefore, using

Theorem 11.3, we directly obtain the following result.

Proposition 11.2. For any k = 0, 1, . . . , (11.6) holds if (ξi, ηi) is PRD, and (11.7) holds if

(ξi, ηi) is NRD.

The difference between Proposition 11.2 and Lo et al. (2024, Theorem EC.5) is that the

latter imposes the dependence assumption (PRD or NRD) on the copula of (ξi, ηi), while the
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former imposes a more natural assumption on the random vector (ξi, ηi) directly, which is

only possible due to our Theorem 11.3.

11.7 Conclusion

We discussed the choice of copula when the marginal distributions are not necessarily

continuous. Among all the choices of copulas for a given random vector, the checkerboard

copula is the most convenient and natural selection in applications such as simulating from

the copula, stressing the distribution, and computing a co-risk measure. It is shown that

the checkerboard copula is the most unbiased choice in the sense that it has the largest

Shannon entropy among all possible copulas for a given random vector. Moreover, the

checkerboard copula can preserve the dependence information of the underlying random

vector. This preservation property is applied to identify suitable distributions in the context

of diversification penalty studied by Chen et al. (2024a,b) and to determine the ranks of the

moments of induced order statistics in the context of impact portfolios studied by Lo et al.

(2024).
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Chapter 12

Summary and potential future work

12.1 Summary

My thesis explores various topics in quantitative risk management, including risk mea-

sures, dependence modelling, diversification measures, and risk sharing. In this section, we

conclude with the key results for all chapters of this thesis.

Chapter 2 primarily addresses the calibration problem and properties of the PELVE.

We developed the calibration distribution model for a one-point constraint (Proposition 2.1),

a two-point constraint (Theorem 2.1), and the curve constraint (Section 2.4.3). Additional

theoretical results of PELVE include studies on the monotonicity (Theorem 2.3) and conver-

gence (Corollary 2.2) properties.

Chapter 3 focuses on the relationship between JM and classic notions of negative depen-

dence. Theorem 3.1 gives the condition for a joint mix to be negative association. Theorem

3.2 provides the necessary conditions for the existence of negatively dependent joint mixes.

Theorem 3.4 solves a multi-marginal optimal transport problem for quadratic costs under

uncertainty on the participation of agents by using the negatively dependent joint mix.

Chapter 4 has formulated two axiomatic characterizations for diversification quotient

through Theorem 4.1 and Theorem 4.2. Propositions 4.1-4.4 examine the fundamental prop-

erties of DQ for common risk measures, some of which are not shared by DR. DQ is intuitive

and interpretable with respect to dependence and common perceptions of diversification
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(Theorem 4.3). The alternative formulas for DQVaR and DQES are provided in Theorem 4.4,

which is convenient in the portfolio optimization of DQs (Proposition 4.6). The proof of main

results and additional results supporting the discussion in Chapter 4 are included in Chapter

5. More properties of DQVaR and DQES are studies in Chapter 6. Theorem 6.1 shows the

range of DQs based on VaR and ES and the corresponding dependence structures for special

values. Using the law of large numbers, we show that the value of DQs based on VaR and

ES for large portfolios converges to 0 (Theorem 6.2), which aligns with the intuition that

the diversification degree increases with the number of assets. More asymptotic behaviors

of DQs based on VaR and ES for elliptical distributions and MRV models are presented

in Proposition 6.3 and Theorem 6.3. Theorem 6.4 and Proposition 6.5 solved the portfolio

optimization for elliptical models and MRV models.

Chapter 7 provides a series of technical results on pairwise counter-monotonicity, in-

cluding the representation (Theorem 7.1), invariance property (Theorem 7.2), connection

to negative association (Theorem 7.3), joint mix dependence (Theorem 7.4), and optimal

allocations for quantile agents (Theorem 7.5). Chapter 8 further studies the risk-sharing

problem for agents using distortion riskmetrics. We obtained several results on the neces-

sary or sufficient conditions for Pareto and sum optimality (Theorem 8.1 and Propositions

8.2-8.5) in comonotonic and general allocation sets. For IQD agents, we fully characterize all

Pareto-optimal allocations via the inf-convolution (Theorem 8.2 and Proposition 8.9). The

Pareto-optimal allocations for IQD agents exhibit pairwise comonotonicity structures. For

general distortion riskmetrics, we obtained explicit allocations that are Pareto optimal or sum

optimal in comonotonic allocation sets (Theorem 8.3). Chapter 9 further investigates the

appearance of pairwise counter-monotonicity in the risk-sharing problem. The main result,

the counter-monotonic improvement theorem (Theorem 9.1), lays the foundation for analyz-

ing risk sharing with counter-monotonic allocations. This theorem has allowed us to shed

light on Pareto-optimal allocations when the risk is to be shared among risk-seeking agents

(Theorem 9.2), agents with a discontinuous Bernoulli utility function (Proposition 9.5), and

RDU agents with inverted S-shaped probability distortion functions (Theorem 9.3).

Chapter 10 and Chapter 11 explore dependence modelling through correlation and cop-

ulas. Characterization results for invariant correlation with general and increasing transfor-
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mations are summarized in Table 10.1 and Table 10.2, respectively. Quasi-independence and

quasi-Fréchet models play important roles in these studies. We also identify the set of all

compatible invariant correlation matrices in Theorem 10.4. Theorem 11.1 provides a repre-

sentation for all copulas of a given random vector, with checkerboard copulas as a special

case. We further show that the checkerboard copula has the largest Shannon Entropy (Theo-

rem 11.2) and captures the dependence information from original random vectors (Theorem

11.3).

12.2 Potential future work

In this section, I briefly discuss some open questions related to PELVE, diversification

indices, negative dependence modeling and risk-sharing problems, that will be explored in

the future. .

12.2.1 On PELVE

A.1 We have discussed the valid input of PELVE in the one-point and two-point constrain

problems in Section 2.3, but the valid input of PELVE functions in the curve constrain

problem is still unknown. Determining whether a given function π on [0, 1] can be a

PELVE function for some X ∈ X remains a challenging task.

A.2 We have provided only one solution for the calibrated distribution model for the three

cases we studied in Chapter 2. A natural extension is to characterize all the distribution

functions that satisfy a given PELVE.

A.3 Since the PELVE value is related to the tail heaviness of a distribution, an interesting

question is whether the tail behavior, e.g., the maximal finite moment index, of a

non-regularly varying distribution is completely determined by its PELVE.
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12.2.2 On negative dependence modelling and risk sharing

B.1 We already know from Chapters 3 and 7 that joint mixability and pairwise counter-

monotonicity provide the safest aggregation of risks. It remains to explore what kind

of dependence structure yields the safest aggregation risk when a Fréchet class does

not support joint mix dependence or pairwise counter-monotonicity. Several research

directions are worth further investigation, such as d-countermonotonicity in Lee and

Ahn (2014) and Σ-countermonotonicity in Puccetti and Wang (2015). I will further

explore the relationship between these forms of negative dependence.

B.2 The optimal transport problem under uncertainty is not fully solved in Chapter 3. The

solution for the general setting of cost functions, uncertainty sets, and heterogeneous

marginal distributions remains unknown.

B.3 It remains unclear to us whether our analysis in Chapter 8 can be generalized to dis-

tortion risk metrics other than IQD, which are not convex (i.e., those with non-concave

distortion functions). As far as we are aware, the unconstrained risk-sharing prob-

lems for non-convex risk measures and variability measures have very limited explicit

results (e.g., Embrechts et al. (2018), Weber (2018), and Liu et al. (2022)), further

investigation is needed for a better understanding of the challenges and their solutions.

B.4 Chapter 9 discusses some decision models that exhibit pairwise counter-monotonicity

in Pareto-optimal allocations. A more ambitious goal is to characterize all decision

models that utilize extremely negatively dependent allocations under some reasonable

conditions.

B.5 Inspired by the treatment effect, the upper and lower bounds on VaRp(X + Y ) under

the order constraint X ⩽ Y have been studied by Chen et al. (2022). If we use X

and Y to represent the outcomes before and after a treatment or intervention, such

as in drug and policy experiments, the value of Y − X represents the effect of the

treatment. Hence, bounds on VaRp(Y − X) under the order constraint X ⩽ Y are

also of interest A useful dependence structure is the maximal coupling mentioned in

Thorisson (2000), which can solve the lower bound on VaRp(Y −X) in the most trivial
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case where VaRp(Y −X) = 0.

12.2.3 On diversification indices

C.1 Although we have shown that VaR-based DQ and ES-based DQ have simple formula-

tions, as discussed in Chapter 4, the formulation of DQs based on other risk measures,

such as expectiles and entropic risk measures, remains unclear. Our current results in

an on-going project show that DQ based on expectiles is closely related to the Ω-ratio.

For a given α ∈ [0, 1/2], the DQ based on expectiles has the alternative formula:

DQex
α (X) =

1

α

{
E

[(
n∑

i=1

(Xi − exα(Xi))

)
+

]/
E

[∣∣∣∣∣
n∑

i=1

(Xi − exα(Xi))

∣∣∣∣∣
]}

, X ∈ X n.

With this alternative formula, we can further explore other theoretical properties and

practical applications of expectiles-based DQ, including but not limited to portfolio

optimization and asymptotic behavior under MRV and elliptical models.

C.2 Currently, we use the estimators of DQs based on VaR and ES, as shown in Chapter 4,

for the experiments in Section 4.7. However, their unbiasedness, efficiency, and consis-

tency have not yet been shown. It is important to explore these statistical properties

of the VaR-based and ES-based DQ estimators for their future usage.

C.3 We can extend the axiomatic framework of diversification indices in the following ways.

(i) We established the axiomatic framework for DQ based on monotone, constant

additive, and positive homogeneous risk measures in Theorem 4.1, as well as

for coherent risk measures in Theorem 4.2. It remains to extend the axiomatic

framework to DQ based on other risk measures, such as convex risk measures.

(ii) Since DQs based on VaR and ES offer substantial theoretical and practical bene-

fits, an interesting question is whether we can further character DQVaR and DQES

with more reasonable axioms.

(iii) The existing studies on the axiomatic framework for diversification indices are

limited. It remains to fill this gap in the literature with characterization results
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for other diversification indices, such as the diversification ratio and diversification

benefit.
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Kováčová, G., Rudloff, B., Cialenco, I. (2020). Acceptability maximization. arXiv : 2012.11972.

Kulik, R. and Soulier, P. (2020). Heavy-Tailed Time Series. Berlin: Springer.

Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical Economics,

3, 83–95.

Landsberger, M. and Meilijson, I. (1994). Co-monotone allocations, Bickel-Lehmann dispersion and

the Arrow-Pratt measure of risk aversion. Annals of Operations Research, 52(2), 97–106.

Lee, W. and Ahn, J. Y. (2014). On the multidimensional extension of countermonotonicity and its

applications. Insurance: Mathematics and Economics, 56, 68–79.

Lee, W., Cheung, K. C. and Ahn, J. Y. (2017). Multivariate countermonotonicity and the minimal

copulas. Journal of Computational and Applied Mathematics, 317, 589–602.

Lehmann, E. L. (1966). Some concepts of dependence. Annals of Mathematical Statistics, 37(5),

1137–1153.

Leshno, J. D. and Strack, P. (2020). Bitcoin: An axiomatic approach and an impossibility theorem.

American Economic Review: Insights, 2(3), 269–286.

Levy, H. and Levy, M. (2004). Prospect theory and mean-variance analysis. The Review of Financial

Studies, 17(4), 1015–1041.

Levy, H. and Sarnat, M. (1970). International diversification of investment portfolios. The American

Economic Review, 60(4), 668–675.

Li, D. X. (2000). On default correlation: A copula function approach. Journal of Fixed Income,

9(4): 43–54.

Li, H. and Wang, R. (2022). PELVE: Probability equivalent level of VaR and ES. Journal of

Econometrics, https://doi.org/10.1016/j.jeconom.2021.12.012.

Li, L., Shao, H., Wang, R. and Yang, J. (2018). Worst-case range value-at-risk with partial infor-

mation. SIAM Journal on Financial Mathematics, 9(1), 190–218.

Liebrich, F. (2021). Risk sharing under heterogeneous beliefs without convexity. arXiv: 2108.05791

Liu, H. (2020). Weighted comonotonic risk sharing under heterogeneous beliefs. ASTIN Bulletin,

50(2), 647–673.

Liu, F., Mao, T., Wang, R. and Wei, L. (2022). Inf-convolution, optimal allocations, and model

378

https://doi.org/10.1016/j.jeconom.2021.12.012


uncertainty for tail risk measures. Mathematics of Operations Research, 47(3), 2494–2519.

Liu, F. and Wang, R. (2021). A theory for measures of tail risk.Mathematics of Operations Research,

46(3), 1109–1128.

Liu, P. and Schied, A. and Wang, R. (2021). Distributional transforms, probability distortions, and

their applications. Mathematics of Operations Research, 46(4), 1490–1512.

Liu, P., Wang, R. and Wei, L. (2020). Is the inf-convolution of law-invariant preferences law-

invariant? Insurance: Mathematics and Economics, 91, 144–154.
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Ludkovski, M. and Rüschendorf, L. (2008). On comonotonicity of Pareto optimal risk sharing.

Statistics and Probability Letters, 78(10), 1181–1188.

Luedtke, J. (2014). A branch-and-cut decomposition algorithm for solving chance-constrained math-

ematical programs with finite support. Mathematical Programming, 146(1), 219–244.

Maccheroni, F., Marinacci, M. and Ruffino, D. (2013). Alpha as ambiguity: Robust mean-variance

portfolio analysis. Econometrica, 81(3), 1075–1113.

Maccheroni, F., Marinacci, M., Rustichini, A. and Taboga, M. (2009). Portfolio selection with

monotone mean-variance preferences. Mathematical Finance, 19(3), 487–521.

Mainik, G. and Embrechts, P. (2013). Diversification in heavy-tailed portfolios: Properties and

pitfalls. Annals of Actuarial Science, 7(1), 26–45.
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Nešlehová, J. (2007). On rank correlation measures for non-continuous random variables. Journal

of Multivariate Analysis, 98(3), 544–567.

Pass, B. (2015). Multi-marginal optimal transport: Theory and applications. ESAIM: Mathematical

Modelling and Numerical Analysis, 49(6), 1771–1790.

Perchet, V., Rigollet, P. and Gouic, T. L. (2022). An algorithmic solution to the Blotto game

using multi-marginal couplings. In Proceedings of the 23rd ACM Conference on Economics and

Computation, 208–209.

Puccetti, G., Rigo, P., Wang, B. and Wang, R. (2019). Centers of probability measures without the

mean. Journal of Theoretical Probability, 32(3), 1482–1501.
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