
Stability Analysis and Formally
Guaranteed Tracking Control of

Quadrotors

by

Haocheng Chang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2024

© Haocheng Chang 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis contains research works in submission to a scientific journal. The
author lists for the paper and contributions made by myself and various coauthors
are as follows:

Reach-Avoid Control Synthesis for a Quadrotor UAV with Safety Guar-
antees
Mohamed Serry1, Haocheng Chang1, and Jun Liu1

1Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
Canada

M. Serry contributed to the derivation of analytical results, the design of the com-
puter code, and the writing and editing of manuscipt. H. Chang contributed to the
derivation of analytical results, running of simulations, and the writing and editing of
manuscipt. J. Liu contributed to the derivation of analytical results and the editing
of the manuscript. The first two authors contributed equally to the work.

iii

Abstract

Reach-avoid tasks are among the most common challenges in autonomous aerial
vehicle (UAV) applications. Despite the significant progress made in the research of
aerial vehicle control during recent decades, the task of efficiently generating feasible
trajectories amidst complex surroundings while ensuring formal safety guarantees
during trajectory tracking remains an ongoing challenge. In response to this chal-
lenge, we propose a comprehensive control framework specifically for quadrotor UAVs
reach-avoid tasks with robust formal safety guarantees. Our approach integrates ge-
ometric control theory with advanced trajectory generation techniques, enabling the
consideration of tracking errors during the trajectory planning phase.

Our framework leverages the well-established geometric tracking controller, an-
alyzing its stability to demonstrate the local exponential stability of tracking error
dynamics with any positive control gains. Additionally, we derive precise and tight
uniform bounds for tracking errors, ensuring guaranteed safety of the system’s behav-
ior under certain conditions. In the trajectory generation phase, our approach incor-
porates these bounds into the planning process, employing sophisticated sampling-
based planning algorithms and safe hyper-rectangular set computations to define
robust safe tubes within the environment. These safe tubes serve as corridors within
which trajectories can be constructed, with piecewise continuous Bezier curves em-
ployed to ensure smooth and continuous motion. Furthermore, to enhance the per-
formance and adaptability of our framework, we formulate an optimization problem
aimed at determining optimal control gains, thereby enabling the quadrotor UAV to
navigate with optimal safety guarantees.

To demonstrate the validation of the proposed framework, we conduct compre-
hensive numerical simulations as well as real experiments, demonstrating its ability
to successfully plan and execute reach-avoid maneuvers while maintaining a high
degree of safety and precision. Through these simulations, we illustrate the practi-
cal effectiveness and versatility of our framework in addressing real-world challenges
encountered in UAV navigation and trajectory planning.

iv

Acknowledgments

Many thanks to my super knowledgeable, inspiring and supportive supervisor,
Jun Liu. Your spirit of exploring new knowledge will be my life-time wealth. I would
like to thank my co-author, Mohamed Serry, for the significant contributions to this
thesis. Your collaboration and expertise were vital to the successful completion of this
research project. Thank you also to all of the members of the Hybrid Systems Lab for
all the insightful conversation and interesting presentations. Lastly, to Giang Tran
and Kirsten Morris, I am very grateful for the time you dedicated and the comments
you provided as members of my defence committee.

v

Dedication

This thesis is dedicated to my family and Anna, who have always supported me.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgments v

Dedication vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Problem Statement . 4

1.3.1 Main Contributions . 4

1.4 Overview . 4

2 Quadrotor Modelling and Control 6

2.1 Coordinate System . 6

vii

2.2 Dynamics . 8

2.3 Error Definitions . 10

2.4 Geometric Control . 12

2.4.1 Geometric Controller . 12

2.4.2 Error Dynamics . 13

2.5 Differential Flatness . 15

2.5.1 Translation . 16

2.5.2 Attitude . 16

2.5.3 Control Input - Thrust f . 17

2.5.4 Angular Velocity . 17

2.5.5 Angular Acceleration . 20

2.5.6 Control Input - Torque τ . 23

3 Trajectory Generation with RRT and Bezier Curve 24

3.1 Waypoints Generation with RRT . 24

3.1.1 Problem Formulation . 24

3.1.2 The Modified RRT Algorithm 25

3.2 Piecewise Bezier Curves . 27

4 Lyapunov-based Safety Guaranteed Synthesis 30

4.1 Lyapunov Stability Theorem . 30

4.2 Lyapunov Stability Analysis . 32

4.2.1 Altitude and Angular Velocity Stability 33

4.2.2 Position and Velocity Stability 34

4.2.3 Complete Dynamics Stability 37

4.2.4 Error Bound for ∥ep∥ . 39

4.3 Asymptotic Stability Analysis . 39

4.4 Autotuning Algorithm . 43

4.4.1 Problem Formulation . 43

4.4.2 Simulated Annealing . 44

viii

5 Experiments 46

5.1 MATLAB Simulations . 46

5.1.1 Reach-Avoid Task Setup . 47

5.1.2 Gain Tuning Through Optimization 47

5.1.3 Safe Tube and Trajectory Synthesis 48

5.1.4 Initial Points Generation . 48

5.1.5 Validation of the Tracking Performance 52

5.2 Webots Simulations . 52

5.3 Real Experiments . 55

5.3.1 Experimental Results . 55

5.3.2 Experimental Settings . 56

5.3.3 Gap between Simulations and Real Experiments 56

5.3.4 Optitrack Mocap System . 58

5.3.5 Crazyswarm . 59

6 Conclusion 62

References 64

APPENDICES 67

A 68

A.1 Parameterization of SO(3) . 68

A.1.1 Rotation Matrix . 68

A.1.2 Euler Angles . 68

A.1.3 Angle-axis Representation . 69

A.1.4 Invertible Transformation between Rotation Matrix and Euler
Angles . 70

A.1.5 Conversion between Rotation Matrix and Angle-axis Repre-
sentation . 70

A.2 Properties of SO(3) . 71

ix

List of Figures

2.1 Two different body coordinate system. 7

2.2 The world frame {e1, e2, e3} and the body frame {b1, b2, b3}. 8

5.1 The environment with ten obstacles as red boxes, one target set as
blue box, and the starting point as blue asterisk. The top right corner
shows the top view of the environment. 47

5.2 The safe hyper-rectangles are shown as blue boxes. 49

5.3 The generated trajectory is shown as the blue curve. 49

5.4 The values of ψ(0), eω(0), and V1(0) of the generated two hundreds
initial points are shown to stay within theoretical bounds. 50

5.5 The position and attitude of fifty initial points. The arrows represent
the directions of the z-axis with respect to the body frame (i.e., b3(0)). 51

5.6 Tracking trajectories going through obstacles. The red boxes are ob-
stacles. The blue box is the target set. The blue tube is the region
with guarantees. 51

5.7 The shape of initial set of position, approximated by one million
points. The red points are safe points that satisfy (4.62). On the
left is the 3D plot and on the right is the cross section at ep2 = 0. . . 52

5.8 For all t ∈ [0, T], ∥ep∥ remains within the theoretical bound. Data
is only shown for the first 13 seconds to demonstrate the details of
convergence, however the bounds are still respected for all t ∈ [0, T]. . 53

5.9 Combination of fifteen screenshots of Crazyflie in Webots (view from
top), showing the valid reach-avoid tracking performance. The blue
box is the initial position and the red box is the target set. 54

x

5.10 The norm of position error of twenty tracking trajectories in Webots
simulations. The error remains within the theoretical bounds. Data is
only shown for the first 13 seconds, however the bound is still respected
for all t ∈ [0, T]. 54

5.11 The norm of position error for ten tracking trajectories in real exper-
iments. 55

5.12 Linear regression between PWM signal and thrust. PWM is converted
from percent (0% to 100%) to binary (0 to 216-1). 57

5.13 The hardware components of Optitrack mocap system. The Opti-
track cameras capture the location of markers on the quadrotor and
calculate the states in real-time. 59

A.1 Euler angles . 69

A.2 Rotation matrix represented by a rotation of an angle about an axis. 69

xi

List of Tables

5.1 Data points collected by Bitcraze for estimating the thrust under dif-
ferent PWM signal. 57

xii

Chapter 1

Introduction

1.1 Motivation

Over the years, many traditional controllers like Proportional-Integral-Derivative
(PID) [20] and Linear Quadratic Regulator (LQR) [10] have been widely applied to
quadrotor systems. Despite their acceptable performance in many scenarios, these
conventional control strategies exhibit notable limitations. Specifically, they neither
have a systematic way of tuning parameters nor have formal safety guarantees. As a
result, it will take considerable effort to tune for optimal parameters. The controller
may exhibit unpredictable or unstable behavior under certain operating conditions
as well. Furthermore, most control algorithms use the linearized model [1], which not
only ignores the geometric structure of quadrotor rotation but also cause singularities
[28]. In this case, the controller does not have the optimal performance, and will
fail in certain scenarios. On the other hand, while it is true that path planning
can be decoupled from quadrotor dynamics due to the system’s differential flatness
property, the needs for practical constraints are not yet fullfilled. Factors such as
bounded control inputs and the physical dimensions of the quadrotor must still be
accounted for to ensure the feasibility and safety of planned trajectories.

When facing these challenges, the geometric controller in [18] with Lyapunov sta-
bility guarantee presents a promising solution for ensuring the safety and robustness
of quadrotor control systems. By exploiting the geometric structure of the system,
geometric controllers offer the potential to achieve stable and agile performance [8].
Moreover, Lyapunov stability analysis provides a rigorous framework for tuning the
control gains. Another advantage of such controllers with safety guarantee is their

1

ability to construct invariant sets within the state space, effectively identifying safe
regions of operation for the quadrotor. These invariant sets serve as “safe tunnels”,
guiding the quadrotor along trajectories that guarantee stability and avoid danger-
ous regions of the state space. Hence, such geometric controllers offer a principled
approach to ensuring the reliability of quadrotor systems in diverse operational en-
vironments.

1.2 Background

Unmanned aerial vehicles (UAVs) were invented and developed in the 1900s, when
aircraft needed to be operated without a crew for complex and dangerous military
tasks, such as dropping bombs. In the following centuries, UAV technology under-
went substantial evolution, driven by advancements in electronic systems. They soon
became available for civilian and commercial aviation activities. Among all UAV clas-
sifications, the quadrotor design stands out for its simplified manufacturability. Over
the past decades, with the increasing use of quadrotors, extensive research and devel-
opment have been conducted to enable the performance of complex tasks robustly.
Due to their low cost and agility, quadrotors are becoming relevant in various fields
of application (e.g., rescue, firefighting, surveillance), which necessitates the ability
to handle complex tasks (e.g., navigating to a goal region while avoiding obstacles
or remaining within a specific zone for a designated period).

Quadrotors, designed with a cross-shaped structure featuring four pairs of rotors
and propellers as control inputs, have been a widely researched topic in control theory.
The simple structure and design of the quadrotor is a double-edged sword. It has
gained both popularity and novelty, but, as a tradeoff, it is challenging to control
due to underactuation. The quadrotor model has six degrees of freedom (DOFs):
three in attitude and three in translation, but only four control inputs. The thrust
(force) of a quadrotor is constrained to the z-axis within the body frame, resulting
in a coupling between translation and attitude control. Fortunately, the quadrotor
system was proven to be differentially flat in [21], which simplifies the control design
process by enabling the direct calculation of control inputs necessary to achieve
desired trajectories or maneuvers, thus facilitating more efficient and effective control
strategies.

Another property of the quadrotor model is that it can be considered a rigid body
due to the way the rotors are attached to the arms. Since the quadrotor attitude
system is fully actuated, the attitude control of a rigid body, which has already been

2

developed in [2], can be directly applied. Being a rigid body means that we can
consider its attitude as elements within the Special Orthogonal Group SO(3), so it
is natural to adopt concepts from differential geometry to develop a control law for
attitude. The authors of [18] were the first to use differential geometry to develop
a singularity-free controller with Lyapunov stability guarantees. Later, [29, 19, 4,
8, 16] expanded upon this groundwork by extending the system to a more complex
configuration where the quadrotor is connected to a mass payload. Notably, they
demonstrated that the extended system retains the property of differential flatness
while also developing a controller with Lyapunov stability guarantees. Such research
illustrates quadrotor applications in scenarios involving the transportation of mobile
cargo.

Before the research work in [21, 6], quadrotor dynamics had to be considered
when performing path planning. However, the differential flatness property of the
quadrotor system illustrates the possibility of separating planning and tracking. Path
planning itself includes trajectory generation and trajectory optimization. Typically,
trajectory generation is performed by first generating waypoints and then applying
a smoothing algorithm. Common and mature waypoint generation methods include
Dijkstra’s algorithm [5], A* [9], and rapidly-exploring random trees (RRT*) [11].
Once a sequence of waypoints that satisfies some given specification, such as ego
reach-avoid, is generated, the path can be smoothed using curves like Clothoid curves,
polynomials, and Bezier curves. Constraints such as velocity and acceleration bounds
can be considered during the smoothing step. Finally, since trajectory generation
provides various possible smooth paths, optimization can be applied to choose the
best trajectory according to a specific objective function. For instance, methods to
achieve minimum jerk and minimum snap are discussed in [14] and [21]. Graph-
Search-Based Algorithms (GSBAs) for achieving minimum path length are discussed
in [3].

However, while differential flatness simplifies path planning by abstracting away
the quadrotor dynamics, it does not ensure safe tracking performance. Motivated by
this, we integrate this trajectory generation method with Lyapunov stability analysis
as described in [18]. This combination results in an algorithm that provides safety
guarantees for reach-avoid specifications. Specifically, we derive an upper bound on
the position error from a Lyapunov function and use this upper bound to define the
radius of a safe tube along the generated trajectory, ensuring that the quadrotor
remains within this tube during tracking.

3

1.3 Problem Statement

Given an operating domain, a target set, and an unsafe set, assume the quadrotor
dynamics are known. Design a synthesis procedure that generates a smooth trajec-
tory and a tracking controller. The trajectory should start outside the unsafe set,
remain outside the unsafe set, and eventually reach the target set. The tracking con-
troller should constrain the tracking errors to be within certain bounds, ensuring the
quadrotor operates in a ”safe tunnel” while successfully executing the reach-avoid
task.

1.3.1 Main Contributions

First, we correctly formulate the differential flatness of the quadrotor system by
addressing the confusion between the body coordinate and the world coordinate.
This is accomplished by combining the proofs from [21] and [6], as detailed in Section
2.5 and Section 4.2. Next, we properly formulate the Lyapunov stability analysis
of the geometric tracking controller by correcting a cubic term in the Lyapunov
function. Specifically, we derive a position error bound based on the stability analysis
in Subsection 4.2.4. Optimal control gains are selected to minimize the position error
bound, as described in Section 4.4. This optimal error bound is then integrated into
the trajectory generation procedure to create a framework that ensures the safety of
the quadrotor during reach-avoid tasks.

1.4 Overview

The structure of this thesis is summarized as follows. In Chapter 2, we first derive
the ordinary differential equations (ODEs) that describe quadrotor dynamics from
the structure of the quadrotor and the laws of physics. We then define the errors for
position, velocity, attitude, and angular velocity, enabling the formulation of a PD
feedback controller based on these errors. The quadrotor dynamics are then trans-
formed into error dynamics for Lyapunov analysis. Finally, a geometric controller is
defined based on these errors.

Chapter 3 introduces a trajectory generation method based on RRT and Bezier
curves. A waypoint trajectory is first generated using RRT, a sampling-based method.

4

The discrete trajectory is then smoothed using piecewise Bezier curves. Under cer-
tain constraints at waypoints, this method will generate a class C4 trajectory, which
fulfills the requirements of quadrotor tracking tasks.

Chapter 4 provides the full proof of Lyapunov stability for the quadrotor error
dynamics under the geometric controller. The proof is divided into attitude stability
and translation stability. The Lyapunov function, treated as a quadratic function of
the errors, is used to derive the error bounds. These error bounds are then utilized
for formally guaranteed safe planning. Finally, an autotuning algorithm is proposed
based on the Lyapunov function, allowing the control gains in the controller to be
automatically selected to ensure the largest safe funnel.

Finally, Chapter 5 provides documentation-like instructions on how to conduct
Webots simulations and real experiments using the Optitrack motion capture (mo-
cap) system. The components of the mocap system and ROS are introduced to
ensure the accuracy of the experimental performance. Various methods of conduct-
ing experiments are then described for future reference.

In Appendix A, various methods for parameterizing the SO(3) group is introduced
as tools for designing the controller and deriving error bounds. Several properties of
SO(3) and the corresponding proofs are also given for reference.

5

Chapter 2

Quadrotor Modelling and Control

In this chapter, we introduce the quadrotor system and the geometric controller.
First, we start by describing the system with ODEs. Then, the errors for position,
velocity, attitude, and angular velocity are defined. The attitude error is defined
on the special orthogonal group SO(3), and hence is not an intuitive definition. A
PID-style geometric controller is then designed based on the errors. With such a
controller, the quadrotor dynamics is transformed into an error dynamics which is
easier to analyze. Finally, an important property of the quadrotor system called
differential flatness is introduced and proven. It will later be used to decouple the
planning and tracking.

2.1 Coordinate System

There are two commonly used definitions for the coordinate systems of quadrotors.
In both definitions, the z-axis points upwards. In one, the x-axis and y-axis align
with two of the arms, while in the other, two axes are angled 45◦ away from the arms,
as illustrated in Figure 2.1. The four forces generated by the rotors are denoted as
f1, f2, f3, f4. A linear transformation exists between these four forces and the control
inputs f, τx, τy, τz, where f represents the total thrust aligned with the z-axis in the
body frame, and τx, τy, τz represent torques that induce rotation about the center
of mass of the quadrotor. The linear transformation of coordinate system 1 (left of

6

Figure 2.1: Two different body coordinate system.

Figure 2.1) is
f
τx
τy
τz

 =

1 1 1 1
0 −d 0 d
d 0 −d 0
−cτf cτf −cτf cτf

f1
f2
f3
f4

 . (2.1)

The inverse is
f1
f2
f3
f4

 =

1
4

0 1
2d

− 1
4cτf

1
4
− 1

2d
0 1

4cτf
1
4

0 − 1
2d
− 1

4cτf
1
4

1
2d

0 1
4cτf

f
τx
τy
τz

 . (2.2)

The linear transformation of coordinate system 2 (right of Figure 2.1) is
f
τx
τy
τz

 =

1 1 1 1
− d√

2
− d√

2
d√
2

d√
2

d√
2
− d√

2
− d√

2
d√
2

cτf −cτf cτf −cτf

f1
f2
f3
f4

 . (2.3)

The inverse is
f1
f2
f3
f4

 =

1
4
−

√
2

4d

√
2

4d
1

4cτf
1
4
−

√
2

4d
−

√
2

4d
− 1

4cτf
1
4

√
2

4d
−

√
2

4d
1

4cτf
1
4

√
2

4d

√
2

4d
− 1

4cτf

f
τx
τy
τz

 . (2.4)

7

We adopt coordinate system 1 as the body frame in the first four chapters as well as
in MATLAB simulations. However, coordinate system 2 will be used in Chapter 5
due to the protocol of the mocap system. We represent the body frame as {b1, b2, b3},
with three orthogonal unit vectors attached to the quadrotor body. The world frame
is denoted as {e1, e2, e3}, consisting of three constant orthogonal unit vectors that
maintain consistent position and direction at all times. Both frames in terms of
coordinate system 2 are depicted in Figure 2.2.

Figure 2.2: The world frame {e1, e2, e3} and the body frame {b1, b2, b3}.

2.2 Dynamics

In this section, we introduce a set of equations that govern the motion of the quadro-
tor. A detailed derivation is then provided for a better understanding of the equa-
tions. The quadrotor dynamics can be described by a set of ODEs as follows:

ṗ = v, (2.5)

v̇ = −ge3 +m−1fRe3, (2.6)

Ṙ = Rω̂, (2.7)

ω̇ = −J−1ω × (Jω) + J−1τ, (2.8)

8

where e3 = [0; 0; 1] ∈ R3, and the hat map ·̂ : R3 → SO(3) is defined bŷx1x2
x3

 =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,
m is the mass, g is the gravitational constant, J is the moment of inertia, p =
(x, y, z) ∈ R3, v = (vx, vy, vz) ∈ R3, R = (b1, b2, b3) ∈ {R3×3 | RTR = I, det(R) = 1},
ω = (ωx, ωy, ωz) ∈ R3, τ = (τx, τy, τz) ∈ R3. In the definition of R, b1, b2, b3 are
axes in the body coordinate, as shown in Figure 2.2. R is also referred to as the
“rotation matrix” in Subsection A.1.1. Since we use the rotation matrix R to denote
the attitude of the quadrotor, our state space is 18-dimensional. Some materials
describe the quadrotor system as a 12-dimensional system, since R can be converted
to Euler angles (ϕ, θ, ψ) (introduced in Subsection A.1.2) using the formula (A.2).
The 12-dimensional state is [px, py, pz, ϕ, θ, ψ, ṗx, ṗy, ṗz, ωx, ωy, ωz] ∈ R3×R3×R3×R3.
We use the 18-dimensional state space to avoid singularities due to gimbal lock.

For a better understanding of the quadrotor dynamics, we explain the translation
dynamics as follows. Eq. (2.5) represents a simple first-order derivative. Eq. (2.6)
highlights the presence of underactuation. The quadrotor is influenced not only
by gravity but also by the control force f . However, the quadrotor’s structural
constraints limit the direction of f to be aligned with the z-axis in the body frame
(i.e., b3 = Re3). Thus, the force generated by the quadrotor can be expressed as
fRe3. Consequently, the quadrotor system has four control inputs (f, τ) ∈ R × R3,
but six degrees of freedom (DOFs). This discrepancy between the number of control
inputs and the number of DOFs makes the quadrotor system underactuated.

Attitude dynamics, on the other hand, are governed by (2.7) and (2.8). Eq. (2.7)
is derived from the chain rule and a physics principle known as the “tangential veloc-
ity formula.” From the definition of the rotation matrix, R, which is an orthogonal
matrix, we have

RRT = I3×3. (2.9)

Taking the derivative with respect to time, we obtain

ṘRT +RṘT = 03×3. (2.10)

Let S = ṘRT . Then we have
S + ST = 03×3. (2.11)

Thus, S is skew-symmetric. From the tangential velocity formula, the relationship

9

between the speed of a point in the world frame pw and the same point in the body
frame pb is

ṗw = ω × pw = ω ×Rpb = ω̂Rpb. (2.12)

An alternative expression for ṗw can be derived. Assume the point in the body frame
is fixed. Then it also holds that

ṗw = Ṙpb = SRpb. (2.13)

By comparing (2.12) and (2.13), we find S = ω̂. Hence, Ṙ = ω̂R. The angular
velocity ω can be transformed to the body frame by Lemma A.2.5 as follows:

ω̂ = (Rωb)∧ = Rω̂bRT . (2.14)

Substituting (2.14) into (2.12), we get

ṗw = Rω̂bpb. (2.15)

Therefore, Ṙ = Rω̂b, which proves that (2.7) is correct.

Eq. (2.8) describes how the torque affects the rotation of the quadrotor. The
torque generated by the quadrotor’s rotation is given by the cross product of the
angular velocity and the angular momentum, i.e., τin = ω × (Jω). According to
Newton’s second law for rotation, we have τout − τin = Jω̇. Assuming τout = τ , we
obtain

τ − ω × (Jω) = Jω̇. (2.16)

Left-multiplying both sides by J−1, we derive (2.8).

2.3 Error Definitions

In this section, we introduce the error definitions for position, velocity, attitude, and
angular velocity, along with explanations for these definitions. These errors will later
be used as feedback for the stabilizing controller.

10

Define the errors as follows:

ep = p− pd, (2.17)

ev = v − vd, (2.18)

eR =
1

2
(RT

dR−RTRd)
∨, (2.19)

eω = ω −RTRdωd, (2.20)

where ep, ev, eR, eω are the errors of the position, velocity, attitude, and attitude
velocity, respectively. the vee map (·)∨ is the inverse map of the hat map ·̂, i.e.

(·)∨ : SO(3)→ R3 is defined by

 0 −x3 x2
x3 0 −x1
−x2 x1 0

∨

=

x1x2
x3

.
The least intuitive definition is the attitude error eR. To grasp this definition,

we view the rotation matrices R and Rd as mappings between different frames. The
rotation matrix R maps from the body frame to the world frame, while Rd maps
from the desired body frame to the world frame. Since Rd satisfies RT

d = R−1
d , we

have RT
dR = R−1

d R, which represents a mapping from the body frame to the desired
body frame using the world frame as an intermediary. If we consider the initial frame
as the body frame instead of the world frame, then RT

dR represents a rotation matrix
relative to the body frame. We denote this as Rrel = RT

dR, which is a frame relative
to the body frame.

To understand the appearance of the vee map in the definition of eR, we first
explore the axis-angle representation of SO(3). According to (A.3), we have

Rref (3, 2)−Rref (2, 3) = 2a1 sin θ,

Rref (1, 3)−Rref (3, 1) = 2a2 sin θ,

Rref (2, 1)−Rref (1, 2) = 2a3 sin θ.

(2.21)

Therefore, if (a, θ) is the axis-angle representation of RT
dR, we have

eR =

a1a2
a3

 sin θ. (2.22)

Taking the norm on both sides of (2.22), it is evident that ∥eR∥ = | sin θ|. Thus,
the definition of eR measures the angle θ in the axis-angle representation. Note that
∥eR∥ ≤ 1.

11

2.4 Geometric Control

Geometric control treats attitude error on a smooth manifold, rather than merely
using the difference in Euler angles. This approach exemplifies the successful appli-
cation of differential geometry to control problems. In this section, we introduce the
geometric tracking controller proposed in [18]. We also present the error system that
results from incorporating this controller into the system described by (2.5)–(2.8).

2.4.1 Geometric Controller

A geometric controller is defined as:{
f = Fd ·Re3,
τ = −kReR − kωeω + ω × Jω − Jω̂RTRdωd + JRTRdω̇d,

(2.23)

where kp, kv, kR, kω ∈ R are the control gains, Fd = −kpep− kvev+mge3+mp̈d, p̈d is
the desired acceleration which is obtained from planning. Apparently, (f, τ) ∈ R×R3

is a PD type controller since kpep and kReR are proportional error and kvev and
kωeω are errors of first derivatives. Fd is the desired force, but the real force is the
projection of Fd on zB due to the quadrotor structure. Furthermore, vd, Rd, ωd, and
ω̇d are generated as follows:

Assume pd ∈ C4. In other words, p
(4)
d is continuous. Then

vd = ṗd, (2.24)

Rd = [b1,d, b2,d, b3,d], (2.25)

ωd = (RT
d Ṙd)

∨, (2.26)

ω̇d = (ṘT
d Ṙd +RT

d R̈d)
∨, (2.27)

12

where

b1,d =
1

∥Fd∥

Fd,3 +
F 2
d,2

∥Fd∥+Fd,3

− Fd,1Fd,2

∥Fd∥+Fd,3

−Fd,1

 ,

b2,d =
1

∥Fd∥

 − Fd,1Fd,2

∥Fd∥+Fd,3

Fd,3 +
F 2
d,1

∥Fd∥+Fd,3

−Fd,2

 ,

b3,d =
Fd
∥Fd∥

.

(2.28)

2.4.2 Error Dynamics

With the proposed controller (2.23) and the error definitions (2.17)–(2.20), we trans-
form the quadrotor dynamical system (2.5)–(2.8) into the following error system.

Proposition 2.4.1. The error system is governed by

ėp = ev, (2.29)

ėv = −
1

m
(kpep + kvev −∆f), (2.30)

ėR = C(R,Rd)eω, (2.31)

ėω = J−1(−kReR − kωeω), (2.32)

where

C(R,Rd) =
1

2
(tr[R⊺Rd] I −R⊺Rd), (2.33)

∆f = ∥Fd∥ ((b3,d · b3)b3 − b3,d). (2.34)

Proof. Obviously, ėp = ev. Then, the derivative of ev is given by

mėv = mp̈−mp̈d
= −mge3 + fRe3 −mp̈d
= −mge3 −mp̈d + Fd + (fRe3 − Fd),

13

where, using the definition of Fd in (2.23),

−mge3 −mp̈d + Fd = −kpep − kvev,

and

fRe3 − Fd = (Fd ·Re3)− Fd(∥Fd∥ b3,d · b3)b3 − ∥Fd∥ b3,d
= ∥Fd∥ ((b3,d · b3)b3 − b3,d) = ∆f .

To derive the derivative of eR, we have

ėR =
d

dt
(
1

2
(R⊺

dR−R
⊺Rd)

∨)

=
1

2
(
d

dt
(R⊺

dR)−
d

dt
(R⊺Rd))

∨

=
1

2
(R⊺

dRêω − ê
⊺
ωR

⊺Rd)
∨

=
1

2
(R⊺

dRêω + êωR
⊺Rd)

∨.

(2.35)

Using Lemma A.2.4 of the hat map, we obtain

ėR =
1

2
(tr[R⊺Rd] I −RTRd)eω. (2.36)

For the derivative of angular velocity error, we have

ėω = ω̇ − d

dt
(R⊺Rdωd)

= ω̇ − e⊺ωR⊺Rdωd −R⊺Rdω̇d.
(2.37)

Substitute (2.8) and (2.23) into ėω, we get

ėω = J−1(−kReR − kωeω). (2.38)

The configuration error function of SO(3) is define in [18] as:

Ψ(t) =
1

2
tr(I3 −R⊺

d(t)R(t)). (2.39)

14

For the time derivative of Ψ, we have

Ψ̇(R,Rd) =
d

dt
(
1

2
tr
[
I −RT

d

]
)

= −1

2
tr
[
RT
dRêω

]
.

(2.40)

By Lemma A.2.3, we have

Ψ̇(R,Rd) =
1

2
eTω(R

T
dR−RTRd)

∧

= eTωeR

= eω · eR.

(2.41)

2.5 Differential Flatness

Differential flatness was first studied as a property of nonlinear systems in [7], extend-
ing the concept of controllability from linear to nonlinear systems. In a differentially
flat system, the states and control inputs can be expressed as explicit functions of flat
outputs and a finite number of their derivatives. This property ensures the existence
of a unique open-loop control udf for any flat system, provided that the flat outputs
are designed as class Ck functions, where k is finite. Thus, the goal is to design
a controller that eventually converges to udf . The authors of [21] first proved the
differential flatness of the quadrotor system, but their proof contained minor errors
due to the use of an ambiguous coordinate system. Later, [6] corrected the proof
with carefully defined vectors in world and body coordinates. In this section, we
prove the differential flatness of the quadrotor using the corrected approach.

Consider an autonomous system described by the nonlinear differential equation:

Ẋ = f(X,U), X ∈ Rn, U ∈ Rm. (2.42)

The system is differentially flat [30] if there exist functions Π, Λ, and an invertible

15

function Γ such that

σ = Π(X,U, U̇ , . . . , U (p)),

X = Λ(σ, σ̇, . . . , σ(q)),

U = Γ−1(σ, σ̇, . . . , σ(q)),

(2.43)

where σ is called the flat output. The invertible function Γ ensures the uniqueness
of the control inputs given the flat outputs and their derivatives.

The flat outputs for the quadrotor system are chosen as σ = [px, py, pz, ψ], where
px, py, pz represent the positions along the x-, y-, and z-axes, and ψ is the yaw angle.
In the remainder of this section, we seek explicit functions that describe the states

[px, py, pz, R, ṗx, ṗy, ṗz, ωx, ωy, ωz]

and the control inputs
[f, τx, τy, τz]

using σ and its derivatives as inputs.

2.5.1 Translation

Because the first three flat outputs are simply chosen as the position in x-axis, y-axis,
and z-axis, the first and second derivatives of the first three flat outputs correspond
to velocity and acceleration respectively. In other words,

ṗx, ṗy, ṗz = σ̇1:3.

p̈x, p̈y, p̈z = σ̈1:3.
(2.44)

2.5.2 Attitude

The rotation matrix R = [xB, yB, zB] can be used to denote the attitude of quadrotor,
where xB, yB, zB are vectors that denote the directions of x-axis, y-axis, and z-axis

16

of the body frame. Then xB, yB, zB can be expressed as follows:

xB =
yC × zC
∥yC × zC∥

,

yB =
zC × xB
∥zC × xB∥

,

zB = xB × yB.

(2.45)

where

xC =
(
cosσ4, sinσ4, 0

)T
,

yC =
(
− sinσ4, cosσ4, 0

)T
,

zC =
(
σ̈1, σ̈2, σ̈3 + g

)T
,

(2.46)

where xC and yC are collinear to the projection of xB and yB into the xW −yW plane.
The rotation matrix R can be converted to Euler angles (ϕ, θ, ψ) using (A.1).

2.5.3 Control Input - Thrust f

The expression for f is derived here because it will be used later in the expressions
for angular velocity. By (2.6), the thrust can be expressed as

f = m(p̈+ ge3) · zB. (2.47)

The first derivative and second derivative are

ḟ = m(p(3) · zB + p̈ ·Rω̂e3), (2.48)

f̈ = m(p(4) · zB + 2p(3) ·Rω̂e3 + p(2) · (Rω̂2e3 +R ˙̂ωe3)). (2.49)

2.5.4 Angular Velocity

For angular velocity denoted as

ωBW = ωxxB + ωyyB + ωzzB,

we have the following proposition.

17

Proposition 2.5.1. We have

ωx = −
m

f
p(3) · yB,

ωy =
m

f
p(3) · xB,

ωz =
ψ̇xC

TxB + m
f
yC

T zB(xB
Tp(3))

∥yC × zB∥
.

(2.50)

Proof. By differentiating (2.6), we get

p(3) =
1

m
(ḟ zB + f żB)

=
1

m
(ḟ zB + fRω̂e3).

(2.51)

Substituting (2.48) into (2.51), we have

hω = Rω̂e3 =
m

f
(p(3) − (p(3) · zB)zB), (2.52)

where hω is the projection of m
f
p(3) onto the xB − yB plane. Then we have the

components ωx and ωy expressed as

ωx = −hω · yB
= −m

f
(p(3) − (p(3) · zB)zB) · yB

= −m
f
p(3) · yB,

(2.53)

ωy = hω · xB
=
m

f
(p(3) − (p(3) · zB)zB) · xB

=
m

f
p(3) · xB.

(2.54)

18

As for ωz, we multiply both sides of (2.7) by yB
T and obtain

yB
T Ṙ = yB

TRω̂,

yB
T
(
ẋB ẏB żB

)
= yB

T
(
xB yB zB

) 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ,

(
yB

T ẋB yB
T ẏB yB

T żB
)
=
(
0 1 0

) 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ,

ωz = yB
T ẋB.

(2.55)

Since xB is perpendicular to yC and zB, we have

xB =
x̃B
∥x̃B∥

, (2.56)

where x̃B = yC × zB. The derivative is then

ẋB =
˙̃xB
∥x̃B∥

− x̃B
x̃TB ˙̃xB

∥x̃B∥3
. (2.57)

Since x̃B is collinear to xB, it is perpendicular to yB. Then we have

ωz = yB
T

˙̃xB
∥x̃B∥

. (2.58)

The derivative of ˙̃xB is
˙̃xB = ẏC × zB + yC × żB, (2.59)

where

ẏC = RWC(ψ̇e3 × e2)
=
(
xC yC zC

)
(−ψ̇e1)

= −ψ̇xC ,
(2.60)

19

and

żB = Rω̂e3

= R
(
ωy −ωx 0

)T
= ωyxB − ωxyB,

(2.61)

and so the derivative of ˙̃xB is

˙̃xB = −ψ̇xC × zB + ωyyC × xB − ωxyC × yB. (2.62)

Plug this back into (2.58), we get

ωz = yB
T

˙̃xB
∥x̃B∥

=
1

∥x̃B∥
(−ψ̇yBT (xC × zB) + ωyyB

T (yC × xB))

=
1

∥x̃B∥
(ψ̇xC

T (yB × zB)− ωyyCT (yB × xB))

=
1

∥x̃B∥
(ψ̇xC

TxB + ωyyC
T zB).

(2.63)

Substitute ωy from (2.54) and we have an explicit expression ωz as in (2.50).

2.5.5 Angular Acceleration

Next, we derive equations for the angular accelerations.

Proposition 2.5.2. The angular accelerations can be expressed as follows:

ω̇x = −
m

f
yB

Tp(4) − 2
ḟ

f
ωx + ωyωz,

ω̇y =
m

f
xB

Tp(4) − 2
ḟ

f
ωy + ωxωz,

ω̇z = 1 +
yB

T zB(xB
Tp(4) − 2 ḟ

m
ωy +

f
m
ωxωz)

f
m
∥yC × zB∥

.

(2.64)

20

Proof. We start by obtaining the snap. Taking the derivative of (2.51), we have

p(4) =
1

m
(f̈ zB + 2ḟRω̂e3 + fRω̂2e3 + fR ˙̂ωe3) (2.65)

Multiplying both sides of (2.65) with xB
T on the left, we have

xB
Tp(4) =

1

m
(fω̇y + 2ḟωy + fωxωz). (2.66)

Multiplying both sides of (2.65) with yB
T on the left, we have

yB
Tp(4) =

1

m
(−fω̇x − 2ḟωx + fωyωz). (2.67)

Differentiating (2.58) and using (2.57), we have

−ω̇yyCT zB − ωyẏTCzB − ωyyCT żB + ω̇z ∥yC × zB∥+ ωz
x̃TB ˙̃xB
∥x̃B∥

= ψ̈xC
TxB + ψ̇ẋTCxB + ψ̇xC

T ẋB.

(2.68)

To further simplify (2.68), we use the following derivations:

From (2.60) we have
−ωyẏTCzB = ψ̇ωyxC

T zB. (2.69)

By (2.61) and yC
T zB = 0, we get

−ωyyCT żB = ωxωyyC
TyB. (2.70)

By (2.56) and (2.62), we have

ωz
x̃TB ˙̃xB
∥x̃B∥

= ωzxB
T ˙̃xB

= ωzxB
T (−ψ̇xC × zB + ωyyC × xB − ωxyC × yB)

= ωz(−ψ̇xBT (xC × zB)− ωxxBT (yC × yB))
= ωz(ψ̇xC

T (xB × zB) + ωxyC
T (xB × yB))

= ωz(−ψ̇xCTyB + ωxyC
T zB).

(2.71)

21

Similarly to (2.60), we derive

ẋC = RWC(ψ̇e3 × e1)
=
(
xC yC zC

)
(ψ̇e2)

= ψ̇yC .

(2.72)

With (2.72) and the fact that yC
TxB = 0, we get

ψ̇ẋC
TxB = ψ̇2yC

TxB = 0. (2.73)

Finally, similarly to (2.61), we have

ẋB = Rω̂e1

= R
(
0 ωz −ωy

)T
= ωzyB − ωyzB,

(2.74)

which can be simplified to

ψ̇xC
T ẋB = ψ̇ωzxC

TyB − ψ̇ωyxCT zB. (2.75)

Substituting (2.69)–(2.75) into (2.68) and we obtain

−ω̇yyCT zB + ω̇z ∥yC × zB∥ = ψ̈xC
TxB + 2ψ̇ωzxC

TyB − 2ψ̇ωyxC
T zB

− ωxωyyCTyB − ωxωzyCT zB.
(2.76)

Then the angular accelerations can be obtained by solving the following combination
of linear equations consisting of (2.66), (2.67), and (2.76):

ω̇y
f

m
=xB

Tp(4) − 2

m
ḟωy −

f

m
ωxωz,

ω̇x
f

m
=− yBTp(4) −

2

m
ḟωx −

f

m
ωyωz,

ω̇y(−yCT zB) + ω̇z ∥yC × zB∥ =ψ̈xCTxB + 2ψ̇ωzxC
TyB − 2ψ̇ωyxC

T zB

− ωxωyyCTyB − ωxωzyCT zB.

(2.77)

Solving this, we have (2.64).

22

2.5.6 Control Input - Torque τ

From the dynamics (2.8), we have

τ = Jω̇ + ω × Jω, (2.78)

where ω =
(
ωx ωy ωz

)T
and ω̇ =

(
ω̇x ω̇y ω̇z

)T
can be found in Subsection 2.5.4

and Subsection 2.5.5.

23

Chapter 3

Trajectory Generation with RRT
and Bezier Curve

In this chapter, we develop a trajectory generation approach for quadrotor reach-
avoid specifications. We employ the Rapidly-exploring Random Trees (RRT) algo-
rithm for generating waypoints, followed by using Bezier curves to transform the
generated waypoint trajectory into a smooth Ck function. While the concept of
differential flatness grants flexibility by allowing us to bypass quadrotor dynamics
during planning, the resultant state space remains four-dimensional instead of three.
Consequently, we set σ4(t) = ψ(t) = 0 throughout the trajectory, avoiding the need
for planning the attitude trajectory. Given that the attitude trajectory holds lesser
significance in reach-avoid tasks, we can confidently disregard ψ(t) and concentrate
on planning a three-dimensional trajectory. In other words, we forgo planning the
rotation around the z-axis in the body coordinate to plan in three-dimensional space
(px, py, pz) instead of four-dimensional space (px, py, pz, ψ).

3.1 Waypoints Generation with RRT

3.1.1 Problem Formulation

Let Xo,Xg,Xu ⊆ R3 × R3 × SO(3) × R3 be an operating domain, a target set, and
an unsafe set, respectively. Define Xs = Xo\Xu to be the safe set. Construct a
continuous 3D path consisting of a set of vertices V and a set of edges E , where

24

vertices are waypoints and edges are the segments between two waypoints. The path
should satisfy the following requirements:

• The path starts from any point xinit ∈ Xs and ends at any point xg ∈ Xg.

• The parent of each vertex is contained in a safe hyper-rectangular neighbor of
the parent vertex.

• Every edge in E lies entirely in Xs.

3.1.2 The Modified RRT Algorithm

Rapidly-exploring Random Trees (RRT) [15] is a widely-used algorithm in the field of
motion planning. It efficiently explores the state space to generate feasible paths for
robotic systems by iteratively sampling random configurations and connecting them
to the existing tree structure. RRT is particularly suited for high-dimensional and
complex environments due to its ability to rapidly expand the search space towards
unexplored regions, ultimately leading to the discovery of feasible paths from the
start to the goal state. We introduce a modified version of RRT for safety-guaranteed
planning. The key modification involves computing a safe hyper-rectangular region
around each vertex, which serves as the new sampling space for selecting the next
vertex.

Define

X̃o = Xo − psafeB∞
3 , (3.1)

X̃ (i)
u = Jx(i)u , x

(i)
u K + psafeB∞

3 , i ∈ [1;Nu], (3.2)

X̃u =
Nu⋃
i=1

X̃ (i)
u , (3.3)

X̃t = Xt − psafeB∞
3 , (3.4)

where B∞
3 denotes the 3-dimensional closed unit ball w.r.t. ∥·∥∞. psafe is the safe

margin guaranteed by the controller. It will be computed in Chapter 4. X̃u can be
treated as an inflated version of the unsafe set Xu. The hyper-rectangle Ja, bK denotes
the set {x ∈ Rn : a ≤ x ≤ b}. For such hyper-rectangle, we define

center(Ja, bK) = (a+ b)/2, (3.5)

radius(Ja, bK) = (b− a)/2, (3.6)

25

where a and b are assumed to be finite.

The safe tube is obtained by generating Ns + 1 waypoints p0, p1, . . . , pNs ∈ R3,
and associated vector radii r0, r1, r2, . . . , rNs ∈ R3

+, satisfying the following:

p0 = p0,

pi+1 ∈ pi + J−ri, riK, i ∈ [0;Ns − 1],

pi + J−ri, riK ⊆ X̃o \ X̃u, i ∈ [0;Ns − 1],

pNs + J−rNs , rNsK ∈ X̃t.

(3.7)

The waypoints and the associated safe radii can be estimated by integrating sampling-
based approaches [12] with safe and efficient hyper-rectangular set-based computa-
tions [27]. Let Nsample be the maximum number of vertices and Csample ∈ (0, 1) be a
parameter, and let the function sample be a sampling function such that sample(S)
randomly generates a point from the set S. The random tree is then computed
according to Algorithm 1.

Define

(ClosestPoint(x, Ja, bK))i =

{
xi, xi ∈ [ai, bi],

ci + risgn(xi − ci), otherwise,
(3.8)

where sgn(·) is the signum function, r = radius(Ja, bK) and c = center(Ja, bK). Then
the algorithm is as follows:

Algorithm 1 The modified RRT algorithm

1: i← 1, xi ← p0, V ← {xi}, E ← ∅
2: while i ≤ Nsample do
3: if i ≤ CsampleNsample then
4: xs ← sample(X̃s \ X̃u)
5: else
6: xs ← sample(X̃t)
7: end if
8: d←∞
9: for xj in V do

10: d′ ←
∥∥∥xs − ClosestPoint(xs,R(xj, X̃o, X̃u, α))

∥∥∥
∞

11: if d′ < d then
12: d← d′, xinear ← xj

26

13: end if
14: end for
15: i← i+ 1
16: xi ← ClosestPoint(xs,R(xinear , X̃o, X̃u, α))
17: V ← V ∪ {xi}, E ← E ∪ {(xinear , xi)}
18: if xi ∈ X̃t then break
19: end if
20: end while
21: return T = (V , E)

In Algorithm 1,

R(y, X̃o, X̃u, α) = H(y, X̃o)
⋂(
∩Nu
i=1S(y, X̃ (i)

u , α)
)
,

H(v, Ja, bK) = v + J−rH, rHK,

rH = radius(Ja, bK)− |center(Ja, bK)− v| ,

S(x, Ja, bK, α) = {z ∈ R3 : ∥z − x∥ ≤ α ∥x− ClosestPoint(x, Ja, bK)∥∞ , α ∈ [0, 1)}.

3.2 Piecewise Bezier Curves

Once the waypoints are generated, the desired trajectory is smoothed by piecewise
Bezier curves. A Bezier curve is a linear combination of Bernstein polynomial func-
tions. It is parameterized by some number η over [0, 1] as follows:

p(η) =
N∑
i=0

cib
N
i (η), (3.9)

where the Bernstein polynomial function is defined as

bNi (η) =

(
N
i

)
(1− η)N−iηi, (3.10)

η ∈ [0, 1], N is the order of the polynomial, and ci are control points that determine
the shape of the polynomial. If we treat every waypoint generated by RRT as an
anchor point of two Bezier curves, then we can use N −1 Bezier curves to connect N

27

waypoints and get one piecewise trajectory. Under some constraints on every anchor
point, the smoothed trajectory is of class Ck.

We assume pd to be a piecewise Bezier curve with Ns segments, where each
segment has Np control points. Let δi, i ∈ [1;Ns] be the duration of each segment,

i.e. δi = ti − ti−1, the initial time be t0 = 0, and the total time be T =
∑Ns

i=1. Then
pd : [0, T]→ R3 has the form:

pd(t) =

∑Np

i=0 c
i
1b
Np

i (t−t0
δ1

), t ∈ [t0, t1],∑Np

i=0 c
i
2b
Np

i (t−t1
δ2

), t ∈ [t1, t2],
...∑Np

i=0 c
i
jb
Np

i (
t−tj−1

δj
), t ∈ [tj−1, tj],

...∑Np

i=0 c
i
Ns
b
Np

i (
t−tNs−1

δNs
), t ∈ [tNs−1, tNs].

(3.11)

The control points cji , i ∈ [1;Ns], j ∈ [0;Np], are required to satisfy the following
set of constraints:

• the initial value of (pd, ṗd, p̈d, p
(3)
d) = (p0, v0, 03, 03);

• safety of the generated trajectory in the sense that pd(t) ∈ pi−1+J−ri−1, ri−1K, t ∈
[ti−1, ti], i ∈ [1;Ns];

• continuity of pd, ṗd, p̈d, p
(3)
d , and p

(4)
d at the junction points;

• satisfying the bound |ge3 + p̈d(t)| ≤ amax, ∀t ∈ [0, T], amax ∈ R3 is a constant
vector;

• the value of pd at final time is in pNs + J−rNs , rNsK;

• the value of ṗd at final time is 03.

In Algorithm 2, we present a heuristic approach to determine the desired trajectory pd
by means of iterative linear programming. The heuristic approach relies on initially
guessing the time T and incrementally increasing it until the constraints become
feasible.

28

Algorithm 2 Computing the desired trajectory.

1: Define li = ∥pi − pi−1∥, i ∈ [1;Ns], L =
∑Ns

i=1 li, qi =
li
L
, i ∈ [1;Ns].

2: Let T0 be a positive parameter specifying an initial guess for the full time horizon
and αt > 1 be a design parameter.

3: Define δi = qiT0, i ∈ [1;Ns].
4: With the values of δi, i ∈ [1;Ns], defined in step 3, solve a linear program

involving the control points cji , while considering the constraints.
5: If the linear program in step 4 is feasible, the resulting control points in addition

to the time durations δi can then be used to synthesize the desired trajectory
according to equation (3.11).

6: If the linear program in step 4 is infeasible, redefine T0 as T0 = αTT0, and repeat
steps 3 and 4.

29

Chapter 4

Lyapunov-based Safety
Guaranteed Synthesis

In this chapter, we first present several definitions of equilibrium point stability
within the context of Lyapunov theory. Subsequently, we analyze the quadrotor er-
ror system to establish exponential stability criteria. Using the Lyapunov function,
we derive an upper bound on the position error to ensure safety-guaranteed track-
ing performance. However, recognizing the conservative nature of this analysis, we
provide an alternative approach that uses Bernoulli’s inequality to achieve a more
precise error bound while exploring asymptotic stability.

4.1 Lyapunov Stability Theorem

Consider the nonlinear system described by an ODE as follows:

ẋ = f(x), (4.1)

where f : X → Rn is a locally Lipschitz function on an open set X ⊂ Rn. Suppose
X contains an equilibrium point x∗ of (4.1). It is convenient to assume that x∗ = 0
without loss of generality. Furthermore, if (4.1) describes an error system, it is
natural to analyze if the solution x(t, x0) for some x(0) = x0 ∈ X would eventually
go to the equilibrium point x∗ = 0.

Definition 4.1.1. (Five Types of Stability of Equilibrium Point) The equilibrium
point x∗ = 0 of (4.1) is

30

1. stable, if for any ϵ > 0, there exists δ > 0 such that

∥x0∥ ≤ δ ⇒ ∥x(t, x0)∥ ≤ ϵ,∀t ≥ 0; (4.2)

2. asymptotically stable, if it is stable and there exists ξ > 0 such that

∥x0∥ ≤ ξ ⇒ lim
t→∞

x(t, x0) = 0; (4.3)

3. globally asymptotically stable, if it is stable and

lim
t→∞

x(t, x0) = 0, ∀x0 ∈ Rn; (4.4)

4. exponentially stable, if there exist m, γ, β > 0, such that

∥x(t, x0)∥ ≤ m∥x0∥e−βt, ∀∥x0∥ ≤ γ, ∀t ≥ 0; (4.5)

5. globally exponentially stable, if there exist m,β > 0, such that

∥x(t, x0)∥ ≤ m∥x0∥e−βt, ∀x0 ∈ Rn, ∀t ≥ 0. (4.6)

Definition 4.1.2. (Lyapunov Stability Theorem) Let X ⊂ Rn be an open set. Sup-
pose the origin x∗ = 0 is an equilibrium point of (4.1) and is contained in X.
Let V : X → R be continuously differentiable and positive definite on X. Define
V̇ = dV

dx
· f as the derivative of V along solutions of (4.1). The following statements

hold:

1. if V̇ is negative semidefinite, then x∗ = 0 is stable;

2. if V̇ is negative definite, then x∗ = 0 is asymptotically stable;

3. if V̇ is negative definite and V → 0 as |x| → ∞ with X = Rn, then x∗ = 0 is
globally asymptotically stable;

4. if there exist positive constants c1, c2, and c3 such that

c1∥x∥2 ≤ V ≤ c2∥x∥2

and
V̇ ≤ −c3∥x∥2

for all x ∈ X, then x∗ = 0 is exponentially stable;

31

5. if X = Rn and there exist positive constants c1, c2, and c3 such that

c1∥x∥2 ≤ V ≤ c2∥x∥2

and
V̇ ≤ −c3∥x∥2,

then x∗ = 0 is globally exponentially stable.

4.2 Lyapunov Stability Analysis

In this section, we show the Lyapunov stability analysis of the error system (2.29)–
(2.32). The original analysis is in [18], but the use of Lie derivative is incorrect in
their analysis and hence we introduce the corrected version here.

Theorem 4.2.1. Consider the controller (2.23). Given any C4 trajectory that sat-
isfies

∥mge3 +mp̈d∥ ≤ B, (4.7)

if, the initial conditions of Ψ (defined by (2.39)) and ∥eω∥ satisfy:

Ψ(R(0), Rd(0)) ≤ Ψ ≤ 1,

∥eω(0)∥2 ≤
2

λmin(J)
kR(1−Ψ(R(0), Rd(0))),

for some constant Ψ, we can find positive constants (kp, kv, kR, kω, c1, c2) such that

c1 < min{
√
kpm,

(kp − αkp)(kv − αkv)
kp − αkp + kv

2

4m

}, (4.8)

c2 < min{

√
2kR

2−Ψ
λmax(J),

kRkω
λmax(J)

(kR
λmax(J)

+ kω
2

4λmin(J)
)
}, (4.9)

λmin(W1) >
∥W2∥2

4λmin(W3)
, (4.10)

32

where

α =

√
Ψ(2−Ψ), (4.11)

W1 =

(
(1− α) c1

m
kp −1

2
(c1
m
kv +

c1
m
αkv + αkp)

−1
2
(c1
m
kv +

c1
m
αkv + αkp) (1− α)kv − c1

)
, (4.12)

W2 =

(
c1
m
B 0
B 0

)
,W3 =

(
c2kR

λmax(J)
c2kω

2λmin(J)
c2kω

2λmin(J)
c3kω − c2

)
, (4.13)

then the error system (2.29)–(2.32) is exponentially stable. Moreover, the position
error is bounded as follows:

∥ep∥max ≤

√
V (0)

λmin(M1)
, (4.14)

where

V (0) =
1

2
kp∥ep(0)∥2 +

1

2
m∥ev(0)∥2 + c1ep(0) · ev(0)

+
1

2
eω(0) · Jeω(0) + kRΨ(R(0), Rd(0)) + c2eR(0) · eω(0),

(4.15)

M1 =
1

2

(
kp −c1
−c1 m

)
. (4.16)

The rest of this section is the full proof of Theorem 4.2.1. The stability of attitude
and angular velocity is presented first, as it is easier to prove due to the attitude
control system being fully actuated. Position and velocity stability is harder to
prove since it is coupled with attitude dynamics. This is addressed by bounding the
attitude error. Finally, the stability of the complete dynamics is proved by combining
the two.

4.2.1 Altitude and Angular Velocity Stability

For altitude and angular velocity stability, we consider the following Lyapunov can-
didate:

V2 =
1

2
eω · Jeω + kRΨ(R,Rd) + c2eR · eω.

33

Then, V2 is bounded by
zT2 M3z2 ≤ V2 ≤ zT2 M4z2, (4.17)

where z2 = [∥eR∥, ∥eω∥]T , M3 =
1
2

(
kR −c2
−c2 λmin(J)

)
and M4 =

1
2

(
2kR
2−Ψ

c2
c2 λmax(J)

)
.

The derivative V̇2 is

V̇2(t) =eω(t) · (−kReR − kωeω(t)) + kReR(t) · eω(t)
+ c2C(R(t), Rd(t))eω(t) · eω(t)
+ c2eR(t) · J−1(−kReR(t)− kωeω(t))
≤− eR(t) · (c2kRJ−1)eR(t)− (kω − c2)eω(t) · eω(t)− eR(t) · (c2kωJ−1)eω(t)

≤− c2kR
λmax(J)

∥eR(t)∥2 − (kw − c2) ∥eω(t)∥2 +
c2kω

λmin(J)
∥eR(t)∥ ∥eω(t)∥

≤ − zT2

(
c2kR

λmax(J)
− c2kω

2λmin(J)

− c2kω
2λmin(J)

kw − c2

)
z2

= −zT2 W3z2.

As long as the matrices M3, M4, and W3 are positive definite, we have V2 to be
positive definite and V̇2 to be negative definite. By Theorem 4.1.2, the attitude and
angular velocity system is exponentially stable.

Note that we analyze the norms of errors instead of the errors themselves to
simplify the process. However, we will adopt a different stability analysis as an
improvement over the current analysis, involving the errors themselves.

4.2.2 Position and Velocity Stability

For position and velocity stability, we consider the following Lyapunov candidate:

V1 =
1

2
kp∥ep∥2 +

1

2
m∥ev∥2 + c1ep · ev. (4.18)

Apparently, V1 can be bounded as

zT1 M1z1 ≤ V1 ≤ zT1 M2z1, (4.19)

where z1 = [∥ep∥, ∥ev∥]T , M1 =
1
2

(
kp −c1
−c1 m

)
and M2 =

1
2

(
kp c1
c1 m

)
.

34

The derivative is V̇1 = kpep · ėp + mev · ėv + c1ėp · ev + c1ep · ėv. Since V̇1 is a
function of ėv, we use the following two remarks to bound ėv in order to bound V̇1.

Lemma 4.2.2. mėv = −mge3 −mp̈d + Fd +∆f , where ∆f = fRe3 − Fd.

Proof. The derivative of ev is given by

mėv = mp̈−mp̈d
= −mge3 + fRe3 −mp̈d
= −mge3 −mp̈d + Fd + (fRe3 − Fd),

where, using the definition of Fd in (2.23),

−mge3 −mp̈d + Fd = −kpep − kvev,

and

fRe3 − Fd = (Fd ·Re3)Re3 − Fd
= (∥Fd∥ b3,d · b3)b3 − ∥Fd∥ b3,d
= ∥Fd∥ ((b3,d · b3)b3 − b3,d) = ∆f .

where Fd, b3,d are defined in Section 2.4.

Lemma 4.2.2 indicates the necessity of bounding ∆f in order to constrain ėv.
Consequently, we present the following lemma to bound ∆f in terms of 2-norm.

Lemma 4.2.3. Assume ∥−mge3+mp̈d∥ ≤ B. Then ∥∆f∥ ≤ (kp∥ep∥+kv∥ev∥+B)α
for some α ∈ (0, 1].

Proof. For f = Fd ·Re3, we have

Fd =
f

eT3R
T
dRe3

Rde3.

Then,

∆f = fRe3 − Fd

=
f

eT3R
T
dRe3

((eT3R
T
dRe3)Re3 −Rde3).

35

Let A = −kpep − kvev − ∆f . Notice that ∥A∥ ≤ kp∥ep∥ + kv∥ev∥ + B, where
∥ −mge3 +mp̈d∥ ≤ B. Define

f = −(−kpep − kvev −mge3 +mp̈d) ·Re3 = (∥A∥Rde3) ·Re3.

Then,

− f

eT3R
T
dRe3

Rde3 = −
(∥A∥Rde3) ·Re3

eT3R
T
dRe3

· − A

∥A∥
= A.

Therefore,

∥ f

eT3R
T
dRe3

∥ = ∥ f

eT3R
T
dRe3

Rde3∥ = ∥A∥.

Then,

∥∆f∥ ≤ ∥
f

eT3R
T
dRe3

∥∥(eT3RT
dRe3)Re3 −Rde3∥

≤ ∥A∥∥(eT3RT
dRe3)Re3 −Rde3∥

≤ (kp∥ep∥+ kv∥ev∥+B)∥(eT3RT
dRe3)Re3 −Rde3∥

≤ (kp∥ep∥+ kv∥ev∥+B)∥eR∥
≤ (kp∥ep∥+ kv∥ev∥+B)α,

where α ∈ (0, 1] is the bound of ∥eR∥, as shown in Section 2.3.

Then, by using Lemma 4.2.2 and Lemma 4.2.3, V̇1 can be bounded as follows:

V̇1 = kpep · ev +mev ·
1

m
(−kpep − kvev −∆f)

+ c1ev · ev + c1ep ·
1

m
(−kpep − kvev −∆f)

≤ (c1 − kv + αkv)∥ev∥2 + (α− 1)
c1
m
kp∥ep∥2

+ (
c1
m
kv +

c1
m
αkv + αkp)∥ep∥∥ev∥

+
c1
m
B∥ep∥∥eR∥+B∥ev∥∥eR∥

≤ −[∥ep∥∥ev∥]
(

(1− α) c1
m
kp −1

2
(c1
m
kv +

c1
m
αkv + αkp)

−1
2
(c1
m
kv +

c1
m
αkv + αkp) (1− α)kv − c1

)(
∥ep∥
∥ev∥

)
+ [∥ep∥∥ev∥]

(
c1
m
B 0
B 0

)(
∥eR∥
∥eω∥

)
.

(4.20)

36

4.2.3 Complete Dynamics Stability

Consider, V = V1 + V2 for a Lyapunov candidate function of complete dynamics.
Then, let z1 = [||ep||, ||ev||]T , z2 = [||eR||, ||eω||]T , and

M1 =
1

2

(
kp −c1
−c1 m

)
,M2 =

1

2

(
kR −c2
−c2 λmin(J)

)
,

M3 =
1

2

(
kp c1
c1 m

)
,M4 =

1

2

(
2kR
2−ψ c2
c2 c3λmax(J)

)
,

W1 =

(
(1− α) c1

m
kp −1

2
(c1
m
kv +

c1
m
αkv + αkp)

−1
2
(c1
m
kv +

c1
m
αkv + αkp) (1− α)kv − c1

)
,

W2 =

(
c1
m
B 0
B 0

)
,W3 =

(
c2kR

λmax(J)
c2kω

2λmin(J)
c2kω

2λmin(J)
c3kω − c2

)
.

Let M12 =

(
M1 02×2

02×2 M2

)
, M34 =

(
M3 02×2

02×2 M4

)
, W =

(
λmin(W1) −1

2
∥W2∥

−1
2
∥W2∥ λmin(W3)

)
,

z =

(
z1
z2

)
. Then

zT1 M1z1 + zT2 M2z2 ≤ V ≤ zT1 M3z1 + zT2 M4z2, (4.21)

zTM12z ≤ V ≤ zTM34z, (4.22)

V̇ ≤ −zT1 W1z1 + zT1 W2z2 − zT2 W3z2

≤ −∥zT1 ∥∥W1z1∥+ ∥zT1 ∥∥W2z2∥ − ∥zT2 ∥∥W3z2∥
≤ −λmin(W1)∥z1∥2 + ∥z1∥∥W2∥∥z2∥ − λmin(W3)∥z2∥2

≤ −[∥z1∥, ∥z2∥]
(
λmin(W1) −1

2
∥W2∥

−1
2
∥W2∥ λmin(W3)

)(
∥z1∥
∥z2∥

)
.

(4.23)

Furthermore,

V̇ ≤ −zTWz ≤ −λmin(W)∥z∥2 ≤ − λmin(W)

λmin(M12)
V. (4.24)

We seek the conditions for M1,M2,M3,M4 to be positive-definite in order to get
exponential stability. It is required that:

37

det(M1) =
1

2
(kpm− c21) > 0,

det(M2) =
1

2
(kRλmin(J)− c22) > 0,

det(M3) =
1

2
(kpm− c21) > 0,

det(M4) =
1

2
(
2kR

2−Ψ
λmax(J)− c22) > 0,

(4.25)

which gives

c1 <
√
kpm,

c2 <

√
2kR

2−Ψ
λmax(J).

(4.26)

The matrix W1, W3, and W =

(
−λmin(W1)

1
2
∥W2∥

1
2
∥W2∥ −λmin(W3)

)
also need to be positive-

definite. Then,

det(W1) = ((1− α)c1
m
kp)((1− α)kv − c1)−

1

4
((1 + α)

c1
m
kv + αkp)

2 > 0,

− ((1− α)kp
m

+
1

4
(1 + α)2(

kv
m
)2)c21 + (

1

2
α2 − 5

2
α + 1)

kpkv
m

c1 −
1

4
α2k2p > 0,

det(W3) = (
c2kR

λmax(J)
)(kω − c2)− (

c2kω
2λmin(J)

)2 > 0,

det(W) = λmin(W1)λmin(W3)−
1

4
∥W2∥2 > 0,

(4.27)

which gives

c1 <
(kp − αkp)(kv − αkv)

kp − αkp + kv
2

4m

,

c2 <

kRkω
λmax(J)

(kR
λmax(J)

+ kω
2

4λmin(J)
)
.

(4.28)

38

4.2.4 Error Bound for ∥ep∥

By assuring M2 is positive-definite, we have

zT1 M1z1 + zT2 M2z2 ≥ zT1 M1z1

≥ λmin(M1)∥z1∥2

≥ λmin(M1)∥ep∥2.
(4.29)

Since V̇ (t) is negative-definite for all t ≥ 0, then we know V (t) ≤ V (0)∀t ≥ 0. Eq.
(4.21) gives us zT1 M1z1 + zT2 M2z2 ≤ V ≤ V (0). Hence,

λmin(M1)∥ep∥2 ≤ V (0),

∥ep∥ ≤

√
V (0)

λmin(M1)
,

(4.30)

where

V (0) =
1

2
kp∥ep(0)∥2 +

1

2
m∥ev(0)∥2 + c1ep(0) · ev(0)

+
1

2
eω(0) · Jeω(0) + kRΨ(R(0), Rd(0)) + c2eR(0) · eω(0),

(4.31)

M1 =
1

2

(
kp −c1
−c1 m

)
. (4.32)

Then we have the following bound for position error:

∥ep∥max =

√
V (0)

λmin(M1)
. (4.33)

4.3 Asymptotic Stability Analysis

The following is the improved stability analysis, proposed in [26].

Theorem 4.3.1. Consider the error system (2.29)–(2.32). Let I ⊂ R+ be an interval
with 0 as the left endpoint, and let t ∈ I. Assume

|ge3 + p̈d(t)| ≤ amax, (4.34)

39

for all t ∈ I and some specified amax ∈ R3
+. Let αψ ∈]0, 1[and Ψ ∈]0, 2[be specified

parameters and assume the following conditions hold:

Ψ(0) ≤ αψΨ, (4.35)

1

2
eTω(0)Jeω(0) ≤ kR(1− αψ)Ψ. (4.36)

Define

M ′
1 =

1

2

(
kpI3 c1I3
c1I3 mI3

)
, (4.37)

W ′
1 =

(
c1kp
m

I3
c1kv
2m

I3
c1kv
2m

I3 (kv − c1)I3

)
, (4.38)

M ′
2,1 =

1

2

(
kRI3 c2I3
c2I3 J

)
, M ′

2,2 =
1

2

(
2kR
2−Ψ

I3 c2I3
c2I3 J

)
, (4.39)

W ′
2 =

(
c2kRJ

−1 c2kω
2
J−1

c2kω
2
J−1 (kw − c2)I3

)
, (4.40)

where c1 and c2 are constants, satisfying

0 < c1 < min

(√
kpm,

4mkpkv
k2v + 4mkp

)
, (4.41)

0 < c2 < min

(√
kRλmin(J),

4λmin(J)kRkω
k2ω + 4λmin(J)kR

)
. (4.42)

Moreover, define

z′1(t) =

(
ep(t)
ev(t)

)
, z′2(t) =

(
eR(t)
eω(t)

)
, t ∈ I,

and

V ′
1(t) = z′

T
1 (t)M

′
1z

′
1(t), (4.43)

V ′
2(t) =

1

2
eTω(t)Jeω(t) + kRΨ(t) + c2eR(t) · eω(t), (4.44)

V ′(t) = V ′
1(t) + V ′

2(t), t ∈ I. (4.45)

40

Then, M ′
1,W

′
1,M

′
2,1,M

′
2,2,W

′
2 are positive definite. Furthermore, for all t ∈ I,

z′
T
2 (t)M

′
2,1z

′
2(t) ≤ V ′

2(t) ≤ z′
T
2 (t)M

′
2,2z

′
2(t), (4.46)

V ′
2(t) ≤ V ′

2(0)e
−2βt, (4.47)√

V ′(t) ≤ L(V ′
1(0), V

′
2(0), t), (4.48)

where, for x, y, t ∈ R+,

L(x, y, t) = L1(x, y, t) + L2(y, t), (4.49)

L1(x, y, t) = e
α1

√
y

2β
√
x+ ye−

α0
2
t, (4.50)

L2(y, t) = e
α1

√
y

2β
α2
√
y

2
e−

α0
2
t

∫ t

0

e(
α0
2
−β)sds, (4.51)

and β, α0, α1, and α2, are given by

β =
1

2
λmin(M

′
2,2

− 1
2W ′

2M
′
2,2

− 1
2), (4.52)

α0 = min
(
λmin(M

′
1
− 1

2W ′
1M

′
1
− 1

2), 2β
)
, (4.53)

α1 =
∥∥∥[c1
m
I3, I3]M

′
1
− 1

2

∥∥∥∥∥∥[kpI3, kvI3]M ′
1
− 1

2

∥∥∥∥∥∥[I3, 03×3]M
′
2,1

− 1
2

∥∥∥√ 2

2−Ψ
, (4.54)

α2 = m ∥amax∥
∥∥∥[c1
m
I3, I3]M

′
1
− 1

2

∥∥∥∥∥∥[I3, 03×3]M
′
2,1

− 1
2

∥∥∥√ 2

2−Ψ
. (4.55)

Proof. See [26].

A direct consequence of the results above is as follows:

Corollary 1. Consider the error system (2.29)–(2.32). Assume (4.34), (4.35), and
(4.36) hold. Let the functions V1, V2, and V be defined as in (4.43)–(4.45), where
conditions (4.41) and (4.42) hold. Define, for x, y ∈ R+,

Lu(x, y) = max
t∈R+

L(x, y, t) = L(x, y, tm(x, y)), (4.56)

41

where tm is given by

tm(x, y) =

max

(
1

α0
2
−β ln

(
α2β

√
y

2β−α0
α0
2

√
x+y+

α0α2
√
y

2(2β−α0)

)
, 0

)
, α0

2
̸= β, y > 0,

max
(

2(α2
√
y−α0

√
x+y)

α0α2
√
y

, 0
)
, α0

2
= β, y > 0,

0, otherwise.

(4.57)

Then, √
V (t) ≤ Lu(V1(0), V2(0)), t ∈ I.

The uniform bound derived above can be used to estimate the deviation of the
position and velocity from their desired values as follows:

Corollary 2. Consider the error system (2.29)–(2.32). Assume (4.34), (4.35), and
(4.36) hold. Let the functions V1, V2, and V be defined as in (4.43)–(4.45), where
conditions (4.41) and (4.42) hold. Define, for x, y ∈ R+,

Lp(x, y) =
∥∥∥[I3, 03×3]M

′−
1
2

1

∥∥∥Lu(x, y), (4.58)

Lv(x, y) =
∥∥∥[03×3, I3]M

′−
1
2

1

∥∥∥Lu(x, y), (4.59)

Lf (x, y) =
∥∥∥[kpI3, kvI3]M ′−

1
2

1

∥∥∥Lu(x, y), (4.60)

then, for all t ∈ I,1

∥ep(t)∥ ≤ Lp(V1(0), V2(0)),
∥ev(t)∥ ≤ Lv(V1(0), V2(0)),

∥kpep(t) + kvev(t)∥ ≤ Lf (V1(0), V2(0)).

Corollary 3. Let αψ ∈]0, 1[, Ψ ∈]0, 2[, and V1 ∈]0,∞[be given and V̄2 is computed
by

V2 =

(
kR + 2c2

√
kR

λmax(J)
αψ(1− αψ)

)
Ψ. (4.61)

Assume there exists a finite time T > 0 and a four-times continuously differentiable

1As L, given in equation (4.49), is monotonically increasing with respect to its first two argu-
ments, then it follows, using the definition of Lu, given by equation (4.56), that Lu is monotonically
increasing with respect to its two arguments. Therefore, Lp, Lu, and Lf , given by (4.58), (4.59),
and (4.60), respectively, are also monotonically increasing with respect to their arguments.

42

pd : [0, T]→ R3 satisfying (4.34), and mp̈d,3(t) ≥ Lf (V1,V2)−mg+ ε, t ∈ [0, T], for
some ε > 0. Then, for any initial condition (p(0), v(0), R(0), ω(0)) satisfying

Ψ(0) ≤ αψΨ,

1

2
e⊺ω(0)Jeω(0) ≤ kR(1− αψ)Ψ,

V1(0) ≤ V1,

(4.62)

Then, for all t ∈ [0, T],

∥ep(t)∥ ≤ Lp(V1,V2),

∥ev(t)∥ ≤ Lv(V1,V2),

∥kpep(t) + kvev(t)∥ ≤ Lf (V1,V2),

where Lp, Lv, and Lf are given by (4.58), (4.59), and (4.60), respectively.

4.4 Autotuning Algorithm

In this section, we formulate gain tuning into a bound-constrained optimization
problem and adopt simulated annealing method to find the optimal solution. This
approach systematically searches for the most effective control gains for any quadro-
tors assume the mass and inertia matrix are known.

4.4.1 Problem Formulation

Eq.(4.58) establishes a theoretical bound on position error ep. Then, since

V1(0) ≤ V1, V2(0) ≤ V2,

we have
∥ep(t)∥ ≤ Lp(V1,V2), t ∈ I.

While our theoretical result implies local exponential stability of the closed-loop
quadrotor dynamics for any choice of positive control gains, that choice should ensure
that the theoretical uniform bounds, which depend implicitly on the control gains,
are not too conservative. In particular, we want the gains choice to result in small
values for the uniform bounds Lp(V1,V2), where V2 is computed according to (4.61).

43

Let γ1, γ2 ∈]0, 1[be parameters that determine the values of c1 and c2, used in the
definitions of the functions V1 and V2 in (4.43) and (4.44), respectively, through the
relations

c1 = γ1min

(√
kpm,

4mkpkv
k2v + 4mkp

)
,

c2 = γ2min

(√
kRλmin(J),

4λmin(J)kRkω
k2ω + 4λmin(J)kR

)
.

The above relations ensure that conditions (4.41) and (4.42) hold. Let k, k ∈ R+\{0}
be user-defined positive lower and upper bounds on the control gains, respectively,
and w1, w2, and w3 be positive weights to be assigned to the unifrom bounds during
the optimization process. The control gains, and the parameters γ1 and γ2 are
then determined by solving the following nonlinear optimization problem, where the
uniform bounds Lp(V1,V2) are functions of the gains through the relations (4.56),
(4.58), and (4.47) and the arguments V1 and V2 are dropped:

min
kp,kv ,kR,kω ,γ1,γ2

Lp(V1,V2),

s.t. k ≤ kp, kv, kR, kω ≤ k,

0 < γ1, γ2 < 1.

(4.63)

4.4.2 Simulated Annealing

For the optimization problem (4.63), usually the domain for searching the control
gains, i.e. [k, k], is small. Notice that (4.63) is bound-constrained; it is natural to
adopt simulated annealing as our global optimization method because it has a high
probability of finding an optimal solution in a short period of time when the domain
is small. However, other optimization methods like multi-start are also suitable for
solving such problems.

Simulated annealing [13] is a stochastic global search optimization algorithm pro-
posed by Kirkpatrick, Gelatt, and Vecchi in 1983. Although it is not guaranteed to
find the global minimum, it increases the likelihood of finding a near-optimal solution.
The basic idea of simulated annealing is to mimic the process of annealing in met-
allurgy, where a material is heated and then gradually cooled to reach a low-energy
crystalline state. Similarly, in simulated annealing, the algorithm starts with a high
“temperature” for random exploration of solutions and gradually cools, becoming
more selective. It iteratively explores neighboring solutions, probabilistically accept-

44

ing or rejecting them based on quality and temperature. This process continues until
either a maximum number of iterations is reached or no significant improvement in
the objective function is observed over several iterations.

Our objective function, i.e., Lp(V1,V2), is a highly nonlinear function with many
local minima. Since the only constraints are bound constraints, and the search
domain is not very large, simulated annealing can find the global minimum in a
short time with high probability. The proposed algorithm is as follows:

Algorithm 3 Simulated annealing for gain tuning

1: kinit ← (kpinit, kv init, kRinit, kω init, γ1init, γ2init)
2: Initialize current solution kcurrent ← kinit
3: i← 0, ∆L← Lp(kinit)
4: while i ≤ Nmax or ∆L > δ do
5: knew = Neighbor(kcurrent)
6: Lcurrent = Lp(kcurrent)
7: Lnew = Lp(knew)
8: ∆L = Lnew − kcurrent
9: if ∆L < 0 or e−∆L/T ≥ random(0, 1) then
10: kcurrent ← knew
11: end if
12: k ← k + 1
13: end while
14: return kcurrent

45

Chapter 5

Experiments

In this chapter, we present the results from MATLAB and Webots simulations,
followed by detailed instructions for real experiments with the Optitrack mocap
system and the micro-quadrotor Crazyflie.

5.1 MATLAB Simulations

Numerical quadrotor simulations using MATLAB1, incorporating the proposed con-
trol synthesis approach, are conducted to demonstrate its performance and effective-
ness. For the purpose of consistency, all calculations and computations are done on a
computer with an i7-12700 CPU. To ensure the simulations are reproducible, we con-
figure the MATLAB control random number generator (rng) to its “default” setting.
This ensures consistent results each time the simulations are executed. The hyper-
rectangular plots presented in this section were obtained using the MATLAB com-
mand plotcube [23]. The parameters of the quadrotor match those of the Crazyflie
2.1 and are as follows:

J = diag([2.31, 2.31, 4.125])× 10−5 kg ·m2, m = 0.033 kg.

1The code for all MATLAB simulations described in Section 5.1 is available on GitHub:
https://github.com/BerenChang/quadrotor-safe-synthesis

46

5.1.1 Reach-Avoid Task Setup

We consider a reach-avoid control scenario, where the operating domain is defined
as a cube with edges measuring five meters each. The initial nominal position of the
quadrotor is p0 = [0.5, 0.5, 1]T , and the target set is given by X t = J[4, 4, 4]T , [5, 5, 5]T K.
The unsafe set is given as a union of ten hyper-rectangles. The operating domain,
the target, and the unsafe sets are depicted in Figure 5.1. We let vmax = [1, 1, 1]T ,
fmax = 2mg = 0.6468 N, and amax = [0.1, 0.1, 9.9]T . The control synthesis process
starts by setting Ψ = 0.005, αψ = 0.4, and V1 = 10−4.

Figure 5.1: The environment with ten obstacles as red boxes, one target set as blue
box, and the starting point as blue asterisk. The top right corner shows the top view
of the environment.

5.1.2 Gain Tuning Through Optimization

To solve the optimization problem (4.63), we set the gain bounds to be k = 0.001, k =
0.05. The problem is solved with Simulated Annealing. The MATLAB built-in
function simulannealbnd is adopted. With the initial guess

kp = 0.05, kv = 0.05, kR = 0.05, kω = 0.05, γ1 = 0.5, γ2 = 0.5,

47

the optimized control gains and coefficients are obtained as

kp = 0.05, kv = 0.03, kR = 0.005, kω = 0.001,

γ1 = 0.5468, γ2 = 0.6124.

The average computing time for obtaining the gains via optimization, over one hun-
dred runs, is 0.8934 seconds. The resulting value of V2 = 7.9976 × 10−5 and the
resulting uniform bound is Lp(V1,V2) = 0.2589 m.

5.1.3 Safe Tube and Trajectory Synthesis

Next, we construct a safe tube composed of connected hyper-rectangles, through
which the desired trajectory is synthesized, where an RRT is synthesized accord-
ing Algorithm 1 and a shortest path algorithm is conducted over the RRT. The
parameters in Algorithm 1 are chosen to be

α = 0.9, Nv = 400, Csampling = 0.9.

The resulting safe tube consists of fifteen hyper-rectangles depicted in Figure 5.2,
where the associated computational time is 0.06 seconds.

Next, we construct the desired trajectory given as piecewise Bezier curve with
fifteen segments, where each segment is parameterized by fifteen control points. We
implement Algorithm 2 for the trajectory synthesis, where we use the following pa-
rameters:

αT = 1.1, T0 = 100.

The produced trajectory, with time duration T = 146.1 seconds, is depicted in Figure
5.3. Note that the synthesized trajectory lies within the safe tube. The computation
of trajectory based on Algorithm 2 required 0.27 seconds of CPU time.

5.1.4 Initial Points Generation

Safety of the closed-loop quadrotor system is guaranteed if the initial conditions
satisfy (4.62). To visualize the set given in (4.62), initial points are generated as
follows. First, we randomly generated initial points (p(0), v(0), R(0), ω(0)) as fol-
lows. Each point is computed via means of sampling through the relations p(0) =
sample(0.2J−13, 13K), v(0) = sample(0.05J−13, 13K), R(0) = e(sample(0.05J−13,13K))∧ ,

48

Figure 5.2: The safe hyper-rectangles are shown as blue boxes.

Figure 5.3: The generated trajectory is shown as the blue curve.

ω(0) = sample(0.05J−13, 13K), where only the generated points satisfying (4.62)
are considered. The two hundred points are illustrated in Figure 5.4. The positions
of first fifty points are shown in Figure 5.5 with attitude represented as axis-angle
representation. The first twenty initial points are adopted to compute trajectories

49

using the Runge-Kutta method (RK45 in MATLAB)2. The integrated trajectories
are depicted in Figure 5.6. All position profiles associated with the generated trajec-
tories from the chosen twenty points, represented by blue lines, originate from the
bottom right corner and terminate at the blue box located at the top left corner,
remaining within the safety tube throughout, thus validating the safety assurances
of the tracking controller.

Figure 5.4: The values of ψ(0), eω(0), and V1(0) of the generated two hundreds initial
points are shown to stay within theoretical bounds.

To better visualize the shape of the initial set satisfying (4.62), the initial position
error is sampled through the relation ep(0) = sample(0.08J−13, 13K), with the initial
velocity error ev(0) attitude error eR(0), and angular velocity error eω(0) all set
to zero. One million points are sampled, with safe points marked red and unsafe
points marked blue, as illustrated in Figure 5.7. The cross-sectional figures shows
the boundary between safe region and unsafe region, as represented by the sample
points.

2The Runge-Kutta method does not guarantee the preservation of the SO(3) structure of the
attitude R during numerical integration. However, the Runge-Kutta method provides convergence
guarantees which motivates using it for the purpose of simulations in this section.

50

Figure 5.5: The position and attitude of fifty initial points. The arrows represent
the directions of the z-axis with respect to the body frame (i.e., b3(0)).

Figure 5.6: Tracking trajectories going through obstacles. The red boxes are obsta-
cles. The blue box is the target set. The blue tube is the region with guarantees.

51

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Safe

Unsafe

Figure 5.7: The shape of initial set of position, approximated by one million points.
The red points are safe points that satisfy (4.62). On the left is the 3D plot and on
the right is the cross section at ep2 = 0.

5.1.5 Validation of the Tracking Performance

To demonstrate the effectiveness of the proposed framework and the safety guarantees
for the generated twenty trajectories, we use Figure 5.8 to show that the position error
and the velocity error stay within the theoretical bounds Lp(V1,V2) and Lv(V1,V2).
The simulations demonstrate that when (4.62) is fulfilled, the quadrotor performs as
expected and the position errors remain perfectly within the theoretical threshold,
validating the safety guarantees of the proposed framework.

5.2 Webots Simulations

Webots3 is an open-source 3D robot simulator. Simulations conducted in the Webots
environment on an Ubuntu platform enable the creation of a “digital twin” of the
Crazyflie 2.1, achieved through the use of a mesh file supplied by Bitcraze. To
ensure methodological consistency and facilitate comparative analysis with MATLAB
simulations, an environment mirroring that of the MATLAB simulation setup is
employed.

Within the Webots simulations, the quadrotor is initially tasked with navigating
to and maintaining a hover at a predetermined starting point, i.e., [0.5, 0.5, 1]T in our

3https://cyberbotics.com

52

https://cyberbotics.com

Figure 5.8: For all t ∈ [0, T], ∥ep∥ remains within the theoretical bound. Data is only
shown for the first 13 seconds to demonstrate the details of convergence, however
the bounds are still respected for all t ∈ [0, T].

task. Subsequently, tracking maneuvers are initiated upon the fulfillment of specific
initial conditions:

V1(0) ≤ 1.0× 10−4,

ψ(0) ≤ 2.0× 10−3,

1

2
eω(0)

TJeω(0) ≤ 3.0× 10−5.

The norm of position error is in Figure 5.10. It is very similar to the position error
from MATLAB simulations plotted in Figure 5.8. However, due to stochastic per-
turbations in Webots (from Crazyflie mesh file assembly, delay of propeller rotations,
etc.), the tracking performance still has small position errors. Nevertheless, the po-
sition error remains within the theoretical bounds, demonstrating the robustness of
the proposed framework. Figure 5.9 is a combination of fifteen sequential snapshots
capturing the tracking performance of the Crazyflie quadrotor. It illustrates how the
quadrotor flies through gaps and finally reaches the target safely.

53

Figure 5.9: Combination of fifteen screenshots of Crazyflie in Webots (view from
top), showing the valid reach-avoid tracking performance. The blue box is the initial
position and the red box is the target set.

Figure 5.10: The norm of position error of twenty tracking trajectories in Webots
simulations. The error remains within the theoretical bounds. Data is only shown
for the first 13 seconds, however the bound is still respected for all t ∈ [0, T].

54

5.3 Real Experiments

Some real experiments are done in this section. The results will be shown first
for a better connection with previous sections, followed by detailed instructions on
experimental settings and programming.

5.3.1 Experimental Results

Based on the lab environment, we designed a small version of a reach-avoid task.
The operating domain is [−1, 1] × [−1, 1] × [0, 1.5]. Initially, the quadrotor will
be commanded to hover at [−0.5,−0.5, 1]T . It will then try to avoid an obstacle
occupying [−0.2, 0] × [−0.2, 0] × [0, 1.5], and eventually reach the region [0.2, 0.8] ×
[0.2, 0.8]× [0.9, 1.5]. Under the same parameters mentioned in Section 5.1.2, we run
ten tracking trajectories using Crazyswarm4 with Optitrack5 and Python commands
with Bezier curves (introduced in the following subsections). The position errors are
recorded and illustrated in Figure 5.11, validating the effectiveness of the proposed
control synthesis. One of the ten tracking performances is recorded and available on
YouTube6 for future reference.

Figure 5.11: The norm of position error for ten tracking trajectories in real experi-
ments.

4https://crazyswarm.readthedocs.io/en/latest/
5https://optitrack.com/
6https://youtu.be/wMMqXJsCATg

55

https://crazyswarm.readthedocs.io/en/latest/
https://optitrack.com/
https://youtu.be/wMMqXJsCATg

5.3.2 Experimental Settings

For experiments in the lab, we typically need a feedback controller, which requires
estimates of the quadrotor states. Although the onboard sensors of the Crazyflie
perform well in measuring velocity and rotational velocity, their estimation of position
and attitude cannot be fully trusted because the real-time numerical integration has
cumulative errors that can cause the quadrotor to drift. Instead, we use the Optitrack
positioning system, which consists of several cameras and the mocap software Motive.
By capturing the position of the attached markers on the quadrotor, the system can
provide position and attitude estimates within milliseconds. The mocap system can
be treated as a small prototype of the global positioning system (GPS). Thus, the
same control loop can be extended to quadrotors equipped with GPS modules.

For the micro-quadrotor Crazyflie, there are two Crazyflie 2.0 and one Crazyflie
2.1 in the lab, but the Crazyflie 2.1 is more usable than the 2.0. To control the
Crazyflie, we use Ubuntu 20.04 and ROS Noetic. The Crazyradio is attached to the
computer to ensure better communication with the Crazyflie. The GitHub repository
Crazyswarm, an open-source ROS package, is chosen as the platform to execute
our controller. Both Python and C++ are supported in Crazyswarm, but C++ is
recommended for better performance.

Since Motive is only available for Windows and ROS is better supported on
Linux, the lab has two computers: one running Motive to receive state estimates
from the Optitrack cameras, and the other running ROS to calculate and send real-
time control commands. Changes to the versions of Motive, Ubuntu, and ROS are
not recommended due to compatibility issues. The two computers communicate via
an Ethernet cable.

5.3.3 Gap between Simulations and Real Experiments

In simulations, we assume the linear transformation in Section 2.1 holds. However,
since the Crazyflie uses brushed motors, the relationship between the PWM signal
and RPM is nonlinear. Consequently, the PWM signal, which is actually used to
drive the brushed motors, and thrust also have a nonlinear relationship. Fortunately,
Bitcraze has measured the thrust generated under different PWM signals as follows.

We approximate the relationship between PWM and thrust by imposing a linear
constraint that passes through the origin. By minimizing the mean square error,
we establish the relationship: PWM (digital) = 1.2 × 105 thrust (N). The linear

56

PWM (%) 0 6.25 12.5 18.75 25 31.25 37.5 43.25
Thrust (gram) 0.0 1.6 4.8 7.9 10.9 13.9 17.3 21.0
PWM (%) 50 56.25 62.5 68.75 75 81.25 87.5 93.75

Thrust (gram) 24.4 28.6 32.8 37.3 41.7 46.0 51.9 57.9

Table 5.1: Data points collected by Bitcraze for estimating the thrust under different
PWM signal.

regression is visualized in 5.12. This approximation is effective within the range of
thrust 0 - 0.5 N and PWM signal 0 - 60000.

Figure 5.12: Linear regression between PWM signal and thrust. PWM is converted
from percent (0% to 100%) to binary (0 to 216-1).

Let κ = 1.2×105. Let (f, τ) be the control inputs in MATLAB simulations, (f ′, τ ′)
in PWM signal be the control inputs in real experiments. Then the relationship
between k1 and k2 is

57

f ′

τ ′x
τ ′y
τ ′z

 = κ

1 1 1 1
0 −d 0 d
d 0 −d 0
−cτf cτf −cτf cτf

1
4
−

√
2

4d

√
2

4d
1

4cτf
1
4
−

√
2

4d
−

√
2

4d
− 1

4cτf
1
4

√
2

4d
−

√
2

4d
1

4cτf
1
4

√
2

4d

√
2

4d
− 1

4cτf

f
τx
τy
τz

= κ

1 0 0 0

0
√
2
2

√
2
2

0

0 −
√
2
2

√
2
2

0
0 0 0 −1

f
τx
τy
τz

 .
(5.1)

That relationship is reflected in the code of the Crazyflie firmware7.

5.3.4 Optitrack Mocap System

The mocap system consists of two parts: Optitrack cameras with Optihub (shown
in Figure 5.13) and a Windows computer with Motive software. Since the accuracy
of the system drifts over time (due to cameras being accidentally moved, etc.), it
is strongly suggested to calibrate the system with the CWM-250 Calibration Wand
and CS-200 Calibration Square in the lab before every experiment. Be careful when
using the calibration square, as it sets the x-axis and y-axis for the world frame. The
x-axis and y-axis of the body frame, i.e., the Crazyflie, need to be aligned with the
world frame before conducting the experiment.

The sampling frequency of the mocap system can be adjusted to 30 Hz, 60 Hz,
90 Hz, and 120 Hz in Motive. The Crazyradio, a USB communication device, is
used to send the positioning data to the Crazyflie quadrotor. Due to USB hardware
constraints, the highest sampling frequency is limited to 100 Hz, and higher sampling
frequencies will result in increased communication delay. Therefore, we typically use
30 Hz or 60 Hz to balance between sampling frequency and communication delay.

The Motive streaming settings allow us to choose which IP address we stream data
to. Since we currently have no router that allows both internet and local Ethernet to
coexist at the same time, we use the local address for local communication. We can
choose “192.168.10.4,” the address of Ubuntu, as the local interface for streaming.

7https://github.com/bitcraze/crazyflie-firmware

58

https://github.com/bitcraze/crazyflie-firmware

Figure 5.13: The hardware components of Optitrack mocap system. The Optitrack
cameras capture the location of markers on the quadrotor and calculate the states
in real-time.

Later, we choose “192.168.10.1” (the address of Windows) as the address used by
Crazyswarm for accessing the data.

5.3.5 Crazyswarm

Crazyswarm [25] is a ROS-based project developed mainly by James A. Preiss and
Wolfgang Honig. This project integrates mocap, ROS, and Crazyflie APIs. Since the
Motive protocol is opaque to us, Crazyswarm is the best option based on the setup
in the lab. In this section, we will introduce various ways to send commands to the
Crazyflie using Crazyswarm. The choice of command depends on the needs of each
publication.

Experiments on Polynomial (Bezier curve) Trajectory

The best way to control the Crazyflie is to upload a polynomial trajectory before-
hand and let it execute the trajectory using its onboard controller. In this way,
the communication latency is minimized. However, the tradeoff is that the con-
troller is predefined, which means this commanding method only works for simple-
structured controllers. The onboard controllers that have already been employed are
the PID controller, Mellinger controller, INDI controller, and Brescianini controller.
Of course, self-defined controllers also work.

To upload and execute a polynomial trajectory, the following command is needed.

59

1 swarm = Crazyswarm ().allcfs [0]

2 traj = uav_trajectory.Trajectory ()

3 traj.loadcsv("figure8.csv")

4 cf.uploadTrajectory (0, 0, traj) # upload the trajectory

5 timeHelper.sleep (2.5)

6 pos = np.array(cf.initialPosition) + np.array([0, 0, 1.0])

7 cf.goTo(pos , 0, 2.0) # hover at initial position

8 cf.startTrajectory (0, timescale=TIMESCALE) # execute the trajectory

9 timeHelper.sleep(traj.duration + 2.0)

10 cf.land(targetHeight =0.06, duration =2.0)

Listing 5.1: Python script for executing the polynomial trajectory “figure 8”

Experiments on Waypoint Trajectory

For testing waypoint trajectories such as the trajectories generated by RRT or signal
temporal logic (STL), we use “goTo” command to let Crazyflie reach the waypoints
sequentially. A sample Python script is given as follows:

1 for waypoint in waypoints:

2 if waypoint.arrival == 0:

3 pos = [waypoint.x, waypoint.y, waypoint.z]

4 cf.goTo(pos , 0, 2.0)

5 elif waypoint.duration > 0:

6 timeHelper.sleep(waypoint.arrival - lastTime)

7 lastTime = waypoint.arrival

8 pos = [waypoint.x, waypoint.y, waypoint.z]

9 cf.goTo(pos , 0, waypoint.duration)

10 cf.land(targetHeight =0.02, duration =2.0) # land

Listing 5.2: Python script for executing a waypoint trajectory

Experiments on Vector Field

This command can be used to test the effectiveness of a vector field. For example, if
a project proposes a method of generating potential field for a reach-avoid task, one
can simply take the gradient of the potential field and feed the gradient to Crazyflie
to test if it can accomplish the task. Below is an example of Crazyflie following a
circular vector field.

1 def goCircle(timeHelper , cf , totalTime , radius , kPosition):

2 startTime = timeHelper.time()

3 pos = cf.position ()

60

4 startPos = cf.initialPosition + np.array ([0, 0, Z])

5 center_circle = startPos - np.array ([radius , 0, 0])

6 while True:

7 time = timeHelper.time() - startTime

8 omega = 2 * np.pi / totalTime

9 vx = -radius * omega * np.sin(omega * time)

10 vy = radius * omega * np.cos(omega * time)

11 desiredPos = center_circle + radius * np.array(

12 [np.cos(omega * time), np.sin(omega * time), 0])

13 errorX = desiredPos - cf.position ()

14 cf.cmdVelocityWorld(np.array([vx , vy , 0] + kPosition *

errorX), yawRate =0)

15 timeHelper.sleepForRate(sleepRate)

Listing 5.3: Python script for executing a vector field

The command “cf.cmdVelocityWorld” sends the desired velocity to Crazyflie. For
any project generating vector fields, even though the vector fields may in continuous
form, they have to be saved as a discrete function of position, and the command
“cf.cmdVelocityWorld” can be used based on the real-time position of Crazyflie.

Experiments on Learning-based Control

Learning-based control is the most challenging command as it touches the low level
control down to PWM signal for rotors. A modified Crazyswarm package called
“crazyswarm pwm” and a modified Crazyflie firmware called “crazyflie-firmware pwm”
are already in Ubuntu computer. A sample Python script is given below.

1 time_stamp = rospy.Time.now()

2 time_stamp_secs = time_stamp.secs // 10000

3 time_stamp_nsecs = time_stamp.nsecs // 100000

4 cf.cmdPwm(time_stamp_secs , time_stamp_nsecs , pwm1 , pwm2 , pwm3 , pwm4)

Listing 5.4: Python script for sending PWM signal

The command “cf.cmdPwm” is self-defined. It sends PWM signal to Crazyflie
in a frequency of 30Hz to 50Hz. This command can be used to test learning-based
methods such as a neural network based controller or sparse identification of non-
linear dynamics (SINDY), where the controller is approximated using a combination
of basis functions.

61

Chapter 6

Conclusion

In this thesis, we proposed a control framework for a quadrotor UAV to accom-
plish reach-avoid tasks with formal safety guarantees, where the standard planning-
tracking paradigm is adapted to account for tracking errors. The framework in-
tegrates geometric control theory for trajectory tracking and polynomial trajectory
generation using Bézier curves, where tracking errors are accounted for during trajec-
tory synthesis. We revisited the stability analysis of the closed-loop quadrotor system
under geometric control, where we proved local exponential stability of the tracking
error dynamics for any positive control gains and we provided uniform bounds on
tracking errors that can be used in planning. We also derived sufficient conditions to
be imposed on the desired trajectory to ensure the well-definedness of the closed-loop
quadrotor dynamics. The trajectory synthesis involved an efficient algorithm that
constructs a safe tube using sampling-based planning and safe hyper-rectangular set
computations. The desired trajectory, represented as a piecewise continuous Bézier
curve, is computed through the generated safe tube using a heuristic efficient ap-
proach, relying on iterative linear programming. We performed extensive MATLAB
numerical quadrotor simulations to demonstrate the proposed framework’s effective-
ness in reach-avoid planning scenarios. Webots simulations are also conducted to
demonstrate the robustness of the proposed framework under stochastic perturba-
tions that closely mimic real-life conditions. Instructions for real experiments are
also provided as a reference for future studies.

In future work, we plan to integrate the effects of measurement and input noises,
as well as disturbances, into the safe planning framework to enhance its applicability
in real-world scenarios. This integration will involve developing robust algorithms
that can handle uncertainties and ensure reliable performance under varying condi-

62

tions. Furthermore, we intend to expand the proposed control synthesis to accom-
modate more complex quadrotor models, such as those including aerodynamic drag
and other aerodynamic effects. These enhancements will allow us to more accurately
capture the dynamics of quadrotors operating in realistic environments. Moreover,
we aim to address more general specifications, including those defined by temporal
logics, which will enable the framework to handle a wider range of mission require-
ments and operational constraints. By incorporating these advanced specifications,
we can ensure that the quadrotors not only follow desired trajectories but also adapt
to complex temporal and safety constraints. Additionally, we see potential for im-
proving the uniform tracking error bounds by utilizing modified versions of geometric
tracking control. Specifically, employing gain matrices instead of scalars will provide
more flexibility and precision in the control design. This approach, which involves
much more complicated stability analysis, is expected to result in less conservative
trajectory synthesis, thereby enhancing the performance and efficiency of the control
system. Overall, these advancements will contribute to the development of a more
robust and versatile control framework for quadrotors in diverse and challenging
environments.

63

References

[1] Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs LQ control
techniques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2451–2456. IEEE, 2004.

[2] Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems:
modeling, analysis, and design for simple mechanical control systems, volume 49.
Springer, 2019.

[3] Jing Chen, Kunyue Su, and Shaojie Shen. Real-time safe trajectory generation
for quadrotor flight in cluttered environments. In 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 1678–1685. IEEE,
2015.

[4] Shicong Dai, Taeyoung Lee, and Dennis S Bernstein. Adaptive control of a
quadrotor UAV transporting a cable-suspended load with unknown mass. In
53rd IEEE Conference on Decision and Control, pages 6149–6154. IEEE, 2014.

[5] Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger
Wybe Dijkstra: His Life, Work, and Legacy, pages 287–290. 2022.

[6] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flat-
ness of quadrotor dynamics subject to rotor drag for accurate tracking of high-
speed trajectories. IEEE Robotics and Automation Letters, 3(2):620–626, 2017.

[7] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and
defect of non-linear systems: introductory theory and examples. International
journal of control, 61(6):1327–1361, 1995.

64

[8] Farhad A Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric control of a
quadrotor UAV transporting a payload connected via flexible cable. Interna-
tional Journal of Control, Automation and Systems, 13:1486–1498, 2015.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[10] Xie Heng, David Cabecinhas, Rita Cunha, Carlos Silvestre, and Xu Qingsong.
A trajectory tracking LQR controller for a quadrotor: Design and experimen-
tal evaluation. In TENCON 2015-2015 IEEE region 10 conference, pages 1–7.
IEEE, 2015.

[11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–894,
2011.

[12] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[13] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[14] Kostas J Kyriakopoulos and George N Saridis. Minimum jerk path generation.
In Proceedings. 1988 IEEE international conference on robotics and automation,
pages 364–369. IEEE, 1988.

[15] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning.
Research Report 9811, 1998.

[16] Taeyoung Lee. Geometric control of quadrotor UAVs transporting a cable-
suspended rigid body. IEEE Transactions on Control Systems Technology,
26(1):255–264, 2017.

[17] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Control of complex
maneuvers for a quadrotor UAV using geometric methods on SE (3). arXiv
preprint arXiv:1003.2005, 2010.

[18] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking
control of a quadrotor UAV on SE (3). In 49th IEEE conference on decision
and control (CDC), pages 5420–5425. IEEE, 2010.

65

[19] Taeyoung Lee, Koushil Sreenath, and Vijay Kumar. Geometric control of co-
operating multiple quadrotor UAVs with a suspended payload. In 52nd IEEE
conference on decision and control, pages 5510–5515. IEEE, 2013.

[20] Jun Li and Yuntang Li. Dynamic analysis and PID control for a quadrotor. In
2011 IEEE International Conference on Mechatronics and Automation, pages
573–578. IEEE, 2011.

[21] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE international conference on robotics and
automation, pages 2520–2525. IEEE, 2011.

[22] Adam Morawiec. Orientations and rotations. Springer, 2003.

[23] Oliver. PLOTCUBE. MATLAB Central File Exchange: https://www.

mathworks.com/matlabcentral/fileexchange/15161-plotcube, 2024. [On-
line; accessed May, 2024].

[24] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and control of a
large quadrotor robot. Control Engineering Practice, 18(7):691–699, 2010.

[25] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian.
Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 3299–3304. IEEE, 2017.

[26] Mohamed Serry, Haocheng Chang, and Jun Liu. Reach-Avoid Control Synthesis
for a Quadrotor UAV with Safety Guarantees. arXiv preprint arXiv:2405.20502,
2024.

[27] Mohamed Serry, Liren Yang, Necmiye Ozay, and Jun Liu. Safe Tracking Control
of Discrete-Time Nonlinear Systems Using Backward Reachable Sets. In 2024
American Control Conference (ACC) (Accepted). IEEE, 2024.

[28] Zhe Shen and Takeshi Tsuchiya. Singular zone in quadrotor yaw–position feed-
back linearization. Drones, 6(4):84, 2022.

[29] Koushil Sreenath, Taeyoung Lee, and Vijay Kumar. Geometric control and
differential flatness of a quadrotor UAV with a cable-suspended load. In 52nd
IEEE conference on decision and control, pages 2269–2274. IEEE, 2013.

[30] Michiel J Van Nieuwstadt and Richard M Murray. Real-time trajectory gener-
ation for differentially flat systems. International Journal of Robust and Non-
linear Control: IFAC-Affiliated Journal, 8(11):995–1020, 1998.

66

https://www.mathworks.com/matlabcentral/fileexchange/15161-plotcube
https://www.mathworks.com/matlabcentral/fileexchange/15161-plotcube

APPENDICES

67

Appendix A

A.1 Parameterization of SO(3)

Special Orthogonal Group, denoted as SO(3), contains all rotations around the origin
in 3-dimensional Euclidean space R3. It can be used to represent attitude of a rigid
body. In this section, we introduce various parameterization methods to represent
attitude in SO(3). The relationships among these parameterization methods are also
given as tools for analyzing the quadrotor dynamics later.

A.1.1 Rotation Matrix

Since rotation in 3-dimensional space is a linear transformation, it can be parame-
terized as a 3-by-3 matrix. For instance, suppose the body frame of a rigid body has
three axises xb, yb, zb ∈ R3, then the rotation matrix is [xb, yb, zb]. Such so called
“rotation matrix” is defined as R ∈ {R ∈ R3×3|RTR = I, det(R) = 1}.

A.1.2 Euler Angles

The rotations in R3 have three degrees of freedom (DOF), so the minimum number
of parameters to represent rotations is 3. One way of parameterization uses three
angles—roll, yaw, and pitch, or (ϕ, θ, ψ)—as the parameters. They are often called
Euler angles, named after Leonhard Euler, who first developed this parameterization
method. (ϕ, θ, ψ) are respectively the angles of rotation around xb, yb, and zb.
However, there is a specific order in which the rotations occur. Euler angles use the
”ZYX” representation, which means the rotation around xb happens first, followed
by yb, and lastly, zb. Different orders of rotation may result in different attitudes.

68

Figure A.1: Euler angles

A.1.3 Angle-axis Representation

The angle-axis representation is used less frequently compared to the rotation matrix
or Euler angles, but it helps in understanding the quadrotor error dynamics defined
later. This representation uses an angle θ ∈ R and a vector a ∈ R3, where |a| = 1.
Although it appears that four numbers should account for four DOFs, one DOF is
lost due to the requirement that |a| = 1.

Figure A.2: Rotation matrix represented by a rotation of an angle about an axis.

69

A.1.4 Invertible Transformation between Rotation Matrix
and Euler Angles

In “ZYX” transformation, rotate angles in radians about x-axis, y-axis, z-axis are ϕ,
θ, ψ, we have

R = Rz(ψ)Ry(θ)Rx(ϕ)

=

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

=

cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ
cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ
− sin θ sinϕ cos θ cosϕ cos θ

(A.1)

where Rx(ϕ), Ry(θ), and Rz(ψ) respectively represents the rotation around x-axis,
y-axis, and z-axis. The reason why the − sin θ term switches to below the diagonal?

θ = − sin−1(R31)

ϕ = arctan
R32

R33

ψ = arctan
R21/ cos θ

R11/ cos θ

(A.2)

A.1.5 Conversion between Rotation Matrix and Angle-axis
Representation

The conversion between a rotation matrix R and an axis-angle representation (a, θ)
[22] is

R =

 cos θ + a21(1− cos θ) a1a2(1− cos θ)− a3 sin θ a1a3(1− cos θ) + a2 sin θ
a1a2(1− cos θ) + a3 sin θ cos θ + a22(1− cos θ) a2a3(1− cos θ)− a1 sin θ
a1a3(1− cos θ)− a2 sin θ a2a3(1− cos θ) + a1 sin θ cos θ + a23(1− cos θ)

(A.3)

70

And we can convert R back to angle-axis as follows:

tr[R] = 3 cos θ + (a21 + a22 + a23)(1− cos θ)

= 3 cos θ + (1− cos θ)

= 2 cos θ + 1

(A.4)

So θ in terms of R is

θ = arccos(
tr[R]− 1

2
) (A.5)

A.2 Properties of SO(3)

In this section, we prove several lemmas that will be used later for analyzing the
error system.

Definition A.2.1. (Frobenius Norm of a Matrix)

∥A∥F = (
∑n

i,j=1 |A(i, j)|2)
1
2 =

√
tr[ATA] =

√
tr[AAT]

By Definition (A.2.1), we have

∥R−Rd∥F = (tr
[
(R−Rd)(R−Rd)

T)
]
)
1
2

= (tr
[
RRT −RdR

T −RRT
d +RdR

T
d

]
)
1
2

= (tr[2I]− tr
[
2RdR

T
]
)
1
2

= (2tr
[
I −RdR

T
]
)
1
2

= (tr
[
(I −RdR

T)(I −RRT
d)
]
)
1
2

= ∥I −RdR
T∥F

(A.6)

Definition A.2.2. (Error function on SO(3))

Ψ(R,Rd) =
1
2
tr[I −RT

dR] =
1
4
∥R−Rd∥2F = 1

4
∥I −RdR

T∥F

Lemma A.2.3. tr[Ax̂] = −(A− AT)∨ · x

Proof. Clearly, tr[Ax̂] = 1
2
(tr[Ax̂]+tr[x̂A]) = 1

2
(tr[Ax̂]+(−tr

[
AT x̂

]
)) = 1

2
tr
[
(A− AT)x̂

]
,

71

(A− AT) is skew-symmetric. Let (A− AT)∨ = [a1, a2, a3]
T , then

tr
[
(A− AT)x̂

]
= tr

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ·
 0 −x3 x2
x3 0 −x1
−x2 x1 0

= tr

−a3x3 − a2x2
.. −a3x3 − a1x1 ..
.. .. −a2x2 − a1x1

= −2(a1x1 + a2x2 + a3x3)

= −2(A− AT)∨ · x

(A.7)

∴ tr[Ax̂] = 1
2
tr
[
(A− AT)x̂

]
= −(A− AT)∨ · x ■

Lemma A.2.4. x̂A+ AT x̂ = ((tr[A] I − A)x)∧

Proof. Take
x = (x1, x2, x3)

T

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

72

Then,

(x̂A+ AT x̂)∨

=(

 0 −x3 x2
x3 0 −x1
−x2 x1 0

a11 a12 a13
a21 a22 a23
a31 a32 a33

+

a11 a21 a31
a12 a22 a32
a13 a23 a33

 0 −x3 x2
x3 0 −x1
−x2 x1 0

)∨

=(

.. x1a31 + x2a32 − x3(a22 + a11) −x1a21 + x2(a11 + a33)− x3a23
.. .. −x1(a22 + a33) + x2a12 + x3a13
..

)∨

=

 x1(a22 + a33)− x2a12 − x3a13
−x1a21 + x2(a11 + a33)− x3a23
−x1a31 − x2a32 + x3(a22 + a11)

=

a22 + a33 −a12 −a13
−a21 a11 + a33 −a23
−a31 −a32 a11 + a22

x1x2
x3

=(tr[A] I − A)x

(A.8)

■

Lemma A.2.5. R̂ω = Rω̂RT

Proof.

R̂ω = Rω̂RT

⇐⇒R̂ω = R−T ω̂R−1

⇐⇒RT R̂ωR = ω̂

⇐⇒yTRT R̂ωRx = yT ω̂x ∀x, y ∈ R3

⇐⇒yTRT (Rω ×Rx) = yT (ω × x) ∀x, y ∈ R3

⇐⇒(Ry) · (Rω ×Rx) = y · (ω × x) ∀x, y ∈ R3

⇐⇒ det(Ry,Rω,Rx) = det(y, ω, x) ∀x, y ∈ R3

⇐⇒ det(R)det(y, ω, x) = det(y, ω, x) ∀x, y ∈ R3

⇐⇒ det(R) = 1

(A.9)

73

Since det(R) = 1 is always true for all x, y ∈ R3 and R ∈ SO(3), Lemma(A.2.5)
holds. ■

Consider the difference of tangent vectors Ṙ ∈ TRSO(3) and Ṙd ∈ TRd
SO(3) as

follows.

Ṙ− Ṙd(R
T
dR) = Rω̂ −Rdω̂dR

T
dR

= Rω̂RTR−Rdω̂dR
T
dR

= (Rω̂RT −Rdω̂dR
T
d)R

= (R̂ω − R̂dωd)R Lemma(A.2.5)

= (Rω −Rdωd)
∧R

= (Rω −RRTRdωd)
∧R

= (R(ω −RTRdωd))
∧R

= R(ω −RTRdωd)
∧RTR Lemma(A.2.5)

= R(ω −RTRdωd)
∧

(A.10)

Lemma A.2.6. d
dt
(RT

dR) = (RT
dR)êω

Proof.

d

dt
(RT

dR) = ṘT
dR +RT

d Ṙ

= (Rdω̂d)
TR +RT

dRω̂

= −ω̂dRdR +RT
dRω̂

= −RT
dRR

TRdω̂dRdR +RT
dRω̂

= RT
dR(ω̂ −RTRdω̂dRdR)

= RT
dR(ω̂ − (RTRdωd)

∧) Lemma(A.2.5)

= RT
dR(ω −RTRdωd)

∧

= (RT
dR)êω

(A.11)

■

74

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Problem Statement
	Main Contributions

	Overview

	Quadrotor Modelling and Control
	Coordinate System
	Dynamics
	Error Definitions
	Geometric Control
	Geometric Controller
	Error Dynamics

	Differential Flatness
	Translation
	Attitude
	Control Input - Thrust f
	Angular Velocity
	Angular Acceleration
	Control Input - Torque

	Trajectory Generation with RRT and Bezier Curve
	Waypoints Generation with RRT
	Problem Formulation
	The Modified RRT Algorithm

	Piecewise Bezier Curves

	Lyapunov-based Safety Guaranteed Synthesis
	Lyapunov Stability Theorem
	Lyapunov Stability Analysis
	Altitude and Angular Velocity Stability
	Position and Velocity Stability
	Complete Dynamics Stability
	Error Bound for ep

	Asymptotic Stability Analysis
	Autotuning Algorithm
	Problem Formulation
	Simulated Annealing

	Experiments
	MATLAB Simulations
	Reach-Avoid Task Setup
	Gain Tuning Through Optimization
	Safe Tube and Trajectory Synthesis
	Initial Points Generation
	Validation of the Tracking Performance

	Webots Simulations
	Real Experiments
	Experimental Results
	Experimental Settings
	Gap between Simulations and Real Experiments
	Optitrack Mocap System
	Crazyswarm

	Conclusion
	References
	APPENDICES
	
	Parameterization of SO(3)
	Rotation Matrix
	Euler Angles
	Angle-axis Representation
	Invertible Transformation between Rotation Matrix and Euler Angles
	Conversion between Rotation Matrix and Angle-axis Representation

	Properties of SO(3)

