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Abstract

In the rapidly evolving field of general digital imaging and whole slide imaging, Image

Quality Assessment (IQA) plays a crucial role in determining the perceptual quality of

images and guiding image restoration. State-of-the-art IQA models are computationally

expensive due to the use of complex deep learning architectures. The high computational

cost poses a significant challenge in high-throughput Whole Slide Image (WSI) scanning

platforms, which is both time-sensitive and power-limited. Moreover, most IQA models,

while varied in design, often exhibit biases towards specific types of image content or dis-

tortions, a consequence of their underlying design principles or training data. To improve

the quality of WSIs, we need to address the defocus problem, which is the most common

distortion for a WSI. The transparency and uneven surface of tissue samples further com-

plicate the restoration process for methods that lack an understanding of the 3D tissue

radiance. These issues emphasize the limitations and challenges faced by existing IQA and

restoration models. This thesis proposes three novel and flexible approaches to mitigate

these problems.

Addressing the efficiency concerns in whole slide imaging, this thesis presents a highly

efficient model for Focus Quality Assessment (FQA). Among the distortions that degrade

the quality of digital slides, out-of-focus blur is the most common one. Different from pho-

tographic images, WSIs have much bigger dimensions, making most deep-learning based

FQA models computationally infeasible. Based on prior knowledge of the WSI and its

imaging process, we developed a lightweight model named FocusLiteNN that is 10, 000

times more efficient than SOTA deep learning-based ones without compromising accu-

racy. Furthermore, we introduce the first open-source, expert annotated FQA dataset

TCGA@Focus, offering a comprehensive platform for developing and evaluating new FQA

models.

However, most FQA models, or IQA models in general, often exhibit biases towards

specific types of image content or distortions due to their different design principles or

training data. This poses a challenge for users when choosing the best quality assessment

model for their needs. A practical approach is to fuse the results of multiple existing IQA

models into a more robust one. Following this idea, we developed a novel framework for
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IQA score fusion that is able to select the best combination of models according to the

uncertainty in each image and the overall uncertainty of each model. This requires the

model to be equipped with both fine-grained uncertainty analysis at the content level and

coarse-grained uncertainty analysis at the model level, respectively. Existing models either

lack content-level uncertainty estimation or have limited generalizability due to supervised

training. Our method employs an unsupervised approach using deep Maximum a Posteriori

(MAP) estimation, which can be trained on a combination of multiple datasets without

the need for Mean Opinion Score (MOS). This greatly improves the generalizability of the

model.

The above two works address different problems in quality assessment. In practice,

detected bad-quality images are either rejected or recollected. In digital pathology, rec-

ollecting the biosample causes additional suffering for the patient. Consequently, defocus

restoration is a possible solution. Deblurring assumes that there exists a sharp image in

which all pixels are in-focus, which is commonly referred to as a All-In-Focus (AIF) image.

Although this assumption is true for natural images, it might not hold for WSIs due to its

transparency, uneven surface and the microscope’s shallow Depth of Field (DOF). Since

the target does not exist, WSI deblurring becomes an undefined task. We propose an

alternative approach to address the defocus problem, which is virtual refocusing. It aims

to simulate and surpass the traditional experience of one continuously adjusting the focus

of a microscope, allowing for a comprehensive examination of tissue structures at varying

depths without the need for physical slide presence. By implicitly learning a continuous

3D radiance representation from the sparse inputs, the proposed model can refocus each

pixel to any focus plane according to a focus map. As far as we know, this is the first work

on WSI virtual refocusing.

This thesis makes significant contributions to IQA and image restoration with applica-

tions in WSI. The introduction of the FocusLiteNN model boosts computational efficiency

while the score fusion model addresses the bias issue. Additionally, the virtual refocusing

model extends these improvements by tackling the defocus problem in WSI through precise

adjustment of focus on a per-pixel basis.
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Chapter 1

Introduction

1.1 Motivation

Efficient FQA

The field of digital pathology has been revolutionized by WSI, which allows slides to be

examined remotely in digital format. However, this technique also introduces significant

challenges, especially given the large data volumes these images generate. For example,

the imaging process and post-processing are time-consuming and require a substantial

amount of computational resources. In clinical practice, the WSI scanning is usually done

overnight, and the scanned slides should be ready to be examined by pathologists the next

morning. This tight schedule requires any image processing involved to be very efficient.

Among the image-processing steps, IQA is a crucial one in the quality assurance process

of digital pathology. It evaluates and filters out images with poor quality, which degrades

the diagnostic accuracy. State-of-the-art IQA models are computationally expensive due

to the use of complex deep learning architectures. The high computational cost poses

a significant challenge in high-throughput WSI scanning platforms, which is both time-

sensitive and power-limited. The motivation behind this work is to enhance the efficiency

of IQA to meet the requirements of high-throughput WSI platforms without compromising

accuracy. Among the distortions that degrade the quality of digital slides, out-of-focus blur
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is the most common one. Most physical artifacts on the slides, such as air bubbles, dust,

marker ink and tissue folds, will mislead the autofocus system. Since the DOF of the

microscopy lens is very shallow compared to the tissue thickness, all these artifacts will

lead to global or partial out-of-focus images. Addressing the efficiency concerns, this work

presents a highly efficient model for FQA, which assesses the level of blur or out-of-focus

level of a WSI. FQA can be considered as a special case of IQA that focuses on the defocus

distortion.

IQA Score Fusion

However, most FQA models, or IQA models in general, often exhibit biases towards specific

types of image content or distortions due to their different design principles or training

data. This poses a challenge for users when choosing the best quality assessment model

for their specific data, requirements, and applications. However, this job is nontrivial since

the underlying assumptions of the model and the domain shift between the training and

testing data are difficult to quantify. To address this issue, a straightforward idea is to

develop a more powerful and general model that can cover all types of image contents and

distortions. However, it would be difficult to account for every possible combination of

image content and distortion, making it impractical to develop a single model that can

handle all scenarios. A more practical approach is to fuse the results of multiple existing

IQA models into a stronger one. Following this idea, we developed a novel framework for

IQA score fusion that leverages the strengths and mitigates the weaknesses of individual

models.

Existing fusion approaches can be categorized non-mutually exclusively into empiri-

cal, rank fusion methods, and supervised learning-based. Empirical models fuse a pre-

determined set of IQA models using a handcrafted formula. This approach significantly

constrains its adaptability when introduced with new IQA models. Rank fusion methods

operate in the discrete rank domain, where the range of all IQA models is mapped to the

same uniform distribution. However, these methods are tied closely to the diversity of

the ranking dataset, which can impede generalizability. Also, it can not handle the case

when “bad” performing models are included in the fusion list. Supervised learning-based
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methods are trained under the guidance of the MOS of a single subjective rated dataset.

Such fusion methods are essentially refined versions of supervised learning-based IQA mod-

els since they are guided by the same ground truth, i.e., MOS. These models can not be

trained on a combination of multiple datasets due to the MOS mismatch. Nevertheless,

these black-box models often suffer from limited generalizability and lack of explainability.

All the models mentioned above lack fine-grained uncertainty analysis at the content level,

with some only offering coarse-grained uncertainty analysis at the model level or none at

all. These limitations make the above-mentioned models less versatile and robust. What

we need is a fusion method that is 1) flexible to incorporate any combination of models and

be trained on any combination of datasets. 2) It should also be capable of rejecting bad-

performing models as well as outlier content. 3) It should also have good generalizability

and explainability. In this work, we try to achieve the above goals using an unsupervised

learning-based framework based on MAP estimation. This is the first unsupervised IQA

score fusion method as far as we know. This fusion framework also applies to FQA models.

We demonstrate its flexibility and robustness on both natural images and WSIs.

WSI Virtual Refocusing

An efficient FQA model is essential in determining whether a digital slide’s quality is good

enough for diagnosis by a professional pathologist. But what happens if one slide does not

meet the quality requirements? The answer is to collect the tissue and prepare the slide

again for a new scan. This necessitates additional surgery to remove the tissue from the

patient, leading to further discomfort for the patient and delaying the diagnostic process.

In order to avoid redoing the whole process again, is there a way we can recover the

information we need from the out-of-focus WSIs? From the perspective of post-processing,

WSI deblurring is a possible solution. Deblurring assumes that there exists a sharp image

in which all pixels are in-focus, which is commonly referred to as a AIF image. Although

this assumption is true for natural images, it might not hold for WSIs.

The gap is arising from two different perspectives. 1) From the lens optic’s perspective,

the DOF of the microscopy lens is too shallow compared to the tissue thickness. Consider-

ing the surface of the tissue is usually noneven due to its biological nature, this means that
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only the part of the tissue that lies in the DOF will be in focus. As a result, it is difficult

to capture a AIF image in a WSI scanner. On the other hand, by reducing the diameter

of the aperture, one can almost surely capture a AIF image using generic photography

equipments. 2) From the slide’s perspective, biological tissue slides are transparent and

that is how a bright field microscope works. A transparent 3D object means that the inner

structures of the tissue are visible and will be projected onto the image plane. However,

most natural scenes are non-transparent. Although the atmosphere can be transparent,

we do not care about the inner objects in it, if there are any, when doing natural image

deblurring. This means that the captured image is actually a projection of a 2D mani-

fold. The image formation process of a WSI can be simplified to convolving the 3D object

with a set of 3D Point Spread Function (PSF)s, while the formation of natural images is

convolving the 2D object (manifold) with a set of 2D PSFs. Since the tissue is entirely

illuminated by the light source, the out-of-focus light passes through the deeper layers of

the tissue that lie outside of the DOF and will interfere with the in-focus light. As a result,

the captured image will be a superposition of in-focus and out-of-focus light, which makes

the in-focus region blurry.

Due to the above two reasons, there does not exist such a AIF target for WSI deblurring.

Even if it does, the AIF image will not be 100% sharp. This limitation makes deblurring

an undefined task. We propose an alternative approach to address the defocus problem,

which is virtual refocusing. Instead of finding a AIF image, virtual refocusing aims to

simulate the most traditional experience of one continuously adjusting the focus knob of a

microscope. Although there is no single focus plane in which all pixels are in focus, we can

view each in-focus region by adjusting the focus continuously. Refocusing is the traditional

practice before the emergence of digital pathology and WSI, but it requires the slide to

be physically presence. In virtual refocusing, we rely on a single image taken at any focus

level to recover the whole focus stack. We hypothesize that this process implicitly learns

the 3D structure of the tissue. Consequently, giving images captured at multiple focus

levels as input helps to enrich the implicit 3D representation learned by the process. As

far as we know, this is the first work on WSI virtual refocusing.

Another major application of virtual refocusing is to synthesize realistic defocus dis-

tortions. Defocus synthesis has lots of applications in FQA, which can generate defocused
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images with labels. Existing defocus synthesis methods are based on handcrafted blur

kernels such as Gaussian, box kernel, and estimated PSF. These simple distortions ignore

the 3D structure of the tissue and fail to generate realistic distortions.

To summarize, this thesis aims to address the need for an efficient FQA model, a

versatile and robust IQA score fusion framework, and a WSI virtual refocusing model. In

the next section, we introduce in detail the goals we would like to achieve based on these

motivations.

1.2 Objectives

Efficient FQA

In the FQA literature, most knowledge-based models adopt handcrafted features, such

as edges and high-frequency components. These features can usually be approximated

by convolving the original image with a set of kernels. For example, commonly used

edge detection kernels include Canny, Sobel, Prewitt, Scharr, Laplacian, Difference of

Gaussian (DoG), LoG, etc. This demonstrates the possibility of using simple filters to

extract sharpness-related features. Although relatively efficient, these handcrafted features

may be suboptimal for the complex and diverse natural images. Recent advances in deep

learning have demonstrated the power of Convolutional Neural Network (CNN) being

able to extract task-specific features through learning from data. However, these complex

designs increase the computational complexity, which makes most of the CNN architectures

unsuitable for high throughput scanning platforms. In order to benefit from end-to-end

training that produces more optimal solutions while being highly efficient at the same time,

we aim to design a lightweight CNN-based FQA model. This requires us to explore a set of

strong prior knowledge of WSIs and FQA and use them to guide the design of the network.

Compared to the diverse natural images and their complex distortions, we observe

that WSIs have the following special characteristics: 1) WSIs are relatively uniform in

feature scales, 2) the distortion process is well-controlled, and 3) the sharpness information

is embedded in low-level features. More thorough justifications are provided in Sec 3.2.
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Based on these observations, we argue that FQA for WSI is a simpler task compared

to Image Sharpness Assessment (ISA) for natural images. Consequently, a multi-layer

network is not necessary for FQA. On the contrary, we show that a single convolution

kernel is sufficient to achieve a high accuracy that is on par with the state-of-the-art deep

CNN models. Different from knowledge-based models that also depend on linear filters, the

proposed model is end-to-end learned. This means that the network weight is adjusted to

the specific need of the FQA task. Furthermore, the design of the model architecture is also

based on the prior knowledge of the task. More specifically, according to the lens optics,

we carefully design the structure of the convolution kernel based on the radius of the circle

of confusion. We also select the appropriate nonlinear activation function according to the

bandpass nature of the kernel. In addition to designing the architecture manually, Neural

Architecture Search (NAS) offers an automated solution for finding the best-performing

network within the search space. Despite this, the searched “optimal” result may not be

simpler than the proposed model with a single convolutional kernel.

Another challenge for FQA is that all publicly available datasets only contain defocus

distortion captured using the z-stack method. These slides are carefully selected to ensure

high quality, and the defocus distortion is captured by moving the lens away from the

optimal focus plane intentionally. They are also limited to slides prepared by one lab

using the same protocol and scanned using one WSI scanner. Details are provided in Sec

3.3. This could mean that the dataset may not be diverse enough, which could result

in a lower model generalization ability and biased evaluation accuracy when utilized for

training and testing, respectively. To mitigate this problem, we proposed the first publicly

available FQA dataset containing authentic defocus distortion. The images are extracted

from slides in the TCGA [10] repository, which has very diverse content since they are

collected and processed in labs around the world. The dataset contains 14, 371 patches of

the size 1024× 1024, with each patch annotated by experts.

IQA Score Fusion

While one FQA model may surpass another in specific situations, it is important to rec-

ognize that there is no universal model that outperforms all others in every aspect. This

6



is also true for IQA models in general. Each model exhibits biases towards specific types

of image content or distortions due to their different design principles or training data.

This poses a challenge for users when choosing the best quality assessment model for their

specific applications. A practical and straightforward solution is to fuse the results of mul-

tiple IQA models into a stronger one. This fusion framework should be able to select the

best combination of models according to each image and the overall performance of each

model. This requires the model to be equipped with both fine-grained uncertainty analysis

at the content level and coarse-grained uncertainty analysis at the model level, respec-

tively. However, existing models in the literature lack explicit content-level uncertainty

estimation, with some only offering model-level ones or none at all.

While not explicitly modeling content-level uncertainty, supervised learning-based meth-

ods may implicitly learn this from ground truth data, which is MOS. End-to-end learning-

based methods have become popular recently due to their ability to find an optimal solution

automatically. However, the generalization ability of these methods can be limited due to

the domain gap between the training and testing data. These models can also suffer from

overfitting if the training samples are not sufficient or diverse enough. One way to solve this

problem is to collect more training data, which is usually achieved by combining multiple

datasets. But this is very challenging for IQA datasets since the meaning of the ground

truth, MOS, varies from dataset to dataset and can not be compared directly. This is

caused by the use of different subjective experiment protocols, different groups of subjects,

and different data processing methods. Is there any way we can bypass this problem of

MOS mismatch? Our answer to this question is unsupervised learning. Without the need

for ground truth, the model can be trained on any combination of datasets and has better

generalization ability.

To summarize, our objective is to develop a IQA score fusion framework that is unsupervised-

learning based, with both fine-grained uncertainty analysis at the content level and coarse-

grained uncertainty analysis at the model level. A well-designed framework should harness

the strengths and minimize the weaknesses of different models. This involves completely

rejecting underperforming models and partially disregarding inaccurate predictions from

strong models. It can also be trained on any combination of datasets, so its generalization

ability is also good. Additional requirements include better explainability, a theoretically
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sound formulation, and fast interference speed. In this work, we try to achieve the above

goals using an unsupervised learning-based framework based on MAP estimation. This is

the first unsupervised IQA score fusion method as far as we know. This fusion framework

also applies to FQA models, which is a special case of IQA. We demonstrate its flexibility

and robustness on both natural images and WSIs.

WSI Virtual Refocusing

The above two works address different problems in quality assessment, which is a crucial

part of quality assurance in lots of applications. In most cases, detected bad-quality images

are either rejected, recollected, or restored. For example, if a digital slide’s quality does

not meet the requirements for diagnosis, one needs to recollect the tissue and prepare the

slide again for a new scan. To avoid redoing the whole process again, restoration, or WSI

deblurring to be more specific, is a possible solution. Deblurring assumes that there exists a

sharp image in which all pixels are in-focus, which is commonly referred to as a AIF image.

Although this assumption is true for natural images, it might not hold for WSIs. Detailed

reasons are described in Sec 1.1. Since the target for WSI deblurring does not exist, it

becomes an undefined task. We propose an alternative approach to address the defocus

problem, which is virtual refocusing. Instead of finding a AIF image, virtual refocusing

aims to simulate the most traditional experience of one continuously adjusting the focus

knob of a microscope. As far as we know, this is the first work on WSI virtual refocusing.

Different from physical refocusing, whose input is a physical slide, virtual refocusing

relies on a single image taken at any focus level to recover images taken at different focus

levels, which is referred to as the focus stack. Since each image is a result of convolving

the 3D radiance field of the tissue with a set of 3D PSFs at different axial locations, an

accurate estimation of the focus stack requires access to the 3D radiance field and the

PSFs. However, the 3D radiance field is very difficult to capture without specific tissue

processing and imaging equipment. The PSFs also need to be collected for each objective

lens at all axial levels, which is a tedious process. To circumvent this problem, we develop

an end-to-end virtual refocusing model that implicitly learns the 3D representation of the

tissue without accessing the 3D structure or the PSFs.
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Since one captured image does not contain much information about the 3D radiance

field, using multiple captured images within a focal stack as input will help enrich the

3D information. Consequently, the proposed model should be able to leverage and fuse

the information of the arbitrary number of images in a focal stack. The model also needs

to learn to select the information within the implicit 3D representation that is related to

the target focus plane and use it to generate the refocused image. This requires a focal

stack-wise attention mechanism that attends to the information required by the target

focus plane.

It would also be beneficial for the model to have the ability to refocus each pixel to a

different target focus plane. This means that the target is a continuous focus map instead

of a number indicating the axial location of the focus plane. In physical refocusing, we can

only refocus the entire tissue to a constant focus plane. Due to the uneven tissue surface,

it is common for not all regions to be in-focus simultaneously. If the model can refocus

each pixel to a different focus plane, it is possible to generate an image that all regions are

in focus at the same time. However, this AIF image will not be 100% sharp due to the

transparent nature of the tissue. Detailed explanations are provided in Sec 1.1. Regardless,

this is what we can achieve without explicitly modeling the 3D radiance field of the tissue.

Since the model is trained in a supervised manner, it is necessary to have a reconstruc-

tion loss function that measures the perceptual distance between the generated and the

ground truth WSIs. Loss functions [11, 12] incorporating mid-level and high-level features

have been shown to outperform those that only focus on low-level features such as MSE

and SSIM [13]. These mid-level and high-level features are extracted from a pre-trained

CNN, which is often trained on pristine natural images for the purpose of object classifi-

cation. Since natural images are different from WSIs in serval perspectives as described

in 3.2, these loss functions are suboptimal for measuring the distance between WSIs. For

training the virtual refocusing model, what we need is a loss function tailored for WSIs.

This can be achieved by replacing the feature extractor and fine-tuning the weights in the

loss function. As far as we know, this is the first loss function tailored for WSIs.

Besides refocusing on the focus plane that gives the sharpest image, we are also inter-

ested in the images refocusing on out-of-focus planes. This corresponds to WSI defocus

synthesis. Existing defocus synthesis methods are based on handcrafted blur kernels such
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as Gaussian, box kernel, and estimated PSF. These simple distortions ignore the 3D struc-

ture of the tissue and the specifications of the optics. As a result, they often fail to generate

realistic defocus distortions. As one of the built-in functions, the virtual refocusing model

can be used to synthesize realistic homogeneously and in-homogeneously defocused images.

To summarize, the virtual refocusing model needs to learn the implicit 3D representa-

tion of the tissue without accessing the 3D radiance field and the PSFs. It also needs to

accept an arbitrary number of images in a focal stack as input to enrich the 3D informa-

tion. To generate a refocused image that all regions are in focus, the model needs to be

conditioned on a continuous focus map instead of a number indicating the axial location of

the focus plane. Finally, the training of the model requires a reconstruction loss function

that is tailored for the specific needs of WSIs.

1.3 Contributions

In this section, we will summarize the main contributions of this thesis by reviewing the

key contributions of each project.

Efficient FQA

FocusLiteNN is a lightweight FQA model designed to meet the efficiency requirements

of high-throughput scanning platforms. Based on the prior knowledge of the uniformity

of feature scales, the simplicity of distortion, the localization of sharpness information in

low-level details, and the importance of color, the network consists of a single carefully

designed convolutional kernel. The main contributions are

1. It is 10, 000× more efficient than the state-of-the-art networks while maintaining a

comparable performance.

2. We proposed an expert annotated FQA dataset name TCGA@Focus, containing

14, 371 patches of the size 1024 × 1024. The images are very diverse since they are

collected and processed in labs around the world. This is the first publicly available

FQA dataset that features authentic defocus distortion.
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IQA Score Fusion

For IQA score fusion, we develop an unsupervised learning-based fusion framework. The

main contributions of our work include:

1. To the best of our knowledge, this is the first unsupervised learning-based score fusion

method for IQA. It can be trained on any combination of datasets without the need

of MOS.

2. We formalize the first observation model of IQA fusion and address the task using

MAP estimation.

3. By building powerful coarse-grain and fine-grain uncertainty estimation modules, the

proposed model harnesses the strengths and mitigates the weaknesses of each model.

This means that it can completely reject underperforming models and partially dis-

regard inaccurate predictions from strong models.

4. We show that rank fusion can be easily integrated into our general framework.

WSI Virtual Refocusing

The WSI virtual refocusing model aims to simulate and surpass the traditional experience

of adjusting the focus of a microscope continuously. The contributions of the work are as

follows:

1. As far as we know, it is the first WSI virtual refocusing model.

2. The model learns the implicit representation of the 3D radiance field based on a novel

3D consistency constraint. It also accepts an arbitrary number of images in a focal

stack as input to enrich the 3D information.

3. Using a novel focal stack cross-attention module, the model selects the information

related to the target focus map and uses it to generate the refocused image.
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4. The model can refocus each pixel to a different focus plane in a continuous manner,

which helps to generate an image that all regions are in focus at the same time.

5. It is the first WSI defocus synthesis model that features realistic distortions.

6. Using a novel image distance metric tailored for WSI as the reconstruction loss sig-

nificantly improves the performance.

1.4 Thesis Outline

The structure of the following thesis is organized as follows:

• Chapter 2 provides a comprehensive background study and literature review of IQA

score fusion, FQA for WSI, general ISA and WSI deblur.

• Chapter 3 describes the methodology, implementation, and experiment of the pro-

posed highly efficient FQA model, named FocusLiteNN. It also includes the descrip-

tion of the proposed TCGA@Focus FQA dataset.

• Chapter 4 explores the unsupervised IQA score fusion framework, including its the-

oretical framework and experimental validations.

• Chapter 5 details the development of the WSI virtual refocusing model.

• Finally, Chapter 6 concludes the thesis with a summary and implications for future

research.
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Chapter 2

Background and Literature Review

2.1 Focus Quality Assessment for Whole Slide Image

2.1.1 Focus Quality Assessment Models

The FQA models can be divided into knowledge-based and data-driven ones based on

the design philosophy behind the features used. These models rely on handcrafted fea-

tures that are designed primarily based on the characteristics of Human Visual System

(HVS), knowledge of out-of-focus distortion, and Natural Scene Statistics (NSS) of sharp

images, etc. On the other hand, data-driven FQA models learn features from data through

techniques such as deep learning.

Knowledge-based FQA

Knowledge-based FQA models depend on manually developed features that are mostly

based on the characteristics of the HVS, understanding of out-of-focus distortion, and NSS

of sharp (microscopic) images. The collected features are subsequently distilled into a

boolean or scalar value that denotes the degree of blurriness, depending on whether the

job is binary classification or regression. For classification tasks, this is often accomplished

by employing either manual threshold or machine learning approaches such as Support
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Vector Machine (SVM) [14], AdaBoost [15], decision tree, etc. For regression tasks, one

can utilize either handcrafted linear/non-linear formulas or machine learning approaches

such as SVR, linear regression, or logistic regression.

Local Statistics-based Features Common features being used include local patch

statistics in either spatial or frequency domain, gradient and edge-related features, etc.

Spatial statistics include local variance, mean value normalized local variance, autocor-

relation, Shannon entropy, etc. To formalize the above features, we first introduce some

notations. Without loss of generality, we assume the image to be evaluated is grayscale.

Let the image patch denoted by I ∈ RH×W , where H and W are the height and width of

the image, respectively. µ = 1
HW

∑
x

∑
y I(x, y) is the mean intensity of the patch, where

(x, y) is the pixel coordinate. Local variance is defined as

FV ar =
1

HW

∑
x

∑
y

(I(x, y)− µ)2. (2.1)

The variance can serve as a reliable measure of focusing sharpness since the variance of

a well-focused image is generally higher than the one of a blurry image [16, 17]. However,

it is unfair to compare the variance of two patches that have significantly different mean

intensities. Therefore, the index of dispersion is often used instead, which is the local

variation that has been normalized by the mean [16, 17]. It is defined as

FNV ar =
1

HWµ

∑
x

∑
y

(I(x, y)− µ)2. (2.2)

Furthermore, the histogram of local variances has also been used as a feature. The pro-

cess begins by applying a log function to compress the histogram, followed by fitting the

compressed histogram to a linear model. A smaller slope corresponds to an image with

greater intensity variations, suggesting a higher level of sharpness. A pixel in an image is

visible if it exhibits a noticeable difference in comparison to its neighboring pixels. Both

spatial difference and autocorrelation quantify the degree of similarity between adjacent

pixels within a small patch, indicating the level of dispersion of the pixels within that area.

Absolute spatial difference [18] can be defined as
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FD L1 =
1

HW

∑
x

∑
y

|I(x, y)− I(x+ δx, y + δy)| (2.3)

where the offsets δx, δy ∈ {−1, 0, 1} and |δx| + |δy| > 0. It is also referred to as the Sum

Modulus Difference [19]. By using different combinations of the offsets δx and δy, we can

obtain a total of eight functions representing absolute differences in different directions.

However, since noise also contributes to the differences, this feature can only be utilized

when it is larger than a specific threshold or on images with minimal noise level. Since

the squared distance penalizes large differences more strongly than the smaller ones, using

a squared spatial distance could further alleviate the influence of noise [18], which can be

expressed as

FD L2 =
1

HW

∑
x

∑
y

(I(x, y)− I(x+ δx, y + δy))
2 . (2.4)

One of its special cases is the Brenner gradient [20], which is achieved by setting δx = 2

and δy = 0. Similarly, local ”contrast“ can also be defined as

FContrast =
1

HW

∑
x

∑
y

∑
δx∈{−1,0,1}

∑
δy∈{−1,0,1}

|I(x, y)− I(x+ δx, y + δy)| (2.5)

While the fine structures are treated equally for pixels having the same deviation from the

mean in the difference measures, the difference of autocorrelation [21, 22, 23] takes the

deviation into account. The difference of autocorrelation can be defined as

FDAC =
1

HW

∑
x

∑
y

[
I(x, y)2 − I(x, y)I(x+ δx, y + δy)

]
. (2.6)

The difference between autocorrelation and variance is equivalent if we assume adjacent

patches share the same mean and the mean-subtracted adjacent patches are independent.

A similar feature is also proposed in [23], which is defined as

FDAC V ar =
1

HW

∑
x

∑
y

[
I(x, y)I(x+ δx, y + δy)− µ2

]
. (2.7)
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It is claimed that both autocorrelation-based features are robust to noise [23]. Some works

make use of the local dynamic range as a feature to measure local contrast [24], which

translates to sharpness. The local dynamic range measures the difference between the

brightest and darkest pixel within a local patch, which is defined as

fDR = max
x∈[1,H],y∈[1,W ]

I(x, y)− min
x∈[1,H],y∈[1,W ]

I(x, y). (2.8)

To account for the relative dynamic range, a normalized version [24] is defined as

fNDR =
maxx∈[1,H],y∈[1,W ] I(x, y)−minx∈[1,H],y∈[1,W ] I(x, y)

maxx∈[1,H],y∈[1,W ] I(x, y)
. (2.9)

Apart from this, in information theory, Shannon entropy describes the amount of informa-

tion in a signal which is defined as

FEntropy = −
255∑
i=0

pi log2 (pi) (2.10)

where pi is the frequency of observing a pixel having intensity i. Here we assume the

image is 8-bit grayscale. It has been used to detect image sharpness because textured

image patches tend to have higher entropy than smooth ones [19, 25]. However, since

entropy is in nature a randomness measure, an image containing only sensor noise will

have higher entropy than a sharp image full of textures. Following a similar approach, [26]

calculate the entropy in the normalized Discrete Cosine Transform (DCT) domain. The

assumption behind it is that the normalized DCT of an in-focus image tends to be more

uniform than an out-of-focus image, which usually exhibits a mode at low frequencies. To

alleviate the impact of i.i.d. noise which affects the DCT spectrum uniformly, [26] makes

use of the Bayesian Entropy [27] that weights the higher-valued coefficients more than the

lower-valued ones. This feature is formulated as

FBSE = 1−
∑

ω+v⩽t |FC(ω, v)|2(∑
ω+v⩽t |FC(ω, v)|

)2 . (2.11)
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where FC is the DCT coefficient of image I. High-frequency components are ignored to

further alleviate the impact of noise. While the DCT transform loses spatial information,

Discrete Wavelet Transform (DWT) represents images in terms of functions that are local-

ized both in the spatial and frequency domain. Wavelet filters such as the Daubechies or-

thogonal wavelet basis D6 have also been used to extract sharpness-related features, which

often stay in the high-frequency related subbands, such as HH, HL and LH [28, 29]. The

first order statistics of the wavelet transform coefficients in the level-1 HH, HL and LH

subands are obtained as

FDWT Mean =
1

HW

∑
H

∑
W

[|WHL(x, y)|+ |WLH(x, y)|+ |WHH(x, y)|] (2.12)

where W is the wavelet coefficient. The second order statistics is defined as

FDWT V ar =
1

HW

∑
H

∑
W

[ (|WHL(x, y)| − µHL)
2

+(|WLH(x, y)| − µLH)
2

+(|WHH(x, y)| − µHH)
2]

(2.13)

where µ is the (absolute) mean value of the corresponding W . While higher-order statistics

generally correlate better with blur level than lower-order statistics, they usually amplify

noise’s impact. The efficacy of applying higher-order statistics for improving performance

diminishes as the order increases. The usage of higher-order statistics also leads to an

increase in computational cost [28]. The work [30] calculates the level of sharpness as

the ratio of the lower-frequency channel wavelet coefficients to the middle-frequency ones.

They first decompose the image using three levels of wavelet decomposition, resulting in

subbands {[W 3
LL,W

i
LH ,W

i
HL,W

i
HH ], i = {1, 2, 3}} where i is the level of decomposition.

High-frequency channels W 1
LH ,W

1
HL,W

1
HH are ignored since they mainly contain noise and

provide little discriminative information. The energy ratio can be formulated as

FER =
∥W 3

LL∥1∑3
i=2 [∥W i

HL∥1 + ∥W i
LH∥1 + ∥W i

HH∥1]
. (2.14)
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Edge-based Features In addition to local statistics-based features, it is widely rec-

ognized that the HVS is highly adapted to processing structural information in images,

such as edges. Out-of-focus blur greatly reduces the intensity of the edges. Hence, it is

intuitive to extract gradient and edge-related features to quantify the level of blurriness.

This is usually achieved by high-pass or band-pass filtering. The main difference between

these features lies in the filters used to detect and quantify high-frequency components.

Commonly used edge detection filters include Sobel, Canny, Prewitt, Scharr, Laplacian,

DoG, etc. The filtered results may have opposing signs, consequently, when summing

them directly, they tend to cancel each other out. In order to address this issue, L1 and L2

are often used to determine the absolute strength of the edges. For example, Tenenbaum

Gradient [31], or Tenengrad is defined as

FTG =
1

HW

∑
x

∑
y

Sx(x, y)
2 + Sy(x, y)

2 (2.15)

where Sx and Sy are the Sobel filters in the horizontal and vertical directions. The sum of

the modified Laplacian [32] is defined as

FSML =
1

HW

∑
x

∑
y

|Lx(x, y)|+ |Ly(x, y)| (2.16)

where Lx and Ly are the Laplacian filters in the horizontal and vertical directions. A

similar feature, the Energy of Laplacian [33], can also be defined as

FEoL =
1

HW

∑
x

∑
y

(Lx(x, y) + Ly(x, y))
2 . (2.17)

The DoG filter can also be used to extract edges, which is defined as

FDoG =
1

HW

∑
x

∑
y

[Gσ1 ∗ I(x, y)−Gσ2 ∗ I(x, y)] (2.18)

where Gσ is a Gaussian filter with a standard deviation equals σ. One benefit of the DoG

filter is that it eliminates the impact of high-frequency details (if σ > 0), which usually

18



includes sensor noise. However, the standard deviations σ1, σ2 and their ratio σ1

σ2
are

hyperparameters that need to be defined according to the image. In [34], they set σ1 = 0

and σ2 = 2. Some works replace the Gaussian filter with a Box filter [35]. Cumulative

Probability of Blur Detection (CPBD) [36] studies the human perception of blur around

edges for varying local contrast. The probability PBLUR(e) of detecting blur around an

edge e is calculated based on the width of the edge w(e) and a Just Noticeable Blur (JNB)

function. CPBD is formulated as

FCPBD = PBLUR (e) = 1− exp

(
−
∣∣∣∣ w (e)

wJNB (e)

∣∣∣∣β
)

(2.19)

where the JNB is the edge width of JNB, which is a function of local variance around the

edge [37]. β is a parameter whose value is obtained by ined by least square fitting. Finally,

as the name suggests, the CPBD metric is calculated as the cumulative probability of blur

detection. An inherent limitation of the edge-based method is its vulnerability to sensor

noise. Regardless of whether the image is in-focus or out-of-focus, the sensor noise will

be present. After the filtering, the noise will also remain in the filtered image, which can

misguide our detection of edges. Another major drawback is the existing filters may not

capture the edges or frequency components that are essential for assessing sharpness. This

is reasonable since the filters listed above are designed for general natural images instead

of digital pathology images.

Knowledge-based FQAModels with Handcrafted Prediction The local statistics-

based and edge-based features mentioned above are not an exhaustive list. Nonetheless,

many knowledge-based FQA models utilize these attributes to predict the sharpness or

blurriness of images. The pioneering works predict the sharpness based on a set of hand-

crafted rules, such as applying thresholds on individual features. Hashimoto at al. [38] and

Walkowski et al. [39] used the Haralick contrasts [40] which is determined by multiply-

ing the co-occurrence frequencies in the Gray-Level Co-occurrence Matrix (sometimes also

referred to as the Gray-Tone Spatial-Dependence Matrix) by the square distance of pixel

intensities. This formula assigns higher weights to the co-occurrence frequencies where

the pixel intensity changes rapidly, which usually indicates a strong edge. The entropy

of co-occurrence frequency is also used as a feature. Ameisen et al. [41, 42] utilized the
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maximum local variations FV ar (Eq 2.1). Hashimoto et al. [38] measured the sharpness

based on the number and width of edges, where the existence of an edge is determined by

setting a threshold on the Tenenbaum gradient FGT (Eq 2.15). Similarly, Zerbe et al. also

made use of the Tenenbaum gradient FTG (Eq 2.15).

Jimenez et al. [43] performed a detailed investigation on various general Full-Reference

IQA (FR IQA) models, including UQA [44], MS-SSIM [45], [46], VIF [47], as well as No-

Reference IQA (NR IQA) models BIQI [48], BRISQUE [49] and NIQE [50]. Some sharpness

features such as FContrast (Eq 2.5), FBSE (Eq 2.11), FSML (Eq 2.16), FTG (Eq 2.15), FCPBD

(Eq 2.19) are also investigated. They finally choose FCPBD, FContrast, FBSE and FTG and

classify a patch as out-of-focus if at least two features are classified as out-of-focus, using

a manually determined threshold for each feature.

Knowledge-based FQA Models with Machine Learning Prediction However,

establishing manual thresholds that work in all situations is very difficult. Works have

quickly transitioned to using machine learning techniques to either explicitly or implicitly

model the prediction rules. Gao et al. [51] proposed the first machine learning-based

FQA models by boosting 44 sharpness features using a binary AdaBoost classifier [15].

The AdaBoost classifier combines a set of weak classifiers into a strong one to minimize

the overall classification error. The classifier was separately trained on two datasets, both

with authentically blurred images. The first one is acquired using the z-stack technique,

which we will discuss in detail in Sec 2.1.2. The z-stack is generated by scanning with an

offset from −5µm to 5µm with an increment of 0.1µm. A total of 77 2048×2048 slices are

collected at different offsets for each of the 37 slides. Images with offset values ranging from

−0.7µm to 0.7µm are considered in-focus, while others are considered out-of-focus. The

second dataset contains 30 in-focus and 30 out-of-focus expert annotated patches scanned

at both 20× and 40× magnification levels. The dimension of the patches is 200× 200.

Hashimoto et al. [38] predicted the overall image quality of WSIs using a linear com-

bination of sharpness and noise level measures. The parameters of this linear model are

determined through regression on a synthesis dataset. In this dataset, out-of-focus images

are generated by convolving a sharp image with Gaussian kernels of various standard de-

viations. The target quality of the regression task is calculated as the MSE between the

synthetic out-of-blur image and its corresponding sharp one.
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Lahrmann et al. [35] make use of five sharpness features, including FTG (Eq 2.15),

FDoG (Eq 2.18), the number of edges detected by the Sobel filters, etc. Then, a SVM with

Gaussian Radial Basis Function (RBF) kernel was trained to classify each image into one

of the two categories. The training dataset is composed of 800 manually labeled in-focus

and out-of-focus image patches extracted from 63 WSIs scanned at 20×. They found that

most features they used were separable without the use of a nonlinear kernel.

Sharpa-Lite 1 [34] used a combination of 16 features, including the SH feature from

[38], FTG (Eq 2.15), FDoG (2.18), standard FDoG, FEoL (Eq 2.17) of a Gaussian (σ = 0.5)

blurred image, Haralick contrast and entropy [40]. They trained two classifiers with eight

features finally selected, one is based on a decision tree, and the other is SVM. While

the SVM model generally performs better, the decision tree gives a series of interpretable

classification conditions, which help us better understand each feature. The θ measure,

which characterizes the degree of separation of two distributions, shows that the Haralick

contrast has the best overall discriminatory ability, followed by FEoL, FTG and Haralick

Entropy. They also found that some features are more discriminatory for certain stains.

For example, FTG performs better for Hematoxylin and Eosin (H&E), whereas FTG is better

suited for Immunohistochemistry (IHC). The training dataset consists of 24, 000 in-focus

and 24, 000 manually labeled image patches of the size 200×200, which are extracted from

27 histological WSIs scanned at 20×. Campanella et al.

[52] selected 13 sharpness features including FV ar (Eq 2.1), FDR (Eq 2.8), FEntropy (Eq

2.10), FD L2 (Eq 2.4), FSML (Eq 2.16), FTG (Eq 2.15), FCPBD (Eq 2.19), two histogram

threshold methods, as well as some general ISA metrics [53, 54, 55, 56]. They generate

synthetic out-of-focus images by convolving sharp patches extracted from 207 WSIs with

Gaussian kernels of five standard deviations (0.8, 1.2, 1.6, 2 and 2.4). They considered two

tasks: multi-class classification and regression. For classification, six classes (five classes

for blur and one for sharp) are classified by training two models: a random forest consisting

1, 000 trees and a logistic regression model. For regression, the standard deviations of the

Gaussian kernels are considered as the target (0 for sharp images), and a random forest

model was trained to accomplish this regression task.

1The official code is available at https://bitbucket.org/diapath/sharpa-lite/src/master/.
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The PSFs of microscopes in WSI scanners are in nature low-pass filters that attenuate

high-frequency information. More recently, FQPath 2 [57] proposed to boost the high-

frequency components in visual signals in a balanced way, a well-known functionality found

in the HVS. They achieved this by using a symmetric Finite Impulse Response (FIR) kernel

[58], which is an approximated inverse PSF of a general WSI scanner. In the first step, a

general PSF that corresponds to the out-of-focus optics in the WSI scanners is estimated.

Then, the inverse of the estimated PSF is synthesized as a superposition of multiple even-

derivative filters. Finally, this inverse PSF was used to extract sharpness-related features.

A general purpose ISA model, HSV-MaxPol 3 [2], was developed with a similar motivation.

The difference is that the FIR kernel in HSV-MaxPol was designed as the inverse of a

Generalized Gaussian kernel which is derived based on NSS.

In spite of the fact that machine learning models assist us in better comprehending and

making better use of handcrafted features, they usually result in sub-optimal performances

since the feature design is not guaranteed to match our final goal, which is FQA.

Data-driven FQA

As deep learning continues to advance at a rapid pace, CNN is becoming an end-to-end

solution that encompasses both the feature design and final prediction processes. This

makes CNN a more ideal choice for a variety of image processing applications, including

FQA. MIQ [59], DeepFocus [60] and Campanella et al. [52] made the first attempts toward

data-driven FQA using CNNs in 2018. DeepFocus 4 [60] proposed a CNN consisting of five

convolutional layers, three max pooling layers, and three fully connected layers. The input

patch size is 64 × 64 and the final output is two scalars indicating the probability of the

patch being in-focus and out-of-focus, respectively. The network was trained using a cross-

entropy loss function, optimized through the Stochastic Gradient Descent (SGD) optimizer.

The training dataset 5 is acquired through z-stack, where nine focal plane offsets are used:

−2.5µm,−2.0µm,−1.5µm,−1.0µm,−0.5µm, 0.0µm, 0.5µm, 1.0µm, 1.5µm, 2.0µm, 2.5µm. Slices

2The official code is available at https://github.com/mahdihosseini/FQPath.
3The official code is available at https://github.com/mahdihosseini/MaxPol.
4The official code is available at https://github.com/cialab/deepfocus.
5The dataset is available at https://doi.org/10.5281/zenodo.1134848.
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with an offset in {−0.5µm, 0.0µm, 0.5µm} are considered as in-focus while others are con-

sidered out-of-focus. A total of 16 WSIs are used to generate the dataset and they choose

2500 non-overlapping patches of 64× 64 from each slide. Finally, 120, 000 in-focus patches

and 108, 000 patches are used during training and validation. Random horizontal and

vertical flipping, as well as random rotation by 90◦ are used as data augmentation tech-

niques to increase the number of training samples. To evaluate the transferability of the

trained model on unseen data, they collect another two datasets for testing. The first

testing dataset, consisting of six slides, is generated by the same z-stack method using the

same scanner as the training dataset. This testing set consists of 654, 912 64× 64 patches

scanned at 72, 768 locations of nine focal distances. The other testing dataset, consisting

of two slides, is acquired with a different scanner at a different facility where the patches

are manually labeled.

ConvFocus [61] employed a relatively lightweight network, which consists of the first

few layers of the Inception V3 network [62], including three convolutional layers, one max

pooling layer and one average pooling layer. The training data was generated using a

synthetic procedure that simulates the real-world image capturing process in WSI scanners.

In the first step, they manually inspected and collected 166, 000 300 × 300 sharp patches

from 26, 526 slides scanned at 40×. In the second step, two types of blur kernels are

used to convolve with the sharp images: Gaussian kernel and Heavyside kernel. The

2D Heavyside side kernel is known to approximate the appearance of defocus blur better

[63], which is known as bokeh, based on human observations. A total of 29 out-of-focus

levels are generated by varying the standard deviation and radius in the Gaussian and

Heavyside kernels, respectively. However, the synthetically blurred images looked over-

smooth compared to real-world out-of-focus ones. They assume this is caused by the blur

operation hiding the high-frequency information, such as sensor noise and the blocking

artifact caused by JPEG compression. Therefore, in the third step, they further apply

JPEG compression with quality ranging from 70 to 90. In the final step, they add Poisson

noise of varying intensities to simulate the sensor noise generated by different WSI scanners.

To test the model’s ability on authentic out-of-focus images, they collected 7 slides scanned

at 40× for testing. A total of 37, 715 patches are extracted and manually labeled with one

of the 13 grades, ranging from 0 (in-focus) to 6 (very strong out-of-focus). Besides this,
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they further collected a testing set using z-stack. A single slide is scanned at 21 focal planes

with a 0.4µm increment between adjacent planes. All images are cropped to 139 × 139

before being fed into the network.

Some works also made use of more complex and deeper networks. Campanella et al.

[52] assumed that color is independent of FQA for digital pathology. They trained a

ResNet18 [64] model from scratch with grayscale images of the size 224 × 224. Details of

the training dataset have been described in Sec 2.1.1. They trained this network separately

in two settings: 6-class classification and regression. For classification, cross-entropy was

used as the loss function, while MSE was used in the regression setting. Simialar to [52],

MIQ [59] also trained a CNN using 84× 84 grayscale images. The network consists of two

convolutional layers, two max pooling layers, and two fully connected layers. They syn-

thesized the out-of-focus images by convolving the sharp images with PSFs approximated

at 10 different out-of-focus focal planes with 2µm increments. Similar to ConvFocus [61],

Poisson noise was also applied to account for image sensor offset and gain. The output of

the network is a probability distribution over the 11 defocus levels. What differentiates

this model from any other model is the loss function. Most classification tasks use cross

entropy as the loss function, where the categories are assumed to be nominal (unordered

and mutually exclusive). However, in the case of FQA, categories representing different

focus levels are ordered. We refer to this kind of variable as ordinal. To make use of the

order information, MIQ [59] used a ranked probability score [65] as the loss function. A

measure of classification uncertainty was also computed as the Shannon entropy of the

output distribution. Following the same motivation, [66] investigated seven CNNs trained

with five loss functions that make use of the ordinal information. These loss functions

include ordinal encoding [67], binomial unimodal ordinal encoding [68], a regularized cross

entropy and ordinal entropy [69]. The training was conducted on the FocusPath dataset

[2], which is acquired based on z-stack, where 16 focal planes are used for capturing im-

ages. A detailed description of this dataset will be provided in Sec 2.1.2. It was shown

that the ordinal encoding [67] loss function results in the best overall performance across

various network architectures and evaluation metrics. The best-performing combination is

MobileNetv2 [70] and the ordinal encoding loss function. The major difference between or-

dinal classification and regression is that the distances between the classes are unknown for
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the ordinal case. Some datasets categorize blur levels into five categories: very poor, poor,

ok, fairly good, very good. In this scenario, ordinal classification might be handy since

these categories are ordered but the distance between classes is hard to define. However,

since the distance between any blur levels in a z-stack-based dataset is clearly defined, the

advantage of using ordinal classification over regression on z-stack-based datasets needs

further investigation.

More recently, Liao et al. [71] studied the FQA problem in the microscope autofocus

setting, where a lower magnification at 10× was considered. They selected MobileNetv3

[72] for its optimal balance between performance and computational cost. MobileNetv3 is

an enhanced version of MobileNetv2 [70], which was utilized in [66] as described previously.

The input size was changed to 672 × 672 to cover a larger field of view for reliable pre-

diction. The training dataset was collected following the z-stack method, where 25 slices

are acquired for each slide, ranging from −36µm to 36µm with a 3µm increment. The

network was trained using a Smooth L1 loss where the target is the defocus distance. To

search for the best hyperparameters such as learning rate, momentum, weight decay, etc,

population-based training [73] was used.

2.1.2 Focus Quality Assessment Datasets

Labeled data are essential for training either traditional machine learning-based or data-

driven FQA models in a supervised learning manner. As far as we know, we did not notice

any FQA models designed with an unsupervised learning-based approach. Following the

tradition in IQA, labeled datasets can also be categorized into two major types: authenti-

cally distorted ones and synthetically distorted ones. For authentically distorted images,

the WSIs are captured with real out-of-focus lenses, either intentionally or unintentionally.

Other distortions such as sensor noise and compression artifacts are also automatically

added to the image in the image processing pipeline within the scanner. Manual labeling

and z-stack are the two major methods to create a labeled FQA dataset with authentic

distortions.

The manual labeling method follows a more traditional and time-consuming way of

collecting both in-focus and out-of-focus patches with their ground truths. A detailed data
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Figure 2.1: The pipelines of major ways of collecting images and focus level labels for FQA.

IF is the abbreviation of in-focus and OOF represents out-of-focus. Rounded rectangles

filled with gray are the desired output.

collection pipeline is illustrated in the first row of Fig 2.1. In the first step, WSIs are

cropped into smaller patches and only the patches that contain tissue are saved for human

inspection. This filtering process is mainly achieved through setting a threshold on certain

features, such as the mean or variance (Eq 2.1) of pixel intensity. In the second step,

trained pathologists are invited to grade each patch into different levels of blur. Due to

HVS’s limited ability to distinguish the fine-grained level of blur, most works categorize

patches into two classes, either in-focus or out-of-focus. Nonetheless, more than two levels

of focus are annotated in some works. Due to the tedious procedure of manual annotation,

the number of images in this type of dataset is often limited. However, a large amount of

26



data is required for training CNN-based FQA models.

To bridge this gap, z-stack has become a popular way to generate authentically distorted

images with higher efficiency. A detailed data collection pipeline is shown in the second

row of Fig 2.1. In the first step, a built-in autofocus algorithm is used to generate a 3-D

focus map for the entire specimen as described in Fig 3.1. This focus map is then offset

by a series of N − 1 distances, both toward and away from the objective lens. After this,

the slide is scanned according to the original focus map as well as the offset ones. We refer

to the N WSIs as the z-stack. An example of the z-stack is provided in Fig 2.4. In the

second step, patches are extracted from the stack. The focus level is determined as the

offset distance. Since the z-stack is a built-in function in many WSI scanners [74], this

method does not require too much labor and is often time efficient.

Even though the z-stack method does not need human annotation, it still requires

access to WSI scanners and slides. To make the data acquisition even more efficient,

synthetic distortions are used to simulate the appearance of authentic out-of-focus images.

This method can make use of the large amount of high-quality unlabeled WSIs that are

publicly available. For example, the Cancer Digital Slide Archive (CDSA) [75] hosts more

than 30, 000 WSIs sourced from The Cancer Genome Atlas (TCGA), and the number is

growing. The synthesis procedure is illustrated in the third row of Fig 2.1. The first

step is to extract patches from the WSIs and remove the patches that are out-of-focus or

do not contain tissue. Although most of the WSIs in TCGA are of high quality, certain

areas within these WSIs may still be out-of-focus due to factors like tissue folding or

air bubbles. These blurry areas may not impair the diagnosis, but they will impact the

distortion synthesis if not removed. Some works [52, 61] manually checked the sharpness

of each patch, while some works [59] select the sharpest patch from a z-stack based on

some handcrafted features, such as variance (Eq 2.1). In the second step, blur kernels

of various intensities are applied to the sharp patches. Commonly used filters include

Gaussian [52, 61, 38], estimated PSF [59] and Heavyside [61]. However, applying these

low-pass filters alone may create an over-smooth appearance, which does not match the

look of real out-of-focus images. This is partially caused by these low-pass filters removing

the sensor noise or compression artifact in the sharp images, which persist in authentic out-

of-focus ones. As a result, some works add Gaussian noise [38], Poisson noise [59, 61] and
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Dataset Year Type Mag Scanner # Slides # Organs # Stains

DeepFocus [60] 6 2018 Z-Stack 40× Aperio ScanScope 16 N.A. 4

FocusPath [2] 7 2019 Z-Stack 40× Huron TissueScope LE1.2 9 9 8

Dataset # Patches Patch Size Pixel Size # Z-Levels Focus Range Focus Step

DeepFocus 204, 000 64× 64 0.2461 µm 9 −2.5 µm ∼ 2.5 µm 0.50 µm

FocusPath 8, 640 1024× 1024 0.2500 µm 16 N.A. 0.25 µm

Table 2.1: The details of the two public available FQA datasets.

JPEG compression to the filtered images to better simulate the signal processing pipeline

in the scanners. Finally, the intensities of these blur kernels, often expressed as standard

deviation or radius, are used to generate the level of focus.

Although labeled datasets are essential for training either traditional machine learning-

based or data-driven FQA models in a supervised learning manner, only two datasets

are publicly available, both acquired using the z-stack method. Detailed specifications of

these two datasets are provided in Table 2.1. Without confusion, we refer to the train-

ing dataset used in the DeepFocus [1] paper as DeepFocus. In DeepFocus, 2500 non-

overlapping patches of the size 64 × 64 are extracted from each of the 16 WSIs. These

slides are stained using four different stains: H&E, Ki67, CD21, and CD10. For each

patch, another eight patches are captured using the z-stack method by setting an offset at

−2.5µm,−2.0µm,−1.5µm,−1.0µm,−0.5µm, 0.5µm, 1.0µm, 1.5µm, 2.0µm, 2.5µm. This re-

sults in a total of 16×2, 500×9 = 360, 000 patches. 120, 000 patches with an offset value in

−0.5µm, 0.0µm and 0.5µm are considered in-focus since they are visually indistinguishable

by experts. 240, 000 patches with other offsets are considered out-of-focus. To balance the

number of in-focus and out-of-focus images, 108, 000 out-of-focus patches are sampled from

the original set. The publicly available version consists of 204, 000 patches of eleven offset

values. The focus level distribution is illustrated in Fig 2.2. Following the rule described

6The training dataset is available at https://doi.org/10.5281/zenodo.1134848.
7A subset containing 864 patches is available at https://sites.google.com/view/focuspathuoft/.

The full version will be made available upon request.
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earlier, a total of 10, 800 patches are labeled as in-focus while 96, 000 are out-of-focus.

Sample images captured at different focus levels are shown in Fig 2.3. The relatively small

patch size 64×64 may limit its applicability in some scenarios. Firstly, some popular CNN

architectures, such as ResNet [64], DenseNet [76] and MobileNetV3 [72], require 224× 224

input. Secondly, assigning one z-level to a large patch/strip in the autofocus map may not

accurately reflect the focus level of smaller patches within it. This is possibly caused by

the nonuniform height distribution within the large patch, or the lack of textural details

in this small patch. Randomly drawn examples are shown in Fig 2.3, the level of blur of

some patches is hard to distinguish by the human eye, even though they are captured at

different (absolute) z-levels. On the other hand, the level of blur is more distinguishable

for larger patches, as shown in Fig 2.4.

Figure 2.2: Focus level distribution of the DeepFocus dataset [1].

The FocusPath8 dataset [2] contains 8, 640 patches of 1024× 1024 images. To create a

database with high diversity, the slides used are cut from nine distinct types of organs with

eight types of stains. The stains being used are Trichrome, H&E, Mucicarmine, IRON(FE),

8The data is available at https://zenodo.org/record/3926181
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Figure 2.3: Sample images of the DeepFocus dataset [1] at different focus levels.

AFB, Congo Red(CR), PAS and Grocott. In Figure 2.5, randomly drawn examples are

shown for each of the slides. The WSIs are scanned by Huron TissueScope LE1.2 [77]

using 40X optics lens at 0.25µm/pixel resolution. By using the z-stack method, images are

captured at 16 focus levels with an increment of 0.25µm. The z-stack examples are shown

in Figure 2.4. Although the number of patches (8, 640) in the FocusPath dataset is less

than the DeepFocus dataset (204, 000), the patch size is substantially larger in FocusPath

(1024× 1024) than DeepFocus (64× 64).

2.1.3 Image Sharpness Assessment Models

Although FQA seems to be a special case of the more general task ISA, digital pathology

images differ from general photographic images in several ways. Firstly, most pathology

slides are shift and rotation-invariant and can have varying contrast, colors, and textures

depending on the staining process, tissue type, and disease state. Secondly, the optical

design of the microscopes in WSI scanners differs substantially from general cameras.

30



Figure 2.4: A sample of Z-stack images in the FocusPath dataset [2]

.

Microscopic optics are specifically designed to resolve microscopic details at the cellular

or even molecular level that are not visible to the naked eye, requiring lenses that can

achieve high resolutions with minimal aberrations. This is usually achieved through using

a lens with a high magnification rate, high Numerical Aperture (NA) and medium with

a higher reflective index than air. For example, the NA for a “large” aperture (F1.8)

photography lens is only 0.27. However, common NA for the 40× microscopic lens used

in digital pathology ranges from 0.75 to 1.2 [74]. As a result, the two optic systems often

have substantially different spherical abbreviation patterns. The most noticeable difference

is that the microscopic lens usually has a very shallow DOF, which means that only a

very thin plane of the sample is in-focus. Thirdly, the microscopes have controlled lighting

conditions, often through transmitted light from below the sample. This controlled lighting

system provides constant and even illumination across the entire sample, which is crucial for

capturing the details in specimens without interference from outside illumination. On the

other hand, consumer cameras rely on ambient light or flashlights which are more variable

and less controlled, which may impact the observation of sharpness and contrast. Fourthly,

the image sensor and image processing algorithms used are different. WSI scanners use
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Figure 2.5: Sample images cropped from each of the slides in the FocusPath dataset [2]

.

sensors that are optimized for color accuracy and resolution to account for the fidelity of
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stains and detailed structures necessary for diagnostic purposes. The scanned images often

have different black-level, pixel gain, photon noise and dynamic range compared to general

image sensors [59].

In summary, digital pathology images are distinct from typical photographic images

due to differences in the object’s physical characteristics, optical systems, illumination

conditions, imaging sensors, and the image processing techniques employed for capture.

General ISA models are designed to work with general photographic images that may not

align well with the specific needs of digital pathology images. Nevertheless, this section

presents a thorough literature review of ISA models to highlight both the similarities

and differences between FQA and ISA, thereby enhancing the comprehension of their

applicability and limitations in the context of digital pathology.

Unlike in FQA, where only no reference models are available, ISA models can be either

no reference or full reference. In order to stay in line with our topic, our review will only

consider no reference ISA models in this section. In the following, we will be referring to

no reference ISA as ISA for simplicity. Similar to the classification method utilized in the

review of FQA, ISA can be divided into two classes based on the source of the feature,

namely knowledge-based and data-driven-based. Knowledge-based methods can be further

categorized into edge-based, local statistics-based and NSS-based.

Knowledge-based method When an image is blurred, most low-frequency compo-

nents remain while high-frequency components are suppressed. Consequently, the appear-

ance change of edges in blurred images will be more significant than in smooth regions.

In other words, edges are more prone to blur. By examining some properties of the de-

tected edges or gradient, we can estimate the sharpness of the image. The first step is edge

detection. Commonly used edge detection filters include Sobel, Canny, Prewitt, Scharr,

Laplacian, DoG, etc. The most commonly used edge-based feature is edge width [78]. By

taking the properties of the HVS into account, some works considered the impact of local

contrast [37, 36] and contrast of the edge [79] on the visibility of edge width. The entropy

of edge [80] map was also used to estimate the sharpness. Besides deducing the feature

to a sharpness score based on a handcrafted formula, [81] regresses the edge features to

subjective evaluated scores using a power function. [82] predict the image sharpness us-

ing a weighted geometric mean of the maximum gradient and the variability of gradients.
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[83] measured sharpness using perceptually weighted statistics of image gradients. Some

methods explicitly model the blurred edge by convolving a parametric edge model with a

blur kernel. Most models assumed the edge to be an ideal step function and the blur filter

to be a Gaussian kernel. By estimating the parameters of the kernel, we can assess the

blurriness of the edge [84, 85, 86, 87]. Similarly, Wu et al. [88] assume the blur kernel to

be a line spread function (LSF), which is essentially a 1-d version of PSF. They estimate

the parameters of the LSF from a blurred edge. Then the 2-d PSF, which is represented

by a uniform disk with radius R, is inferred from the LSF. Liu et al. [89] proposed a

local statistics model of edge width based on two observations: 1) the histogram of edge

width shifts to the right and 2) tends to spread out when the level of blur increases. The

major drawback of edge-based methods is that edge detection tends to be inaccurate with

the presence of blur. Besides using handcrafted formulas to summarize the edge-related

features into sharpness scores, some models [90, 91, 92] use machine learning techniques,

such as SVR, for prediction.

Besides extracting edge information, some models measure sharpness based on local

statistics. For local statistics in the spatial domain, MLV [93] measured the maximum

local variation of each pixel with respect to its eight neighboring pixels. This feature is

defined as

FMLV = max
δx,δy

|I(x, y)− I(x+ δx, y + δy)| (2.20)

where δx ∈ {−1, 0, 1} and δy ∈ {−1, 0, 1}. FMLV is similar to FD L1 (Eq 2.3), which is one

of the features used in the hybrid ISA model S3 [94]. Instead of computing the average

as in FD L1, FMLV finds the maximum value, which captures the variations better than

FD L1. Finally, the standard deviation of the FMLV distribution was used as a feature to

measure sharpness. Gu et al. proposed the ARISM model [95], which is inspired by the

free energy principle [96]. The foundational assumption is that the brain tries to explain

the scene using an internal generative model, which is molded using an auto-regressive

(AR) model here. According to the observation, image blur increases the similarity of lo-

cally estimated parameters of the AR model. ARISM measures the energy-difference and

contrast-difference of the coefficients of the AR model at each pixel individually and com-
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putes the image sharpness utilizing percentile pooling. BIBILE [97] calculate the discrete

Tchebichef moment of edges, which is effective in describing the shape of the whole image.

The sharpness score is determined based on the variance-normalized moment energy of the

moments, weighted by a saliency model to align with human visual system characteristics.

In [98], Deng et al. modeled the distribution of the gradient magnitude as Weibull [99].

Divisive normalization [100] is also utilized to reduce the influence of image content and

achieve more robust performance. The final sharpness score is predicted using a Sparse

Extreme Learning Machine that uses both L1 and L2 regularizations [101, 102].

Both edge-based and gradient-based methods are usually susceptible to noise. By cal-

culating the local statistics in the frequency domain, we can partially separate the edge

from the noise. For example, the Lipschitz regularity theory is widely used to separate the

edge and non-edge (usually noise) coefficients of the Dyadic Discrete Wavelet Transform

(DDWT). Based on this theory, Ferzli et al. [103] applied a 3-level DDWT to a (noisy) im-

age, the edges can be separated from the noise. By calculating the edge width [78] on these

edge maps, one can estimate the sharpness of an image that may contain noise. Vu et al.

proposed a fast image sharpness index FISH [104]. The image was first decomposed using

three level of discrete wavelet transform. The sharpness is calculated as a weighted average

of the log energies of the wavelet coefficients. [105] further extend the FISH model using

saliency maps to account for the nonuniform distribution of blur across an image. Wang et

al. [106] discovered that edges induce strong local phase coherence structures in both scale

and space within the wavelet domain, while blur usually leads to a deterioration of this

phase coherence. Based on this observation, Hassen et al. further developed the sharpness

measure LPC [107]. Similarly, Global Phase Coherence (GPC) [108, 109] quantifies the

impact of phase information destruction on the total variation of an image. It is observed

that sharp images exhibit a higher sensitivity to phase distortions than blurred images,

thereby establishing a clear relationship between GPC and image sharpness. Caviedes et

al. [110] examined the normalized power spectrum of DCT coefficients near image edges

and assessed sharpness through kurtosis calculations. Blurred images are known to ex-

hibit shorter power spectrum tails due to the attenuation of high-frequency components,

making power spectrum tailedness a powerful sharpness metric. Considering the fact that

the viewing distance affects the perceived sharpness, Li et al. proposed a multiscale model
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RISE [111] that utilized features both in the spatial and frequency domain, including mul-

tiscale DCT entropy, gradient similarly and singular value similarity. The sharpness score

is deduced from these features by training a SVR model. Sang et al. [112] proposed a

sharpness index by measuring the falloff pattern of the singular value curve. Similar to

the power spectrum plot, the singular value curve becomes increasingly steep (shorter tail)

with more blurriness. The sharpness is estimated by fitting the curve to an inverse power

function. [58] presented a sharpness metric that utilizes the MaxPol convolution kernels

to approximate the first and third-order image differentials. The kernels are regulated

at higher cutoff frequencies to balance information loss and noise sensitivity. Adaptive

thresholding was applied to the convolved image and the mth central moment was taken

as the sharpness score. Based on the observation that the HVS boost high-frequency com-

ponents, [2] proposed a way to estimate sharpness by simulating this functionality of the

HVS. They modeled this behavior as the inverse of a Generalized Gaussian kernel, and it

was approximated using the MaxPol kernels. Some methods [94, 111, 113] have also com-

bined features from both spatial and frequency domains for sharpness estimation. [114] use

a MLP with one hidden layer to classify the sharpness of an image into five categories. A

total of eight features in both the spatial and frequency domains, as well as some sharpness

metrics are used to feed the input neurons. Besides out-of-focus blur, [115] studied motion

blur introduced by shaking camera using spectral analysis.

Different from local statistics-based methods that assess sharpness based on features

within one image, NSS-based methods rely on the inherent statistical properties observed

in natural scenes. NSS models assess the naturalness of a distorted image by quantifying

its deviation from the statistical patterns. SPARISH [116] constructed an overcomplete

dictionary using natural images, where most entries are edge patterns that are similar to

the simple cells in the primary visual cortex [117]. The blurred image is first represented

using sparse coefficients in a block manner. The sharpness score is defined as the variance-

normalized energy over a set of selected high-variance blocks. Similarly, Lu et al. [118]

introduce a multiscale max-pooling on the sparse representation. A SVR is used to map

the feature into a sharpness score.

Data-driven method While the aforementioned knowledge-based methods rely on

handcrafted features, their effectiveness in capturing the most important features for sharp-
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ness assessment is limited. These models mainly target synthetic Gaussian blur, casting

uncertainty on their applicability to other blur varieties and authentically blurred images.

Designing handcrafted features specific to each blur type is a tedious process. In contrast,

with the advancements in deep learning, CNN seamlessly integrates feature design and

regression within an end-to-end framework, ensuring optimal results. One major limita-

tion of CNN-based method is it requires a large amount of labeled training data. In the

field of ISA or IQA, subjectively rated images are very expensive to collect. Many models

come up with ways to mitigate the data shortage issue through unsupervised learning.

Zhang et al. [119] pretrained a Siamese network by learning quality ranks among the

synthetically blurred images without any subjective ratings. The model can be pretrained

on a very large dataset which provides an effective prior for sharpness assessment. The

model is then finetuned on small-scale datasets with human labels for evaluation. Based

on the observation that the HVS’s perception of distortion depends on the image content,

Li et al. [120, 121] proposed a NR IQA method that focuses on blur distortion based

on semantic feature aggregation to alleviate the impact of image content variation. The

semantic feature is extracted using a pretrained image classification model. As most works

only addressed synthetic blurs, RBA [122] tried to assess the sharpness of realistically

blurred images. Realistic blurs, which can be caused by moving objects, lens aberration,

atmospheric turbulence, or camera shaking, are more complex and difficult to characterize.

Based on the assumption that the HVS estimate image quality by evaluating the discrep-

ancy between the blurred image and a hallucinated sharp one, RBA developed a feature

extraction CNN to predict the discrepancy map using the distorted image. The discrep-

ancy map is generated using sharp images and two types of synthetic blur: defocus blur

and motion blur. After the training is done and the features are gathered, the entropy of

primitive and variation of power of the features are combined to predict the sharpness.

Autofocus Methods In microscopy imaging, autofocus methods aim to find the best

focus plane for the specimen that maximizes the sharpness of the image. To choose the best

focus plane, the autofocus models usually capture several images along the optical axis,

compare the sharpness, and estimate the optimal focus position. FQA can either work

as part of the autofocus pipeline, or in post-capture quality assurance. In the literature,

autofocus methods can be categorized into three types: 1) hardware-aided autofocus, 2) z-
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stack image-based autofocus, and 3) single image-based autofocus. A lot of hybrid methods

are also developed to utilize the strength of each type of method.

The hardware-aided autofocus methods rely on additional hardware or specially de-

signed sensors. Instead of measuring the sharpness of 2D images as in FQA, these methods

interact with the 3D specimen and measure the defocus distance of the sample. This type

of method includes independent dual sensor scanning, beam splitter array, titled sensor,

phase-detection, dual-LED illumination [123]. Due to the additional hardware requirement,

WSI systems equipped with this type of autofocusing module are often more complicated

and expensive.

The z-stack image-based and single image-based autofocus methods are based on FQA.

Generating a 3-D focus map before the scanning is the most common way of autofocus

in WSI scanners [124]. The z-stack method is usually adopted to capture multiple im-

ages along the optical axis for each point on the map. Then the optimal focus plane is

determined by comparing these images. Intuitively, FQA models can be used in this step

to measure the sharpness. However, since the FQA model needs to assess the sharpness

of each tile at each z-level, determining the optimal focus plane is very time-consuming.

This needs the FQA models used to be lightweight and super-efficient. Single image-based

autofocus methods often predict the defocus distance based on deep learning. This type of

method does not require additional hardware. However, their accuracy and generalizability

depend on the quality and diversity of the training dataset.

2.2 Image Quality Assessment Score Fusion

2.2.1 Taxonomy of IQA Models

Image quality assessment (IQA) models aim to predict the perceived image quality by

human observers. It has wide applications in the fields of image processing and computer

vision. For example, they are used as the evaluation criteria to compare algorithms. In

addition, they also serve as guides to drive the design and optimization of perceptually

inspired algorithms and systems. Assessing image quality seems to be an easy task for
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humans, however, the underlying mechanisms are not well understood, making IQA a

challenging task. Image quality is a complicated measurement involving both the image

content, context and the HVS. Common attributes contributing to image quality may in-

clude image resolution, sharpness, noise level, compression artifact, composition, object

recognizability, etc. However, enumerating all attributes is almost impossible, and model-

ing the interplay between image attributes and the HVS is even more difficult. To evaluate

the quality of a distorted image, we need to consider whether or not we have the counter-

part pristine image termed as the reference image of the distorted image. Based on the

availability of pristine reference images, we can categorize IQA models into three categories:

FR IQA, Reduced-Reference IQA (RR IQA) and NR IQA. To evaluate the quality of a

distorted image, FR IQA methods require its pristine reference. RR IQA methods require

access to certain pre-extracted features of the pristine reference image. On the other hand,

NR IQA methods evaluate the quality of the distorted image without any information

about the reference image. Another type of IQA model is Degraded-Reference IQA (DR

IQA), in which the reference image is a distorted version of the pristine image. In this

section, we mainly focus on FR IQA and NR IQA, which are the two most extreme and

representative cases in the family of IQA models. The above model taxonomy is created

based on the reference image availability, which does not provide much information about

the design philosophies of these models. To provide a better understanding of the different

principles behind these models, we created a more detailed taxonomy for IQA models,

which is illustrated in Fig 2.6. However, due to the distinct design philosophies described

above, some models often capture some particular types of distortions or handle some spe-

cific image contents better than others. Consequently, individual IQA models often fail to

address all types of images and distortions encountered in real-world scenarios.

An intuitive idea is to harness the strengths and mitigate the weaknesses of each IQA

model, by fusing the scores of multiple models into a stronger one. In the literature, IQA

score fusion methods can be categorized non-mutually exclusively into empirical fusion,

rank fusion, and supervised learning-based [125]. Empirical models [126, 127, 128, 129,

130, 131, 132, 133] fuse a predetermined set of IQA models using a handcrafted formula.

This approach significantly constrains its adaptability when introduced with new IQA

models. Rank fusion methods operate in the discrete rank domain, where the range of
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Figure 2.6: A taxonomy for IQA models based on their design principles.
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all IQA models is mapped to the same uniform distribution. However, these methods

are tied closely to the diversity of the ranking dataset, which can impede generalizability.

Supervised learning-based methods [134, 135] are trained under the guidance of the MOS

of a single subjective rated dataset. Such fusion methods are essentially refined versions of

supervised learning-based IQA models since they share the same ground truth, i.e., MOS of

a specific dataset, as the base IQA models. These fusion methods are more closely related

to supervised learning-based IQA models since they share the same ground truth, MOS.

Nevertheless, these black-box models often suffer from limited generalizability and lack of

explainability. In the following, we review each of these IQA fusion methods in detail, as

well as some general score/rank fusion methods that are applicable to this task.

2.2.2 Empirical IQA Score Fusion

The first category is empirical score fusion methods. They include earlier methods in IQA

score fusion, including HFSIMc [126], CISI [127], CM [128, 129, 130], CQM [131], EHIS

[132] and BMMF [133], etc. Utilizing a predetermined set of IQA methods, scores are

fused through a handcrafted weighted sum or weighted product formula. The weights are

determined either via prior knowledge or optimization on subjectively rated datasets. For

example, HFSIMc [126] is defined as a weighted product of RFSIM [136] and FSIMc [5]:

HFSIMc = (RFSIM)0.4 · (FSIMc)3.5 (2.21)

where the exponential parameters are determined by fitting the MOS on the TID2008

dataset [137]. Similarly, CISI [127] is defined as a weighted product of MSSSIM [45] and

VIF [47] and FSIMc [5]:

CISI = (MSSSIM)0.5 · (VIF)0.5 · (FSIMc)5. (2.22)

CM3 [128, 129] is defined as a weighted product of IFC [46], NQM [138] and VSNR [139]:

CM3 = (IFC)0.34 · (NQM)2.4 · (VSNR)−0.3. (2.23)
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CM4 [128, 129] is similarly defined as

CM4 = (IFC)0.2 · (NQM)2.9 · (VSNR)−0.54 · (VIF)0.5. (2.24)

In [130], the authors conducted a comprehensive grid search of different combinations of

two and three IQA models using the weighted product formula. CQM [131] is defined as

a weighted product of MS-SSIM [45], VIF [47] and R-SVD [140]:

CQM = (MS-SSIM)7 · (VIF)0.3 · (R-SVD)−0.15. (2.25)

EHIS [132] is defined as a weighted product of MS-SSIM [45], VIF [47], weighted FSIM

(WFSIM) [5] and RFSIM [136]:

CQM = (MS-SSIM)1.6131 · (VIF)0.2037 · (WFSIM)59.7151 · (RFSIM)0.1989. (2.26)

Different from the above fusion methods that treat all image content and distortion

equally, BMMF [133] adaptively adjusts to local image content and distortion. More

specifically, the texture of each image patch content is classified into three types: smooth,

edge and texture. Based on this information, each patch is further grouped into three

classes: simple, normal and complex. To evaluate the distortion of each image, they

first extract five statistics: blockiness, average absolute difference between in-patch image

samples, zero-crossing rate, average edge spread, and average patch variance. Based on

these statistics, each distorted image is grouped into one of the five distortion groups, which

contains a total of 17 distinct distortion types. Finally, an image quality metric is selected

according to a pre-defined lookup table for each combination of content and distortion. All

patch scores are fused to one overall score using a weighted summation, where the weights

are determined by fitting the MOS on a small dataset.

Although empirical fusion methods are simple to design, they have several limitations.

1) The handcrafted functional, often implemented as a weighted sum or product, may

not be expressive enough to capture the complex underlying patterns. 2) Due to the fact

that the exponential parameters are obtained by fitting the MOS in most models, they
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also belong to the supervised learning-based models. As a result, they suffer from the

same limitations as those supervised learning-based score fusion methods, which we will

discuss shortly. 3) They fail to account for the score-dependent uncertainties. Although

BMMF [133] takes local image smoothness and distortion features into account, the model

selection process and the fusion formula are all handcrafted. This means that the content-

dependent uncertainty estimation is pre-determined and fixed. Thus, there is a need for

more sophisticated and flexible fusion methods that can address these limitations.

2.2.3 Supervised learning-Based Score Fusion

Instead of using handcrafted fusion formulas, supervised learning-based fusion methods

consider the fusion process as a black box. The mapping is automatically learned using

machine learning techniques. Models within this category are trained under the supervision

of the MOS of a single training dataset. MMF [141, 134] and [135] use SVR while CNNM

[142] uses a neural network to learn the mapping from scores to MOS. More specifically,

MMF [141, 134] first classifies the distortion type using a similar approach as BMMF [133].

For each distortion type, it fuses 10 IQA models using a SVR with radial basis kernel.

Chetouani et al. [135] fuses 4 IQA metrics using a SVR with Gaussian kernel. However,

the computational complexity of training a SVR with a non-linear kernel is O(n2d) where

n is the number of samples and d is the feature dimension. This poses a big challenge for

training a SVR on a large dataset. Chetouani et al. [135] have also experimented with

MLP and found out it is inferior to SVR with respect to performance. This might be

due to the fact that MLPs have more parameters and need more data to train. The same

phenomenon is also observed by Lukin et al. [142], who propose the use of a Cascade-

forward network to increase the performance and reduce the computational complexity.

The Cascade-forward network is similar to MLP, with the difference that it connects the

input and every previous layer to the following layers. One may consider it as a MLP with

dense skip connections between non-adjacent layers.

These methods are more flexible than the empirical fusion methods since the mapping

function is learned from data rather than handcrafted. However, the major drawbacks of

these supervised learning-based methods also come from the training data. The distri-
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bution and interpretation of MOS differ substantially across subjectively rated datasets,

hampering the generalizability of these models when encountering unseen data. Such a

misalignment is mainly caused by the discrepancies in the methodologies and protocols

used in these subjective experiments. For example, differences in image selection, par-

ticipant recruitment and training, rating protocol, data processing, etc. can significantly

influence the distribution and physical meaning of MOS. Consequently, it is challenging

to align MOS in different datasets. Another issue caused by the misalignment is that it is

difficult to train the models on a large combined dataset consisting of several smaller ones.

This is a desired property since subjectively rated datasets are generally small in size.

2.2.4 Rank Fusion

Instead of fusing continuous scores, rank fusion methods first convert scores of individual

IQA methods to discrete ranks and then fuse them to attain unified rankings or scores.

In score fusion, we need to account for the different ranges of these IQA methods, which

intensifies the complexity of this task. A notable advantage of converting scores to rank-

ings is that it nonlinearly transforms arbitrary score distributions into the same uniform

distribution. In the IQA literature, there is one model that adopts this approach. RAS is

an empirical IQA rank fusion method that is introduced in the BLISS model [143] for gen-

erating synthetic MOS. RAS fuses the ranks using a handcrafted Reciprocal Rank Fusion

(RRF) [144] formula. The RRF score of image Ii is formulated as

RRF(Ii) =
M∑
j=1

1

k + rji
(2.27)

where rji ∈ N is the rank of the score of image Ii given by the j-th IQA model. k is a

constant to stabilize the calculation. Since the ranks need to be evaluated on a dataset,

the calculation of a RRF score of a single image still requires calculating all images within

a large dataset.

Besides IQA rank fusion, there are some general purposes rank fusion methods that are

related to our task. Akritidis et al. propose two weighted rank fusion frameworks [145, 146]
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where the weights are used to estimate the model-level uncertainty. The rank fusion method

used can be arbitrary, for example, RRF. They iteratively update the weights using a

formula until the changes in the weights are less than a threshold. Some methods [147,

148, 149] rely on the Maximum Likelihood Estimation (MLE) framework to unsupervised

aggregate the ranks. Most of them rely on a distance measure between two lists of discrete

ranks. There are two types of popular distance measures, namely Spearman’s distance and

Kendall’s distance. The Spearman’s footrule distance between two permutations of a list

consisting of N items is given by

SF(rm, rn) =
N∑
i

|rmi − rni | (2.28)

where rmi and rni are the rankings of the i-th item in the m-th and n-th permutations,

respectively. Similarly, the Spearman’s distance is defined as

SD(rm, rn) =
N∑
i

(rmi − rni )
2. (2.29)

Both distances have a range [0,∞), which is not normalized. A normalized version is the

SRCC, which is defined as

SRCC(rm, rn) = 1− 6 · SF(rm, rn)
N(N2 − 1)

(2.30)

whose values range from −1 to 1. The Kendall’s distance is defined as

KD(rm, rn) =
∣∣{(i, j)|rmi < rmj ∧ rni > rnj

}∣∣ . (2.31)

It counts the pairwise disagreements between two rankings, which is often referred to as

the bubble sort distance. Kendall’s distance is also not normalized. A normalized version

is the Kendall Rank Correlation Coefficient (KRCC), which is defined as

KRCC(rm, rn) = 1− 4 ·KD(rm, rn)

N(N − 1)
(2.32)
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, which has a range [−1, 1].

Once we have these distance measures, the likelihood p(rm|rn) can be molded using the

Mallows model [150], which is defined as

p(rm|rn, θ) = 1

Z(rn, θ)
eθd(r

m,rn) (2.33)

where d(·, ·) is a distance measure of chosen, θ ≤ 0 is a disoersion parameter, and Z(rn, θ) =∫
r
eθd(r,r

n) is a normalization constant. The distribution is similar to a generalized Gaussian

distribution where rn is the location and θ is the scale. The distribution becomes more

concentrated at rn as θ decreases. In terms of IQA rank fusion, θ can also be considered

as a model-level uncertainty parameter: a large θ indicates more uncertainty in rm, i.e.,

model m, with respect to its mode rn. However, this uncertainty estimation only remains

coarse-grained at the model level.

Although the likelihood function makes it possible to conduct the rank fusion using

the MSE, optimization in the discrete space is time-consuming compared to those in the

continuous space. Furthermore, the conversion from score to rank inherently results in

information loss, setting an implicit upper bound on the optimal performance achievable

by these rank fusion methods. An additional limitation is the accuracy of rankings relies

heavily on the diversity of the dataset. If the number of images is small or the qualities of

the images are similar, the rankings will not be meaningful. As a result, the fusion results

will also be less accurate.

2.2.5 Pairwise Ranking Guided NR-IQA Methods

This class [151, 152] of methods is not directly related to our topic. They predict image

quality based on the distorted image itself rather than IQA scores. IQA scores are only used

in the training stage to guide the model through pairwise comparisons. The underlying

assumption is that the order of the qualities of two images is more robust than the absolute

difference between scores.
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2.3 Whole Slide Image Defocus Restoration and Syn-

thesis

2.3.1 Whole Slide Image Deblur

Traditional WSI deblurring methods [153] iteratively estimate the blur kernel and restore

the image. More recently, deep learning-based WSI deblur models [154, 155, 156, 157]

restore the in-focus image in an end-to-end manner. This is achieved by training on paired

out-of-focus and in-focus image pairs. These methods mainly differ in the source of the

out-of-focus images (captured or synthetic) and the network design. End-to-end Image

deblur can be applied in the scenario where the tissue thickness is uniform and the defocus

level is homogeneous across the image. In this case, the training image pairs can be easily

collected. However, when the defocus level is inhomogeneous, the in-focus regions are

distributed across more than one z-level. Consequently, we normally cannot capture the

ground truth image that every pixel is in-focus using normal bright field microscopes. This

is different from general-purpose natural image deblur where the in-focus target can be

captured using a smaller aperture or by the DOF fusion technique.

The traditional whole slide image deblur model is based on conducting blur kernel

estimation and deconvolution either sequentially or iteratively. [153] presentd LB-DVD for

restoring out-of-focus fluorescence microscopy images. The method utilized inhomogeneous

deconvolution to adaptively restore the non-uniformly defocused image. This is achieved

by restoration at the patch level. In the first step, the model estimates the defocus map

of the image using an out-of-focus level estimation network called DelpNet. DelpNet is

trained on a synthetic dataset and during inference, it classifies each 84×84 patch into one

of the twelve defocus levels. Once the defocus level is determined, it deconvolves the image

using a parametric PSF, which is a function of the defocus level, following the Richardson-

Lucy deconvolution method [158]. The major drawbacks of this model are three-fold: 1)

DelpNet is trained using synthetically generated out-of-focus images with an oversimplified

distortion model. Consequently, it might not capture real-world out-of-focus patterns of

various tissues and microscopes. 2) The deconvolution process uses a parametric PSF

model and assumes the noise distribution to be Poisson, which might not match the one
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in real-world applications. 3) Due to the non-invertible PSF and the presence of noise, the

deconvolution process can generate artifacts.

The deep learning-based whole slide image deblurring models addressed the challenges

in deconvolution using end-to-end learning. This means that there is no need to estimate

the PSFs and design complicated deconvolution methods. The network should be able

to learn to deblur through supervised training on in-focus and out-of-focus image pairs.

Zhao et al. [154] uses a residual dense network to estimate the sharp image. However, the

defocus images are synthesized using Gaussian kernels, which might not mimic the real-

world distortion process. Jiang et al. proposed the DBMID [155] model, which is capable of

restoring both defocus and motion-blurred images. They first use a blur-type classification

network to predict the type of distortion. Then, the image is restored using a defocus-

deblur, a motion-deblur network, or both combined according to the estimated blur type.

The defocus training data is captured using z-stack, where the defocus pattern is authentic

and better represents real-world defocus blur. In motion deblur, synthetic training data

is used. COMI [156] adopts the CycleGAN [159] framework that consists of a deblur

module and blur synthesis module. CycleGAN is designed for general-purpose unsupervised

domain transfer. The core assumption behind it is that the two-way transformations

between the two domains are bijections. However, this assumption does not hold for the

blur synthesis module since an in-focus image can correspond to infinitely many out-of-

focus ones, depending on the focus level. Wang [157] proposed a multi-scale U-Net [160]

that consists of multiple sub-networks that deblur the image at different spatial resolutions.

The model first deblur the image at coarser scales, then fuse the deblurred image as well

as the feature in the decoder into the encoder of finer sub-networks.

2.3.2 Whole Slide Image Focus Interpolation

Using focus interpolation [161, 162, 163], one can capture only two z-levels and synthesize

the middle z-level. Doing the interpolation iteratively allows one to smoothly adjust the

focus in a continuous manner, which is usually unachievable in traditional z-stack imaging.

It also significantly reduces the scanning time and storage volume since the intermediate z-

levels can be interpolated on demand. However, focus interpolation has several drawbacks:
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1) Firstly, it can only generate the middle z-level of the two inputs. Generating arbitrary

intermediate z-levels requires iterative interpolation, which is not only time-consuming but

also accumulates errors, resulting in a large prediction error. 2) Secondly, this method can

not extrapolate. The target z-level has to lie within the input z-levels. In practice, this is

difficult to achieve since we do not know the exact z-level of the in-focus image. 3) Thirdly,

considering the case where we have more than two input images, focus interpolation can

only make use of two of them. Although the z-level pairs that are closest to the target

are more informative than other combinations, the resting image still contains valuable

information, which is not used in this case. 4) Fourthly, this method will not work at all

if we only have one input image.

Nicmanis et al. proposed a focus interpolation model [161] that is based on U-Net

[160]. The two input images are concatenated along the channel dimension and sent to

the network. Different from concatenating the input, DAFNet [162] design two network

branches that process the two input individually. The intermediate features are fused

using another branch to produce the interpolated image. However, since their goal is

only for deblur/autofocusing, they required the two input z-levels to be symmetric to

the in-focus z-level, which limits its applicability to arbitrary input z-level combinations.

Different from the two interpolation methods above, the method in [163] is capable of both

interpolation and extrapolation using a autoencoder-decoder based network. They linearly

combine the two latent features extracted by the encoder network, and the combined

feature is then feed into the decoder network to produce the interpolated/extrapolated

images. By adjusting the two weights of the linear function, they can generate any image

lie on this line in the latent space. However, this autoendoer-decoder network is limited

in synthesizing realistic high resolution images due to the lack of skip connections. Skip

connection is a fundamental architectural design in U-Net that enables the generation

of realistic fine details by maintaining the information in the original inputs. But U-

Net based architectures are not able to extract intermediate features that encapsulate all

information of the input. Consequently they generally can not be used for latent space

interpolated/extrapolated.
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2.3.3 Whole Slide Image Defocus Synthesis

Although in-focus images are desired for most downstream applications, there is still a lot

of quality assurance scenarios that requires out-of-focus images. For example, in training

a deep learning based FQA or image deblur model, out-of-focus inputs are needed. Public

datasets mainly contains in-focus images and only very few datasets contains defocus ones.

Although capturing such defocus images can be achieved thought z-stack, it is both time

and storage space consuming. In cases that accessing the tissue slide or microscope is

difficult, synthesizing the defocus images becomes a practical solution. In the WSI FQA

and deblur literature, a lot of works have incorporated synthesized defocus images in their

model design or training. Existing methods synthesize the defocus effect by convolving the

in-focus image with blur kernels of various kind: Gaussian, Disk, or parametric PSF. More

information is shown in Fig. 2.2.

Table 2.2: Whole Slide Image FQA and deblur methods that use synthetic defocus training

data.

Task Gaussian Kernel Disk Kernel Estimated Parametric PSF

WSI FQA [38, 52, 61] [61] [59]

WSI Deblur [154] N.A. [153]

However, synthesizing defocus through convolution has limitations. For the Gaussian

and disk kernel, they barely mimic the real world out-of-focus process. Although the

estimated PSF is closer to the real distortion process, it requires the optical specifications of

the microscope and the tissue, which is tedious and challenge to collect for each microscope

at each focus distance. However, the study of synthesizing real-world defocus blur in

WSI is still vacant. Nevertheless, although not designed for defocus synthesis, some focus

interpolation methods [161, 163] are able to produce more realistic distortions than the

traditional convolutional-based methods. But these interpolation methods also suffers from

the disadvantages as described in Sec 2.3.2. The major drawback is that they requires two

input images. For defocus synthesis purpose, at least one of the input should be out-of-

focus, which is controversial to the goal.
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Chapter 3

High-Efficiency Focus Quality

Assessment for Whole Slide Image

3.1 Introduction

Pathology is the study and diagnosis of disease, which involves the examination of surgically

removed organs, tissues, or bodily fluids. Subfields of pathology include surgical pathology,

cytopathology, molecular pathology, etc. Surgical pathology examines surgically removed

tissues with the naked eye or under a microscope (histology). Cytopathology studies

diseases on the cellular level, which involves the examination of free cells from bodily tissues

or fluids. Molecular pathology studies diseases on the molecular level. Both histology

and cytopathology require the specimen to be processed to satisfy the requirements of

optical brightfield microscopic viewing. No matter what kind of pathology, a professional

pathologist is required to be present to conduct the examination. In areas that do not

have adequate specialists, the prepared samples need to be physically delivered to other

locations. To fulfill the lack of pathologists and enhance the efficiency of the diagnosis

workflow, digital pathology emerged during the 1960s. In digital pathology, glass slides are

scanned into digital images that can be viewed, stored, shared and analyzed on computer

systems. Digital pathology addresses the problem of uneven distribution of pathology

services, making pathologists able to work from any place that has an internet connection.
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It not only makes telepathology possible but also facilitates the development of automated

image analysis systems and lowers the cost of medical education.

Figure 3.1: The tissue preparation and scanning pipeline for digital pathology.

The tissue preparation pipeline is depicted in the upper part of Fig 3.1, it usually

includes tissue collection, tissue processing, tissue staining, and glass slide mounting. In

tissue processing, the biological samples to be examined undergo formalin wash and paraffin

embedding, which is referred to as Formalin-Fixed Paraffin-Embedded (FFPE). The fixed

biospecimen is then sliced using a microtome (sectioning). The objective is to get a thin and

transparent slice in which only a single layer of cells is present. This is a basic requirement

for an optical brightfield microscope. In the staining stage, depending on the type of

organ, different stain compounds will be applied to the sample to enhance the visibility of

structural details. In the glass slide mounting step, a coverslip is placed over the tissue

to provide protection from environmental contamination and damage. The final stage is

scanning, where the slide is scanned using a WSI scanner. As depicted in Fig 3.2, the major

components of WSI scanner’s hardware includes a brightfield light source, a condenser, an
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automated stage, an objective lens, a tube lens, a camera sensor, and a built-in image

processor. While the objective lens, tube lens and sensor are fixed, the automated stage

can move freely, allowing the scanner to capture different locations of the slide and set

different focal planes for each individual tile. An objective lens with a high NA is typically

used in WSI systems in order to achieve a higher resolution. Because of this, the DOF of

the WSI system is usually on the micron level, which makes precise focusing during the

scanning procedure difficult. The NA is defined as

NA = n× sin(α) (3.1)

where n is the refractive index of the medium between the objective lens and the sample.

For the dry lenses that use air as the medium, n = 1. For the oil immersion lenses,

n = 1.52. As illustrated in Fig 3.2, α is the half-angle of the cone of light entering the

objective lens [164]. The optical resolution R of a microscope is defined as the minimum

distance between two airy disks that can be distinguished on the image plane, which is

defined as

R =
0.61λ

NA
(3.2)

where λ is the wavelength of the light source. It is straightforward to see that to maximize

the resolving power of a microscope, we need to lower R, which means to either use a light

source of shorter wavelength λ or increase the NA. For brightfield microscopes, λ is lower

bounded since the visible light is used. The only choice is to use a lens with larger NA.

However, this comes at a cost of shallow DOF. Due to the non-zero resolution R, there is a

range around the focus plane in which image sharpness does not change [164]. This range

is often referred to as DOF. Objects that lie within the DOF will stay sharp while those

that lie outside of DOF will be out-of-focus. DOF can be formulated as

DOF =
1.22λ

NA× tan(α)
. (3.3)

It is easy to see that the DOF is proportional to the resolutionR, meaning most microscopes
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will have a very shallow DOF. This makes the autofocus a very challenging task in the

WSI system.

Different from the optical resolution, the resolution of the entire system, including optics

and digital sensors, is defined as the size of the pixel in the final image. The maximum

resolution of the system usually ranges from 0.1 µm/pixel to 0.3 µm/pixel [74]. A general

scanning pipeline is also illustrated in the bottom part of Fig 3.1. The first step is to

generate a 3D autofocus map. The camera first captures a low-magnification preview of

the slide. Using the preview as a guide, the tissue detection algorithm finds the location(s)

of the tissue and this process is known as Region of Interest (ROI) selection. Finally, the

tissue is separated into several tiles or strips based on the scanner type. The optimal focal

plane for each tile or strip is then determined by an autofocus algorithm. Many scanners

place focus points on every ”nth” tile or strip in order to save time because of WSI’s high

resolution. A 3D focus map is then obtained by stitching (and interpolating) these focal

planes. In the second step, an objective lens with higher magnification (20X or 40X) is

used to scan each tile/strip at a time, according to the 3D focus map generated in the last

step. This is achieved by moving the automated stage along the optical axis (z-axis), a

process that is frequently referred to as sample holder scanning, as opposed to objective

lens scanning or camera sensor scanning. The final step is to stitch the scanned tiles/strips

together into a single WSI. Certain post-processing techniques, like color calibration and

compression, may also be applicable afterward.

Any issue that arises during the slide preparation process may degrade the quality of

the samples that are prepared, which may affect the accuracy of the diagnosis taken by

the pathologist or automated systems. The most common artifacts in the prepared slides

are foreign objects, uneven tissue terrain, tissue folds, pen marks, air bubbles, dust in the

slide, stain variation, etc [165]. Since they cause the slide’s thickness to vary and cause the

autofocus system to malfunction, the majority of these physical artifacts will show up in

the scanned image as different kinds of out-of-focus blur. Due to the microscope’s shallow

DOF, the out-of-focus artifact is usually quite noticeable.

The physical artifacts in the prepared tissue can be categorized into three types. The

first kind of artifacts cause variations in thickness in the prepared specimen can significantly

affect the focus. The first kind of artifact introduced during slide preparation changes the
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Figure 3.2: The general structure of a WSI scanner. α is the half-angle of the cone of light

entering the objective lens.

height of the tissue, making the surface uneven. These artifacts include tissue folding and

tearing. Due to the shallow DOF of microscopic lenses, it is challenging for the autofocus

55



system to make sure every tile is in focus using a limited number of focus points. Some

artifacts, such as air bubbles and wrong coverslip placement, disrupt the optic path. Most

WSI platforms require the medium between the tissue and the objective lens to be either

air, water, or oil. The reflective index of the medium is an important preset parameter

in the system, which determines the NA, optical resolution and DOF. The presence of air

bubbles and wrong coverslip placement make the reflective index deviate from the design

value, resulting in malfunctions of the autofocus system. Additionally, the complexity

of biological specimens, which may have regions of differing optical properties such as

refractive index, further complicates the autofocus process. The third kind of artifact

impacts the brightness and contrast of the tissue. These artifacts include marker strokes

and wrong staining procedures. Markers are frequently used in clinical applications to

highlight areas of interest on the coverslip. The areas under the marker strokes tend to

be much darker and have a lower contrast. While staining is used to enhance the contrast

and visibility of specific tissue components. For example, IHC uses antibodies tagged with

dyes to visualize the presence and distribution of specific proteins. By stating the tissue

incorrectly, the contrast of the slide can be low. Due to the low contrast, both marker

strokes and wrong staining procedures can contribute to the malfunctions of the autofocus

system. These challenges necessitate robust FQA techniques to ensure the reliability of

WSIs for diagnostic purposes.

Some examples are shown in Fig 3.3. Even if the tissue is well-prepared, a lot of errors

in the scanning process can lead to focus miss alignment which results in out-of-focus blur.

For example, errors in the autofocus algorithm, an insufficient number of focus points,

thermal issues of the mechanical system and vibrations can all lead to an incorrect 3D

focus map, which represents the tissue terrain and is used to set the focus plane of each

tile/strip.

In traditional microscopy where no digitization is introduced, this phenomenon is alle-

viated to some extent since pathologists evaluate multiple focus planes. Despite the fact

that certain scanners can take pictures in multiple focal planes (z-stacking), this requires

a corresponding increase in scanning time and storage. Consequently, z-stacking has been

largely confined to research [166]. Although z-stacking seems to be the answer to fix out-

of-focus blur, most of these physical artifacts cannot be simply removed from the image
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by varying the focus plane. For instance, as shown in Fig 3.3, the other layers in a folded

tissue will always be visible above or below the layer you choose to focus on, resulting in

a blurring image.

(a) Tissue folding (b) Air bubble

Figure 3.3: (a) Folding artifact on the WSI of bone [3]. The tissue’s top layer appears to

be in-focus, while the bottom layer is out-of-focus. The bottom layer still obstructs the

upper layer’s perceptual clarity even though the upper layer is in-focus. (b) Air bubble

artifact caused by incorrect coverslipping. Because of the air bubble’s distinct refractive

index, light is diffracted differently from the other parts, resulting in a blurry image.

The problem of out-of-focus artifacts in digital pathology is a huge bottleneck in existing

high throughput WSI scanning platforms, making them difficult to integrate into clinical

workflows. WSI scans are required to be manually inspected for FQA on the pixel-level,

which is (a) highly tedious and time-consuming; and (b) subjective to an individual scoring

that often causes inter/intra-variability issues. Consequently, an objective FQA plays an

essential role in the quality control pipeline. The functions of an objective FQA algorithm

include a) determining whether a slide needs to be rescanned locally or globally; and b)

providing an FQA map that can be used for visual inspection and validation; and c) guiding
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the autofocus algorithm [167, 168].

Both knowledge-driven and data-driven FQA models have been developed in the liter-

ature.

Data-driven Focus Quality Assessment. Recent developments involve supervised

training of CNNs on the image patch labels of a given focus dataset of WSIs, where the

network is either adopted from a pre-designed architecture followed by some minor adjust-

ments [52, 61] or tailored from scratch [59, 1, 169]. The selection of training datasets can

also be divided into two categories of either synthetically generating out-of-focus (defocus)

images by convolving in-focus patches with artificial blur kernel with different grades (i.e.

classes) [59, 52, 61], or scanning thee prepared slides in different focal planes (z-levels)

to generate real blur classes [1]. Existing open source software solutions such as CellPro-

filer [170] and HistoQC [171] adopt variants of such models for FQA of WSIs. The high

computational complexity and the lack of transferability are the main drawbacks of these

models.

Knowledge-based Focus Quality Assessment. Numerous methods have been de-

veloped in the literature based on a wide variety of domain knowledge, including human

visual system models and microscopic optics models [57]. Although these methods may

have lower computational costs compared to data-driven ones, their accuracies are rela-

tively low compared to data-driven solutions, as will be shown later.

General Purpose Image Sharpness Assessment. FQA and ISA are both sub-

domains of IQA with similar objectives but different scopes of application. FQA is devel-

oped specifically for digital pathology, with a focus on high precision and time efficiency to

ensure that the focus quality of microscopic images is sufficient for precise diagnosis. FQA

models often make use of domain-specific information relevant to pathological analysis

or microscopic imaging. On the other hand, ISA is more widely applicable in a vari-

ety of scenarios, including general photography, industrial process imaging, surveillance,

etc. Usually, it assesses the overall perceived sharpness of images without taking domain-

specific factors into account [93, 107, 116, 108, 58]. Nevertheless, some ISA models are also

applicable in the case of digital pathology [2].

How Existing Models are Limited? Despite great performances of data-driven
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approaches such as CNN in deep learning [52, 61], they have not been integrated into high

throughput scanners for quality control purposes due to two main reasons. First, the com-

putational complexity of data-driven solutions is often too high to process GigaByte WSIs.

We explain this in the example as follows. Despite the FQA models taking a few seconds

to process one patch from WSI that are fast enough, the story is quite different for high-

throughput scanning systems. Depending on the vendors, several hundreds of glass slides

can be mounted in scanners (e.g. Philips Ultra Fast Scanner accepts 300 slides of 1”x3”

and Huron TissueScope-iQ accepts 400). In clinical settings, all scans should be completed

during the night hours (less than 12 hours time frame) to be ready for diagnosis for the

next day. Each slide is usually scanned at 0.5um/pixel @20X magnification, containing

∼ 1cm × 1cm tissue which translates to 25, 000 × 25, 000 digital WSI, yielding ∼ 2, 500

patches of 1024× 1024 (50% overlap). Assuming two models are used for assessment, i.e.

M1: DenseNet-10 and M2: FocusLiteNN (our proposed model), the time taken for two

models to complete the task is

M1 : 2, 500(patches/WSI)× 300(WSI)× 0.355sec/patch = 73.96 hour

M2 : 2, 500(patches/WSI)× 300(WSI)× 0.017sec/patch = 3.54 hour

Clearly, the speed gain from model M2 over M1 is obvious. The limitation in computa-

tional resources becomes equally important as the precision when choosing FQA models for

GigaByte WSI processing [172, 173]. The second limitation is the lack of transferability of

CNNs which becomes a barrier to process WSIs across different tissue stains and scanner

variations.

Contributions. Our aim in this paper is to address the challenges in data-driven

FQAs. In particular, (a) we build a highly efficient extremely lightweight CNN-based

model i.e. FocusLightNN 1 that maintains fast computations similar to the knowledge-

driven methods without excessive hardware requirements such as GPUs. The database

used for training plays a crucial role, for which we suggest a training dataset using Focus-

Path [2] which encompasses diverse slides across nine different stain colors. We hypothesize

that the stain diversity greatly helps the model to learn diverse color spectrums and tissue

1Codes and models are available at https://github.com/icbcbicc/FocusLiteNN

59

https://github.com/icbcbicc/FocusLiteNN


structures. (b) For algorithm evaluation and comparison, we introduce a novel compre-

hensive evaluation dataset that is annotated and compiled from the TCGA repository.

Comprehensive experiments and analyses are conducted that demonstrate the superior

precision-speed compromise of the proposed approach.

3.2 FocusLiteNN Model

3.2.1 Difference in Natual Image and WSI

In clinical applications, the focus quality of an image directly impacts the ability of pathol-

ogists to resolve biological structures in detail, potentially affecting diagnostic decisions.

Although FQA seems to be a special case of the more general task ISA, digital pathology

images differ from general photographic images in several ways. As a result, general ISA

models, while effective in many general photographic scenarios, are often insufficient for

the unique demands of digital pathology.

Notably, the first difference is the object being captured. Most WSIs are shift

and rotation-invariant and can have varying contrast, colors, and textures depending on

the staining process and tissue type. In natural images, objects can vary significantly in

scale. Some objects may be up-close and detailed, while others are distant and less de-

fined. However, the scale of structures in WSI tends to be more uniform. Fig 3.4 shows

a comparison of the distributions of image gradients, normalized by average luminance,

between in-focus natural images and in-focus WSIs. Natural images have a broader distri-

bution of gradients, implying a wider range of edge sharpness and contrast. In contrast,

the distribution for WSIs is narrower and peakier, suggesting a more uniform level of edge

sharpness. The figure suggests that WSIs tend to have a more consistent level of detail.

While some ISA methods rely on semantic information of natural images [120, 121], the

information in WSIs is very different and the prior of natural images can not be easily

transferred to FQA. Photographic images also undergo different distortions before, during,

and after image capture compared to WSIs. For example, atmospheric turbulence, moving

objects, shaking camera, out-of-focus and lens aberration can all contribute to the blur in
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photographic images. While in WSIs, out-of-focus and lens aberration are the main cause

of blur.

Figure 3.4: The distribution of the image gradient normalized by the average luminance.

The distribution of sharp natural images is different from the one of sharp WSIs.

The second difference lies in the imaging device, such as the optical system,

illumination conditions, sensors, and image processing algorithms. The optical design of the
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microscopes in WSI scanners differs substantially from general cameras. Microscopic optics

are specifically designed to resolve microscopic details at the cellular or even molecular level

that are not visible to the naked eye, requiring lenses that can achieve high resolutions

with minimal aberrations. This is usually achieved through using a lens with a high

magnification rate, high NA and medium with a higher reflective index than air. For

example, the NA for a “large” aperture (F1.8) photography lens is only 0.27. However,

common NA for the 40× microscopic lens used in digital pathology ranges from 0.75 to

1.2 [74]. As a result, the two optic systems often have substantially different spherical

abbreviation patterns. The most noticeable difference is that the microscopic lens usually

has a very shallow DOF, which means that only a very thin layer of the specimen is in

focus. However, most consumer camera lenses have a relatively deep DOF to make sure the

object is in focus and sharp. Some professional macro lenses may have a 1× magnification

ratio, which makes the DOF a little bit shallower. However, it is still not comparable to

microscopic lenses.

The illumination condition is also different. The microscopes have controlled

lighting conditions, often through transmitted light from below the sample. This con-

trolled lighting system provides constant and even illumination across the entire sample,

which is crucial for capturing the details in specimens without interference from outside

illumination. On the other hand, consumer cameras rely on ambient light or flashlights

which are more variable and less controlled, which may impact the observation of sharpness

and contrast.

The image sensor and image processing algorithms used are different. WSI

scanners use sensors that are optimized for color accuracy and resolution to account for the

fidelity of stains and detailed structures necessary for diagnostic purposes. The scanned im-

ages often have different black-level, pixel gain, photon noise and dynamic range compared

to general image sensors [59].

In conclusion, due to the inherent differences between the content and imaging devices,

the appearance and distortion types of WSI and photographic images are different. As a

result, ISA models typically do not account for the specific characteristics of WSIs. Con-

sequently, these general models can struggle to distinguish between genuinely out-of-focus

areas and intricate details of the tissue structures, leading to inaccurate assessments of
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image quality. Existing FQA models in digital pathology aim to address these challenges

by incorporating domain-specific knowledge, such as the optical characteristics of micro-

scopes [57]. However, existing FQA models, whether knowledge-based or data-driven, have

inherent limitations that can affect their performance and applicability. Knowledge-based

models, which rely on handcrafted features to assess image quality, are usually suboptimal.

Such models often rely on oversimplified assumptions about image characteristics that are

supposed to indicate focus quality, potentially missing important features that differentiate

between in-focus and out-of-focus images. On the other hand, data-driven models, partic-

ularly those leveraging deep learning techniques, offer the advantage of learning from vast

labeled data to identify the features that are important for FQA. These models usually

have better performance compared to knowledge-based ones. However, this performance

gain comes at the cost of being computationally expensive. These CNN-based FQA models

usually require graphics processing units (GPU) to conduct the inference. Nevertheless,

due to the high-resolution requirement, the size of WSIs are much higher than normal

photographic images. Considering the high computational cost and large data volume,

computational efficiency becomes a bottleneck that significantly hinders the workflow in

WSI platforms, where timely scanning is critical for subsequent diagnosis.

3.2.2 Assumptions

Our proposed model, FocusLiteNN, is designed to overcome the limitations of existing

FQA methods by significantly enhancing time efficiency without compromising accuracy.

In order to benefit from the deep learning framework that can learn from data, we build

FocusLiteNN as a CNN. The main idea of our model design is to prune the complicated

network architectures of existing CNN-based FQA and ISA models. Unlike most CNNs

that use a hierarchical structure of convolutional layers, FocusLiteNN consists of only one

convolution layer. Such a shallow design is based on prior knowledge about the WSIs and

a deep understanding of the scanning workflow. Consequently, out-of-focus blur in WSIs

can be characterized using a relatively simple model. We summarize the knowledge and

understanding into the following assumptions: (a) The scale of structures in WSIs are

relatively uniform, and (b) the distortion process is relatively easy to characterize, and (c)
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sharpness information is mainly encoded in the low-level information rather than high-level

information, and (d) color information is important to distinguish the contrast in stained

tissue. We further describe these assumptions in detail as follows.

Uniform Scale of Structures The first assumption suggests that the structures

within WSIs are relatively uniform in scale compared to natural images. Biological tissues

and cells have inherent size ranges that do not vary as widely as objects in natural images.

The objective lenses used in microscopy are selected based on the size of the structures

being studied. The most commonly used magnification rates are 20× and 40× in pathology

applications. When features in an image maintain a relatively consistent scale, it elimi-

nates the need for complex network designs. For example, hierarchical convolutional layers,

convolutional layers with different kernel sizes, convolutional layers with strides larger than

one, dilated convolutional layers, and pooling layers are all used to capture and aggregate

features of different scales. These complex designs do not provide significant benefits while

greatly boosting the computational cost.

Controlled Distortion Process The second assumption indicates that the distortion

process causing out-of-focus blur in WSIs is relatively easy to characterize compared to

natural images. This is mainly due to the image capturing taking place in a well-controlled

environment, which is the WSI scanner. Wrong focus plane and spherical aberration are

the two major causes of blur in WSI. According to Weber’s law, the uniform illumination

within the scanner also guarantees the perceptual contrast will not change due to brightness

variations. As shown in Fig 3.5, the contrast of the underexposed patch (orange boundary)

is very low, and the textures within it are not visible. However, we know that this area

is full of textures similar to the patch with blur boundaries. The image sensor in WSI

scanners also has a higher Signal to Noise Ratio (SNR) compared to consumer cameras.

The compression algorithms used in WSI scanners are either lossless, such as JPEG2000,

or high-quality lossy. However, in addition to wrong focus plane and spherical aberration,

atmospheric turbulence, moving objects and shaking cameras can also contribute to blur

in general photography. The spherical aberration is also more noticeable for consumer

camera lenses. The lower SNR of the sensor and high compression ratio in post-processing

2The image is taken from https://unsplash.com/photos/opened-door-kmY-rsl7BRw, which is free

to use under the Unsplash License
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Figure 3.5: This figure 2illustrates how semantic information affects the perceived sharpness

of natural images. All parts of the original image are in focus. However, if individual local

patches are isolated from the whole image, their perceived sharpness might be different

from the whole image. Textured patches are sharp and patches containing smooth edges

are blurry. The sharpness of smooth, constant, overexposed, or underexposed patches is

undefined.

further degrade the quality of general photography images. As a result, the sharpness of

general photography images is more difficult to characterize due to the complex distortion

process, which requires a more complex network design. On the other hand, a distortion
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process that is easy to characterize allows for simpler models.

Sharpness Encoded in Low-Level Features The third assumption is that sharpness

information is primarily contained in the low-level features of an WSI rather than in the

high-level features. However, this might not hold true for natural images. The local

sharpness of natural images is correlated with high-level semantic information [120]. We

illustrate this in Fig 3.5, which is captured in an office with a high DOF lens. The focus

is accurate and all objects in the room appear sharp. However, if we take a closer look at

a homogeneous patch (yellow boundary) cropped from the clear white door, we will find

it difficult to assess the sharpness of the patch due to the lack of texture. Even with the

presence of edges, the sharpness of a local patch might still differ from the whole image.

For example, some objects might cast a shadow on the same door, which turns out as

edges. However, due to the scattering light, the edge of the shadow might be soft, meaning

a larger spread over the edges. A lot of edge-based ISA might consider this patch (red

boundary) as blurry. These examples show that semantic information is crucial for ISA.

Capturing such information needs a deeper and more complex CNN. However, due to the

unique characteristics of biological samples, the sharpness of WSI can be solely determined

through low-level features without considering semantic information. Examples are shown

in Fig 3.6. The presence of smooth edges/textures (red boundary) means that the area is

out-of-focus. Homogeneous patches (yellow boundary) indicate no tissue is present in that

area, which can be considered as out-of-focus. Low-level features in images include edges,

textures, and basic shapes that are extracted by early layers in a CNN. This assumption

supports the idea that a single convolutional layer can effectively capture the necessary

details for FQA in WSI.

Importance of Color Information The fourth assumption recognizes the importance

of color information in distinguishing contrast within stained tissue samples. In the context

of digital pathology, different stains are used to highlight various tissue components or

proteins. The contrast created by these stains is vital for assessing tissue structures. In

certain stains and tissue types, the contrast is presented as differences in hue and saturation,

instead of luminance. Assessing the sharpness using the luminance channel (grayscale

image) alone will be less accurate. In addition, by considering color information, the

model might further capture chromatic aberration and take it into account in sharpness
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Figure 3.6: This figure illustrates that the perceived sharpness of WSI is irrelevant to the

semantic information.

assessment. Chromatic aberration is caused by the lens’s failure to focus light of different

wavelengths into the same point. The reason behind this is that the refractive index varies

with the wavelength of light, which means the focal length is also different for different

wavelengths. The chromatic aberration provides an important cue for the focus distance,

which contributes directly to the level of blur of the image. We show this phenomenon

in Fig 3.7. Fig 3.7 (a) shows the mechanism of the chromatic aberration. It is easy to

find that different focus distances result in different aberration patterns. In Fig 3.7 (b),
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example images captured at different focus distances are shown. Note that the chromatic

aberration is different in these two images: the upper one has some green/yellow color

along the edges, while the lower one is red/blue. To summarize, these two observations

suggest that a model designed for FQA in WSIs should be sensitive to color information.

In conclusion, FocusLiteNN is designed to efficiently address the FQA challenge by

leveraging these four assumptions. By acknowledging the uniformity of feature scales, the

simplicity of distortion, the localization of sharpness information in low-level details, and

the importance of color, the model can operate with a single convolutional layer. This

simple approach aims to maintain high accuracy while improving time efficiency in the

high-throughput scanning workflow.

3.2.3 Model Design and Analysis

Patch Size Due to the uneven height of tissue in a slide, the focus quality varies across an

WSI. This requires FQA models assessing local focus quality. This is usually achieved by

separating the WSI into many patches and predicting the sharpness for each of them. Using

a patch-based approach, we assume that the sharpness level is uniform within that patch.

Choosing a reasonable patch size is important to capture biological structural information

while avoiding the ambiguity issue.

The disadvantage of using a small patch size for FQA is that there is not sufficient

structural information within such a small area to reliably differentiate between in-focus

and out-of-focus. Moreover, the lack of detail combined with the small patch size can

result in sensor noise being the dominant source of high-frequency components, which

further complicates the task. This phenomenon is illustrated in Fig 3.8 where two in-focus

patches are extracted. The one with the yellow-green boundary is 64× 64 while the yellow

one is 235 × 235. The physical size of a 64 × 64 patch is around 16µm × 16µm in this

figure. Since the normal range of size of nuclei is around 5µm ∼ 20µm, it is very likely

that a 16µm × 16µm will not contain any nucleus. For example, the yellow-green patch

does not contain any noticeable biological structure information, such as the nucleus or

the boundary of a cell. The color of the nuclei is usually darker than other regions due to

staining, which provides enhanced contrast. As a result, the yellow-green patch has less
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(a) Systematic view of the chromatic aberration at different

focus distance

(b) Examples of the chromatic aberration

shown at different focus distance

Figure 3.7: (a) The systematic view of the chromatic aberration. Different focus distances

result in different aberration patterns. (b) Example images captured at different focus

distances. Note that the chromatic aberration is different in these two images: the upper

one has some green/yellow color along the edges, while the lower one is red/blue.

structure and has a lower contrast compared to larger patches which contain biological

structures (yellow one). Patch size not only affects the perceived sharpness of in-focus
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Figure 3.8: This figure illustrates the influence of patch size on sharpness assessment.

While both the yellow (235 × 235) and yellow-green (64 × 64) patches are in-focus, the

yellow one looks sharper since it captures more biological structural information, such as

the nucleus. While both the cyan (64× 64) and green (235× 235) patches are in the same

level of out-of-focus, the cyan one looks sharper since the sensor noise is more pronounced.

regions but also out-of-focus areas. Two out-of-focus patches are also extracted, one is

64 × 64 (cyan) and the other is 235 × 235 (green). In the cyan patch, sensor noise pops

out due to the blurry background, which contributes to the high-frequency components.

As a result, The perceptual sharpness of the cyan patch is higher than the green one due

to the larger portion of high-frequency components. In conclusion, choosing an oversmall

patch size will result in a miss in structural information and a boost in perceived noise,

which ultimately makes FQA inaccurate. Using an overlarge patch size also has problems.

The first problem is that both in-focus and out-of-focus regions can appear in the same

large patch, which makes the prediction ambiguous. The second problem is the increase
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in computational complexity.

Based on our empirical observation and quantitative analysis, we find the patch size

of 235 × 235 works the best for WSIs with 40× magnification, which is the most popular

setup for the purpose of pathological diagnosis.

Model Architecture In the FQA literature, most knowledge-based models adopt

relatively simple features, such as edges and high-frequency components. These features

usually can be approximated by convolving the original image with a set of kernels. For

example, commonly used edge detection kernels include Canny, Sobel, Prewitt, Scharr,

Laplacian, DoG, LoG, etc. Transforming images from the spatial domain to the frequency

domain can also be achieved by convolving the image with FFT and DWT kernels. This

demonstrates the power of using simple filters without complex hierarchical architecture to

extract sharpness-related features. However, most of these handcrafted filters are designed

for general ISA which may not account for the specific characteristics of WSIs. As a result,

these handcrafted filters may be suboptimal for the task of FQA. Recent advances in deep

learning have demonstrated the power of CNN being able to extract task-specific features

through learning the convolutional filters from data. The multiple convolutional layer de-

sign in deep CNNs is responsible for capturing multi-scale and semantic features. However,

these complex designs increase the computational complexity while do not provide signif-

icant performance improvement. Based on our assumptions that 1) WSIs are relatively

uniform in feature scales, 2) the distortion process is controlled, and 3) the sharpness infor-

mation is localized in low-level features, we argue that this multi-layer architecture is not

necessary for FQA. On the contrary, we show that the proposed FocusLiteNN model with

a single convolution layer is sufficient to achieve a high accuracy that is on par with the

state-of-the-art deep CNN models. Besides performance, the major advantage of using a

single-layer CNN is its super low computational complexity. While most CNNs are compu-

tationally expensive and do not meet the requirements of high-throughput WSI scanning,

FocusLiteNN uses only a fraction of the computational resources.

Once we assume that the sharpness level is uniform within a small patch X ∈ RH×W×K

of a WSI scan, the sharpness of that patch can be represented by a scalar y ∈ R. As

discussed earlier, we set H = W = 235. Our objective is to predict y for each patch

in a WSI and summarize the results. Similar to knowledge-based and CNN-based FQA
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methods, the process begins with convolving the patch with a set of kernels Φ ∈ Rh×w×K×N

to extract the features. Then a non-linear regression function f is applied to deduce the

features to a sharpness score. This process is formulated as

y = f

(
K∑
k=1

Φk ∗Xk + b

)
(3.4)

where, Φk ∈ Rh×w×N is the convolution kernel for kth input channel. Here, Xk ∈ RH×W

is kth channel of input patch and b ∈ RN is a bias vector. When doing the convolution,

Xk is repeated N times, which has the shape of H × W × N . Similarly, b is repeated

H × W times, which has the shape of H × W × N . y ∈ R is the predicted score of X.

As mentioned earlier, color information is crucial in this task since it provides more cues

in contrast. Therefore, we set K = 3 through this thesis, except for visualization where

grayscale input is used (K = 1). The 2D convolution operator ∗ is applied with a stride of

5. We set the kernel size to h = w = 7 for all experiments. The convolution stride is set

to 5 to balance the computational complexity and performance. We refer to the model in

(3.4) as N -kernel mode of FocusLiteNN.

Regression Function In knowledge-based FQA methods, both handcrafted and ma-

chine learning-based regression models are used. Handcrafted regression models use a

predefined function, such as summation or product, to merge the features into scores. The

specific form and parameters are either chosen empirically or tuned based on a small set

of labeled data. In contrast, machine learning regression models search for the optimal

function in a larger functional space through training on a larger set of data. Commonly

used machine learning regression/classification models include SVR [90, 91, 92, 111, 118],

SVM [35, 34], linear regression [38], logistic regression [52], AdaBoost [15, 51], and de-

cision tree [34, 52], etc. However, these models are usually suboptimal since the feature

extraction module and the regression module are not optimized jointly. Some methods are

also computationally expensive. For example, the time complexities of SVR and SVM are

more than quadratic with the number of samples. This makes the training and inference

difficult on large datasets.

In data-driven FQA methods where CNNs are used to extract features and predict
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the final scores in an end-to-end fashion, the most commonly used regression model is

MLP. MLP consists of several fully connected layers with nonlinear activation functions in

between. From a neural network’s perspective, adding non-linearity to the model greatly

enhances the approximation capability. However, MLPs can have a high number of param-

eters, especially when dealing with high-dimensional inputs like images. This is because ev-

ery neuron in one layer is connected to every neuron in the next layer. Consequently, MLPs

require more computational resources for training and inference. Furthermore, MLPs are

more susceptible to overfitting, especially when the amount of training data is limited.

Figure 3.9: How different pooling strategies affect the feature map of a Sobel kernel filtered

edge image. While max pooling or min pooling alone can only capture one of the two edges.

The max pooling + min pooling strategy captures both the increasing and decreasing edges

in the original image. Average pooling produces a blurred feature map where the activation

is less significant. In the figures, the value of the minimum pooling is inverted.

To reduce the computational cost, we aim for a minimum design that can still maintain
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competitive performance compared with the state-of-the-art CNN models. We defined the

regression function as

f(x) = ⟨w1,max(x)⟩+ ⟨w2,min(x)⟩ (3.5)

where, x ∈ RH−h+7
5

×W−w+7
5

×N are the feature maps produced by the convolution operation.

max(·) : RH−h+7
5

×W−w+7
5

×N → RN and min(·) : RH−h+7
5

×W−w+7
5

×N → RN are spatial-wise

maximum and minimum pooling. w1,w2 ∈ RN are trainable parameters. The use of

spatial-wise 2D maximum pooling and minimum pooling has several benefits. Firstly, it

makes the model capable of capturing extreme kernel responses. Since these operations

retain the highest/lowest value in each pooling window, it ensures that the most significant

signals are preserved. This reduces redundant information and reduces the noise, which

helps the model to focus on the most important aspects of the input. Secondly, it provides

a certain degree of translation invariance. By taking the maximum value over a pooling

window, the exact location of the extreme activations becomes less important. This is

beneficial because the network becomes more robust to slight variations and shifts in the

position of features in the input image. Thirdly, it helps in reducing the dimensions of

the feature maps, which reduces the computational load for the network. We demonstrate

the effectiveness of Eq 3.5 in Fig 3.9. The original rectangle image is convolved with a

horizontal Sobel filter. The Sobel filter detects two edges in the image, one increasing

and one decreasing. We process this feature map with different pooling strategies: max

pooling, min pooling, average pooling, and max + min pooling. While max pooling or min

pooling alone can only capture one of the two edges, average pooling is able to capture

both. However, it produces a blurred feature map where the activation is less significant.

Only the max pooling + min pooling strategy captures both the increasing and decreasing

edges which stand out from the background.

Loss Function

The loss functions can be generally categorized into two classes: for classification and

for regression. Most classification tasks use cross entropy as the loss function, where

the categories are assumed to be nominal. Nominal classes are unordered and mutually

exclusive. However, in the case of FQA, categories representing different focus levels are

ordered. We refer to this kind of variable as ordinal. For example, some datasets categorize

blur levels into five categories: very poor, poor, ok, fairly good, very good. In this scenario,
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ordinal classification [67] might be handy since these categories are ordered but the distance

between classes is hard to define. This rank information provides more cues for the network

and generally results in better performance [66].

However, for z-stack-based FQA datasets, the distance between any blur levels is clearly

defined. In this scenario, regression losses will be a better choice because it provides

information about the error distance. The major difference between ordinal classification

and regression is that the distances between the classes are unknown for the ordinal case.

For regression, the most commonly used loss function is MAE and MSE. The difference

between them is that MSE is smooth around 0, but it is more sensitive to larger differences,

such as outliers. MAE is more robust to outliers, but it is less smooth around 0. To take

advantage of both loss functions, Huber loss and smooth L1 loss use MSE in small value

region while using MAE in large value region. Huber loss is defined as

Huber(xi, yi) =

0.5 (xi − yi)
2 , if |xi − yi| < δ

δ (|xi − yi| − 0.5δ) , otherwise
(3.6)

where δ specifies the threshold at which to change switch from MAE loss to MSE loss.

More recently, PLCC is also utilized as a loss function in regression problems [174].

PLCC measures the linear correlation between two sets of data, which is a popular metric

for evaluating IQA models on subjectively rated datasets. It is formulated as

PLCC(x,y) =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(3.7)

where x = {xi|i = 1, 2, ..., n} and y = {yi|i = 1, 2, ..., n} are the predicted scores and

ground truth scores, respectively. x̄ =
∑n

i=1 xi

n
and ȳ =

∑n
i=1 yi
n

are the mean of x and y,

respectively. When used as a loss function, we normally maximize PLCC or minimize the

negative PLCC. Compared to error-based loss functions such as MSE, correlation-based

loss functions such as PLCC have several advantages [175]. Firstly, PLCC makes the model

transform features in such a way that the linear correlation w.r.t to target is maximized.

Secondly, the ranges of the prediction and ground truth data do not have to be aligned. In
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certain models, the range of the prediction can be bounded and does not match that of the

ground truth. In this scenario, error-based loss functions will fail to provide meaningful

gradients. Thirdly, PLCC is regularized to the range from −1 to 1, which decreases the

influence of outliers and avoids the exploding gradient problem. Fourthly, PLCC is one of

the major evaluation metrics used in FQA, ISA and IQA. This alignment ensures that the

optimization directly contributes to improving the metric of interest.

We evaluated various loss functions under both classification and regression scenarios.

The results are shown in Sec 3.4. Since the training dataset for FocusLiteNN is z-stack-

based, we finally choose the negative PLCC as the loss function for its overall performance.

Filter Visualization

(a) 2D spatial representation (b) 3D spatial representation

Figure 3.10: FocusLiteNN (1-kernel grayscale) filter visualization: (a) 2D spatial represen-

tation, (b) 3D spatial representation

To better understand the FocusLiteNN model, we visualize the Φ ∈ R7×7×N of the

trained 1-kernel model (N = 1) in both spatial and frequency domains. Due to the space
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Figure 3.11: FocusLiteNN (1-kernel grayscale) filter visualization: shifted FFT amplitude.

constraint, we set the input channel k = 1 for the purpose of visualization, which means

grayscale images are used to train this demo model. In all other experiments, we use color

images where k = 3. In Fig 3.10, we illustrate the spatial representation of this kernel in

both 2D (a) and 3D (b). For comparison, we also illustrate the 3D spatial representation

of the vertical Sobel filter and LoG filter in Fig 3.14 (a) and (b), respectively. Since all

three filters have positive and negative entries, they are capable of capturing pixel changes,

such as edges and finer textures, to some extent. The Sobel filter is known to approximate
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Figure 3.12: FocusLiteNN (1-kernel grayscale) filter visualization: vertical and horizontal

cross sections for FFT amplitudes.

the image gradient (first-order derivative), which is used to detect edges. The LoG filter

approximates the second-order derivative, which is used to detect edges and finer textures.

The vertical Sobel filter has a clear directional component in its spatial representation. The

LoG filter has a symmetrical bowl-like spatial representation, showing its isotropic nature.

The FocusLiteNN kernel’s spatial representation includes a combination of isotropic and

anisotropic characteristics, which is tailored for FQA.

Analyzing filters in the frequency domain also provides a lot of insights. The 3D FFT

amplitude of the FocusLiteNN kernel is shown in Fig 3.11, and its vertical and horizontal

cross sections are shown in Fig 3.12. For comparison, the 3D FFT amplitude of the vertical

Sobel filter and LoG filter are also shown in Fig 3.14 (c) and (d), respectively. It is clear

that both Sobel and LoG filters, like the FocusLiteNN kernel, emphasize certain frequen-

cies over others. This is evident in the peaks of their FFT amplitude representations. The

FocusLiteNN kernel seems like a bandpass filter that has both directional and omnidirec-

78



tional responses. The response pattern is more complex and balances the trade-off between

detecting fine details (like the LoG) and preserving important structural information (like

the Sobel). Unlike the Sobel and LoG filters where the accentuating frequencies are hand-

crafted, the bandpass characteristics of the FocusLiteNN kernel are learned from the WSI

data, making the frequency selection tailored for this task.

We further show in Fig 3.13 the feature maps produced by convolving the image with

the learned FocusLiteNN kernel and the Sobel filter. In both feature maps, it is clear

that they capture edge-related information. In in-focus regions, we can find more extreme

activations shown as blue and red. Whereas in out-of-focus regions, most activations are

less prominent, shown as green. In the feature map created by the FocusLiteNN learned

filter, it is easy to find that it captures edges better than the Sobel filter.

Figure 3.13: The feature maps produced by convolving the image with the learned Focus-

LiteNN kernel and the Sobel filter.

3.3 TCGA@Focus Dataset

The development of data-driven FQA in digital pathology heavily relies on the selection of

datasets for training. While the CNN models perform very well on the training dataset, the

ultimate question is how well the models can be transferred to other datasets for evaluation.

This is of paramount importance in digital pathology where the models should be capable
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Dataset Year Type Mag # Scanners # Slides # Organs # Stains

DeepFocus [60] 2018 Z-Stack 40× 1 16 N.A. 4

FocusPath [2] 2019 Z-Stack 40× 1 9 9 8

TCGA@Focus [176] 2020 Manual 40× > 1 1000 52 N.A.

Dataset # Patches # IF # OOF Patch Size # Equivalent Patches

DeepFocus 204, 000 108, 000 96, 000 64× 64 12, 750

FocusPath 8, 640 1, 620 7, 020 1024× 1024 8, 640

TCGA@Focus 14, 371 11, 328 3, 043 1024× 1024 14, 371

Table 3.1: The details of the proposed TCGA@Focus dataset, compared with the only

two public available FQA datasets. IF and OOF are the abbreviations for in-focus and

out-of-focus, respectively. The number of equivalent patches is calculated as the number

of 1024× 1024 patches.

of (a) accurately predicting focus scores on the slides regardless of tissue structures and

staining protocols; and (b) accounting for color disparities that could be caused by WSI

scanner variations and tissue preparation in different pathology labs.

However, as reviewed in Sec 2.1.2, only two datasets are publicly available. Each of

the two datasets is captured using only one scanner in one lab. As detailed in Table

3.1, DeepFocus [60] collected four slides with different stains for each of the four patients,

resulting in a total of 16 slides. FocusPath [2] collected one slide for each of the nine organs

and eight types of stains were used. The number of slides and the diversity of organs in

the two datasets are limited. Both datasets are limited to slides prepared by one lab and

scanned using one WSI scanner. Since the pathological tissue preparation protocol and

imaging platform can affect the quality and appearance of the slide, the diversity of blur

distortion and stains is also limited. In addition, DeepFocus [60] is constrained by a low

resolution of 64× 64 pixels, which may not capture the field of view required for accurate

analysis. FocusPath offers higher resolution patches at 1024× 1024 pixels, but its dataset

is considerably smaller with only 8, 640 patches.
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To address the above-mentioned limitations and provide a more comprehensive resource

for FQA, we proposed a new manually labeled FQA dataset, TCGA@Focus 3, consisting of

1000 WSI of 52 organ types selected from the TCGA repository in SVS format. TCGA is

a project to catalog the genetic mutations responsible for cancer using genome sequencing

and bioinformatics [10]. It is co-managed by the National Cancer Institute (NCI) and

the National Human Genome Research Institute (NHGRI), which are both part of the

National Institutes of Health (NIH). While TCGA’s efforts have primarily focused on

the genomics data, it also hosts over 30, 000 WSIs spanning 33 cancer types along with

associated pathology reports, clinical data, surgery and radiation treatment information,

and genomic information [75]. Diversity is the highlight of this dataset. The data are

collected from patients of different races, ethnicities, ages and genders. The tissues are

prepared using different preparation protocols and scanned using different equipment in

labs across the United States. The statistical distribution of the number of slides per organ

site is shown in Figure 3.15. The distribution of the TCGA@Focus dataset w.r.t. the organ

type is relatively uniform. Note that the diversity of the organ types here is important to

include a wide spectrum of tissue textures and color information caused by variations in

staining and WSI scans.

Since these slides are prepared for the purpose of clinical diagnosis instead of FQA,

they contain more diverse physical artifacts, such as tissue fold, bubbles, markers, etc,

which appear as different kinds of out-of-focus blur in the final images. In addition, the

distortions are often nonuniformly distributed across the spatial domain: most parts stay

in-focus while few areas suffer from out-of-focus blur. On the other hand, the out-of-focus

blur in z-stack-based datasets is mainly caused by setting an incorrect focus plane to the

specimen. Also, the distortion is often spatially invariant. In conclusion, while the z-stack

method makes the labeling process more efficient, the distortions captured are different

from real-world applications in both style and distribution.

With the 1, 000 slides collected and pre-screened, the next step is to extract patches

from the slides and label them. Since most regions within the slides are free from distortion,

extracting patches uniformly from the slides will cause an imbalance in the distribution of

labels. To construct the dataset, we inspect each slide and select in-focus and out-of-focus

3The data is available at https://zenodo.org/record/3910757
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regions-of-interests (ROI). Regions with a high portion of background are discarded during

the process. Then patches are randomly extracted from these regions. To ensure a large

field of view, high-resolution patches at 1024× 1024 pixels are extracted from the original

WSIs, allowing for finer detail and more accurate quality assessment. The patch examples

are shown in Figure 3.16. Then the patches are classified manually by experts into two

different categories: “in-focus” and “out-focus”, corresponding to the binary ground truth

scores of “1” and “0”, respectively. The compiled dataset contains 14, 371 image patches

in total, where 11, 328 patches are labeled in-focus and 3, 043 patches out-focus. A label

indicating whether the out-of-focus is caused by markers is also provided. The manual

annotation process ensures the high quality of data, which is vital for training or testing

reliable and accurate models for medical image analysis.

3.4 Experiments

3.4.1 Implementation Details

As described in Sec 2.1.2, only two datasets are publicly available. We choose the Focus-

Path dataset [2] as the training dataset for its larger patch size. The FocusPath4 dataset

[2] contains 8, 640 patches of 1024 × 1024 image extracted from nine different stained

slides. The WSIs are scanned by Huron TissueScope LE1.2 [77] using 40X optics lens

@0.25µm/pixel resolution. For each location, the autofocus system first determines the

focus distance with the sharpest image. Then the stage moves the tissue both away from

and toward the objective lens in incremental steps to create several out-of-focus patches.

Each patch is associated with a z-level (referred to as slice in the filename) ranging from 1

to 16 with the sharpest level at 8 or 9. 1 and 16 are the most blurry levels. Some examples

are shown in Figure 2.4 for the same patch at different z-levels.

However, the z-level can not be used as the ground truth for supervised training since

it does not correlate linearly with the level of blur. To create the ground truth, we need

to map the z-level to the blur level. Since the z-level is linearly correlated with the focus

4The data is available at https://zenodo.org/record/3926181
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distance and the level of blur can be characterized by the radius of the circle of confusion,

what we need to study is the correlation between the focus distance and the circle of

confusion. In optics, the Airy disk is the in-focus image of a point light source passing

through a circular aperture, which is the 2D projection of the PSF on the image plane. Due

to diffraction, the Airy disk is a bright circular disk surrounded by an alternating series of

bright and dark rings. On the other hand, the circle of confusion is a simplified version of

the Airy disk where diffraction is ignored. When in focus, the circle of confusion reduces

to a single point on the image plane. When out-of-focus, it becomes a bright circular disk.

An illustration of the circle of confusion is shown in Figure 3.17.

The radius of the circle of confusion is given by

σ = A
|F − d|f
2(F − f)d

(3.8)

where d is the focusing distance, F is the objective distance, f is the focal length, A is the

diameter of the aperture. Take Nikon’s CFI Plan Fluor 40X objective lens 5 for instance,

it numerical aperture is NA = 0.75. Since the diameter of the aperture A and the focal

length f are not provided by the manufacturer, we estimate them as A = 11mm and

f = 5mm. Based on these parameters, we plot the radius of the circle of confusion as a

function of the focusing distance d in Fig 3.18. If we ignore the diffraction and only consider

the geometric optics, the radius equals zero when the focus distance matches the designed

in-focus distance, shown as the red dotted line. It is easy to find that the circle of confusion

becomes bigger when the offset of the focus distance w.r.t to the in-focus distance becomes

larger. It is clear that the curve is almost symmetric about the in-focus position. This

means that the blur level scales linearly at the same speed in both directions. According

to this, we convert the z-level to the blur level y using the following equation

y = |z − z∗| (3.9)

where z ∈ {1, 2, · · · 16} is the z-level of the patch, and z∗ ∈ {1, 2, · · · 16} is the in-focus

z-level at this location that creates the sharpest image. z∗ is usually determined by the

5https://www.microscope.healthcare.nikon.com/products/optics/selector/comparison/

-1828
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autofocus system or by applying a sharpness assessment algorithm on the z-stack. For

example, in the FocusPath dataset [2], the sharpest z-level was determined by the HVS-

MaxPol metric.

Since the FocusPath includes diverse color stains compiled with different tissue struc-

tures, this makes the dataset well suited for the development of data-driven FQA models.

Furthermore, we hypothesize that the diversity of color stains greatly helps generalize the

CNN training to different tissue structures and color spectrum–no color augmentation is

required such as in [177].

We adopt five different categories in knowledge-based methods for the experiments

using (1) human visual system: Synthetic-MaxPol [58], and HVS-MaxPol-1/HVS-MaxPol-

2 [2], (2) microscopy lens modeling: FQPath [57], (3) natural image statistics: MLV [93],

SPARISH [116]; and (4) signal processing based: GPC [108] and LPC [107]. For data-driven

methods we select a diverse range of CNN models in terms of architecture complexity using

EONSS [174] with four conv layers developed for the purpose of Image Quality Assessment

(IQA), as well as DenseNet-13 [76] (eight conv layers) and variations of ResNet [64] (8,

48, and 99 conv layers) developed for computer vision applications. We evaluate selected

FQA models in terms of statistical correlation and classification performance as well as

computational complexity on the FocusPath and TCGA@Focus datasets. At the end, we

also show the heat maps generated by these models on a sample image.

All CNNs are re-trained on the FocusPath dataset with the same pre-processing tech-

niques, optimizer and loss function. The FocusPath dataset is randomly split into a train

(60%) - validation (20%) - test (20%). The validation subset is used to determine the

hyper-parameters. Training and testing are repeated in 10 folds of splits and the average

performance is reported. All models are transferred to TCGA@Focus dataset for evalu-

ation. The input dimensions for all CNNs are set to 235 × 235 × 3. During testing, we

densely sample the original patches with a stride of 128×128 and the average score is taken

as the overall sharpness. Adam optimizer is utilized for all models. For FocusLiteNN, the

learning rate is set to 0.01 with decay interval of 60 epochs. For other models, the learning

rate is set to 0.001 with decay interval of 40 epochs. Each model is trained for 120 epochs

to ensure convergence. The Pearson Linear Correlation Coefficient (PLCC) is used as the

loss function for all models. PLCC bounds the loss value between -1 and 1, which helps to
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stabilize the training process.

3.4.2 Performance Evaluation

The metrics used to evaluate the performances are Spearman’s Rank Correlation Coefficient

(SRCC), PLCC, Area Under the Curve of the Receiver Operating Characteristic curve

(ROC), Area Under the Curve of the Precision Recall Curve (PR). SRCC measures the

monotonicity between the predicted sharpness score and the absolute z-level, while PLCC

measures the linear correlation between them. When measuring ROC and PR on the

FocusPath dataset, we first binarize the z-levels by considering all patches with absolute

z-level 0, 1, 2 as sharp and those equal or larger than 2 as blurry. The results are shown

in Table 3.2.

Type Model
FocusPath TCGA@Focus

Size
Time

MMACs
SRCC PLCC ROC PR ROC PR (sec)

D
a
ta
-d
ri
v
en

b
a
se
d

FocusLiteNN (1-kernel) 0.8766 0.8668 0.9468 0.9768 0.9310 0.8459 148 0.017 0.3

FocusLiteNN (2-kernel) 0.8782 0.8686 0.9481 0.9770 0.9337 0.8499 299 0.019 0.7

FocusLiteNN (10-kernel) 0.8931 0.8857 0.9542 0.9802 0.9322 0.8510 1.5K 0.019 3.3

EONSS [174] 0.9009 0.8951 0.9540 0.9799 0.9000 0.8473 123K 0.063 13.7

DenseNet-13 [76] 0.9253 0.9197 0.9662 0.9849 0.9386 0.8646 193K 0.355 364.4

ResNet-10 [64] 0.9278 0.9232 0.9671 0.9853 0.9292 0.8559 4.9M 0.334 1044.7

ResNet-50 [64] 0.9286 0.9244 0.9676 0.9855 0.9364 0.8144 24M 1.899 4819.0

ResNet-101 [64] 0.9242 0.9191 0.9644 0.9840 0.9320 0.8447 43M 2.655 9104.0

K
n
o
w
le
d
g
e
b
a
se
d

FQPath [57] 0.8395 0.8295 0.9375 0.9739 0.7483 0.6274 N.A. 0.269 N.A.

HVS-MaxPol-l [2] 0.8044 0.8068 0.9400 0.9743 0.7118 0.5622 N.A. 0.257 N.A.

HVS-MaxPol-2 [2] 0.8418 0.8330 0.9434 0.9757 0.7861 0.6721 N.A. 0.458 N.A.

Synthetic-MaxPol [58] 0.8243 0.8139 0.9293 0.9707 0.6084 0.4617 N.A. 0.841 N.A.

LPC [107] 0.8375 0.8321 0.9223 0.9681 0.5576 0.4564 N.A. 7.510 N.A.

GPC [108] 0.7851 0.7602 0.9095 0.9604 0.4519 0.2830 N.A. 0.599 N.A.

MLV [93] 0.8623 0.8528 0.9414 0.9758 0.8235 0.6943 N.A. 0.482 N.A.

SPARISH [116] 0.3225 0.3398 0.7724 0.8875 0.7293 0.6414 N.A. 4.853 N.A.

Table 3.2: SRCC, PLCC, ROC-AUC, PR-AUC Performance of 16 NR-ISA Metrics on

FocusPath Dataset and TCGA@Focus Dataset. The number of parameters, average pro-

cessing time, and computational complexity are also reported.

On the FocusPath dataset, the overall performance of DenseNet-13 [76], ResNet-10

[64], ResNet-50 [64] and ResNet-101 [64] in all 6 metrics are the best and are similar
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FocusLiteNN EONSS DenseNet13 ResNet50 FQPath HVS-MaxPol Synth-MaxPol LPC GPC MLV SPARISH

FocusLiteNN - 0 0 0 1 1 1 1 1 1 1

EONSS 1 - 0 0 1 1 1 1 1 1 1

DenseNet13 1 1 - - 1 1 1 1 1 1 1

ResNet50 1 1 - - 1 1 1 1 1 1 1

FQPath 0 0 0 0 - 1 1 - 1 0 1

HVS-MaxPol 0 0 0 0 0 - - 0 1 0 1

Synth-MaxPol 0 0 0 0 0 - - 0 1 0 1

LPC 0 0 0 0 - 1 1 - 1 0 1

GPC 0 0 0 0 0 0 0 0 - 0 1

MLV 0 0 0 0 1 1 1 1 1 - 1

SPARISH 0 0 0 0 0 0 0 0 0 0 -

Table 3.3: Statistical significance testing of FQA methods on the FocusPath dataset using

prediction residuals. 1 means that the method is statistically better than the method

in the column, 0 means that it is statistically worse, and - means that it is statistically

indistinguishable.

to each other. Assuming that the testing subset of FocusPath is drawn from the same

distribution as the training subset, this observation shows that those data-driven-based

models with more parameters can fit the distribution of training data better. ResNet-50,

the best performer among deep CNN-based models, outperforms the 10-kernel model, the

best performer among shallow CNN-based models, by 3.5% in SRCC and 2% in ROC. To

visualize the statistical correlation of all models, the scatter plots of the predicted scores

versus z-levels on the FocusPath testing subset are shown in Fig 3.19. We can see that

the monotonicity and linearity between the prediction and ground truth are best preserved

in deep CNN base models. The statistical significance testing is also performed on the

FocusPath dataset. The results are shown in Table 3.3. It can be seen that FocusLiteNN

outperforms all knowledge-based methods.

All models are also evaluated on the TCGA@Focus dataset to study the transferability

performance where no training is involved. Here, DenseNet-13 [76] achieves the high-

est scores on both ROC-AUC and PR-AUC. While the overall performance of the deep

CNN-based models are still in the top tier, the gap between them and the shallow CNNs

are getting smaller compared with the performance difference on the FocusPath dataset:

ResNet-50 only outperforms the FocusLiteNN (10-kernel) model by 0.4% in terms of ROC.
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Kernel SRCC PLCC KRCC ROC-AUC PR-AUC

Learned (ours) 0.8766 0.8668 0.7132 0.9468 0.9768

LoG 0.8043 0.7957 0.6281 0.9225 0.9641

Laplacian 0.7056 0.7264 0.5272 0.9212 0.9541

Sobel 0.2196 0.1538 0.2100 0.6174 0.7922

Table 3.4: A performance comparison of using fixed kernels in FocusLiteNN.

Regression Model SRCC PLCC KRCC ROC-AUC PR-AUC Time

Max+Min Pooling (ours) 0.8766 0.8668 0.7132 0.9468 0.9768 1

MLP 0.7282 0.7184 0.5459 0.8771 0.9418 20

SVR 0.7984 0.7897 0.6219 0.9164 0.9584 3745

RBFNet 0.6649 0.6967 0.4896 0.8832 0.9399 6619

Table 3.5: A performance comparison of regression models: Max&Min Pooling, MLP,

SVR, RBFNet. The features used are the same for all regression models. The (inference)

time is calculated relative to the Max&Min Pooling model. The feature extraction time is

excluded from this test. ROC and PR are calculated based on binary classification.

Distribution of the predicted scores on the TCGA@Focus dataset and their ground truth

labels, as well as the classification thresholds for all models, are also shown in Fig 3.20.

3.4.3 Ablation Study

3.4.4 Computational Complexity Analysis

The testing image is 1024 × 1024 × 3 8-bit in the FocusPath dataset. Two experiments

are conducted, the first one is ROC-AUC on the TCGA@Focus dataset versus CPU time

(Fig 3.23 left). To fairly compare the computational complexity, all models are running

on an Intel i9-7920X @ 2.90GHz with 32 GB memory. Image reading time is excluded

from the CPU time, but the pre-processing time for each model, such as dense sampling,

is measured. The MontCarlo simulation is done for 100 times and the average is reported.

The second experiment is ROC-AUC on the TCGA@Focus dataset versus number of model
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Loss SRCC PLCC KRCC ROC-AUC PR-AUC Maintain Range

PLCC 0.8766 0.8668 0.7132 0.9468 0.9768 No

CCC 0.8677 0.8025 0.7015 0.9432 0.9759 Yes

MSE 0.8680 0.8576 0.7012 0.9440 0.9763 Yes

MAE 0.8622 0.8511 0.6938 0.9426 0.9756 Yes

Table 3.6: A performance comparison of loss functions in training the FocusLiteNN (1-

kernel) model: PLCC, CCC, MSE, MAE, multi-class Cross Entropy and multi-class Ordi-

nal Cross Entropy. ROC and PR are calculated based on binary classification.

parameters (Fig 3.23 right). We count the number of trainable parameters of the data-

driven models and plot the numbers against their performance. We can clearly see that the

1-kernel model outperforms others by a large margin in terms of both CPU time and model

size: it outperforms the second fast model EONSS [174] by 3.4% in terms of ROC-AUC,

but consuming only 27% of its CPU time with 0.1% of its model size.

3.4.5 Heat Map Visualization

To better visualize the model outputs, we generate heat maps for each model, as shown in

Fig 3.22. For all models, we densely sample 235× 235 patches from the WSI scan with a

stride of 128×128 for scoring and interpolated accordingly. These scores are then mapped

to colors and overlaid on the grayscale version of the scan. The most blurry parts are in the

upper left corner, lower right corner, and in the circle in the middle. The vertical strip taken

up 1
3
of the space is in focus. In Fig 3.22, we showed the relative blurriness level within a

scan by normalizing the scores to the range 0 to 1 before color mapping. Knowledge based

models and FocusLiteNN prefer to predict the entire scan as more blurry even for in focus

part. Deep CNN-based models such as EONSS [174], ResNet [64] and DenseNet [76] are

less aggressive and can identify in focus regions, which are more perceptually accurate.
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(a) 3D spatial representation of Sobel (b) 3D spatial representation of LoG

(c) FFT amplitude of Sobel (d) FFT amplitude of LoG

Figure 3.14: (a) 3D spatial representation of the vertical Sobel filter, (b) 3D spatial repre-

sentation of the LoG filter (c) 3D FFT amplitude of the vertical Sobel filter, (d) 3D FFT

amplitude of the LoG filter
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Figure 3.15: Organ distribution of in-focus and out-of-focus images of the TCGA@Focus

dataset.
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Figure 3.16: In-focus and out-focus examples of the TCGA@Focus dataset.
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Figure 3.17: The illustration of the circle of confusion when the focus distance does not

match the in-focus distance.

Figure 3.18: Focus distance vs radius of the circle of confusion. It is easy to find that the

radius is almost symmetric around the in-focus distance.
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(a) FocusLiteNN (1-kernel) (b) FocusLiteNN (2-kernel) (c) FocusLiteNN (10-kernel)

(d) EONSS [174] (e) MLV [93] (f) DenseNet-13 [76]

(g) ResNet-10 [64] (h) ResNet-50 [64] (i) ResNet-101 [64]

Figure 3.19: Scatter plots of absolute z-level versus predicted scores on the FocusPath

dataset.
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(j) FQPath [57] (k) Synthetic MaxPol [58] (l) LPC [107]

(m) GPC [108] (n) SPARISH [116] (o) HVS-MaxPol-1 [2]

Figure 3.19: Scatter plots of absolute z-level versus predicted scores on the FocusPath

dataset (continued).
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(a) FocusLiteNN (1-kernel) (b) FocusLiteNN (2-kernel) (c) FocusLiteNN (10-kernel)

(d) EONSS [174] (e) MLV [93] (f) DenseNet-13

Figure 3.20: Histogram of objective scores on the TCGA@Focus dataset.
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(g) ResNet-10 (h) ResNet-50 [64] (i) ResNet-101 [64]

(j) FQPath [57] (k) Synthetic MaxPol [58] (l) LPC [107]

(m) GPC [108] (n) SPARISH [116] (o) HVS-MaxPol-1 [2]

Figure 3.20: Histogram of objective scores on the TCGA@Focus dataset (continued).
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Figure 3.21: ROC curves of the testing models evaluated on the TCGA@Focus dataset.
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(a) original (b) FocusLiteNN (1-kernel) (c) FocusLiteNN (2-kernel)

(d) FocusLiteNN (10-kernel) (e) EONSS [174] (f) DenseNet-13

(g) ResNet-10 (h) ResNet-50 [64] (i) ResNet-101

Figure 3.22: Absolute heatmaps. A higher score indicates more blurriness. The predicted

scores represent the z-levels in the FocusPath dataset.
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(j) MLV [93] (k) FQPath (l) HVS-MaxPol-l

(m) HVS-MaxPol-2 (n) Synthetic-MaxPol (o) LPC

(p) GPC (q) SPRISH

Figure 3.22: Normalized heatmaps. A higher score indicates more blurriness. The pre-

dicted scores of each model are independently linearly normalized to the range 0 to 1.

(continued).
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(a) ROC-AUC v.s. CPU Time (b) ROC-AUC v.s. # Model Params

(c) ROC-AUC v.s. # MMACs

Figure 3.23: Average processing time versus ROC-AUC, model size versus ROC-AUC

and MMACs versus ROC-AUC on the TCGA@Focus Dataset. The x-axis of each figure

is on a log scale. All models are running on an Intel i9-7920X @ 2.90GHz with 32 GB

memory. ROC-AUC: Area under the receiver operating characteristic curve. MMACs:

Million multiply-accumulate operations.
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Chapter 4

Unsupervised IQA Score Fusion by

Deep Maximum a Posteriori

Estimation

4.1 Introduction

IQA models are designed to predict the perceptual quality of images. Over the past

decades, numerous IQA models have been introduced. Their correlation with human eval-

uations, typically represented by the MOS, has progressively increased. Many IQA models

demonstrate superior performance on average when being evaluated on specific datasets.

However, due to their distinct design philosophies and implementation details, they often

capture some particular types of distortions or handle some specific image contents better

than others. Consequently, individual IQA models often fail to address all types of images

and distortions encountered in real-world scenarios. An intuitive idea to quickly boost IQA

performance without developing a new one is to leverage existing IQA models by fusing

their scores to attain more reliable predictions, so as to harness the strengths and mitigate

the weaknesses in each model. Using score fusion techniques, we can synthesize MOS for

large-scale datasets where conducting subjective testing is challenging [178].
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Existing fusion approaches can be categorized non-mutually exclusively into empirical,

rank fusion methods, and supervised learning-based [125]. Empirical models [126, 127,

128, 129, 130, 131, 132, 133] fuse a predetermined set of IQA models using a handcrafted

formula. This approach significantly constrains its adaptability when introduced with new

IQA models. Rank fusion methods operate in the discrete rank domain, where the range

of all IQA models is mapped to the same uniform distribution. However, these methods

are tied closely to the diversity of the ranking dataset, which can impede generalizability.

Supervised learning-based methods [134, 135] are trained under the guidance of the MOS

of a single subjective rated dataset. Such fusion methods are essentially refined versions of

supervised learning-based IQA models since they share the same ground truth, i.e., MOS of

a specific dataset, as the base IQA models. These fusion methods are more closely related

to supervised learning-based IQA models since they share the same ground truth, MOS.

Nevertheless, these black-box models often suffer from limited generalizability and lack of

explainability.

We argue that supervised learning-based fusion approaches, i.e., when MOS is used as

the guidance, in essence, counter the fundamental reasoning behind the score fusion idea in

its attempts to improve generalizability, because any MOS is associated with some specific

image content and specific distortion types and levels, and thus inevitably leads to biases

that we try to avoid. With the guidance of MOS, one can easily evaluate the performance

of each model in the fusing list. This allows one to choose the most effective models to

fuse. Without MOS as a reference, it becomes difficult to justify the effectiveness of each

model, making IQA score fusion inherently a different and more challenging task. In this

work, we focus on unsupervised score fusion without involving MOS. We believe that the

key to the problem is to estimate the uncertainty of each IQA score without any ground

truth. Existing fusion methods either lack uncertainty estimation or only remain coarse-

grained at the model level. To mitigate this problem, we proposed a general framework

for unsupervised IQA score fusion using MAP estimation. Our framework consists of an

encoder, a set of decoders and a set of uncertainty estimation modules. The encoder

fuses individual IQA models, which not only expedites inference but also enhances the

framework’s explainability. The decoders model the relationship between MOS and each

IQA model. Uncertainty estimation modules are responsible for fine-grained, score-level
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uncertainty estimation. Given its unsupervised nature, the proposed model demonstrates

superior generalizability to unseen data. The fine-grained uncertainty estimation module

predicts the uncertainty of each score generated by individual IQA models. By identifying

and fusing the less uncertain portions of each model, we achieve a more accurate and reliable

prediction. The proposed method is trained end-to-end to ensure all modules collaborate

seamlessly. An overview of the framework is shown in Fig. 4.1. Comprehensive experiments

on ten testing sets demonstrate the superiority of the proposed model over other ones.

The main novelties of our work include:

1. To the best of our knowledge, we propose the first unsupervised learning-based score

fusion approach for IQA.

2. We formalize the first observation model of IQA fusion and address the task using

MAP estimation.

3. By building a powerful fine-grained uncertainty estimation module, the proposed

model increases accuracy and reduces uncertainty in its prediction by harnessing the

strengths and mitigating the weaknesses of each model.

4. We show that rank fusion can be easily integrated into our general framework.

5. The proposed model exhibits the capability of rejecting “bad” models in the fusion

process.

4.2 Proposed Framework

4.2.1 Observation Model

GivenN distorted images {Idi |i = 1, 2, . . . , N} and their corresponding pristine ones {Iri |i =
1, 2, . . . , N}, we can evaluate the quality of the distorted images using a Full Reference (FR)

IQA metric: xj
i = FR-IQAj(I

d
i , I

r
i ) or a No Reference (NR) one: xj

i = NR-IQAj(I
d
i ). The
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Decoder

Uncertainty Estimation

Encoder

Figure 4.1: The diagram of the proposed framework fusing IQA scores xi = {xj
i |j =

1, 2, ...,M} of image Ii. x̂
j
i = f j(zi) represents the reconstructed score. SN j

i is the abbrev.

of SN (ξji , ω
j
i , α

j
i ), which is the predicted conditional Skew Normal distribution p(xj

i |zi).

proposed framework is capable of fusing IQA metrics of all kinds, either FR-IQA or NR-

IQA. Suppose that we have scores {xj
i ∈ R|i = 1, 2, . . . , N ; j = 1, 2, . . . ,M} generated using

M IQA metrics. xj
i is the score of the i

th image evaluated by the jth metric. We adopt the

notation where subscripts represent images and superscripts denote models. Our goal is to

fuse these scores into final predictions {zi ∈ R|i = 1, 2, . . . , N} that align with MOS better

than any individual IQA metric. We assume that the score xj
i is generated by a function

of zi and two independent noise: a score-dependent noise nj
i and a model-dependent noise

n̂j:

xj
i = f j(zi) + nj

i + n̂j (4.1)

wheref j : R → R is a deterministic function that simulates the mapping from MOS to

score xj
i . nj

i is a score-dependent noise that follows a skew normal distribution: nj
i ∼

SN (ξji , ω
j
i , α

j
i ) where ξji , ω

j
i , α

j
i are the location, scale and shape parameters, respectively.

ωj
i is determined through a score-level uncertainty estimation function gj : R → R: ωj

i =
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gj(zi). For simplicity, we assume ξji = 0 and αj
i is only model-dependent, therefore we

denote it as αj throughout the paper. n̂j is a model-dependent noise that follows a zero

mean normal distribution: n̂j ∼ N (0, σj2). Since nj
i and n̂j are independent, we will show

later that nj
i + n̂j also follows a skew normal distribution. We assume f j and gj follow

some parametric forms with parameters θfj and θgj , respectively.

The motivation behind modeling uncertainty as score-dependent arises from the hu-

man visual system’s increased uncertainty when evaluating lower-quality images. Similar

behavior is also found in many IQA models, showing greater variance in regions of lower

or middle MOS ranges. As a result, it is more accurate to model the uncertainty as

score-dependent. This is demonstrated in the variance of the fitted conditional density

curves shown in Fig. 4.2. The reason for modeling the conditional distribution p(xj
i |zi) as

asymmetric is also based on the observation across various IQA models: p(xj
i |zi) is usually

skewed towards the lower score side. We choose skew normal due to computational feasi-

bility. This characteristic is also illustrated in the fitted conditional density curves in Fig.

4.2, where we plot the empirical distributions of IWSSIM [4], FSIM [5], VSI [6] evaluated

on the KADID-10K [7] and VCLFER [8] dataset.

4.2.2 MAP Formulation and Optimization

Our method is based on the Maximum a Posteriori (MAP) estimation framework. It’s

easy to show that the likelihood p(xj
i |zi) = p(nj

i + n̂j|zi) is also a skew normal distribution

SN (0, ω̃j
i , α̃

j). The likelihood function can be written as

p(xj
i |zi; α̃j, ω̃j

i )

=p(xj
i − zi|zi;αj, ωj

i , σ
j)

=p(xj
i − f j(zi)|zi; θfj , αj, θgj , σ

j)

=

√
2

√
πω̃j

i

1

2
+

erf

(
α̃j(xj

i−fj(zi))
√
2
˜
ωj
i

)
2

 e
−

(x
j
i
−fj(zi))

2

2
˜
ω
j
i

(4.2)
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where ω̃j
i =

√
ωj
i

2
+ σj2 =

√
gj(zi)

2 + σj2 and α̃j =
αj
iω

j
i√

ωj
i

2
+σj2+αj2σj2

=
αj
i g

j(zi)√
gj(zi)

2+σj2+αj2σj2

are the new scale and shape parameters, respectively. erf is the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2 dt. The MAP objective can be written as

argmax
z,α,σ,θf ,θg

p(z|X;α,σ,θf ,θg)

= argmax
z,α,σ,θf ,θg

log p(X|z;α,σ,θf ,θg) + log p(z) (4.3)

= argmax

zi, α
j, σj

θfj , θgj

M∑
j

N∑
i

(
log p(xj

i |zi;αj, σj, θfj , θgj) + log p(zi)
)

(4.4)

where X ∈ RN×M represents the IQA scores of the N images calculated by M IQA mod-

els. z ∈ RN is the MOS of the corresponding N images. α ∈ RM , σ ∈ RM are the

collections of distributional parameters αj, σj, respectively. θf ,θg are the collections of

model parameters of f j, gj, respectively. p(z) is the prior distribution over the predicted

MOS z. To make Eq. 4.3 tractable, we introduce two commonly made assumptions. First,

IQA models are conditionally independent, i.e., p(xi|zi) =
∏M

j=1 p(x
j
i |zi) where xi ∈ RM

are the scores of the same image evaluated by M IQA metrics. Second, the images are

independent, that is, p(X) =
∏N

i=1 p(xi). Now we can factorize Eq. 4.3 into a summation

of individual loss functions as shown in Eq. 4.4. By substituting Eq. 4.2 into Eq. 4.4,

we get the final objective. The prior distribution p(z) describes our understanding of the

dataset. However, given the variability of MOS distributions across datasets, the use of

informative priors might compromise generalizability. Without loss of generality, we define

p(z) = U(0, 1) since most subjective rated datasets advertise themselves as diverse where

the MOS is close to uniform in practice [125]. This prior is used to regularize the range

of the predicted z without compromising generalizability. Finally, we jointly optimize

z,α,σ,θf ,θg end-to-end.
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4.2.3 Amortized Inference

In the original MAP formulation in Eq. 4.3, the estimation of z is carried out iteratively

on a dataset. This poses two challenges: it may not yield an accurate estimation when the

scores of a singular image are available, and it tends to be time-consuming. To address these

limitations, we introduce amortized inference, which simplifies the inference procedure

without stressing the training. Instead of optimizing z directly, an encoder e : RM → R is

introduced to fuse the scores of a given image. The encoder can be parameterized as a Fully

Connected Network (FCN) with weights θe. An overview of the framework is shown in Fig.

4.1. During inference, the framework no longer needs a large dataset to do optimization.

Instead, it requires only the M scores of the testing image: zi = e(xi; θe). By substituting

zi with e(xi; θe) in Eq. 4.4, the encoder is jointly optimized with other parameters. The

amortized objective now becomes

argmax
α,σ̂,θf ,θg ,θe

log p(X|e(X; θe);α, σ̂,θf ,θg) + log p(e(X; θe)) (4.5)

4.2.4 Rank Fusion

Rank fusion offers a non-linear transformation of diverse score distributions to a consistent

uniform distribution. Such a transformation helps to stabilize the fusion process. In this

subsection, we show that rank fusion can be seamlessly integrated into our general frame-

work. Rather than optimizing in the discrete space which is computationally intensive,

we opt for a more effective solution by normalizing the discrete ranks and conducting our

optimization in the continuous space.

We compute the normalized rank rji ∈ R corresponding to the original score xj
i by

finding the index Rj
i ∈ N of xj

i in the ascendingly ranked xj = {xj
i |i = 1, 2, ..., N}. Subse-

quently, rji is derived by rji = Rj
i/N . Similar to Fig 4.2, we show in Fig 4.3 the empirical

distribution of the normalized rankings of IWSSIM [4] and FSIMc [5] evaluated on the

KADID-10K [7] dataset. It is easy to find the same observation model that can be applied

to the rank case without modification.

By replacing xj
i with rji in Eq. 4.4, we formulate rank fusion as a special instance of

the general framework. The objective of rank fusion can be written as
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argmax

zi, α
j, σj

θfj , θgj

M∑
j

N∑
i

(
log p(rji |zi;αj, σj, θfj , θgj) + log p(zi)

)
(4.6)

The benefit of rank fusion is that the mappings f = {f j; j = 1, 2, ...M}, which represent

the characteristics of various IQA metrics, are being transformed into a similar form with

the same range. This simplifies the estimation of f . Such a transform potentially stabilizes

the optimization process, especially when integrating extreme IQA models with atypical f

mappings.

4.3 Experiments

4.3.1 Implementation and Experimental Details

To rigorously assess the fusion performance of the proposed method, we evaluate it on

ten diverse subjectively rated IQA datasets. Six of them, LIVE R2 [190], TID2013 [191],

CSIQ [192], VCL@FER [8], CIDIQ50 and CIDIQ100 [193], feature single distortion. Four

others, MDID [194], MDID2013 [195], LIVE MD [196] and MDIVL [197] comprise multiply

distorted images. To demonstrate the generalizability of the proposed method, we include

12 FR-IQA and 4 NR-IQA methods of diverse design philosophies [198] and varying cor-

relation w.r.t. MOS (see Table 4.1). The chosen metrics include both traditional methods

and deep learning-based methods. The metrics are VSI [6], FSIMc [179], IWSSIM [4], DSS

[181], MCSD [183], CID MS [184], GMSD [185], FSIM [5], SFF [180], QASD [182], VIF [47],

VIF DWT [186], HOSA [187], NIQE [50], MEON [188], and QAC [189]. The goal of this

paper is to develop an IQA score fusion model, rather than a new IQA model. So we do not

include individual IQA metrics outside of the fusion list in comparison. Nonetheless, our

framework remains extendable, allowing for seamless integration of state-of-the-art metrics

to enhance fusion results. Except for empirical fusion methods that use a predetermined

set of IQA metrics, we use the same set of 16 metrics for all other fusion methods in all

of our experiments. RRF [144, 143] and RRFW [145, 146] are the only two unsupervised
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learning-based IQA fusion models in the literature. We refer to RRF as “unsupervised

learning-based,” where the training set is used to calculate the ranked index of the testing

image. For a fair comparison, unsupervised training-based methods are retrained on the

large KADID10K [7] dataset and tested on the ten testing sets mentioned above. Super-

vised learning-based fusion methods are not included in the comparison since the main

focus of the paper is unsupervised fusion. To evaluate the performance, Spearman’s Rank

Correlation Coefficient (SRCC) and Pearson Linear Correlation Coefficient (PLCC) over

the ten testing sets are provided in Table 4.1.

Our framework is versatile, allowing for diverse implementations of the encoder e, de-

coder f and uncertainty estimation module g. The chosen implementations are used to

demonstrate the general framework and are not necessarily the optimal configurations. For

simplicity, we implement the encoder e using a six-layer Fully Connected Network (FCN).

The number of input and output channels of each layer is set to the number of models to be

fused. LeakyReLU is added to each layer except for the last one. Finally, for each testing

image, the FCN is used to predict a set of weights adaptive to the content to combine

the scores linearly. This makes the encoder explainable since we can inspect the predicted

weights. Due to its lightweight nature, the inference speed is generally very fast. We have

tried using the same Cascade Neural Network in CNNM [142] as the encoder, which also

gives similar results. Since the goal of most IQA metrics is to approximate human per-

ception of quality which is measured by MOS or DMOS (Difference of MOS), it’s natural

to assume f j is generally monotonic w.r.t. the predicted MOS zi. We implement f j as

an exponential function in the form: f j(zji ) = −ea
j(zji−bj) + cj. We have also tried using a

Cascade Neural Network or a MLP, which results in similar performance. The uncertainty

estimation function gj is chosen to be quadratic in the form: gj(zji ) = ajzji
2
+ bjzji + cj. We

train the parameters in f and g with other modules end-to-end using the Adam optimizer

with a learning rate of 0.002. We stop the training when the loss reaches a plateau.

4.3.2 Evaluation Results

We introduce three variants of the proposed model: SF-ms, RF-ms, and SF-m. “SF”

stands for Score Fusion while “RF” denotes Rank Fusion. The suffixes further detail
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the uncertainty estimation levels: “-m” is Model-level while “-s” stands for Score-level.

“-ms” means both levels of estimations are included. Table 4.1 and Table 4.2 provide

a comprehensive evaluation of the proposed model, seven other fusion methods, and 16

individual IQA models used in the fusion across ten diverse testing datasets. Here we

also include two supervised learning-based fusion methods: MMF [134] and CNNM [142].

The proposed models with fine-grain uncertainty estimation even outperform other fusion

methods, as well as individual IQA metrics, in terms of average SRCC and PLCC. The

supervised learning-based method CNNM performs slightly inferior than SF-ms and RF-

ms, we hypothesize that this is due to the domain shift between the training and testing

datasets.

A statistical significance test is also provided in Table 4.3. Each entry in Table 4.3 is

composed of ten symbols, with each representing the result of the statistical significance

testing between two models on one IQA dataset. The order of the database is the same as

in Table 4.1. 1 means that the method is statistically better than the method in the column

on that particular dataset with 95% confidence, 0 means that it is statistically worse, and

- means that it is statistically indistinguishable. Due to the page limit, we only include

one individual IQA model, IWSSIM, which has the highest average SRCC and PLCC as a

reference point. It can be shown that all versions of the proposed model are significantly

better than RRF, RRFW and MMF on all testing datasets. The proposed model also

outperforms IWSSIM on the majority of the testing datasets. CNNM performs on par

with SF-ms and RF-ms, which makes sense since CNNM is a supervised learning-based

method while the proposed methods are unsupervised.

Owing to the fine-grained score-level uncertainty estimation, SF-ms and RF-ms rank

among the top three in five and six out of ten individual testing sets, respectively. To

further demonstrate this, an ablation study is conducted where the score-level uncertainty

estimation is removed, resulting in the SF-m model. As anticipated, SF-m is inferior to

SF-ms, although it surpasses other fusion methods on average, thanks to the accurate

estimation of f and model-level uncertainty. The predicted overall scale parameter ω̃j ∈
RM of each IQA model is also negatively correlated to the SRCC and PLCC of individual

models. Since the proposed framework can easily be extended to rank fusion, we include

RF-ms in comparison. This also provides a fair testing environment for other fusion-based
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methods, such as RRF and RRFW, since the scores are converted to ranks in the same

way. As shown in the table, RF-ms outperforms other rank fusion methods, demonstrating

the superiority of the proposed framework.

To further demonstrate the importance of both model-level and score-level uncertainty

estimation, we carried out an additional experiment where two “bad-performing” IQA

metrics are included in the fusing list. Without any prior knowledge of these metrics,

many unsupervised learning-based methods may suffer since distinguishing “bad” metrics

becomes challenging without MOS or precise uncertainty estimation. We implement the

two “bad” metrics using random number generators producing uniformly sampled numbers

from 0 to 1, which is the most common range for FR-IQA models. The results are shown

in Table 4.4. The performances of RRF and RRFW decline significantly in this case, while

the performance of the proposed method remains competitive. A closer examination of

the uncertainty estimation module reveals that the estimated overall scale parameters ω̃j

of the two “bad” metrics are significantly higher than others. As a result, the encoder e

assigns very little weight to these two metrics.

One drawback of supervised learning-based methods is that they are sensitive to the

“quality” of the training data, i.e., the accuracy of the ground truth MOS. We demonstrate

in Table 4.5 that when the ground truth of the training data is contaminated by noise,

the performance of supervised learning-based methods will drop significantly. The training

data and testing data are kept the same across all models and also the same as in Table

4.1, expects that the MOS of the training data is altered. We synthesize the contaminated

training data by adding zero-mean Gaussian noise to the MOS, with a standard deviation

of 0.3 · std, where std is the standard deviation of the MOS. It can be shown that the

performance of both MMF and CNNM drops significantly compared to the results in Table

4.1. However, due to the unsupervised nature, the proposed model will not be affected.

Similarly, when the number of samples is very limited in the training dataset, the su-

pervised learning-based methods will overfit and result in poor performance on the testing

dataset. For rank fusion methods, the rankings will be less reliable due to the limited and

less diverse samples. Consequently, their performance will also decline. To demonstrate

this, we form a new training dataset by randomly sampling 100 images and their corre-

sponding MOS from the KADID10k dataset. We retrain all models on this subset and
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test them on the same testing as in Table 4.1. According to the results in Table 4.6, the

performance of RRF, RRFW, MMF and CNNM all drop significantly compared to the one

in Table 4.1.

FQA Score Fusion

Beyond general IQA score fusion, our proposed framework is versatile and can be applied

to a wide range of quality assessment tasks. For instance, WSI FQA, which evaluates

the out-of-focus level in microscopic WSIs, is a specific case of IQA. We conducted an

experiment fusing seven diverse FQA models: FQPath [57], HVS-MaxPol-1 [2], HVS-

MaxPol-2 [2], Synthetic-MaxPol [58], LPC [107], GPC [108], and SPARISH [116]. We

compared the performance of both rank fusion methods (RRF [144] and RRFW [145]) and

supervised fusion methods (MMF [134] and CNNM [142]). Due to FocusPath [2] being

the only publicly available dataset that contains continuous labels and large patches, we

divided the dataset into 50% training and 50% testing sets. All trainable fusion models

were trained from scratch using the training set. The evaluation results on the testing

set are summarized in Table 4.7. Unlike general IQA score fusion, the supervised method

CNNM [142] stands out among the other fusion methods. This is attributed to the fact

that training and testing are performed on the same dataset, eliminating any domain

gap. Consequently, it is expected that supervised fusion methods would achieve better

performance. However, since the domain gap is more significant in the IQA fusion case,

the performance of the supervised methods will deteriorate. Despite this, our proposed

framework still outperforms all other fusion methods, including individual FQA models.

We conducted a comparison of the inference speed of various fusion methods, with

results presented in Table 4.8. This analysis focuses solely on the time required for the

fusion process, excluding the time spent calculating the IQA scores. Empirical fusion

methods were excluded from this comparison due to their dependence on predefined sets

of IQA models. During inference, rank fusion methods require ranking scores across the

entire dataset, making their speed sensitive to dataset size. RRFW [145] requires iterative

optimization during inference, which further decreases the speed. In this experiment, the

dataset comprises 10,000 images, each evaluated by 16 IQA models. MMF [134] employs
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an SVR encoder, which generally exhibits slower inference speeds compared to neural

network-based encoders such as the cascade neural network utilized in CNNM [142]. For

our proposed framework, we tested three encoders: the default MLP-based encoder, a

cascade neural network encoder identical to the one in CNNM [142], and a linear model.

Our results indicate that the proposed framework, equipped with the default MLP encoder,

outperforms both supervised and rank fusion methods in terms of inference speed. Given

the flexibility of our fusion framework to accommodate various encoders, further speed

improvements are possible by using a linear encoder.
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IWSSIM @ KADID-10K IWSSIM @ VCLFER

FSIM @ KADID-10K FSIM @ VCLFER

VSI @ KADID-10K VSI @ VCLFER

Figure 4.2: The empirical distribution of IWSSIM [4], FSIM [5] and VSI [6] evaluated on

the KADID-10K [7] and VCLFER [8] dataset. The dashed red curve is the mean value of

the scores (shown as blue dots). The solid orange curves are the conditional distributions,

each representing the density of scores given a MOS range. It is easy to find that the

conditional distributions are skewed toward the higher score side. Also, the variance of the

conditional distribution is related to the MOS.

114



IWSSIM Rank @ KADID-10K FSIM Rank @ KADID-10K

Figure 4.3: The empirical distribution of the normalized rankings of IWSSIM [4] and FSIM

[5] evaluated on the KADID-10K [7] dataset.
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Table 4.4: Evaluation results when “bad” IQA metrics are added to the list of models to

be fused.

Type Model avg SRCC avg PLCC

Rank Fusion
RRF[144, 143] 0.6096 0.6467

RRFW[145] 0.7171 0.7353

Proposed

SF-ms 0.8859 0.9003

RF-ms 0.8842 0.8987

SF-m 0.8745 0.8928

Table 4.5: Evaluation results when IQA datasets with “bad” MOS are used as the training

set.

Type Model avg SRCC avg PLCC

Supervised
MMF[134] 0.5477 0.6478

CNNM [142] 0.8409 0.8624

Proposed

SF-ms 0.8869 0.9001

RF-ms 0.8897 0.9023

SF-m 0.8763 0.8863

Table 4.6: Evaluation results when small IQA datasets are used as the training set.

Type Model avg SRCC avg PLCC

Supervised
MMF[134] 0.4703 0.6067

CNNM [142] 0.7988 0.8118

Proposed

SF-ms 0.8827 0.8978

RF-ms 0.8880 0.9018

SF-m 0.8588 0.8783

119



Table 4.7: Evaluation results of FQA score fusion. We fused seven FQA methods on the

FocusPath [2] dataset. The top three best-performing models are shown in bold font.

Type Model SRCC PLCC

Individual

FQA

FQPath [57] 0.8384 0.8268

HVS-MaxPol-1 [2] 0.8035 0.8003

HVS-MaxPol-2 [2] 0.8421 0.8310

Synthetic-MaxPol [58] 0.8216 0.8111

LPC [107] 0.8298 0.8259

GPC [108] 0.7681 0.7430

SPARISH [116] 0.3195 0.3386

Rank

Fusion

RRF[144] 0.8376 0.8241

RRFW[145] 0.8376 0.8085

Supervised
MMF[134] 0.8075 0.8016

CNNM [142] 0.8761 0.8713

Proposed

SF-ms 0.8595 0.8478

RF-ms 0.8625 0.8521

SF-m 0.8467 0.8355

RF-m 0.8524 0.8403
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Table 4.8: Inference speed comparison of different fusion methods. The time reported is

for fusing a single image based on evaluations from 16 IQA models. Note that the inference

speed of rank fusion methods is also influenced by the number of images in the dataset,

which is set to 10,000 in this experiment.

Type Model Speed (s)

Rank

Fusion

RRF[144] 1.17e−2

RRFW[145] 12.26

Supervised
MMF[134] 1.11e−4

CNNM [142] 2.04e−6

Proposed

MLP Encoder 2.08e−6

Cascade Neural Network Encoder 2.04e−6

Linear Encoder 1.16e−8
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Chapter 5

Whole Slide Image Virtual

Refocusing

5.1 Introduction

Pathology is the study and diagnosis of disease, which involves the examination of surgically

removed organs, tissues, or bodily fluids. Subfields of pathology include histology and

cytopathology etc. Histology examines surgically removed tissues under a microscope.

Cytopathology studies diseases on the cellular level, which involves the examination of free

cells from bodily tissues or fluids. Both histology and cytopathology require the specimen

to be processed to satisfy the requirements of microscopic viewing. No matter what kind

of pathology, a professional pathologist must be present to conduct the examination. To

enhance the efficiency of the diagnosis workflow, digital pathology emerged during the

1960s. Whole slide imaging is a core step in digital pathology, where traditional glass slides

are digitized into high-resolution images that can be viewed, stored, shared, and analyzed

on computer systems. Whole slide imaging revolutionizes digital pathology, facilitating

remote diagnosis and collaborative research. However, ensuring high-quality scans is a

challenging task due to defocus.

In WSI scanners, bright-field microscopes are commonly employed for object magnifi-
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cation. The resolving power of such microscopes is quantifiable through optical resolution

(R), defined as the shortest distance between two Airy disks discernible on the image plane

(Eq. 3.2). High resolution (a low R value), however, is often accompanied by a trade-off:

reduced DOF. DOF represents the range surrounding the focal plane within which image

sharpness remains consistent [164]. Objects that lie within the DOF will appear sharp,

whereas those outside this range will be out of focus. The relationship between R and

DOF can be expressed as

DOF =
2R

tan(α)
(5.1)

where α is the half angle of the cone of light entering the objective lens [164]. It is easy

to find that the DOF is proportional to the resolution R, meaning most microscopes will

have a very shallow DOF. Take the most commonly used 40X objective lens with a 0.65

NA as an example, the DOF is around 1µm. The major disadvantage of using a shallow

DOF lens is that it is challenging to capture an all-in-focus image, meaning that the image

is in-focus at every pixel.

Depending on the focus plane setting, tissue surface evenness, and tissue thickness,

three out-of-focus scenarios can arise:

• First, an incorrect focus plane setting can lead to an entirely out-of-focus image. This

typically arises from autofocus system malfunctions. Physical distortions, such as

bubbles, marker ink or dust particles on the coverslip, can also mislead the autofocus

system.

• Second, even with a correct focus plane setting (positioned directly beneath the

coverslip’s bottom surface), non-uniform tissue surface, tissue folding, or the presence

of bubbles can cause certain tissue regions to fall outside the DOF. Consequently,

the resulting image will be partially out of focus.

• Third, even when the focus plane is correctly set and the tissue surface is even, the

shallow DOF might not cover the entire tissue thickness, which is 4µm to 5µm for

1The objective lens icon is adopted from Biorender.
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Figure 5.1: Illustration of three types of Out-of-Focus. The green area is the DOF. The

tissue that lies within it will be in-focus, while those that lie outside of it will be out-of-

focus 1.

most paraffin fixed ones [199]. Due to the complete illumination of the tissue by the

light source, out-of-focus light traversing deeper tissue layers outside the DOF inter-

feres with the in-focus light. The captured image, therefore, becomes a superposition

of in-focus and out-of-focus components, leading to blurriness. Therefore, we name

this type of out-of-focus as superposition out-of-focus.

In traditional microscopy, the focus problem might be solved by manually adjusting

the focus while the pathologist inspects the slide. In digital pathology, this problem gets

more challenging. For the first two out-of-focus scenarios, z-stack imaging offers a potential

solution. Z-stack (also referred to as focal stack) is a technique that captures a series of

images at different focal planes (also referred to as z-level or focus level). Z-stack increases

the probability of capturing the in-focus image within one or more z-levels. However, the

scanning time and data volume increase proportionally to the number of z-levels. However,

the trade-off is a proportional increase in scanning time and data volume. Considering

that a single z-level WSI scanning is already very time-consuming and consumes a lot

of storage, scanning multiple z-levels will worsen the situation. Consequently, z-stack is
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Type
Global

OOF

Partial

OOF

Superposition

OOF
WSI Note

Confocal Yes Yes Yes No Fluorescence only

Light Sheet Yes Yes Yes No Fluorescence only

Light Field Yes Yes Maybe No Low axial resolution

Bright Field (Refocus) Yes Yes Maybe Yes No extra equipment

Table 5.1: Comparison of different types of microscopes and their abilities to handle the

three types of out-of-focus. However, most methods are not directly applicable to WSIs in

digital pathology due to practical constraints and the need for specialized, often expensive,

equipment.

primarily employed for research purposes or specialized organ imaging. Nevertheless, when

scanning at a lower number of z-levels, or when the distance between adjacent z-levels gets

larger, it is still not guaranteed that z-stack can always capture an in-focus image.

The third scenario, characterized by blurriness from the superposition of in-focus and

out-of-focus light, necessitates an understanding of the tissue’s 3D structure. Traditional

2D imaging proves inadequate in this context. 3D imaging techniques such as confocal

microscopy, light sheet microscopy, two-photon microscopy, structured illumination mi-

croscopy can be used to capture the 3D information. Light field microscopy captures par-

tial 3D information and can reconstruct the 3D structure with deconvolution. However,

these microscopes are typically more expensive and exhibit limitations such as reduced

image capture speed or constraints in lateral/axial resolution. Furthermore, some of these

techniques are restricted to fluorescent samples. Therefore, 2D bright-field microscopy, de-

spite its inherent limitations, remains the dominant technique employed by WSI scanners

in digital pathology. Although it can not solve the superposition out-of-focus issue, one

can still observe the 3D biostructure by adjusting the focus plane. Table 5.1 provides a

detailed comparison of various microscopy techniques.

Image Deblurring/Deconvolution Image deblurring/deconvolution presents a prac-

tical solution to the global out-of-focus scenario. Traditional image deblurring methods

[153] employ iterative techniques to estimate the blur kernel and subsequently restore the
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image. Recent advances leverage deep learning for WSI deblurring, restoring in-focus im-

ages in an end-to-end fashion [154, 155, 156, 157, 200, 201]. These models are trained

on paired datasets of out-of-focus and in-focus images. This approach is effective when

the tissue surface is even and the defocus level is consistent throughout the image, a

characteristic of the global out-of-focus scenario. In such cases, acquiring training image

pairs is straightforward. However, when defocus levels vary across the image, in-focus

regions are distributed across multiple z-levels. This represents the partial out-of-focus

case. Consequently, capturing a ground truth image with every pixel in focus using stan-

dard bright-field microscopes becomes challenging. Some studies attempt to circumvent

this issue by performing deblurring at the patch level, assuming uniform defocus within

each small patch. However, this strategy often leads to inconsistencies between patches,

as global image context and consistency are disregarded. Patch-based deblurring is also

susceptible to distortions such as checkerboard artifacts. A more comprehensive review

of WSI deblurring methodologies is presented in Section 2.3.1. Nevertheless, both image

deblurring or deconvolution aim to generate an AIF image, which collapses the desired 3D

tissue structure.

Focus Interpolation Focus interpolation [161, 162, 163] offers an alternative to de-

blurring, addressing both global and partial out-of-focus scenarios. This technique allows

for the synthesis of the intermediate z-level from two captured z-levels. Through iter-

ative interpolation, continuous focus adjustment becomes feasible, a capability typically

absent in conventional z-stack imaging. Furthermore, focus interpolation significantly re-

duces scanning time and storage requirements, as intermediate z-levels can be generated

on demand. Section 2.3.2 provides a more in-depth review of focus interpolation methods.

However, despite its advantages, focus interpolation suffers from several limitations:

• It is inherently restricted to generating the middle z-level between two input z-levels.

Synthesizing arbitrary intermediate z-levels necessitates iterative interpolation, a pro-

cess that is computationally expensive and prone to error accumulation, leading to

substantial prediction errors.

• Focus interpolation lacks extrapolation capabilities. The target z-level must lie within

the range of the input z-levels. In practice, this constraint is difficult to satisfy, as
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Modality Task Objective Input(s)
Transparent

Object

Continuous

Refocus

Pixel-wise

Refocus

WSI
WSI Virtual Refocus Continuous Focal Stack Sampled Images in Focal Stack Yes Yes Yes

WSI Focus Interpolation Middle Focus Image Two Images in Focal Stack Yes No No

Natural Image

Natural Image Refocus Continuous Focal Stack AIF image + Depth Map No Yes Yes

Multi-focus Fusion AIF Image Focal stack + Depth Map No N.A. N.A.

All-in-Focus Image AIF Image Focal stack + Depth Map No N.A. N.A.

2D Deconvolution AIF Image An Out-of-Focus Image No N.A. N.A.

Table 5.2: Comparison of different tasks related to WSI virtual refocusing. Natural image-

based tasks assume scene non-transparency, making them unsuitable for WSI. The goal in

WSI is to visualize 3D tissue structure. Generating a single AIF image, however, collapses

this 3D information, hiding the desired structural details.

the precise z-level of the in-focus image is often unknown.

• When multiple input images are available, focus interpolation can only utilize two

at a time. While the z-level pair closest to the target provides the most relevant

information, the remaining images may still contain valuable data that is disregarded.

• Focus interpolation is inapplicable when only a single input image is available.

Virtual Refocusing Physical refocusing involves adjusting the focal plane using 3D

information acquired during image capture. In microscopy techniques that capture partial

3D data, such as light field microscopy, physical refocusing can be achieved by directly ren-

dering the desired z-level. Certain 3D microscopy methods, including confocal microscopy,

light sheet microscopy, and two-photon microscopy, enable optical sectioning, allowing the

direct acquisition of 2D radiance at arbitrary z-levels. In these cases, physical refocusing

becomes unnecessary. However, as described before, most of these 3D microscopy methods

are not applicable to WSI used in digital pathology.

Virtual or digital refocusing aims to approximate the focus adjustment process without

relying on an explicit 3D model. In contrast to focus interpolation, it requires only a

single input image. This makes it more flexible and practical to use. Refocusing methods

for natural images rely on an AIF image and a depth map that describes the distance of

the scene from the image plane. By synthesizing blur on an AIF image according to the
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depth map, one can achieve continuous focus adjustment. This essentially assumes that

the scene is non-transparent. What it is refocusing is just the 2D surface of the 3D scene.

This limitation makes it not suitable for WSI refocusing.

In handle refocusing in transparent scenes, we propose the first virtual refocusing

method for WSI. Its input is an arbitrary number of images in a focal stack and a target

focus plane/map. Tasks such as WSI deblurring, WSI out-of-focus synthesis, WSI focus

interpolation, WSI multi-focus fusion and WSI AIF generation can be considered as special

cases of the proposed virtual refocusing framework. A detailed comparison of the related

tasks is provided in Table 5.2. More importantly, it simulates the way pathologists inspect

slides, adjusting the focus level to accommodate uneven tissue surfaces and thick tissues.

Moreover, virtual refocusing exhibits greater flexibility than physical refocusing, as it can

refocus each pixel individually to a target focus plane.

In fluorescence microscopy, Deep-Z [202] has been applied to refocus a 2D image to a

user-defined focus plane. The appearance of fluorescence images differs from WSIs in two

major aspects: 1) Fluorescence images are sparser where more pixels are black compared

to WSI. This is because the fluorescent stains only bind to a specific molecule in the tissue.

As a result, the occlusion between different focus layers is less prominent in fluorescence

images. 2) Fluorescence microscopy relies on detecting light emitted from fluorescent

stains, where the signal is usually weaker than bright field microscopy. This results in

low SNR images that are less detailed. Nevertheless, WSI virtual refocusing has not been

studied in the literature. Compared to fluorescence microscopy, WSIs have more delicate

structures and generally contain more information. Since the occlusion phenomenon is more

noticeable in WSI, a deeper understanding of the 3D structure is needed for refocusing,

which is missing in the fluorescence case [202]. In terms of model design, it omits the image

formation model and does not have a 3D radiance field reconstruction step. It also accepts

only one input image, which does not capture the rich 3D information within the z-stack.

It is also limited to a uniform target focus plane, which is less practical in situations where

the tissue landscape is uneven.

Complex 3D Image Formation Model Although virtual refocusing seems to be an

all-in-one solution to the out-of-focus restoration and defocus synthesis problem, as far as

we know, there is barely any refocus model for WSI. Most refocus models are designed

128



for natural images, which fundamentally differ from WSI: the objects in most natural

scenes have reflective surfaces. However, tissue slides are translucent or transparent. For

the reflective scene, the captured image can be described using a depth map and an AIF

image. By convolving the AIF image with proper PSFs that correspond to the depth, we

can generate images captured in other focal planes [203, 204, 205]. This means rather than

the actual 3D model of the scene, we only need to consider the 2D manifold represented by

the depth map and the AIF image. On the other hand, since tissue slides are translucent

or transparent, each captured image is a superposition of infinite AIF images at all focal

planes convolved with corresponding PSFs. This means that in order to refocus a WSI

exactly, the real 3D model of the tissue and related PSFs are needed.

Besides the complex 3D model required for exact refocusing of WSIs, the PSFs involved

also differ from natural images. In natural image refocusing, once the lens specifications

are determined, the PSF is approximately a function of focus depth alone. The image

formation process can be formulated as

I(x, y)|z0 = R(x, y) ∗ h(z0 − d(x, y)) (5.2)

where Iz0 ∈ RH×W×3 is the final captured image when setting the focus plane z at z0.

Let R ∈ RH×W×3 denote the 2D radiance field, often regarded as the AIF image. The

symbol ∗ represents the 2D convolution operator. While factors such as atmospheric inter-

ference (e.g., fog, haze, rain) can influence the precise PSF, they are typically negligible.

The relative simplicity of the PSF in natural image refocusing contributes to its ease of

implementation. However, in tissue slides, the PSF can be considered a function of both

depth and the 3D tissue structure. For a given focus plane, the planes above and be-

low can be conceptualized as imperfect lenses composed of the FFPE tissue. The tissue’s

shape, size, and spatially varying refractive, reflective, and absorption coefficients all con-

tribute to the final radiance field. Modeling the optical characteristics of each tissue layer

is a considerable challenge due to the inherent complexity and heterogeneity of biological

samples. Even with a complete 3D model, rendering the final image remains a compu-

tationally intensive process that often requires ray tracing techniques rather than simple

convolution [206, 207]. Assuming an incoherent light source, the image formation process
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in transmission microscopy can be expressed as:

I(x, y)|z0 =
∫ D

0

R(x, y, z) ∗ h(z0 − z)dz (5.3)

where R ∈ RH×W×D×3 represents the 3D radiance field resulting from the interaction of

the light source with the physical 3D tissue model. The term h denotes the 3D PSF of the

microscope lens, and h(z0 − z) is an axial slice of this PSF. D represents the maximum

tissue thickness. The complexities inherent in modeling 3D tissue structures and rendering

the corresponding 3D radiance field make WSI refocusing a considerably more complex

task compared to natural image refocusing. A limited number of studies [208, 209] have

explored 3D reconstruction of biological specimens from z-stacks using a MAP framework.

However, these studies employed a total variation prior, which provides limited information

and inadequately captures the true 3D tissue distribution. Furthermore, [209] neglected

refraction and reflection effects in computing the 3D radiance field, while [208] bypassed 3D

radiance field computation altogether, substituting it with the 3D model. Consequently,

these methods are only effective for relatively simple, synthetic datasets lacking complex

3D structures and optical characteristics. WSI refocusing via 3D model reconstruction

and 3D radiance rendering is not only computationally demanding but also inherently

challenging. We introduce a novel, end-to-end WSI refocusing model that circumvents the

need for complex 3D modeling and radiance field rendering.

Implicit 3D Radiance Field Reconstruction As demonstrated by the image for-

mation process in Eq. 5.3, each captured image arises from the convolution of the 3D

tissue radiance field with a set of 3D PSFs at different axial positions. Consequently,

accurate estimation of the focus stack requires both the 3D radiance field and the PSFs.

However, capturing the 3D radiance field is inherently challenging without specialized tis-

sue processing techniques and imaging equipment. Additionally, acquiring the PSFs for

each objective lens at all axial levels is a laborious process. To address these challenges,

we introduce a novel 3D Radiance Consistency Loss (RCLoss) that guides the model to

implicitly learn the 3D tissue representation. This approach eliminates the need for any

additional information, such as explicit 3D model or PSFs, relying solely on the focal stack

images. The projection of the 3D radiance field onto the image plane results in substantial
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information loss. Consequently, a single image at any focus level cannot fully represent

the 3D radiance field. A logical extension is to enable the model to accept multiple images

from a focal stack as input. These images, being projections of the same 3D radiance field

convolved with different PSF sets, contain rich information that can enhance the model’s

3D representation learning. To ensure model versatility, the number of input images should

not be fixed. Our proposed model accepts a variable number of input images, ranging from

1 to 16, achieving a balance between representation capacity and computational efficiency.

Conditioned Refocusing Using the 3D Representation Having established a rich

3D representation, the next step is to project and collapse this 3D feature into a 2D image,

guided by a focus map. To achieve this, we introduce a refocus module incorporating

a novel Focal Stack Cross-Attention Pooling (FSCA Pool) mechanism. Reducing a 3D

feature to 2D necessitates a pooling operation along the depth dimension. Traditional max

pooling or mean pooling disregards the inherent 3D structure within the representation,

contradicting our goal of reconstructing the 3D radiance field. The FSCA Pool module

employs a cross-attention mechanism to selectively extract the most relevant information

based on the target focus map. This approach aligns with the inherent structure of the 3D

representation, seamlessly integrating with the 3D radiance field reconstruction module.

WSI Distance Measure Traditional image distance or FR IQA metrics, such as

MSE, MAE, and SSIM [13], have been widely adopted as loss functions in various image

reconstruction tasks. However, these metrics primarily focus on low-level visual features,

neglecting semantic information crucial for IQA. Deep learning-based FR IQA models

[11, 12] have emerged to address this limitation by incorporating both low-level and high-

level features. These models typically achieve this by assessing differences in features

extracted at multiple levels of a deep neural network. While these powerful loss functions

have proven effective in WSI deblurring and interpolation tasks, the pre-trained feature

extractors they employ are designed for general natural images. For instance, LPIPS [11]

and DISTS [12] utilize a VGG16 network [210] pre-trained on the ImageNet dataset [211]

for object recognition. However, ImageNet [211] solely comprises natural images, which

differ significantly from WSIs in several key aspects:

• Objects of interest: Natural images depict everyday scenes and objects, while WSIs
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focus on microscopic tissue structures.

• Imaging devices: Natural images are typically captured using standard cameras,

whereas WSIs employ specialized microscopes.

• Illumination conditions: Natural images are subject to varying natural lighting, while

WSIs are captured under controlled microscope illumination.

• Image post-processing: WSIs often undergo specific post-processing steps, such as

color normalization and artifact removal, which are not typically applied to natural

images.

Further justifications for these distinctions are provided in Section 3.2. Despite their

success in natural image-related applications, these loss functions may struggle when ap-

plied to WSIs, as they lack knowledge of such data. To bridge this gap, we propose a

novel image distance metric specifically tailored for WSIs. Our results demonstrate that

incorporating this metric as the loss function significantly enhances model performance

compared to its natural image counterparts.

In summary, the key contributions of this model are:

1. To the best of our knowledge, this is the first WSI virtual refocusing model.

2. The model implicitly learns a 3D radiance field representation through a novel 3D

consistency constraint. It accepts an arbitrary number of focal stack images as input,

enriching the 3D information learned while being practical.

3. A novel focal stack cross-attention module allows the model to selectively extract

information relevant to the target focus map, facilitating the generation of refocused

images.

4. The model enables continuous refocusing of individual pixels to different focal planes,

which is more flexible than physical refocusing.
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5. Tasks such as WSI deblurring, out-of-focus synthesis, focus interpolation, multi-focus

fusion and AIF generation can be considered as special cases of the proposed frame-

work. This is also the first WSI defocus synthesis model to incorporate realistic

defocus distortions.

6. A novel, WSI-specific image distance metric, employed as the reconstruction loss,

significantly enhances model performance.

5.2 Method

Focal Stack
FS × H × W × 3

Refocused Image
H × W × 3

Target Focus Map
H × W

Refocus
Module Disc

3D Representation
D × H × W × C

3D 
Radiance
Module

Target Image
H × W × 3

Recon Loss3D Consistency Loss GAN Loss

Forward Pass

Loss Calculation

Focal Stack’
FS’ × H × W × 3

3D 
Radiance
Module

Virtual Refocus Network

Figure 5.2: Overview of the proposed virtual refocusing network. The network consists of

two major components: (1) a 3D radiance field module for implicitly learning a 3D tissue

representation and (2) a refocus module that refocuses this 3D representation based on a

2D focus map.
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5.2.1 General Overview

The proposed model adopts an encoder-decoder architecture. Inputs consist of a focal

stack comprising FS ∈ N+ images, denoted as X ∈ RFS×H×W×3 = {xi ∈ RH×W×3|i =

1, · · · , FS}, their corresponding focus maps F ∈ RFS×H×W×1 = {fi ∈ RH×W×1|i =

1, · · · , FS}, and a target focus map ft ∈ RH×W×1. The focus maps (F ) are optional.

If not provided, they can be predicted using pre-trained FQA models such as FocusLiteNN

[176]. The model’s objective is to generate a refocused image xt ∈ RH×W×3 where the

focus distance of each pixel is determined by the target focus map ft. Figure 5.2 provides

an overview of the proposed model. The model is composed of two primary modules: a

3D radiance field module and a refocus module. The 3D radiance field module implicitly

learns a 3D representation of the tissue from multiple focal stack images. This process

relies solely on the focal stack images, without requiring any additional information such

as explicit 3D structural data or PSFs. Detailed descriptions of this module are presented

in Section 5.2.2. The refocus module aims to refocus the 3D representation based on the

guidance provided by the 2D focus map. Detailed descriptions of this module are provided

in Section 5.2.3. An additional discriminator is incorporated to enhance the visual quality

of the generated refocused image by adversarial learning.

The model is trained using a supervised learning approach. Input images and the

corresponding target image are randomly sampled from the same focal stack. The loss

function comprises three components: a reconstruction loss, a 3D consistency loss, and an

adversarial training loss. The reconstruction loss is designed to minimize the perceptual

difference between the refocused image and the target image. Further details are provided

in Section 5.2.4. The 3D consistency loss guides the 3D radiance field module in learning a

3D representation of the tissue, as detailed in Section 5.2.2. The adversarial training loss

encourages the model to generate more realistic images, with details outlined in Section

5.2.5.

The U-net encoder-decoder architecture [160] is a popular choice for image-to-image

tasks such as image restoration [212] and style transfer [213]. U-net employs skip connec-

tions, directly transferring intermediate features from the encoder to the decoder, bypassing

intermediate layers. This design offers two key advantages: (1) preserving spatial details
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Figure 5.3: Architecture of the 3D radiance field module and refocus module. The overall

model design is based on a U-net architecture. Both modules consist of three stages, with

skip connections linking the outputs of each stage in the 3D radiance filed module to the

corresponding stage in the refocus module.

and (2) enabling the training of deeper networks by mitigating the vanishing gradient prob-

lem. Our proposed model also utilizes a U-net architecture, as shown in Figure 5.3. The 3D

radiance field module is composed of three 3D encoders. The first encoder maps the input

images to a latent representation with dimensions D×H ×W ×C, where D is the depth

of the 3D representation and C is the number of channels. The subsequent two encoders

further downsample this latent representation spatially, resulting in output features of size

D× H
2
× W

2
× 2C and D× H

4
× W

4
× 4C, respectively. Section 5.2.2 provides a detailed de-

scription of the encoder architecture. The refocus module consists of three decoders, each

corresponding to an encoder in the 3D radiance filed module. Each decoder receives three

inputs: the corresponding 3D representation from the 3D radiance field module, the 2D
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features pooled by the preceding decoder (if available), and the target focus map. The first

two decoders also spatially upsample the features to restore the original spatial resolution.

Detailed descriptions of the decoder architecture can be found in Section 5.2.3.

Other than network design, the choice of loss function is critical in training image-to-

image models. Commonly used loss functions, such as MSE, MAE, and SSIM [13], only

consider low-level visual features, neglecting semantic information essential for captur-

ing perceptual image similarity. Deep learning-based FR IQA or image distance metrics

[11, 12] address this limitation by evaluating distances at both low-level and high-level

feature representations. This is typically achieved by calculating a weighted sum of dis-

tances between features extracted at multiple levels of a deep neural network. These deep

learning-based loss functions have found application in WSI deblurring and interpolation

models. However, the pre-trained feature extractors used in these metrics are designed

and trained exclusively on natural images. For example, both LPIPS [11] and DISTS [12]

employ a VGG16 network [210] trained on the ImageNet dataset [211] for object recogni-

tion task. As discussed in Section 3.2, ImageNet [211] consists solely of natural images,

which exhibit significant differences from WSIs. While effective for natural images, these

loss functions may not be optimal for WSIs due to this domain mismatch. To mitigate this

issue, we propose a novel WSI-oriented image distance metric based on DISTS [12]. Our

experiments demonstrate that using this metric as the loss function significantly improves

model performance compared to its natural image counterpart. A detailed description of

this metric is presented in Section 5.2.4.

5.2.2 Implicit 3D Radiance Field Reconstruction

3D Radiance Field Encoder

According to the image formation process illustrated in Eq 5.3, we could synthesize a

refocused image by convolving the 3D radiance field with the 3D PSFs corresponding to

the target focus map. However, obtaining an accurate 3D radiance field and the PSFs are

both very challenging. Recognizing that our ultimate goal is the refocused image, not the

explicit 3D radiance field, we propose to learn a latent representation of the 3D radiance
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Figure 5.4: Network structure of the 3D radiance encoder block and refocus decoder block.

Each encoder block incorporates intra-image and inter-image attention modules, followed

by 3D convolutions. Each decoder block consists of an SFT block and a FACA Pooling

layer.

field instead of directly modeling it. This is accomplished using a 3D radiance field module

and a 3D radiance consistency loss.

The 3D radiance field module comprises three 3D radiance encoders. These encoders

aim to capture inter-image and intra-image correlations within the focal stack. Considering

that different images in a focal stack are generated by the same radiance field, these

images share a lot of information about the underlying radiance. By leveraging these

inter-relationships, we can extract 3D information from the features, potentially revealing

the radiance field. Furthermore, the 3D radiance field features are structured in the depth

dimension, meaning the top layers in this feature represent the surface of the tissue and

vice versa. Consequently, it is intuitive to use 3D convolutions in this encoder.
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Intra-image correlations, similar to self-attention mechanisms used in 2D images, ex-

plore spatial dependencies among pixels. In the context of out-of-focus images, the circle

of confusion is a point light source projected onto the image plane. The size of the circle

of confusion is determined by the defocus level. To capture this defocus characteristic, we

need to assess intra-image correlations within a large receptive field. While 2D convolution

can partially achieve this, its receptive field within a single layer is limited. Intra-image

self-attention offers a broader receptive field by establishing pairwise correlations among

pixels.

Figure 5.4 illustrates the architecture of the 3D radiance encoder. Each encoder con-

sists of an intra-image self-attention module, an inter-image self-attention module, and two

3D convolution layers. To mitigate the computational cost of 3D convolutions and atten-

tion mechanisms, we adopt an efficient modification proposed in [214]. This modification

decomposes 3D attention and 3D convolution into separable spatial-wise and depth-wise

operations. By processing data along these two branches and subsequently fusing the

results, computational complexity is significantly reduced while maintaining comparable

performance.

3D Consistency Loss

As discussed previously, the network design of the 3D radiance field module facilitates the

capture of 3D information and lens defocus characteristics. However, we require a more

explicit mechanism to guide the learning of a 3D radiance field representation. To this

end, we propose a novel 3D radiance consistency loss that leverages the inherent invariance

within a focal stack. Consider two disjoint sets of images sampled from the same focal stack

X = {xi ∈ RH×W×3|i = 1, · · · , N}. Let these sets be denoted as Xm ∈ X with |Xm| = m

and Xn ∈ X with |Xn| = n, where Xm ∩ Xn = Φ. Given that images in the same

focal stack are generated by convolving the same radiance field with different 3D PSFs,

these two subsets naturally share a common latent 3D radiance field. Therefore, passing

these subsets of images through an ideal 3D radiance field module should yield identical

latent 3D representations. Exploiting this invariance, we introduce the 3D consistency loss,

formulated as:
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Lconsis =
1

|(Xm, Xn)| · L
∑

(Xm,Xn)

L∑
l=1

∥Encl(Xm)− Encl(Xn)∥22 (5.4)

where Xm ∈ Rm×H×W×3 and Xn ∈ Rn×H×W×3 are the two disjoint sets of images. Encl is

the l-th encoder in the 3D radiance field module.

In an extreme scenario, the model could simply map all inputs to a single, constant

representation, akin to mode collapse in generative models. However, this degenerate

solution is prevented by the subsequent use of the learned representation to generate the

refocused image, conditioned on the target focus map. This downstream task ensures

that the 3D radiance field module produces representations that accurately capture the

variations in the radiance field. To show the effectiveness of the model’s capability of

capturing 3D radiance, we visualize the learned 3D radiance feature in Fig 5.9.

5.2.3 Refocusing Through Focal Stack Cross-Attention Pooling

Refocus Decoder

The refocus module comprises three refocus decoders. These decoders are responsible

for selectively extracting information that corresponds to the target focus map from the

learned 3D representation. To accomplish this, the decoder requires a pooling mechanism

capable of reducing the 3D representation to a 2D representation in a target focus-aware

manner. It also needs a transformation mechanism to synthesize the refocused image from

the pooled 2D features, guided by the target focus map. Figure 5.4 depicts the detailed

architecture of the refocus decoder. Each decoder consists of a set of Spatial Feature

Transform (SFT) blocks [215] and a novel Focal Stack Cross-Attention Pooling block.

Various methods have been proposed for conditional image-to-image translation, al-

though their application to WSI refocusing remains unexplored. A straightforward ap-

proach involves concatenating the conditional information with intermediate feature maps,

followed by a convolutional layer. However, this transformation produces a simple linear

combination of the conditional information and the features. Beyond concatenation, some
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methods utilize hyper-networks to generate convolutional layer weights based on the con-

ditional information [216]. We adopt the Spatial Feature Transform (SFT) method [215],

which generates affine transformation parameters for spatial feature modulation based on

conditional inputs. SFT offers greater representational power compared to naive concate-

nation and exhibits improved stability and robustness compared to hyper-networks. In our

proposed model, SFT layers are incorporated into both the encoder and decoder. Each

decoder adaptively pools the 3D representation from the encoder into a 2D representation

and concatenates it with the output from the previous decoder.

Focal Stack Cross Attention Pooling

Pooling operations typically reduce feature dimensions. 2D spatial pooling, commonly

employed in CNNs, reduces the spatial resolution of feature maps. In many-to-one image

translation tasks, such as multi-focus fusion and AIF image generation, reducing the num-

ber of images is necessary. In the context of virtual refocusing, we need to reduce the depth

dimension. While max pooling and average pooling are widely used, they disregard the

internal structure of the 3D radiance representation. Since the learned 3D representation

is independent of the target focus map, selecting the maximum value without considering

the target can only identify the most salient and representative features. While beneficial

for classification tasks that do not require conditional information, this may not yield the

most relevant features for refocusing the input to a specific focus map. Similarly, aver-

age pooling, which treats all information equally, remains suboptimal due to its lack of

adaptability to the target focus map.

In order to make the pooling aware of the focus map condition and smartly select the

features necessary for the target generation, we propose a novel adaptive pooling method

called Focal Stack Cross-Attention Pooling (FSCA Pool). This method leverages a cross-

attention mechanism along the depth dimension to determine the most relevant input

information with respect to the target focus map ft. The input features are then merged

along the depth dimension, weighted by their relevance to the target focus map. This

process is carried out in a pixel-wise manner and can be formulated as
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FSCA-Pool(fea, ft) ∈ Rh×w×c = softmax(
⟨Q,K⟩

∥Q∥2∥K∥2
) · V

Q ∈ R1×h×w×d = netQ(ft)

K ∈ RD×h×w×d = netK(fea)

V ∈ RD×h×w×c = netV(fea)

(5.5)

where fea ∈ RD×h×w×c is the 3D radiance representation and ft ∈ RH×W is the target

focus map. d is the feature dimension of the cross-attention operation. ⟨·, ·⟩ is the inner

product operation in the channel dimension. · is the elementwise multiplication. netQ :

RH×W → R1×h×w×d is the target focus map transformation network that consists of a

convolutional layer and 2D interpolation operation. netK : RD×h×w×c → RD×h×w×d is

the query feature transformation network that consists of a single convolutional layer.

netV : RD×h×w×c → RD×h×w×c is the value feature transformation network that consists

of a single convolutional layer that preserves spatial resolution of the input feature. By

building the cross-attention, the query, which corresponds to the target focus map ft,

attends to the transformed input feature by comparing its similarity w.r.t. each of the

inputs in the depth dimension. The similarity is represented as the gathered attention

softmax( ⟨Q,K⟩
∥Q∥2∥K∥2 ) ∈ RD×h×w. Finally, the cross-attention is applied to the transformed

input feature V to select and fuse the features that are most relevant to the target focus

map ft. Although this module only takes depth-wise attention into account, spatial-wise

feature manipulation is achieved using 2D convolutions. A visualization of the attention

map is shown in Fig 5.10.

5.2.4 Whole Slide Image Perceptual Distance Metric

Deep learning-based image reconstruction relies heavily on image distance metrics to guide

model training. While metrics like MSE and MAE are commonly used as loss functions,

they suffer from a key limitation: they treat all errors equally, assuming spatial indepen-

dence. This assumption misaligns them with the characteristics of the HVS. To address

this, many FR IQA models prioritize errors that are more perceptually salient to the human

eye. For instance, SSIM [13] emphasizes errors that disrupt local image structure, while
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neglecting non-structural errors like luminance and contrast shifts. From an optimization

perspective, while these metrics share the same global optimum, those better aligned with

the HVS are more likely to find superior local optima. However, a common shortcoming

of these traditional FR IQA metrics is their focus on low-level visual features. They often

ignore semantic information, which plays an important role in human perception of image

quality and similarity.

Deep learning-based FR IQA models [11, 12] have emerged to incorporate mid-level

and high-level features, along with low-level features, in assessing image quality and sim-

ilarity. These models typically compute distances between features extracted at multiple

levels of a pre-trained CNN. Such metrics are often referred to as perceptual distance or

perceptual loss. Perceptual loss has been successfully employed in training WSI deblurring

and interpolation models, yielding more realistic images compared to using MSE or MAE

as loss functions. Moreover, perceptual loss tends to produce fewer artifacts compared to

traditional FR IQA metrics.

Despite their advantages, a key limitation of current perceptual loss functions lies in

their pre-training. For instance, both LPIPS [11] and DISTS [12] utilize a VGG16 net-

work [210] trained on ImageNet [211]. As detailed in Section 3.2, WSIs differ significantly

from natural images in several aspects, including the objects captured, the imaging de-

vices used, illumination conditions, and post-processing techniques. While perceptual loss

excels in evaluating natural image similarity, it may struggle when applied to WSIs due

to this domain mismatch. To overcome this limitation, we introduce a novel perceptual

distance metric specifically designed for WSIs. Our results demonstrate that incorporating

this metric as the loss function substantially improves the performance of WSI refocusing

compared to using natural image-based perceptual loss.

Before delving into the proposed metric, we provide a brief overview of LPIPS [11]

and DISTS [12], analyzing their strengths and weaknesses to motivate the design of our

WSI-specific metric. Both LPIPS and DISTS are defined as weighted sums of distances

between features extracted at different layers of a pre-trained VGG16 network [210]. They

can be formulated as follows:

142



D(x, y) =
L∑
l=1

1

HlWlCl

Hl∑
h=1

Wl∑
w=1

Cl∑
c=1

ωl
c · d(f(x)lhwc, f(y)

l
hwc) (5.6)

where x and y are two images, f is a pretrained VGG16 network with L layers and f(·)l ∈
RHl×Wl×Cl is the extracted feature at layer l. The main difference between LPIPS and

DISTS is the choice of the weights ω and the distance measure d. In LPIPS, d(x, y) =

∥x − y∥22, which is a simple MSE. The learnable weights are identical for all channels in

the same layer, i.e., ωl
c = ωl. The overall formulation of LPIPS can be expressed as

D(x, y) =
L∑
l=1

ωl∥f(x)l − f(y)l∥22 (5.7)

Instead of measuring feature distance using MSE, DISTS uses a metric similar to SSIM,

which separately measures the impact of structural and nonstructural errors. It is formu-

lated as

d(x, y) = 1− α · 2µxµy + c1
µ2
x + µ2

y + c1
− β · 2σxy + c2

σ2
x + σ2

y + c2
(5.8)

where µx, σx and σxy are the mean of x, standard deviation of x and covariance of x and

y. α and β are the learnable weights. The overall formulation of DISTS can be expressed

as

D(x, y) = 1−
L∑
l=1

Cl∑
c=1

αl
c ·

2µl
xcµ

l
yc + c1

µl
xc

2 + µl
yc

2 + c1
+ βl

c ·
2σl

xyc + c2

σl
xc

2 + σl
yc

2 + c2
(5.9)

where αl
c and βl

c are the learnable weights of the cth channel in the lth convolutional layer,

subject to
∑L

l=1

∑Cl

c=1 α
l
c + βl

c = 1.

Both LPIPS and DISTS utilize features extracted from the same five layers of the

VGG16 network, namely conv1 2, conv2 2, conv3 3, conv4 3, and conv5 3. By incorporat-

ing features from both shallow and deep layers, these metrics capture a wide spectrum of

visual information, including low-level features like edges and textures, as well as high-level
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semantic features. The key distinction lies in DISTS’s inclusion of pixel-domain distances,

computed without any feature extraction from the VGG16 network. This pixel-domain

comparison is named as the 0th layer. In contrast to LPIPS, which may not have a unique

minimum, this additional pixel-domain distance ensures that DISTS has a unique mini-

mum at x = y. Moreover, it has been demonstrated that
√

D(x, y) in Eq. 5.9 satisfies

the properties of non-negativity, symmetry, and the triangle inequality, making it a valid

metric [12]. In both models, the pre-trained VGG16 network remains fixed. The only

trainable parameters are the weighting scalars: ω = {ωl|l = 1, · · · , 5} in LPIPS and

(α,β) = {(αl
c, β

l
c)|l = 0, · · · , 5; c = 1, · · · , Cl} in DISTS. These parameters are learned

through regression on subjectively rated image quality assessment datasets. Beyond its

role as an FR IQA model, DISTS is also a texture similarity metric. Traditional FR IQA

metrics often assign large feature differences to images with similar textures, despite their

perceptual similarity to human observers. To address this texture invariance inherent in

the HVS, DISTS incorporates an additional loss term during training to minimize Eq. 5.9

for image pairs sharing the same texture. The loss function of DISTS can be written as

argmin
α,β

1

|D1|
∑

x,y∈D1

∥D(x, y|α,β)− q∥1 + γ · 1

|D2|
∑

z1,z2∈D2

∥D(z1, z2|α,β)∥1 (5.10)

where (x, y) is a pair of pristine and distorted images sampled from a subjectively rated

dataset D1. q is the MOS of y. (z1, z2) is a pair of texture images with the same type

of texture, sampled from a texture dataset D2. γ is a hyperparameter that controls the

tradeoff between the image quality and texture similarity.

While LPIPS and DISTS effectively assess natural image distances, their feature extrac-

tors are trained solely on natural images. Given the domain gap between WSIs and natural

images in terms of both low-level statistics and high-level semantic content, employing a

feature extractor specifically trained on WSI data becomes crucial. Furthermore, the tex-

ture invariance property of DISTS, while beneficial for certain natural image applications,

is undesirable in medical imaging. Enforcing texture invariance in an image-to-image model

can lead to significant pixel-level differences between generated images and ground truth

images in textured regions. In WSI refocusing, precise pixel-level matching is important.
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Hallucinated details are strictly prohibited, as they can potentially impact downstream

clinical applications such as diagnosis.

To address the need for a WSI-specific image distance metric, we retrain the DISTS

model on a WSI dataset, focusing on image distance assessment rather than image qual-

ity, and removing the texture invariance constraint. We term this model WSI-DISTS.

Specifically, we first fine-tune the VGG16 network using the Kimia Path24 Dataset [9].

This dataset comprises 24 in-focus WSIs representing different body parts, selected from a

pool of 350 slides. These slides exhibit diverse textures and visual patterns, stained using

three different techniques: IHC, H&E, and Masson’s trichrome staining. The WSIs were

captured using a Huron TissueScope LE1.0 with a 0.75 NA lens at 20X magnification. We

extracted 22,591 training patches and 1,325 validation patches of size 1000 × 1000 from

these 24 WSIs, with representative examples shown in Figure 5.5. During fine-tuning,

random rescaling was applied to enhance the model’s generalization capabilities across dif-

ferent magnification levels. The final layer of the VGG16 network was replaced with a fully

connected layer containing 24 neurons.

Having fine-tuned the VGG16 network on WSI data, we obtain a feature extractor

better suited to WSI analysis than its natural image counterpart. The next step is to

train the quality-related weights α,β using distorted WSIs. To our knowledge, there are

no publicly available WSI quality assessment datasets. Therefore, we utilize the Focus-

Path dataset [2], which contains paired in-focus and out-of-focus WSIs with corresponding

ground truth quality scores. The WSIs in FocusPath were acquired using a Huron Tis-

sueScope LE1.2 scanner [77] with a 40X objective lens at a resolution of 0.25µm/pixel. A

z-stack approach was employed, capturing WSIs at 16 focus levels with an increment of

0.25µm. The dataset comprises 8,640 patches of size 1024×1024, extracted from 540 posi-

tions across nine different organ types and eight staining methods. Section 2.1.2 provides

a more detailed description of the dataset. The training loss of WSI-DISTS is defined as

argmin
α,β

1

|D|
∑

y1,y2∈D

∥D(y1, y2|α,β)− |qy1 − qy2|∥1 (5.11)

where (y1, y2) is a pair of WSI patches captured at the same location, but at different focus

levels: qy1 and qy2 , respectively. In contrast to the original DISTS training procedure, our
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Figure 5.5: Example images of the Kimia Path24 Dataset dataset. Image credit: [9].

loss function does not require one of the inputs to D(·, ·) to be pristine. This distinction

arises because DISTS is an FR IQA model, designed to assess the perceptual quality of a

distorted image relative to a pristine reference. WSI-DISTS, on the other hand, aims to

measure the perceptual distance between two arbitrary inputs, not necessarily involving a

pristine reference. Furthermore, as texture invariance is undesirable in our application, we

omit the texture invariance loss term from Eq. 5.10.

5.2.5 Overall Objective

The model is trained using supervised learning. The input images and the corresponding

target image are randomly sampled from the same focal stack. The loss function consists

of three components: a reconstruction loss (Lrecon), a 3D consistency loss (Lconsis), and

an adversarial training loss (LGAN). We employ the proposed WSI-DISTS metric as the

reconstruction loss, defined in Eq. 5.9, with the weights obtained as described in Eq. 5.11.
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The 3D consistency loss, presented in Eq. 5.4, exploits the inherent invariance of the 3D

radiance field to guide the 3D radiance field module in learning a meaningful 3D tissue

representation. To encourage the generation of more realistic images, we incorporate an

adversarial training loss using the Least Squares GAN (LSGAN) implementation [217].

LGAN is defined as

x̂t = G(X,F, ft)

min
D

LGAND
=

1

2
E(xt,ft)

[
(D(xt|ft)− 1)2

]
+

1

2
E(x̂t,ft)

[
(D(x̂t|ft))2

]
min
G

LGANG
=

1

2
E(x̂t,ft)

[
(D(x̂t|ft))− 1)2

] (5.12)

where G is the proposed virtual refocusing model and x̂t = G(X,F ) is the refocused image.

X ∈ RFS×H×W×3 and F ∈ RFS×H×W×1 are the input focal stack and their corresponding

focus maps, respectively. xt ∈ RH×W×3 and ft ∈ RH×W×1 are the target image and its

corresponding focus map, respectively. D is a conditional discriminator.

To summarize, the overall objective for the virtual refocusing model can be written as

L = λrLrecon + λcLconsis + LGANG
(5.13)

where λr and λc are the weighting parameters.

5.3 Experiments

5.3.1 Implementation Details

As discussed in Section 2.1.2, DeepFocus [1] and FocusPath [2] are the only two publicly

available z-stack datasets. The image dimensions in DeepFocus (64 × 64) are insufficient

to represent detailed tissue structures. Therefore, we utilize the FocusPath dataset, which

contains images of size 1024× 1024, for model training. The FocusPath dataset comprises

nine slides. For each slide, two strips are scanned, and within each strip, 30 locations are
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selected for focal scanning at 16 focus levels. This yields a total of 540 focal stacks, each

containing 16 images of size 1024 × 1024, resulting in a total of 8,640 images. Figure 2.5

presents sample images from different slides, and Figure 2.4 shows an example focal stack.

We employ the focal stacks from the first strip for training and those from the second strip

for testing. These strips are spatially separated on the slides, ensuring minimal overlap

in tissue patterns. The training dataset consists of 270 focal stacks, each with 16 images

captured at different z-levels. The testing dataset also contains 270 focal stacks, each with

16 images.

The proposed virtual refocusing model accepts an arbitrary number of input images.

However, for computational efficiency during training, we fix FS = 3. Notably, the trained

model can still be evaluated with different FS values during testing. Using a larger FS

generally leads to improved quality in the refocused images, as a larger number of input

images contributes to a more accurate and comprehensive 3D radiance representation.

When selecting the FS images from the 16 images in a focal stack, we deliberately exclude

images near the target focus level. This prevents the model from learning a trivial solution

that simply selects the input image closest to the target.

The model is trained end-to-end using an Adam optimizer [218] with a learning rate

of 1e−4 and weight decay of 1e−7 for both the 3D radiance field module and the refocus

module. The discriminator is optimized separately using another Adam optimizer with

the same learning rate and weight decay. In the overall loss function (Eq. 5.13), the

hyperparameters are set to λr = 15 and λc = 1. These values are not fine-tuned and serve

as a reasonable starting point for optimization.

5.3.2 Evaluation Results

Figure 5.6 showcases the focus traverse capability of our virtual refocusing model. We

use Target 6 and Target 11 as inputs, with the sharpest focus level occurring around level

9. For comparison with the ground truth, we employ uniform focus maps aligned with

the ground truth levels in this experiment, although the target focus map can be non-

uniform during both training and testing. Refocused images are generated by setting the

target focus maps to uniform values ranging from 1 to 16. In the results, the refocused
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images are of high quality and are perceptually similar to the ground truth images across

all focus levels. The transitions between intermediate focus levels are smooth and visually

consistent. Notably, this demo focal stack is from the testing dataset.

Furthermore, our experiments reveal the model’s ability to refocus to target levels not

encountered during training. Despite the dataset containing only 16 discrete focus levels,

the model can generate smoothly refocused images using a continuous range of focus levels.

This capability is illustrated in Figure 5.6, where Target 9 and Target 10 serve as inputs.

The refocused images are generated by uniformly setting the target focus maps to 9.2, 9.4,

9.6, and 9.8, respectively. Upon closer inspection, the transitions between these images

are remarkably smooth. It is important to highlight that this smooth transition capability

is not limited to interpolation scenarios. The model can achieve similar smoothness even

when using a single input image.

Next, we demonstrate the model’s robustness in an extreme case where we choose the

most blurry image as the single input to our model. An example is shown in Fig 5.7. The

input is a single image at focus level 16, which is the most out-of-focus image in the focal

stack. The refocused images are generated by setting the target focus maps uniformly from

1 to 16, respectively. It is not surprising that the qualities of generated images are inferior

compared to those ones in Fig 5.6. The reason is that the input image (Target 16) lacks

sufficient 3D information on the focal stack, which makes the learned 3D representation

incapable of representing the real 3D radiance field. As a result, artifacts are present in

refocused images at sharper levels of focus (Refocused 9).

To further evaluate model robustness, we present an extreme case where the most out-

of-focus image from the focal stack serves as the only input to our model. Figure 5.7

illustrates this scenario. The input is a single image at focus level 16, representing the

most blurred image in the focal stack. Refocused images are generated by setting the

target focus maps uniformly to values ranging from 1 to 16. As expected, the quality of

the generated images is lower compared to those shown in Figure 5.6. This degradation

stems from the limited 3D information present in the blurry input image (Target 16). Con-

sequently, the learned 3D representation cannot adequately capture the true 3D radiance

field. Nevertheless, the proposed model can still produce reasonable results.
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The above experiments all employed uniform focus maps, implying that the refocused

image is “captured” on a single focal plane perpendicular to the optical axis. This setup

simulates the imaging process in optical microscopes and WSI scanners. However, when

dealing with uneven tissue surfaces, plane-wise refocusing cannot produce an image where

all regions are simultaneously in focus (AIF image). Although a generated AIF image

might not be desirable in all applications, we showcase our model is capable of pixel-wise

refocusing. AIF generation is just a special case. This capability is demonstrated in Figure

5.8, where Target 1 and Target 8 serve as inputs. Both input images exhibit partial out-

of-focus blur due to physical artifacts on the slide. The horizontal strip at the bottom is

thicker than other regions. The refocused image is generated using a non-uniform focus

map, shown in the third image. The result clearly shows an all-in-focus image. By enabling

pixel-wise refocusing, our virtual refocusing model surpasses the limitations of traditional

optical microscopy. The focus map in Figure 5.8 is manually generated. However, focus

maps can also be generated automatically by adjusting the output of FQA models like

FocusLiteNN [176].

To quantitatively evaluate our model, we compute four FR IQA metrics between the

refocused image and the corresponding target image: SSIM [13], MS-SSIM [45], IW-SSIM

[4], and DISTS [12]. Input images are randomly sampled from the focal stack. We also

assess the impact of the number of input images on refocusing performance, with results

presented in Table 5.3. As expected, increasing the number of input images leads to

improved refocusing performance. A larger number of input images provides a richer and

statistically more comprehensive representation of the 3D radiance field, enabling the 3D

radiance field module to learn a better representation. This improved 3D representation,

in turn, benefits the refocus module, resulting in higher-quality refocused images. Notably,

even with a single input image, our model achieves reasonably good results.

Since there are no WSI refocusing models we can compare to, we evaluate our model’s

performance against state-of-the-art deep learning-based deblurring models: DRBNet [219],

Restormer [220], and MPRNet [221]. Deblurring can be considered as a special case of the

virtual refocusing model, where we only have global out-of-focus. For testing, we select

the sharpest image within each focal stack as the target and use the remaining images in

the stack as input, one at a time. This procedure allows us to thoroughly assess deblur-
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Model FS SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus 5 0.9646 0.9603 0.9655 0.0670

VF@Refocus 4 0.9599 0.9558 0.9597 0.0709

VF@Refocus 3 0.9518 0.9482 0.9493 0.0777

VF@Refocus 2 0.9365 0.9341 0.9294 0.0895

VF@Refocus 1 0.8944 0.8980 0.8732 0.1203

Table 5.3: Refocusing performance with varying numbers of input images. Using more

input images leads to better performance, as they capture richer 3D information about the

radiance field.

Model FS SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus 2 0.8320 0.9273 0.9303 0.1085

VF@Interpolation 2 0.8556 0.9368 0.9462 0.1004

DFI [161] 2 0.7937 0.8237 0.7896 0.3304

LinearLatent [163] 2 0.8698 0.8775 0.8315 0.2313

Table 5.4: Focus interpolation comparison results. The proposed model outperforms the

other two WSI focus interpolation models.

ring performance across a wide range of blur levels. The results are shown in Table 5.5.

Remarkably, despite not being explicitly trained for deblurring, our model (VF@Refocus)

outperforms the three dedicated deblurring models. We attribute this superior performance

to the implicit learning of the 3D radiance field. Furthermore, utilizing three focal stack

images as input further enhances performance, as this provides richer information about

the 3D radiance field. We also finetuned the refocus model in the context of deblurring.

The model is named as VF@Deblur. It is clear that fine-tuning is beneficial for FS = 1.

To highlight the effectiveness of the 3D radiance field module in capturing radiance

field-related features, we present visualizations of its internal representations. Directly vi-

sualizing these features as 2D images is challenging, as they are located in different stages

and are in high-dimensional space. Instead, we indirectly visualize these features by manip-

ulating them and observing the resulting changes in the refocused images. Our hypothesis
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Model FS SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus 3 0.9420 0.9312 0.9360 0.0760

VF@Refocus 1 0.8566 0.8511 0.8277 0.1192

VF@Deblur 3 0.9414 0.9312 0.9378 0.0741

VF@Deblur 1 0.8722 0.8663 0.8491 0.1029

DRBNet [219] 1 0.7060 0.7277 0.6307 0.2665

Restormer [220] 1 0.7034 0.7259 0.6149 0.2606

MPRNet [221] 1 0.6786 0.7042 0.6074 0.2466

Table 5.5: A comparison of WSI deblurring results. The proposed model outperforms the

other three deep learning-based debluring models.

is that removing specific feature layers should impair the model’s ability to refocus to the

corresponding depths. In this experiment, we retain only the first layer of the 3D features

along the depth dimension, setting all other layers to zero. This manipulation effectively

preserves radiance information from the topmost tissue layer while discarding information

from deeper layers. Ideally, this modified model should be unable to refocus to other

depths due to this information loss. It is crucial to emphasize that we are manipulating

internal features, not the input images themselves. Figure 5.9 presents the results. The

left and middle refocused images are generated using only the first layer of the 3D radiance

features. Despite having different target focal planes, these images appear similar. In both

cases, only the topmost tissue layer (visible as a horizontal strip in the middle of the image)

is in focus, consistent with the modified features containing information solely from the

top tissue layer. Upon closer examination of the middle horizontal strip across the three

images, the left and middle images exhibit greater nuclear detail due to being in focus at

that depth. In contrast, the right image is refocused using all layers of the 3D features,

demonstrating successful refocusing to the target focal plane. The topmost tissue layer in

this image is out of focus.

Figure 5.10 visualizes the attention maps generated by the FSCA Pooling module for

different target focus planes. In both images, each patch represents the attention map

between the target and a slice in the feature. The left and right attention maps correspond
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to target focus planes 1 and 7, respectively. The visualizations clearly show that FSCA

Pooling selectively extracts features from the 3D radiance representation that are most

relevant to the target focus. When the target is set to 1, FSCA puts more attention to

shallower features. When the target is set to 7, FSCAs puts more attention to middle layer

features. Importantly, the attention mechanism operates at the pixel level, rather than the

layer level, enabling precise pixel-wise refocusing. This pixel-level attention is crucial in

scenarios where: (1) the target focus plane is non-uniform or (2) the WSI exhibits partial

or superposition out-of-focus blur.

We evaluated the inference speed of our virtual refocusing model and compared it to two

WSI interpolation methods. Table 5.6 presents the results. Due to the heavy reliance on

3D convolution and 3D self-attention in the 3D Radiance Module of our virtual refocusing

model, it exhibits higher computational costs compared to the two WSI interpolation

methods, which do not involve 3D operations.

Model Time (Seconds)

DFI [161] 0.05

LinearLatent [163] 0.07

Proposed 0.52

Table 5.6: Inference speed comparison of the refocus model andWSI interpolation methods.

The time reported is for generating a 512× 512 patch using one NVIDIA GTX 3090 GPU.

5.3.3 Ablation Study

We also conduct ablation studies to evaluate the effectiveness of the 3D radiance field

module as well as the FSCA Pooling Module. The results are presented in Table 5.7 and

Table 5.8. To demonstrate the effectiveness of the 3D radiance field module, we remove

the 3D consistency loss Lconsis from the overall loss function. It can be seen that the

performance is inferior compared to the full model.

To further demonstrate the effectiveness of the FSCA Pooling Module, we replace it

with both max pooling and mean pooling. Table 5.8 presents these ablation results. The

153



Model 3D Radiance FS SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus yes 3 0.9518 0.9482 0.9493 0.0777

VF@Refocus no 3 0.9034 0.9209 0.9120 0.0993

Table 5.7: Alabtion study on the effectiveness of the 3D Radiance Module. It can be seen

that using this module significantly increases the quality of the refocused images.

comparison clearly shows that FSCA Pooling significantly enhances the quality of the refo-

cused images. This improvement can be attributed to FSCA Pool’s ability to understand

the 3D structure of the features, unlike max pooling, which only selects the maximum

value without considering structural relationships. Additionally, FSCA Pool adaptively

aggregates information based on the conditional focus map, whereas mean pooling assigns

equal weights to all features.

Model Pool SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus FSCA 0.9518 0.9482 0.9493 0.0777

VF@Refocus Max 0.8470 0.8583 0.8140 0.1509

VF@Refocus Mean 0.8394 0.8509 0.8157 0.1528

Table 5.8: Alabtion study on the effectiveness of the Focal Stack Cross-Attension Pooling

module. Compared to Max and Mean pooling, FSCA Pooling takes the 3D structure of

the feature and the condition into account. It can be seen that using FSCA significantly

increases performance.

We also provide an ablation study on the effectiveness of the WSI-DISTS metric. It

can be seen from Table 5.9 that WSI-DISTS greatly enhances the quality of the refocused

images compared to the original DISTS.
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Model Loss SSIM ↑ MS-SSIM ↑ IW-SSIM ↑ DISTS ↓
VF@Refocus WSI-DISTS 0.9518 0.9482 0.9493 0.0777

VF@Refocus DISTS 0.9363 0.9335 0.9292 0.0893

Table 5.9: Alabtion study on the effectiveness of the WSI-DISTS reconstruction loss.

Compared to the original DISTS, WSI-DISTS is fine-tuned on WSI data, which makes it

more accurate in measuring the distance between WSIs.
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Refocused 1 Refocused 2 Refocused 3 Refocused 4

Target 1 Target 2 Target 3 Target 4

Refocused 5 Refocused 6 Refocused 7 Refocused 8

Target 5 Target 6 (input) Target 7 Target 8

Figure 5.6: Virtual refocusing example. The inputs are Target 6 and Target 11. The

refocused images are generated by setting the target focus maps to uniform ones ranging

from 1 to 16.
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Refocused 9 Refocused 10 Refocused 11 Refocused 12

Target 9 Target 10 Target 11 Target 12 (input)

Refocused 13 Refocused 14 Refocused 15 Refocused 16

Target 13 Target 14 Target 15 Target 16
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Target 9 (input) Refocused 9.2 Refocused 9.4

Refocused 9.6 Refocused 9.8 Target 10 (input)

Figure 5.6: Continous refocusing example. The inputs are Target 9 and Target 10. The

refocused images are generated by setting the target focus maps uniformly to 9.2, 9.4, 9.6,

and 9.8, respectively.
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Refocused 9 Refocused 11 Refocused 13 Refocused 16

Target 9 Target 11 Target 13 Target 16 (input)

Refocused 1 Refocused 3 Refocused 5 Refocused 7

Target 1 Target 3 Target 5 Target 7

Figure 5.7: Extreme refocusing example. The input is Target 16, which is the most out-of-

focus image in the focal stack. Refocused images are generated using uniform target focus

maps ranging from level 1 to 16.
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Target 1 (input) Target 8 (input) Focus Map Refocused

Figure 5.8: Non-uniform refocusing example. The inputs are Target 1 and Target 8, both

exhibiting partial out-of-focus blur due to physical artifacts on the slide (note the horizontal

strip at the bottom). The refocused image, generated using the non-uniform focus map

shown in the third image, is in focus across all spatial locations.

Feature: 1st layer, Target: 1 Feature: 1st layer, Target: 7 Feature: all layers, Target: 7

Figure 5.9: Impact of manipulating 3D radiance features on refocusing. The left and middle

images are refocused using only the first layer of the 3D radiance features, resulting in both

images being focused on the topmost tissue layer despite different target focal planes. The

right image, refocused using all feature layers, is correctly focused at the target focal plane.
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Target: 1 Target: 7

Figure 5.10: Attention maps of the third FSCA Pooling layer. The left and right attention

maps are generated when the target focus plane is set to 1 and 7, respectively. FSCA

Pooling selectively attends to the layers of the 3D radiance feature representation that are

most relevant to the target focus plane.
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Chapter 6

Conclusion and Future Work

The first work presented in this thesis addresses the challenges of FQA for WSI. The

motivation arises from the urgent need for an efficient FQA model for high-throughput

WSI platforms. Based on prior knowledge about the WSIs and the imaging process, we

developed the FocusLiteNN network, which contains only a single kernel. This model sig-

nificantly reduces computational demands by 10, 000 times without compromising accuracy

compared to SOTA network architectures. This model has been adopted in the quality

control process in industry applications. Furthermore, we introduce the first open-source,

expert annotated FQA dataset named TCGA@Focus. It offers a comprehensive platform

for developing and evaluating new FQA models.

The second work introduced in this thesis is a IQA score fusion framework. It leverages

the strengths and mitigates the weaknesses of individual IQA models by fusing their scores,

resulting in a more robust model. This is achieved by incorporating both coarse-grained

and fine-grained uncertainty estimation at the model level and score level, respectively.

Based on MAP, this framework is the first unsupervised learning-based method for IQA

score fusion. Unsupervised training allows the model to be trained on a combination of

multiple datasets without the need for MOS as well as MOS alignment. Training on a

large dataset improves the generalizability and reduces the model’s bias.

The third project, virtual refocusing, represents a pioneering effort to address the out-

of-focus problems in WSIs. This model simulates the experience of continuously adjusting
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the microscope’s focus, allowing for a comprehensive examination of tissue structures at

varying depths without the need for physical slide presence. The input of the model is

an arbitrary number of images within a focal stack. By implicitly learning a continuous

3D radiance representation from the sparse inputs, the proposed model can refocus each

pixel to any focus plane according to a focus map. It also features a novel Focal Stack

Cross-Attention Pooling method that gathers the information within the focal stack based

on the focus map. A novel WSI distance measure WSI-DISTS is also used as the loss

function to improve the performance.

The methodologies and models developed in this thesis lay a foundation for further

research in several areas. Future studies of IQA for WSI can focus on more diverse dis-

tortion types other than out-of-focus blur. Developing an efficient autofocus system for

WSI scanners based on FQA is also an interesting topic. The IQA score fusion work can

be extended by using a more informative prior rather than uniform. The latent dimension

can also be made larger than one, which gives the model more flexibility.

For virtual refocusing, a critical step is implicitly reconstructing the 3D radiance field

from 2D images. This idea is similar to Neural Radiance Fields (NeRF), which can ex-

plicitly reconstruct a radiance field using images taken from various viewpoints. With

adjustments to the physics involved, NeRF can also be applied to transparent objects like

tissues. By incorporating NeRF into the refocusing model, the model can enhance its un-

derstanding of the 3D radiance of the tissue. Another improvement that can be made is

to incorporate the knowledge of the optical system into the refocus module. The virtual

refocusing model is trained on a single dataset captured with a specific optical setup. To

adapt it to a new scanner, we need to retrain or fine-tune the model on a new dataset. One

way to speed up the adaptation process is to incorporate PSFs of the new optical system

into the refocus module. This can be achieved by initializing several convolutional layers

with the PSFs and freezing them during training. When adapting to a new optical system,

we can simply change the PSFs without retraining.
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