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Abstract

The proceeding work details contributions to the state-of-the-art of velocimetry-based ex-
perimental fluid mechanics through the application of novel pressure and force estimation
methods to studies in bluff-body aerodynamics and the problem of vortex-induced vibra-
tions. Together, these techniques allow the measurement of fluid velocity and pressure,
in space and time, for an area of interest surrounding an immersed body, along with the
estimation of the total forcing on the immersed body. Conditions for optimal data sam-
pling from the velocimetry data for the estimation of pressure fields are approximated
analytically, and a variety of common pressure integration techniques are compared. The
assessed integration techniques are characterized as having similar accuracy, with minor
differences in error sensitivity observed. The errors in the estimated pressure fields can
be expressed by considering the conformity of the obtained velocimetry data with the
governing equations of motion. Accordingly, an analytical framework is developed which
propagates the errors in the velocity field measurement through the pressure calculation.
A subset of the error terms may be resolved in practical experiments, while others must
remain neglected, in the absence of an extended model. Once equipped with the time-
resolved pressure field, a control-volume-based analysis then allows the estimation of time-
resolved forcing data. The dependence of the time-resolved force estimations on an often
neglected three-dimensional term in the planar momentum balance is shown analytically.
As a result, specific recommendations are provided for experimental best practises and field
of view selection for obtaining accurate time-resolved forcing data from planar velocime-
try measurements. Finally, following the previous methodological verification studies, the
post-processing techniques are applied to an experiment of a stationary cylinder and that
undergoing forced oscillations in a steady free-stream. The three-dimensional flow field
surrounding the body is statistically reconstructed along with the pressure estimates in
order to resolve the velocity/pressure and force distributions in the volume immediately
surrounding the cylinder.
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Chapter 1

Introduction

One of the principal motivations of the study of aerodynamics is the prediction of perfor-
mance variables which are dependent on the integrated forces acting on an immersed body.
In a basic aerodynamic design context, this means the prediction of the time-averaged lift,
drag, and aerodynamic moments over a range of operating conditions (Anderson 1999,
Anderson 2011). The temporal variations of the loading parameters may also be crucial,
such as in the study of most fluid-structure interactions (FSI), where the dynamics is often
unsteady (Bearman 1984). Moreover, in the case of flexible structures, the stresses act-
ing on the immersed body are of further interest, as they influence local deformations of
the body and consequently may strongly influence the flow development (Dowell and Hall
2001).

For FSI systems, the level of analysis needed to characterize system performance, in
principle, expands in complexity from time-averaged measurements (figure 1.1a), time-
resolved measurements (figure 1.1b), to full spatio-temporal measurements (figure 1.1c)
depending on the characteristics of the structural response of the immersed body. Cor-
respondingly, the respective experimental techniques required to obtain a high fidelity
inference of the principal performance parameters must follow a similar trend in complex-
ity.

The phenomena of Vortex-Induced-Vibration (VIV) is a FSI problem with two-way
coupling between the structural and fluid dynamics caused by the periodic forces induced
on bluff-bodies from von Kármán vortex shedding (Roshko 1955, Feng 1968, Williamson
and Govardhan 2004). In the case of a rigid body, with structural damping and stiffness
properties of the system determined at the end conditions (e.g., elastically supported cylin-
der, figure 1.1b), the fluid-induced forces (F(t)) and moments (M(t)) acting on the body
cause a structural response characterized by both translational (x(t)) and angular (θ(t))
displacement parameters. These forcing and response functions are the key performance
parameters of VIV, and they exhibit a complex dependence on a multitude of fluid flow
and structural parameters (Govardhan and Williamson 2000).

In experiment, the forcing and response functions may be measured by an apparatus
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Figure 1.1: Complexity of fluid-inducing forcing diagnostics for (a) stationary body, (b)
rigid body dynamics, and (c) flexible body dynamics.

equipped with a load cell and displacement sensors (Khalak and Williamson 1996, Dahl
et al. 2006); however, such an apparatus is limited to measurement of the integrated
loading. The distribution of loads along the span of the bluff-body provides a deeper
connection to salient elements of the flow development by permitting the analysis of the
effects of variations in vortex shedding phase, variations in the mode of vortex shedding,
and end conditions on the integrated loads (Morse et al. 2008). In the case of the stationary
cylinder, it has been shown (Norberg 2003) that isolating the sectional loading parameters is
necessary to compare data from different experimental facilities. An alternative method for
the estimation of the structural loads in VIV involves the use of Particle Image Velocimetry
(PIV) measurements to infer fluid pressure fields (van Oudheusden 2013) and structural
loads (Rival and Oudheusden 2017). However, when applied in practice in previous studies,
the results can often be subject to high uncertainty (van Oudheusden 2013) compared
to synthetic studies (Liu and Katz 2006, Charonko et al. 2010), due to either noisy data
sources in experiment or possible methodological errors. The technique is readily applicable
to both free and forced vibration experiments, allowing a detailed evaluation of the ability of
forced sinusoidal motion vibration experiments to emulate the flow development and forcing
present in free vibration (Bearman 2011). Furthermore, besides facilitating structural
loading estimates, the development of more accurate pressure inference techniques has
ancillary applications. For example, the quantification of aeroacoustic sources in a flow field
depends critically on an accurate inference of the spatio-temporal coherence of pressure
fluctuations near the surface of bodies of interest (Pröbsting et al. 2013) and the spectral
distribution of the fluctuations (Curle 1955, Haigermoser 2009).
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This thesis advances the state-of-the-art of Particle Image Velocimetry (PIV) measure-
ments to estimate the spatio-temporal evolution of fluid pressure and the temporal evo-
lution of integrated loads. The developments are applied to the flow over stationary and
oscillating uniform, circular cylinders in order to validate the accuracy of the methodology
and provide enhanced diagnostics for these flows. The time-resolved pressure fields and
attendant structural loads facilitate the identification of physical mechanisms in the wake
vortex dynamics related to the flow-induced forcing, which can be exploited for simplified
modelling of the fluid forcing function to reproduce response parameters in vortex-induced
vibrations (VIV). Further, the ability to construct low-order models and estimate the
three-dimensional flow state from a combination of PIV measurements is considered.

1.1 Motivation

The developments enclosed in this thesis pertain to problems in bluff body aerodynamics
with a specific focus on the flow over circular cylinders and those undergoing VIV. In addi-
tion, contributions to the development of data post-processing methodologies for Particle
Image Velocimetry (PIV) measurements, including the reduction and estimation of their
uncertainty, are made to support the undertaken experimental investigations.

A primary impetus for the study of the flow surrounding cylindrical bluff bodies is to
understand the flow-induced forces. For fluid structure interaction problems, the struc-
tural dynamics becomes essential in a complete description of the physics, as a response
may be excited by the flow-induced fluctuating loads. When dominant vibrational modes
are excited by periodic vortex shedding in the wake of the cylinder, the ensuing vibra-
tions are termed Vortex Induced Vibrations (VIV). Broad-band fluctuations caused by
incoming free-stream turbulence typically do not cause significant vibration compared
to those induced by vortex shedding, which have been shown to reach response ampli-
tudes up to two cylinder diameters in laboratory and field measurements (Bearman 1984).
Characterization of the VIV of cylindrical bluff bodies entails the amplitude (A∗) and fre-
quency (f ∗) responses, as well as forcing function (F(t)), and is complicated by dependence
on a number of structural, fluid, and geometric parameters (Williamson and Govardhan
2004). In general, the parameters which most significantly affect VIV include Reynolds
number (ReD = U0D/ν), mass ratio (m∗ = 4m/ρfluidD2L), structural damping ratio
(ζ = c/2

√
k(m+mA)), and reduced velocity (U∗ = U0/fnD). Detrimental VIV occur in

a variety of hydrodynamic applications, such as deep water oil and gas risers, submerged
floating tunnels, tethered structures, and marine vehicles, as well as in heat exchangers
and general civil structures (Roshko 1955, Bearman 1967, Gerrard 1978, Zdravkovich 1981,
Roshko 1993, Williamson 1996c). The use of VIV for energy harvesting (Bernitsas et al.
2008, Grouthier et al. 2014) has also been explored. With cylindrical bluff bodies being
ubiquitous in engineering design, and the parameter space pertaining to vortex induced
vibration (VIV) quite large, the full characterization of the vibrational response remains an
area of active research (Williamson and Govardhan 2008, Bearman 2011, Wu et al. 2012,
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Liu et al. 2020).
The forcing mechanism which gives rise to VIV for cylindrical bodies is the periodic

loads transferred to the structure by fluctuating surface pressures induced from periodic
vortex shedding in the wake (Williamson 1996c, Norberg 2003). Initially, the forcing is
independent of the presence of a response; however, it undergoes substantial modulations
as a result of the response, and the system exhibits strong two-way fluid-structure coupling.
When the vortex shedding frequency (fs) is in proximity to the structural natural frequency
(fn), a strong structural response occurs. Previous studies have approached the problem of
VIV from two different paradigms: (i) the study of free vibrations, in which the response is a
natural consequence of the experimental conditions, and (ii) the study of forced vibrations,
in which the structure is actuated with ideal sinusoidal vibrations at a prescribed amplitude
ratio (A/D) and reduced velocity (U0/Dfn).

However, not all cases studied in forced vibration may be physically realizable in free-
vibration, as VIV will only occur naturally if the integral energy transfer from the fluid to
the structure is positive over a period of a shedding cycle. Such energy transfer is highly
dependent on the phase difference (φ) between the fluctuating side force on the cylinder
and the response of the cylinder, and is dependent on both the Reynolds number and the
wake vortex topology. It is unclear, and the subject of some discussion in the literature,
how well forced vibration cases replicate the forcing functions for the corresponding free
vibration case, due to the single harmonic assumption applied and the differing flow histo-
ries (Williamson and Govardhan 2008, Bearman 2011). Different modes of vortex shedding
can create deviations from the assumed sinusoidal response used in modelling forced vibra-
tion studies. Particularly for long slender bodies, the harmonics of the shedding frequency
2fs, 3fs have been shown to dominate the response trajectory (Wu et al. 2012), and at
low mass-ratios, the response can be characterized by multiple frequencies (Khalak and
Williamson 1999, Williamson and Govardhan 2008).

A variety of analytical and semi-empirical models have been proposed to approximate
a multitude of the fluid structure interaction characteristics of VIV. Such models rely on
appropriate ansatz of the forcing function induced by the fluid on the vibrating structure
(Facchinetti et al. 2004, Gabbai and Benaroya 2005) and range from simple harmonic
models to more complex decompositions of the fluid induced forcing function. The research
proposed herein is motivated by the need to estimate forcing on cylindrical bluff-bodies
undergoing free vibration without affecting the structural response, while allowing a more
in depth analysis of the fluid forcing by facilitating the estimating of sectional loading
parameters. This can be achieved using Particle Image Velocimetry (PIV) measurements
and data assimilation, including pressure estimation.

With recent developments in Time-Resolved Particle Image Velocimetry (TR-PIV)
measurements, time resolved pressure estimation (van Oudheusden 2013) is possible from
the velocity field data, and structural loads can be estimated through an appropriate
control volume formulation (Noca et al. 1999, van Oudheusden et al. 2007). However,
instantaneous pressure estimates obtained from PIV measurements are known to suffer
from considerable errors in experiment, with correlation coefficients with embedded sur-
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Figure 1.2: Applications of pressure from PIV flow diagnostics.

face pressure transducers reported to be approximately Cpp ≈ 0.6 − 0.8 (e.g., de Kat and
van Oudheusden 2012, Ghaemi et al. 2012, Azijli et al. 2016, Schneiders et al. 2016b). Sim-
ilar magnitudes of errors can be observed in instantaneous structural loading estimates ob-
tained from PIV measurements (Poelma et al. 2006, Ragni et al. 2009, DeVoria et al. 2014),
particularly when two-dimensional techniques are applied when strong three-dimensional
flows are present (Lucas et al. 2017). As a result, there is a need for more clarity on
the dominating sources of uncertainty arising when applying time-resolved pressure and
load estimations in experiment, as well as methods for their estimation and reduction.
The acquisition of PIV-based pressure fields can serve numerous experimental diagnostic
goals, a selection of which are summarized in figure 1.2. They may be employed, in con-
junction with PIV velocity fields and their derivatives, to estimate time-resolved integral
loads and local surface pressure distributions (figure 1.2a), to estimate acoustic sources
through aeroacoustic analogies, such as Curle’s analogy (Curle 1955), which incorporates
scattering and diffraction effects at solid boundaries (figure 1.2b), to construct a statisti-
cal analysis of turbulence through the Reynolds-averaged Navier-Stokes equation (RANS)
in the entire flow field (figure 1.2c), or to track vortices by identifying the trajectories
of pressure minima in the fluid (figure 1.2d). These diagnostics are, for the most part,
inaccessible experimentally through traditional measurement techniques, such as surface
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pressure transducers or probe measurements. So, while the developments in this thesis
are primarily targeted towards estimates of instantaneous loads, they serve to bolster a
broader range of experimental diagnostics.

Due to the requirement of resolving the entire flow field surrounding the body of interest,
planar techniques are significantly more easily deployed than volumetric PIV techniques.
Thus, this thesis also explorers low-order modeling to estimate salient features in three-
dimensional flows from planar measurements, including total loading estimation.

1.2 Objectives

The work completed in this thesis aims to refine a methodological pipeline for fluid me-
chanics experiments that infers both time-resolved pressure fields and structural loads
surrounding an immersed body. Towards this end, the the following objectives summarize
the efforts of the thesis work:
(i) Benchmark most common pressure integration algorithms for use with experimental

velocimetry data in bluff body wakes, and select an algorithm for further use through
a comparative analysis.

(ii) Determine the limiting and optimal conditions for the use of pressure integration
algorithms in experimental bluff body wake measurements.

(iii) Develop a theoretical framework for the analysis of errors in pressure integration
from velocimetry data. Determine to what extent these errors may be inferred and
corrected for through additional modelling leveraging the governing equations.

(iv) Determine the limiting conditions for the use of control volume-based structural
loading estimates in experimental practice.

(v) Unify the methodological developments and benchmark the accuracy of inferring the
pressure fields and structural loads from velocimetry data for a challenging experi-
mental scenario of a cylinder undergoing vortex-induced vibration.

1.3 Overview of thesis content

The results chapters of the thesis are a collection of manuscripts published in various
journals or conference proceedings, as noted in the acknowledgements section.

Chapters 3-5 deal solely with the acquisition of pressure field data from PIV data.
Chapter 3 benchmarks four pressure integration algorithms and develops complementary
guidelines for the design of experiments to reduce errors. Chapters 4 and 5 pertain to the
development of a physics-based framework for increasing the accuracy of Poisson equation-
based pressure integration along with facilitating error estimation.

Chapter 6 investigates the momentum-based control volume analysis employed to esti-
mate instantaneous loads from planar PIV and PIV-based pressure data. The form of the
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dependence of structural loading estimates based on planar estimates on three-dimensional
terms is made explicit and consequent recommendations are made towards minimizing er-
rors due to flow three-dimensionality.

Chapter 7 deals with the analysis of the forcing function in vortex-induced vibrations,
leveraging the techniques developed in Chapters 3-6. The methodological developments
yield time-resolved forcing estimates from PIV measurements for a stationary and vibrating
cylinder in cross-flow.
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Chapter 2

Background

A review of the published literature is presented here to frame the motivation for the thesis
objectives within the current state-of-the-art, and introduce the reader to mathematical
frameworks underlying the areas of research to which the thesis contributes. This serves as
an instructive, but not exhaustive, discussion of content built upon in the thesis. Section
2.1 provides an overview of the characteristics and dynamics of the von Kármán wake for
the prototypical flow around an infinite, uniform diameter, stationary cylinder in a constant
cross-flow. Section 2.2 then reviews the vortex-induced vibrations of elastically supported
cylinders in cross-flow. Particular attention is paid to the case of simply supported, one
degree-of-freedom vortex-induced vibration, and efforts towards simplified models of the
coupled wake and structure dynamics. These sections establish a fundamental basis for
the physical analysis of the flows encountered in the thesis. Following that, section 2.3
introduces particle image velocimetry as a measurement technique, and sections 2.4 and
2.5 review the current state-of-the art in the estimation of pressure fields and structural
loads from particle image velocimetry measurements, thereby establishing a basis for the
methodological development and comparisons explored in the thesis.
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2.1 Cylinder wake

Flow past a circular cylinder in a cross-flow configuration is fundamental to the study of
bluff body aerodynamics. The configuration is depicted in figure 2.1, where a long cylinder
of constant diameter, D, is immersed in a uniform free stream of fluid of density, ρ, and dy-
namic viscosity, µ, with a constant free stream velocity, U0. Features of the incompressible
wake development are dependant exclusively on Reynolds number (ReD = ρU0D/µ) for
an infinite, smooth cylinder in undisturbed cross-flow, and von Kármán vortex shedding is
present over a wide range of ReD encompassing various practical applications (Provansal
et al. 1987). The unsteady wake vortex dynamics influence the mean and fluctuating struc-
tural loads on the cylinder. Critically, wake induced pressure fluctuations at the cylinder
surface may lead to the emergence of significant structural vibrations (Zdravkovich 1981,
Blevins 1985, Bearman 2011) and acoustic noise (Blevins 1984). The cylinder wake is
receptive to both passive (Bearman 1965, Zdravkovich and Volk 1972, Zdravkovich 1981,
Bouak and Lemay 1998, Sueki et al. 2010, Morton and Yarusevych 2014, McClure et al.
2015) and active control methods (Fransson et al. 2004, Choi et al. 2008, Jukes and Choi
2009), motivating the need for a detailed quantitative understanding of the wake structure
through laminar and turbulent flow regimes.

For ReD & 50, the flow development in the wake of a circular cylinder is dominated by
vortex shedding, which is initiated by a global instability in the flow (Williamson 1996c)
where opposite signed vortices form in the near wake and advect downstream to form
an asymmetric vortex street. Incoming flow stagnates at the front of the cylinder and
is redirected around the sides forming a boundary layer at the surface. The boundary

Figure 2.1: (left) Configuration of circular cylinder in cross-flow and (right) instantaneous
streamlines (blue lines) and velocity vectors (black vectors) in the cylinder wake at ReD =
4100.
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layer separates at a point within approximately 80− 130° from the front stagnation point
due to the presence of an adverse pressure gradient, with the exact position dependent on
the Reynolds number (Wu et al. 2004). The separated shear layers roll-up into vortices
in the near wake alternately, and the vortices detach into the wake when the supply of
vorticity from each shear layer is cut-off by the shear layer roll-up from the opposing
side of the cylinder (Bearman 1967, Gerrard 1978, Roshko 1993, Williamson 1996c). The
vortices are shed quasi-periodically in a narrow frequency range, and the wake expands due
to momentum diffusion as the vortices are carried downstream in a stable configuration
(Kármán 1911). The shedding frequency (fs) is commonly expressed in non-dimensional
form as the Strouhal number (StD = fsD/U0), which remains approximately StD ≈ 0.2 over
a wide range of Reynolds numbers (Williamson 1996c, McClure and Yarusevych 2016b).

Knowledge of the spatial distribution of turbulent kinetic energy (TKE) in the flow,
with velocity fluctuations being dominated by vortex shedding in the wake, along with
the corresponding frequency spectra, is critical to the analysis of the flow. Since pressure
and velocity fluctuations near the surface of the cylinder are dominated by various aspects
of vortex shedding, a detailed understanding of both the time-averaged and time-resolved
structural loads, along with their relation to the flow development in the wake, is necessary
to guide structural design.

2.1.1 Effect of Reynolds number on wake vortex shedding

The topology of the vortices in the wake of a circular cylinder changes significantly with
Reynolds number. The wake vortices are visualized using the Q-criterion (Hunt et al. 1988)
in figure 2.2 for a range of ReD spanning the transition to turbulence. The Q-criterion is the
second invariant of the velocity gradient tensor ∇u and is defined according to equation
2.1.

Q = 1
2(||Ω||2 − ||S||2) (2.1)

Ωij = 1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.2)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.3)

For ReD & 50 (Provansal et al. 1987, Williamson 1989, Williamson 1996c), vortex shed-
ding is initiated by a global instability, leading to the alternate roll-up of the shear layers in
the near wake and the development of two-dimensional wake vortices. Three-dimensional
vortex structures first appear for 190 . ReD . 260, where an elliptic instability (mode A)
of the primary vortex cores causes secondary streamwise vortex loops between subsequent
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primary spanwise rollers (Williamson 1996a). For 230 . ReD . 250, a hyperbolic insta-
bility (mode B) develops intermittently in the saddle point region between the primary
rollers, characterized by smaller scale streamwise vortex pairs (Williamson 1996b). Fur-
ther increases in ReD for 260 . ReD . 1000 lead to increased three-dimensionality and fine
scale streamwise vortices forming in the wake region. Tomographic PIV measurements in
Scarano and Poelma (2009) show the existence of sustained rhombus shaped vortex cells
for ReD = 360, which share similarities to vortex dislocations identified in transitional flows
(Williamson 1992). For 1.0× 103 . ReD . 2.0× 105, the convective Kelvin-Helmholtz in-
stability is amplified sufficiently in the separated shear layer, causing smaller scale vortex
roll-up in the separated shear layers before the formation of wake vortices, and primary
vortices are fully turbulent during their formation. Beyond ReD ≈ 2.0×105, the separated
shear layer may reattach on one or both sides of the cylinder after undergoing transition,
leading to separation bubble formation and a drastic narrowing of the wake. This regime
is the so-called critical regime, or drag crisis (Zdravkovich 1981), where flow reattachment
leads to a large reduction in the form drag (CD,p) on the cylinder. Above ReD ≈ 1.0× 106,
in the post-critical regime, transition occurs in the boundary layer before separation and
eliminates the presence of separation bubbles (Williamson 1996c).

The streamwise wavelength of the von Kármán vortex street (λx = Uc/fs ≈ 4D) is
characterized by the frequency of vortex shedding and the convective speed of the wake
vortices (Huang et al. 2006). The mode A instabilities occur with spanwise wavelengths of
λz = 3 − 4D which decrease with increasing Reynolds number (Williamson 1996b). The
mode B instabilities occur with spanwise wavelengths of approximately λz = 1, scaling
with the thickness of the vorticity layer in the braid region between vortex cores, yielding
a relatively constant wavelength for ReD = 300 − 5540 (Williamson 1996b, Scarano and
Poelma 2009, McClure et al. 2019). Measurements of the spanwise wavelengths of the three-
dimensional structures have been obtained based on flow visualization images (Wu et al.
1994a, Wu et al. 1994b, Zhang et al. 1995, Williamson 1996a), as well as cross correlation
of the streamwise velocity signal along the span (Mansy et al. 1994). Spanwise wavelengths
based on spatial cross correlations of the spanwise vorticity suggest the existence of two
characteristic wavelengths for the three-dimensional vortices (Scarano and Poelma 2009),
a smaller wavelength defined by twice the distance between cores of vortex pairs (2λzl =
0.5−0.75), and a larger wavelength defined by the distance between pairs (λz = 0.8−1.3).
In the shear layer transition regime (ReD & 1000), the streamwise wavelength of the shear
layer vortices varies significantly with ReD, as their formation frequency relative to the
von Kármán shedding frequency increases proportional to Re0.67

D (Prasad and Williamson
1997). Following formation, the shear layer vortices deform substantially (Bays-Muchmore
and Ahmed 1993) and either amalgamate into the von Kármán rollers or are tilted and
strained further in the regions between the rollers (Wei and Smith 1986).
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Figure 2.2: Vortex shedding topological regimes for (a) ReD = 100, (b) ReD = 220,
(c) ReD = 300, (d) ReD = 800, and (e) ReD = 1575. Vortices are visualized using
the Q-criterion (Q = 0.01 s−1) (Hunt et al. 1988), coloured by the streamwise vortic-
ity.. Prominent secondary vortex structures are highlighted with white dashes (McClure
et al. 2019).

2.1.2 Structural loading

A mean drag force and instantaneous fluctuating lift and drag components act on a cylinder
in uniform cross-flow (Wieselseberger 1922, Norberg 2003). The magnitudes and instanta-
neous characteristics of the forces acting on the cylinder vary considerably with Reynolds
number, as the related vortex topology in the wake undergoes significant changes (Wieselse-
berger 1922, Williamson 1996c, Norberg 2003).

Wieselseberger (1922) performed drag measurements covering a considerable Reynolds
number range (5 < ReD < 5×105), and the results are corroborated by multiple subsequent
studies (Thom 1928, Tritton 1959). In laminar flow regimes, the drag coefficient shows
exponential decay with Reynolds number (Wieselseberger 1922, Tritton 1959, McClure
and Yarusevych 2016b, McClure et al. 2019), as the viscous stresses lose their dominance.
Thereafter, the drag coefficient levels off to CD ≈ 1 over a wide range of Reynolds numbers
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Figure 2.3: Compilation of experimental and numerical measurements of the sectional
fluctuating lift coefficient with varying Reynolds number. Figure reprinted from Norberg
(2003).

in the sub-critical flow regimes (200 < ReD < 2.0× 105). Once critical Reynolds numbers
(ReD > 2.0 × 105) are reached, shear layer reattachment occurs and leads to a reduction
of over 50% in the mean drag coefficient (Wieselseberger 1922).

Periodic vortex shedding leads to out of phase fluctuating side pressures, and is the
dominant contributor to the fluctuating lift and drag forces (Norberg 2003). The RMS
fluctuating lift coefficient (C ′L) is concentrated at the vortex shedding frequency (fS),
while the RMS fluctuating drag coefficient (C ′D) has significantly smaller amplitude and
is concentrated at twice the vortex shedding frequency (2fS) along with low frequency
pulsations (Davies 1976). Figure 2.3 illustrates the variation of the sectional fluctuating
lift coefficient with Reynolds number. From the onset of vortex shedding, the lift coefficient
increases monotonically with Reynolds number up to the onset of three-dimensionalities
(ReD ≈ 190). Following this, the fluctuating lift decreases rapidly and settles into a so
called lift-trough within the shear layer transition regime (500 < ReD < 0.6 × 104, figure
2.3). Following the onset of the shear layer transition regime, a distinct change in flow
development occurs for ReD ≥ 0.5 × 104 (Norberg 1987, Lin et al. 1995), characterized
by a steady increase in the magnitude of surface pressure fluctuations and fluctuating lift
with increasing Reynolds number. This is accompanied by a decrease in base pressure
(Cbp), due to a reduction in the vortex formation length (lf ). The change in formation
length is the primary cause of the increased surface pressure and lift fluctuations, with the
forming vortices inducing stronger periodically impinging flow on the aft portion of the
cylinder (Norberg and Sunden 1987). For increasing ReD in this regime, the bandwidth
of the shedding frequency spectral peak also increases by an order of magnitude (Norberg
and Sunden 1987).

The total RMS lift acting on a finite cylinder length (CL′,T ) is related to the sectional
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lift coefficient (C ′L), however, the three-dimensionality of the vortex shedding across the
cylinder span means cancellations of forcing occur due to phase differences across the
length. The relationship between the sectional lift RMS and the lift on a finite span segment
of length L may be expressed exactly by utilizing a two-point spanwise correlation function
RLL(s) of the lift force (Equation 2.4). In practise, the spanwise lift two-point correlation
can be approximated using a spanwise pressure two-point correlation at a constant surface
angle near separation (Rpp), or a wake velocity survey (Ruu) near the separated shear layer
(Ribeiro 1992)

CL′,T/CL′ = 1
L

[
2
∫ L

0
(L− s)RLL(s)ds

]1/2

. (2.4)

It can be deduced from wake measurements of the flow across the Reynolds number
range that primary factors affecting the fluctuating sectional loading on a cylinder are
(i) the vortex formation length (lf ) (Norberg 1987, McClure et al. 2015, McClure and
Yarusevych 2016a), (ii) the zero-delay cross correlation of fluctuating pressures on opposing
sides of the cylinder (Norberg 2003), and (iii) the circulation of the wake vortices (McClure
and Yarusevych 2016b). A decreased formation length increases the magnitude of the
induced pressure fluctuations at the surface since the vortex formation is closer to the
surface, higher asymmetry between the fluctuating side pressures results in higher net lift
fluctuations, and higher strength vortex shedding will naturally lead to higher induced
pressure fluctuations at the surface. Increases in the base pressure (Cbp) are known to
correlate with increases in vortex formation length (lf ) (Roshko 1993, McClure et al. 2015,
McClure and Yarusevych 2016a), and with the base pressure proportional to the total
pressure drag, the magnitudes of the mean and fluctuating loads are hence related, both
reaching minimums for 500 ≤ ReD ≤ 5000. The relationships inferred in the discussion are
hence CD ∝ 1/Cbp, Cbp ∝ lf , and CL′ ∝ 1/lf .

2.2 Vortex-induced vibrations

The results of investigations in vortex-induced vibration of bluff bodies has been compiled
in a number of comprehensive reviews, including Sarpkaya (1979), Bearman (1984), Khalak
and Williamson (1999), Leonard and Roshko (2001), Sarpkaya (2004), Williamson and
Govardhan (2004), Williamson and Govardhan (2008), Bearman (2011), and Wu et al.
(2012), and the associated modeling perspectives discussed in Parkinson (1989), Facchinetti
et al. (2004), and Gabbai and Benaroya (2005).

Due to the induced fluctuating loads, vortex shedding in the wakes of cylindrical
bluff-bodies may excite structural vibrations (Zdravkovich 1981, Blevins 1985, Bearman
2011). The characteristics of the vibration response and the fluid forcing are primarily
dependent on the following four parameters (Sarpkaya 2004): (i) the reduced velocity
Uj = U0/fnD, which describes the ratio of the vortex shedding frequency for a sta-
tionary cylinder (fs ≈ 0.2U0/D) to the structural natural frequency, (ii) the mass ratio
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Figure 2.4: Definition of structural and fluid parameters.

m∗ = msys/md, which is the ratio between the mass of the system and the mass of fluid it
displaces when immersed, has influence on inertial forces resulting from the oscillation of
the cylinder, (iii) the damping ratio ζ, which dictates the energy dissipated structurally,
and (iv) the Reynolds number ReD = U0D/ν.

2.2.1 One degree-of-freedom cylinder vortex-induced vibration

Since the amplitude of the response of a cylinder undergoing VIV is typically much higher
in the transverse direction (Bearman 2011), a large number of studies are confined to an
elastically supported cylinder which only allows transverse vibration, eliminating any in-
line direction response. For a rigid cylinder constrained to oscillate only in the direction
transverse of the flow direction, the physical parameters are defined in figure 2.4. In this
work, the convention of Khalak and Williamson (1999) is adapted for the non-dimensional
response, forcing, and physical parameters, which is included in table 2.1 for easy reference.

In general, the problem of VIV assumes the structural and physical properties of the
cylinder and fluid are known beforehand. That is, the cylinder diameter (D), mass (m),
damping (c) and stiffness (k), and the fluid free-stream velocity (U0), fluid density (ρ),
and fluid viscosity (µ) are known. The task is then to predict VIV response (y(t)) and
fluid-induced forcing (F(t)) characteristics, in particular, their amplitudes and spectral
distribution. The associated governing equation of the forced oscillator is given by equation
2.5.

mÿ + cÿ + ky = F (2.5)

The first studies of the VIV of cylinders were conducted at high mass ratios in air
and high mass damping (m∗ζ), and found that a response was excited in a band of re-
duced velocities of 5 < U∗ < 8 (Feng 1968), where the Strouhal frequency nears the
structural natural frequency. Generally, the combined mass damping parameter has been
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Group Notation Equation

Mass ratio m? m

πρD2L/4

Damping ratio ζ
c

2
√
k(m+mA)

Reduced Velocity U? U0

fnD

Amplitude ratio A?
y0

D

Frequency ratio f ?
f

fn

Streamwise force coefficient CX
FX

1
2ρU

2
0DL

Transverse force coefficient CY
FY

1
2ρU

2
0DL

Reynolds number Re ρU0D

µ
† When the subscript denoting streamwise of transverse direction is
absent, transverse direction is to be assumed.

Table 2.1: Non-dimensional groups in VIV.

shown to govern the peak amplitude response, with a functional relationship often shown
on a so-called Griffin plot (Williamson and Govardhan 2008). However, while peak ampli-
tude is predicted well by m∗ζ, subsequent study of vibrations at low mass ratio (Khalak
and Williamson 1999) found that the band of reduced velocities where VIV occurs can
be widened by decreasing the mass ratio while maintaining constant mass damping, ex-
tending the synchronization regime (Williamson and Govardhan 2008). In addition, the
characteristics of the amplitude response changed for a cylinder with low mass ratio and
low mass damping. Figure 2.6 shows the amplitude response as a function of the reduced
velocity. For high mass damping, the response consists of two branches, an initial excita-
tion branch and a lower branch (Khalak and Williamson 1997, Govardhan and Williamson
2000). The transition between branches exhibits hysteresis (Khalak and Williamson 1999).
For low mass damping, the amplitude response is characterized by higher magnitudes and
is excited over a wider range of U∗. Moreover, an additional upper branch is observed.
The upper branch shows hysteresis with the initial excitation branch, but the change to
the lower branch instead is characterized by intermittent switching between the vibration
modes (Khalak and Williamson 1999, Williamson and Govardhan 2008). The transition
from the initial to upper branch of responses is related to a switching of vortex shedding
mode, from 2S to 2P (Khalak and Williamson 1999), where 2S refers to a traditional von
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Figure 2.5: Structural response and fluid forcing.

Kármán vortex street, and 2P refers to the formation of two pairs of counter-rotating vor-
tices during a single shedding cycle. The transition to the lower branch, however, maintains
the 2P mode, or switches to a non-synchronized shedding pattern. The jump in response
amplitude is related to a significant change in shedding timing relative to the response,
thus altering the energy transfer from the fluid forcing to the structure (Williamson and
Govardhan 2008).

In the region of excited vibrations, the frequency response may lock in to the natural
frequency of the structure over a range of reduced velocities in the lower branch (Govardhan
and Williamson 2000, Williamson and Govardhan 2008). As a result, the vortex shedding
frequency breaks the Strouhal number relationship for stationary cylinders significantly in
this region. However, the lock-in reduced frequency only matches the natural frequency
f ∗ ≈ 1 when the mass ratio is significantly large. For lower mass ratios, the frequency is
shown to lock in up to f ∗ ≈ 1.4 and remain constant over a range of reduced velocities
(Khalak and Williamson 1997, Gabbai and Benaroya 2005). The region where the response
frequency and shedding frequency are matched is referred to as the synchronization region.
In this region, a dramatic increase in correlation of the shedding along the span is observed
when A∗ > 0.05. Additionally, the strength of the shed vortices in the synchronization
region increases significantly when reduced velocity is increased above the resonant point,
as the shedding frequency remains relatively constant while the free-stream velocity is in-
creased (Bearman 1984). The dependence of the maximum lock-in frequency attainable on
m∗ in the synchronization region is described well by f ∗ =

√
(m∗ + 1)/(m∗ − 0.54), defin-

ing a nearly constant frequency in the lower response branch (Govardhan and Williamson
2000). The formulation indicates that, when a critical mass is reached, the synchronization
region becomes infinite, hence for m∗ < 0.54, large amplitude vibrations occur even when
reduced velocities tend to infinity, and the lower branch is never attained (Williamson
and Govardhan 2008). Instead, the response frequency continues to increase linearly with
U∗ according to the Strouhal relationship as in the upper branch before synchronization
(Govardhan and Williamson 2000). For reduced velocities preceding the synchronization
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Figure 2.6: Amplitude response for cylinder undergoing transverse vibrations with high
(upper) and low (lower) mass damping. Figure reprinted from Govardhan and Williamson
(2000).

region, the response is dictated by both the shedding frequency fs and natural frequency
fn (Khalak and Williamson 1999).

2.2.2 In-line and transverse vortex induced vibration of a cylin-
der

For a wide range of parameters, the results of previous studies indicate that the addition
of in-line vibrations does not affect the system response branches significantly (Jauvtis and
Williamson 2004, Williamson and Govardhan 2008). However, at low mass ratios m∗ < 6,
a unique mode appears yielding a super-upper branch with A∗y ≈ 1.5 and A∗x ≈ 0.3,
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corresponding to a 2T mode of shedding where a triplet of vortices is shed each half cycle
(Williamson and Govardhan 2008).

For the initial branch, the in-line response amplitudes are negligible, besides a region
corresponding to when the dominant frequency of the drag forcing function approaches
the cylinder natural frequency. Since the drag force fluctuations are centred at twice the
vortex shedding frequency, this region is centred around a reduced velocity of U∗ ≈ 2.5,
compared to U∗ ≈ 5 for the dominant transverse response caused by the lift force fluctu-
ations centred at the shedding frequency. In this region, the in-line amplitude response
may reach appreciable amplitude, and alterations in the shedding mode are observed for
1.25 < U∗ < 2.5, where symmetric shedding occurs, and 2.7 < U∗ < 3.8, where asymmet-
ric shedding occurs (Sarpkaya 2004). At higher reduced velocities in the initial branch, a
near negligible in-line amplitude response is observed; however, in both upper and lower
response branches, significant in-line vibrations can be observed (Jauvtis and Williamson
2004).

2.2.3 Modelling of Vortex-induced vibration

Due to the vast parameter range underlying the dynamics of VIV reviewed previously, i.e.,
the dependence on four non-dimensional parameters in just the simplest one degree-of-
freedom case, considerable effort has been made in dynamics modelling to better synthesize
the available experimental data for predictive use in a wider range of operating conditions.
A selection of these models along with their utility and limitations are discussed herein.

Single harmonic assumption

The equations of motion for one-degree of freedom VIV can be simplified greatly by as-
suming both the response of the cylinder (y(t)) and the fluid-induced forcing acting on the
cylinder (F (t)) are single harmonic functions (Khalak and Williamson 1999) of the same
angular frequency (ω), offset by a phase difference (φ).

y(t) = y0sin(ωt) (2.6)

F (t) = F0sin(ωt+ φ) (2.7)

Substituting the harmonic ansatz into the governing equation 2.5 leads a separation into
two coefficient equations for the response amplitude and frequency:

y0 = F0 sinφ
cω

(2.8)

19



ω =
√√√√ ky0

F0 cosφ
ω2 +my0

(2.9)

Non-dimensionalization of equations 2.8 and 2.9 leads to the amplitude and frequency
equations of Khalak and Williamson (1999):

A? = 1
4π3

CY sinφ
(m? + CA)ζ

(
U?

f ?

)2

f ? (2.10)

f ? =
√
m? + CA
m? + CEA

(2.11)

where CEA is an effective added mass coefficient (equation 2.12), which includes the total
fluid-induced forcing acting in phase with the cylinder acceleration ÿ.

CEA = 1
2π3

CY cosφ
A?

(
U?

f ?

)2

(2.12)

The effective added mass coefficient does not have direct relation to the added mass coeffi-
cient CA (CA = 1 in inviscid flow), which is fundamental to the alteration of the structural
natural frequency when a cylinder is immersed in fluid mediums of varying density, since
it contains components from the wake vortex force. While equations 2.10 and 2.11 do not
yield direct a-priori predictive power, it will be shown they contain explanatory utility for
a number of phenomena encountered in VIV. The effective added mass acts to augment the
resonant frequency of the cylinder according to equation 2.11, while the forcing component
in-phase with the cylinder velocity (CY sinφ) determines the maximum amplitude of VIV
according to equation 2.10. This result has been used to propose widely used collapses of
VIV amplitude data. The peak VIV response occurs when the cylinder natural frequency
(fn) and wake vortex shedding frequency (fs) coincide, resulting in resonance conditions
where f ≈ fs ≈ fn. At resonance, f ? ≈ 1 and U? ≈ 5 can be assumed constants, and
according to equation 2.10, the peak amplitude response is inversely dependent on mass
ratio and damping structural parameters.

A? ∝ CY sinφ
(m? + CA)ζ (2.13)

It is assumed that the forcing CY sinφ is only a function of the amplitude, at resonance
conditions, and therefore an appropriate mass-damping parameter may be used to col-
lapse data over a wide range of operating conditions. A number of mass-damping terms
have been utilized, including, the stability parameter KS = π2m?ζ (Vickery and Watkins
1964), Scruton number Sc = πm?ζ/2 (Scruton 1965), and the Skip-Griffin parameter
SG = 2π3St2m?ζ (Skop and Griffin 1973). The Skop-Griffin is typically favoured in rigid
body VIV due to its ability to encompass effects of varying natural Strouhal number (St)
for different bluff bodies and Re. Various curve fits have been proposed based on collated
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data (Sarpkaya 1979) of peak amplitudes against SG; however, their use is complicated
by the existence of multiple amplitudes for a given SG based on which response branch
is active, corresponding to different vortex dynamics, and hence, a different functional
relationship between amplitude A? and the excitation forcing CY sinφ. The difference is
most pronounced for low values of mass-damping (Khalak and Williamson 1999). It is
also expected that there are certain regimes where independent variations of mass-ratio
m? will cause A? to vary by augmenting the frequency of vibration through equation 2.11
(Bearman 1984), violating the f ? ≈ 1 approximation utilized in the derivation of the mass-
damping proportionality argument. It has been demonstrated by experiments (Govardhan
and Williamson 2006) that the peak amplitude is determined uniquely by m?ζ for m? > 1.
Also, in turbulent regimes, increases in ReD increase peak amplitude response (Govardhan
and Williamson 2006). These effects can be incorporated in a modified Griffin plot which
provides a functional relationship which collapses peak amplitude data at a given ReD,
along with a renormalization parameter which scales the functional relationship based on
ReD.

Interestingly, the single harmonic assumption also implies that, if structural param-
eters are known, measuring the amplitude and frequency of a cylinder undergoing VIV
is sufficient to predict both the phase-lead and magnitude of the fluid-induced forcing, φ
and CY , respectively, using equations 2.14 and 2.15. However, agreement in experiment
using those equations to back calculate forcing characteristics is lacking, particularly at
high m?, presumably due to the associated amplification of errors in measurements of the
frequency f ? or other parameters (Khalak and Williamson 1999) or applicability of the
single harmonic assumption in single DOF VIV.

CY sinφ = 4π3A?(m? + CA)ζ
(U?/f ?)2f ?

(2.14)

CY cosφ = 2π3A?

(U?/f ?)2CEA (2.15)

2.3 Particle Image Velocimetry

The utility of the Particle Image Velocimetry (PIV) technique is primarily derived from
the ability to measure instantaneous velocities in a flow region of interest (Westerweel et al.
2013). Depending on the laser and camera configurations, it is possible to measure two or
three components of the velocity field in planar or volumetric regions of the flow (Elsinga
et al. 2006), and for many flows, acquisition times are now fast enough to resolve the
temporal evolution of the flow. PIV measurements hence directly permit the calculation of
instantaneous vorticity, rate of strain, other derivative-based metrics, and spatial/temporal
correlations. This yields a wealth of diagnostic capability compared to popular single-point
velocimetry techniques such as hot-wire anemometry (HWA) and laser-Doppler velocimetry
(LDV), leading to PIV’s dominant adoption in experimental fluid mechanics in the last 30
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Figure 2.7: Particle Image Velocimetry: principle of operation.

years (Westerweel et al. 2013).
The working principle of the PIV technique is described schematically in figure 2.7

using a planar, two-component measurement configuration. The idea is to measure the
fluid velocity by estimating the local displacements of tracer particles inserted into the
fluid. In a conventional application, the tracer particles (e.g., ≈ 10µm glass spheres in
water, or ≈ 1µm atomized liquid drops in air) are illuminated by two laser pulses with
a pulse separation, ∆tp, and images of the scattered light from the particles are recorded
in two separate frames by a digital camera (Raffel 2007). The displacement data of the
tracer particles can be measured by algorithms which track the displacement of individual
particles, or the image can be partitioned into interrogation areas containing multiple
particles, where the average displacements of the particles is evaluated on a statistical
basis. The former approach is typically denoted Particle Tracking Velocimetry (PTV),
while the latter is typically denoted Particle Image Velocimetry. The use of PTV typically
requires significantly decreased tracer seeding densities in order to avoid ambiguity in
the identification of matching tracer particles, resulting in decreased instantaneous spatial
resolution. On the other hand, PIV introduces spatial filtering effects over the size of the
interrogation areas, which affect velocity statistics.

Special care must be taken that the tracer particles faithfully track the fluid motion
(Melling 1997). This typically places significant constraints on the admissible size or liquid
of solid seeding particles, particularly in gas glows (≈ 1µm) Helium soap bubbles circum-
vent this in air flows by closer density matching with the fluid medium, allowing larger
tracer sizes suitable for larger scale experiments (Kühn et al. 2011, Scarano et al. 2015).
The same is true for typical seeding in water flows, such as hollow glass and polyethy-
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lene spheres in water flows, where the bulk tracer material density is comparable to water
density.

2.4 PIV-based Pressure

The common definition of pressure for a fluid continuum is found as an isotropic stress in
the constitutive relation for the stress tensor acting on a fluid element,

σij = −pδij + τij = −pδij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ δijλ

∂uk
∂xk

(2.16)

where local thermal equilibrium is assumed and a two-parameter linear model is employed
relating the viscous stresses to velocity gradients in the fluid. The mechanical pressure
(p̄) is defined in equation 2.17 as the negative one-third of the average compressive stress
acting on a fluid element and is hence invariant under coordinate rotations (White 2006).

p̄ = −1
3(σxx + σyy + σzz) = p− (λ+ 2/3µ)∂uk

∂xk
(2.17)

The mechanical pressure is equivalent to the thermodynamic pressure only when either
the fluid is incompressible (∂uk/∂xk = 0) or Stoke’s hypothesis is satisfied (λ+ 2/3µ = 0).
Stoke’s hypothesis is valid provided the fluid is Newtonian and the rates of expansion and
compression are small (Tavoularis 2005, Kundu et al. 2012). The flows encountered in
this thesis approximately satisfy both of these requirements, so mechanical and thermo-
dynamic pressures can be considered equivalent. Similarly, the incompressibility condition
eliminates any dependence of the stress tensor on the bulk viscosity (λ) in equation 2.16.

Substituting the stress tensor into the equation of motion for a fluid continuum in a
graviational field yields the familiar Navier-Stokes equation for an incompressible, Newto-
nian fluid, expressed in tensor notation in equation 2.18 and vector calculus notation in
2.19.

∂p

∂xi
= −ρDui

Dt
+ ρgi + µ

∂2ui
∂x2

j

(2.18)

∇p = −ρDu
Dt

+ ρg + µ∇2u (2.19)

By applying the divergence operator to both sides of the Navier-Stokes equations, the
Poisson equation for pressure may be arrived at, shown in equation 2.20. Expanding the
terms on the RHS of equation 2.20 and applying the zero velocity divergence condition
(∇ ·u = 0) for incompressible flow yields an alternate formulation of the Poisson equation
shown in 2.21,
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∇2p = f(u) =∇ · (−ρDu
Dt

+ ρg + µ∇2u) (2.20)

∇2p = −ρ∇ · (u ·∇)u (2.21)

where ∇2 is the Laplacian differential operator and is defined according to equation 2.22
in Rn.

∇2 = ∂2

∂x2
n

+ ∂2

∂x2
n−1

+ . . .
∂2

∂x2
2

+ ∂2

∂x2
1

(2.22)

Importantly, inspection of both the Navier-Stokes equations and the Poisson equation
reveals that the velocity field and its derivatives are the only dynamic variables needed to
specify the pressure gradients (equation 2.18) or the Poisson equation source term (equation
2.20. Therefore, the ability of PIV systems to measure the spatio-temporal evolution of the
fluid velocity field allows the inference of pressure fields through the governing equations.

The utility of spatio-temporally resolved fluid pressure estimations from Time-Resolved
Particle Image Velocimetry (TR-PIV) measurements has been demonstrated in a variety
of flows, including turbulent boundary layers (Ghaemi et al. 2012, Pröbsting et al. 2013,
Laskari et al. 2016, Schneiders et al. 2016a, Van der Kindere et al. 2019), jets (de Kat and
Ganapathisubramani 2013, Huhn et al. 2018, Sakib et al. 2021), bluff-body wakes (Fujisawa
et al. 2005, van Oudheusden et al. 2007, de Kat and van Oudheusden 2012, Dabiri et al.
2014, McClure and Yarusevych 2016a, McClure and Yarusevych 2016b, Pirnia et al. 2020,
Pallas and Bouris 2022), subsonic (van Oudheusden et al. 2006, van Oudheusden et al.
2007, Violato et al. 2011, Auteri et al. 2015, Jeon et al. 2018) and supersonic aerofoils
(van Oudheusden et al. 2007), aircraft propellers (Ragni et al. 2012), pulsatile diffusers
(Charonko et al. 2010), bubbles (Hosokawa et al. 2003), turbulent cavities (Liu and Katz
2006), and Savonius turbines (Murai et al. 2007). The estimation of pressure from PIV
data can be done in a number of ways, and many methodologies have emerged from the
results of various studies (Charonko et al. 2010, van Oudheusden 2013) to integrate either
the Navier-Stokes equations (equation 2.19) or the Poisson equation for pressure (equation
2.20) with appropriate boundary conditions. A detailed discussion of these methodologies
is left to the appropriate results sections in this thesis.

Regardless of the approach employed, accurate estimation of the material acceleration
(Du/Dt) is vital to each method, and often the viscous terms in equation 2.19 are ne-
glected (Ghaemi et al. 2012) for large Re > 1000 (van Oudheusden 2013). Random error
reduction in material acceleration estimates can be achieved by reconstructing the fluid
parcel trajectories over multiple time realizations (Violato et al. 2011, Novara and Scarano
2013, Pröbsting et al. 2013), filtering the velocity fields in a variety of ways (Charonko et al.
2010, Dabiri et al. 2014), or using a Taylor’s frozen field hypothesis for highly convective
flows (de Kat and Ganapathisubramani 2013, Laskari et al. 2016).

24



2.5 PIV-based Load Estimation

A number of velocimetry-based methods have been applied in various investigations for
the indirect measurement of fluid forces on a body in place of traditional force balance
measurements (Unal et al. 1997, van Dam 1999). The majority can be classified as mo-
mentum integral methods, which are based on conservation of linear momentum within
a control volume encompassing the model. Conservation of linear momentum for a fixed
control volume is given by equation 2.23 (van Oudheusden et al. 2007)

F(t) = −
∫∫∫

V

∂ρu
∂t

dV −
∫∫

S
ρ(u · n)udS +

∫∫
S
(−pn + τ · n)dS (2.23)

where V is the interior of the three-dimensional control volume, S is the outer boundary
of the control volume, and n is the unit normal vector on the boundary S.

Mean forces

For mean loading quantities, only boundary data are required for the pressure, velocity,
and velocity gradients (van Oudheusden et al. 2007), according to equation 2.24, which
assumes undisturbed free-stream quantities of a uniform streamwise velocity U0 at free-
stream static pressure p0. If the control volume is taken sufficiently large, some of the
boundary integral segments in equation 2.24 will evaluate to zero, such as the upstream
boundary terms, and the momentum flux integral at the transverse boundaries.

F(t) =
∫∫

S
ρ(u · n)(U0 − u)dS +

∫∫
S
((p0 − p)n + τ · n)dS (2.24)

The pioneering applications of this approach utilized wake surveys (Taylor 1938) and were
used primarily for mean drag computation on streamlined bodies. Such estimations uti-
lized a quadrilateral control volume with significant simplifications to Equation 2.23. The
incoming flow boundary is assumed to be uniform flow at U0 and the side boundaries are
either assumed to be at U0 or else a correction is applied to account for the boundary
momentum flux (Bohl and Koochesfahani 2009), or the CV shape is adjusted such that
side boundaries follow the mean streamlines of the flow (Neatby and Yarusevych 2012). At
the downstream boundaries, where complex wake interactions result in mean wake velocity
and pressure deficits, more careful validation of simplifying assumptions is required.

Instantaneous forces

In recent years, the development of time-resolved PIV measurements (Raffel 2007) and
pressure estimations from such measurements (Baur and Köngeter 1999, Gurka et al. 1999)
allowed the application of control volume analysis with minimal simplifying assumptions.

25



In general, the instantaneous loads can be evaluated by using the full control volume for-
mulation of the momentum equation (Equation 2.23). This is complicated by the addition
of a volume integral term, which can be challenging to measure accurately over an entire
domain, particularly near a surface, as well as a measure of the instantaneous pressure at
the boundary. The studies of Noca et al. (1999) and Unal et al. (1997) were pioneering
studies for load estimation from PIV data before pressure estimation techniques were in-
troduced. They utilized a velocity field quadrature in order to eliminate the pressure term
(Noca et al. 1999) from the control volume formulation or else explicitly calculated it from
the momentum equation (Unal et al. 1997) and utilized the entirety of the velocity field
information, including the volume integrated quantities, in order to estimate time-resolved
loads. Although sensitive to high random errors in experimental data, such techniques
employed with appropriate filtering showed promise in predicting the force on a forced
oscillating cylinder in quiescent and free-stream conditions (Unal et al. 1997, Noca et al.
1999).

Examples of more recent applications of control volume formulation for load estimation
include, but are not limited to, the following studies. Kurtulus et al. (2007) performed time-
resolved PIV measurements in order to calculate the unsteady loadings on a square-section
cylinder at a Reynolds number of 4890. Jardin et al. (2009) compared the unsteady-force
estimation acting on a hovering airfoil at low Reynolds numbers using both control volume
and vortex-parameterization methods. David et al. (2009) applied the classic control-
volume method to both experimental and synthetic flow fields so as to identify the effect
of various parameters such as spatial and temporal resolutions, as well as the out-of-plane
velocity component on the accuracy of forces estimation. In order to model fish swimming
dynamics, Lucas et al. (2017) utilized a PIV-based pressure solver and estimate the forces
and torques on a flapping foil by integrating the surface forces. Spoelstra et al. (2019)
capture the wake velocity deficit behind a passing cyclist with PIV measurements in a
two-dimensional plane in order to estimate mean drag forces.

Alternative formulations for time-resolved loading include a derivative-moment trans-
formation proposed in Mohebbian and Rival (2012) which replaces the volume integral
term in Equation 2.23, which is difficult to determine accurately near body surfaces in PIV
experiments, with a surface integral (equation 2.25).

F(t) = −ρ ∂
∂t

∫∫
S

x(u · n)dS − ρ
∫∫

S
u(u · n)dS −

∫∫
S
pndS +

∫∫
S
(τ · n)dS (2.25)

Alternatively, if the surface pressure distribution on the immersed structure is available,
the pressure loading can be determined from the surface integral:

F(t) =
∮
S
pndS (2.26)

With pressure loading being dominant over viscous loading for ReD > 20 (Wieselseberger
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1922, Thom 1928) for cross-flows over circular cylinders, it is a viable approach, although
care must be taken experimentally in order to measure near wall velocities accurately.
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Chapter 3

Optimization of Planar PIV-based
Eulerian Pressure Estimates in
Laminar and Turbulent Wakes

To survey the alternatives for obtaining pressure estimations from Particle Image Velocime-
try (PIV) data, the performance of four pressure estimation techniques were evaluated in
a bluff body wake. The results identified optimal temporal and spatial resolutions that
minimize the propagation of random and truncation errors to the pressure field estimates.
For pressure integration based on planar PIV, the effect of flow three-dimensionality was
also quantified, and shown to be most pronounced at higher Reynolds numbers down-
stream of the vortex formation region, where dominant vortices undergo substantial three-
dimensional deformations. The results of the present study provide a priori recommenda-
tions for the use of pressure estimation techniques from experimental PIV measurements
in vortex dominated laminar and turbulent wake flows.

This chapter is based on the journal article: McClure, J., and Yarusevych, S. (2017)
“Optimization of planar PIV-based pressure estimation in laminar and turbulent wakes,”
Experiments in Fluids, 58(5), 62.
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3.1 Introduction

The utility of spatio-temporally resolved fluid pressure estimations from Time-Resolved
Particle Image Velocimetry (TR-PIV) measurements (van Oudheusden 2013) has been
demonstrated in turbulent boundary layers (Ghaemi et al. 2012, Pröbsting et al. 2013,
Laskari et al. 2016, Schneiders et al. 2016a), jets (de Kat and Ganapathisubramani 2013),
bluff-body wakes (Fujisawa et al. 2005, van Oudheusden et al. 2007, de Kat and van
Oudheusden 2012, Dabiri et al. 2014, McClure and Yarusevych 2016b), subsonic (van
Oudheusden et al. 2006, van Oudheusden et al. 2007, Violato et al. 2011, Auteri et al.
2015) and supersonic aerofoils (van Oudheusden et al. 2007), aircraft propellers (Ragni et
al. 2012), pulsatile diffusers (Charonko et al. 2010), the region surrounding a rising bubble
(Hosokawa et al. 2003), cavity flows (Liu and Katz 2006), and other flow configurations
(Murai et al. 2007). Estimated pressure fields can be used in conjunction with measured
velocity fields to extract time-resolved loadings on immersed structures (van Oudheusden
et al. 2007, Tronchin et al. 2015), establishing a minimally intrusive methodology for the
measurement of both fluid pressure and structural loading. A number of methodologies
have emerged from the results of individual studies, however, a clear consensus on an
optimum has not yet been reached, and is flow and setup dependent (Charonko et al. 2010,
van Oudheusden 2013, Pan et al. 2016).

In order to estimate fluid pressure (p(x, y, t)), the instantaneous velocity fields (ui(x, y, t))
obtained from two-component TR-PIV measurements are used to calculate the planar pres-
sure gradients from the Navier-Stokes equations:

∂p

∂x
= −ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+ µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(3.1)
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)
+ µ

(
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∂x2 + ∂2v

∂y2 + ∂2v

∂z2
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(3.2)

Since only two velocity components are measured in planar PIV (u, v), terms containing
the out-of-plane velocity (w) or out-of-plane derivatives (∂/∂z) are not evaluated, resulting
in an associated error in estimated pressure fields (Baur and Köngeter 1999, Charonko et
al. 2010, de Kat and van Oudheusden 2012, Ghaemi et al. 2012). For stereoscopic PIV
measurements, three velocity components (u, v, w) are measured, however, the out-of-plane
derivatives cannot be evaluated. In more general terms, the pressure gradient is related to
forces arising from viscous stresses and material acceleration (equation 3.3).

∂p

∂xi
= µ

∂2ui
∂x2

i

− ρDui
Dt

(3.3)

The pressure gradient field may then be integrated, using for example one of the following
methods proposed in previous studies: (i) Baur and Köngeter (1999) utilized a spatial
marching scheme, (ii) Liu and Katz (2006) developed an omni-directional line integration
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technique, (iii) Dabiri et al. (2014) proposed an eight-path line integration technique, (iv)
multiple authors solved the pressure Poisson equation using a standard 5-point discretiza-
tion (Gurka et al. 1999, Fujisawa et al. 2005, de Kat and van Oudheusden 2012, Blinde
et al. 2016) or with an FFT integration (Huhn et al. 2016):

∂2p

∂x2
i

= −ρ ∂

∂xi

Dui
Dt

(3.4)

simultaneously over the domain, (v) Tronchin et al. (2015) solved local equations for the
least squares approximation of the pressure field using an iterative method and (vi) multiple
authors (Hosokawa et al. 2003, Jaw et al. 2009, Regert et al. 2011) have explored coupling
the PIV velocity fields with common CFD algorithms to solve the pressure Poisson equa-
tion. Recent developments in Tomographic PIV (Elsinga et al. 2006) and three-dimensional
Particle Tracking Velocimetry (PTV) (Schanz et al. 2016) allow three-dimensional velocity
field characterization inside a volume, further extending the capacity of pressure estima-
tion (Violato et al. 2011, Ghaemi et al. 2012, Neeteson and Rival 2015, Laskari et al. 2016,
Schneiders et al. 2016a). For volumetric data, Poisson equation based methods are widely
used and are relatively computationally inexpensive (Blinde et al. 2016, Huhn et al. 2016).
However, the majority of prior work on pressure estimation has been focused on planar
velocity measurements, and such measurements are still prevalent.

Accurate estimation of the material acceleration (Dui/Dt) is vital to any method of
pressure estimation, since the viscous terms in equation 3.3 can often be neglected or are
relatively small for turbulent flows where the inertial terms dominate (Ghaemi et al. 2012).
The material acceleration is typically estimated in either an Eulerian or Lagrangian frame
of reference. In the Eulerian frame, the material acceleration is estimated at each grid
point using, for example, second order central differences (Gurka et al. 1999) (equation
3.5).

Dui
Dt

(xi, t) = ui(xi, t+ ∆t)− ui(xi, t−∆t)
2∆t +ui(xi, t)

ui(xi + ∆x, t)− ui(xi −∆x, t)
2∆x (3.5)

In the Lagrangian frame, pseudo-tracking methods are used to track a fluid element co-
incident with each grid point at time t. For example, the material acceleration of the
tracked element may be estimated by iteratively determining the trajectory of the element
backward and forward in time using equations 3.6 and 3.7 (Liu and Katz 2006, de Kat and
van Oudheusden 2012, Lynch and Scarano 2014):

xki,p(t+ ∆t) = xi + ui(xi, t)∆t+ Duki
Dt

(xi, t)
∆t2
2 (3.6)

Duk+1
i

Dt
(xi, t) =

ui(xki,p(t+ ∆t), t+ ∆t)− ui(xki,p(t−∆t), t−∆t)
2∆t (3.7)
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Methods of material acceleration determination have been found to be subject to dif-
fering temporal resolution constraints depending on the advective and rotational nature
of the flow (Jakobsen et al. 1997, Violato et al. 2011, de Kat and van Oudheusden 2012,
van Oudheusden 2013). Studies of wave phenomena indicated that the Lagrangian ap-
proach performs poorly compared to the Eulerian (Jakobsen et al. 1997). Violato et al.
(2011) compared errors associated with Eulerian and Lagrangian techniques for flow over
a rod-airfoil and found that the upper bound on ∆t required to properly sample the con-
vective structures was lower for the Eulerian method compared to the Lagrangian method
(∆tLag,max/∆tEul,max ≈ 3). When adhering to this guideline, resulting pressure evalua-
tions showed minor differences between the Eulerian and Lagrangian estimations (Violato
et al. 2011). de Kat and van Oudheusden (2012) studied the peak response characteristics
of an advecting vortex flow and suggested that the upper bound for ∆t scales according
to the advective time-scale of the vortices for the Eulerian method, and according to the
vortex turn-over time for the Lagrangian method. Hence, in contrast to the results of
Violato et al. (2011), de Kat and van Oudheusden (2012) found that, in the wake of a
square cylinder, the pressure estimated using the Lagrangian approach leads to a rapid
decrease in correlation with surface microphone measurements at significantly smaller ∆t
(∆tLag,max/∆tEul,max ≈ 0.1). They recommended bounds on the interrogation window size
of λx/WS > 5 and on the acquisition frequency of facq/fflow > 10, where λx and fflow
are the smallest wavelength and the highest frequency of structures to be resolved in the
estimated pressure field.

Important for the experimental application of the techniques are methods to reduce the
effect of random error propagation to the material acceleration. Noise reduction in material
acceleration estimates can be achieved by reconstructing the fluid parcel trajectories over
multiple time realizations (Violato et al. 2011, Novara and Scarano 2013, Pröbsting et al.
2013, Lynch and Scarano 2014), filtering the velocity fields (Charonko et al. 2010, Dabiri
et al. 2014), or applying Taylor’s frozen field hypothesis for highly convective flows (de Kat
and Ganapathisubramani 2013, Laskari et al. 2016). With the accuracy of the pressure
estimation being dependent on the random errors present in the velocity measurements,
the sensitivity of pressure estimation to typical measurement errors becomes an impor-
tant criterion for the identification of an optimal technique. The omni-directional, spatial
marching, and Poisson solver techniques were compared by Charonko et al. (2010) using
analytical solutions for a pulsatile flow and a decaying vortex subject to artificially applied
velocity noise. It was concluded that the Poisson equation method performs better for the
advective oscillating slot flow, while omni-directional line-integration and spatial marching
methods perform better for the rotational vortex flow. Murai et al. (2007) superimposed
artificial error onto their experimental results and found the Poisson equation method to
be relatively insensitive to velocity field noise compared to the line-integration methods for
flow around a Savonious turbine. Using an analytical solution for an advecting vortex, de
Kat and van Oudheusden (2012) found negligible differences between the omni-directional
technique and the pressure Poisson equation, but inhomogeneous propagation of velocity
error led to higher overall error values for the spatial marching method. Recently, Blinde
et al. (2016) compared a number of pressure estimation techniques using synthetic data
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obtained from a zonal detached eddy simulation (ZDES) of an axisymmetric base flow,
and showed the superiority of PTV-based material acceleration estimates for computing
pressure fields, as well as the benefit of several techniques which implicitly correct the
velocity field in the solution for pressure. Some recent studies have attempted to quantify
the uncertainty in pressure estimations (εp) given uncertainties in the velocity field (εu)
(Violato et al. 2011, de Kat and van Oudheusden 2012, de Kat and Ganapathisubramani
2013, Azijli et al. 2016, Laskari et al. 2016), focusing on the Poisson equation problem.

Although the analytical framework has yet to be developed fully, multiple studies
(Charonko et al. 2010, Violato et al. 2011, Laskari et al. 2016) suggest that optimal tempo-
ral and spatial resolutions exist which minimize the resulting pressure error by balancing
the truncation error (εtrunc) of the derivative estimates and the random error propagation
(εrand) into the pressure integration. In addition, with optimum methodologies apparently
dependent on the flow case (Charonko et al. 2010), it is of interest to comprehensively
evaluate the performance of common pressure estimation techniques in flows that are rep-
resentative of practical applications, building on the work performed to date on analytical
models of relatively simple flows (Charonko et al. 2010, de Kat and van Oudheusden 2012).
The present study considers a circular cylinder in cross-flow, which represents a prototypi-
cal flow case in bluff-body aerodynamics encountered in a variety of practical applications.
The main objective is to determine an optimal pressure estimation method, as well as as-
sociated optimum sampling rates (facq) and spatial resolutions (WS) of acquired velocity
data for pressure estimation in vortex dominated wakes. In addition, the errors associ-
ated with utilizing planar velocimetry data in a three-dimensional flow will be quantified.
Previous studies have compared errors associated with utilizing planar velocimetry data
by comparing planar and volumetric evaluations on experimental data (de Kat and van
Oudheusden 2012, Ghaemi et al. 2012) or by sampling analytical solutions on offset planes
(Charonko et al. 2010, de Kat and van Oudheusden 2012); however, the error has yet to be
globally quantified for a realistic flow case. To provide a reference pressure data for com-
parison, Direct Numerical Simulations (DNS) are used to simulate experimentally acquired
velocity fields. The flows spanning laminar, transitional, and turbulent shedding regimes
are subjected to uncorrelated velocity noise to simulate an experimental environment which
incurs errors in detecting the correlation peak during image processing (Raffel 2007). The
results inform on the errors involved in pressure integration from planar PIV data, ob-
tained by common methodologies, and provide recommendations for optimal experimental
parameters for minimizing the errors in estimated pressure fields.

3.2 Methodology

3.2.1 Direct numerical simulations

Pressure estimation techniques were tested with synthetic PIV data sampled from direct
numerical simulations of a circular cylinder in cross flow for ReD = 100, 300, and 1575. The
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Figure 3.1: Hybrid O-type and H-type structured computational mesh, showing the mesh
density utilized for ReD = 1575.

ReD Nodes ∆θ/η ×∆r/η ×∆z/η Lz/D StD CL′ CD

100 1.2× 105 0.53× 0.08× 0 0 0.167 0.161 0.232 0.231 1.35 1.432

300 1.1× 106 1.21× 0.66× 4.88 6 0.199 0.201 0.438 0.461 1.278 1.242

1575 2.9× 107 1.59× 0.71× 2.85 π 0.217 0.211 0.043 0.0451 0.964 0.952

Table 3.1: Mesh parameters alongside experimental (bold) and numerical results for flow
around a circular cylinder. 1Norberg (2003), 2Wieselseberger (1922)

incompressible Navier-Stokes equations were solved using a finite volume solver (ANSYS
CFX 14.0). The solver uses a second-order, blended finite difference spatial discretization
scheme and a second-order backwards Euler implicit time marching scheme. The equations
were discretized and solved on a two-dimensional mesh for ReD = 100, since previous
experiments and simulations have established that no three dimensional effects are present
in the near wake at this Reynolds number (e.g., Persillon and Braza 1998, Williamson
1996a). Three-dimensional meshes were used for ReD = 300 and 1575 (figure 3.1). The
mesh is a structured O-type around the cylinder and a structured H-type mesh in the
remaining regions (figure 3.1). Such a hybrid mesh configuration is commonly used in
numerical studies on cylindrical geometries (e.g., Inoue and Sakuragi 2008, Morton and
Yarusevych 2010, McClure et al. 2015). A uniform streamwise velocity (u = (U∞, 0, 0)) is
prescribed at the inlet boundary and an average static pressure of zero is set across the
outlet boundary (p = 0). The no-slip condition (u = (0, 0, 0)) is prescribed at the cylinder
surface, and the free-slip condition (un = 0, σt = 0) is imposed on the remaining domain
boundaries. Mesh sizing near the surface of the cylinder (table 3.1) was ensured to be
well below sizing recommendations relative to the Kolomogorov scale (η) recommended by
Moin and Mahesh (1998) for DNS of common turbulent flows. The mesh sizing can further
be compared to the DNS study of Wissink and Rodi (2008), who employed a second order
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discretization in space for a uniform cylinder at ReD = 3300 and tested five meshes with
various levels of refinement. They achieved good convergence, based on wake statistics,
with a mesh containing 1.4 × 108 nodes, and utilized similar relative refinement in the
circumferential, radial, and spanwise directions (table 3.1) as those employed in the current
study. Assuming the node count scales approximately with Re9/4

D (Moin and Mahesh 1998),
2.9 × 107 nodes for ReD = 1575 (table 3.1) was deemed sufficient. The simulations for
ReD = 300 and 1575 were initialized by course mesh simulations which spanned the initial
transient of the vortex shedding excitation, and results from the fine mesh simulation
were sampled once the fluctuating lift and drag forces reached a quasi-steady state. The
instantaneous force data on the cylinder and streamwise velocity data at x/D = 5, y/D =
0.75 were then collected for a minimum duration of 8 cylinder vortex shedding cycles. The
shedding frequency (fs) was estimated based on a sinusoidal regression of the streamwise
velocity data. The results pertaining to the fluctuating lift force (CL′), shedding frequency
(StD = fsD/U∞), and mean drag (CD) are summarized in table 3.1 and compared to
available experimental data. A comparison with experimental values shows a maximum
deviation of 5.6%. The minor deviations between numerical and experimental data in table
3.1 are similar to those found in other DNS studies at similar Reynolds numbers (Marzouk
et al. 2007, Wissink and Rodi 2008, Zhao and Cheng 2014).

The results are illustrated using iso-surfaces of the λ2-criterion (Jeong and Hussain
1995), where λ2 is the second largest negative eigenvalue of S2 + Ω2 (equations 2.2 and
2.3), coloured by static pressure in figure 3.2. Note, the results for ReD = 100 are extruded
in the spanwise direction for illustration purposes. It can be seen that, as expected, the
near wake development is defined by the formation and evolution of the von Kármán rollers
for all Reynolds numbers investigated. The dominant spanwise vortices undergo notable
deformations associated with the formation of three-dimensional secondary structures for
ReD ≥ 300. For ReD = 300, a hyperbolic flow instability in the shear regions between
primary vortex cores, termed “mode B” instability (Williamson 1996b), leads to the de-
velopment of secondary streamwise vortices which persist with a spanwise wavelength of
λz/D ≈ 1.0 (Williamson 1996b, Scarano and Poelma 2009). For ReD = 1575, turbulent
transition occurs in the separated shear layers and precedes primary vortex formation. The
wake consists of a plethora of secondary structures interacting with the primary spanwise
rollers in a random fashion. As progressively finer scale structures develop with increasing
ReD, characteristic spatial and temporal scales in the wake pressure fields also decrease, as
expected, which is the primary reason for selecting these three test cases for the present
study.

3.2.2 Synthetic PIV and pressure estimation optimization

Synthetic PIV data were obtained by sampling planar x− y velocity fields from the DNS
solutions at z = 0 (midspan) on an equispaced Cartesian grid on the domain −2D < x <
2D and −2D < y < 2D for a range of facq and WS. Similar to the approach employed
in previous studies (e.g., Charonko et al. 2010, Azijli and Dwight 2015), Gaussian random
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Figure 3.2: Vortex visualizations using the λ2-criterion (λ2 = 0.01) (Jeong and Hussain
1995) for (a) laminar vortex shedding at ReD = 100 (two-dimensional data extruded for
comparison), (b) transitional vortex shedding at ReD = 300, and (c) turbulent vortex
shedding at ReD = 1575.

noise was added to the synthetic velocity fields proportional to the magnitude of each
velocity component (ũ = u(1 + εu)) to simulate measurement noise. The noise level (εu)
was varied between 0 and 2.5% in 0.25% increments in order to capture the initial error
response characteristics, which for a given methodology have been shown to extrapolate to
higher noise levels (Charonko et al. 2010, de Kat and van Oudheusden 2012). To estimate
pressure from the synthetic data, Eulerian spatial and temporal derivatives of the velocity
field were calculated with second-order central difference estimators (equation 3.5) and used
to estimate the material acceleration and viscous terms in equations 3.3. The viscous terms
in the Navier-Stokes equations were found to be non-negligible for ReD = 100, and hence
were included for all ReD. A parametric study was performed to investigate the effects of
Reynolds number (ReD), spatial resolution (WS), temporal resolution (facq), velocity field
noise level (εu), and pressure estimation method on the accuracy of instantaneous pressure
field estimations (p). The investigated parameters are summarized in table 3.2.

Four common pressure integration techniques were compared: (i) omni-directional line
integration (Liu and Katz 2006), (ii) eight-path integration (Dabiri et al. 2014), (iii) Pois-
son equation (Gurka et al. 1999), and (iv) local least squares iteration (Tronchin et al.
2015). For each temporal resolution (facq), spatial resolution (WS), and noise level (εu)
investigated in the parametric study, instantaneous velocity fields were sampled at six dif-
ferent phases over half a vortex shedding cycle (θ = 0, π/6, π/3, π/2, 2π/3, 5π/6) and five
refreshed noise profiles were generated at each phase, resulting in a total of 30 unique
velocity fields for each combination of parameters investigated, from which pressure is es-
timated using each integration technique. The error in each estimated pressure field (εp)
was quantified using the spatial standard deviation of the difference between the estimated
(p) and DNS (pex) pressure field (equation 3.8). For a given combination of parameters,
the error response was then characterized by the mean (εp) and standard deviation (σεp)
of this error computed over the 30 pressure estimates.
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Estimation methodology ReD εu D/WS facq/fS

Omni-directional

Eight-path

Poisson equation

Local least squares

100, 300, 1575 0− 2.5% 5− 100 7.8− 1000

Table 3.2: List of pressure estimation methodologies employed in the current study and
ranges of parameters investigated in the parametric study.

εp =

√
(p− pex)2

1
2ρU

2
∞

(3.8)

The implementation of boundary conditions can have considerable effects on the accu-
racy of pressure estimates (Pan et al. 2016). For the iterative methods (omni-directional,
eight-path, and local least squares), the boundary conditions were implemented follow-
ing the approach employed in the studies that proposed these techniques (Liu and Katz
2006, Dabiri et al. 2014, and Tronchin et al. 2015), namely, where the domain was initial-
ized to zero pressure before integrating the pressure gradient over the inner domain and
boundaries. Additionally, for the omni-directional and eight-path methods, the boundary
pressures were initialized by a line integral of the pressure gradient field around the bound-
ary, starting at p1,1 = 0 at the bottom left corner point. Based on initial convergence tests,
a fixed number of pressure gradient integration iterations were performed. Specifically,
the omni-directional and eight-path methods used 5 iterations, and the local least squares
method used 3000 iterations. For the Poisson equation method, the Laplacian of the pres-
sure field (equation 3.4) was discretized using a 5-point second-order central difference
scheme and Neumann boundary conditions were imposed through the use of ghost grid
points at the outlet and cylinder boundaries in order to complete the five point scheme
where adjacent nodes lie outside the domain. The pressure values at the ghost points
were evaluated using the pressure gradient from the Navier-Stokes equation and the nodal
pressure on the opposing side of the five point scheme (e.g., pi+1,j = pi−1,j + 2∆x ∂p

∂x i,j
).

Neumann boundary conditions were implemented for the Poisson equation method on
all boundaries and an additional constraint equation was added to the system to spec-
ify p1,1 = 0. The resulting system of equations is over-constrained and the solution is
the least-squares solution (Trefethen 2000). For each method, the relative pressure field
was solved for initially, and a constant value was then added to each field such that the
Bernoulli equation extended to irrotational, inviscid, unsteady advective flow with small
mean velocity gradients (equation 3.9) (de Kat and van Oudheusden 2012) was satisfied,
on average, at the top and bottom boundaries.
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The parametric study and analytic models developed in the current study use Eulerian
estimates for the material acceleration (equation 3.5), since a comparison with a second or-
der Lagrangian scheme for material acceleration estimation (equations 3.6 and 3.7) resulted
in minor differences in error levels of the pressure evaluations for 25 ≤ facq/fS ≤ 1000 when
three velocity fields at t0− dt, t0, and t0 + dt were utilized for both methods. However, the
extension of the analysis to Lagrangian material acceleration reconstructions over N fields
is discussed using second order trajectory estimates (equations 3.6 and 3.7) between fields
separated by ±Mdt, ±(M − 1)dt, ..., where N = 2M + 1, with the material acceleration
estimated via a second order polynomial fit to the resulting trajectory (Lynch and Scarano
2014).

3.3 Results

The results of the parametric study yield a data set of about 110,000 pressure field cases.
Using this data set, the pressure estimation techniques are compared across a range of spa-
tial resolutions (WS), temporal resolutions (facq), and velocity noise levels (εu) in laminar,
transitional, and turbulent flows.

3.3.1 Comparison of pressure estimation methodologies

It has been demonstrated in one-dimensional parametric studies (Charonko et al. 2010,
Violato et al. 2011, de Kat and van Oudheusden 2012, Tronchin et al. 2015) that optimal
temporal (facq,opt) and spatial (WSopt) resolutions can be determined for a given flow such
that the combined truncation (εtrunc) and random (εrand) uncertainty propagation to the
pressure field estimate is minimized. Since the optima may vary based on the pressure
integration technique employed, it is necessary to estimate these parameters before a com-
parison between methods can be carried out. Figure 3.3 shows the variation of the mean
pressure error response (εp) with facq and WS, for each tested technique and Reynolds
number, when the synthetic velocity fields are contaminated with 2.0% Gaussian white
noise. The magnitude of the mean pressure error is also illustrated by the white to red
colormap on the surface, with the optimal sampling parameters identified either by the
minima or the whitest region of each surface. The surface sections coloured yellow indi-
cate where pressure estimation is unconverged for the local least squares approach due to
insufficient iteration of the solver to mitigate the directional propagation of error for the
high spatial resolution calculations (D/WS ≥ 50). Note that optimal values cannot be
strictly defined in every case due to the minima lying on the boundaries of the parametric
study. For example, the optima for the eight-path method, for each Reynolds number
investigated, likely lies beyond the minimum facq/fS investigated, and the optima for the
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Figure 3.3: Optimization surfaces showing the mean pressure field error (εp) for εu = 2%
for the ranges of spatial and temporal resolutions investigated for each Reynolds number
and pressure estimation method investigated. Pressure estimations which are not converged
are coloured in yellow.
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omni-directional method and Poisson equation for ReD = 1575 is likely located beyond the
maximum D/WS investigated. However, the curvature of the optimization surfaces at the
boundaries suggest that the optimal values are located not far beyond the boundaries of
the parametric study, and that the difference between the pressure error at the optimal
point and the boundary point is comparable to the differences due to the resolution of the
parametric study. The optimization surfaces exhibit similar topology for ReD = 100, 300,
and 1575 (left to right, respectively in figure 3.3), resembling sections of ellipsoid surfaces,
and in most cases, local minima are present within the investigated range of parameters.
For higher values of D/WS and facq/fS, increasing these parameters causes the error to
increase, approximately following a power law. On the other hand, decreasing D/WS and
facq/fS below the optimal values causes a more gradual increase in the pressure error. No-
tably, for increasing Reynolds number, the minimum error increases significantly, which is
attributed to the increasing three-dimensional error (ε3D) caused by neglecting the out of
plane velocities and gradients. This causes the random and truncation uncertainty propa-
gation to contribute proportionally less to the RMSE metric utilized, resulting in changes
in the temporal and spatial resolution having a less significant effect on the total pressure
error in figure 3.3. The values of optimal sampling parameters for εu = 2%, identified in
figure 3.3, are shown in table 3.3. As expected, the optimal spatial resolutions (WSopt)
for each method decrease with increasing Reynolds number as the spatial scales (λx) of
the flow decrease. On the other hand, the optimal acquisition frequencies (facq,opt/fS),
when normalized by the shedding frequency, do not show a pronounced dependency on
the Reynolds number within the uncertainty bounds. This is attributed primarily to two
factors. First, the dominant vortical structures shed at fS dominate the pressure fluctua-
tions. Moreover, the main secondary structures that appear at higher Reynolds numbers
are associated with time scales within an order of magnitude of 1/fS, and are adequately
captured in estimated pressure fields acquired with facq/fS > 10. Secondly, the error
response surfaces in figure 3.3 flatten out near optimal acquisition frequencies making a
precise determination of the optimal frequency challenging, which is the main reason for
the relatively large uncertainty bounds for this quantity in table 3.3. The development
of practical guidelines for the selection of optimal sampling parameters will be discussed
further in the next subsection.

To compare the accuracy of the methods at different velocity noise intensities, the mean
(εp) and standard deviation (σεp) of the pressure error response, extracted at WSopt and
facq,opt for each εu, are plotted in figure 3.4. It can be seen that the eight-path integration
method exhibits consistently higher error sensitivity than the other methods, showing a
comparable response for low εu but a significantly increased response in εp for more intense
noise environments. Inspecting the corresponding pressure integration results (figure 3.5)
indicates that the method suffers from high degrees of isotropic noise as the contour topol-
ogy and pressure magnitudes are, on the average, close to the DNS reference (figure 3.5)
but have a high degree of superimposed noise. The high noise sensitivity of the eight-path
method is attributed to the lower number of line-integrals used, compared to the omni-
directional method, which is a similar method that uses the average of significantly more
line-integrals to calculate the fluid pressure at each point. The high noise sensitivity also
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Pressure Technique ReD =
100
D/WSopt

ReD =
100
facq,opt/fS

ReD =
300
D/WSopt

ReD =
300
facq,opt/fS

ReD =
1575
D/WSopt

ReD =
1575
facq,opt/fS

Omni-directional 20+5.0
−5.7 25.3+6.3

−4.2 33.3+16.7
−8.3 20.4+2.6

−2.0 100+50.0
−50.0 15.6+20.8

−7.81

Eight-path 6.7+1.6
−4.4 12+3.8

−3.8 14.3+5.7
−3.2 20.4+2.6

−2.0 20+5.0
−5.7 21.7+14.6

−6.24

Poisson equation 25+8.3
−5.0 31.6+4.5

−6.3 50+50.0
−16.7 23.0+3.3

−2.6 100+50.0
−50.0 10.9+32.8

−3.1

Local least squares 25+8.3
−5.0 21.1+4.2

−5.3 33.3+16.7
−8.3 20.4+2.6

−2.0 33.3+16.7
−8.3 10.9+32.8

−3.1

Table 3.3: Optimal sampling parameters for εu = 2%. Uncertainty bounds given by the
local resolution of the parametric study at each optimum.

causes the identified optimal sampling parameters for the eight-path method to be shifted
relative to the other three tested methods (table 3.3). In contrast, the omni-directional,
Poisson equation, and local least squares methods exhibit relatively low sensitivity to the
velocity noise environment (εu), with maximum resulting error levels of 2−5% at εu = 2.5%
depending on ReD (figure 3.4a-c). In particular, for ReD = 1575 (figure 3.4c), the pressure
error response shows a change of less than 1% across the entire range of velocity noise
intensities studied. This insensitivity is due to the relatively high base three-dimensional
error present for ReD = 1575 (ε3D ≈ 4%), compared to the lower Reynolds numbers, caused
by the two-dimensional assumptions imposed on the three-dimensional flow. This implies
that, when significant inaccuracies in pressure estimation exist due to three-dimensional
effects, contamination of the pressure gradient field by relatively small random errors in
velocity measurements has a smaller additive effect on the pressure error response. The
Poisson equation and local least squares method are the least sensitive to velocity fields
noise, exhibiting the smallest change in εp over εu = 0 − 2.5%. It should be noted that,
since the errors in figure 3.4 are quantified by the standard deviation of the difference
between the estimated pressure field and DNS solution (equation 3.8), they pertain to the
relative pressure field (p − p∞). The error associated with establishing the absolute pres-
sure through the application of the modified Bernoulli equation at the side boundaries was
approximately 1% for all the pressure estimation methods investigated.

The accuracy of the surface pressure distribution (Cp(θ)) estimation is of particular
interest since it may be used to extract instantaneous structural loading (van Oudheusden
et al. 2007). Figure 3.6 presents a comparison of the surface pressure estimations with
the DNS reference for ReD = 100, 300 and 1575. For each methodology, the pressure
integrations were performed with a velocity noise level of εu = 2% and sampled at each
method’s WSopt and facq,opt. The results indicate that the Poisson equation method esti-
mates the surface pressures best across all the Reynolds numbers investigated, though the
omni-directional and local least squares methods perform favourably as well. In compar-
ison, surface pressure distributions resulting from the eight-path method have significant
data scatter; however the scatter is approximately centred around the DNS pressure so-
lution, so that its detrimental effect on structural loads is expected to be lower than the
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Figure 3.4: Mean pressure field error (εp) versus velocity field error (εu) from each pressure
integration method investigated for (a) ReD = 100, (b) ReD = 300, and (c) ReD = 1575.
Filled regions indicate one standard deviation of the pressure field error. For each εu,
optimal WSopt and facq,opt were used for the pressure estimation.

associated surface pressure errors. The utilization of the planar results for the extraction
of surface pressure loading is deemed acceptable for all Reynolds numbers investigated, as
the omni-directional, Poisson equation, and local least squares methods show remarkable
agreement with the DNS solver pressures, even for relatively high εu = 2%, as well as in
turbulent shedding regimes (figure 3.6c). Despite average pressure field errors reaching
approximately εp = 3−5% for εu = 2% and ReD = 1575 (figure 3.4c), the surface pressures
rarely deviated from the DNS reference by more than 1%. The most significant pressure
field errors are concentrated in the wake regions where flow three-dimensionalities and
complex vortex development occur.

3.3.2 Pressure PIV uncertainty minimization

The results of the parametric study indicate the existence of optimal facq and WSopt for
various εu, ReD, and pressure integration methodology which minimize the RMS pressure
field error (figure 3.3, and table 3.3). It is of interest to develop a model that can be
employed to estimate optimal data acquisition parameters in experimental studies where
pressure estimation is of interest. Such a model is developed here based on the following
uncertainty propagation analysis.

Neglecting viscous terms, the uncertainty in the determination of the pressure gradient
(ε∇p, equation 3.10) can be expressed by the contributions of the propagation of the ve-
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Figure 3.5: Reference pressure from DNS data, along with pressure estimations at re-
spective optimal D/WSopt = 100 and facq,opt/fs = 10.9 for εu = 2% for each method at
ReD = 1575.

Figure 3.6: Instantaneous surface pressure distributions from each method investigated,
contaminated with εu = 2% velocity field error, for (a) ReD = 100, (b) ReD = 300, and
(c) ReD = 1575. Cp(θ) is nearest neighbour interpolated from the pressure evaluations
sampled at identified optimal WSopt and facq,opt.

locity error (εu, equation 3.11, de Kat and van Oudheusden 2012) through the derivative
estimators, and the truncation error terms arising from finite resolution of the derivative
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estimators (Etebari and Vlachos 2005) (εtrunc, equation 3.12).

ε2∇p ≈ ρε2Du/Dt ≈ ρε2u|u|2
(
f 2
acq

2 + |u|2

2WS2 + |∇u|2
)

+ WS4

36
(
∇3u

)2
|u|2 + 1

36f 4
acq

(
∂3u

∂t3

)2

(3.10)

εrand = ρεu|u|
√
f 2
acq

2 + |u|2
2WS2 + |∇u|2 (3.11)

εtrunc = ρ

√√√√WS4

36 (∇3u)2|u|2 + 1
36f 4

acq

(
∂3u

∂t3

)2

(3.12)

Equations 3.10-3.12 suggest minimizing the pressure gradient uncertainty requires bal-
ancing between the propagation of random error, which decreases for increasing WS and
decreasing facq, and the truncation error, which decreases for decreasingWS and increasing
facq. In order to model how the pressure gradient uncertainty propagates to pressure field
uncertainty, a line-integration serves as a suitable approximation for the techniques em-
ployed in this study. In particular, at a single time-step, the omni-directional, eight-path,
and local least squares methods rely on a sequential integration of ∇p over a finite number
of WS in order to estimate p on the domain. Similarly, although the Poisson equation
solves local equations simultaneously across the domain, the solution can nevertheless be
cast as an integral of the pressure gradient field using Green’s functions. Hence, assuming
uncorrelated pressure gradient error, the resulting pressure field uncertainty (εp) relates to
the pressure gradient uncertainty (ε∇p) according to:

ε2p =
γ/WS∑

ε2∇p(WS)2 ≈ γε2∇pWS (3.13)

where γ is the characteristic length scale of a single line-integration (e.g., domain length).
An optimization problem min

{
ε2p : facq > 0,WS > 0

}
can now be solved for equation 3.13

with respect to facq and WS through a critical point analysis. The solution is given by
equations 3.14 and 3.15.

facq,opt =
(

(∂3u/∂t3)2

9ε2u|u|2

)1/6

(3.14)

WS6
opt

7(∇3u)2|u|2

36 +WS2
opt

(
3
2(εufacq)2 + 3ε2u|∇u|2 + 3

36f 4
acq

∂3u

∂t3

2)
+ ε2u|u|2/2 = 0 (3.15)

The result decouples the solution for the optimal temporal resolution (facq) from the de-
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pendence on the spatial resolution (equation 3.14). However, the solution for the optimal
spatial resolution retains temporal terms (equation 3.15). This is due to the coupling
caused by the propagation of ε∇p through the line-integrations which is ∝ ε∇pWS, result-
ing in a 6th order polynomial for WSopt. For planning experiments, the solution remain
intractable a priori due to its dependence on unknown velocity gradients. However, tem-
poral and spatial derivatives of the flow may be approximated assuming the characteristic
velocity (U∞) varies periodically (i.e., sinusoidally) with the time scales (1/fflow) and se-
lecting appropriate spatial scales (λx) for a given vortex dominated flow. Substituting
these approximations into equations 3.14 and 3.15 simplifies them to:

facq,opt ≈
2πfflow
(3εu)1/3 (3.16)

7
18ε2u

(2πWSopt
λx

)6
+ 6

(2πWSopt
λx

)2
+ 1 = 0 (3.17)

Inspection of equation 3.17 reveals that, for εu = 0−3% typically found in PIV experimen-
tation, the leading, 6th order term dominates and the 2nd order term in the polynomial is
negligible. Hence the model for the optimal spatial resolution can be simplified further to:

WSopt ≈
(

18ε2u
7

)1/6
λx
2π (3.18)

whereWSopt is independent of facq for small εu. This can also be inferred from the optimiza-
tion surfaces presented in figure 3.3, which conform to, on the average, ellipsoid sections
with major and minor axes aligned with the temporal and spatial axes. This result implies
that the optimal temporal and spatial resolutions obtained from one-dimensional para-
metric studies in Charonko et al. (2010) and Violato et al. (2011) are valid as absolute
optimums for the respective intensity of the noise environment, and may be compared to
the data in the present study. It is important to note that the derivation of equations
3.16 and 3.18 is insensitive to reformulating equation 3.13 as an average of multiple line
integrations or incorporating terms representing the boundary error at the start of each
line integration. The presented formulation also assumes uncorrelated velocity field error,
which will not be the case if interrogation windows are overlapped during PIV processing
(Sciacchitano and Wieneke 2016), and does not account for the spatial filtering implicit in
the use of finite interrogation windows in PIV processing. However, it was verified that
adding correlated velocity field errors after smoothing the velocity field with a 3 × 3 ker-
nel had minimal effect on the results pertaining to the locations of the optimal sampling
parameters and comparison of methods presented in Figs. 3.4 - 3.6.

To validate the derived model (equations 3.16 and 3.18), it is applied to the flow cases
considered in the current study. For circular cylinders in cross-flow, the characteristic
frequency scale (fflow) is approximated as the frequency of vortex shedding fS = StDD/U∞
and the characteristic spatial wavelength (λx) is approximated as twice the shear layer
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Figure 3.7: (a) Optimal temporal resolutions facq,opt normalized by the shedding fre-
quency fs amalgamated from all Reynolds numbers and methodologies tested and com-
pared to available optimal data from other studies and (b) optimal spatial resolutionWSopt
normalized by the spatial wavelength λx of the flow

thickness, approximated according to δsl = 7.5D/Re1/2
D (Roshko 1993, Williamson 1996c).

The optimal temporal and spatial resolutions for pressure evaluation in flow over a circular
cylinder may now be calculated using equations 3.16 and 3.18, respectively. It can be
seen from equations 3.16 and 3.18 that a universal scaling for the facq,opt, and WSopt is
achieved in the form fS/faqc,opt and λx/WSopt. The results from the present study cast
in this form are presented in figures 3.7a and 3.7b, along with relevant data found in
the literature for a decaying vortex (Charonko et al. 2010), pulsatile flow (Charonko et al.
2010), and a rod airfoil (Violato et al. 2011). The present data show good collapse, and the
model shows close agreement with the parametric data as well as optima reported in other
investigations on different flow topologies. Based on the results, a general recommendation
can be made for a range of optimal data acquisitions parameters as facq/fflow = 18 − 30
and λx/WS = 14.3 − 25 for the range of velocity error levels expected in a typical PIV
experiment when Eulerian material acceleration estimation methods are applied. These
results are in agreement with the resolution limitations suggested by de Kat and van
Oudheusden (2012) of λx/WS > 5 and facq/fflow > 10, who were primarily concerned with
the effects on pressure peak response in the resulting fields. The current results suggest
that utilizing resolutions up to twice the minimum limits on the acquisition frequency
and four times the minimum limits on the spatial resolution recommended by de Kat and
van Oudheusden (2012) will result in optimal performance, minimizing the spatial filtering
effects caused by inadequate spatial or temporal resolutions without oversampling to an
extent that random error effects become significant.
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Figure 3.8: Pressure field uncertainty predicted from equation 3.13 with εu = 2% ex-
hibiting Reynolds number similarity across (a) temporal resolution at fixed D/WS = 100
and (b) spatial resolution at fixed facq/fs = 50 compared to bounds proposed by (de Kat
and van Oudheusden 2012). The uncertainty is decomposed into random and truncation
components according to equation 3.13 using fS and λx estimates, and the variation with
(c) spatial and (d) temporal resolutions for ReD = 1575 is shown.

Figures 3.8a-d elucidate the relation between the data acquisition parameters and the
pressure uncertainty predicted by equation 3.13. The identified minima, which stem from
equations 3.16 and 3.18, for λx/WS and facq/fS, respectively, can be seen to be indepen-
dent of the the Reynolds number, indicating the three-dimensional error contributes inde-
pendently from the truncation and random error propagation. The pressure uncertainty
remains within 1% of the minimum uncertainty for a relatively wide range of acquisition fre-
quencies from 3 ≤ facq/fs ≤ 200 (figure 3.8a). In contrast, the requirements on the spatial
resolution to remain within the same range of the minimum uncertainty are more stringent,
namely λx/WS = 14.3−33.3 (figure 3.8c). Figures 3.8b and d decompose the total pressure
uncertainty from equation 3.13 for ReD = 1575 into contributions from truncation (εtrunc)
and random (εrand) error components. The results illustrate the regions where spatial or
temporal resolutions become too fine, and propagation of random error dominates, and
where they become too coarse and the truncation error term dominates. Comparing the
current formulation to the bounds on the spatial and temporal resolution recommended
by de Kat and van Oudheusden (2012), indicated by a dash-dotted line in figures 3.8b and
d, it can be seen that the recommended spatial resolution bound corresponds to a region
where the truncation error dominates, while the temporal resolution bound corresponds to
a region with still acceptable uncertainty levels, beyond which truncation error begins to
dominate.
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It is important to note that when data is over-sampled temporally (i.e., facq > facq,opt),
Lagrangian trajectory reconstructions over multiple velocity fields (e.g., Lynch and Scarano
2014) can be employed for more accurate estimation of pressure, as low order trajectory
reconstructions over longer kernels mitigates random error propagation. Figure 3.9 illus-
trates how average error levels change with respect to temporal and spatial resolution for

Figure 3.9: Comparison of pressure estimation error using Eulerian and Lagrangian
material acceleration estimates reconstructed over 3 (M = 1), 5 (M = 2), and 7 (M = 3)
velocity fields using the Poisson equation for ReD = 100 and εu = 2% for (a) varying
acquisition frequency with a constant spatial resolution D/WS = 50, and (b) varying
spatial resolution with a constant acquisition frequency facq/fS = 123. The common
points where the one-dimensional parametric studies intersect are highlighted in blue.
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the Eulerian methods used for the parametric study compared to Lagrangian material ac-
celeration estimates over multiple velocity fields. For the Lagrangian estimates, the fluid
trajectories are computed iteratively using a second order trajectory reconstruction (equa-
tions 3.6, 3.7) at times t0−Mdt, t0−(M−1)dt, ..., t0, ..., t0+(M−1)dt, t0+Mdt, employing
a second order polynomial fit function following the method by Lynch and Scarano (2014).
The results show that the use of Lagrangian techniques for material acceleration estima-
tion changes substantially the shapes of the optimization curves with respect to temporal
resolution (figure 3.9a), while the changes for the spatial resolution (figure 3.9b) are less sig-
nificant. For the temporal resolution, using the vortex turn over time (fturnover = U∞/πD)
(de Kat and van Oudheusden 2012) gives a reasonable estimate of the optimal acquisition
frequency for the Lagrangian method with M = 1. However, as the kernel for material
acceleration estimation is increased to M = 2 and M = 3, the optimum acquisition fre-
quency increases proportionally, with facq/fS = 50 for M = 1, facq/fS = 100 for M = 2,
and facq/fS = 150 for M = 3. This implies that when Lagrangian material acceleration
estimates are employed for pressure estimation, velocity acquisition at Mfacq,opt is rec-
ommended, where facq,opt is predicted from equation 3.16. If the data is under-sampled
relative to the predicted optimum (facq < facq,opt), a significant increase in error levels
can be observed for the Lagrangian estimates. If such a sub-optimal condition is dictated
by limitations of the experiment, one may employ pressure estimation techniques which
attempt to operate on temporally sparse data, such as VIC codes (Schneiders and Scarano
2016) or Taylor Hypothesis substitutions (de Kat and Ganapathisubramani 2013, Laskari
et al. 2016). In contrast to the temporal resolution results (figure 3.9a), the shape of the
optimization curves for the spatial resolution (figure 3.9b) does not change significantly
when different Lagrangian evaluations are employed, with the optimum shifting to coarser
spatial resolutions as the kernel size for material acceleration estimation is increased.

3.3.3 Effect of three-dimensional flow structures

Besides the truncation and random error propagation varying with ReD due to associated
changes in the spatial and temporal scales of the flow, the onset of three-dimensional flow
structures in transitional and turbulent wake regimes (Bloor 1964, Williamson 1989) will
lead to addition errors (ε3D) due to two-dimensional flow assumptions used for pressure
estimation. For two-component, planar PIV, estimation of the pressure gradient from
the two-dimensiona Navier-Stokes equations neglects out-of-plane velocities and gradients,
and assumes ∇xy · u = 0. However, the onset of secondary instabilities in transitional flow
regimes (Williamson 1989) (figure 3.2b) and turbulent regimes (Bloor 1964) (figure 3.2c) is
associated with three-dimensional vortex development, bound to result in errors in planar
pressure estimations.

To evaluate the error in the pressure field caused by the presence of three-dimensional
structures and decouple it from εtrunc, a comparison is carried out between pressure es-
timations obtained from 2D planar and 3D volumetric velocity data using the Poisson
equation method for pressure estimation. The 3D volumetric velocity data are sampled
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from DNS at three equispaced x − y planes with the spatial resolution in the spanwise
direction (z) matching that in the x − y plane. The difference between the integration
from the planar data and the integration from the volumetric data serves as a measure of
the three-dimensional error (ε3D = ||p3D − p2D||). For studies employing planar measure-
ments, it is also of interest to estimate the uncertainty in the pressure estimates caused by
neglecting terms containing out of plane velocity and gradients. The x and y momentum
equations from which the pressure gradient field is estimated are shown in equations 3.1
and 3.2, including the three-dimensional terms. The additional terms are w ∂u

∂z
and w ∂v

∂z

for the x and y pressure gradients, respectively. When two-component, planar velocity
measurements are performed, both the out of plane velocity and gradients in these terms
are unknowns. However, in a developed turbulent wake, the spanwise gradients of each
velocity component are similar in magnitude (∂w

∂z
≈ ∂v

∂z
≈ ∂u

∂z
), since spanwise gradients

in the flow are induced by randomly oriented vortex structures. This implies that the
three-dimensional terms can be approximately related to the magnitude of ∂w

∂z
, which can

be estimated by applying the continuity equation to the planar measurements in incom-
pressible flow as ∂w

∂z
= ∂u

∂x
+ ∂v

∂y
. Since the out of plane velocity w is expected to act as a

pseudo-random variable in a spanwise homogeneous flow, a correlation between the mag-
nitude of w ∂u

∂z
or w ∂v

∂z
(i.e., the neglected three-dimensional terms in equations 3.1 and

3.2) and the planar divergence should be possible. With the use of stereoscopic PIV mea-
surements, the w component could be explicitly resolved in combination with the planar
divergence to increase the accuracy of the analysis.

Figures 3.10a-c plot the instantaneous three-dimensional pressure field error (ε3D =
||p3D − p2D||) based on a comparison between planar and volumetric pressure estimations
for ReD = 100, 300, and 1575, respectively, and figures 3.10d-f plot the corresponding pla-
nar divergence of the velocity field. The figures show that the three-dimensional pressure
estimation errors develop locally with some minor propagation to neighbouring regions,
and the regions of elevated pressure errors correlate with regions of higher planar diver-
gence. Figure 3.11 presents the two-dimensional correlation maps of the standard deviation
of the planar divergence field and the standard deviation of the three-dimensional error
field for ReD = 300, and ReD = 1575. In both cases, the maximal peak is at zero spatial
shift, indicating that the regions of three-dimensional error and planar divergence are well
correlated. The correlation maps experience rapid drop off from zero spatial shift, indicat-
ing that quantities are strongly correlated in space. The exception is negative streamwise
shifts, that exhibit slow drop off due to the error and divergence concentrating in the wake
region which extends in the streamwise direction.

Figure 3.12 presents the variation in the standard deviation of the planar divergence in
the wake with the three-dimensional error caused by the planar assumptions. An empirical
fit is provided, and can be used to estimate local uncertainty of the pressure estimations
caused by utilizing planar data in a three-dimensional flow, by calculating the local planar
divergence of the velocity data. The form of the fit is based on a trigonometric relation be-
tween the out of plane gradient (∂w/∂z = ∇xy ·u) and characteristic values for the in plane
gradients (U∞/D). Figure 3.12a shows a significant increase in characteristic planar diver-

49



Figure 3.10: Instantaneous pressure field error for (a) ReD = 100, (b) ReD = 300, and (c)
ReD = 1575. Instantaneous planar divergence for (d) ReD = 100, (e) ReD = 300, and (f)
ReD = 1575. Velocity data sampled at D/WS = 100 and facq/fs = 63 − 73 and pressure
field estimated using the Poisson equation method.

gence magnitudes from ReD = 300 to ReD = 1575, which directly results in a significant
increase in the three-dimensional error in the wake. The increased three-dimensionality
for ReD = 1575 (figures 3.2c and 3.10c,f) is associated with stronger secondary vortex
formation at finer scales compared to ReD = 300. Localized pressure errors can exceed
20% of the dynamic pressure when using planar evaluation techniques (figure 3.10c). In
contrast, local errors in pressure estimates from volumetric velocity data are within 1.2%
of the DNS solution (not shown for brevity). For ReD = 300, in a transitional regime, the
induced three-dimensional flow of the mode B instability vortices is substantially weaker
than that found for fully turbulent Reynolds numbers, and the three-dimensional errors
are less pronounced (< 15%). These results can be compared to those of Charonko et al.
(2010), who found that three-dimensional errors using planar techniques did not grow to
significant levels until the measurement plane was misaligned over 30° from the planar
velocity field (i.e., when the out-of-plane velocity gradients reaches 50% of the x− y local
values). Similarly in the present results, pressure errors become significant (> 5%) when
the normalized divergence is greater than 0.5 (i.e., 50% of typical planar gradient values
associated with the global vortex shedding).
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Figure 3.11: Correlation maps of the standard deviation of the planar divergences with
the three-dimensional pressure error for (a) ReD = 300, and (b) ReD = 1575.

Figure 3.12: RMS of the three-dimensional error related to the standard deviation of the
planar divergence of the velocity field.

In order to compare the relative magnitude of the three-dimensional errors to other
errors affecting pressure estimation, figure 3.13 plots the base truncation error, three-
dimensional error, and random error variation with Reynolds numbers spanning laminar
(ReD = 100), transitional (ReD = 300) and turbulent (ReD = 1575) regimes. The errors
were decomposed based on evaluations of the pressure field using the omni-directional
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method at a fixed spatial and temporal resolution. Successive pressure fields were estimated
for each ReD using two-dimensional and three-dimensional calculations of the pressure
gradient with and without velocity noise applied (εu = 0% or 2%). For ReD = 100, the near
wake development is essentially two-dimensional and the pressure error is due primarily to
εu and εtrunc, i.e., due to random error propagation and truncation error from the finite
sampling resolution. For ReD = 300, ε3D becomes comparable to the other two errors due to
the onset of mode B instabilities. For ReD = 1575, ε3D is dominant over the εtruc and εrand.
The truncation error shows little change for ReD = 300 − 1575, while the random error
decreases for increasing ReD. The substantial decrease in the random error contribution to
the total pressure error for increasing ReD is attributed to the growth of ε3D with ReD, which
acts in a quasi-random manner in the wake, since the out-of-plane velocities and gradients
are produced by passing turbulent structures of varying orientations. The addition of
εu = 2% artificial random error onto the three-dimensional errors, which can reach over 20%
locally (figure 3.10c), has a marginal additive effect on the total integrated pressure errors
in the wake. This decreased sensitivity to random error is also seen in the optimization
surfaces for ReD = 1575 in figure 3.3 with respect to WS and facq. Hence, for turbulent
regimes, the use of planar data for pressure reconstruction is shown to lead to significant
errors where three-dimensional vortices develop. To resolve the pressure in a developed
turbulent wake region with error levels below 5%, volumetric velocity data is required.
However, planar techniques retain reasonable accuracy for estimating the surface pressures,
since the magnitude of ε3D near the cylinder surface is relatively low when transition
occurs in the near wake (figures 3.6 and 3.10). This conclusion is further supported by
the experimental results of de Kat and van Oudheusden (2012), who find good agreement
in their surface pressure transducer measurements with pressure measurements obtained
from planar pressure PIV on the side of a square cylinder, where flow is predominantly two-
dimensional. On the other hand, as pointed out by Ghaemi et al. (2012), volumetric data
is required for accurate pressure reconstruction in a fully developed turbulent boundary
layer.

3.4 Conclusion

Direct numerical simulations of flow over a circular cylinder in laminar, transitional and
turbulent vortex shedding regimes are utilized in order to evaluate various pressure esti-
mation techniques typically applied to PIV measurements. The simulation data are uni-
formly sampled in time and space in order to mimic experimental PIV data, and a number
of common methods are evaluated based on their ability to accurately estimate the wake
and surface pressures when the mimicked PIV data is subjected to artificial, uncorrelated
noise levels typical of experimentation (εu). The results indicate that the Poisson equation,
omni-directional, and local least squares methods exhibit characteristically lower error sen-
sitivity compared to the eight-path method. Hence, the Poisson equation, omni-directional,
and local least squares methods are recommended for use in instantaneous pressure and
force evaluation for immersed cylindrical bodies or similar vortex dominated shear flows.
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Figure 3.13: Decomposition of the pressure field error into random, truncation, and
three-dimensional components. Based on pressure evaluation using the omni-directional
integration technique at D/WS = 20 and facq/fs = 63−73. εtrunc is the error using 3D NS
equations for εu = 0%, ε3D is the difference between the errors using the 2D NS and 3D NS
equations for εu = 0%, and εrand is the additional error when using the 2D NS equations
for εu = 2%

An analytical model for the uncertainty associated with Eulerian pressure estimation
from PIV data is developed and is shown to adequately predict the optimal spatial and
temporal resolutions to minimize the pressure field uncertainty for a given flow with a given
characteristic spatial wavelength (λx) and temporal scale (fflow), as well as trends in these
optimums with ReD and εu. The model indicates ranges of temporal and spatial resolutions
where the random error propagation or the truncation error is amplified significantly. The
current study suggests λx/WS = 14.3 − 25 and facq/fflow = 18 − 30 for optimal pressure
integration, incorporating both the effect of random and truncation error on the resulting
fields. For pressure estimations based on material acceleration estimates from Lagrangian
trajectory reconstructions over multiple velocity fields, the optimal acquisition frequency
increases proportional to the size of the velocity field kernel. The model is validated with a
parametric study which computes pressure integrations over a range of spatial and temporal
resolutions, velocity error levels, and Reynolds numbers. The resulting minima within the
optimization set are extracted and show good agreement with the derived model. The
equations for the optimal sampling parameters can be used, in conjunction with estimates
of the dominant temporal and spatial scales of the flow, for the selection of experimental
sampling parameters to minimize pressure estimation error.

Errors due to three-dimensional vortex structures are evaluated systematically via
a comparison of pressure estimations obtained from two-dimensional, planar and three-
dimensional, volumetric data. The results show that the increase in flow three-dimensionality
moving from transitional (ReD = 300) to turbulent (ReD = 1575) shedding regimes leads
to substantial local errors (> 20%) in the pressure fields estimated from planar measure-
ments. These errors are reduced substantially (to ≈ 1%) when volumetric data is used,
and hence volumetric measurements are essential for accurate evaluation of pressures in
highly turbulent regions, i.e., in the turbulent wake away from the cylinder surface. On
the other hand, when transition occurs in the near wake, surface pressure estimations
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from planar velocity fields can yield reliable results. Based on the analysis of the planar
velocity divergence and three-dimensional error statistics, planar pressure techniques can
be expected to produce reliable estimates in regions where the out-of-plane gradients are
approximately less than half of in-plane velocity gradients.
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Chapter 4

Instantaneous PIV/PTV-based
pressure gradient estimation: a
framework for error analysis and
correction

In the interest of improving the accuracy of PIV-based pressure estimates utilizing a Pois-
son equation solver, which is the methodology exhibiting the lowest sensitivity to random
errors in the results of Chapter 3, the pressure field errors are analyzed through the de-
velopment of a framework for the exact determination of the pressure gradient estimation
error in incompressible flows given erroneous velocimetry data. The framework relies on
the calculation of the curl and divergence of the pressure gradient error over the domain,
and then the solution of a div-curl system to reconstruct the pressure gradient error field.
The results show that the exact form of the pressure gradient error field reconstruction
converges onto the exact values, within truncation and round-off errors, except for a small
flow field region near the domain boundaries. In practice, a subset of terms required to cal-
culate the source term for the divergence of the pressure gradient error remain unresolved.
It is shown that using an approximation for the unresolved terms can retain the fidelity of
the reconstruction, even when velocity field errors are generated with substantial spatial
variation.

This chapter is based on the journal article: McClure, J., and Yarusevych, S. (2019) “Gen-
eralized PIV-based pressure gradient error correction for Lagrangian pseudo-tracking,”
Measurement Science and Technology, 30(8), 084005.
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4.1 Introduction

The estimation of fluid pressure from Particle Image or Tracking Velocimetry (PIV/PTV)
measurements serves to broaden significantly flow diagnostic capability for fluid mechanics
research. It holds a number of advantages compared to traditional methods for exper-
imental pressure measurement, allowing simultaneous measurement of the time-resolved
evolution of the pressure field in up to three spatial dimensions, in essentially non-intrusive
fashion (e.g., van Oudheusden 2013), and in potentially sensitive flow regions away from
wall boundaries. Moreover, the added benefit from the availability of both the velocity
and pressure fields is the ability to estimate time-resolved structural loads on immersed
structures (e.g., van Oudheusden et al. 2007, Tronchin et al. 2015, Rival and Oudheus-
den 2017), which is of particular importance in flows where direct force measurements are
difficult or impossible. Unfortunately, instantaneous pressure estimations are known to
suffer from considerable errors due to the propagation of uncertainties from the velocity
measurements. For example, correlation coefficients of Cpp ≈ 0.7 between embedded sur-
face microphones and PIV/PTV-based pressure estimates have been reported based on
high quality experimental data in fully developed turbulent flows (e.g., Ghaemi et al. 2012,
de Kat and van Oudheusden 2012, Azijli et al. 2016, Schneiders et al. 2016a), implying
instantaneous errors of approximately 30%, whereas traditional transducers can provide
measurement errors on the order of 1% (Tavoularis 2005). Hence, there is a need for
more robust time-resolved PIV/PTV-based pressure estimation methodologies, as well as
uncertainty characterization.

In general, errors in instantaneous pressure estimation are dependent on a number of
parameters (Charonko et al. 2010, de Kat and van Oudheusden 2012, Azijli et al. 2016,
Pan et al. 2016, McClure and Yarusevych 2017b). To characterize the sensitivity of pres-
sure estimations to velocity field error, synthetic PIV/PTV data generated from analytical
solutions (Charonko et al. 2010, de Kat and van Oudheusden 2012) or numerical solutions
(Blinde et al. 2016, McClure and Yarusevych 2017b) for a wide range of parameters have
been analyzed, and theoretical investigations of the error propagation have been performed
(Pan et al. 2016). The results inform on the dependency of the pressure estimation error
magnitude on the spatial and temporal sampling resolution (Charonko et al. 2010, de Kat
and van Oudheusden 2012, McClure and Yarusevych 2017b), domain size, aspect-ratio,
boundary condition type (Pan et al. 2016), and the specific flow geometry and physics
(Charonko et al. 2010), with nearly irrotational and rotational flow regions exhibiting dif-
ferent sensitivities to boundary condition errors (Pan et al. 2016, Schneiders et al. 2016a).
For high quality data with adequate spatial and temporal resolution, minimal bias error in
the Poisson solution accumulates (de Kat and van Oudheusden 2012) and time-averaged
PIV/PTV-based pressure estimations typically compare favourably with reference values
(van Oudheusden et al. 2007, McClure and Yarusevych 2016b, Schneiders et al. 2016b).
However, the instantaneous pressure estimates still contain significant random error, which
must result either from random velocity error propagation to the Poisson source term
or errors associated with boundary conditions. Compared to the established progress
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made in recent years towards uncertainty quantification in velocimetry measurements (e.g.,
Charonko and Vlachos 2013, Sciacchitano 2014, Sciacchitano and Wieneke 2016, Timmins
et al. 2012), a framework for the uncertainty quantification of PIV/PTV-based pressure
estimations from velocimetry data is still in early development. A framework for the linear
propagation of velocity uncertainty through material acceleration estimates was developed
in (de Kat and van Oudheusden 2012) and formed the basis for extended uncertainty anal-
ysis (de Kat and Ganapathisubramani 2013, Laskari et al. 2016, McClure and Yarusevych
2017b). Recently, Pan et al. (2016) formulated upper bounds on the pressure estimation
errors on simply-connected, rectangular domains, with specified Dirichlet boundary, Neu-
mann boundary, and Poisson source term errors. The results provide valuable insight into
error propagation through the Poisson equation for pressure. However, the source and
boundary errors are assumed values, and are assumed uniform on the boundaries and in-
side the domain. Azijli et al. (2016) formulated a framework for estimating the probability
density function of the pressure uncertainty. While the method was deemed more accurate
than linear propagation estimates, it retains some limitations which include the reliance
on estimates of the velocity field covariance, the assumption of a Gaussian velocity error
distribution, and an inability to predict errors on a single instantaneous pressure field.

The propagation of uncertainty from the velocimetry measurement, and that associ-
ated with the application of Dirichlet-type boundary conditions (e.g., based on Bernoulli
equation) for absolute pressure estimates have been identified as the main sources of errors
(Charonko et al. 2010, de Kat and van Oudheusden 2012, Azijli et al. 2016, McClure and
Yarusevych 2016a, McClure and Yarusevych 2016b, Pan et al. 2016). In order to character-
ize the sensitivity of pressure estimations to velocity field error, synthetic PIV/PTV data
generated from analytical solutions (Charonko et al. 2010, de Kat and van Oudheusden
2012) and numerical solutions (Blinde et al. 2016, McClure and Yarusevych 2017b) have
been analyzed for a variety of flows. The results inform on differences in pressure esti-
mates sensitivity to velocity field noise in the investigated flows, which are attributed to
differences in sampling parameters (de Kat and van Oudheusden 2012, McClure and Yaru-
sevych 2017b), domain size, aspect-ratio, and boundary condition type (Pan et al. 2016).
For a given velocity error level, the accuracy of pressure estimation also depends on specific
flow geometry and physics (Charonko et al. 2010), with nearly irrotational and rotational
flow regions exhibiting different sensitivities to boundary condition errors (Pan et al. 2016,
Schneiders et al. 2016a). However, compared to the significant progress made in recent
years towards uncertainty quantification in velocimetry measurements (e.g., Charonko and
Vlachos 2013, Sciacchitano 2014, Sciacchitano and Wieneke 2016, Timmins et al. 2012),
a framework for uncertainty quantification in PIV/PTV-based pressure estimations from
experimental velocity data is yet to be developed fully. Pan et al. 2016 formulated upper
bounds on the pressure estimation errors on simply-connected, rectangular domains, with
specified Dirichlet boundary, Neumann boundary, and Poisson source term errors. The
results provide valuable insight into error propagation through the Poisson equation for
pressure. However, the source and boundary errors are assumed values, and are assumed
uniform on the boundaries and inside the domain. Azijli et al. 2016 formulated a frame-
work for the evaluation of the covariance of the pressure uncertainty. While the method
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certainly has practical utility, its limitations include the reliance on estimates of the ve-
locity field covariance, the assumption of a Gaussian velocity error distribution, and an
inability to predict errors on a single instantaneous pressure field.

Due to the effect of velocity error propagation on instantaneous pressure estimates,
a number of different techniques have been developed to condition the estimated veloc-
ities (um) and/or pressure gradient field (∇pm) before the pressure is estimated. The
first studies on PIV-based pressure estimates utilized Eulerian central differences to esti-
mate velocity derivatives in the Navier-Stokes (NS) equations based on measured velocity
data. The computed pressure gradient field was then integrated over the domain (Baur
and Köngeter 1999, Gurka et al. 1999). Later on, Lagrangian estimates for the material
acceleration, based on pseudo-tracking approaches for PIV (e.g., Liu and Katz 2006, Vi-
olato et al. 2011, de Kat and van Oudheusden 2012, Pröbsting et al. 2013, Lynch and
Scarano 2014) or directly from PTV (e.g., Neeteson and Rival 2015, Blinde et al. 2016),
were employed to estimate ∇p and exhibited lower sensitivity to random errors in veloc-
ity measurements compared to the Eulerian formulation. The Lagrangian estimates could
also leverage over-sampled data in time to reconstruct least square trajectories over ker-
nels of multiple time separations in order to increase accuracy (e.g, Lynch and Scarano
2014, Pröbsting et al. 2013). For both methods, measured velocity field conditioning has
been considered to reduce error propagation into pressure gradient estimates. The tech-
niques considered in different studies included low-pass (Charonko et al. 2010, Dabiri et al.
2014), Proper Orthogonal Decomposition (POD) (Charonko et al. 2010), and solenoidal
filtering (Azijli and Dwight 2015) of the velocity field, with the latter two approaches typ-
ically showing better results. Furthermore, once the pressure gradient field is estimated,
the irrotationality condition on the pressure gradient field has been used to correct for
directional propagation of error in line-integration based pressure estimation techniques
(Wang et al. 2016), or the Navier-Stokes equations have been used in conjunction with the
solenoidal constraint on the velocity field in a configurable weighted correction scheme for
preconditioning the velocity field (Gesemann et al. 2016)

The present study serves two purposes. The first is to develop a method for reducing
pressure gradient estimation errors in order to increase the fidelity of PIV/PTV-based pres-
sure gradient and pressure estimations. The second is to develop a method for quantifying
errors in instantaneous pressure estimations from measured PIV/PTV data which is simple,
robust, and requires minimal approximations. Both objectives require the reconstruction
of the instantaneous pressure gradient error field (ε∇p) over the domain, and the framework
from which it may be reconstructed exactly based on measured velocity data is presented.
The proposed formulation relies exclusively on error propagation through the governing
equations of fluid motion. The terms that can be evaluated based on measured velocity
field data are identified and the significance of the remaining terms is comprehensively
evaluated. The analysis is applied to synthetic velocity data generated from analytical and
direct numerical simulation flow test cases, and the exact pressure field information is used
to assess the accuracy of pressure gradient/pressure error estimation and performance of
the proposed error correction approach.
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4.2 Methodology

4.2.1 Pressure from Velocimetry

The Poisson formulation (equation 4.1) is employed to estimate pressure from a measured
velocity field (e.g., Gurka et al. 1999).


∇2pm =∇ ·∇pm, in Ω
∇pm · n = f, on Γi
pm = g, on Γj

(4.1)

where ∇pm is the estimated pressure gradient in the domain (Ω), with Neumann (f =
∇pm) and/or Dirichlet-type (g = pbernoulli) boundary conditions prescribed at domain
boundaries Γi and Γj, respectively, based on PIV/PTV velocity data.

Pressure specified on the boundaries, Γj, can be estimated from the steady Bernoulli
equation, or from an extended formulation (de Kat and van Oudheusden 2012) valid for
unsteady, irrotational flow with small mean velocity gradients. The pressure gradient
(∇pm) in equation 4.1 is obtained from the Navier-Stokes equations (equation 4.2) us-
ing the measured velocity field (um). The material derivative in equation 2 is estimated
using either an Eulerian (equation 4.3) or Lagrangian (equation 4.4) formulation. The
Eulerian evaluation involves the discretization of the terms in equation 4.3 by central dif-
ferences. The Lagrangian evaluation is a least squares trajectory reconstruction, where
∆t = [−M∆t,−(M − 1)∆t, ...,M∆t] is a vector of time differentials and ∆u contains cor-
responding velocity differentials based on regressive first order trajectory estimations from
t0 to t0 + ∆t, i.e., ∆u(∆t) = u(x(t), t)− u(x(t0), t0), where t0 and x(t0) are the time and
the particle positions at the central time and x(t) are the positions at time to + ∆t (e.g,
Pröbsting et al. 2013). Bi-cubic interpolation is employed for the calculation of velocities
at x(t), and trajectories leaving the domain are not included in the least squares estimate.
The evaluation of the viscous term in equation 4.2 relies on central differences; however,
the relative magnitude of this term is often small, and the term can be neglected if the
Reynolds number is sufficiently high (e.g., Ghaemi et al. 2012).

∇pm = −ρDum

Dt
+ µ∇2um (4.2)

Dum

Dt
= ∂um

∂t
+ (um ·∇)um (4.3)

Dum

Dt
= (∆tT∆t)−1∆tT∆um (4.4)
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4.2.2 Pressure Gradient Error

The measured velocity field (um) and estimated pressure gradient field (∇pm) can be
decomposed into exact fields (uex and ∇pex) and error fields (εu and ε∇p) as follows:

um = uex + εu (4.5)

∇pm =∇pex + ε∇p (4.6)

The characteristics of the pressure gradient error field ε∇p are of interest for both un-
certainty estimation and pressure gradient correction. If ε∇p is known, precise pressure
estimations can be obtained by solving equation 4.1 with the corrected gradient field. The
following analysis will show how ε∇p can be determined precisely from erroneous velocity
data in an incompressible flow given the divergence of the measured velocity fields, ∇ ·um,
and the curl of the estimated pressure gradient fields, ∇×∇pm.

First, the divergence of the velocity field error (εu) and the curl of the pressure gradient
field error are calculated by taking the divergence of equation 4.5 and curl of equation 4.6.
This leads to equations 4.7 and 4.8, where incompressibility of the exact velocity field and
irrotationality of the exact pressure gradient field are invoked.

∇ · εu =∇ · um (4.7)

∇× ε∇p =∇×∇pm (4.8)

The curl of the estimated pressure gradient field has been used by several authors (Lynch
and Scarano 2014, McClure and Yarusevych 2016a, Wang et al. 2016, Wang et al. 2018,
Lin and Xu 2023) in order to compare the accuracy of pressure gradient and material
acceleration estimates from PIV data, while the divergence of the measured velocity has
been employed previously to estimate relative errors in tomographic PIV measurements
(e.g., Scarano and Poelma 2009, Atkinson et al. 2011). However, analysis of either quantity
in equation 4.7 or 4.8 can only serve to evaluate relative errors for similar flow cases, and is
insufficient as a universal technique for error estimation, since the velocity error field and
pressure gradient error field will generally have significant divergence-free and irrotational
components, respectively. In addition, analysis of local statistics of derivative quantities of
the error neglects the spatial distribution and correlation of the error, which is important
in determining pressure estimation error (Azijli et al. 2016).

A more complete description of the pressure gradient error field can be obtained if the
divergence of the pressure gradient error (∇ ·ε∇p) is specified. Combining this information
with equation 4.8 forms a deterministic system that can be solved for ε∇p, as will be shown
in section 4.2.3. The divergence of the pressure gradient error can be determined by taking
the divergence of the NS equations as follows:
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∇ · (∇pex + ε∇p) = −ρ∇ ·
(
∂(uex + εu)

∂t

)
− ρ∇ · ((uex + εu) ·∇)(uex + εu) + µ∇ · (∇2(uex + εu))

(4.9)

After expanding the convective term and subtracting ∇ ·∇pex from both sides, we obtain:

∇ · (ε∇p) = −ρ∂(∇ · εu)
∂t

− ρ∇ · (um ·∇)εu − ρ∇(εu ·∇)uex + µ∇2(∇ · εu) (4.10)

Then, expanding the second and third terms on the right-hand side gives:

∇ · (ε∇p) = −ρ∂(∇ · εu)
∂t

− ρ(um ·∇)(∇ · εu)

− ρ∇εu :∇Tum − ρ(εu ·∇)(∇ · uex)− ρ∇εu :∇Tuex + µ∇2(∇ · εu)
(4.11)

Where the double dot product (:) results in a scalar defined as A : B = AijBij. Finally,
rearranging terms and applying the divergence free condition on the exact velocity field
yields:

∇·(ε∇p) = −ρ∂(∇ · εu)
∂t

−ρ(um·∇)(∇·εu)+µ∇2(∇·εu)−ρ∇εu : (∇Tuex+∇Tum) (4.12)

In this form, the first three terms on the right hand side of equation 4.12 can be evaluated
from the measured velocity field (um), with ∇ · εu computed from equation 4.7. However,
the last term on the right hand side, denoted hereafter as Λ = −ρ∇εu : (∇Tuex +∇Tum),
cannot be evaluated based on measured velocity data, as it contains the unknown exact
velocity (uex) and velocity field error gradient (∇εu). In order to approximate Λ, it may
be possible to use advanced PIV error estimation techniques (Sciacchitano et al. 2015),
if a relationship between the velocity error gradients and measured velocity gradients can
be obtained. However, the focus of the present work will be on assessing the significance
of this term and approximating its magnitude using measurable quantities. Specifically,
using equation 4.5, the following decomposition of Λ is convenient:

Λ = −2ρ∇εu :∇Tuex − ρ∇εu :∇Tεu (4.13)

While the first term on the right hand side remains unmeasurable, the second term can be
approximated as∇εu :∇Tεu ≈ (∇ ·εu)2 and thus can be estimated based on experimental
data (equation 4.7). This approximation is based on the assumption that spatial derivatives
of the velocity error field do not have strong directional dependence, e.g., ∂εxu

∂x
≈ ∂εxu

∂y
,

which is reasonable since PIV/PTV velocity measurement errors are typically dominated by
random errors (Raffel 2007, Sciacchitano et al. 2015). An exception where the measurement
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errors may no longer be random is if peak locking is present in the velocimetry processing,
however, this can be avoided by following recommended experimental practice (Raffel
2007). A more drastic simplification that can be considered is neglecting the lambda term
entirely. Thus, the following two approximations to equation 4.13 will be evaluated:

Λ̃ ≈ −ρ(∇ · εu)2 (4.14)

Λ0 ≈ 0 (4.15)

4.2.3 Reconstruction of the Pressure Gradient Error

The previous section described the calculation of the curl and divergence of the pressure
gradient error field, ε∇p (equations 4.8 and 4.12, respectively). The problem of solving for
ε∇p thus forms the following div-curl system:


∇× ε∇p = J, in Ω
∇ · ε∇p = f, in Ω
|ε∇p × n| = a, on Γi,
ε∇p · n = b, on Γj

(4.16)

where J and f are given by equations 4.8 and 4.12, respectively. Similar div-curl problems
have been explored in previous applied mathematics studies (e.g., Auchmuty and Alexander
2001, Rodríguez et al. 2015), and it has been shown that a unique solution exists for a
simply-connected domain (Ω) where tangential or normal boundary conditions (a and b) are
specified on the boundaries of Ω, Γi and Γj, respectively (Auchmuty and Alexander 2001).
If the domain is multiply-connected, then additional line integrals must be specified on the
boundaries in order to maintain uniqueness (Auchmuty and Alexander 2001). Since the
boundary conditions for equation 4.16 are typically unknown for ε∇p, they are assumed to
be a = b = 0, and Helmholtz’s theorem (Abraham et al. 1988) provides a solution method
if ε∇p is smooth and vanishes at infinity. An extension of the Helmholtz decomposition
for piecewise continuous functions is given in Tong et al. 2003, who show its validity for
discrete data. Note, the impact of the simplifying assumption made for the boundary
conditions will be assessed later in the chapter.

A numerical solution of equation 4.16 requires the curl and divergence of the pressure
gradient error field. First, the estimated pressure gradient is obtained from the velocity
data by employing Eulerian central differences to estimate the derivative quantities in equa-
tion 4.3. The curl and divergence of the pressure gradient error field can then be estimated
either on a regular Cartesian grid using central differences to evaluate the derivative quan-
tities in equations 4.8 and 4.12 (figure 4.1a), or on a staggered grid configuration (figure
4.1b). In the staggered scheme, the estimated pressure gradient and velocity field must
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Figure 4.1: (a) Cartesian regular grid and (b) staggered grid for reconstruction of the
pressure gradient error field.

be linearly interpolated onto cell centres before staggered differencing schemes are applied
to evaluate equations 4.8 and 4.12. The regular and staggered schemes produce nearly
identical results in the final pressure reconstruction; however the staggered scheme greatly
reduces spurious mode errors (i.e., checker boarding) in the corrected pressure gradient
fields.

In general, there are a variety of methods for solving equation 4.16 (Abraham et al.
1988, Rodríguez et al. 2015, Wang and Wang 2015). For vanishing ε∇p at the boundaries,
the Helmholtz decomposition of ε∇p into curl-free (φ) and divergence-free (A) potential
fields (Abraham et al. 1988, Auchmuty and Alexander 2001) can be employed, as shown
in equation 4.17.

ε∇p = −∇φ+∇×A (4.17)

The potentials φ and A can be determined by using the solenoidal property of ∇×A and
irrotationality of ∇φ to arrive at separate Poisson-type equations for φ and A (equations
4.18 and 4.19, respectively). The resulting equations can be solved with a 5-point (two-
dimensional) or 7-point (three-dimensional) discretization implementation, similar to the
Poisson solver used for pressure reconstruction (e.g., Gurka et al. 1999).

∇
2φ = −∇ · ε∇p, in Ω
∇φ · n = 0, on Γ

(4.18)
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∇
2A = −∇× ε∇p, in Ω
∇A · n = 0, on Γ

(4.19)

Once ε∇p is obtained, corrected pressure gradient fields can be obtained by subtracting ε∇p
from the pressure gradient field computed based on experimental velocity measurements
(∇pm). Depending on how the Λ term is determined, i.e., obtained exactly (equation
4.13) or approximated (equations 4.14 and 4.15), the corrected pressure gradient fields are
denoted as ∇pΛ = ∇pm − ε∇pΛ , ∇p̃Λ̃ = ∇pm − ε∇p̃Λ̃

, and ∇p̃Λ0 = ∇pm − ε∇p̃Λ0
. The

first type of correction is included as a baseline comparison, as it represents the exact
correction of the pressure gradient field and requires the exact determination of the Λ term
(equation 4.13). On the other hand, the approximate corrections are of particular interest
for practical applications. Once the pressure gradient field has been corrected, it can be
integrated to obtain the corrected pressure field (pΛ, p̃Λ̃, or p̃Λ0).

4.2.4 Synthetic PIV Data

To evaluate the effectiveness of the proposed technique, analytical and numerical test cases
are employed, where exact pressure fields (pex) are known. Specifically, the following three
flow cases are investigated: the stationary Taylor vortex, the advecting Lamb-Oseen vortex,
and the turbulent wake of a circular cylinder for ReD = 1575. The Taylor vortex (e.g.,
Panton 2013) and advecting Lamb-Oseen vortex (e.g., Batchelor 2000) are based on two-
dimensional analytical solutions for both the velocity and pressure fields, while the cylinder
wake data is obtained from the three-dimensional direct numerical simulations presented
in McClure and Yarusevych 2017b.

Synthetic velocity data (um) are extracted by sampling analytical or numerical velocity
field solutions on a regular grid and adding velocity error fields (εu) to the sampled data.
Synthetic data were generated using this methodology in a number of previous studies
(Charonko et al. 2010, de Kat and van Oudheusden 2012, Azijli et al. 2016, Blinde et al.
2016, McClure and Yarusevych 2017b), though methods of generating εu vary. For the
analysis employed herein, the standard deviation (σi) of the random error is specified by
a two-parameter model, shown in equation 4.20. The first parameter in equation 4.20,
α (%), represents an error component proportional to the magnitude of the normalized
velocity gradient tensor, reaching a maximum percentage of the peak velocity (αupeak) in
the domain. The second parameter, β (px), adds a uniform displacement error for an
interrogation window of dimensions WS ×WS ×WS over a time separation of δt for a
given scale factor SF (px/mm). For the present study, a 16 × 16 × 16 px interrogation
window is assumed, which corresponds to SF = 16/WS.

σi = αupeak
|∇uex|

max(|∇uex|)
+ β

SF

δt
(4.20)

Correlated error is then generated following the method presented by Azijli and Dwight
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2015, where the correlation matrix ζij is constructed using a triangle function, dropping to
zero outside of overlapped regions, modelling the correlation of random errors caused by
interrogation window overlap reported in Sciacchitano and Wieneke 2016. The covariance
of the velocity error is then Sij = σiζijσj, and realizations of correlated random error
are generated by computing the Cholesky decomposition, Sij = LijLji (Azijli and Dwight
2015) to obtain the velocity error, (εu)i = Lijλj, where λj is the vector of samples from
a Gaussian distribution with a standard deviation of 1 and a mean of 0. As a result,
the synthetically generated errors have zero mean, standard deviations varying in space
according to the two-parameter model in equation 4.20, and local correlation depending
on the overlap factor.

Results of the synthetic error generation for each flow case investigated herein are illus-
trated in figure 4.2 for α = 25% and β = 0.25 px (equation 4.20). The velocity error levels
are exaggerated to approximately double that typically obtained in a carefully controlled
experiment to demonstrate the robustness of the error reconstruction methodology. The
synthetic fields showcase the local correlation (Sciacchitano and Wieneke 2016) and error
concentration in higher gradient regions of the flow (Timmins et al. 2012), characteristic of
PIV measurement. For each flow case, the time separation is set to δtupeak/WS ≈ 0.5, so
that typical particle displacements are over half an interrogation window and the uniform
displacement error (β = 0.25 px), representing typical PIV correlation error in a uniform
flow (Raffel 2007) is approximately 3.1% of upeak.

Figure 4.2: Instantaneous synthetic velocimetry data for the three flow cases investigated:
(a) stationary Taylor vortex, (b) advecting Lamb-Oseen vortex, and (c) turbulent wake of a
cylinder in cross-flow at ReD = 1575 with (d)-(f) showing their respective added correlated
velocity error component generated using equation 4.20 with α = 25%, β = 0.25 px.
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4.3 Results

Pressure gradient error reconstruction is first tested using two analytical test cases. The
first one is a stationary Taylor vortex, which is a two-dimensional flow with favourable
boundary conditions for evaluating the proposed error reconstruction. The second one is
an advecting Lamb-Oseen vortex, which is used to evaluate the effect of boundary errors
on the reconstruction. Following that, the reconstruction is tested using synthetic velocity
data sampled from the three-dimensional direct numerical simulation of flow over a uniform
cylinder at ReD = 1575. In each case, the pressure estimates were obtained by solution
of the Poisson equation (equation 4.1. The Laplacian of the pressure field was discretized
using a 5-point scheme (two-dimensional) or a 7-point scheme (three-dimensional), and
ghost grid points were used to implement the Neumann boundary conditions to complete
the 5- or 7-point scheme employing the estimated pressure gradient at the boundary (e.g.,
pi+1,j = pi,j + ∆x ∂p

∂x i,j
)

4.3.1 Taylor Vortex

The Taylor vortex (figure 4.2a) is defined in two-dimensions, assuming p∞ = 0, according
to Panton 2013 as:

uθ = H

8π
r

νt2
exp

(
− r2

4νt

)
(4.21)

p = ρH2

64π2νt3
exp

(
− r2

2νt

)
(4.22)

For the results reported in this section, the following parameters are employed: H =
7.5 × 10−5 m2, ν = 1 × 10−6 m2 s-1, ρ = 1000 kg m-3, and t = 0.5 s. These parameters
were selected to allow sampling at reasonable time separations for a PIV/PTV experiment
(0.1WS/upeak < δt < 1WS/upeak) without a high degree of viscous diffusion occurring over
δt. The size of the domain (Lx = Ly = 8 × 10−3 m) is such that pressure and velocity
approach zero at the boundaries and Dirichlet boundary conditions based on the steady
Bernoulli equation are applied on all boundaries in equation 4.1. This configuration is
similar to the approach taken in previous investigations where this flow was employed as
a test case (e.g., Azijli and Dwight 2015).

The fidelity of the error reconstruction is first assessed by comparing pressure gradient
estimations using exact velocity data (figures 4.3a-b), erroneous velocity data (figures 4.3c-
d), and the corrected pressure gradient data (figures 4.3e-g). Figures 4.3a and b present
∂p/∂x estimated from exact velocity data using the Eulerian method including the viscous
term (equation 4.2), and excluding the viscous term (equation 4.3), respectively. The
viscous term contributes significantly to the pressure gradient field for this flow; however,
since the flow is incompressible, the contribution to the pressure gradient field in the interior
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of the domain from the viscous term is divergence-free and does effect the pressure field
through the Poisson equation source term. The viscous term is highly sensitive to velocity
error, and should be neglected when estimating pressure gradients from data containing
even minor velocity error (Ghaemi et al. 2012, Lynch and Scarano 2014). Hence, for the
remainder of the present study, the pressure gradient will be determined based only on
the material acceleration (equation 4.3). Figures 4.3c and d present estimates for ∂pm/∂x
from the erroneous velocity data using Eulerian and Lagrangian (M = ±1) estimates,
respectively, neglecting the viscous term. Significant errors are observed in the pressure
gradient estimates for both methods due to the use of a relatively high velocity error
magnitude εu ∝ α = 25%, β = 0.25 px. Nevertheless, the Lagrangian estimates are
smoother in comparison to the Eulerian estimates, agreeing with the results of previous
studies (e.g., Violato et al. 2011, de Kat and van Oudheusden 2012, Ghaemi et al. 2012,
Lynch and Scarano 2014). The effect of subtracting the reconstructed error field ε∇p
from the estimated Eulerian field ∂pm/∂x is shown in figures 4.3e-g, corresponding to the
three different forms of the Λ-term defined in equation 4.13, ∂pΛ/∂x, ∂p̃Λ̃/∂x, ∂p̃Λ0/∂x,
respectively. Retaining all terms in Λ (figure 4.3e) or utilizing the approximation Λ̃ (figure
4.3f) produce corrected pressure gradient fields that match closely with the exact field
(figure 4.3b), even though the viscous term was neglected in the calculation of ∂pm/∂x
and the reconstruction of ε∇p. This initial result demonstrates the utility of the pressure

Figure 4.3: Taylor vortex pressure gradient fields sampled at WS/λx = 0.08 with 75%
window overlap and δtupeak/WS = 0.50. (a) Using exact velocity data, (b) using exact
velocity data and excluding viscous terms, (c) Eulerian evaluation on erroneous velocity
data with α = 25% and β = 0.25 px, (d) Lagrangian evaluation on erroneous velocity data,
(e) Eulerian evaluation on the same erroneous velocity data with Λ reconstruction, (f) Λ̃
reconstruction, and (g) Λ0 reconstruction.
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Figure 4.4: Taylor vortex pressure fields computed from solving equation 4.1, sampled
at WS/λx = 0.08 with 75% window overlap and δtupeak/WS = 0.50, (a) using exact data,
(b) using exact data and neglecting viscous terms (c) Eulerian evaluation on erroneous
velocity data with α = 25% and β = 0.25 px, (d) Lagrangian evaluation on erroneous
velocity data, (e) Eulerian evaluation on erroneous velocity data with Λ reconstruction, (f)
Λ̃ reconstruction, and (g) Λ0 reconstruction.

gradient error reconstruction, with which significantly higher accuracy estimates can be
achieved. In contrast, while the corrected field obtained by neglecting the entire Λ term
(figure 4.3g) results in a smoother pressure gradient field compared to the Eulerian or
Lagrangian estimates and partially resolves the underlying topology, the pressure gradient
magnitude differs considerably from the exact field over the majority of the domain.

The pressure gradient estimates presented in figure 4.3 determine the source term in the
Poisson problem for pressure (equation 4.1), and figure 4.4 presents the results of pressure
estimations from the respective data in figure 4.3. The integration of the exact pressure
gradient fields with viscous terms included or neglected results in equivalent pressure fields
(figures 4.4a,b), as expected. Figures 4.4c and d show the pressure field determined using
Eulerian central differences and Lagrangian trajectory reconstruction, respectively. Both
methods resolve the magnitude of the low pressure region adequately, however, the errors
seen in the corresponding pressure gradient fields (figures 4.3c and d) have clearly propa-
gated into the pressure estimates. Figure 4.4e plots the corrected pressure field with the
error field reconstruction retaining all terms (pΛ), and the pressure field is reconstructed
nearly exactly despite operating on noisy data. Figure 4.4f plots the corrected pressure field
with the error field reconstruction which retains terms which are measurable in a typical
velocimetry experiment (pΛ̃). In this case, the pressure field estimate closely matches the
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Figure 4.5: Comparing the mean and standard deviation error statistics of uncorrected
(∂pm/∂x) and corrected (∂pΛ/∂x, ∂pΛ̃/∂x, ∂pΛ0/∂x) pressure gradient estimations com-
piled over 3,000 realizations. Refreshed velocity field errors are generated with α = 25%
and β = 0.25 px and 75% interrogation window overlap for each realization. Evaluated on
high spatial resolution data (a,c) with WS/λx = 0.08, δtupeak/WS = 0.50, and on coarse
data (b,d) with WS/λx = 0.42, δtupeak/WS = 0.094.

exact field as well, showing substantial improvement over estimates from the uncorrected
data. On the other hand, the corrected pressure field with the error field reconstruction
which neglects Λ entirely (pΛ0) has pressure growing to high levels in the centre of the
domain as a consequence of the pressure gradient offset seen in figure 4.3g.

The corrected fields based on the proposed pressure gradient error reconstruction have
been shown to converge close to the exact pressure gradient and pressure fields when either
Λ or Λ̃ are used in equation 4.12. To statistically characterize the errors of the estimates
with respect to the exact fields, a Monte Carlo simulation was performed using 3,000 eval-
uations of pressure gradient and pressure estimates with refreshed noise profiles. Figure
4.5 plots the bias (ε∇p) and random (ε′∇p) of the pressure gradient errors along the centre
of the domain for data extracted at two different spatial resolutions. The error statistics
for the baseline case (shown in red) is compared to that obtained with corrected pressure
gradient reconstructions. Figures 4.5a and b demonstrate a notable reduction in the bias
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Figure 4.6: Comparing the mean and standard deviation error statistics of uncorrected
(pm) and corrected (pΛ, pΛ̃, pΛ0) pressure estimations compiled over 3,000 realizations.
Refreshed velocity field errors are generated with α = 25% and β = 0.25 px and 75%
interrogation window overlap for each realization. Evaluated on high spatial resolution data
(a,c) with WS/λx = 0.08, δtupeak/WS = 0.50, and on coarse data (b,d) with WS/λx =
0.42, δtupeak/WS = 0.094.

errors for the corrected fields ∂pΛ/∂x and ∂pΛ̃/∂x, while the corrected field ∂pΛ0/∂x has
significantly higher bias errors compared to the uncorrected data, as previously seen in
figure 4.3g. As the spatial resolution is decreased (figure 4.5b), the relative reduction of
the bias pressure gradient error is increased notably for ∂pΛ/∂x, ∂pΛ̃/∂x and ∂pΛ0/∂x. The
random pressure gradient error, shown in figures 4.5c and d, shows a substantial reduction
in the deviation of the local errors when any error reconstruction is used to correct the
pressure gradient field. As expected, correcting the field with the error reconstruction re-
taining the full Λ-term performs best, especially in the high gradient regions near the centre
of the domain, while the corrected fields from approximate reconstructions exhibit higher
error deviations of similar magnitude. It is of interest to note that the similarity between
the standard deviation of the error fields for the Λ̃ and the more simplistic Λ0 correction
indicates that the former method may be improved with more advanced modelling.

Figure 4.6 plots the bias (εp) and random (ε′p) components of the pressure error along
the same profile intersecting the centre of the Taylor vortex. Inspection of the bias errors
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in figures 4.6a and b shows that the corrected fields with the Λ and Λ̃ error reconstructions
exhibit similar bias error as the uncorrected fields, while the Λ0-based reconstruction leads
to substantially higher bias errors. The bias errors seen in the uncorrected results as well as
Λ and Λ̃ reconstructions are attributed to finite spatial resolution, which has been shown
by de Kat and van Oudheusden 2012 to occur in pressure estimates from the Poisson equa-
tion. Consequently, these error reconstructions cannot account for truncation error due
to under-resolved data. The profiles of random error in figures 4.6c and d show that pΛ
yields a significant decrease in error variations compared to the estimates from uncorrected
results, for both fine and coarse spatial resolution data, with the corrected data showing
minor deviation from the exact pressure field. Notably, pΛ̃ yields a minimum of 50% reduc-
tion in random error for each case, while pΛ0 results show a more significant dependence
on the spatial resolution. The underlying reason for the changes in performance of the
approximate correction methods with spatial resolution can be deduced from inspection
of the form of Λ (equation 4.13), whose magnitude depends on a tensor contraction re-
sulting in terms containing spatial derivatives of velocity error such as (∂εu/∂x)(∂uex/∂x)
and (∂εu/∂x)2. Consequently, the entire magnitude of the Λ term relative to the other
terms in equation 4.12 increases with increasing spatial resolution, which explains that
the performance of the Λ0 approximation that neglects this term altogether decreases at
finer spatial resolutions. On the other hand, as the spatial resolution is decreased, the
Λ0 reconstruction becomes less erroneous, approaching Λ̃. Thus, in the limiting case, Λ̃
represents the upper performance limit for the Λ0 approximation.

Due to their similarity to the exact pressure fields, the corrected fields pΛ and pΛ̃ may
also be used to determine instantaneous pressure estimation uncertainties from uncorrected
data. In particular, the instantaneous error may be approximated as pm − pΛ or pm − p̃Λ̃,
with the goal of estimating the exact error value pm − pex. An integral measure for the
pressure error can be obtained by evaluating the RMS (||ε′p|| =

√∑(p− pex)2/N) of the
random instantaneous pressure error on the domain. This measure is evaluated for 100
realizations and averaged for varying velocity field error levels α = 0−50% and β = 0−0.5
px and the obtained error response is plotted in figure 4.7. Estimates of the instantaneous
pressure field error obtained using either pΛ or pΛ̃ show a remarkable agreement with the
exact error values. Such a good agreement is not immediately expected since the pΛ and pΛ̃
results featured some minor deviations from the exact pressure solutions (e.g., figure 4.6).
However, the corrected field pΛ lies in an identical subspace as the exact field pex where
irrotational pressure gradients and solenoidal velocity are satisfied. The Euclidean distance
between the measured field (pm) and the nearest field in this subspace (pΛ) hence appears
to serve as an accurate predictor of instantaneous pressure uncertainty. To confirm this,
figure 4.8 plots the normalized covariance of the pressure and velocity field errors from the
same evaluations used to tabulate statistics in figures 4.5 and 4.6, which were obtained
from 3,000 realizations at α = 25%, β = 0.25 px, and an overlap factor of 75%. The
plotted covariance is that between the point at the centre of the vortex (x = 0, y = 0) and
every other domain point a distance rij away, fit with a four-term Gaussian curve fit. The
dotted red line denotes the velocity error covariance, and shows the expected behaviour
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Figure 4.7: Comparison of integral measure of pressure estimation errors, averaged over
100 realizations, for a range of velocity field error levels α = 0− 50% and β = 0− 0.5 px.
Evaluated on high spatial resolution data with WS/λx = 0.08, δtupeak/WS = 0.5 and 75%
overlap.

of a linear function from 0 < rij/WS < 1 which is implicit in the correlation matrix ζij
populated with a triangle function to generate the correlated velocity error fields (Azijli
and Dwight 2015, Sciacchitano and Wieneke 2016). A high agreement is seen between the
exact pressure error covariance and that estimated from pΛ and pΛ̃, attesting to the high
fidelity of these methods in pressure uncertainty estimation. Notably, figure 4.8 shows
that, for pressure estimates obtained from erroneous velocity data, the radius of pressure
error correlation expands relative to the velocity error correlation, indicating that the
propagation of local velocity error through the Poisson equation extends to surrounding
regions within 12WS in this case. The propagation of local velocity error to surrounding
regions in the pressure solution is due to the elliptic nature of the Poisson equation and
underlies some of the difficulty in performing accurate PIV/PTV-based pressure estimates
in practice, for example, near wall boundaries.

4.3.2 Advecting Lamb-Oseen Vortex

The pressure gradient error reconstructions proposed in the current study neglect errors
at the boundaries of the domain. For the Taylor vortex test case, only minor velocity
errors were present at the boundary (figure 4.2a); consequently, neglecting the effect of
measurement errors at boundaries of the domain had a minimal effect on the accuracy of
the error reconstruction. In order to evaluate the effect of this assumption under more
strenuous conditions, an advecting Lamb-Oseen vortex (figure 4.2b) is analysed, where the
pressure and pressure gradients have a slower rate of decay away from the vortex centre.
The Lamb-Oseen vortex (Batchelor 2000) is defined in two-dimensions as:
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Figure 4.8: Covariance of the exact pressure estimation error (εpm), that estimated using
the Λ reconstructed field as reference (εpΛ), or the Λ̃ reconstructed field (εpΛ̃

), compared
to the covariance of the velocity field error with 75% overlap.
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where E1(x) =
∫∞
1 e−xt/t dt is the exponential integral, γ = 1.256431, and r2 = (x−Uat)2+

y2. For the analysis in this section, the following parameters are used: Γ = 0.001 m2 s-1,
rc = L/8 m, ρ = 1000 kg m-3, ν = 1× 10−6 m2 s-1, Ua = 0.003 m s-1. The flow is evaluated
on a domain Lx = Ly = 6 × 10−3 m, ensuring flow gradients are of significant magnitude
at the boundaries in order to facilitate a higher sensitivity to boundary error. Pressure
gradient and pressure estimations are evaluated as the vortex is advected from the centre
of the domain (x/L = 0) to the right side boundary (x/L = 0.5). A Neumann condition for
the pressure Poisson equation is enforced on the right boundary, and Dirichlet conditions
based on the steady Bernoulli equation are enforced on the remaining boundaries (equation
4.1). This configuration is similar to the approach of de Kat and van Oudheusden 2012
where the same flow was used as a test case.

Figure 4.9 plots the pressure gradient fields in the x direction when the advecting
vortex reaches x/L = 0.375 and strong pressure gradients are present at the right boundary
(x/L = 0.5). Figures 4.9a and b present ∂p/∂x estimated from exact velocity data including
the viscous term, and excluding the viscous term, respectively. The resulting pressure
gradient fields are nearly identical, indicating that the viscous term is negligible for the
parameters chosen for this flow. When correlated error of εu ∝ α = 25% and β = 0.25 px is
added to the velocity fields, the pressure gradient estimations using Eulerian (figure 4.9c)
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Figure 4.9: Lamb-Oseen vortex pressure gradient fields sampled at WS/λx = 0.08,
δtupeak/WS = 0.5, with its centre at x/L = 0.375. (a) exact velocity data neglecting
viscosity, (b) exact velocity data including viscosity, (c) Eulerian evaluation on erroneous
velocity data with α = 25% and β = 0.25 px, (d) Lagrangian evaluation on erroneous
velocity data, (e) Eulerian evaluation on erroneous velocity data with Λ reconstruction, (f)
Λ̃ reconstruction, and (g) Λ0 reconstruction.

and Lagrangian (figure 4.9d) methods become notably contaminated, similar to the Taylor
vortex results. When the pressure gradient error field is reconstructed (equation 4.16),
and subtracted from the raw Eulerian estimate (figure 4.9c), a significant reduction in
random variations is attained when Λ is retained fully in the reconstruction (figure 4.9e) or
approximated by Λ̃ (figure 4.9d). Similar to the Taylor vortex test case, estimations which
neglect Λ entirely (Λ0) lead to a significant mean offset in the corrected pressure gradient
field. The results show that corrections that employ the Λ or Λ̃ error reconstructions
perform well even when significant flow dynamics exist at the boundary. In particular, the
effect of neglecting errors at the boundaries can be deduced from a careful inspection of
figures 4.9e and f. Specifically, boundary errors affect a region near the right boundary
(0.45 < x/L < 0.5) near the boundary of the pressure gradient field where the reconstructed
results retain pressure gradient variations similar to those in the uncorrected results (figure
4.9c). However, away from this region, the effect of boundary errors on ∂pΛ/∂x or ∂pΛ̃/∂x
is minimal.

Pressure field estimations from the gradient fields shown in figure 4.9 are presented
in figure 4.10. The results are similar to the previously investigated Taylor vortex case,
indicating robustness of the method to boundary errors for the majority of the domain. In
comparison to the exact pressure solution (figure 4.10a), pressure estimates on the erro-
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Figure 4.10: Lamb-Oseen vortex pressure fields sampled atWS/λx = 0.08, δtupeak/WS =
0.5, with its centre at x/L = 0.375, (a) exact solution, (b) Eulerian evaluation on erroneous
velocity data with α = 25% and β = 0.25 px, (c) Lagrangian evaluation on erroneous
velocity data, (d) Eulerian evaluation on erroneous velocity data with Λ reconstruction,
(e) Λ̃ reconstruction, and (f) Λ0 reconstruction..

neous velocity data using uncorrected Eulerian (figure 4.10b) or Lagrangian (figure 4.10c)
techniques leads to appreciable random error propagation, whereas estimates utilizing the
error reconstructions retaining Λ (figure 4.10d) or Λ̃ (figure 4.10e) terms approach the ex-
act field. Once again, neglecting Λ entirely in the error reconstruction results in erroneous
pressure fields (figure 4.10f). A closer inspection of the corrected fields in figures 4.10d
and e reveals that corrected pressure estimates share essentially the same boundary values
with the uncorrected pressure field (figure 4.10b), indicating that boundary conditions,
and any errors present in such, dominate the reconstruction in the immediate vicinity of
the boundary. This behaviour is implied in the formulation of the div-curl system used to
reconstruct ε∇p, since the solution is required to equal to zero at the boundaries (equation
4.16).

To statistically characterize the effect of boundary errors on corrected pressure esti-
mates, a Monte Carlo simulation is performed using 3,000 evaluations of pressure estimates
with refreshed noise profiles for three positions of the advecting vortex. Figures 4.11a-c
plot the random pressure estimation error relative to the exact solution (equation 4.24)
when the vortex centre is in three different positions relative to the boundary, x/L = 0,
x/L = 0.25 and x/L = 0.5, respectively. The random error in the uncorrected Eulerian
estimate (red circles, figure 4.11), the corrected field using the Λ reconstruction (black cir-
cles, figure 4.11), and the corrected field using the Λ̃ reconstruction (black crosses, figure
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Figure 4.11: Comparison of the standard deviation of exact and estimated pressure errors
of the Eulerian estimates, evaluated over 2,000 realizations, for α = 25% and β = 0.25
px. Data is sampled at WS/λx = 0.08 and δtupeak/WS = 0.5, and evaluated when the
Lamb-Oseen vortex centre is at (a) x/L = 0, (b) x/L = 0.25, and (c) x/L = 0.5.

4.11), are compared. The bias errors are relatively small for all besides the pΛ0 case, similar
to the high resolution case for the Taylor vortex (figure 4.6c), and are omitted here for
brevity. As well, the corrected fields using Λ0 reconstruction have been consistently demon-
strated to be significantly erroneous and are omitted from following analysis. The error
deviations shown in figure 4.11 indicates that pΛ and pΛ̃ produce a significant reduction in
random error sufficiently far from the boundary. For example, when the vortex is in the
centre of the domain (figure 4.11a), the results are similar to the Taylor vortex case (figure
4.6a). As the vortex approaches the right side boundary (figure 4.11b), the random error
for both the uncorrected and corrected fields increases towards the Neumann boundary;
however, this does not affect the performance of the Λ and Λ̃ corrections near the centre
of the vortex and the remainder of the domain. When the centre of the vortex reaches the
boundary (figure 4.11c), the adverse effect of boundary error propagation is the highest,
with a notably lower reduction in error deviation attained by the correction schemes. In
all the cases, the corrected fields retain the same error statistics as in the uncorrected fields
near the boundaries, so that when the pressure gradient error is highest on the boundary
and all significant flow features reside in close proximity to the boundary, the accuracy of
pΛ and pΛ̃ is diminished. An inspection of the error deviations for the pΛ fields indicates
that the magnitude of the boundary errors is inversely related to the distance from the
boundary, which is expected from the form of the boundary terms in the two-dimensional
potential function formulation of the div-curl system (equation 4.16) (Aris 1989).
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4.3.3 Three-Dimensional Cylinder Wake

The final test case considered in this work is included to model an experimental application
of the proposed methodology, in which three-dimensional, volumetric velocity data is ac-
quired. Here, the acquisition of volumetric velocity data in the wake of a circular cylinder in
cross-flow at ReD = 1575 (figure 4.2c) is considered. Since the error reconstruction is only
applicable to planar velocity data if the flow is fully two-dimensional, a three-dimensional
flow demands volumetric data acquisition. Details regarding the DNS data are reported in
McClure and Yarusevych 2017a. Synthetic velocity data are obtained by sampling a vol-
ume on an equispaced Cartesian grid spanning 0.5D < x < 3D, −0.9D < y < 0.9D, and
−0.94D < z < 0.94D, where the origin is defined at the midspan and centre of the cylinder
(figure 4.12). The velocity fields are sampled at a time separation of δtupeak/WS = 0.34
and a vector pitch of δx/D = 0.0375 or WS/D = 0.15, with 75% overlap. A correlated ve-
locity error is added to the sampled velocity fields following equation 4.20, with α = 25%
and β = 0.25 px. The important flow and geometry parameters are: ρ = 997 kg m-3,
ν = 8.926 × 10−7 m2 s-1, U∞ = 0.1406 m s-1, and D = 0.01 m. The iso-surfaces of wake
pressure in figure 4.12a highlight the dominant vortical structures in the cylinder wake.
These structures pass through the ±x-normal and ±z-normal boundaries, and Neumann
conditions are employed on these boundaries to solve the Poisson equation for pressure
(equation 4.1). For the ±y-normal boundaries, Dirichlet conditions for pressure are ap-
proximated using an extended form of Bernoulli’s equation for unsteady irrotational flow
(de Kat and van Oudheusden 2012). Viscous terms are neglected in the pressure gradient
and pressure estimation (equation 4.2), since the Reynolds number is sufficiently high. It
was verified that the effect of viscous terms is negligible, similar to the Lamb-Oseen test
case in the previous section.

Figure 4.12 compares exact three-dimensional pressure fields (figure 4.12a) with pres-
sure estimates based on uncorrected erroneous data (figures 4.12b,c), and corrected erro-
neous data (figures 4.12d,e), along with corresponding two-dimensional slices of the pres-
sure estimates at the midspan of each data set. Due to the close proximity of the ±y-normal
boundaries to the wake, implementation of Dirichlet conditions on these boundaries based
on the extended Bernoulli equation results in a significant error (≈ 10%) compared to
the pressure fields from the DNS solution. Since this Dirichlet boundary error is present
in every pressure estimate, pressure estimates obtained from exact velocity fields (figure
4.12a) with the same boundary conditions are used as a reference for comparison instead
of the DNS pressure solution. The pressure estimates utilizing Eulerian (figure 4.12b) or
Lagrangian (figure 4.12c) methods on the uncorrected erroneous velocity fields are shown
to result in significant random errors compared to the reference pressure field, similar to
the results presented earlier for the Taylor vortex and Lamb-Oseen vortex. In comparison,
pressure estimates which subtract the pressure gradient error reconstructed by retaining
all terms in Λ (figure 4.12d), or using the Λ̃ (figure 4.12e) approximation, reduce the re-
sulting pressure estimation errors substantially. The minor residual errors in the pΛ and p̃Λ̃
fields are attributed primarily to the propagation of boundary errors and truncation errors
occurring during the reconstruction of the data. Specifically, the observed errors in the
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Figure 4.12: Isosurfaces of pressure at Cp = −1 (blue) and Cp = −1.25 (dark purple)
for (a) Eulerian method with exact velocity data, (b) Eulerian method with α = 25% and
β = 0.25 px correlated errors, (c) Lagrangian method with errors, (d) Eulerian method
with Λ reconstruction, and (e) Eulerian method with Λ̃ reconstruction. Data sampled
at WS/D = 0.15 and δtupeak/WS = 0.34 with contour plots sampled at the midspan
(z/D = 0).

corrected fields are highest near the Neumann boundaries, but are minimal in the centre
of the domain where the results approach the reference pressure contours in the midspan
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Figure 4.13: Standard deviation of the instantaneous pressure estimation error in and
x − y plane at the midspan of the data set over 250 different velocity field realizations.
Errors are determined by the differential between the Eulerian estimate of pressure on the
exact velocity data and (a) the Eulerian uncorrected estimate on the erroneous data, (b)
the pressure estimate with the Λ reconstruction on the erroneous data, and (c) the pressure
estimate with the Λ̃ reconstruction on the erroneous data.

plane (c.f., figures 4.12d,e and 4.12a).
Figure 4.13 presents the random error (ε′p) of the pressure estimation errors in an x− y

plane at the midspan of the data set. The statistics were tabulated over 250 realizations
of estimated pressure fields spanning one vortex shedding cycle. The results for the Eule-
rian estimates are shown in figure 4.13a and indicate that the pressure estimation errors
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are concentrated predominantly in the separated shear layers and vortex formation region
where high spatial gradients occur. This is presumed to be due to a combined effect of
truncation errors occurring during pressure estimation (de Kat and van Oudheusden 2012,
McClure and Yarusevych 2017b), and strong random error propagation from velocity errors
concentrating in the high gradient regions (equation 4.20). Near the ±x boundaries, error
is amplified slightly where the Neumann boundary conditions are applied. In comparison,
the boundary errors on the ±y boundaries are minimal due to the application of Dirichlet
boundary conditions which are less sensitive to velocity errors. The random errors for
corrected fields pΛ and pΛ̃ (figures 4.13b,c) indicate a substantial reduction over the en-
tire domain, except for the small affected regions near the boundaries with the Neumann
boundary conditions. Compared to the pΛ field, the pΛ̃ field reduces errors less substan-
tially in the high gradient regions of the flow, where the terms neglected in the model
for Λ become more significant. However, overall, a substantial reduction in random error
propagation is achieved by both the exact and approximate correction schemes.

4.4 Conclusion

A mathematical framework for the solution of instantaneous pressure gradient error from
PIV/PTV-based measurement has been developed for incompressible flows. The pressure
gradient error field (ε∇p) has been shown to satisfy a div-curl system of equations which
requires the calculation of its curl (∇ × ε∇p) and divergence (∇ · ε∇p) over the domain.
Once ε∇p is reconstructed, its subtraction from the estimated fields has been shown to
result in a significant increase in the accuracy of both pressure gradient and pressure
estimations from erroneous velocity data, and the reconstruction maintains robustness for
correlated velocity field error levels in excess of 25% with large spatial variations. For
exact determination of the pressure gradient/pressure field, the framework requires two
quantities not immediately realizable in experiment (i) the pressure gradient error on the
boundaries of the domain, and (ii) certain spatial gradients of the exact velocity and
velocity error field. Hence, a simplified methodology has been developed for application
in practical settings. The two simplifications are the assumption of error-free boundary
conditions, and the approximation of the term containing the unknown error gradients (Λ
term). For the latter approximation, the Λ term is either neglected (Λ0 reconstruction) or
approximated (Λ̃).

The proposed methodology has been evaluated using three test cases: (i) a station-
ary Taylor vortex, (ii) an advecting Lamb-Oseen vortex, and (iii) the wake of a circular
cylinder in cross-flow. Specifically, three different error reconstructions have been assessed
and compared to the exact solutions and uncorrected estimations from synthetic PIV data
sampled from the exact solutions with imposed velocity error profiles, (i) the Λ reconstruc-
tion which only assumes zero pressure gradient error on the boundaries, but retains the
full Λ term from knowledge of the exact velocity and velocity error gradients, (ii) the Λ̃
term which estimates the full Λ term using the divergence of the measured velocity field,
and (iii) the Λ0 reconstruction which neglects the Λ term entirely.
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The results have shown that subtracting the reconstructions of ε∇p from the original
pressure gradient estimates results in significant error reduction in pressure gradient and
pressure estimates across the inner domain for all the three test flow cases examined. The
effect of neglecting the pressure gradient error at the boundaries affects the results in a
relatively small region near the boundaries when flow structures are in close proximity. As
expected, the Λ reconstruction method performs best, and approaches the exact solution
when boundary errors are not significant. The Λ̃ method also performs well, leading to
a minimum of 50% reduction of pressure gradient and pressure random errors away from
the boundaries. The efficacy of the corrections is decreased in the high gradient flow
regions where velocity error gradients and velocity gradients are the highest. The Λ0
reconstruction, on the other hand, leads to significant bias errors in pressure gradient and
pressure estimates, rendering it impractical.

In addition to reducing errors in pressure estimation, the Λ and Λ̃ pressure gradient error
field reconstructions both provide reliable estimates for uncertainty bounds on the uncor-
rected instantaneous pressure estimates, predicting the integral error levels and covariance
of the pressure errors to a high degree of accuracy. While the current results strongly
support the effectiveness of the proposed methodology, the technique can be optimized
further. Specifically, improved modelling of the Λ term, compared to the simple estimate
Λ̃, may be considered with the incorporation of established methods for estimation of ve-
locity field uncertainty. The applicability of the method for planar pressure determination
in three-dimensional flow remains to be evaluated or treated analytically. The boundary
velocity errors are neglected in the present formulation, but may be incorporated through
a more complex formulation. Finally, the framework is developed only for Eulerian evalua-
tion over three velocity fields, and can be extended to Lagrangian techniques over multiple
velocity fields in time to further improve the accuracy of the reconstructions.
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Chapter 5

Generalized framework for
PIV-based pressure gradient error
field determination

The framework leveraging the governing equations of incompressible flow for the recon-
struction and correction of pressure gradient estimation errors from experimental data,
previously introduced in Chapter 4, is extended to incorporate non-zero errors on domain
boundaries and Lagrangian pseudo-tracking methods for material acceleration estimation.
For the selected test case of a cylinder wake flow in turbulent shedding regime, the analy-
sis of simulated three-dimensional, three-component velocity measurements demonstrates
that the errors in pressure estimates can be reduced by up to 50% using a basic finite
difference implementation.

This chapter is based on the journal article: McClure, J., and Yarusevych, S. (2019) “Gen-
eralized PIV-based pressure gradient error correction for Lagrangian pseudo-tracking,”
Measurement Science and Technology, 30(8), 084005.
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5.1 Introduction

The advancement of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry
(PTV) image processing algorithms along with LASER/high-speed camera technology has
progressed to a level where volumetric velocity data sets resolving the dominant spatio-
temporal kinematics of flow fields are becoming common. Access to the full resolution of
the velocity field, u(x, t), in a measurement domain, allows an experimentalist to utilize
the governing equations to increase the accuracy or extend the fidelity of the experimental
data. Resulting developments in this direction include PIV/PTV-based fluid pressure
estimates (van Oudheusden 2013, Gesemann et al. 2016, Schneiders et al. 2016b, van Gent
et al. 2017, Huhn et al. 2018, Schneiders et al. 2018, Suzuki et al. 2018, Wang et al. 2018),
instantaneous structural loading estimates (Rival and Oudheusden 2017), and the growing
class of variational methods and denoising methodologies (Heitz et al. 2010, Azijli and
Dwight 2015, Azijli et al. 2016, Wang et al. 2016, McClure and Yarusevych 2017a). In this
view, experimental measurements now may be contextualized by their conformity to the
Navier-Stokes equations governing the underlying smooth dynamics of the real flow, and
methodologies are developed for measurement problems in order to draw the data closer
to conformity.

The current study is concerned with the problem of PIV-based pressure estimation.
The pressure may be reconstructed using a number of methods; namely, solution of the
pressure Poisson equation (PPE) using finite difference (Gurka et al. 1999, van Oudheus-
den 2013), finite volume (Neeteson and Rival 2015), finite element (Auteri et al. 2015,
Schiavazzi et al. 2017), or spectral (Huhn et al. 2016) schemes, the iterative averaging of
successive line integrations of the pressure gradient (Baur and Köngeter 1999, Liu and
Katz 2006, Dabiri et al. 2014, Liu et al. 2016), and sequential least square reconstruction
(Jeon et al. 2018). The full spatio-temporal evolution of both pressure and velocity in a
flow gives the experimenter access to the entire kinematics and dynamics of the flow, and
is a precursor for estimating time-resolved structural loads on immersed structures using
the momentum-integral method (van Oudheusden et al. 2007, Tronchin et al. 2015, Rival
and Oudheusden 2017). Consistent pressure estimates are, in general, challenging due to
their sensitivity to velocity measurement error. For example, significant challenges often
arise near boundaries when Neumann boundary conditions have to be applied in the pres-
sure solver (e.g., near walls, wake boundaries) (Pan et al. 2016, McClure and Yarusevych
2017a). In practise, accurate pressure estimates require high quality data and careful selec-
tion of solver boundary locations (Tronchin et al. 2015, Van De Meerendonk et al. 2018),
with the degree to which the error of PIV-based pressure estimates is dominated by error
propagation from the boundaries dependent on the specific flow (Charonko et al. 2010, Pan
et al. 2016). As well, minimum requirements on the temporal and spatial resolution of the
PIV measurements must be met in order to avoid excessive truncation errors (Charonko
et al. 2010, de Kat and van Oudheusden 2012, McClure and Yarusevych 2017b, Nie et al.
2022). If the data are over-sampled beyond these requirements, down-sampling or em-
ploying low-pass filtering can help mitigate random error propagation to the pressure field
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estimates (Charonko et al. 2010, Dabiri et al. 2014). An optimum sampling resolution can
be selected relative to the flow scales using a simple analytical model (McClure and Yaru-
sevych 2017b, Nie et al. 2022) or by considering the effect of varying sampling parameters
on the material acceleration estimates during post-processing (van Gent et al. 2018).

A common low-pass filtering technique is the curve fitting of pseudo-trajectories fol-
lowing fluid elements over multiple time realizations (Novara and Scarano 2013, Pröbsting
et al. 2013, Lynch and Scarano 2014, van Gent et al. 2017, van Gent et al. 2018). For
PIV-data, smooth material acceleration estimates can be obtained from these Lagrangian
pseudo-tracking approaches. Further, a number of approaches have been developed lever-
aging physical constraints on the data to reduce error, which correct the velocity field
measurement data before material acceleration estimation or include material acceleration
estimates as part of the correction scheme. One method for correcting measured veloc-
ity fields is solenoidal filtering of the velocity field for incompressible flows (Song et al.
1993, de Silva et al. 2013, Schiavazzi et al. 2014, Azijli and Dwight 2015, Schiavazzi et al.
2017). In one approach, the velocity field can be decomposed into its solenoidal and ir-
rotational components by employing a Helmholtz decomposition (Aris 1989), leading to a
method of solution for the solenoidal component through solution of a Poisson equation.
A similar approach can be formulated for the pressure gradient field that instead enforces
pressure gradient estimates from velocity measurements to be irrotational (Wang et al.
2016). More advanced methods for correction utilize averaged integrations of the vorticity
transport equation (Schneiders and Scarano 2016), the solution of an optimization proce-
dure that penalizes high frequency field components and non-zero residuals of the velocity
field divergence and the divergence of the momentum equation (Gesemann et al. 2016),
and projection methods to form a decoupled iterative correction scheme employed with a
weighting parameter that balances the result from the experiment with a corresponding
numerical solution of the pressure and velocity fields (Wang et al. 2018).

The focus of the present study uniquely considers the pressure gradient field∇p, which
is the primary input into any pressure estimation algorithm and thus forms a direct connec-
tion to PIV-based pressure estimation accuracy. Specifically, the problem of determining
the pressure gradient error field ε∇p is considered, for which the governing equations are
employed. The equations governing the exact determination of the error field may then
serve to inform uncertainty analysis through a statistical analysis, or closure methods for
the equations when working with experimental data may be inferred, with the assumptions
and simplifications tracked back to the fully generalized problem. In addition, dealing with
the reconstruction of the error field to be subtracted off the measured field ensures that any
spatial or temporal modulation introduced by the solution process propagates only to the
error fields and not the corrected pressure or pressure gradient fields. This implies that no
additional truncation error or smoothing is introduced into the resulting estimates. Build-
ing on the previous work presented in (McClure and Yarusevych 2017a), the present study
utilizes an equivalent div-curl system that simplifies the solution process for the pressure
gradient error field, and allows the prescription of boundary error terms more naturally,
while maintaining solvability. In addition, the methodology for use with material acceler-
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ation estimates obtained from Lagrangian pseudo-tracking is derived and evaluated on the
test case of flow around a circular cylinder.

5.2 Mathematical Development

5.2.1 Pressure gradient estimation

The pressure gradient (∇pm) can be estimated from the Navier-Stokes equations using
the measured velocity field (um) from time-resolved PIV measurements. The material
acceleration and viscous term can be estimated using an Eulerian discretization of the
terms in equation 5.1 and 5.2 using a central difference scheme.

Dum

Dt
= ∂um

∂t
+ (um · ∇)um (5.1)

∇pm = −ρDum

Dt
+ µ∇2um (5.2)

Alternatively, an estimate for the material acceleration of a fluid may be obtained from
PIV measurements using various pseudo-tracking methods that construct fluid particle
trajectories from a set of time-resolved velocity fields. The least squares estimate of the
material acceleration over recursive first order trajectories (Pröbsting et al. 2013) will be
considered in the present study, but the results presented in this work can be easily extended
to central difference estimates (Liu and Katz 2006, Violato et al. 2011) or estimates using
polynomial fits (Wang et al. 2017, van Gent et al. 2018) from first-order trajectories. Some
additional development is required to incorporate second-order trajectories (de Kat and
van Oudheusden 2012, Laskari et al. 2016, van Gent et al. 2018), however the principle is
the same. The pseudo-trajectory is constructed over a symmetric time interval centred at
the snapshot of interest, t = t0 + ∆t, where ∆t = [−M∆t,−(M − 1)∆t, ...,M∆t]. The
trajectory x(t) is obtained by a recursive first-order relation both forward and backward
in time from t0 (equation 5.3),

x(t±i) = ±x(t±(i−1))± um(x(t±(i−1)), t±(i−1))∆t (5.3)

and the velocities along each trajectory are computed by bi-cubic interpolation of the
corresponding velocity field at the trajectory points at the same snapshot in time. The
velocity differentials along the trajectory from t0 are computed as ∆um = um(x(t), t) −
um(x(t), t), where um(x(t), t) is the mean velocity over the trajectory, and the least squares
estimate for the material acceleration is (Pröbsting et al. 2013):

Dum

Dt
= (∆tT∆t)−1∆tT∆um (5.4)
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Then, similar to the Eulerian estimate, once the material acceleration is estimated, the
pressure gradient may be computed from the Navier-Stokes equation (equation 5.2). Often,
unless the Reynolds number is low enough for it to be significant, the viscous term is
omitted in order to avoid unnecessary error amplification through the second derivatives
(Ghaemi et al. 2012).

5.2.2 Pressure Estimation

Once an estimate for the pressure gradient is obtained, a Poisson solver (equation 5.5) is
employed to estimate pressure (Gurka et al. 1999).

∇2pm =∇ ·∇pm, in Ω
∇pm · n = h, on Γi

pm = g, on Γj (5.5)

where Γi denotes boundary sections where the Neumann boundary condition is employed,
setting the boundary-normal pressure gradient to that estimated from the Navier-Stokes
equation (equation 5.2), and Γj denotes boundary sections where the Dirichlet condition
is employed, setting the pressure on the boundary using an extended form of the Bernoulli
equation, valid for unsteady, irrotational flow with small mean velocity gradients (de Kat
and van Oudheusden 2012). For the cylinder flow test case investigated in the current
study, the boundary conditions employed are illustrated in figure 5.1a. For the 2D2C
test case, the top and bottom boundaries are set to Dirichlet conditions since they reside
in regions of irrotational flow, while the left and right boundaries are set to Neumann
conditions due to their immersion in rotational flow. For the 3D3C test case, the additional
spanwise boundaries are prescribed Neumann conditions. The Laplacian of the pressure
field (equation 5.5) is discretized using a 5-point second-order central difference scheme
and Neumann boundary conditions were imposed through the use of ghost grid points at
the boundaries in order to complete the five point scheme where adjacent nodes lie outside
the domain. The pressure values at the ghost points were evaluated using the pressure
gradient from the Navier-Stokes equation and the nodal pressure on the opposing side of
the five point scheme (e.g., pi+1,j = pi−1,j + 2∆x ∂p

∂x i,j
).

5.2.3 Error Field Correction

To analyse the equations governing the error fields, the measured velocity field (equa-
tion 5.6) and estimated pressure gradient field (equation 5.7) are decomposed into their
respective true component and error component as:

um = uex + εu (5.6)
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∇pm =∇pex + ε∇p (5.7)

Following the development in McClure and Yarusevych (2017a), the following first-order
div-curl system governing the pressure gradient error field is considered:

∇× ε∇p = J, in Ω
∇ · ε∇p = f, in Ω
|ε∇p × n| = a, on Γi,
ε∇p · n = b, on Γj (5.8)

where the divergence and curl of the pressure gradient error fields can be obtained from
a combination of the Navier-Stokes equations and velocity field divergence (McClure and
Yarusevych 2017a), and boundary conditions can be chosen to specify either the tangential
(Γi) or normal (Γj) component of the pressure gradient error. Previously, the system was
made tractable by assuming zero-errors in the pressure gradient on the boundaries, i.e.,
a = 0 and b = 0, and a Helmholtz decomposition of the pressure gradient error field
allowed the solution through decoupled Poisson equations for the corresponding Helmholtz
potential fields.

Figure 5.1: (a) Boundary condition implementation for the Poisson equation solver for
pressure, with D denoting Dirichlet and N denoting Neumann conditions. (b) Possible
boundary conditions for the pressure gradient error field equations where a minimum of
one error component is set zero on each boundary, and (c) Boundary conditions used for
the pressure gradient error field equations which accept arbitrary errors on the boundaries
for both components.
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Alternatively, for zero-error boundary conditions, the system in equation 5.8 can be
shown to be equivalent to the following second-order system (Jiang 1998):

∇2ε∇p = −∇× J +∇f, in Ω,
∇ · ε∇p = f, on Γi,
n× ε∇p = 0, on Γi,

n× (∇× ε∇p) = n× J, on Γj,
n · ε∇p = 0, on Γj (5.9)

Subject to some solvability conditions for a simply connected domain. Namely, J must
satisfy:

∇ · J =∇ · (∇×∇pm) = 0 in Ω (5.10)

n · J = n · (∇×∇pm) = 0 on Γj (5.11)∫
Γ

n · JdΓ =
∫

Γ
n · (∇×∇pm) dΓ = 0 (5.12)

for which equation 5.10 holds by vector identity, and equations 5.11 and 5.12 hold au-
tomatically for two-dimensional domains, as the curl of the pressure gradient error field
(J) is always orthogonal to the boundary normal vector. For three-dimensional domains,
equation 5.11 is not satisfied since all three components of the curl of the pressure gradient
error field (J) are generally non-zero. In addition, equation 5.12 is not generally satisfied,
however the expected value of the integral is zero if J is dominated by random error with
zero mean. If Γi is empty, then there are conditions on the divergence source term f for
solvability, namely:

∫
Ω
fdΩ = 0 (5.13)

This is not generally satisfied, although if f takes the form of a random variable with mean
zero, the expected value of the integral is again zero. In any case, if the pressure gradient
errors are zero on the boundaries, both solvability conditions are satisfied. However, we
will ensure a minimum of one tangential boundary condition is always employed such that
Γi is always non-empty (McClure and Yarusevych 2017a). In fact, in three-dimensions, all
boundaries are prescribed Γi conditions in order to avoid potential complications with the
constraints implied by equation 5.11. Notably, these solvability constraints only guarantee
a unique solution if the domain is simply connected. If the domain is multiply-connected,
such as in the case of flow surrounding an immersed body, a useful experimental configura-
tion for load determination from PIV-based pressure estimates, then non-trivial harmonic
functions with vanishing divergence and curl on the domain are permitted as solutions,
and additional line integrals (Auchmuty and Alexander 2001) may be required in order
to fix the solution. The system in equation 5.9 separates into two Poisson equations in
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two-dimensions and three Poisson equations in three-dimensions, for each component of
ε∇p, with two or three separated boundary conditions to be satisfied on each boundary,
corresponding to the two or three separated Poisson equations. Figure 5.1b summarizes
the possible boundary condition configurations on each boundary, where a single error
component is set to zero, and the respective derivative of the other error component is set
to match either the divergence or curl of the pressure gradient error on the boundary to
maintain consistency with the source term.

The theory surrounding the system in equation 5.9 is well-developed (Jiang 1998),
however it does not completely represent the desired solution since one error component
must always take a zero value, which is not a constraint on real error fields. Hence, we
make a minor modification of the boundary conditions to conform the system of equations
to describing realistic error fields, where both boundary-normal and boundary-tangential
components are non-zero. Equation 5.14 splits the pressure gradient error divergence (f)
or curl (J) appropriately in order to maintain consistency at the boundaries and to accept
arbitrary boundary errors for all components. This is done by specifying the distribution
of the error of one component on the boundary in two-dimensions and two components for
three-dimensions, and specifying the Neumann condition on the remaining component by
constraining it to match the curl or divergence of the error.

∇2ε∇p = −∇× J +∇f, in Ω,
n× ε∇p = a, on Γi,

∂(ε∇p · n)
∂n

= f −∇ · a on Γi,
n · ε∇p = b, on Γj,

∂(ε∇p × n)
∂n

= J−∇× b on Γj (5.14)

Depending on which error field components are prescribed on the boundary, either Γi or
Γj type of boundary conditions may be prescribed, where τ denotes the unit tangential
vector. For both the test cases used in the current study, Γi boundary conditions are used,
shown in figure 5.1c for a two-dimensional domain.

Once the pressure gradient error field (ε∇p) is solved for using equation 5.14, it is
subtracted from the pressure gradient estimate to increase accuracy (∇pλ =∇pm − ε∇p),
where the λ subscript denotes the corrected field.

5.2.4 Error correction for Lagrangian pseudo-tracking

The solution of equation 5.14 requires the specification of the divergence and curl of the
pressure gradient error over the field in order to provide the source terms and boundary
conditions for the Poisson equations. The procedure for incompressible flows and necessary
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experimental approximations that may be utilized when the pressure gradient is estimated
using an Eulerian central difference scheme is included in McClure and Yarusevych (2017a).
The procedure is derived here for material acceleration and pressure gradient estimates
using least square fitting of Lagrangian pseudo-tracks. The condition on the irrotationality
of the pressure gradient field may be invoked to yield that the curl of the pressure gradient
error (ε∇p) is equal to the curl of the estimated pressure gradient field (∇pm):

∇× ε∇p =∇×∇pm (5.15)

The second relation we require to form a deterministic set of equations for ε∇p is the
divergence ∇ · ε∇p. As an example, for a first order trajectory fundamental to the pseudo-
tracking method, the velocity divergence for the trajectories centred at t0 and x0 after the
trajectory is stepped forward once in time is computed as:

∇0 · um(x1, t1) =∇0 · um(x0 + um(x0, t0)∆t, t0 + ∆t) (5.16)

which expands to

∇0 · um(x1, t1) =∇1 · um(x1, t1) +∇1um : (∇0um)T (5.17)

where the double dot product (:) of the velocity gradient tensors is defined as ∇1u :
(∇0u)T = u1

i,ju
0
j,i, resulting in a scalar sum of quadratic velocity field derivative terms. The

superscripts denote the discrete time stamp along the trajectory where the quantities are
evaluated. For example, the computation of∇1 ·um(x1, t1) requires the computation of the
velocity divergence using central differences on the velocity data at t1, and the interpolation
of the divergence onto the trajectory locations x1, rather than the standard Cartesian grid
that initializes the trajectories at x0. The accumulation of the terms along the trajectory
from the starting position is shown in figure 5.2. Substituting in the decomposition in
equation 5.6, making the derivative approximation ∂u/∂x ≈ ∂u/∂y ≈ ∂u/∂z (McClure
and Yarusevych 2017a) for each velocity field component, and using the divergence free
condition on the exact velocity field results in:

∇0 · εu(x1, t1) = (∇1 · ε1
u)(1 + (∇0 · ε0

u∆t))
+(∇1uex

1 : (∇0ε0
u)T )∆t+ (∇0uex

0 : (∇1ε1
u)T )∆t (5.18)

The divergence of the error field evaluated at a certain time can be obtained by the di-
vergence of the measured velocity field at that time, by invoking incompressibility of the
velocity field:

∇i · εiu =∇i · um
i (5.19)

Hence, to compute the divergence of the pressure gradient computed using the least square
estimate in equation 5.4, a least squares estimate for the error divergence over the trajectory
must be obtained. The vector of differentials ∆(∇ ·εu) =∇ ·εu(x(t), t)−∇ · εu(x(t), t) is
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formed, and the following equation computes the divergence of the pressure gradient error
field.

∇ · ε∇p = −ρ(∆tT∆t)−1∆tT∆(∇ · εu) (5.20)

In practise, equation 5.18 cannot be evaluated exactly since the expanded right hand side
will contain two terms involving unknown gradients of the velocity error field and exact
velocity field. Hence, the computations in the current study omit these two terms, and
the effect of this approximation is discussed. Note also that the derivations of equations
5.15 and 5.20 have no explicit treatment of errors incurred by truncation, i.e., higher-order
errors resulting from the use of central difference estimators for velocity gradients, and
first-order trajectory estimates. Thus, the error correction is only applicable to correcting
for random and bias error components of the velocity and pressure gradient field at a given
set of measurement points. It cannot correct for bias errors incurred by truncation due to
data resolution (McClure and Yarusevych 2017a). The procedure for the error correction
involves the solution of equation 5.14 using a finite-difference scheme with a five-point
stencil for the pressure gradient error field. The source terms for the Poisson equation, J
and f , are furnished by the curl and divergence of the pressure gradient error field computed
from equations 5.15 and 5.20, respectively. The boundary conditions are furnished by the
source terms, as well as error estimates for the pressure gradient field determined using
knowledge of the erroneous and true velocity fields for validation purposes, and then using
the erroneous and filtered erroneous velocity fields for practical demonstration.

5.3 Test Case

In order to validate the methodologies derived within the current study, a two-dimensional,
two-component (2D-2C) synthetic PIV test data set is generated by sampling from the di-
rect numerical simulation (DNS) of flow around a circular cylinder for ReD = 100 (McClure

Figure 5.2: Divergence of trajectories from pseudo-tracking due to spatial variation in
trajectory starting position.
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and Yarusevych 2017b). The data are obtained by sampling 545 velocity fields through
time from the DNS solution on an equispaced Cartesian grid on the domain 0.5D < x < 4D
and −4D < y < 4D at a temporal resolution of facq/fS = 54.9 and a spatial resolution of
δx/D = 0.02. To mimic experimental error associated with PIV algorithms, a synthetic
error distribution is added to the sampled velocity fields from DNS. The standard deviation
(σi) of the random error is specified by a two-parameter model, shown in equation 5.21.
The first parameter in equation 5.21, α (%), represents an error component proportional to
the magnitude of the normalized velocity gradient tensor, reaching a maximum percentage
of the peak velocity (αupeak) in the domain. The second parameter, β (px), adds a uniform
displacement error for an interrogation window of dimensionsWS×WS×WS over a time
separation of δt for a given scale factor SF (mm/px). For the present study, a 16 × 16
px interrogation windows or 16 × 16 × 16 px interrogation volumes are assumed, which
corresponds to SF = WS/16.

σi = αupeak||
∂ui
∂xj
||/||∂ui

∂xj
||peak + SF

β

δt
(5.21)

In addition, the errors are generated to be correlated locally in space by constructing a
correlation matrix with a triangle function ζij = (1−|rij|/(0.75WS)) when |rij| < 0.75WS
and zero otherwise, to mimic the correlation of random errors when 75% window overlap
is utilized in PIV processing (Sciacchitano and Wieneke 2016), giving a sampled vector
pitch of δx = WS/4. The covariance of the velocity error, Sij = σiζijσj, is factored
using the Cholesky decomposition, Sij = LijLji (Azijli and Dwight 2015) and independent
velocity error field realizations are generated by constructing λj, a vector of samples from
a Gaussian distribution with a standard deviation of 1 and a mean of 0 and computing
(εu)i = Lijλj.

Figure 5.3 depicts the composition of a single instantaneous streamwise velocity field
for the 2D-2C data set at ReD = 100. Figure 5.3a shows the exact data directly sampled
from DNS, figure 5.3b shows the added synthetic error, and figure 5.3c shows the resulting
erroneous instantaneous streamwise velocity field. The added error field is more intense
in the wake region, where velocity gradients are higher, leading to increased PIV velocity
error. The standard deviation of the velocity error (figure 5.3d) is just under 1% in the
free-stream, irrotational flow area, and reaches a maximum of nearly 4% of the free-stream
velocity in the wake region. The spatial autocorrelation of the errors is shown to reproduce
the triangle function relationship (figure 5.3e), associated with the localized correlation
caused by an interrogation window overlap of 75% (Sciacchitano and Wieneke 2016).

To complement the 2D-2C test case, a 3D-3C test case of flow around a circular cylinder
at ReD = 1575 from DNS (McClure and Yarusevych 2017b) is utilized for demonstrating
the practical implementation of the methodology to the three-dimensional flow encountered
in this turbulent vortex shedding regime (Williamson 1996c). The data is obtained by
sampling 85 fields through time on a three-dimensional equispaced Cartesian grid on the
domain 0.5D < x < 4D, −2D < y < 2D, and −1D < z < 1D at a temporal resolution
of facq/fS = 115.3 and a spatial resolution of δx/D = 0.05. The same procedure for
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Figure 5.3: 2D-2C test case. (a) The exact streamwise velocity field sampled directly from
DNS, (b) the synthetic velocity error added, and (c) the resulting erroneous streamwise
velocity field. Statistics of the synthetic velocity error: (d) distribution of the standard
deviation of the error, and (e) the spatial autocorrelation of the error from the domain
centre.

generating synthetic error is utilized, modelling an interrogation window overlap of 50%,
for this case. Figure 5.4 plots iso-surfaces of instantaneous vorticity for the 3D-3C data
set at ReD = 1575. Both the exact (figure 5.4a) and erroneous (figure 5.3b) fields show the
alternate shedding of vortices in the wake, with small scale three-dimensional deformations
and secondary vortices. For the 3D-3C data set, the standard deviation of the velocity
errors (figure 5.4c) indicates the free-stream error reaches approximately 2% the free-stream
velocity, and reaches approximately 7% the free-stream velocity in the wake region. The
spatial autocorrelation of the error (figure 5.4d) levels off after half an interrogation window
size, modelling the 50% window overlap in PIV processing.

For presentation of the data, normalized variables are denoted with a hat (̂.), including:
û = u/U∞, x̂ = x/D, ŷ = y/D, ω̂ = ωD/U∞, p̂ = 2p/ρU2

∞, and ∇p̂ = 2∇pD/ρU2
∞. The

error metrics used are the L2-norm integral measure of error over the entire domain. For
example, for a pressure estimation it is given as:

||εpm || =

√
N∑ (pm − pex)2

N
(5.22)

where the subscript “m" denotes the estimated field, subscript “ex" denotes the exact field,
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Figure 5.4: 3D-3C test case. (a) Iso-surfaces of the exact vorticity field sampled directly
from DNS, (b) iso-surfaces of the resulting erroneous vorticity field after the addition of
synthetic error. Statistics of the synthetic velocity error: (c) distribution of the standard
deviation of the error, and (d) the spatial autocorrelation of the error from the domain
centre.

and N denotes the number of discrete points in the domain. Alternatively, to express
the spatial distribution of errors, ε′pm

denotes the RMS error of the pressure estimation
evaluated over the entire time sample. The error metrics are subsequently normalized
according to: ε̂p = 2εpD/ρU2

∞.

5.4 Results

5.4.1 Verification of solver

First, the capability of the solver for the system of equations in equation 5.14 is evaluated
using the exact and erroneous 2D-2C PIV data set in the cylinder wake at ReD = 100
(figure 5.3. For verification purposes, the source and boundary terms in equation 5.8
are computed using knowledge of both the exact and erroneous fields, with an Eulerian
second-order central difference scheme, and hence are computed without approximation up
to the limitations of the numerical implementation. In following sections, practical methods
to close the system of equations in experiment utilizing the Lagrangian pseudo-tracking
formulation will be discussed.
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Figure 5.5 shows the exact pressure field (figure 5.5a), alongside the raw estimate (figure
5.5b) obtained from the erroneous set, and the estimate obtained after solving equation
5.8 (figure 5.5c) to correct the pressure gradient field before input into the Poisson solver
for pressure. The distributions of the RMS of the pressure errors for the erroneous data
set (red profiles, figure 5.5d) and the corrected fields (blue profiles, figure 5.5d) can be
compared, and show a reduction in the error over 90% when the system of equations in
equation 5.14 is solved to correct the pressure gradient estimates. The raw data exhibits
the expected increased sensitivity to error on the boundaries, shown by elevated error level
for the x̂ = 0.5 and x̂ = 4.0 profiles (Pan et al. 2016), where Neumann boundary conditions
are employed, while the regions near the application of the Bernoulli equation at ŷ = −4.0
and ŷ = 4.0 show relatively low errors. In the corrected fields, the errors on the boundaries
are significantly reduced, demonstrating that the current formulation is valid and more
effective compared to the zero error assumption employed in previous studies (McClure
and Yarusevych 2017a). The spatial autocorrelation of the pressure errors for the raw (red
data points, figure 5.5e) and corrected (blue data points, figure 5.5e) fields show that the
pressure estimation errors of the uncorrected, raw fields are correlated over the entirety
of the domain, whereas the corrected fields only retain a local correlation, similar to the
velocity field errors shown in figure 5.3. The global correlation behaviour is due to the error
propagation from the errors in the pressure gradient applied at the Neumann boundaries,
which lead to a global error over the domain for each time instant (Pan et al. 2016). Hence,
when the pressure gradient errors are corrected on the boundaries and in the domain, this
global correlation is eliminated completely.

In theory, equation 5.14 is exact, and ideally should be able to correct for errors com-
pletely, yielding 0% error in the reconstructed field. However, the practical implementation
of the finite difference method introduces numerical limitations. To probe the numerical
artefacts, deterministic, sinusoidal errors are introduced to the exact velocity fields of vary-
ing wavelength, and the integral error statistics are plotted in figure 5.6. As expected, when
the wavelength of the error component is larger, more of the pressure gradient error field
can be faithfully reconstructed. For Λ/δx = 2, i.e., point-to-point oscillations, the recon-
struction performs better than slightly longer wavelength errors due to beneficial effects of
the second-order central difference operators used to discretize the system of equations. On
the whole, figure 5.6 indicates the limitations of the current numerical implementations, in
which small wavelength error components may only be resolved up to 75%.

5.4.2 Lagrangian Pseudo-Tracking Formulation

The fidelity of the error correction formulation is tested using the 3D-3C data set with
the approximations required for calculation of the divergence of the pressure gradient error
using the Lagrangian pseudo-tracking formulation (equation 5.20). Similar to the previous
analysis, the exact correction formulation, where the source terms and boundary terms
in equation 5.14 are computed using knowledge of the exact and erroneous velocity fields
and their derivatives, is considered along with an approximate correction formulation.
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Figure 5.5: (a) Exact pressure field, (b) raw pressure estimate, and (c) corrected pressure
estimate using the solution of equation 5.14. (d) The spatial autocorrelation of the pressure
error from the centre of the domain, and (e) traverse profiles of the RMS of the pressure
error for (red) the raw estimate and (blue) the corrected pressure estimate.

The approximate formulation neglects terms requiring knowledge of the exact velocity
field and its derivatives in equation 5.20, and, for the boundary conditions, filters the
velocity fields in time using a 6th order butterworth low-pass filter with a cut-off frequency
of 6fS. This simple filter is employed for the sole purpose of obtaining estimates for
the error distributions on the boundaries required to solve equation 5.14. The pressure
gradient estimate based on the filtered field is subtracted from the raw estimate in order
to obtain an approximation for the pressure gradient error on the boundaries for the two
boundary-tangential directions, which are prescribed as Dirichlet conditions in the Poisson
solver for the appropriate pressure gradient error component. A Neumann condition for
the boundary-normal component of the pressure gradient error is then determined by the
appropriate derivatives of these tangential error components and the divergence of the
pressure gradient error field (equation 5.14, on Γi).
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Figure 5.6: Fraction of the pressure gradient error field that is reconstructed versus the
spatial wavelength of the error field (Λ) component, normalized by the vector pitch (δx).

Figure 5.7 plots isosurfaces of the pressure field estimates at p̂ = −0.4 (light blue isosur-
face, figure 5.7) and p̂ = −0.9 (dark blue isosurface, figure 5.7). figure 5.7a is the estimate
from the exact velocity field data sampled from DNS, figure 5.7b is the raw estimate from
the erroneous velocity data set, figure 5.7c is the corrected estimate using exact data in
the formulation, and figure 5.7d is the corrected estimate using approximate boundary
and source terms. A significant propagation of error into the raw pressure estimate on the
erroneous data set is observed, and temporal continuity of the pressure estimate is poor, es-
pecially near the Neumann boundary conditions. In both the corrected pressure estimates
using exact data and approximate data, there is a high degree of spatial correspondence
with the field obtained using exact data (figure 5.7a), besides the minor low wavelength
error components remaining due to the limitations of the numerical methodology (figure
5.6).

Figure 5.8 shows both the spatial autocorrelation and distribution of the RMS of the
pressure estimation errors for the raw erroneous estimates (figure 5.8a and b), corrected
estimates using exact data (figure 5.8c and d), and corrected estimates using approximate
data (figure 5.8e and f). The RMS of the pressure errors reaches characteristic values of
15% of the dynamic pressure for the raw erroneous estimates (figure 5.8b), and the high
spatial autocorrelation of the errors (figure 5.8a) over the entire domain indicates that a
large proportion of the error is propagating from errors on the boundary conditions. This
behaviour of the pressure errors leads to deteriorating temporal continuity of the pressure
estimates. For the corrected pressure estimates using the exact formulation (figure 5.8c
and d), the RMS of the pressure errors shows similar reductions of approximately 90%
as the verification study on the previously discussed 2D-2C data set (figure 5.5), and the
spatial autocorrelation of the errors drops off quickly (figure 5.8c), although it does not
level off at zero due to the use of a limited sampling of 85 fields in time for computation of
the statistics. For the corrected fields using the approximate formulation (figure 5.8e and
f), the RMS of the pressure errors is characteristically approximately half that of the raw
erroneous estimates, and the high spatial correlation of the errors over the domain indicates
that these errors predominantly propagate from the boundary conditions. This indicates
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Figure 5.7: Comparison of pressure field estimates using Lagrangian pseudo-tracking for
M = 1: (a) exact, (b) erroneous, (c) corrected with exact formulation, and (d) corrected
with approximate formulation.

that the filtering of the velocity fields for use in approximating the boundary conditions
for the system of equations used to correct the pressure gradient field is introducing the
dominant remaining error. It is possible to improve the accuracy of the corrected pressure
field estimates using an optimized filter design, or an alternate technique for obtaining a
more accurate estimate of the pressure gradient error on the boundaries.

Figure 5.9 shows the effect of varying the cut-off frequency (fc) of the 6th order butter-
worth filter, which was applied forward and backward in time to yield a zero-phase filter.
The filtered data was used exclusively on the boundaries to give the required error esti-
mates, e.g., ε∇p = ∇pm −∇pfiltm , and close the approximate method. The time-averaged
integral pressure error is shown to vary with the cut-off frequency. Specifically, the error
levels of the approximate method begin to increase sharply when the cut-off frequency
is decreased towards the lower range of frequencies associated with real velocity fluctua-
tions present in the flow, i.e., partially filtering out real flow events. On the other hand,
as the cut-off frequency increases to its maximum near the Nyquist frequency (fN), the
results approach those obtained with the assumption of zero error boundary conditions,
e.g., ε∇p = 0. Here, only a minor correction of errors over the domain is attained, since
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Figure 5.8: Spatial autocorrelation of the pressure error from the centre of the domain
for (a) raw erroneous estimate, (c) corrected estimate using exact formulation, and (e)
corrected estimate using approximate formulation. Transverse profiles of the RMS of the
pressure error for (b) raw erroneous estimate, (d) corrected estimate using exact formula-
tion, and (f) corrected estimate using approximate formulation.

errors in the pressure field propagating from the Neumann boundary conditions dominate
in this specific flow case. However, between these two extremes, there is an intermediate
range of cut-off frequencies where the filter is most effective for estimating errors on the
boundaries. Hence, for use in an experimental setting, it is required to judicially choose
the cut-off frequency of the filter used for approximating boundary errors, ensuring the fil-
ter does not attenuate frequencies associated with the real flow dynamics. The correction
scheme will also perform best when the Bernoulli equation can be employed on the bound-
aries for a Dirichlet-type boundary condition. The Dirichlet conditions are less sensitive
to random errors (Pan et al. 2016, McClure and Yarusevych 2017a), so that the correction
methodology will be less dependent on estimates of boundary errors.

In order to evaluate the practical effectiveness of the correction scheme in experiment,
where systematic errors may lead to different behaviour compared to the performance
shown so far using synthetic random errors, a common PIV/PTV calibration bias error
is considered by scaling the entire velocity and coordinate fields by a constant factor A,
such that ubias = Aum and xbias = Ax. Figure 5.10 shows the average RMS error of the
pressure estimations over the domain using the raw erroneous velocity fields, compared to
the pressure estimations using the correction procedure subjected to the scaling parameter
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Figure 5.9: Dependence of the time-averaged integral pressure error of the corrected fields
using the approximate formulation on the cut-off frequency for the filtered boundary data.

Figure 5.10: Dependence of the time-averaged integral pressure error of the corrected
fields using the approximate formulation on bias due to scaling errors in calibration causing
a uniform scaling of the velocity field by factor A.

A within 0.85 < A < 1.15. The results show only minor sensitivity of the errors to the
scaling parameter for the pseudo-tracking material acceleration estimates, particularly for
the corrected estimates.
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5.5 Conclusion

A methodology for correcting material acceleration estimates based on Lagrangian pseudo-
tracking methods from PIV data is derived and tested on both 2D-2C and 3D-3C test
cases of flow around a circular cylinder for ReD = 100 and 1575, respectively. The method
leverages the governing equations to extract a div-curl system of equations for the error
fields based on the deviations of the measured velocity field data from the divergence-free
condition of the velocity field for incompressible flow, and the curl-free condition for the
pressure gradient field. The mathematical formulation is shown to have the capability
of specifying non-zero errors on the domain boundaries, a vital requirement for accurate
pressure from PIV estimation. However, the error equations cannot be solved exactly due
to unknown gradients of the error field and exact velocity field remaining in the formulation,
and approximation must be applied. The results show that application of the correction
with the current numerical implementations yields a reduction of errors in the pressure
estimation by about 90% for a known error field. In practise, the use of a basic approximate
formulation involving the neglection of terms associated with exact velocity and velocity
gradients in the formulation for the divergence of the pressure gradient error field, and a
temporal filtering of the boundary data in order to prescribe an estimate for a subset of the
boundary errors, reduces pressure estimation errors by approximately 50% for the 3D-3C
test case studied. The main cause for deviation of the corrected data using the approximate
formulation from the ideal formulation, is propagation of errors on the boundaries shown by
reduced temporal continuity in the pressure estimates and non-zero spatial auto-correlation
of the errors over the entirety of the domain. This indicates that improved accuracy of
the corrected estimates may be achieved through the development of optimized, physics
based filters on the boundary data. Future studies should aim to validate the developed
methodology in an experimental setting using volumetric velocity data and compare its
effectiveness to other physics-based correction techniques.
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Chapter 6

Planar momentum balance in
three-dimensional flows: applications
to load estimation

The acquisition of pressure field estimates from PIV measurements, explored in detail in
Chapters 3-5, enables the capability to estimate loads on immersed structures with the
integral form of the momentum equation. In particular, load estimation based on the
momentum balance for a planar control volume is investigated, a configuration which is
ubiquitous in experimental fluid mechanics. A formulation required for the exact momen-
tum balance over the planar control volume is derived here, involving often neglected terms
related to the three-dimensional momentum fluxes and viscous forces. The main result is
the demonstration of the significance of area integrals involving out-of-plane velocity and
velocity gradients, which are shown to be required for accurate estimation of instantaneous
sectional loads and cause a sensitivity to experimental conditions for mean sectional load
estimates. The findings highlight common issues responsible for inconsistent estimates
of instantaneous and mean sectional loads for three-dimensional flows using control vol-
ume methods, and offer practical recipes for detecting and minimizing errors due to flow
three-dimensionality.

This chapter is based on the journal article: McClure, J., and Yarusevych, S. (2019) “On
the planar momentum balance in three-dimensional flow: applications to load estimation,”
Experiments in Fluids, 60(3), 41.
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6.1 Introduction

The measurement of flow-induced loading is a fundamental component of aerodynamic
testing, as the reliable estimation of structural loads is of primary interest for engineering
design. There are three common approaches to measuring loads, namely, (i) full-body,
direct measurements with a force balance, (ii) integration of surface stresses (i.e., pressure
and/or wall shear stress), and (iii) analysis of field measurements, e.g., control volume
(CV)-based methods (Unal et al. 1997, van Dam 1999, Rival and Oudheusden 2017). Each
approach can offer an advantage in simplicity or accuracy depending on the experimental
context, and each poses specific challenges and limitations. The present study is focused
on load estimation from CV analysis, which is a minimally intrusive approach particularly
useful in: flows over bodies undergoing complex motion (e.g., flow-induced vibration, bio-
inspired propulsion), low-speed flows, microfluidics, and two-phase flows (e.g., loads on
bubbles and droplets).

A variety of load estimation formulations are possible starting from classical CV analy-
sis. For instantaneous loading estimates, time-resolved velocimetry is required in order to
evaluate the unsteady terms within the CV. Analytically, the simplest method is the clas-
sical integral momentum balance, (Unal et al. 1997), where the pressure term is typically
estimated from pressure fields obtained using measured velocity fields (van Oudheusden
2013). If near-wall velocity data are unavailable or significantly erroneous, and the flow is
incompressible, the derivative-moment transform may be applied to the unsteady volume
integral term to replace it by a contour integral (Wu et al. 2005); however, the resulting
unsteady contour integral demands increased spatial resolution to maintain accuracy (Mo-
hebbian and Rival 2012). These two formulations for instantaneous load estimation may
be widely grouped as integral momentum equation approaches, and have been applied in
numerous studies (Unal et al. 1997, van Oudheusden et al. 2006, Kurtulus et al. 2007, van
Oudheusden et al. 2007, David et al. 2009, Spedding and Hedenström 2009, Kotsonis et al.
2011, Ragni et al. 2012, Gharali and Johnson 2014, Villegas and Diez 2014, Tronchin et al.
2015, Terra et al. 2017). Alternatively, loading estimates may be derived from the concept
of hydrodynamic impulse (Lin and Rockwell 1996, Poelma et al. 2006), which eliminates
the need for pressure field estimates at the expense of vorticity field estimates (Saffman
and Schatzman 1982, Noca et al. 1999, Wu et al. 2006, DeVoria et al. 2014, Kriegseis and
Rival 2014, Graham et al. 2017, Guissart et al. 2017, Rival and Oudheusden 2017, Li-
macher et al. 2018). Another alternative to the classical integral momentum balance and
hydrodynamic impulse methods utilizes the concept of a drift volume to estimate unsteady
loads for added mass dominated flows (Darwin 1953, Dabiri 2006, McPhaden and Rival
2018).

The present study focuses on the integral momentum equation methods for the evalu-
ation of instantaneous loads; however, the integral momentum equation is also commonly
utilized in a Reynolds averaged Navier-Stokes (RANS) form, in conjunction with wake
traverse measurements, to estimate mean drag forces (Betz 1925, Jones 1936, van Dam
1999). In the RANS formulation, all necessary terms can, in principle, be measured on
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a contour surrounding the body using a combination of velocity and pressure measure-
ments; however, it is more common and expedient to only perform a wake traverse at a
single streamwise location downstream of the body, and appropriate free-stream assump-
tions are made on the upstream and side boundaries (van Dam 1999). To further simplify
the measurements, the need for pressure measurements can be eliminated by replacing the
mean pressure along the cross flow contour with an integration of the transverse Reynolds
stress v′2 . Such an approximation is only valid where the cross Reynolds stress u′v′ has
decayed to zero (Antonia and Rajagopalan 1990, van Dam 1999). A correction to mean
drag estimates can also be employed based on the residual mass flux deficit over the CV, in
order to increase accuracy (van Oudheusden et al. 2007, Ragni et al. 2009). Alternatively,
the integral momentum equation can be formulated in terms of total and static pressure
measurements, eliminating the need for direct velocity measurements (Betz 1925). The use
of the wake-traverse method is common in aerodynamic testing, however, a high degree
of scatter may be present dependent on the experimental set-up, flow configuration, and
methodology employed (van Dam 1999, van Oudheusden et al. 2006, van Oudheusden et al.
2007, Neatby and Yarusevych 2012), and deviations from surface pressure and force bal-
ance measurements have been noted by multiple authors (Kurtulus et al. 2007, Zaman and
Culley 2008, Neatby and Yarusevych 2012). A root-cause error analysis pointing towards
the dominating source of error is not explored directly in the literature and uncertainty
analysis is complicated by the large number of simplifying assumptions employed in vary-
ing formulations (Takahashi 1997, Méheut and Bailly 2008, Zaman and Culley 2008, Bohl
and Koochesfahani 2009), resulting in varying methodological suggestions and corrective
measures in the literature (van Dam 1999, Neatby and Yarusevych 2012).

Despite the wide-spread use of CV-based methods for load estimation, concrete ex-
perimental methodology guidelines remain largely unresolved. As a consequence, while
some authors report consistent measurement accuracy from wake-traverse measurements
(Antonia and Rajagopalan 1990, Spedding and Hedenström 2009), the source of bias and
random errors in load estimates is not always completely clear (van Dam 1999, Kurtulus
et al. 2007, van Oudheusden et al. 2007, Zaman and Culley 2008, Bohl and Koochesfahani
2009). In contrast, verification studies for CV-based instantaneous and mean load esti-
mations from two-dimensional direct numerical simulations (DNS) give close agreement
with solver values (Noca et al. 1999, David et al. 2009, Mohebbian and Rival 2012), and
experimental studies utilizing a three-dimensional control volume to capture the entirety of
the wake deficit report good accuracy (Méheut and Bailly 2008, Terra et al. 2017). In the
present study, a general CV formulation for three-dimensional flows is considered and the
effect of flow three-dimensionality is investigated. The exact formulation for sectional load
estimation on a planar CV is derived, and the dependency of the associated instantaneous
and mean load estimates on flow three-dimensionality is deduced for a synthetic PIV data
set sampled from DNS data and a matching PIV experiment for cross-flow over a circular
cylinder.
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6.2 Mathematical Development

6.2.1 Conservation of linear momentum

The conservation of linear momentum over V ⊂ IR3 for a stationary, non-deforming control
volume in a single-phase flow with velocity u(x, t) = (u(x, t), v(x, t), w(x, t)), density
ρ(x, t) and pressure p(x, t) fields is:

∑
F CV = d

dt

(∫
V
ρudV

)
+
∫
∂V
ρu(u · dA) (6.1)

where V denotes the fluid volume and ∂V denotes the boundaries of V . For the case of a
single stationary body inside the control volume, the force vector F = (Fx(t), Fy(t), Fz(t))
acting on the body is:

F = − d

dt

(∫
V
ρudV

)
−
∫
S
ρu(u · n)dS −

∫
S
pndS +

∫
S
(τ · n)dS +

∫
V
ρfdV (6.2)

where f denotes an arbitrary body force, τ denotes the viscous stress tensor field, and S
denotes the outer boundary of the doubly-connected domain, V .

6.2.2 Conservation of linear momentum for a planar CV

Consider the momentum balance over a two-dimensional Euclidean plane S1 ⊂ IR3. To
formulate the appropriate conservation law over S1, when the velocity field remains evolving
in three-dimensional space, consider a thin three-dimensional CV formed by extruding S1
in the +z direction by a length δz (figure 6.1a). Applying equation 6.2 to this CV yields:

Figure 6.1: (a) Thin, three-dimensional control volume and (b) planar control volume.
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FSδz = − d

dt

(∫
S1
ρudS

)
δz −

(∫
l
ρu(u · n)dl

)
δz +

∫
S1

(ρuw) dS

−
∫
S3

(ρuw) dS −
(∫

l
pndl

)
δz +

(∫
l
(τ · n)dl

)
δz −

∫
S1

(τzi)dS

+
∫
S3

(τzi)dS +
(∫

S1
ρfdS

)
δz (6.3)

where the outer surface is partitioned as S = S1 ∪ S2 ∪ S3 (figure 6.1a) and S1 ⊂ IR2

is bounded by the closed contour l. In moving to equation 6.3, attention is restricted to
only the x, y components of the momentum balance, such that the planar sectional force
vector is defined as FS = (Fx(t)/δz, Fy(t)/δz). The integrals over S3, related to flow three-
dimensionality, can be expressed as integrals over S1 through a first order Taylor series
expansion of the integrand variables over +δz, leading to:

FSδz = − d

dt

(∫
S1
ρudS

)
δz −

(∫
l
ρu(u · n)dl

)
δz −

(∫
S1

∂

∂z
(ρuw) dS

)
δz

−
(∫

l
pndl

)
δz +

(∫
l
(τ · n)dl

)
δz +

(∫
S1

∂

∂z
(τzi)dS

)
δz +

(∫
S1
ρfdS

)
δz +O(δz2) (6.4)

Dividing both sides by δz and taking the limit as δz → 0 yields the following:

FS = − d

dt

(∫
S1
ρudS

)
−
∫
l
ρu(u · n)dl −

∫
S1

∂

∂z
(ρuw) dS

−
∫
l
pndl +

(∫
l
(τ · n)dl

)
+
∫
S1

∂

∂z
(τzi)dS +

∫
S1
ρfdS (6.5)

Hence, the momentum balance on a plane (S1 in this case) does not map simply onto
the momentum balance for the projected two-dimensional flow, and area integrals of the
terms ∂

∂z
(ρuw) and ∂

∂z
(τzi) are necessary for momentum conservation. Practically, this

implies that volumetric measurements surrounding an immersed body are required for
sectional load estimation, which may not be feasible in practice. To increase load estimation
accuracy for planar, two-component measurement configurations in incompressible flow,
the three-dimensional terms can be expanded and made partially tractable with planar
measurements through the application of the divergence-free constraint on the velocity
field ∂w

∂z
= −∂u

∂x
− ∂v

∂y
= −∇xy · u:

∂

∂z
(ρuw) = ρw

∂u

∂z
+ ρu

∂w

∂z
= ρw

∂u

∂z
− ρu (∇xy · u) (6.6)
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∂

∂z
τzi = µ

∂2u

∂z2 + µ∇
(
∂w

∂z

)
= µ

∂2u

∂z2 − µ∇ (∇xy · u) (6.7)

To benchmark the accuracy of different possible measurement methodologies, the fol-
lowing three formulations, with the body force term neglected, are compared in the present
study and evaluated on the control volume depicted in figure 6.1b.

FS = − d

dt

(∫
S1
ρudS

)
−
∫
l
ρu(u · n)dl −

∫
S1

(
ρw

∂u

∂z
+ ρu

∂w

∂z

)
dS

−
∫
l
pndl +

(∫
l
(τ · n)dl

)
+
∫
S1
µ

(
∂2u

∂z2 + µ∇
(
∂w

∂z

))
dS (6.8)

FS = − d

dt

(∫
S1
ρudS

)
−
∫
l
ρu(u · n)dl +

∫
S1
ρu (∇xy · u) dS

−
∫
l
pndl +

(∫
l
(τ · n)dl

)
−
∫
S1
µ∇ (∇xy · u) dS (6.9)

FS = − d

dt

(∫
S1
ρudS

)
−
∫
l
ρu(u · n)dl −

∫
l
pndl +

(∫
l
(τ · n)dl

)
(6.10)

Equations 6.8 and 6.9 are referred to as the exact and approximate formulations, respec-
tively, and represent volumetric measurement and planar measurement in incompressible
flow. The viscous terms are often neglected in practise, however, they may have a non-
negligible contribution to the instantaneous loading estimates to merit inclusion. The
approximation involved in equation 6.9 is the omission of the three-dimensional momen-
tum flux and viscous stresses associated with the terms containing w∂u/∂z and ∂2u/∂z2

in equation 6.8, respectively. Equation 6.10 is representative of the classical planar CV
formulation. It is often cast in the Reynolds averaged form to estimate mean drag from
wake traverses, where the pressure term can be expressed in terms of fluctuating velocity
components (Antonia and Rajagopalan 1990, Takahashi 1997, van Dam 1999). However,
in the present study, both instantaneous and mean loading are considered.

6.3 Test Cases

The derived sectional force formulations were validated and compared for the load esti-
mation on a circular cylinder in a turbulent vortex shedding regime. Two data-sets were
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Nodes ∆θ
η ×

∆r
η ×

∆z
η

∆t
τ

Lx
D

Ly

D
Lz
D

2.9× 107 1.59× 0.71× 2.85 0.17 24 35 3.1

Table 6.1: Computational domain and grid parameters.

Figure 6.2: Three-dimensional DNS of a cylinder in cross-flow at ReD = 1575. Iso-surfaces
of (a) pressure, and (b) Q = 0.2 s-1 coloured by streamwise vorticity.

employed, namely, three-dimensional DNS results at ReD = 1575, and experimental planar,
two-component PIV data for ReD = 1900, where ReD = U0D/ν.

For the DNS results, the computational mesh is a hybrid mesh configuration with a
structured O-type section around the cylinder surface and a structured H-type mesh in
the remaining regions, allowing for local grid refinement around the cylinder surface. The
domain sizing and mesh spacing parameters around the cylinder surface are summarized
in table 6.1, where Lx, Ly, and Lz are the streamwise, transverse and spanwise domain
lengths, respectively. The mesh sizing was ensured to be below recommendations of Moin
and Mahesh 1998 for finite volume solvers (ANSYS 14.0). The simulations were run until
a periodic steady state was reached in the lift and drag fluctuation history, before results
were sampled over a time length of 16 shedding cycles. More specific details of the DNS
are included in McClure and Yarusevych 2017b. The three-dimensional wake topology is
visualized in figure 6.2 by iso-surfaces of Q = 0.2 s-1, coloured by streamwise vorticity
and iso-surfaces of pressure. The data were sampled in two ways to facilitate the analy-
sis. First, a fully three-dimensional, three-component data set (3D3C) was sampled, where
both pressure and velocity fields were directly interpolated from the DNS solver results onto
a three-dimensional Cartesian grid with spatial resolution 0.01D and temporal resolution
of facq/fS = 217.4, where D and fS are the cylinder diameter and the vortex shedding
frequency, respectively. Second, a noisy, two-dimensional, two-component planar data set
(2D2C) was constructed, where the velocity data were interpolated onto a two-dimensional
grid with spatial resolution 0.03D and temporal resolution of facq/fS = 15.4, and synthetic
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Figure 6.3: Experimental PIV configuration.

Parameters Symbol Value

Focal Ratio f# f/5.6

Interrogation Window WS 16× 16 px (0.12D × 0.12D)

Acquisition Frequency facq 100 Hz

Field of View FOV/D 3.8× 3.8

Vector Pitch dx/D 0.03

Overlap OV 75%

Table 6.2: PIV acquisition parameters.

errors were added to the interpolated velocity fields according to the two parameter model
presented in McClure and Yarusevych 2017a. The model prescribed error proportional to
the local norm of the velocity gradient tensor, up to a maximum standard deviation of
0.25U0, along with flow independent error, with a standard deviation of 0.036U0, repre-
sentative of PIV errors caused by high shear and correlation peak detection, respectively.
The errors were correlated locally in space to model a PIV interrogation window overlap
of 75% (Azijli and Dwight 2015). The corresponding pressure fields were then computed
by inputting the noisy planar fields into a Poisson solver. Hence, the first data set forms
the “ground-truth" test using exact velocity and pressure sampled from the DNS solution,
while the second data set is representative of a planar, two-component PIV experiment
with noisy velocity fields and pressure obtained through the Poisson equation solution
corresponding to the noisy, planar velocity fields.

The experimental two-dimensional, two-component (2D2C) PIV measurements were
obtained in the water flume facility at the University of Waterloo on a 1 inch diameter
acrylic cylinder model at ReD = 1900 (figure 6.3). The acrylic model allowed penetration
of laser light through the model, such that high quality particle images could be obtained
near the body surface without shadowed regions and significant surface reflections. The
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Data Set: DNS DNS+Noise EXP

ReD 1575 1575 1900

∆x/D 0.01 0.03 0.03

facq/fS 217.4 15.4 13.4

Number of Samples 645 645 5446

Shedding cycles 16 16 37

Field of View 4D × 4D 4D × 4D 3.8D × 3.8D

Dimensionality 3D3C 2D2C 2D2C

Table 6.3: Data set parameters.

free surface was cut with an acrylic box above the mounting point of the cylinder in order
to facilitate imaging from the camera mounted above the free-surface coaxial with the
cylinder axis. The test section dimensions were 1.2 m wide (Cw), 2.4 m long (Cl) with
a constant water level height of 0.8 m (Ch). The free-stream turbulence intensity was
characterized to be less than 1% and mean flow non-uniformity less than 4% within the
empty test section. The free-stream velocity was measured to be 74.4 mm s-1 (U0) from
the mean velocity obtained from the upstream PIV data acquired during the experiment.
The cylindrical model was positioned between two acrylic circular endplates with diameter
14D, and positioned 2D upstream of the end-plate centre, following the recommendations
of Stansby 1974 and Fox and West 1990 to improve flow two-dimensionality surrounding
the model. The aspect ratio of the model was L/D = 16. The PIV system comprised
of a single high-speed, 1024 × 1024 px Photron SA4 camera equipped with a 50 mm
Nikkor lens with the numerical aperture set to f/5.6 and a Photonics high repetition rate
Nd:YLF laser. The flow was seeded with 10 µm diameter hollow glass spheres, with specific
gravity of 1.05. The particle images were acquired in single-frame mode at facq = 100 Hz
(147fS), and were processed in DaVis 8.2 using an iterative, multi-grid cross-correlation
algorithm with window deformation. The final interrogation window size was 16× 16 px,
overlapped by 75%, and yielded a vector pitch of approximately 0.03D. Details of the final
acquisition and processing parameters are summarized in table 6.2. The PIV uncertainty
was assessed using the particle disparity method (Sciacchitano et al. 2015) and mean
instantaneous velocity uncertainties reached a maximum of 0.13U0, within 95% confidence,
in the turbulent wake region. Direct lift and drag measurements were performed with a
two-component force balance, with experimental uncertainty associated with mean drag
and RMS lift measurements less than 5% (McClure and Yarusevych 2016b). A Poisson
equation solver (equation 6.11) was employed to estimate instantaneous pressure from both
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the PIV and planar, noisy DNS velocity fields (e.g., Gurka et al. 1999).

∇2
xyp =∇xy ·

(
−ρDu

Dt
+ µ∇2

xyu
)

in S1,

∇xyp · n =
(
−ρDu

Dt
+ µ∇2

xyu
)
· n on Γi,

p = 1
2ρU

2
0 −

1
2ρ (u · u+ u′ · u′) on Γj,


(6.11)

The pressure gradient was estimated from the Navier-Stokes equations using the velocity
field and its derivatives with a central difference approximation. Neumann-type boundary
conditions were prescribed at the outflow domain boundary and the cylinder surface based
on the boundary-normal projection of the pressure gradient estimate. An extended form
of Bernoulli’s equation (de Kat and van Oudheusden 2012) was used on the inflow and
top/bottom side boundaries, where the flow was approximately steady and irrotational.
The relative spatial resolution of the PIV data was 13.6λx, where λx is twice the shear layer
thickness. For the calculation of temporal derivatives, the PIV data were downsampled to
a relative temporal resolution of facq/fS = 13.4. The relative resolutions were chosen to
coincide with optimal ranges identified in McClure and Yarusevych 2017b which minimize
the propagation of random and truncation error to the pressure solution. Furthermore, the
sensitivity of the pressure estimates to a number of user chosen parameters was investigated
to validate their consistency. The temporal resolution of the data was varied an order of
magnitude above and below the selected facq/fS = 13.4, resulting in amplification of the
pressure RMS statistics, predominantly near the domain and cylinder wall boundaries,
indicating more pronounced propagation of random and truncation error into the solution
when sampled away from optimal values (McClure and Yarusevych 2017b). The circular
boundary condition surrounding the cylinder wall was expanded over a range of diameters
from 1D to 1.6D, and the outer extents of the domain were truncated up to 2D. It
was found that varying the boundary locations in this manner resulted in nearly identical
mean and RMS statistics in the solved regions. Temporal filtering of the velocity data
using median filtering resulted in a minor reduction of erroneous pressure fluctuations near
the inflow boundary and stagnation point, but was not employed for the sake of clarity,
though a temporal filtering operation (Dabiri et al. 2014, Schiavazzi et al. 2017) is useful
and recommended in noisier data sets. A summary of the sampling parameters for the
three data sets employed in the present study is included in table 6.3. The data sets
are denoted DNS, DNS+Noise and EXP for the 3D3C directly sampled DNS data, 2D2C
down sampled DNS data with synthetic noise introduced, and 2D2C experimental PIV
data, respectively.

Figures 6.4(a)-(c) present instantaneous snapshots of the vorticity and pressure fields
during similar shedding phases obtained directly from three-dimensional DNS (figure 6.4a),
obtained from the noisy planar DNS and the corresponding planar Poisson equation solu-
tion (figure 6.4b), and obtained from the experimental planar PIV data and its correspond-
ing planar Poisson equation solution (figure 6.4c). Variables with a hat denote normalized
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Figure 6.4: Instantaneous spanwise vorticity (ω̂z = ωzD/U0) and pressure fields (p̂ =
2p/ρU2

0 ) for (a) direct interpolation of the DNS solver pressure, (b) Poisson solution on
the downsampled DNS velocity fields with synthetic noise, and (c) Poisson solution on the
PIV velocity fields.

variables, namely, ω̂z = ωzD/U0, p̂ = 2p/ρU2
0 , t̂ = tfs, x̂ = x/D, and ŷ = y/D. Inspection

of the instantaneous fields indicates that vortex formation occurs between x̂ = 1.8−2.0 for
each case, and no distinct topological changes in the flow occur between the cases; hence, a
close correspondence between the noisy DNS data set and experiment is expected. Figure
6.5 plots transverse profiles of the mean pressure, RMS pressure, and pressure-velocity
correlations along the wake centreline. The pressure statistics show a good agreement be-
tween the three cases, indicating the minor ReD difference does not have a significant effect
on the comparison between the DNS and experimental results. The average RMS error
(RMSE) of the DNS+Noise mean and RMS pressure statistics are 0.022Cp and 0.020Cp,
respectively, and the RMSE of the EXP mean and RMS pressure statistics are 0.044Cp
and 0.021Cp, respectively. Minor deviations of the estimated pressure fields from the direct
DNS pressure are attributed to systematic errors in the planar Poisson solutions due to
truncation errors and omitted three-dimensional terms (Baur and Köngeter 1999, Violato
et al. 2011, Ghaemi et al. 2012, McClure and Yarusevych 2017b), with the most pronounced
differences confined to regions of pronounced three-dimensional flow (x̂ > 2).
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Figure 6.5: Comparison of pressure field statistics using transverse profiles at varying
streamwise locations of (a) mean pressure, (b) pressure RMS, (c) pressure-streamwise ve-
locity correlation, and (d) pressure-transverse velocity correlation.

6.4 Results

6.4.1 Instantaneous load estimation

A comparison of CV formulations given by equations 6.8-6.10 predicts the sensitivity of the
approximate (equation 6.9) and classical (equation 6.10) control volume formulations to
flow three-dimensionality. It may be conjectured from figure 6.4 that three-dimensionality
becomes significant for x̂ > 2, with turbulent transition beginning in the separated shear
layers a proceeding during the formation and shedding of turbulent von Kármán vortices
downstream of the cylinder. To demonstrate the importance of three-dimensional effects,
figure 6.6 presents the time history of the sectional drag and lift coefficients, obtained by
applying the exact (equation 6.8), approximate (equation 6.9) and classical (equation 6.10)
formulations to the direct DNS data set for two control volume sizes. The first CV (figure
6.6a, LCV /D = 1.34) is representative of a situation where the CV includes only regions
of predominantly two-dimensional flow, which is in contrast to the second CV (figure 6.6b,
LCV /D = 4.0) that includes regions of significant three-dimensional flow, where LCV is
a parameter defining the control volume size (figure 6.1b). The results demonstrate that
the exact CV formulation derived here (equation 6.8) is the correct linear momentum
conservation law for the planar control volume, with force estimates matching the surface
integrated results from the DNS solver for both CVs. On the other hand, when three-
dimensional flow regions are present within the CV, simplified formulations (equation 6.9
and 6.10) can lead to significant errors in instantaneous force estimates. Specifically, the
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Figure 6.6: Time evolution of the control volume load estimates for sectional drag co-
efficient CD(t) = 2Fx(t)/ρU2

0D and sectional lift coefficient CL(t) = 2Fy(t)/ρU2
0D, using

equations 6.8, 6.9, and 6.10 on the exact DNS data, compared to surface integrated loads
from the DNS solver (a) using a small CV of size LCV /D = 1.34, and (b) using a larger
CV of size LCV /D = 4.0.

classical formulation (equation 6.10) yields instantaneous results for both the lift and drag
with errors over 0.5CD (0.5CL) for the control volume bounding three-dimensional flow
(figure 6.6b). The use of the approximate form (equation 6.9) appears to yield a minor
overall improvement over the classical formulation; however, instantaneous deviations up
to 0.5CD (0.5CL) remain. As expected, when the CV is constructed to bound minimal
flow three-dimensionality (figure 6.6a), the approximate and classical formulations provide
more reliable estimations.

6.4.2 Mean and RMS loading statistics

To more comprehensively characterize and quantify the accuracy of the CV formulations
in the presence of three-dimensional flow and experimental errors, the CV size (LCV ) is
systematically varied, and estimates obtained by applying the different formulations to
instantaneous fields from the test data sets are compiled. Figures 6.7 and 6.8 present
the mean drag and RMS lift statistics, respectively. The error bars are determined by
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Figure 6.7: Mean drag forces evaluated using equations (6.8), (6.9), and (6.10) for variable
control volume size (LCV ) for (a) direct DNS and noisy, planar DNS at ReD = 1575, and
(b) PIV experiment at ReD = 1900.

estimators for the uncertainty of the mean and RMS, respectively, using an effective number
of samples based on the integral time scale of the signals (Sciacchitano and Wieneke 2016).
All estimates from DNS are compared to the surface integrated forces from the DNS
solver, while all estimates from PIV data are compared to sectional forces derived from
force balance measurements (McClure and Yarusevych 2016b).

Figure 6.7a plots estimates of mean drag for the three-dimensional and planar DNS data
sets, while figure 6.7b plots mean drag estimates from the PIV data. In general, mean drag
estimates using simplified formulations achieve their highest accuracy for small CV sizes,
and the approximate formulation shows improved accuracy over the classical formulation
for the experimental data (figure 6.7b), but not for the numerical data (figure 6.7a). In
both the numerical and experimental data sets (figures 6.7a,b), the classical and approx-
imate CV formulations exhibit a dependency on CV size, while the exact formulation is
insensitive to CV size and exhibits universal agreement with the DNS solver drag (figure
6.7a). In the numerical case (figure 6.7a), the flow should be statistically two-dimensional,
and the three-dimensional terms in equation 6.8 cancel when Reynolds averaged. However,
the convergence of the second order statistics needed for the three-dimensional terms to
cancel is slow, relative to the time sample of the DNS data used here and numerical re-
sults in general, and their instantaneous magnitude is substantial (figure 6.6). Hence, the
mean drag estimates using the approximate and classical formulations deviate from the
exact forcing but are within the uncertainty of the mean. Using approximate and classi-
cal formulations applied to the coarser resolution, planar, noisy DNS data causes under
prediction of the mean drag, even for small CV sizes (figure 6.7a). This is ascribed to
truncation error accumulation due to the lower spatial resolution employed, which can be
observed in a minor, but systematic under prediction of the stagnation pressure in the
Poisson solutions for pressure in figure 6.5a. A similar trend is seen for the experimental
case (figure 6.7b); however, the disparity between the mean drag estimates becomes more
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pronounced with increasing CV size compared to the numerical case. Since the PIV ex-
periment allowed sufficient independent samples to achieve statistical convergence of the
estimates, the decreased accuracy of the classical formulation for the experimental case
is instead attributed to a high sensitivity of the CV momentum flux terms to small mis-
alignments in the PIV set-up or minor mean flow/model non-uniformities characteristic of
experimental facilities, which is discussed in more depth in Section 4.3.

Figures 6.8a and 6.8b compare the results for the RMS lift statistics (C ′L) for DNS
and experimental data, respectively. Similar to the drag estimates, the results from the
exact formulation based on three-dimensional DNS data match the direct force results.
Furthermore, all formulations exhibit close agreement to the DNS solver RMS lift if the CV
size is small (figure 6.8a), but the approximate and classical formulations yield erroneous
growth of the RMS lift when LCV becomes large enough to encompass three-dimensional
flow regions. For each case, the RMS drag statistics show similar behaviour, as can be
deduced from figure 6.6, while the mean lifts are zero within the convergence of the statistics
and are omitted for brevity. In the cases of the planar DNS and PIV data, the propagation
of random error from the velocity fields through the CV formulation is also significant,
even for small CV sizes. The influence of the random error on the instantaneous force
estimates motivates the use of zero-phase temporal low-pass filtering for each term in
the formulation for the estimations from the PIV data set (figure 6.8b). Here, a low-
pass, equiripple finite-impulse response filter with a pass band at 1.5fS and a 60 dB stop
band at 15fS is employed, and the results in figure 6.8(b) show the improved accuracy
that filtering provides for the estimate. The results demonstrate that, for the planar CV
configuration, failure to account for flow three-dimensionality can result in significantly
erroneous instantaneous loading estimates and care must be employed in selecting the CV
boundaries, such that they bound minimal three-dimensional flow regions. To ensure this,
the experimentalist should systematically vary the CV boundaries in a similar manner, and
select a CV size in a converged region where loading estimates are insensitive to changes
in CV size (e.g, LCV /D < 2.5 in figure 6.8).

To elucidate on the trends observed in the mean drag and RMS lift statistics derived
from CV formulations, figure 6.9 plots the relative magnitude of the individual terms ap-
pearing in the momentum balance (equation 6.8) for varying LCV for the three-dimensional
DNS data (figure 6.9a, b) and the PIV experiment (figure 6.9c, d). For the mean drag, the
mean time derivative term, d

dt
(
∫
S1
ρudS) and viscous terms are negligible. Instead, figures

6.9a and 6.9b show that the mean drag is primarily determined by the difference between
the mean boundary momentum flux,

∫
l ρu(u ·n)dl, and the mean boundary pressure force,∫

l pndl. The magnitudes of the three-dimensional terms reach up to relative magnitudes
of 0.1CD for certain LCV /D, but generally cancel each other out for the resulting mean
drag estimate. However, due to the finite convergence of the statistics, the area integrals
of the correlations w′ ∂u′

∂z
and u′ ∂w′

∂z
do not converge to zero for each data set, and combine

to give rise to a minor force contribution when equation 6.8 is averaged. On the other
hand, the three-dimensional momentum flux term

∫
S1

(ρu∂w
∂z

)dS attains a larger magnitude
in experiment compared to the DNS data set (figure 6.9b), despite increased statistical
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Figure 6.8: RMS lift forces evaluated using equations 6.8, 6.9, and 6.10 for variable
control volume size (LCV ) for (a) direct DNS and noisy, planar DNS at ReD = 1575 and
(b) PIV experiment at ReD = 1900.

convergence, indicating its persistence in the experiment.
For the RMS lift statistics (figures 6.9c,d), only one of the three-dimensional vis-

cous terms,
∫
S1
µ( ∂2w

∂y∂z
)dS, is negligible. The force is determined primarily by the dif-

ference between the time derivative term, d
dt

(
∫
S1
ρvdS), and the boundary momentum

flux,
∫
l ρv(u · n)dl, for larger CVs (LCV /D > 3), while the boundary pressure force,∫

l pndl, is dominant for smaller CVs. Both of the three-dimensional momentum fluxes,
and the three-dimensional viscous force,

∫
S1
µ(∂2v

∂z2 )dS, become increasingly more signifi-
cant for LCV /D > 3 and contribute significantly to the instantaneous forcing (figure 6.9c).
The growth of these three-dimensional terms for LCV /D > 3 explains the significant errors
encountered in figures 6.6 and 6.8 for the instantaneous forces when they are neglected in
the classical (equation 6.10) and approximate (equation 6.9) formulations.

6.4.3 Diagnosing estimation sensitivity to out-of-plane statistics

The sensitivity of instantaneous loading estimates to flow three-dimensionality has been
demonstrated for the planar CV configuration in the present flow case. Such a sensitivity
can be expected in other classes of separated, unsteady, transitional or turbulent flows over
stationary bodies, however, in the case of accelerating bodies, the added mass term may
dominate the instantaneous loading fluctuations to such a degree that omission of three-
dimensional terms is less noticeable. The present analysis implies that, to retain accuracy
when working with planar velocity measurements, one must construct a CV which bounds
minimal regions of 3D flow (figure 6.6). This is a straightforward recommendation based
on the results of the instantaneous load estimations, however, the dependency of the mean
loading estimates on flow three-dimensionality is obfuscated in the analysis due to the
numerical and experimental data sets encountering two differing sensitivities related to
the three-dimensional terms in the momentum balance. The numerical data set converges
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Figure 6.9: Relative magnitudes of momentum balance terms for variable control volume
size (LCV ) for (a) mean drag for direct DNS at ReD = 1575, (b) mean drag for PIV
experiment at ReD = 1900, (c) RMS lift for direct DNS at ReD = 1575, and (d) RMS lift
for PIV experiment at ReD = 1900.

towards two-dimensional flow statistics, however the relatively short time sample of the
DNS limits the statistical convergence of the three-dimensional terms. Since the magnitude
of the instantaneous three-dimensional momentum fluxes can reach above 100% the mean
drag, and strong streamwise structures in the cylinder wake may induce formation of
repeating streamwise structures at the same spanwise position on subsequent shedding
cycles (Williamson 1996c), the statistical convergence of the mean drag for the classical
and approximate momentum equations formulations suffers (figure 6.7a). On the other
hand, the experimental data set is sampled over a long enough period to allow adequate
convergence of the mean drag statistics (figure 6.7b), and, instead, the inaccuracies of the
classical and approximate momentum equation formulations are due to three-dimensional
statistics present in the converged fields. In either case, minimizing the size of the control
volume to mitigate the space over which three-dimensional area integral terms are active
is found to increase accuracy (figure 6.7b). Hence, one can diagnose sensitivities to flow
three-dimensionality in a simple manner by observing if the load estimate statistics show
dependency on the size of the CV, as shown in figures 6.7 and 6.8, with estimates deemed
reliable only if one can establish a region where the estimates are sufficiently independent
of changes in CV geometry (e.g., LCV /D < 2.5 in the current flow).

To investigate the source of the sensitivity of flow three-dimensionality for the mean
drag estimates, figure 6.10 quantifies the development of the mean flow three-dimensionality
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present in the flow by computing the mass residual ratio when varying the normalized
streamwise location of the downstream CV boundary (x̂CV ), with the upstream CV bound-
ary fixed at x̂ = −3.6 and top and bottom CV boundaries fixed at ŷ = ±3.6. The mass
residual ratio is defined here by the residual in the mass balance (equation 6.12) computed
over the CV, normalized by the mass flow rate through the upstream boundary of the
CV (ρUoLCV ). Figure 6.10a computes the mass residual ratio including the area integral∫∫
ρ∂w/∂zdS accounting for the mass flux due to the flow three-dimensionality, while figure

6.10b computes only the mass fluxes from the contour integrals at the CV boundaries. The
mass residual ratio reduces to zero when all terms are accounted for in figure 6.10a, for both
data sets, indicating that the measurement and DNS data are conforming to the governing
equations. In contrast, the deviations of the mass residual ratio from zero in figure 6.10b
give an indication of the magnitude and character of the flow three-dimensionality for the
numerical and experimental data sets. For the numerical data set, the mass residual ratio
is small, and deviations from zero occur only in the wake region, due to convergence of the
mean statistics in the three-dimensional wake. On the other hand, for the experimental
data set, the mass residual ratio systematically increases as the CV boundary is moved
further downstream, reaching a maximum of nearly 5% of the incoming mass flow rate.
This is indicative of a persistent three-dimensionality over the entire CV area due to free-
stream flow non-uniformity or laser sheet alignment. For a mass residual ratio of 5%, the
corresponding local mean variation of the spanwise velocity is approximately 0.7%U0 per
diameter, which is a feasible non-uniformity characteristic of an experimental facility.

Ṁres = −
∫
l
ρ(u · n)dl +

∫
S1
ρ (∇xy · u) dS (6.12)

To test the sensitivity of the loading estimates to laser sheet misalignment, the exact
DNS data set was utilized, and the data were sampled in a plane with small rotations
about the x and y axes. The mean drag estimates for several sampling plane angles about
the y-axis are shown in figure 6.11a; with the plane angle within the investigated range
producing a minor effect on loading estimates. The exact pressure fields were interpolated
from the exact fields at a 0◦ plane angle for comparison, but also computed by solving
the pressure Poisson equation from the sampled velocity data on the misaligned planes for
0◦, 5◦, and 10◦. Measurement plane misalignment is shown to not affect the planar mass
residual ratio significantly (figure 6.11b) when omitting the three-dimensional term, hence
it is not the cause of the trend observed in the experimental data in figure 6.10b, which
shows a progressive deviation of the mass residual ratio with increasing CV size. There-
fore, the failure of the classical method to accurately predict the mean drag for large CVs
for the experimental data set in the current study (figure 6.7b) is attributed to statistical
three-dimensionalities in the flow, rather than alignment error. The approximate method
provides a significant correction to the mean drag estimates in the experiment due to the
dominating influence of the computable three-dimensional flux term (figure 6.9b), associ-
ated with a significant mass imbalance in the CV (figure 6.10b). Therefore, the analysis
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Figure 6.10: Mass residual ratio in the CV based on (a) the planar mass balance including
the three-dimensional mass flux term (equation 6.12) and (b) the planar mass balance
omitting the three-dimensional term.

indicates a high sensitivity of the mean drag estimates to statistical three-dimensionalities
in the flow when using the classical formulation, highlighting the importance of ensur-
ing low free-stream non-uniformity and carefully controlling model boundary conditions
when using this formulation. On the other hand, the estimates are insensitive to three-
dimensionality associated with measurement plane alignment. The use of the approximate
formulation corrects for flow three-dimensionalities associated with mass imbalance in the
CV and is hence less sensitive to experimental conditions. For instantaneous loading es-
timates, only minimal flow three-dimensionality may be tolerated, and the approximate
formulation provides only minor compensations. To ensure instantaneous accuracy, estab-
lishing the independence of the CV estimates from CV size is vital in order to ensure flow
three-dimensionalities are not a dominating error source.

To increase the accuracy of mean drag estimates from wake integrals, the momentum
fluxes are often corrected to account for conservation of mass over the CV (van Dam 1999,
van Oudheusden et al. 2007) by subtracting out the equivalent momentum deficit incurred
by the residual mass flow out of the domain at the free-stream velocity (equation 6.13).
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Figure 6.11: When the sampling plane is misaligned by rotation about the y-axis: (a)
variation of the mean drag coefficient, and (b) variation of the mass residual ratio.

CV Formulation: Exact Approximate Classical

CD (LCV = 1.34) 0.076% 0.83% 0.37%

CD (LCV = 6.14) 0.22% 15% 5.5%

C ′D (LCV = 1.34) 0.22% 16% 3.6%

C ′D (LCV = 6.14) 59% 1300% 2100%

C ′L (LCV = 1.34) 0.14% 0.49% 0.071%

C ′L (LCV = 6.14) 18% 680% 710%

Table 6.4: Summary of error metrics for DNS data.

FD =
∫
lwake

ρ(Uo − u)udl −
∫
lwake

ρu′2dl +
∫
lwake

(po − p)dl +
∫
lwake

(τ · n)dl (6.13)
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Figure 6.12: Comparison of the wake-integral equation (equation 6.13) with the classical
(equation 6.10) and approximate (equation 6.9) forms of the momentum integral equation
using the experiment PIV data set, (a) for a square CV centred at the cylinder centre
with side length LCV and (b) a traditional CV with inflow boundary at x = −3.5D and
transverse height 7D with varying outflow boundary position from x = 0.5− 3.7D.

It is of interest to compare this wake integral formulation with the approximate formulation
derived in the present study, which utilizes an area integral of the momentum flux asso-
ciated with the planar divergence of the velocity field over the CV. Figure 6.12 compares
the wake-integral approach to the three formulations compared previously using the same
square CV which expands larger in all direction with increasing LCV . Not surprisingly, the
wake-integral method performs poorly in this case for small LCV , as the momentum fluxes
out the top and bottom CV boundaries are significant and are in accelerated flow regions.
In practice, one would utilize the wake-integral method by encompassing the largest pos-
sible extent of the wake data, hence figure 6.12b gives a more realistic comparison of a CV
with its inflow boundary fixed at x = −3.5D, transverse boundaries fixed at y = −3.5D
and y = 3.5D, and only the downstream boundary location in the wake is being varied.
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The result shows the wake-integral approach to be superior to the classical formulation,
which does not correct for mass flow imbalance for all CV boundary locations, however, the
approximate formulation derived in the present study is shown to enable higher accuracy
for this test case. The higher accuracy of the approximate formulation here should not be
treated as universal, since it relies on the approximated three-dimensional momentum flux
dominating the neglected term. It also appears to benefit in this case by counteracting the
slight under prediction in mean drag estimates caused by the lower spatial resolution of
the PIV data, a trend observed in figure 6.7a. To summarize the results, table 6.4 includes
the error metrics for the loading statistics using the ideal DNS data set for relevant loading
statistics.

6.5 Conclusion

The conservation of linear momentum in a planar control volume is derived for the general
case of three-dimensional flow. In comparison to the classical, two-dimensional formulation
(equation 6.10), the derived formulation (equation 6.8) includes area integrals involving the
out-of-plane velocities and gradients associated with the out-of-plane momentum flux and
viscous stresses. The formulation is validated on a prototypical cylinder wake flow in a
turbulent shedding regime using a combined analysis of DNS data and experimental PIV
data. The results reveal significant implications flow three-dimensionality can have on both
instantaneous and mean sectional load estimation methodologies common in fluid mechanic
testing. Failure to account for the three-dimensional terms can lead to instantaneous and
mean errors on the order of 50%, and the results will show dependence on control-volume
location. Invoking a divergence-free condition for incompressible flow allows the estimation
of a subset of the expanded three-dimensional terms, yielding an increase in accuracy over
the classical two-dimensional formulation for the test case considered. The improvement
is most significant in the mean drag estimates from the PIV experiment, where the sta-
tistical three-dimensionality of the flow caused significant errors in the classical estimates,
while the instantaneous improvement of the loading estimates was relatively minor. The
cumulative results suggest that, when only planar velocity measurements are possible, it
is best to strategically select a CV to avoid encompassing three-dimensional flow regions,
employ temporal filtering on individual CV terms to mitigate random error propagation,
and use the approximate CV formulation (equation 6.9) to enable instantaneous loading
estimates with the highest precision. Regions of three-dimensional flow can be identified in
planar measurement, for example, through a comparative analysis of the planar divergence
statistics over the domain.
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Chapter 7

Flow-induced force distribution for a
cylindrical body undergoing VIV

With a methodology for both pressure and load estimation from time-resolved PIV data
determined, an experimental test case in now performed. The method is applied to a
stationary cylinder in cross flow, and two forced vibration cases corresponding to 2S and
2P0 modes of vortex-induced vibrations. The resulting estimates of instantaneous fluid
forcing are compared to simultaneously acquired force balance data, and are shown to
capture the low frequency modulation of the fluctuating lift force associated with shedding
phase variation along the span for the uniform stationary cylinder.

This chapter is based on the conference proceedings: McClure, J., Morton, C., and Yaru-
sevych, S. (2019) “Forcing function and volumetric flow field estimation for a cylinder
undergoing VIV,” 13th International Symposium on Particle Image Velocimetry, 22-24
July, Munich, Germany.
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7.1 Introduction

Within the wide-spread deployment of Particle Image Velocimetry (PIV) and Particle
Tracking Velocimetry (PTV) systems for application in industrial and research labora-
tory settings, it is of interest to extract time-resolved load estimates (F(t)) from such
measurements (Rival and Oudheusden 2017). A challenging case which that the current
study will focus on, is an immersed body undergoing motion in a fluid flow (e.g., Morse
and Williamson 2009). There are a few candidate formulations to choose from for eval-
uating forcing from velocimetry data: (i) the pressure-velocity formulation (Unal et al.
1997, Wu et al. 2005, McClure and Yarusevych 2019) (i.e., momentum methods) , (ii) the
vorticity-velocity formulation (Noca et al. 1999, Graham et al. 2017, Guissart et al. 2017,
Limacher et al. 2018) (i.e., impulse methods), and (iii) the Lagrangian drift volume formu-
lation (Dabiri 2006, McPhaden and Rival 2018). For flows with significant contributions
from added mass and vortex force components, a complete force estimate can only be ob-
tained from the momentum and impulse methods. The classical momentum formulation
is selected for consideration in the current study, due to its characteristically lower error
sensitivity (Noca et al. 1999, Limacher et al. 2019, Limacher et al. 2020) compared to
impulse methods for finite domains. In addition, the concomitant resolution of the pres-
sure field facilitates advanced diagnostics for applications involving flexible structures and
aeroacoustics.

A limitation of time-resolved PIV-based loading estimates is their application in three-
dimensional flows with salient dynamics occurring outside the PIV measurement plane or
volume. Since, in general, the flow completely surrounding the body must be resolved for
time-resolved force estimation, this poses an experimental challenge for both resolution
and illumination. Specifically, tomographic camera set-ups have limited ability to resolve
the flow near highly curved geometries, and mitigation of optical shadowing, encountered
when the measurements domain encompasses a solid body, requires a drastic increase in
complexity of the measurement. In addition, the light budget limitations often restrict
the size of the measurement volume, making illuminating the flow surrounding the entire
immersed body infeasible in most cases. (Spoelstra et al. 2019) circumvent this issue for
evaluation of time-resolved drag force by utilizing a single measurement volume down-
stream of a cyclist, aimed at capturing the entire extent of the time-resolved evolution of
the trailing wake permitting the use of a simplified control volume analysis.

The approach in this study is primarily aimed at measuring the fluctuating lift force
utilizing a pseudo-instantaneous three-dimensional flow reconstruction technique derived
from a minimum of two independent time-resolved, planar Particle Image Velocimetry (TR-
PIV) measurements to estimate time-resolved fluid pressure and loads for a stationary and
oscillating cylinder in cross flow at a Reynolds of approximately 4100. The study serves as a
validation case of the proposed methodology, with the TR-PIV measurements accompanied
by reference force balance data to benchmark the accuracy of the proposed methods.
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Figure 7.1: Experimental configuration for (a) vertical plane (x-z) and (b) horizontal
plane (x-y) PIV measurements.

7.2 Experimental Methodology

Experiments were performed in a closed-loop water tunnel facility at the University of
Calgary. The tunnel test section width and free surface height were 0.385m and 0.431m,
respectively. The free-stream velocity was set to U0 = 0.21m/s, and was monitored by
a Dynasonics TFX ultrasonic flow meter. The experimental configuration is depicted in
figure 7.1. A cylinder model was mounted vertically on an actuated platform capable of
linear motion over a range of amplitudes (A) and frequencies (f) in the cross-flow direction
to replicate one-degree-of-freedom Vortex-Induced Vibrations (VIV). The cylinder model
had diameter D = 19.05mm, resulting in solid blockage of 5%, and was made hollow to
enhance PIV laser light penetration and minimize inertial loading during motion, with
a total mass of 0.167 kg. The aspect ratio of the immersed portion of the cylinder was
L/D = 22.62, and the free end of the cylinder extended to within 1 mm of the test section
floor. The Reynolds number based on cylinder diameter was approximately 4100. Three
cases were investigated: (i) a stationary cylinder, (ii) forced VIV at normalized amplitude
A∗ = A/D = 0.45 and wavelength λ∗ = U0/fD = 5 resulting in 2S shedding, and (iii)
forced VIV at A∗ = 0.8 and λ∗ = 7 resulting in 2P0 shedding (Morse and Williamson
2009). Time-resolved, two-component, planar PIV-measurements in x−y and x−z planes
are obtained in sync with force and cylinder position measurements from a load cell and
encoder, respectively.

The sinusoidal trajectory of the cylinder is actuated by a motorized traverse above the
free surface of the water channel. The traverse is driven by a digital brushless servomotor
(ClearPath MCVC-2341P) through a timing belt attached to a moving carriage mounted
between two v-slot linear rails aligned in the transverse direction, ensuring motion in only
one degree-of-freedom. The position of the carriage is monitored by an optical encoder with
800 counts per revolution resulting in a resolution of 0.002D in position measurement. A
homing procedure was used to consistently centre the cylinder position in the test section
with an uncertainty within ±0.016D. Coaxially mounted to the bottom of the carriage
are the load cell and acrylic cylinder model. A detailed description of the control system

126



Figure 7.2: Phase-averaged inertial lift force subtraction for oscillating cylinder cases (a)
A∗ = 0.45 and λ∗ = 5.0 and (b) A∗ = 0.8 and λ∗ = 7.0.

implemented to follow the input sinusoidal trajectories is included in Riches and Morton
(2018). In the current work, the desired trajectory is prescribed as a sinusoid with a given
amplitude and frequency y = A sin(2πft).

Instantaneous forces were measured using an ATI Mini40 six-component load cell. The
load cell force resolution is 0.005 N. In the oscillating cylinder cases, the inertial force
on the load cell associated with accelerating/decelerating the cylinder model assembly
must be quantified and subtracted from transverse lift force measurements. To do so,
the prescribed motion for the two oscillating cases was repeated in air, and the resulting
filtered lift data was phase averaged using the phase of the cylinder position computed by
the Hilbert transform (Khalak and Williamson 1999) providing an estimate for the phase-
averaged inertial force (black line, figure 7.2). The result was then subtracted from the
forces obtained in the current experiments based on the phase of the cylinder position.
The inertial subtraction was further validated by repeating the prescribed motion in air
with the cylinder model detached from the load cell. The resulting phase averaged inertial
force when added to the additional inertial force computed by the measured mass of the
cylinder model undergoing acceleration measured by the second derivative of the filtered
encoder data (maencoder) matches the previously obtained inertial subtraction with the
entire assembly actuated (figure 7.2). The correspondence of the two signals suggests no
secondary inertial effects, e.g., due to deflection of the cylinder model, are significant.

Velocity measurements were obtained in six independent planes using two-component,
time-resolved PIV, comprising of three vertical x − z planes (figure 7.1a) at transverse
positions y/D = 0, 0.5, and 1.0, and three horizontal x−y planes (figure 7.1b) at spanwise
positions z/D = 5, 11.9 and 17.7. The flow was seeded with 10 µm hollow glass spheres,
with specific gravity 1.05, illuminated by a high repetition rate Photonics DM30 Nd:YLF
laser. Particle images were acquired with two 2560×1600 px Phantom Miro 340 high-speed
cameras equipped with 60 mm lenses. Scheinpflug adapters were affixed to the lenses for
the horizontal plane measurements, and the cameras rotated 20 deg from the vertical axis
to facilitate resolution of the velocity field surrounding the entire cylinder surface. For
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Parameters Symbol Value

Focal Ratio f# f/5.6

Acquisition frequency facq 400 Hz

Number of samples N 1000× 10

Field of view FOV/D 3.8× 3.8

Table 7.1: PIV acquisition parameters.

Parameters Symbol Value

Interrogation window WS 24× 24 px

Acquisition frequency facq 400 Hz

Field of view (horz) FOVh/D 7.2× 3.8

Field of view (vert) FOVv/D 4.0× 20.3

Vector pitch (horz) dxh 0.016D

Vector pitch (vert) dxv 0.029D

Overlap OV 75%

Table 7.2: PIV processing parameters.

each measurement plane and set of parameters, 10000 images were acquired at facq = 400
Hz in single frame mode, approximately 200 times the Strouhal shedding frequency of the
stationary cylinder. The velocity fields were processed in DaVis 8.4.0 using an iterative
multigrid algorithm with window deformation at a final interrogation window size of 24×24
px with 75% overlap. Erroneous vectors were eliminated by employing a median temporal
filter over a sliding kernel of 7 velocity fields. After stitching the resulting vector fields
from two cameras in a minor < 0.5D overlap region with a linear weighting factor, the
final x − y Field of View (FOV) was −3.6 < x/D < 3.6, −1.9 < y/D < 1.9, and x − z
FOV was 0 < x/D < 4.0, 0.1 < z/D < 20.2, with a vector pitch of 0.55 mm (0.029D) and
0.31 mm (0.016D) in the x− z and x− y planes, respectively.

The PIV laser Q-switch, encoder, and load cell force signals were acquired simultane-
ously at facq = 50 kHz with an Advantech PCI1716L DAQ card. The encoder and force
balance signals were synchronized with the PIV velocity measurements through resampling
the acquired data at the mid point between rising edges of the Q-switch corresponding to
the timing of laser pulses. In the oscillating cylinder cases, data acquisition was initiated
only after a minimum of 10 oscillation periods to ensure transients in the controls and flow
dynamics did not influence the results.
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7.2.1 Pressure and Force Estimation

A Poisson equation solver was employed to estimate pressure from the horizontal plane PIV
measurements based on the numerical solution of equation 7.1 (e.g., Gurka et al. 1999).

∇2p = ∇ ·
(
−ρDu

Dt
+ µ∇2u

)
, in Ω

∇p · n =
(
−ρDu

Dt
+ µ∇2u

)
· n, on Γi

p = 1
2ρU

2
0 −

1
2ρ (u · u + u′ · u′) , on Γj (7.1)

where Γi denotes boundary sections where Neumann boundary conditions are employed,
setting the pressure gradient to that estimated from the Navier-Stokes equation, and Γj
denotes boundary sections where the Dirichlet condition is employed, setting the pressure
on the boundary using an extended form of the Bernoulli equation, valid for unsteady,
irrotational flow with small mean velocity gradients (de Kat and van Oudheusden 2012).
Dirichlet condition were prescribed on the inflow boundary, where the flow was deemed ap-
proximately steady and irrotational for all cases, and Neumann conditions were prescribed
on the remaining top, bottom, outflow boundaries and on a circular contour surrounding
the cylinder. The contour around the cylinder had a diameter of 1.2D, moving with the
cylinder’s position, in order to avoid amplified errors in near wall regions. For compu-
tation of sectional loads, FS = (Fx, Fy), from the horizontal plane PIV measurements,
a small control volume was selected surrounding the cylinder (−1.05 < x/D < 1.05,
−1.05 < y/D < 1.05), to avoid regions of flow three-dimensionality. The mathematical
formulation used is given in equation 7.2, which represents the approximate momentum
balance for a planar control volume in three-dimensional flow (McClure and Yarusevych
2019), with viscous terms neglected.

FS = − d

dt

(∫
S
ρudxdy

)
−
∮
l
ρu(u · n)dl +

∫
S
ρu (∇xy · u) dxdy −

∮
l
pndl (7.2)

7.2.2 Pseudo-Instantaneous Three-Dimensional Reconstruction

Since planar PIV measurements are only capable of yielding sectional estimates of the flow
induced loading, it is necessary to employ a reconstruction of the flow along the entire
span of the cylinder model in order to accurately characterize the forcing. This is done by
leveraging instantaneous, vertical plane PIV measurements located at a transverse position
y = 0.5D. At each spanwise location, streamwise velocity data in the overlapping region
between the vertical and horizontal plane PIV measurements is used to obtain an estimation
for horizontal velocity fields, pressure fields, and sectional forces. This estimate is computed
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Figure 7.3: First two temporal coefficients of the POD for (a) stationary cylinder, (b)
oscillating cylinder A∗ = 0.45, λ∗ = 5.0, and (c) oscillating cylinder A∗ = 0.8, λ∗ = 7.0.

in two ways: (i) phase-averaging the horizontal plane measurements and correlating a line of
streamwise velocity data at every spanwise location (zk) in the instantaneous vertical plane
velocity field, u(x, yv, zk), to identify the shedding phase at every spanwise position (θ(zk)),
and (ii) phase-averaging the horizontal plane measurements and projecting the same line
of velocity data u(x, yv, zk) onto the horizontal POD-basis modes to estimate the temporal
coefficients {a1(zk), a2(zk), . . .} at every spanwise position, the temporal coefficients can
then be leveraged to compute the spanwise distribution of shedding phase.

To phase average the horizontal plane PIV measurements, Proper Orthogonal Decom-
position (POD) is employed (Sirovich 1987), which decomposes the velocity fields into
deterministic spatial modes, φi(x, y), with corresponding time varying temporal coeffi-
cients, ai(t). Figures 7.3a-c plot the values of the first two temporal coefficients for the
horizontal plane PIV data acquired at ẑ = 11.9 for the stationary and oscillating cylinder
cases. The first two temporal coefficients define the dominant dynamics of the primary
shedding instability (Noack and Eckelmann 1994), and the shedding phase can be identi-
fied by θ = arctan

√
λ2/λ1a1/a2 (Oudheusden et al. 2005). Notably, figure 7.3a indicates a

larger spread of temporal coefficient data for the stationary case, indicative of larger varia-
tions in planar wake dynamics, while the data for the oscillating cylinder case at A∗ = 0.8
and λ∗ = 7.0 has a slightly skewed distribution, presumably associated with the asymmet-
ric wake dynamics for the observed 2P0 shedding regime (Morse and Williamson 2009).
Once the shedding phase is identified for the acquired data during the horizontal plane
PIV measurements, the corresponding phase averages of the velocity fields, pressure fields,
PIV-based sectional loads, and total loads measured by the force balance are computed by
binning the data into phase bins of ∆θ = 20◦.

To estimate the spanwise distribution of shedding phase from the vertical plane data
at a given time, the streamwise velocity data at each spanwise position is either correlated
with the corresponding line of data from each phase averaged streamwise velocity field, or
the streamwise data is projected onto the corresponding line of data from the first two x−y
plane POD modes (φ1(x, yv), φ2(x, yv)) according to ai(zk, t) =< u(x, yv, zk), φi(x, yv) >
/||φi(x, yv)||2 to recover the temporal coefficients at each spanwise position which can be
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Figure 7.4: RMS streamwise velocity contours in a transverse plane at ŷ = 9.5 for (a)
stationary cylinder, (b) oscillating cylinder A∗ = 0.45, λ∗ = 5.0, and (c) oscillating cylinder
A∗ = 0.8, λ∗ = 7.0.

used to estimate the phase according to figure 7.3. For each case, a low order representation
of the instantaneous flow field can be constructed according to uPOD(x, y, z, t) = ū(x, y, z)+∑
i ai(z, t)φi(x, y) and uPA(x, y, z, t) = uθ(x, y, z, θ(z, t)), and the shedding phase along the

span of the cylinder is used in conjunction with the phase-averaged sectional force data to
estimates the total forcing.

7.3 Results

7.3.1 Sectional Results

The main results of the analysis of the sectional PIV data acquired in the three horizontal
planes at z/D = 5, 11.9, and 17.7 are summarized in figures 7.5, 7.6 and 7.7 for the
stationary cylinder, oscillating cylinder in a 2S shedding regime, and oscillating cylinder
in a 2P0 shedding regime, respectively.

For the stationary cylinder, the total lift coefficient fluctuations are characteristically
lower than the simultaneously acquired PIV-based estimates at ẑ = 11.9, and exhibit
differences in phase with one another for the majority of the time sample. This result
is expected since the spanwise variation of the shedding phase, unaccounted for in the
sectional force estimates, acts to reduce the resultant force experienced by the cylinder
model. There are several instances where the sectional and total lift coefficient data show
high correspondence in phase and amplitude (e.g., 0 < t̂ < 1.5 and 5 < t̂ < 6 in figure
7.5a) indicating times when the phase of shedding happens to be highly correlated along
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Figure 7.5: Sectional results for the stationary cylinder. (a) Total lift coefficient force
balance data compared to PIV-based sectional lift coefficient data, (b) phase averages of
these data for each spanwise plane investigated, (c) instantaneous spanwise vorticity field
and (d) instantaneous PIV-based pressure field.

the span. The resulting phase averages of instantaneous force measurements and PIV-
based estimates based on the POD coefficient data in the sectional horizontal planes are
shown in figure 7.5. The sectional lift coefficient data indicate the sectional fluctuating lift
force increases as the measurement plane transverses downward in z.

For the oscillating case at A∗ = 0.45 and λ∗ = 5.0, the total and sectional lift coefficient
data are highly correlated in each horizontal plane and exhibit nearly matching amplitude
(figure 7.6a,b). This is indicative of the lock-in of shedding phase along the span of the
cylinder, typical for high amplitude vortex-induced vibrations (Bearman 1984). The flow
regime is denoted “2S” due to the shedding of two vortices per oscillation cycle (figures
7.6c,d), similar to the natural von Kármán wake for the stationary cylinder (figures 7.5c,d).
For the oscillating case at A∗ = 0.8 and λ∗ = 7.0, the total and sectional lift coefficient
data are again highly correlated in each horizontal plane and exhibit nearly matching
amplitude (figure 7.7a,b), though the minor deviations are more substantial than for the
“2S” shedding case. Notably, the phase averaged estimates of the sectional loads exhibit
variations in their peak location dependent on the spanwise position of the measurement
plane (figure 7.7b). This indicates possible spanwise variations of the wake dynamics,
on the average, though the correspondence of the phases of the sectional and total force
coefficient data indicates that the shedding remains largely locked-in along the span.
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Figure 7.6: Sectional results for the oscillating cylinder at A∗ = 0.45, λ∗ = 5.0. (a) Total
lift coefficient force balance data compared to PIV-based sectional lift coefficient data,
(b) phase averages of these data for each spanwise plane investigated, (c) instantaneous
spanwise vorticity field and (d) instantaneous PIV-based pressure field.

Figure 7.7: Sectional results for the oscillating cylinder at A∗ = 0.8, λ∗ = 7.0. (a) Total
lift coefficient force balance data compared to PIV-based sectional lift coefficient data,
(b) phase averages of these data for each spanwise plane investigated, (c) instantaneous
spanwise vorticity field and (d) instantaneous PIV-based pressure field.
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Figure 7.8: Stationary cylinder: reconstruction of instantaneous streamwise velocity
at ŷ = 0.5 using (a) phase-averaged method, (b) POD-based method, compared to (c)
measured streamwise velocity data. (d) Reconstructed pressure at ŷ = 0.5 using phase-
averaged method. PIV-based total force reconstruction with (e) phase-averaged method
and (f) POD-based method, compared to force balance data.

7.3.2 Three-Dimensional Results

The disagreement of the total force data with the sectional estimates for the stationary
cylinder highlights the need for a three-dimensional flow estimation procedure for full
characterization of the forcing function acting on the cylinder. Figures 7.8, 7.9, and 7.10,
summarise the results of the pseudo-instantaneous reconstructions for the stationary, 2S,
and 2P0 cases, respectively. The methods are evaluated for their ability to estimate the
instantaneous shedding phase variation along the span towards more accurate evaluation
of total lift coefficient data from the PIV-based estimates.

Figures 7.8a, 7.9a, 7.10a, plot the reconstructed streamwise velocity fields at ŷ = 0.5
by correlating the phase averaged velocity fields, obtained at the midspan of the cylinder
(ẑ = 11.9), to the instantaneous data, while figures 7.8b, 7.9b, and 7.10b plot the recon-
structed streamwise velocity field at the same plane by projecting the instantaneous data
onto the first 5 spatial POD modes to estimate the horizontal plane temporal coefficient
data. When compared to the instantaneous vertical plane velocity field from which the re-
constructions were derived (figures 7.8c, 7.9c, 7.10c), it can be observed that the low order
representation constructed by projecting onto the first 5 spatial POD modes reconstructs
the original field with a higher fidelity. When the shedding phase data (θ(z, t)) are esti-
mated from the three-dimensional reconstructions using either the phase-averaged (figure
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Figure 7.9: Oscillating cylinder at A∗ = 0.45, λ∗ = 5.0: reconstruction of instantaneous
streamwise velocity at ŷ = 0.5 using (a) phase-averaged method, (b) POD-based method,
compared to (c) measured streamwise velocity data. (d) Reconstructed pressure at ŷ =
0.5 using phase-averaged method. PIV-based total force reconstruction with (e) phase-
averaged method and (f) POD-based method, compared to force balance data.

7.8e) or POD-based (figure 7.8f) methods for the stationary cylinder case, a substantial
improvement in the alignment of both the phase and amplitude of the lift coefficient data
between the force balance and PIV-based measurements is achieved compared to the pre-
viously discussed sectional measurements (figure 7.5a). Based on the reconstruction of the
volumetric pressure field (figure 7.8d), the shedding of the vortex cores can be seen to
vary in phase considerably over the length of the cylinder, resulting in the earlier observed
changes in the phase of planar forcing along the span. However, in the sectional loading
estimates discussed previously, significant modulations of the sectional fluctuating lift may
occur on a cycle-to-cycle basis, indicating a more complex reconstruction may be required
to correctly capture the dynamics associated with this modulation effect of the amplitude
of the fluctuating lift at each spanwise location, instead of relying on a simple phase average
based on the primary instability.

For the 2S and 2P0 cases, the force reconstructions shows less agreement for both
the phase-average and POD-based methods, with the POD-based method deteriorating
substantially in the 2P0 case. This appears to be due to the violation of the spanwise
homogeneity of the data relied upon in order to apply the phase averaged fields or POD
spatial modes corresponding to ẑ = 11.9 at every spanwise position. Analysis of the
instantaneous fields for the 2S case (figures 7.9a-d) reveals that, although the shedding
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Figure 7.10: Oscillating cylinder at A∗ = 0.8, λ∗ = 7.0: reconstruction of instantaneous
streamwise velocity at ŷ = 0.5 using (a) phase-averaged method, (b) POD-based method,
compared to (c) measured streamwise velocity data. (d) Reconstructed pressure at ŷ =
0.5 using phase-averaged method. PIV-based total force reconstruction with (e) phase-
averaged method and (f) POD-based method, compared to force balance data.

remains locked in phase along the span, the vertical plane measurement gives drastically
different streamwise velocity signatures at different spanwise locations. This is due to
the expansion of the wake width with decreasing ẑ, such that the measurement plane
cuts into the vortex core at some locations, but remains in the accelerated flow region
outside the vortex core at other locations (i.e., ẑ > 14). This causes both methods to
erroneously detect a phase switching in the shedding, resulting in an under prediction of
the total lift coefficient amplitude and phase misalignment (figures 7.9e-f), compared to
the previously observed good sectional force agreement. Similar issues are prevalent in the
2P0 case, however, the wake width appears instead more narrow approaching the midspan.
The resulting PIV-based total force reconstruction based on matching to sectional phase
averaged fields maintains its phase relationship, however erroneous detection of phases
contributes to higher noise levels (figure 7.10e).

7.4 Conclusion

A POD-based flow reconstruction technique is compared to a phase-averaged reconstruc-
tion technique for estimating total forcing on a three-dimensional bluff body from planar
TR-PIV measurements for the case of a stationary, circular cylinder, and two oscillating
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cylinder case in 2S and 2P0 shedding regimes in uniform cross flows. For the stationary
cylinder case, the three-dimensional reconstruction techniques yield a substantial increase
in correspondence with reference force balance measurements for determining the total
instantaneous lift forcing acting on the cylinder, compared to corresponding PIV-based
sectional force estimates. However, for the oscillating cylinder cases, the opposite is true.
Since the phase of shedding is largely locked in along the span of the periodically oscillating
cylinders, the sectional estimates instead show high correspondence with the reference force
balance measurements, whereas the total force estimates based on the three-dimensional
reconstructions are contaminated by errors associated with violations of the assumption of
spanwise homogeneity of the flow statistics used to reconstruct the velocity fields. However,
it is expected that more complex reconstruction methodologies will remedy these issues,
such as linearly combining the POD modes and phase averaged fields from all three hori-
zontal planes measured in order to best match the mean and fluctuating statistics at each
spanwise position where the reconstruction and shedding phase is evaluated. In addition,
reduction of the raw instantaneous vertical-plane fields using a reduced order model before
use in reconstruction could yield some reduction in noise.
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Chapter 8

Conclusions

This thesis presented a series of manuscripts relating the determinants of fluid forcing on
immersed structural bluff bodies to aspects of the flow development. Contributions were
made to the state-of-the-art by improving and optimizing the experimental methodologies
to extract pressure and force data from spatio-temporally resolved velocimetry data, the
analysis of computation fluid dynamics results to relate the properties of the vorticity evo-
lution surrounding the structures to fluid forcing, and the application of the methodologies
in an experiment of forced vortex-induced vibrations.

A model was derived from linear uncertainty propagation to select optimal sampling
parameters for pressure from PIV measurements. Of the pressure integration techniques
compared (Poisson equation, spatial marching, omnidirectional, and eight-path), there
were minimal differences in error sensitively, though the eight-path technique consistently
produced higher errors. A mathematical framework was developed based on the governing
equations to analyse the error terms in the Poisson equation approach to pressure from PIV
measurements. It was found that a subset of the error terms could be resolved after lever-
aging the governing equations, resulting in a more accurate solution. However, pressure
gradient errors on the boundaries of the domain lack a method of estimation, and certain
terms in the pressure gradient divergence remain and must be estimated or neglected.

The momentum equation-based method for deriving structural loads from PIV mea-
surements is approached, and the dependency of sectional loading estimates derived from
planar measurements on an often neglected three-dimensional term is highlighted. In order
to avoid excessive errors due to flow three-dimensionality, a small field of view surrounding
the structure is recommended, where the flow is nominally two-dimensional. As a matter
of methodology, one should check the dependency of the forcing estimates on the field of
view size. If the loading estimates are insensitive to changes in field of view, then errors
due to three-dimensionality are likely mitigated.

The pressure and structural loading estimation methodologies developed herein were ap-
plied to an experiment of a cylinder undergoing forced vortex-induced vibration. Utilizing a
set of independent planar PIV measurements in orthogonal planes, a pseudo-instantaneous
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force reconstruction is possible. A set of horizontal plane measurements characterize the
flow development along the span of the body, while instantaneous vertical plane measure-
ments allow the identification of the shedding phase across the span of the body at every
instant in time. The pseudo-instantaneous force reconstruction shows good agreement with
the lift force signal derived from load cell measurements, while the drag force reconstruction
is systematically underestimated.
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Chapter 9

Recommendations

Uncertainty estimation for PIV-based pressure estimates. The pressure gradient
error correction framework developed in this thesis provides a methodology for increasing
the accuracy of PIV-based pressure estimates, despite the inability to satisfy the exact
formulation with typical instantaneous measurements. However, on a statistical basis, the
equations can be analyzed precisely with the use of modern uncertainty estimation algo-
rithms for velocity fields in PIV which yield the temporal and spatial distributions of the
velocity uncertainty, along with their local non-zero covariance due to the overlap of particle
images within interrogation windows. A robust and fast method for computing uncertainty
in PIV-based pressure mean and RMS estimations should be feasible. Instantaneous PIV-
based pressure uncertainty is subject to the same limitations as the correction framework,
however. As well, neither method can currently account for errors due to truncation error
effects arising from spatial or temporal under resolution of the flow scales.

Effect of three-dimensionality on reconstruction framework. Notably, for pla-
nar PIV measurements, the accuracy of PIV-based pressure estimates deteriorates rapidly
in regions of three-dimensional flow. However, within the reconstruction framework, re-
gions of three-dimensionality will register sharply as errors in the source terms of the
formulation through the propagation of non-zero velocity divergence and pressure gradient
curl. A systematic study of the use of the planar reconstruction configuration in three-
dimensional flows will characterize its performance in these flows. As well, the possibility
of reconstructing errors in the pressure gradient field induced by the presence of three-
dimensional flow can be explored. In particular, the specific form that three-dimensional
errors take εu,3D = (0, 0,−w), ε∇p,3D = (w∂u/∂z, w∂v/∂x, 0) has potential to be exploited.

Stereo three-dimensional reconstruction. The use of stereo PIV measurements in
conjunction with the reconstruction methods utilized in this thesis will allow for a reduced
order representation of the entire three-dimensional flow field. Use of the reconstructed
field in PIV-based pressure solvers will overcome the limitations of using stereo and planar
PIV data in three-dimensional flows. In addition, the reconstruction of all three veloc-
ity components opens up the possibility of utilizing the governing equations to inform a
physics-based reconstruction.
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Single degree of freedom VIV. The degree to which secondary harmonics contribute
to the response in free vibrations remains an open question, along with their appropriate
modelling. An analytic framework which incorporates the ability of the forcing function
and cylinder response to have two harmonics is necessary for characterization of the VIV
response across the entire operating range, particularly outside of lock-in.

Vortex Force in VIV. In this thesis, the generation and advection of the added
vorticity due to body acceleration in vortex-induced vibration is shown to be a significant
contributor to the amplification of the forcing function in the 2S regime. Furthermore,
the stability of this mechanism is shown to predict reasonable bounds for the transition
between flow regimes. Experimental analysis of transient PIV data during flow regime
changes can better characterize the physical mechanisms governing the transfer between
regimes and inform on enhanced large amplitude models for the forcing function in VIV.

Pressure-based vortex tracking. The solution of the pressure field through the
Poisson equation facilitates a simple decomposition of the flow velocity field into solenoidal
and rotational components. The rotational component contributes completely through the
source term of the Poisson equation. Hence, pressure minima associated with flow rotation
can easily be decomposed and identified for the purpose of vortex tracking. While the
commonly used Q-criterion seeks this through analysis of derivative quantities, the spatial
integration of the Poisson equation has significant benefits in the mitigation of spatial noise
and may be more robust for experimental data.
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Appendix A

Circulation Calculation

Measurements of the circulation of the primary and secondary vortices in the wakes of
stationary and oscillating cylinders support extended analysis of work presented in this
thesis. The definition of vortex circulation, is the area integral of the plane normal vorticity
inside a closer contour, Ω, defining a particular vortex (equation A.1).

Γ =
∫

Ω
(ω · n̂)dA (A.1)

The primary concern in computing vortex circulation, is the selection of the contour, Ω,
defining the boundaries of a vortex. In fact, there is no accepted objective definition of a
vortex (Hunt et al. 1988, Jeong and Hussain 1995, Haller 2005) despite improvements aimed
at reducing dependencies on user specified thresholds and coordinate systems (Haller 2005).
For the purposes of the current study, vortex identification is informed by the context of the
quantitative analysis it serves. The demand for circulation measurements of the primary
and secondary vortices in the wake is to deduce the vortex force acting on the cylinder, and
the vorticity transport in the forming wake. Inspection of equation A.2, defining the vortex
force in an infinite domain, reveals that the vortex force is dependent on the dynamics of
all vorticity present in the flow field (Saffman 1993, Wu et al. 2006).

Fv = −ρ 1
N − 1

d
dt

∫
V

(x× ω)dV (A.2)

This means vorticity present in highly sheared regions of the flow remains dynamically
significant. However, these sheared regions are typically omitted from the bounds of many
popular vortex detection methods, such as λ2 and Q criterion metrics (Hunt et al. 1988,
Jeong and Hussain 1995). For this reason, a vorticity thresholding method is utilized for
defining the bounds of a vortex, in order to capture the entire extent of each wake vortex.
The goal is to associate all vorticity in the wake with a particular vortex of a certain
orientation, circulation, and size.

The thresholding method defines vortex boundaries according to a contour of constant
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vorticity, α‖ωmax‖, practically chosen as a particular fraction of the global maximum
vorticity. The threshold value (α) must be chosen carefully since the extent of the vortex
boundaries is strongly dependent on the particular value. Therefore, any computed vortex
statistics such as circulation will depend on the choice. For a single vortex in an unbounded
flow, the threshold value could be lowered to approach zero and encompass the entirety
of the vorticity associated with the vortex; however, in real flows, where multiple vortices
and vorticity generating surfaces are present, a practical limit is reached when the vortex
under consideration begins to coalesce with same signed vortices or boundary layers.

In order to account for the vorticity missed by the finite threshold, a linear fit of the
circulation measurements with varying vorticity threshold is used to estimate the true
circulation. The circulation predicted by the linear fits intersection with the y-axis (α = 0)
forms the measurement of the circulation. This methodology has practical benefits for use
with experimental PIV-data, which yields phase averaged fields with noise, and with more
limited field of views where only a limited view of the vortex core is available. It also
eliminates the subjectivity involved in selecting a threshold value. The presupposing of a
linear relationship with vorticity threshold is equivalent to the assumption that vorticity
has a Gaussian distribution in space, centred at the point of maximum vorticity in the core
of the vortex. The Gaussian distribution of vorticity arises in analytical solutions of the
Navier-Stokes equations, such as the Lamb-Oseen vortex (Batchelor 2000).

ωz(r, t) = Γ
πr2

c (t)
exp

(
− r2

r2
c (t)

)
(A.3)

where rc(t) =
√

(4νt+ rc(0)2) is the core radius of the vortex, which grows in time through
viscous diffusion.

Figure A.1: Circulation measurement of a Lamb-Oseen vortex by vorticity thresholding:
(a) vortex boundary for α = 0.01 and (b) variation of circulation measurement with α
compared to exact analytic solution.
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Figure A.1 shows the results of measuring circulation using the vorticity thresholding
method on the Lamb-Oseen vortex. A clear linear trend is observed with the thresh-
old value, and an extrapolation of the linear trend intercepts the y-axis at the analytic
value for the circulation. The uncertainty in the measurement can therefore be computed
from the uncertainty associated with the extrapolation of the linear fit to the y-axis. If
circulation measurements Γn are computed at n different threshold values αn, then the
best estimate (Rencher and Schaalje 2008) for the true circulation at α = 0, assuming a
Gaussian distribution of vorticity, is:

Γ = Γn −
cov(αn,Γn)

σ2
α

αn (A.4)

and the uncertainty in the true circulation estimate, based on the goodness of the linear
fit is:

SE(Γ) =

√√√√ 1
n− 2

(
σ2

Γ
σ2
α

− cov(αn,Γn)2

σ4
α

)
(A.5)

A.1 Circulation calculation of primary vortices in the
cylinder wake

In order to compute the circulation of the primary von Kármán vortices in the wakes of
cylindrical bodies, a phase average of the vorticity fields is employed. For a stationary
cylinder, the phase average is obtained from the the first two temporal coefficients of
the POD (equation A.6), while for oscillating bodies, through a Hilbert transform of the
position signal y(t) (equation A.7), with a phase bin size of ∆θ = 10°.

θ(t) = arctan
(√

λ1√
λ2

a2

a1

)
(A.6)

H (y)(t) = 1
π

∫ ∞
∞

(
y(τ)
t− τ

)
dτ

θ(t) = arctan
(

H (y)(t)
y(t)

)
(A.7)

A range of threshold values is then used to define the vortex boundary, typically α =
0.02−0.25, with the vorticity threshold defined as α‖ωmax‖, where ‖ωmax‖ is the maximum
of the spanwise vorticity in the wake region (x̂ > 0.5) over the set of phase averaged fields.
The domain for searching for vortices was restricted to the wake region at x̂ > 0.5, and
vortex boundaries which intersected the boundaries of the domain were deemed invalid
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Figure A.2: Measurements of spanwise circulation for (a) ReD = 100, (b) ReD = 220,
(c) ReD = 300, (d) ReD = 800, and (e) ReD = 1575. (left) Phase averaged vorticity fields
showing the vortex boundary, and (right) variation of vortex circulation with vorticity
threshold α‖ω‖.
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Figure A.3: Comparison of circulation measurements using extrapolated values and a
threshold value of α = 0.03. Error bars computed according to equation A.5, and the
difference of the two measurements, respectively.

vortices in order to filter out vortices detected which were still attached to the separated
shear layers. A circulation measurement of the largest vortex detected at each phase
angle and at each threshold value is tabulated. The phase angle which yields the largest
circulation measurements is then identified, which corresponds to a phase angle shortly
following the shedding of the vortex and its detachment from the separated shear layer.
The trend of measured circulation versus threshold value is analyzed, and data points are
omitted corresponding to coalesced vortices which cause a sharp increase in the measured
circulation with decreased α. For the DNS results at ReD = 100 − 1575, the contour
defining the separated vortex at the lowest permissible α is shown in figure A.2. When the
measured circulation of the vortex is plotted against the vorticity threshold value (figure
A.2, right), a robust linear relationship is observed, validating the proposed extrapolation
technique. The estimate of the true circulation is then the y-intercept value of the blue
lines defining the linear fit of the data in figure A.2, and the uncertainty is defined by
equation A.5. The differences between the extrapolated circulation estimates compared to
those obtained for a vorticity threshold of α = 0.03 are shown in figure A.3 along with the
concomitant uncertainty estimates.

The same procedure is used for the measurement of phase-averaged circulation in exper-
imental PIV data (figure A.4), where the field of view limits the extent of the vortex that
can be measured, limiting the lowest value of α that can be utilized. For the 2P shedding
regime case (figures A.4c,d), the close proximity of the two same-signed vortices during
formation limits the permissible threshold values significantly, leading to a larger extrapo-
lation region in the methodology, and correspondingly, an amplification of the uncertainty
in the measurement. Despite the increase in complexity of the wake vortices for the os-
cillating cases, and the addition of experimental error, linear dependence of circulation on
vorticity threshold values can be found for all the cases investigated.
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Figure A.4: Measurements of spanwise circulation for (a) stationary cylinder, (b) 2S, (c)
2P - upper vortex, and (d) 2P - lower vortex. (left) Phase averaged vorticity fields showing
the vortex boundary, and (right) variation of vortex circulation with vorticity threshold
α‖ω‖.
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Figure A.5: Schematic of the iterative, three-dimensional vortex detection code. The
code converges on the individual vortex orientation (ωji ), centroid (xji ), diameter (dj), and
circulation (Γj).

A.2 Circulation calculation of secondary vortices in
the cylinder wake

The quantitative analysis of vortex statistics in three dimensions is explored in McClure
et al. (2019). Vortex detection in three-dimensions is significantly more challenging due
to the need to resolve vortex orientation along with the bounds of the vortices in three-
dimensional space. No established tool exists for quantifying vortex orientation; hence, to
facilitate the accurate measurement of statistics pertaining to the primary and secondary
vortices, an iterative, three-dimensional, vortex identification code is developed. The code
operates as follows: for a three-dimensional realization of a velocity field at a certain time,
u(x, t), an initial streamwise normal plane is specified at x̂ = 2.5 and vortices intersecting
the plane are detected, where the jth vortex is defined by its boundary, Ωj. The code
then computes the three-dimensional orientation (ω̄j), centroid (x̄j), diameter (dj), and
circulation (Γj) for the j vortices intersecting the plane, as defined in equations A.8-A.11.

ω̄ =
∫

ΩωdA
‖
∫

ΩωdA‖ (A.8)

x̄ =
∫

Ω x(ω · n̂)dA∫
Ω(ω · n̂)dA (A.9)

d =
√

4
π

∫
Ω

dA (A.10)

Γ =
∫

Ω
(ω · n̂)dA (A.11)

Specifically, the code proceeds iteratively for each vortex by realigning the sample plane
normal to the orientation according to the schematic shown in figure A.5. In the first
iteration (k = 1), a binary image is obtained by thresholding the input slice plane for
Q > 0.01, and continuous regions of the thresholded criterion are identified (e.g., yellow and
purple regions of high streamwise vorticity in figure A.5). The regions which intersect the
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domain boundaries are discarded, thereby avoiding calculating statistics based on partially
resolved vortices. Each identified region defines an independent vortex Ωj and the first
iteration estimate for the vortex orientation (equation A.8) and centroid (equation A.9)
are calculated. In general, the vortex orientation will not be aligned with the original
sample plane, rendering any statistics calculated inaccurate (Huang et al. 2006), hence, in
the second iteration (k = 2), each vortex region is re-sampled from a plane normal to the
average of the previous iterations vortex orientation and slice plane normal vector (n̂(k+1) =
n̂(k)/2 + ω̄(k)/2), that intersects the previous iteration vortex centroid (x̄(k)). From the re-
sampled planes, continuous regions of the thresholded criterion field are once again detected
and the one whose centroid is closest to that of the previous iteration is considered. The
vortex orientation and centroid position are then updated based on equations A.8 and A.9.
Since the updated centroid may now lay off the original input plane, the average between
the previous iteration centroid and the centroid calculated on the new sample plane is
projected onto the original slice plane to carry forward instead. The vortex detection code
is considered converged when the centroid location residual (x̄(k+1)−x̄(k)) becomes less than
the grid resolution. Once converged, the definition of the vortex boundaries is recomputed
using a range of vorticity thresholds, α = {0.01, 0.025, 0.05, 0.1, 0.25}, specified according
to a contour of constant vorticity α||ωmax||, facilitating the more accurate computation of
vortex circulation according to equation A.4 with uncertainty specified by equation A.5.

Figure A.6 shows the results of the three-dimensional secondary vortex detection code
for the DNS results for the range of ReD investigated. However, before computing the
final measurements of the secondary vortices, it is required to omit certain data obtained
from the algorithm to avoid erroneous computation of statistics. First, duplicate vortex
detections are omitted by filtering the data such that only vortices with unique centroid
positions and time stamps are included. Second, vortex detections corresponding to the
larger strength, spanwise oriented primary vortices must be omitted. To do so, the dis-
tributions of the vortex circulations with the solid angle their orientation makes with the
spanwise z-axis is considered. Using k-mean clustering (Lloyd 1982) with the L1 distance
metric for the solid angle data normalized such that 90◦ = 1 and circulation data normal-
ized by the maximum, the distributions are split into two, with the one with the higher
mean, corresponding to the higher strength spanwise vortices, discarded for computation
of any secondary vortex statistics. Figure A.7 shows the distributions of vortex circulation
against the solid angle of the orientation of the detected vortex makes with the spanwise
axis, for each Re.

167



Figure A.6: Three-dimensional vortex tracking code detecting vortices crossing through
x̂ = 2.5 at (a) ReD = 220, (b) ReD = 300, (c) ReD = 800, and (d) ReD = 1575.
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Figure A.7: (left) Distribution of the circulation of secondary vortices and the solid angle
of their orientation with the spanwise axis, and (right) measurement and extrapolation of
average secondary vortex circulation based on varying α for (a) ReD = 220, (b) ReD = 300,
(c) ReD = 800, and (d) ReD = 1575.
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Appendix B

Small Amplitude Force Model

B.1 Small amplitude coupled model

To investigate the coupling between the fluid-induced forcing and the cylinder response in
VIV, the case of an infinitely small amplitude response at a single harmonic is considered.
For infinitely small vibrations, the stability of several secondary mechanisms that affect the
wake vortex dynamics and the forcing function will not be changed. Specifically, oblique
vortex shedding modes will persist and not be forced to lock-in at a constant phase relation
with the response frequency, as can be the case at higher amplitude VIV above the critical
A? > 0.05 (Koopmann 1967, Bearman 1984). It is assumed that the primary shedding
instability governing the symmetry and formation position of the primary vortices will be
unaffected by the perturbations introduced into the flow field by small response oscillations.

B.1.1 Vortex force model

In the stationary cylinder wake, the fluctuating lift force is due entirely to the vortex
force. In order to relate the magnitude of the forcing function to a function of wake vortex
dynamics, an inviscid model is employed. Inviscid models of the stationary cylinder wake
have been developed since the work of Kármán (1911), primarily using an infinite array of
opposing signed vortices in order to evaluate the stability of the wake vortex structure and
estimate mean drag (Saffman and Schatzman 1982). Recently, Stremler et al. (2011) also
modeled 2P and 2C vortex wakes typically found in high amplitude VIV to investigate the
spatio-temporally developing wake dynamics and their stability.

In order to predict the magnitude of fluctuating lift forces, an inviscid model of the
wake is developed in the formation region where the wake vortices, due to their proximity
to the cylinder surface and the vortex formation process, have not approached the wake
equilibrium predicted by classical inviscid vortex street models (Kármán 1911, Chen 1972).
Previous models (Chen 1972) consider the fluctuating lift induced by an infinite vortex
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Figure B.1: Equilibrium inviscid model of the von Kármán wake.

street with equilibrium streamwise spacing (lw) and transverse spacing (hw) (figure B.1).
However, since the induced forcing is due primarily to the vortex forming closest to the
cylinder surface (Chen 1972), deviations from the equilibrium at formation before the
vortices diffuse and increase their spacing in the wake (Kármán 1911) are necessary for
model accuracy.

Since wake equilibrium arguments cannot be employed to compute the position of the
forming vortices, the proposed model will instead focus on the magnitude of the surface
pressure fluctuations predicted by the inviscid model. This is justified by the experimental
observation that the sectional fluctuating lift force can be approximated accurately by the
characteristics of the fluctuating surface pressures at the shoulders of the cylinder (θ = 90°)
(Ribeiro 1992, Norberg 2003), and the flow outside the boundary layers is primarily inviscid
preceding separation at approximately θ & 80°, depending on ReD. The exact formulation
of the RMS fluctuating sectional lift coefficient (CL′), is based on the integration of the
magnitude of all the measured RMS surface pressure coefficients (Cp′) weighted by their
respective correlations with one another (Rpp(φ1, φ2)) (Norberg 2003):

CL′ = 1
2

(∫ 2π

0

∫ 2π

0
Rpp(φ1, φ2)Cp′(φ1)Cp′(φ2) sinφ1 sinφ2dφ1dφ2

)1/2
(B.1)

The sectional lift coefficient (CL′) is then related to the total lift coefficient by integration
of the spanwise coherence of the sectional lift (RLL(s)) over the length of the cylinder
(Kacker et al. 1974):

γL =
C ′L,T
LC ′L

= 1
L

(
2
∫ L

0
(L− s)RLL(s)ds

)1/2

(B.2)

Notably, the spanwise coherence of the sectional lift is directly related to the spanwise
coherence of the surface pressures at a given angular position (Rpp(s)) and the spanwise
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coherence of the wake vortex shedding (Ruu(s)) (Sarpkaya 1979).
If the approximation is made that the surface pressures measured on the respective

top and bottom surfaces are completely out-of-phase (Norberg 2003), then the correlation
between surface pressures on the top and bottom surface can be lumped into a single
correlation (RBS). This allows the sectional lift coefficient to be approximated according
to equation B.3 (Ribeiro 1992, Norberg 2003). Assuming the fluctuating surface pressures
have constant RMS as that measured at θ = ±90° (Cp′(90°)), and RBS measured simply
by the correlation of surface pressures on the top and bottom shoulders of the cylinder
RBS = Rpp(90°,−90°), leads to further simplification of equation B.3.

CL′ ≈ 1
2(1−RBS)

∫ π

0
Cp′(φ) sinφdφ

≈ (1−Rpp(90°,−90°))Cp′(90°) (B.3)

Practically, the assumption that the RMS fluctuating surface pressures are constant on
the surface of the cylinder is poor. However, due to the geometry of the cylinder, the
lift force contribution will be dominated by the fluctuating pressure acting at θ = ±90°,
and measurements of RMS fluctuating surface pressure are nearly constant for θ > 90°
(Norberg 2003). A weighted scheme for the integration of equation B.3 can be proposed
instead, shown in equation B.4 where Cp′(θ) grows linearly from 0° < θ ≤ 90° and remains
constant for θ > 90°.

CL′ ≈ 1
2(1−RBS)

(∫ π/2

0

2φ
π
Cp′(φ) sinφdφ+

∫ π

π/2
Cp′(φ) sinφdφ

)
≈ 0.818(1−Rpp(90°,−90°))Cp′(90°) (B.4)

This results in a reduction of the predicted fluctuating lift force of about 18%. Figure
B.2a plots measurements of the RMS pressure coefficient at θ = 90°, and figure B.2b
plots measurements of the correlation coefficient between pressures at θ = ±90° for a
range of 500 < ReD < 3.28 × 105 by (Norberg 2003). The magnitude of the surface
pressure fluctuations and their correlation between sides of the cylinder are shown to vary
considerably with ReD. Specifically, the pressure fluctuations on opposing sides of the
cylinder are highly correlated in the range 1.0 × 104 < ReD < 3.0 × 105, but are nearly
uncorrelated in a region surrounding ReD ≈ 1.5 × 103 and following the drag crisis at
ReD > 3.0× 105. Similarly, the RMS pressure coefficient is at a minimum of Cp′ ≈ 0.05 in
a region surrounding ReD ≈ 1.5 × 103, but increases up to 700% in the higher ReD range
1.0× 104 < ReD < 3.0× 105.

In order to validate the model for the sectional RMS lift coefficient in equation B.4,
the sectional RMS lift coefficient measurements of (Norberg 2003) are plotted in figure
B.3 against the model proposed in Norberg (2003) of CL′ ≈ 1.5Cp′(90°) and the model
derived presently in equation B.4, which incorporates the changes in correlation of the
fluctuating pressures that were shown to be significant in figure B.2b. A comparative
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Figure B.2: Experimental measurements of (Norberg 2003) of (a) the RMS pressure
coefficient at θ = 90° and (b) correlation coefficient of fluctuating pressures at θ = ±90°.

Figure B.3: Sectional RMS lift coefficient predicted by 1.5Cp′(90°), compared to equation
B.4 and experimental data of (Norberg 2003).

analysis of the results in figure B.3 indicates that the model in equation B.4 predicts the
fluctuating lift coefficient data with high fidelity over a wide range of ReD compared to the
simplified model, as it properly accounts for changes in surface pressure correlations with
ReD, particularly in the range 0.75 × 103 < ReD < 1.5 × 103 where the fluctuating lift is
attenuated strongly due to both the weaker anti-correlation of the surface pressures and
the reduction of the total magnitude of the pressure fluctuations at the shoulders of the
cylinder. The model yields a small under prediction of the sectional RMS lift coefficient
for higher ReD. Presumably, this is due to the use of only one RMS pressure coefficient at
θ = 90° in the model. As ReD increases, the peak RMS pressure coefficient occurs closer to
θ = 80° and its magnitude becomes more pronounced (McClure and Yarusevych 2016a),
causing the model to systematically under predict the sectional RMS lift coefficient by a
small margin. Nevertheless, the model predicts sectional RMS lift within 10% over the
large range of ReD, giving high confidence for its general application.
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Figure B.4: Inviscid model of induced effects of vortex formation at θ = ±90°.

With the dependency of the fluctuating lift on the magnitude and correlation of surface
pressures laid out, an inviscid model of the vortex formation is now used to gain an esti-
mate for the magnitude of the surface pressure fluctuations in terms of quantifiable vortex
properties near formation (figure B.4). Instead of modelling an infinite equilibrium wake,
the primary focus of the model will be on a single vortex reaching its maximum circulation
at the shedding time. The shedding vortex is positioned at a distance downstream of the
cylinder axis determined by the vortex formation length (lf ) and a transverse position in-
line with the side of the cylinder (ŷ = 0.5). Secondary effects of previously formed vortices
are considered by an infinite vortex street positioned a further distance (lw/2) downstream
of the shedding vortex, representing the equilibrium streamwise vortex spacing, and at con-
stant transverse locations. In reality, the previously formed vortices will be continuously
evolving towards a downstream wake equilibrium, which involves the gradual expansion
of the transverse spacing of the vortices. However, we will soon neglect induced effects of
previously formed vortices, and they are currently only included for illustrative purposes
to estimate the magnitude of the second order effect of including them in the model.

The amplitude of the pressure fluctuation at θ = 90° is computed through the dif-
ference of the mean pressure at separation and the pressure at separation when a vortex
reaches its maximum circulation at formation. The mean pressure at separation is de-
termined by the edge velocity of the boundary layer at separation (Us) and the steady
Bernoulli equation (ps = p0 + 1/2ρ(U2

0 − U2
s )). The induced velocity of the formed vortex

then leads to a perturbation away from the mean pressure through Bernoulli’s equation
Cp′(90°) = 1

2
√

2(U2
I,max − U2

I,min)/U2
0 (figure B.4). Justification of omission of the unsteady

term in Bernoulli’s equation can be obtained form the following argument. Suppose that
the unsteady velocity fluctuations upstream of flow separation extending along a streamline
to x = −∞ are induced precisely in phase with the fluctuations at separation, reaching their
maximum amplitude at the time of vortex formation considered in the model in figure B.4.
This assumption is valid due to the global nature of the primary shedding instability and
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the incompressible flow assumption. Hence, along a streamline from a point s1 at x = −∞
to point s2 at separation, the velocity fluctuations can be described by u′ = β(s) sin(ωvt),
where β(s) is a weighted scalar function that is UI at s2 and decays to zero as s approaches
s1. Then the pressure induced at the separation point can be described by equation B.5.

pI = p0 −
∫ s2

s1
ρ
∂

∂t
(u · ŝ)ds+ 1

2ρ(U2
0 − (U2

s + U2
I sin2(ωvt))) (B.5)

pI = p0 −
∫ s2

s1

∂

∂t
(β(s) sin(ωvt))ds+ 1

2ρ(U2
0 − (U2

s + U2
I sin2(ωvt))) (B.6)

pI = p0 +
∫ s2

s1
β(s)ωv cos(ωvt)ds+ 1

2ρ(U2
0 − (U2

s + U2
I sin2(ωvt))) (B.7)

and it can be deduced from equation B.7 that at the times when the induced velocity
at separation reaches its maximum (e.g., t = nπ/2ωv: n ∈ Z), the contribution of the
unsteady integral term is exactly zero.

Assuming the contribution to the induced velocity near the cylinder surface is domi-
nated by the currently forming vortex, the induced velocity at the top surface (figure B.4)
is:

U2
I,max =

(
Us −

ΓD
2π((2lf )2 +D2) −

ΓD
2π((4lf )2 +D2) − . . .

)2

+
(

Γ
2πlf

− Γ(2lf )
2π((2lf )2 +D2) + Γ

2π(3lf )
− . . .

)2

(B.8)

and the induced velocity at the bottom surface is:

U2
I,min =

(
Us −

ΓD
2π(l2f +D2) −

ΓD
2π((3lf )2 +D2) −

ΓD
2π((5lf )2 +D2) + . . .

)2

+
(

Γlf
2π(l2f +D2) −

Γ
2π(2lf )

+ Γ(3lf )
2π((3lf )2 +D2) + . . .

)2

(B.9)

It can be shown that the for UI,max, truncation to the leading term results in omission
of terms whose partial sums equate to a maximum of approximately 10% of the magni-
tude of the leading term, for characteristics values of vortex formation length and vor-
tex wake spacing. For example, in the first term in equation B.8, the secondary terms
have magnitudes [−0.1,−0.02,−0.0082,−0.0044,−0.0028, . . .], and in the second term in
equation B.8, the sum of the alternating pairs beyond the leading term have magnitudes
[−0.0318,−0.0092,−0.0042,−0.0024,−0.0015, . . .] when expressed as fractions of the lead-
ing term and l̂f = 1 and l̂w = 4. For UI,min, leading terms in both squared term in equation
B.9 may be significant, as they are both induced by the formed vortex, and secondary terms
are neglected, leading to the following truncated model for the induced velocities.
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U2
I,max =

(
Us −

ΓD
2π(l2f +D2)

)2

+ Γ2

4π2l2f
(B.10)

U2
I,min =

(
Us −

ΓD
2π(l2f +D2)

)2

+
(

Γlf
2π(l2f +D2) −

Γ
2π(2lf )

)2

(B.11)

expanding terms and substituting in the typical non-dimensional relations for vortex cir-
culation (Γ̂ = Γ/U0D) and formation length (l̂f = lf/D) gives the following model for
fluctuating pressure RMS at θ = 90° based on the peak-to-peak pressures obtained from
plugging in the minimum and maximum induced velocities into the unsteady Bernoulli
equation:

Cp′(90°) = 1
2
√

2
(U2

I,max − U2
I,min)/U2

0

= 3Γ̂2

16π2l̂2f
+ Γ̂
π(l̂2f + 1)

− Γ̂
π(4l̂2f + 1)

(B.12)

and the RMS sectional lift coefficient is:

C ′L = 0.818(1−Rpp(90°,−90°))
 3Γ̂2

16π2l̂2f
+ Γ̂
π(l̂2f + 1)

− Γ̂
π(4l̂2f + 1)

 (B.13)

This reproduces some characteristics of models for fluctuating lift acting on a bluff
body with a Kármán vortex street, derived using an infinite ideal inviscid vortex street
(equation B.14, Chen 1972), such as a dependency on Γ̂2 and an approximate dependency
on the square inverse of a streamwise length scale.

C ′L =
 Γ̂
l̂w

2

l̂w tanh
π ĥ

l̂w

 (B.14)

However, the consideration of the near wake formation characteristics in the current model,
as opposed to the far wake, leads to additional dependencies on the correlation of the
surface pressure fluctuations, and an additional linear dependency on vortex circulation.
The explicit modelling of the near wake effects presumably is vital to the accuracy of the
model as the vortex positions and strengths are far from their far wake equilibrium values
(Kármán 1911).
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