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Abstract

The brain contains a large number of neurons, each of which typically has thousands
of synaptic connections. Its functionality, whether function or dysfunction, depends on
the emergent collective dynamics arising from the coordination of these neurons. Rather
than focusing on large-scale realistic simulations of individual neurons and their synaptic
coupling to understand these macroscopic behaviors, we emphasize the development of
mathematically manageable models in terms of macroscopic observable variables. This
approach allows us to gain insight into the underlying mechanisms of collective dynamics
from a dynamical systems perspective. It is the central idea of this thesis.

We analytically reduce large-scale neural networks to low-dimensional mean-field mod-
els that account for spike frequency adaptation, time delay between neuron communi-
cation, and short-term synaptic plasticity. These mean-field descriptions offer a precise
correspondence between the microscopic dynamics of individual neurons and the macro-
scopic dynamics of the neural network, valid in the limit of infinitely many neurons in
the network. Bifurcation analysis of the mean-field systems is capable of predicting net-
work transitions between asynchronous and synchronous states, or different patterns of
synchronization, such as slow-fast nested collective oscillations. We discuss how these dy-
namics are closely related to normal brain functions and neurological disorders. We also
investigate the influence on these dynamic transitions induced by current heterogeneity,
adaptation intensity, and delayed coupling. By integrating a kinetic model of synapses
into the neural network, we describe calcium-dependent short-term synaptic plasticity in
a relatively simple mathematical form. Through our mean-field modeling approach, we
explore the impact of synaptic dynamics on collective behaviors, particularly the effect of
muscarinic activation at inhibitory hippocampal synapses. Together, this thesis provides a
tractable and reliable tool for model-based inference of neurological mechanisms from the
perspective of theoretical neuroscience.
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Chapter 1

Introduction

There are approximately 100 billion neurons in a mature human brain [166]. These neu-
rons are hierarchically organized into regions, layers and nuclei, each part being relatively
distinct and specialized for specific functions [64]. Each small part typically contains thou-
sands of neurons, each with thousands of connections, known as synapses, organized in a
network-like fashion [189]. Large-scale analyses of the brain come at many levels of scale,
ranging from genetic regulatory and protein interaction networks inside of neurons to the
highest level relating to the entire or a substantial part of the brain [170]; see Fig. 1.1. The
networks at each level perform fundamentally different functions.

A longstanding challenge in computational neuroscience is the development of math-
ematically tractable models with experimentally measurable parameters, allowing for in-
sights into the neural dynamics associated with both normal functions, such as working
memory or spatial navigation, and neurological disorders like epilepsy or Parkinson’s dis-
ease. This problem can be approached from various perspectives. For example, one can
construct a neural network with meticulous attention to detail and utilize modern comput-
ing resources to simulate the full network’s behaviors. This is the approach taken by the
Blue Brain Project [143], which is dedicated to simulating the detailed structure and be-
havior of the brain at the cellular and synaptic levels. Additionally, various software tools,
such as NEURON [109], GENESIS [30] and BRIAN [100], have been developed to render
numerical model analysis. They support the setup and simulation of multi-compartment
models of single neurons, including realistic dendritic structures and subcellular processes.
Large-scale realistic simulations based on these computational platforms can offer a wealth
of valuable information, especially for experiments that may be infeasible or ethically
impractical with actual neural networks. Unfortunately, this approach is predominantly
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Figure 1.1: Network hierarchy in the neural system. The large scale analyses discussed in
the thesis focus on the levels of shaded areas. Adapted from [170].

restricted to simulations. Beyond posing daunting computational issues, it offers a limited
analytical understanding of the network function and the underlying mechanisms.

The functionality, whether function or dysfunction, of neural networks depends on the
collective dynamics of the interacting individual neurons [28]. For example, the firing of
action potentials is a fundamental aspect of neural communication. The exact timing
of individual action potentials is not always crucial to comprehending the function of
the network. Instead, the population firing rate – averaging across the entire network
– captures the fundamental mechanism through which neurons communicate and process
information in the brain. This insight has motivated the development of mean-field models,
which seek to describe the coarse-grained activity of populations of neurons by reducing
the degree of freedom from many to a few macroscopic variables, e.g., the population firing
rate. Mean-field approximations have proven to be valuable analytical tools in terms of
low-dimensional dynamical systems and have demonstrated powerful capability in various
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fields of neuroscience, including the description of wave propagation across the cortex,
interpretation of neuroimaging data, and insights into patterns of functional connectivity
[110, 62, 59, 39]. Furthermore, such mathematically tractable models have become an
integral part of software tools, for example, DCM [154], TVB [187] and NNMT [130],
which aim to provide simulation platforms for model-based inference of neurophysiological
mechanisms across different brain scales.

In general, mean-field models fall into two main categories: neural mass and neural
field models, as shown in Fig. 1.1. Neural field models, typically characterized by partial
differential equations (PDEs), prescribe how a state of a neural population evolves over
both space and time by taking into account the fact that neural dynamics play out on a
spatially extended cortical sheet. These models allow us to accommodate lateral interac-
tions in terms of wave equations when trying to understand brain organization and function
across multiple regions. To gain a complete understanding of this subject, we recommend
consulting the works of Bressloff [31] and Coombes [60]. By comparison, neural mass
models, formulated primarily with ordinary differential equations (ODEs), characterize
the average neural activity over time only by assuming that all neurons are approximately
located at the same point and ignoring the spread and propagation of neural activity in
continuous space. A comprehensive review of this field can be found in [64, 28, 219].

In this thesis, we concentrate on the temporal dynamics of neural networks with local
connectivity, with particular emphasis on the intermediate two levels (shaded boxes) as
depicted in Fig. 1.1. The thesis is based on three projects. First, we employ mean-field
theory to analytically derive a neural mass model for neural networks with spike frequency
adaptation (SFA). SFA refers to the phenomenon where the firing rate of a neuron de-
creases over time in response to an input current. It is a fundamental neural process and
significantly contributes to the synchronous behaviors of neurons. Furthermore, we exam-
ine the influence of time delays, a key characteristic of the neural system arising from the
finite conduction velocity in neuron communication. Time delays are crucial in shaping
various collective behaviors of neural networks, including rhythms and their synchroniza-
tion [43, 84]. Our investigation includes the time delay effect, along with the impact of
heterogeneous current parameter and SFA intensity, through bifurcation analysis of the de-
rived mean-field system. Finally, we develop a mean-field model for neural networks that
incorporates calcium-dependent synaptic short-term plasticity (STP) and study the effect
of muscarinic acetylcholine receptors (mAChRs) activation at inhibitory synapses in the
CA1 region of the hippocampus. STP refers to transient changes in synapse transmission
efficacy, induced by presynaptic activity, which subsequently influences the spike frequency
of the postsynaptic neuron [225]. Some researchers [20, 95] view STP, especially synaptic
depression, as a type of SFA mechanism, different from that induced by the adaptation
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current, which is represented as a slow variable in the Izhikevich neuron [115] used in our
first project. Moreover, short-term synaptic dynamics implies noninstantaneous commu-
nication between neurons, which we account for in the second project by introducing time
delays in the coupling of neurons.

The thesis is structured into six chapters, each outlined and summarized as follows.

Chapter 1. Introduction

A general introduction to this thesis.

Chapter 2. Biological and Mathematical Prerequisites

We introduce fundamental concepts and different approaches to modeling neurons and
large networks. We also present typical microscopic and macroscopic behaviors, interpret-
ing them from a dynamical systems perspective.

Chapter 3. Mean-Field Modeling for Neural Networks with Spike Frequency
Adaptation

In this chapter, we employ mean-field theory to analytically derive a neural mass model
that approximates the collective dynamics of a network of Izhikevich neurons. Each neuron
is characterized by a two-dimensional system, consisting of a canonical quadratic integrate-
and-fire (QIF) equation and an equation that implements SFA. We extend the approach
to a network of two populations of neurons and discuss the qualitative and quantitative
accuracy and efficacy of our mean-field approximations by examining all assumptions that
are imposed during the derivation. This collaborative research, conducted with Prof. Sue
Ann Campbell, has been published in [53]. My contribution included proposing the mean-
field approach, conducting all the numerical simulations and bifurcation analysis, and
writing the first draft of the paper.

Chapter 4. Collective Dynamics of Izhikevich Neural Networks with Synap-
tic Delay

Chapter 4 extends the study from Chapter 3 to a network of Izhikevich neurons with
global delayed coupling. We thoroughly investigate the impact of the heterogeneity of the
quenched input current, the adaptation intensity, and the synaptic delay on the collective
dynamics of the neural network. Furthermore, we study the Ott-Antonsen (OA)-based
mean-field approximation in the limit of extremely weak heterogeneity. The collaborative
research in this chapter was conducted with Prof. Sue Ann Campbell and has been accepted
by SIAM Journal on Applied Dynamical Systems [54]. My contribution was derivation of
the mean-field system, numerical bifurcation analysis, and drafting the manuscript.

Chapter 5. Mean-Field Modeling for Spiking Neural Networks with Short-
Term Synaptic Plasticity
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In this chapter, we improve the realism of neural networks by incorporating STP in
synaptic connections between QIF neurons. Synaptic dynamics is characterized by mea-
surable calcium-dependent processes that occur in synapses. We develop a discrete micro-
scopic synaptic model and construct a neural network with kinetic synapses. Expanding
on the approach in Chapter 3, we derive the corresponding mean-field system, in addition
to exploring the muscarine effect at hippocampal inhibitory synapses through the devel-
oped mean-field model. This collaborative effort includes Prof. Sue Ann Campbell and
Prof. Emily Stone (University of Montana). Parameter values are based on experimental
data from Prof. Stone’s work [195]. My contribution included developing the synaptic
model, constructing the neural network with STP, deriving the mean-field system, and
performing the numerical analysis.

Chapter 6. Conclusions and Outlook

We summarize the main findings of this thesis and discuss possible future work and the
open problems associated with the presented research.
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Chapter 2

Biological and Mathematical
Prerequisites

This chapter highlights fundamental concepts and common phenomena in neuroscience,
illustrating how to understand them from a dynamical systems perspective, which is the
central theme throughout the thesis.

2.1 Biological Background

A neuron is the brain’s primary computational unit, with cells coupled together to perform
functions in the form of neural networks. A typical neuron receives signals from more
than 10,000 other neurons via electrochemical contacts on its dendrites, called synapses
[129]. As an example, Fig. 2.1 illustrates the connection between two neurons in (a) and a
magnified view of synaptic transmission in (b). Neurons communicate by sending action
potentials, or spikes, which are abrupt and transient voltage changes across the membrane
that propagate via long biological cables called axons. When a spike train reaches the axon
terminal of the sending cell, the presynaptic neuron, it triggers the opening of voltage-
gated calcium channels, allowing an inflow of calcium ions (Ca2+). This influx causes a
brief surge in calcium concentration, which triggers the release of neurotransmitters into
the synaptic cleft. These neurotransmitters diffuse across the cleft, binding to receptors on
the receiving cell, the postsynaptic neuron, and either opening or closing ion channels in its
membrane. This leads to a localized change in the membrane potential of the postsynaptic
neuron. Depending on the ions involved, this change can make the inside of the cell more
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positive, causing an excitatory postsynaptic current (PSC), or more negative, causing an
inhibitory PSC. The cumulative effects of all synapses on the postsynaptic neuron sum in
the soma. This summation may or may not lead to the generation of action potentials in the
postsynaptic neuron, depending on the relative magnitude and direction of the currents.

dendrites

soma axon

presynaptic
(sending) neuron

synapse

postsynaptic
(receiving) neuron

action
potentials receptor/

ion channel

ion

neurotransmitter

synaptic cleft

vesicle

presynaptic  cell

action 
potentials

postsynaptic  cell

(a) (b)

Figure 2.1: Communication between two neurons via a synapse (blow up in (b)) by sending
action potentials.

2.2 Dynamical Systems Perspective

Two neurons with similar physiological features and located in the same brain region
may exhibit different responses to the same input current due to their dynamical prop-
erties. Conversely, neurons with different physiological properties may undergo identical
dynamical changes, leading to similar neurocomputational properties [117]. Therefore,
both physiological and dynamic characteristics are crucial in influencing neural activities.
The concept that neurons and neural networks coupled by them are regarded as dynamical
systems originated from the seminal work of Rinzel and Ermentrout [182]. They showed
that the differences in neural behavior arise from different bifurcation mechanisms of ex-
citability. Today, the dynamical systems approach has become the core of computational
neuroscience research. Bifurcation theory, in particular, is a powerful tool for studying the
system around dynamic transitions. These transitions are associated with bifurcations,
which take place when a minor adjustment to the parameter values (referred to as bifur-
cation parameters) of a system results in an abrupt ’qualitative’ or topological shift in its
behavior [125]. In the following sections, we will explain the specific concepts and phe-
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nomena in neuroscience from a dynamical systems point of view, focusing on those most
relevant to the results in subsequent chapters.

2.3 Neuron Models

Neurons are the basic units of complex neural networks, and various models have been
proposed to characterize them, varying in their level of abstraction, biological detail, and
mathematical complexity [116]. The most abstract models are those commonly used in ar-
tificial neural networks, where actual spiking behaviors of neurons are ignored. Instead, the
average rate of spiking is encoded as an instantaneous input-output relationship, typically
governed by the Heaviside step function or any sigmoidal function [139, 146]. The most
biologically detailed models are conductance-based models, exemplified by the Hodgkin-
Huxley model and its modifications. They are based on the underlying biophysics of action
potential generation and describe the dynamics of changes in conductance along the neuron
membrane. While these models exhibit most of the major neural computational properties
with biophysically meaningful and measurable parameters [116], their mathematical com-
plexity, involving multiple differential equations and tens of parameters, makes studying
large-scale network dynamics challenging both analytically and numerically. Integrate-
and-fire models provide a significant reduction in the dimensionality of conductance-based
models. Although not based on biophysical principles, these models retain central dynam-
ical properties that can be fitted to real neurons. They are phenomenological models. For
this thesis, we aim to strike a balance between the extreme abstraction of artificial neural
network models and the high biological detail of the Hodgkin-Huxley model. We seek a
model for a single neuron that is computationally simple enough to construct the neural
network, yet capable of exhibiting the rich spiking behaviors observed in real biological
neurons.

In this section, we start with the conductance-based models, and then introduce two
classical integrate-and-fire models: the quadratic integrate-and-fire (QIF) neuron and the
Izhikevich neuron. We offer a conceptual understanding and a dynamical system analysis
for each model. This discussion will lay the foundation for studying networks composed of
these models in subsequent chapters.

2.3.1 Conductance-Based Neuron

According to the Nobel Prize-winning work of Hodgkin and Huxley [111], the variation
of the membrane potential of a neuron, V , is modeled as an RC circuit. The currents in
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this model consist of INa resulting from sodium ions (Na+) flowing across the membrane,
IK from potassium ions (K+), the leak current IL from other ions, and the applied input
current Iapp. It is given by

CV ′ = −INa − IK − IL + Iapp

= −ḡNam
3h(V − ENa)− ḡKn

4(V − EK)− ḡL(V − EL) + Iapp

m′ = αm(V )(1−m)− βm(V )m

n′ = αn(V )(1− n)− βn(V )n

h′ = αh(V )(1− h)− βh(V )h

(2.1)

where ′ = d/dt denotes the time derivative, C is the membrane capacitance, ḡ is the
maximal value of the conductance (the reciprocal of the resistance), and E is the reversal
potential at which a particular ion has no net flow across the membrane. The gating
variables m, h and n represent the proportion of ion channels that are in any particular
state with the rate constants α and β dependent on V .

Since the original Hodgkin-Huxley model, different currents have been described using
a conductance-based formalism. At the same time, simplifications have been suggested
by assuming instantaneous dynamics of certain ion channels or by aggregating them into
lumped variables through methods such as the quasi-steady state approximation or per-
turbation theory [114]. Instances of such models include the Morris-Lecar model [155], the
Wang-Buzsáki model [211], and the Chay-Cook model [51], among others. As an example,
we present a modified Chay-Cook model [22], given by

CmV
′ = −ICa − ICa2 − IK − IL

= ḡCam∞(V − ECa)− ḡCa2
1

1 + exp(2A(V, c))
(V − ECa) . . .

− ḡKn(V − EK)− ḡLn(V − EL)

n′ = λ [n∞(V )− n] /τn(V )

c′ = β [−α(ICa + ICa2)− kCac] .

(2.2)

This model is composed of a potassium current IK, a leak current IL, a fast calcium current
ICa, and a slow calcium current ICa2, both carried by calcium ions (Ca2+). The gating
variable for potassium and leak currents is represented by n, while the gating variable for
the fast calcium current is assumed to be in steady state m∞ and the one for the slow
calcium current depends on V and the intracellular free calcium concentration c.

Fig. 2.2 shows typical spiking behaviors of a single neuron. A small stimulus, such as
Iapp = 12.2 in (a), results in small excursions from equilibrium point (EP); a larger stimulus,
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Figure 2.2: Typical microscopic behaviors of a single neuron. (a): one spike, (b): tonic
firing, (c): bursting. The applied current is shown in orange. Curves in (a) and (b)
are simulations of the Hudgkin-Huxley model (2.1) with parameter values ENa = 117.5,
EK = −15.8, EL = 7.9, ḡNa = 120, ḡK = 36 and ḡL = 0.3. For further details, see the
paper [111]. Curves in (c) depict simulations of the modified Chay-Cook model (2.2) with
parameter values λ = 0.95, β = 0.002 and kCa = 0.027. For further details, see the paper
[22].

such as Iapp = 12.3 in (a) and Iapp = 8.3 in (b), triggers a spike response characterized by
a rapid upward spike followed by a rapid fall. These up-and-down cycles are called action
potentials. To characterize and compare neural spiking behaviors, one can examine the
geometry of the phase portrait through phase plot analysis, a valuable technique within the
field of dynamical systems, where we can gain insights into a system without requiring a
complete understanding of all the details that govern the system evolution. For the spiking
behaviors in Fig. 2.2(a) and the dashed line in (b), the neuron undergoes a transient process
and finally converges to the same state, which is indicated by an EP in the phase portrait
(V, n) depicted in Fig. 2.2(a). If we inject a different current, the neuron exhibits tonic
firing activity, as in Fig. 2.2(b) for Iapp = 8.4. From the dynamical system point of view,
the state of such a neuron has a stable limit cycle, also known as stable periodic orbit
(PO). Furthermore, the alternation between the resting and spiking modes results in the
bursting behavior, as shown in Fig. 2.2(c). This neural activity is biologically induced by
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processes with different time scales. Specifically, in the modified Chay-Cook model (2.2),
it arises from the interaction between the fast variables V and n and the slow variable c.

Fig. 2.2 also shows that small changes in the parameter values can push the system
past a critical point and induce a qualitative change in the phase portrait of the system.
Next, we will perform a bifurcation analysis for the modified Chay-Cook model (2.2) to
illustrate the underlying mechanism of the bursting generation in Fig. 2.2(c).

(a) (b)

Figure 2.3: Bursting analysis for the modified Chay-Cook neuron (2.2) with kCa = 0.022.
Panel (b) is a magnified view of panel (a). Stable/unstable PO is shown in green/blue,
stable/unstable EP in red/black, and the nullcline dc/dt = 0 in pink.

Figure 2.3 illustrates the bifurcation diagram and its magnification for the rapid subsys-
tem (V, n), with c being constant and representing the c nullcline (dc/dt = 0) for the slow
subsystem. It is important to observe that dc/dt > 0 above the nullcline and dc/dt < 0
below it. The burst event is explained below. In the scenario where c has a small value,
the system has an unstable EP (depicted in black) alongside a stable PO. As c gradually
increases due to dc/dt > 0, the neuron fires action potentials until it reaches a critical point
known as the saddle-node bifurcation on invariant circle (SNIC). Subsequently, the system
transitions to the stable EP (illustrated in red) and remains in a state of rest without
any firing activity. However, currently, the rate of change of c is negative (dc/dt < 0).
Consequently, the system remains in a static state until c decreases to the subcritical Hopf
bifurcation point (the point where the blue curve intersects the red curve), at which point
it switches to the stable PO and resumes firing action potentials. This cyclic process leads
to the bursting behavior in Fig. 2.2(c).
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2.3.2 Quadratic Integrate-and-Fire Neuron

Various models have been suggested to mimic the spiking patterns observed in actual
neurons, such as the FitzHugh–Nagumo neuron [93], the Adaptive Exponential (AdEx)
neuron [32, 156], and more. Of these models, the QIF stands out as the most basic and
has established itself as a fundamental model in computational neuroscience.

The QIF neuron is defined as

C
dV

dT
= k1(V − VT )(V − VR) + Isum(t), if V ≥ Vpeak, then V← Vreset (2.3)

where C is the capacitance of the cell, k1 is the scaling factor, VR is the resting membrane
potential and typically negative, VT is the threshold potential, and Isum(t) is a lumped
representation of all current inputs to the cell. When the voltage reaches a cut-off value,
denoted as the peak of a spike Vpeak, it is reset to the value Vreset. Via the transformations

v =
V

|VR|
+

1

2

(
1− VT

|VR|

)
, t =

k1|VR|
C

T, I =
Isum
k1V 2

R

− (VT + |VR|)2

4k1V 2
R

(2.4)

we can simplify the expression as

dv

dt
= v2 + I(t), if v ≥ vpeak, then v ← vreset. (2.5)

The QIF model involves an intrinsic spike generation mechanism through a nonlinear one-
dimensional process and a resetting rule. Following quadratic dynamics, the membrane
potential v increases rapidly until it reaches a preset peak value vpeak. A spike is generated
and the neuron is reset immediately at vreset; see Fig. 2.4(a) and (d). In the limit vpeak =
−vreset → ∞, the QIF neuron is equivalent to the theta neuron [85, 104] defined in the
domain θ ∈ [−π, π) via the transform v = tan(θ/2),

θ′ = 1− cos θ + (1 + cos θ)I, (2.6)

where the neuron fires an action potential whenever θ crosses π; see Fig. 2.4(c). The theta
neuron is a phase oscillator characterized by a single phase variable that effectively captures
the periodic process. This equivalence allows neural networks composed of QIF neurons
to be studied using tools for the Kuramoto model, which is a well-established framework
for understanding synchronization phenomena [163].

The QIF system (2.5) is the topological normal form for the saddle-node bifurcation.
We show its qualitative dynamics in Fig. 2.4(a) and (b) by varying the current parameter
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Figure 2.4: Dynamics of a single QIF neuron. (a)-(b): Relationship between dv/dt and
v for negative and positive input current I, respectively. (a): QIF dynamics for I < 0
are governed by a stable EP (filled circle), corresponding to the resting potential, and an
unstable EP (empty circle), corresponding to the threshold potential. (b): For I > 0, no
EP exists and the QIF neuron exhibits tonic firing behavior; see (d). (c): Relationship
between the QIF neuron and the theta neuron. We take I = −1 and vpeak = −vreset →∞
as an example. (d): Tonic firing behavior with vpeak = 20 and vreset = −5. (e): Relationship
between the current I and the firing rate r from Eq. (2.8) with vpeak = −vreset = 20.

I, which we consider to be constant for now, that is, I(t) = I, ∀t. From Eq. (2.5), we find
that there are two equilibria for I < 0, one stable node at v = −

√
−I, denoted by the filled

circle, and an unstable saddle at v =
√
−I, denoted by the empty circle. By increasing the

value of the input parameter I, the two equilibria approach and annihilate each other at the
saddle-node bifurcation point I = 0. Thus, no equilibria exist anymore when I > 0. From
the perspective of the theta neuron (see Fig. 2.4(c)), such a bifurcation is called SNIC. In the
case of I < 0, as illustrated in Fig. 2.4(a), the neuron is resting at the stable EP (the filled
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circle). Small perturbations via transient input result in small excursions from the EP. If
this perturbation is strong enough such that v >

√
−I, the threshold denoted by the empty

circle, it will drive the system out of the attraction basin of the stable EP. In this scenario,
v can escape to infinity in finite time due to the quadratic dynamics. This corresponds
to the firing of an action potential, more precisely, to its upstroke. When v reaches the
preset value vpeak, the state of the system is reset immediately by the resetting rule, which
corresponds to the downstroke of the action potential. Thus, a spike is generated before
the trajectory is finally attracted to the stable resting state. In the case of I > 0, as shown
in Fig. 2.4(b), there is no stable equilibrium and dv/dt ≥ I. v increases and reaches vpeak.
The resetting rule brings v back to vreset, and then v increases again. Thus, the QIF neuron
exhibits periodic spiking (also called tonic firing) behavior; see Fig. 2.4(d).

When comparing the configuration of a single action potential depicted in Fig. 2.4(d)
produced by the QIF neuron with that shown in Fig. 2.2(a) generated by the Hodgkin-
Huxley neuron, it is evident that the downstroke of the action potential of the QIF neuron
is simplified as a straight line due to the resetting rule. This simplification arises because,
in many cases, especially those involving the collective behaviors of large-scale networks
of spiking neurons, the precise shape of the action potential holds less significance than
the subthreshold dynamics leading to this action potential. In other words, the shape of
the downstroke of the action potential is less critical than that of the upstroke [117]. This
concept of simplification underpins the essence of many integrate-and-fire neuron models.

In addition, we can obtain the solution to Eq. (2.5) with initial condition v(t0),

v(t) =
√
I tan

(
t
√
I + arctan

v(t0)√
I

)
. (2.7)

The firing rate of the spiking activity, that is, the number of spikes in unit time or the
inverse of the mean interspike interval (ISI), can be found by choosing v(t0) = vreset and
solving Eq. (2.7) for the time tISI it takes until v(tISI) = vpeak, given by

r =
1

tISI
=

√
I

arctan
vpeak√

I
− arctan vreset√

I

. (2.8)

In the limit vpeak = −vreset = ∞, we have r =
√
I/π. As shown in Fig. 2.4(e), the QIF

neuron produces spiking with an arbitrarily small frequency and is therefore said to exhibit
Class I excitability [88].

The QIF neuron is simple and canonical in the sense that any Class I excitable system
close enough to the onset of oscillations can be transformed into this form [85, 82, 128].
Therefore, the QIF neuron is appropriate to be used for the study of dynamics of large-scale
networks of neurons exhibiting Class I excitability.
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2.3.3 Izhikevich Neuron

The QIF neuron alone does not suffice to replicate all spiking activities, particularly the
bursting behavior, which commonly arises from the interplay between fast and slow dy-
namics. Recall that the Hodgkin-Huxley type model usually has two variables that evolve
on a fast time scale (m and V ) and two that evolve on a slow time scale (n and h). Some
two-dimensional spiking neuron models have been proposed to retain the central dynamical
properties, such as the FitzHugh–Nagumo neuron [93], the Adaptive Exponential (AdEx)
neuron [32, 156], the Izhikevich neuron [115], etc. The Izhikevich model is a straightfor-
ward extension of the QIF neuron by including a slower recovery variable. Derived from
bifurcation theory and normal form reduction, this model can reproduce a much larger
class of neurodynamics, including spike frequency adaptation (SFA). Although not based
on biophysical principles, experimental data can be used to fit the parameters so that the
model accurately replicates the neural spiking behaviors of biological neurons.

The Izhikevich neuron is governed by

CV ′ = k1(V − VR)(V − VT )−W + Isum, if V ≥ Vpeak, then

τWW ′ = β(V − VR)−W, V ← Vreset, W ← W +Wjump,
(2.9)

where V is the membrane potential, evolving on a fast time scale, W is a phenomenolog-
ical recovery variable, representing the sum of all slow currents that modulate the spike
generation mechanism, τW is the recovery time constant, β is the scaling factor, and Wjump

is the after-spike reset of W , representing the effect of the total amount of net currents
activated during the spike. The remaining parameters are of the same significance as those
mentioned in Eq. (2.3). Similarly, via the transformations

v = 1 +
V

|VR|
, w =

W

k1V 2
R

, t =
k1|VR|
C

T,

we can obtain a compact form,

v′ = v(v − α)− w + I, if v ≥ vpeak, then

w′ = a(bv − w) v ← vreset, w ← w + wjump.
(2.10)

with

α = 1 +
VT

|VR|
, a =

C

τWk1|VR|
, b =

β

k1|VR|
, I =

Isum
k1V 2

R

.

Compared with the QIF neuron, the great difference of the Izhikevich neuron is the intro-
duction of a slow variable w, which allows the system to exhibit much richer neurocom-
putional properties, including the most fundamental one: bursting.
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Figure 2.5: Dynamics of a single Izhikevich neuron 50v′ = 1.5(v + 60)(v + 40) − w + I,
w′ = 0.03(v + 60 − w), if v ≥ 25, then v → −40, w → w + 150. (a): Phase portrait of
the model and nullclines for I = 550 (solid line) and I = 0 (dashed line), respectively. (b):
Nullclines for I = 550 and rates of change with time. (c): Time evolutions. Adapted from
Fig. 8.24 of [117].

There are many types of bursting initiated by different bifurcation mechanisms [117].
As an example, the phase portrait in Fig. 2.5 illustrates the mechanism of bursting gener-
ation in the Izhikevich neuron. In general, every bursting pattern involves two time-scale
oscillations: a fast spiking within the burst and a slow oscillation between the bursts mod-
ulated by the slow current; see Fig. 2.5(c). From dv/dt = 0 and dw/dt = 0, we can
obtain the nullclines for v and w, respectively; see the orange lines in Fig. 2.5(a) and (b).
The v nullcline takes the form of a quadratic parabola that shifts upward as I increases,
while the w nullcline is a linear function that remains unaffected by changes in I. The
arrows in the lines indicate the temporal changes of the variables. When the system state
lies within the parabolic v nullcline, the variable v will experience a decrease over time as
dv/dt < 0; conversely, if the state is located outside the v nullcline, v will increase over time
as dv/dt > 0. Similarly, when the system remains above the w nullcline, w will decrease
over time, whereas if it stays below the w nullcline, w will increase over time. It should be
noted that w undergoes significantly less movement than v due to the substantial dispari-
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ties in their time constants. When I = 0 (the dashed v nullcline in Fig. 2.5(a)), the system
has one stable EP (denoted by the filled square) and one saddle-type EP (denoted by the
empty square), resulting from intersection of the two nullclines. Similarly to the analysis
of QIF as shown in Fig. 2.4, the Izhikevich neuron rests at the stable EP or generates a
single spike depending on the strength of the perturbation. A constant input current I > 0
shifts the v nullcline upward (the solid line in Fig. 2.5(a)), but leaves the w nullcline fixed.
The trajectory (black lines) starting from the resting quickly moves rightward to fire a
spike. The after-spike reset point (the empty circle marked “1” in Fig. 2.5(a) and (c)) is
outside the v nullcline and up the w nullcline. So, with increasing v, another spike is fired
immediately, and so on, until the upward strength of w moves the after-spike reset point
inside the v nullcline (the empty circle marked “5”). After that, the trajectory makes a
brief excursion to the left and down. The slow part of the solution comes from where the
trajectory is close to the v nullcline. When it exits the parabola nullcline, the trajectory
moves rightward again, initiating another series of spikes.

The Izhikevich neuron is an excellent model to be used in the study of large-scale
network dynamics since it combines the capability of reproducing variety of neurocompu-
tational properties, tractability and efficiency of the numerical and theoretical implementa-
tion. More important, the QIF-version of the fast subsystem in the Izhikevich model allows
us to extend the Ott-Antonsen (OA) theory, a well-known mean-field reduction approach,
to a more complicated situation. In subsequent chapters, we will take the Izhikevich model
as the individual neuron to investigate collective behaviors of large-scale neural networks
through the mean-field approximation.

2.4 Synapse Models

Neurons communicate with each other through specialized points of connection known as
synapses, which can be classified into two types: chemical and electrical. Chemical synapses
are more prevalent and complicated, transmitting signals using chemical messengers. Other
synapses are electrical and ions flow directly between cells. In this section, we will focus
on modeling chemical synapses.

Similarly to modeling neurons, there are also two strategies for modeling chemical
synapses for different purposes and applications. One is kinetic modeling, which pre-
dicts system behavior based on knowledge of its components’ properties. However, overly
detailed biological representations can make this approach challenging for simulating large-
scale neural networks. The other is phenomenological modeling, which describes the em-
pirical relationship of phenomena based on experimental observations and mathematical
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reduction theory. While not as accurate as kinetic modeling, it is computationally friendly
for studying large networks. Sometimes, these two approaches are involved in one frame-
work to model different system components.

2.4.1 Kinetic Models

As illustrated in Fig. 2.1(b), the firing of the presynaptic neuron sends a train of action
potentials to its axon terminal, causing the release of neurotransmitters into the synaptic
cleft. The neurotransmitters then diffuse and bind to receptors on the postsynaptic cell,
triggering the opening or closing of ion channels, and finally resulting in a change in the
voltage of the postsynaptic neuron’s membrane.

The simplest kinetic model for synapses, proposed by Destexhe et al. [66], focused
on modeling the temporal dynamics of ion channels associated with the concentration of
neurotransmitters [T ] in the synaptic cleft. The chemical reaction takes the form

C + T
α

β
O

where C and O represent the closed and open states of the ion channel, respectively. Denote
s the fraction of ion channels that are in the open state. The resulting model is given by

s′ = α[T ](1− s)− βs, (2.11)

where α and β are the channel opening and closing rate. Then, the PSC is modeled as

Isyn = ḡsyns(Vpost − Er), (2.12)

where Vpost is the voltage of the postsynaptic cell, ḡsyn is the maximal conductance and Er is
the reversal potential. These models are valid for synapses involving the neurotransmitters
AMPA and GABAA and slight modifications are necessary to account for other types
of receptor and neurotransmitter [67]. Regarding the models for [T ], a simple function
associated with the presynaptic voltage vpre was suggested in [66], given by

[T ] =
Tmax

1 + exp(−(vpre − vp)/Kp)
, (2.13)

where Tmax, vp and Kp are parameters. In addition, a simpler model was proposed in
[65, 67], given by

[T ] =

{
Tmax tk < t < tk + t̄

0 tk + t̄ ≤ t < tk+1.
(2.14)
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It is a step-shaped pulse with width t̄. Pulses start at specific spike times tk of action
potentials from the presynaptic cell. In this case, the gating variable in Eq. (2.11) can be
solved analytically, given by

s(t) =

{
s∞ + (s(tk)− s∞)e−(t−tk)/τs , tk ≤ t < tk + t̄,

s(tk + t̄)e−β(t−tk−t̄), tk + t̄ ≤ t < tk+1,

with

s∞ =
αTmax

αTmax + β
τs =

1

αTmax + β
. (2.15)

Through induction and algebraic manipulations, we can conclude that when 1 ≤ s(0) ≤ s∞,
the inequality 0 ≤ s(t) ≤ 1 holds for all t. This makes sense, as s represents the proportion
of open ion channels. Based on experimental observations, these two formulations for [T ],
Eq. (2.13) and (2.14), produce a similar impact on the postsynaptic neuron [67]. As an
example, Fig. 2.6(a) illustrates the temporal evolution of s in Eq. (2.11) generated using
the pulse model for [T ] (2.14). The top one shows the effect of a single spike at tk = 1,
while the bottom one shows the cumulative effect of action potentials spiking at tk = 1,
1.5, 2, and 2.5, respectively. It is evident that s remains within the range [0, 1] for all t.

2.4.2 Phenomenological Models

Phenomenological models, first introduced by Rall [177], were proposed to approximate
the change in the postsynaptic conductance s(t) due to a spike-train stimulus from the
presynaptic cell. In this case, s is defined as a convolution of the spiking activity of the
presynaptic cell with a postsynaptic response kernel E(t), given by

s(t) =
∑
k

∫ t

−∞
E(t− t′)δ(t′ − t(k))dt′ =

∑
k

E(t− t(k)), (2.16)

where δ(·) is the Dirac delta function and t(k) is the time of the kth action potential of the
presynaptic cell.

Different forms of the function E(t) were chosen in the literature [88]. Typical examples
include the single exponential synapse,

E(t) = sjump exp(−t/τs), (2.17)

where τs is the time constant, the double exponential synapse,

E(t) =
1

τr1τd

(
exp(−t/τr1)− exp(−t/τd)

)
, (2.18)
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Figure 2.6: Time evolution of the gating variable s generated via Column (a): the kinetic
synapse model (2.11) and (2.14) with t̄ = 0.1 ms, α = 5000 M−1ms−1, β = 0.18 ms−1

and Tmax = 2.84 mM for the GABAA synapse [67]. Column (b): the single exponential
synapse (2.16) and (2.17) with τs = 1 and sjump = 1. Column (c): the alpha synapse (2.16)
and (2.19) with α = 1. The first row depicts one-spike effect occurring at tk = 1, and the
second row depicts the accumulation effect of a spike train occurring at tk = 1, 1.5, 2 and
2.5.

where τr1 is the rise time and τd is the decay time, and the alpha synapse

E(t) = α2t exp(−αt), (2.19)

where 1/α is related to both the rise and decay times. Substituting Eq. (2.17) into (2.16)
and differentiating it yield a differential equation

τss
′ = −s+ τssjump

∑
k

δ(t− t(k)). (2.20)

Similarly, the double exponential function and the alpha function will yield a system of
two first-order ODEs [88].

The motivation for these phenomenological models arises from the exponential-like
pulses observed experimentally, as shown in the first row of Fig. 2.6 for one spike. The
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simple form is particularly useful for the construction and simulation of large networks
of synaptic-coupled neurons. Note that the constraint s ∈ [0, 1] should be included when
applying these phenomenological models, since there is a chance that s may exceed 1 if the
spikes are close enough to each other, as shown in the second row of Fig. 2.6(b) and (c).
Here, panel (b) illustrates the single exponential synapse, while panel (c) shows the alpha
synapse.

2.4.3 Synapse with Short-Term Plasticity

More accurate synapse models can be obtained by considering short-term plasticity (STP).
STP refers to dynamic changes in the strength or efficacy of synaptic transmission due to
the firing of presynaptic cells. This process is typically associated with the dynamic proper-
ties of neurotransmitter release and subsequent recovery. Synaptic depression occurs when
the postsynaptic response decreases with repetitive presynaptic activity, while synaptic
facilitation increases synaptic efficacy.

Since the 1950s, there have been increasing efforts to develop mathematical models for
STP [134, 108]. A simple phenomenological model, proposed by Tsodyks and Markram
[205], has been widely accepted and used in many studies, e.g., [149, 171, 199]. This model
is described as

τdX
′ = 1−X − τdX

−U+s, (2.21)

τfU
′ = U0 − U + τfU0(1− U−)s, (2.22)

where X ∈ [0, 1] represents the proportion of available presynaptic resources recovered
from the refractory state, U ∈ [0, 1] represents the fraction of these available resources
utilized to generate the postsynaptic current, τd and τf are the depression and facilitation
time constants, respectively, and U0 is the baseline utilization. Here, the superscript “− ”
denotes a quantity just before the presynaptic neuron spikes (left limit), and “+” denotes
a quantity just after a spike occurs (right limit). Having the STP dynamics, we can rewrite
the PSC, Eq. (2.12), by adding a modulation factor X−U+,

Isyn = X−U+ḡsyns(Vpost − Er) (2.23)

Note that only the values at left- and right-limit spike times matter for the PSC. The idea
behind the Tsodyks-Markram (TM) model is that when the presynaptic neuron emits a
spike, neurotransmitters are released, leading to a decrease in X; simultaneously, calcium
accumulates at the presynaptic axon terminals, increasing the probability of neurotrans-
mitter release at the next spike emission and thus enhancing the fraction U of utilized
resources; see Fig. 2.1(b).
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Like other phenomenological models, the TM model, despite its mathematical simplic-
ity, includes parameters and variables that are not experimentally measurable or physi-
ologically well-defined. In chapter 5, we will introduce a kinetic STP model [132, 195]
which incorporates descriptions of the calcium dynamics involved in the neurotransmitter
release process. This kinetic model is simple enough to allow us to develop a mean-field
model, which we will use to investigate the synaptic dynamics within the context of large
neural networks. In addition, STP usually occurs on a time scale of milliseconds to seconds
[144, 225] and results in a time delay between the firing of the presynaptic cell and the
response in the postsynaptic cell. Maex and De Schutter [141] proposed that the specific
nature of the delay is insignificant; rather, the crucial factor is the temporal gap estab-
lished between neurons. Hence, in Chapter 4, we will explicitly incorporate a delay term
in neural connections to simulate delayed synaptic transmission and investigate its impact
on the collective dynamics of Izhikevich neural networks using mean-field models.

2.5 Neural Networks

2.5.1 Two Coupled Neurons

In this section, we will examine the firing patterns of a pair of coupled neurons described
by the conductance-based Wang and Buzśaki model [211], connected by a GABAA synapse
represented by the kinetic model (2.11) and (2.13). The specific parameter settings can be
found in [67]. Let neuron 1 be the presynaptic neuron and neuron 2 be the postsynaptic
neuron. Then the system is governed by

C1V
′
1 = −Iion,1 + I1,

C2V
′
2 = −Iion,2 + I2 − Isyn,

(2.24)

where I1 and I2 are the applied currents; Iion,1 and Iion,2 are composed of the leaky current
and the Hodgkin–Huxley type currents of Na+ and K+ with the same parameter values;
the coupling is

Isyn = ḡsyns(V2 − Er)

s′ = α
Tmax

1 + exp(−(V1 − Vp)/Kp)
(1− s)− βs.

(2.25)

These equations are supplemented by equations for the gating variables of the ionic currents
for each neuron, similar to those found in Eq. (2.1). Fig. 2.7 illustrates the temporal
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Figure 2.7: Two neurons coupled with a GABAA synapse. The neuron is modeled as the
conductance-based Wang Buzśaki model [211]. The synapse is modeled as a kinetic model
(2.11) and (2.13). Parameter values: I1 = 0.3 and (a): I2 = 0.28, (b): I2 = 0.29, (c):
I2 = 0.31, and (d): I2 = 0.32. See other parameter values in [67]. Neuron 1/2: black/red.

evolution of the membrane potentials of two neurons. It can be observed that for I2 =
0.28 in Fig. 2.7(a), after a brief transient period, the two neurons become phase locked
(synchronized), with neuron 2 firing once for every eight spikes of neuron 1. For I2 = 0.29
in Fig. 2.7(b), the two neurons remain phase locked, but with neuron 2 firing once for
every three spikes of neuron 1. For I2 = 0.31 in Fig. 2.7(c), the two neurons are phase
locked, with neuron 2 firing once for every two spikes of neuron 1, resembling the behavior
in I2 = 0.3 (not shown) but with a slightly different amplitude for neuron 2. At I2 = 0.32
in Fig. 2.7(d), the two neurons are not synchronized.
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2.5.2 Network Models

Brain functions are carried out through neural networks that typically comprise thousands
of neurons. Although conductance-based neuron models include biophysical details, sim-
plified integrate-and-fire models are better suited for studying the collective dynamics of
large-scale neural networks.

For the ith postsynaptic neuron in the network, its integrate-and-fire form is generally
described as

v′i = f(vi) + Ii − Isyn,i. (2.26)

Its PSC, Isyn,i, is the cumulative outcome of contributions from all the coupled presynaptic
neurons j, given by

Isyn,i = (vi − er)ḡisi = (vi − er)
N∑
j=1

ḡijsij, (2.27)

where ḡij is the maximal synaptic conductance between the postsynaptic neuron i and the
presynaptic neuron j. Taking ḡij = gsyn/N yields

Isyn,i = (vi − er)
gsyn
N

N∑
j=1

sij = (vi − er)gsynsi = (vi − er)gsyns, (2.28)

where ḡi = gsyn is the maximal synaptic conductance of the neuron i and we assume

it is homogeneous across the network [158]. si = 1/N
∑N

j=1 sij is the network-average
synaptic activation. For all-to-all connectivity, that is, the neuron i is coupled with all N
neurons in the network, including itself, we have si = s for all i since every postsynaptic
neuron receives the same sum of inputs from all presynaptic neurons. For sparsely coupled
networks with a distributed connection or distributed coupling strength, we can set ḡij = ḡi
with probability p ≪ 1 in Eq. (2.27). For further details, refer to [89, 50, 127]. In this
thesis, we focus on the all-to-all connection scenario. As an example, the Izhikevich neural
network is governed by

v′i(t) = vi(vi − α)− wi + Ii − (vi − er)gsyns(t),

w′
i(t) = a(bvi − wi),

if vi ≥ vpeak, then vi ← vreset, wi ← wi + wjump,

(2.29)

with the single exponential synapse

τss
′(t) = −s(t) + τssjump

1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ) (2.30)
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for i = 1, 2, . . . , N . Each neuron has a different current parameter Ii drawn from the
Lorentzian distribution with center Ī and half-width at half-maximum (HWHM) ∆I , i.e.,

L(I) = 1

π

∆I

(I − Ī)2 +∆2
I

. (2.31)
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Figure 2.8: Typical macroscopic behaviors of the Izhikevich neural network. (a): asyn-
chronous tonic firing with Ī = 0.25, (b): synchronous bursting with Ī = 0.12. Parameter
values: N = 104, ∆I = 0.02 and ∆t = 0.02. See others in Fig. 1 of [53].

A network of neurons performs its function via emergent collective behaviors, such as
the average rate of spiking and the synchrony of spiking across neurons in the network.
The emergence of these macroscopic phenomena results from interactions among a large
number of isolated microscopic units and is distinct from individual microscopic dynamics.
Fig. 2.8 shows two typical macroscopic behaviors by simulating a network of N = 104

Izhikevich neurons described by Eqs. (2.29)-(2.31). We randomly choose 300 neurons and
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plot their spike times with black dots in the raster plots; each dot along the row indicates
a spike event at a specific time; see the first row of Fig. 2.8. Furthermore, we depict the
macroscopic behaviors in phase portraits in terms of the population firing rate r(t) and the
mean adapting current w(t), averaged across the entire network, as shown in the second
row of Fig. 2.8. Note that we calculate the instantaneous population firing rate r(t) at
time t by counting the number of spikes Nspike(t) fired by neurons within the time window
[t−∆t, t], that is,

r(t) =
Nspike(t)

∆t ·N
.

Here, we choose ∆t = 0.02 in the numerical simulation. In column (a) of Fig. 2.8, individual
neurons exhibit asynchronous tonic firing while the network settles on a stable EP. If we
adjust the value of Ī, as shown in column (b), the network transitions to synchronous
bursting, where most neurons alternate synchronously between firing a volley of spikes and
a quiescent state periodically, and the network settles on a stable PO. In fact, there exist
various forms of synchronous activity, including different phase-locked behaviors illustrated
in Fig. 2.7 for two coupled neurons, and population-bursting behaviors similar to those
depicted in Fig. 2.2(c) for an individual neuron, which will be discussed in Chapter 4.

Transitions between synchronous and asynchronous neural dynamics, or between differ-
ent patterns of synchronization, are arguably of utmost importance for the study of brain
function [186, 34]. In some instances, synchronization of neural activity is beneficial and
serves as a crucial mechanism, such as for integrating separate pieces of information into
unified representations [80], and for efficient information transmission [105]. However, in
other cases, neural synchronization can be detrimental and has been observed in a variety
of neurological disorders, e.g., epilepsy [153] or Parkinson’s disease [180]. From Fig. 2.8,
we can see that it is feasible to predict the collective dynamics of the neural network by
using mean-field variables. This concept forms the basis for the mean-field approximation,
which constructs a dynamical system in terms of average variables across the network. Due
to its low dimensionality, this approach allows for tractable bifurcation analysis, a power-
ful tool for studying dynamic transitions. This analysis can help uncover the underlying
mechanisms of brain functions and dysfunctions, leading to the development of potential
treatments. In subsequent chapters, we apply the mean-field approach to large-scale neural
networks with SFA, time delays in neuron communication, and short-term synaptic plas-
ticity. Through mean-field models, we aim to deepen our understanding of brain function
and dysfunction from a dynamical systems perspective.

Note that in this chapter, the numerical simulations in Fig. 2.2, Fig. 2.4-2.8 were created
using MATLAB [145], while the bifurcation diagrams in Fig. 2.3 were generated with
XPPAUT [83].
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Chapter 3

Mean-Field Modeling for Neural
Networks with Spike Frequency
Adaptation

This chapter aims to analytically derive a set of mean-field equations for the Izhikevich
neural network. Each neuron in this network is represented by a two-dimensional system
that comprises a quadratic integrate-and-fire (QIF) equation and an equation that imple-
ments spike frequency adaptation (SFA). The challenge lies in achieving a closed mean-field
system that incorporates the dynamics of the adaptation variable without assuming that
it operates on a sufficiently slow timescale. To address this problem, we propose using the
Lorentzian ansatz to remove the assumption of a separation of time scales, as commonly
done in the literature, and using the moment closure method to release the dependence
of the adaptation variable on the membrane potential to help close the mean-field system
(Sec. 3.3). This approach allows us to derive a mean-field system that is valid in the limit
of infinitely many neurons in the network. This system can qualitatively and quantitatively
describe the collective dynamics of the neural network, including transitions between asyn-
chronous tonic firing and synchronous bursting states (Sec. 3.4). We further extend this
approach to a network consisting of two populations of neurons with different adaptation
intensities. Through numerical bifurcation analysis, we identify bifurcations not previously
observed in existing models, including a novel mechanism for the emergence of bursting in
the network, highlighting the utility and significance of our proposed mean-field framework
(Sec. 3.5). Finally, we assess the accuracy and effectiveness of our mean-field approxima-
tions by examining all assumptions made during the derivation process in Sec. 3.6.
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3.1 Mean-Field Approaches in Neuroscience

A central topic of computational neuroscience research is to develop computationally and
analytically tractable models that describe the collective activities of neural networks un-
derlying normal brain functions such as memory and decision-making, as well as brain
disorders like epilepsy or Parkinson’s disease. Various approaches rooted in mean-field
theory have been proposed to model these low-dimensional neural dynamics using mean-
field variables such as population firing rates and mean membrane potentials.

The development of mean-field models has a long history that spans more than a
half century, e.g. [25]. Models in this field can generally be classified into two types:
phenomenological models and exact models. Phenomenological models, which have been
active since the 1970s, are not derived from specific neural network structures, but are
designed to resemble macroscopic features of neural dynamics observed in physiology, dis-
regarding individual neuron behaviors. The Wilson-Cowan (WC) model [217, 218] and
its three well-known variants [224, 119, 135] are examples of such phenomenological mod-
els. The standard WC model describes the macroscopic evolution equations for the rate
dynamics of two coupled populations of excitatory and inhibitory neurons, given by

τe
dE

dt
= −E + Se(c1E − c2I + P ),

τi
dI

dt
= −I + Si(c3E − c4I +Q),

where E is the time coarse-grained variable representing the proportion of excitatory cells
firing at time t, I for the population of inhibitory cells, P and Q are external inputs. The
WC models are essentially phenomenological. Their core part is that the average input-
output firing rate relationship S(·) is approximated by a nonlinear, instantaneous function,
typically a sigmoidal function. While this choice is consistent with physiology and com-
monly used in neuronal dynamics modeling, it is based on experimental observations and
lacks a direct connection to individual neurons. Consequently, these mean-field descriptions
cannot account for spike synchronization arising from dynamic interactions between neu-
rons [70]. Furthermore, the WC models lack a description of the mean membrane potential,
which is a crucial variable to capture the macroscopic evolution of neural networks. This
potential carries equivalent information to electroencephalogram (EEG)s, event-related po-
tentials (ERP)s and local field potentials [147] and is frequently used to characterize brain
activity in electrophysiological studies such as working memory [209, 199]. Despite these
limitations, the WC models have inspired many theoretical developments. For a historical
perspective on the development of these ideas, see [10, 68, 219].
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As an alternative, exact macroscopic descriptions have been analytically developed
through mean-field reduction of neural network models, using concepts from statistical
physics. These models bridge the microscopic properties of individual neurons with the
collective dynamics of the neural network. Thus, they can account for phenomena that the
phenomenological models cannot and have been called the “next generation” mean-field
models [38]. The development of exact mean-field models has followed two threads, both
based on the population density approach from statistical physics. This approach yields a
conservation law for the population density function, which represents the dynamics of the
network. In one thread, the population density approach was applied to networks of spiking
neurons [2, 204, 160, 161, 11, 140, 158, 14, 41]. In the other thread, this approach was
applied to networks of coupled phase models [196, 213, 214, 163, 164, 165, 173]. Recently,
these two threads have started to converge when it was shown that the Ott-Antonsen
(OA) theory [163, 164, 165] could be applied to networks of coupled QIF neurons using
the link between the QIF model and the theta model and the equivalence between the
low-dimensional OA manifold and the Lorentzian ansatz [150]. A general description of
such a mean-field model is given by

r′ = f(r, ⟨v⟩, p̄,∆p),

v′ = g(r, ⟨v⟩, p̄,∆p),
(3.1)

where r is the population firing rate and ⟨v⟩ is the mean membrane potential, both averaged
across the network; p is the parameter representing a heterogeneous source, that is, each
neuron in the network has a different parameter value drawn from a distribution function
with the mean p̄ and deviation ∆p. Note that the OA theory (or Lorenzian ansatz) only
defines an invariant manifold for system dynamics. The stability of this manifold has been
a matter of debate for years until recent works, [49] for the phase model and [172] for the
QIF model, confirmed what researchers had already seen in numerical simulation: the OA
manifold is attractive for the heterogeneous network, i.e., ∆p > 0. These articles [49, 172]
essentially extend the Watanabe-Strogatz (WS) method from the homogeneous network,
i.e., ∆p = 0, to the heterogeneous network. The WS theory, proposed by Watanabe
and Strogatz [213, 214], is also an important mean-field theory developed for networks
of coupled phase models. It has a complete description of the stability of the system,
but only for the homogeneous network. By establishing the connection between the WS
mean-field model and the OA model with ∆p = 0, Pikovsky and Rosenblum [173, 174]
proved that the OA manifold for ∆p = 0 is only marginally stable, meaning the system
must be initialized within the OA manifold for the homogeneous network. In summary,
the OA theory is suitable for heterogeneous neural networks. The OA manifold for ∆p > 0
has been theoretically shown to be attractive. However, implementing the WS method,
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especially in closing the mean-field equations, is complex, as it requires expressing mean
synaptic activation through mean-field variables [126]. For homogeneous neural networks
where ∆p = 0, one should use the WS method for coupled phase models or the population
density approach directly applied to spiking neural networks, e.g., [158]. In this thesis,
we employ the theoretical framework of OA theory since the biological neural network
exhibits significant heterogeneity across neurons and synaptic couplings. In Chapter 4, we
investigate the OA-based mean-field model in the limit ∆p → 0.

3.2 Izhikevich Neural Network

The Izhikevich neuron comprises a fast subsystem based on the QIF model and a slow
subsystem modeling the mechanism of SFA. Details of the Izhikevich neuron are provided
in Chapter 2. The SFA has been shown to enhance neural coding and computation at a
lower metabolic cost [103, 92, 185]. It has also been demonstrated to play a crucial role in
the emergence of network bursting and synchronization [207, 157, 122, 89, 96]. Recent work
has focused on deriving mean-field descriptions for neural networks with SFA [14, 41, 47,
72]. These descriptions vary in the neuron models employed, the types of approximations
used, and the behaviors the mean-field models can analyze. In this chapter, we utilize
the Izhikevich neuron. The resulting Izhikevich network has been extensively used to
investigate brain function [118, 78] and dysfunction [181]. Its numerical and theoretical
efficiency makes it well suited for exploring the collective dynamics of neural networks
through mean-field descriptions.

The network model for a population of Izhikevich neurons is described by the following
discontinuous ordinary differential equations (ODEs),

v′i(t) = vi(vi − α)− wi + Iext(t) + ηi + Isyn,i(t),

w′
i(t) = a(bvi − wi),

if vi ≥ vpeak, then vi ← vreset, wi ← wi + wjump,

(3.2)

for i = 1, 2, . . . , N . Here, ′ = d/dt denotes the time derivative, vi(t) is the membrane
potential of ith neuron and wi is the recovery current, which serves as an adaptation
variable. By construction, vi ∈ (−∞, vpeak], while w has no constraints, wi ∈ (−∞,∞).
The parameter ηi is the intrinsic current, while Iext is the external common current. We
will assume that ηi is drawn from a distribution L(η) defined on (−∞,∞). The term Isyn
represents the total synaptic current due to the other neurons in the network. When the
voltage reaches a cut-off value, denoted as the peak of a spike vpeak, it is reset to the value
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vreset. At the same time, the adaptation variable jumps by an amount wjump, which affects
the after spike behavior. When in the limit of vpeak = −vreset → ∞, the Izhikevich model
(3.2) can be transformed into the theta model with adaptation, where the neuron fires a
spike whenever θ crosses π; see Fig. 2.4(c).

The neurons in the network are connected by synapses using the standard conductance-
based synaptic current model [88]

Isyn,i = gsynsi(er − vi), (3.3)

where er is the reversal potential and gsyn the maximum synaptic conductance, both as-
sumed to be the same for all neurons. The synaptic gating variable, si, lies between 0 to 1
and represents the proportion of ion channels open in the postsynaptic neuron as the result
of the firing in presynaptic neurons. For simplicity, we assume that neurons are all-to-all
coupled. This assumption has been widely used in the literature [88, 150, 39]. Specifically,
it is reasonable for the application to the CA3 region of hippocampus we will consider later,
since this region is highly recurrently coupled [8, 9, 35]. We will discuss the necessity of all
the assumptions we make and possible extensions that relax some of these requirements in
Sec. 3.6. For a network with all-to-all connectivity, si is homogeneous across the network as
every postsynaptic neuron receives the same summed input from all presynaptic neurons,
thus si = s. The mechanism of synaptic transmission can be formally described by a linear
system of ODEs with a sum of delta pulses corresponding to the times a neuron fires an
action potential [88]. For simplicity, we consider the single exponential synapse, given by

s′ = − s

τs
+

sjump

N

N∑
j=1

∑
k

δ(t− t
(k)
j ), (3.4)

where δ(t) is the Dirac delta function, and tkj represents the time of the kth spike of the
jth neuron. We assume that the parameters sjump and τs are the same for every synapse.
It is straightforward to extend our approach to the double exponential synapse and the
alpha synapse; see Sec. 2.4.2.

Here, the network system of (3.2)-(3.4) is dimensionless, which is appropriate for math-
ematical and numerical exploration of the neurodynamics. However, neuroscientists are
normally accustomed to the dimensional form with parameters that have physiological in-
terpretation, e.g., [78, 181]. Here is the dimensional form of the Izhikevich network, given
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by

C
dVi

dT
= k1(Vi − VT )(Vi − VR)−Wi + Isum,k +Gsyns(Er − Vi),

τW
dWi

dT
= β(Vi − VR)−Wi,

ds

dT
= − s

τsyn
+

Sjump

N

N∑
j=1

∑
k

δ(t− t
(k)
j ),

if Vi ≥ Vpeak, then Vi ← Vreset, Wi ← Wi +Wjump,

(3.5)

where i = 1, 2, . . . N . The parameters are described in Table 3.1 and the values are taken
from [158, 159] that were originally fitted by [78] to the data of pyramidal neurons in the
hippocampal CA3 region [107]. Table 3.2 gives the whole scaling relationship between the
dimensionless and the dimensional systems.

Parameters Values Description

C 250 pF Membrane capacitance

k1 2.5 nS/mV Scaling factor

VR −65 mV Resting potential

VT −24.6 mV Threshold potential, VT = VR + 40− β
k1

Gsyn 200 nS Synaptic conductance

Er 0 mV Reversal potential

β −1 nS Scaling factor

τW 200 mS Time constant of W

τsyn 4 mS Time constant of s

Sjump 0.8 Coupling strength

Wjump 200 pA After-spike jump size

Table 3.1: Parameters for the dimensional Izhikevich network (3.5) based on [158, 159].
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vi = 1 + Vi

|VR| wi =
Wi

k1|VR|2 s = s

er = 1 + Er

|VR| vpeak = 1 +
Vpeak

|VR| vreset = 1 + Vreset

|VR|

α = 1 + VT

|VR| gsyn = Gsyn

k1|VR| a =
(

τW k1|VR|
C

)−1

b = β
k1|VR| sjump = Sjump

C
k1|VR| wjump =

Wjump

k1|VR|2

η + Iext =
Iapp

k1|VR|2 T = C
k1|VR|t τs =

τsynk1|VR|
C

Table 3.2: Scaling relations between the dimensionless (3.2)-(3.4) and dimensional (3.5) Izhikevich
neural networks.

3.3 Derivation of Mean-Field Models

The network model becomes too complex for tractable analysis, particularly with a large
number of neurons. In this section, we aim to develop a low-dimensional mean-field model
to approximate the behavior of the full network, described by equations (3.2)-(3.4), valid
in the thermodynamic limit (N → ∞). We will show how to describe key macroscopic
variables and derive their reduced macroscopic dynamics, cast as ODEs, through step-by-
step assumptions. Our approach combines ideas from prior works [158, 159, 140, 150].

3.3.1 General Mean-Field Description

The mean-field approximation is essentially a technique that borrows concepts and methods
from statistical physics, e.g., the population density approach [140], the continuity equation
(or the Fokker-Planck equation when the system is subject to noise) [64, 28]. We define
the population density function ρ(t, v, w, η) as the density of neurons at a point (v, w)
in phase space with the parameter η at time t. In the limit N → ∞, the principle of
conservation mass leads to the following evolution equation for the density function, that
is, the continuity equation,

∂

∂t
ρ(t, v, w, η) +▽ · J (t, v, w, s, η) = 0, (3.6)

where the probability flux is defined as

J (t, v, w, s, η) =
(
J v(t, v, w, s, η)
J w(t, v, w)

)
=

(
Gv(v, w, s, η)
Gw(v, w)

)
ρ(t, v, w, η),
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and

Gv(·) = v(v − α)− w + η + Iext + gsyns(er − v), (3.7a)

Gw(·) = a(bv − w). (3.7b)

Note that J v(t, v, w, s, η) depends on s. The flux is intuitively the mass flow rate along a
specific direction in phase space. A boundary condition for the flux, consistent with the
resetting rule in Eq. (3.2), is imposed,

J v(vpeak, w) = J v(vreset, w + wjump). (3.8)

We assume the flux to be vanishing on the boundary ∂w, that is, ρ(t, v, w, η) = 0 in the
limit w → ±∞ [140]. Then, we can define macroscopic variables in terms of mean-field
description, which are extremely useful in understanding brain function. The population
firing rate is the flux through the threshold vpeak over the entire range of w in the phase
space and η in parameter space, defined by

r(t) = lim
v→vpeak

∫
∂η

∫
∂w

J v(t, v, w, s, η)dwdη =

∫
∂η

∫
∂w

J v(t, vpeak, w, s, η)dwdη. (3.9)

The mean membrane potential is the average over the population, defined by

⟨v(t)⟩ =
∫
∂η

∫
∂w

∫
∂v

vρ(t, v, w, η)dvdwdη.

Similarly, the mean adaptation current is given by

⟨w(t)⟩ =
∫
∂η

∫
∂v

∫
∂w

wρ(t, v, w, η)dwdvdη.

Next, we will derive the differential equation for ⟨w⟩. The derivation is modified from
[159]. Differentiation with respect to time and application of the continuity equation (3.6)
yields

⟨w⟩′ =
∫
∂η

∫
∂v

∫
∂w

w
∂

∂t
ρ(t, v, w, η)dwdvdη = −

∫
∂η

∫
∂v

∫
∂w

w

(
∂J v

∂v
+

∂J w

∂w

)
dwdvdη

(3.10)
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For the first term, we apply integration by parts and interchange the order of integration
as needed, then obtain:

Term1 =

∫
∂η

∫
∂v

∫
∂w

w
∂J v

∂v
dwdvdη

=

∫
∂η

∫
∂w

∫
∂v

wdJ v(t, v, w, s, η)dwdη

=

∫
∂η

∫
∂w

w
(
J v(t, vpeak, w, s, η)− J v(t, vreset, w, s, η)

)
dwdη

=

∫
∂η

∫
∂w

w
(
J v(t, vpeak, w, s, η)− J v(t, vpeak, w − wjump, s, η)

)
dwdη

For a constant v, we have J v(t, vpeak, w, s, η) = Gv(·)ρ(t, w, η) from Eq. (3.6). We can
write ρ(t, w, η) in conditional form,

ρ(t, w, η) = ρw(t, w|η)L(η),

with L(η) defined as the probability that a randomly chosen neuron has a current parameter
η. Then, assuming ⟨w|η⟩ ≫ wjump, we apply a Taylor expansion and integration by parts
to Term 1, resulting in

Term1 =

∫
∂η

∫
∂w

w
(
wjump

∂

∂w
J v(t, vpeak, w, s, η) +O(w2

jump)
)
dwdη

=

∫
∂η

wjump

∫
∂w

wdJ v(t, vpeak, w, s, η)dη +O(w2
jump)

≈
∫
∂η

wjump

(
wJ v(t, vpeak, w, s, η)|∂w −

∫
∂w

J v(t, vpeak, w, s, η)dw
)
dη

(3.11)

Then, we assume the flux to be vanishing on the boundary ∂w, yielding

Term1 = −
∫
∂η

∫
∂w

wjumpJ v(t, vpeak, w, s, η)dwdη.

Similarly, for the second term of (3.10), we obtain

Term2 =

∫
∂η

∫
∂v

∫
∂w

w
∂J w

∂w
dwdvdη = −

∫
∂η

∫
∂v

∫
∂w

J wdwdvdη = −⟨Gw(t, v, w)⟩.

Thus, we derive the dynamic system of ⟨w⟩ in terms of the flux given by

⟨w⟩′ ≈ ⟨Gw(v, w)⟩+
∫
∂η

∫
∂w

wjumpJ v(t, vpeak, w, s, η)dwdη.
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Further, considering the linearity of Gw(·) function with respect to v and w, see Eq. (3.7),
and the description of the population firing rate in terms of flux (3.9), we finally derive the
following ODE describing the evolution of the mean adaptation variable,

⟨w⟩′ = Gw
(
⟨v⟩, ⟨w⟩

)
+ wjumpr(t) = a

(
b⟨v⟩ − ⟨w⟩

)
+ wjumpr(t). (3.12)

Next, we rewrite the synaptic dynamics (3.4) in terms of flux description. The deriva-
tion is modified from [158]. The key idea is how to connect the population firing rate r
with the description in terms of the number of spikes fired by neurons,

u(t) =
1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ). (3.13)

We define the function nj(t) to be the number of spikes fired by the jth neuron in the time
interval [0, t],

nj(t) =

∫ t

0

∑
k

δ(t′ − t
(k)
j )dt′.

Then, we can relate u(t) to the average of nj(t) over the population, given by

lim
N→∞

∫ t

0

u(t′)dt′ = lim
N→∞

1

N

∫ t

0

N∑
j=1

∑
k

δ(t′ − t
(k)
j )dt′ = ⟨n(t)⟩.

We also define the firing rate as the number of spikes per unit time. Then, the population
firing rate in this sense of the limit of population activity as ∆t→ 0 is given by [158, 98]

r(t) = lim
∆t→0

1

∆t
lim

N→∞

N∑
j=1

nj(t+∆t)− nj(t)

N
. (3.14)

Rearranging the limits yields

r(t) = lim
∆t→0

⟨n(t+∆t)⟩ − ⟨n(t)⟩
∆t

=
d

dt
⟨n(t)⟩ = u(t). (3.15)

Thus, we can rewrite the synaptic dynamics (3.4) in terms of the population firing rate as

s′ = −s/τs + sjumpr(t), (3.16)

where r(t) is equivalent to the flux definitioin (3.9). The two equations (3.12) and (3.16)
are an integral part of the final mean-field model for the network of Izhikevich neurons.
They depend on two macroscopic variables: the mean membrane potential ⟨v(t)⟩ and the
population firing rate r(t). In the following, we will derive the dynamical system for these
two variables.
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3.3.2 Density Function in Conditional Form

In this section, we take advantage of the population density approach and the moment
closure assumption to reduce the dependence between the macroscopic variables.

1. Moment closure method For brevity, we consider a homogeneous network, that
is, the current η is the same for each neuron. We write the population density function in
conditional form

ρ(t, v, w) = ρw(t, w|v)ρv0(t, v). (3.17)

We define the marginal density as

ρv0(t, v) =

∫
∂w

ρ(t, v, w)dw

and the mean of w conditioned on v as ⟨w|v⟩ =
∫
∂w

wρw(t, w|v)dw. Then, the kth condi-
tional moment ⟨wk|v⟩ satisfies∫

∂w

wkρ(t, v, w)dw = ⟨wk|v⟩ρv0(t, v) ≡ ρvk(t, v|η)

Integrating Eq. (3.6) with respect to w yields

∂

∂t
ρv0(t, v) = −

∂

∂v

[(
Gv

1(v)− ⟨w|v⟩
)
ρv0(t, v)

]
= − ∂

∂v

[
Gv

1(v)ρ
v
0(t, v)− ρv1(t, v)

]
,

(3.18)

where Gv
1(v) = v(v − α) + η + Iext + gsyns(er − v) is the part of Eq. (3.7a) without w.

To obtain this expression, we use the normalization condition on the marginal density of
w, that is,

∫
∂w

ρw(t, w|v)dw = 1, and the fact that the flux vanishes on the boundary
∂w. One can see that the evolution equation for ρv0(t, v) depends on the unknown function
ρv1(t, v). To derive the equation for ρv1(t, v), we can multiply Eq. (3.6) by w and integrate
over w again. Then ρv2(t, v) appears on the right-hand side of the evolution equation for
ρv1(t, v). Thus, the system is not closed. To close the system, we adopt the moment closure
method, which assumes that the kth centered conditional moment of w is independent of
v, that is, ⟨wk|v⟩ = ⟨w⟩k. Thus, the mean-field approximation involves expressing the kth
conditioned moment as a linear combination of the k − 1 conditioned moments and the
first k unconditioned moments [140]. For the first-order moment closure where k = 1, we
have

⟨w|v⟩ = ⟨w⟩. (3.19)
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Then, Eq. (3.18) becomes

∂

∂t
ρv0(t, v) = −

∂

∂v

[
Gv

(
v, ⟨w|v⟩

)
ρv0(t, v)

]
= − ∂

∂v

[
Gv

(
v, ⟨w⟩

)
ρv0(t, v)

]
.

(3.20)

by the notation ρv1(t, v) = ⟨w|v⟩ρv0(t, v).
2. Mean-field approximation by first-order moment closure Let us return to

the heterogeneous network. We express the population density function in conditional form

ρ(t, v, w, η) = ρw(t, w|v, η)ρv(t, v|η)L(η). (3.21)

Then, the population firing rate in the general expression (3.9) can be described by the
conditional probability ρv(t, v|η) as

r(t) = lim
v→vpeak

∫
∂η

∫
∂w

Gv(v, w, s, η)ρw(t, w|v, η) · ρv(t, v|η)L(η)dwdη

= lim
v→vpeak

∫
∂η

L(η)ρv(t, v|η) ·
∫
∂w

Gv(v, w, s, η)ρw(t, w|v, η)dwdη

= lim
v→vpeak

∫
∂η

L(η)ρv(t, v|η) ·Gv(v, ⟨w|v, η⟩, s, η)dη.

To balance the trade-off between accuracy and the practicality of the mean-field approxi-
mation, we employ first-order moment closure assumption

⟨w|v, η⟩ = ⟨w|η⟩. (3.22)

Then, we have

r(t) = lim
v→vpeak

∫
∂η

L(η)ρv(t, v|η) ·Gv(v, ⟨w|η⟩, s, η)dη. (3.23)

Similarly, the mean membrane potential is rewritten as

⟨v(t)⟩ =
∫
∂η

L(η)
∫
∂v

vρv(t, v|η)dvdη. (3.24)

Here, we use the normalization condition on the marginal density of w,∫
∂w

ρw(t, w|v, η)dw = 1.
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To obtain the evolution equation for ρv(t, v|η), we integrate the general continuity equation
(3.6) with respect to w and use the conditional form (3.21), yielding

∂

∂t
ρv(t, v|η) = − ∂

∂v

[
Gv(v, ⟨w|v, η⟩, s, η)ρv(t, v|η)

]
.

Further, by the first-order moment closure assumption, we have the resulting modified
continuity equation,

∂

∂t
ρv(t, v|η) = − ∂

∂v

[
Gv(v, ⟨w|η⟩, s, η)ρv(t, v|η)

]
. (3.25)

Thus, we have derived a closed mean-field system for the evolution of ρv(t, v|η), ⟨w|η⟩ and
s. It consists of Eq. (3.16), (3.23)-(3.25) and an equation analogous to (3.12) for ⟨w|η⟩.
We can derive the steady-state solution to this system, given by

ρv(v|η) = 1

Gv(v, ⟨w|η⟩, s, η)

=
1

v(v − α)− ⟨w|η⟩+ η + Iext + gsyns(er − v)
,

(3.26)

where ⟨w|η⟩ and s are the steady state values of ⟨w|η⟩ and s, respectively.

3.3.3 Lorentzian Ansatz

In this section, we will further reduce the mean-field system and the expressions of the
macroscopic variables via the Lorentzian ansatz [150], where the limit vpeak = vreset → ∞
is considered. To begin, we assume that the conditional probability ρv(t, v|η) satisfies a
time-dependent version of Eq. (3.26) and hence can be written in the form of Lorentzian
distribution, also known as the Cauchy distribution, as follows,

ρv(t, v|η) = 1

π

x(t, η)[
v − y(t, η)

]2
+ x2(t, η)

, (3.27)

where x(t, η) and y(t, η) are two time-dependent parameters defining half-width at half-
maximum (HWHM) and center of the distribution, respectively. Moreover, y(t, η) is defined
via the Cauchy principal value as

y(t, η) = P.V.

∫
∂v

vρv(t, v|η)dv = ⟨v(t, η)⟩,
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the reason being that the Lorentz distribution only has a mean in principal value sense.
Therefore, the mean membrane potential is related to y(t, η) via

⟨v(t)⟩ =
∫
∂η

y(t, η)L(η)dη. (3.28)

Under the condition
vpeak = −vreset → +∞

corresponding to θ = π in the theta model, the population firing rate defined as Eq. (3.23)
is also related to the Lorentzian coefficient through the intermediate expression,

r(t, η) = lim
v→vpeak

ρv(t, v|η)Gv(v, ⟨w|η⟩, s, η)

= lim
vpeak→∞

1

π

x(t, η)[
vpeak − y(t, η)

]2
+ x2(t, η)

·
[
vpeak(vpeak − α)− ⟨w|η⟩+ η + Iext + gsyns(er − vpeak)

]
=

1

π
x(t, η).

The total firing rate is then

r(t) =

∫
∂η

r(t, η)L(η)dη =

∫
∂η

1

π
x(t, η)L(η)dη. (3.29)

Substituting the Lorentzian ansatz (3.27) into the continuity equation (3.25), we obtain
two relevant terms: one is given by

∂tρ
v(t, v|η) = 1

π

ẋ
[
(v − y)2 − x2

]
+ 2x(v − y)ẏ[

(v − y)2 + x2
]2 ,

the other is given by

∂

∂v

[
Gv(·)ρv(·)

]
= (2v − α− gs)ρv(t, v|η) +

[
v(v − α)− ⟨w|η⟩+ η

+ Iext + gsyns(er − v)
]
∂vρ

v(t, v|η).

We can also obtain

∂vρ
v(t, v|η) = − 1

π

2x(v − y)[
(v − y)2 + x2

]2 .
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Equating the resulting equation in the powers of v yields

v2
[
x′− 2xy+ (α+ gsyns)

]
+ v

[
2xy′− 2x′y+2x(x2 + y2) + 2x(⟨w|η⟩ − η− Iext− gsynser)

]
+
[
x′(y2 − x2)− 2xyy′ − (α + gsyns)(x

2 + y2)x

+ 2xy
(
η + Iext − ⟨w|η⟩+ gsynser

)]
= 0

Then, we have

x′(t, η) = 2xy − (α + gsyns)x,

y′(t, η) = y(y − α)− x2 − ⟨w|η⟩+ η + Iext + gsyns(er − y),
(3.30)

where the first equation is from the coefficient of v2 equal to zero; the second from the
coefficient of v equal to zero. Both of them lead to the disappearance of the leftover terms.
By defining a complex variable

z(t, η) = x(t, η) + iy(t, η) = πr(t, η) + i⟨v(t, η)⟩, (3.31)

we write Eq. (3.30) in complex form as

∂

∂t
z(t, η) = i

[
− z2(t, η) + iz(t, η)(α + gsyns)− ⟨w|η⟩+ η + Iext + gsynser

]
. (3.32)

So far, we have obtained the reduced mean-field system for the dynamics of the two macro-
scopic variables r(t, η) and ⟨v(t, η)⟩ via Eqs. (3.28), (3.29), (3.31) and (3.32). However,
both variables depend on the heterogeneous current η and ⟨w|η⟩ and therefore on the
distribution L(η).

3.3.4 Heterogeneity with Lorentzian Distribution

Further reduction of the mean-field system depends on the distribution of the heterogeneous
parameter, η. Specifically, we choose η to have a Lorentzian distribution with center η̄ and
HWHM ∆η, i.e.,

L(η) = 1

π

∆η

(η − η̄)2 +∆2
η

. (3.33)

Then we apply the residue theorem to evaluate the integrals of (3.28) and (3.29) for η ∈
(−∞,∞).
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We begin by denoting the line integral around an oriented rectifiable curve γ,∮
γ

f(η)dη ≡
∮
γ

1

π
x(t, η)L(η)dη.

Substituting the Lorentzian distribution (3.33) yields

f(η) =
1

π2
x(t, η)

∆η

(η − η̄)2 +∆2
η

=
x(t, η)

π2
· 1
2i

(
1

η − (η̄ + i∆η)
− 1

η − (η̄ − i∆η)

)
.

Then, the residue of f(η) at the point η1 = η̄ − i∆η is

Res(f, η1) = −
x(t, η̄ − i∆η)

2π2i

Let’s define the clockwise contour γ (shown in Fig. 3.1) that goes along the real line from
−a to a and then clockwise along a semicircle centered at the origin from a to −a. Take
a to be greater than ∆η, so that the point η1 = η̄ − i∆η is enclosed within the curve.

Figure 3.1: The contour γ for the parameter η using to solve the integrals (3.28) and (3.29)
when a→ +∞.

According to the residue theorem, we have∮
γ

f(η)dη = 2πi · (−Res(f, η1)) =
1

π
x(t, η̄ − i∆η)

Splitting the contour γ into a straight part and a curved arc, yields∮
γ

f(η)dη =

∫
straight

f(η)dη +

∫
arc

f(η)dη

and thus ∫ a

−a

f(η)dη =
1

π
x(t, η̄ − i∆η)−

∫
arc

f(η)dη (3.34)
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Next, we will show that the integral
∫
arc

f(η)dη goes to zero as a → +∞. From the
estimation lemma, also known as the ML inequality, we have∣∣∣∣∫

arc

f(η)dη

∣∣∣∣ = ∣∣∣∣∫
arc

1

π2
x(t, η)

∆η

(η − η̄)2 +∆2
η

dη

∣∣∣∣
≤ l(arc) · sup

arc

∣∣∣∣ 1π2
x(t, η)

∆η

(η − η̄)2 +∆2
η

∣∣∣∣ , (3.35)

where l(arc) is the arc length of the contour γ shown in Fig. 3.1. By observing that the
arc is half the circumference of a circle with radius a, we have

l(arc) =
1

2
(2πa) = πa.

Then, we seek the upper bound suparc

∣∣∣ 1
π2x(t, η)

∆η

(η−η̄)2+∆2
η

∣∣∣. By the triangle inequality we

see that

|η − η̄|2 =
∣∣(η − η̄)2

∣∣
=

∣∣(η − η̄)2 +∆2
η −∆2

η

∣∣
≤

∣∣(η − η̄)2 +∆2
η

∣∣+∆2
η.

Thus, ∣∣(η − η̄)2 +∆2
η

∣∣ ≥ |η − η̄|2 −∆2
η.

When η goes to ±∞, i.e., a→ +∞, we have∣∣∣∣ 1

(η − η̄)2 +∆2
η

∣∣∣∣ ≤ 1

|η − η̄|2 −∆2
η

=
1

a2 −∆2
η

.

Further, assuming that the half-width |x(η, t)| is bounded above by a constant C, we obtain∣∣∣∣ 1π2
x(t, η)

∆η

(η − η̄)2 +∆2
η

∣∣∣∣ ≤ C∆η

π2
· 1

a2 −∆2
η

.

Then, we have

lim
a→+∞

l(arc) · sup
arc

∣∣∣∣ 1π2
x(t, η)

∆η

(η − η̄)2 +∆2
η

∣∣∣∣ = lim
a→+∞

πa · C∆η

π2

1

a2 −∆2
η

= 0. (3.36)

Finally, from Eqs. (3.34) - (3.36) we derive∫ ∞

−∞
f(η)dη =

1

π
x(t, η̄ − i∆η),
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that is,

r(t) =

∫ ∞

−∞

1

π
x(t, η)L(η)dη =

1

π
x(t, η̄ − i∆η).

Similarly, we can derive

⟨v(t)⟩ =
∫ ∞

−∞
y(t, η)L(η)dη = y(t, η̄ − i∆η).

Thus, by introducing Lorentzian distribution for the heterogeneous parameter η (3.33), we
can obtain a sharp reduction for the mean-field variables, given by

r(t) =
1

π
x(t, η̄ − i∆η),

⟨v(t)⟩ = y(t, η̄ − i∆η).

Further, considering πr(t)+ i⟨v(t)⟩ = z(t, η̄− i∆η), evaluating the complex equation (3.32)
at η = η̄ − i∆η and taking into account the formula that

⟨w⟩ =
∫
η

⟨w|η⟩L(η)dη

yield the mean-field system of equations given by

r′ = ∆η/π + 2r⟨v⟩ −
(
α + gsyns

)
r,

⟨v⟩′ = ⟨v⟩2 − α⟨v⟩ − ⟨w⟩+ η̄ + Iext + gsyns
(
er − ⟨v⟩

)
− π2r2.

Note that the distribution L(η) can be arbitrary. In particular, if L(η) has n poles in
the lower half η-plane, one can readily obtain n sets of complex-valued mean-field ODEs
analogous to Eq. (3.32) by evaluating the integrals (3.28) and (3.29) [163]. The Lorentzian
distribution is a mere mathematical convenience, since it has only one pole, as required.

Recalling that we have already obtained the dynamical system for the mean adaptation
current (3.12) and the synapse (3.16), we finally have the reduction of the network of
Izhikevich neurons (3.2)-(3.4) to the following the mean-field system of ODEs,

r′ = ∆η/π + 2r⟨v⟩ −
(
α + gsyns

)
r

⟨v⟩′ = ⟨v⟩2 − α⟨v⟩ − ⟨w⟩+ η̄ + Iext + gsyns
(
er − ⟨v⟩

)
− π2r2

⟨w⟩′ = a (b⟨v⟩ − ⟨w⟩) + wjumpr

s′ = −s/τs + sjumpr.

(3.37)
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3.4 Numerical analysis

We now numerically examine the dynamics of the mean-field model and demonstrate its
validity in terms of reproducing the macroscopic dynamics of the Izhikevich neural network.
The parameter values used in all simulations can be found in Table 3.3, unless otherwise
specified in a figure. These values are dimensionless and originally fitted to hippocampal
CA3 pyramidal neuron data; see Table 3.1. The exceptions are vpeak and vreset which are,
respectively, set to large positive and negative numbers. This is to approximate vpeak →
+∞ and vreset → −∞ for mathematical convenience [117, 150]. Numerical simulation was
done by using the Euler’s method in MATLAB with time step dt = 10−3 and numerical
continuation by using the software XPPAUT [83]. All initial conditions are chosen at the
origin. Euler’s method allows us to track spike times effectively in order to implement the
discontinuity of the Izhikevich neuron model. In our simulations, we found that numerical
errors are acceptable, especially when small step sizes are used.

Parameter Value Parameter Value Parameter Value Parameter Value

α 0.6215 τs 2.6 gsyn 1.2308 er 1

a 0.0077 b −0.0062 sjump 1.2308 wjump 0.0189

vpeak 200 vreset -200 N 10,000

Table 3.3: Dimensionless parameters for the Izhikevich neural network (3.2)-(3.4).

We begin with the bifurcation analysis of the mean-field model (3.37). Fig. 3.2(a)
and its blow-up (b) show how the population firing rate r qualitatively changes as the
mean intrinsic current η̄ is varied. Fig. 3.2(c) shows the same diagram as (a) in terms of
the mean adaptation, ⟨w(t)⟩, and includes a bifurcation diagram for full network (3.2)-
(3.4) (star symbols). The mean-field model diagrams show two subcritical Andronov-
Hopf (HP)s at η̄ = η̄HP ≈ 0.19 and 0.075, respectively. Unstable limit cycles (blue)
emerge from these bifurcations and collide with the stable limit cycles (green) in a saddle-
node bifurcation of limit cycles (SNLC) for some η̄ = η̄SNLC > η̄HP (right branches)
or < η̄HP (left branches). The system displays two small ranges of bistability between
the Hopf and SNLC bifurcations. The stable periodic orbits (POs) (green) correspond
to solutions where individual neurons in the network exhibit synchronous bursting and
stable equilibrium points (EPs) (red) correspond to solutions where individual neurons
exhibit asynchronous tonic firing. This is clearly reflected in the raster plots and time
series of macroscopic variables r(t), ⟨v(t)⟩ and ⟨w(t)⟩ in Fig. 3.2(d) and (e). The mean-
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Figure 3.2: The Izhikevich neural network (3.2)-(3.4) and its mean-field model (3.37). (a): Bi-
furcation diagram of the mean-field system in the plane (η̄, r). Stable/unstable EP in red/black
and stable/unstable PO in green/blue. (b): Blow-up of (a) near η̄ = 0.19. Bistability is induced
by the subcritical HP bifurcation and SNLC. Similar qualitative changes occur at η̄ ≈ 0.075. (c):
Bifurcation diagram in the plane (η̄, ⟨w⟩). The star symbols are simulations of the network. (d)
& (e): Time evolutions of the network in blue and its mean-field model in red when η̄ = 0.25 (s1
in (a) and (c)) and η̄ = 0.12 (s2 in (a) and (c)). The first rows are the raster plots of 300 ran-
domly selected neurons. The other rows show r(t), ⟨v(t)⟩ and ⟨w(t)⟩, respectively. Parameters:
∆η = 0.02, Iext = 0, others are given in Table 3.3.

field equations (3.37) predict very accurately the behavior of the entire network, including
the damped oscillations in (d) and the frequency of stable oscillations in (e).
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Prior work has shown that bursting in a network of Izhikevich neurons is due to a
balance between inputs (intrinsic and external applied currents and synaptic inputs), which
cause neurons to spike, and the slow adaptation current, which can terminate spiking
[78, 158, 159]. For a given level of adaptation, there must be sufficient input, but not
too much, to initiate bursting. Hence, the bursting in Fig. 3.2(a) occurs when the mean
intrinsic current input η̄ is not too small and not too large. Note in Fig. 3.2(e) that
even when the population is bursting, a small subset of neurons in the population do not
burst but remain tonically firing. This is due to the distribution of the heterogeneous
input current. A small number of neurons receives an input current large enough that the
adaptation is not strong enough to cause these neurons to burst.

In addition, Fig. 3.2(c) demonstrates a great correspondence between a bifurcation
diagram generated from numerical simulation of the full network (star symbols) with that
obtained from the mean-field model. Here, it is worth paying more attention to the POs
(green). This figure shows an excellent amplitude match for a wide range of the bifurcation
parameter. Note in Fig. 3.2(c) that we compare behaviors of the variable ⟨w⟩ instead of r for
clarity, as r exhibits fluctuations due to the spiking of individual neurons (see Fig. 3.2(e)).
Employing a larger number of neurons in the network model achieves a narrower spread
around the mean-field value, at the expense of increased computational time.

Regarding the frequency match of the POs, Fig. 3.2(e) shows an excellent correspon-
dence at the parameter point s2. However, in some simulations, especially those with
parameter values close to the transition points, the mean-field and network behavior differ
quantitatively. Fig. 3.3 shows two examples. In Fig. 3.3(a) the parameter η̄ is slightly lower
than the first bifurcation point. Equivalent initial conditions are chosen for the network
model and the mean-field model. However, while the network exhibits a PO, the mean-field
model exhibits an EP. This suggests that the bifurcation point leading to the PO in the
mean-field model is different from that in the network model. In Fig. 3.3(c) the parameter
η̄ is slightly less than the second bifurcation point, in the region where the mean-field
model has only a stable PO. In this case, both the mean-field and network models exhibit
a PO, but there is a frequency mismatch. Better agreement in examples can be achieved
by slightly tuning the bifurcation parameter of the mean-field model towards higher values.
See Fig. 3.3(b) and (d). The same trend can be seen in ([55], Fig. 1). The discrepancies
are likely due to the finite size of the network. In summary, for the dynamic comparison
between the finite-size network of Izhikevich neurons (N = 104 here) and the mean-field
model derived in the thermodynamic limit (N → ∞), particularly for the behavior of
synchronous bursting (POs for the mean-field model), quantitative difference is relatively
less visible in terms of the amplitude of the POs than their frequency shift. Further, the
discrepancy due to the finite size of the network is more apparent close to the bifurcation
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Figure 3.3: Bifurcation shift between the Izhikevich neural network (3.2)-(3.4) (blue) and
the mean-field model (3.37) (red). In panels (b) and (d), the network time series r(t) and
⟨w(t)⟩ (blue) are the same as those in (a) and (c), while the bifurcation parameters in the
mean-field model, η̄mf , have been adjusted to match the behaviors of the network. The
Hopf bifurcations of the mean-field model occur at η̄mf ≈ 0.075 and 0.191 in Fig. 3.2. Other
parameters are the same as those in Fig. 3.2.

points, where the system is more sensitive to small changes in parameter values.

Furthermore, we can determine the Hopf bifurcation manifolds in the (η̄,∆η) parameter
space for the mean-field model as shown in Fig. 3.4(a) and (b). These curves are associated
with the transition between synchronous bursting (inside the curves) and asynchronous
tonic firing (outside the curves). Thus, we call the region inside the Hopf bifurcation
manifold the bursting region. We see from the network raster plots and time series of r(t)
(Fig. 3.4(c)) that the rhythmic regime disappears if the external drive Iext is sufficiently
strong. This is a well-known effect observed in many models of adaptation-induced bursting
[78, 158, 159]. It is also consistent with the experimental data of [202] on a hippocampal
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Figure 3.4: The Izhikevich neural network (3.2)-(3.4) and its mean-field model (3.37). (a) &
(b): Hopf bifurcations of the mean-field system in the plane (η̄,∆η) when (a): wjump = 0.0189,
Iext = 0.1, 0; (b): Iext = 0, wjump = 0.015, 0.0189, 0.03. (c): Time evolutions when η̄ = 0.12,
∆η = 0.02 (s3 in (a)). Raster plot in first panel; r(t) in second panel depicted in blue/red for the
network/mean-field models; Iext(t) in last panel. At time t = 650, a current Iext = 0.1 is applied
to all neurons. (d): Hopf-Hopf bifurcation induced by the intersection of two Hopf bifurcations
in the plane (η̄, wjump) when ∆η = 0.02. Other parameters are given in Table 3.3.

CA3 slice preparation, which showed that injection of sufficient depolarizing current into
pyramidal cells can cause them to transition from bursting to tonic firing. Additionally,
Fig. 3.4(d) shows a Hopf-Hopf bifurcation resulting from the intersection of two Andronov-
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Hopf bifurcations in the parameter space (η̄, wjump). The two curves look like straight
lines on such narrow scales. Secondary bifurcations can emanate from this co-dimension
two bifurcation point, potentially leading to quasiperiodic behavior [102]. For a detailed
investigation, refer to Chapter 4.

3.5 Extension to Two-Coupled Populations of Izhike-

vich Neurons

A large-scale neural network can be divided into several coupled groups by considering
different properties of cells in the network. For example, neurons can be grouped into
excitatory and inhibitory populations based on the type of synapses they form [217, 77]; or
into strongly and weakly adapting populations based on the amount of SFA they exhibit
[158]. In this section, we consider a network of excitatory neurons consisting of two popula-
tions: strongly adapting neurons (population p) and weakly adapting neurons (population
q). The network is all-to-all connected with single exponential synapses. This model is
motivated by the experimental data of [107] on firing properties of CA3 pyramidal neurons
and the modeling studies of [78, 158, 159]. Each neuron in the network is characterized by
the Izhikevich model given by

v′m,i = vm,i(vm,i − αm)− wm,i + ηm,i + Iextm + Isynm,i ,

w′
m,i = am(bmvm,i − wm,i),

if vm,i ≥ vpeakm , then vm,i ← vresetm , wm,i ← wm,i + wjump
m ,

(3.38)

where m = p, q represents the two populations with Np and Nq cells, respectively. The
subscript {m, i} denotes the ith neuron in population m. The subscript with only {m}
represents the corresponding parameter is homogeneous within the population m, but
heterogeneous across the two populations. The total synaptic current Isynm,i depends on
the cell type. We require two maximal synaptic conductances, gsynp,p and gsynq,q , within the
populations and two, gsynp,q and gsynq,p , between the populations. Then, we have

Isynp,i (t) =
[
κgsynp,p sp + (1− κ)gsynp,q sq

] (
erp − vp,i

)
≡ GSp ·

(
erp − vp,i

)
,

Isynq,i (t) =
[
κgsynq,p sp + (1− κ)gsynq,q sq

] (
erq − vq,i

)
≡ GSq ·

(
erq − vq,i

)
,

(3.39)

where κ = Np

Np+Nq
is the proportion of strongly adapting neurons in the network and sp

(respectively, sq) represents the proportion of open synapses due to neurons in the strongly
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(respectively, weakly) adapting population. These gating variables are governed by the
single exponential synapse model,

s′m = −sm
τ sm

+
sjump
m

Nm

Nm∑
j=1

∑
k

δ(t− t
(k)
m,j). (3.40)

Thus, we can apply the approach in the previous section by considering the two populations
to be described by their own distinct density functions,

ρm(t, vm, wm, ηm) = ρwm(t, wm|vm, ηm) · ρvm(t, vm|ηm)Lm(ηm).

For the population p, we have

∂

∂t
ρvp(t, v|ηp) = −

∂

∂v

[
Gv

p(v, ⟨w|ηp⟩, s, ηp)ρvp(t, v|ηp),
]

(3.41)

where Gv
p(·) is defined as Eq. (3.7) with the subscript p for each element. A boundary

condition for the flux J v
p (·) = Gv

p(·)ρvp(·) is imposed as Eq. (3.8) according to the reset
mechanism of the Izhikevich neuron. Assume that the solution of the continuity equation
(3.41) has the form of a Lorentzian distribution,

ρp(t, v|ηp) =
1

π

xp(t, ηp)[
v − yp(t, ηp)

]2
+ x2

p(t, ηp)
. (3.42)

The population firing rate rp(t) is the flux through the threshold vpeakp . Having set the
threshold at infinity and considering the Lorentzian solution (3.42), we obtain

rp(t) = lim
v→vpeak

∫
∂ηp

Lp(ηp)ρ
v
p(t, v|η) ·Gv

p(v, ⟨w|η⟩, s, ηp)dηp

=

∫
∂ηp

1

π
xp(t, ηp)Lp(ηp)dηp,

(3.43)

where Lp defines a probability that a randomly chosen cell in the population p has an
intrinsic parameter ηp. In addition, the mean membrane potential has a relationship with
yp(t, ηp) via

⟨v(t)⟩p =
∫ ∞

−∞
yp(t, ηp)Lp(ηp)dηp, (3.44)

like that in Eq. (3.28) but with the subscript p. Assume the distribution of the heteroge-
neous parameter ηp has the form of Lorentzian function,

Lp(ηp) =
1

π

∆p

(ηp − η̄p)2 +∆2
p

. (3.45)
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The integrals in (3.43) and (3.44) can be evaluated by using the residue theorem and
Eq. (3.45). Then, denoting the complex variable zp(t, ηp) = xp(t, ηp) + iyp(t, ηp), we can
derive an explicit relation of the firing rate and the mean membrane potential,

πrp(t) + i⟨v(t)⟩p = zp(t, η̄p − i∆p), (3.46)

where zp(t, ηp) follows the complex differential equation,

∂

∂t
zp = i

[
− z2p + izp(αp +GSp)− ⟨w|ηp⟩p + ηp + Iextp + erpGSp

]
. (3.47)

Here, GSp, given in Eq. (3.39), is defined as the compound synaptic conductance resulting
from the coupling within and between populations. Applying Eq. (3.46) to (3.47) and
combining the mean adaptation dynamics in Eq. (3.12) with the subscript p lead to a
set of eight differential equations. Among them, three differential equations describe the
mean-field quantities for each population,

r′p = ∆η
p/π + 2rp⟨v⟩p − rp[GSp + αp]

⟨v⟩′p = ⟨v⟩2p − αp⟨v⟩p − ⟨w⟩p + η̄p + Iextp +GSp[e
r
p − ⟨v⟩p]− π2r2p

⟨w⟩′p = ap[bp⟨v⟩p − ⟨w⟩p] + wjump
p rp

(3.48)

for the population p with strong adaptation and

r′q = ∆η
q/π + 2rq⟨v⟩q − rq[GSq + αq]

⟨v⟩′q = ⟨v⟩2q − αq⟨v⟩q − ⟨w⟩q + η̄q + Iextq +GSq[e
r
q − ⟨v⟩q]− π2r2q

⟨w⟩′q = aq[bq⟨v⟩q − ⟨w⟩q] + wjump
q rq

(3.49)

for the population q with weak adaptation. These two subsystems are coupled through
synaptic currents, as given in Eq. (3.39), with the synaptic dynamics governed by

s′p = −sp/τ sp + sjump
p rp,

s′q = −sq/τ sq + sjump
q rq.

(3.50)

In the following we analyze the dynamics of the mean-field system and examine how
well it reproduces the macroscopic activities of the two-population network of Izhikevich
neurons. The parameter values can be found in Table 3.4. Most of these values are taken
from [158, 159], which were originally fit by [78] to data from pyramidal CA3 neurons of
the hippocampus [107]. The only parameters that differ between the two populations are
those that govern the adaptation levels, i.e., the after-spike jump sizes wjump

m and the time
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Parameter Value Parameter Value Parameter Value Parameter Value

wjump
p 0.0189 wjump

q 0.0095 ap 0.0077 aq 0.077

gsynp,p 1.2308 gsynq,q 1.2308 gsynp,q 1.2308 gsynq,p 1.2308

Iextp 0 Iextq 0 Np +Nq 10,000

Table 3.4: Dimensionless parameters for the two-coupled Izhikevich network (3.38)-(3.40).

constants am, where m = p, q. All parameters that are not shown in Table 3.4 are the
same for both populations and can be found in Table 3.3.

Fig. 3.5 compares the behavior of the mean-field model to simulations of the full net-
work. Fig. 3.5(c)-(h) show that the dynamics of the two-population network are very
well described by the reduced mean-field description in the asynchronous tonic firing (EPs
in Fig. 3.5(c), (e) and (g)) and synchronous bursting (POs in Fig. 3.5(d), (f) and (h))
regimes. Note in the bursting regime that a relatively larger fraction of neurons in the
weakly adapting population are tonically firing (compare (f) with (d)). This makes sense
since the bursting occurs due to the balance of inputs and adaptation. In the weakly
adapting population, a larger fraction of neurons receive sufficient input to prevent them
from bursting. In addition to the correspondence found at these two typical parameter
settings, Fig. 3.5(a) and (b) show that there is a great correspondence between a bifur-
cation diagram from numerical simulation of the two-population network (star symbols)
with that obtained from the mean-field model in terms of ⟨w⟩p and ⟨w⟩q, respectively.
In spite of the excellent amplitude agreement at each parameter point shown, we should
point out that the mean-field dynamics shows some quantitative differences from those of
the network model, especially at the points very close to the transition between bursting
and firing. The effect is very similar to what is seen for the single population network in
Figure 3.3. Improvement can be seen by slightly adjusting the bifurcation parameter of
the mean-field model towards higher values, although it is not as effective as that shown
in the single-population network.

Additionally, the mean-field model for the network of two coupled Izhikevich popula-
tions involves more complicated bifurcations compared with that of the single-population
network of strongly adapting Izhikevich neurons studied in the previous section. The bifur-
cation analysis in Fig. 3.6 reveals that when the proportion of strong adapting neurons is
κ = 0.8, the sequence of bifurcation is largely the same as when there is a single population
of strongly adapting neurons (compare Fig. 3.6(a) with Fig. 3.2(a)). With κ = 0.8, as the
mean intrinsic current η̄ increases, the stable periodic behavior in the mean-field system
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Figure 3.5: Two-coupled Izhikevich neural network (3.38)-(3.40) and its mean-field model (3.48)-(3.50).
Bifurcation diagrams in the plane (η̄p = η̄q = η̄, ⟨w⟩) for Population p in (a) and Pop. q in (b). Sta-
ble/unstable EP in red/black and Stable/unstable PO in green/blue. Star symbols are simulations of the
network. Time evolutions in left column: η̄p = η̄q = 0.18 (s1 in (a & b) and Fig. 3.6(a)); in right column:
η̄p = η̄q = 0.08 (s2 in (a & b) and Fig. 3.6(a)). Shown in cyan/blue for Pop. p/q are r(t) and ⟨w(t)⟩
(g & h) from the network. Shown in red are from the mean-field system. Raster plots are 300 randomly
selected neurons. Parameters: κ = 0.8, ∆η

p = ∆η
q = 0.02, others are given in Table 3.4.
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Figure 3.6: Bifurcation diagrams of the mean-field model (3.48)-(3.50) for the two-coupled Izhike-
vich neural network. (a): The plane (η̄p = η̄q = η̄, rp) when the proportion of strongly adapting
neurons κ = 0.8. (b): The plane (η̄, κ). Saddle-node bifurcations are in red; Hopf bifurcations
are in blue. (c): The plane (η̄p = η̄q = η̄, rp) when κ = 0.5. A supercritical Hopf bifurcation
occurs at η̄ ≈ 0.06 and two saddle node bifurcations at η̄ ≈ 0.028, 0.036, respectively. (d): The
plane (η̄,∆η) when κ = 0.5. Saddle-node bifurcations are in red; Hopf bifurcations are in blue.
Parameters: ∆η

p = ∆η
q = 0.02, others are given in Table 3.4.

is initiated by a SNLC connected to a subcritical HP at η̄p = η̄q ≈ 0.054 and terminated
by the same sequence in reverse at the Hopf point η̄p = η̄q ≈ 0.135. The system shows
bistability in the narrow regions between SNLC and HP. However, complex bifurcations
occur when changing the value of κ. Fig. 3.6(b) shows the bifurcation curves plotted in the
(η̄, κ) parameter plane. Saddle-node bifurcation curves (red) meet and form cusp points or
tangentially intersect the curves of the HP bifurcation (blue) and produce a zero-Hopf bi-
furcation. When κ = 0.8, the system has two Hopf points, also shown in Fig. 3.6(a). When
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the proportion is reduced to κ = 0.5, the system undergoes two saddle-node bifurcations
and one HP bifurcation. These behaviors are also shown in the one-parameter bifurcation
diagram Fig. 3.6(c). Further, one can see from Fig. 3.6(c) that the stable period behaviour
is now initiated by what appears to be a saddle-node bifurcation on invariant circle (SNIC)
or a homoclinic bifurcation (at η̄p = η̄q ≈ 0.036) and terminated by a supercritical HP bi-
furcation at η̄p = η̄q ≈ 0.06. Thus, the stable PO has a very low frequency, which rapidly
increases as the η̄ increases. Finally, Fig. 3.6(d) shows a two-parameter bifurcation diagram
in the (η̄,∆η) parameter plane with κ fixed at 0.5. Complicated bifurcation structures,
including the Bogdanov-Takens bifurcation, may occur for nearby parameter values. We
leave further investigation of this complex bifurcation structure for future work.

Since periodic solutions in the mean-field model correspond to synchronous bursting in
the full network, we can use these results to predict the effects of parameters on network
behavior. Comparing the dashed lines in Fig. 3.6(b) (which correspond to Figs. 3.6(a) and
(c), respectively) shows that decreasing the proportion of strongly-adapting neurons, κ,
makes bursting less likely in the sense that the range of values of the mean current η̄ for
which bursting occurs is decreased. Fig. 3.6(d) shows that decreasing the heterogeneity of
the currents, ∆η, has a similar effect. Further, a new transition to bursting is possible. In
the two-parameter diagrams Fig. 3.6(b) and (d), the bursting region is now bounded in part
by the HP manifold (blue) and in part by the right-most saddle-node bifurcation (red). The
frequency of stable bursting behavior near the saddle-node bifurcation is expected to be
strongly dependent on the mean intrinsic current, η̄, with quite low frequency possible near
the transition point. The new transition occurs when the proportion of strongly-adapting
neurons, κ, and the heterogeneity of the currents, ∆η, are both small enough.

Fig. 3.7 further illustrates the impact of the proportion of strongly-adapting neurons in
the network. The boundary of the bursting region is shifted into the high mean intrinsic
current region for a higher proportion (shown in Fig. 3.7(a)) and the rhythmic regime
appears as κ increases (shown in Fig. 3.7(b)). This indicates that stable bursting behavior is
more likely in a network with a higher proportion of strongly adapting neurons. Fig. 3.7(c)
and (d) show a comparison between the full network dynamics and the reduced mean-field
system. The reduced description captures the essential shape of the firing activity of the
full network. There is a small discrepancy in the approximation of the mean adaption
variable ⟨w⟩. This may be due to the failure of the assumption ⟨w|η⟩ ≫ wjump during the
derivation of the dynamics of ⟨w⟩ (see Eq. (3.11)).
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Figure 3.7: The two-coupled Izhikevich neural network (3.38)-(3.40) and its mean-field model
(3.48)-(3.50). (a): Hopf bifurcations of the mean-field system with κ = 0.6, 0.7, 0.8. (b):
Bifurcation diagram in (κ, rp). Stable/unstable EP in red/black, and stable PO in green. (c)
& (d): Time evolutions when κ = 0.6 (left) and 0.8 (right). Shown in cyan (population p) and
blue (population q) are r and ⟨w⟩ of the network. Shown in red are from the mean-field system.
Parameter values: η̄p = η̄q = 0.08, ∆η

p = ∆η
q = 0.04 (s3 in (a)), others are given in Table 3.4.
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3.6 Discussion

In this chapter, we have shown that it is feasible to extend the OA theory [163] or the
equivalent Lorentzian ansatz [150] to the derivation of mean-field models for a network of
Izhikevich neurons. The difficulty lies in how to achieve a closed set of mean-field equations
with the inclusion of the mean-field expression of the adaptation variable. To do this we
turned to the population density approach for spiking neurons, which was extended to
two dimensional integrate-and-fire models by [158, 159]. The quasi-steady approximation
for the continuity equation in [159] was replaced by the Lorentzian ansatz to remove the
assumption of separation of time scales. The moment closure approach [140] was deployed
to remove the dependence of the adaptation variable on the membrane potential and close
the mean-field system.

We have derived and validated the mean-field model for a network of heterogeneous
Izhikevich neurons that display SFA through a recovery variable. Furthermore, we have
demonstrated that it is straightforward to apply our approach to multiple populations
where the forces of adaptation, inhibition, or excitation interact. The mean-field mod-
els have exhibited qualitative and quantitative agreement with the full network. Us-
ing bifurcation analysis, we have identified and characterized collective bursting regimes
that emerge given appropriate levels of adaptation, external stimulus, and proportion of
strongly adapting neurons. The parameter values used in the numerical examples are
non-dimensionalization of those fit to actual neuronal data collected in the literature. Bi-
furcation analysis for the mean-field system can be used to make predictions about the
biological networks being studied, e.g. the emergence of synchronous bursting in the CA3b
region of the hippocampus in this chapter. Our model, an extension of those proposed by
Dur-e-Ahmad et al. [78] and Nicola et al. [158, 159], is motivated by several observations.
In their studies of isolated pyramidal cells in the CA3 region of the hippocampus, Hemond
et al. [107] observed that approximately 13% of neurons were intrinsically bursting, while
the majority exhibited regular spiking, with 37% showing strong SFA and 46% showing
weak SFA. Although it is well known that SFA in individual neurons can lead to bursting
behavior when neurons are coupled [86, 207], it is less clear whether this phenomenon occurs
when a significant proportion of neurons exhibit weak adaptation. Our mean-field model
(3.48)-(3.50) allows us to compute bifurcation manifolds and types for the network with
varying proportions of strongly and weakly adapting neurons. This helps us to understand
the impact of various parameters on the transition between the behavior of asynchronous
tonic firing and synchronous bursting in the actual neural network. In particular, we found
that the larger proportion of weakly-adapting neurons (small κ) makes bursting less likely
and the decreasing heterogeneity of the currents (small ∆η ) has a similar effect. While the
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former conclusion is not surprising, the latter is more interesting. Given the percentage
of weakly vs. strongly adapting neurons in the data of [107], our results indicate that
adaptation-induced network bursting would only be possible if there is sufficient, but not
too much, heterogeneity in the intrinsic applied current. Since the intrinsic current deter-
mines the firing rates of the model neurons, this shows that the heterogeneity of the firing
rates may be an important factor in the generation of bursting behavior. We also note that
increasing the proportion of weakly-adapting neurons changed the bifurcation involved in
the transition to bursting behavior. With sufficient weakly-adapting neurons (50%) this
transition was a SNIC or homoclinic bifurcation. For the network, this translates into the
potential increased variability of the network bursting frequency, including the possibility
of quite low bursting frequency.

To assess the validity of our mean-field approximation, we examine all the assumptions
that are imposed during the derivation. They are listed in order of appearance as follows.

1. All-to-all connectivity within the population and between different populations.

This assumption is reasonable for the application to the CA3 region of the hippocampus
we considered, as this region is highly recurrently coupled [8, 9, 35]. It is possible to expand
our approach to sparsely coupled networks with a distributed connection or a distributed
coupling strength using the techniques in [89, 50, 127, 27].

2. N →∞, the thermodynamic limit.

In theory, the mean-field model is a valid description for the network of neurons in
the thermodynamic limit. The CA3 region of the hippocampus contains estimated 29,000
neurons in rats and 87,000 neurons in humans [19, 216]. In finite-size numerical exper-
iments, the spread of the network variables around the mean narrows as the number of
neurons increases, and thus becomes closer to the dynamics of the mean-field model. One
can see Fig. 3.5 for a comparison, where Np = 8000 for the strongly adapting neurons and
Nq = 2000 for the weakly adapting neurons. The same trend can be seen in [55, Fig. 6].

3. ⟨w|η⟩ ≫ wjump, the mean adaptation variable with the parameter η is sufficiently
greater than the homogeneous after-spike jump value.

This assumption is required when deriving the differential equation of ⟨w⟩. The small
discrepancy between the mean-field model and the population of strongly adapting neurons
may result from a partial failure of the requirement; see ⟨w(t)⟩ of the population p in
Fig. 3.5(g) and (h), Fig. 3.7(c) and (d). However, the mean-field description still captures
the essential shape and frequency of the firing activity of the network. The accuracy could
be improved by including high-order terms in the Taylor expansion (see Eq. (3.11)). This
will give rise to an extra term in the final mean-field equation for ⟨w⟩′.
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4. ⟨w|v, η⟩ = ⟨w|η⟩, first-order moment closure assumption, also called the adiabatic
approximation.

This assumption implies fast dynamics of the membrane potential. We could employ
a high-order moment closure approximation, although we need to assess the cost of the
added effort in terms of improving the accuracy of the resulting mean-field model [140].

5. ρv(t, v|η) = 1
π

x(t,η)[
v−y(t,η)

]2
+x2(t,η)

, the Lorentzian ansatz on the conditional density

function.

The derivation of the differential equations of r(t) and ⟨v(t)⟩ started by writing the den-
sity function in conditional form ρ(t, v, w, η) = ρw(t, w|v, η)ρv(t, v|η)L(η); see Eq. (3.21).
If we rewrite it as ρ(t, v, w, η) = ρη(t, η|v, w)ρvw(t, v, w) and assume that ρvw(t, v, w) has
the Lorentzian shape, we can use the approach in this chapter to obtain a different mean-
field system. The paper [159] shows how changing the expansion of the population density
function can drastically change the resulting mean-field model. The expansion we used in
this chapter corresponds to that used to develop the “Mean-field system III” in [159].

6. vpeak = −vreset →∞, limit of the resetting rule when neurons fire.

The parameter values used in this chapter are based on actual neuronal data except the
resetting values. This choice is essential for the validity of the Lorentzian ansatz Eq. (3.27).
It also facilitates analysis by linking the QIF model to the theta neuron model by changing
the variable v = tan(θ/2) [117]. Although not precisely biologically realistic, the theta
model and its variants have been used in the literature to explore phenomena, such as
chaotic dynamics in large, sparse-balanced networks [152], rhythm generation [122], wave
propagation in the cortex [162, 87, 39] and models for EEG [40]. For the neuron model
that exhibits a bifurcation of SNIC, it is possible to reduce it to the theta model with
adaptation [85, 82, 122]. For a system not near a SNIC, but near some other bifurcation
satisfying fairly general and biophysiologically plausible conditions, one can still obtain
the theta model with adaptation [114]. When dealing with a biological network based
on experimental data, we should treat the assumption with caution, as changing vpeak
and vreset can affect the firing rates and estimation of the mean membrane potential. In
numerical experiments, we choose vpeak = −vreset = 200 as in [76], which is far from the
normal range of membrane potential v. We have found that different spiking thresholds
lead to some bias in averaging v over the full network, even if they meet the assumption
requirement. Montbrió et al. [150] attempted to address this by adding a refractory period
to the network model, that is, the time for neurons taken from vpeak to infinity and minus
infinity to vreset. This effectively makes the firing rate and the mean membrane potential
of the network match those of the theta model and hence the mean-field model. Gast
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et al. [97] made a similar compensation for the firing rate in the refractory period by
adjusting the external current Iext. In addition, to avoid numerical delicacies near the
spiking threshold, one can transform the QIF form into the theta neuron when performing
the numerical simulation [175] .

7. L(η) = 1
π

∆η

(η−η̄)2+∆2
η
, distribution of the heterogeneous current.

Many parameters can be sources of heterogeneity in a network. Here we chose the
intrinsic current η, but our approach could be applied to other choices, such as the synaptic
conductance gsyn. In addition, the choice of the Lorentzian distribution function is just a
mathematical convenience. It can sharply reduce the complexity of the resulting mean-field
model when evaluating the integrals in (3.28) and (3.29). Unfortunately, the Lorentzian
distribution is physically implausible since both its expected value and its variance are
undefined. Other distributions, including Gaussian distributions, have been discussed in
the literature. Particularly, if a distribution L(η) has n complex-conjugate pole pairs,
one can easily obtain the mean-field model consisting of n complex-value ODEs in the
form (3.32) [163]. Furthermore, both Ott et al. [164] and Montbrió et al. [150] pointed
out that mean-field systems obtained using the Lorentzian and Gaussian distributions
had qualitatively identical bifurcation structures. However, Klinshov et al. [123] argued
that the quantitative difference did matter in terms of both transient and asymptotic
dynamics. They also showed how to compute the integrals in (3.28) and (3.29) with the
help of rational approximation and residue theory when L(η) is a Gaussian distribution.
Certainly, the resulting mean-field model has higher dimensions.

For numerical experiments, Montbrió et al. [150] generated a set of N input currents
that accurately reproduced a Lorentzian distribution. The same set of input currents was
used for all simulations with N neurons and was given by

ηi = η̄ +∆η tan

(
π

2
· 2i−N − 1

N + 1

)
. (3.51)

In this chapter, we take a different approach, except for Fig. 3.3. We generated the dis-
tribution by using the technique of inverse transform sampling. Specifically, for the ith
neuron, we have

ηi = η̄ +∆η tan
(
π(ri − 0.5)

)
, (3.52)

where value of the cumulative distribution function ri is randomly sampled from the uni-
form distribution on (0, 1). This is a basic method for pseudo-random number sampling
from any probability distribution. The advantage is that the distribution of the heteroge-
neous currents is more realistic. The drawback is that the number of neurons N involved
in the simulation must be large enough to exhibit a good approximation of the Lorentzian

61



distribution. For example, N = 104 in our simulations. Additionally, the numerical results
obtained in each simulation are slightly different, since the current distributed to each neu-
ron is different each time. Specifically, for our mean-field approximations for the network
of Izhikevich neurons (both single and two populations), the deterministic rule (3.51) gives
a narrower spread of the variable around the value of the mean-field model for a given
N than the random algorithm (3.52). However, the random algorithm is still capable of
achieving a good match of the amplitude and (usually) frequency of POs between the full
network and the mean-field model; see the details in Fig. 3.8. As another example, Ciszak
et al. [55] showed that similar accuracy of the mean-field results was observed by employ-
ing a network of N = 104 nodes with the deterministic generation rule and one of N = 106

nodes with the random algorithm.

Figure 3.8: Time series of r(t) for the Izhikevich neural network (3.2)-(3.4) (blue) and its mean-
field model (3.37) (red). We also show different distributions of the heterogeneous current η
when its mean η̄ = 0.12. In (a), the currents are generated deterministically according to the rule
(3.51), while (b) and (c) are two independent experiments where the currents are generated in a
random way as Eq. (3.52). Other parameters are the same as those in Fig. 3.2(d).

8. η ∈ (−∞,∞), range of the heterogeneous current.

This assumption is adopted in the evaluation of integrals (3.28) and (3.29) using the
residue theorem. For the neural network to be realistic in spite of this requirement, the
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distribution range of the heterogeneous parameter should be much wider than its HWHM
∆η to achieve Eq. (3.36).

In sum, all the above eight requirements are not truly indispensable for the applicability
of the developed mean-field models. Some choices are simply mathematical convenience,
and insights gained from the macroscopic description are more generally applicable.

To our knowledge, we were the first to analytically derive mean-field models in terms
of the population firing rate for a spiking neural network with adaptation without re-
lying on assumptions of explicit separation of time scales, weak coupling, or averaging.
Nicola and Campbell [158, 159] proposed a set of mean-field models for the homogeneous
and heterogeneous Izhikevich network. They used a quasi-steady approximation for the
continuity equation (3.25) by assuming a sufficiently large time scale of adaptation. We
replaced it by employing the Lorentzian ansatz (3.27) to remove this limitation. Their
resulting mean-field models were a switching system of ODEs and the bifurcation theory
of non-smooth systems had to be involved to perform further dynamical analysis. We used
similar parameter values, and thus our work can be directly compared. The shape of the
bursting region and dependence of bursting on various parameters are consistent, which is
satisfactory since the bursting mechanism in the underlying network model is the same.
Interestingly, we have found a novel mechanism for the emergence of synchronous bursting
in the neural network of two-coupled populations. The bursting behavior was initiated
by what appeared to be a SNIC bifurcation or a homoclinic bifurcation (see Fig. 3.6(c)).
Moreover, our results greatly improve on those of [158, 159] in the sense of representing the
frequency of bursting. Gast et al. [96] developed a smooth mean-field system for the QIF
network with adaptation. The SFA mechanism acted additively on the dynamics of the
membrane potential, just like the Izhikevich neuron. However, its adaptation variable was
specifically expressed as a convolution of the membrane potential with an integral kernel.
This treatment facilitates finding the closed set of mean-field equations, but lacks general-
ity. Furthermore, in [96] it was also assumed that the adaptation dynamics was slow enough
so that the variable was considered constant, which eventually led to the same derivation
process as in [150]. Recently, Bandyopadhyay et al. [15] derived a mean-field model for
the network of Hodgkin-Huxley neurons including the effect of ion exchange between the
intracellular and extracellular environment. They used quasi-steady state assumptions and
numerical fitting to approximate the Hodgkin-Huxley model with a piecewise-defined QIF
model and then applied the Lorentzian ansatz [150]. However, their incorporation of the
ion-exchange dynamics is ad hoc. By comparison, our approach provides explicit and solid
mathematical foundations underlying the derivation process and shows how to incorporate
such additional variables into a mean-field model.

In addition to studies built on the OA mean-field framework dedicated to the network
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of QIF-type neurons with adaptation, there are a few other approaches to derive mean-
field models for populations of other models of adapting neurons. Overall, the adiabatic
approximation (first- or higher-order statistic moments) is commonly employed to deal
with the adaptation variables. The differences lie in developing the dynamics of the pop-
ulation firing rate. For example, di Volo et al. [73] adopted a master equation formalism
[79] to obtain a macroscopic Markovian description of the homogeneous network of AdEx
integrate-and-fire neurons and subsequently extended it to the corresponding heteroge-
neous network [72]. Simultaneously, Carlu et al. [47] generalized the approach to networks
of more complex neuron models, including Hodgkin-Huxley and Morris-Lecar. The main
ingredient of the master equation formalism is the derivation of a stationary transfer func-
tion. The key assumptions in the derivation of the mean-field model are that the network
dynamics be asynchronous and that the time scale of the adaptation be slower than the
spiking dynamics of individual neurons [73]. Therefore, the deduced mean-field model
cannot address the emergence of bursting-induced synchronization, but is well suited to
describe the response of networks to external stimuli (see Fig. 3 and 4 in [47]). In addition,
different from the above mean-field approximation, which takes into account the network
with finite neurons, Cakan and Obermayer [41] presented a mean-field model based on a
linear-nonlinear cascade [14] of a network of AdEx neurons in the thermodynamic limit
N →∞. The approach begins with the replacement of the synaptic current by a Gaussian
white noise process and then formulates the stochastic network using the Fokker-Planck
equation as the continuity equation. In our approach, we consider a deterministic network
and use the counterpart continuity equation (3.6). Furthermore, in [41], similar to the
master equation formalism, pre-computed stationary transfer functions are necessary to
derive the cascade-based mean-field model, which indirectly links to the dynamics of the
population firing rate and suffers the same incapability to describe neurons that display
bursting behaviors. In contrast, our approach introduces a Lorentzian ansatz as the solu-
tion to the continuity equation that leads to simpler and direct firing rate equations as the
final mean-field description and goes beyond the limitation to bursting.

Interaction between fast and slow processes in a network of spiking neurons can induce
much richer dynamics, especially the emergence of population bursting activity and the
resulting spike synchronization. Those regimes are of interest to describe both normal and
pathological neural network dynamics. The mean-field models developed in this chapter
provide a tractable and reliable tool for investigating the underlying mechanism of brain
function from the perspective of computational neuroscience. For example, the emergence
of bursting in the CA3b region of the hippocampus, which we described before, and the
onset of seizures in [181], where a computational analysis was performed for a network of
500 Izhikevich neurons to explore a novel hypothesis about the seizure initiation. We expect
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that our mean-field reduction models can provide a reasonable interpretation for large-scale
numerical simulations and experimental data. In addition, the impact of time delay, gap
junctions, and realistic network topology may be considered within the same framework,
allowing for the application to more biologically realistic network models. The next chapter
will focus on the impact of time-delayed coupling between neurons on collective dynamics.
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Chapter 4

Collective Dynamics of Izhikevich
Neural Networks with Synaptic
Delay

In Chapter 3, we demonstrated the efficacy of mean-field approximations within the Ott-
Antonsen (OA) theoretical framework. The resulting low-dimensional dynamical system
connects the emergent collective dynamics to microscopic characteristics of individual neu-
rons, valid in the thermodynamic limit. In this chapter, our focus shifts to understanding
neural systems’ behavior in the presence of time delays. We establish the OA-based mean-
field descriptions for Izhikevich neural networks with global delayed coupling (Sec. 4.2),
examine the existence of equilibrium points (EPs) and their linear stability (Sec. 4.3). We
investigate how the emergence of collective oscillations (COs) is impacted by three main
factors: the heterogeneity of the quenched input current, the intensity of spike frequency
adaptation (SFA), and the time delay during neuron communications (Sec. 4.4).

4.1 Time Delay in Neural Systems

Time delays are an important element that cannot be ignored when modeling a neural
network. They typically range from 10 to 200 ms, comparable to the characteristic time
scales of neural systems, which are generally between 10 and 250 ms [36]. Therefore, they
can significantly influence the system dynamics. These effects are diverse. Delays can be
associated with the emergence or prevention of oscillations [193, 179], control phase locking
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[61], and induce multi-stability [192, 52]. There are several sources of time delay in the
neural system. These include propagation delays as action potentials travel along the axon
or dendrite, as well as delays in signal transmission across synapses. These delays typically
affect the neuron’s membrane potential through coupling mechanisms. Consider a network
of N neurons modeled by the general equations

v′i(t) = F (vi(t)) + Iapp,i +
n∑

j=1

Iij
(
vi(t), vj(t)

)
, k = 1, . . . , N.

Here, vi is the ith neuron’s membrane potential, Iapp,i is the applied current, the function
F (·) represents the intrinsic dynamics of the neuron and the function Iij(·) represents the
current input to the ith neuron from the jth neuron because of the coupling. Depending
on the cell structures and the specific questions being addressed, time delays can be rep-
resented in different ways. The common way is to assume that time delays are constant.
In this case, the coupling function becomes

Iij
(
vi(t), vj(t− τij)

)
.

For a simpler approach, it could be assumed that delays are homogeneous throughout the
network. If they are heterogeneous, a probability distribution function could be introduced.
A more complicated approach is to integrate a delay plasticity mechanism into the network
[168]. It is inspired by evidence that axonal white matter exhibits adaptability through
learning and behavior [91], and that myelin continues to form around axons in an activity-
dependent manner in the mature neural system [7, 16]. These findings suggest the presence
of a state-dependent propagation delay τ(t). Furthermore, time delays that occur during
the transmission of action potentials across synapses are usually implicitly included by
adding additional models that represent the chemical kinetics of the synapse, e.g., the
models introduced in Sec. 2.4.1. We will consider this scenario in Chapter 5.

The study of the impact of delays, especially on coupled systems of neuronal oscillators,
has been an area of active research and posed a significant challenge. When oscillators are
weakly coupled, it is possible to reduce the full coupled model with a stable limit cycle to
a phase description using the methods of phase reduction [44, 5]. However, this effort is
still formidable. In this chapter, we study the delay effect by establishing low-dimensional
mean-field systems for the large-scale coupled system of neuronal oscillators. We mainly
consider constant delays. For an overview of the role of time delays in neural systems, we
refer the reader to the papers [43, 220, 221, 84].
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4.2 Mean-Field Modeling for Neural Networks with

Synaptic Delay

4.2.1 Mean-Field Systems with General Distributed Delay

We consider the network of heterogeneous, all-to-all coupled Izhikevich neurons given by

v′i(t) = vi(vi − α)− wi + Iext(t) + ηi + Isyn,i(t),

w′
i(t) = a(bvi − wi),

if vi ≥ vpeak, then vi ← vreset, wi ← wi + wjump,

(4.1)

for i = 1, 2, . . . , N . The differential equations for vi and wi determine the neural activity
leading to an action potential. Each neuron has three sources of input current: a common,
time-varying external component Iext(t), a heterogeneous, quenched intrinsic component
ηi, drawn from a probability distribution, and a recurrent synaptic component representing
input from other neurons via synapses, Isyn,i. For the connection between neurons, we use
the standard conductance-based synaptic current model [88], as introduced in Chapter 2,

Isyn,i(t) = gsynsi(t)
(
er − vi(t)

)
= gsyns(t)

(
er − vi(t)

)
, (4.2)

where the maximum synaptic conductance gsyn determines the coupling strength and the
reversal potential er, which is usually 0 mV for excitatory synapses and negative for in-
hibitory ones, determines whether the synapses increase or decrease the likelihood of firing
of the postsynaptic neuron. The term gsyn(er − vi) in Eq. (4.2) is sometimes replaced by
a constant for simplicity, e.g., in [150, 178, 90], such that positive/negative Isyn represents
the excitatory/inhibitory synaptic coupling, respectively. While simplifying the mathe-
matics, it ignores the physiological fact that the type of synaptic coupling is determined
by the value of er and the coupling changes sign with (er − vk). In addition, the synaptic
gating variable si is affected by the firing of presynaptic neurons and si = s for an all-to-all
coupling network (see details in Sec. 3.2). For a single exponential synapse, the governing
equation is

s′(t) = −s(t)/τs + sjumpu(t), (4.3)

where τs and sjump are parameters and u(t) represents the mean spike train injected from
all presynaptic neurons, given by

u(t) =
1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ) (4.4)
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When the number of neurons in the network goes to infinity, that is, N →∞, we have

r(t) = u(t), (4.5)

where r(t) is the population firing rate, i.e., the population-averaged number of spikes per
unit time (see Sec. 3.3.1). In the limit vpeak = −vreset = ∞, the model (4.1) represents a
network of adaptive theta neurons defined in the domain θ ∈ [−π, π) [117, 85, 104, 126]
via the transform v = tan(θ/2). Such a network satisfies the conditions for the existence of
the low-dimensional OA manifold in terms of θ [163] or the Lorentzian ansatz in terms of
v [150] that guarantees the evolution of network dynamics as N →∞. Further reduction
in the dimensionality of the resulting mean-field system can be achieved by choosing a
Lorentzian distribution for the current parameters ηi with half-width at half-maximum
(HWHM) ∆η, centered at η̄,

L(η) = 1

π

∆η

(η − η̄)2 +∆2
η

. (4.6)

Thus, together with Eqs. (4.3) and (4.4), we can obtain a mean-field system in terms of
the population firing rate r, mean membrane potential ⟨v⟩ and mean adaptation current
⟨w⟩, given by

r′ = ∆η/π + 2r⟨v⟩ −
(
α + gsyns

)
r,

⟨v⟩′ = ⟨v⟩2 − α⟨v⟩ − π2r2 − ⟨w⟩+ gsyns
(
er − ⟨v⟩

)
+ η̄ + Iext,

⟨w⟩′ = a
(
b⟨v⟩ − ⟨w⟩

)
+ wjumpr.

(4.7)

In the thermodynamic limit, N →∞, this mean-field model is valid to represent a hetero-
geneous all-to-all coupled population of N Izhikevich neurons without synaptic delay. See
details in Chapter 3. Note that the assumption of vpeak = −vreset = ∞ is not realistic for
biophysiological neurons, as their specific and finite values influence the spiking behavior of
individual neurons [113, 115]. However, the study in [97] shows that the realistic reset rule
leads mainly to an increase in the population firing rate, which can be compensated for by
rescaling the current Iext (equivalently, η̄) in the mean-field model. In addition, the sym-
metry constraint between vpeak and vreset can be addressed by introducing their ratio [151].
While the limit vpeak → ∞, vreset → −∞ is still taken for the mean-field approximation,
the ratio is held fixed and different from −1.

If communication between neurons is not instantaneous, that is, there exists a delay
between spike emission and reception, then for any neuron in an all-to-all network, the
spike train resulting from all other neurons obeys the following equation,

u(t) =
1

N

N∑
j=1

∑
k

δ(t− t
(k)
j − τj), (4.8)
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where τj is the synaptic delay of the signal sending from the jth neurons. For the fixed,
homogeneous delay, τj = D and the mean spike train is changed to

u(t) =
1

N

N∑
j=1

∑
k

δ(t− t
(k)
j −D). (4.9)

If the delay is heterogeneous and follows some probability density function h(τ) such that
h(τ)dτ represents the fraction of links with delays between τ and τ + dτ . In the thermo-
dynamic limit, the mean spike train can be approximated by the integral in terms of r(t)
[133, 178],

u(t) =

∫ ∞

0

r(t− τ)h(τ)dτ. (4.10)

Thus, the resulting mean-field description for the network with general distributed delay
is characterized by Eqs. (4.3), (4.7) and (4.10). Further simplification can be achieved
by a proper choice of the distribution function h(τ). We will show some examples in the
following section.

4.2.2 Example Mean-Field Models

Removing the integral (4.10) from the general mean-field model can be accomplished by
appropriately selecting the distribution function h(τ). In this section, we present some
typical distributions of h(τ) and the corresponding mean-field models.

For example, h(τ) may be given by the gamma distribution

h(τ) =
An

Dn
τn−1e−

nτ
D =

An

Dn
τn−1e−τ/τu (4.11)

with a natural number, n = 1, 2, . . . . Here, D is the mean value of delays, An = nn/(n−1)!
is a normalization parameter, and τu = D/n is related to the standard deviation of τ ,

δτ =
√
⟨τ 2⟩ − ⟨τ⟩2 = D/

√
n. (4.12)

Next, we will transform the integral in Eq. (4.10) into a nth order ordinary differential
equations (ODEs) using the so-called linear chain trick [193, 178]. For convenience, we
rewrite the gamma distribution as

hn
β(τ) =

βn

(n− 1)!
τn−1e−βτ ,
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where β = n/D. An important property is that the functions hl
β(0) satisfy the equations,

h1
β(0) = β,

hl
β(0) = 0, l = 2, . . . , n.

Define functions ul(t) for l = 1, 2, . . . , n by

ul(t) =

∫ ∞

0

r(t− τ)hl
β(τ)dτ =

∫ t

−∞
r(τ)hl

β(t− τ)dτ.

Then for l > 1, where hl
β(0) = 0, we have

dul

dt
=

d

dt

[∫ t

−∞
r(τ)hl

β(t− τ)dτ

]
= r(t)hl

β(0) +

∫ t

−∞
r(τ)

d

dt
hl
β(t− τ)dτ

=

∫ t

−∞
r(τ)β

[
hl−1
β (t− τ)− hl

β(t− τ)
]
dτ

=

∫ ∞

0

r(t− τ)β
[
hl−1
β (τ)− hl

β(τ)
]
dτ

= β
[
ul−1(t)− ul(t)

]
.

Whereas for l = 1, where h1
β(0) = β, the same argument gives

du1/dt = β
[
r(t)− u1(t)

]
.

For consistency, let u0(t) = r(t). Thus, we obtain a set of equivalent ODEs for the mean
spike train with the gamma-distributed kernel,

τudu
l/dt = ul−1(t)− ul(t), l = 1, · · · , n,
u0(t) = r(t),

un(t) = u(t),

where τu = 1/β = D/n. In a more compact form, we can rewrite these equations as(
τu

d

dt
+ 1

)n

u(t) = r(t). (4.13)
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For example, for n = 2, Eq. (4.13) becomes(
τu

d

dt
+ 1

)2

u(t) = r(t) ⇒ τ 2u
d2

dt2
u(t) + 2τu

d

dt
u(t) + u(t) = r(t).

Therefore, the Izhikevich network with gamma-distributed delay can be reduced to a mean-
field system composed of a set of ODEs (4.3), (4.7) and (4.13).

Moreover, if we consider a gamma distribution with a nonzero minimum delay,

h(τ) =

{
0, 0 ≤ τ < τmin,
An

Dn (τ − τmin)
n−1e−(τ−τmin)/τu , τmin ≤ τ,

(4.14)

then the integral in Eq. (4.10) is changed into a nth order differential equation(
τu

d

dt
+ 1

)n

u(t) = r(t− τmin), (4.15)

and the equivalent system of equations is given by

τudu
l/dt = ul−1(t)− ul(t), j = 1, · · · , n
u0(t) = r(t− τmin),

un(t) = u(t).

Thus, the resulting mean-field system is characterized by delay differential equation (DDE)s
with a constant delay τmin.

Furthermore, we can relate the mean spike train (4.8) to the population firing rate r(t)
using the integral (4.10). It can be seen that as n → ∞, the gamma distribution (4.11)
becomes the Dirac delta function h(τ) = δ(τ −D) when the width of the distribution, the
standard deviation of the delay (4.12), approaches zero. This situation corresponds to the
fixed homogeneous delay on all links, that is, τj = D for all j in Eq. (4.8), and the integral
(4.10) becomes

u(t) = r(t−D). (4.16)

The resulting mean-field system is characterized by DDEs with a constant delay D, that is,
Eqs. (4.3), (4.7) and (4.16). Additionally, when D = 0, meaning h(τ) = δ(τ), this scenario
corresponds to a neural network without delay (see (4.9) with D = 0). We have

u(t) =
1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ) = r(t).

This is consistent with the argument in Chapter 3, where we establish the connection
between the population firing rate r and the mean spike activity u based on the definition
of the number of spikes (see Eq. (3.13)-(3.15)).
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4.3 Linear Stability Analysis of Delayed Mean-Field

Systems

In this section, we investigate the existence of EPs and their linear stability for the mean-
field system with general distributed delay. Specifically, we examine the mean-field system
with the limit of heterogeneity ∆η → 0 from the perspective of stationary states, i.e., EPs.

4.3.1 Existence of Equilibrium for Weak Heterogeneity

The mean-field system (4.3), (4.7) and (4.10) is defined by four macroscopic variables: r(t),
v(t), w(t) and s(t). We denote the EP as (r∗, v∗, w∗, s∗). Standard analysis shows that it
obeys the following equations,

∆η/π + 2r∗v∗ −
(
α + gsyns∗

)
r∗ = 0,

v2∗ − αv∗ − π2r2∗ + gsyns∗
(
er − v∗

)
− w∗ + η̄ + Iext = 0,

a (bv∗ − w∗) + wjumpr∗ = 0,

−s∗/τs + sjumpr∗ = 0.

Here, we employ the normalization condition∫ ∞

0

h(τ)dτ = 1.

After some algebraic manipulations, we have

v∗ =
J

2
r∗ −

∆η

2π

1

r∗
+

α

2
,

w∗ = bv∗ +
wjump

a
r∗,

s∗ = τssjumpr∗,

where J = gsynτssjump and r∗ satisfies the quartic equation

C4r
4
∗ + C3r

3
∗ + C2r

2
∗ + C1r∗ + C0 = 0, (4.17)

with

C4 = J2 + 4π2,

C3 = 2J(α + b− 2er) + 4wjump/a,

C2 = α2 + 2αb− 4Iext − 4η̄,

C1 = −2b∆η/π,

C0 = −∆2
η/π

2.

(4.18)
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Note that for biophysical interpretation, the population firing rate r should be non-negative
and the proportion of open ion channels s should be bounded by 1. So we have 0 ≤ r∗ ≤
1/(τssjump).

The neural network we consider has heterogeneous input currents ηi. It follows a
Lorentzian distribution (4.6) with ∆η measuring its width. The value of ∆η determines the
level of heterogeneity. ∆η = 0 implies a homogeneous network, where each neuron is given
the same current η. The larger ∆η, the more heterogeneous the network is. Since ∆η = 0
corresponds to the neurons in the network being strictly identical, the correct approach to
derive the mean-field model is to apply the Watanabe-Strogatz theory [213, 214], rather
than the OA theory [163] used in this paper. However, it has been shown that the OA
mean-field model for identical neurons is representative of the existence but not stability
of solutions of the full network [174]. Since the mean-field model equations (4.7) are
continuous functions of ∆η, we expect that the EP is to vary continuously with ∆η. To
investigate this further, we focus on the case of weak heterogeneity, that is, the limit
∆η → 0, and apply perturbation analysis.

We suppose that ∆η is a small parameter and define ∆η = ϵ ≪ 1. Then, we rewrite
the equation for r∗ as

C4r
4
∗ + C3r

3
∗ + C2r

2
∗ + C̃1ϵr∗ + C̃0ϵ

2 = 0,

where C̃1 = −2b/π and C̃0 = −1/π2. We then look for its roots in the form

r∗ = r∗,0 + r∗,1ϵ+ r∗,2ϵ
2 +O(ϵ3). (4.19)

Substituting this expression, expanding and collecting terms in like powers of ϵ yield the
O(1) equation

C4r
4
∗,0 + C3r

3
∗,0 + C2r

2
∗,0 = 0.

This has the solutions r∗,0 = 0, 0 and

r±∗,0 =
−C3 ±

√
C2

3 − 4C4C2

2C4

. (4.20)

The O(ϵ) equation is

4C4r
3
∗,0r∗,1 + 3C3r

2
∗,0r∗,1 + 2C2r∗,0r∗,1 + C̃1r∗,0 = 0,

where C̃1 = C1/ϵ = −2b/π. With r∗,0 = 0, this gives no constraint on r∗,1. With r∗,0 ̸= 0,
we have

r±∗,1 =
−C̃1

4C4r2∗,0 + 3C3r∗,0 + 2C2

, when r∗,0 ̸= 0.
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The O(ϵ2) equation is(
4C4r

3
∗,0 + 3C3r

2
∗,0 + 2C2r∗,0

)
r∗,2 +

(
6C4r

2
∗,0 + 3C3r∗,0 + C2

)
r2∗,1 + C̃1r∗,1 + C̃0 = 0,

where C̃0 = C0/ϵ
2 = −1/π2. With r∗,0 = 0, this gives no constraint on r∗,2. However, r∗,1

should satisfy (
6C4r

2
∗,0 + 3C3r∗,0 + C2

)
r2∗,1 + C̃1r∗,1 + C̃0 = 0,

which gives

r±∗,1 =
−C̃1 ±

√
C̃2

1 − 4C̃0C2

2C2

, when r∗,0 = 0.

Substituting it into the solution (4.19) yields

r∗ = r±∗,1 · ϵ =
−C̃1 ±

√
C̃2

1 − 4C̃0C2

2C2

· ϵ, when r∗,0 = 0. (4.21)

Since 0 < ϵ≪ 1, these solutions are very close to zero.

K K

(c)(b)(a)

Figure 4.1: Perturbation analysis of the mean-field system (4.3), (4.7) and (4.10) for the excitatory
neural network with weak heterogeneity. (a): Existence of EP with biophysically realistic value
of r∗ in the (η̄, J) parameter space is determined by the curves defined from Eq. (4.22). Red
corresponds to C2

3 − 4C4C2 = 0, blue to C2 = 0, and green to C3 = 0. Variation of r∗ with η̄
when (b): ∆η = 10−4 and J = 3.94, (c): ∆η = 10−4 and J = 16.00. Other parameter values are
from Table 4.1.

In summary, the perturbation analysis shows that the mean-field system with weak
heterogeneity has at most four biophysically relevant values for r∗, given to lowest order

75



by

r∗ = r±∗,0 =
−C3 ±

√
C2

3 − 4C4C2

2C4

,

r∗ = r±∗,1 · ϵ =
−C̃1 ±

√
C̃2

1 − 4C̃0C2

2C2

· ϵ.

(4.22)

Whether or not these are biophysically relevant depends on the parameter values. The
first two solutions can be expressed in parametric form in terms of η̄ and J . The other
two solutions are close to zero, since they are O(ϵ). No solution with exactly r∗ = 0 exists,
except when ∆η = 0. However, our perturbation analysis reveals that the small EP r∗ → 0
as ∆η → 0. This suggests that the scenario involving weak heterogeneity can be considered
as a small perturbation of the homogeneous counterpart. For certain publications in the
literature, such as [178, 169, 69], the analysis of the OA-based mean-field model with
∆η = 0 can be interpreted as describing a weakly heterogeneous system.

Further, from Eq. (4.22), we can obtain regions in the parameter space where the
different perturbation solutions for r∗ exist. It is shown that at most three biophysically
relevant solutions can co-exist for a given set of parameter values. Here, we focus on an
example using the parameter values shown in Table 4.1. Fig. 4.1(a) illustrates the regions
of existence in the (η̄, J) plane. For the excitatory neural network where the dimensionless
value of the reversal potential is er = 1, the system has one positive EP, r∗ = r+∗,1ϵ ≈ 0, in
the region to the left of the blue line and below the red curve, and three EPs, r∗ = r±∗,0 > 0
and r∗ = r+∗,1ϵ ≈ 0, in the region to the left of the blue line and above the red curve. To the
right of the blue line, there is a very small region (not shown) where the system has three
EPs, r∗ = r+∗,0 > 0 and r∗ = r±∗,1ϵ ≈ 0 exist, further to the right only one EP, r∗ = r+∗,0 > 0,
remains. Fig. 4.1 (b) and (c) show the variation of r∗ with respect to η̄ for different values
of J . Both diagrams show the same bifurcations and transitions, but in (b) they occur in
a much smaller range of values of η̄, thus we focus on (c). In (c) J = 16.00, i.e., gsyn = 5.
For η̄ > 0.0946 only the EP with r∗ = r+∗,0 > 0 (red) exists. For η̄ < −0.1570 only the
EP with r∗ = r+∗,1ϵ ≈ 0 (black) exists. Between the two ranges, there are three EPs. For
the inhibitory neural network where er < 0, we always have C3 > 0. Thus, only one EP,
r∗ = r+∗,0 > 0, exists to the right of the blue line in Fig. 4.1(a), that is, η̄ > 0.0946, and only
one EP, r∗ = r+∗,1ϵ ≈ 0, to the left. Fig. 4.1 was created using Maple [148]. The existence
of EPs was numerically verified by XPPAUT [83] (not shown here).
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4.3.2 Linear Stability of Equilibria

In this section, we show how to derive the characteristic equation of the linearized mean-
field system and the parametric equations for the Andronov-Hopf (HP) bifurcation.

Defining small deviations δr = r − r∗, δv = v − v∗, δw = w − w∗ and δs = s − s∗, we
substitute r = r∗ + δr, v = v∗ + δv, w = w∗ + δw and s = s∗ + δs into the mean-field
model with a general distribution of delays (4.3), (4.7) and (4.10) and linearize them with
respect to small deviations (δr, δv, δw, δs). Then we get the linearized equations

δr′(t) =(2v∗ − α− gsyns∗)δr + 2r∗δv − gsynr∗δs,

δv′(t) =− 2π2r∗δr + (2v∗ − α− gsyns∗)δv

− δw + gsyn(er − v∗)δs,

δw′(t) =wjumpδr + abδv − aδw,

δs′(t) =− δs/τs + sjump

∫ ∞

0

δr(t− τ)h(τ)dτ.

We look for the solution of the linearized equations in the form

(δr, δv, δw, δs) = (Kr, Kv, Kw, Ks) exp(λt),

where Kj are constants. Then, we have

[A(λ)− λI]K = 0,

where K = (Kr, Kv, Kw, Ks)
T and

A(λ) =


2v∗ − α− gsyns∗ 2r∗ 0 −gsynr∗
−2π2r∗ 2v∗ − α− gsyns∗ −1 gsyn(er − v∗)
wjump ab −a 0

sjumpH(λ) 0 0 −1/τs

 ,

where H(·) is the Laplace transform of h(·), that is,

H(λ) =

∫ ∞

0

e−λτh(τ)dτ.

Then, we derive the characteristic equation

Λ(λ) = P (λ)H−1(λ) +Q(λ), (4.23)
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where

P (λ) =
[
(λ+ a)(λ+K)2 + ab(λ+K) + 4π2r2∗(λ+ a) + 2wjumpr∗

]
(τsλ+ 1),

Q(λ) =
[
Jr∗(λ+K)(λ+ a)− 2Jr∗(er − v∗)(λ+ a) + abJr∗

]
.

Here, we denote J = τsgsynsjump and K = α + Jr∗ − 2v∗.

We can obtain some general information about the stability region:

• H(0) = 1

• for real roots of Λ(λ) = 0, if λ ≥ 0, then e−λτ ≤ 1, and thus H(λ) ≤ 1.

• for some parameter values, the characteristic equation can have a zero root for any
distribution, that is, Λ(0) = P (0) · 1 +Q(0) = 0.

In addition, we can derive the potential HP bifurcation curves in parametric form by
imposing the condition of marginal stability λ = iω on the characteristic equation (4.23).
Substituting λ = iω, K = α + Jr∗ − 2v∗ into the characteristic equation and collecting
terms in like powers of r∗, we have

P (iω) = R2r
2
∗ +R1r∗ +R0 + iω

(
D2r

2
∗ +D1r∗ +D0

)
,

Q(iω) = R̂2r
2
∗ + R̂1r∗ + iω

(
D̂2r

2
∗ + D̂1r∗

)
,

where

R2 = −τs(J2 + 4π2)ω2 + aJ2 + 4aπ2,

R1 = −2J [1 + τs(a+ α− 2v∗)]ω
2 + 2aJ(α− 2v∗) + abJ + 2wjump,

R0 = τsω
4 −

[
τs(α− 2v∗)

2 + 2(α− 2v∗)(τsa+ 1) + τsab+ a
]
ω2

+ a(α− 2v∗)(α− 2v∗ + b),

D2 = (J2 + 4π2)(1 + aτs),

D1 = −2Jτsω2 + 2J(a+ α− 2v∗) + τs
[
2aJ(α− 2v∗) + abJ + 2wjump

]
,

D0 = −
[
1 + τs(a+ 2α− 4v∗)

]
ω2 + (α− 2v∗)

2 + 2a(α− 2v∗) + ab

+ aτs
[
(α− 2v∗)(α− 2v∗ + b)

]
,
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and

R̂2 = aJ2,

R̂1 = −Jω2 + aJ(α + b− 2er),

D̂2 = J2,

D̂1 = J(a+ α− 2er),

Denote H−1(iω) = A(ω)+ iB(ω) in Eq. (4.23). Separating the real and imaginary parts of
the characteristic equation yields the parametric equations for the Hopf bifurcation curves,

0 =(R2r
2
∗ +R1r∗ +R0)A− (D2r

2
∗ +D1r∗ +D0)Bω + (R̂2r

2
∗ + R̂1r∗),

0 =(R2r
2
∗ +R1r∗ +R0)B + (D2r

2
∗ +D1r∗ +D0)Aω + (D̂2r

2
∗ + D̂1r∗)ω.

(4.24)

A proper choice of the distribution function for the synaptic delay can further simplify the
stability analysis. The simplest case is the neural network without synaptic delay, where
h(τ) = δ(τ) and the reciprocal of the Laplace transform at the Hopf point is H−1(jω) = 1.
For the network with homogeneous delay D, the distribution function is h(τ) = δ(τ −D)
and the reciprocal of the Laplace transform is given by

H−1(iω) = eiωD = cos(ωD) + i sin(ωD) ≡ A(D,ω) + iB(D,ω).

We determine r∗ as a function of parameters from Eq. (4.22) and substitute it into Eq. (4.24).
Then we can derive the value of one parameter and ω at which a Hopf bifurcation may
occur. Alternatively, we could solve for two parameters as parametric equations in ω to
get two-parameter curves. To fully verify the existence of Hopf bifurcation, one must check
the transversality and nondegeneracy conditions [193]. This task becomes challenging for
our model, given the complex dependence of the EPs and hence the coefficients of the
characteristic equation on the parameters. Therefore, the remainder of this chapter pivots
towards numerical approaches.

4.4 Numerical Bifurcation Analysis of Mean-Field Sys-

tems

In this section, we are mainly concerned about the fixed, homogeneous delay across the net-
work and the consequent mean-field system of DDEs (4.3), (4.7) and (4.16). The resulting
dynamics are fascinating enough to warrant a careful investigation, and the approach can
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be extended to the resulting mean-field system composed of ODEs for gamma-distributed
delay or DDEs for gamma-distribution with a minimum delay. We study the macroscopic
dynamics through numerical bifurcation analysis of the mean-field system and mainly in-
vestigate the impact of three factors: the heterogeneity of the current ∆η, the level of
adaptation wjump and the synaptic delay D. Furthermore, we investigate whether the OA-
based mean-field system with extremely weak heterogeneity has a smooth transition to
its homogeneous counterpart in terms of the bifurcation structure. All the variables and
parameters in this section are dimensionless, and are given in Table 4.1, unless otherwise
indicated in a figure caption. To transform them into dimensional ones where the param-
eters have physiological interpretation, one can refer to Sec. 3.2. All values are taken from
[158] for the excitatory coupled neural network (E-net), which were initially fit by [78] to
hippocampal CA3 pyramidal neuron data from [107]. The parameters for the inhibitory
network (I-net) are the same except that the reversal potential (Er = −75 mV, that is,
er = −0.1538) is taken from [181]. To perform the bifurcation analysis, we consider the
physiologically plausible ranges of parameter values [159, 34, 84], as shown in Table 4.2.
Our results are obtained using standard continuation packages: XPPAUT [83] and Mat-
Cont [71] for the system with no delay, and DDE-Biftool [81] when the delay is nonzero. To
verify and extend these results, numerical simulations are carried out in Matlab (R2022b)
[145] and Julia (v1.8) [26].

Parameter Value Parameter Value

α 0.6215 τs 2.6

a 0.0077 b −0.0062
Iext 0 sjump 1.2308

gsyn 1.2308 wjump 0.0189

er,E 1 er,I -0.1538

Table 4.1: Dimensionless parameter values for the Izhikevich neural network (er,E/er,I for exci-
tatory/inhibitory network, respectively).

4.4.1 Typical Macroscopic Behaviors

To motivate the bifurcation analysis, we present some typical macroscopic behaviors ob-
served in our models, as illustrated in Fig. 4.2. The raster plots are generated through
numerical simulation of the neural network model (4.1)-(4.3) and (4.9), with neurons ar-
ranged in ascending order of the current ηi, while time series of the macroscopic variables
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Parameter Dimensionless value Dimensional Value

η̄ 0− 0.5 0− 5000 pA

∆η 0− 0.1 0− 1056 pA

gsyn 0− 5 0− 800 nS

wjump 0− 0.1 0− 1056 pA

D 0− 20 0− 30 ms

Table 4.2: Physiologically plausible ranges of parameters for bifurcation analysis.

(a) (b) (c) (d)

Figure 4.2: Examples of macroscopic behaviors. The first row shows raster plots of 300 neurons
randomly selected from 5000 neurons of the network (4.1)-(4.3) and (4.9). The dots correspond to
the firing events and the neurons are arranged in order of increasing current ηi. The last two rows
give time evolution and phase portraits of r(t) and w(t) of the delayed mean-field equations (4.3),
(4.7) and (4.16). Parameter values: Column (a) (E-net): D = 1, gsyn = 0.2, wjump = 0.0189,
η̄ = 0.12 and ∆η = 0.02; Column (b) (E-net): D = 1, gsyn = 1, wjump = 0.0189, η̄ = 0.12 and
∆η = 0.02; Column (c) (E-net): D = 4, gsyn = 1.1, wjump = 0.025, η̄ = 0.25 and ∆η = 0.02;
Column (d) (I-net): D = 14, gsyn = 1, wjump = 0.0189, η̄ = 0.4 and ∆η = 0.02. Other parameters
are given in Table 4.1.

result from integrating the corresponding mean-field equations (4.3), (4.7) and (4.16).
Starting with the column of Fig. 4.2(a), the raster plot reveals that a small group of neu-
rons with low current remain quiescent, while the rest exhibit asynchronous tonic firing
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with different frequencies determined by current values. From the macroscopic viewpoint,
the system eventually settles on an EP, corresponding to a point in the (r, w) phase plane.
Moving to the column of Fig. 4.2(b), the dynamics shows regular COs. Neurons undergo
bursting, characterized by an alternation between silent and active states. During a burst,
neurons spike asynchronously, with those having higher currents η firing before those with
lower values. The mean-field system converges to a periodic orbit (PO) with a unique
oscillation period. In Fig. 4.2(c), neurons also exhibit bursting behavior. The distinction
lies in the fact that during a burst, most neurons fire synchronously, manifested by straight
lines in the raster plot, instead of the “traveling waves” observed in Fig. 4.2(b). The mean-
field system exhibits quasi-periodic behavior characterized by fast oscillations with a slowly
varying envelope. These COs involve two oscillation periods: the slow one responsible for
the population bursting rhythm and the fast one corresponding to the spiking period of
individual neurons. We refer to this phenomenon as slow-fast nested COs, or population
bursting, by analogy to the similar activity of single neurons [191, 90]. Another type of
interesting CO is shown in Fig. 4.2(d). In this case, a subpopulation of neurons bursts,
alternating with short and long quiescent periods. The limit cycle in the mean variables
of r(t) and w(t), observed in the time series and phase portrait, resembles those arising in
period-doubling bifurcations.

In summary, we present four dynamical regimes that occur in our delayed mean-field
system. The first two dynamics are common phenomena observed in neural networks,
regardless of whether we consider the delay in spike transmission. The last two regimes
are novel and more complex COs found in the neural system with the SFA mechanism
and synaptic delay. To better understand these macroscopic behaviors and the transition
between them, we delve into numerical bifurcation analysis in the following sections.

4.4.2 Bifurcation of Neural Network without Synaptic Delay

Looking for HP bifurcations is the first step of bifurcation analysis to separate COs from
stationary states. For comparison, we begin with the system without synaptic delay.
The corresponding mean-field model is composed of ODEs (4.3), (4.4) and (4.7). Hopf
boundaries are shown in Fig. 4.3 in different pairs of parameter planes. The COs occur in
the highlighted yellow areas, with boundaries that vary with the corresponding parameter.
Note that the diagrams for the excitatory network (E-net) complement those in Chapter
3 for the same system with the same parameter values.

First, we explore the effect of heterogeneity. For the excitatory neural network (E-
net), we start with the Hopf bifurcation in the (gsyn, η̄) plane for different values of ∆η,
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Figure 4.3: Effect of heterogeneity and adaptation on the excitatory (first two rows) and inhibitory
(last row) neural networks without synaptic delay. Red/blue: supercritical/subcritical Hopf
boundaries. The yellow areas depict COs with boundaries adapting to corresponding parameters.
Parameter values: (a)-(c) wjump = 0.0189, (d) η̄ = 0.12, (e) η̄ = 0.02, (f) η̄ = 0.12, (g) wjump =
0.0189, (h)-(i) η̄ = 0.6. Other parameter values are given in Table 4.1.

shown in Fig. 4.3(a). Two Hopf branches appear. One looks like a straight line in the
biological range of parameter values, with the Hopf being subcritical (blue); the other is
a closed loop and exhibits two codimension-2 Bautin (or generalized Hopf) bifurcations,
with the Hopf being supercritical (red) between these points and subcritical (blue) outside.
In the region bounded by two Hopf branches (white), the mean-field system settles on an
EP, where neurons exhibit asynchronous tonic firing, similar to the behavior shown in
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Fig. 4.2(a). Inside the closed loop and in the top right corner (yellow), COs emerge, and
neurons exhibit bursting behavior. This behavior is similar to that shown in Fig. 4.2(b),
although the oscillation frequency depends on the particular parameter values where the
Hopf bifurcation occurs. Additionally, note that the closed curves with different values
of ∆η appear to intersect at a point (gsyn,c, η̄c) ≈ (1, 0.09). For η̄ > η̄c, the gsyn value
of the Hopf closed loop associated with the left boundary moves to the right when ∆η

increases, while the right boundary does not change appreciably. This leads to the CO
area getting smaller as ∆η grows. The same phenomenon occurs in the top right corner.
Consistent results are found in Fig. 4.3(d) where η̄ = 0.12 > η̄c. On the contrary, the CO
region gets bigger as ∆η grows in the region where η̄ < η̄c. Consistent results are shown in
Fig. 4.3(e) for the range ∆η < 0.06 approximately. However, the opposite effect appears
when ∆η > 0.06. Here, η̄ = 0.02 < η̄c. Therefore, the heterogeneity of the current η makes
the bursting behavior of neurons more robust (larger CO area) or less robust (smaller CO
area), depending on the different region of the parameter space in which the system lies.
Our findings may help explain the contradictory conclusions obtained in [208] and [159],
where the former claimed that heterogeneity favors the emergence of bursting as opposed
to hindering, as the latter found. Although it is difficult to directly compare our model
with that in [208], we can compare it with that of [159], since both of us start from the same
neural network model and use equivalent parameter values. Due to the distinct mean-field
modeling approach, the study in [159] exclusively examined the domain where the current
exceeded 1000 pA (equivalent dimensionless value η̄ > η̄c). Our findings within this range
are consistent with those in [159]; however, a contrast appears when η̄ < η̄c.

It may be noted that when ∆η is reduced to 0.01 in Fig. 4.3(a), the left Hopf branch
crosses the right one, forming another region. From the dynamics in the plane (∆η, gsyn)
shown in Fig. 4.3(e), we know that the EP is an attractor and the system undergoes cusp
bifurcations, implying the presence of a hysteresis phenomenon, which is often accompanied
by bistability [52].

Finally, we investigate the effect of weak heterogeneity on the bifurcation structure. As
∆η decreases, see Fig. 4.3(b), the two-parameter Hopf curves move to the left, but the CO
region remains qualitatively similar to Fig. 4.3(a) for sufficiently high ∆η. However, when
∆η close enough to zero, the closed Hopf branch splits, with the lower part limiting on the
η̄ axis and the upper part approaching large current values as gsyn approaches zero (see
Fig. 4.3(c)). This scenario represents a population of neurons with extremely weak or zero
coupling (gsyn < 0.2) and nearly homogeneous injected currents (∆η ≈ 0).

For the inhibitory neural network (I-net), as shown in the last row of Fig. 4.3, the
bifurcation diagram is relatively simpler. Only supercritical Hopf bifurcations (red) are
observable for the present choice of parameter values. The COs emerge for sufficiently
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large η̄, (see Fig. 4.3(g)) and almost any value of gsyn (see Fig. 4.3(h) and (i) ). Increasing
the heterogeneity in the applied current via ∆η does not favor neurons’ bursting behavior,
as shown in Fig. 4.3(g)-(i). A higher η̄ or a lower wjump is required to overcome the
increasing ∆η to generate COs (see Fig. 4.3(g) and (i)).

Next, we investigate the effect of adaptation via the intensity parameter wjump. The
relevance of adaptation for emergent collective dynamics can be appreciated by considering
the bifurcation diagram in the (gsyn, wjump) plane, as shown in Fig. 4.3(f) for the excitatory
neural network and (i) for the inhibitory case. In the excitatory case, COs emerge for
sufficiently large wjump or gsyn. A generalized Hopf point occurs, separating supercritical
(red) from subcritical (blue) Hopf bifurcations. The adaptation favors the emergence of
COs with the region expanding as wjump increases. For the inhibitory case, COs appear
even at wjump = 0 with medium values of gsyn. Adaptation in the inhibitory network has
the opposite effect as in the excitatory case. The interval of gsyn where COs occur shrinks
as wjump grows, thus adaptation hinders the formation of COs.

From the analysis above, the current heterogeneity ∆η and the adaptation intensity
wjump appear to have intricate effects on the emergence of COs. Essentially, all the find-
ings align with a fundamental principle underlying the spiking dynamics governed by the
membrane potential equation (4.1). The emergence of COs in the synaptically coupled
neural network is due to a balance between the fixed (η) and time-varying (Iext) currents,
which cause neurons to spike, the slow adaptation current w, which terminates spiking,
and the synaptic current (Isyn), which favors spiking in the excitatory network because
it is positive most of the time, but hinders spiking in the inhibitory network as it is al-
ways negative. The greater heterogeneity implies that the excitatory drive η is distributed
over a wider range of values. If the mean current η̄ is sufficiently large, e.g., η̄ = 0.12 in
Fig. 4.3(d), larger ∆η indicates that more neurons have input currents too small to invoke
spiking, resulting in a smaller bursting area. If η̄ is relatively small, e.g., η̄ = 0.02 and
∆η ∈ [0.02, 0.06] in Fig. 4.3(e), bigger ∆η indicates more neurons have large enough cur-
rents to spike, resulting in a bigger bursting area. The synaptic current Isyn has different
effects in the excitatory and inhibitory networks. As shown in Eq. (4.2), the sign of Isyn is
determined by the value of the membrane potential v(t) relative to the reversal potential
er. Thus, it can be positive or negative in the excitatory network, but it is always negative
in the inhibitory case. Consequently, the bifurcation diagrams in the excitatory case are
more complicated than those in the inhibitory one. In the excitatory network, the pri-
mary source of inhibition arises from adaptation. The interaction between excitatory and
inhibitory sources leads to multiple areas for COs, e.g., Fig. 4.3(a) and (d), including (f),
where even at wjump = 0, strong coupling (approximately gsyn > 3) introduces an inhibition
effect. In the inhibitory case, both the negative synaptic current and the adaptation act
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to suppress COs. Thus, the COs appear even at wjump = 0 and disappear for sufficiently
large wjump, e.g., Fig. 4.3(h) and (i).

4.4.3 Bifurcation of Neural Network with Synaptic Delay

In this section, we consider the system with constant homogeneous synaptic delay. The
corresponding network model is composed of (4.1)-(4.3) and (4.9) and its mean-field system
consists of delayed differential equations (4.3), (4.7) and (4.16).
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Figure 4.4: Effect of delay on excitatory (1st row) and inhibitory (2nd row) neural net-
works. Boundaries of Hopf bifurcation (red/blue for supercritical/subcritical) are shown in the
(gsyn, wjump) plane for different values of delay D = 0 (1st column), D = 1 (2nd column) and
D = 2 (3rd column). Gray regions depict the stable EP. Parameter values: η̄ = 0.12, ∆η = 0.02
for the excitatory network, η̄ = 0.4, ∆η = 0.01 for the inhibitory network. Other parameter
values are given in Table 4.1.

We start with an investigation of Hopf bifurcations. Fig. 4.4 shows the Hopf boundaries
reported in the (gsyn, wjump) plane for different values of delay D. Generally, delay favors
the emergence of COs and generates new dynamics. Specifically, in the inhibitory network
(2nd row of Fig. 4.4), the collective oscillation areas (white) under the supercritical Hopf
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curves (red) expand with an increase of D. In the excitatory case (1st row of Fig. 4.4),
the delay not only promotes COs by the expansion of the white regions, but also enriches
the collective dynamics. In particular, as the delay increases, the Hopf branch at the
lower right corner moves toward the upper one, shrinking the EP area (gray), creating
a Hopf-Hopf bifurcation. A generalized Hopf bifurcation also moves into the parameter
range considered. Numerical simulations of macroscopic variables show that the mean-field
system with D = 0 exhibits slow oscillations in the upper white region and fast oscillations
in the lower white region, similar to the behavior shown in Fig. 4.2(b), but with different
periods. When D increases to 2, these two dynamics persist in the upper and lower white
regions. However, in the middle white region created by the intersection of the two Hopf
curves, the system exhibits slow-fast nested COs, similar to those shown in Fig. 4.2(c).

To further study the impact of the current heterogeneity and adaptation on the time-
delayed mean-field system, we plot the Hopf bifurcation curves in the (D, gsyn) plane for
different values of ∆η and wjump, as shown in Fig. 4.5 for the excitatory network and Fig. 4.6
for the inhibitory case. The adaptation strength increases from top to bottom, with wjump =
0.0095 (100 pA) representing weakly adapting and wjump = 0.0189 (200 pA) strongly
adapting [158]. The amount of heterogeneity increases from left to right, with ∆η = 0
representing homogeneous input currents. The numerical continuation in both Fig. 4.5
and Fig. 4.6 shows that there are no abrupt qualitative changes when ∆η grows from 0 to
10−4, except for the replacement of blue subcritical Hopf bifurcations by red supercritical
ones in some intervals of D. Combined with the perturbation analysis in Sec. 4.3.1, it is
reasonable to interpret the mean-field model with ∆η = 0 as an approximation of the system
with very weak heterogeneity. Additionally, when gsyn approaches zero, accounting for a
population of neurons with significantly weak coupling, the system undergoes a splitting
of the Hopf branch when ∆η drops from 0.01 to 10−4, similar to the phenomenon shown
in Fig. 4.3(b) and (c), where the system does not have a synaptic delay.

Now we concentrate on the bifurcation diagrams in the last two columns of Fig. 4.5,
where the input currents have moderate heterogeneity. The gray areas show the regions of
the parameters where EPs are stable, and thus neurons exhibit asynchronous tonic firing.
For weak adaptation, wjump = 0.0095, there are alternating intervals of D where stable
EPs exist. A similar phenomenon has been observed in many models with delay includ-
ing coupled oscillator models [13], a single oscillator with delayed feedback [45] and even
scalar delay equations with multiple delays [17]. It indicates that there does not exist a
single threshold for the delay, above which the system tends to oscillate. As wjump grows,
these EP intervals (gray) shrink and disappear, due to Hopf branches moving to the right
toward the larger delay values and new branches emerging from the gsyn axis. At the same
time, the blue curves representing subcritical Hopf bifurcation become shorter. There-
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Figure 4.5: Excitatory neural network with homogeneous synaptic delay. Hopf curves (red/blue
for supercritical/subcritical) are shown in the (D, gsyn) plane for various values of ∆η and wjump

when η̄ = 0.25. Gray regions depict the stable EP. Other parameters are given in Table 4.1.

fore, adaptation favors the emergence of COs in the delayed excitatory neural network, as
demonstrated by the shrinking EP areas. By comparison, the increase of ∆η from 0.01 to
0.02 expands the EP areas as the Hopf curves move upward, but also shortens the blue
parts of the curves. Therefore, heterogeneity promotes EP for small values of gsyn. Regard-
ing the effect of synaptic delay D, it has no influence on the emergence of COs when the
synaptic coupling strength is small enough (see gsyn < 0.5 approximately), since a stable
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Figure 4.6: Inhibitory neural network with homogeneous synaptic delay. Hopf curves are shown
in the (D, gsyn) plane for different values of ∆η and wjump when η̄ = 0.4. Gray regions depict the
stable EP. Other parameters are given in Table 4.1.

EP area exists for all delays. But when gsyn is large enough, the delay generally promotes
COs for strong adaptation (wjump ≥ 0.0189) since white areas exist for most values of D.
As the adaptation weakens, e.g., wjump = 0.0095, things become complicated: increasing
the delay can both induce and destroy COs.

When it comes to the moderately heterogeneous current in the inhibitory network, as
shown in the last two columns of Fig. 4.6, one can see that the trends are the same as those
in the excitatory network. The gray EP areas are independent of D for small gsyn. The
Hopf branches move to the right and up, whereas the blue subcritical parts shrink with
increasing wjump and ∆η. However, these changes yield different effects from the excitatory
network because of the different bifurcation structure. Specifically, both ∆η and wjump do
not favor the emergence of COs for D < 2 or gsyn < 0.5, approximately. In addition, the
inhibitory coupling is more favorable for macroscopic oscillations than the excitatory one
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in the range of D < 2 because the gray area is smaller than in the excitatory case. The
white collective oscillation areas for inhibitory and excitatory couplings are comparable for
D > 2, except for the weak adaptation case wjump = 0.0095. More Hopf branches appear
in the same range of D for the excitatory coupling, producing complicated oscillating
dynamics.
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Figure 4.7: Excitatory neural network with homogeneous synaptic delay. (a) Bifurcation di-
agram in the (D, gsyn) plane showing supercritical/subcritical HP bifurcations (solid red/blue
lines), POFold (pink dashed line), and Torus bifurcation (green dash line). The symbols refer
to codimension-two bifurcation points: Hopf-Hopf (hoho) (circle) and generalized Hopf (genh)
(star). The black dotted line, which separates the regions C and J , is determined by direct
simulations of the mean-field model. The sample time traces of r(t) and w(t) are shown in panels
(b)-(d) for the three possible dynamical regimes: (b) Region A, C, EP at (D, gsyn) = (2, 0.6),
(c) Region B, slow PO at (D, gsyn) = (2, 1), (d) Region G, H, I, fast PO at (D, gsyn) = (6, 1.6),
(e) Region D, E, F , slow-fast nested COs at (D, gsyn) = (4, 1). Region J : coexistence between
EP and slow-fast nested COs. Other parameter values: η̄ = 0.25, ∆η = 0.02 and wjump = 0.025.
Other parameter values are given in Table 4.1.

HP bifurcations can only separate stationary solutions and oscillating states. However,
different types of COs have been observed in the neural network, such as those shown in
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Fig. 4.2. To explore such rich macroscopic dynamics and understand the bifurcation mech-
anism underlying their emergence, further bifurcation analysis is necessary. For simplicity,
we take two typical sets of parameters, one for the excitatory network and one for the in-
hibitory, and focus on bifurcations in a subset of the parameter space. As shown in Fig. 4.7
for the excitatory network, in addition to the Hopf-Hopf bifurcations (circle hoho points)
and generalized Hopf bifurcations (star genh points) seen in previous figures, we find two
bifurcations of POs, thus creating different regions with distinct types of dynamics. One
is the fold bifurcation of POs (pink dashed line) that originates from the generalized Hopf
points and forms the boundaries where stable and unstable POs meet and disappear. The
other is the Torus (or Neimark-Sacker) bifurcation (green dashed line) emanating from the
Hopf-Hopf points and connecting with each other. The location of these bifurcation curves
is consistent with the normal form coefficients of the two Hopf-Hopf points obtained by
DDE-BIFTOOL. For both points, the system is in subcase IV (θ > 0, δ < 0) of the difficult
case (Re(g2100) · Re(g0021) < 0) of Hopf-Hopf bifurcations (see [125]). Given the regions
where the slow-fast nested COs occur, it is evident that the Torus bifurcation is the main
mechanism for the emergence of these solutions. Samples of the time evolution of r(t)
are shown to the right of the bifurcation diagram, and they correspond to the following
regimes:

(1) Region A and C: stable EPs

(2) Region B: stable POs with low frequency

(3) Region G, H and I: stable POs with high frequency

(4) Region D, E and F : slow-fast nested COs

(5) Region J : coexistence of stable EPs and slow-fast nested COs.

The black dotted line, which separates Region J from Region C, was identified by direct
simulations of the mean-field model. Note that the PO exhibited in Fig. 4.7(c) is not
strictly a regular spiking PO as that shown in Fig. 4.2(b). Small ripples appear in the time
series of r(t). Actually, it is a typical behaviour of a system with multiple time scales and
characterized by a limit cycle with a period related to the slow dynamics of the adaptation
variable w(t) and fast-damped oscillations on the amplitude resulting from the focus type
of solutions of the fast subsystem involving r(t), v(t) and s(t) variables. This can be
explained by standard slow-fast analysis, e.g., [23]. Based on the bifurcation diagram in
Fig. 4.7(a) and the smooth oscillations of w(t) (see difference between Fig. 4.2(b) and (c)),
we do not categorize this behavior as slow-fast nested COs.
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Figure 4.8: Inhibitory neural network with homogeneous synaptic delay. (a) Bifurcation diagram
in the (D, gsyn) plane showing supercritical/subcritical Hopf bifurcations (solid red/blue lines) and
Torus bifurcations (black dashed line). The symbols refer to codimension-two bifurcation points:
Hopf-Hopf (hoho) (circle), generalized Hopf (genh) (star). The blue dotted line, which separates
regions B and F , has been determined by direct simulations of the mean-field model. (b) Branch
of PO emanating from close to the Hopf-Hopf point (D = 13). Green/blue represents zero/two
unstable Floquet multipliers. Sample time traces of r(t) are shown in panels (c)-(f) for the four
possible dynamical regimes: (c) Region A, EP at (D, gsyn) = (6, 0.4), (d) Region B and E, PO
at (D, gsyn) = (6, 1), (e) Region F , C and D, double-period limit cycle at (D, gsyn) = (14, 1), (f)
Region D, three-period limit cycle at (D, gsyn) = (20, 1). Parameter values: η̄ = 0.4, ∆η = 0.02,
wjump = 0.0189. Other parameter values are given in Table 4.1.

By comparison, Fig. 4.8 presents the detailed bifurcation diagram for the inhibitory
network. The system undergoes a Hopf-Hopf bifurcation (circle hoho point) and a gener-
alized Hopf bifurcation (star genh point) as seen before. The normal form coefficients
show that the system is in subcase I (θ > 0, δ > 0, θδ > 1)) of the simple case
((Re(g2100) · Re(g0021) > 0) of the Hopf-Hopf bifurcation (see [125]). As predicted,
there are two Torus bifurcation curves (black dashed lines) emanating from the Hopf-Hopf
point; see Fig. 4.8(a), and the Torus bifurcation curves lie between the two Hopf branches
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emanating from the Hopf-Hopf point. The sample time evolutions of r(t) are shown in
Fig. 4.8(c)-(f), and they correspond to the following regimes:

(1) Region A: stable EPs

(2) Region B and E: stable POs

(3) Region F , C: double-period limit cycles

(4) Region D: double-, triple-period limit cycles.

The blue dotted line, which separates Region F from Region B, was identified by direct
simulations of the mean-field model.

There are two discrepancies between the prediction of the bifurcation analysis and the
time evolution. First, the observable period-doubled limit cycles in Region F indicate
that the system undergoes a period-doubling bifurcation when D crosses the blue dotted
line. Unfortunately, we can only find the boundary by direct simulations of the mean-field
model. It was not found by numerical continuation. Second, according to the prediction
of the normal form coefficients in [125], there should be two stable POs between the Torus
bifurcation curves near the Hopf-Hopf point, that is, in Region D. The numerical contin-
uation supports this conclusion. Fig. 4.8(b) shows the occurrence of a Torus bifurcation,
where the number of unstable Floquet multipliers changes from 2 to 0, stabilizing the PO
(green line). Unfortunately, our numerical simulations in Region D found only one stable
PO in this region, which is of double-, and even triple-period type. In addition, we did not
see a cascade of period-doubling bifurcations, well known for their capability of inducing
chaos, in our present choice of parameter values. These interesting findings may arise from
other complexities in the bifurcation structure of our mean-field model. We note that the
two frequencies of the POs near the Hopf-Hopf, (0.21 vs 0.53), are close to the ratio 1 : 2.
Period doubling bifurcations are known to occur in 1 : 2 resonant Hopf-Hopf bifurcations
[131]. We leave further investigation of these and other phenomena for future work.

4.5 Discussion

In this chapter, we thoroughly investigated the macroscopic dynamics of the heterogeneous
network of Izhikevich neurons with global constant-delay coupling by means of a mean-field
model, valid in the thermodynamic limit. Our study emphasized the effect of the input
current heterogeneity ∆η, the adaptation intensity wjump and the synaptic delay D on the
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emergence of coherent oscillations. Furthermore, we addressed the problem of whether
the OA-based mean-field system with ∆η = 0 can characterize the system with extremely
weak heterogeneity, although the Watanabe-Strogatz (WS) approach [213], instead of the
OA approach, is conventionally considered as the appropriate framework for deriving the
mean-field model when neurons are strictly identical.

Our perturbation and bifurcation analysis reveals that the mean-field model, character-
ized by ∆η = 0, can be regarded as a good approximation of the neural network exhibiting
extremely weak heterogeneity. We observe a smooth variation of the EPs and the bifurca-
tion structure as ∆η → 0, particularly when gsyn is sufficiently large. These results support
studies [178, 169, 70], where the dynamic analysis built on the OA-based mean-field model
with ∆η = 0 is interpreted as representative of the dynamics of networks with weak hetero-
geneity. It is important to note that for ∆η = 0, the OA manifold is marginally stable [174],
thus the dynamics of the OA-based mean-field model cannot be expected to be predictive
of the dynamics in the full network. This paper and previous studies for QIF network
[178, 169, 70] do not analyze the attractiveness of the OA manifold theoretically, although
the correspondence between numerical simulations and mean-field predictions supports the
hypothesis that it is attractive for ∆ > 0. Recent work [49, 172] has theoretically con-
firmed this. The mean-field model with weak heterogeneity may also be able to represent a
homogeneous neural network under small random perturbations. The paper [150] showed
near quantitative agreement between the network of identical quadratic integrate-and-fire
(QIF) neurons driven by Gaussian noise and the corresponding mean-field model derived
under the OA theory. Recent studies also demonstrated the ability of the OA theory to
be applied exactly to the network of Kuramoto oscillators [201, 203] and QIF neurons [57]
with Cauchy white noise. For our mean-field model derived from Izhikevich neurons, we
leave this for future investigation.

In addition, the impacts of the heterogeneity of the injected current ∆η and the adap-
tation strength wjump on the macroscopic dynamics change depending on the choice of
parameter values (see Fig. 4.3–4.6). In essence, their effects are determined by the balance
of excitatory drives, which cause neurons to spike, and inhibitory drives, which terminate
spiking. The constant and time-varying input currents η and Iext are typical excitatory
drives, and the adaptation current w is the inhibitory drive. The role of the synaptic
current Isyn depends on the sign of er− vi, which is negative in the inhibitory network and
positive/negative in the excitatory case. This also leads to a more complicated bifurcation
structure in the system with excitatory coupling than in the one with inhibitory coupling.

Regarding the effect of synaptic delay on COs, our analysis shows that delay does not
affect the number or position of EPs, but does influence their stability. This is typical
for time-delayed neural systems [43]. For our present set of parameter values, delays
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work mostly as an excitatory drive to promote the emergence of COs and generate new
dynamics, including slow-fast nested COs resulting from Torus bifurcations (see Fig. 4.7).
Moreover, we have found some other interesting regimes. Delays exhibit little influence
on the generation of COs when the heterogeneity is moderate and gsyn is small, indicating
weak coupling; and this influence becomes more pronounced with larger heterogeneity
(refer to the two right columns in Figs. 4.5 and 4.6). The delays are expected to have
no impact when there is no coupling in the network, i.e., gsyn = 0. However, with the
addition of extremely weak heterogeneity, the influence of delays on the emergence of COs
becomes evident under conditions of weak coupling (see the two left columns in Figs. 4.5
and 4.6). We need further exploration to understand the nuanced interplay between the
double limits of weak coupling and weak heterogeneity. Additionally, with larger gsyn and
weaker adaptation, the domains for the emergence of COs may appear and disappear as the
delay increases. It implies that a longer delay does not necessarily increase the probability
of the occurrence of COs (see Figs. 4.5 and 4.6 for wjump = 0.0095.)

There are many papers in the literature studying the neural network with delayed
coupling. To our knowledge, these three papers [178, 169, 69] are closely related to ours.
These papers all used the same theoretical framework to derive the mean-field model as we
do, and they used the model to study the collective dynamics induced by the coupling delay.
However, in this chapter, we derived mean-field models from neural networks with greater
neurological plausibility and performed more detailed bifurcation analysis. First, we took
into account the SFA in each neuron. This is a fundamental neuronal mechanism and plays
a significant role in promoting synchronous bursting of neurons. Second, we employed a
realistic expression for the synaptic current (4.2) in the network connections. This model
is widely used in neuroscience, but is often simplified for analysis. This simplification loses
physiological insight and may lead to discrepancies in the prediction of system behaviors.
Increased biological relevance results in our more complicated mean-field model. It is four-
dimensional due to the addition of the adaptation variable and contains new nonlinear
terms arising from the more complicated synapse model. Thus, analytic Hopf bifurcation
analysis such as in [169, 69, 178] is not tractable. Instead, we used numerical approaches.
This has the added benefit of allowing us to locate higher-codimension bifurcations and
study their effect on the macroscopic dynamics.

The introduction of enhanced biological plausibility into our mean-field system gives
rise to significantly different Hopf bifurcation structures compared to those documented
in [169, 69], especially for the excitatory coupling system. Numerous Bautin/generalized
Hopf bifurcations emerge in the excitatory network, signifying points where the Hopf bifur-
cation switches between supercritical and subcritical. Moreover, Hopf-Hopf bifurcations
manifest themselves in both excitatory and inhibitory networks. Further exploration of
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these newly identified structures has revealed Fold bifurcation of periodic orbits (POFold),
marking points where stable and unstable POs meet and disappear, and Torus bifurcations,
which consistently appear in the vicinity of the Hopf-Hopf bifurcation. In the excitatory
network, Torus bifurcations lead to the creation of a stable torus solution, corresponding
to slow-fast nested COs, not observed in [178, 169, 69]. In the inhibitory network, the
numerical bifurcation analysis found a different arrangement of Torus bifurcations, leading
to bistability between two different POs. However, using a direct numerical simulation,
we did not observe the bistability. Instead, we found evidence for a period-doubling bi-
furcation. Interestingly, we did not find a cascade of period-doubling bifurcations leading
to chaos, as observed in the inhibitory network in [169, 178]. The discrepancy between
the numerical continuation and numerical simulation in the inhibitory network may be
due to a further complication in the system: the frequencies at the Hopf-Hopf points we
investigated are close to the 1:2 resonance. Such resonant Hopf-Hopf points can lead to
isolated period-doubling bifurcations [131]. We will leave this for further investigation in
the future.

Some recent work has also examined variations of the QIF neural network and their
mean-field dynamics. For instance, in the papers [96] and [198], additional equations were
introduced to the QIF neuron to account for different short-term plasticity (STP). STP
represents a different mechanism from SFA in the Izhikevich neuron we used, although
some researchers (though not common) regard it as another form of adaptation. SFA in
the Izhikevich neuron occurs at the soma, whereas STP occurs in the synaptic connection.
The bursting dynamics in our system is induced by the slow adaptation variable and the
delayed coupling, while those described in [198] are caused by a slow periodic current, and
those in [96] result from slow synaptic dynamics. The slow-fast COs arising from Torus
bifurcations in the excitatory network differ from those observed in [90], where they consist
of a small-amplitude fast “ripple” riding on a large-amplitude slow oscillation. In this
chapter, fast oscillations may exhibit a large amplitude, with slow oscillations modulating
this amplitude, similar to the recordings observed in the hippocampus and various regions
of the brain [136]. Other papers have shown that fast oscillations can fall in the γ range (30–
100 Hz) and slow modulation in the θ band (4–8 Hz) by choosing appropriate parameter
values, e.g., the adaptation intensity wjump [90]. In our COs, slow oscillations are generated
by adaptation, whereas fast oscillations are due to the intrinsic spiking frequency of neurons
and time delay. For the parameters of Fig. 4.2 (c), the slow oscillations correspond to 2
Hz and the fast oscillations to 70 Hz when converted to dimensional values. These two
values can be modified by adjusting the adaptation intensity and the time delay size,
respectively. The θ − γ nested oscillations have been observed in the hippocampus and
have been shown to be relevant to cognitive tasks, such as navigation, sensory association,
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and working memory [18, 33, 37, 58, 136]. Generally, this interaction between different
frequency bands belongs to a phenomenon called cross-frequency-coupling (CFC), which is
potentially relevant to understanding healthy and pathological brain functions [46, 12, 136].
The emergence of CFC has been reported for mean-field systems, for example, for two
coupled neural networks [48, 90], or for a network with an external θ−drive [191]. In
contrast, we have shown that CFC can emerge in a single population of neurons with SFA
and delayed excitatory coupling.
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Chapter 5

Mean-Field Modeling for Spiking
Neural Networks with Short-Term
Synaptic Plasticity

In previous two chapters, we discussed the effect of spike frequency adaptation (SFA) and
synaptic delay in phenomenological models where the SFA mechanism is carried out by an
adaptation variable w in the Izhikevich neuron and the non-instantaneous communication is
represented by an explicit time delay term in the coupling between neurons. In this chapter,
we consider a kinetic model of synapses with short-term plasticity (STP). This feature
has the potential to impact the spiking activity of postsynaptic neurons and introduce
an inherent time delay in synaptic transmission. This chapter aims to develop a mean-
field model to capture the collective dynamics of a large neural network that incorporates
STP. We establish a kinetic model to describe this calcium-dependent synaptic dynamics
in Sec. 5.2. For a network of quadratic integrate-and-fire (QIF) neurons with STP (Sec.
5.3), we develop a macroscopic description using the Ott-Antonsen (OA) mean-field theory
(Sec. 5.4). We show their agreement by numerical analysis and investigate the muscarinic
effect at hippocampal synapses through the proposed mean-field model in Sec. 5.5.

5.1 Introduction

Synapses exhibit remarkable alterations in the strength and efficacy of connections between
neurons. These dynamics can be categorized into two main types: long-term synaptic
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plasticity and short-term synaptic plasticity. Long-term plasticity refers to long-lasting
changes in synaptic strength that can persist for hours, days, or even longer. It typically
involves structural and molecular changes at the synapse, such as the number or sensitivity
of neurotransmitter receptors [56, 21]. STP refers to transient changes in synaptic strength
that last from milliseconds to minutes [144, 225]. It is typically associated with the dynamic
properties of neurotransmitter release and availability under stimulation of presynaptic
activity and may then lead to adaptation of the spike frequency of the postsynaptic neuron
[225, 20]. For a review of the development in both types of synaptic plasticity, we refer the
reader to articles [56, 142, 21].

STP exerts profound effects on network activity and information processing capabilities.
For example, it may generate a dynamic gain control mechanism by assigning a high / low
gain to a slow / rapid input firing rate to achieve optimal synaptic transmission [3, 1]; it may
work as a temporal filter to regulate neural information transmission that is fundamental
for a variety of healthy and pathological brain functions [94, 184, 183]; and it may provide
a mechanism to implement working memory in the neocortical network [149, 190, 199].

Synapses may exhibit different characteristics at different locations [29]. In experiments,
two types of STP, with opposite effects on synaptic efficacy, have been observed: short-
term depression (STD) and short-term facilitation (STF). STD reduces the postsynaptic
response to repetitive presynaptic activity, while synaptic facilitation increases the efficacy
of connection. These two phenomena act on different timescales and can be activated by
a variety of different processes [212]. More importantly, they are not mutually exclusive
and can occur within the same synaptic terminal [74].

Increasing efforts have been made to develop mathematical models for synaptic STP
[108], beginning in the 1950s [134]. Some models specifically describe STF dynamics ([223,
24]) whereas some for STD ([210, 222]). Recently, integrative models that unify both STP
dynamics have been proposed. Among them, a simple phenomenological model, proposed
by Tsodyks and Markram [205], has gained significant popularity and has been applied in
many studies, e.g., [149, 171, 199]. Although mathematically simple, the Tsodyks-Markram
(TM) model lacks essential information on synaptic transmission, and some parameters do
not have direct and measurable correlations with experiments [132]. On the other hand,
detailed biophysical processes underlying STP are introduced in the models, e.g., [138, 74].
These physiologically well-defined models may incorporate an abundance of details, making
them less conducive to investigation at the level of networks. A class of kinetic STP models
was recently proposed in [132, 195], which retain central biophysical processes in a relatively
simple mathematical form. They should be an appropriate candidate for studying large
neural networks.
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Furthermore, muscarinic acetylcholine receptors (mAChRs) is a type of G protein-
coupled receptor that binds to the neurotransmitter acetylcholine (ACh). They derive
their name from their selective activation by muscarine, a toxic compound found in certain
mushrooms that mimics some effects of ACh. These receptors are involved in numerous
diseases and conditions, and are targets for various drugs used to treat disorders such as
Alzheimer’s disease, Parkinson’s disease, and schizophrenia [124, 120, 63]. Activation of
mAChRs has various effects at the synapse, depending on the specific subtype of mAChRs
and the location of the synapse [215]. In particular, by binding to the mAChRs located on
the presynaptic membrane, ACh reduces the release of neurotransmitters from both excita-
tory and inhibitory inputs to hippocampal pyramidal neurons [206]. This is often achieved
by modulating voltage-gated calcium channels on the presynaptic terminal in response
to the arrival of an action potential [197, 176]. The reduced influx of calcium ions into
the presynaptic terminal leads to a decrease in the amount of neurotransmitter, thereby
inhibiting synaptic transmission. Similarly, muscarine can also trigger the inhibitory ef-
fect of mAChRs by reducing the amount of calcium influx into the presynaptic terminal
[99]. Since calcium plays a crucial role in shaping the strength and dynamics of synaptic
transmission, it is necessary to include the calcium dynamics in the STP model.

In this chapter, we will incorporate the calcium-dependent kinetic STP model in [132,
195] into the network of QIF neurons and analytically develop a mean-field model to
describe collective behaviors. To our knowledge, such a macroscopic description has not yet
been achieved for networks of spiking neurons with the kinetic STP model. Furthermore,
we will investigate the muscarinic effect on the STP mechanism in the context of collective
dynamics using parameter values fitted to the hippocampal GABAergic synapses [195].

5.2 Kinetic Model of Synapse with STP

This section aims to formulate a system model that captures the kinetics of short-term
synaptic plasticity between two neurons.

5.2.1 Synaptic transmission process

To identify the required variables in the models, we begin with a quick overview of the main
processes in synaptic transmission, as illustrated in Fig. 5.1. When a neuron fires a spike,
the resulting action potential, or impulse input, travels down its axon terminal, triggering
the opening of voltage-gated calcium channels and the subsequent inflow of calcium Ca2+.
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Figure 5.1: Schematic structure of chemical synapses and signal transmission pathways involved.

A brief surge in calcium concentration increases the probability of vesicle fusion with the
terminal membrane, releasing neurotransmitters, a chemical messenger, into the synaptic
cleft. Neurotransmitters diffuse across the synaptic cleft and bind to receptors on the
postsynaptic cell. Receptor activation leads to the opening or closing of ion channels in
the cell membrane. This may increase or decrease the membrane potential, depending on
the ions involved, ultimately causing the postsynaptic cell to be more/less likely to fire
its own action potential, called the excitatory/inhibitory postsynaptic response. Synaptic
facilitation occurs when the accumulated calcium concentration encourages vesicle release,
ultimately causing an increase in the amplitude of the postsynaptic response. Depletion of
vesicles during ongoing activity can lead to suppression of the postsynaptic response; thus,
synaptic depression occurs.

Presynaptic vesicles are a limited resource. After release, empty vesicles are retrieved
and replenished. During this period, the synapses are in a refractory state. The recovery
rate from the refractory state is usually not constant and is influenced by the calcium
concentration at the presynaptic terminal [75].
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5.2.2 Discrete STP Model with Periodic Inputs

To study the principles of synaptic plasticity, experiments commonly involve trains of action
potentials at specific fixed frequencies to replicate the recurrent input from the presynaptic
cell [195]. In this section, we focus on this scenario and aim to derive a discrete dynamical
system for the microscopic STP variables. This model is based on the work in [195], and
we present it here to help motivate and validate the subsequent neural network model.

Generally, the synaptic transmission process described above has three main compo-
nents: presynaptic calcium buffering, presynaptic calcium-dependent vesicle trafficking,
and postsynaptic response. Our discrete model will follow this structure, expanding on the
mechanisms delineated in [132].

Presynaptic calcium buffering

When modeling synaptic dynamics, a common approach is to use a simple calcium model
where the intracellular calcium concentration, denoted C, follows the first-order decay
kinetics towards a baseline concentration with a decay time constant of τc. Without loss of
generality, let the baseline concentration be zero [74, 195]. Thus, the calcium concentration
is governed by

τc
dC

dt
= −C(t). (5.1)

We assume that the presynaptic neuron spikes periodically with an interspike interval (ISI)
of T , which is consistent with the experimental design. Let us start at the time t = 0 just
after the first spike occurs. By solving the equation for C, we obtain a solution at the
end of the first interspike interval: C(T ) = C(0)e−T/τc . The second spike closely follows
the first spike, leading to a rapid and significant increase in local calcium concentration,
denoted C(T ) + Cjump. Thus, the overall process is such that the calcium concentration
reaches its maximum just after this spike and then decays to its minimum before the arrival
of the next spike.

We denote C as C−(k) just before the kth spike (left limit) and as C+(k) just after
the kth spike (right limit). Using the value after the kth spike as the initial condition, i.e.,
C(0) = C+(k), yields C(T ) = C−(k+1) as the value just before the (k+1)th spike arrives,
and then this concentration rapidly accumulates due to the k + 1th spike. Thus, we have
a discrete expression given by

C−(k + 1) = C+(k)e−T/τc , (5.2a)

C+(k + 1) = C−(k + 1) + Cjump. (5.2b)
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After some manipulation, we can reformulate these equations into an iterative map:

C−(k + 1) =
(
C−(k) + Cjump

)
e−T/τc , (5.3a)

C+(k + 1) = C+(k)e−T/τc + Cjump. (5.3b)

Presynaptic vesicle trafficking

When stimulated, an increase in calcium concentration triggers exocytosis with a release
probability P . This process involves vesicle docking, priming, and fusion with the terminal
membrane, followed by the release of neurotransmitters into the synaptic cleft, as illustrated
in Fig. 5.1. The release probability P relies on how quickly specific transmitter-release
proteins respond to the instantaneous influx of calcium [132]. Since we focus on modulation
at hippocampal GABAeric synapses, we adopt a scheme proposed in [195] to be consistent
with the experimental data. In this scheme, the release probability P is determined by the
calcium concentration and obeys a Hill equation with coefficient 4,

P = Pmax
C4

C4 +K4
P

, (5.4)

where the parameter Pmax denotes the maximum release probability and Kp is the calcium
concentration when P = 1/2Pmax.

Presynaptic vesicles are a limited resource. Simultaneously with exocytosis, empty
vesicles are recovered (recycled and replenished with neurotransmitters) from the refractory
state. Denote R as the fraction in the vesicle pool ready to release and assume that the
total quantity of vesicles remains constant [132]. Then, the ratio of empty vesicles is (1−R).
Before an input spike, the variable R is governed by the equation [132]

dR

dt
= krev(t)(1−R). (5.5)

The recovery rate krev depends on residual calcium according to experimental observation
[112]. It involves a Hill equation with coefficient 1 starting at krev,min [132], given by

krev(t) = krev,min + (krev,max − krev,min)
C(t)

C(t) +Krev

, (5.6)

where C follows the decay equation (5.1) during the interval of spikes. The value of
krev decreases to krev,min when C approaches the baseline and reaches krev,max when C is
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sufficiently large relative to the affinity constant Krev. Solving equations (5.1), (5.5) and
(5.6), we obtain a continuous solution

R(t) = 1−
[
1−R(0)

]
e−krev,mint

(
C(0)e−t/τc +Krev

C(0) +Krev

)τc(krev,max−krev,min)

,

≡ 1−
[
1−R(0)

]
e−krev,mintγ

(
C(0)

)
,

(5.7)

where

γ (C) = e−krev,minT

(
Ce−T/τc +Krev

C +Krev

)τc(krev,max−krev,min)

.

Employing the discrete scheme as before and replacing R(t) with R−(k + 1), the variable
before the (k + 1)th spike, R(0) with R+(k) and C(0) with C+(k), the variables after the
kth spike, yields

R−(k + 1) = 1−
(
1−R+(k)

)
e−krev,minTγ

(
C+(k)

)
.

Furthermore, the releasable vesicle ratio R decreases due to the the spike-triggered neuro-
transmitter release, yielding

R+(k) = R−(k)− βP+(k)R−(k) = R−(k)
(
1− βP+(k)

)
,

where β is the scaling factor, and the right-limit release probability P+ is adopted because
P instantly varies with [C] as described by Eq. (5.4) due to the spike stimulus, whereas the
synapse needs time to response from R− to R+ especially when the spike stimulus occurs
closely after the former one [74, 205]. Then, we can reformulate the above expressions into
the following iteration map for the variable R:

R−(k + 1) = 1−
[
1−

(
1− βP+(k)

)
R−(k)

]
γ
(
C+(k)

)
, (5.8a)

R+(k + 1) =
(
1− βP+(k + 1)

) [
1−

(
1−R+(k)

)
γ
(
C+(k)

)]
. (5.8b)

Postsynaptic response with periodic input

Synaptic facilitation occurs when the accumulated calcium concentration encourages vesicle
release, ultimately causing an enhancement in the amplitude of the postsynaptic response.
On the other hand, synaptic depression occurs when vesicles are depleted at a rate faster
than their recovery, resulting in a reduced postsynaptic response.

If the kth spike input is followed closely by the next one without allowing the synapse
to recovered from the refractory state, then the kth postsynaptic current (PSC) will be
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determined by the product of the increased release probability P+ (just after the kth spike)
and the remaining releasable vesicles R− (just before the kth spike) in the form

PSC(k) ∝ P+(k)R−(k). (5.9)

Note that only the values (P+, R−) at right-limit and left-limit spike times matter for the
PSC [74, 205, 195, 188].

In summary, we have developed a discrete dynamical system (5.3), (5.4), (5.8) and
(5.9) to represent the microscopic dynamics of signal transmission between two neurons
modulated by synaptic STP. To gain a deeper understanding of the synaptic dynamics, we
illustrate the temporal changes of the variables using a spike-train input with a frequency
of 50 Hz. The parameter values can be found in Table 5.1. These values, obtained from
[195], were specifically fitted to the synapses from the parvalbumin-containing basket cell
(PV BC) to the pyramidal cell in the CA1 region of the hippocampus. The evolution of
the variables between spikes is captured by plotting the continuous functions (5.1), (5.4)
and (5.7). As shown in Fig. 5.2, the calcium concentration C(t) and the recovery variable
R(t) exhibit first-order kinetics between the spikes. With the arrival of the stimulus,
there is a rapid increase in C and a rapid decrease in R. Throughout this process, the
release probability P (t) changes with C(t) by Eq. (5.4). The postsynaptic response follows
the law in Eq. (5.9) and eventually reaches a stable value. In addition, we observe that
the application of muscarine leads to a smaller postsynaptic response, since muscarinic
activation reduces the influx of calcium concentration (see the scale difference in C in
Fig. 5.2) into the presynaptic cell [195].

5.3 Neural Network with Synaptic STP

Previously, we described the synaptic transmission between two neurons and built the dis-
crete STP model motivated by experimentally designed studies that generated the periodic
spike-train input manually. However, neurons always work as a population and network
couplings make individual neurons exhibit irregular spiking patterns at various rates [194].
In this section, we go back to our initial problem of a large neural network with synaptic
STP, where the spike input is from coupled presynaptic neurons and its frequency varies
with time. We will construct a continuous dynamical system by formulating the spike train
stimuli as repetitive input impulses.
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Parameters Values Description

τm 1 ms Time constant for membrane potential

τc 1.5 ms Time constant for calcium

Cjump 1 (control) After-spike jump size for calcium

0.17 (muscarine)

β 1 Scaling factor

Pmax 0.87 Maximum release probability

kmin 0.0017 ms−1 Minimum recovery rate constant

kmax 0.0057 ms−1 Maximum recovery rate constant

KP 0.2 Half calcium concentration for

probability of release function

Krev 0.1 Half calcium concentration for rate

of recovery function

Table 5.1: Parameter values for hippocampal GABAergic synapses [195].
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Figure 5.2: Time evolution of the synaptic system with STP (5.1), (5.4), (5.7) and (5.9) for the
control case Cjump = 1 (left column) and the muscarine case Cjump = 0.17 (right column). The
initial conditions are C(0) = Cjump, P (0) = Pmax and R(0) = 1. Parameter values are given in
Table 5.1.
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5.3.1 Network Setting and Postsynaptic Response

We consider a network of N all-to-all coupled QIF neurons with synaptic STP. The QIF
neuron is the canonical model for type I excitability and is suitable for studying network
dynamics. Details of the QIF neuron are provided in Chapter 2.

The microscopic dynamics of the QIF network is described by the membrane potentials
obeying the following equations:

τm
dvi
dt

= v2i (t) + ηi + Iext(t) + τmIsyn,i(t),

if vi ≥ vpeak, then vi ← vreset,
(5.10)

for i = 1, 2, . . . , N . A neuron i emits its spike when it reaches the peak value vpeak, on
which vi is reset to vreset. In the limit vpeak = −vreset = ∞, the model (5.10) represents
a network of theta neurons defined in the domain θ ∈ [−π, π) [117, 85, 104, 126] via
the transform v = tan(θ/2). Each neuron receives the input current from three distinct
sources: a shared, time-varying external component Iext(t), an individualized static compo-
nent ηi drawn from a probability distribution, and a recurrent component representing the
postsynaptic response of neuron i resulting from presynaptic neurons through synapses,
denoted as Isyn,i. This PSC is the cumulative outcome of contributions from all the coupled
presynaptic neurons,

Isyn,i = (er − vi)ḡisi = (er − vi)
N∑
j=1

ḡijsij = (er − vi)
gsyn
N

N∑
j=1

sij, (5.11)

where er is the reversal potential, whose value determines whether the synapses are exci-
tatory or inhibitory, i.e, whether they increase or decrease the likelihood of firing of the
postsynaptic neuron; ḡij is the maximal synaptic conductance between neurons i and j,
determining the strength of the coupling. For all-to-all connectivity, the neuron i is coupled
with all N neurons in the network, including itself. Thus, we can take ḡij = gsyn/N where
gsyn is the maximal synaptic conductance of the neuron i and homogeneous across the net-
work [158]. Furthermore, sij is the synaptic gating variable, representing the proportion of
ion channels open in the membrane of the postsynaptic neuron i as the result of firing in
the presynaptic neuron j. Due to the effect of STP, we modulate sij by a dynamic factor
Mij(t) [132, 188], then the postsynaptic current is modified as

Isyn,i = (er − vi)
gsyn
N

N∑
j=1

Mijsij = (er − vi)gsynsi, (5.12)
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where

si =
1

N

N∑
j=1

Mijsij

is the gating variable of postsynaptic neuron i due to all presynaptic neurons. Under the
assumption of all-to-all coupling, si = s for all i since every postsynaptic neuron receives
the same summed input from all presynaptic neurons [158]. Thus, we omit the index i in
all s and rewrite it as follows,

s =
1

N

N∑
j=1

Mjsj. (5.13)

We can also interpret it as the mean synaptic activation [150]. Recall from Sec. 2.4.2 that
the single exponential synapse is governed by

τs
dsj
dt

= −sj(t) +
∑
k

δ(t− t
(k)
j ), (5.14)

where δ(t) is the Dirac delta function and tkj is the time at which the neuron j emits its
kth spike. In the limit τs → 0, we have

sj(t) =
∑
k

δ(t− t
(k)
j ) ≡ s0j(t), τs → 0, (5.15)

which represents the instantaneous effect resulting from the input spike train. To find the
relationship between the synaptic activity s0j(t) and the firing rate rj(t) of neuron j, we
define the function nj(t) to be the number of spikes fired by the jth neuron in the time
interval [0, t],

nj(t) =

∫ t

0

∑
k

δ(t′ − t
(k)
j )dt′. (5.16)

Then, we define the firing rate rj(t) as the number of spikes emitted per unit time in the
limit ∆t→ 0 [158], given by

rj(t) = lim
∆t→0

nj(t+∆t)− nj(t)

∆t
=

d

dt
nj(t) =

∑
k

δ(t− t
(k)
j ) = s0j(t).

For a spike train with an experimentally designed period of Tj, we have

rj(t) = 1/Tj, (5.17)

which represents that there is only one spike within each spike interval Tj(t) [95].
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5.3.2 Synaptic Dynamics in Network

As we already know, spike stimuli from the presynaptic neuron activate calcium channels,
causing the intracellular calcium concentration to increase rapidly by an amount Cjump;
between spike intervals, the calcium concentration decays with first-order kinetics. Thus,
we can describe the time course of the concentration Cj(t) for the neuron j in the network
by the following equation in terms of the spike trains sj [132]:

τc
dCj

dt
= −Cj + τcCjumpsj. (5.18)

An increase in calcium concentration initiates the exocytosis process, where the release
probability P is determined by the value of calcium concentration; see Eq. (5.4). The
question then arises: what value of C should be substituted into this equation? Various
studies in the literature have used different values, reflecting the varied responses of specific
neurotransmitters to calcium influx. For example, the minimum value before the arrival of
the next spike was adopted in [74]; the steady state obtained from Eq. (5.18) was chosen in
[132], while the equivalent post-spike effect was utilized in [205]. Our strategy is to select
a value for C that ensures the consistency of synaptic dynamics, whether considered in
isolation or within the network environment. Thus, we need to establish the relationship
of C between the network model (5.18) and the microscopic model (5.3) developed for the
individual synapse.

For comparison, we adopt the idea used to develop the microscopic STP map (5.3) and
apply regular spike trains to each neuron of the all-to-all coupled neural network. In this
scenario, the presynaptic neuron j spikes periodically with a period Tj, giving rise to a
spike train s0j =

∑∞
k=0 δ(t− kTj) with a constant firing rate of rj = 1/Tj. By replacing the

spike train in the network model (5.18) by sj = rj = 1/Tj in the limit τs → 0, we obtain
the steady-state calcium concentration given by

C∗ = τcCjump/T. (5.19)

Here, we omit the neuron index j for brevity. On the other hand, in the context of periodic
input, we have derived the iteration maps (5.3) for the calcium concentrations before and
after the kth spike, C−(k) and C−(k). Thus, we can find the corresponding stationary
solutions C−(k) = C−(k + 1) = C−

∗ and C+(k) = C+(k + 1) = C+
∗ , given by

C−
∗ =

Cjump

eT/τc − 1
≈ τc

T
Cjump, (5.20a)

C+
∗ =

Cjump

eT/τc − 1
eT/τc ≈ τc

T
Cjump + Cjump, (5.20b)
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where the second terms are the first-order approximations of C−
∗ and C+

∗ at moderate to
high frequencies, specifically when T/τc ≪ 1. Comparing Eq. (5.19) and (5.20), we find
that the network steady state C∗ closely corresponds to the left-limit value C−

∗ obtained
from the microscopic system. Given that the right-limit release probability P+ is crucial
in the exocytosis process and dependent on the calcium concentration (see Eq. (5.4) and
(5.9)), we calculate Pj for neuron j in the network model as follows:

C+
j (t) = Cj(t) + Cjump, (5.21a)

Pj(t) = Pmax

(C+
j )

4

(C+
j )

4 +K4
P

, (5.21b)

which is consistent with the scheme in [205] and the analysis in [95]. Regarding the recovery
variable R(t), we utilize the same strategy in developing the microscopic models. Then,
we have

dRj

dt
= krev,j(1−Rj)− βP+

j R−
j sj, (5.22a)

krev,j(t) = krev,min + (krev,max − krev,min)
Cj

Cj +Krev

. (5.22b)

Here, R− = R and P+ = P in Eq. (5.21). We add the superscripts “–” and “+” to the
prefactors of sj to emphasize that only the values (P+, R−) at right-limit and left-limit
spike times matter for the PSC; see Eq. (5.9). Meanwhile, we can specifically write the
synaptic current in Eq. (5.12) as

Isyn,i = (er − vi)
gsyn
N

N∑
j=1

P+
ijR

−
ijsij = (er − vi)

gsyn
N

N∑
j=1

P+
j R−

j sj. (5.23)

5.3.3 Summary of the Network Model and Its Simplification

We have developed the network model for the all-to-all coupled QIF neurons with calcium-
dependent synaptic STP, which is summarized by the system comprising a set of ordinary
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differential equations (ODEs) and algebraic equations as follows,

τm
dvi
dt

= v2i (t) + ηi + Iext(t) + τmgsyn(er − vi)
1

N

N∑
j=1

P+
j R−

j sj, (5.24a)

τc
dCi

dt
= −Ci + τcCjumpsi, (5.24b)

dRi

dt
= krev,i(1−Ri)− βP+

i R−
i si, (5.24c)

τs
dsi
dt

= −si +
∑
k

δ(t− t
(k)
i ), (5.24d)

C+
i = Ci + Cjump, (5.24e)

Pi = Pmax
(C+

i )
4

(C+
i )

4 +K4
P

, (5.24f)

krev,i = krev,min + (krev,max − krev,min)
Ci

Ci +Krev

. (5.24g)

In the literature, some common choices are made to simplify the neural network system,
with the aim of concentrating the study on the pertinent dynamics. One choice involves
taking the limit of infinitely fast synapses, i.e., τs → 0 in Eq. (5.24d) [150]. Moreover,
the time-varying component of the coupling strength (er − v) in Eq. (5.24a) is frequently
assumed to be constant, especially for inhibitory neural networks [167]. This assumption
replaces the term gsyn(er − v) with a constant J . The case J > 0 represents the excitatory
coupling and J < 0 represents the inhibitory coupling [150]. Additionally, the dependency
of the recovery rate on calcium may demonstrate linearity at some synapses. For example,
the paper [195] replaced Eq. (5.24g) by its first-order approximation around C = 0, a linear
equation,

krev,i = krev,min +
krev,max − krev,min

Krev

Ci ≡ krev,min + αCi. (5.25)

In this chapter, we retain the nonlinear form of krev, while adopting the first two simplifi-
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cations. As a result, we have the simplified network model given by

τm
dvi
dt

= v2i (t) + ηi + Iext(t) +
Jτm
N

N∑
j=1

P+
j R−

j sj, (5.26a)

τc
dCj

dt
= −Cj + τcCjumpsj, (5.26b)

dRj

dt
= krev,j(1−Rj)− βP+

j R−
j sj, (5.26c)

sj =
∑
k

δ(t− t
(k)
j ), (5.26d)

C+
j = Cj + Cjump, (5.26e)

Pj = Pmax

(C+
j )

4

(C+
j )

4 +K4
P

, (5.26f)

krev,j = krev,min + (krev,max − krev,min)
Cj

Cj +Krev

. (5.26g)

Here, we specifically use the subscript j to emphasize the activities that occur in presy-
naptic neurons and i for the postsynaptic ones. For all-to-all connectivity, there is no
discrimination between them. All subsequent analyses will be conducted on this model.

5.4 The Derivation of the Mean-field System

In this section, our aim is to develop a low-dimensional mean-field model to describe
the collective dynamics of the neural network (5.26). The main difference from previous
chapters lies in introducing a kinetic model of synapse into the neural network.

To steamline the derivation, we denote

reff(t) =
1

N

N∑
j=1

P+
j R−

j sj =
1

N

N∑
j=1

P+
j R−

j

∑
k

δ(t− t
(k)
j ) (5.27)

as the effective mean-field network activity that arrives at each neuron. Without synaptic
STP, we have P (t) = R(t) = 1 and reff becomes the population firing rate r(t),

r(t) = lim
N→∞

1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ). (5.28)
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See details in Sec. 3.3.1. The population firing rate r(t) and the mean membrane potential
⟨v(t)⟩ over all neurons can be derived using a similar procedure presented in Chapter 3.
Here, we offer a brief overview.

In the thermodynamic limit, N →∞, the network satisfies the conditions for the exis-
tence of the low-dimensional OA manifold [163] or the equivalent Lorentzian ansatz [150],
that is, the membrane potentials vi are distributed according to a Lorentzian probability
density for the current parameter η at time t,

ρ(t, v|η) = 1

π

x(t, η)[
v − y(t, η)

]2
+ x2(t, η)

. (5.29)

The center y(t, η) and half-width at half-maximum (HWHM) x(η, t) are associated with
r(t) and ⟨v(t)⟩ via the equations

r(t) =

∫
∂η

r(t, η)L(η)dη =

∫
∂η

1

π
x(t, η)L(η)dη, (5.30a)

⟨v(t)⟩ =
∫
∂η

y(t, η)L(η)dη, (5.30b)

where L(η) is the probability distribution function for the current parameters ηi. The time
evolution of the probability density ρ(t) is governed by the continuity equation, given by

∂tρ+ ∂v

[(
v2 + η + Iext

τm
+ Jreff

)
ρ

]
= 0. (5.31)

Substituting Eq. (5.29) into the above equation yields the dynamics of x(η, t) and y(η, t),
thus r(η, t) and ⟨v(η, t)⟩, obeying

∂tz(η, t) = i

[
−z2(η, t) + η + Iext

τm
+ Jreff

]
(5.32)

for any η, with z(η, t) = x(η, t) + iy(η, t) = πr(η, t) + i⟨v(η, t)⟩. Further reduction in the
dimensionality of the resulting mean-field system can be achieved by choosing a Lorentzian
distribution for the current parameters ηk with HWHM ∆η, centered at η̄,

L(η) = 1

π

∆η

(η − η̄)2 +∆2
η

. (5.33)

Using the residue theorem of complex analysis and evaluating the integral at the pole of
L(η) given by η̄ − i∆η, i.e., z(η̄ − i∆η, t) = πr(t) + iv(t), we obtain the mean-field system
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for r and ⟨v⟩ as follows,

τm
dr

dt
=

∆η

πτm
+ 2r⟨v⟩, (5.34a)

τm
d⟨v⟩
dt

= ⟨v⟩2 + η̄ + Iext(t) + Jτmreff − (πτmr)
2. (5.34b)

Further, we can obtain the mean-field approximation for the presynaptic dynamics (5.26b)-
(5.26g) as below,

τc
d⟨C⟩
dt

= −⟨C⟩+ τcCjumpr, (5.35a)

d⟨R⟩
dt

= ⟨krev⟩
(
1− ⟨R⟩

)
− βreff , (5.35b)

⟨C+⟩ = ⟨C⟩+ Cjump, (5.35c)

⟨krev⟩ = krev,min + (krev,max − krev,min)
⟨C⟩

⟨C⟩+Krev

, (5.35d)

⟨P ⟩ = Pmax
⟨C+⟩4

⟨C+⟩4 +K4
P

. (5.35e)

Here, the equation of ⟨C⟩ is derived by following a similar procedure as for ⟨w⟩ in Chapter
3 under the analogous assumption that ⟨C|η⟩ ≫ Cjump; the equation for ⟨R⟩ is the result of
the first-order moment closure method by assuming ⟨krev ·R⟩ = ⟨krev⟩ · ⟨R⟩; the equations
for ⟨P ⟩ and ⟨krev⟩ come from heuristic, but simple estimations. Our numerical simulations
in the following section will demonstrate acceptable agreement between the network system
and our mean-field approximation.

Now, we come to the last step of mean-field derivation about how to obtain the expres-
sion of reff in Eq. (5.34b) and (5.35b) in terms of the existing macroscopic variables. It is
the key to closing the mean-field system. Neurophysiological studies revealed that individ-
ual neurons fire irregularly and can occur at any rate [194]. This irregularity in firing rates
is compared to a Poisson process, which means that the timing of each neuron’s firing is
independent of the timing of previous firings and occurs randomly [205]. So we can as-
sume that the spike trains of all neurons {sj}j=1,...,N follow independent Poisson processes
[205, 188]. Under this assumption, the original spike train is statistically equivalent to the
ones, given by

1

N

N∑
j=1

∑
k

δ(t− t
(k)
j ) =

1

N

∑
k∈Z+

δ(t− t(k)). (5.36)
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It implies that synapse identities j can be randomized, that is, the spike times {t(k)}k∈Z+

matter, but not the synapse at which the spikes occur. From the definition (5.16), we have
nj(t) as the number of spikes fired by the jth neuron in the time interval [0, t]. Then, we
define the network averaged firing rate, the mean spike numbers in per unit time, as in
Eq. (3.14),

r(t) = lim
∆t→0

lim
N→∞

1

N

N∑
j=1

nj(t+∆t)− nj(t)

∆t
.

Due to the effect of STP, the spike trains are modulated by a dynamic factorMj(t) = PjRj.
Thus, we define the effective mean-field network activity as

reff(t) = lim
∆t→0

lim
N→∞

1

N

N∑
j=1

M(Pj, Rj)
nj(t+∆t)− nj(t)

∆t

= lim
∆t→0

1

∆t
lim

N→∞

1

N

N∑
j=1

M(Pj, Rj)
(
nj(t+∆t)− nj(t)

) (5.37)

Under the Poisson process, that is, Eq. (5.36), we assume that at most one spike can occur
in the entire network in an infinitesimally small time interval ∆t → 0 [188]. Thus, there
exists one and only one neuron j for which nj(t+∆t)− nj(t) = 1. We define the average
of ⟨nj(t)⟩ across the network as [158]

⟨nj(t)⟩ = lim
N→∞

1

N

N∑
j=1

nj(t). (5.38)

From the network averaged perspective, we have
〈
nj(t+∆t)

〉
− ⟨nj(t)⟩ = 1 in the interval

∆t→ 0. This implies that we can factor out any modulation function M(Pj, Rj) as follows
[188],

reff(t) = lim
∆t→0

1

∆t
lim

N→∞

1

N

N∑
j=1

M(Pj, Rj)
(
nj(t+∆t)− nj(t)

)

= lim
∆t→0

M
(
⟨P ⟩, ⟨R⟩

)(〈
nj(t+∆t)

〉
− ⟨nj(t)⟩

)
∆t

= M
(
⟨P ⟩, ⟨R⟩)

) d

dt
⟨nj(t)⟩.

(5.39)
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Substituting Eqs. (5.16) and (5.38) yields

reff(t) = M
(
⟨P ⟩, ⟨R⟩

)
lim

N→∞

1

N

N∑
j=1

∑
k

δ(t− t
(k)
j )

= M
(
⟨P ⟩, ⟨R⟩

)
r(t).

(5.40)

For our case, we have
reff(t) = ⟨P ⟩⟨R⟩r(t) (5.41)

Thus, the mean-field system is closed by expressing reff in terms of the existing macroscopic
variables. Finally, we reduce the network of QIF neurons with synaptic STP (5.26) to the
mean-field system composed of (5.34), (5.35) and (5.41).

5.5 Numerical Analysis

In this section, we will numerically analyze the dynamics of the proposed mean-field system,
showing its ability to accurately replicate the collective behaviors of the QIF network with
synaptic STP. Additionally, we will investigate the effect of muscarine within the mean-
field framework. By binding to the presynaptic mAChRs, muscarine triggers the inhibition
of calcium channels, leading to a reduction in the influx of calcium into the presynaptic
terminal upon arrival of an action potential [99]. Therefore, in the muscarine case, we will
employ a smaller value for Cjump compared to the control case [195].

The parameter values for all numerical experiments are given in Table 5.1 and Table
5.2, unless otherwise specified in a figure. Mainly sourced from [195], these values were
originally fitted for the hipocampal CA1 GABAergic synapses between the parvalbumin-
containing basket cell (PV BC) and the pyramidal cell. These synapses are characterized
by their inhibitory nature, thus the coupling strength J < 0. Note that all values are
dimensionless, except for time, which is measured in milliseconds (ms). Numerical simula-
tions were performed using Euler’s method in MATLAB [145], with a time step dt = 10−3

and numerical continuation using XPPAUT software [83].

We begin our investigation by performing a bifurcation analysis of the mean-field sys-
tem. In Fig. 5.3(a), we present qualitative changes in the population firing rate r as the
mean current parameter η̄ varies. When ∆η = 0.05, both the control (Cjump = 1) and the
muscarinic (Cjump = 0.17) systems converge to stable equilibrium points (EPs) (red), while
the muscarinic one exhibits higher values of r. This observation agrees with our previous
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Parameters Values Description

Iext(t) 0 Common, time-varying external current

N 1000 Number of cells in the network

v(0) 0 Initial membrane potential

C(0) 1 Initial calcium concentration

P (0) 0.5 Initial release probability

R(0) 1 Initial ratio of releasable vesicles

r(0) 0 Initial population firing rate

Table 5.2: Parameter values & initial conditions of the QIF-STP system.

findings, where the muscarinic effect reduces the postsynaptic response; see Fig. 5.2. In the
inhibitory network, the reduced PSC implies that fewer negative currents are introduced
into postsynaptic cells, thus improving their excitability. Consequently, the average firing
rate across the network is elevated in the muscarine case. Furthermore, the bifurcation
diagrams also indicate that the application of muscarine enriches the system dynamics.
This can be seen in the bottom row of Fig. 5.3, where the muscarinic system is able to
stabilize at periodic orbits (POs) (below the green line in (b), inside the green loop in (d),
and to the left of the green line in (c)). It suggests that muscarine may induce synchronous
bursting behaviors between neurons. In addition, we illustrate qualitative changes in the
population firing rate r with varying coupling strength J in Fig. 5.4 for the QIF neural
network (a), the QIF system with STP in the control case (b) and the QIF-STP system
in the muscarine case (c), respectively. It should be noted that most of our parameter
values were obtained by fitting data from the inhibitory synapse, suggesting that J should
always be negative. Driven by curiosity, we extend the range of J to the positive region
and observe an interesting phenomenon. When J < 0, all three neural systems have EPs
as the sole attractor, as indicated by the red color in Fig. 5.4. It is consistent with results
in Fig. 5.3(a) and (b) with ∆η = 0.5. When J > 0, the system in the absence of synaptic
STP still only shows the EP attractor; see Fig. 5.4(a). In contrast, when synaptic plasticity
is taken into account, the system can exhibit stable POs in the region to the right of the
supercritical Hopf boundaries (green), where J > 0 (refer to Fig. 5.4(b) for the control
case and (c) for the muscarine case). Observe that a higher positive value of J is required
to compensate for the reduced PSC due to muscarine.

The time evolution of the macroscopic variables is depicted in Fig. 5.5 for the full neural
network (in blue) and the derived mean-field system (in red) simultaneously. Both cases,
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Figure 5.3: Bifurcation diagrams of the mean-field system (5.34), (5.35) and (5.41) for the control
case Cjump = 1 (first row) and the muscarine case Cjump = 0.17 (second row), respectively. We
depict stable/unstable EP in red/black and supercritical Hopf boundaries in green. (a): the (η̄, r)
plane when ∆η = 0.05, combining the curves in both cases for comparison. (b): the (η̄,∆η) plane,
where stable POs exist under the green curve. (c) & (d): the (η̄, r) plane when ∆η = 0.008.
(e) & (f): the (∆η, r) plane when η̄ = 1. To the left of the green curve, there are stable POs.
Parameter values: J = −30 and others are given in Tables 5.1 and 5.2.
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Figure 5.4: Comparison of bifurcation diagrams in the plane (J, r) for (a) the QIF network without
STP, (b) the QIF-STP system for the control case Cjump = 1 and (c) the QIF-STP system for
the muscarine case Cjump = 0.17. We depict stable/unstable EP in Red/black and supercritical
Hopf boundaries in green. Stable POs exist the right of the green line. Parameter values: η̄ = 1
and ∆η = 0.05, others are given in Tables 5.1 and 5.2.
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Figure 5.5: Time evolution for the QIF-STP network (5.26) (blue) and the corresponding mean-
field model (5.34), (5.35) and (5.41) (red) for the control case Cjump = 1 (left column) and
muscarine case Cjump = 0.17 (right column). A current Iext(t) = 3 is applied to all neurons when
t = (50− 150) ms and I(t) = 0 at all other times (bottom row). The top row shows raster plots
of 300 randomly selected neurons of the N = 1000 in the population. The dots correspond to the
firing events. The macroscopic variables r(t) (2nd row), ⟨v(t)⟩ (3rd row), ⟨C(t)⟩ (4th row), ⟨P (t)⟩
(5th row) and ⟨R(t)⟩ (6th row) are presented, respectively. Parameter values: η̄ = 1, ∆η = 0.05
and J = −30. Others are given in Tables 5.1 and 5.2.

the control case (left column) and the muscarine case (right column), exhibit consistent
behaviors, including damped oscillations and changes with the varying applied current. De-
spite the slight discrepancy observed in the muscarine case for the mean release probability
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P (t), the mean-field estimation still consistently reflects a trend similar to that observed in
the network. Moreover, these temporal behaviors agree with the bifurcation results for the
mean-field system, as shown in Fig. 5.3(a) and (b) for ∆η = 0.05. Note that the effects of
constants I and η̄ on the mean-field system are identical; see Eq. (5.34). These consistent
findings suggest that our mean-field model reliably predicts the dynamic of the full neural
network that incorporates synaptic STP. Furthermore, we identified a novel muscarinic ef-
fect from the time series illustrated in Fig. 5.5. Specifically, the muscarinic system exhibits
a longer transient oscillatory process compared to the control system. This phenomenon
arises from muscarinic activation, which causes weaker inhibitory PSCs and consequently
increases excitability in postsynaptic neurons, leading to a longer convergence process of
the full network. In addition, we performed some numerical experiments (not shown) using
the parameter values in [195], where the authors proposed a linear equation for krev; see
Eq. (5.25) instead of (5.26g). Our findings indicate that the mean-field system exhibits a
relatively slower decay towards EPs and agrees worse with the network’s transient behavior
when employing the linear form rather than the nonlinear one.

Furthermore, we consider a scenario where the neural system has a smaller heterogene-
ity. As predicted from the bifurcation diagram of the mean-field system in Fig. 5.3(c) and
(d), the system under control conditions converges to an EP, while the system under mus-
carine conditions exhibits oscillating behaviors when η̄ = 1 and ∆η = 0.08. Fig. 5.6 shows
the corresponding temporal collective dynamics in the last 50 ms. The time series of the
mean-field system agree with the bifurcation results, while there are some inconsistencies
between the network simulation and the mean-field approximation. These discrepancies
may be due to the limitations of the mean field system in accurately representing neu-
ral networks with weaker heterogeneity, especially when considering synaptic STP. Some
amendments are suggested in [95] to improve the mean-field approximation in such scenar-
ios, although these modifications are somewhat complex. However, Fig. 5.6 still exhibits
some different features between the expected EP behavior in the control system (left col-
umn) and the expected PO behavior in the muscarinic system (right column). These
include a cluster of neurons that alternate between active and static states in the mus-
carine scenario (right column), in contrast to the comparatively unpredictable activity in
the control scenario (left column); larger oscillating amplitudes in the time series of r(t)
and ⟨v(t)⟩, and the variation of ⟨P (t)⟩ in the right column. The subtle distinctions may
be partly due to the fast oscillations frequently observed in the inhibitory neural network
[70]. We anticipate a more insightful observation if one introduces a slow variable, such as
by removing the simplification assumption τs → 0 for sj(t) and using a relatively larger
value of it, or by replacing QIF neurons with Izhikevich neurons, which include an extra
slow adaptation variable. As demonstrated in Chapter 3, the interaction between slow-fast
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Figure 5.6: Time evolution for the QIF-STP network (5.26) (blue) and the corresponding
mean-field model (5.34), (5.35) and (5.41) (red) for the control case Cjump = 1 (left column)
and the muscarine case Cjump = 0.17 (right column). A current Iext(t) = 0 is applied to all
neurons. The top row shows the last 50 ms raster plots of 300 randomly selected neurons
of N = 1000 in the population. The dots correspond to the firing events. The macroscopic
variables r(t) (2nd row), ⟨v(t)⟩ (3rd row), ⟨C(t)⟩ (4th row), ⟨P (t)⟩ (5th row) and ⟨R(t)⟩
(6th row) are presented, respectively. Parameters: η̄ = 1, ∆η = 0.008 and J = −30.
Others are given in Tables 5.1 and 5.2.

dynamics is the primary mechanism for generating bursting behaviors, characterized by
the alternation between silent and active states with a longer period. We believe that
these modifications could facilitate the observation of oscillatory patterns and agreement
between the network and our mean-field system. We leave this avenue for future research.

Fig. 5.7 illustrates an additional set of time evolutions of macroscopic variables for the
system with moderate heterogeneity ∆η = 0.05 and positive coupling strength J = 30 so as
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Figure 5.7: Time evolution for the QIF-STP network (5.26) (blue) and the corresponding mean-
field model (5.34), (5.35) and (5.41) (red) for the control case Cjump = 1 (left column) and the
muscarine case Cjump = 0.17 (right column). A current Iext(t) = 0 is applied to all neurons.
The top row shows the last 50 ms raster plots of 300 randomly selected neurons of N = 1000 in
the population. The dots correspond to the firing events. The macroscopic variables r(t) (2nd
row), ⟨v(t)⟩ (3rd row), ⟨C(t)⟩ (4th row), ⟨P (t)⟩ (5th row) and ⟨R(t)⟩ (6th row) are presented,
respectively. Parameter values: η̄ = 1, ∆η = 0.05 and J = 30. Others are given in Tables 5.1 and
5.2.

to provide more insight into oscillatory behaviors. The muscarinic system (right column)
converges to EP, and the mean-field system gives a reliable approximation for the neural
network, as anticipated in the bifurcation diagram of Fig. 5.4(c) (J = 30). By compari-
son, the control system (left column) stabilizes at PO, consistent with the anticipation of
Fig. 5.4(b) (J = 30). Despite discrepancies in the oscillating amplitude between the net-
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work model (in blue) and the mean-field approximation (in red), the mean-field model is
still capable of capturing oscillations with a frequency consistent with that of the network
model. Although it is challenging to distinguish the difference from the raster plot, it is still
possible to observe that a cluster of neurons exhibits alternative activity between active
and static states in the control scenario in contrast to comparatively random activity in
the muscarine scenario, in addition to the different network simulations of ⟨P (t)⟩ between
the expected mean-field EP in Fig. 5.7 (right column) and PO in Fig. 5.6 (right column).
We anticipate a more insightful observation could be achieved using experimentally fitted
parameters in a real excitatory network.

At last, we introduce a periodic drive with a relatively slower oscillation than that
in Fig. 5.7 to assess the accuracy of the mean-field model in capturing the network’s
oscillatory behaviors. Fig. 5.8 shows the response of the system to a periodic current
Iext(t) = I0 sin(ωt). Great consistency is exhibited between the network model and the
derived mean-field model in all macroscopic variables. The periodic bursting behavior
alternates with a quiescent state with r ≈ 0. An interesting phenomenon was observed in
the QIF network without synaptic STP, where a quasi-periodic trajectory was reported in
[150]. Further investigation is needed to explore the effect of synaptic STP to the periodic
input that comes from other areas of the brain or associates with different rhythms.

5.6 Results and Discussions

We proposed a network model for a population of heterogeneous QIF neurons with calcium-
dependent presynaptic STP dynamics inspired by the idea in [132, 195]. This network
system captures the central biophysical processes involved in synaptic transmission and in-
tegrates various forms of short-term synaptic plasticity, including facilitation, depression,
and mixed effects, in a relatively simple mathematical form. Following the theoretical
framework of OA theory [163] or the equivalent Lorentzian ansatz [150], we analytically
derived a mean-field model, valid in the thermodynamic limit N → ∞. Furthermore, we
investigate the STP effect on collective dynamics, particularly by examining the effect of
muscarinic activation at inhibitory hippocampal synapses using the parameters fitted for
the CA1 PV BC-pyramidal cell synapses in [195]. Our numerical simulations demonstrate
satisfactory agreement between the network system and our mean-field model. The intro-
duction of muscarine results in a decreased postsynaptic response, leading to an extended
transient oscillating process toward steady state (see Fig. 5.5) and a decreased tendency
to oscillate in the excitatory network (see Fig. 5.4). Additionally, it may increase the
possibility of the emergence of collective oscillations (COs) in the inhibitory network (see
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Figure 5.8: Time evolution for the QIF-STP network (5.26) (blue) and the corresponding mean-
field model (5.34), (5.35) and (5.41) (red) for the control case Cjump = 1 (left column) and
the muscarine case Cjump = 0.17 (right column). A sinusoidal current is applied to all neurons
Iext(t) = I0 sin(ωt) with I0 = 5, ω = π/20. The top row shows raster plots of 300 randomly
selected neurons of the N = 1000 in the population. The dots correspond to the firing events.
The macroscopic variables r(t) (2nd row), ⟨v(t)⟩ (3rd row), ⟨C(t)⟩ (4th row), ⟨P (t)⟩ (5th row) and
⟨R(t)⟩ (6th row) are presented, respectively. Parameters: J = −15, others are given in Tables
5.1 and 5.2.

Fig. 5.3).

To our knowledge, we were the first to analytically derive the mean-field system ODEs
(5.34), (5.35) and (5.41) to represent spiking neural networks with the kinetic STP model.
Most studies in the literature are based on the phenomenological synaptic model proposed
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by Tsodyks and Markram [205], as seen in works such as [188, 95, 198]. However, calcium
dynamics plays a crucial role in synaptic plasticity [99, 176, 197] and it is important to
investigate the contribution of physiologically defined STP processes to neural networks
through experimentally measurable models. Our models reflect biophysical properties,
have direct functional implications, and support analysis and comparison with experiment
data. Furthermore, muscarine is important in the regulation of numerous physiological
processes and its modulation is of great interest in the fields of pharmacology and medical
research. Our mean-field framework will greatly facilitate the understanding of its effects
in networks, as well as its relevance to both normal and abnormal brain functions.
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Chapter 6

Conclusions and Outlook

6.1 Summary and Conclusions

The brain is a complex system, and its functions are the result of the emergent collective
dynamics of a large number of interacting neurons. The development of mathematically
tractable models with experimentally measurable parameters allows us to understand these
collective dynamics associated with both normal functions and neurological disorders from
a dynamical system perspective. This thesis revolves around this key idea.

The entire thesis project covers three aspects: mean-field modeling for neural networks
with spike frequency adaptation (SFA) (Chapter 3), time delay impact on collective dy-
namics of such a network with delayed coupling (Chapter 4) and mean-field modeling for
neural networks with synaptic short-term plasticity (STP) (Chapter 5). The SFA mecha-
nism and the synaptic time delay are two crucial factors in shaping the collective dynamics
of neural networks. In the first two topics, we implemented them in phenomenological mod-
els. The SFA mechanism is carried out by introducing a slow variable w into the canonical
quadratic integrate-and-fire (QIF) neuron model, thus the Izhikevich neuron (3.2), so as to
initiate synchronous bursting behaviors due to the interaction of fast and slow dynamics.
In addition, we adopted a phenomenological model for synapses (3.4) and incorporated an
explicit time-delay term in the coupling (4.8) to represent non-instantaneous communica-
tion between neurons. In the last topic, we integrated a kinetic model for synapses into
the network (5.24), which exhibits calcium-dependent STP. This kinetics also implies an
implicit time delay between neurons and may influence the spike frequency of postsynaptic
neurons.
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Consideration of the two-dimensional Izhikevich neuron as the single neural model is a
result of balance between neurological plausibility, theoretical/ computational tractability
and efficiency for studying large-scale neural networks. It is also a result of the observation
that its fast subsystem involves a quadratic form for the membrane potential, like the QIF
neuron, allowing the use of the Ott-Antonsen (OA) mean-field theory to obtain an exact
macroscopic description for neural networks. For the added slow subsystem, the moment
closure method was used to eliminate the dependence of the slow variable on the fast
membrane potential, so that it achieved the closure of the mean-field system. Moreover, the
interaction of different time-scale processes may induce a synchronous bursting behavior
between neurons (e.g., Fig. 3.2(e)), which is one of the important features of cognition
and perception and cannot be reproduced in the network of QIF neurons represented
only by a one-dimensional system [150]. For connectivity within the neural network, we
considered all-to-all coupling. It is reasonable for the application to the CA3 region of the
hippocampus in this thesis, as this region is highly recurrently coupled [8, 9, 35]. We can
generalize it to sparsely coupled networks using the formalism in [89, 50, 127, 27]. We also
considered all-to-all connectivity between two cross-coupled neural networks with strong
and weak adaptation and saw the impact on collective dynamics by varying the proportion
of neurons of each type (Sec. 3.5).

To validate our proposed mean-field models, we performed a set of numerical experi-
ments to compare with the time evolutions of the full network models. We also discussed
the bifurcation agreement between the network system and its mean-field approximation
(Fig. 3.2(c) and Fig. 3.3). We examined all the assumptions that were imposed during the
derivation (Sec. 3.6). Basically, they are not truly indispensable for the applicability of
the developed mean-field models. Some choices are simply mathematical convenience, and
insights gained from the macroscopic description are more generally applicable.

Stability influences neural activities, structure, and physiology of the neural system
[101]. We performed a linear stability analysis for the mean-field system with a general
distributed delay (Sec. 4.3). Theoretical analysis presents considerable challenges, even for
the single neuron with delayed feedback, or for the delayed Wilson-Cowan (WC) network
composed of phenomenological mean-field models (not shown in this thesis; see our pub-
lished articles [52, 6]). Therefore, this thesis primarily focused on numerical bifurcation
analysis. This technique allows us to deal with the more complex mean-field system, such
as incorporating the SFA mechanism and the conductance-based synaptic current (4.2).
It also enables us to explore more complicated collective oscillations (COs) induced by
higher codimension bifurcations. Our findings revealed a novel mechanism for the emer-
gence of synchronous bursting in the network via a saddle-node bifurcation on invariant
circle (SNIC) or homoclinic bifurcation; see Fig. 3.6(c). We also discovered that synaptic
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delay promotes the emergence of population bursting with two nested frequencies induced
by Torus bifurcations, which occurs in a single population of neurons without an external
drive; see Fig. 4.7. Furthermore, through perturbation theory and numerical bifurcation
analysis, we investigated the OA-based mean-field model in the limit where the hetero-
geneity approaches zero. It can represent a system with extremely weak heterogeneity.
Additionally, interesting transitions appear in addition to the limit of gsyn → 0; see Fig. 4.5
and 4.6. Moreover, our analysis indicated that synaptic delay has little impact on the gen-
eration of COs in weakly coupled heterogeneous networks, with this effect becoming more
pronounced as heterogeneity increases. Additionally, a larger delay does not necessarily
enhance the likelihood of oscillations, especially in a weakly adapting neural network; see
Fig. 4.5.

Short-term synaptic plasticity is also a critical factor in shaping neural network activ-
ity. An intriguing question is whether integrating presynaptic forms of synaptic plasticity
driven by single-neuron activity would still allow for the derivation of mean-field models
using the OA theory. Previous studies [188, 95, 198] have employed the phenomenological
STP model proposed by Tsodyks and Markram [205]. However, it is important to investi-
gate the contribution of physiologically defined STP processes to neural networks through
experimentally measurable models, especially those incorporating calcium dynamics. This
exploration forms the crux of our last research topic. To our knowledge, we were the first
to propose a macroscopic description analytically derived from the neural network with a
kinetic STP model. Through the derived mean-field system, we found that introduction of
muscarine results in a decreased postsynaptic response, leading to an extended transient
oscillating process towards stationary states and a decreased tendency to oscillate in the
excitatory network. Additionally, it may increase the possibility of the emergence of col-
lective oscillations in the inhibitory network. Our mean-field model captures biophysical
properties, offers direct functional implications, and facilitates analysis and comparison
with experimental data.

Parameter values in this thesis are mainly from the hippocampal CA3 pyramidal neuron
data [107, 78] for Chapter 3 and 4, and the hippocampal CA1 GABAergic synapse data
[195] for Chapter 5. We performed all numerical simulations using the Euler method for
the non-smooth network model with the resetting rule, and ODE45 or DDE23 in MATLAB
[145] for the smooth ordinary differential equations (ODEs) or delay differential equations
(DDEs) of the mean-field system. We obtained all bifurcation diagrams using the softwares
XPPAUT [83] and MATCONT [71] for ODEs and DDE-BIFTOOL [81] for DDEs. Both
MATCONT and DDE-BIFTOOL are MATLAB software packages.
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6.2 Outlook

The research presented in this thesis opens up a wide range of options worthy of fur-
ther exploration. The exact mean-field models proposed in this thesis serve as a bridge
between neural networks and individual neurons, providing accurate descriptions of synap-
tic processing in terms of population firing rates and mean membrane potentials. They
are particularly well-suited for investigating brain functions and disorders. For instance,
drawing from the computational analysis conducted by Rich et al. [181], which involved
simulating a network of 500 Izhikevich neurons to explore a hypothesis about seizure initi-
ation, our mean-field model for the Izhikevich network and bifurcation analysis results in
Chapter 3 can be utilized to investigate the underlying mechanism of seizure initiation from
a theoretical neuroscience perspective. We anticipate that this study will offer guidance on
the design of appropriate and efficient experiments to examine this hypothesis. Moreover,
the slow-fast nested COs discussed in Chapter 4 offer potential insights into the treatment
of pathological brain functions. This treatment essentially involves transitioning the sys-
tem between synchronous and asynchronous, or the pattern of neural synchronization at
different rhythms. For example, according to the hypothesis that the coding information
of multiple items is organized by theta-gamma nested oscillations [136, 137], a decrease
in the number of coded items indicates a reduction in the effectiveness of neural coding.
Ferrara et al. [90] showed in a different model that a higher adaptation intensity, a param-
eter equivalent to wjump in our model (4.7), can reduce the number of gamma oscillation
events within a single theta cycle, thus decreasing neural coding ability. The drug linopir-
dine (DuP996) has been studied for its potential use in the treatment of conditions such
as Alzheimer’s disease and ADHD (attention deficit/hyperactivity disorder) [200]. It pri-
marily reduces SFA in pyramidal cells by enhancing the release of the neurotransmitter
acetylcholine (ACh) and thus reducing the slow inward potassium current [4]. In addition,
the model framework developed in Chapter 5 is suitable to investigate the effects of ac-
tivation of muscarinic acetylcholine receptors (mAChRs) at synapses. Their modulation
is of significant interest in pharmacology and medical research [124, 120, 63] and can be
achieved by adjusting the parameter Cjump in our mean-field model (5.35) [99].

From a modeling point of view, our study only considered constant delays in the cou-
pling of neural networks. A more sophisticated approach is to integrate a delay plasticity
mechanism into the network. It is inspired by evidence showing that axonal white matter
exhibits adaptability through learning and behavior [91], and the process of myelination
around the axons continues in an activity-dependent manner in the mature neural system
[7, 16]. These findings suggest the presence of varying propagation delays. We can ac-
count for these phenomena by incorporating a time-varying delay term τ(t) or equations
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for state-dependent delays, as discussed in [106]. Derivation of the corresponding mean-
field models would be challenging. An initial step could be inspired by the effort of Park
et al. [168], where they applied perturbation theory to the Kuramoto network of neural
oscillators around a constant baseline delay.

Note that our results on short-term synaptic dynamics are preliminary. Extending
the approach in Chapter 5 to the more realistic network model (5.24), such as non-
instantaneous synapses and conductance-based synaptic current, rather than the simplified
version (5.26), is straightforward. The resulting mean-field system is expected to exhibit
richer dynamics, including synaptic facilitation or mixed synaptic effect [195]. Moreover,
incorporating parameter values fitted from experimental data, especially for excitatory
neural networks, is anticipated to reveal more interesting phenomena. Additionally, the
neurotransmitter ACh plays a crucial role in various body functions, such as muscle con-
traction, learning, and memory [121]. At the microscopic level, it not only contributes to
synaptic plasticity, but also induces SFA through muscarinic receptors. Therefore, incorpo-
rating SFA via the Izhikevich neuron model into the network with synaptic STP would be
a foundational step in exploring the dual effect of ACh on macroscopic network dynamics
using the mean-field framework developed in this thesis. Furthermore, we can extend our
approach to multiple populations of spiking neurons [53, 199], realistic network topologies
[89], networks featuring other or multiple sources of heterogeneity [97, 159].
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[127] C. R. Laing and C. Bläsche. The effects of within-neuron degree correlations in
networks of spiking neurons. Biological Cybernetics, 114(3):337–347, 2020.

[128] P. E. Latham, B. J. Richmond, P. G. Nelson, and S. Nirenberg. Intrinsic dynamics
in neuronal networks. i. theory. Journal of Neurophysiology, 83(2):808–827, 2000.

146



[129] S. B. Laughlin and T. J. Sejnowski. Communication in neuronal networks. Science,
301(5641):1870–1874, 2003.

[130] M. Layer, J. Senk, S. Essink, A. van Meegen, H. Bos, and M. Helias. NNMT: Mean-
field based analysis tools for neuronal network models. Frontiers in Neuroinformatics,
16, 2022.

[131] V. G. LeBlanc and W. F. Langford. Classification and unfoldings of 1:2 resonant
Hopf bifurcation. Archive for Rational Mechanics and Analysis, 136:305–357, 1996.

[132] C. J. Lee, M. Anton, C. Poon, and G. J. McRae. A kinetic model unifying presynap-
tic short-term facilitation and depression. Journal of Computational Neuroscience,
26(3):459–473, 2009.

[133] W. S. Lee, E. Ott, and T. M. Antonsen. Large coupled oscillator systems with
heterogeneous interaction delays. Physical Review Letters, 103(4):044101, 2009.

[134] A. W. Liley and K. A. North. An electrical investigation of effects of repetitive
stimulation on mammalian neuromuscular junction. Journal of Neurophysiology,
16(5):509–527, 1953.

[135] D. T. J. Liley, P. J. Cadusch, and M. P. Dafilis. A spatially continuous mean field the-
ory of electrocortical activity. Network: Computationsal in Neural Systems, 13(1):67–
113, 2002.
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