
Meta-Solving
via Machine Learning for

Automated Reasoning
by

Joseph Scott

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024
© Joseph Scott 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Martin Müller
Professor, University of Alberta

Supervisor: Vijay Ganesh
Adjunct Professor, University of Waterloo
Full Professor, Georgia Institute of Technology

Joanne Atlee
Full Professor, University of Waterloo

Internal Members: Mei Nagappan
Associate Professor, University of Waterloo

Nancy Day
Associate Professor, University of Waterloo

Internal-External Member: Derek Rayside

Associate Professor, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This dissertation is based on first-authored peer-reviewed publications and preprints. Specif-
ically, Chapters 3, 4, 5, and 6 all correspond to a first-author publication.

These publications appeared in conference and journal proceedings published by Springer.
Springer’s policy on reuse of published materials in a dissertation is as follows:

Authors have the right to reuse their article’s Version of Record, in whole or in
part, in their own thesis. Additionally, they may reproduce and make available
their thesis, including Springer Nature content, as required by their awarding
academic institution. Authors must properly cite the published article in their
thesis according to current citation standards.

The following list serves as a declaration of the Versions of Record for works included in
this dissertation:
Chapter 3

1. Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh.
“MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 27th Interna-
tional Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 - April 1, 2021, Proceedings, Part II. ed. by Jan Friso Groote and Kim
Guldstrand Larsen. Vol. 12652. Lecture Notes in Computer Science. Springer, 2021,
pp. 303–325. doi: 10.1007/978-3-030-72013-1_16

2. Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh. “Al-
gorithm selection for SMT”. in: Int. J. Softw. Tools Technol. Transf. 25.2 (2023),
pp. 219–239. doi: 10.1007/s10009-023-00696-0. url: https://doi.org/10.
1007/s10009-023-00696-0

Chapter 4

1. Joseph Scott, Guanting Pan, Elias B. Khalil, and Vijay Ganesh. “Goose: A Meta-
Solver for Deep Neural Network Verification”. In: Proceedings of the 20th Internal
Workshop on Satisfiability Modulo Theories co-located with the 11th International

iv

https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/s10009-023-00696-0

Joint Conference on Automated Reasoning (IJCAR 2022) part of the 8th Feder-
ated Logic Conference (FLoC 2022), Haifa, Israel, August 11-12, 2022. Ed. by
David Déharbe and Antti E. J. Hyvärinen. Vol. 3185. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2022, pp. 99–113. url: https://ceur-ws.org/Vol-
3185/extended678.pdf

Chapter 5

1. Joseph Scott, Federico Mora, and Vijay Ganesh. “BanditFuzz: A Reinforcement-
Learning Based Performance Fuzzer for SMT Solvers”. In: Software Verification
- 12th International Conference, VSTTE 2020, and 13th International Workshop,
NSV 2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected Papers. Ed. by
Maria Christakis, Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter Schram-
mel. Vol. 12549. Lecture Notes in Computer Science. Springer, 2020, pp. 68–86. doi:
10.1007/978-3-030-63618-0_5. url: https://doi.org/10.1007/978-3-030-
63618-0_5

2. Joseph Scott, Trishal Sudula, Hammad Rehman, Federico Mora, and Vijay Ganesh.
“BanditFuzz: Fuzzing SMT Solvers with Multi-agent Reinforcement Learning”. In:
Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November
20-26, 2021, Proceedings. Ed. by Marieke Huisman, Corina S. Pasareanu, and Naijun
Zhan. Vol. 13047. Lecture Notes in Computer Science. Springer, 2021, pp. 103–121.
doi: 10.1007/978-3-030-90870-6_6. url: https://doi.org/10.1007/978-3-
030-90870-6_6

Chapter 6

1. Joseph Scott, Guanting Pan, Elias B. Khali, and Vijay Ganesh. “Pierce: A Testing
Infrastructure for Neural Network Verification Tools”. In: Submitted to VSTTE
2023. 2023

v

https://ceur-ws.org/Vol-3185/extended678.pdf
https://ceur-ws.org/Vol-3185/extended678.pdf
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1007/978-3-030-90870-6_6

Abstract

Automated reasoning (AR) and machine learning (ML) are two of the foundational pillars
of artificial intelligence (AI) and yet have developed largely independently. The integra-
tion of these two sub-fields holds the tremendous potential to address problems that are
otherwise difficult to solve, especially in the context of logic solvers, which are black-
box deductive reasoning engines designed to tackle NP-Hard problems. The early 2000s
witnessed a ‘silent revolution’ leading to the emergence of highly efficient boolean satisfia-
bility (SAT), satisfiability modulo theories (SMT), and mixed-integer linear programming
(MILP) solvers, capable of scaling to hundreds of millions of variables and being deployed
billions of times daily in various industries. These advancements were primarily due to
novel symbolic reasoning techniques as well as the use of ML in solvers. Building on
previous successes, this thesis presents several advances in the use of ML in solvers.

A particular way of characterizing the value of using ML in the context of automated
reasoning tools is the following: under widely believed complexity-theoretic assumptions,
we do not expect any one solver or even a fixed sequence of solvers to perform well on all
classes of instances. In fact, there is considerable empirical support for the aforementioned
observation. Hence, it is reasonable for us to research methods that enable solver users to
adaptively select a (sequence of) solver(s) for any given instance. ML provides a promising
means to realize such (adaptive) algorithm selection methods.

We make the following contributions in this thesis: First, inspired by the success of
the algorithm selection tool SATZilla for SAT solvers, we present the design and imple-
mentation of MachSMT, an algorithm selection tool for SMT solvers. MachSMT supports
the entirety of the SMT-LIB and leverages ML over state-of-the-art SMT solvers. We
provide empirical evidence for the value of algorithm selection and efficacy of MachSMT
over three broad SMT usage scenarios, namely, solver selection for instances obtained from
SMT-COMP (an annual competition for SMT solvers), configuration selection for a given
solver (cvc5) over a large industrial benchmark suite, and finally for solver selection for a
specific domain (network verification).

Second, we present the design and implementation of a novel adaptive algorithm selec-
tion tool (aka, a meta-solver), called Goose, for neural network verification solvers, a class
of tools aimed at improving the trustworthiness of ML systems. Traditional algorithm
selection tools (e.g., MachSMT) typically tend to be non-adaptive, i.e., once a solver is
selected for a given instance this selection is not changed at runtime. By contrast, a key
novelty here is that Goose implements an adaptive sequential portfolio, i.e., it calls a set
of subsolvers in a sequence, wherein the order in which subsolvers are called is determined

vi

adaptively based on information from their online and offline performance histories. We
have implemented a variety of complete and incomplete subsolvers in Goose (in addition
to using a set of off-the-shelf ones), and the following synergizing techniques to implement
its adaptive sequential portfolio: algorithm selection, probabilistic satisfiability inference,
and time-iterative deepening.

Additionally, in the spirit of improving solver performance via ML techniques, we
present BanditFuzz, an RL algorithm for relative performance fuzzing of solvers. While
MachSMT and Goose leverage supervised learning to make solvers faster, BanditFuzz lever-
ages RL to search for performance issues in solvers. BanditFuzz searches for short problem
instances for which a set of target solvers is under-performant, while a set of reference
solvers is performant. Such instances expose performance issues in solvers, and are often
caused by solver developer errors (e.g., missing rewrite rules, errors in heuristics, etc.).
We additionally introduce Pierce, a versatile and extensible testing tool aimed at solvers
for the neural network verification (NNV) problem. At its core, Pierce implements a
fuzzing engine over the Open Neural Network Exchange (ONNX) – a standardized model
format for deep learning and classical ML, and VNN-LIB – a specification standard over
the input-output behavior of ML systems. Pierce supports the entirety of the VNN-LIB
and most of ONNX v18.

vii

Acknowledgements

In reflection, my time at the university has been transformative, largely due to my mentors
and colleagues, of which I have many to thank.

First and foremost, the biggest mentor of my life, Vijay Ganesh, my first supervisor,
who profoundly changed my life and world views, altered how I think at a deep and very
fundamental level, and taught me how to conduct research.

Additionally, Joanne Atlee, my second supervisor, who graciously took me in late in the
process, helped push me to the finish line and gave me confidence when I felt overwhelmed
and drowned in self-doubt.

I would like to thank the rest of my internal committee, namely, Mei Nagappan, Derek
Rayside, and Nancy Day, for their feedback throughout this entire process and their pa-
tience with me. Lastly, my external examiner, Martin Müller, for agreeing to be on my
committee.

I would like to thank Aina Niemetz and Mathias Preiner for their invaluable mentorship.
Aina and Mathias are the best engineers I have ever met. During my time in the program,
I often found myself trying to emulate your work style and rigor. Additionally, for teaching
me many of the soft skills of academia and how to deal with all the emotions and loneliness
of graduate school.

Additionally, I would like to thank Federico Mora. I worked with Fed very early in my
graduate studies while he was in Toronto. You really ”woke” me up to what is required of
being a grad student and the amount of unbelievable hardwork that is required for a very
junior researcher to make contribution.

I would like to thank the many colleagues and collaborators I got to interact with here
at Waterloo. Namely, Saeed, Piyush, Jimmy, Ed, Ian, Tony, Zack, Curtis, Reza, Murphy,
Amin, Behkish, Elias, Jolly, John, Brian, Laura, Vineel, Dmitry, Hari, DJ, Sebastian,
Maysum, Trishal, Hammad, Fa Fa, Rafeal, and Joy.

I would like to thank my colleagues from Ohio University. Namely, Sam, Charlie, Pat,
Ana, Kellie, Mac, Evan, Jake, Daniel, Chad, Kevin, Taffie, Logan, Ryan, Kyle, Adam,
and Elijah, and the local ACM chapter community at large. Additionally, my mentors
from Ohio, namely Razvan Bunescu, David Juedes, David Chelberg, Frank Van Graas,
Konstantinos Vasiliadis, Frank Drews, and Ralph Kelsey.

I would like to thank the Computer Science department at large for their support,
specifically Nadine and Paula, for helping me with all the administrivia.

viii

Finally, I would like to thank my mother, Betty, my sister, Marie, and my girlfriend,
Cris, for being my backbone and giving me the strength to survive grad school.

ix

Dedication

To Zachary (2000-2018).

x

Table of Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

2 Preliminaries 8
2.1 Satisfiability . 8

2.1.1 Boolean Satisfiability . 9
2.1.2 Mixed Integer Linear Programming 11
2.1.3 Satisfiability Modulo Theories (SMT) 12

2.2 Machine Learning . 13
2.2.1 Supervised Learning . 13
2.2.2 Ridge Regression . 13
2.2.3 Reinforcement Learning . 16
2.2.4 Unsupervised and Semi-Supervised Learning 16

3 Machine Learning based Algorithm Selection for SMT Solvers 18
3.1 Motivation . 19
3.2 MachSMT . 21

3.2.1 Features and Preprocessing . 22

xi

3.2.2 Supervised Learning Core . 23
3.2.3 Configurations of MachSMT . 23
3.2.4 Using MachSMT . 24
3.2.5 Allocating Resources with MachSMT 25
3.2.6 User-defined Features . 26

3.3 SMT-COMP . 26
3.3.1 Experimental Setup and Methodology 27
3.3.2 Experimental Results . 27
3.3.3 Discussion . 31

3.4 CVC5 . 33
3.4.1 Experimental Setup and Methodology 34
3.4.2 Experimental Results . 36

3.5 Network Evaluation . 36
3.5.1 Experimental Setup and Methodology 37
3.5.2 Experimental Results . 37

3.6 Analysis . 38
3.7 Related Work . 39

3.7.1 Key differences between SATZilla and MachSMT 39
3.7.2 Algorithm Selection for Logic Solvers and Their Applications . . . 40

3.8 Conclusions . 41

4 Meta-Solving for Neural Network Verification 42
4.1 Motivation . 43
4.2 Preliminaries . 45
4.3 Goose . 47

4.3.1 A High-Level Overview of Goose 47
4.3.2 Input/Output and Preprocessing 51
4.3.3 Prediction Engine and ML-Driven Meta-Solving 52

xii

4.3.4 The Subsolvers of Goose . 55
4.3.5 Algorithmic Description . 56
4.3.6 Implementation Details, Usage, and Extending Goose 58

4.4 Evaluation on VNN-COMP ‘21 and ‘22 . 59
4.4.1 Experimental Setup . 59
4.4.2 Results on VNN-COMP ’21 Benchmarks 63
4.4.3 Results on VNN-COMP ’22 Benchmarks 63
4.4.4 Analysis of Results . 63

4.5 Related Work . 64
4.6 Conclusions . 65

5 Reinforcement Learning based Performance Fuzzing of SMT Solvers 66
5.1 Motivation . 66
5.2 BanditFuzz . 68

5.2.1 Description of the BanditFuzz Algorithm 68
5.2.2 Instance Generator and Grammar-preserving Mutator 70
5.2.3 Agents and Reward-driven Feedback Loop in BanditFuzz 72
5.2.4 Performance Margins and Scoring 74
5.2.5 Multi-Agent Fuzzing . 74

5.3 Implementation and Engineering . 75
5.4 Usage . 76

5.4.1 Using smtfuzz . 77
5.4.2 Using banditfuzz . 77

5.5 Evaluation on SMT-LIB and Solvers . 78
5.5.1 Experimental Setup . 78
5.5.2 Results . 82

5.6 Case Study with SMT Solver Developers 83
5.6.1 CVC4, Bitwuzla, and SymFPU . 83

xiii

5.6.2 Z3 String Solver . 84
5.7 Related Work . 84
5.8 Conclusion . 85

6 Fuzzing Neural Network Verification Solvers 87
6.1 Motivation . 87
6.2 Pierce . 88

6.2.1 Architecture Overview . 89
6.2.2 Command Line Interfaces . 92
6.2.3 Potential Use Cases . 93

6.3 Performance Fuzzing Neural Network Verification Solvers 93
6.3.1 Experimental Setup . 94
6.3.2 Evaluation and Analysis of Results 95

6.4 Related Work . 96
6.5 Conclusion . 96

7 Conclusions and Future Work 98

References 101

xiv

List of Figures

2.1 CDF Plot of SAT competition winning solvers from 2002-2020. 10

3.1 Architecture of MachSMT. 21
3.2 Example Usage of MachSMT. 25
3.3 Comparison of MachSMT, the virtual best solver, and participating solvers

in divisions of the SMT-COMP 2019 and SMT-COMP 2020 Single Query
(SQ) Tracks. 32

3.4 Comparison of the two different MachSMT resource allocation schemes
against cvc5 competition script. 35

3.5 MachSMT with and without domain-specific knowledge on Network Verifi-
cation Problems from SecGuru. 36

4.1 Architecture Diagram of Goose (See description in Section 4.3). 50
4.2 Main experimental CDF plot (with ablation study) over VNN-COMP ’21

benchmarks (Section 4.4). A CDF is a visualization of a solver’s perfor-
mance on a benchmark suite. The vertical axis represents the number of
benchmarks solved (higher is better), and the horizontal axis is the bench-
mark wise PAR-2 (lower is better). Further see cumulative PAR-2 in Table
4.3 . 59

4.3 Main experimental CDF plot (with ablation study) over VNN-COMP ’22
benchmarks (Section 4.4). A CDF is a visualization of a solver’s perfor-
mance on a benchmark suite. The vertical axis represents the number of
benchmarks solved (higher is better), and the horizontal axis is the bench-
mark wise PAR-2 (lower is better). Further see cumulative PAR-2 in Table
4.4 . 60

xv

5.1 Architecture Diagram of BanditFuzz. The BanditFuzz tool deploys
two unique agents: one is a mutator agent that learns how to mutate the
best observed input, while the other agent aims to assist in the prevention of
getting stuck in local minima. Both agents learn an action selection policy
in a feedback loop based on the empirically collected data over the course
of running the target and reference solvers over the generated benchmarks. 69

5.2 Example usage of smtfuzz to generate a benchmark in the logic of QF_UFBVFP 78
5.3 Cactus plot for targeting Bitwuzla (winner of SMT-COMP ’20 in the QF_BV

division) against reference runner-up solvers that competed in the division.
The X-axis represents the number of benchmarks solved and the Y-axis
represents time (in seconds) taken. 86

6.1 Three example computation graphs, each of which outlines a common ML
algorithm. From left to right: linear regression, a depth one decision tree, a
deep neural network with a single hidden layer, ReLU activation, and linear
output activation. The MatMul stands for Matrix Multiplication. 89

6.2 Architecture Diagram of of Pierce (See section 6.2). Pierce is comprised
of a fuzzing engine that enables the generation and mutation of VNN-LIB
benchmarks. 90

6.3 Main experimental cactus plots demonstrating Pierce’s ability to reveal
relative performance slowdowns (Section 6.3). A cactus plot is a visualiza-
tion of a solver’s performance on a benchmark suite the X-axis represents
the number of benchmarks solved (higher is better) and the Y-axis is the
benchmark wise PAR-2 (lower is better). 97

xvi

List of Tables

3.1 Complete list of the 196 features used in MachSMT. 24
3.2 Results of Mach-LogicEHM on data from the SMT-COMP’20 SQ divisions. 28
3.3 Results of Mach-LogicEHM on data from the SMT-COMP’20 INC divisions. 29
3.4 Results of Mach-LogicEHM on data from the SMT-COMP’19 SQ divisions. 29
3.5 Results of Mach-LogicEHM on data from the SMT-COMP’19 INC divisions. 30
3.6 Comparison of MachSMT, MachSMT–alloc and the cvc5 competition script

on all evaluated logics. 33

4.1 Neural Network Features . 48
4.2 Specification and Encoding Features . 49
4.3 Table of sums of PAR-2 scores across the solvers from the empirical eval-

uation (Section 4.4). The PAR-2 score of a solver on a benchmark is the
wallclock runtime if successful, otherwise twice the wallclock runtime (lower
is better). 61

4.4 Table of sums of PAR-2 scores across the solvers from the empirical eval-
uation (Section 4.4). The PAR-2 score of a solver on a benchmark is the
wallclock runtime if successful, otherwise twice the wallclock runtime (lower
is better). 62

5.1 Sample of generator arguments for the BanditFuzz tool 77
5.2 Table of results comparing BanditFuzz to Random fuzzing across logics of

SMT-COMP ’20. The improvement column is the percentage improvement
of BanditFuzz over Random Fuzzing. Rows are sorted alphabetically by logic. 79

xvii

5.3 Table of results comparing BanditFuzz to Random fuzzing across logics of
SMT-COMP ’20. The improvement column is the percentage improvement
of BanditFuzz over Random Fuzzing. Rows are sorted alphabetically by logic. 80

5.4 Table of select results comparing BanditFuzz to the work of Scott et al.
[149] across select logics. The improvement column is the percentage im-
provement of BanditFuzz over the baseline.1 81

6.1 Table of sums of PAR-2 across all experiments from the empirical evaluation
(Section 6.3). The PAR-2 score of a solver on a benchmark is the wall-
clock runtime if successful, otherwise twice the wall-clock runtime (lower
is better). VBS denotes the virtual best solver. We observe that Pierce
is able to discover instances with relative slowdowns across all considered
solvers. 94

xviii

Chapter 1

Introduction

Artificial Intelligence (AI), at its core, is bifurcated into automated reasoning (AR) and
machine learning (ML), two domains that, despite their foundational importance, have
historically evolved independently. AR and symbolic AI, leverage logic solvers and search
techniques for deductive reasoning, manifesting in advanced constraint solvers like Cadi-
cal [30], cvc5 [15], Gurobi [77], and tools such as WolframAlpha [191]. Concurrently, ML
embodies the inductive reasoning aspect of AI, where patterns and models are inferred
from data, utilizing algorithms such as neural networks and decision trees. This domain
is powered by robust frameworks and libraries like PyTorch [127], scikit-learn [129], and
XGBoost [47].

Logic solvers, with their roots in formal methods, exhibit remarkable strength in pro-
viding sound and robust solutions to well-defined problems (i.e., expressable in first-order
logic). Their deductive power is capable of navigating through complex combinatorial
search spaces to find satisfiable solutions or proofs/certificates of unsatisfiability. This
makes them indispensable in domains where accuracy and certainty are critical, such as in
verifying software correctness or solving intricate optimization problems. However, their
strengths in deduction comes with a caveat – scalability. While logic solvers can sometimes
scale to problems with hundreds of millions of variables on certain instances and bench-
marks, these solvers often face significant challenges in scaling efficiently, which can lead
to increased computational demands or even being infeasible for certain problem instances.

Incorporating ML techniques to enhance the performance of logic solvers, often by
exploiting syntactic structure or runtime patterns, represents a pivotal shift towards over-
coming inherent scalability challenges. ML, particularly through reinforcement learning
(RL), has been instrumental in heuristically selecting and sequencing proof rules for im-

1

proved solver efficiency, as seen in the case of MapleSAT [101]. Additionally, ML aids in
synthesizing strategies from tactics, exemplified by FastSMT [12], and in algorithm selec-
tion, as demonstrated by SATZilla [199]. The underlying thread connecting these diverse
applications of ML within solvers is the recognition that it is unlikely that any single rule,
algorithm, or strategy is universally effective across all problem instances.

This complexity-theoretic limitation necessitates an adaptive approach to solver selec-
tion, for which ML is a promising approach, as it is well established as the state-of-the-art
for computational inductive reasoning. Moreover, the vast amounts of data generated by
solvers (both offline information on large corpuses of instances and benchmarks and on-
line information organically collected from the solving process) presents a rich resource for
training useful and indicative ML models.
Thesis Statement. This thesis posits that one approach to overcoming the scalability
challenges faced by logic solvers lies in innovative uses of machine learning (ML) to ex-
ploit syntactic and runtime patterns of solvers. Particularly, this thesis presents a case
for meta-solving, which harnesses both online and offline information through machine-
learning techniques. By integrating an adaptive approach to algorithm selection into the
solving process, we demonstrate how the amalgamation of real-time performance data and
historical patterns and interactions can significantly enhance solver efficiency and adapt-
ability.

Contributions

• MachSMT: Machine Learning-Driven Algorithm Selection for SMT solvers
(Chapter 3). The rise of automated reasoning has led to the development of nu-
merous efficient logic solvers for various theories and applications. The emergence
of dozens of tools can be in part accredited to the empirical observation that there
is no one solver or configuration that is best for a given instance or benchmark fam-
ily. However, it can be intimidating for practitioners to determine which solver or
configuration to use and when for a particular instance or benchmark. For example,
consider the SMT theory of floating-point arithmetic comprised of logic solvers im-
plementing a vast array of orthogonal algorithms, e.g., word-blasting [38], abstract
CDCL [37], inter-reduction methods [146], and reduction to global optimization [63,
22]. Furthermore, consider the competition-winning variant of the cvc5 SMT solver1.

1https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/
run-script-smtcomp-current

2

https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current

On just a single logic (e.g., UF), 23 configurations of the cvc5 tool are used, in a
statically ordered sequential portfolio, to determine the satisfiability of the given
benchmark.
For a practitioner, it is a natural yet daunting task to determine which solver or con-
figuration to select, or how to balance a portfolio of solvers that maximizes empirical
efficiency for a given instance or benchmark. We present MachSMT, an algorithm
selection tool for the entirety of SMT-LIB [19] and its standardized theories. Our
tool uses machine learning (ML) to construct empirical hardness models (EHMs) and
pair-wise comparators (PWCs) of solvers for algorithm selection and is designed to
be easily tuned and extended by SMT solver users (see Chapter 3). We perform an
empirical analysis of MachSMT across all divisions from the SMT-COMP 2019 and
2020. We observe that MachSMT improves on the best performing solvers in the
competitions in 57 divisions, with up to 99.4% improvement in performance for the
QF_BVFPLRA SQ’20 division, and up to 89.0% for the QF_UFBV SQ’19 division
(see Section 3.3). We perform an empirical analysis of MachSMT to select from 23
different configurations of the cvc5 SMT solver [16] across multiple logics. We observe
that MachSMT solves an additional 898 benchmarks over the competition version
of cvc5 (Section 3.4). We perform an empirical analysis of MachSMT from three
solvers (Bitwuzla [117], cvc5 [16], and Z3 [111]) to solve benchmarks from a network
verification application. We evaluate MachSMT with and without domain-specific
features (see Section 3.5). We observe MachSMT to considerably improve on the
best standalone solver, and even more significantly with domain-specific features.

• Goose: Meta-Solving for Deep Neural Network Verification (Chapter 4)
The success of tools like SATZilla and MachSMT at offline algorithm selection, i.e.,
leveraging offline collected data to select solvers or balance portfolios of solvers, has
had great tremendous empirical success. However, it begs the question, is it possible
to design an efficient adaptive ML-based sequential portfolio tool that dynamically
changes its selections as it solves an instance by leveraging the underlying solvers’
online and offline performance histories on any given instance?
We developed Goose, a meta-solver for the verification of neural networks. By the
term meta-solver we mean a tool that calls out a set of subsolvers, that get adap-
tively called in a sequence based on online and offline information collected about
their performance histories on a given input, with the goal of discovering the se-
quence that optimally (e.g., least amount of time) solves the given input instance.
This differs from the traditional non-adaptive algorithm (resp. sequential portfolio)
selection, where the choice of a solver (resp. sequential portfolio) is selected, that

3

choice is not altered once the selection tool has made its choice. Goose implements
three synergistic techniques. First is an ML-based algorithm selection technique that
uses pre-trained empirical models for runtime prediction to construct an appropriate
sequential portfolio of solvers and allocate resources among them. The empirical
model leverages a feature vector that changes during the solving process from data
collected by the other techniques. Second, we construct ML models for probabilis-
tic satisfiability inference. More specifically, Goose leverages a recent result [160]
that reduces a given neural network verification input to a disjunction over a set
of subproblems. Given this syntactic structure, we use ML-driven empirical mod-
els to predict satisfiability and rank subproblems based on their likelihood of being
satisfiable. The rich structure of neural network verification problems allows for
the engineering of expressive subproblem features; this contrasts with more generic
SAT/SMT benchmarks, where the originating domain may not be known. We show
that attempting to solve the subproblems in an empirically-determined appropri-
ate order can greatly influence solving times. Third and last, we use time iterative
deepening, an exponentially increasing wall-clock timeout on a sequential portfolio.
Two insights underlie this strategy: (a) trying out multiple solvers with short time
limits first is a good time-saving strategy, assuming that there exists a solver in the
portfolio that can quickly solve the subproblem; (b) the failure of all solvers within
a given time limit provides valuable information on the difficulty of a subproblem,
which then adaptively informs the next round of algorithm selection, under a larger
time limit.
The key value addition of Goose is its meta-solver architecture (Figure 4.1), which im-
plements an algorithm selection technique, a novel probabilistic satisfiability inference
technique, and time iterative deepening that enables an adaptive sequential portfo-
lio. See the algorithmic description in Section 4.3. We demonstrate the efficiency of
Goose with a competition-like evaluation over more than 800 instances from VNN-
COMP ’21 against 13 competition solvers [40] including α, β-CROWN [183, 195, 207],
Verinet [83], ERAN [163], and Marabou [91] (Section 4.4). We observe that Goose
improves over the competition winner, α, β-CROWN, by 37.7% in PAR-2 score (Fig-
ure 4.2, Table 4.3). We demonstrate the efficiency of Goose with a competition-like
evaluation over more than 1500 instances from VNN-COMP ’22 against 11 compe-
tition solvers (Section 4.4). We observe that Goose improves over the competition
winner, α, β-CROWN, by 25.6% in PAR-2 score (Figure 4.3, Table 4.4).

• BanditFuzz: Fuzzing SMT Solvers with Multi-Agent Reinforcement Learn-
ing (Chapter 5). In MachSMT and Goose, we used machine learning with the aim
of improving the efficiency of logic solving. Suppose instead one used machine learn-

4

ing to make logic solvers slow in interesting ways, as a aid in the development process?
SMT solvers are prone to hard-to-find performance deficiencies. Although the worst-
case complexity of problems solved by SMT solvers can be very high, they can be
frustratingly slow on relatively simple formulas. Such performance deficiencies can
be due to developer oversight (e.g., missing rewrite rules or unoptimized code and
data structures) or the result of hard-to-entangle interactions of solver heuristics.
To this end, we built the BanditFuzz tool, a performance fuzzer for SMT solvers.
The key insight to BanditFuzz is the formulation that the agent acts as the fuzzer
while receiving a strong reward signal that comes organically over the course of a
fuzzing loop. We evaluated BanditFuzz across 52 logics from SMT-COMP ’20, tar-
geting competition-winning solvers against runner-up solvers. BanditFuzz produced
benchmarks exposing relative performance issues across SMT-LIB. We further pro-
vide several case studies demonstrating the utility of BanditFuzz to state-of-the-art
SMT solver developers [157, 148]. Finally, several BanditFuzz results were repro-
duced independently, and the algorithm has been built into external fuzzers (e.g.,
SPRFinder [209]).
To the best of our knowledge, BanditFuzz is the first multi-agent RL performance
fuzzing algorithm for SMT solvers that supports the entirety of SMT-LIB. The Ban-
ditFuzz tool includes two agents, one which learns how to mutate the best observed in-
put [149] and another to help prevent the tool getting stuck in a local minimum (Sec-
tion 5.2). We provide an implementation of the performance fuzzer BanditFuzz [149]
and lift it to the entirety of the theories in the SMT-LIB initiative, namely, Ar-
rays, Bit-Vectors, Booleans, Floating-Point, Integers, Reals, Strings, Uninterpreted
Functions, and all combinations thereof in both quantified and quantifier-free log-
ics (Sections 5.2, 5.5, 5.6). To test BanditFuzz, we perform an extensive empirical
evaluation across all 52 logics that were tested in SMT-COMP ’20, with the aim of
finding benchmarks where competition winners are slow relative to runner up solvers.
We provide to the community a set of 1500 benchmarks across all logics, exposing
relative performance issues in state-of-the-art competition-winning SMT Solvers. To
validate the efficiency of BanditFuzz, we baseline it against random fuzzing and ob-
serve that BanditFuzz consistently outperforms random fuzzing by up to a 82.6%
increase in PAR-2 margins (Section 5.2). To further demonstrate the usefulness of
BanditFuzz, we include three case studies of BanditFuzz being used by solver devel-
opers and contributors. Specifically, developers were able to use BanditFuzz to find
performance issues in the Z3 [111], CVC4 [21], and Bitwuzla [118, 119] SMT Solvers
(Section 5.6).

5

• Pierce: A Testing Tool for Neural Network Verification Solvers (Chapter
6) We present Pierce tool for developing testing tools for Neural Network Verifica-
tion (NNV) solvers (see Section 6.2 and architecture diagram in Figure 6.2). Pierce
provides its users with two key capabilities. First, it has a computation graph gen-
erator that can generate graphs that correspond to random graphs, decision trees,
and NNs (including those that are VNN-LIB compliant), whose shape (e.g., number
of inputs and outputs, width, height, number of parameters, etc.) can be specified
by the user using a configuration file. Second, Pierce has a mutator (i.e., a set of
well-defined mutation operators) that mutates computation graphs in a well-formed
manner. These and other capabilities make Pierce a highly configurable, extensible,
and easy-to-use tool (Section 6.2.2) with many possible use cases (Section 6.2.3). For
example, a user of Pierce can write a relatively straightforward script to configure
Pierce into a debugging or performance fuzzer for NNV solvers.
We configure Pierce into a performance fuzzer that is aimed at finding small in-
stances that expose performance issues in a target solver relative to a set of reference
solvers (Section 6.3). For example, we found instances that resulted in significant em-
pirical slowdowns for four state-of-the-art neural network verification solvers, namely
ERAN, Marabou, MIPVerify, and nnenum [9, 91, 163, 176]. This is done via a rein-
forcement learning fuzzing loop based on recent work [157]. The instances our fuzzer
generated show a slowdown of 13.3x of the target solver (e.g., ERAN) relative to a
set of reference solvers (e.g., Marabou, MIPVerify, and nnenum). We provide a rich
suite of benchmarks of over 10,000 competition-grade instances, unit, and regression
tests in ONNX format produced using Pierce (Section 6.2.3). The benchmarks are
broad, covering a variety of problem classes and configurations.

Limitations. This thesis presents four distinct tools, each with its own set of lim-
itations. Despite the unique challenges each tool faces, several common themes can be
identified and abstracted to provide a holistic understanding of their limitations.

Firstly, data availability and quality significantly impact the performance of these tools.
MachSMT, for instance, struggles with small sample sizes in certain logics, affecting its
ability to perform well compared to standalone solvers. Similarly, Goose encounters issues
when solving problems that differ significantly from its training data, and neural network
verifiers like Goose struggle with very large inputs, failing to scale to the size of modern
large language models (LLMs).

Secondly, efficiency and performance are recurrent concerns. BanditFuzz, for example,
faces substantial time requirements to achieve results due to the nature of performance
fuzzing and the complexity of modeling with sophisticated MDPs. Additionally, Pierce’s

6

tech stack is often brittle and actively being developed, leading to challenges in ensuring
consistent performance.

Thirdly, the encoding of problem instances and the loss of information during this
process is a common issue. Both MachSMT and Goose suffer from substantial informa-
tion loss in their problem encodings, affecting their overall effectiveness. BanditFuzz also
experiences issues with problem encoding, particularly in the context of SMT encoding.

Lastly, the adaptability and scalability of these tools remain a challenge. While Goose
is trained on a fixed dataset, it may struggle with new problem instances, and Pierce is not
suited for testing instances like LLMs. Moreover, BanditFuzz’s benchmarks, while initially
effective, may lose their relevance as solver developers fix discovered issues, affecting the
permanence of its results.

Organization

The rest of this thesis is structured as follows, Chapter 2 overviews the preliminaries
of this thesis, namely a survey of logic solvers, machine learning, and neural network
verification. Chapter 3 presents MachSMT the ML-driven Algorithm selection tool for SMT
solvers. Chapter 4 introduces Goose, a meta solver for deep neural network verification.
Chapter 5 introduces BanditFuzz a reinforcement learning guided performance fuzzer for
SMT Solvers. Chapter 6 presents Pierce a testing tool for neural network verification
solvers. Finally, Chapter 7 concludes this thesis.

7

Chapter 2

Preliminaries

In this chapter, we go over important preliminaries on the satisfiability problem and rele-
vant machine learning concepts.

2.1 Satisfiability

Satisfiability, often referred to as the heart of computational logic, is a fundamental concept
in computer science. Its origins trace back to the classical decision problem in mathematical
logic, evolving into a critical component of modern computational theory. At its core,
satisfiability asks a seemingly simple yet profoundly complex question: given a formula,
often written in some mathematical logic, does it have a solution, e.g., what assignment to
the inputs cause it to evaluate to true?

The importance of satisfiability extends beyond theoretical interest. In practical terms,
it is instrumental in a myriad of applications ranging from software verification and arti-
ficial intelligence to cryptographic systems and combinatorial optimization. The notion of
finding a satisfying assignment, or proving its absence, forms the crux of many decision-
making processes in computational tasks.

Satisfiability is a powerful tool for problem reduction in computational logic. It allows
for the transformation of various computational problems into SAT problems, where the
solution to the SAT problem is directly related to the original problem. This method is
particularly effective in logic, enabling the simplification of complex structures and theo-
rems into SAT formulations. A prime example of this is in implication checking or validity
checking, where the objective is to determine if a set of premises Σ logically entails a

8

conclusion ψ. In SAT terms, this is achieved by expressing whether the conjunction of
all premises in Σ and the negation of ψ results in a contradiction. If the resulting for-
mula is unsatisfiable, it implies that Σ indeed entails ψ. This leads to the following SAT
representation:

Σ |= ψ ⇐⇒
∧
ϕ∈Σ

ϕ ∧ ¬ψ is UNSAT

This chapter lays the groundwork for understanding the nuances of satisfiability. It
explores its theoretical underpinnings, delves into the complexities of solving satisfiability
problems, and sets the stage for the more advanced discussions on Satisfiability Modulo
Theories (SMT) and the integration of machine learning techniques in later chapters. As
we progress, the chapter aims to illustrate not only the challenges inherent in satisfiability
but also the innovative strategies and solutions that have been developed to tackle these
challenges.

2.1.1 Boolean Satisfiability

Boolean Satisfiability, commonly known as SAT, is a fundamental problem in compu-
tational logic and computer science. It entails identifying a valid truth assignment for
Boolean variables that satisfies a Boolean formula, typically constructed using logical op-
erators such as AND (∧), OR (∨), and NOT (¬). In essence, a SAT problem is structured
as a series of clauses in conjunctive form, each clause being a disjunction of literals, with
each literal being either a variable or its negation.

The designation of SAT as an NP-complete problem is of significant relevance. It
indicates that, although verifying a solution to a SAT instance is relatively straightforward,
finding that solution can be difficult. This distinction was first formally recognized by
Stephen Cook [54] and Leonid Levin [178].

With the development of SAT solvers, considerable progress has been made in address-
ing the challenges presented by SAT problems. These solvers, which are either algorithmic
or software-based, have been crafted to resolve SAT problems with greater efficiency. They
utilize a variety of methods, including backtracking, heuristic approaches, and the Conflict-
Driven Clause Learning (CDCL) technique. CDCL, in particular, has been instrumental
in enhancing solver efficiency by learning from conflicts encountered during the problem-
solving process and using this information to prevent similar issues in the future.

9

Figure 2.1: CDF Plot of SAT competition winning solvers from 2002-2020.

10

Contemporary logic solvers such as MiniSat [166], Glucose [7] MapleSAT [102], and
[60], represent significant advancements in this field. Each of these solvers brings a unique
set of optimizations and features to the table. MiniSat, with its minimalistic approach, has
been influential in the field. Glucose, an offshoot of MiniSat, emphasizes intensive clause
learning. Cadical stands out for its modern heuristics and streamlined design. MapleSAT
integrates machine learning techniques to adapt its strategies dynamically, while Kissat is
renowned for its efficiency and scalability.

These solvers exemplify the continuous evolution in SAT solving, highlighting the inte-
gration of advanced algorithmic strategies, heuristic methods, and adaptive learning tech-
niques. Their ongoing development and refinement are critical in tackling the complexities
of SAT problems, demonstrating the practical applications of these theoretical concepts in
various domains. Figure 2.1 presents a CDF plot showing the progress of SAT solvers over
the last 18 years.

2.1.2 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) represents a sophisticated extension of satisfi-
ability problems, evolving from the foundations of Linear Programming (LP) and Integer
Linear Programming (ILP). LP deals with optimizing a linear objective function subject
to linear equality and inequality constraints, where the variables can take any continuous
values. However, in many real-world scenarios, decision variables are discrete, necessitating
the transition to ILP, where variables are constrained to integer values. MILP combines
LP and ILP elements, allowing for continuous and integer variables in the same model.
This mixed nature greatly enhances the expressive power and flexibility of MILP compared
to traditional LP and ILP, making it more suitable for complex decision-making scenarios.

In contrast to Boolean Satisfiability (SAT) solving, which deals with finding assignments
to Boolean variables that satisfy a given formula, MILP tackles a broader class of problems.
While SAT solving is binary in nature, MILP accommodates a wider range of values and
more complex relationships between variables. This difference in expressivity allows MILP
to model and solve problems that are not just about logical consistency but also involve
optimizing a certain objective, like minimizing costs or maximizing profits.

State-of-the-art MILP solvers, such as CPLEX [56], Gurobi [77], and SCIP [26], have
made significant progress in efficiently solving large-scale and complex MILP problems.
These tools employ advanced algorithms like branch-and-cut, which combines the branch-
and-bound method with cutting planes to improve the solution process. Additionally,
sophisticated heuristics are used for faster convergence to optimal or near-optimal solutions.

11

The applications of MILP are vast and diverse, extending far beyond the scope of
traditional SAT problems. MILP is used in areas like resource allocation, production plan-
ning, supply chain management, and logistics, where decisions involve both quantitative
optimization and adherence to logical or physical constraints. The expressive power of
MILP, capable of modeling linear relationships and handling both continuous and discrete
variables, makes it an indispensable tool in these domains.

2.1.3 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) is an extension of the Boolean Satisfiability (SAT)
problem into the realm of first-order logic, making it a superset of SAT. While SAT focuses
on finding assignments to Boolean variables within propositional logic constraints, SMT
operates within a richer framework, dealing with more expressive first-order logic. This
includes, but is not limited to, various mathematical theories like arithmetic, bit-vectors,
arrays, and uninterpreted functions. In essence, SMT extends the Boolean logic of SAT
with additional layers of theoretical constructs, enabling the modeling of more complex
scenarios. In SMT, the addition of first-order logic elements similarly broadens the scope,
allowing for the representation and solving of problems that are beyond the reach of tra-
ditional SAT, LP, and MILP methods.

At its core, SMT is concerned with determining the satisfiability of logical formulas
within the context of specific mathematical theories. This advanced form of satisfiability
combines traditional Boolean logic with elements of these theories, creating a multifaceted
and expressive framework. This hybrid approach enables the accurate representation and
analysis of problems involving detailed and nuanced constraints, which are commonplace
in sophisticated computational tasks.

The integration of Boolean logic with other mathematical domains in SMT presents
unique algorithmic challenges. Efficient SMT solvers rely on a combination of general SAT-
solving techniques and theory-specific decision procedures. These theory-specific compo-
nents, tailored to handle the intricacies of individual theories, are crucial for the effective
processing of SMT instances. Furthermore, advanced techniques such as lazy theory com-
bination and the use of efficient data structures are employed to manage the complexity
and ensure the scalability of these solvers.

SMT has emerged as a powerful tool in areas like formal verification, automated the-
orem proving, and constraint solving, offering substantial improvements over traditional
SAT in terms of expressiveness and applicability. The development and continual refine-
ment of SMT solvers have been instrumental in integrating SMT into various software

12

development and verification frameworks, highlighting its growing relevance in both theo-
retical and practical aspects of computer science.

Efficient SMT solvers like Z3 [111] and cvc5 [16] have become cornerstones in the field,
known for their robustness and versatility in handling a wide range of SMT problems.
These tools have facilitated significant advancements in the automation of reasoning and
verification processes, underscoring the critical role of SMT in advancing the frontiers of
computational logic and satisfiability.

2.2 Machine Learning

2.2.1 Supervised Learning

Supervised learning in machine learning entails training a model on a labeled dataset,
where the model learns to predict outputs (targets) from inputs (features). The objective
is to approximate the mapping function so well that when the model encounters new,
unseen data, it can accurately predict the output.

Mathematically, this can be represented as learning a function f : X → Y , where X
is the input space and Y is the output space. Given a training set {(x1, y1), ..., (xn, yn)},
where xi represents the features and yi the corresponding label for each instance, the goal
is to learn a function f̂ that approximates the true function f as closely as possible.

This process typically involves selecting a model (e.g., Ridge Regression, AdaBoost,
Multi-Layered Perceptron, etc.), defining a cost function to evaluate the model (e.g., mean
square error), and employing an optimization algorithm to adjust the model parameters
to minimize the cost (e.g., Adam [92]).

2.2.2 Ridge Regression

Ridge Regression, an enhanced variant of linear regression, is engineered to address multi-
collinearity among the predictor variables by introducing a regularization factor, λ, into the
traditional least squares estimation framework. This regularization term adds a penalty
on the size of coefficients, thereby reducing model complexity and curtailing the risk of
overfitting. The essence of Ridge Regression is encapsulated in the optimization problem
it poses, aiming to minimize the penalized residual sum of squares:

13

L(β) =
n∑
i=1

(yi −Xiβ)
2 + λ

p∑
j=1

β2
j

where L(β) denotes the loss function, yi the observed values, Xi the predictor matrix,
β the vector of coefficients, n the number of observations, p the number of predictors, and
λ the regularization parameter. By judiciously selecting the value of λ, Ridge Regression
ensures a balanced trade-off between fitting the training data and maintaining a parsimo-
nious model structure, thereby enhancing the model’s generalization capability to unseen
data.

AdaBoost (Adaptive Boosting)

AdaBoost, short for Adaptive Boosting, stands as a quintessential ensemble learning tech-
nique that synergistically amalgamates multiple weak learners, predominantly decision
trees, to formulate a composite model of superior predictive prowess. The algorithm op-
erates on a sequential learning paradigm, where it iteratively modifies the distribution of
weights assigned to each observation in the training dataset. This adjustment is predicated
on the accuracy of the preceding iteration, with increased emphasis placed on instances that
were erroneously classified, thus progressively enhancing the model’s accuracy on intricate
datasets. Mathematically, the AdaBoost algorithm seeks to minimize the exponential loss
function:

L(β) =
n∑
i=1

exp(−yi
T∑
j=1

αjhj(Xi))

where n denotes the number of training instances, T the number of iterations or weak
learners, yi the actual outcome, Xi the feature vector of the i-th instance, hj the j-th weak
learner, and αj the weight attributed to the j-th weak learner, calculated based on its
performance. Through this iterative refinement, AdaBoost effectively curtails both bias
and variance, culminating in a robust model adept at tackling complex predictive tasks.

Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP), a cornerstone architecture within the domain of artifi-
cial neural networks, embodies a structured assemblage of nodes arrayed across multiple

14

layers, constituting an intricate directed graph wherein each successive layer is fully inter-
connected with its antecedent. Characterized by its capacity to effectuate non-linear data
transformations through its layered architecture, the MLP is adept at unraveling complex
patterns inherent in data, rendering it eminently suitable for a wide spectrum of tasks
including, but not limited to, pattern recognition and classification.

Central to the MLP’s learning mechanism is the backpropagation algorithm, a sophisti-
cated method that facilitates the optimization of weights through iterative minimization of
a predefined loss function, typically via gradient descent. This process involves propagating
errors backward from the output layer to the input layers, thereby enabling the network
to adjust its weights in a manner that incrementally reduces the discrepancy between the
actual output and the desired output.

∆wij = −η
∂L
∂wij

where ∆wij denotes the adjustment to be made to the weight connecting the i-th node
of one layer to the j-th node of the subsequent layer, η represents the learning rate, and
∂L
∂wij

is the partial derivative of the loss function L with respect to the weight wij.

Curse of Dimensionality.

The curse of dimensionality refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces. As the dimensionality of the feature space in-
creases, the volume of the space increases exponentially, making the available data sparse.
This sparsity is problematic for any method that requires statistical significance, as it be-
comes difficult to sample the space sufficiently. It affects various aspects of model training
and evaluation, leading to issues such as overfitting and increased computational complex-
ity.

Cross Validation.

Cross-validation is a statistical method used to estimate the skill of a machine learning
model on unseen data. It involves partitioning a sample of data into complementary
subsets, performing the analysis on one subset (the training set), and validating the analysis
on the other subset (the test set). Common methods include k-fold cross-validation, where
the dataset is divided into k subsets and the holdout method is repeated k times. This
technique is essential for assessing the generalizability of predictive models.

15

2.2.3 Reinforcement Learning

There is a large literature on reinforcement learning and we refer the reader to the book
by Sutton et al., on this topic [172]. In RL, an agent navigates an environment by taking
actions to maximize the received reward. The multi-armed bandit (MAB) problem is a well-
known RL problem based on a Markov Decision Process with a single state and a finite set
of actions A. Since there is only a single state, MABs can be solved using computationally
cheap algorithms relative to algorithms for other RL problems [172]. The agent solving
the MAB computes an approximation of the probability distribution of rewards R over
A. In the context of MAB, actions are often referred to as arms (or bandits). The term
’bandit’ comes from gambling, as the arm or lever of a slot machine is referred to as a
one-armed bandit, and MABs refer to several slot machines. The goal of the MAB agent is
to maximize its reward by playing a sequence of actions (e.g., selecting which band/lever
to pull).

In practice, MAB problems are commonly modelled so rewards are sampled from an
unknown Bernoulli distribution (e.g., rewards are in {0, 1}). The MAB agent attempts to
approximate the expected value of reward from the Bernoulli distribution for each action
in A. Over time, the agent uses these distributions to form a policy – a stochastic process of
how to select actions from A. This policy must remain privy to the exploration/exploitation
trade-off, i.e., an MAB algorithm selects every action an infinite number of times, but
selects the action(s) with the highest expected reward more frequently.

There are several algorithms for the MAB problem. In this chapter, we exclusively con-
sider Thompson Sampling. In Thompson Sampling, an agent maintains a Beta distribution
for each action in the action space A. Beta distributions are derived from Gamma distribu-
tions, and have a long history with numerous applications. We refer the reader to Gupta et
al. on Beta and Gamma distributions [75]. In the context of Thompson Sampling, a Beta
distribution acts as continuous model of the expected value of a Bernoulli distribution. It
is maintained by two shape parameters α the samples of 1, and β the samples of 0, from the
underlying Bernoulli distribution. The agent selects an action by sampling each action’s
Beta distribution and greedily picks the action based on the maximum over the sampled
values. Upon taking the action, α is incremented on reward, otherwise β is incremented.
For more on Thompson sampling we refer to Russo et al. [143].

2.2.4 Unsupervised and Semi-Supervised Learning

Unsupervised learning, a paradigm of machine learning, engages with data devoid of la-
beled responses, aiming to discern underlying patterns or structures from such datasets.

16

Contrarily, semi-supervised learning operates on a hybrid dataset comprising both labeled
and unlabeled data, leveraging the intrinsic structure of the data to improve learning ef-
ficiency and prediction accuracy, especially when labeled data are scarce or expensive to
obtain.

Within the domain of unsupervised learning, Principal Component Analysis (PCA)
emerges as a pivotal linear dimensionality reduction technique. PCA seeks to identify
the orthogonal axes (principal components) that maximize the variance in the dataset,
thereby reducing its dimensionality while retaining as much of the variability in the data
as possible. The mathematical foundation of PCA involves the eigen decomposition of
the data covariance matrix or the singular value decomposition (SVD) of the data matrix
itself, leading to:

X = UΣVT

where X is the data matrix, U and V are orthogonal matrices representing the left and
right singular vectors, and Σ is a diagonal matrix containing the singular values, which
are directly related to the variance captured by each principal component. The principal
components thus derived serve as a transformed coordinate system that optimally describes
the variance in the data, facilitating data visualization, noise reduction, and the efficient
preprocessing for other machine learning tasks.

17

Chapter 3

Machine Learning based Algorithm
Selection for SMT Solvers

This chapter presents MachSMT, an algorithm selection tool for Satisfiability Modulo
Theories (SMT) solvers. MachSMT supports the entirety of the SMT-LIB language and
standardized SMT-LIB theories, and is easy to extend with support for new theories. Mach-
SMT deploys machine learning (ML) methods to construct both empirical hardness models
(EHMs) and pairwise ranking comparators (PWCs) over state-of-the-art SMT solvers.
Given an input formula in SMT-LIB format, MachSMT leverages these learnt models to
output a ranking of solvers based on predicted runtimes.

We provide an extensive empirical evaluation of MachSMT to demonstrate the effi-
ciency and efficacy of MachSMT over three broad usage scenarios on theories and theory
combinations of practical relevance (e.g., bit-vectors, (non-)linear integer and real arith-
metic, arrays, and floating-point arithmetic). First, we deploy MachSMT on state-of-the-
art solvers in SMT-COMP 2019 and 2020. We observe MachSMT frequently improves on
the best-performing solvers in the competition, winning 57 divisions outright, with up to a
99.4% improvement in PAR-2 score and median improvement of 9.8%. Second, we evaluate
MachSMT to select configurations from a single underlying solver. We observe that Mach-
SMT solves 898 more benchmarks and up to a 93.4% improvement in PAR-2 score across
23 configurations of the SMT solver cvc5. Last, we evaluate MachSMT on domain-specific
problems, namely network verification with simple domain-specific features, and observe
an improvement of 77.3% in PAR-2 score.

The artifact for this chapter is available at https://zenodo.org/record/7383299.

18

https://zenodo.org/record/7383299

3.1 Motivation
Satisfiability Modulo Theories (SMT) solvers are tools to decide the satisfiability of formu-
las over first-order theories, such as the theories of bit-vectors, floating-point arithmetic,
integers, reals, strings, arrays, and their combinations. Prominent examples of SMT solvers
are Bitwuzla [117], Boolector [120], CVC4 [21], cvc5 [16], MathSAT [53], SMTInterpol [52],
STP [65],Yices [59], and Z3 [111, 21]. In recent years, SMT solvers have had a revolution-
ary impact on applications in software engineering (broadly construed), such as software
testing [44, 125] and verification [64, 39, 71, 99], as well as in sub-fields of AI [140, 89, 73].
This impact is a driver for an insatiable demand for evermore efficient solvers, not only to
scale to larger instances obtained from existing applications (e.g., automatic bug-finding
in commercial software [68, 8]), but also to solve problems from new application domains
(e.g., verification and synthesis of cryptographic primitives [29]).

Motivation for Algorithm Selection for SMT Solvers. In response to this high
demand, the SMT community has developed a plethora of solver heuristics and configura-
tions. For example, in the 2019 edition [78] of the annual SMT-COMP competition [184],
more than 50 solvers and their configurations were submitted. Many of these solvers im-
plement very different algorithms to tackle the satisfiability problem for (a combination
of) first-order theories, with significantly varying performance profiles. For example, for
the quantifier-free theory of floating-point arithmetic (QF_FP), there exist several sub-
stantially different decision procedures, e.g., word-blasting [38], abstract CDCL [37], inter-
reduction methods [146], and reduction to global optimization [63, 22]. In this specific
setting of floating-point arithmetic, input instances may be derived from a variety of ap-
plications, such as software verification or analysis of machine learning (ML) models [155].
A very natural question arises in such a scenario: which solver or configuration is best for
a given input instance?

Another well-known issue with many SMT solvers (even state-of-the-art ones) is that
users may not know a priori which formula features or encoding would make an instance
easy to solve. This can be very frustrating for users as they have to try a large number
of different encodings with different solvers in order to find a combination that works best
for their specific scenario, which may result in a combinatorial explosion. Users have also
noted that as their applications change, what was once a great solver configuration in an
earlier setting is suddenly underperforming in the newer one. One possible approach to
address this problem is to use a portfolio of solvers, which has been successful in the context
of SAT solvers. Unfortunately, given the plethora of SMT solvers and solver configurations
(cvc5 [16] alone utilizes 23 different configurations in a sequential portfolio setting for
quantified logics), such an approach quickly becomes infeasible.

19

One way to address the above-mentioned problems is to use an automated algorithm
selection tool that can automatically and accurately predict the best algorithm from a
given set of algorithms for a specific input. Such a tool selects the best SMT solver from
a set of solvers for a given SMT formula. Note that in the following, in the context of
algorithm selection, we will use algorithm, solver configuration and solver interchangeably
when understood from the context.

Brief Overview of MachSMT. In this chapter, we introduce MachSMT, a machine
learning-based algorithm selection tool for SMT solvers. MachSMT supports the entirety
of the SMT-LIB language (v2.6) [20] and standardized SMT-LIB theories [19], and is easy
to extend with support for new theories. MachSMT is written in Python and takes as input
an instance for a specified logic (a combination of theories with or without quantifiers) of
interest and outputs a ranking of solvers predicted to have the lowest runtime. Internally,
MachSMT is a set of machine learnt models constructed by analyzing the runtimes of
solver configurations on benchmarks with respect to a predefined set of features, as given
in 3.1. These features include the frequency of occurrences of grammatical constructs
(e.g., predicates, operators, bindings) and syntactical features that can have an influence
on performance (e.g., quantifier nesting levels).

At its core, MachSMT utilizes two techniques for algorithm selection: empirical hard-
ness models (EHMs) and pairwise ranking comparators (PWCs). In addition, it pipelines
the set of features defined in Table 3.1 with feature preprocessing and Principal Compo-
nent Analysis (PCA). By default, MachSMT uses scikit-learn [129] with Adaboosting for
classification and regression models. It is, however, ML framework-agnostic with a highly
abstract interface and a built-in PyTorch interface [127].

An EHM for a given solver is a mapping from an input instance to a predicted runtime
of the solver on that input. At runtime, MachSMT queries all EHMs for all solvers that
were considered during training on the given input and outputs a ranking of solvers based
on their predicted runtimes (the top-ranked solver is predicted to solve the input problem
the fastest). In contrast, a learnt PWC is a mapping that takes as input a pair of solvers
and an input instance, and outputs a ranking over the input solvers based on which is
predicted to have a lower runtime on the given input. During evaluation, MachSMT uses
the learnt PWC as a comparator to rank the set of solvers on a given input.

While algorithm selection has been considered in the broad setting of satisfiability
solvers (e.g., QBF solvers [133] and SAT solvers [198]) as well as certain specific SMT
theories [156, 13, 186], we are not aware of previous work on algorithm selection aimed at
the entirety of SMT-LIB [19] and its standardized theories. Our results demonstrate that
the MachSMT algorithm selector is highly effective, as it outperforms the best performing

20

Figure 3.1: Architecture of MachSMT.

solvers in the competition on the majority of tracks from the SMT-COMP in 2019 and
2020.

Perhaps the first algorithm selection tool in the context of logic solvers was SATZilla [198].
Since its introduction, SATZilla has had a tremendous impact on SAT solver research, win-
ning multiple gold medals in previous SAT competitions. MachSMT differs in several sig-
nificant aspects from SATZilla. In particular, SATZilla deploys a feature selection scheme
to avoid the curse of dimensionality, while MachSMT leverages a learnt dimensionality re-
duction scheme, Principal Component Analysis (PCA). In fact, a feature selection scheme
would not scale in the context of SMT solvers given the very large number of learnt models
that are incorporated into MachSMT.

It goes without saying that MachSMT is only as powerful as the underlying solvers that
it has access to. MachSMT is clearly not a replacement for any particular SMT solver,
but rather a tool that enables users to leverage the collective strength of the diverse set of
algorithms and configurations implemented as part of these sophisticated solvers.

3.2 MachSMT

In this section, we provide an overview of the MachSMT tool. The architecture diagram
of MachSMT is presented in Figure 3.1.

21

3.2.1 Features and Preprocessing

By default, MachSMT defines a feature vector with 196 entries (i.e., dimensions). This
feature vector can optionally be extended with user-defined features. A complete descrip-
tion of each predefined feature is provided in Table 3.1. We use two strategies to mitigate
taxing feature calculation times, which can severely impair algorithm selection solutions.
First, all features are entirely syntactical properties of the input. This is a major difference
between MachSMT and other algorithm selection solutions, such as SATZilla. Second, all
features are calculated within a strict and user-adjustable time limit (default 10s). On a
timeout, the feature value is recorded as −1.0.

By default, MachSMT performs three key preprocessing steps before constructing any
learnt models over a given data set. The entirety of the ML pipeline is mutable, and
MachSMT has an interface to connect to any major ML platform. We describe each
subsequently. First, all feature values are scaled to zero mean and unit variance1. This
data normalization technique is common in ML research and applications to improve model
efficiency and numerical robustness.

The second step in the preprocessing pipeline is computing the polynomial interaction
terms of degree two on the normalized feature vector. These polynomial features make
interacting correlations of features explicit. These first two preprocessing steps are included
in the SATZilla preprocessing pipeline [202].

As discussed in Chapter 2.2, ML in a high-dimensional space is prone to the curse of
dimensionality. While other algorithm selection tools (e.g., SATZilla) commonly implement
feature selection solutions, we propose to use learnt dimensionality reduction, namely,
PCA. As discussed above, feature selection can be a proactive solution to the curse of
dimensionality but presents many challenges when applied to SMT. Internally, MachSMT
manages up to more than a thousand learnt models (e.g., in the context of our SMT-COMP
analysis in Section 3.3), and calculating optimal feature subsets for each one is infeasible.

The third and final preprocessing step is (optionally) applying PCA to the polynomial
features. The final feature vector is composed of the first 35 principal components and is
used to construct the learnt models with AdaBoost. This step can dramatically improve
building times on larger data sets with many logics. Furthermore, several supervised learn-
ing techniques are more performant with PCA enabled. Concretely, MachSMT computes
the 196+ features from the input, and the means and deviations are computed on each
component in the feature vector across the provided data set. MachSMT then expands

1 x−µ
σ , where x is a feature sample, µ is the mean across the specific feature on the training set, and σ

is the deviation across the specific feature on the training set.

22

this vector by computing polynomial interaction features of degree 2 (i.e., products of all
components), resulting in an expanded feature vector of nearly 40,000 dimensions. Finally,
we reduce this to a vector space of just 35 dimensions with PCA, which aims to preserve
as much of the original information as possible from this large vector space. The reduc-
tion to 35 dimensions is a hyperparameter of PCA and MachSMT, and was empirically
determined.

3.2.2 Supervised Learning Core

Depending on the quality and type of data available, different machine learning techniques
may have different tradeoffs, as well as development and production constraints. For ex-
ample, linear ridge regression is a popular regression algorithm for algorithm selection [202]
with relatively very fast training times and very interpretable models. It is, however, not
always the most performant technique. On tabular data problems, decision trees and Ad-
aBoosting increase the overall accuracy of the learned models at the cost of interpretability
and training times. Furthermore, it may be beneficial to deploy deep learning techniques
in the presence of large amounts of data or significant resources.

MachSMT is written in Python and aims to be ML framework and algorithm agnostic.
By default, MachSMT leverages scikit-learn [129] and numpy [79]. However, it is easy to
extend MachSMT to support any ML model/pipeline under scikit-learn syntax, specifically,
any class with fit and predict methods. Furthermore, it includes interfaces to other
relevant frameworks, notably PyTorch [127] and XGBoost [48]. By default, MachSMT
is configured to use AdaBoost with 200 decision tree estimators and linear loss as its
supervised learning core. Alternatively, it can be configured to use linear ridge regression
or a multi-layer perceptron (MLP) deep neural network.

3.2.3 Configurations of MachSMT

MachSMT implements the following algorithm selection solutions.

1. Mach-LogicEHM – This configuration of MachSMT is analogous to the algorithm
selection approach taken by SATZilla, with an EHM is constructed for every solver/-
logic pair. As state-of-the-art SMT solvers implement significantly different algo-
rithms depending on the logic of the input problem, data points from different logics
could negatively skew predictions.

23

Feature Description
1–4 Frequency of constructs for problem description

(as, assert, check-sat, check-sat-assuming)
5–13 Frequency of constructs for declaration and

definition (e.g., declare-const, define-fun, …)
14–15 Frequency of echo and exit constructs
16–27 Frequency of get-* constructs

(e.g., get-model, get-unsat-core, …)
28–29 Frequency of push and pop constructs
30–31 Frequency of reset and reset-assertions

constructs
32–34 Frequency of set-* constructs

(set-info, set-logic, set-option)
35–36 Frequency of forall and exists bindings
37 Frequency of let bindings
38–48 Frequency of core and Boolean constructs

(e.g., true, Bool, and, or, =>, ite, …)
49–51 Frequency of constructs of the theory of

arrays (Array, select, store)

Feature Description
52–87 Frequency of constructs of the theory of

bit-vectors (e.g., BitVec, bvor, bvadd, bvult, …)
88–133 Frequency of constructs of the theory of

floating-point arithmetic (e.g., FloatingPoint,
RNE, fp.add, fp.leq, fp.isNaN, …)

134–148 Frequency of constructs of the theories of
integers and reals (e.g., Int, Real, >, +, *
to_real, is_int, …)

149–184 Frequency of constructs of the theory of
strings and regular expressions (e.g., String,
RegLan, str.len, str.++, re.diff, …)

185 Avg. number of selects per array
186 Avg. store chain depth per array
187–189 Avg./Median/Deviation of the depth of BV adder chains
190–192 Number and ratio of forall/exists variables
193 Avg. quantifier nesting level
194–195 Avg. arity and number of applications of

uninterpreted functions
196 Size of the smt2 file in bytes

Table 3.1: Complete list of the 196 features used in MachSMT.

2. Mach-LogicPWC – This configuration of MachSMT deploys the PairWise com-
parator approach as described in Chapter 3.2. In this configuration of the PWC,
comparators are trained for every pair of solvers on the benchmarks of a common
logic.

3. Mach-Greedy – In this configuration, the algorithm that performed the best over
the training data is returned. Similar to Mach-LogicEHM and Mach-LogicPWC,
it is filtered by the logic. This solution is a fallback for when MachSMT fails to
learn a model that improves on the best standalone solver (as determined by the
SMT-COMP results).

By default, MachSMT creates models for Mach-EHM and Mach-Greedy in the presence
of one logic, and Mach-LogicEHM in case of multiple logics. In evaluation, MachSMT
evaluates the performance of each approach on each logic. In deployment, MachSMT uses
the approach that had the best-observed performance in evaluation.

3.2.4 Using MachSMT

MachSMT consists of three core tools, which are used to build, evaluate, and deploy
MachSMT, respectively.

24

1 $ machsmt example.smt2 −l dir
2 MachSMT selects: bitwuzla
3 bitwuzla 81.102%
4 cvc4 16.180%
5 Z3 2.718%

Figure 3.2: Example Usage of MachSMT.

1. machsmt_build – This tool is the interface for building MachSMT’s database around
the solvers and benchmarks provided by the user. It takes as input a csv data file
with columns solver, benchmark, and score. The solver column denotes the name of
the solver, and the benchmark column indicates where the benchmark is located. We
use PAR-2 as score, with penalties for timeouts and incorrect answers (see Section
3.3.2). With default settings, the output of machsmt_build is a library directory
containing the database and learnt models. For example, on input data.csv with
output directory dir, machsmt_build is called as follows:

1 $ machsmt_build −f data.csv −l dir

2. machsmt_eval – This tool takes as input the library directory with the database
and learnt models generated by machsmt_build, evaluates them under k-fold cross
validation, and provides a summary of the results. machsmt_eval further tunes
MachSMT to use the best empirically observed configuration based on the logic of
the input benchmark. For example, on dir, it is called as follows:

1 $ machsmt_eval −l dir

3. machsmt – This tool is the primary interface to MachSMT’s algorithm selection.
Given an input benchmark and the library files generated above, machsmt will output
a ranking of solvers, ordered from predicted to solve the input the fastest (top) to
slowest (bottom). An example usage of machsmt on input file example.smt2 with
library directory dir is given in Figure 3.2.

3.2.5 Allocating Resources with MachSMT

In Section 3.2, we present an example command-line usage of MachSMT primary prediction
interface. We suggest two different ways to allocate resources: either greedily spend all

25

resources on the top selected solver or allocate resources based on the suggested allocation
(see Section 3.4 for a comparison).

MachSMT utilizes a resource allocation scheme that leverages ideas from deep neural
networks—specifically, softmin, an output activation function that computes the smooth
minimum of, in our case, a vector x⃗ of predicted solver runtimes. Leveraging EHMs
yields a predicted runtime xi for every solver si ∈ S. The regression models can be poor
at predicting absolute ground truth runtime accuracy, but the predicted runtimes of the
solver EHMs relative to each other, however, can be indicative for algorithm selection. We
thus chose to compute the suggested resource allocation for a solver si as a softmin of xi,
defined as follows.

softmin(xi) =
e−xi

n∑
j=1

e−xj

The softmin activation function normalizes predicted solver runtimes to predicted prob-
abilities, and is inspired by classification in ML, where the softmax output activation func-
tion is frequently used to compute a smooth maximum. In contrast to softmax, softmin
allows us to give preference to lower runtimes.

3.2.6 User-defined Features

MachSMT provides a simple interface for users to extend its set of predefined features with
user-defined features. Each new feature is represented as a Python method that returns a
single floating-point number (or an iterable that returns floating-point numbers). Features
can be disabled, by having the user-defined procedure return None. All user-defined features
are automatically included in building MachSMT and can significantly affect the accuracy
of MachSMT when engineered to target a specific class of benchmarks.

3.3 SMT-COMP

In this section, we present the evaluation of MachSMT, specifically on the benchmarks,
solvers, and solver runtime analysis from SMT-COMP 2019 [78] and 2020 [17]. The results
of this experiment are summarized in Tables 3.5, 3.4, 3.3, 3.2 and Figure 3.3.

26

3.3.1 Experimental Setup and Methodology

In this experiment, we used the benchmarks, timing analysis, and solvers provided by
the organizers of the SMT-COMP 2019 and 2020 competitions [78, 17]. The competition
is organized in tracks, which are split into divisions. In 2019 and 2020, as in the years
before [184], a division corresponded to an SMT-LIB logic. We consider all divisions of
the Single Query (SQ) and Incremental (INC) tracks for each year. In the SQ track, each
input only contains a single check-sat query, whereas in the INC track, inputs contain
multiple such queries.

In both years, all solver input queries were performed on the StarExec computing
service [169], which consists of a cluster of 2.4 GHz Intel Xeon machines running Red Hat
Enterprise Linux 7.2. Each solver/ benchmark pair was configured to have four cores and
60GB of memory available. The time limit for each pair was 2400 seconds in 2019, and
1200 seconds in 2020.

For this experiment, we configure MachSMT with AdaBoost with 200 decision tree
estimators and linear loss as its supervised learning core. Further, we evaluate MachSMT
in all of its configurations (as introduced in Section 3.2.3) using k-fold cross validation
with k = 5. The data set is randomly partitioned into k subsets per division and year for
cross-validation. For more details on cross-validation, see Section 2.2.

As we are leveraging data collected by the SMT-COMP organizers, we do not rerun
with the allocation scheme as outlined in 3.2.5. Instead, we use whichever solver had the
lowest predicted runtime. Note that this is usually slower than the allocation scheme.

3.3.2 Experimental Results

For each division, we compare MachSMT against the best solver of the division in the
competition (including non-competing solvers). For the Single Query track, we evaluate
solvers across, according to PAR-2 scores [109]. Given the wallclock runtime w and the
wallclock time limit t, we compute the PAR-2 score as w on successful termination, 10 ∗ t
for an incorrect answer, and 2 ∗ t for any other case of unsuccessful termination. For the
Incremental track, we use w + (2 ∗ t

n
) ∗ (n −m), with n the total number of check-sat

calls in the input and m the total number of check-sat calls successfully solved.
The results of this experiment are given in Tables 3.5, 3.4, 3.3, 3.2 and Figure 3.3.

We consider all divisions that contain at least 25 benchmarks and exclude incremental
benchmarks with only a single check-sat query. We further consider three baselines when
evaluating MachSMT: random algorithm selection (Random), the best solver of the division

27

Logic in SQ’20 Best PAR-2
Random Best VBS Mach-LogicEHM Impr. [%]

QF_BVFPLRA (153) MathSAT5 48277.5 31111.1 159.5 174.7 99.4
LIA (299) CVC4 393648.4 37071.9 2697.3 12490.4 66.3
BVFP (224) CVC4 289843.2 266428.9 54434.9 95958.1 64.0
QF_UFBV (217) Yices 35418.8 22343.0 5343.9 9356.6 58.1
UFDTNIRA (736) Vampire 561429.7 177066.7 48076.2 75373.3 57.4
QF_LIA (2508) CVC4 1246085.0 579953.4 169595.8 269473.4 53.5
BV (696) CVC4 459663.8 239717.7 60146.9 129250.2 46.1
QF_UFNRA (27) Yices 42957.1 12929.8 4670.0 7902.6 38.9
QF_ALIA (116) Yices 39316.5 68.5 32.9 45.8 33.2
QF_NRA (2230) Yices 1832304.9 1132073.9 468148.2 812778.6 28.2
AUFDTNIRA (300) Vampire 268191.0 23710.6 5964.7 17211.1 27.4
QF_ABVFPLRA (41) CVC4 15213.5 3269.6 30.0 2436.3 25.5
FP (993) Z3 928925.1 462175.2 306571.7 404901.1 12.4
QF_IDL (834) Yices 468813.2 234514.8 182994.3 211312.8 9.9
AUFDTLIRA (4878) CVC4 4139948.8 1316952.2 1003100.6 1189167.9 9.7
UFDTLIRA (4296) CVC4 4088170.6 1936992.8 1709161.2 1769376.9 8.7
QF_BV (6861) Bitwuzla 1729172.7 431768.2 244154.8 400073.9 7.3
QF_ANIA (94) MathSAT5 66033.4 617.9 251.1 573.9 7.1
UFNIA (5041) Vampire 6813123.2 913033.2 603779.5 861190.5 5.7
AUFLIA (1310) Vampire 1069749.1 507919.1 361485.5 481708.6 5.2
UFBV (72) Z3 96086.8 55232.8 52830.0 52832.7 4.3
ABV (169) Z3 357625.1 307762.2 295252.8 297652.7 3.3
QF_NIA (9195) MathSAT5 10541986.4 7230607.6 4390297.4 7024329.8 2.9
AUFNIRA (300) Vampire 627468.0 582179.9 549239.6 566789.9 2.6
QF_UFLIA (300) Yices 74547.2 56.3 46.2 54.9 2.5
QF_RDL (247) Yices 117274.8 83921.9 83164.3 83598.5 0.4
QF_UFIDL (300) Yices 40814.8 5523.1 5490.4 5508.2 0.3
AUFLIRA (1346) CVC4 796897.2 243525.3 228066.0 242965.1 0.2
FPLRA (27) CVC4 55202.7 29740.3 29740.3 29740.3 0.0
BVFPLRA (185) CVC4 338419.4 223227.4 223227.4 223227.4 0.0
NRA (93) Z3 69642.8 7497.5 38.9 7498.0 0.0
ABVFP (30) CVC4 40818.9 36003.5 36003.4 36003.5 0.0
UFFPDTLIRA (373) CVC4 525984.4 103911.2 103911.2 103911.2 0.0
AUFBVDTLIA (683) CVC4 1241067.5 791289.9 791289.9 791289.9 0.0
AUFFPDTLIRA (154) CVC4 220808.6 48019.5 48019.5 48019.5 0.0
QF_UFLRA (432) Yices 97099.5 4837.3 3287.3 4884.9 -1.0
QF_AX (300) Yices 66061.7 6.3 5.3 6.5 -2.8
UFLIA (2278) CVC4 3263274.9 2363827.7 2139934.2 2439073.8 -3.2
ABVFPLRA (75) CVC4 158401.1 136806.3 136806.3 141602.0 -3.5
UFDT (1223) CVC4 2296525.6 1990066.9 1889835.6 2059603.1 -3.5
QF_LRA (429) OpenSMT 147136.2 71949.4 46349.1 76132.2 -5.8
UF (2291) Vampire 4042624.6 3122146.8 2917476.7 3326149.0 -6.5
LRA (802) Z3 788146.6 172873.6 71219.3 191840.8 -11.0
QF_BVFP (394) Bitwuzla 20315.1 778.4 205.5 883.0 -13.4
QF_AUFBV (34) Yices 42033.0 25818.9 20431.4 29298.1 -13.5
QF_UFNIA (300) CVC4 152541.4 48058.9 12013.2 55528.3 -15.5
QF_FP (247) Bitwuzla 134069.5 78980.8 42799.3 94053.4 -19.1
QF_ABV (3385) Bitwuzla 126991.6 48643.1 42430.1 58977.6 -21.2
QF_SLIA (27033) CVC4 4751221.5 698072.5 563735.7 889222.2 -27.4
AUFDTLIA (147) CVC4 152649.5 23515.5 23255.2 31105.0 -32.3
QF_FPLRA (51) COLIBRI 24654.4 7275.9 162.8 9663.8 -32.8
UFDTLIA (277) CVC4 397736.7 250883.7 207326.4 355323.4 -41.6
QF_ABVFP (500) Bitwuzla 66977.7 5460.8 3690.7 9589.7 -75.6
QF_UF (2800) Yices 397239.9 388.8 325.8 724.5 -86.3
QF_S (927) CVC4 69954.9 10415.2 4324.1 22949.6 -120.3
QF_AUFLIA (467) Yices 228647.7 18.3 9.1 2412.6 -13058.7

Table 3.2: Results of Mach-LogicEHM on data from the SMT-COMP’20 SQ divisions.

28

Logic in INC’20 Best PAR-2
Random Best VBS Mach-LogicEHM Impr. [%]

QF_ABV (376) Yices 50028.7 12049.0 2283.9 6493.4 46.1
QF_AUFLIA (72) Yices 24978.5 3293.0 2924.5 2927.8 11.1
QF_UFLIA (230) Z3 158480.1 129340.4 107652.4 117549.1 9.1
UFLRA (748) Z3 1131365.1 184002.0 159210.5 174155.4 5.4
UFNIA (2029) Z3 3807401.9 2757190.6 1961676.0 2787434.9 -1.1
QF_LIA (69) Yices 73247.5 45262.5 40039.5 45830.5 -1.3
QF_BVFP (51) Bitwuzla 12529.7 371.3 89.1 379.5 -2.2
QF_UF (306) Yices 2645.4 64.3 59.8 66.6 -3.5
UF (2031) Z3 4034456.8 2391318.1 1692446.9 2612107.1 -9.2
AUFNIRA (165) CVC4 146343.7 99766.7 60200.6 116514.8 -16.8
QF_AUFBV (30) Yices 28754.0 14092.7 12687.6 17773.8 -26.1
QF_BV (484) Bitwuzla 42345.7 20437.5 17019.1 25880.7 -26.6
QF_UFLRA (1223) Z3 19339.8 8344.7 5198.8 10607.5 -27.1
QF_ALIA (44) Z3 8597.9 702.3 398.0 1517.3 -116.1
QF_UFBV (932) Bitwuzla 11434.8 1831.5 832.3 4574.3 -149.8

Table 3.3: Results of Mach-LogicEHM on data from the SMT-COMP’20 INC divisions.

Logic in INC’19 Best PAR-2
Random Best VBS Mach-LogicEHM Impr. [%]

QF_UFLIA (302) Z3 377725.6 343663.9 248671.6 267783.4 22.1
QF_ABV (469) Yices 165761.3 13054.3 3727.9 11461.8 12.2
QF_UFLRA (1529) Z3 33688.3 11937.7 7505.0 10653.4 10.8
QF_AUFLIA (72) Yices 7915.0 3029.5 2901.4 2936.0 3.1
UFLRA (935) Z3 3355019.8 223811.2 214824.6 223677.4 0.1
QF_UF (383) Yices 341.2 78.2 78.0 78.2 0.0
QF_LIA (69) Yices 120316.9 72456.8 68228.8 73274.1 -1.1
AUFNIRA (165) CVC4 465185.6 183826.9 109727.3 200152.9 -8.9
QF_AUFBVNIA (32) MathSAT 53475.0 849.6 667.0 1003.1 -18.1
QF_BV (583) Boolector 270820.1 40616.1 29793.1 59064.0 -45.4
QF_UFBV (1165) Boolector 14560.1 3261.0 638.1 7311.1 -124.2
QF_ALIA (44) Z3 3440.9 854.5 394.1 5334.1 -524.3

Table 3.4: Results of Mach-LogicEHM on data from the SMT-COMP’19 SQ divisions.

29

Logic in SQ’19 Best PAR-2
Random Best VBS Mach-LogicEHM Impr. [%]

QF_UFBV (223) Yices 57238.9 26322.4 2536.0 2891.0 89.0
QF_UFNRA (26) Yices 81791.6 20744.2 5635.6 8119.3 60.9
NRA (93) Vampire 161246.9 53040.4 4891.9 24018.8 54.7
QF_NRA (2842) Yices 4700323.3 3307748.9 918003.5 1720350.2 48.0
QF_FP (225) COLIBRI 311524.5 252284.1 111486.3 177289.9 29.7
BV (823) Q3B 775521.1 407336.7 129831.8 294642.1 27.7
QF_LIA (3136) SPASS-SATT 3493282.0 493192.2 183339.1 362941.9 26.4
AUFLIRA (1683) Z3 3302901.6 398577.1 316990.7 327028.9 18.0
QF_LRA (546) SPASS-SATT 346010.5 128635.0 63374.3 105550.3 17.9
QF_AUFLIA (651) Yices 528768.8 18.6 11.6 15.3 17.5
LIA (299) Z3 749636.7 14.8 11.3 12.9 13.1
AUFLIA (1638) Vampire 3423183.4 1242230.7 851466.2 1104767.7 11.1
UFNIA (6253) CVC4 19759215.9 13320056.8 7804961.4 11927375.3 10.5
QF_IDL (1042) Z3 1477558.6 557543.6 437743.1 509547.6 8.6
AUFNIRA (300) CVC4 1302356.6 1171565.6 1110988.5 1155968.5 1.3
FP (1238) Z3 2470540.0 1006063.1 719531.7 1000203.6 0.6
QF_UFNIA (300) CVC4 260047.3 72279.0 19207.9 72091.2 0.3
QF_RDL (247) Yices 182890.5 162609.5 162070.6 162327.5 0.2
UFDT (1547) CVC4 5342330.5 5011100.6 4601262.4 5004303.6 0.1
QF_UFIDL (300) Yices 62584.7 10206.4 10172.4 10197.5 0.1
QF_NIA (11494) CVC4 28208367.0 17006943.3 10126265.9 17009089.1 0.0
UFBV (72) Z3 179316.1 110434.2 100836.9 110438.1 0.0
QF_AX (300) Yices 107798.6 4.8 4.6 4.8 -0.3
QF_AUFBV (41) Yices 39919.8 14811.6 6250.6 14900.5 -0.6
QF_BVFP (516) CVC4 25474.1 8997.5 3643.2 9063.2 -0.7
QF_UFLIA (300) Yices 193160.2 31.6 19.9 32.0 -1.4
UF (2816) Vampire 10822123.3 8052636.1 7371252.1 8180674.7 -1.6
UFLIA (2848) CVC4 9383261.2 5857081.7 5426481.9 5967471.7 -1.9
QF_ABV (7538) Poolector 236916.1 104633.3 84039.8 107399.8 -2.6
AUFDTLIA (275) CVC4 191254.3 46638.2 23377.1 51228.3 -9.8
QF_BV (8909) Poolector 4757776.7 868489.1 549558.4 1021521.2 -17.6
LRA (1003) Z3 2022790.0 363124.4 223245.7 473842.6 -30.5
UFDTLIA (299) CVC4 752499.4 495667.2 434393.8 725651.2 -46.4
QF_UFLRA (541) SMTInterpol 280508.4 3214.4 1964.0 4972.3 -54.7
QF_UF (3512) Yices 1098010.6 422.4 272.8 1451.2 -243.6
QF_ALIA (139) Yices 156602.7 57.9 50.1 4852.9 -8274.6

Table 3.5: Results of Mach-LogicEHM on data from the SMT-COMP’19 INC divisions.

30

(Best), and the virtual best solver (VBS). Tables 3.5, 3.4, 3.3, 3.2 give the PAR-2 score for
each configuration, as well as the percent improvement of Mach-LogicEHM over the best
solver of each division. We only report the results for Mach-LogicEHM as it is, overall,
the best performing configuration. Note that the VBS corresponds to perfect algorithm
selection and can therefore not be beaten. We observe that overall and across all four
tracks, MachSMT improves on the best solver in 57 (out of 119) divisions— for SQ’20 on
28 (out of 56), for INC’20 on 4 (out of 15), for SQ’19 on 20 (out of 36), and for INC’19 on
5 (out of 12).

We present selected cumulative distribution function (CDF) plots of the top three
results with the most improvement in the SQ’19 and SQ’20 tracks in Figure 3.3. In this
context, a CDF visualizes how a solver performs on a database of inputs. A point (x,y)
denotes that a solver S solves y inputs within x seconds each.

3.3.3 Discussion

In Section 3.2.3, we describe three configurations of MachSMT. In our evaluation of SMT-
COMP data, we observe that Mach-LogicEHM performs significantly better than the other
MachSMT configurations. Our experimental results confirm that algorithm selection (in
particular through the use of EHMs) can be a powerful way to address the combinatorial
explosion that solver users face when trying to decide which solver-configuration pair is
best suited for their application.

We note that MachSMT is particularly powerful in the context of divisions with a
diverse set of solving procedures, e.g., QF_BVFPLRA and QF_UFBV. Possible reasons
for divisions where MachSMT performs worse than the best performing solver are too few
(or too homogeneous benchmarks), lack of diversity of the algorithms to select, and the
feature vector not sufficiently capturing the challenges of an input problem. For example,
an interesting observation occurs in QF_BV logics of the SQ tracks, on a specific set of
small benchmarks, a benchmark family originating from [123]. This benchmark family
encodes bit-vector rewrites, which are trivial if a solver implements these specific rewrites.
However, MachSMT is tricked into picking the competition winner Bitwuzla, even though
it misses some of these rewrites and performs worse on some of these benchmarks than
other solvers. This is mainly due to the fact that these benchmarks are very small in size,
and Bitwuzla usually outperforms other solvers on instances of small input size.

As noted in previous work, algorithm selection methods work well for non-homogeneous
benchmarks, especially where no single algorithm performs best across the board. EHMs

31

0 500 1000 1500 2000
Wallclock Runtime [s]

50

100

150

200

So
lv
ed
 B
en
ch
m
ar
ks

VBS
Mach-LogicEHM
Yices
Mach-Greedy
Poolector
Boolector
CVC4
Boolector (2018)
Mach-Random
Z3

(a) QF_UFBV (SQ’19)

0 200 400 600 800 1000 1200 1400
Wallclock Runtime [s]

0

20

40

60

80

So
lv
ed
 B
en
ch
m
ar
ks

VBS
Mach-LogicEHM
Vampire
Z3
Z3 (2018)
Vampire (2018)
Mach-Greedy
CVC4
Mach-Random
UE+MathSAT
UE+Yices

(b) QF_UFNRA (SQ’19)

0 200 400 600 800 1000 1200 1400
Wallclock Runtime [s]

0

20

40

60

80

So
lv
ed
 B
en
ch
m
ar
ks

VBS
Mach-LogicEHM
Vampire
Z3
Z3 (2018)
Vampire (2018)
Mach-Greedy
CVC4
Mach-Random
UE+MathSAT
UE+Yices

(c) NRA (SQ’19)

0 200 400 600 800 1000
Wallclock Runtime [s]

90

100

110

120

130

140

150

160

So
lv
ed
 B
en
ch
m
ar
ks

VBS
Mach-LogicEHM
MathSAT5
Mach-Greedy
CVC4
Mach-Random
COLIBRI

(d) QF_BVFPLRA (SQ’20)

0 200 400 600 800 1000
Wallclock Runtime [s]

50

100

150

200

250

300

So
lv
ed

 B
en

ch
m
ar
ks

VBS
Mach-LogicEHM
CVC4
Mach-Greedy
Z3
Z3 (2019)
Vampire
Mach-Random
UE+MathSAT
SMTInterpol
veriT
veriT+vite

(e) LIA (SQ’20)

0 100 200 300 400 500 600
Wallclock Runtime [s]

80

100

120

140

160

180

200

So
lv
ed

 B
en

ch
m
ar
ks

VBS
Mach-LogicEHM
Z3 (2019)
Mach-Greedy
CVC4
Mach-Random
UE+MathSAT

(f) QF_BVFP (SQ’20)

Figure 3.3: Comparison of MachSMT, the virtual best solver, and participating solvers in
divisions of the SMT-COMP 2019 and SMT-COMP 2020 Single Query (SQ) Tracks.

32

Logic PAR-2 Solved
cvc5 MachSMT MachSMT–alloc cvc5 MachSMT MachSMT–alloc

ALIA (42) 2406.7 2691.3 2921.7 41 41 41
AUFBV (1522) 2689925.2 2608537.5 2608683.6 410 448 446
AUFBVDTLIA (1690) 2403641.5 1961063.1 1967667.0 716 876 873
AUFBVFP (57) 90215.3 86963.7 85188.4 20 21 22
AUFDTLIA (728) 79737.0 5190.7 5264.2 698 728 728
AUFLIA (3276) 1422835.2 1353325.9 1353915.0 2695 2724 2726
AUFLIRA (20011) 626978.9 755386.7 760748.0 19755 19766 19766
AUFNIRA (1480) 1016878.9 1016541.9 1008664.9 1058 1060 1064
UF (7590) 9420855.1 8576358.4 8573813.0 3744 4047 4053
UFBVLIA (208) 497350.9 494424.3 494424.5 1 2 2
UFDT (4569) 5333216.9 5090884.3 5074775.5 2380 2463 2471
UFDTLIA (327) 381207.6 215555.2 204909.8 183 238 243
UFFPDTLIRA (774) 192772.6 182239.3 187409.0 696 701 699
UFIDL (68) 24515.3 24402.7 24408.9 58 58 58
UFLIA (10127) 6041256.6 6115048.8 6077710.4 7625 7610 7630
UFNIA (13463) 13258581.0 13089905.7 12933659.8 7988 8067 8144
Total (65932) 43482374.7 41578519.5 41364163.7 48068 48850 48966

Table 3.6: Comparison of MachSMT, MachSMT–alloc and the cvc5 competition script on
all evaluated logics.

are an effective way to distinguish between such algorithms and predict which one might
perform the best on a given instance.

The best algorithm selection methods were based on EHMs. We found that Mach-
LogicEHM outperformed Mach-LogicPWC by a median PAR-2 score improvement of 59.8%.
Over Mach-Greedy, on the other hand, Mach-LogicEHM has a median PAR-2 score im-
provement of 11.8%.

One major threat to the validity of any ML solution is the generalizability of the learnt
models on unseen data. Previous work has noted that a practical way to address this issue
is to use k−fold cross-validation scheme [141, 110], thus motivating our use of this approach
in our experiments. We further note that our evaluation of MachSMT on SMT-COMP
data includes decades of runtime analysis and more than 100 GB of benchmarks spanning
numerous applications, giving us greater confidence in the robustness of our results.

3.4 CVC5

In this section, we use MachSMT to predict a ranking and resource allocation for a set of
configurations of a single solver to be used in a sequential portfolio setting.

33

3.4.1 Experimental Setup and Methodology

In this experiment, we evaluate MachSMT for logics with uninterpreted functions (UF)
and quantifiers on 23 different configurations of the SMT solver cvc5 [16], as taken from
its SMT-COMP’21 script2. We use all benchmarks available in these logics from the 2021
release of SMT-LIB [19], the number of benchmarks for each logic is given in parenthesis
in Table 3.6.

This experiment differs significantly from the experiment performed in Section 3.3 in
the sense that all 23 configurations are configurations of a single solver—they only differ
in their configured options, which enable or disable different algorithms and heuristics.
In the competition setting, each of these configurations is ran sequentially, each with a
specific time limit, until a solution is found or the overall time limit is exceeded. Resource
allocations (the time limit) per configuration have been determined manually, and are
configured based on the overall time limit of the competition. This sequential portfolio
setting is encoded in the aforementioned competition script of cvc5.

Our goal for this experiment is to utilize MachSMT to predict a ranking and resource
allocations for these configurations in a sequential setting that outperforms cvc5’s compe-
tition script setting.

In Section 3.3, we evaluated MachSMT and all of its configurations (as introduced in
Section 3.4) and observed that Mach-LogicEHM performs best. Hence, for this experi-
ment, we exclusively consider this configuration. As discussed in Section 3.2, we suggest
two resource allocation strategies based on the predictions produced by MachSMT. First,
allocating all resources to the solver with the highest predicted performance. This was
the only considered allocation strategy used in Section 3.3. Second, we use the resource
allocation outlined in Section 3.2, where we compute a softmin over the predicted runtimes
produced by the EHMs. We refer to these two configurations of MachSMT as MachSMT
and MachSMT–alloc, respectively.

Our experimental setup is analogous to Section 3.3. However, for collecting the training
data we ran all 23 solver configurations with a time limit of 60 seconds. We performed
all experiments in this section on a cluster running Ubuntu 16.04 with Intel Xeon E5-2620
CPUs with 2.1GHz and 128GB memory. At runtime, for each solver/benchmark pair we
used a time limit of 1200 seconds and a memory limit of 8GB. Further, we configure Mach-
SMT’s supervised learning core to train on an 8 layer multi-layer perceptron (MLP) neural

2https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/
run-script-smtcomp2021

34

https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/run-script-smtcomp2021
https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/run-script-smtcomp2021

0 200 400 600 800 1000 1200

Wallclock Runtime [s]

3000

3200

3400

3600

3800

4000

S
o
lv
ed

B
en
ch
m
ar
ks

cvc5

MachSMT

MachSMT-alloc

(a) UF

0 200 400 600 800 1000 1200

Wallclock Runtime [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200

S
o
lv
ed

B
en
ch
m
ar
ks

cvc5

MachSMT

MachSMT-alloc

(b) UFNIA

0 200 400 600 800 1000 1200

Wallclock Runtime [s]

2000

2100

2200

2300

2400

2500

S
o
lv
ed

B
en
ch
m
ar
ks

cvc5

MachSMT

MachSMT-alloc

(c) UFDT

0 100 200 300 400 500

Wallclock Runtime [s]

400

500

600

700

800

900

S
o
lv
ed

B
en
ch
m
ar
ks

cvc5

MachSMT

MachSMT-alloc

(d) AUFBVDTLIA

Figure 3.4: Comparison of the two different MachSMT resource allocation schemes against
cvc5 competition script.

35

0 100 200 300 400 500
Wallclock Runtime [s]

3000

3250

3500

3750

4000

4250

4500

4750

5000

So
lv
ed
 B
en
ch
m
ar
ks

Virtual Best Solver
MachSMT-Domain Specific Features
MachSMT
Bitwuzla
z3
cvc5

Figure 3.5: MachSMT with and without domain-specific knowledge on Network Verifica-
tion Problems from SecGuru.

network of 128 neurons each. We use ReLU activation functions with batch normalization
applied after each layer trained on an NVIDIA 2070 GPU for 30 minutes.

3.4.2 Experimental Results

The overall results of this experiment are presented in Table 3.6, which gives the PAR-2
score and the number of solved instances for each configuration and considered logic. Figure
3.4 shows CDF plots of selected logics. In total, we observe that MachSMT-alloc solves
898 more benchmarks than the competition version of cvc5, and improves by 5% in total
PAR-2 score. Further, MachSMT is able to improve over the carefully hand-tuned sequential
portfolio of the cvc5 competition script on the majority of the quantified logics—achieving
a lower PAR-2 score in 13 out of 16 logics while solving more benchmarks in 14 out of 16
logics with up to a 93.4% PAR-2 improvement in the AUFDTLIA logic.

3.5 Network Evaluation

In this section, we present the evaluation of MachSMT on a network application, and show
how domain specific knowledge can be utilized to extend MachSMT to further improve
performance. The results of this experiment are summarized in Figure 3.5.

36

3.5.1 Experimental Setup and Methodology

In this section, we evaluate MachSMT’s abilities to leverage basic domain specific knowl-
edge to increase the overall prediction accuracy of learnt models and improve Mach-
SMT’s overall performance. For this experiment, we consider network verification prob-
lems, specifically, firewall and router queries based on the SecGuru tool by Microsoft
Research [86].

We extend MachSMT via its user-defined feature interface (outlined in Section 3.2.6) to
capture the basic attributes of the underlying query. Specifically, we include the following
domain-specific features: categorical features denoting the benchmark type (firewall or
router), number of rules, number of allow rules, number of deny rules, block rules, IP
range width, and port range width. We train and test on two separate data sets of 5,000
SecGuru benchmarks.

We consider three underlying solvers: Bitwuzla [117], cvc5 [16], and Z3 [111]. All
benchmarks produced are of the QF_BV logic. We baseline against MachSMT without the
domain-specific features. Both variants of MachSMT are using Mach-LogicEHM mode for
algorithm selection.

All experiments in this section were performed on the Compute Canada computing
service [11], a CentOS V7 cluster of Intel Xeon Processor E5-2683 running at 2.10 GHz
with 8 GB of memory with a wallclock runtime of 10 minutes. Wallclock runtimes are
rounded to the nearest second.

This data set was collected offline, and we do not rerun with the allocation scheme
as outlined in Section 3.2.5. Instead, we use whichever solver had the lowest predicted
runtime. Note, however, that this is usually slower than the allocation scheme. In this
experiment, we configure MachSMT’s supervised learning core to use linear ridge regression
with cross-validation on the regularization parameter3.

3.5.2 Experimental Results

The results of this experiment are presented as a CDF plot in Figure 3.5. Overall, we
observe MachSMT to improve on the best standalone solver Bitwuzla by 42.5% without
the domain-specific features and by 77.3% with domain-specific features in PAR-2 score.
The only difference between the two configurations of MachSMT is the inclusion of the ad-
ditional features—the domain-specific features account for 34.8% of the total improvement
despite their simplicity.

3sklearn.linear_model.RidgeCV

37

3.6 Analysis

One major threat to the validity of any ML solution is the generalizability of the learnt
models on unseen data. In the context of MachSMT, this scenario arises when asking Mach-
SMT to solve classes of benchmarks that are divergent from the ones it has been trained
on. In particular, in Section 3.3 we deployed k−fold cross-validation, which partitions the
training and testing set. This scheme and its impacts on accuracy, bias, and error have
been studied extensively [141, 110].

Furthermore, logics in SMT-LIB are organized in families, depending on the source and
application of the benchmarks. Some families contain a small number of benchmarks, and
some logics contain a small number of families. Both scenarios may result in MachSMT un-
derperforming on a new (or underrepresented) benchmark set when using the models built
on SMT-COMP data. Generally, when similar data is not available or underrepresented in
the SMT-COMP models, users are strongly encouraged to include runtime data for their
new benchmarks and rebuild MachSMT. Note that algorithm selection in the context of
floating-point problems has been shown to generalize on industrial benchmarks from an
independently fuzzed, synthetic data set [156]. This may be an alternative approach in
cases where not enough benchmarks are available. Alternatively, it may be beneficial to
merge related logics (similarly to what has been done in SMT-COMP to define divisions
since 2021) to achieve larger data sets.

Determining feature importance to improve the efficiency of ML is an interesting and
challenging question, MachSMT included. We are aware of two existing strategies: black-
box analysis on the input-output behavior (e.g., SHAP [165]). Another way is to leverage
model-specific attributes if possible. We do not consider the former in this chapter, and
the latter is only applicable to certain types of models.

In this chapter, we considered 3 types of ML models: AdaBoosting (Section 3.3), multi-
layer perceptron (MLP) neural network (Section 3.4), and Linear Ridge regression (Section
3.5). However, only the latter has a way to extract feature importance directly (via the
weights). In this experiment, we noticed that the weights of the trained model were
significantly higher for the domain-specific features, in particular the number of allowable
rules and bit-vector multiplication.

By far, the best performing configuration of MachSMT is Mach-LogicEHM. Notably,
Mach-LogicEHM outperformed Mach-LogicPWC and Mach-Greedy by a median PAR-2
score improvement of 59.8% and 11.8%. From a regression standpoint, the overall model
accuracy of precisely predicting the runtime for a benchmark is quite poor. However,
even though individual predictions might not reflect the ground truth runtime, the relative

38

ranking of the predicted runtimes can be highly accurate, as observed in the chapter.
Limitations. One major limitation of MachSMT is its ability to leverage the provided

data. As MachSMT builds its EHMs logic-wise, despite the size of SMT-LIB, several
logics are very small with very few samples N < 25. Supervised learning is best suited in
the presence of vast amounts of data, but when samples are scarce, MachSMT will likely
perform poorly compared to standalone solvers.

Moreover, in the presence of broad data, which leads to highly variant solver perfor-
mances, MachSMT is much more likely to improve on the best standalone solver. However,
when the gap between VBS and the best standalone solver is minimal, MachSMT will most
likely perform poorly. This is due to VBS, which, by its definition, serves as an oracle for
blackbox algorithm selection, bounding MachSMT’s performance.

Another major weakness of MachSMT is in its feature vector. In this chapter, we pre-
sented a very broad multipurpose feature vector that encodes relevant information across
multiple problem instances. However, substantial amounts of information may be lost.
In Chapter 3.5 we demonstrated how to help circumvent this when the domain is fixed.
However, with improvements in deep learning, perhaps more raw representations of SMT
formulae could be learned (e.g., through GPTs or graph neural networks) for algorithm
selection.

Lastly, MachSMT is a blackbox and offline algorithm selector, i.e., it treats the solvers
as a blackbox and does not leverage any of the online information that organically comes
from the solving process. Oftentimes, this information can be extremely EHM predictions
[198]. We leave this for future work and explore it in more context in Chapter 4.

3.7 Related Work

In this section, we provide an overview of previous work on algorithm selection in the
context of constraint solvers and contrast it with MachSMT.

3.7.1 Key differences between SATZilla and MachSMT

As mentioned above, SATZilla was the first algorithm selection method in the context of
logic solvers [198]. While SATZilla inspires our work, MachSMT differs from SATZilla in
several key ways. First, SATZilla deploys a feature selection scheme to avoid the curse of
dimensionality. While good in practice in the SAT setting, feature selection does lose a

39

significant amount of information. Further, it can be costly to compute optimal feature
subsets.

In contrast, MachSMT leverages a learnt dimensionality reduction scheme, namely,
Principal Component Analysis (PCA). The key advantage of PCA is that it does not
perform a search for an optimal feature subset (as is required in the context of feature
selection) and is thus significantly more efficient. Further, MachSMT deploys a modern
ML pipeline, including an ensemble learning approach, namely Adaptive Boosting [61].

3.7.2 Algorithm Selection for Logic Solvers and Their Applica-
tions

Algorithm selection tools have a rich history and have been around at least since 1976, when
Rice was the first to propose the technique [137]. Algorithm selectors have been extensively
used in many contexts, e.g., in classifiers for machine learning [3], combinatorics [94], and
other NP-hard optimization problems [175, 180, 124]. Within the context of constraint
solvers, algorithm selectors have been proposed for QBF [133, 104], SAT [198, 199, 201],
CSP solvers [66, 5, 85, 96], and recommenders for ATP tools [170, 179].

In the setting of SMT solver applications, symbolic execution tools have used algorithm
selection strategies [186] and portfolio strategies [82] for the specific classes of instances
within the context of the bit-vector theory. This would be an ideal use case of MachSMT
since we provide a complete solution.

There have been other works using machine learning to improve the performance of
SMT solvers. Balunovic et al. [13] use neural networks and synthesis to find tactics and
strategies for three SMT-LIB theories. A previous version of our work proposed an algo-
rithm selection tool for the QF_FP theory [156]. To the best of our knowledge, MachSMT
is the first publicly available tool for the entirety of SMT-LIB. Other works have leveraged
machine learning to improve internal heuristics in solvers [27, 139, 101].

Pairwise ranking has been used in algorithm selection in the latest versions of SATZilla [197]
and in variable selection in the context of splitting heuristics in divide-and-conquer parallel
SAT solvers [114].

Recently, Pimpalkhare et al. released a system for dynamic algorithm selection on SMT
solvers [131]. Their chapter directly compares against MachSMT over four logics considered
in Section 3.3. The advantage of a system like this is when runtime data is unavailable, and
data must be collected online. However, their reinforcement learning approach still requires
significant exploration to be predictive, and, in principle, MachSMT could also leverage

40

the runtime data they collect. Nevertheless, in their evaluation, MachSMT outperformed
their system when runtime data was provided.

3.8 Conclusions

In this chapter, we presented MachSMT, the first algorithm selection tool that spans the
entirety of the SMT-LIB logics. MachSMT is designed to be user-friendly and easily
modifiable by users for their specific application and SMT solvers of interest.

We extensively evaluated MachSMT over several usage scenarios and empirically demon-
strated its efficiency and efficacy. Using MachSMT, we observe improvement in 57 out of
119 divisions in all tracks from the SMT-COMP ’19 and ’20, with up to a 99.4% im-
provement in PAR-2 score over the best performing solver for the QF_BVFPLRA SQ’20
division.

We further evaluated MachSMT to predict a ranking and resource allocation for 23 con-
figurations used in the cvc5 competition script and observed that MachSMT was able to
solve 898 more benchmarks with up to an 93.4% improvement in PAR-2 score. Finally, we
evaluated MachSMT on network verification problems with simple domain-specific knowl-
edge and observed an improvement of 77.3% in PAR-2 score.

For future work, we plan to extend our feature set with more (theory-)specific features
based on feedback from the SMT community. Recent research on online data collection
strategies has increased the usability and pragmatism of algorithm selection [131]. Fur-
thermore, the feature vector in MachSMT has significant room for improvement. One
up-and-coming candidate for a highly representative feature vector is using learnt features
(i.e., graph neural networks) over the graphical syntactical structure of the logic of the
problem at hand. This was recently studied by Hula et al. [84] with promising results.

41

Chapter 4

Meta-Solving for Neural Network
Verification

In recent years we have witnessed a significant rise in interest in the Verification of Neural
Network (VNN) problem, resulting in the development of a variety of complete and in-
complete solvers that draw on diverse techniques. As is typical for hard search problems,
no single solver is expected to be the fastest on all inputs. This insight suggests the use
of algorithm selection techniques that automatically select the fastest solver for a given
input.

Inspired by the success of algorithm selection for SAT and SMT solvers, we present
Goose, an adaptive algorithm selection tool, which we dub a meta-solver, for deep neu-
ral network verification. Traditionally, algorithm selection tools have tended to be non-
adaptive (i.e., they go from formula features to a solver). By contrast, a key novelty of
our method is that Goose implements an adaptive sequential portfolio, i.e., it calls a set
of subsolvers in a sequence, wherein the order in which subsolvers are called is determined
adaptively based on their online and offline performance histories. We have implemented a
variety of complete and incomplete subsolvers in Goose (in addition to using a set of off-the-
shelf ones), and the following synergizing techniques to implement its adaptive sequential
portfolio: algorithm selection, probabilistic satisfiability inference, and time-iterative deep-
ening.

We evaluate Goose on the VNN-COMP ’21 and VNN-COMP ’22 benchmarks. We
observe a 37.7% improvement over the competition winner in PAR-2 score across nearly
900 benchmarks and 13 solvers from the competition in 2021. Furthermore, we observe

42

a 25.6% improvement over the competition winner in PAR-2 score across more than 1500
benchmarks and 11 solvers from the competition in 2022.

4.1 Motivation

Over the last few decades machine learning (ML) has dramatically impacted many fields
ranging from computer vision [98], natural language processing [182], and reinforcement
learning based game playing [161]. ML systems are so ubiquitous today that one finds them
even in safety-critical systems such as self-driving vehicles and drones [107], where one
typically expects to find sub-systems whose robustness properties can be formally defined
and checked using automated verification tools. While researchers have made considerable
progress in developing verification tools for hardware and software systems, the field of
formal verification of neural networks is still in its infancy.

The Neural Network Verification Problem. Consider the well-studied adversarial
(or local) robustness problem for a trained neural network (NN). This problem is best
illustrated with a simple example. Consider a trained NN designed to recognize pictures
of stop signs and further assume that it has very high accuracy on a suitable test set.
Researchers have figured out ways to perturb images of stop signs in subtle ways such that
the perturbed image is classified as a green light, even though it is clear to a typical driver
that the image is that of a stop sign [164].

Neural Network Verification Tools. In response to the above-mentioned adversarial
robustness problems and despite the fact that this problem has been shown to be NP-
complete [90], researchers in recent years have developed many solvers1 that take as input
an NN (in symbolic form), a robustness property, and output either an adversarial NN
input or a guarantee that no such input exists [90, 145, 163, 177, 183, 194, 195, 207].
Over the years, a large variety of NN verification tools have been developed that can be
broadly classified as complete solvers (e.g., either produce an adversarial input or provide
a guarantee no such input exists or timeout) or incomplete solvers (e.g., either produce an
adversarial input or unknown or timeout).

Complete solvers may use a variety of techniques ranging from lazy unwinding of ReLU
activations within the simplex algorithm as in ReluPlex [90], a bound over-approximation
algorithm on starsets [9] as in nnenum, all the way to direct translation of the problem

1The term solver refers to any computer program that takes as input a mathematical formula, and
decides whether it has a solution.

43

into a Satisfiability Modulo Theories (SMT) or Mixed Integer Linear Program (MILP) [83,
177].

Similarly, incomplete solvers also use a variety of methods such as one based on
abstraction-refinement [163], auto_LiRPA [183, 195], projected gradient descent (PGD) [50,
76], and fuzz testing [113]. Finally, some of the most successful solvers, such as α, β-
CROWN, use many of the above techniques in a sequential portfolio2.

Motivation for Algorithm and Adaptive Sequential Portfolio Selection. It is
widely believed that no single algorithm is expected to perform well on all instances of an
NP-hard problem. This means that a user of an NN verification tool cannot rely on a single
solver to solve the kinds of problem instances they may be interested in. Unfortunately,
manually figuring out which solver works best for a given instance can be time-consuming
and laborious for any solver user. This is neatly summarized in the slogan “There ain’t no
such thing as free lunch” for hard search and optimization problems [192].

To address the above-mentioned problem in the context of solvers, researchers have
proposed the use of the powerful paradigm of algorithm selection [138], which are functions
that take as input a formula and output the name of the most efficient algorithm for the
given formula. While a human can design such algorithms, it is very natural to use machine
learning techniques to train a model that takes as input formula features and outputs
the name of the most efficient solver for the given input formula. This technique was
popularized by the ML-based algorithm selection SAT solver SATZilla [201] and recently
for SMT solvers by the MachSMT [151] and Medley solvers [132].

Another approach that has been proposed is often referred to as the sequential portfolio
of solvers, wherein a set of solvers is run on a given benchmark in a certain sequential
order. For example, consider the competition-winning variant of the cvc5 SMT solver3.
On just a single logic (e.g., UF), 23 configurations of the cvc5 tool are used, in a statically
ordered sequential portfolio, to determine the satisfiability of the given benchmark.

While algorithm selection tools such as SATZilla [201] and MachSMT [151] have been
shown to improve performance over any single solver dramatically, the non-adaptive nature
of the algorithm selection used by them is limiting in many ways. For example, it is well
known that solvers generate a lot of meaningful data at run time, as they make progress
in solving an instance. Therefore it is natural to wonder whether this data can be used
adaptively to improve on the initial choice of solver made by an algorithm selection tool.

2a term commonly used in the SMT solver context to denote a series of incomplete and complete
techniques invoked in sequence

3https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/
run-script-smtcomp-current

44

https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current

Problem Statement. The question we address in this chapter is the following: given a
specific instance, is it possible to design an efficient adaptive ML-based sequential portfolio
tool that dynamically changes its selections, as it solves an instance by leveraging online
and offline performance histories of the underlying solvers on any given instance and does
so by outperforming any single solver used as part of the portfolio.

To address the above-mentioned problem, we present Goose, a meta-solver for the
verification of neural networks. By the term meta-solver we mean a tool containing a
set of subsolvers that get adaptively called, in a sequence, based on online and offline
information collected about their performance histories on a given input. This differs from
traditional non-adaptive algorithm (resp. sequential portfolio) selection, i.e., once a solver
(resp. sequential portfolio) is selected, that choice is not altered any further by the selection
tool.

Goose implements three synergistic techniques. First is an ML-based algorithm selec-
tion technique that uses pre-trained empirical models for runtime prediction to construct
an appropriate sequential portfolio of solvers, and allocate resources among the different
solvers. Second, we construct ML models for probabilistic satisfiability inference. More
specifically, Goose leverages a recent result [160] that reduces a given neural network ver-
ification input to a disjunction over a set of subproblems. Given this syntactic structure,
we use ML-driven empirical models to predict satisfiability and rank subproblems based
on their likelihood of being satisfiable. The rich structure of neural network verification
problems allows for the engineering of expressive subproblem features; this contrasts with
more generic SAT/SMT benchmarks, where the originating domain may not be known. We
show that attempting to solve the subproblems in an empirically-determined appropriate
order can greatly influence solving times. Third and last, we use time iterative deepening,
an exponentially increasing wall-clock timeout on a sequential portfolio. Two insights un-
derlie this strategy: (a) trying out multiple solvers with short time limits first is a good
time-saving strategy, assuming that there exists a solver in the portfolio that can quickly
solve the subproblem; (b) the failure of all solvers within a given time limit provides valu-
able information on the difficulty of a subproblem, which then adaptively informs the next
round of algorithm selection, under a larger time limit.

4.2 Preliminaries

Empirical Models. An empirical model (EM) is a function learned from data that
takes as input an encoding of a problem instance and is trained to fit ground truth labels
collected from running the algorithm in question (e.g., runtimes, PAR-2 score, SAT/UNSAT).

45

Empirical models are a generalization of Empirical Hardness Models (EHMs) in that they
predict not only runtimes but also other aspects of a solver’s behavior on a given instance,
such as whether the input SAT/UNSAT and their PAR-2 scores.

Solvers vs. Subsolvers: We sometimes use the term subsolver to simply refer to a solver,
such as Marabou, selected by Goose. We do so only because we often refer to Goose as a
meta-solver.

Solver Portfolios. The term solver portfolio has acquired multiple meanings within the
solver community. In the parallel solver setting, a portfolio solver refers to a variety of
subsolvers running in parallel on multiple nodes of a multiprocessor or a cluster [35]. In
the sequential solver setting (that is relevant to this chapter), the term (sequential) solver
portfolio refers to an ordered list of solvers and a time allocation for each as a fraction of
a total time budget.

The Open Neural Network Exchange (ONNX). is a research and industry initia-
tive to standardize machine learning models for the purpose of verification, analysis, and
testing [57]. In the latest version (V18), the syntax and semantics of computation graphs
are outlined for 187 operations (e.g., ReLU). ONNX is widely supported across major deep
learning platforms such as TensorFlow [1], PyTorch [126], and Keras [51].

The .onnx file format for a computation graph has become the standard within the
neural network verification community. A computation graph C is an abstract syntax-tree-
like data structure that embeds the control flow of a machine learning program or model.
A node n ∈ C, is made of an operator ϕ, a set of inputs X, and a set of outputs Y . While
computation graphs are often exclusively considered in the context of deep learning, their
expressibility is much richer and can also include models such as decision trees.

The International Benchmarks Standard for the Verification of Neural Net-
works (VNN-LIB). VNN-LIB is an international initiative to support neural network
verification research [73]. In deep neural network verification, a verification query requires
two parts: a computation graph C and a specification ψ. For the former, VNN-LIB de-
fines syntax and semantics leveraging a subset of 17 ONNX operations, with the latest
competition benchmarks leveraging 15 operators.

Problem Representations. For a computation graph C and a specification Ψ, the NNV
question asks if Ψ is valid over C (i.e., C |= Ψ). Not all of the recently developed verifiers
are compliant with arbitrary linear properties. For example, several solvers do not support
disjunctions, conjunctions, nor linear real/integer constraints over the input/output. To
overcome the above-mentioned problem, we leverage the following recent result:

46

Theorem 1 ([160]). Let C be a computation graph and let Ψ be a linear specification
over the input/output behavior of C (disjunctions, conjunctions, negations, and linear
constraints). Then there exists subproblems ψi such that each ψi is of the form

x ∈ X ′ ∧ y ∈ Y ′ ∧ Ay ≤ b

for some intervals X ′,Y ′, matrix A, vector b, and input/output x/y and

C |= ψ ⇐⇒
∨

ψi is UNSAT.

One of the most studied specifications in neural network verification is adversarial or
local robustness in computer vision. The question asks, for a given image and a predicted
class, whether a bounded perturbation of the original image exists that changes its pre-
dicted class. The syntactic substructure of ψi can be interpreted as a generalization of
a local robustness query. Specifically, the bounds of X are computed with the middle
interval point of the image at hand, with lower/upper bounds formed from the pertur-
bation budget and the change of classification of the image with the halfspace-polytope
constraint (Ay ≤ b). This theorem allows us to construct a transformer T of the original
problem to create an equivalent disjunction. We leverage this in multiple ways within
Goose. A consequence, however, is a worst-case exponential blowup in the number of dis-
junctions. However, we note that we have not encountered this worst-case scenario in our
experiments.

4.3 Goose

4.3.1 A High-Level Overview of Goose

Goose takes as input a computation graph C (in ONNX format) and a specification ψ
(in VNN-LIB format), and outputs either VIOLATED/SAT (with a counter-example) or
SAFE/UNSAT. Goose leverages an empirical model E to make predictions on runtimes
(used in algorithm selection 4) and probabilities of satisfiability (used in probabilistic satis-
fiability inference). Goose uses machine learning, specifically supervised learning, to realize
E. This model is trained offline and requires data collection. We elaborate on this process
in Section 4.4. In what follows in this Section, we assume the empirical model has already
been trained.

4We use the terms algorithm selection and (sequential) portfolio selection interchangeably.

47

Feature Description
Neural Network
Encoding
1 .onnx file size
2 – 4 Network Input/Output shape
5 – 27 Globally – Number of parameters, max,

min, mean, and median, and percentile
parameters at 5% increments

28 – 50 Gemm –Number of parameters, max
min, mean, and median, and percentile
parameters at 5% increments

51 – 73 Add/Sub Operator – Number of parameters, max,
min, mean, and median, and percentile
parameters at 5% increments

74 – 96 Constant operator – Number of parameters, max,
min, mean, and median, and percentile
parameters at 5% increments

97 – 119 Mul/Div operator –Number of parameters, max,
min, mean, and median, and percentile
parameters at 5% increments

120 – 142 Conv operator – Number of parameters, max,
min, mean, and median, and percentile
parameters at 5% increments

143 – 150 Number of Reshape, Pad, Gemm, Add, Sigmoid,
Constant, Div and AveragePool nodes

151 – 157 Number of MatMul, Conv, Sub, Relu, MaxPool,
Transpose, and Flatten nodes

Table 4.1: Neural Network Features

48

Feature Description
Specification Encoding
158 Number of assertions
159 Number of comparators (e.g., <=, >=)
160-162 Number of boolean operators and, or, not
163 Number of subproblems generated from T
164 .vnnlib File Size
Online, Probing, and
subproblem Encoding
158 Known to not to be solved ‘instantly’ (Marabou) (1/0)
159 Known to not to be solved .5s (Marabou) (1/0)
160 Known to take at least 2s to solve (Marabou) (1/0)
161 Known to take at least 10s to solve (Marabou) (1/0)
162 Known to take at least 30s to solve (Marabou) (1/0)
163 Known to not to be solved ‘instantly’ (Complete + Gurobi) (1/0)
164 Known to not to be solved .5s (Complete + Gurobi) (1/0)
165 Known to take at least 2s to solve (Complete + Gurobi) (1/0)
166 Known to take at least 10s to solve (Complete + Gurobi) (1/0)
167 Known to take at least 30s to solve (Complete + Gurobi) (1/0)
168 Known to take at least 30s to solve (Complete + Gurobi) (1/0)
169 Known to not to be solved ‘instantly’ (PGD) (1/0)
170 Known to not to be solved .5s (PGD) (1/0)
180 Known to take at least 2s to solve (PGD) (1/0)
181 Known to take at least 10s to solve (PGD) (1/0)
182 Known to take at least 30s to solve (PGD) (1/0)
182 Known to take at least 30s to solve (PGD) (1/0)
183-188 PGD (in Hz) probing statistics (1/0)
188-197 Complete + Gurobi (in Hz) probing statistics (1/0)
198 Unstable Neuron fraction
199–221 Subproblem y pnorm distances from original network

– max, min, mean, and median,
and percentile parameters at 5% increments

Table 4.2: Specification and Encoding Features

49

Preprocessing
Internal Data

Structures

Canonical Forms and
Transformations

Su
bp

ro
bl

em
s

(C
, ψ

i)

Problem Encoder

Prediction Engine

Probability of
a SAT

Subproblem
(Sorted)

Solver
Runtime

Prediction
(Sorted)

Goose

Bounders

Forward/Backward
Interval Propogation

Auto LiRPA &
DeepPoly

ML Core

Empirical Model

Algorithm
Selection

Probabilistic
Satisfiability
Inference

Time Allocator

Offline Data

Any
subproblem

SAT ?

All
subproblems

UNSAT ?

Online Data

Subsolvers
Complete

Eager Blasting
SCIP, Gurobi,

cvc5, z3
 nnenumReluPlex

Incomplete

PGD Fuzzing

Incomplete
Bounder + Eager

Witness
Validation

Runtime
Environment

UNSAT

Yes
Yes

NoNo

Time Iterative
Deepening

SAT

Computation
Graph (C)

Specification
(ψ)

Figure 4.1: Architecture Diagram of Goose (See description in Section 4.3).

As stated above, the input to Goose is a computation graph C – a symbolic representa-
tion of the deep neural network of interest – and a linear specification ψ over the input/out-
put behavior of C over all x ∈ X . Goose outputs UNSAT if and only if ∀x ∈ X , C(x) |= ψ.

At the start of its run, Goose loads the input into its internal data structures and con-
verts them into a disjunction of subproblems ψi in a canonical form (Theorem 1). Next,
Goose featurizes the input and leverages an offline trained empirical model to make predic-
tions on how Goose’s subsolvers would perform on the problem at hand. Specifically, with
the predictions from the model, Goose uses algorithm selection to determine which solvers
should be used and probabilistic satisfiability inference to determine which subproblems to
be targeted. We refer to the aforementioned modules of Goose as the “Prediction Engine”.

Goose creates a solver portfolio for every subproblem ψi, leveraging algorithm selection.
The time fraction for each subproblem’s portfolio is determined using probabilistic satisfia-
bility inference engine. The wall-clock timeout of all subproblem portfolios starts out very

50

small (e.g., ten seconds). Goose employs a time iterative deepening technique, inspired by
the AI algorithm Incremental Deepening for two-player games [135]. The intuition is that
in practice, runtimes of most solvers are usually either very short or long. Hence, when
running a sequential portfolio of algorithms, we start with a shorter wall-clock portfolio
timeout and exponentially increase it if the previously selected solvers in the portfolio fail
to solve the input.

The problem encoder of Goose is designed in such a way that the encoding may change
after an iteration of time iterative deepening. This allows us to leverage information
collected from running the solvers at the end of an iteration, creating a feedback loop.
Goose realizes a meta-solver as its ability to leverage the online and offline information in
constructing solver portfolios for subproblems with algorithm selection and probabilistic
satisfiability inference, adaptively, from running the solvers with time iterative deepening
loop.

4.3.2 Input/Output and Preprocessing

Input/Output. As stated above, the input to the Goose system is a computation graph
C (in .onnx format) and a specification over its input-output behaviour ψ (in .vnnlib
format). We assume ψ restricts the domain and codomain of C to be bounded in X
and Y (e.g., 0 ≤ xi, yi ≤ 1). On a successful run, Goose outputs UNSAT if and only if
∀x ∈ X , C(x) |= ψ, otherwise SAT. On a SAT result, Goose validates the witness – an
assignment v to values of x, the input to the computation graph C. We validate the
witness v by feeding it to C, computing the output y = C(v), and checking that ψ(v, y)
evaluates to true.

Internal Data Structures. Goose has two key preprocessing steps. First, the inputs
C and ψ are parsed and loaded into a graph and specification classes. These classes were
designed to have significant utility to be later leveraged by a decision procedure. These
data structures were designed to behave well with subproblem generation, bounding, and
avoiding reparsing the input.

Canonical Form. The second step is the conversion of the input problem into a canonical
form. Specifically, we implement a transformer T that implements Theorem 1 so that each
of the n subproblems ψi is composed of interval constraints on the input (X), output (Y),
and a half-space polytope constraint Ay ≤ b, for some A, b computed by T . By leveraging
T , we achieve a canonical form as each ψi := x ∈ X ′ ∧ y ∈ Y ′ ∧ Ay ≤ b, for a computed
X ′,Y ′, A, b. When solving subproblems,

51

Bounders. Goose computes a bound (i.e., a real-valued interval) on every single neuron
in C. These bounds are required for several algorithms. In practice, bounding methods are
either complete (i.e., exact) or incomplete (i.e., not exact, relaxed, over-approximating).
Goose includes an incomplete and a complete bounding method. The canonical form
bounds input and output variables.

For example, consider the y = ReLU(x) = max(0, x) activation function. If y can be
bounded by ℓ ≤ y ≤ u, then this can be expressed in MILP [177] or SMT (QF_LIA) as:

(y ≤ x− ℓ(1− a)) ∧ (y ≥ x) ∧ (y ≤ u · a) ∧ (y ≥ 0) ∧ a ∈ {0, 1}

To compute a complete bounding, Goose implements a method based on interval bound
propagation [72], which has also been considered in other solvers. Specifically, Goose
computes a forward interval pass on the input bounds and intersects the resulting output
variables with the subproblems’ bounds. As each subproblem has different bounds on the
input/output variables, this needs to be repeated for each subproblem. The neuron bounds
are then updated with a backward pass and computing an intersection from the previous
forward pass. This process is repeated until convergence or a fixed number of iterations.

To compute an incomplete bounding, Goose leverages the auto_LiRPA tool. Incom-
plete boundings are particularly useful when dealing with activations other than ReLU, as
they enable eager translation. Incomplete boundings are computed based on abstraction
refinement [162]. During a discussion of the VNN-LIB meeting in 2021, the community
with the authors of both tools agreed that DeepPoly and auto_LiRPA were equivalent [10].

4.3.3 Prediction Engine and ML-Driven Meta-Solving

Problem Encoder.

One of the biggest challenges in leveraging machine learning for logic solvers lies in design-
ing appropriate features for the problem at hand. Goose implements a problem encoder
ξ(C;ψi) to compute feature vectors – a real-valued vector representation of C,ψi, with 196
dimensions (features). A complete description of the feature vector used in Goose can be
found in Tables 4.1, 4.2 in the Appendix.

ML Core.

Goose uses an empirical model E based on supervised learning for predicting runtimes and
satisfiability. The predictions made by this model are used in both algorithm selection and

52

probabilistic satisfiability inference. The ML pipeline is generic by implementation, but
Goose leverages PyTorch [126] with an 8-layer fully-connected ReLU network in its default
setting. However, other common platforms such as scikit-learn [130] or XGBoost [49] can
also be used.

The empirical models of Goose are trained offline. Goose has an interface to retrain
models and collect data. Retraining models with benchmarks from specific applications
can potentially improve performance significantly in practice. However, out of the box, we
train on a synthetic dataset [154], which is different from the benchmarks considered in
the evaluation later in the chapter (Section 4.4).

The Training Data.

The supervised learning problem solved by Goose is a tabular data problem. Goose creates
feature vectors leveraging the problem encoder ξ, extended with a one-hot encoding of all
solvers under consideration. These features are scaled to zero mean and unit variance5.
The empirical model fits four output target columns. First, the log PAR-2 score of the
benchmark on the solver. The second, third, and fourth columns are to classify SAT,
UNSAT, or UNKNOWN. Explicitly, the second, third, and fourth columns are one if and only if
the solver benchmark pair returned SAT, UNSAT, or UNKNOWN respectively.

Algorithm Selection at Inference Time.

Goose implements algorithm selection by leveraging the predicted PAR-2 scores (first output
column of E). Specifically, for a time budget t, Goose constructs a sequential portfolio of
solvers and allocates resources based on the predictions of E. First, we create feature
vectors for every solver under the problem at hand. Second, we feed these feature vectors
through E and obtain the predicted PAR-2 scores. These predictions can often be far from
ground truth and very noisy. However, their relative distances can be very indicative.
To exploit this and allocate a time budget, we leverage a softmin – a common output
activation from deep learning function that computes “smooth” minimum on the predicted
log PAR-2 scores.

5 x−µ
σ , sklearn.preprocessing.StandardScaler

53

Probabilistic Satisfiability Inference.

The canonical form solved by Goose is a sequence of subproblems ψi over disjunction. If
any subproblem ψi is SAT, then the result of the benchmark is SAT. The subsolvers of Goose
are mostly parallelized. We opt to solve each subproblem ψi sequentially. We introduce
probabilistic satisfiability inference as a way to order these subproblems for solving.

We infer probabilities of satisfiability by leveraging the empirical model E. We compute
probabilities by analyzing the second, third, and fourth output columns of E. Similar to
algorithm selection, the predicted probabilities are very noisy and must be smoothed. Con-
sider the three-dimensional vector q formed by these three columns. We leverage a softmax
– a common output activation from deep learning function that computes “smooth” max-
imum of the predicted log PAR-2 scores.

Specifically, we create an ordered ranking P of the subproblems ψi on the computation
graph C. We compute P by encoding every subproblem and solver and feeding them
through the empirical model E. We compute the softmax as described and inspect the
SAT component to obtain a probability of satisfiability. We calculate an average across all
solvers for each subproblem to compute the final ranking P .

Time Iterative Deepening at Inference Time.

We previously defined a meta-solver as a solver containing a set of subsolvers that get
adaptively called based on information collected online and offline. We next describe time
iterative deepening, which works in tandem with the algorithm selection and probabilistic
satisfiability inference. Specifically, the empirical model E leverages the information col-
lected offline during training while collecting online data by repeatedly building a portfolio
and calling subsolvers with the benchmark at hand.

In the beginning, Goose allocates a time budget of t = tinit seconds. Out of the box, tinit
is 30 seconds. We first distribute the time t across subproblems by computing a softmax on
the probabilities of the subproblems obtained from the probabilistic satisfiability inference
phase. At this point, we get a time allocation for each subproblem tψi

. We now divide the
time tψi

into a sequential portfolio of all solvers leveraging algorithm selection.
The problem encoder ξ includes several online probing feature vectors. The features of

Goose were engineered such that when a solver fails on a subproblem in the first iteration of
the portfolio, the feature vector changes. When the feature vector changes, the rankings in
the algorithm selection phase or the probabilistic satisfiability inference phase can change
significantly when constructing portfolios.

54

For example, one incomplete algorithm that is notably successful on SAT benchmarks is
gradient attacking algorithms, such as projected gradient descent (PGD). However, PGD
is incomplete and is not suitable for all benchmarks. Suppose Goose is presented with
a benchmark, wherein, on the first iteration, the encoding ξ and empirical model E are
indicating SAT. The empirical model E may be incorrect (e.g., the benchmark differs sig-
nificantly from which Goose was trained). In such a scenario, PGD would erroneously
allocate significant resources on the first iteration. On subsequent iterations, the encoding
of the problem (feature vector) changes, indicating it was more difficult for PGD than ex-
pected on the first pass. This allows Goose to correct its original mistake and select a more
suitable algorithm with the updated encoding leveraging the information obtained on the
first pass. As the problem encoding changes, an entirely new portfolio S and subproblem
rankings P are generated in future iterations.

4.3.4 The Subsolvers of Goose

Goose implements several decision procedures and semi-decision procedures and config-
urations thereof. A widely used technique, implemented in Goose, is a direct or eager
translation to a core solver, such as MILP. Goose further supports two other complete
algorithms, namely, Reluplex and nnenum. This is done by leveraging Marabou’s and
nnenum’s Python API. Goose supports semi-decision procedures Projected Gradient De-
scent (PGD), random fuzzing, and over-approximation-based bounding leveraging an eager
translation.

Eager Blasting.6 One of the more sophisticated modules of Goose is its eager blasting
engine. The engine was designed to be agnostic to the underlying core solver. Goose
implements a base class that interacts with the engine. Additional solvers can be added
by creating derived classes. The derived class requires methods for syntax tree construc-
tion for the operations supported. We provide examples and support for the SCIP [25]
and Gurobi [77] MILP solvers in addition to the cvc5 [16] and z3 solver [112] SMT solver
(QF_LIRA). Eager blasting requires every neuron to have bounds obtained in the prepro-
cessing phase of Goose. Goose has two bounding algorithms and four back-end solvers for
eager blasting, resulting in eight solvers, four complete and four incomplete.

Gradient Methods and Fuzzing. Gradient attacking methods such as projected gra-
dient descent (PGD) have been very successful in discovering adversarial examples. Algo-
rithms for finding adversarial examples and local robustness queries are very active areas

6We borrow this term from the SMT community

55

of research. The canonical form used in Goose has an identical syntactic structure, and
any such adversarial robustness algorithm can be integrated into Goose. Gradient meth-
ods can be relatively fast at determining SAT results and are bundled in almost every tool
in VNN-COMP ’21. The competition winner α, β-CROWN implements a highly efficient
PGD solver. Goose implements two versions of PGD, inspired by the implementation of
α, β-CROWN. The difference between the two subsolvers is based on the restart mechanic
of the algorithm.

Another technique we implement is fuzzing. Since the canonical form bounds the input
variables to an interval, it is straightforward to build an incomplete solver, such as a
random fuzzer. The random fuzzer generates inputs uniformly at random and feeds them
through C. Goose includes a random fuzzer in addition to an extended genetic variant of
the fuzzing algorithm.

API Level Solvers. Several other solvers popular within the community have conve-
nient Python APIs that are easily integrated into Goose. We use solvers that have fairly
orthogonal algorithms to the ones mentioned previously. Specifically, Reluplex – a lazy
unwinding of ReLU activations within the simplex algorithm [90] and nnenum – a bound
over-approximation algorithm on starsets [9]. Further API solvers can be added swiftly by
extending a base solver class.

4.3.5 Algorithmic Description

We next describe Algorithm 1, the main execution loop of Goose. For input C,ψ, Goose
implements the transformation T corresponding to Theorem 1, specifically, T (C,ψ) com-
putes the n subproblems P (line 3). Additionally, a flag F is used to denote whether or
not a subproblem is solved (line 4). The termination condition is the conjunction over F
(i.e., whether or not all problems in P are UNSAT) or if there exists a SAT subproblem.

In the beginning of the main loop, Goose invokes the prediction engine, first with
the problem encoder ξ to create feature vectors7. Upon computing all feature vectors,
we invoke probabilistic satisfiability inference to rank and create time allocation αψi

for
every subproblem over the iteration timeout t in time iterative deepening (line 7-8). Next,
algorithm selection is invoked for every subproblem to create and allocate a solver portfolio
to solve the subproblem. The time to solve the subproblem αψi

is divided up across the
7In the worst case, an exponential number of subproblems and feature vectors need to be computed,

however, this is rarely observed in practice.

56

Algorithm 2 Main Execution loop of Goose
Input: A computation graph C and a linear specification ψ over C
Output: SAT/UNSAT

1: procedure Goose-MainLoop
2: t = tinit
3: P = T (C,ψ) ▷ T is the transform from Theorem 1
4: F = [⊥ ∀C,ψi ∈ P] ▷ subproblem flag
5: solved = ⊥
6: while not solved do
7: αψi

= allocation of t for each unsolved ψi from probabilistic satisfiability infer-
ence.

8: Sort P in descending order by αψi

9: for C,ψi in P do
10: if F [C,ψi] then
11: continue
12: end if
13: βs,ψi

= allocation of αψi
for each s ∈ S from algorithm selection.

14: Sort S in descending order by βs,ψi

15: for s ∈ S do
16: ρ = run(s, C, ψi, βs,ψi

)
17: if ρ is SAT then ▷ If any subproblem ψi is SAT
18: return SAT
19: else if ρ is UNSAT then
20: F [C,ψi] = ⊤
21: end if
22: end for
23: end for
24: t += an exponential increment
25: solved =

∧
v∈F

v

26: end while
27: return UNSAT
28: end procedure

subsolvers s ∈ S as βs,ψi
. S is sorted in descending order by βs,ψi

to use the most likely
solver to solve the problem first (lines 13-14).

Now that every subproblem ψi has a time allocation of αϕi over the iteration timeout

57

t and each subsolver s has a time allocation of βs,ψi
over subproblem timeout αϕi we run

the solvers and save the result ρ (line 16). On a successful run (i.e., ρ ∈ {SAT, UNSAT}),
we either terminate on SAT (line 18) or on UNSAT mark the problems flag F as solved (line
20).

At the end of the loop iteration, if the problem remains unsolved, we exponentially
increase the time iterative deepening timeout (line 24). On subsequent iterations, the
prediction engine updates the encodings and collects new predictions in the probabilistic
satisfiability inference and algorithm selection.

4.3.6 Implementation Details, Usage, and Extending Goose

Implementation Details.

Goose is built on Python 3.8 and consists of nearly 7,000 lines of code. Preprocessing is
built leveraging the onnx Python packages. The prediction engine has been built with the
assistance of pandas, pytorch, and scikit-learn. We implement our own complete for-
ward and backward interval propagation and leverage auto_LiRPA for incomplete bounding
verification and handling of select activations. d

Usage.

Goose can be used as either a command line interface or Python API. When calling Goose,
a user must specify a path to a computation graph (.onnx) and a specification .vnnlib.
Goose has a data collection flag (-data) such that when enabled, instead of trying to verify
the problem at hand, it runs the subsolvers and collect data from the derived input. The
data collected is appended to Goose’s offline database. To train the empirical model in
Goose, the user can run the tool with the training flag (-train) for a single epoch.

Extending Goose.

The machine learning core, particularly the supervised learning model, has a flexible inter-
face. A compatible model must be able to perform incremental training and multi-output
regression. New subsolvers can be added to Goose by extending a base class.

58

Figure 4.2: Main experimental CDF plot (with ablation study) over VNN-COMP ’21
benchmarks (Section 4.4). A CDF is a visualization of a solver’s performance on a bench-
mark suite. The vertical axis represents the number of benchmarks solved (higher is
better), and the horizontal axis is the benchmark wise PAR-2 (lower is better). Further see
cumulative PAR-2 in Table 4.3

4.4 Evaluation on VNN-COMP ‘21 and ‘22

In this section, we present an empirical evalutation over VNN-COMP data.

4.4.1 Experimental Setup

Empirical Model Architecture.

Goose’s empirical model is built using PyTorch. The empirical model is an 8-layer fully-
connected neural network with 128 neurons per layer. Each hidden layer is composed of a
linear layer with bias, batch normalization, dropout (p=0.25), and ReLU activation.

Training Setup, Environment, and Data Collection. We generate a training dataset
of 10,000 instances produced via a random fuzzer over VNN-LIB [154]. An instance is

59

Figure 4.3: Main experimental CDF plot (with ablation study) over VNN-COMP ’22
benchmarks (Section 4.4). A CDF is a visualization of a solver’s performance on a bench-
mark suite. The vertical axis represents the number of benchmarks solved (higher is
better), and the horizontal axis is the benchmark wise PAR-2 (lower is better). Further see
cumulative PAR-2 in Table 4.4

generated and solved across all considered solvers, with a 30-second timeout8. This data
collection is performed on Compute Canada [11], particularly on a CentOS V7 cluster of
Intel Xeon Processor E5-2683 running at 2.10 GHz with 8 GB of memory. Wall-clock
runtimes are rounded to the nearest second. All solvers were ran sequentially. For labels
we use log PAR-2 scores. A PAR-2 is the wall-clock runtime if successful, else twice the
wall-clock timeout. The empirical model was trained with Adam [92] and a learning rate
of 4 · 10−4, mean squared error loss, and 1 · 10−4 weight decay on a NVIDIA 1080 GPU for
2 hours.

8This is not used in the experiment and is low because it enables us to increase data collection times

60

Solver PAR-2 Score
Virtual Best (Overall) 42764.3
Goose – Full 50764.7
Goose – ASID 50806.7
Virtual Best (VNN-COMP ’21 Solver) 52043.5
Goose – AS 67260.2
α, β-CROWN 81455.5
VeriNet 96584.1
Goose – ID 109041.1
ERAN 143568.9
oval 148884.0
Marabou 285863.3
nnenum 333131.4
Debona 342215.7
venus2 364639.4
RPM 435868.4
nnv 440426.1
NV 458472.9
DNNF 483079.8
randgen 494490.2

Table 4.3: Table of sums of PAR-2 scores across the solvers from the empirical evaluation
(Section 4.4). The PAR-2 score of a solver on a benchmark is the wallclock runtime if
successful, otherwise twice the wallclock runtime (lower is better).

Evaluation Environment.

The evaluation was conducted on the Amazon Web Service (AWS), as was the case in
VNN-COMP ’21. Per VNN-COMP ’21 rules, since some tools are either CPU or GPU
based, there are two different types of AWS instances depending on the solver [10]. We
evaluate Goose on the GPU instance (p3.2xlarge).

Ablation Study.

We perform an ablation study over Goose and its three synergistic strategies. ‘Goose-Full’
denotes the full version of the tool. ‘Goose-ASID’ denotes the version with algorithm

61

Solver PAR-2 Score
Virtual Best 58183.7
Virtual Best VNN-COMP ’22 Solver 69764.0
Goose – Full 122882.6
Goose – ASID 138059.9
Goose – AS 147064.7
α, β-CROWN 162076.4
Goose – ID 176078.8
mn_bab 282266.8
verinet 345663.5
nnenum 433870.7
cgdtest 500288.0
marabou 593142.8
peregrinn 614176.0
debona 692136.6
verapak 814516.0
averinn 836569.1
fastbatllnn 877242.2

Table 4.4: Table of sums of PAR-2 scores across the solvers from the empirical evaluation
(Section 4.4). The PAR-2 score of a solver on a benchmark is the wallclock runtime if
successful, otherwise twice the wallclock runtime (lower is better).

selection and iterative deepening, but not probabilistic satisfiability inference. ‘Goose-AS’
denotes the version with algorithm selection but not iterative deepening, nor probabilistic
satisfiability inference. ‘Goose-ID’ denotes the version with iterative deepening but not
algorithm selection nor probabilistic satisfiability inference.

Baselines.

We compare Goose to all solvers from the VNN-COMP ’21 competition. Notably, α, β-
CROWN– the winner of the competition overall as well as nnemum – the winner of the ACAS
Xu benchmarks. Furthermore, we compare against two forms of virtual best solver. The
virtual best solver denotes the best solver on every single benchmark (including Goose).
We further consider a virtual best solver just over competition solvers (excluding Goose).

62

4.4.2 Results on VNN-COMP ’21 Benchmarks

The simplified (without ablation) CDF plot of the experiment is presented in Figure 4.2. A
CDF plot is a visualization of a solver’s performance on an instance suite. The vertical axis
represents the number of instances solved (higher is better), and the horizontal axis is the
instance-wise PAR-2 (lower is better). In Figure 4.2, we observe that Goose outperforms
the competition-winning solver α, β-CROWN as well as all other standalone solvers. Table
4.3 (appendix) presents the PAR-2 across all instances for all solvers. We observe Goose to
improve on the competition winning solver α, β-CROWN by 37.7% in PAR-2 score.

4.4.3 Results on VNN-COMP ’22 Benchmarks

The simplified (without ablation) CDF plot of the experiment is presented in Figure 4.3. A
CDF plot is a visualization of a solver’s performance on an instance suite. The vertical axis
represents the number of instances solved (higher is better), and the horizontal axis is the
instance-wise PAR-2 (lower is better). In Figure 4.3, we observe that Goose outperforms
the competition-winning solver α, β-CROWN as well as all other standalone solvers. Table
4.4 (appendix) presents the PAR-2 across all instances for all solvers. We observe Goose to
improve on the competition winning solver α, β-CROWN by 25.6% in PAR-2 score.

4.4.4 Analysis of Results

The incomplete solvers were particularly effective on the first round of the incremental
deepening. PGD was extremely effective on SAT instances. Complete verifiers have a
strong preference for Gurobi. While Gurobi did outperform SCIP in general, it is worth
noting that SCIP was up to 7x faster than Gurobi on several instances. One shortcoming
of this is that only two of the benchmarks did not contain local robustness queries. Local
robustness queries are already in the canonical form and no further subproblems are gen-
erated. This limits our ability to empirically evaluate probabilistic satisfiability inference.
In the ablation study, ‘Goose-Full’ and ‘Goose-ASID’ behave identically except on these
benchmarks.

Limitations. While Goose overcomes several limitations of MachSMT, specifically its
ability to leverage online information, common challenges remain. Notably, there are issues
in problem encodings, as the encodings of the specification and computation graph lose
substantial information.

63

Moreover, although Goose is trained on a fixed dataset, it may encounter difficulties
when solving problems that differ significantly from its training data. This issue could be
mitigated with future adaptations, unlike MachSMT.

Neural network verifiers like Goose struggle with very large inputs. While tools such
as Goose can be effective on smaller networks, they fail to scale to the size of modern large
language models (LLMs).

4.5 Related Work

The biggest motivation for Goose are the algorithm selection tools SATZilla [201] and
MachSMT [151]. Further, we rely the DNNV project [160] for various useful tools and
techniques, such as their neural network simplifier, and make use of their Theorem 1 for
our canonical form.

Algorithm and Sequential Portfolio Selection. The field of algorithm selection tools
has a rich history and has been around since at least 1976 when Rice et al. first proposed
it [138]. Algorithm selectors have been extensively used in many contexts, e.g., classifiers
for machine learning [4], combinatorics [95], and other NP-hard optimization problems [175,
181]. Within the context of solvers, algorithm selectors have been proposed for SAT [196,
200, 201], Quantified Boolean Formulas [104, 133], and for SMT Solvers [151]. A system
for dynamic algorithm selection over SMT solvers was also recently proposed [132]. Goose
differs from these previous approaches in that our algorithm selection is adapative and is
in turn is used to construct adaptive sequential portfolios.

Probabilistic Satisfiability Inference and ML for Solvers. NeuroSAT is a SAT
solver that learns a classifier via single-bit supervision [159] and NeuroCore is a simpli-
fied variant that predicts variable activity based on the likelihood of appearing in the
UNSAT core [158]. MapleSAT is a SAT solver that leverages reinforcement learning for
branching [102]. Training models to predict SAT was studied by SATZilla [200].

Time Iterative Deepening. The concept of time iterative deepening has been explored
in the context of heuristic/task switching for SAT [35] and the DASH method for MILP
solvers [103]. In the context of Goose, we leverage time iterative deepening to collect
performance histories of solvers on a given input, in an online fashion in one iteration of
Goose algorithm. We use that information to adaptively modify the algorithm selection
for the subsequent iteration.

64

4.6 Conclusions

In this chapter, we present Goose, a meta-solver for NN verification. By meta-solver, we
mean a tool containing a set of subsolvers that get adaptively called, in a sequence, based on
online and offline information collected about their performance histories on a given input.
Goose has a meta-solver architecture (Figure 4.1) and supports a wide variety of incomplete
and complete solvers (some of which were implemented by us). Goose leverages three key
meta-solving techniques, namely, adaptive algorithm selection, probabilistic satisfiability
inference, and time interval deepening to implement an adaptive sequential portfolio of
solvers for NN verification.

We evaluate the efficacy of our Goose meta-solver on the VNN-COMP 2021 (resp. VNN-
COMP 2022) benchmarks against 13 (resp. 11) state-of-the-art neural network verification
solvers. We observed a 37.7% (resp. 25.6%) improvement across benchmarks and solvers
from VNN-COMP ’21 (resp. VNN-COMP ’22).

The success of Goose for the NN verification problem suggests that similar meta-solving
techniques (i.e., adaptive sequential portfolio methods) can effective for the SAT/SMT
problem as well. Hence, in the future, we plan to extend our techniques for constructing
meta-solvers over SAT and SMT solvers.

65

Chapter 5

Reinforcement Learning based
Performance Fuzzing of SMT Solvers

This chapter presents BanditFuzz, a multi-agent reinforcement learning (RL) guided per-
formance fuzzer for state-of-the-art Satisfiability Modulo Theories (SMT) solvers. Bandit-
Fuzz constructs inputs that expose performance issues in a set of target solvers relative
to a set of reference solvers, and is the first performance fuzzer that supports the entirety
of the theories in the SMT-LIB (v2.6) initiative. Another useful feature of BanditFuzz is
that users can specify the size of inputs they want, thus enabling developers to construct
very small inputs that zero-in on a performance problem in their SMT solver relative to
other competitive solvers. We evaluate BanditFuzz across 52 logics from SMT-COMP ’20
targeting competition-winning solvers against runner-ups. We baseline BanditFuzz against
random fuzzing and a single agent algorithm and observe a significant improvement, with
up to a 82.6% improvement in the margin of PAR-2 scores across baselines on their re-
spective benchmarks. Furthermore, we reached out to developers and contributors of the
CVC4, Z3, and Bitwuzla solvers and provide case studies of how BanditFuzz was able to
expose surprising performance deficiencies in each of these tools.

5.1 Motivation

Performance Fuzzing for Satisfiability Modulo Theories. In recent years, efficient
Satisfiability Modulo Theories (SMT) solvers have dramatically impacted many areas of
software engineering and security. Applications of these tools range from program analy-

66

sis [46, 88, 74], synthesis [168, 136] , model checking [93, 55, 6], test case generation [44],
and neural network verification [89], to name just a few.

With efficient SMT solvers being the catalyst for numerous developments in academia
and industry, there is an insatiable demand for evermore powerful solvers. To this end,
researchers have spent decades optimizing these tools. Regrettably, despite these advances,
SMT solvers are prone to hard-to-find performance deficiencies. While the worst-case com-
plexity of the problems solved by SMT solvers can be very high, they can be frustratingly
slow on relatively simple formulas. Such performance deficiencies can be due to developer
oversight (e.g., missing rewrite rules or unoptimized code and data structures) or the result
of hard-to-entangle interactions of solver heuristics. If solvers are to continue to impact
industry and fuel further research, it is imperative that there be an initiative to find and
eliminate such performance deficiencies where possible.

In this chapter, we make a case for the use of software performance fuzzing [173, 171,
105] to systematically find such deficiencies in state-of-the-art SMT solvers. Software
fuzzing techniques have had tremendous impacts in making SMT Solvers more robust [31,
41, 189, 121], and there is no reason why performance fuzzers cannot have a similar impact.
While it is still a relatively a new field, performance fuzzing is already showing promise in
many domains despite the difficulty of the problem of finding suitable inputs that expose
performance issues in programs-under-test [100, 87].

This chapter presents the BanditFuzz tool, a performance fuzzer that supports the
entirety of the theories in SMT-LIB. We define the notion of “performance issue”, in the
SMT solver setting, in a relative sense. That is, we say that solver A is less performant on
an input I relative to solver B, if solver B (that supports the same input language as A)
can solve I significantly faster. This is very natural, since if both solvers-under-test are not
able to solve an input, it doesn’t unambiguously point to a performance issue in either.
However, when one solver is significantly faster than a competing one on a given input,
there is no question that the slower solver has a performance issue.

How BanditFuzz works: The input to BanditFuzz is a set of target solvers, a set of
reference solvers, and a constraint (e.g., size of input desired, the input language of the
solvers), and its output is a single benchmark or test input, such that a quantity we refer
to as the “performance margin” between the target solver and reference solver is maxi-
mized (the tool is designed to be run over multiple processes to create a benchmark suite).
Intuitively, the performance margin can be defined as difference between the runtimes (or
PAR-2 scores [109]) of a target and a reference solver on a given input.

Internally, BanditFuzz uses a two-agent reinforcement learning (RL) method to mu-
tate a randomly-generated input such that over time the performance margin between a

67

target and a reference solver is maximized. More precisely, first an input benchmark is
randomly-generated and queried across all solvers. One of the agents learns how to mu-
tate a benchmark by inserting and replacing the grammatical constructs of the SMT-LIB
language, respecting the size constraints set forth by the user. More precisely, this agent
manages an exploration vs. exploitation trade-off between trying new grammatical con-
structs (explore) vs. inserting ones that have been shown to increase the performance
margin (exploit). The other agent manages the exploration vs. exploitation trade-off
between generating new inputs (explore) or mutating the best-observed input (exploit).
Fuzzers, including single-agent RL fuzzers, are notorious for getting stuck in local min-
ima [144, 58, 106, 67]. This two-agent RL method, by contrast, may avoid getting stuck
in local minima.

5.2 BanditFuzz

In this section, we describe our technique, BanditFuzz, a grammar-based mutation fuzzer
that uses reinforcement learning (RL) to efficiently isolate grammatical constructs of an
input that are the cause of a performance issue in a solver-under-test. The ability of
BanditFuzz to isolate those grammatical constructs that trigger performance issues, in
a blackbox manner, is its most interesting feature. The architecture of BanditFuzz is
presented in Figure 5.1.

5.2.1 Description of the BanditFuzz Algorithm

BanditFuzz takes as input a grammar G that describes well-formed inputs to a set P of
solvers-under-test (for simplicity, assume P contains only two programs, a target program
T to be fuzzed, and a reference program R against which the performance or correctness
of T is compared), a fuzzing objective (e.g., aim to maximize the relative performance
difference between target and reference solvers) and outputs a ranked list of grammatical
constructs (e.g., syntactic tokens or keywords over G) in the descending order of ones that
are most likely to cause performance issues. We infer this ranked list by extrapolating from
the policy of the RL agent. It is assumed that BanditFuzz has blackbox access to the set
P of the solvers-under-test.

The BanditFuzz algorithm works as follows: BanditFuzz generates well-formed inputs
that adhere to G and mutates them in a grammar-preserving manner (the instance gener-
ator and mutator together are referred to as fuzzer in Figure 5.1) and deploys an RL agent

68

Target Solvers

Reference Solvers

Generator
Constraints

BanditFuzz Architecture Diagram

Generate new
benchmark OR

Mutate best
observed?

Mutator

Generator
Agent

Agent

Target/Reference
Solvers

Performance
Analyzer

Benchmark

Agent Feedback Agent Feedback

Benchmark Suite

Figure 5.1: Architecture Diagram of BanditFuzz. The BanditFuzz tool deploys two
unique agents: one is a mutator agent that learns how to mutate the best observed input,
while the other agent aims to assist in the prevention of getting stuck in local minima.
Both agents learn an action selection policy in a feedback loop based on the empirically
collected data over the course of running the target and reference solvers over the generated
benchmarks.

(specifically a MAB agent) within a feedback loop to learn which grammatical constructs
of G are the most likely culprits that cause performance issues in the target program T in
P .

BanditFuzz reduces the problem of how to mutate an input to an instance of the MAB
problem. As discussed earlier, in the MAB setting an agent is designed to maximize its
cumulative rewards by selecting the arms (actions) that give it the highest expected reward,
while maintaining an exploration-exploitation tradeoff. In BanditFuzz, the agent chooses
actions (grammatical constructs used by the fuzzer to mutate an input) that maximize the
reward over a period of time (e.g., increasing the runtime difference between the target
solver T and a reference solver R). It is important to note that the agent learns an action

69

selection policy via a historical analysis of the results of its actions over time. Within its
iterative feedback loop (that enables rewards from the analysis of solver outputs to the
RL agent), BanditFuzz observes and analyzes the effects of the actions it takes on the
solvers-under-test. BanditFuzz maintains a record of these effects over many iterations,
analyzes the historical data thus collected, and zeroes-in on those grammatical constructs
that have the highest likelihood of reward. At the end of its run, BanditFuzz outputs a
ranked list of grammatical constructs which are most likely to cause performance issues,
in descending order. In the fuzzing for relative performance fuzzing mode, BanditFuzz
performs the above-described analysis to produce a ranked list of grammatical constructs
that increase the difference in running time between a target solver T and a reference solver
R.

5.2.2 Instance Generator and Grammar-preserving Mutator

BanditFuzz’s fuzzer (See Architecture of BanditFuzz in Figure 5.1) consists of two sub-
components, namely, an instance1 generator and a grammar-preserving mutator (or simply,
mutator). The instance generator is a program that randomly samples the space of inputs
described by the grammar G. The mutator is a program that takes as input a well-formed
G-instance and a grammatical construct δ and outputs another well-formed G-instance.
Instance Generator: Here we describe the generator component of BanditFuzz, as de-
scribed in Figure 5.1. Initially, BanditFuzz generates a random well-formed instance using
the input grammar G (FP or string SMT-LIB grammar) via a random abstract syntax
tree (AST) generation procedure built into StringFuzz [31]. We generalize this procedure
for the theory of FP.

The FP input generation procedure works as follows: we first populate a list of free 64-
bit FP variables and then generate random ASTs that are asserted in the instance. Each
AST is rooted by an FP predicate whose children are FP operators chosen at random.
We deploy a recursive process to fill out the tree until a predetermined depth limit is
reached. Leaf nodes of the AST are filled in by randomly selecting a free variable or
special constant. Rounding modes are filled in when required by an operator’s signature.
The number of variables and assertions are parameters to the generator and are specified
for each experiment.

Similar to the generator in StringFuzz, BanditFuzz’s generation process is highly con-
figurable. The user can choose the number of free variables, the number of assertions, the

1We use the terms “instance” and “input” interchangeably through this chapter.

70

maximum depth of the AST, the set of operators, and rounding terms. The user can also
set weights for specific constructs as a substitute for the default uniform random selection.
Grammar-preserving Mutator: The second component of the BanditFuzz fuzzer is
the mutator. In the context of fuzzing SMT solvers, a mutator takes a well-formed SMT
formula I and a grammatical construct δ as input, and outputs a mutated well-formed SMT
formula I ′ that is like I, but with a suitable construct (say, γ) replaced by δ. The construct
γ in I could be selected using some user-defined policy or chosen uniform-at-random over
all possible grammatical constructs in I. In order to be grammar-preserving, the mutator
has to choose γ such that no typing and arity constraints are violated in the resultant
formula I ′. The grammatical construct δ, one of the inputs to the mutator, may be chosen
at random or selected using an RL agent. We describe this process in greater detail in the
next subsection.

On the selection of a grammatical construct, an arbitrary construct of the same type
(predicate, operator, or rounding mode, etc.) is selected uniformly at random. If the
replacement involves an arity change, the rightmost subtrees are dropped on a decrease in
arity, or new subtrees are generated on the increase in arity.

For illustrative purposes, we provide an example mutation here. Consider a maximum
depth of two, fixed set of free FP variables (x0, x1), limited rounding mode set of {RNE},
and an asserted equation:

(fp.eq (fp.add RNE x0 x1)(fp.sub RNE x0 x1)).

If the agent elects to insert fp.abs there are two possible results:

(fp.eq (fp.abs x0)(fp.sub RNE x0 x1)), (fp.eq (fp.add RNE x0 x1)(fp.abs x0)).

For further analysis, consider the additional asserted equation:

(fp.eq (fp.abs x0)(fp.abs x1)),

if the agent elects to insert fp.add, then there are four2 possible outputs:

(fp.eq (fp.add RNE x0 x0)(fp.abs x1))

(fp.eq (fp.add RNE x0 x1)(fp.abs x1))

(fp.eq (fp.abs x0)(fp.add RNE x1 x0))

2This is assuming only the RNE rounding mode is allowed, otherwise each of the below expressions
could have any valid rounding mode resulting in 20 possible outputs.

71

Algorithm 3 BanditFuzz’s Performance Fuzzing Feedback Loop. Also refer to BanditFuzz
architecture in Figure 5.1.

1: procedure BanditFuzz(G)
2: Instance I ← a randomly-generated instance over G ▷ Fuzzer
3: Run target solver T and reference solver(s) R on I
4: Compute PerfScore(I) ▷ OutputAnalyzer
5: θ = 2· Solver timeout
6: while fuzzing time limit not reached and PerfScore(I) < θ do
7: construct← RL AGENT picks a grammatical construct ▷ RL Agent
8: I ′ ← Mutate I with construct ▷ Fuzzer
9: Run target solver T and reference solver(s) R on I ′

10: if PerfScore(I ′, P) > PerfScore(I, P) then ▷ OutputAnalyzer
11: Provide reward to RL AGENT for construct
12: I ← I ′

13: else
14: Provide no reward to AGENT for construct
15: end if
16: end while
17: return I and the ranking of constructs from RL AGENT
18: end procedure

(fp.eq (fp.abs x0)(fp.add RNE x1 x1))

In these examples, the reason why the possible outputs may seem limited is due to type
and arity preservation rules described above. As described below, the fuzzer would select
one of the mutations in the above example in a manner that maximizes expected reward
(e.g., the fuzzing objective such that the performance difference between a solver-under-test
and a reference solver is increases).

5.2.3 Agents and Reward-driven Feedback Loop in BanditFuzz

As shown in Figure 5.1, the key component of BanditFuzz is an RL agent (based on
Thompson sampling) that receives rewards and outputs a ranked list of grammatical con-
structs (actions). The fuzzer maintains a policy and selects actions from it (“pulling an
arm” in the MAB context), and appropriately modifies the current input I to generate a
novel input I ′. The rewards are computed by the Output Analyzer, which takes as input

72

the outputs and runtimes produced by the solver-under-test S and computes scores and
rewards appropriately. These are fed to the RL agent; the RL agent tracks the history of
rewards it obtained for every grammatical construct and refines its ranking over several
iterations of BanditFuzz’s feedback loop (see Algorithm 3). In the following subsections,
we discuss it in detail.

Computing Rewards for Performance Fuzzing: We describe BanditFuzz’s reward
computation for performance fuzzing in detail here and display the pseudo-code for it in
Algorithm 3 (see also the architecture in Figure 5.1 to get a higher-level view of the
algorithm). Initially, the fuzzer generates a well-formed input I (sampled uniformly at
random). BanditFuzz then executes both the target solver T and reference solver R on
I and records their respective runtimes (it is assumed that both solvers may produce the
correct answer with respect to input I or timeout). BanditFuzz’s Performance Analyzer
module then computes a score, to which the reward of the agent is derived.

Formally, BanditFuzz solves a search problem to find a solver input I over the language
L that maximizes the performance margin between T and R

max
I∈L

ϕ(T,R, I)

where ϕ is a scoring function. In this chapter, we will exclusively consider a scoring function
of the PAR-2 score margin between the best-performing target solver and worst-performing
reference solver. More formally, we score each input I with respect to T,R as follows:

ϕ(T,R, I) = min
t∈T

(PAR-2(t, I))−max
r∈R

(PAR-2(r, I))

where the PAR-2 function returns twice the wallclock timeout if the solver fails to solve
the input, otherwise, the wallclock runtime. PAR-2 is a useful metric that quantifies a
tools’ performance over a benchmark suite and is used to determine winners in the SAT
competitions [109]. These calculations correspond to the ‘Performance Analyzer’ in Figure
5.1.

PerfScore, defined as

PerfScore(I) := runtime(I, T)− runtime(I, R)

where the quantity runtime(I, T) refers to the wall clock runtime of the target solver T on
I, and runtime(I, R) the runtime of the reference solver R on I. If the target solver reaches
the wallclock timeout, we set runtime(I, T) to be 2 · timeout — PAR-2 scoring in the SAT
competition. In the same iteration, BanditFuzz mutates the input I to a well-formed input

73

I ′ and computes the quantity PerfScore(I ′). Recall that we refer to the mutation inserted
into I to obtain I ′ as γ.

The OutputAnalyzer then computes the rewards as follows. It takes as input I, I ′,
quantities PerfScore(I), and PerfScore(I ′), and if the quantity PerfScore(I ′) is better than
PerfScore(I) (i.e., the target solver is slower than the reference solver on I ′ relative to their
performance on I), the mutations γ gets a positive reward, else it gets a negative reward.
Recall that we want to reward those constructs which make the target solver slower than
the reference one. The reward for all other grammatical constructs remains unchanged.

The rewards thus computed are fed into the RL agent. The bandit then updates the
rank of the grammatical constructs. The Thompson sampling bandit analyzes historically,
the positive and negative rewards for each grammatical construct and computes the α and
β parameters. The highest-ranked construct γ is fed into the fuzzer for the subsequent
iteration. This process continues until the fuzzing resource limit has been reached.

5.2.4 Performance Margins and Scoring

Formally, BanditFuzz solves a search problem to find a solver input I over the language L
that maximizes the performance margin between T and R

max
I∈L

ϕ(T,R, I)

where ϕ is a scoring function. In this chapter, we will exclusively consider a scoring function
of the PAR-2 score margin between the best performing target solver and worst performing
reference solver. More formally, we score each input I with respect to T,R as follows:

ϕ(T,R, I) = min
t∈T

(PAR-2(t, I))−max
r∈R

(PAR-2(r, I))

where the PAR-2 function returns twice the wallclock timeout if the solver fails to solve
the input, otherwise, the wallclock runtime. PAR-2 is a useful metric that quantifies a
tools’ performance over a benchmark suite and is used to determine winners in the SAT
competitions [109]. These calculations correspond to the ‘Performance Analyzer’ in Figure
5.1.

5.2.5 Multi-Agent Fuzzing

This chapter presents an implementation of the BanditFuzz algorithm with three key im-
provements. First, BanditFuzz supports all theories in the SMT-LIB standard [18] and

74

all their combined corresponding logics. The action set of the mutator agent is the set of
grammatical constructs across all enabled logics.

The second major change is that this tool is now multi-agent. The BanditFuzz tool
includes a second agent to assist in preventing the tool from getting stuck in local minima,
which is a major problem in fuzzing in general [144, 58, 106, 67]. A key contribution of this
chapter is an additional agent with the following action set: {Mutate the best observed
benchmark, Randomly Sample from L}. The previous approach had a fixed alternation
scheme of randomly sampling and mutating the best observed input, which posteriori,
resulted in the algorithm frequently getting stuck in local minima, as it is oblivious to all
previously collected empirical data. The second agent uses a similar reward signal if
the most recent benchmark improves on the best observed benchmark, reward is received,
otherwise no reward is received.

5.3 Implementation and Engineering

In this section, we discuss some of the implementation and the engineering of BanditFuzz.
The BanditFuzz tool is written in Python3 and contains 5,000 lines of code. BanditFuzz
is lightweight with minimal dependencies and can be installed in seconds.

Input/Output: Reference/Target solvers are provided to BanditFuzz as paths to an
executable file which acts as an interface to the solver. These executable files will run
internally within BanditFuzz during its main runtime loop. The generator constraints are
command-line arguments bounding formula sizes with several theory specific constraints
(e.g., bit-width, UF arity, etc.). The output of BanditFuzz is a directory of benchmarks
with timing and memory analysis. A single run BanditFuzz will produce a single bench-
mark. To build a benchmark suite, BanditFuzz can safely be run in parallel and tested
on several major cloud computing environments (e.g., AWS). We provide an interface that
allows for this to be done via the command line.

Generator: The generator module is responsible for producing well-formed SMT-LIB
inputs. Internally, BanditFuzz an Abstract Syntax Tree (AST) data structure to represent
a benchmark. Each AST is asserted with root nodes of a boolean sort and positive arity.
Each AST is populated by randomly sampling from the set constructs of the required
sort with leaf nodes of variables or theory literals. All ASTs are full with respect to the
maximum depth specified by the user.

Mutator: A mutator is a python method that takes as input a benchmark and a gram-
matical construct. The output is a perturbation of the input benchmark that contains a

75

novel occurrence of the input construct. The mutator works by constructing the set nodes
of the input construct’s sort and then uniformly at random replaces the selected construct
with the input construct. The mutator then applies a procedure to ensure the resulting
benchmark remains well-formed as the node replacement may result in an arity change.
This is done by deleting or generating new subtrees that are consistent with the generator
constraints. Like the generator, the resulting AST from the mutator is full with respect to
the maximum depth.

Agents: We use a context-free MAB approach in this chapter for our agent, namely
Thompson Sampling. However, in principle, this can be lifted to several more RL paradigms.
Our agent implementation is lightweight and makes a single external API call (i.e., the
NumPy beta distribution sampling method [80]). Furthermore, unlike several RL paradigms,
our MAB solution only has a single hyper-parameter, the exponential decay of the observed
empirical mean.

Performance Analyzer: We include a performance analyzer to monitor the subprocesses’
resource consumption (e.g., wall-clock runtimes and memory). Processes are killed if they
violate the user’s constraints. When calling solvers, target solvers are run first under the
provided constraints. Afterward, reference solvers are ran using a dynamic timeout scheme
based best-observed performance margin. This prevents wasting time on the reference
solvers when it is no longer possible for the current benchmark to have a higher margin
than the best observed.

5.4 Usage

In this section, we demonstrate how to use BanditFuzz. The BanditFuzz package has two
core tools:

• smtfuzz – A fuzzer (i.e., a tool that generates inputs to a program-under-test) for
all SMT-LIB theories. In principle, this fuzzer can be used in any fuzzing context,
but in this chapter it is the core fuzzer in BanditFuzz’s fuzzing algorithm.

• banditfuzz – An implementation of the BanditFuzz performance fuzzing algorithm.
This program calls smtfuzz in a loop and inherits all of its command line arguments.

76

Argument Description
--num-asserts Set the number of assertions in the generated benchmark
--depth Set the depth of each asserting AST
--num-vars The number of theory variables
-q --quantifiers Enable quantifiers
-a --arrays Enable arrays
-uf --uninterpreted-functions Enable uninterpreted functions
-str --strings Enable strings
-fp --floating-point Enable floating-point
-bv --bit-vectors Enable bit-vectors
-int --integer Enable integers
-r --real Enable reals
-8 -16 -32 -64 -128 -256 Bit width for bit-vectors and floating-point arithmetic
-l --linear Enforce integer and real constraints to be linear

Table 5.1: Sample of generator arguments for the BanditFuzz tool

5.4.1 Using smtfuzz

The smtfuzz tool generates random Abstract Syntax Trees (ASTs) based on the enabled
theories. smtfuzz is designed to be extremely flexible. Users can modify the problem size
easily by setting the --num-asserts and --depth parameters to increase the number of
assertions and size of each assertion respectively. The generator in smtfuzz supports all
core theories in the SMT-LIB initiative [18]. Each theory can be enabled by setting its
respective flag. smtfuzz will automatically set the problem’s logic based on the enabled
theories.

5.4.2 Using banditfuzz

The banditfuzz script is an implementation of the BanditFuzz algorithm and uses smtfuzz
as its primary fuzzer. Furthermore, it has four key additional arguments:

1. --target-solvers – The set of executables that BanditFuzz will try to expose rel-
ative performance deficiencies on.

2. --reference-solvers – The set of reference executables that BanditFuzz will try
to expose relative performance deficiencies with respect to.

77

$ smtfuzz -qf -bv -fp - uf --num-asserts 1 --num-vars 1 --num-ufs 1
(set-logic QF_UFBVFP)
(declare-const bool_0 Bool)
(declare-const fp_0 (_ FloatingPoint 8 24))
(declare-const bv_0 (_ BitVec 32))
(declare-fun uf_0 (Bool (_ BitVec 32) Bool Bool (_ FloatingPoint 8 24)) Bool)
(assert (uf_0 (fp.isPositive (fp.roundToIntegral RTZ fp_0)) (bvsub (bvsmod bv_0
#x2ad75270) (bvxnor bv_0 #x3a990975)) (fp.isNaN (fp.abs fp_0)) (bvuge (bvor bv_0
bv_0) (bvnor #x0a1b63c9 #x52911167)) (fp.roundToIntegral RTN (fp.neg (fp #b1
#b11110100 #b11000100101000110101000)))))
(check-sat)
(exit)

Figure 5.2: Example usage of smtfuzz to generate a benchmark in the logic of
QF_UFBVFP

3. --query-timeout – This parameter is the wallclock timeout of each query of a solver
on an input benchmark.

4. --global-timeout – This parameter is the global timeout of banditfuzz. When this
time is met, banditfuzz will return the benchmark that had the highest performance
margin between the target solvers and the reference solvers.

5.5 Evaluation on SMT-LIB and Solvers

In this section, we present an evaluation of BanditFuzz vs. standard performance fuzzing
algorithms.

5.5.1 Experimental Setup

Experimental Objective: Here we describe our evaluation of BanditFuzz against random
fuzzing and previous similar work by Scott et al. [149]. The objective of the experiment

3The previous code framework by Scott et al. [149] only supports two logics QF_FP and QF_S. When
evaluating outside of these logics, we baseline by using the BanditFuzz code base with the second agent
disabled.

78

Logic Target Reference PAR-2 Performance Margin Improvement on
Random BanditFuzz Baseline [%]

ABVFP CVC4 Z3 2,716 5,579 105
ABVFPLRA CVC4 Z3 21,376 60,000 181
ALIA CVC4 Z3 4,238 11,340 168
ANIA CVC4 Z3 34,883 60,000 72
AUFLIA CVC4 Z3 34,229 60,000 75
AUFLIRA CVC4 Z3 7,650 30,428 298
AUFNIA CVC4 Z3 279 753 170
AUFNIRA CVC4 Z3 7,967 16,949 113
BV CVC4 Z3 50,561 60,000 19
BVFP CVC4 Z3 319 758 138
BVFPLRA CVC4 Z3 50,844 60,000 18
FP CVC4 Z3 3,700 10,674 188
FPLRA CVC4 Z3 15,325 49,528 223
LIA CVC4 Z3 5,635 19,050 238
LRA CVC4 Z3 11,184 25,560 129
NIA CVC4 Z3 48,752 60,000 23
NRA CVC4 Z3 27,066 60,000 122
QF_ABV Bitwuzla Yices2 16,280 45,814 181
QF_ABVFP Bitwuzla CVC4 48,484 60,000 24
QF_ABVFPLRA CVC4 COLIBRI 1,652 4,431 168
QF_ALIA Yices2 Z3 17,670 60,000 240
QF_ANIA CVC4 Z3 34,444 60,000 74
QF_AUFBV Yices2 Bitwuzla 5,375 14,704 174
QF_AUFLIA Yices2 CVC4 21,836 56,345 158
QF_AUFNIA CVC4 Z3 35,817 60,000 68
QF_AX Yices2 CVC4 3,251 5,153 59

Table 5.2: Table of results comparing BanditFuzz to Random fuzzing across logics of SMT-
COMP ’20. The improvement column is the percentage improvement of BanditFuzz over
Random Fuzzing. Rows are sorted alphabetically by logic.

is as follows: given the same amount of resources, which of the three tools maximizes the
performance margin for a given target solver vs. a set of reference solvers over all the 52
logics used in SMT-COMP ’20. For target solvers, we chose the most performant solvers
from the SMT-COMP ’20 competition, and as reference solvers, we used the runner-up

79

Logic Target Reference PAR-2 Performance Margin Improvement on
Random BanditFuzz Baseline [%]

QF_BV Bitwuzla CVC4 22,142 52,681 138
QF_BVFP Bitwuzla CVC4 29,949 60,000 100
QF_BVFPLRA CVC4 COLIBRI 23,053 55,228 140
QF_FP Bitwuzla COLIBRI 37,692 60,000 59
QF_FPLRA COLIBRI CVC4 2,030 4,053 100
QF_LIA CVC4 Yices2 3,217 5,399 68
QF_LIRA Yices2 CVC4 1,795 7,584 323
QF_LRA CVC4 Yices2 4,571 14,184 210
QF_NIA CVC4 Yices2 32,540 60,000 84
QF_NIRA CVC4 Yices2 8,348 32,509 289
QF_NRA Yices2 CVC4 22,861 60,000 162
QF_S CVC4 Z3str4 35172 60,000 71
QF_SLIA CVC4 Z3str4 3,956 15,381 289
QF_UF Yices2 Z3 5,607 15,362 174
QF_UFBV Yices2 Bitwuzla 34,315 60,000 75
QF_UFFP Bitwuzla COLIBRI 12,909 20,373 58
QF_UFLIA Yices2 CVC4 1,696 2,428 43
QF_UFLRA Yices2 Z3 8,431 26,529 215
QF_UFNIA CVC4 Yices2 3,864 13,564 251
QF_UFNRA Yices2 CVC4 53,374 60,000 12
UF CVC4 Z3 3,469 13,368 285
UFBV CVC4 Z3 37,751 60,000 59
UFLIA CVC4 Z3 174 868 399
UFLRA CVC4 Z3 1,567 5,159 229
UFNIA CVC4 Z3 5,671 17,419 207
UFNRA CVC4 Z3 17,219 60,000 248

Table 5.3: Table of results comparing BanditFuzz to Random fuzzing across logics of SMT-
COMP ’20. The improvement column is the percentage improvement of BanditFuzz over
Random Fuzzing. Rows are sorted alphabetically by logic.

solver(s) from the same track in the competition. In the case where a solver was not able
to run in our setup, often due to environmental hard-codings, we replaced it with the next
most performant alternative.

80

Logic Target Reference PAR-2 Performance Margin Improvement on
Scott et al. [149] BanditFuzz Baseline [%]

QF_FP Bitwuzla COLIBRI 51,893 60,000 14.4
QF_S CVC4 Z3str4 53,231 60,000 11.9
ABVFPLRA CVC4 Z3 46,237 60,000 25.9
ANIA CVC4 Z3 54,120 60,000 10.3
AUFLIRA CVC4 Z3 22,314 30,428 30.7
FP CVC4 Z3 9,109 10,674 15.8
FPLRA CVC4 Z3 31,808 49,528 43.5
LIA CVC4 Z3 17,009 19,050 11.3
LRA CVC4 Z3 16,098 25,560 45.4
NRA CVC4 Z3 39,116 60,000 42.1
QF_ALIA Yices2 Z3 35,912 60,000 50.2
QF_ANIA CVC4 Z3 56,198 60,000 6.5
QF_AUFBV Yices2 Bitwuzla 11,103 14,704 27.9
QF_BVFPLRA CVC4 COLIBRI 47,180 55,228 15.7
QF_LIRA Yices2 CVC4 3,152 7,584 82.6
QF_NIA CVC4 Yices2 58,199 60,000 3.0
QF_NIRA CVC4 Yices2 17,009 32,509 62.6
QF_NRA Yices2 CVC4 42,188 60,000 34.9
QF_UFLRA Yices2 Z3 22,092 26,529 18.3
QF_UFNIA CVC4 Yices2 9,917 13,564 31.1
UFNIA CVC4 Z3 14,282 17,419 19.8
UFNRA CVC4 Z3 27,901 60,000 73.0

Table 5.4: Table of select results comparing BanditFuzz to the work of Scott et al. [149]
across select logics. The improvement column is the percentage improvement of BanditFuzz
over the baseline.3

Baselines: As baselines, we used random fuzzing (i.e., smtfuzz from Section 5.4 in a loop)
and the original performance fuzzer by Scott et al. [149] when possible since it is limited to
floating-point and string logics. While there are many other fuzzers for SMT Solvers [41,
190, 187, 121], they are mostly aimed at finding errors and not performance issues.

Other general purpose fuzzers like AFL [206] and PerfFuzz [100] are built around bit-
string manipulation. We attempted to use these tools but, as we suspected, neither were
able to produce a well-formed input given significant amounts of resources. Unfortunately,

81

it is known that general purpose bit-string fuzzers do not to scale to programs with strict
grammars like SMT Solvers, despite the fact that AFL has some capacity to add custom
grammar [205].
Computational Environment: All experiments were performed on the Compute Canada
computing service [11], a CentOS V7 cluster of Intel Xeon Processor E5-2683 running at
2.10 GHz with 8 GB of memory. Wallclock runtimes are rounded to the nearest second.
Generator: Fuzzers were set to generate benchmarks with 5 variables per sort, 5 as-
sertions, and a maximum depth of 3 in logics that were neither just linear, just arrays,
bit-vectors, nor just uninterpreted functions. Otherwise 10 variables, 10 assertions, and
depth 5 was used. We use bit-widths of 64.

5.5.2 Results

Using the aforementioned experimental setup, we evaluated BanditFuzz against random
fuzzing across 52 logics from the SMT-COMP ’20. Tables 5.2, 5.3 summarizes our experi-
mentation against random fuzzing across all 52. The first column in these tables denote the
logic of the experiment, the second and third column denote the solver that was targeted
and referenced respectively. The fourth and fifth column denotes the cumulative PAR-2
margin across 25 runs of random fuzzing and BanditFuzz respectively. The sixth column
reports improvement of BanditFuzz over random fuzzing based on the absolute difference
between their PAR-2 margins. We observe BanditFuzz to consistently outperform random
fuzzing across all 52, with up to a 82.6% improvement in PAR-2 margin in the UFLIA logic.

To visually illustrate the benchmark testing suites generated by BanditFuzz, we include
a cactus plot on the highly industrial logic of QF_BV in Figure 5.3. A cactus plot is a visu-
alization of a solver’s performance on a benchmark suite the X-axis represents the number
of benchmarks solved and the Y-axis represents time (in seconds) taken per benchmark.
Every benchmark is the resultant of run a complete run of the tool. In SMT-COMP ’20, the
SMT Solver Bitwuzla had a strong performance, winning numerous gold medals including
the QF_BV track over competing solvers CVC4, Z3, MathSAT, and Yices. However, the
cactus plot clearly shows that Bitwuzla is least performant on the benchmarks produced
by BanditFuzz by an extremely large margin.

In Table 5.4, we further compare against previous work by Scott et al. [149]. We base-
line BanditFuzz against this work on the only two logics it supports, QF_S and QF_FP.
We observe that BanditFuzz consistently outperforms against the baseline and achieves a
maximum possible score in both logics, while the baseline fails to do so.

82

Limitations. One major limitation of performance fuzzing is the amount of time
it takes to achieve results. This is partly due to the nature of the problem, making it
paramount to use efficient techniques such as BanditFuzz.

As with limitations of previous work in earlier chapters, the problem encoding, or
lack thereof (e.g., in this context, the SMT encoding would be states), causes substantial
loss. The most pressing concern, however, is efficiency, and learning a significant policy
quickly is crucial. When modeling performance fuzzing with a more sophisticated MDP
(i.e., going beyond MAB), agents take substantially longer to converge due to the increased
dimensionality of the underlying problem. This is particularly problematic in our context,
as a single step size may take tens of minutes.

Another limitation of BanditFuzz is the longevity of the benchmarks. The benchmarks
take a substantial amount of time to produce (over SMT-LIB, 200 CPU days). However, the
instances discovered are often due to solver error. While this is intended, over the years,
solver developers discover these issues and fix them (either due to communication from
BanditFuzz experiments or externally). This poses some issues regarding the permanence of
the results, as reproducing the runtime gaps on fresh builds may not result in a separation.

5.6 Case Study with SMT Solver Developers

In this section, we provide some case studies of BanditFuzz and how it enabled developers
to find surprising performance deficiencies in state-of-the-art SMT solvers.

5.6.1 CVC4, Bitwuzla, and SymFPU

We contacted the developers of CVC4, Bitwuzla, and the SymFPU bit-blaster [36] for
floating-point problems. While CVC4 and Bitwuzla have significantly different underlying
bit-vector engines, they both utilize the SymFPU tool for bit-blasting floating-point oper-
ations. To this end, we proposed an experiment where we target both CVC4 and Bitwuzla
(the target solvers) against Z3 (the reference).

The resulting benchmarks showcase performance issues in the SymFPU bit-blaster and
possibly the CVC4 and Bitwuzla solvers themselves. We ran an analogous experiment to
what was described in Section 5.5, with a 2400 second wallclock timeout over a 24 hour
period. BanditFuzz produced 25 benchmarks that significantly separated Bitwuzla and
CVC4 from Z3 on the logic of QF_FP. On these benchmarks that BanditFuzz produced,

83

Z3 had a PAR-2 score of 3,018 seconds, while CVC4 and Bitwuzla had 91,408 seconds and
120,000 seconds respectively 4.

In discussions with Aina Niemetz and Mathias Preiner, members of CVC4 and Bitwu-
zla teams: “In general, the benchmarks produced by BanditFuzz can be super helpful for
us to figure out what’s missing in our solvers”. For example, in their Bitwuzla tool, Ban-
ditFuzz found several benchmarks where the rewrite level (-rwl) was configured to be too
high. Furthermore, Martin Brain, the author of SymFPU, said: “BanditFuzz is interesting
because it gives us an abundant supply of something valuable but previously very rare;
small benchmarks with significant performance differentials.”

5.6.2 Z3 String Solver

We also released the BanditFuzz tool to the developers of the Z3str4 string solver [23, 24],
so that they could independently use it to expose performance issues in their solver. The
Z3str4 team used BanditFuzz to find performance deficiencies in experimental builds of
their solver, namely Z3str4-ACF and Z3str4-NCF (the target solvers) against CVC4 and
Z3seq [111]. They were able to produce thousands of benchmarks demonstrating perfor-
mance separations. Mitja Kulczynski, one of the authors of Z3str4, observed: ”BanditFuzz
is extremely easy to use! When targeting Z3str4-NCF, BanditFuzz was able to find bench-
marks in the form of disjunctions over substring operations. While this issue was already
known to us, BanditFuzz provided us with a benchmark suite to improve our tool. Further-
more, when targeting Z3str4-ACF, BanditFuzz found a class of benchmarks of conjunctions
of str.at where the solver was extremely slow. This was completely unknown to us!”

5.7 Related Work

The work that is most similar to this chapter is by Scott et al. [149]. In Sections 5.2, 5.5
of this chapter we highlight the novel contributions on of this work. Specifically, our tool
uses a multi-agent RL method over the single-agent by Scott et al., and hence has a lower
propensity to get stuck in local minima. Additionally, we support all of SMT-LIB, while
their tool only supports floating point and strings. Another closely related tool is PerfFuzz
which is a bit-string performance fuzzer. However, PerfFuzz is not grammar-aware and
hence is unlikely to produce well-formed SMT formulas.

4Bitwuzla timed out on all benchmarks produced by BanditFuzz

84

Fuzzing and Fuzzing SMT Solvers: Software fuzzing is a large field of research, and
we refer to the survey by Manes et al. as a basis for the current research [105]. There are
tools and fuzzers for finding bugs in specific SMT theories [122, 31, 42, 41, 108, 108].

Machine Learning for Fuzzing: Bottinger et al. [33] introduce a deep Q learning algo-
rithm for fuzzing model-free inputs. Godefroid et al. [69] use neural networks to learn an
input grammar over complicated domains such as PDF and then use the learned grammar
for model-guided fuzzing. Woo et al. [193] and Patil et al. [128] used MAB algorithms to
select configurations of global hyper-parameters of fuzzing software. Rebert et al. [134]
used MABs to select from a list of valid inputs seeds to fuzz on.

Machine Learning and SMT Solvers: Other works have leveraged machine learning
to learn models relating to SMT solving performance. Healy et al. leveraged supervised
learning for analyzing SMT solver performance in the context of software verification [82].
The MachSMT solver leverages machine learning SMT Solver algorithm selection [151] and
the MelodySolver leverages reinforcement learning for online algorithm selection [132].

5.8 Conclusion

In this chapter, we present BanditFuzz, a performance fuzzer for SMT Solvers. Bandit-
Fuzz is the first multi-agent RL-based performance fuzzer to support all of SMT-LIB and
leverages reinforcement learning to find relative performance deficiencies in state-of-the-art
SMT Solvers. We evaluated BanditFuzz across 52 logics from SMT-COMP ’20 targeting
competition-winning solvers against runner-up solvers. We compare BanditFuzz against
random fuzzing and a single-agent tool with up to a 82.6% improvement in the margin of
PAR-2 score on the UFLIA logic. We further provide several case studies demonstrating the
utility of BanditFuzz to state-of-the-art SMT solver developers.

85

Figure 5.3: Cactus plot for targeting Bitwuzla (winner of SMT-COMP ’20 in the QF_BV
division) against reference runner-up solvers that competed in the division. The X-axis
represents the number of benchmarks solved and the Y-axis represents time (in seconds)
taken.

86

Chapter 6

Fuzzing Neural Network Verification
Solvers

This chapter introduces Pierce, a versatile and extensible testing tool aimed at solvers
for the neural network verification (NNV) problem. At its core, Pierce implements a
fuzzing engine over the Open Neural Network Exchange (ONNX) – a standardized model
format for deep learning and classical machine learning, and VNN-LIB – a specification
standard over the input-output behavior of machine learning systems. Pierce supports the
VNN-LIB and ONNX standard. The API of Pierce is designed to enable users to create
a variety of software testing tools, such as performance and mutation fuzzers, as well as
delta debuggers, with relative ease. For example, Pierce provides a rich generator for
computation graphs and specifications that allows users to easily specify a wide variety of
configurations, as well as mutators that ensure that mutated computation graphs are well-
formed. Using Pierce we build a reinforcement learning (RL) driven relative performance
fuzzer. Using this fuzzer, we expose performance issues in four state-of-the-art solvers, such
as Marabou, ERAN, MIPVerify, and nnenum, observing up to a 13.3x times slowdown in
cumulative PAR-2 score in the target solvers relative to reference solvers. Further, we
leverage Pierce to create a diverse benchmark suite with 10,000 competition-grade NNV
instances for the community.

6.1 Motivation

Performance Fuzzing for Neural Network Verification Solvers. In recent years
neural networks (NNs) have had a revolutionary impact on a variety of fields such as

87

computer vision [81], natural language processing [182, 204], and games [147, 161], to
name just a few. Concomitant with their widespread adoption in many settings, we are
also witnessing a dramatic rise in security attacks on NNs, as well as robustness and safety
issues associated with NNs such as local robustness [70].

To address the above-mentioned problems, the software engineering and verification
communities have developed a variety of testing [113], analysis [167], and neural net-
work verification (NNV) tools such as Marabou [91], ERAN [163], MIPVerify [176], and
nnenum [9]. While the field of NNV is still in its infancy, these NNV solvers are likely to
have a huge positive impact on the robustness and security of NNs in the long run, just
as SAT and SMT solvers have had on the field of software engineering and security [45,
43]. Part of the reason why SAT and SMT solvers are so impactful is that they have
been subjected to a significant amount of testing, especially through the use of automated
fuzzers [188, 32, 148].

Inspired by the success of debugging, testing, and analysis tools in the context of
SAT/SMT solvers [14, 32, 62, 97, 115, 116, 148, 157, 185, 188, 189], we propose Pierce,
a highly configurable testing tool for NNV solvers. Developers of NNV solvers can use
Pierce to quickly create mutation and performance fuzzers, as well as delta debuggers.
We use Pierce to create a performance fuzzer that can be used out-of-the-box by NNV
solver developers to find performance weaknesses in their solver relative to a set of reference
solvers.

Recently, it has been shown that reinforcement learning (RL) techniques can be used to
develop powerful fuzzing tools that naturally take advantage of the feedback loop between
the fuzzer (agent) and the testing oracle with the programs-under-test (environment) [34].
This idea is particularly relevant in the case of performance fuzzing (say in the context of
solvers), where relative performance between a target and reference solver can be a pow-
erful signal in guiding an agent to effectively modify an instance such that the relative
performance difference between target and reference solvers is maximized [148, 157, 208].
To demonstrate Pierce’s versatility, we provide a case study implementing a relative per-
formance fuzzer. With Pierce, we fuzz Marabou, ERAN, MIPVerify, and nnenum, for
relative performance issues and observe up to a 13.3x times slowdown between a target
and a set of reference solvers.

6.2 Pierce
In this section, we describe Pierce, a testing tool for ML verification (see architecture
diagram in Figure 6.2).

88

X W

MatMul

Y

C

>

If

1 0

X

MatMul

Y

B

Add

W2

W1

ReLU

X

MatMul

Figure 6.1: Three example computation graphs, each of which outlines a common ML
algorithm. From left to right: linear regression, a depth one decision tree, a deep neural
network with a single hidden layer, ReLU activation, and linear output activation. The
MatMul stands for Matrix Multiplication.

6.2.1 Architecture Overview

See Figure 6.2 for the architecture of Pierce. In the context of ML verification, the
input (or problem instance) to an ML verification system is a computation graph C and a
specification ψ over the input-output behavior of C, and the output SAT (VIOLATED) or
UNSAT (SAFE). The primary objective of the fuzzing engine is two-fold: generate novel
instances and mutate instances, stochastically.

Generation of Computation Graphs. The generator API of Pierce takes as input
a configuration file that includes all the parameters (approx. 550, e.g., number of parame-
ters, depth, operator weights, etc.) for creating novel graphs, and outputs an appropriate
computation graph in the ONNX format. In a computation graph, all types within the
graph are tensors (i.e., a generalization of a matrix) over a primitive data type (e.g., a
tensor of float32). The bulk of the logic within Pierce’s generator is to ensure all type,
dimensionality, arity, and coarity1 constraints are satisfied. The dimensionalities of all
tensors are selected from a randomly populated set of permissible dimensions (shapes). To
populate the computation graph, the generator implements a breadth-first scheme, with
each visit sampling the set of operators. Cycles in G are disabled by default and not con-
sidered in this chapter. In scenarios where graph widths are significantly disproportional

1arity of output

89

Pierce
Fuzzing Engine

Generators

Mutators

Graph
Random

Decision tree
Neural network

Evaluation
Engine
Runtime

Environment

Solvers

 Specification

Specification
AST manipulation

Interval bound manipulation

Specification
Random

SAT/UNSAT

Constant
 50 distributions

Graph
In-place

Increasing size
Decreasing size

Witness
Vaildation

Computation

Graph

SAT,
UNSAT,

or
unsound

(declare-const X_0 Real)
(declare-const Y_0 Real)
(assert (or
 (and (>= X_0 -1)

 (<= X_0 1)
 (>= Y_0 100))

))

X W

MatMul

Y

Input Seeds
or

Generator
Configuration

 Specification
Constraint

Computation
Graph

Constraint

Figure 6.2: Architecture Diagram of of Pierce (See section 6.2). Pierce is comprised of
a fuzzing engine that enables the generation and mutation of VNN-LIB benchmarks.

to the output, the generator imposes coarity constraints on the operation selection. Fur-
thermore, in scenarios where dimensions cannot be matched precisely, appropriate ones
are allocated. There are several size parameters in the generation process to enable the
generation of graphs of all sorts of sizes (e.g., tens to billions of parameters).

The generation process supports four problem classes. First, randomized graphs: this is
the most random and expressive problem class, representative of arbitrary machine learning
programs. Second, Pierce can generate computation graphs resembling decision trees,
computation graphs that contain several nested conditionals over features and constants.
Third, Pierce can generate computation graphs resembling random neural architectures.
This is done internally by sampling a subgraph rather than operators in the breadth-first
search, where the subgraph is a composition of operators resembling a common neural
layer. We leverage 20 subgraphs that denote familiar layers from torch.nn [126]. Finally,
Pierce can generate VNN-LIB graphs, which is a subset of the previous class, such that
all operators within layers are consistent with the VNN-LIB standard.

Generation of Specifications. The typical specification for a given computation
graph is a set of constraints that bound the values of the input and outputs of a given
computation graph. That is, a specification is either a static ϵx, ϵy pair or a component-wise
ϵix, ϵiy, (e.g., x ∈ [x′i − ϵix, x′i + ϵix], y ∈ [y′i − ϵiy, y′i + ϵiy]). The point within the domain
and codomain vector space that forms the bounding is denoted by x′, y′, respectively. x′
is always chosen randomly, while y′, ϵ, ϵ′ depends on the problem class. Further assertions

90

are added randomly. These assertions can either be linear constraints – disjunctions,
conjunctions, and linear integer real arithmetic, or nonlinear. We exclusively consider
linear constraints for the remainder of the chapter.

Pierce can generate a variety of classes of specification constraints, ranging from ran-
dom specifications to specifications with known results. For example, Pierce can generate
instances where we known that it is SAT (i.e., the specification is guaranteed to be vi-
olated). This is done by computing y′ = C(x′) for a given computation graph C and
randomly-generated input x′, and generating additional constraint set A on the output of
C that guarantee y′ is within the bounds defined by A. Furthermore, Pierce can gener-
ate specifications that are UNSAT with high probability. This is done by first computing
y′′ = C(x′) for a given graph C and randomly generated input x′, and then ensuring that
the bounds asserted by the constraint set A on the output y′′ and for a perturbation ∆
with a large budget y′ = y′′ + ∆. While the result isn’t guaranteed to be UNSAT, we
observe this to be highly probable for significantly large ∆ and ϵi.

Mutating Computation Graphs and Specifications. Pierce has a mutator (i.e.,
a set of mutation operators) that ensures that a computation graph G is modified in a well-
formed manner. A single mutation implements a minimal structural change. Similar to
generation, the bulk of the logic is devoted to ensuring that all types, dimensionalities, arity,
and coarity constraints are satisfied. For computation graph mutations, it can be done
either in-place (i.e., the size of the graph remains the same) or by increasing/decreasing
the size of the graph.

In-place mutations are conceptually similar to AST manipulation schemes in Bandit-
Fuzz [157]. If the mutation is applied to a computation graph C, then a node is selected,
and a node of the appropriate return sort is used in an in-place swap. With incompatible
coarities, subgraphs are appropriately dropped or regenerated. Increasing mutations allow
for increases in dimensionality (this changes both C,ψ), insertion of a new node in C, or
insertion of a new node in an asserting AST in ψ. Decreasing mutations are analogous.

A desirable property of a mutational fuzzer is satisfiability preservation, i.e., if a com-
putation graph C is SAT (resp. UNSAT), then it remains SAT (resp. UNSAT) after
mutation. Such a feature makes the fuzzer very valuable to solver developers. To see this
consider the following scenario: suppose a computation graph (along with its specification)
C which is known to be SAT is mutated in a satisfiability-preserving manner to C ′, and a
solver S outputs UNSAT on C ′ then we know that solver S has a bug in it. This idea has
been explored extensively in SMT [189]. Pierce includes two simple mutation procedures
to support this feature. Namely, on SAT benchmarks, Pierce has a mutation procedure
that increases the bound on the input/output of the instance and, analogously for UNSAT,

91

decreases it.
Constant Generation. Pierce supports a diverse set of seven probability distribu-

tions to generate constants. For example, Pierce leverages: Normal, Uniform, geometric,
Beta, Gamma, Zipf, and Rayleigh. Pierce uses several values for the parameters of the
probability distribution to compute the final set. When generating a constant tensor, the
set of distributions is sampled to populate it.

Evaluation Engine. We include an evaluation engine for additional utility. The
evaluation engine collects system information (e.g., wall-clock times, memory, etc.) and
comes with a base solver class and example-derived classes over select VNN-LIB solvers for
a quick extension. Pierce comes with witness validation to determine if the solver soundly
determined satisfiability.

Implementation Details.Pierce is implemented in Python version 3.8, and uses
both onnx and onnxruntime to implement all components in the fuzzing engine. Pierce
uses numpy [80] for its random constant generation and all other random processes. The
execution engine leverages benchexec [28].

6.2.2 Command Line Interfaces

Pierce can be invoked in three different modes depending on the CLI option - fuzz (gen-
erate a novel instance), mut (mutate a pre-existing instance), or eval (evaluate an instance
on a solver).

Fuzzing. In the fuzzing mode, Pierce expects an argument denoting the graph prob-
lem class {rand, tree, dnn, vnnlib} for generating random computation graphs, decision
tree-like graphs, neural network-like graphs, and VNN-LIB compliant graphs, respectively.
Additionally, the specification problem class {rand, sat, punsat} also needs to be specified.

Mutating. In the mutating mode, Pierce expects an argument denoting mutation
mode {graph, spec, graph-up, graph-down, preserve-sat, preserve-unsat} and a specified
graph C with specification ψ for an input seed.

Evaluating. In the evaluation mode, a user specifies an instance and a solver to be
evaluated. Pierce outputs a summary of computational resources used and the result of
the solver.

Configuration. Both fuzzing and mutation processes are highly stochastic. However,
significant effort has been made to ensure the user had a significant ability to adjust this

92

process. We provide a detailed YAML file with over 500 adjustable hyperparameters 2.
These parameters control weighted probabilities of operators, random number generators,
and the generation and mutation process of the fuzzing engine.

6.2.3 Potential Use Cases

Pierce is engineered and designed so it can be leveraged by ML verification developers
to help improve the efficiency and efficacy of their tools. We next outline some example
usage.
Benchmark Generation and Testing. The generator of Pierce’s fuzzing system al-
lows for benchmarks of extreme varieties and problem classes. A developer can leverage
Pierce to create instances ranging from unit tests, regression tests, to competition diffi-
culty instances. We release a repository of 10,000 benchmarks to the community produced
by Pierce. The first 4,950 instances are small unit tests. These tests are broken down
to test the functionality of all 187 operations of the ONNX standard. The next 4,950
instances are medium-sized instances resembling regression tests. These benchmarks are
evenly distributed into their respective problem classes. The final 100 are competition-
grade benchmarks that are compliant with VNN-LIB. We intend to submit these to future
competitions.
Fuzzing. Pierce has an extensive and highly configurable fuzzing engine that can be
leveraged to build several fuzzers for various objectives.
Delta Debugging. A delta-debugger is a tool to decrease the size of an error-revealing
instance I such that I is minimal in size and the erroneous behavior of the program-under-
test is preserved. Pierce has an extensive and highly configurable mutational engine that
can be leveraged to build a delta debugger.

6.3 Performance Fuzzing Neural Network Verification
Solvers

In this section, we present an empirical case study of Pierce. Specifically, we use Pierce’s
fuzzing utility and leverage it to find relative performance slowdowns across NNV solvers
by leveraging an adaption of the BanditFuzz algorithm [148].

2Note that these hyperparameters have reasonable default values that can make it operate in a click-
of-a-button.

93

Targeting MIPVerify Targeting nnenum
Solver PAR-2 Solver PAR-2
VBS 453.5 VBS 507.2
Marabou 597.0 MIPVerify 659.0
nnenum 738.7 ERAN 786.1
ERAN 840.2 Marabou 802.0
MIPVerify 10079.8 nnenum 10057.6

Targeting ERAN Targeting Marabou
Solver PAR-2 Solver PAR-2
VBS 453.5 VBS 507.2
MIPVerify 605.8 nnenum 720.4
Marabou 688.3 MIPVerify 755.2
nnenum 725.5 ERAN 815.7
ERAN 10351.9 Marabou 10899.4

Table 6.1: Table of sums of PAR-2 across all experiments from the empirical evaluation
(Section 6.3). The PAR-2 score of a solver on a benchmark is the wall-clock runtime
if successful, otherwise twice the wall-clock runtime (lower is better). VBS denotes the
virtual best solver. We observe that Pierce is able to discover instances with relative
slowdowns across all considered solvers.

6.3.1 Experimental Setup

Relative Performance Fuzzing. Let T be a set of solvers to be targeted, and let R be a
set of reference solvers. Let ϕ be an empirical performance margin function. The relative
performance fuzzing problem seeks to solve

max
I∈L

ϕ(T,R, I)

for a set of target solvers T , reference solvers R, and input I in the language L over solvers
in T,R. In this chapter, we exclusively consider the following performance margin function

ϕ(T,R, I) = min
t∈T

(PAR-2(t, I))−max
r∈R

(PAR-2(r, I))

Bandit Formulation. For full context on the use of reinforcement learning and multi-
armed bandits (MAB) in the context of performance fuzzing we refer the reader to Scott

94

et al. [157]. In this context, for a set of agents A, each agent A ∈ A, must have a defined
action set to sample from and a global reward signal R across A. For R, we use a binary
signal of whether or not the resultant benchmark produced an increase in the above-defined
performance margin function. We include 5 agents in A, controlling generator parameters
of depth, width, dimensionality, and input/output sizes. We use Thompson Sampling as
our base MAB algorithm [142].
Fuzzing Formulation. We consider four state-of-the-art solvers for VNN-LIB, namely,
ERAN [163], Marabou [91], MIPVerify [176], and nnenum [9]. We run four fuzzing experi-
ments, targeting each solver while using the remainder as reference solvers, and conducting
each experiment 25 times to produce 25 benchmarks exposing slowdowns in each solver.
Each experiment was run for 48 hours. We configure Pierce to generate “small” with final
benchmarks ranging from 10,000 to 50,000 parameters (i.e., 100-400 neurons).
Computational Environment. All experiments were performed on the Compute Canada
computing service [11], a CentOS V7 cluster of Intel Xeon Processor E5-2683 running at
2.10 GHz with 8 GB of memory. Wall-clock runtimes are rounded to the nearest second,
with a wall-clock timeout of 300 seconds. Solvers were configured to run sequentially. We
observe Pierce to consistently find relative performance slowdowns.

6.3.2 Evaluation and Analysis of Results

The cactus plot of the evaluation is presented in Figure 6.3. Table 6.1 presents the PAR-2
all experiments. The PAR-2 score of a solver on a benchmark is the wall-clock runtime if
successful. Otherwise, twice the wall-clock runtime (lower is better). We see across all four
fuzzing experiments, the target solver (in pink, last line of each legend) has a significant
performance drop-off compared to the reference solvers. We include a comparison with
the Virtual Best Solver (VBS). The VBS is an instance-wise minimum of runtimes which
makes it representative of the best solver from a given set.

Limitations. While the Pierce fuzzer was designed for broad and multipurpose us-
age, building truly generic fuzzing tools presents challenges, and Pierce likely has several
unseen limitations. While several fuzzing applications have been tested internally and
presented in this thesis, some have not been empirically justified, such as delta-debugging.

At the time of this writing, NNV tools do not scale to the likes of LLMs, and likewise,
Pierce is not suited for testing these sorts of instances. Another nuance is that the tech
stack of Pierce is often very brittle and actively being developed. Pierce sometimes acts
as a tester for these tools as opposed to NNV solvers, often finding inconsistencies and
errors in existing standards such as ONNX.

95

6.4 Related Work

To the best of our knowledge, we are not aware of previous work on fuzzing tools for ONNX
and VNN-LIB. In other domains, such as SMT, there are analysis tools that motivated
us to develop Pierce, such as StringFuzz [32], ddsmt [97, 116, 97], and BanditFuzz [148,
157]. BanditFuzz is a fuzzing algorithm that applies Reinforcement Learning (RL) to
generate inputs for Floating-Point (FP) and String SMT solvers. The RL objective of
BanditFuzz is to maximize the performance margin between target and reference solvers.
Counterexample-Guided Fuzzing for Neural Networks Verification is designed to discover
neural network verification tools’ mistakes [203]. To get more counterexamples in a sample
set with a limited size and improve the performance in uncovering errors, the scope of the
sample space is reduced continuously based on the generated counterexamples.

6.5 Conclusion

In this chapter, we presented Pierce, a flexible testing system that can be used to con-
struct a variety of fuzzers and delta debuggers to test NNV solvers, as well as for other
machine learning settings such as decision trees. To showcase the versatility and utility
of Pierce, we implemented a relative performance fuzzer using it that in turn exposed
relative performance slowdown in four state-of-the-art NNV solvers, namely, Marabou,
ERAN, MIPVerify, and nnenum. We observed up to a 13.3x times slowdown in target
solvers relative to reference ones. Further, using Pierce we created 10,000 diverse bench-
marks spanning unit tests, regression tests, and competition grade benchmarks.

96

Figure 6.3: Main experimental cactus plots demonstrating Pierce’s ability to reveal rel-
ative performance slowdowns (Section 6.3). A cactus plot is a visualization of a solver’s
performance on a benchmark suite the X-axis represents the number of benchmarks solved
(higher is better) and the Y-axis is the benchmark wise PAR-2 (lower is better).

97

Chapter 7

Conclusions and Future Work

In this thesis, we examined the ability of machine learning techniques to advance scalability
issues within logic solvers.

In Chapter 3, we introduced MachSMT, the first algorithm selection tool that spans
the entirety of the SMT-LIB logics. MachSMT is designed to be user-friendly and easily
modifiable by users for their specific application and SMT solvers of interest. We exten-
sively evaluated MachSMT over several usage scenarios and empirically demonstrated its
efficiency and efficacy. Using MachSMT, we observe improvement in 57 out of 119 divisions
in all tracks from the SMT-COMP ’19 and ’20, with up to a 99.4% improvement in PAR-2
score over the best performing solver for the QF_BVFPLRA SQ’20 division. We further
evaluated MachSMT to predict a ranking and resource allocation for 23 configurations
used in the cvc5 competition script and observed that MachSMT was able to solve 898
more benchmarks with up to an 93.4% improvement in PAR-2 score. Finally, we evaluated
MachSMT on network verification problems with simple domain-specific knowledge and
observed an improvement of 77.3% in PAR-2 score.

In Chapter 4, we introduced Goose, a meta-solver for NN verification. By meta-solver,
we mean a tool containing a set of subsolvers that get adaptively called, in a sequence,
based on online and offline information collected about their performance histories on a
given input. Goose has a meta-solver architecture (Figure 4.1) and supports a wide variety
of incomplete and complete solvers (some of which were implemented by us). Goose lever-
ages three key meta-solving techniques, namely, adaptive algorithm selection, probabilistic
satisfiability inference, and time interval deepening to implement an adaptive sequential
portfolio of solvers for NN verification. We evaluate the efficacy of our Goose meta-solver
on the VNN-COMP 2021 (resp. VNN-COMP 2022) benchmarks against 13 (resp. 11)

98

state-of-the-art neural network verification solvers. We observed a 37.7% (resp. 25.6%)
improvement across benchmarks and solvers from VNN-COMP ’21 (resp. VNN-COMP
’22).

In Chapter 5, we introduced BanditFuzz, a performance fuzzer for SMT Solvers. Ban-
ditFuzz is the first multi-agent RL-based performance fuzzer to support all of SMT-LIB and
leverages reinforcement learning to find relative performance deficiencies in state-of-the-art
SMT Solvers. We evaluated BanditFuzz across 52 logics from SMT-COMP ’20 targeting
competition-winning solvers against runner-up solvers. We compare BanditFuzz against
random fuzzing and a single-agent tool with up to a 82.6% improvement in the margin of
PAR-2 score on the UFLIA logic. We further provide several case studies demonstrating the
utility of BanditFuzz to state-of-the-art SMT solver developers.

In Chapter 6, we introduced Pierce, a flexible testing system that can be used to
construct a variety of fuzzers and delta debuggers to test NNV solvers, as well as for other
machine learning settings such as decision trees. To showcase the versatility and utility of
Pierce, we implemented a relative performance fuzzer using it that in turn exposed relative
performance slowdown in four state-of-the-art NNV solvers, namely, Marabou, ERAN,
MIPVerify, and nnenum. We observed up to a 13.3x times slowdown in target solvers
relative to reference ones. Further, using Pierce we created 10,000 diverse benchmarks
spanning unit tests, regression tests, and competition grade benchmarks.

Throughout this thesis, we’ve effectively demonstrated the use of machine learning to
improve the scalability of logic solvers through the introduction of tools like MachSMT,
Goose, BanditFuzz, and Pierce. As we conclude the specific advancements made, we now
look ahead to potential enhancements and broader applications of these methodologies in
the field of automated reasoning.

Problem Encoding. One major limitation when applying machine learning methods
to automated reasoning is the problem encoding, i.e., constructing feature vectors or em-
beddings of an underlying problem instance. While Chapters 3, 4 provide some insights,
they leave a lot to be desired. To properly represent the problem instance without loss of
any information would likely require something like a graph neural network [210] which
have been applied to automated reasoning with some success [174] but are not leveraged
by state-of-the-art systems.

Synthetic Data. Machine learning systems are extremely data-hungry. So much so,
that a recent trend within data science is data augmentation with synthetic data for more
performant models [2]. All the supervised learning and reinforcement learning performed
in Chapters 3, 5, 4, 6 were also likewise data-intensive and the performance of the models
was internally observed to be quite sensitive the amount of quality available data. With

99

the use of fuzzers for being able to find interesting inputs for SMT/NNV solvers, perhaps
fuzz-driven search for high quality synthetic data could be impactful on model performance.

Meta Solving. The success of Goose for the NN verification problem suggests that
similar meta-solving techniques (i.e., adaptive sequential portfolio methods) can effective
for the SAT/SMT problem as well. Hence, in the future, we plan to extend our techniques
for constructing meta-solvers over SAT and SMT solvers.

100

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”. In:
CoRR abs/1603.04467 (2016). arXiv: 1603.04467. url: http://arxiv.org/abs/
1603.04467.

[2] Mohammad Abufadda and Khalid Mansour. “A Survey of Synthetic Data Gen-
eration for Machine Learning”. In: 2021 22nd International Arab Conference on
Information Technology (ACIT). 2021, pp. 1–7. doi: 10.1109/ACIT53391.2021.
9677302.

[3] Shawkat Ali and Kate A. Smith. “On learning algorithm selection for classification”.
In: Appl. Soft Comput. 6.2 (2006), pp. 119–138. doi: 10.1016/j.asoc.2004.12.
002.

[4] Shawkat Ali and Kate A. Smith. “On learning algorithm selection for classification”.
In: Appl. Soft Comput. 6.2 (2006), pp. 119–138. doi: 10.1016/j.asoc.2004.12.
002.

[5] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. “SUNNY: a Lazy Port-
folio Approach for Constraint Solving”. In: Theory Pract. Log. Program. 14.4-5
(2014), pp. 509–524. doi: 10.1017/S1471068414000179.

[6] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. “Bounded model
checking of software using SMT solvers instead of SAT solvers”. In: International
Journal on Software Tools for Technology Transfer 11.1 (2009), pp. 69–83.

101

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1109/ACIT53391.2021.9677302
https://doi.org/10.1109/ACIT53391.2021.9677302
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1017/S1471068414000179

[7] Gilles Audemard and Laurent Simon. “On the glucose SAT solver”. In: International
Journal on Artificial Intelligence Tools 27.01 (2018), p. 1840001.

[8] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Søe Luckow, Neha Rungta, Oksana Tkachuk, and Carsten Varming. “Semantic-
based Automated Reasoning for AWS Access Policies using SMT”. In: 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 -
November 2, 2018. Ed. by Nikolaj Bjørner and Arie Gurfinkel. IEEE, 2018, pp. 1–9.
doi: 10.23919/FMCAD.2018.8602994.

[9] Stanley Bak. “nnenum: Verification of ReLU Neural Networks with Optimized Ab-
straction Refinement”. In: NASA Formal Methods - 13th International Symposium,
NFM 2021, Virtual Event, May 24-28, 2021, Proceedings. Ed. by Aaron Dutle,
Mariano M. Moscato, Laura Titolo, César A. Muñoz, and Ivan Perez. Vol. 12673.
Lecture Notes in Computer Science. Springer, 2021, pp. 19–36. doi: 10.1007/978-
3-030-76384-8_2.

[10] Stanley Bak, Changliu Liu, and Taylor T. Johnson. “The Second International
Verification of Neural Networks Competition (VNN-COMP 2021): Summary and
Results”. In: CoRR abs/2109.00498 (2021). arXiv: 2109.00498. url: https://
arxiv.org/abs/2109.00498.

[11] Susan Baldwin. “Compute Canada: advancing computational research”. In: Journal
of Physics: Conference Series. Vol. 341. 1. IOP Publishing. 2012, p. 012001.

[12] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. “Learning to Solve SMT
Formulas”. In: Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018,
pp. 10338–10349. url: https://proceedings.neurips.cc/paper/2018/hash/
68331ff0427b551b68e911eebe35233b-Abstract.html.

[13] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. “Learning to Solve SMT For-
mulas”. In: Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 10338–
10349. url: http://papers.nips.cc/paper/8233-learning-to-solve-smt-
formulas.

102

https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2109.00498
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas

[14] Tomás Balyo, Marijn Heule, and Matti Jarvisalo. “SAT competition 2016: Recent
developments”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 31. 2017.

[15] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lach-
nitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. “cvc5: A Versatile and Industrial-Strength SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems - 28th Inter-
national Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 415–442. doi: 10.1007/978-
3-030-99524-9_24. url: https://doi.org/10.1007/978-3-030-99524-9_24.

[16] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lach-
nitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. “cvc5: A Versatile and Industrial-Strength SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems - 28th Inter-
national Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 415–442. doi: 10.1007/978-
3-030-99524-9_24. url: https://doi.org/10.1007/978-3-030-99524-9_24.

[17] Haniel Barbosa, Anti Hyvärinen, and Jochen Hoenecke. SMT-COMP 2020. https:
//www.smt-comp.org/2020. 2020.

[18] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org. 2016.

[19] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org. 2020.

[20] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Standard: Version
2.0”. In: Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (Edinburgh, UK). Ed. by A. Gupta and D. Kroening. 2010.

[21] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,

103

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://www.smt-comp.org/2020
https://www.smt-comp.org/2020

July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 171–177. doi:
10.1007/978-3-642-22110-1_14.

[22] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. “goSAT: Floating-
point satisfiability as global optimization”. In: 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. Ed. by Daryl
Stewart and Georg Weissenbacher. IEEE, 2017, pp. 11–14. doi: 10.23919/FMCAD.
2017.8102235.

[23] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. “Z3str3: A string solver with
theory-aware heuristics”. In: 2017 Formal Methods in Computer Aided Design, FM-
CAD 2017, Vienna, Austria, October 2-6, 2017. Ed. by Daryl Stewart and Georg
Weissenbacher. IEEE, 2017, pp. 55–59. doi: 10.23919/FMCAD.2017.8102241.

[24] Murphy Berzish, Federico Mora, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh.
“Z3str4 String Solver: System Description”. In: SMT-COMP 2020 (2020).

[25] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath,
Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander
Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke,
Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch,
Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano,
Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner,
Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. ZIB-Report
21-41. Zuse Institute Berlin, 2021. url: http://nbn-resolving.de/urn:nbn:de:
0297-zib-85309.

[26] Ksenia Bestuzheva, Mathieu Besançon, Weikun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros M.
Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen,
Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco E. Lübbecke, Stephen
J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel
Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro
Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Di-
eter Weninger, and Jakob Witzig. “Enabling Research through the SCIP Opti-
mization Suite 8.0”. In: ACM Trans. Math. Softw. 49.2 (2023), 22:1–22:21. doi:
10.1145/3585516. url: https://doi.org/10.1145/3585516.

104

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.23919/FMCAD.2017.8102235
https://doi.org/10.23919/FMCAD.2017.8102235
https://doi.org/10.23919/FMCAD.2017.8102241
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.1145/3585516
https://doi.org/10.1145/3585516

[27] Dirk Beyer and Matthias Dangl. “Strategy Selection for Software Verification Based
on Boolean Features - A Simple but Effective Approach”. In: Lecture Notes in
Computer Science 11245 (2018). Ed. by Tiziana Margaria and Bernhard Steffen,
pp. 144–159. doi: 10.1007/978-3-030-03421-4_11.

[28] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Reliable benchmarking: require-
ments and solutions”. In: Int. J. Softw. Tools Technol. Transf. 21.1 (2019), pp. 1–29.
doi: 10.1007/s10009-017-0469-y.

[29] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet,
Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino,
Jay R. Lorch, Kenji Maillard, Jianyang Pan, Bryan Parno, Jonathan Protzenko,
Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thomp-
son, Peng Wang, Santiago Zanella Béguelin, and Jean Karim Zinzindohoue. “Ever-
est: Towards a Verified, Drop-in Replacement of HTTPS”. In: 2nd Summit on Ad-
vances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA,
USA. Ed. by Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi.
Vol. 71. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 1:1–1:12.
doi: 10.4230/LIPIcs.SNAPL.2017.1. url: https://doi.org/10.4230/LIPIcs.
SNAPL.2017.1.

[30] Armin Biere. “Cadical, lingeling, plingeling, treengeling and yalsat entering the sat
competition 2018”. In: Proceedings of SAT Competition 14 (2017), pp. 316–336.

[31] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. “StringFuzz: A Fuzzer for String Solvers”. In: Computer Aided Veri-
fication - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II.
Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10982. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 45–51. doi: 10.1007/978-3-319-96142-2_6.

[32] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. “StringFuzz: A Fuzzer for String Solvers”. In: Computer Aided Veri-
fication - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II.
Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10982. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 45–51. doi: 10.1007/978-3-319-96142-2_6.

[33] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. “Deep Reinforcement
Fuzzing”. In: (2018), pp. 116–122. doi: 10.1109/SPW.2018.00026.

105

https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1109/SPW.2018.00026

[34] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. “Deep Reinforcement
Fuzzing”. In: 2018 IEEE Security and Privacy Workshops, SP Workshops 2018, San
Francisco, CA, USA, May 24, 2018. IEEE Computer Society, 2018, pp. 116–122.
doi: 10.1109/SPW.2018.00026.

[35] Marin Bougeret, Pierre-François Dutot, Alfredo Goldman, Yanik Ngoko, and Denis
Trystram. “Combining multiple heuristics on discrete resources”. In: 23rd IEEE In-
ternational Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,
Italy, May 23-29, 2009. IEEE, 2009, pp. 1–8. doi: 10.1109/IPDPS.2009.5160879.

[36] Martin Brain. SymFPU. 2019. url: https://github.com/martin-cs/symfpu/
(visited on 01/01/0201).

[37] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel Kroen-
ing. “Deciding floating-point logic with abstract conflict driven clause learning”. In:
Formal Methods Syst. Des. 45.2 (2014), pp. 213–245. doi: 10.1007/s10703-013-
0203-7.

[38] Martin Brain, Florian Schanda, and Youcheng Sun. “Building Better Bit-Blasting
for Floating-Point Problems”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I. Ed. by Tomás Vojnar
and Lijun Zhang. Vol. 11427. Lecture Notes in Computer Science. Springer, 2019,
pp. 79–98. doi: 10.1007/978-3-030-17462-0_5.

[39] Martin Brain, Florian Schanda, and Youcheng Sun. “Building Better Bit-Blasting
for Floating-Point Problems”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I. Ed. by Tomás Vojnar
and Lijun Zhang. Vol. 11427. Lecture Notes in Computer Science. Springer, 2019,
pp. 79–98. doi: 10.1007/978-3-030-17462-0_5.

[40] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu
Liu. “First three years of the international verification of neural networks competi-
tion (VNN-COMP)”. In: Int. J. Softw. Tools Technol. Transf. 25.3 (2023), pp. 329–
339. doi: 10.1007/S10009-023-00703-4. url: https://doi.org/10.1007/
s10009-023-00703-4.

[41] Robert Brummayer and Armin Biere. “Fuzzing and delta-debugging SMT solvers”.
In: Proceedings of the 7th International Workshop on Satisfiability Modulo Theories.
ACM. 2009, pp. 1–5.

106

https://doi.org/10.1109/SPW.2018.00026
https://doi.org/10.1109/IPDPS.2009.5160879
https://github.com/martin-cs/symfpu/
https://doi.org/10.1007/s10703-013-0203-7
https://doi.org/10.1007/s10703-013-0203-7
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/S10009-023-00703-4
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.1007/s10009-023-00703-4

[42] Alexandra Bugariu and Peter Müller. “Automatically Testing String Solvers”. In:
International Conference on Software Engineering (ICSE), 2020. ETH Zurich. 2020.

[43] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs”.
In: 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings. Ed. by
Richard Draves and Robbert van Renesse. USENIX Association, 2008, pp. 209–
224. url: http://www.usenix.org/events/osdi08/tech/full_papers/cadar/
cadar.pdf.

[44] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. “EXE: Automatically Generating Inputs of Death”. In: ACM Trans. Inf.
Syst. Secur. 12.2 (2008), 10:1–10:38. doi: 10.1145/1455518.1455522.

[45] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. “EXE: Automatically Generating Inputs of Death”. In: ACM Trans. Inf.
Syst. Secur. 12.2 (2008), 10:1–10:38. doi: 10.1145/1455518.1455522.

[46] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. “HornDroid: Practical
and sound static analysis of Android applications by SMT solving”. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE. 2016, pp. 47–62.

[47] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. Ed.
by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi. ACM, 2016, pp. 785–794. doi: 10.1145/2939672.
2939785. url: https://doi.org/10.1145/2939672.2939785.

[48] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,
pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:
//doi.acm.org/10.1145/2939672.2939785.

[49] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. Ed.
by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi. ACM, 2016, pp. 785–794. doi: 10.1145/2939672.
2939785.

107

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

[50] Yudong Chen and Martin J. Wainwright. “Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees”. In: CoRR abs/1509.03025
(2015). arXiv: 1509.03025. url: http://arxiv.org/abs/1509.03025.

[51] François Chollet et al. Keras. https://keras.io. 2015.
[52] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. “SMTInterpol: An Interpo-

lating SMT Solver”. In: Model Checking Software - 19th International Workshop,
SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings. Ed. by Alastair F. Don-
aldson and David Parker. Vol. 7385. Lecture Notes in Computer Science. Springer,
2012, pp. 248–254. doi: 10.1007/978-3-642-31759-0_19. url: https://doi.
org/10.1007/978-3-642-31759-0_19.

[53] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Se-
bastiani. “The MathSAT5 SMT Solver”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. Ed. by Nir Piterman
and Scott A. Smolka. Vol. 7795. Lecture Notes in Computer Science. Springer, 2013,
pp. 93–107. doi: 10.1007/978-3-642-36742-7_7.

[54] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings
of the Third Annual ACM Symposium on Theory of Computing. STOC ’71. Shaker
Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158. isbn:
9781450374644. doi: 10.1145/800157.805047. url: https://doi.org/10.1145/
800157.805047.

[55] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. “SMT-based bounded
model checking for embedded ANSI-C software”. In: IEEE Transactions on Software
Engineering 38.4 (2011), pp. 957–974.

[56] IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: International Business
Machines Corporation 46.53 (2009), p. 157.

[57] ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/. Version:
x.y.z. 2021.

[58] Fabien Duchene. “Fuzz in the Dark: Genetic Algorithm for Black-Box Fuzzing”. In:
Black-Hat. 2013.

108

https://arxiv.org/abs/1509.03025
http://arxiv.org/abs/1509.03025
https://keras.io
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://onnxruntime.ai/

[59] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings. Ed. by Armin Biere and Roderick
Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014, pp. 737–744.
doi: 10.1007/978-3-319-08867-9_49.

[60] ABKFM Fleury and Maximilian Heisinger. “Cadical, kissat, paracooba, plingeling
and treengeling entering the sat competition 2020”. In: SAT COMPETITION 2020
(2020), p. 50.

[61] Yoav Freund, Robert Schapire, and Naoki Abe. “A short introduction to boosting”.
In: Journal-Japanese Society For Artificial Intelligence 14.771-780 (1999), p. 1612.

[62] Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. “SAT
Competition 2020”. In: Artificial Intelligence 301 (2021), p. 103572. issn: 0004-3702.
doi: 10.1016/j.artint.2021.103572.

[63] Zhoulai Fu and Zhendong Su. “XSat: A Fast Floating-Point Satisfiability Solver”. In:
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II. Ed. by Swarat Chaudhuri
and Azadeh Farzan. Vol. 9780. Lecture Notes in Computer Science. Springer, 2016,
pp. 187–209. doi: 10.1007/978-3-319-41540-6_11.

[64] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole.
“ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference -
(Competition Contribution)”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III. Ed. by Dirk
Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen. Vol. 11429. Lecture
Notes in Computer Science. Springer, 2019, pp. 209–213. doi: 10.1007/978-3-
030-17502-3_15.

[65] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and Arrays”.
In: Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings. Ed. by Werner Damm and Holger Hermanns.
Vol. 4590. Lecture Notes in Computer Science. Springer, 2007, pp. 519–531. doi:
10.1007/978-3-540-73368-3_52.

[66] Ian P. Gent, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Neil C. A. Moore,
Peter Nightingale, and Karen E. Petrie. “Learning When to Use Lazy Learning in
Constraint Solving”. In: ECAI 2010 - 19th European Conference on Artificial Intel-
ligence, Lisbon, Portugal, August 16-20, 2010, Proceedings. Ed. by Helder Coelho,

109

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-540-73368-3_52

Rudi Studer, and Michael J. Wooldridge. Vol. 215. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2010, pp. 873–878. doi: 10.3233/978-1-60750-606-
5-873.

[67] Ralf Gerlich and Christian R Prause. “Optimizing the Parameters of an Evolution-
ary Algorithm for Fuzzing and Test Data Generation”. In: 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE. 2020, pp. 338–345.

[68] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “SAGE: whitebox
fuzzing for security testing”. In: Commun. ACM 55.3 (2012), pp. 40–44. doi: 10.
1145/2093548.2093564.

[69] Patrice Godefroid, Hila Peleg, and Rishabh Singh. “Learn&Fuzz: machine learning
for input fuzzing”. In: Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -
November 03, 2017. Ed. by Grigore Rosu, Massimiliano Di Penta, and Tien N.
Nguyen. IEEE Computer Society, 2017, pp. 50–59. doi: 10 . 1109 / ASE . 2017 .
8115618.

[70] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Har-
nessing Adversarial Examples”. In: 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.
org/abs/1412.6572.

[71] Claire Le Goues, K. Rustan M. Leino, and Michal Moskal. “The Boogie Verifi-
cation Debugger (Tool Paper)”. In: Software Engineering and Formal Methods -
9th International Conference, SEFM 2011, Montevideo, Uruguay, November 14-18,
2011. Proceedings. Ed. by Gilles Barthe, Alberto Pardo, and Gerardo Schneider.
Vol. 7041. Lecture Notes in Computer Science. Springer, 2011, pp. 407–414. doi:
10.1007/978-3-642-24690-6_28.

[72] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli.
“On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust
Models”. In: CoRR abs/1810.12715 (2018). arXiv: 1810 . 12715. url: http : / /
arxiv.org/abs/1810.12715.

[73] Dario Guidotti, Stefano Demarchi, Armando Tacchella, and Luca Pulina. The Ver-
ification of Neural Networks Library (VNN-LIB). https://www.vnnlib.org. 2023.

110

https://doi.org/10.3233/978-1-60750-606-5-873
https://doi.org/10.3233/978-1-60750-606-5-873
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-642-24690-6_28
https://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
https://www.vnnlib.org

[74] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. “Program anal-
ysis as constraint solving”. In: ACM SIGPLAN Notices 43.6 (2008), pp. 281–292.

[75] Arjun K Gupta and Saralees Nadarajah. Handbook of beta distribution and its ap-
plications. CRC press, 2004.

[76] Harshit Gupta, Kyong Hwan Jin, Ha Q. Nguyen, Michael T. McCann, and Michael
Unser. “CNN-Based Projected Gradient Descent for Consistent CT Image Recon-
struction”. In: IEEE Trans. Medical Imaging 37.6 (2018), pp. 1440–1453. doi: 10.
1109/TMI.2018.2832656.

[77] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url: https:
//www.gurobi.com.

[78] Liana Hadarean, Anti Hyvärinen, Aina Niemetz, and Giles Reger. SMT-COMP
2019. https://www.smt-comp.org/2019. 2019.

[79] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel
J Smith, et al. “Array programming with NumPy”. In: Nature 585.7825 (2020),
pp. 357–362.

[80] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel
J Smith, et al. “Array programming with NumPy”. In: Nature 585.7825 (2020),
pp. 357–362.

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer
Society, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90. url: https://doi.org/
10.1109/CVPR.2016.90.

[82] Andrew Healy, Rosemary Monahan, and James F. Power. “Predicting SMT Solver
Performance for Software Verification”. In: Proceedings of the Third Workshop on
Formal Integrated Development Environment, F-IDE@FM 2016, Limassol, Cyprus,
November 8, 2016. Ed. by Catherine Dubois, Paolo Masci, and Dominique Méry.
Vol. 240. EPTCS. 2016, pp. 20–37. doi: 10.4204/EPTCS.240.2.

[83] Patrick Henriksen and Alessio R. Lomuscio. “Efficient Neural Network Verification
via Adaptive Refinement and Adversarial Search”. In: ECAI 2020 - 24th Euro-
pean Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020). Ed. by Giuseppe

111

https://doi.org/10.1109/TMI.2018.2832656
https://doi.org/10.1109/TMI.2018.2832656
https://www.gurobi.com
https://www.gurobi.com
https://www.smt-comp.org/2019
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.4204/EPTCS.240.2

De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Al-
berto Bugarín, and Jérôme Lang. Vol. 325. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2020, pp. 2513–2520. doi: 10.3233/FAIA200385.

[84] Jan Hula, David Mojzísek, and Mikolás Janota. “Graph Neural Networks for Schedul-
ing of SMT Solvers”. In: 33rd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2021, Washington, DC, USA, November 1-3, 2021. IEEE, 2021,
pp. 447–451. doi: 10.1109/ICTAI52525.2021.00072. url: https://doi.org/10.
1109/ICTAI52525.2021.00072.

[85] Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus: A Hi-
erarchical Portfolio of Solvers and Transformations”. In: Integration of AI and OR
Techniques in Constraint Programming - 11th International Conference, CPAIOR
2014, Cork, Ireland, May 19-23, 2014. Proceedings. Ed. by Helmut Simonis. Vol. 8451.
Lecture Notes in Computer Science. Springer, 2014, pp. 301–317. doi: 10.1007/
978-3-319-07046-9_22.

[86] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. “Au-
tomated analysis and debugging of network connectivity policies”. In: Microsoft
Research (2014), pp. 1–11.

[87] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. “Under-
standing and detecting real-world performance bugs”. In: ACM SIGPLAN Notices
47.6 (2012), pp. 77–88.

[88] Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and Alexander Knapp. “SMT-
based false positive elimination in static program analysis”. In: International Con-
ference on Formal Engineering Methods. Springer. 2012, pp. 316–331.

[89] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-
derfer. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”.
In: Computer Aided Verification - 29th International Conference, CAV 2017, Hei-
delberg, Germany, July 24-28, 2017, Proceedings, Part I. Ed. by Rupak Majumdar
and Viktor Kuncak. Vol. 10426. Lecture Notes in Computer Science. Springer, 2017,
pp. 97–117. doi: 10.1007/978-3-319-63387-9_5.

[90] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”. In: Com-
puter Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I. Ed. by Rupak Majumdar and Vik-
tor Kuncak. Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 97–
117. doi: 10.1007/978-3-319-63387-9_5. url: https://doi.org/10.1007/978-
3-319-63387-9_5.

112

https://doi.org/10.3233/FAIA200385
https://doi.org/10.1109/ICTAI52525.2021.00072
https://doi.org/10.1109/ICTAI52525.2021.00072
https://doi.org/10.1109/ICTAI52525.2021.00072
https://doi.org/10.1007/978-3-319-07046-9_22
https://doi.org/10.1007/978-3-319-07046-9_22
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

[91] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David
L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. “The Marabou Framework for
Verification and Analysis of Deep Neural Networks”. In: Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part I. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11561. Lecture
Notes in Computer Science. Springer, 2019, pp. 443–452. doi: 10.1007/978-3-
030-25540-4_26.

[92] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[93] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. “SMT-based model checking
for recursive programs”. In: Formal Methods in System Design 48.3 (2016), pp. 175–
205.

[94] Lars Kotthoff. “Algorithm Selection for Combinatorial Search Problems: A Survey”.
In: Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary
Approach. Ed. by Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen,
Barry O’Sullivan, and Dino Pedreschi. Vol. 10101. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 149–190. doi: 10.1007/978-3-319-50137-6_7.

[95] Lars Kotthoff. “Algorithm Selection for Combinatorial Search Problems: A Survey”.
In: Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary
Approach. Ed. by Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen,
Barry O’Sullivan, and Dino Pedreschi. Vol. 10101. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 149–190. doi: 10.1007/978-3-319-50137-6_7.

[96] Lars Kotthoff, Ian P. Gent, and Ian Miguel. “An Evaluation of Machine Learning in
Algorithm Selection for Search Problems”. In: AI Commun. 25.3 (2012), pp. 257–
270. doi: 10.3233/AIC-2012-0533. url: https://doi.org/10.3233/AIC-2012-
0533.

[97] Gereon Kremer, Aina Niemetz, and Mathias Preiner. “ddSMT 2.0: Better Delta De-
bugging for the SMT-LIBv2 Language and Friends”. In: Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Pro-
ceedings, Part II. Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12760. Lec-
ture Notes in Computer Science. Springer, 2021, pp. 231–242. doi: 10.1007/978-
3-030-81688-9_11.

113

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.3233/AIC-2012-0533
https://doi.org/10.3233/AIC-2012-0533
https://doi.org/10.3233/AIC-2012-0533
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1007/978-3-030-81688-9_11

[98] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. “Backpropagation Applied
to Handwritten Zip Code Recognition”. In: Neural Comput. 1.4 (1989), pp. 541–551.
doi: 10.1162/neco.1989.1.4.541.

[99] K. Rustan M. Leino. “Automating Theorem Proving with SMT”. In: Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July
22-26, 2013. Proceedings. Ed. by Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer, 2013,
pp. 2–16. doi: 10.1007/978-3-642-39634-2_2.

[100] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. “Perffuzz: Auto-
matically generating pathological inputs”. In: Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. 2018, pp. 254–
265.

[101] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. “Learning
Rate Based Branching Heuristic for SAT Solvers”. In: Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings. Ed. by Nadia Creignou and Daniel Le Berre. Vol. 9710.
Lecture Notes in Computer Science. Springer, 2016, pp. 123–140. doi: 10.1007/
978-3-319-40970-2_9.

[102] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. “Learning
Rate Based Branching Heuristic for SAT Solvers”. In: Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings. Ed. by Nadia Creignou and Daniel Le Berre. Vol. 9710.
Lecture Notes in Computer Science. Springer, 2016, pp. 123–140. doi: 10.1007/
978-3-319-40970-2_9. url: https://doi.org/10.1007/978-3-319-40970-2_9.

[103] Giovanni M. Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky. “DASH:
Dynamic Approach for Switching Heuristics”. In: CoRR abs/1307.4689 (2013). arXiv:
1307.4689. url: http://arxiv.org/abs/1307.4689.

[104] Yuri Malitsky. “Evolving Instance-Specific Algorithm Configuration”. In: Instance-
Specific Algorithm Configuration. Springer, 2014, pp. 93–105. isbn: 978-3-319-11229-
9. doi: 10.1007/978-3-319-11230-5. url: https://doi.org/10.1007/978-3-
319-11230-5.

[105] Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J Schwartz, and Maverick Woo. “Fuzzing: Art, Science, and Engineering”.
In: arXiv preprint arXiv:1812.00140 (2018).

114

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/978-3-642-39634-2_2
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://arxiv.org/abs/1307.4689
http://arxiv.org/abs/1307.4689
https://doi.org/10.1007/978-3-319-11230-5
https://doi.org/10.1007/978-3-319-11230-5
https://doi.org/10.1007/978-3-319-11230-5

[106] Valentin JM Manès, Soomin Kim, and Sang Kil Cha. “Ankou: guiding grey-box
fuzzing towards combinatorial difference”. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 2020, pp. 1024–1036.

[107] Guido Manfredi and Yannick Jestin. “An introduction to ACAS Xu and the chal-
lenges ahead”. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC). IEEE. 2016, pp. 1–9.

[108] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. “Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational Fuzzing”.
In: arXiv preprint arXiv:2004.05934 (2020).

[109] Martin Suda Marijn Heule Matti Järvisalo. SAT Race 2019. 2019. url: http :
//sat-race-2019.ciirc.cvut.cz/ (visited on 06/01/2019).

[110] Andrew W Moore. “Cross-validation for detecting and preventing overfitting”. In:
School of Computer Science Carneigie Mellon University (2001).

[111] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, 2008, pp. 337–340. doi:
10.1007/978-3-540-78800-3_24.

[112] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, 2008, pp. 337–340. doi:
10.1007/978-3-540-78800-3_24.

[113] Nagisetty, Vineel. “Domain Knowledge Guided Testing and Training of Neural Net-
works”. MA thesis. University of Waterloo, 2021. url: http://hdl.handle.net/
10012/17272.

[114] Saeed Nejati, Ludovic Le Frioux, and Vijay Ganesh. “A Machine Learning Based
Splitting Heuristic for Divide-and-Conquer Solvers”. In: Principles and Practice
of Constraint Programming - 26th International Conference, CP 2020, Louvain-
la-Neuve, Belgium, September 7-11, 2020, Proceedings. Ed. by Helmut Simonis.

115

http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://hdl.handle.net/10012/17272
http://hdl.handle.net/10012/17272

Vol. 12333. Lecture Notes in Computer Science. Springer, 2020, pp. 899–916. doi:
10.1007/978-3-030-58475-7_52.

[115] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Lau-
rent Simon. “Impact of community structure on SAT solver performance”. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing. Springer.
2014, pp. 252–268.

[116] Aina Niemetz and Armin Biere. “ddSMT: A Delta Debugger for the SMT-LIB v2
Format”. In: Proceedings of the 11th International Workshop on Satisfiability Modulo
Theories, SMT 2013), affiliated with the 16th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2013, Helsinki, Finland, July 8-9,
2013. 2013, pp. 36–45.

[117] Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020”. In: CoRR
abs/2006.01621 (2020). arXiv: 2006.01621. url: https://arxiv.org/abs/2006.
01621.

[118] Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020”. In: CoRR
abs/2006.01621 (2020). arXiv: 2006.01621. url: https://arxiv.org/abs/2006.
01621.

[119] Aina Niemetz and Mathias Preiner. “Ternary Propagation-Based Local Search for
more Bit-Precise Reasoning”. In: 2020 Formal Methods in Computer Aided Design,
FMCAD 2020, Haifa, Israel, September 21-24, 2020. IEEE, 2020, pp. 214–224. doi:
10.34727/2020/ISBN.978-3-85448-042-6_29. url: https://doi.org/10.
34727/2020/isbn.978-3-85448-042-6_29.

[120] Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0”. In: J. Satisf.
Boolean Model. Comput. 9.1 (2014), pp. 53–58. doi: 10.3233/sat190101.

[121] Aina Niemetz, Mathias Preiner, and Armin Biere. “Model-based API testing for
SMT solvers”. In: Proceedings of the 15th International Workshop on Satisfiability
Modulo Theories, SMT. 2017, pp. 24–28.

[122] Aina Niemetz, Mathias Preiner, and Armin Biere. “Model-Based API Testing for
SMT Solvers”. In: Proceedings of the 15th International Workshop on Satisfiability
Modulo Theories, SMT 2017), affiliated with the 29th International Conference on
Computer Aided Verification, CAV 2017, Heidelberg, Germany, July 24-28, 2017.
Ed. by Martin Brain and Liana Hadarean. 2017, 10 pages.

116

https://doi.org/10.1007/978-3-030-58475-7_52
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.3233/sat190101

[123] Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Mathias Preiner,
Clark W. Barrett, and Cesare Tinelli. “Syntax-Guided Rewrite Rule Enumeration
for SMT Solvers”. In: Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings. Ed. by Mikolás Janota and Inês Lynce. Vol. 11628. Lecture Notes in
Computer Science. Springer, 2019, pp. 279–297. doi: 10.1007/978-3-030-24258-
9_20. url: https://doi.org/10.1007/978-3-030-24258-9_20.

[124] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry
O’Sullivan. “Using Case-based Reasoning in an Algorithm Portfolio for Constraint
Solving”. In: Irish conference on artificial intelligence and cognitive science. 2008,
pp. 210–216. url: https://homepages.laas.fr/ehebrard/papers/aics2008.
pdf.

[125] Corina S. Pasareanu and Willem Visser. “A survey of new trends in symbolic exe-
cution for software testing and analysis”. In: Int. J. Softw. Tools Technol. Transf.
11.4 (2009), pp. 339–353. doi: 10.1007/s10009-009-0118-1.

[126] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019,
pp. 8024–8035. url: https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[127] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Py-
torch: An imperative style, high-performance deep learning library”. In: Advances
in neural information processing systems 32 (2019), pp. 8026–8037.

[128] Ketan Patil and Aditya Kanade. “Greybox fuzzing as a contextual bandits problem”.
In: arXiv preprint arXiv:1806.03806 (2018).

[129] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

117

https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-24258-9_20
https://homepages.laas.fr/ehebrard/papers/aics2008.pdf
https://homepages.laas.fr/ehebrard/papers/aics2008.pdf
https://doi.org/10.1007/s10009-009-0118-1
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[130] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: J. Mach. Learn. Res. 12 (2011), pp. 2825–2830. url: http://dl.acm.org/
citation.cfm?id=2078195.

[131] Nikhil Pimpalkhare, Federico Mora, Elizabeth Polgreen, and Sanjit A. Seshia. “Med-
leySolver: Online SMT Algorithm Selection”. In: Theory and Applications of Satisfi-
ability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings. Ed. by Chu-Min Li and Felip Manyà. Vol. 12831. Lecture
Notes in Computer Science. Springer, 2021, pp. 453–470. doi: 10.1007/978-3-
030-80223-3_31. url: https://doi.org/10.1007/978-3-030-80223-3_31.

[132] Nikhil Pimpalkhare, Federico Mora, Elizabeth Polgreen, and Sanjit A. Seshia. “Med-
leySolver: Online SMT Algorithm Selection”. In: Theory and Applications of Satisfi-
ability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings. Ed. by Chu-Min Li and Felip Manyà. Vol. 12831. Lecture
Notes in Computer Science. Springer, 2021, pp. 453–470. doi: 10.1007/978-3-
030-80223-3_31.

[133] Luca Pulina and Armando Tacchella. “A Multi-engine Solver for Quantified Boolean
Formulas”. In: Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007,
Proceedings. Ed. by Christian Bessiere. Vol. 4741. Lecture Notes in Computer Sci-
ence. Springer, 2007, pp. 574–589. doi: 10.1007/978-3-540-74970-7_41.

[134] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David War-
ren, Gustavo Grieco, and David Brumley. “Optimizing Seed Selection for Fuzzing”.
In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014. Ed. by Kevin Fu and Jaeyeon Jung. USENIX Association, 2014,
pp. 861–875. url: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/rebert.

[135] Alexander Reinefeld and T. Anthony Marsland. “Enhanced Iterative-Deepening
Search”. In: IEEE Trans. Pattern Anal. Mach. Intell. 16.7 (1994), pp. 701–710.
doi: 10.1109/34.297950.

[136] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Bar-
rett. “Counterexample-Guided Quantifier Instantiation for Synthesis in SMT”. In:
Computer Aided Verification. Ed. by Daniel Kroening and Corina S. Păsăreanu.

118

http://dl.acm.org/citation.cfm?id=2078195
http://dl.acm.org/citation.cfm?id=2078195
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-540-74970-7_41
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://doi.org/10.1109/34.297950

Cham: Springer International Publishing, 2015, pp. 198–216. isbn: 978-3-319-21668-
3.

[137] John R. Rice. “The Algorithm Selection Problem”. In: Adv. Comput. 15 (1976),
pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3.

[138] John R. Rice. “The Algorithm Selection Problem”. In: Adv. Comput. 15 (1976),
pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3.

[139] Cedric Richter and Heike Wehrheim. “PeSCo: Predicting Sequential Combinations
of Verifiers - (Competition Contribution)”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as
Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
III. Ed. by Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen.
Vol. 11429. Lecture Notes in Computer Science. Springer, 2019, pp. 229–233. doi:
10.1007/978-3-030-17502-3_19.

[140] Jussi Rintanen. “Madagascar: Scalable planning with sat”. In: Proceedings of the
8th International Planning Competition (IPC-2014) 21 (2014).

[141] Juan Diego Rodríguez, Aritz Pérez Martínez, and José Antonio Lozano. “Sensitivity
Analysis of k-Fold Cross Validation in Prediction Error Estimation”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 32.3 (2010), pp. 569–575. doi: 10.1109/TPAMI.2009.
187.

[142] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.
“A Tutorial on Thompson Sampling”. In: Found. Trends Mach. Learn. 11.1 (2018),
pp. 1–96. doi: 10.1561/2200000070.

[143] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
et al. “A tutorial on thompson sampling”. In: Foundations and Trends® in Machine
Learning 11.1 (2018), pp. 1–96.

[144] Gary J Saavedra, Kathryn N Rodhouse, Daniel M Dunlavy, and Philip W Kegelmeyer.
“A review of machine learning applications in fuzzing”. In: arXiv preprint arXiv:1906.11133
(2019).

[145] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. “A
Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks”.
In: Advances in Neural Information Processing Systems 32 (2019), pp. 9835–9846.

119

https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.1561/2200000070

[146] Rocco Salvia, Laura Titolo, Marco A. Feliú, Mariano M. Moscato, César A. Muñoz,
and Zvonimir Rakamaric. “A Mixed Real and Floating-Point Solver”. In: NASA
Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7-9, 2019, Proceedings. Ed. by Julia M. Badger and Kristin Yvonne Rozier.
Vol. 11460. Lecture Notes in Computer Science. Springer, 2019, pp. 363–370. doi:
10.1007/978-3-030-20652-9_25.

[147] Jonathan Schaeffer, Yngvi Björnsson, Neil Burch, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. “Solving Checkers”. In: IJCAI-05, Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005. Ed. by Leslie Pack Kaelbling
and Alessandro Saffiotti. Professional Book Center, 2005, pp. 292–297. url: http:
//ijcai.org/Proceedings/05/Papers/0515.pdf.

[148] Joseph Scott, Federico Mora, and Vijay Ganesh. “BanditFuzz: A Reinforcement-
Learning Based Performance Fuzzer for SMT Solvers”. In: Software Verification -
12th International Conference, VSTTE 2020, and 13th International Workshop,
NSV 2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected Papers. Ed.
by Maria Christakis, Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter
Schrammel. Vol. 12549. Lecture Notes in Computer Science. Springer, 2020, pp. 68–
86. doi: 10.1007/978-3-030-63618-0_5. url: https://doi.org/10.1007/978-
3-030-63618-0_5.

[149] Joseph Scott, Federico Mora, and Vijay Ganesh. “BanditFuzz: Fuzzing SMT Solvers
with Reinforcement Learning”. In: UWSpace. http://hdl.handle.net/10012/15753
(2020).

[150] Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh.
“Algorithm selection for SMT”. In: Int. J. Softw. Tools Technol. Transf. 25.2 (2023),
pp. 219–239. doi: 10.1007/s10009-023-00696-0. url: https://doi.org/10.
1007/s10009-023-00696-0.

[151] Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh.
“MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 27th Interna-
tional Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 - April 1, 2021, Proceedings, Part II. Ed. by Jan Friso Groote and Kim
Guldstrand Larsen. Vol. 12652. Lecture Notes in Computer Science. Springer, 2021,
pp. 303–325. doi: 10.1007/978-3-030-72013-1_16.

120

https://doi.org/10.1007/978-3-030-20652-9_25
http://ijcai.org/Proceedings/05/Papers/0515.pdf
http://ijcai.org/Proceedings/05/Papers/0515.pdf
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/978-3-030-72013-1_16

[152] Joseph Scott, Guanting Pan, Elias B. Khali, and Vijay Ganesh. “Pierce: A Testing
Infrastructure for Neural Network Verification Tools”. In: Submitted to VSTTE
2023. 2023.

[153] Joseph Scott, Guanting Pan, Elias B. Khalil, and Vijay Ganesh. “Goose: A Meta-
Solver for Deep Neural Network Verification”. In: Proceedings of the 20th Inter-
nal Workshop on Satisfiability Modulo Theories co-located with the 11th Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2022) part of the 8th
Federated Logic Conference (FLoC 2022), Haifa, Israel, August 11-12, 2022. Ed.
by David Déharbe and Antti E. J. Hyvärinen. Vol. 3185. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2022, pp. 99–113. url: https://ceur-ws.org/Vol-
3185/extended678.pdf.

[154] Joseph Scott, Guanting Pan, Elias B. Khalil, and Vijay Ganesh. “Pierce: A Testing
Infrastructure for Machine Learning Verification Tools”. In: URL https://guantingpan.github.io/pierce/
(2022).

[155] Joseph Scott, Maysum Panju, and Vijay Ganesh. “LGML: Logic Guided Machine
Learning (Student Abstract)”. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, 2020, pp. 13909–13910. url: https://aaai.org/ojs/
index.php/AAAI/article/view/7227.

[156] Joseph Scott, Pascal Poupart, and Vijay Ganesh. “An Algorithm Selection Ap-
proach for QF_FP Solvers”. In: 17th International Workshop on Satisfiability Mod-
ulo Theories. 2019.

[157] Joseph Scott, Trishal Sudula, Hammad Rehman, Federico Mora, and Vijay Ganesh.
“BanditFuzz: Fuzzing SMT Solvers with Multi-agent Reinforcement Learning”. In:
Formal Methods - 24th International Symposium, FM 2021, Virtual Event, Novem-
ber 20-26, 2021, Proceedings. Ed. by Marieke Huisman, Corina S. Pasareanu, and
Naijun Zhan. Vol. 13047. Lecture Notes in Computer Science. Springer, 2021, pp. 103–
121. doi: 10.1007/978-3-030-90870-6_6. url: https://doi.org/10.1007/978-
3-030-90870-6_6.

[158] Daniel Selsam and Nikolaj S. Bjørner. “NeuroCore: Guiding High-Performance SAT
Solvers with Unsat-Core Predictions”. In: CoRR abs/1903.04671 (2019). arXiv:
1903.04671. url: http://arxiv.org/abs/1903.04671.

121

https://ceur-ws.org/Vol-3185/extended678.pdf
https://ceur-ws.org/Vol-3185/extended678.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/7227
https://aaai.org/ojs/index.php/AAAI/article/view/7227
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1007/978-3-030-90870-6_6
https://arxiv.org/abs/1903.04671
http://arxiv.org/abs/1903.04671

[159] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L. Dill. “Learning a SAT Solver from Single-Bit Supervision”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/
forum?id=HJMC_iA5tm.

[160] David Shriver, Sebastian G. Elbaum, and Matthew B. Dwyer. “DNNV: A Frame-
work for Deep Neural Network Verification”. In: Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I. Ed. by Alexandra Silva and K. Rustan M. Leino. Vol. 12759. Lecture Notes
in Computer Science. Springer, 2021, pp. 137–150. doi: 10.1007/978- 3-030-
81685-8_6.

[161] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van
den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. “Mastering the game of Go with deep neural networks
and tree search”. In: Nat. 529.7587 (2016), pp. 484–489. doi: 10.1038/NATURE16961.
url: https://doi.org/10.1038/nature16961.

[162] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. “An ab-
stract domain for certifying neural networks”. In: Proc. ACM Program. Lang. 3.POPL
(2019), 41:1–41:30. doi: 10.1145/3290354.

[163] Gagandeep Singh, Jonathan Maurer, Christoph Müller, Matthew Mirman, Timon
Gehr, Adrian Hoffmann, Petar Tsankov, Dana Drachsler Cohen, Markus Püschel,
and Martin Vechev. “ETH robustness analyzer for neural networks (ERAN), 2020”.
In: URL https://github.com/eth-sri/eran (2022).

[164] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Florian Tramèr, Atul Prakash, and Tadayoshi Kohno. “Physical Adversarial
Examples for Object Detectors”. In: 12th USENIX Workshop on Offensive Tech-
nologies, WOOT 2018, Baltimore, MD, USA, August 13-14, 2018. Ed. by Christian
Rossow and Yves Younan. USENIX Association, 2018. url: https://www.usenix.
org/conference/woot18/presentation/eykholt.

[165] Eunhye Song, Barry L. Nelson, and Jeremy Staum. “Shapley Effects for Global
Sensitivity Analysis: Theory and Computation”. In: SIAM/ASA Journal on Uncer-
tainty Quantification 4.1 (2016), pp. 1060–1083. doi: 10.1137/15M1048070. eprint:
https://doi.org/10.1137/15M1048070. url: https://doi.org/10.1137/
15M1048070.

122

https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.1007/978-3-030-81685-8_6
https://doi.org/10.1007/978-3-030-81685-8_6
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1145/3290354
https://www.usenix.org/conference/woot18/presentation/eykholt
https://www.usenix.org/conference/woot18/presentation/eykholt
https://doi.org/10.1137/15M1048070
https://doi.org/10.1137/15M1048070
https://doi.org/10.1137/15M1048070
https://doi.org/10.1137/15M1048070

[166] Niklas Sorensson and Niklas Een. “Minisat v1. 13-a sat solver with conflict-clause
minimization”. In: SAT 2005.53 (2005), pp. 1–2.

[167] Matthew Sotoudeh, Zhe Tao, and Aditya V. Thakur. “SyReNN: A tool for analyzing
deep neural networks”. In: Int. J. Softw. Tools Technol. Transf. 25.2 (2023), pp. 145–
165. doi: 10.1007/S10009-023-00695-1. url: https://doi.org/10.1007/
s10009-023-00695-1.

[168] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. “From program verifi-
cation to program synthesis”. In: Proceedings of the 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 2010, pp. 313–326.

[169] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. “StarExec: A Cross-Community
Infrastructure for Logic Solving”. In: Automated Reasoning - 7th International Joint
Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 19-22, 2014. Proceedings. Ed. by Stéphane Demri, Deepak
Kapur, and Christoph Weidenbach. Vol. 8562. Lecture Notes in Computer Science.
Springer, 2014, pp. 367–373. doi: 10.1007/978-3-319-08587-6_28.

[170] Geoff Sutcliffe. “The TPTP Problem Library and Associated Infrastructure - From
CNF to TH0, TPTP v6.4.0”. In: J. Autom. Reason. 59.4 (2017), pp. 483–502. doi:
10.1007/s10817-017-9407-7.

[171] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[172] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[173] Ari Takanen, Jared D Demott, and Charles Miller. Fuzzing for software security
testing and quality assurance. Artech House, 2008.

[174] Anderson R. Tavares, Pedro H. C. Avelar, João M. Flach, Márcio Nicolau, Luís
C. Lamb, and Moshe Y. Vardi. “Understanding Boolean Function Learnability on
Deep Neural Networks”. In: CoRR abs/2009.05908 (2020). arXiv: 2009.05908. url:
https://arxiv.org/abs/2009.05908.

[175] Kevin Tierney and Yuri Malitsky. “An Algorithm Selection Benchmark of the Con-
tainer Pre-marshalling Problem”. In: Learning and Intelligent Optimization - 9th
International Conference, LION 9, Lille, France, January 12-15, 2015. Revised
Selected Papers. Ed. by Clarisse Dhaenens, Laetitia Jourdan, and Marie-Eléonore
Marmion. Vol. 8994. Lecture Notes in Computer Science. Springer, 2015, pp. 17–22.
doi: 10.1007/978-3-319-19084-6_2.

123

https://doi.org/10.1007/S10009-023-00695-1
https://doi.org/10.1007/s10009-023-00695-1
https://doi.org/10.1007/s10009-023-00695-1
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/s10817-017-9407-7
https://arxiv.org/abs/2009.05908
https://arxiv.org/abs/2009.05908
https://doi.org/10.1007/978-3-319-19084-6_2

[176] Vincent Tjeng and Russ Tedrake. “Verifying Neural Networks with Mixed Integer
Programming”. In: CoRR abs/1711.07356 (2017). arXiv: 1711.07356. url: http:
//arxiv.org/abs/1711.07356.

[177] Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. “Evaluating Robustness of
Neural Networks with Mixed Integer Programming”. In: 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/forum?id=
HyGIdiRqtm.

[178] B.A. Trakhtenbrot. “A Survey of Russian Approaches to Perebor (Brute-Force
Searches) Algorithms”. In: Annals of the History of Computing 6.4 (1984), pp. 384–
400. doi: 10.1109/MAHC.1984.10036.

[179] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jirí Vyskocil. “MaLARea SG1- Ma-
chine Learner for Automated Reasoning with Semantic Guidance”. In: Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,
August 12-15, 2008, Proceedings. Ed. by Alessandro Armando, Peter Baumgartner,
and Gilles Dowek. Vol. 5195. Lecture Notes in Computer Science. Springer, 2008,
pp. 441–456. doi: 10.1007/978-3-540-71070-7_37.

[180] Mauro Vallati, Lukás Chrpa, and Diane E. Kitchin. “Portfolio-based planning: State
of the art, common practice and open challenges”. In: AI Commun. 28.4 (2015),
pp. 717–733. doi: 10.3233/AIC-150671.

[181] Mauro Vallati, Lukás Chrpa, and Diane E. Kitchin. “Portfolio-based planning: State
of the art, common practice and open challenges”. In: AI Commun. 28.4 (2015),
pp. 717–733. doi: 10.3233/AIC-150671.

[182] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In:
CoRR abs/1706.03762 (2017). arXiv: 1706.03762. url: http://arxiv.org/abs/
1706.03762.

[183] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. “Beta-CROWN: Efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification”. In: Advances
in Neural Information Processing Systems 34 (2021).

[184] Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann, Aina Niemetz,
and Giles Reger. “The SMT Competition 2015-2018”. In: J. Satisf. Boolean Model.
Comput. 11.1 (2019), pp. 221–259. doi: 10.3233/SAT190123. url: https://doi.
org/10.3233/SAT190123.

124

https://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.3233/AIC-150671
https://doi.org/10.3233/AIC-150671
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.3233/SAT190123
https://doi.org/10.3233/SAT190123
https://doi.org/10.3233/SAT190123

[185] Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann, Aina Niemetz,
and Giles Reger. “The SMT Competition 2015-2018”. In: J. Satisf. Boolean Model.
Comput. 11.1 (2019), pp. 221–259. url: https://doi.org/10.3233/SAT190123.

[186] Sheng-Han Wen, Wei-Loon Mow, Wei-Ning Chen, Chien-Yuan Wang, and Hsu-
Chun Hsiao. Enhancing Symbolic Execution by Machine Learning Based Solver
Selection. Jan. 2019. doi: 10.14722/bar.2019.23080.

[187] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “On the unusual effective-
ness of type-aware operator mutations for testing SMT solvers”. In: Proceedings of
the ACM on Programming Languages 4.OOPSLA (2020), pp. 1–25.

[188] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “On the unusual effective-
ness of type-aware operator mutations for testing SMT solvers”. In: Proc. ACM
Program. Lang. 4.OOPSLA (2020), 193:1–193:25. doi: 10.1145/3428261.

[189] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “Validating SMT solvers via
semantic fusion”. In: Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020. Ed. by Alastair F. Donaldson and Emina Torlak. ACM,
2020, pp. 718–730. doi: 10.1145/3385412.3385985.

[190] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “Validating SMT solvers via
semantic fusion.” In: PLDI. 2020, pp. 718–730.

[191] Wolfram Alpha: Computational Intelligence. Accessed: 2023-05-25. 2023. url: https:
//www.wolframalpha.com/.

[192] D.H. Wolpert and W.G. Macready. “No free lunch theorems for optimization”. In:
IEEE Transactions on Evolutionary Computation 1.1 (1997), pp. 67–82. doi: 10.
1109/4235.585893.

[193] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. “Scheduling
black-box mutational fuzzing”. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung. ACM, 2013, pp. 511–522.
doi: 10.1145/2508859.2516736.

[194] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang,
Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. “Automatic perturbation analysis
for scalable certified robustness and beyond”. In: Advances in Neural Information
Processing Systems 33 (2020).

125

https://doi.org/10.3233/SAT190123
https://doi.org/10.14722/bar.2019.23080
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3385412.3385985
https://www.wolframalpha.com/
https://www.wolframalpha.com/
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/2508859.2516736

[195] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-
Jui Hsieh. “Fast and Complete: Enabling Complete Neural Network Verification
with Rapid and Massively Parallel Incomplete Verifiers”. In: International Confer-
ence on Learning Representations. 2021. url: https://openreview.net/forum?
id=nVZtXBI6LNn.

[196] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “: The Design
and Analysis of an Algorithm Portfolio for SAT”. In: Principles and Practice of
Constraint Programming - CP 2007, 13th International Conference, CP 2007, Prov-
idence, RI, USA, September 23-27, 2007, Proceedings. Ed. by Christian Bessiere.
Vol. 4741. Lecture Notes in Computer Science. Springer, 2007, pp. 712–727. doi:
10.1007/978-3-540-74970-7_50.

[197] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Evaluating Com-
ponent Solver Contributions to Portfolio-Based Algorithm Selectors”. In: Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International Confer-
ence, Trento, Italy, June 17-20, 2012. Proceedings. Ed. by Alessandro Cimatti and
Roberto Sebastiani. Vol. 7317. Lecture Notes in Computer Science. Springer, 2012,
pp. 228–241. doi: 10.1007/978-3-642-31612-8_18.

[198] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla-07:
The Design and Analysis of an Algorithm Portfolio for SAT”. In: Principles and
Practice of Constraint Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceedings. Ed. by Christian
Bessiere. Vol. 4741. Lecture Notes in Computer Science. Springer, 2007, pp. 712–
727. doi: 10.1007/978-3-540-74970-7_50.

[199] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla: Portfolio-
based Algorithm Selection for SAT”. In: J. Artif. Intell. Res. 32 (2008), pp. 565–606.
doi: 10.1613/jair.2490.

[200] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla: Portfolio-
based Algorithm Selection for SAT”. In: J. Artif. Intell. Res. 32 (2008), pp. 565–606.
doi: 10.1613/jair.2490.

[201] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “SATzilla2009: an
automatic algorithm portfolio for SAT”. In: SAT 4 (2009), pp. 53–55.

[202] Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown.
“SATzilla2012: Improved algorithm selection based on cost-sensitive classification
models”. In: Proceedings of SAT Challenge (2012), pp. 57–58.

126

https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1007/978-3-540-74970-7_50
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/978-3-540-74970-7_50
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

[203] Gaolei Yi, Xinyi Wang, and Yichen Wang. “An Empirical Study of Counterexample-
Guided Fuzzing for Neural Networks Verification”. In: 7th International Conference
on Dependable Systems and Their Applications, DSA 2020, Xi’an, China, November
28-29, 2020. IEEE, 2020, pp. 108–113. doi: 10.1109/DSA51864.2020.00022.

[204] Kazuki Yoshizoe and Martin Müller. “Computer Go”. In: Encyclopedia of Computer
Graphics and Games. Ed. by Newton Lee. Springer, 2019. doi: 10.1007/978-3-
319-08234-9_20-1. url: https://doi.org/10.1007/978-3-319-08234-9_20-1.

[205] Michal Zalewski. afl-fuzz: making up grammar with a dictionary in hand. 2015. url:
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-
with.html (visited on 01/01/2015).

[206] Michal Zalewski. American fuzzy lop. 2015.
[207] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. “Effi-

cient Neural Network Robustness Certification with General Activation Functions”.
In: Advances in Neural Information Processing Systems 31 (2018), pp. 4939–4948.
url: https://arxiv.org/pdf/1811.00866.pdf.

[208] Yao Zhang, Xiaofei Xie, Yi Li, Yun Lin, Sen Chen, Yang Liu, and Xiaohong Li.
“Demystifying Performance Regressions in String Solvers”. In: IEEE Transactions
on Software Engineering (2022). doi: 10.1109/TSE.2022.3168373.

[209] Yao Zhang, Xiaofei Xie, Yi Li, Yun Lin, Sen Chen, Yang Liu, and Xiaohong Li.
“Demystifying Performance Regressions in String Solvers”. In: IEEE Trans. Software
Eng. 49.3 (2023), pp. 947–961. doi: 10.1109/TSE.2022.3168373. url: https:
//doi.org/10.1109/TSE.2022.3168373.

[210] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph neural networks: A review
of methods and applications”. In: AI open 1 (2020), pp. 57–81.

127

https://doi.org/10.1109/DSA51864.2020.00022
https://doi.org/10.1007/978-3-319-08234-9_20-1
https://doi.org/10.1007/978-3-319-08234-9_20-1
https://doi.org/10.1007/978-3-319-08234-9_20-1
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://arxiv.org/pdf/1811.00866.pdf
https://doi.org/10.1109/TSE.2022.3168373
https://doi.org/10.1109/TSE.2022.3168373
https://doi.org/10.1109/TSE.2022.3168373
https://doi.org/10.1109/TSE.2022.3168373

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Satisfiability
	Boolean Satisfiability
	Mixed Integer Linear Programming
	Satisfiability Modulo Theories (SMT)

	Machine Learning
	Supervised Learning
	Ridge Regression
	Reinforcement Learning
	Unsupervised and Semi-Supervised Learning

	Machine Learning based Algorithm Selection for SMT Solvers
	Motivation
	MachSMT
	Features and Preprocessing
	Supervised Learning Core
	Configurations of MachSMT
	Using MachSMT
	Allocating Resources with MachSMT
	User-defined Features

	SMT-COMP
	Experimental Setup and Methodology
	Experimental Results
	Discussion

	CVC5
	Experimental Setup and Methodology
	Experimental Results

	Network Evaluation
	Experimental Setup and Methodology
	Experimental Results

	Analysis
	Related Work
	Key differences between SATZilla and MachSMT
	Algorithm Selection for Logic Solvers and Their Applications

	Conclusions

	Meta-Solving for Neural Network Verification
	Motivation
	Preliminaries
	Goose
	A High-Level Overview of Goose
	Input/Output and Preprocessing
	Prediction Engine and ML-Driven Meta-Solving
	The Subsolvers of Goose
	Algorithmic Description
	Implementation Details, Usage, and Extending Goose

	Evaluation on VNN-COMP `21 and `22
	Experimental Setup
	Results on VNN-COMP '21 Benchmarks
	Results on VNN-COMP '22 Benchmarks
	Analysis of Results

	Related Work
	Conclusions

	Reinforcement Learning based Performance Fuzzing of SMT Solvers
	Motivation
	BanditFuzz
	Description of the BanditFuzz Algorithm
	Instance Generator and Grammar-preserving Mutator
	Agents and Reward-driven Feedback Loop in BanditFuzz
	Performance Margins and Scoring
	Multi-Agent Fuzzing

	Implementation and Engineering
	Usage
	Using smtfuzz
	Using banditfuzz

	Evaluation on SMT-LIB and Solvers
	Experimental Setup
	Results

	Case Study with SMT Solver Developers
	CVC4, Bitwuzla, and SymFPU
	Z3 String Solver

	Related Work
	Conclusion

	Fuzzing Neural Network Verification Solvers
	Motivation
	Pierce
	Architecture Overview
	Command Line Interfaces
	Potential Use Cases

	Performance Fuzzing Neural Network Verification Solvers
	Experimental Setup
	Evaluation and Analysis of Results

	Related Work
	Conclusion

	Conclusions and Future Work
	References

