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Abstract

Public blockchain systems like Ethereum and Bitcoin suffer from poor transaction
throughput, leading to delayed transaction execution and high transaction fees. They ex-
ecute transactions one by one, failing to extract inherent parallelism possible in executing
the workload.

We present Block-X, a parallel transaction processing system with a serializable con-
currency control that executes transactions in a block in a serializable order equivalent to
the order of transactions in the block for public blockchains. It pre-executes transactions
that are waiting to be added to a block. Through this pre-execution, Block-X estimates
the keys a transaction wants to read or write. It uses this information to create a parallel
execution schedule and run transactions optimistically in parallel following the schedule.
It also uses the pre-execution to prefetch data that will be accessed during the critical path
transaction execution. If a smart contract transaction accesses data outside of its initially
estimated read-write set of keys, Block-X detects and resolves any potential conflicts. The
final state is equivalent to the state produced after the sequential execution of transactions
in the block order. Finally, Block-X also accelerates the process of validating blocks by
providing the parallel execution schedule produced in the block execution step to validate
transactions in parallel.

We implemented our system on Ethereum so it is compatible with EVM chains. Our
evaluation demonstrates that Block-X achieves up to a 2.3× higher throughput than
Ethereum. Moreover, our performance is comparable to other systems that perform pes-
simistic execution. These systems require predefined read-write set and reject transactions
that use data outside of it.
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Chapter 1

Introduction

Smart contracts are increasingly used to build a wide range of applications in fields such as
finance [35, 43, 34, 9], IoT [17], healthcare [25, 12], and supply chain [36, 33]. Centralized
services like VISA has the capacity to process 65000 transactions per second[41]. However,
public blockchain systems offer poor transaction throughput. They struggle to cope with
the increased demand because of their low throughput [7, 18] that leads to significant
increases in transaction processing fees [31]. To achieve mainstream adoption of emerging
smart contract applications, modern blockchain systems must offer high throughput for
processing transactions.

Two main factors impact the performance of state-of-the-art blockchains: slow con-
sensus protocols that agree on new state of blockchain [13], and inefficient processing of
smart contract transactions. Recent efforts focused on improving the performance of the
consensus protocol [24, 45, 20, 37] leading to the adoption of new protocols in public
blockchains [24, 15]. However, there is relatively limited work on improving the through-
put of transaction processing. State-of-the-art blockchains have a low throughput as they
process transactions sequentially and fail to utilize inherent concurrency in the workload.

Previous work tried to accelerate transaction execution by executing multiple trans-
actions in parallel using one of the following approaches: optimistic and pessimistic con-
currency control. Systems that use optimistic concurrency protocol [23, 5, 30] execute
transactions in parallel and subsequently detect conflicts. If a conflict is detected, transac-
tions are aborted and re-executed. In public blockchain workloads, transactions perform
expensive cryptographic operations and have a long chain of dependencies. These systems
suffer from high abort rate, resulting in multiple re-executions. Systems that follow the
pessimistic concurrency control [40, 44] require knowing the set of keys a transaction will
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read or write in advance. This scheme locks accessed keys before the execution of a trans-
action to avoid conflicts. Any transaction accessing data outside of the set is aborted and
rejected. This method complicates application development, especially with transactions
that change the set of accessed keys at runtime.

We present Block-X: a high-throughput transaction processing system that uses a hy-
brid approach for concurrency control. Block-X uses read and write sets for each trans-
action to build a dependency graph and generate initial parallel execution schedule. To
avoid tasking the developers with providing these sets, Block-X pre-executes transactions to
estimate their read-write sets. To support transactions with read-write sets that change be-
tween runs, Block-X detects new dependencies at runtime and fall back to serial execution
of conflicted transactions. This approach overcomes the limitations of the current systems.
Pre-executing transactions relieves developers from setting read-write set as needed by the
pessimistic approach. Using read-write set as hints to build an execution schedule, reduces
the number of aborts experienced by the optimistic approach.

To achieve high throughput, Block-X leverages three workload characteristics. First,
most transactions are known in advance [16]. They are buffered in memory (a.k.a, mem-
pool) until they are included in a block. Block-X pre-executes transactions while they
are waiting in the mempool. Pre-execution has two benefits. It identifies the read-write
set for a transaction. Block-X uses this set to build dependency graph and generate an
initial parallel execution schedule for transaction processing in a block. Furthermore, pre-
execution fetches and caches data from the disk. This significantly reduces I/O overhead
of the execution of transactions in the critical path.

Second, transactions rarely alter their read-write set between re-executions. Block-X
implements an optimized path for the majority of transactions that only accesses keys in
their read-write set and support two policies for handling conflicts: Discard-and-reexecute
and merge-and-resume. In the Discard-and-reexecute approach, we discard intermediate
state mutations, merge the set of transactions of the two conflicted worker threads, and
re-execute the merged set of transactions serially. In the merge-and-resume approach, we
merge the set of transactions of the two conflicted threads, merge the mutually disjoint
intermediate state mutations, re-execute the conflicted transactions, and execute the rest
of the merged transactions serially. Discard-and-reexecute is simple and has low memory
footprint, whereas merge-and-resume has better block execution time.

Third, validators repeat the work done by miners to validate a block. Block-X leverages
this insight through recording the parallel execution schedule used by miners and making
it available to validators. We use the recorded schedule at the validators to execute the
transactions in parallel without facing any conflicts. Validators consider block as invalid if
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they detect a conflict. This is because they may observe a state that is inconsistent with
the one observed when the block is executed sequentially.

To evaluate the benefits of the proposed approach we build a prototype of Block-X over
the Ethereum Geth go-based client. We compare the performance of Block-X to sequen-
tial execution in Etheruem and pessimistic parallel approach. We use 3000 blocks from
Ethereum blockchain. Our results show that Block-X achieves up to a 2.3× higher through-
put compared to sequential execution of Etheruem. In our workload, the pessimistic ap-
proach rejects 4% of the transactions. Block-X achieves comparable performance to the
pessimistic approach without rejecting any transactions.
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Chapter 2

Related Work

Previous efforts to execute transactions in parallel followed one of the following schemes:

Optimistic concurrency control. In this scheme transactions are executed opti-
mistically and are subsequently validated to detect conflicts. If a conflict is detected trans-
actions are aborted and re-executed. In public blockchains with long chains of dependant
transactions, this scheme has a high abort rate leading to multiple re-executions.

Block-STM [23] is an in-memory, multi-version, optimistic parallel execution engine.
Block-STM executes transactions concurrently; if a conflict arises, Block-STM re-executes
the transactions with the new knowledge of dependency. It runs this trial-and-error cycle
until the execution is successful. This approach works well under low conflict. If there are
long chains of dependencies it can result in a high abort rate and can take more time than
the serial execution.

Monad [5] optimistically executes transactions in parallel, then merges the updated
state serially to check for conflicts. It avoids optimistic trial and error approach by using
static code analysis to identify dependencies. Static code analyzer may impose a high
overhead due to cross-contract calls and often over estimate the keys in the read/write set.
This overestimation reduces the chance for running transactions concurrently.

Pessimistic concurrency control. This scheme requires knowing the set of keys a
transaction will read or write. It locks accessed keys before the execution of a transaction
to avoid conflicts. This scheme tasks developers to provide accurate read-write set in
advance. Any transaction accessing data outside of the set is aborted.

Sui [40] is a blockchain that uses pessimistic concurrency control. Sui defines three
types of objects: owned, immutable, and shared. Owned objects are accessed by the owner

4



only. Immutable objects can be accessed by multiple threads but cannot be mutated.
Shared objects can be mutated by anyone. Sui requires developers to identify the shared
objects a transaction will access [21]. Sui uses this information to optimize consensus as
well as transaction processing. Transactions that do not have conflict on shared objects
are executed concurrently.

Sei v1 [30] blockchain uses pessimistic concurrency control. It handles conflict by main-
taining a mapping of transaction dependencies such that only non-conflicting transactions
are allowed to run in parallel. It requires smart contract developers to define their resource
dependencies. If contract dependencies are incorrectly defined the execution of a smart
contract fails and a higher fee is charged. Sei v2 [38] is now adapting optimistic approach.
Similar to other approaches, it runs transactions optimistically and handles conflicts by
rerunning them sequentially until all conflicts are resolved. At the time of writing, Sei is
still working on the v2 implementation and are yet to roll out optimistic parallel execution
framework.

Similarly, Solana [44] requires identifying the set of keys a transaction will access. If a
transaction attempts to access keys outside the identified set, Solana rejects the transaction.

Unlike previous approaches, Block-X follows a hybrid approach. Block-X does not task
developers to provide strict read-write set for a transaction, alternatively, it pre-executes
transactions to predict the keys they access. It uses this information to build a parallel
execution schedule similar to pessimistic concurrency control. For transactions that access
keys outside their identified read-write set, Block-X provide an efficient way to handle
conflicts similar to optimistic concurrency control. It uses the predicted read-write set to
minimise aborts in an optimistic execution of transactions.
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Chapter 3

Background

Blockchain systems embody a novel computing paradigm with decentralized trust at its
core. They implement replicated state machine that enables multiple entities, such as
miners and validators, that secure the network to agree on the state changes. We now
present a background on transaction execution in the Ethereum block chain. We notice
that other blockchains have a similar architecture.

Ethereum is a popular public blockchain that supports Turing complete smart contracts.
Smart contracts are computer programs that run on the blockchain. Smart contracts
may have arbitrarily complex logic. Clients that run the blockchain software are called
nodes. They form the backbone of the blockchain network. Two types of nodes play a
critical role in a transaction execution in Ethereum: miners and validators. Clients submit
transactions to miners. A miner validates the transaction, adds the transaction to its pool
of transactions (a.k.a, mempool), and then broadcasts the transactions to other miners.
Other miners consequently validate the transactions and add them to their mempool.

Miners select a set of transactions from the mempool to include in the next block,
execute these transactions, and then participate in the consensus protocol to commit the
block on the chain. If a miner is selected by the consensus protocol, it adds the block to
the chain.

A subset of ethereum nodes act as validators. A validator validates newly added blocks
on the chain. They re-execute the transactions in the new block and verify the state
changes.

Executing transactions in a new block, reaching consensus, and validating a new block
are all on the performance critical path. Blockchain nodes start working on the next block
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Object Description
Address 20 byte long account address
Balance Account balance
Nonce Account transactions processed

Code Hash Hash of the contract code
Storage Persistent memory

Table 3.1: Some attributes of Ethereum’s state object

once the current block is validated. This is because the current block may modify the
state that is required by the transactions in the next block. These three steps impact the
throughput of the system. Previous efforts [24, 45, 20] investigate techniques to improve the
consensus protocol. In this work, we focus on improving the throughput of the execution
step at the miners and the validation step at validators.

The Ethereum Virtual Machine (EVM), a stack-based virtual machine, is responsible
for executing transactions. It uses a stack to store instruction input and output. Given a
state input to a transaction, it produces a deterministic output following the rules specified
in [43]. The EVM supports smart contract execution, which is a program on the blockchain
that comprises executable instructions. An instruction may read data from the state. Each
instruction has an associated amount of gas. Users pay gas fee for their transactions to
be included in the block. During the execution, EVM runs the instruction and burns the
associated amount of gas to prevent the execution from running into an infinite loop.

Ethereum has an account based storage model. Both user and smart contract accounts
use same object representation. Table 3.1 lists some attributes of the object. In addition
to the user object attributes smart contract objects have storage associated with it. The
storage is a persistent read-write memory. It is organized as a Merkle patricia trie [4]. Each
object has upto 2256 slots, each 32 bytes long, directly accessible using indexes starting from
0. State variables defined in contracts are mapped to slots in the storage. Statically sized
data is stored contiguously one after the other in slots starting at index 0. However, maps
and dynamic arrays have unpredictable sizes, preventing them from being stored among
statically sized data. Elements in these data structures are stored at locations determined
by computing a hash. For instance, if a one-dimensional data array A is assigned to slot
X, then A[0] is stored at keccak256Hash(X) + 0. We utilize the storage index values to
identify the state access.
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Chapter 4

System Design

Popular public blockchain systems like Ethereum execute transactions sequentially limiting
their transaction throughput. They under-utilize multi-core capabilities of modern hard-
ware. Block-X aims to execute block transactions concurrently such that the final state is
equivalent to that of sequential execution in block order. Our architecture design focuses
on extracting parallelism in the execution of transactions by miners and validators.

In order to execute transactions in parallel, we pre-execute transactions in the mempool
to estimate their read-write sets. In the critical path, miners sample transactions from the
mempool and place them in a particular order in a block. Each transaction is assigned a
unique index called Tind and a total ordering is provided among transactions in a block.
The total ordering of all transactions in a block that is created using the Tind indicates the
block order.

The estimated read-write sets are then used to generate a dependency graph of the
transactions. Block miners follow the dependency graph to schedule independent transac-
tions to different worker threads. Due to the Turing complete nature of smart contracts,
transactions can access data outside of the previously estimated read-write set. Executing
these transactions in parallel can potentially lead to unexpected data dependencies which
if left unaddressed can result in a state that is different from the state generated after
sequential execution of the transactions. Block-X introduces two approaches to handle
such conflicts: 1) Discard-and-re-execute 2) Merge-and-resume. Both re-execute necessary
transactions but differ in how they handle intermediate state changes. Once a miner gen-
erates a block, it provides the dependency information of the transactions in the block to
other validators. Validators can use that information to validate the block in parallel.

Block-X builds on top of the Go-Ethereum client. Figure 4.1 shows its high level system
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architecture. Block-X adds or modifies (colored in grey) the following components to Go-
Ethereum: Pre-execution, Dependency builder, Scheduler, Worker threads, State Storage,
and Conflict-handler. We will describe these components in turn in the following sections.

Figure 4.1: Block-X components. Modified/Added components are colored in grey

4.1 Transaction pre-execution

In order to safely execute transactions in parallel, we need to find dependencies between
transactions. We can do this by analyzing the read-write keys generated from executing
transactions before they are included in a block. Transactions are known well in advance
[16] and are buffered in the mempool as shown in Figure 4.2. Transaction pre-execution
gives an estimate of read-write keys because all executions are performed on the same state
snapshot before the block order is created. A transaction execution in a block order may
have a different control flow and data dependencies resulting in a different read-write set.
Block-X ensures all data accesses outside of the estimated read-write set are safe.

Transactions in Ethereum consists of simple transfer transactions and complex smart
contract transactions. A transfer transaction needs two account keys that do not change
when it is executed with different block order. These values can easily be extracted from the
transaction’s plain text. However, smart contract transactions can have arbitrarily complex
logic that can depend on input data and block metadata such as hash and timestamp that
is not known until the block is created. Blockchain state data that is used as an input to
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Figure 4.2: Transaction pre-execution in mempool

a smart contract may have different value due to a prior transaction executions in a block.
With different values as input, a smart contract program may have a different control flow
producing different state output.

In the Ethereum client, we first take a snapshot of the latest state, then optimistically
execute a transaction while logging all data reads and writes to generate a list of all accesses
performed by the transaction. We inspected EVM opcodes and identify those that read
or write data from the state. They are listed in Table 4.1. The logger only needs to log
keys whenever these specific EVM opcodes are called during the execution process. The
pre-execution of a transaction is capped using a “gas“ limit to avoid running into an infinite
loop. After the execution, Block-X keeps the access-list but discards the state changes that
are stored in the local buffer.

Overall, the pre-execution step can double the transaction execution in the worst case.
However, in Ethereum, miners start processing blocks even before their turn. They discard
execution and update their state as soon as they see a new valid block. In proof of work
chains, miners are continuously processing blocks and competing to add their block to
the chain. Only the winner gets to add its block, other miners simply discard their work

EVM Instruction Operation
SLOAD Read
SSTORE Write

EXTCODECOPY, EXTCODEHASH, EXTCODESIZE Read
BALANCE, SELFBALANCE Read
SELFDESTRUCT, CREATE Write

DELEGATECALL, CALL, STATICCALL, CALLCODE Read

Table 4.1: Classification of EVM instructions by operation type
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and start mining from the new updated state. This work can be used as an estimate of
read-write keys for the subsequent execution of transaction. Read-write set can also be
estimated using static analysis of the smart contract. However, static analysis tend to over
estimate the read-write keys and can be computationally expensive if exponential contract
code paths are explored.

Notation Description
T A set of transactions

readSet(ti) The read keys of ti
writeSet(ti) The write keys of ti
accessSet(ti) readSet(ti) ∪ writeSet(ti)

Table 4.2: Notation Table

4.2 Dependency builder

Typical OCC-based concurrency control protocols assume there is low contention [28] in
the workload. However, this assumption does not hold true for Ethereum which we will
explain in Section 5.1. Ethereum’s mainnet traffic exhibits high contention because a few
smart contract applications are popular. OCC protocols suffer from high aborts under
high contention. Moreover, if they provide strict serializability it further adds overhead
and restrict concurrency. Aborts are expensive as they incur significant resource overhead
and require additional resources and time to revert transactional changes. Smart contract
transactions, in particular, perform expensive cryptographic operations such as hashing
and may result in large state changes. Therefore, one of our primary design objectives is
to minimize runtime aborts, and Block-X achieves this by leveraging a dependency graph.

Definition 1: Transactional Dependency A transactional dependency where tj
depends on ti (denoted as tj → ti) if and only if j > i and

writeSet(ti) ∩ accessSet(tj) ̸= ∅
or accessSet(ti) ∩ writeSet(tj) ̸= ∅

The transactional dependency incorporates three types of dependencies ∀j > i:

1. Write-After-Write (WW): tj WW depends on ti if tj tries to update a key that is
written by ti.
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2. Write-After-Read (WR): tj WR depends on ti if tj tries to update a key that is read
by ti.

3. Read-After-Write (RW): tj RW depends on ti if tj tries to read a key that is updated
by ti.

Definition 2: Dependency Graph Given a set of transactions T = {t1, t2, ...tn},
the dependency graph G(V,E) is a directed graph where vertices V = T and edges E =
{(ti, tj) | ti → tj} ∀ti, tj ∈ T .

The dependency builder uses the read-write sets of transactions, determined during
the pre-execution step, to build the dependency graph. The dependency graph is used by
Block-X to find the weakly connected components(referred to as connected components
for brevity) in the graph. The scheduler uses that information to create a parallel trans-
action execution schedule prior to the execution step. By incorporating early dependency
information in the execution schedule, Block-X can reduce expensive runtime aborts that
can slow down the system.

Figure 4.3: An example of dependency graph built using read-write estimates from pre-
execution

Figure 4.3 shows an example of a dependency graph. In this example, the block consists
of 5 transactions. Transactions are ordered according to Tind: [T1, T2, T3, T4, T5]. Tx1 is
estimated to write object A. Tx5 is estimated to read object A before writing to it, creating
a RW dependency edge: t5 → t1. Other transactions are estimated to be independent,
without any dependency edge. Note that during the critical path execution, transactions
may access data outside of the estimated read-write set creating a conflict.

4.3 Scheduler

The scheduler is responsible for assigning tasks, consisting of a subset of transactions within
a block, to worker threads for execution. The scheduler has a pool of idle worker threads
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Figure 4.4: Example of parallel execution in Block-X. (1) The scheduler assigns tasks,
comprising of set of transactions, to worker threads. (2) Worker threads execute tasks in
parallel. Tx4 failed to observe an updated object written by Tx3, creating a RW conflict.
(3) The conflict is resolved by merging the tasks and re-executing Tx4 using the updated
object.

available for execution. It begins by creating tasks using the connected components in the
dependency graph and then initiates the execution phase of the transactions by assigning
the tasks to the first available thread in the pool. Worker threads execute tasks in parallel
before returning back to the thread pool.

Every new task, created using the parallel schedule, starts with the ready status. When
the scheduler assigns the task for an execution to a worker thread from the pool, it sets
the task status to running. If all transactions successfully complete execution, the task is
marked executed. However, if a conflict arises during the execution of a task, the status
changes to waiting-to-merge where the conflict handler waits for the conflicted task’s arrival
so that the merge operation can be performed to resolve the conflict. After the merge, the
task is ready again for re-execution.

Part 1 of Figure 4.4 shows an example in which scheduler assigns four tasks to four
different workers. Task-1 consists of two transaction: Tx1 and Tx5. In the dependency
graph, a path exists from Tx5 to Tx1; hence they are part of one connected component
that is assigned to worker-1. In the second step, workers execute tasks in parallel. Tx4
RW-conflicts with Tx3, creating a conflict that is resolved by merging Task3 with Task4.
Finally, in step 3, the merged task is again re-executed by worker-3.

The scheduler waits for all the worker threads to execute all the tasks before sending
them to batch commit the state updates that are buffered locally. This approach has both
advantages and disadvantages. On one hand, writes in the dependent transactions overlap,
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for instance Tx5 in Figure 4.4 writes to the same object as Tx1; and hence batching
the writes reduces commit operations. Moreover, data reads of subsequent dependent
transactions in a task can be serviced from the local buffer of a worker thread instead of
shared memory or database. On the other hand, it delays a transaction’s write visibility to
other worker threads until the final batch commit operation. For instance, Tx4 in Figure
4.4 failed to observe Tx3’s write. Stale reads may arise if multiple worker threads try to
read and then update the same data without seeing prior writes. Therefore, the scheduler
services all dependent transactions to one worker thread so that dependent transactions see
the latest state according to the block order. A worker thread executes task transactions
following the block order and locally buffer all the state changes. Finally, as we will now
describe, a commit operation moves all the buffered changes to the global state.

The Commit phase is separated from the execution phase with a barrier. Before the
commit phase begins, all transactions in the block must successfully finish execution. The
commit phase also requires all threads to synchronize before the scheduler sends all tasks
to commit. The commit operation can be run on multiple threads, moving the locally
buffered changes from successful task executions to the global state. The commit step
can happen in parallel because locally buffered state updates do not overlap. The conflict
handler ensures that only non-conflicting tasks successfully finish execution in parallel,
meaning all transactions within one successfully executed task have no dependencies on
any transactions from other tasks. If a system failure occurs during the commit, the block
can be re-executed deterministically to produce the same state that can be persisted to
the database.

The scheduler uses the block transactions to create a parallel schedule. For all block
transactions, it uses the dependency graph to find all the connected components. An indi-
vidual connected component encompasses all dependencies within the component transac-
tions. All transactions in the components are executed sequentially in block order by the
worker threads. However, sequential execution of a connected component may not fully
leverage parallel execution opportunities among the transactions. For instance, consider
three transactions t1, t2, and t3 with dependencies t2 → t1 and t3 → t1. All transactions
belong to a single connected component. If the entire component is included in one block,
the three transactions will be executed sequentially, followed by a single batch commit step.
Alternatively, the transactions can be divided into two blocks: the first block consisting of
t1 and the second consisting of t2 and t3. Now, t2 and t3 can be executed concurrently by
two separate workers; however, this requires an additional commit step. Breaking transac-
tions into smaller sets breaks the dependency graph components into smaller components
reducing the transaction dependencies and increasing the parallelism. It comes at the cost
of extra commit step. Given that Ethereum’s workload consists of long chain of depen-
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Figure 4.5: State transition of a worker thread. An arrow indicates the state transition.
The event that causes the transition is shown above the horizontal line while the actions
performed due to the event are shown below the horizontal line. Λ indicates null.

dencies (as further explained in Section 5) and it exhibits significant commit overhead, we
choose not to divide block transactions into smaller sets for execution. This minimizes
thread synchronization and commit overhead.

4.4 Worker thread logic

Block-X is designed to avoid synchronization between threads that can create unnecessary
delays. A worker thread is responsible for executing a task assigned by the scheduler. Only
one worker thread handles a task at a time. Each worker thread has access to the latest
global state that it uses to read data. Data is kept in the thread-local buffer once it is
retrieved from the global state. After the scheduler assigns a task to an available worker
thread, it executes the transactions in the task by iterating from the lowest Tind to the
highest Tind (block order).

The state transition of a worker thread is shown in Figure 4.5. After being initialized,
a worker thread is admitted to the thread-pool that is used by the scheduler. In the
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thread-pool, a worker thread is in ready state, waiting for a task to be assigned. Once a
worker thread receives a task from the scheduler, it transitions to running state and starts
executing the task. During execution, if the worker thread detects a conflict, it reverts
the state changes performed by the transaction and creates a merge request to inform
the conflict handler (see Section 4.6) of the new conflict. Afterwards, the worker thread
returns to the thread-pool and transitions to the ready state. Similarly, if a worker thread
sees an abort flag, it stops the execution and revert back to the ready state. Otherwise,
upon completion of the task, the worker thread becomes ready again to receive a new task.
Worker threads exit when the scheduler notifies them that no more tasks that belong to a
block are available.

An individual transaction’s status can be one of the three: running, executed or wait-
ing. Every transaction has the waiting status before it is executed. During execution,
a transaction with the running status may encounter errors according to the transaction
logic, such as running out of gas or failed assert conditions. The transaction is considered
failed; however, it is still a valid transaction that is marked executed and is included in
the block. A transaction with running status always finishes the execution and becomes
executed. A worker thread may decide to re-execute the transaction, so it discards the
state changes, and sets the transaction’s status back to the waiting.

Worker thread iterates through the task following the block order. If it encounters an
un-executed transaction, the worker thread executes it using the latest state and keeps the
state changes locally in the buffer. The worker thread may encounter an already executed
transaction due to the merging of the tasks, as explained in Section 4.6, in the past. It
validates the reads performed by such transactions to ensure that no stale reads have
occurred. An executed transaction may incur stale reads when a prior transaction, with
lower Tind, gets executed or re-executed and it updates a state object that was previously
not observed by the executed transaction with higher Tind (more on this in Section 4.6).
The executed transaction requires re-execution with updated state. A worker thread uses
a task specific Watchlist to find any stale reads. The Watchlist is a collection of key-value
pairs where a key is an updated state object and the corresponding value is the smallest
index of the transaction that updated the state object. After detecting a stale read, the
worker thread discards the state changes of the executed transaction and re-executes it.
Old discarded writes along with the new updated objects are added to the watchlist to
detect stale reads incurred by subsequent executed transactions in the task.

Each worker thread uses an Ethereum virtual machine(EVM) to execute a transaction.
A worker thread creates a thread local instance of EVM. As EVM executes transactions,
it may read/write to state objects. A write operation updates object that are buffered
locally in the thread. Subsequent transactions in a task can read the updated object from
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the buffer and avoid expensive database lookups. We attach a logger to the EVM to track
the reads and writes of the state objects during the transaction execution. This generates
a read-write set that is used to determine the transaction conflicts.

Each worker thread has a local set of owned and shared keys, where a key represents a
unique ID of a state object. These keys are populated using the pre-execution read-write
estimates of all the transactions in the task. The owned keys are the keys that the thread
exclusively owns, allowing it to update them. While the shared keys are shared among
multiple threads. The transaction’s read-write keys are validated to find conflicting access
after the execution. Each individual write is first locally checked within the set of the
owned keys. To pass validation, each individual write must be owned by the thread. If it is
not already owned, the thread requests the key manager to grant the ownership of the key.
If it succeeds the key is added to the set of owned keys. Note that a worker thread only
calls the key manager if a transaction accesses data outside the read-write set generated
from pre-execution step, otherwise the accesses are guaranteed to be safe. Similarly, a
transaction’s reads pass validation if the thread either shares or owns the keys. If the
validation fails, the worker thread stops execution, uses the EVM’s undo log to revert the
transaction’s state changes to remove invalid writes, and creates a merge request with the
conflicted worker thread. One worker thread can potentially conflict with multiple worker
threads. However, only one conflict is resolved at a time by merge operation. Eventually,
all conflicts will be resolved to successfully finish task execution. The merge request notifies
the conflict handler of the new conflict. The worker thread returns to the thread-pool and
the task waits for the conflict to be resolved before being re-executed. Otherwise, if the
validation passes, the transaction is marked as executed.

Finally, after a transaction execution, a worker thread checks for the interrupt signal
from the conflict handler. If it is set, the thread aborts and returns; otherwise, it moves to
the next transaction in order.

4.5 State Storage

Ethereum’s complete state size exceeds 1TB [2], and it continuously expands as blocks
are added to the chain. Nodes store the full state tree in the database, while partial
global state is stored in memory as shown in Figure 4.6. If the required state object is
not available in memory, the object is fetched from the database on demand. During the
execution, all EVM instances have a consistent view of the global state therefore they can
safely read data from memory. State updates are only applied to the global state during
the commit phase when all transactions are executed. The EVM instruction that initiates
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Figure 4.6: State storage in Block-X. Partial state is kept in memory, from which worker
threads read data and keep it in local buffer

data lookup first checks the local buffer before checking the shared memory and eventually
the database. Once the data is retrieved, it is kept in the local buffer, and subsequent
read/write operations use the data in the local buffer. Once all transactions in the block
are executed, the batch commit operation is called that moves modified state objects from
local buffer to the memory. Data present in memory is periodically moved to the database
if it exceeds a threshold size.

We modified the write operation of Go-Ethereum client[3] to support copy-on-write
so that a write to a state object creates a new version instead of updating in place. The
version number of a state object is assigned using the Tind, referring to the transaction that
updated the state. These new versions are kept in the thread’s local version store. The
version store keeps the state objects sorted according to the versions so that a transaction
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can perform binary search to lookup a particular version of a particular state object. Most
transactions use the latest version so they first check it before performing the binary search.
The version store enables Block-X to: 1) read a specific version of the state object for a
transaction execution and 2) revert state by discarding any state changes of the preceding
transaction. Multiple versions of the data facilitate transaction conflict resolution which
we will describe in Section 4.6.

Block-X maintains multiple versions of the state objects, which takes up extra space.
Old versions can be garbage collected after the batch commit operation.

4.6 Conflict handler

The key manager is a part of the conflict handler that detects a conflicting access performed
by a worker thread. It is a module that interfaces with the task. It keeps track of the
owned and shared keys of all threads. A thread that executes a task may invoke the
key manager to detect any potential conflicting data accesses. Threads only call the key
manager when the accessed data does not exist in their thread-local set of owned/shared
keys. Then, the accessed key must be the key that was not predicted to be accessed during
the pre-execution step. During the critical path execution, state accesses may differ from
the estimated accesses generated in the pre-execution step because of two main factors:
1) Unlike the pre-execution step that relies on the base state snapshot to estimate state
accesses for all transactions, critical path execution strictly follows block order and uses
up-to-date state. 2) Block metadata, including timestamp and hash, varies, and its value
remains unknown until the block creation time. Therefore, any transaction that uses the
block metadata as input may now have a different control flow due to the updated values.

If a thread performs an un-predicted write, a value that is not in task’s set of owned keys,
then the worker thread requests to exclusively own the key. The key manager checks that
the requested key is not owned and shared by any other thread. If successful, the worker
thread gains ownership of the key without encountering a conflict. Similarly, a request to
share a key is handled by checking that the key is not owned by any other thread. If the
request fails, it is marked as a conflict. A conflict arises because two transactions executed
by two worker threads now have a new unpredicted transactional dependency. If it is a
WW dependency, worker threads must stop execution and merge state because during the
commit phase, the worker threads are allowed to commit state in parallel. So the worker
threads must update mutually disjoint state. With RW dependency, a transaction with
higher Tind fails to observe writes performed by a transaction with lower Tind, resulting in
an abort.
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When a conflicting (source) worker thread detects a conflict, it creates a merge request
to notify the conflict handler to abort destination worker thread’s execution if it is in
the running state. This resolves conflict sooner to prevent further transaction execution
from encountering stale reads. The conflict handler aborts the destination worker thread
execution by setting an abort flag. Upon seeing the abort flag, the conflicted (destination)
worker thread stops execution and waits for the merge operation. After seeing both threads
in waiting state, the conflict handler dequeues the merge request and starts the process of
conflict resolution. Although merge request are enqueued concurrently, they are dequeued
and handled sequentially. Block-X introduces two techniques to resolve conflicts:

Discard-and-reexecute: A simple method that does not require copy on write of
the state objects. It discards all the prior work by removing the state changes in the
local buffer of both worker threads. This rolls back all of the state update performed by
the worker thread because all the state changes resulting from transaction execution are
kept in local buffers; they do not affect the global state until the commit step. A new
dependency edge is added to the dependency graph. Afterwards, it merges the source task
into the destination task by performing union operation on owned keys, shared keys and
the transactions. Then, the transactions are sorted by Tind to maintain the block order.
The new merged task now consists of a larger connected component that comprises of a
combined set of transactions from source and destination worker tasks. Finally, the task
is forwarded to the scheduler for re-execution.

Merge-and-resume: The process begins by merging the tasks, similar to Discard-
and-rexecute, and the updated state objects from the source thread into the destination
thread. This policy requires copy-on-write that creates a new version of a state objects
upon a write. Note that the locally buffered state updates are mutually disjoint and valid.
This is ensured by the source worker thread, which removes all the state changes performed
by the conflicting transaction before initiating a merge request to the destination thread.
The merge operation produces a state that is consistent with the state produced if all the
executed transactions are applied in order. Finally, the destination task is forwarded for
re-execution.

After the merge, the worker thread iterates from the beginning of the merged trans-
actions following the block order to find any transaction that remains un-executed or is
executed with stale data. An un-executed transaction is executed using the latest state
object versions from prior transactions (with lower Tind) in order. While an executed trans-
action is validated to find if it performed any stale reads. This involves checking if any
read object is part of the watchlist and if the watchlist object has a smaller Tind than the
transaction. This means the executed transaction did not observe a state update from a
recent prior (with lower Tind) transaction execution. The transaction is re-executed using
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Figure 4.7: Example of Merge-and-resume. During the parallel execution of Task-1 and
Task-2 in step-1, Tx8 RW conflicts with Tx3 by performing read on object B. After the
merge, in step-2, worker thread iterates from the beginning of the merged task and suc-
cessfully validates any stale reads performed by Tx1 and Tx3. It executes T8 using the
updated version of object B from Tx3. Tx8 now additionally updates object D. Tx16 is
already executed, however it will subsequently fail validation because an updated object
D now exists from prior transaction (Tx8) execution.

the updated version of the state object. Generally, if a transaction is executed/re-executed
in the presence of a subsequent executed transaction, as depicted in Figure 4.7, the trans-
action can update a state object that was not observed by previously executed transaction
with higher Tind. This create a stale read and a RW dependency that did not exist before.
Similarly, when a version of state object is discarded to perform a transaction re-execution,
reads performed by the subsequent executed transactions on the discarded data become
invalid. All such updated state objects are added to the watchlist along with the Tind.
A worker thread determines a transaction that can invalidate subsequent transactions by
simply keeping track of the highest Tind of the executed transaction in a task.

An example of Merge-and-resume is illustrated in Figure 4.7. During the parallel ex-
ecution of the Task-1 and Task-2, Transaction 8 (T8) reads object B that creates a RW
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dependency with T3 leading to a conflict. The conflict is resolved by merging the task-1
and task-2 along with the state updates. After the merge, worker thread iterates from
the beginning of the merged task and successfully validates T1 and T2 of any stale reads.
Afterwards, it executes T8 using the updated version of object B from T3. T8 now addi-
tionally updates object D. All the T8 writes are included in the watchlist because it may
invalidate subsequent executed transactions. Afterwards, the worker thread encounters
T16, an executed transaction, and validates it using the watchlist. The worker thread find
that it read object D that is now updated by T8. The validation will fail and T16 will be
re-executed using the updated version of object D from T8.

The conflict handler may encounter merge requests that form a cycle. One such example
would be when two tasks conflict with each other and create merge requests at the same
time. It is important to note that this does not imply a cycle in the dependency graph.
Although merge requests are enqueued concurrently, they are handled sequentially. After
the merge operation, the source task is marked with a special flag to denote that it is
completed and merged with the destination task. Subsequent merge requests to the source
task are then forwarded to the destination task. This process continues until a destination
task that is not marked as completed is found.

4.7 Correctness

We now argue that Block-X guarantees a more restrictive form of serializability where the
result of its parallel execution schedule must be equivalent to the one in which transactions
are executed serially following the block order.

Serializability The execution schedule is generated following the dependency graph
as defined in Section 4.2. If there is a dependency edge (tj → ti) in the dependency graph,
then tj must be executed after ti as it must observe the updates performed by ti. Using the
conflict serializability theorem [42], if a conflict graph, which represents conflicts between
transactions, is acyclic, then the execution schedule is serializable. The dependency edges
in the dependency graph sufficiently capture conflicts between transactions. Therefore, we
use the dependency graph as a conflict graph to show that it is acyclic.

First, we assume that no new dependencies are added to the dependency graph built by
the dependency builder module. By definition, given a set of transactions T = {t1, ..., tn},
if there is a dependency edge from tj to ti (tj → ti) in the graph, then j must be greater
than i. If the graph contains a cycle, then there exists transactional dependencies: tk →
tj → ...ti → tk such that k > j > i. This implies that there exists a dependency edge from
ti → tk where i < k which is not possible.
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The dependency graph has no cycle. So for every dependency tj → ti where j > i, we
can have a topological ordering [27] O where ti is ordered before tj O(ti) < O(tj). Worker
threads execute dependent transactions sequentially while maintaining this order. In other
words, if there is a dependency edge (tj → ti), tj is executed after ti by observing the
state updates performed by ti. Concurrent execution only happen for transactions that
do not have the dependency and can be ordered arbitrarily. Parallel execution based on
this order yields the same outcome as serial execution following the topological ordering.
A topological ordering of the graph that break ties using the Tind will produce an order
identical to the block order.

During the execution, new dependencies may arise that are resolved by merging the
tasks. Merge operation adds a dependency edge by connecting two conflicting transactions.
A new dependency edge to the graph cannot create a cycle because, according to the defini-
tion, a dependency edge only exists from a higher transaction index to a lower transaction
index (tj → ti, j > i). Therefore, the execution schedule is still serializable. The new
dependency may invalidate executed transactions with higher Tind. This is handled using
one of the two conflict handling policies: 1) Discard-and-reexecute 2) Merge-and-resume.
We will argue that the final state produced after resolving a conflict using these policies
is equivalent to the state produced when all transactions in the merged task are executed
sequentially in block order.

Discard-and-reexecute: It completely discards prior work and trivially re-execute
all the transactions sequentially in block order.

Merge-and-resume: Merge-and-resume first merges locally buffered updated state
objects. The state objects belonging to the tasks prior to the merge are mutually disjoint
because the conflict handler only allows parallel execution of transactions that do not
conflict. Transactions in both tasks are executed sequentially in block order prior to the
merge, and executed transactions in one task do not conflict with any executed transaction
in the other task. So, the merged task represents a state that is equivalent to the the state
produced if all the executed transactions are applied in block order. Note that some
transactions may not be executed and the merged state may not be equal to the state
produced if all the transactions in the merged task are executed sequentially. Transaction
execution in Block-X is deterministic: the state output after executing a transaction can
only change if and only if the input to the transaction changes. Note that during the
critical path execution, seeds that can create randomness such as block timestamp are
already determined.

In order to ensure that all transactions in the merged task are executed with the
most up-to-date state in block order, the worker thread iterates from the first to the last
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transaction in the task following the block order and checks the following:

a) If a transaction is un-executed, it executes the transaction using the state objects
from the latest preceding dependent transaction. If no preceding transaction updated the
required input state, this means the transaction has no dependency on other transactions.
Therefore, it is safe to use the base state from the database because this must be the first
transaction to use the state and it is not available in the local buffer of the worker thread.
If any preceding executed transaction (with lower Tind) updated the input state, then the
updated state version exists due to the copy-on-write operation. The transaction must
be able to observe the updated version because the execution follows the block order and
the transaction is only executed once all the transactions it depends on, according to the
dependency graph, are already executed.

b) If a transaction is already executed, it validates that all inputs/reads are the most
up-to-date according to the current execution of the task. This is achieved by checking the
watchlist, which contains the state objects that were updated/written whenever a trans-
action was executed or re-executed while a subsequent executed transaction (with higher
Tind) exists in the task. If no such subsequent executed transaction exists, stale/invalid
reads are not possible within the task. For clarity, the scenario is also depicted in Figure
4.7. If any stale read is found, the transaction’s writes are discarded, and it is re-executed
using the most up-to-date state.

This ensures that all transactions in the task will finish execution in block order with
the most up-to-date state. This produces the state equivalent to the state produced if all
the transactions in the task are executed sequentially in block order. All the tasks that
successfully finish execution do not conflict with any other task and together they contain
all the block transactions. It follows that the final state produced by all the successfully
executed tasks is equivalent to the state produced if all transactions in the block are
executed sequentially in block order.

4.8 Limitation

Every transaction pays a gas fee to become part of the blockchain. It consists of a base fee
and a priority fee known as a tip. For a transaction to be considered valid, it must meet
the minimum gas fee requirement. Additionally, transactions can offer a tip to incentivize
miners to prioritize their inclusion in the block. As a result, each transaction execution
involves updating the miner’s state object, creating a WW dependency and making the
whole execution sequential.
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Block-X removes this bottleneck by delaying the tip payment to the miner until all
the block transactions in a block finish execution. While this approach enables parallel
execution, it restricts miners from utilizing the gas tip immediately after the transaction
execution. Instead, miners can only start using the amount earned from the tip in the
subsequent block. Note that this is a minor change in the Ethereum protocol. Block-X is
still compatible with the EVM chains.

4.9 Example contract

We now provide an example that describes a token swap service provided by a popular
decentralized exchange called Uniswap-V2. It implements a factory contract and a number
of distinct token pairs contracts. Uniswap operates on the principles of automated market
making[8] where pairs of assets are stored in pooled reserves. It serves as a token exchange,
and a very popular transaction is for a user to exchange Token-A for Token-B.

A simplified token swap logic is outlined in Algorithm 1. Consider a specific instance
of a token swap, such as A to B; the swapToken function first finds the address of the
pooled reserve to swap tokens. It transfers the amount to the pair (AB) (line 2) contract
and then calls the swap function (line 4). Swap function is a part of the pair contract that
transfers the tokens to the caller address and update the reserve values of both A and B
pool. The reserve amounts are used to determine the exchange rate as per the constant
product formula [8]. The transfer function updates the caller’s balance in the ERC-20
contract with the updated values of both token-A and token-B.

Overall, the token swap only requires updates to the reserves in AB pair contract and
to the balances in ERC-20 token contract. Other users conducting different token swaps,
such as token-C to token-D, can be handled in parallel since their actions do not involve
interactions with the AB pair contract and token contract. Uniswap has thousands of
contract pairs. It can greatly improve throughput if trades are executed in parallel.
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Algorithm 1 Uniswap Token Swap

1: function swapExactTokensForTokens
2: pair ← pairfor(factory, token-A, token-B)
3: safeTransferFrom(sender, pair)
4: pair.swap(amountAOut, amountBOut, sender) ▷ Swap the token A→B

pair contract:

1: address factory;
2: uint112 reserveA;
3: uint112 reserveB;
4: function swap(amountAout, amountBout, to)
5: transfer(token-A, amountAOout, to)
6: transfer(token-B, amountBOut, to)
7: updateReserves(reserveA, reserveB)

ERC-20 contract:

1: mapping(address→ uint) balanceOf;
2: function transfer(from, to, value)
3: balanceOf[from]← balanceOf[from] - value
4: balanceOf[to]← balanceOf[to] + value
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Chapter 5

Evaluation

We compare the performance of Block-X against state-of-the-art serial and parallel execu-
tion approaches using real-world workload.

Testbed. We conduct our experiments on a cluster node having Intel XeonD D-1540 @
2.00GHz CPU with 64GBs of RAM, 1TB of SSD storage, and 1Gbps network connection.
The node has 2 sockets, each having 10 cores, with two threads sharing one core. It runs
Ubuntu 20.04.3 with Linux Kernel 5.13.0. We use Ethereum Geth version v1.11.6 with
default configuration for all the experiments. We use the default snap sync mode [6] to
sync the node with the Ethereum Mainnet.

Workload. Our experiments use 3000 Ethereum blocks on Mainnet with block num-
bers from 17607300 to 17610300. These blocks have 393,183 transactions. An Ethereum
block consists of simple transfer transactions and smart contract transactions. Transfer
transactions are simple transactions that move funds from one account to another. They
do not access keys outside their read-write sets. Smart contract transactions are more
complex and one contract can invoke other contracts. Smart contracts may access keys
outside their read-write sets. In our dataset, 70% of transactions are smart contracts, and
30% are simple transactions. Each block has a gas limit of 30 million gas units. Gas is the
unit that measures the amount of computational effort required to execute instructions on
Ethereum. The number of transactions in the block varies because different transactions
require different amount of gas depending on the transaction logic.

Alternatives. We compare the throughput of the following approaches:

• Ethereum implements serial approach where transactions are executed one after the
other in a sequence.
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• Pessimistic approach explicitly declares read-write sets. The system uses that infor-
mation to execute transactions in parallel. Once a transaction execution is complete,
the system checks and rejects a transaction if it accesses a key outside the declared
read-write sets. Solana and Sui chains adopt this approach. Note that this may cause
subsequent dependent transactions to fail, creating cascading effect. We implement
the Pessimistic approach by modifying the Go Ethereum client [3].

• Block-X. We implement Block-X by modifying the Go Ethereum client [3]. Unless
otherwise specified, the evaluation uses Block-X with merge-and-resume policy to
handle runtime conflicts.

5.1 Throughput Evaluation

We compare the throughput of the transaction processing step of the three alternatives.
Figure 5.1 shows the throughput of the three systems. The results show that Block-X
achieves 1.9 × higher throughput than Ethereum, and comparable performance to the
pessimistic approach.
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Figure 5.1: Throughput of the different systems.

To run transactions in parallel, Block-X builds a dependency graph of transactions in a
block, then finds connected components in the graph. Block-X uses one thread to execute
transactions in a connected component. To understand the level of parallelism present in
the workload, Figure 5.2 shows the number of connected components present in a block
and Figure 5.3 shows the amount of gas used by the largest connected components. The
gas in the graph is an indicator of the computational effort of the connected component.
While Figure 5.2 shows that 97% of blocks have 4 or more connected components, Figure
5.3 shows their computational overhead is highly imbalanced with the largest component
representing 37% of the workload’s computational effort. This indicates that the parallel
execution is bottlenecked by the serial execution of transaction in the largest connected
component. With the largest connected component, the maximum theoretical speedup
possible is 2.7×. Block-X achieves 1.9× speedup. It falls short of the theoretical limit due
to overhead incurred from conflict resolution, storage, and scheduling.
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Figure 5.2: Percentage of blocks with given number of connected components.

We study the viability of executing transactions in a single connected component in
parallel. Our results in Section 5.1 show that Block-X throughput is limited because of
the serial execution of the largest connected component (Figure 5.3). We analyze the
transactions in the largest connected components in all blocks and found that there is
limited opportunity to execute transactions in parallel. We sort the connected components
by size and found the longest path in the components using depth first search algorithm.
Figure 5.5 shows the size of largest connected components, with the largest one containing
24% of the block transactions while independent transactions consists of 53%. The size of
the longest path within these connected components is shown in Figure 5.5. This shows that
the longest paths in the connected components consist of atleast (87%) of the component
transactions, forming a chain of dependencies. This indicates limited opportunities to
parallelize the execution of a single connected component. Overall, this shows that a small
number of contracts are popular among users.
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Figure 5.3: Average of gas used by the largest connected components in a block
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Figure 5.4: Percentage of block transactions in largest connected components. Ind denotes
independent transactions

Figure 5.5: Percentage of block transactions in the longest path of the largest connected
components. Ind denotes independent transactions.
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Block-X achieves comparable performance to the pessimistic approach without rejecting
any transactions. The pessimistic approach doesn’t have a conflict resolution mechanism.
It simply detects access violations and rejects transactions after a transaction completes
execution. This wastes system resources by discarding executed transactions that can be
valid. In our workload, the pessimistic approach rejects 4% of transactions in total. We
also plotted the number of rejected transactions against the percentage of the blocks in
Figure 5.6. It shows that 97% of the blocks have at least 1 transaction that accesses data
outside the estimated read-write set. In Block-X, less than 1% of transactions result in
conflict, triggering the conflict resolution mechanism.

Figure 5.6: Percentage of blocks with number of transactions accessing data outside of
their read-write set

5.2 Block Execution Time

We evaluate the time it takes to complete the execution of all transactions in a block.
Figure 5.7 shows the CDF of the block execution time of the three systems.
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Figure 5.7: Block execution time.

Figure 5.7 shows that Block-X noticeably improves the block execution time compared
to Ethereum by parallelizing the block execution. Block-X reduces the median block ex-
ecution time by 50% and the 95 percentile by 37.5%. Figure 5.7 shows that Block-X
has a shorter latency tail. Block-X achieves a comparable performance to the pessimistic
approach without rejecting any transactions. In our workload, the pessimistic approach
rejects 4% of transactions because they access data outside the read-write sets.
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Figure 5.8: Throughput of Block-X’s conflict resolution policies.

Figure 5.9: CDF of execution time with different conflict handling policies
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5.3 Performance of Conflict Resolution Mechanism

We compare the performance of the two conflict resolution policies: Discard-and-reexecute
and Merge-and-resume. Figure 5.8 shows the system throughput, and Figure 5.9 shows
the block execution time. Our results show that the both techniques have comparable
performance. Discard-and-reexecute may unnecessarily repeat work when conflict arises.
Figure 5.10 shows the number of conflicts in blocks. The figure shows that 70% of blocks
do not have conflicts and over 90% of blocks have one conflict or none. Merge and resume
use copy-on-write to handle conflicts without discarding prior work. Merge and resume
does less work when it resolves conflicts.

Figure 5.10: Number of conflicts leading to merge in parallel execution
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Figure 5.11: Throughput with prefetching.

5.4 Pre-fetching

We evaluate the benefits of data prefetching. We cache the data accessed during the pre-
execution step in memory to improve the performance of the transaction execution on the
critical path. This reduces the disk accesses during the critical path execution. Figure
5.11 shows the system throughput with prefetching. It shows that prefetching improves
Block-X throughput by 24%. Block-X with prefetching achieves 2.34× higher throughput
compared to Ethereum.

5.5 Validator Evaluation

To accelerate validating a block, the validator in Block-X executes transactions in parallel
using the execution schedule created by the miner. Validators are responsible to check that
the state transition due to the transaction execution is valid. A miner can add an invalid
schedule that may give different output due to nondeterministic interleaving of the data
accesses. Validators don’t trust miners, therefore, they independently validate the block
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Figure 5.12: Block-X validator throughput as compared to the Block-X validator

Figure 5.13: Block-X validation time.
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by re-executing all the transactions. If a validator detects conflicts between transactions, it
rejects the block. Figure 5.12 compares the throughput of Block-X validator to Etheruem
validator and Figure 5.13 shows the block execution time. Block-X validator achieves
1.95 × higher validation throughput leading to 50% lower median block execution time.
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Chapter 6

Conclusion

We propose Block-X, a parallel transaction execution system for public blockchain systems.
On the Ethereum mainnet, it achieves up to a 2.3× improvement in block execution time.
Block-X optimistically executes transactions while they are in the mempool to determine
the read-write keys. Then, it uses this information to build a parallel execution schedule.
This approach minimizes conflicts on the critical execution path. Block-X is compatible
with Ethereum. The final state produced after the parallel execution matches the state
generated after the sequential execution in block order.

For future work, we plan to explore two directions. First, we intend to explore a tech-
nique that combines static and dynamic analysis of transactions to estimate the read-write
sets. Second, we aim to design and investigate a mechanism for miners to construct blocks
that facilitate highly parallelizable transaction execution. Additionally, building decentral-
ized applications that avoid using the same state objects can enable more opportunities
for parallel transaction execution.
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