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Abstract

This thesis introduces GraphSIFNet, a novel graph-based deep learning framework for spa-
tiotemporal sea ice forecasting. GraphSIFNet employs a Graph Long-Short Term Memory
(GCLSTM) module within a sequence-to-sequence architecture to predict daily sea ice
concentration (SIC) and sea ice presence (SIP) in Hudson Bay over a 90-day time horizon.
The use of graph networks allows the domain to be discretized into arbitrarily specified
meshes. This study demonstrates the model’s ability to forecast over an irregular mesh
with higher spatial resolution near shorelines, and lower resolution otherwise. Utilizing at-
mospheric data from ERA5 and oceanographic data from GLORYS12, the model is trained
to model complex spatial relationships pertinent to sea ice dynamics. Results demonstrate
the model’s superior skill over a linear combination of persistence and climatology as a sta-
tistical baseline. The model showed skill particularly in short- to medium-term (up to 35
days) SIC forecasts, with a noted reduction in root mean squared error by up to 10% over
the statistical baseline during the break-up season, and up to 5% in the freeze-up season.
Long-term (up to 90 days) SIP forecasts also showed significant improvements over the
baseline, with increases in accuracy of around 10% even at a lead time of 90 days. Variable
importance analysis via feature ablation was conducted which highlighted current sea ice
concentration and thickness as critical predictors. Thickness was shown to be important
at longer lead times during the melting season suggesting its importance as an indicator
of ice longevity, while concentration was shown to be more critical at shorter lead times
which suggests it may act as an indicator of immediate ice integrity. The thesis lays the
groundwork for future exploration into dynamic mesh-based forecasting, the use of more
complex graph structures, and mesh-based forecasting of climate phenomena beyond sea
ice.
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Finalement, je tiens également à exprimer ma profonde gratitude envers mes parents
et mes chers frères, dont les bienfaits sont trop nombreux pour être listés ici.

iv



Dedication

This is dedicated to Patrick; my light, my treasure.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments iv

Dedication v

List of Figures ix

List of Tables xiv

List of Abbreviations xv

List of Symbols xvi

1 Introduction 1

2 Background 3

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Statistical Forecasting Techniques . . . . . . . . . . . . . . . . . . . 4

2.1.2 Dynamical Sea Ice Models . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

vi



2.2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Sequence Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methodology 26

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 ERA5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 GLORYS12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 GCLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Sequence-to-Sequence Architecture . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Mesh Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.3 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.4 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.5 Model Hyperparameters and Implementation . . . . . . . . . . . . . 42

4 Results 44

4.1 Baseline Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 GraphSIFNet-Att Performance . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Comparison Between Model Configurations . . . . . . . . . . . . . . . . . . 47

4.4 Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Estimating Break-up and Freeze-up Dates . . . . . . . . . . . . . . . . . . 55

vii



5 Conclusion 61

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 68

APPENDICES 81

A Additional RMSE Heatmaps 82

B Dynamic Re-Meshing Experiment on MovingMNIST 84

viii



List of Figures

2.1 Conceptual comparison of the mechanisms of convolutional neural networks
(CNN) and graph neural networks (GNN). (a) CNNs learn kernel filters
which slide across the image to identify patterns in the image, such as edges
or gradients. (b) GNNs learn a function to update a target node’s state
vector (A) by non-linearly combining the state vectors of its neighbours (B,
C, D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The standard RNN cell in its recursive (left) and unrolled (right) repre-
sentation. Per Equation 2.26 and Equation 2.27, xt denotes the input at
time t, ht represents the hidden state at time t, yt is the output vector,
and Wh,Uh,Wy are learnable weight matrices. Bias terms are omitted for
simplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The standard LSTM cell with optional peephole connections (dotted green
lines).

⊕
represents element-wise addition,

⊗
represents element-wise mul-

tiplication, and b represents the bias terms. . . . . . . . . . . . . . . . . . . 21

2.4 A basic sequence-to-sequence model using an RNN encoder and RNN de-
coder for an input sequence of length M and output sequence of length N.
Per the RNN equations in Equation 2.26 and Equation 2.27, xt denotes the
input at timestep t, he, t and hd, t represents the encoder and decoder hidden
state at time t, respectively, yt is the output vector, and Wh,Ue,h,Ud,h,Wy

are learnable weight matrices. Bias terms are omitted for simplicity. . . . . 23

3.1 Region of interest (orange), including Hudson Bay, Foxe Basin, James Bay,
and Hudson Strait. The area covers a total area of roughly 3,300,000km2. . 27

ix



3.2 Comparison of different mesh definitions for modeling Hudson Bay. (a) A
high-resolution regular mesh with 32,856 cells, computationally intensive
but highly detailed; (b) a four-times coarsened regular mesh with 2,425 cells
lacking sufficient detail along land interfaces; (c) irregular mesh with 9,422
cells, a compromise for both computational efficiency and high resolution at
land interfaces. This approach ensures no cell overlaps land while providing
high-resolution data for critical regions like ports, passages, and areas of
meteorological interest such as the Kivalliq latent heat polynya. . . . . . . 29

3.3 Conceptual visualization of the matrices involved in Equation 3.2 and Equa-
tion 3.1 (above dotted line) and an small example matrices (below dotted
lines) for a single channel C. Note the intermediate matrix Y would simply
be the X matrix flattened . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Input images are represented as graphs by relating each neighbouring pixel
with edges. In this figure, a spatially irregular mesh is used to represent
SIC in Hudson Bay, where red dots represent graph nodes and black lines
represent edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Overall model architecture. The last hidden (ht) and cell (ct) states of
the encoder act as the context vectors and are used as the initial states of
the decoder. The encoder learns features from the n input timesteps, and
the last hidden (ht) and cell (ct) states are retained as the context vector
used to initiate the decoder, which unrolls over the fixed m desired output
timesteps. The initial input to the decoder Xt is the ice channel of the last
input timestep. GNNenc and GNNout, used to encode climatology at each
output timestep (nt o) and reduce the dimensionality of the output (ot o),
respectively, are stacked spatial convolutions with leaky ReLU activations.⊕

represents element-wise addition. . . . . . . . . . . . . . . . . . . . . . 33

3.6 Graph convolutional long-short term memory (GCLSTM) module. The
module is based on the peephole LSTM [18], with the addition of K stacked
graph convolutions applied to both the hidden states and input.

⊕
repre-

sents element-wise addition, and
⊗

represents element-wise multiplication. 34

3.7 Monthly sea ice concentration anomalies in Hudson Bay from 1993-2020.
Highlights periods of higher and lower-than-average sea ice concentrations. 38

x



3.8 Gamma values for the baseline model (Equation 3.7) showing the balance
between persistence and climatology by launch date month and lead time.
Gamma values near 0 favor persistence while values near 1 favor climatol-
ogy. Less variable ice seasons such as Jan/Feb and Aug/Sep rely more on
persistence for longer lead times. . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Performance of the baseline statistical model on SIC (a) and SIP (b) over
the test years aggregated by the month of the launch date and lead time. . 45

4.2 RMSE heatmaps for the SIC forecasting task by month and lead time
for the GraphSIFNet-Att model (a), and the RMSE differences between
GraphSIFNet-Att and the baseline (b) where negative values (blue) indi-
cate a reduction in model error relative to the baseline. . . . . . . . . . . . 46

4.3 Accuracy heatmaps for the SIP forecasting task by month and lead time for
the GraphSIFNet-Att model (a), and the difference between GraphSIFNet-
Att and the baseline (b) where positive values (red) in the difference plots
indicate an increase in model accuracy relative to the baseline. . . . . . . . 46

4.4 Difference in monthly SIC RMSE [%SIC] and SIP [%]accuracy between
GraphSIFNet-Att-Reg and GraphSIFNet-GCN relative to GraphSIFNet-
Att averaged over all 90 day forecasts launched in the given month. Negative
RMSE differences and positive accuracy differences indicate better perfor-
mance on the part of GraphSIFNet-Att relative to the other models. . . . . 47

4.5 Comparison of SIC RMSE for GraphSIFNet-Att, GraphSIFNet-Att-Reg,
and GraphSIFNet-GCN models at 15-, 30-, and 60-day forecast lead times,
initiated in May (break-up). The figure shows the difference in RMSE be-
tween GraphSIFNet-Att and both GraphSIFNet-Att-Reg and GraphSIFNet-
GCN. Subplot (a) shows the impact of the different graph convolution, while
subplot (b) shows the impact of the different meshes. Negative values in-
dicate a reduction in error in the GraphSIFNet-Att relative to the other
indicated model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



4.6 Comparison of SIC RMSE for GraphSIFNet-Att, GraphSIFNet-Att-Reg,
and GraphSIFNet-GCN models at 15-, 30-, and 60-day forecast lead times,
initiated in November (freeze-up). The figure shows the difference in RMSE
between GraphSIFNet-Att and both GraphSIFNet-Att-Reg and GraphSIFNet-
GCN. Subplot (a) shows the impact of the different graph convolution, while
subplot (b) shows the impact of the different meshes. Negative values in-
dicate a reduction in error in the GraphSIFNet-Att relative to the other
indicated model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Visualization of attention weights of the input gate applied to the input
tensors during the freeze-up (a) and melting (b) seasons overlaid on the sea
ice concentration input. Arrows indicate the primary direction and magni-
tude of information flow based on the learned attention weights. Attention
weights at the land interfaces are omitted for clarity. The attention weights
appear to be largely influenced by sea ice concentration, but other input
variables also influence the weights, for example surface sensible heat flux
in (a), and sea ice thickness in (b). . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Feature ablation with noise injection for the June and November GraphSIFNet-
Att models. Positive values indicate an increase in RMSE when each respec-
tive variable is replaced with noise. . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Sample 1-, 10-, 20-, and 30-day forecasts from GraphSIFNet-Att launched on
June 15, 2014. The climatology for each forecast day is shown for reference,
and the results of running inference after replacing sea ice concentration
(SIC) and sea ice thickness (SIT) with noise is shown. . . . . . . . . . . . 54

4.10 Break-up dates predicted by GraphSIFNet-Att at Churchill, Inukjuak, and
Quaqtaq ports for lead times of 30 and 60 days for the years 2014 to 2019
compared to the observed dates from GLORYS12. The pink shaded area
represents a 7-day buffer around a perfect forecast. Samples which fall
within this buffer are deemed correct forecasts. The annotated numbers in
parentheses are the error for each year. . . . . . . . . . . . . . . . . . . . . 56

4.11 Freeze-up dates predicted by GraphSIFNet-Att at Churchill, Inukjuak, and
Quaqtaq ports for lead times of 30 and 60 days for the years 2014 to 2019
compared to the observed dates from GLORYS12. The pink shaded area
represents a 7-day buffer around a perfect forecast. Samples which fall
within this buffer are deemed correct forecasts. The annotated numbers in
parentheses are the error for each year. . . . . . . . . . . . . . . . . . . . . 57

xii



4.12 Break-up date estimate maps from the climatological baseline (left), GraphSIFNet-
Att model predictions (middle), and the difference between the two (right).
Positive values in the difference plots indicate an increase in accuracy from
the model relative to the baseline, where accuracy is defined as the propor-
tion of predictions falling within 7 days of the observed date for the years
2014 to 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Freeze-up date estimate maps from the climatological baseline (left), GraphSIFNet-
Att model predictions (middle), and the difference between the two (right).
Positive values in the difference plots indicate an increase in accuracy from
the model relative to the baseline, where accuracy is defined as the propor-
tion of predictions falling within 7 days of the observed date for the years
2014 to 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Comparing the test loss curve when training the April model to predict sea
ice volume directly (Base) versus predicting the advection, divergence and
residual terms separately (PINN). . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 RMSE heatmaps for the SIC forecasting task by month and lead time
for the GraphSIFNet-Att model (a), and the RMSE differences between
GraphSIFNet-Att and persistence (b) and climatology (c) where negative
values (blue) indicate a reduction in model error relative to the baseline. . 82

A.2 RMSE heatmaps for the SIC forecasting task by month and lead time for
the GraphSIFNet-Att-Reg model (a), and the RMSE differences between
GraphSIFNet-Att-Reg and persistence (b) and climatology (c) where nega-
tive values (blue) indicate a reduction in model error relative to the baseline. 83

A.3 RMSE heatmaps for the SIC forecasting task by month and lead time for
the GraphSIFNet-Att-Reg model (a), and the RMSE differences between
GraphSIFNet-GCN and persistence (b) and climatology (c) where negative
values (blue) indicate a reduction in model error relative to the baseline. . 83

xiii



List of Tables

3.1 Selected input variables to the encoder, data source and rationale for inclusion. 40

3.2 Summary of developed model configurations. The models differ in their
spatial convolutions and their underlying meshes, with the aim of contrasting
the attention-based transformer convolution with the graph convolutional
network, as well as demonstrating the model’s ability to model over an
irregular mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiv



List of Abbreviations

SIC Sea ice concentration
SIP Sea ice presence
SIT Sea ice thickness
GNN Graph neural network
CNN Convolutional neural network
RNN Recurrent neural network
GRU Gated recurrent unit
GCN Graph convolutional network (Kipf and Welling convolution)
LSTM Long-short term memory
GCLSTM Graph convolutional long-short term memory
Seq2seq Sequence-to-sequence

xv



List of Symbols

∥ Concatenation operation
⊙ Element-wise multiplication
⊘ Hadamard division
∆ Difference operation
σ() Sigmoid activation function
θ Model parameters
J(θ) Loss function
η Learning rate
G Graph
V , E Sets of nodes (vertices) and edges in a graph
N (v) Set of neighbors of a node v in a graph
hv, euv Feature vectors for a node v and an edge relating node u to node v
αuv Attention coefficient
∗G Graph convolution operator
A Adjacency matrix
D Diagonal degree matrix
dv Degree of node v
L Graph Laplacian
H Node feature matrix
W,U,V Weight matrices
X Grid representation of the input data
G Mesh representation of the input data
M Grid-to-mesh mapping tensor
P Pixel count tensor for each mesh cell

xvi



Chapter 1

Introduction

The drastic loss of Arctic sea ice volume is one of the most visible and immediate impacts
of climate change [70]. The Arctic is the fastest-warming region on Earth, and this warm-
ing is affecting the sea ice cover more than any other component of the climate system
[78, 71, 8]. According to the National Snow and Ice Data Center (NSIDC), Arctic sea ice
extent (SIE)—the total area of the Arctic Ocean with at least 15% ice cover—is seeing
a steady decline. This is especially prominent in September when sea ice extent is at its
minimum [63]. Declining sea cover is connected to increasing air temperatures, changes in
atmospheric and oceanic circulation, the albedo feedback loop, and the concentration of
greenhouse gases in the atmosphere [71]. The Arctic ice cover is of particular importance
as it helps regulate the Earth’s climate, and the decline in sea ice and subsequent loss of
reflectivity directly contribute to the acceleration of climate change [50]. Changes in Arctic
sea ice cover also disturb marine and terrestrial ecological dynamics [56]; create challenges
for Northern communities [49]; and influence human activity as new trade routes become
available through the Arctic [51]. Forecasting sea ice conditions is therefore becoming in-
creasingly important as accurate knowledge of these changes would allow for more effective
preparation.

This thesis introduces a deep learning based sea ice forecasting model that employs
Graph Neural Networks (GNNs) integrated within a Long Short-Term Memory (LSTM)
module to predict daily sea ice concentration (SIC) and sea ice presence (SIP) in Hudson
Bay up to 90 days in advance. The choice of Hudson Bay as our study area is driven by
its important role as a shipping hub, the presence of communities living within the region
relying on maritime re-supply, and its unique characteristics as an in-land sea largely
isolated from the wider Arctic. The 90-day forecasting horizon addresses the needs for
planning and decision-making in industries such as shipping operations as well as the
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planning requirements of local communities residing in the region. This time horizon covers
short-term (up to 7 days), medium-term (up to a month) and long-term (up to 3 months)
planning needs. The study highlights the effectiveness of GNNs in handling irregular spatial
domains by dividing Hudson Bay into a spatially irregular mesh with a higher resolution
along shorelines. The performance of two types of spatial graph convolutions within the
model are evaluated: the basic Graph Convolutional Network (GCN) and an attention-
based transformer convolution. The model was trained using sea ice and oceanographic
data from a coupled ice-ocean reanalysis product (GLORYS12 [30]), as well as atmospheric
data from the ECMWF Reanalysis v5 (ERA5 [24]). The model’s accuracy is validated by
comparing its predictions to a statistical baseline and comparing forecasted and observed
freeze-up and break-up dates at ports on Hudson Bay.

The remainder of this thesis is organized as:

• Chapter 2 provides background on the the problem of forecasting of sea ice, tradi-
tional and deep learning methods, with a focus on convolutional and graph neural
networks.

• Chapter 3 details the methodology, including data sources, the study area, and the
design and experimental setup of the GraphSIFNet model.

• Chapter 4 presents the results of applying GraphSIFNet for forecasting sea ice in
Hudson Bay, comparing its performance with a statistical baseline and analyzing the
model’s attention mechanisms and input variable importance.

• Chapter 5 concludes the thesis by summarizing findings of this work, the advantages
of GNNs, and suggesting directions for future research.
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Chapter 2

Background

2.1 Problem Definition

Forecasting sea ice represents a critical challenge in climate science that carries signifi-
cant spatial and temporal complexity. The goal is to predict the future state of the sea
ice cover given the current atmospheric and oceanic conditions. It can therefore be for-
mulated as a next-frame prediction problem. That is, given a sequence of input frames
X = (Xt−n, ...,Xt−1,Xt), with each frame Xt ∈ Rw×h×c representing the state of sea
ice at time t, the objective is to accurately predict the next T frames in the sequence
(Xt+1, ...,Xt+T ). Here, n denotes the number of frames in the input sequence, w and h
indicate the spatial dimensions (width and height) of each frame, and c symbolizes the
number of channels in the data. These channels represent the various atmospheric and
oceanic variables which affect sea ice dynamics such as air or surface temperature, heat
fluxes, or sea ice characteristics.

The task of sea ice forecasting is challenging due to several factors:

• Temporal Dynamics: The behavior of sea ice is characterized by seasonal varia-
tions, influenced by annual climatic cycles a well as local variations in temperature,
energy fluxes and winds. These conditions dictate the formation, growth, and melt-
ing of sea ice, which vary from year to year. The predictability of sea ice state is
further complicated by the unpredictability of seasonal variations, often influenced
by broader climate trends.
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• Spatial Heterogeneity: The spatial complexity of sea ice, with areas of varying
thickness, concentration, and movement patterns, poses a challenge to models that
must effectively capture and predict these detailed spatial variations.

• Multivariate Influences: Sea ice is subject to various influencing factors. Models
must integrate a range of data sources, including atmospheric conditions, oceano-
graphic data, and historical sea ice patterns, to make accurate predictions. Invari-
ably, models cannot fully capture all relevant factors, thus compromises must be
made in selecting the most impactful input variables.

• Non-Linearity: The interaction of factors affecting sea ice is marked by non-
linearity–that is, non-linear relationships between input variables–demanding mod-
eling approaches that can effectively capture these complex relationships.

• Impacts of Climate Change: The ever-changing climate adds an additional layer
of complexity to sea ice prediction. As global temperatures rise, altering patterns
and extents of sea ice, models must evolve to accommodate these changes.

For these reasons, an effective model for sea ice forecasting must be capable of inte-
grating both spatial and temporal data, interpreting the impact of diverse environmental
variables, and adapting to ongoing climatic changes. The model should ideally be versatile
in its analytical approach, allowing for the inclusion of various data types and capable of
discerning complex patterns in both the spatial distribution and temporal evolution of sea
ice. Moreover, it should be sufficiently flexible to adjust to the changing dynamics of sea
ice under the influence of global climate change, ensuring that forecasts remain relevant
and accurate over time.

2.1.1 Statistical Forecasting Techniques

While traditional time series modeling techniques such as ARIMA have been widely used for
forecasting, they are less effective for spatiotemporal forecasting due to their inherent limi-
tations in handling spatial dependencies and complex temporal dynamics. ARIMA models,
primarily designed for univariate time series, lack the capacity to effectively model spatial
relationships and multi-dimensional data structures, which are critical in spatiotemporal
forecasting. To address these limitations, methods like Vector Autoregression (VAR) [67]
and Spatial Autoregressive (SAR) [3] models were developed, offering improved handling
of multivariate data and spatial dependencies, respectively. However, these models still
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struggled with dynamic spatial relationships and non-linear interactions [86] [12]. Space-
Time Autoregressive Integrated Moving Average (STARIMA) models [55] were introduced
to better integrate spatial dependencies with temporal dynamics. Dynamic linear models
(DLMs) and state space models [33] offered a framework for handling evolving temporal
dynamics but were limited in their spatial modeling capabilities. These statistical models
often utilize historical sea ice concentration, temperature, and other meteorological vari-
ables to make short-term forecasts. However, they lack the ability to adequately capture
the complex spatial and temporal patterns inherent in sea ice dynamics needed to forecast
over longer timeframes [41].

2.1.2 Dynamical Sea Ice Models

Dynamical models, often integrated within data assimilation systems, simulate the inter-
actions between sea ice, atmosphere, and ocean by solving a set of physical equations or
coupled partial differential equations. For instance, the Pan-Arctic Ice-Ocean Modeling
and Assimilation System (PIOMAS) [89] is a coupled ice-ocean model that assimilates
sea surface temperatures, sea ice concentration, and sea ice velocity data to simulate the
evolution of sea ice thickness and distribution, among other variables. Another significant
model is the Community Ice CodE (CICE) [27], developed by the Los Alamos National
Laboratory. CICE can function as a standalone sea ice simulator or as a component within
various climate models or data assimilation systems. The model has several interlinked
modules, including a thermodynamic model for calculating snow and ice growth, an ice
dynamics model predicting ice pack velocity based on its material strength, a transport
model detailing the advection of ice concentration and volumes, and a ridging model that
redistributes ice across thickness categories according to energy balances and strain rates.
The neXtSIM-F [82] model is another modern stand-alone sea ice model based on Brittle-
Bingham–Maxwell (BBM) sea ice rheology. It is forced by the TOPAZ ocean forecasts
as well as the ECMWF atmospheric forecast, and assimilates OSI SAF sea ice concentra-
tion. The use of a more sophisticated ice rheology such as BBM leads to more realistic
representations of processes like ice drift and ice deformation [58]. These models, while
computationally intensive and requiring extensive calibration, are relatively reliable and
have been extensively used by climate scientists, particularly in longer term climate mod-
els [28] (though they can also be used for short- and medium-term forecasting). The high
computational cost, and rigidness of these models have inspired interest in alternative
modelling techniques such as systems based on deep learning [2, 4, 1, 9].
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2.2 Deep Learning

Artificial Neural Networks (ANNs) are foundational to the concept of deep learning. Orig-
inally inspired by the biological neural networks in the human brain (under a framework
termed connectionism), ANNs were originally developed for understanding the biological
functionality of the brain and providing a computational basis for neuroscience, as well
as for performing tasks that traditional computer systems struggled with such as pattern
recognition [83]. ANNs are composed of interconnected nodes or neurons organized in
layers. These layers will typically consist of input, hidden and output layers. ANNs with
many hidden layers are referred to as deep networks (hence the term deep learning). Mul-
tilayer Perceptrons (MLPs) are one of the most basic class of feedforward ANNs. An MLP
consists of several fully-connected layers of nodes, including an input layer, one or more
hidden layers, and an output layer. In a fully-connected MLP, each neuron in one layer is
connected to each of the neurons in the subsequent layer according to a neuronal weight,
which represents the connection’s synaptic strength. The value of these weights are learned
during training by way of an optimization algorithm. The key feature of ANNs such as
MLPs is their ability to learn arbitrary non-linear functions, meaning they can be used for
a myriad tasks such as classification, regression, or pattern recognition.

2.2.1 Basic Concepts

The following subsections provide some background on the fundamental concepts in deep
learning needed to understand the model proposed in this thesis. Much more could be writ-
ten about the mathematics and statistics underlying deep learning, however for conciseness
only crucial high-level concepts are briefly discusses here.

2.2.1.1 Activation Functions

Activation functions are crucial components of ANNs as they introduce the non-linearity
required to model arbitrary functions. They typically take the form of some simple, typ-
ically continuously differentiable, non-linear function (such as the sigmoid function), and
are applied to the output of all neurons of each layer. Activation functions can take many
forms depending on the task. A few common activation functions are:

Sigmoid Function A smooth function bounded between 0 and 1, historically popular
in binary classification tasks as its output can be interpreted as a probability. The
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sigmoid function is given by

σ(z) =
1

1 + e−z
(2.1)

.

Hyperbolic Tangent (tanh) Similar to sigmoid but outputs values between -1 and 1,
beneficial in cases where zero-centered outputs are desired. The tanh function is
given by

tanh(z) =
ez − e−z

ez + e−z
(2.2)

.

Rectified Linear Unit (ReLU) Allows only positive values to pass through, introduc-
ing non-linearity while mitigating the vanishing gradient problem. Arguably the
most used activation function in deep learning due to its computational simplicity
and proven effectiveness. The ReLU function is given by

ReLU(z) = max(0, z) (2.3)

.

Leaky ReLU Variation of ReLU which allows a small, non-zero gradient when the input
is negative, alleviating the ‘dying ReLU” problem, that is, neurons becoming inactive
due to the zero-valued derivative when inputs are negative. The Leaky ReLU function
is given by

LeakyReLU(z) = max(0.01z, z) (2.4)

.

2.2.1.2 Batch Normalization

When training ANNs, data is often split into batches, that is, small subsets of the entire
training set, in order to more efficiently use computational resources, decrease training
time, and increase generalization [34]. Batch normalization is a commonly used technique
for improving the speed and stability when training ANNs. It helps combat the issue
of covariate shift, where the statistical distribution of the inputs to each layer of a deep
network change during training as a result of changing the previous layer’s weights. This
is achieved by normalizing the outputs of each layer by subtracting the batch mean and
dividing by the batch standard deviation.
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2.2.1.3 Regularization Techniques

Regularization techniques are critical in preventing overfitting in neural networks, espe-
cially when the data or model are exceedingly complex, ensuring that the model generalizes
well to unseen data. Common regularization techniques are L1/L2 regularization, dropout,
and early stopping:

L1 and L2 Regularization Both L1 and L2 regularization add a penalty term to the
loss function to discourage the model weights from becoming too large. In L1 regu-
larization the penalty is proportional to the absolute value of the magnitude of the
weights, while in L2 the penalty is proportional to the square of the magnitude of
the weights.

Dropout Dropout refers to nullifying the output of a randomly selected set of neurons
during training. That is, their contribution to the subsequent layer is temporarily
ignored, discouraging the model from overly relying on a single neuron’s contribution.

Early Stopping Early stopping refers to monitoring the model performance on a test set,
and prematurely stopping the training procedure (prior to reaching the maximum
number of training epochs) if no improvement is observed over some pre-determined
number of consecutive epochs. This prevents the network from continuing to learn
the noise in the training data after the model fully captures the learnable patterns
in the data (known as overfitting).

2.2.1.4 Backpropagation

Backpropagation is the fundamental algorithm by which ANNs are trained. During train-
ing, weights are adjusted iteratively by calculating the gradient of the loss function with
respect to the each adjustable weight of the network using the chain rule. These gradients
generally correspond to the contribution of each weight to the error. After each pass, the
weights are adjusted according to these gradients and the learning rate, which controls the
size of the step taken when updating weights. After the gradients have been calculated,
thus determining the direction in which weights should be updated, an optimizer is used
to perform the update step. Common optimizers are the basic batch gradient descent [60],
stochastic gradient descent (SGD) [60] and the Adam optimizer [37].

Batch gradient descent Batch gradient descent is one of the most fundamental forms
of the gradient descent algorithm. In this approach, the entire dataset is used to
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compute the gradient of the cost function for each iteration of the training process.
The weight update rule in Batch Gradient Descent is given by

θt+1 = θt − η · ∇θJ(θt) (2.5)

where θ represents the weights, η is the learning rate, and J is the loss function
computed over the entire dataset. This method ensures a stable descent towards the
minimum and a consistent gradient update at each iteration. However, its major
drawback is the computational inefficiency, especially with large datasets, as it re-
quires sequentially loading the entire dataset into memory and computing gradients
over all data points, leading to slow iterations. This can be remedied by using mini-
batch gradient descent, where the dataset is divided into smaller subsets, allowing
for more efficient processing and faster convergence.

Stochastic gradient descent (SGD) SGD is a variant of the gradient descent algo-
rithm that updates the model’s weights using only a single data point (or a small
batch of data points) at a time. The weight update rule in SGD is given by:

θt+1 = θt − η · ∇θJ(θt, x
(i), y(i)) (2.6)

where θ represents the weights, η is the learning rate, J is the loss function, and
(x(i), y(i)) is a sample from the training data. SGD updates weights more frequently
than in batch gradient descent, thus reducing computational cost and accelerating
training, particularly on large datasets. The stochasticity introduces more variability
into the learning process leading to a less smooth but potentially more exploratory
convergence path. This helps avoid converging on local minima, often improving
generalization.

Adam Adam (adaptive moment estimation) calculates an exponential moving average of
the gradient and the squared gradient, and the parameters β1 and β2 control the
decay rates of these moving averages. The weight update rule in Adam is

mt = β1 ·mt−1 + (1− β1) · ∇θJ(θt)

vt = β2 · vt−1 + (1− β2) · (∇θJ(θt))
2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ϵ
· m̂t

(2.7)
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where mt and vt are estimates of the first and second moments of the gradients,
respectively, and ϵ is a small scalar used to prevent division by zero. Adam is par-
ticularly effective in large datasets and complex models due to its adaptive learning
rate.

2.2.1.5 Loss Functions

Loss functions (or cost functions) are used to calculate the disparity between the output of
the model and the expected output (or ground truth). This is the J function used by the
optimizer to calculate the error gradients. Many loss functions exist, including task-specific
loss functions, but the two most basic loss functions are the mean squared error loss, and
the cross-entropy loss.

Mean Squared Error (MSE) Common in regression tasks, it computes the average of
the squares of the differences between the predicted and actual values. The formula
is

MSE =
1

n

n∑

i=1

(Yi − Ŷi)
2, (2.8)

where Yi is the actual value and Ŷi is the predicted value.

Cross-Entropy Common in classification tasks, it computes the difference between the
probability distributions of the model output and the expected output. For binary
classification, the formula is

−
n∑

i=1

[Yi log(Ŷi) + (1− Yi) log(1− Ŷi)]. (2.9)

Loss functions are crucial in training ANNs as they dictate the model’s goal. Loss func-
tions can be arbitrarily constructed depending on the task at hand, including combinations
of functions, if it desired that the model perform well according to multiple criteria.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [40] are a type of ANN optimized for processing
data that possesses a grid-like structure such as raster images. The defining feature of
CNNs is the convolutional layer that operates on a localized receptive field rather than
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operating over all data points as did the earlier fully connected ANNs. These convolutions
allow for greater spatial understanding, leading to exceptional performance in tasks that
require spatial reasoning such as image classification, object detection, or action recognition
[42]. The CNN convolution can be mathematically expressed as

(f ∗ g)(i, j) =
∑

m,n

f(m,n)g(i−m, j − n) (2.10)

where f represents the input, g is a two-dimensional kernel, and i, j are pixel coordinates.
By stacking convolutions, CNNs can capture increasingly complex patterns at higher levels
of abstraction [47]. Convolutional layers utilize kernels with learnable weights, adjusted
during backpropagation, to extract pertinent features from the input. The behavior of the
convolution operation is shaped by several hyperparameters including kernel size, stride,
and padding. Kernel size refers to the kernel’s dimensions, stride dictates the spacing of the
kernel’s movement across the input, and padding involves adding extra pixels around the
input to maintain the spatial dimensions of the output feature map. Furthermore, CNNs
often use pooling layers for down-sampling, reducing the spatial resolution of feature maps
and, consequently, the network’s computational complexity. A common method in this
context is max pooling, which is formulated as

MaxPooling(A) = max
within window

(A) (2.11)

where A represents a local region in the feature map. As with MLPs, CNNs incor-
porate non-linearity through activation functions applied after each convolution. For a
more comprehensive explanation of CNNs and their applications a good reference is Zhou
et al. (2020) [91]

2.2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of ANNs designed to operate on graph-
structured data. Like CNNs, they aim to extract patterns from data through layers that
progressively capture local structures and, eventually, global context within the graph.
Zhou et al. (2020) [91] gives a good comprehensive overview of GNNs, including a sys-
tematic taxonomy of model types and examples of real-world applications. This section
presents a more succinct overview, focusing on concepts relevant to the model proposed in
this thesis.
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2.2.3.1 Fundamental Concepts

A graph, denoted as G = (V , E), consists of nodes (or vertices) V and edges E arbitrarily
connecting these nodes. Each node v ∈ V can have associated features hv, and each
edge (u, v) ∈ E can also have associated features euv for the edge connection node u to
node v. A graph may be directed or undirected, where an undirected graph contains
edges with no specified directionality (euv ≡ evu) and a directed graph contains directed
edges (euv ̸= evu). This distinction is important as it influences graph processing (e.g.
in a graph convolution, the direction of the edges dictates the nodes involved in each
node’s convolution). Graph edges may also be weighted, giving each edge a scalar weight
corresponding to the strength of each connection.

To efficiently represent and manipulate graphs in a computational context, graphs are
often represented using matrices. Node features are represented using a feature matrix
H ∈ R|V|×dn for features of dimensionality dn, while edge features are represented using a
matrix E ∈ R|E|×de for edge features of dimensionality de. Edge connections are typically
defined using an adjacency matrix A ∈ R|V|×|V| where the entry Aij is nonzero (1 for
unweighted graphs or to the weight of the edge for weighted graphs) if there is an edge
from node i to node j, and 0 otherwise. This can of course efficiently be represented using
sparse matrix. Alternatively, the connections can be represented using a matrix E ∈ R2×|E|

where the first row contains the indices i and the second row contains the indices j of the
connections.

The power of GNNs lies in their ability to capture the dependencies and structural
information encoded in the graph. This is achieved through a process called message
passing, which iteratively aggregates and transforms feature information from neighboring
nodes. The process can be generically formulated as

h(l+1)
v = UPDATE(l)

(
h(l)
v ,AGGREGATE(l)

({
h(l)
u , e(l)uv : u ∈ N (v)

}))
(2.12)

where h
(l)
v is the node feature vector (or node embedding) of node v at layer l, e

(l)
uv is the

edge feature vector (or edge embedding) of the edge connecting u to v at layer l, N (v) de-
notes the neighborhood of node v, and AGGREGATE(l) and UPDATE(l) are differentiable
functions specific to the GNN architecture [21]. The AGGREGATE function combines
the node and/or edge feature vectors of the neighboring nodes, creating a ‘message” which
summarizes the information from these nodes. This is typically a permutation-invariant
function as graphs normally do not order connections. The UPDATE function then com-
bines this message with previous embedding h

(l)
v to create the new embedding h

(l+1)
v . As a

concrete example, the AGGREGATE function may be a simple MLP, while the UPDATE
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function may be a simple summation. The initial feature vector h
(0)
v is normally the input

features xv themselves. Each iteration aggregates information from each node’s neighbors,
thus after K iterations, each node has received information from all nodes K connections
away, referred to as the K-hop neighbourhood. Equation 2.12 is the general form of the
graph convolution, of which many specific equations have been proposed.

2.2.3.2 Graph Convolution Techniques

Graph convolution techniques form the core of many GNN architectures. They are broadly
categorized into spectral and spatial approaches, distinguished by the basis on which the
convolution operates.

Spectral Convolution Methods Spectral methods, based on signal processing theory,
analyze graphs in the spectral domain by decomposing graphs using the graph Laplacian
[11] defined as L = D−A where D is the diagonal degree matrix with diagonal elements
Dii =

∑
j Aij (that is, the number of edges connecting to node i). The eigenvalues of the

graph Laplacian (or ”spectrum“) are directly related to the frequencies within the graph.
Specifically, the eigenvectors of L represent the modes of the graph, where modes with
lower eigenvalues (thus lower frequencies) capture the graph’s broad structural patterns,
reflecting slow changes in the signal across the graph while modes with higher eigenvalues
(thus higher frequencies) capture more rapid changes, corresponding to finer details or
local structures within the graph. Thus, the graph Laplacian’s decomposition into its
eigenvalues and eigenvectors allows us to filter and analyze the graph at different levels of
granularity, facilitating the removal of noise or the extraction of meaningful patterns from
the graph signal [85].

Spectral methods have a strong theoretical basis in signal processing theory, however
a full explanation of the underlying theory is beyond the scope of this thesis as spectral
approaches are not used in the model proposed in this thesis. Still, it is instructive to
introduce basic spectral methods as spatial methods can be interpreted as an approximation
of the most widely used spectral method, the Chebyshev graph convolution (ChebNet)
[14]. ChebNet filters graph signals by truncating the Chebishev polynomial series defined
recursively by Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x for some signal
x. ChebNet is then defined as

h(l+1)
v = σ

(
K∑

k=0

Tk(L̃)h(l)
v W

(l)
k

)
(2.13)
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where h
(l)
v is the feature vector of node v at layer l, K is the order of the Chebyshev

polynomial, W
(l)
k is the learnable weight matrix for the k-th polynomial at layer l, Tk

is the k-th Chebyshev polynomial, and L̃ is the scaled graph Laplacian matrix defined
as L̃ = 2L/λmax − I, where L is the normalized graph Laplacian, λmax is the largest
eigenvalue of L, and I is the identity matrix [23]. The parameter K dictates the size of the
neighbourhood considered by the convolution. ChebNet is only one example of a spectral
graph convolution, and many more have since been proposed [91].

Spatial Convolution Methods Unlike spectral methods, spatial methods operate di-
rectly on the graph based on the nodes’ spatial relations, making them perhaps more
intuitive. A basic spatial convolution can be defined by simply multiplying the node em-
beddings H by a weight matrix W to linearly project the embeddings, propagating the
node embeddings through the graph by multiplying by the adjacency matrix A, and pass-
ing the result through some non-linear function. This may be thought of as akin to one
layer in a standard MLP. More formally, for a network with L layers, the convolution for
layer l is

H(l+1) = σ(AH(l)W(l)) (2.14)

where H(l) is the node feature matrix (or node embeddings), W(l) is the weight matrix of
the lth layer, and σ is some non-linear activation function. This is the basis for the most
fundamental spatial graph convolution (often simply referred to as the graph convolutional
network or GCN) by Kipf and Welling (2017) [38]. The paper however makes some modi-
fications to this formulation. First, self-loops (connecting each node to itself) are added to
the adjacency matrix by simply adding the identity matrix Â = A + I. This encourages
the model to update node embeddings with new information rather than replacing them,
preserving the integrity of the original node embeddings and therefore increasing stability
[38]. The adjacency matrix is also normalized using the diagonal node degree matrix D̂ of
Â with elements D̂ii =

∑
j Âij. Incorporating these two elements, the graph convolution

network is defined as
H(l+1) = σ(D̂−1/2ÂD̂−1/2H(l)W(l)). (2.15)

Note that this convolution only aggregates node features, neglecting any edge weights or
edge features. Formulated on a node-level (for a single row of H), scalar edge weights may
be added by multiplying each term in the summation by the respective edge weight euv,
becoming

h(l+1)
v = σ


 ∑

u∈N (v)∪{v}

euv√
d̂vd̂u

h(l)
u W(l)


 (2.16)
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where h
(l)
v is the feature vector of node v at layer l, N (v) denotes the set of neighbors of

node v, W(l) is the weight matrix for layer l, and d̂v is the degree terms from D̂ for node
v. High-dimensional edge features are not considered in this convolution, instead, a scalar
edge weight euv is used.

Note that this can also be framed as a simplification of ChebNet described above when
using a first-order approximation. That is, the GCN considers only the first-order term
(K = 1) of the Chebyshev polynomial and approximates the largest eigenvalue λmax ≈ 2.
This approximation simplifies the ChebNet from Equation 2.13 to

h(l+1)
v = σ

(
T0(L̃)h(l)

v W
(l)
0 + T1(L̃)h(l)

v W
(l)
1

)
. (2.17)

Simplifying further by using a single weight matrix W(l) = W
(l)
0 = −W(l)

1 and recalling
that T0(x) = 1 and T1(x) = x, this becomes

h(l+1)
v = σ

(
(I + L̃)(h(l)

v W(l))
)
. (2.18)

Finally, recalling that L = D −A and L̃ = 2L/λmax − I, this is identical in form to the
GCN in Equation 2.15.

Other forms of spatial graph convolutions exist beyond the basic GCN. For instance,
another popular class is the GraphSAGE (Graph Sample and Aggregating) [20] graph con-
volution. Instead of processing the entire graph by multiplying the adjacency matrix with
the weight vector as in Equation 2.15, GraphSAGE samples a fixed number of neighbors
for each node to generate updated node embeddings. The generic form of GraphSAGE is
expressed similarly to the generic convolution in Equation 2.12 as

h(l+1)
v = UPDATE(l)

(
h(l)
v ,AGGREGATE(l)

({
h(l)
u , e(l)uv : u ∈ Ns(v)

}))
(2.19)

with the only modification being the addition of a node sampling strategy Ns, which
could take the form of a fixed random sample, for instance. The node sampling procedure
improves computational complexity thereby more efficiently handling large or dynamic
graphs, and allows for superior inductive learning as it can generate embeddings for nodes
not seen during training, contrary to the GCN that considers all nodes.

Attention mechanisms have played a key role in many important innovations in the field
of artificial intelligence from language modelling [76] to computer vision tasks [15], thus
attention-based GNNs have also become popular [73]. In its simplest form, an attention-
based spatial graph convolution adds an attention term to the aggregation

h(l+1)
v = UPDATE(l)


h(l)

v ,
∑

u∈N(v)

α(l)
uv · f (l)

(
h(l)
u , e(l)uv

)

 (2.20)
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where f() is an arbitrary transformation function applied to the node and/or edge em-
beddings, and αuv is an attention coefficient applied to the edge relating node u to node
v, determined using some attention mechanism. These attention mechanisms normally aid
in graph based tasks by allowing the model to focus on important parts of the graph. This
is achieved by allowing each node to selectively attend to its neighbors based on the input
features and a set of learned weights. The primary theoretical benefit of using attention in
GNNs is its ability to capture context-dependent relationships in the graph, which might
be overlooked by conventional aggregation methods. For instance, in graphs with complex
interactions or varying node degrees, attention can provide a more adaptable and precise
way to aggregate information from neighbors.

Numerous attention-based graph convolutions have been proposed. A widely used
example is the graph attention network (GAT) [77] given by

h(l+1)
v = σ


 ∑

u∈N (v)∪{v}
α(l)
uvW

(l)
1 h(l)

u


 (2.21)

with attention coefficients determined by

α(l)
uv = softmax

(
σ
(
W

(l)
2

[
W

(l)
1 h(l)

v ∥W(l)
1 h(l)

u

]))
(2.22)

where W1 and W2 are learnable weight matrices and ∥ denotes concatenation [85]. An-
other example is the transformer graph convolution [66] which uses a query-key-value
self-attention mechanism rather than the simpler attention mechanism based on feature
concatenation and transformation used in the GAT. The transformer convolution is given
by

h(l+1)
v = σ


W

(l)
1 h(l)

v +
∑

u∈N (v)∪{v}
α(l)
uv(W

(l)
2 h(l)

u + W
(l)
3 euv)


 (2.23)

with attention coefficients determined by

α(l)
uv = softmax

(
(W

(l)
4 h

(l)
v )T (W

(l)
4 h

(l)
u + W

(l)
3 euv)√

d

)
(2.24)

where W1, W2, W3, W4 are weight matrices and d is the feature dimensionality. This is
the convolution operator used in this thesis, selected over GAT due to the ability to use
edge features, and the ability to capture more nuanced node feature interactions due to the
query-key-value mechanism. Note however, that in this convolution the edge features must
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(a) CNN: Kernel filters
(bottom figures) are learned
to extract patterns in an

image of a building.

(b) GNN: Non-linear functions are learned
to model the relationship between
neighboring nodes in a graph.

Figure 2.1: Conceptual comparison of the mechanisms of convolutional neural networks
(CNN) and graph neural networks (GNN). (a) CNNs learn kernel filters which slide across
the image to identify patterns in the image, such as edges or gradients. (b) GNNs learn
a function to update a target node’s state vector (A) by non-linearly combining the state
vectors of its neighbours (B, C, D).

be projected to the same dimensionality as the node features, and they are not updated
during the convolution step (i.e. they remain constant through training). In certain cases
this may be a limitation of the method, however if the edge features represent physical
features of graph that provide important context that we would like retained, and the
desired predictions are on the node level rather than the edge level, this is not a significant
limitation.

2.2.3.3 CNN vs. GNN in Sea Ice Forecasting

With the advent of deep learning, many neural network methods were developed for spa-
tiotemporal problems, largely based on spatial convolutions with fixed-size two- or three-
dimensional kernels [53]. These convolutional models are particularly well-suited for image
data with a gridded structure such as images or video frames and allow for learning rich
features that are present in real-world image sequences. GNNs offer a compelling alterna-
tive to CNNs for emulating models of physical processes, such as ice dynamics, for several
reasons. One of the primary advantages of GNNs in this context is their inherent ability to
capture the spatial relationships between neighboring nodes through graph edges, which

17



can be arbitrarily specified. This is particularly crucial in applications like sea ice dynam-
ics, where the spatial relationships are fundamental in determining heat and momentum
exchanges, and other factors influencing ice processes. In GNNs, both nodes and edges can
encode information about the system, and graph convolutions update these encodings by
applying some non-linear function. This allows GNNs to effectively model the exchange
of physical quantities such as heat or ice volume at a given location in space and time
while accounting for the directionality of processes, which is represented by directed edges.
In contrast, CNNs operate on a fundamentally different principle. They extract features
such as edges or gradients from an input image by tuning kernel filters. This process in-
volves convolving these filters over the input image to identify patterns and features at
various scales and orientations. While this approach is highly effective for tasks like im-
age recognition, where identifying and categorizing visual patterns is key, it may not be
as well-suited for learning the underlying physical laws that govern interactions between
points in space. CNNs typically lack the ability to explicitly model directional relationships
and complex dependencies between disparate points in a spatial domain, which are criti-
cal in understanding and predicting physical phenomena like ice dynamics. A high-level
visual representation of these two neural network types, highlighting their structural and
functional differences, is shown in Figure 2.1. CNNs leverage spatial locality and transla-
tion invariance inherent in images through convolutional layers with fixed-size filters that
extract local features across the image. Techniques such as the use of pooling operators,
stride convolutions, or dilated filters can be used to capture longer-range patterns and
hierarchical information [22, 88]. In contrast, message-passing GNNs can natively capture
long-range patterns through edge propagation, potentially reaching across the entire graph
structure given a sufficiently deep network [57]. Although in most cases the underlying
graphs are too large for information to be propagated globally (e.g. a one hundred layer
deep network is likely infeasible in most cases), limited information propagation across can
help models gain a holistic view of the spatial domain and learn complex spatial patterns
[84]. Additionally, most types of GNNs exhibit both translation and rotation invariance
as convolutions are applied indiscriminately to all nodes and the aggregation operators are
most often permutation invariant. Note that this is not always the case; operators based
on recurrent units such as the LSTM variant of GraphSAGE [20] or sorting units such as
the SortPooling aggregator [90] do not exhibit rotation invariance. Another noteworthy
advantage of GNNs over CNNs is their scalability due to the inherent parallelism in their
architecture, allowing for efficient processing of data over large regions or with fine res-
olution. This parallelism however comes at the cost of higher memory usage which may
become limiting, though this can be circumvented by partitioning the graph and processing
the subgraphs independently before combining the outputs. Overlapping subgraphs can
be used to ensure no spatial artifacts or discontinuities arise from the partitioning.
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2.2.4 Sequence Modelling

Sequence modeling plays a key role in many fields such as natural language processing
(NLP), speech recognition, bioinformatics, financial forecasting, and climate modeling.
Sequence modeling is the process of predicting or understanding sequences with interrelated
data points, such as words, sounds, genetic data, or financial transactions. It aims to
capture the dependencies and relationships within these sequences for effective analysis
and prediction. One key task in the realm of sequence modelling is that of forecasting.
Consider a series of data points x1, x2, . . . , xT . The objective is to forecast future values
xT+1, xT+2, . . . , xT+N using some function f , which is defined as

xT+n = f(x1, x2, . . . , xT ), (2.25)

where n ranges from 1 to N , and N represents the length of the forecast horizon.

Timeseries forecasting contains additional complexities not found in analyses of static
non-temporal datasets, as it requires handling the additional intricacies of temporal dy-
namics such as seasonality, non-stationarity, autocorrelation, and the impact of external
factors. Models must therefore be sufficiently sophisticated such that they not only detect
subtle temporal correlations but also be robust against irregularities and noise in the data.
Models may also need to learn temporal dynamics at multiple temporal scales, or make
use of multi-dimensionality in either the predictor or predictand.

Deep learning has provided powerful tools for sequence modelling, among which the
Recurrent Neural Network (RNN) [75] is one of the most foundational. RNNs are designed
to handle sequences of data by persisting a memory of previous inputs. Mathematically,
an RNN can be described by the following equations

ht = σ(Whxt + Uhht−1 + bh) (2.26)

and
yt = Wyht + by. (2.27)

where xt represents the input at time t, ht is the hidden state at time t, yt is the output
vector, Wh,Uh,Wy are weight matrices, bh,by are bias vectors, and σ is some activation
function. The initial hidden state (h−1) can be arbitrary selected, usually as zeros or by
sampling from some distribution, while the final hidden state hT+1 can be used as a context
vector which summarizes the totality of the input sequence. A visual representation of the
standard RNN in its recursive and unrolled state is shown in Figure 2.2. Despite their utility
in many sequence modelling tasks [43], RNNs face significant challenges, particularly the
issue of vanishing and exploding gradients, which impede the network’s ability to learn
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Figure 2.2: The standard RNN cell in its recursive (left) and unrolled (right) representation.
Per Equation 2.26 and Equation 2.27, xt denotes the input at time t, ht represents the
hidden state at time t, yt is the output vector, and Wh,Uh,Wy are learnable weight
matrices. Bias terms are omitted for simplicity.

long-range dependencies. As the sequence gets longer, the gradients of the loss function
tend to either vanish (become very small) or explode (become very large), making it difficult
for the RNN to learn effectively when sequences are long [64].

The Long Short-Term Memory (LSTM) [25] module was developed to address these
issues. LSTMs maintain the sequential nature of RNNs but introduce a memory cell and
three non-linear control gates: input, forget, and output gates which control the flow of
information between LSTM cells. Cells maintains a cell state ct and hidden state ht which
accumulates information at each step through an input gate it which allows information to
be accepted into memory, a forget gate ft which decides which information is discarded, and
the output gate ot which controls the information propagated to the final output state.
This allows each cell to track gradients thereby mitigating the vanishing gradient issue
during back-propagation through time which inhibits the RNN . The governing update
equations of the LSTM are

ft = σ(Wf · xt + Uf · ht−1 + bf )

it = σ(Wi · xt + Ui · ht−1 + bi)

ot = σ(Wo · xt + Uo · ht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · xt + Uc · ht−1 + bc)

ht = ot ⊙ tanh(ct)

(2.28)

where σ represents the sigmoid activation function, ⊙ denotes element-wise multiplication,
and tanh is the hyperbolic tangent activation function. The matrices Wf,i,o,c, Uf,i,o,c, and
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Figure 2.3: The standard LSTM cell with optional peephole connections (dotted green
lines).

⊕
represents element-wise addition,

⊗
represents element-wise multiplication,

and b represents the bias terms.

the vectors bf,i,o,c are the weights and biases associated with each gate.

A variant of the LSTM is the peephole LSTM [75], which allows the gates to also look
at the cell state, providing the model with greater context. The equations for a peephole
LSTM are similar to that of the standard LSTM, with the addition of weight matrices
Vf,i,o multiplying the cell state at each gate, given by

ft = σ(Wf · xt + Uf · ht−1 + Vf · ct−1 + bf )

it = σ(Wi · xt + Ui · ht−1 + Vi · ct−1 + bi)

ot = σ(Wo · xt + Uo · ht−1 + Vo · ct + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · xt + Uc · ht−1 + bc)

ht = ot ⊙ tanh(ct).

(2.29)

A visual representation of the LSTM and peephole LSTM cell is shown in Figure 2.3,
where the dotted green lines represent the optional peephole connections.

Other notable variants of the recurrent network are the Gated Recurrent Unit (GRU)
[10] and the Bi-direction LSTM (BiLSTM) [19]. The GRU simplifies the LSTM architecture
by merging the hidden and cell states into a single vector. It uses only two gates, the reset
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and update gates, enabling more efficient processing of sequential data, though performance
is usually poorer than LSTMs on complex sequence modelling tasks [7]. The BiLSTM
enhances LSTM by processing sequences in both forward and backward directions, making
it adept at capturing context by simultaneously considering information early and late
timesteps in the input sequence. BiLSTMs are useful in tasks requiring more sophisticated
understanding of context at the cost of greater computational requirements.

2.2.4.1 Sequence-to-Sequence

Sequence-to-sequence (seq2seq) models play a key role in timeseries forecasting as they
allow mapping between input and output sequences of different lengths [74]. Seq2seq
models typically use an encoder-decoder structure, where both the encoder and decoder
are some recurrent module such as the RNN, GRU or LSTM (although recent advances
in NLP favour transformer architectures, omitted here since they are not used in this
thesis). The encoder and decoder blocks serve distinct functions. The encoder processes
the input sequence, distilling it into a context vector of fixed dimensionality. This vector
serves as a compressed representation of the input sequence, encapsulating its essential
information. In recurrent implementations, the encoder is an RNN/GRU/LSTM that
reads each element of the input sequence one at a time while updating its internal hidden
state. Conversely, the decoder is tasked with generating the output sequence based on the
context vector provided by the encoder. In recurrent implementations, it is also typically
an RNN/GRU/LSTM and produces the output sequence one element at a time while
updating its internal hidden state. For an input sequence of length M and a desired output
sequence length N, the encoder processes each input sample sequentially as

henc
m = enc(xm, h

enc
m−1) for m = 1, 2, ...,M (2.30)

where enc is some recurrent cell (such as an RNN cell), xt is the input at time t, and henc
m

is the corresponding hidden state. The last hidden state of the encoder henc
M (the context

vector) is then used to initiate the decoder, that is, hdec
0 = henc

M and unrolls the sequence as

hdec
n = dec(yn−1, h

dec
n−1) for n = 1, 2, ..., N (2.31)

where dec is also some recurrent cell and hdec
n is the hidden state at each output timestep

t. Each element of the decoder hidden state is transformed by some application-specific
output function fout() as

yn = fout(h
dec
n ) (2.32)

where fout() may be a function such as a softmax, MLP, or a more complex function.
Since the encoder and decoder operate separately and sequentially, the input length does
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Figure 2.4: A basic sequence-to-sequence model using an RNN encoder and RNN decoder
for an input sequence of length M and output sequence of length N. Per the RNN equations
in Equation 2.26 and Equation 2.27, xt denotes the input at timestep t, he, t and hd, t
represents the encoder and decoder hidden state at time t, respectively, yt is the output
vector, and Wh,Ue,h,Ud,h,Wy are learnable weight matrices. Bias terms are omitted for
simplicity.

not need to equal the output length, as is the case if a single recurrent network is used.
Building on the RNN shown in Figure 2.2 based on Equation 2.26 and Equation 2.27, this
encoder-decoder structure is shown conceptually in Figure 2.4.

2.2.4.2 Spatiotemporal Forecasting

Spatiotemporal forecasting extends the principles of sequence modeling to datasets where
both spatial and temporal dynamics are significant. This is particularly relevant in fields
such as meteorology, traffic flow prediction, and environmental modeling, where data points
are not only temporally sequenced but also spatially related. The challenge in spatiotem-
poral forecasting is in effectively capturing the often complex interactions between the
spatial and temporal components. This dual-dependency often leads to high-dimensional
data, which can be challenging to analyze due to computational constraints and the risk
of overfitting due to the complexity of the task.

Strictly spatial models can be used for spatiotemporal forecasting by setting the input
to timestep T and the output to timestep T + 1. However, incorporating explicit temporal
modelling often enhances forecasting ability in deep learning models [81]. The simplest way
to create hybrid spatiotemporal models is to combine them sequentially, for instance by
first processing the inputs spatially using a CNN, then processing this encoded state using
a temporal model such as an LSTM. This method may however not sufficiently exploit

23



the interdependencies between the spatial and temporal dimensions. More sophisticated
approaches have been developed to address this challenge, integrating spatial and temporal
processing more closely. For example, the Convolutional LSTM (ConvLSTM) [65] combines
spatial convolutions within an LSTM network, leading to strong performance in tasks such
as precipitation nowcasting or video frame prediction. The core equations of a ConvLSTM
are given by

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf )

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi)

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc ∗ xt + Uc ∗ ht−1 + bc)

ht = ot ⊙ tanh(ct)

(2.33)

where ∗ denotes the convolution operation, and the other symbols retain their meanings
from the standard LSTM equations [65]. The ConvLSTM can capture complex spatiotem-
poral correlations effectively, but it can be computationally expensive due to the multiple
use of convolution operations. This same approach can be extended to graph-structured
data by replacing the convolution operation ∗ with a graph convolution operation ∗G. This
is the graph convolutional LSTM proposed by Seo et al. (2018) [62], and it is defined as

ft = σ(Wf ∗G xt + Uf ∗G ht−1 + bf )

it = σ(Wi ∗G xt + Ui ∗G ht−1 + bi)

ot = σ(Wo ∗G xt + Uo ∗G ht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc ∗G xt + Uc ∗G ht−1 + bc)

ht = ot ⊙ tanh(ct).

(2.34)

2.3 Related work

The application of deep learning techniques to sea ice forecasting has gained increasing
attention in recent years due to their computational efficiency and generalizability, partic-
ularly in the face of a changing climate and increased availability of large training datasets.
Early studies applying deep learning to sea ice forecasting were limited to either spatial or
temporal modelling. For instance, Chi and Kim (2017) [9] used a long-short term memory
(LSTM) module to forecast sea ice on a per-pixel level but did not consider spatial patterns.
Kim et al. (2019) [36] later used a deep neural network (DNN) with two fully-connected
layers to forecast sea ice concentration considering interactions between pixels through
dense layers but did not explicitly account for spatial autocorrelation. Later models based
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on the convolutional neural network (CNN) were able to leverage spatial patterns. An-
dersson et al. (2021) [2] used a U-net trained on both climate simulation and observation
data to forecast monthly sea ice concentration and was found to out-perform the SEAS5
dynamical model, but did not explicitly model in the temporal dimensions. Spatiotemporal
models were then proposed that unify spatial and temporal models. Liu et al. (2021) [45]
proposed a model based on the convolutional long-short term memory (ConvLSTM) [65]
to perform one-step ahead forecasting of sea ice in the Barents sea which showed promise
by outperforming statistical baselines. Asadi et al. (2022) [4] built on this work by propos-
ing a sequence-to-sequence model based on the ConvLSTM to forecast sea ice presence in
Hudson Bay. The model generally outperformed the European Centre for Medium-Range
Weather Forecasts’s (ECMWF) subseasonal-to-seasonal (S2S) ensemble predictions [79].

GNN-based approaches have recently seen some attention in global climate modelling,
motivated in part by successes in GNN-based physics simulation models such as Mesh-
GraphNets [54] or graph network simulators [61, 59]. Keisler (2022) [35] first proposed a
GNN for forecasting the global climate using an autoregressive encoder-processor-decoder
architecture. Gridded reanalysis data was encoded onto an icosohedron graph structure
on which a message-passing neural network performed several steps of processing before
being decoded back onto the latitude-longitude grid. Results showed that the model is
competitive in comparison with state-of-the-art physical models when forecasting geopo-
tential height and temperature over a 6-day rollout with a 6-hour temporal step. Lam
et al. (2022) [39] built upon this work with GraphCast, a similar model structure with the
most notable difference being the use of multiple icosahedron grids at varying spatial reso-
lution. They demonstrated greater skill than operational state-of-the-art physical models
when forecasting global temperature, precipitation, and wind patterns over a 10-day roll-
out at a 6-hour temporal step. Before climate forecasting, GNNs have had a relatively long
history in hydrology [72, 46, 44] and traffic forecasting [6, 31]
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Chapter 3

Methodology

3.1 Data

In this thesis, the Hudson Bay systen is taken as the region of interest, and ERA5 reanalysis
data is used as atmospheric forcing data to train the models along with oceanographic
variables from the GLORYS12 reanalysis product. Sea ice concentration estimates from
GLORYS12 are used as the target variable and a proxy for the ground truth.

3.1.1 Study Area

The Hudson Bay system (Figure 3.1) is selected as the study area due to its important
role as a major shipping hub, its vital importance to local communities reliant on maritime
resupply, and its unique characteristics as an in-land sea largely isolated from the broader
Arctic. Hudson Bay serves as a crucial maritime trade route, connecting the Canadian
interior to global markets. Accurate sea ice forecasting is essential for the safe and efficient
operation of shipping routes in the region. Furthermore, the remote communities along
Hudson Bay’s coastlines and tributaries depend heavily on maritime transportation for
essential goods. This includes the transportation of food, medical supplies, and other
necessities, which are critical for their subsistence. The reliability of sea ice forecasts
directly impacts the accessibility and regularity of these deliveries, affecting the well-being
and resilience of these communities. Hudson Bay’s unique physical characteristics as an in-
land sea partially enclosed by the Canadian mainland result in distinctive sea ice patterns
influenced by local climate, geography, and ocean currents. Sea ice in Hudson Bay exhibits
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Figure 3.1: Region of interest (orange), including Hudson Bay, Foxe Basin, James Bay,
and Hudson Strait. The area covers a total area of roughly 3,300,000km2.

seasonal variations, with ice covering the entirety of the area during colder months and
near complete melt during warmer months. The presence of both fast ice (ice attached
to the shoreline) and pack ice (drifting with ocean currents) influences ice dynamics and
navigation strategies.

3.1.2 ERA5

ERA5 [24] is a climate reanalysis dataset produced by ECMWF that offers hourly estimates
of climatic variables at a spatial resolution of 0.25◦ from 1979 to present. It is based
on the IFS Cycle 41r2 4D-Var data assimilation system and includes a wide range of
climatic variables at different pressure levels of the atmosphere. The IFS system assimilates
observations from dozens of satellite missions and ground stations to create a physically
consistent best representation of atmospheric conditions. Although the model does not
have a coupled ocean-atmosphere component, it uses daily passive microwave-derived sea
ice concentration estimates from the Ocean and Sea Ice Satellite Application Facilities
(OSI-SAF) as the bottom boundary condition for ice-covered seas [24]. This thesis follows
previous studies [4, 2] and use 2-meter temperature, 10-meter wind speeds, and surface
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sensible heat fluxes from ERA5 as input features to our model (see Table 3.1)

3.1.3 GLORYS12

GLORYS12 [30] is a global ocean and sea ice reanalysis data product developed by the
Copernicus Marine Environment Monitoring Service (CMEMS), utilizing the LIM2 EVP
NEMO 3.1 platform [48] in the ORCA025 configuration designed by the DRAKKAR con-
sortium. This configuration includes a global sea-ice model with a 1/4◦ Mercator grid.
Atmospheric forcing for the ocean surface model is provided by ECMWF’s ERA-Interim
[13] reanalysis data until 2019, and ERA5 data thereafter. The spatial resolution of the
ocean and ice models is 1/12◦. The data assimilation component of GLORYS12 includes
in-situ temperature and salinity (T&S) profiles, satellite sea surface temperature (SST),
and along track sea-level anomalies derived from satellite altimetry. The assimilation of
oceanic observations occurs using a reduced-order Kalman filter, which is based on a singu-
lar evolutive extended Kalman (SEEK) filter. The SEEK filter utilizes a three-dimensional
multivariate background error covariance matrix and operates on a 7-day assimilation cycle.
The system also integrates sea ice concentration observations from IFREMER/CERSAT.
Historical records are available from 1993 to present. This work uses GLORYS12 sea ice
concentration, thickness, velocities and sea surface temperatures.

3.2 Meshing

Meshes allow for greater flexibility in defining the model’s spatial basis. Unlike two-
dimensional convolutional approaches, which require defining a regular two-dimensional
grid of pixels over a region, meshes are comprised of cells of abitrary sizes, allowing the
modeler to control which areas are modelled in higher resolution (e.g., around ports or pas-
sages of interest). Since cells are only defined in regions of interest we also avoid the need
to apply a land mask as a post-processing step, unlike in CNN-based approaches which
most often model over the whole region before applying a mask to exclude land pixels from
the output.

Figure 3.2 shows possible meshes for Hudson Bay using a 1/12 degree grid as the base
resolution when trying to balance resolution and computational requirements. The mesh
shown in (a) uses the base resolution as a regular mesh, which is computationally heavier
with its 32,856 cells, while the mesh in (b) uses a regular four-times coarsened version of
the same mesh with 2,425 cells, which may not have sufficient definition. At the shoreline,
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(a) Full resolution regular mesh (b) Coarsened regular mesh (c) Irregular mesh

Figure 3.2: Comparison of different mesh definitions for modeling Hudson Bay. (a) A high-
resolution regular mesh with 32,856 cells, computationally intensive but highly detailed;
(b) a four-times coarsened regular mesh with 2,425 cells lacking sufficient detail along
land interfaces; (c) irregular mesh with 9,422 cells, a compromise for both computational
efficiency and high resolution at land interfaces. This approach ensures no cell overlaps
land while providing high-resolution data for critical regions like ports, passages, and areas
of meteorological interest such as the Kivalliq latent heat polynya.

29



Figure 3.3: Conceptual visualization of the matrices involved in Equation 3.2 and Equa-
tion 3.1 (above dotted line) and an small example matrices (below dotted lines) for a single
channel C. Note the intermediate matrix Y would simply be the X matrix flattened

this coarse mesh overlaps land but the model does not have the ability to acknowledge
this overlapping. For example, a 4 × 4 cell with only one non-land pixel assigns the sea
ice concentration value to the entire cell, possibly undermining the model’s ability to rea-
son about volumetric continuity. As a compromise between resolution and computational
efficiency, an irregular mesh can be defined with the same four-times coarsened resolution
refined near shorelines such that no cell overlaps land. This is shown in (c). This can be
done by recursively splitting the cells of the base (coarsened) mesh in four equal parts until
no cell overlaps land. The result is a mesh with 9,422 cells. A secondary advantage of this
technique is that modelling around shorelines at a higher resolution may be of interest to
port operators or local communities. For shipping and freight purposes in Hudson Bay,
there is a keen interest in knowing the state of the ice near shipping ports since some
operations might required ice free conditions. However, large areas of navigable waters do
not require the same high degree of spatial resolution since vessels have the possibility to
slightly change their routes, thus a coarser resolution is sufficient.

To convert gridded data from a grid representation X ∈ Rw×h×c for data with c channels
and w × h spatial dimensions to a mesh representation G ∈ Rc×N with N cells, we first
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Figure 3.4: Input images are represented as graphs by relating each neighbouring pixel
with edges. In this figure, a spatially irregular mesh is used to represent SIC in Hudson
Bay, where red dots represent graph nodes and black lines represent edges.

construct a sparse mapping tensor M ∈ RN×(w∗h) where entry (n, p) is assigned 1 if the pth

pixel of the flattened grid Y ∈ Rc×(w∗h) should be mapped to cell n. We also construct a
tensor P ∈ RN which stores the number of pixels which are mapped to each cell. Then,
to convert a sample from a grid to a mesh representation, for each node we find the mean
value of each of its constituent pixels with

G = YMT ⊘P (3.1)

where ⊘ represents an element-wise or Hadamard division. G can be converted back to a
grid representation by splitting the cells back into its constituent pixels as

Ŷ = GM. (3.2)

A conceptual depiction and example matrices are shown in Figure 3.3. Note that since
Equation 3.1 takes the mean of the constituent pixels of each cell, it cannot be perfectly
reverted, instead Equation 3.2 simply assigns the cell value to each of its constituent
pixels. Formulating these transformations as matrix multiplications allows for greater
GPU acceleration which is important if the input meshes are re-meshed dynamically during
training, although this is not done in this work.

A graph can then be defined based on this mesh by assigning a node to each cell
and placing edges between any two neighboring cell as in Figure 3.4. To preserve spatial
awareness, the positions of each node and size of each cell are added as node features, and
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the length (normalized distance between nodes) and angle (normalized bearing between
nodes) of the edges are stored as edge features. The edges are therefore considered to be
directed edges as the edge features are direction-dependent, that is, for two nodes u and
v, the edge from u to v (euv) is not equivalent to the edge from v to u (evu).

3.3 Model Architecture

The proposed model uses graph convolutional long-short term memory (GCLSTM) mod-
ules within a sequence-to-sequence architecture. The GCLSTM module and the overall
architecture are shown in Figure 3.5 and Figure 3.6, and described in the subsections
below.

3.4 GCLSTM

The graph convolutional long-short term memory (GCLSTM) module used in this work is
a modified version of the model from Seo et al. (2018) [62], which is in turn inspired by the
ConvLSTM first proposed by Shi et al. (2015) [65]. The GCLSTM equations are given by

ft = σ(Wf ∗G xt + Uf ∗G ht−1 + Vf · ct−1 + bf )

it = σ(Wi ∗G xt + Ui ∗G ht−1 + Vi · ct−1 + bi)

ot = σ(Wo ∗G xt + Uo ∗G ht−1 + Vo · ct−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc ∗G xt + Uc ∗G ht−1 + bc)

ht = ot ⊙ tanh(ct).

(3.3)

where σ represents the sigmoid activation function, ⊙ denotes element-wise multiplication,
tanh is the hyperbolic tangent activation function, ∗G is a graph convolution module, and
ht is the hidden state at timestep t. The matrices W, U, V and the vectors b are the
weights and biases associated with the forget (ft), input (it), output (ot), and cell state
update (ct) at timestep t. The module is also presented visually in Figure 3.6, and closely
resembles the peephole LSTM introduced by [18], with the only modification being the
addition of graph convolution operators over the hidden and input states at each of the
input, forget, cell and output gates in the place of weight matrices. This is represented as
the ∗G block in the figure. The graph convolution operators allow information exchange
between nodes through the directed edges. The model proposed by Seo et al. (2018) [62]
uses a single Chebyshev graph convolution [23] that has limited spatial expressivity since a
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Figure 3.5: Overall model architecture. The last hidden (ht) and cell (ct) states of the
encoder act as the context vectors and are used as the initial states of the decoder. The
encoder learns features from the n input timesteps, and the last hidden (ht) and cell (ct)
states are retained as the context vector used to initiate the decoder, which unrolls over the
fixed m desired output timesteps. The initial input to the decoder Xt is the ice channel of
the last input timestep. GNNenc and GNNout, used to encode climatology at each output
timestep (nt o) and reduce the dimensionality of the output (ot o), respectively, are stacked
spatial convolutions with leaky ReLU activations.

⊕
represents element-wise addition.
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Figure 3.6: Graph convolutional long-short term memory (GCLSTM) module. The module
is based on the peephole LSTM [18], with the addition of K stacked graph convolutions
applied to both the hidden states and input.

⊕
represents element-wise addition, and

⊗

represents element-wise multiplication.

single convolution can only exchange information between immediate neighbors. Since the
processes dominating ice formation and break-up are physical processes occurring across
space, we wish to increase the model’s ability to recognize spatial patterns, and therefore
use K stacked convolutions followed by leaky ReLU activations, which provides information
exchange over K hops. The peephole variant of the LSTM is used here as it has been
shown to outperform the vanilla LSTM [32], particularly for video understanding [68].
The convolution operator taking the place of GraphConv in Figure 3.6 can be arbitrarily
selected from the myriad graph convolution operators that have been proposed. In this
work, the graph transformer convolution from Shi et al. (2021) [66], and the more basic
Graph Convolutional Network (GCN) first proposed by Kipf and Welling [38] are evaluated.

In the graph transformer convolution, the feature vector of a given node v, hv, is
updated by aggregating information from its neighbors u ∈ N (v), and the node itself,
using edge features from u to v, euv. The governing equation for the graph transformer
convolution is

h(l+1)
v = σ


W

(l)
1 h(l)

v +
∑

u∈N (v)∪{v}
α(l)
uv(W

(l)
2 h(l)

u + W
(l)
3 euv)


 (3.4)

where N (i) denotes the neighbors of node i, W
(l)
1,2,3,4 are weight matrices for layer l and
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the attention coefficients αuv for layer l are given by

α(l)
uv = softmax

(
(W

(l)
4 h

(l)
v )T (W

(l)
4 h

(l)
u + W

(l)
3 euv)√

d

)
(3.5)

where d is the dimensionality of the features. The attention weights allow the model to
selectively attend to a given node’s neighbors based on their node and edge feature vectors.
The inclusion of edge features and an edge specific weight matrix allows the model to learn
to relate the edge features to better reflect anisotropic evolution of the model state.

This transformer convolution is compared with the Graph Convolutional Network
(GCN) proposed by Kipf and Welling (2017) [38], as it is a commonly used and simpler
convolution operator. The GCN operator is defined by the equation

h(l+1)
v = σ


 ∑

u∈N (v)∪{v}

euv√
d̂vd̂u

h(l)
u W(l)


 (3.6)

where d̂v is the degree terms from the diagonal degree matrix D̂ of the adjacency matrix
with self-loops Â for node v and euv is a scalar edge weight between nodes u and v. Since
euv must be a scalar, instead of the length and angle of the edges used in the transformer
convolution, in the GCN only the length is used as the edge weights. Note that this limits
the spatial awareness of the model as it does not receive information about the nodes’
relative positions, unlike the transformer convolution.

3.5 Sequence-to-Sequence Architecture

The GCLSTM module is used within a sequence-to-sequence encoder-decoder structure to
learn features from the inputs and evolve the sea ice state forward in time. The overall
architecture is shown in Figure 3.5. Since navigation and offshore operations are affected
at various degree by the presence and concentration of sea ice, our model forecasts both
SIC and SIP as a multi-task learning approach. Although sea ice presence—defined as any
pixel where SIC is greater than 15%—can be derived from the forecasted SIC values, a
model trained without the secondary SIP forecasts would not be optimized for this 15%
threshold. It was also found through experimentation that including SIP as a secondary
task improved SIC forecasts in the break-up and freeze-up seasons.

The encoder is responsible for learning rich spatiotemporal features from the input
sequence while the decoder is responsible for evolving the state forward in time from these
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learned features. The encoder therefore acts as an information bottleneck, meaning it
is crucial that the encoder is sophisticated enough to distill the inputs into a context
vector with sufficient information for the decoder to use in the unrolling process. Given a
sufficiently rich context vector, the decoder does not necessarily need to learn additional
spatial features within the context vector, nor during the unrolling process. Therefore, in
this work a spatiotemporal GCLSTM module is used in the encoder block, and a simple
LSTM in the decoder block. Although the decoder block also contains graph convolutions
(e.g., in GNNout), the distinction between the two is that the GCLSTM in the encoder
block integrates graph convolutions within the temporal model allowing for simultaneous
spatial and temporal modelling, while the decoder block models temporal and spatial
dynamics separately, with GNNout being used mainly for dimensionality reduction. Using
an LSTM rather than a GCLSTM module in the decoder block also greatly reduces training
time in the case where there are fewer input timesteps than output timesteps. Note that
experiments with a GCLSTM in the decoder were also run but showed no improvements
over using an LSTM.

The encoder processes each input timestep sequentially, updating the hidden and cell
states at each timestep with layer normalization [5] applied to the hidden and cell states
after each timestep to increase model stability. The final hidden and cell states are the
high-dimensional vectors that are taken as the context vectors that contain the learned
features from the input and are used to initialize the hidden and cell state of the decoder.
The last input ice state is used as the initial input to the decoder (or start token) since we
wish to evolve the state forward from this initial state. The decoder is run recurrently for
the desired number of output timesteps in a similar fashion to the encoder but using the
last step’s prediction (yt−1) as the input for the current step (yt).

Since sea ice is highly seasonal, the model is susceptible to a form of modal collapse
wherein the model converges to a local minimum, predicting only the average sea ice
conditions for a particular day of the year. These daily averages are known as the climate
normals or climatology. For long-term forecasting of climatological variables, climatology
can perform reasonably well compared to dynamic or statistical models due to strong
seasonality. Since we wish to outperform climatology and expect the model to learn to
use it as a heuristic, it is included as an input such that model can focus on learning
departures from normal conditions. This was shown to be beneficial for sea ice forecasting
in a previous study [4]. Climate normals are calculated as the mean ice concentration
values for each day of the year over the entire training set and are encoded into latent
space using a shallow multi-layer GNN before being combined with the decoder output
by element-wise addition. The result is then fed through a multi-layer GNN with leaky
ReLU activations to reduce the dimensionality to two, and finally through a hyperbolic
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tangent activation to map the values between -1 and 1. This output represents the change
in sea ice conditions and is added to the last timestep’s prediction. Since both SIC and
SIP should be bound between 0 and 1, the output is passed through a sigmoid layer that
produces the final predictions.

3.6 Experimental set-up

3.6.1 Mesh Definition

To illustrate the advantage of using graph networks, experiments were designed to demon-
strate the ability to produce forecasts over an irregular mesh. To this end, experiments
were run on an irregular mesh as well as the coarsened regular mesh described in section 3.2
and shown in Figure 3.2b and Figure 3.2c. The irregular mesh is refined to a higher reso-
lution at the land edges by splitting the base 1/3◦ mesh if a cell intersects a one-cell buffer
around land. This buffer is used since near-shore dynamics can be particularly complex.
By extending high-resolution meshing slightly beyond the immediate land-water interface,
the model may be better equipped to capture these complex dynamics occurring in these
more critical regions. The resulting irregular mesh contains 1/12◦, 1/6◦ and 1/3◦ sized
cells. To show that the complexities introduced by this irregular mesh is not a detriment
to the model, a separate experiment is conducted by training the same model over the
regular 1/3◦ mesh. This should be an easier task than the irregular mesh, therefore show-
ing similar performance over either meshes is sufficient to demonstrate that the model is
resolution-agnostic.

3.6.2 Data Partitioning

The Hudson Bay region, including Hudson Strait, James Bay and Foxe Basin, undergoes
a cyclical transformation in its ice cover characterized by complete freezing during the
winter months and total melt in the summer, with some multi-year ice possible in Foxe
Basin. This seasonal cycle is subject to considerable inter-annual variability, both in terms
of the rate at which these processes occur and the timing of these transitions. Figure 3.7
illustrates this variability by showing monthly SIC anomalies between 1993 and 2020.
These anomalies are computed as the mean differences between observed SIC and the
long-term average concentration for each corresponding month. The data reveals distinct
periods of anomalous behavior in SIC. Specifically, the years 1993 to 1997 were marked
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Figure 3.7: Monthly sea ice concentration anomalies in Hudson Bay from 1993-2020. High-
lights periods of higher and lower-than-average sea ice concentrations.

by higher-than-average SIC, indicating that during these years, Hudson Bay experienced
an earlier freeze-up and a delayed break-up season. In contrast, the period from 2010 to
2012 exhibited anomalously low SIC, characterized by a late onset of freeze-up and an
earlier melting season. Including data from both these anomalous periods along with years
that exhibit more typical ice conditions is critical for enhancing model robustness in the
face of varying environmental conditions. This is particularly important in the context of
climate change, where shifts in temperature and weather patterns could further exacerbate
the variability in sea ice conditions. The data is therefore partitioned into a sequential
20-year, 3-year, 3-year split, wherein data from 1993-2013 is used for training, 2013-2016
is used for validation, and 2016-2019 is used for testing. Note however that the test period
only includes years with normal or lower-than-usual ice conditions. Although this bias may
not be optimal, lower-than-normal ice conditions may be more representative of future ice
conditions in the Hudson region [70]

One model is trained for each month of the year, each denoted as a ‘monthly model’.
Each monthly model was trained using data from the respective month with a 15-day
buffer before and after the beginning and end of the month respectively. For example, the
April model is trained with input data for each day between March 16 and May 15 over
all training years. A longer buffer of one month was tested but did not lead to significant
improvements in model performance. In inference mode, each model is used only to produce
a forecast with inputs from its respective month. For example, to generate 90 day forecasts
for April, a 90 day forecast is launched for each day between April 1 and April 30. Training
separate model for each month of the year was done since it is expected that the dynamics
that must be learned for one time of the year to be sufficiently different from other times
of the year such that each model will have greater accuracy by concentrating efforts in
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learning specific ice dynamics [4]. As a secondary benefit, this also allows training to be
carried out more efficiently as each monthly model can be trained in parallel.

3.6.3 Input Features

Sea ice concentration data from GLORYS12 serve as the target variable, while atmospheric
variables from ERA5, combined with oceanographic variables from GLORYS12, are used
as input features. Sea ice dynamics are primarily influenced by factors such as air and
sea temperature [80], wind [69], heat fluxes [29], and ocean salinity [87], and are therefore
used as input variables. The 10 chosen input variables are listed in Table 3.1, along with
the rationale for their selection. It should be noted that ERA5 hourly variables are re-
gridded from their original 0.25◦ grid to match the GLORYS12 1/12◦ grid, and resampled
to match the GLORYS12 daily temporal resolution. This is achieved through spatial linear
interpolation and aggregation from an hourly to a daily resolution using a simple mean.
The input sequence length is 10 days and the spatial domain as a grid is 229×361. Since the
model operates over the mesh domain rather than the grid domain, the dimensionality of
the inputs to the encoder as (input steps, number of nodes, input features) is 10×9, 422×10
for the irregular mesh and 10× 2, 425× 10 for the regular mesh. The input to the decoder
is the context vectors provided by the encoder as well as the climatology for each forecast
day. The output dimensionality is 90×9, 422×2 for the irregular mesh, and 90×2, 425×2
for the regular mesh.
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Table 3.1: Selected input variables to the encoder, data source and rationale for inclusion.

Short
Name

Full Name Source Rationale for Inclusion

sic Sea ice concentration GLORYS12 Direct measure of what is being forecasted;
crucial for temporal dynamics and initial con-
ditions.

sit Sea ice thickness GLORYS12 Provides insights into the resiliency and ro-
bustness of the ice, affecting its likelihood to
melt or deform.

siuv Sea ice velocities GLORYS12 Indicates the direction and speed of sea ice
movement.

so Sea water salinity GLORYS12 Salinity affects the freezing point of sea water
and is crucial in the dynamics of ice formation
and melt.

sst Sea surface tempera-
ture

GLORYS12 The temperature of surrounding sea water di-
rectly affects ice melt and formation rates.

t2m 2-meter temperature ERA5 Air temperature can provide additional con-
text for the thermal conditions affecting the
sea ice surface.

u10/v10 10-meter wind veloc-
ity

ERA5 Influences the motion and deformation of sea
ice.

sshf Surface sensible heat
flux

ERA5 Surface sensible heat flux is an indicator of
the heat exchange between the atmosphere
and the sea surface, affecting ice melt and
formation.

x x-position of each
node

— Provides the latitudinal spatial context for
each data point.

y y-position of each
node

— Provides the longitudinal spatial context for
each data point.

doy Day of the year — Provides temporal context.
csize Cell size — Provides the relative size of the area covered

by each cell for additional spatial context.
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3.6.4 Baseline Model

As a baseline model with which to compare the model, a combination of two common
statistical baselines is used: persistence (P ) and climatology (C). Persistence refers to
persisting the most recent sea ice conditions and tends to perform well at very short
forecast lengths particularly outside of the freezing and melting seasons. Climatology refers
to the pixel-wise average SIC for each day of the year where the average is taken over the
historical period of interest. Climatology tends to perform best relative to forecast models
at longer lead times. For forecasts produced over a seasonal scale, a stronger baseline than
either persistence and climatology can be derived by combining the two using a weighted
average with the relative weights varying by lead time, where more weight is given to
persistence than climatology at short lead times and more weight is given to climatology
than persistence at long lead times. The form chosen for the baseline model is

F = (1− γ)P + γC, (3.7)

where
γ(t) = γ0 × e−λt. (3.8)

γ0 is set to 1 since we know persistence to be a strong predictor at short lead times, and
λ is optimized by minimizing the mean squared error over the training dataset for each
month. The resulting weights are shown as a heatmap in Figure 3.8.

Figure 3.8: Gamma values for the baseline model (Equation 3.7) showing the balance
between persistence and climatology by launch date month and lead time. Gamma values
near 0 favor persistence while values near 1 favor climatology. Less variable ice seasons
such as Jan/Feb and Aug/Sep rely more on persistence for longer lead times.
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3.6.5 Model Hyperparameters and Implementation

This thesis evaluates three distinct models, listed in Table 3.2. The primary focus is the
GraphSIFNet-Att model, which incorporates three TransformerConv spatial convolutions
in the GCLSTM block and is trained on the irregular mesh described in section 3.2 for 35
epochs. That is, in Figure 3.6, ∗G uses the TransformerConv as the GraphConv block with
K = 3. For comparison, the GraphSIFNet-Att-Reg model is examined, which is identical
in architecture but trained on the coarsened regular mesh from section 3.2 for 35 epochs.
Additionally, these are contrasted with the GraphSIFNet-GCN model, which employs six
GCN convolutions within the GCLSTM module, that is, the GraphConv block is the GCN
with K = 6. GraphSIFNet-GCN is trained over the irregular mesh for 45 epochs. Each of
these models have the same number of parameters (approximately 123,000).

Each model uses a 10-day input sequence to predict the subsequent 90 days. A hidden
dimension size of 32 is used for each of the hidden state and cell state of the encoder and
decoder LSTMs, as well as in all graph convolutional layers. The GNN used to encode
climatology (GNNenc) is comprised of a single graph convolution layer, and the output
GNN (GNNout) is comprised of 3 stacked convolution layers with leaky ReLU activations.
The hidden size, number of spatial convolutions and number of GCLSTM/LSTM layers
were chosen based on small-scale experiments which aimed to keep the model simple yet
effective. The optimizer is the Adam optimizer with an initial learning rate of 0.001
reducing by 10% every 5 epochs. An L2 regularization value of 0.01 is applied to the
weights reduce the risk of overfitting, and gradient clipping with a value of 1.0 is applied to
mitigate the risk of gradient explosion due to the extended forecast length. Early stopping
was used if no improvement in the validation loss was observed for 10 epochs. Since the
model produces two outputs, a custom loss function was used that combines a mean square
error (MSE) loss from the continuous SIC prediction and binary cross-entropy (BCE) loss
from the probabilistic SIP prediction. The BCE loss is scaled by a factor of 0.1 and added
to the MSE loss before back-propagation. Since losses are calculated over a mesh with cells
of varying physical sizes, the losses are also scaled by the size of each cell. This prevents
the model from over-valuing correct predictions in areas of higher spatial resolution. The
models are implemented in Pytorch using the pytorch-geometric [16] package and trained
on a single Tesla V100 GPU hosted by the Digital Research Alliance of Canada. A summary
of models tested and training times is given in Table 3.2.
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Table 3.2: Summary of developed model configurations. The models differ in their spatial
convolutions and their underlying meshes, with the aim of contrasting the attention-based
transformer convolution with the graph convolutional network, as well as demonstrating
the model’s ability to model over an irregular mesh.

Name
Convolution
(# stacked layers)

Mesh Approximate
training time

GraphSIFNet-Att TransformerConv (3)
Irregular
(1/12◦ - 1/3◦)

10h
(30 epochs)

GraphSIFNet-Att-Reg TransformerConv (3)
Regular
(1/3◦)

8h
(30 epochs)

GraphSIFNet-GCN GCN (6)
Irregular
(1/12◦ - 1/3◦)

10h
(45 epochs)

Baseline (Equation 3.7) N/A N/A N/A
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Chapter 4

Results

In this section, the GraphSIFNet-Att model is evaluated by comparing its performance with
the statistical baseline and contrasting with the two other configurations: GraphSIFNet-
Att-Reg and GraphSIFNet-GCN. Using GraphSIFNet-Att, insights from the attention
weights, the results of a variable importance experiment, and an evaluation of its abil-
ity to predict break-up and freeze-up dates are also presented.

4.1 Baseline Performance

The performance of the baseline statistical model defined by Equation 3.7 for both the
SIC and SIP forecasting task is shown in Figure 4.1a and Figure 4.1b, respectively. These
heatmaps are generated by calculating the spatial average of the root mean squared error
(RMSE) over the domain using only the test years (2016-2019). The errors are grouped
by the month of the launch dates and lead times. For instance, the value in the top right
corner of the error heatmaps (January, 90-day lead time) indicates the mean RMSE for all
90-day forecasts launched in January, that is, forecasts for dates spanning April 1st to May
1st. The two clearly visible bands of higher RMSE values correspond to the break-up and
freeze-up seasons, the former normally spanning from the beginning of May to mid-July
and the latter normally spanning from the beginning of November to the end of December.
These seasons are the most difficult to forecast as the timing and pattern of the break-up
and freeze-up vary between years. Conversely, August to beginning of October are largely
ice-free, thus the errors are near zero. In the winter months, that is, mid-December to the
beginning of April, ice is present throughout the Hudson Bay system though some open
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water can sporadically be found around shorelines, for example due to offshore winds, thus
SIC RMSE values during the winter months are small but not zero.

(a) Baseline SIC performance (b) Baseline SIP performance

Figure 4.1: Performance of the baseline statistical model on SIC (a) and SIP (b) over the
test years aggregated by the month of the launch date and lead time.

4.2 GraphSIFNet-Att Performance

The performance of GraphSIFNet-Att model and the difference in performance relative
to the baseline model is shown in Figure 4.2 and Figure 4.3 for SIC and SIP forecasts,
respectively. Since persistence and climatology are usually used as baselines seperately,
the difference in performance relative to both are shown in Appendix A. Models are
evaluated against GLORYS12 SIC and SIP on the full-resolution 1/12◦ GLORYS12 grid.

For the majority of the months and lead times, the GraphSIFNet-Att model exhibits
improvements in SIC forecasts over the baseline, with minor exceptions. The model exhibits
the largest improvements over the baseline in its short- to medium-term forecasts of the
break-up season (lead times 5 to 45 launched in May to July). These show up to a 10%
improvement over the baseline. At longer timesteps, the improvements over the baseline
during the break-up period (launched in March and April) are less pronounced, hovering
around 2-3%. However at these long lead times even small improvements demonstrate
forecast skill and can provide value to users of the system. During the winter months when
the region is almost entirely frozen, the model still exhibits a 2-3% improvement over the
baseline at all lead times. This suggests that the model may be able to better capture
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(a) GraphSIFNet-Att (b) ∆(GraphSIFNet-Att, Baseline)

Figure 4.2: RMSE heatmaps for the SIC forecasting task by month and lead time for the
GraphSIFNet-Att model (a), and the RMSE differences between GraphSIFNet-Att and
the baseline (b) where negative values (blue) indicate a reduction in model error relative
to the baseline.

(a) GraphSIFNet-Att (b) ∆(GraphSIFNet-Att, Baseline)

Figure 4.3: Accuracy heatmaps for the SIP forecasting task by month and lead time for the
GraphSIFNet-Att model (a), and the difference between GraphSIFNet-Att and the baseline
(b) where positive values (red) in the difference plots indicate an increase in model accuracy
relative to the baseline.

the effects of off-shore winds mechanically creating open water regions along the shoreline.
During freeze-up, the model only shows skill over the baseline at short lead times from
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0 to 25 days. Longer forecasts beyond 25 days perform on par with the baseline or only
marginally better. Forecasts launched in November with a 30 to 55 day lead time perform
worse than the baseline, indicating difficulty in capturing the final stages of ice formation.

The SIP accuracy heatmaps in Figure 4.3 show similar patterns, with increases in
accuracy of up to 20% from the GraphSIFNet-Att model over the baseline during the break-
up process, and more modest increases during the freeze-up process. Notably, however,
GraphSIFNet-Att outperforms quite significantly (> 10%) even at long lead times. This
indicates that although the model may struggle to forecast the precise SIC at these lead
times, it still has skill in forecasting the point at which the ice will completely melt or
break up (i.e. SIC dropping below 15%).

4.3 Comparison Between Model Configurations

Differences in both SIC RMSE and SIP accuracy between the GraphSIFNet model con-
figurations, averaged across all timesteps for each month, are shown in Figure 4.4. The
GraphSIFNet-GCN and GraphSIFNet-Att-Reg models demonstrate comparable perfor-
mance relative to GraphSIFNet-Att, with differences being largely insignificant when ag-
gregated across the entire region. To better understand the differences in their capabili-
ties, spatial monthly SIC RMSE maps for the 15-, 30-, and 60-day lead times for forecasts
launched in May and November are presented in Figure 4.5 and 4.6. These correspond to
parts of the break-up and freeze-up periods, respectively.

Figure 4.4: Difference in monthly SIC RMSE [%SIC] and SIP [%]accuracy between
GraphSIFNet-Att-Reg and GraphSIFNet-GCN relative to GraphSIFNet-Att averaged over
all 90 day forecasts launched in the given month. Negative RMSE differences and positive
accuracy differences indicate better performance on the part of GraphSIFNet-Att relative
to the other models.

Early (15-day) forecasts in the Northwest region of Hudson Bay, launched in May,
are best captured by GraphSIFNet-Att-Reg. This region is characterized by a latent heat
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(a) May — ∆(GraphSIFNet-Att, GraphSIFNet-GCN)

(b) May — ∆(GraphSIFNet-Att, GraphSIFNet-Att-Reg)

Figure 4.5: Comparison of SIC RMSE for GraphSIFNet-Att, GraphSIFNet-Att-Reg, and
GraphSIFNet-GCN models at 15-, 30-, and 60-day forecast lead times, initiated in May
(break-up). The figure shows the difference in RMSE between GraphSIFNet-Att and
both GraphSIFNet-Att-Reg and GraphSIFNet-GCN. Subplot (a) shows the impact of the
different graph convolution, while subplot (b) shows the impact of the different meshes.
Negative values indicate a reduction in error in the GraphSIFNet-Att relative to the other
indicated model.

polynya, suggesting that the coarser uniform resolution mesh may aid the model in forecast-
ing the formation and behavior of the polynya. Using a finer resolution mesh in this region
might cause the model to overemphasize local variations in sea ice concentration and thick-
ness, potentially obscuring the broader spatial patterns crucial for accurate polynya fore-
casting. Both GraphSIFNet-GCN and GraphSIFNet-Att-Reg outperform GraphSIFNet-
Att in the 15- and 30-day forecasts launched in November in Hudson Strait. The freeze-up
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(a) November — ∆(GraphSIFNet-Att, GraphSIFNet-GCN)

(b) November — ∆(GraphSIFNet-Att, GraphSIFNet-Att-Reg)

Figure 4.6: Comparison of SIC RMSE for GraphSIFNet-Att, GraphSIFNet-Att-Reg, and
GraphSIFNet-GCN models at 15-, 30-, and 60-day forecast lead times, initiated in Novem-
ber (freeze-up). The figure shows the difference in RMSE between GraphSIFNet-Att and
both GraphSIFNet-Att-Reg and GraphSIFNet-GCN. Subplot (a) shows the impact of the
different graph convolution, while subplot (b) shows the impact of the different meshes.
Negative values indicate a reduction in error in the GraphSIFNet-Att relative to the other
indicated model.

in Hudson Strait is characterized by rapid changes in ice formation and movement influ-
enced by strong ocean currents. These conditions create a highly dynamic and challenging
environment for sea ice prediction. Since all three models exhibit similar performance, the
additional interpretability granted by the attention weights in GraphSIFNet-Att motivates
the use of GraphSIFNet-Att over the others.
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4.4 Attention Maps

The use of transformer convolution in the model enhances its interpretability. By exam-
ining the attention weights in the encoder’s first layer of graph convolutions, insights can
be gleaned into how the model encodes the input data. According to Equation 3.4 and
Equation 3.5, each node is assigned attention weights for its neighboring nodes based on
learned weight matrices in each transformer layer. The softmax function ensures that the
sum of all attention weights for a given node’s neighbors equals 1. Consequently, the node
is updated using a weighted average of its neighbors’ features, which are projected into
a latent space. Due to the large number of edges, visualizing these weights on a simple
map is challenging. A simpler approach for visualization involves calculating the primary
direction from which each node is updated. This can be done by summing the attention
weights as vectors (α values in Equation 3.4 with the direction of their respective edges)
for each node. These can be represented by arrows, the magnitude of which is proportional
to the difference in weights. For example, a node with evenly distributed attention weights
among eight neighbors would be represented as a single dot (indicating the node does not
preferentially attend to any given neighbour), whereas a node with a dominant westward
neighbor would have a large arrow pointing westward. These arrows can be interpreted as
indicating the direction of information flow through the graph as the model processes the
input maps.

Figure 4.7 provides examples of attention weights of the input gate for a single input
image during both freeze-up (Figure 4.8a) and melting (Figure 4.8b) seasons. Although
the attention mechanism is applied to the hidden and input tensors at each of the LSTM
gates, it is most informative to visualize the weights that are applied to the inputs since
the inputs are physically interpretable. Note that attention weights at land interfaces are
omitted for visual clarity, as they are numerous and the lack of nodes on land means the
dominant direction is always away from the shore. In the freeze-up condition, the model
directs information flow generally from the southeast to the northwest. This suggests that
the model learns the importance of understanding the sea ice and atmospheric conditions
of nodes to the northwest, aligning with the direction of freezing. It it is logical that a node
that contains water should know the condition of its 3-hop neighbor to the northwest, as if
this neighbor is frozen, it is likely that this node will freeze in the near future. Conversely,
during the melting season, arrows point towards open water, indicating that nodes with icy
conditions but with water-containing neighbors should consider these neighbors important
as they indicate the node is likely to melt soon. Notably, the magnitude of the arrows is
larger at the ice edge and nearly zero in the consolidated ice region, which could reflect the
localized nature of the break-up process compared to the more gradual freeze-up. That is,
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(a) December 1, 2014 (b) July 1, 2014

Figure 4.7: Visualization of attention weights of the input gate applied to the input tensors
during the freeze-up (a) and melting (b) seasons overlaid on the sea ice concentration input.
Arrows indicate the primary direction and magnitude of information flow based on the
learned attention weights. Attention weights at the land interfaces are omitted for clarity.
The attention weights appear to be largely influenced by sea ice concentration, but other
input variables also influence the weights, for example surface sensible heat flux in (a), and
sea ice thickness in (b).

the break-up process is largely confined to the ice edge, while freeze-up gradually occurs
across the region, as seen by changes in sea ice concentration. Nodes in the open water
region during the melting season are less likely to change and, therefore, do not require
attention to specific neighbors. Note that although the weights are visualized on the sea
ice concentration inputs, they apply indiscriminately to all input features. Interestingly,
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the model appears to prioritize sea ice thickness over concentration, evidenced by the
larger attention weights where thickness drops more dramatically than concentration in
Figure 4.8b. This is logical given the importance of thickness in determining the rate at
which the ice will melt or break up. Additionally, the attention weights in the open-water
region during the freeze-up condition appear to be influenced by surface sensible heat flux,
suggesting its significance as an input feature.

4.5 Variable Importance

The models are trained with a number of input variables (refer to Table 3.1), which were
anticipated to be used by the model to make its predictions. However, these variables may
not contribute equally to the resulting predictions. In this section, the significance of each
feature is explored by feature ablation through omission [17]. Specifically, forecasts are
produced using the trained GraphSIFNet-Att model by substituting each input variable,
one at a time, with white Gaussian noise generated using the mean and standard deviation
of the real inputs. By replacing these inputs without re-training the model, we can assess
the degree of the model’s dependence on each respective input. Little or no change in
performance after noise injection suggests the model does not consider the input when
producing forecasts, while a large change would suggest the inverse. Figure 4.8 shows the
resulting difference in RMSE when re-generating predictions on the test years using the
June and December models when each variable is replaced with noise.

(a) June model feature importance (b) November model feature importance

Figure 4.8: Feature ablation with noise injection for the June and November GraphSIFNet-
Att models. Positive values indicate an increase in RMSE when each respective variable is
replaced with noise.

During the break-up process (June model), the model largely relies on the input sea
ice concentration and sea ice thickness to make its predictions, but also considers the ice
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velocities, sea surface temperature and sea salinity to a smaller degree. Other variables
do not significantly affect the resulting predictions. The model appears to use sea ice
concentrations to inform near-term forecasts (days 0 through 20), and sea ice thickness
to inform its medium-term forecasts (days 0 through 35). This makes intuitive sense as
thickness is an indicator of the ice cover’s longevity making it relevant at longer forecast
steps, while sea ice concentration is more important for immediate predictions since lower
ice concentrations are normally associated with ice parcels that are already breaking up.
Note that at forecast steps larger than 35 days, forecasts launched in June are largely
forecasting periods where Hudson Bay is fully open water, thus none of the input features
contribute to the resulting forecasts.

Similarly, during the freeze-up process, the model relies on sea ice thickness, sea ice
concentration, sea ice velocity and sea surface temperature to make its predictions. Again,
the model largely considers sea ice concentration to make its shorter term forecasts (days
10 through 25), while considering ice velocity and thickness for medium-term forecasts
(days 15 through 40). Ice velocity may be indicating areas where ice migrates, thereby
creating space for new ice formation. The difference between the vertical and horizontal
ice velocity component (usi and vsi) may indicate that they offer redundant information,
thus it is sufficient for the model to consider one of the components. Again, November
forecasts at larger than 40 days are largely forecasting periods of full ice cover, therefore
omitting input features does not impact the scores. It is also worth noting that in both
cases, the model does not appear to consider the variables originating from ERA5. This
could point to a mismatch between ERA5 and GLORYS12, which would be unsurprising as
GLORYS12 uses ERA-Interim as model forcing at the surface. Since the target variables
are derived from GLORYS12, the models therefore prioritize input features originating
from GLORYS12.

To illustrate the impact of these variables on the predictions, a sample GraphSIFNet-
Att forecast is shown in Figure 4.9, along with the same forecast when replacing sea
ice concentration and sea ice thickness (SIT) with noise as described above. Replacing
either SIC or SIT with noise does not significantly affect the 1-day forecast, suggesting the
model uses persistence as a heuristic at very short lead times. Beyond the 10-day forecast,
predictions are affected by the noise injections, with the model forecasting a quicker melt
when sea ice thickness is replaced with noise, consistent with the theory that thickness is
used as a signal of ice longevity. When SIC is replaced with noise, the model persists more
of the ice in the 20-day forecast, suggesting that SIC is also important for ice integrity.

Although this technique offers some insight into feature importance, it should be noted
that since the models are not re-trained, the observed changes in performance due to feature
omission may not perfectly reflect the true importance of each feature. This is because the
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Figure 4.9: Sample 1-, 10-, 20-, and 30-day forecasts from GraphSIFNet-Att launched on
June 15, 2014. The climatology for each forecast day is shown for reference, and the results
of running inference after replacing sea ice concentration (SIC) and sea ice thickness (SIT)
with noise is shown.
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model has been optimized to make predictions based on the full set of features, therefore
the omission of any one feature changes the input space in a way that the model was
not specifically trained to handle. Moreover, the interdependencies between features are
not accounted for in this single-feature ablation approach. Variables in the dataset may
interact in complex, non-linear ways that are not captured by examining each variable in
isolation. Despite these limitations, this feature ablation technique provides useful insights
into the relative importance of the different input features used in these particular trained
models [17]. Since we know which features the models are using, we know which input
variables should be more closely monitored.

4.6 Estimating Break-up and Freeze-up Dates

A potential use-case for sea ice prediction in Hudson Bay is the estimation of break-
up and freeze-up dates in key locations, as these dates have significant implications for
maritime navigation and local communities. The GraphSIFNet-Att model’s performance
in estimating the freeze-up date at three key ports in Hudson Bay is evaluated: the ports
of Churchill, Quaqtaq and Inukjuak. The port of Churchill is mostly used to export grain
while the ports of Quaqtaq and Inukjuak are regularly used for community resupply. These
three ports were chosen as their locations are representative of the varying sea ice conditions
found in the Hudson Bay region. In this thesis, the validation and test years (2014 to 2019)
serve as the period for assessing the predicted break-up and freeze-up dates. These dates
are determined using the same criteria as the previous study, which follows the definition
given by the Canadian Ice Service (CIS). That is, the freeze-up date at a given site is
defined as the initial day when open water persists for 15 consecutive days, with open
water being defined as a SIC of less than 15%. Conversely, the break-up date is defined
as first day at which SIC exceeds 15% for 15 consecutive days. The 30-day and 60-day
predicted break-up and freeze-up dates are determined using the same criteria, but with
open water and ice conditions being defined as a sea ice presence probability less than and
greater than 50%, respectively. For each port, the mean pixel value of a 3 × 3 window
around the nearest pixel to the port locations is taken.

Figure 4.10 and Figure 4.11 display the predicted dates of freeze-up/breakup at the
three ports with 30 and 60 days of lead time compared to the actual observed dates for
the validation and test years along with the mean absolute error. Predicted dates falling
within 7 days of the observed dates are considered correct, visualized by the pink shaded
area. This definition of a correct forecast is in line with a previous study [4]. The 30-day
forecasted break-up and freeze-up dates for Churchill are noticeably inferior to the other
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Figure 4.10: Break-up dates predicted by GraphSIFNet-Att at Churchill, Inukjuak, and
Quaqtaq ports for lead times of 30 and 60 days for the years 2014 to 2019 compared to the
observed dates from GLORYS12. The pink shaded area represents a 7-day buffer around
a perfect forecast. Samples which fall within this buffer are deemed correct forecasts. The
annotated numbers in parentheses are the error for each year.
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Figure 4.11: Freeze-up dates predicted by GraphSIFNet-Att at Churchill, Inukjuak, and
Quaqtaq ports for lead times of 30 and 60 days for the years 2014 to 2019 compared to the
observed dates from GLORYS12. The pink shaded area represents a 7-day buffer around
a perfect forecast. Samples which fall within this buffer are deemed correct forecasts. The
annotated numbers in parentheses are the error for each year.
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two ports, likely due to challenges presented by the latent heat polynya in the Northwest
of Hudson Bay. The uniform forecasts of freeze-up dates at Churchill can be interpreted
as an admission that the model does not have skill here and resorts to forecasting the
same mean day every year. Break-up predictions at Inukjuak also pose a challenge for the
model, likely due to freshwater inflows from the James Bay area affecting the timing and
rate of melt. Quaqtaq sees the most successful predictions, with all freeze-up dates falling
within 7 days of the observed date.

In Figure 4.12 and Figure 4.13, the break-up and freeze-up accuracies are shown spa-
tially for the entire region. These accuracies are calculated as the proportion of years
with predicted break-up or freeze-up dates within 7 days of the observed date. These are
compared to predictions made using the climate normals. The model performs equally
or better than climatology for most of the region in predicting break-up dates at both
30-days and 60-days of lead time. However, there is a strong pattern in the freeze-up maps
where the model performs worse than climatology in the western half of the bay but still
outperforms climatology in the eastern half and in Hudson Strait. This is unsurprising as
Hudson Bay begins its freeze-up process in the northwest corner of the bay, thus the onset
of that initial freezing is difficult to predict. Once the bay has begun freezing over, the
model can better predict the timing of the rest of the bay. Although we might expect the
model to use atmospheric conditions such as temperature to predict the onset of freeze-up,
the model only has access those atmospheric conditions 30 or 60 days prior to the forecast
date. There may not be a strong enough signal in those initial conditions to allow the
model to accurately predict how quickly the temperatures will drop.
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(a) 30-day break-up date estimate map

(b) 60-day break-up date estimate map

Figure 4.12: Break-up date estimate maps from the climatological baseline (left),
GraphSIFNet-Att model predictions (middle), and the difference between the two (right).
Positive values in the difference plots indicate an increase in accuracy from the model
relative to the baseline, where accuracy is defined as the proportion of predictions falling
within 7 days of the observed date for the years 2014 to 2019.
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(a) 30-day freeze-up date estimate map

(b) 60-day freeze-up date estimate map

Figure 4.13: Freeze-up date estimate maps from the climatological baseline (left),
GraphSIFNet-Att model predictions (middle), and the difference between the two (right).
Positive values in the difference plots indicate an increase in accuracy from the model
relative to the baseline, where accuracy is defined as the proportion of predictions falling
within 7 days of the observed date for the years 2014 to 2019.

60



Chapter 5

Conclusion

This thesis demonstrated the effectiveness of using a GNN-based spatiotemporal forecasting
model for predicting daily sea ice concentration and sea ice presence in Hudson Bay over
a 90-day time horizon. To demonstrate the ability of GNNs to handle spatially irregular
meshes, models were trained on both a uniform regular mesh and an irregular mesh with
higher resolution near shorelines. The proposed model uses an attention-based transformer
spatial convolution to learn spatial features from the input, which was shown to have similar
performance compared to the more basic graph convolutional network. The attention-based
convolution however has the additional benefit of increasing the model’s interpretability,
motivating its use.

Results from this work highlighted the model’s skill in predicting sea ice dynamics, with
particular success noted in short- to medium-term forecasts during the break-up season
when compared to a linear combination of persistence and climatology as a statistical
baseline. The model performed as well or better on the irregular mesh as on the regular
mesh, with the exception of some difficulty capturing the initial freeze-up in the Northwest
region of Hudson Bay as well as the polynya formation at longer lead times. This suggests
that improvements could be made in refining the model’s sensitivity to complex spatial
features associated with irregular meshes, particularly in areas where ice dynamics are
highly variable. This could involve more sophisticated positional and spatial encoding,
perhaps by projecting the positional, cell size, distance and angle encodings into higher
dimensional latent space. The model showed similar overall performance between the
model using the transformer convolution and the GCN within the GCLSTM module, with
some differences in performance in certain regions such as Hudson Strait. This suggested
potential overfitting in the model using the spatial transformer convolution.
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The attention mechanism within the transformer convolution offered interpretability
by highlighting the primary direction and magnitude of information flow in the encoder,
which aligned with known physical processes such as the direction of freezing and melting.
A feature ablation experiment indicated the trained model’s reliance on sea ice concentra-
tion, thickness and velocities to inform its predictions. Other variables did not contribute
significantlty to the resulting forecasts, which could explain the model’s poor performance
in forecasting the Kivalliq latent heat polynya. A evaluation of the model’s ability to
predict freeze-up and break-up dates was conducted, revealing the model’s limited ability
to forecast the onset of freeze-up in Hudson Bay, as well as the onset of break-up in the
Northwest region which is influenced by the polynya. The model however still showed skill
over the statistical baseline in these tasks.

5.1 Future Work

This work demonstrated the effectiveness of temporal GNNs in forecasting sea ice. How-
ever, several potential avenues exist to extend or improve upon this work.

Dynamic Re-Meshing

The experiments conducted in this thesis were done using a static spatial mesh. However,
the graph-based model presented here theoretically allows for modelling over a mesh that
is dynamic in time, evolving as the underlying data changes (e.g., as the ice conditions
evolve). Since each node has its own hidden and cell states, cells can be combined by
averaging the states or split by duplicating the states. Thus, the latent representation
of a given snapshot can be re-meshed by using Equation 3.2 and Equation 3.1 given an
initial mesh defined by the mapping tensor M1 and a target mapping tensor M2 (along
with the corresponding tensors P1 and P2. These operations being entirely formulated as
matrix operations allows for GPU acceleration and for the operations to be more easily
differentiable for backpropagation.

For example, one could define a dynamic mesh which has a higher resolution at the ice
edge where the ice conditions are known to be more dynamic. As the ice conditions evolve,
so too would the underlying mesh. The advantages are two-fold. First, it allows for a
reduction in data volume with minimal information loss, contrary to the static mesh used
in this work which has information loss where the data has high spatial variance. Second,
the dynamic mesh could potentially help the model learn more sophisticated dynamics
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and is more consistent with some physical simulation software. The idea of dynamically
re-meshed GNNs for physical simulations was explored in [54].

Training over such a dynamic mesh was initially explored as a part of this thesis, but
was ultimately removed as the computation required proved infeasible on the available
computational resources when training over the full training set. Further investigation of
this technique to improve its efficiency could yield better results, however. This could
consist of investigating the computational graph more thoroughly to find inefficiencies, re-
structuring the training pipeline to use multiple GPUs, or simplifying the model further.

To demonstrate the feasibility of dynamic re-meshing in a spatiotemporal forecasting
model, experiments were conducted on a toy dataset which yielded promising results. The
results of this experiment are shown in Appendix B.

Physics-informed Learning

Deep learning models can often benefit from a more direct incorporation of known physical
laws when modeling physical systems. While the expectation is that a deep learning model
will inherently learn the necessary physical processes, training a model using the stan-
dard backpropagation procedure does not guarantee this. Furthermore, verifying what the
model has learned remains challenging. Incorporating physical equations, either within the
network architecture or as part of the training process, can help generate more physically
realistic forecasts.

Take, for instance, the simple ice growth model given by

hice =
Qnet ·∆t

ρice · Lf

(5.1)

where hice is the change in ice thickness, Qnet represents the net energy flux, ρice denotes
the density of sea ice, Lf is the latent heat of fusion, and ∆t is the time step length (here,
one day). Re-arranged to isolate Qnet, this becomes

Qnet =
hice · ρice · Lf

∆t
. (5.2)

This equation could be used to estimate the net energy flux required to produce the
change in ice thickness forecasted by the model, and ensure that it falls within a reasonable
range, which could be determined using historical records from ERA5 for each time of the
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year. If the required net flux is found to be unreasonable, a penalty term could be added
to the loss. This is just one example of a physical equation that could be used to constrain
the model outputs in different ways. Many other equations could be used to constrain
different parts of the system (for instance, conservation of mass using ice velocity fields, or
more sophisticated thermodynamic equations).

Alternatively, physical equations could be incorporated by directly building them into
the neural network architecture. For instance, sea ice models are sometimes evaluated by
calculating an “ice budget” over the domain to verify that the net budget is near zero [52].
Take the equation for sea ice intensification [26]

∂C

∂t
+∇ · (uC) = fc − r (5.3)

where ∂C
∂t

representations ice intensification (the change in sea ice concentration over
time), C represents sea ice concentration, fc denotes thermodynamic freezing or melt, and
r denotes mechanical redistribution (ice parcels ridging or rafting). The ∇ · (uC) can be
separated into its advection and divergence terms and re-written as

∂C

∂t
= −u · ∇C − C∇ · u + residual = A + D + residual (5.4)

where A and D are the advection and divergence terms, respectively, and the residual
term combine both fc and r. This decomposition can be used directly within a deep
learning model by having the model predict all of the three constituent terms (advection,
convergence, and residual) and calculating the loss with respect to these three terms. To
generate a sea ice concentration forecast, the three terms are summed, and added to the
sea ice concentrations of the previous day. Note that to accomplish this, the three terms
above need to be estimated from some sea ice dataset. This can be done using sea ice
velocity fields in the GLORYS12 dataset used in this work on a pixel-wise basis using the
equations:

Aij = −vxi,j ·
[

(Ci+1,j − Ci−1,j)

2 · (xi+1,j − xi−1,j)

]
− vyi,j ·

[
(Ci,j+1 − Ci,j−1)

2 · (yi,j+1 − yi,j−1)

]
(5.5)

Dij = −Cx
i,j ·
[

(vi+1,j − vi−1,j)

2 · (xi+1,j − xi−1,j)

]
− Cy

i,j ·
[

(vi,j+1 − vi,j−1)

2 · (yi,j+1 − yi,j−1)

]
(5.6)

for given pixel indices (i, j), where C represents sea ice concentration, and vx and
vy are the eastward and northward ice velocities. While this training strategy was not
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Figure 5.1: Comparing the test loss curve when training the April model to predict sea
ice volume directly (Base) versus predicting the advection, divergence and residual terms
separately (PINN).

implemented in this study, preliminary small-scale experiments forecasting sea ice volume
(the product of sea ice concentration and thickness) using this strategy yielded promising
results, showing faster convergence and a lower error (see Figure 5.1).

Improving the Ice Edge Definition

Probabilistic spatial ice models such as the one employed in this work often lead to the
generation of blurred edges in the modeled ice distributions. This effect arises because
these models are optimized to minimize error across observed and predicted sea ice con-
centrations. In the process of error minimization, the model inherently averages out the
sharp transitions between ice and open water, resulting in a smoothed gradient rather than
a distinct boundary. Real-world sea ice edges, however, are often sharp and clearly defined
due to the physical processes governing ice formation and melt. A possible remedy to this
issue is the use a perceptual loss function that would penalize forecasts that look different
from the ground truth due to differences in texture or structure. For example, the struc-
tural similarity index measure (SSIM) quantifies the difference in luminance, contrast, and
structure between images. For two images x and y, SSIM is given by the equation

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.7)

where µx and µy are the average intensities of x and y, σ2
x and σ2

y are the variances
of x and y, σxy is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2 are factors
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used for numerical stability with L being the dynamic range of the images, and k1 and k2
are parameters typically set to 0.01 and 0.03, respectively. Incorporating SSIM or similar
measures into the model’s loss function could encourage the preservation of distinct ice-
water boundaries, thereby generating more physically feasible forecasts, though perhaps
reducing the accuracies calculated by metrics such as MSE.

Alternatively, different modelling techniques such as GANs, which are trained with the
goal of generating predictions which are indistinguishable from real observations. This will
inherently generate more feasible ice edges as blurred edges would be an obvious sign that
a sample is a prediction, easily identifiable by the discriminator.

Efficiency

In this thesis, a model was trained over Hudson Bay, a relatively small domain compared
to the broader pan-Arctic domain. The main computational limitation was the memory
usage, as during each update step, the entire graph is processed at once. For a larger
domain at the same high resolution, it may not be feasible to train the model in the same
way. Fortunately, in a GNN, each node is processed as a separate sample by the network.
This means that one input sample Y ∈ RN×C does not necessarily need to be processed
fully at once, instead, nodes could also be sampled in batches sequentially until the full
sample has been processed. Alternatively, each epoch could randomly sample a limited
number of nodes for training, though this risks divergence during training if the samples
are too dissimilar.

Other Improvements

Another avenue for future work could be a deeper investigation of the adjacency matrix.
In this work, edges were placed between any two directly spatially adjacent cells. How-
ever, edges could also be placed between distant cells thereby widening the receptive field
without adding convolutions. This could be investigated by transforming the adjacency
matrix into a learnable matrix optimized during training. Limits would likely need to be
imposed, either with a maximum number of edges or a maximum edge length, to ensure
computational feasibility.

Incorporating long-term weather forecasts from third party sources such as the Cana-
dian Global Ice Ocean Prediction System (GIOPS) could also be beneficial, particularly
in forecasting freeze-up. These forecasts could be used, for example, to inform the model
as to whether it is likely to be a warmer or cooler winter season, or whether the timing of
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sub-zero temperatures in the fall is likely to be earlier or later than usual. Integrating these
forecasts would require careful consideration to ensure the forecasts are being effectively
considered, without dominating over the model itself.

Lastly, multi-resolution modelling either through an ensemble of models operating over
meshes of different resolution or using multiple meshes of varying resolutions within a single
model could be explored. This may help the model better capture both large-scale and
small-scale phenomena.
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and Yoshua Bengio. Graph Attention Networks, February 2018. URL http://arxiv.

org/abs/1710.10903. arXiv:1710.10903 [cs, stat].

[78] Timo Vihma. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review.
Surveys in Geophysics, 35(5):1175–1214, September 2014. ISSN 1573-0956. doi: 10.
1007/s10712-014-9284-0. URL https://doi.org/10.1007/s10712-014-9284-0.

78

https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1007/s10584-011-0101-1
https://hess.copernicus.org/articles/26/5163/2022/
https://hess.copernicus.org/articles/26/5163/2022/
https://doi.org/10.1007/s10462-023-10577-2
https://papers.nips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1007/BFb0053993
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/s10712-014-9284-0


[79] Frédéric Vitart and Andrew W. Robertson. The sub-seasonal to seasonal prediction
project (S2S) and the prediction of extreme events. npj Climate and Atmospheric
Science, 1(1):1–7, March 2018. ISSN 2397-3722. doi: 10.1038/s41612-018-0013-0.
URL https://www.nature.com/articles/s41612-018-0013-0. Number: 1 Pub-
lisher: Nature Publishing Group.

[80] Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A.
Granskog. Comparison of ERA5 and ERA-Interim near-surface air temperature,
snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics
and evolution. The Cryosphere, 13(6):1661–1679, June 2019. ISSN 1994-0416. doi:
10.5194/tc-13-1661-2019. URL https://tc.copernicus.org/articles/13/1661/

2019/. Publisher: Copernicus GmbH.

[81] Senzhang Wang, Jiannong Cao, and Philip S. Yu. Deep Learning for Spatio-Temporal
Data Mining: A Survey. IEEE Transactions on Knowledge and Data Engineer-
ing, 34(08):3681–3700, August 2022. ISSN 1041-4347. doi: 10.1109/TKDE.2020.
3025580. URL https://www.computer.org/csdl/journal/tk/2022/08/09204396/

1nkyTK35x1S. Publisher: IEEE Computer Society.

[82] Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason. Presentation
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Appendix A

Additional RMSE Heatmaps

(a) Model (b) ∆(Model, Persistence) (c) ∆(Model, Climatology)

Figure A.1: RMSE heatmaps for the SIC forecasting task by month and lead time for the
GraphSIFNet-Att model (a), and the RMSE differences between GraphSIFNet-Att and
persistence (b) and climatology (c) where negative values (blue) indicate a reduction in
model error relative to the baseline.
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(a) Model (b) ∆(Model, Persistence) (c) ∆(Model, Climatology)

Figure A.2: RMSE heatmaps for the SIC forecasting task by month and lead time for
the GraphSIFNet-Att-Reg model (a), and the RMSE differences between GraphSIFNet-
Att-Reg and persistence (b) and climatology (c) where negative values (blue) indicate a
reduction in model error relative to the baseline.

(a) Model (b) ∆(Model, Persistence) (c) ∆(Model, Climatology)

Figure A.3: RMSE heatmaps for the SIC forecasting task by month and lead time for the
GraphSIFNet-Att-Reg model (a), and the RMSE differences between GraphSIFNet-GCN
and persistence (b) and climatology (c) where negative values (blue) indicate a reduction
in model error relative to the baseline.
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Appendix B

Dynamic Re-Meshing Experiment on
MovingMNIST

The following stand-alone paper written for the SYDE 672 course demonstrates initial
experiments using a model similar to that used in this work for predicting frames of the
MovingMNIST dataset. The model differs from GraphSIFNet as it uses an autoregressive
model rather than a sequence-to-sequence model, and the spatial and temporal convolution
steps are done in sequence rather than together. Nevertheless, it demonstrates the feasi-
bility of evolving the underlying mesh during the unrolling process, and this method could
potentially be combined with GraphSIFNet. This method is however computationally in-
tensive, and optimizations would need to be made to train such a model in a reasonable
amount of time.
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Abstract—In this study, I propose a reduction of basis tech-
nique for sequences of sparse images in the context of next-
frame video prediction. Using a quadtree decomposition on a
toy dataset of sparse images, we effectively reduce the dimen-
sionality and transform each image into mesh-like spatially
heterogeneous graph structures. A basic spatiotemporal graph
neural network (GNN) model is introduced to perform next-
frame prediction, which shows that despite the significant data
reduction from the quadtree decomposition, the GNN performs
slightly better using the reduced basis when the number of
training epochs is fixed, in addition to significantly reducing
training time. These results suggest that temporal graph net-
works have potential for handling mesh-like sequence data,
though further investigation into more flexible networks that
can model temporally heterogeneous meshes is recommended
to improve generalizability.

1. Introduction

Next-frame video prediction is a challenging problem
that has largely been addressed using spatiotemporal model
based on the convolutional neural network (CNN). These
models are particularly well-suited to image data with a
regular structure, such as photographs or video frames as
they allow for learning rich features that are present in real-
world images [1]. However, some image sequences, such as
freeform 2D sketches or point clouds, are sparse in nature,
meaning that the features of interest occupy a small subset
of the image space. While CNN-based methods may still
produce strong predictions on these types of images, they
are not optimal since much memory and computation is
wasted convolving over image regions containing little or
no relevant information [2]. Some examples in which spatial
sparsity may arise in sequential image data are:

• Sequences of handwritten or hand-drawn images,
such as handwritten text or freeform sketches

• Satellite image sequences in which we are inter-
ested in change detection in some dynamic region
surrounded by static features (e.g. forecasting the
position of the ice edge over an ocean region during
freeze-up)

• Sequences of images created by projecting 3D point
clouds of objects onto a 2D plane

• Simulation meshes, such as a flag blowing in the
wind, where the cell values correspond to physical
distortions in the flag.

• Surveillance or security camera footage, which may
contain large areas of background with only a few
objects of interest present

To leverage the redundancy in sparse images, images can
be decomposed into heterogeneous meshes with increased
resolution in regions of high information density, and lower
resolution elsewhere. The definition of information density
is of course problem dependent and needs to be carefully
considered as any reduction technique will lead to some
degree of information loss. Here, a simple quadtree de-
composition scheme is proposed to reduce redundant in-
formation and transform image sequences into sequences
of spatially heterogeneous meshes. These meshes can then
be thought of as semi-structured graphs with undirected
edges between neighbouring mesh cells, and a spatiotempo-
ral graph neural network (GNN) is then proposed to learn
spatial relationships between nodes, as well as temporal
dependences between consecutive frames.

Temporal GNN approaches have already been proposed
for timeseries modelling on unstructured data. The tempo-
ral graph network (TGN) [3] was proposed as a generic
temporal GNN framework for dynamic graphs where nodes
and edges may be added or removed. The TGN retains
a memory vector for each node in the network, which is
updated at each timestep, including the node’s deletion and
insertion. In the update step, new embeddings for each node
are computed using a message passing function, as well as
the probablility of edges between any two nodes. This is
a highly versatile framework ideal for highly unstructured,
dynamic graphs. Images are of course highly structured, thus
such a flexible architecture is not required. Several temporal
GNN architectures have been proposed, largely in the traffic
forecasting domain. These include recurrent networks [4]
[5], attention-based models [6] [7], and simple message-
passing networks [8] [9].

Little work has been done in studying the application
of these techniques in next-frame video prediction. This is
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(a) (b)

Figure 1. Two examples of sparse images. (a) Hand-drawn outline of a
ping-pong paddle and ball; (b) Ice presence map over Hudson Bay.

unsurprising as graph-based approaches are most useful on
unstructured data, and models based on convolutions have
generally been accepted as the default framework for regu-
larly gridded data. The closest related work is that of [10] in
which an extension of the ConvLSTM introduced by [11] is
proposed, where the 2-dimensional convolution operations
is simply replaced by a graph convolution. They demon-
strate strong performance on the MovingMNIST challenge,
outperforming the ConvLSTM which they attribute to the
lower number of parameters required to achieve the same
receptive field size. They also demonstrate the rotation in-
variance intrinsic to graph networks by use of a modified
MovingMNIST with rotating digits. This study investigates
a similar technique, with the addition of a data reduction
technique to increase efficiency on sparse image sequences.

2. Methodology

The following sections provide details on the toy dataset
considered in this study, the reduction of basis technique,
proposed model and experimental set-up.

2.1. Toy problem

In this work, a variation of the MovingMNIST dataset
[11] is considered, in which a single digit moves about
a canvas in a deterministic fashion. The object’s initial
position and velocity are randomly initiated, after which it
moves in a straight line, bouncing off the boundaries of the
canvas. Noise can be added by randomly nudging the x and
y velocities during the trajectory, and adding white noise to
the pixel intensities. In this toy dataset, a single 12 × 12
digit is used over a 32× 32 canvas, illustrated in Figure 2.

2.2. Reduction of basis

Sparse images contain redundant information which can
be discarded with minimal information loss. Here, I pro-
pose an irregular grid structure which reduces the image
resolution in areas of low information density (i.e. empty
regions in the toy dataset). This is achieved using a quadtree
decomposition algorithm in which we start with a single cell
covering the entire image, which is recursively split in four
if the some condition is met. This condition could be the

Figure 2. Four frames of the toy dataset without noise (top), and with
added white noise in pixel intensity and object velocity (bottom). Both are
identically initiated, but the velocity noise causes the digit to move more
sporadically in the noisy frames.

maximum, sum, or variance of pixel values within the cell
meeting some threshold. Here, a threshold on the variance is
selected as it is regions with high variance (edges, gradients)
which contain the most information. Some many-to-one
mapping function needs to be specified to map the original
gridded pixels to the mesh representation. This could be a
learned mapping such as an MLP, or a simple aggregate.
A mean over of the pixels is chosen here given that the
cells are split on a variance threshold which ensures that
each cell contains values within a relatively narrow band.
Pseudo-code for the quadtree decomposition algorithm is
given in Algorithm 1.

This can be viewed as a reduction in basis on an input
image z, in which we could specify the transformation as:

z̄ = Fz (1) z = Sz̄ (2)

where F specifies the transformation from pixels z to
nodes z̄, and S inverts the transformation. Clearly, some
information is lost during these transformations such that
SF ̸= I and therefore z − SFz ̸= 0. The amount of
information loss can be quantified as the mean squared error
between the original and tranformed-untransformed images,
which can be used to determine an appropriate value for the
variance threshold used in the quadtree decomposition such
that sufficient reduction is achieved while maintaining an
acceptable level of information loss. In this work, an arbi-
trary variance threshold value of 0.05 was selected through
trial-and-error. This is appropriate since a given region of a
MovingMNIST frame either contains part of the digit or not,
with no in-between. Thus, there is a single best threshold
which can be found and optimization is not required.

2.3. A Graph-based Approach

CNN-based algorithms cannot be applied due to the ir-
regular structure of the quadtree decomposed images. How-
ever, these structures can be viewed as meshes or graphs,
which are the natural domain of graph-based techniques. In
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Figure 3. Example transformation of one frame to its graph representation.
Black circles represent nodes and red lines are the (undirected) vertices
connecting nodes. The graph is has a greater density of nodes over the
object and a sparser structure elsewhere. The transformation has no effect
on the image itself as it retains full resolution over the object while the
rest of the image is occupied by zeros.

Algorithm 1 Quadtree decomposition
1: procedure DECOMPOSE(image, x, y, s)
2: thresh← 0.05
3: window ← image[x : x+ s][y : y + s]
4: if var(window) > thresh then
5: for each i ∈ I do
6: for each j ∈ J do
7: image[i][j]← mean(window)
8: end for
9: end for

10: else
11: s1 ← s/2
12: DECOMPOSE(image, x, y, s1)
13: DECOMPOSE(image, x+ s1, y, s1)
14: DECOMPOSE(image, x, y + s1, s1)
15: DECOMPOSE(image, x+ s1, y + s1, s1)
16: end if
17: end procedure

particular, graph neural networks (GNNs) can easily handle
such irregular meshes without special consideration. The
decomposed images can be transformed into sets of nodes
and vertices, where the centroid of each cell are the nodes,
and vertices are inserted between any two adjacent cells. To
retain spatial awareness, the position and size of each cell
(node) is stored as attributes of the nodes, while distances
between nodes are stored as edge weights. The edge weights
ensure that nodes which are spatially distant from some node
have less effect during the update step.

To model temporal dependencies, the model should be
made to accept multiple frames as input for each prediction
step. Decomposing each input image separately would re-
quire learning patterns on a dynamic set of graphs, which
is a relatively complex task. To avoid this complexity, the
input frames can be superimposed by using the maximum
pixel intensity from all input images, and a graph created
from the superimposed image. In this way, a single static
graph can be used to represent all input frames. Furthermore,
since we expect the object to move somewhere outside of
the region of high node density in the next predicted frame, a
two-pixel buffer is added. This scheme limits the amount of

basis reduction, but greatly simplifies the modelling process.
Figure 4 shows this procedure applied to three input frames.

Figure 4. Example transformation of three input images to its graph
representation using superimposition. Circles represent nodes and red lines
are the (undirected) vertices connecting nodes. The resulting graph can
adequately represent all three input frames.

2.4. Proposed Model

To model both spatial and temporal patterns, a hybrid
message-passing graph neural network (MPGNN) and long-
short term memory (LSTM) architecture (MPGNN-LSTM)
is proposed. This model first encodes each input mesh
separately using N stacked graph convolution layers with
shared weights. ReLU activation and batch normalization is
applied after ever graph convolution. The encoded states are
then used as input into a set of M LSTM layers. Only the
final state of the LSTM layers is retained and concatenated
with the original inputs features. Finally, the embeddings
are fed through a final fully-connected layer which produce
the final output. A high-level depiction of the model is
illustrated in Figure 5, and a more detailed description of
the components are given in the following sections.

Figure 5. Overall architecture of the MPGNN-LSTM network. Xt is the
node input feature matrix for timestep t, while A and V are the adjacency
matrix and edge weights, respectively. The graph structure specified by A
and V is shared among the inputs, hence the omission of subscripts.

2.4.1. Graph Convolutions. The model learns dependen-
cies between connected nodes through graph convolutions.
For a graph with N nodes, a graph convolution layer with
feature dimensionality D takes the general form

H(l+1) = f(H(l), A) (3)
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for a network with L layers, where H l ∈ RN×D is the
hidden state of the lth, f(·) is some aggregation function,
and A is the adjacency matrix for the given graph. The
adjacency matrix A ∈ RN×N specifies the connections
between nodes and has entries

Aij =

{
1 if Ni and Nj are connected
0 otherwise.

(4)

A simple yet effective aggregation function is the function

f(H(l), A) = σ(AH(l)W (l)) (5)

where W (l) ∈ RN×N is the weight matrix of the lth layer,
and σ is some non-linear activation function. For a given
node, we would like to update (rather than replace) its
state using its neighbor’s states, therefore it is useful to
add self-loops into the adjacency matrix, i.e. connecting
each node to itself. This can be done by simply adding
the identity matrix to the adjacency matrix Â = A + I .
To avoid exploding the values in the hidden states during
the weighted multiplication, we can also normalize the ad-
jacency matrix using the diagonal node degree matrix D̂ of
Â, which ensures each row sums to one. Kipf et al. suggest
using a symmetric normalization, such that the adjacency
normalization becomes D̂−1/2ÂD̂−1/2 rather than D̂−1Â.
The graph convolution operation can therefore be written as

f(H(l), A) = σ(D̂−1/2ÂD̂−1/2H(l)W (l)) (6)

This is the form of the basic graph convolution proposed
by Kipf et al. [12] which is used in this work through the
PyTorch-Geometric implementation [13]. By stacking sev-
eral graph convolution layers, the receptive field increases
as each node receives messages from its neighbors, which
themselves have received messages from their neighbors,
and so on.

2.4.2. Long-Short Term Memory (LSTM). Temporal pat-
terns in this proposed model are learned through the long-
short term memory module, which learns patterns in se-
quential data through non-linear control gates which control
the flow of information between subsequent LSTM cells. A
given cell maintains a cell state ct and hidden state ht which
accumulates information at each step through an input gate
it which allows information to be accepted into memory, a
forget gate ft which decides which information is discarded,
and the output gate ot which controls the information prop-
agated to the final output state. This allows each cell to
track gradients thereby mitigating the vanishing gradient
issue during back-propagation through time which plagues
the vanilla recurrent neural network [14]. The following are
the governing update equations of the LSTM:

ft = σ(Wf · xt +Uf · ht−1 + bf )

it = σ(Wi · xt +Ui · ht−1 + bi)

ot = σ(Wo · xt +Uo · ht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · xt +Uc · ht−1 + bc)

ht = ot ⊙ tanh(ct)
(7)

TABLE 1. DATASET CHARACTERISTICS

Characteristic Value

Input frames 3
Image size 32x32
Digit size 12x12
White noise - pixel intensity N(0, 0.05)
White noise - velocity N(0, 0.5)
Num. samples 1000 (train), 100 (test)

TABLE 2. MODEL AND TRAINING CHARACTERISTICS

Characteristic Value

Tr
ai

ni
ng

Epochs 200
Loss function Mean squared error (MSE)
Learning rate 0.01, decay by ×0.9 every 5 epochs
Optimizer SGD, momentum=0.9

M
od

el

LSTM layers 2
CGN layers 4
FC layers 2
Hidden size 64
Dropout 0.1

where σ is the sigmoid function, and ⊙ represents
element-wise multiplication.

2.5. Experimental Set-up

Two experiments are conducted. In the first experiment,
images are transformed into graphs using the input images’
pixels as nodes directly. This is the base case in which no
reduction of basis is performed, and the aim is to show that
this problem can be adequately modelled using the proposed
temporal GNN. In the second experiment, input images are
decomposed using the quadtree decomposition as described
in subsection 2.3. In the following section, the experiment
without the quadtree decomposition reduction of basis is
referred to as using the full basis, while the experiment with
the reduction of basis is referred to as using the reduced
basis. The same training set-up is used in both cases, as the
aim is to show that similar results can be achieved with and
without the reduction of basis.

The dataset consist of 1000 training samples and 100 test
samples, each of which is a sequence of four images, where
the first three are used as input, and the fourth is target. Each
sample randomly selects a digit from the MNIST database
[15] which is resampled to 12×12 and initiated at a random
location on the canvas for the first frame, before being set
along a random trajectory for following three frames. White
noise is added to the pixel intensities and velocity fields. The
dataset characteristics are summarized in Table 1

The model configuration and training set-up is also kept
constant between the two experiments. Parameters such as
the number of layers, hidden state size and dropout were set
following trial-and-error, as were hyperparameters such as
the learning rate and number of epochs. The configuration
used in the experiments are listed in Table 2. The models
were trained on a single NVIDIA Tesla V100 GPU.

88



TABLE 3. SUMMARY OF EXPERIMENTAL RESULTS

Num. Nodes Test MSE Training time (min)

Full Basis 1024 0.0154 89.2
Reduced Basis 100-200 0.0147 51.3

Percent Change -80-90% -4.5% -42%

3. Results

A summary of the training results is shown in Table 3.
The quadtree decomposition reduces the number of nodes
from 32× 32 = 1024 to 100-200 depending on the position
of the digit on the canvas, representing an 80-90% reduction
in data size. This corresponds to a reduction in training time
by approximately 42%. This non-linearly scaling between
data size and training time indicates that there is some
overhead cost which remains constant between the two
techniques. The mean squared error on the test set is lower
after the basis reduction wihch may be surprising, however
the loss curves in Figure 6 suggests a slower convergence
using the full basis, and that additional epochs may have
further reduced the loss. Note that the erratic test loss is
likely a result of the small batch size (here, 1) which updates
the model weights more often than with larger batch sizes.

Examples of predictions on a hold-out set using both
models is shown in Figure 7. In both cases, the models
adequately identify the general region in which the digit is
likely to be in the next frame. The blurry edges are expected
as the velocity noise adds stochasticity to the digit’s next
position, thus the models cannot be certain of the location.
Predictions using the reduced basis better reproduce the
shape of the digit and are more confident, while predictions
using the full basis are more diffuse. Although it is likely
that further training the full basis model would result in
similar or better results than with the reduced basis, the
improvement at the same number of epochs and with almost
half the training time is noteworthy.

4. Discussion

The quadtree decomposition imposes a heuristic on the
problem – regions of high variance (as a proxy for in-
formation density) will persist into the subsequent frames.
Conversely, we also impose the heuristic that regions with-
out high variance are uninteresting and should be modelled
at a low resolution. In the MovingMNIST problem, these
heuristics makes sense – digits move in a semi-deterministic
manner, and never does a new digit appear elsewhere on the
canvas. However, these heuristics could be viewed as too
strong and problem-specific. For instance, the model could
simply learn predict higher values over small cells and lower
values over large cells without learning anything else about
the dynamics of the problem and still achieve reasonable
results. This limits the generalizability of the solution.

Furthermore, in this limited toy problem, we’ve ensured
no information loss as all image regions that do not contain
any part of the digit are left unsplit, and since the noise

Figure 6. Loss curves for the reduced basis (top) and full basis (bottom).
The difference in scale between the two plots is a result of the loss
calculation which is performed on the graph representation, thus the MSE
values cannot be directly be compared.

Figure 7. Five consecutive predictions using the reduced basis (middle),
and the full basis (right), and the ground truth (left).
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is white, the resulting mean value for each unsplit cell is
close to zero. It is therefore essentially a noise reduction
technique. In real-world datasets, the noise may not be
white, and the decomposition may lead to artifacts which
the model would need to learn to ignore.

5. Conclusion

This work shows promise in using quadtree decom-
position for reducing the dimensionality of sparse image
sequences, allowing for efficient next-frame video prediction
using spatiotemporal graph neural networks. The results
show that the GNN performed slightly better using the
reduced basis when the number of training epochs was kept
constant, while also significantly reduced training time. Al-
though the focus in this work was on highly sparse images,
the data reduction and modelling technique proposed here
is not exclusive to these types of images. Quadtree decom-
position could be applied to any image sequence dataset,
however the amount of data reduction may be limited on
more dynamic scenes. In these cases, CNN-based techniques
may offer better overall performance.

5.1. Future Work

Several limitations exist in this study, and some sugges-
tions for future work is provided here.

First, the toy problem used here is limited in scope, and
should be expanded upon to better understand the method’s
generalizability. The results in this work appear to show
the model memorizing the form of the digit which remains
unchanged within image sequences. In principle, the model
should be able to learn patterns in morphing or rotation of
the digit, though this is not demonstrated here. Furthermore,
the addition of non-white noise to the pixel values such as
gradients or larger artifacts would better show whether the
model can generalize to real-world datasets.

Furthermore, a heuristic was used in this work to ensure
a single graph structure could be used on all input frames.
That is, we asserted a priori that the location of regions
of high information density would not change drastically
between frames, thus superimposing the input images and
adding a buffer to the resulting graph should adequately
represent the information in the input frames as well as
the next predicted frame. This heuristic does not necessarily
apply generally, and a model which accepts graphs which
are heterogeneous both in space and time would better gen-
eralize. One method of accepting temporally heterogeneous
graphs would be to add temporal vertices between any two
temporally adjacent cells. Careful consideration would need
to be taken to model the temporal dependence in this struc-
ture. Graph convolutions could be used along the temporal
axis such that the model is agnostic to whether a dimension
is spatial or temporal, only distinguished by attributes of
the vertices. In this case, edge features would need to be
used and updated similar to node features, rather than using
simple edge weights. Alternatively, the LSTM could still be
used along each temporal trajectory, that is, every possible

set of temporal vertices connecting the first and last input
frame. Depending on the complexity of the graph structures,
however, this could get prohibitively expensive.

Lastly, to fairly benchmark against other next-frame
prediction models, the model should be trained and tested
on the standard MovingMNIST using the standard metrics.
It may also be useful to compare the performance and
efficiency of both GNN models here against a baseline
CNN-based model.
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