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1. Introduction

The chromatic symmetric function XG of a graph G, introduced by Stanley approx-
imately thirty years ago [26], has seen a recent resurgence of interest, with research 
focusing on generalizations, basis expansions, and its ability to distinguish graphs 
[3,5,13,14,16,19,23,24,29]. In particular, a central driving conjecture in the field is the 
Stanley-Stembridge conjecture, which in its original form suggested that chromatic sym-
metric functions of incomparability graphs of (3 +1)-free posets are e-positive. Substantial 
progress on this conjecture was made by Guay-Paquet in 2013 [17] by demonstrating a 
relation that expressed XG with G the incomparability graph of a (3 + 1)-free poset 
as a convex combination of chromatic symmetric functions of incomparability graphs of 
posets that are simultaneously (3 + 1)-free and (2 + 2)-free, or equivalently unit interval 
graphs. Thus, the Stanley-Stembridge conjecture was reduced to showing the e-positivity 
of a smaller, well-studied graph class, and much recent work in the area has focused on 
this version of the conjecture [1,2,4,9,12,21].

In recent work by the first and last authors [11], we extended work of Penaguião [25]
considering X as a mapping from the Hopf algebra Γ of vertex-labelled graphs to the 
space of symmetric functions Λ, and in doing so we gave a characterization of all local 
graph modifications (written as a linear combination of vertex-labelled induced graphs) 
that universally preserve the chromatic symmetric function. Notably, it is possible to 
show that Guay-Paquet’s relation in [17] is not one of these, meaning that it depends on 
the particular structure of the incomparability graphs of (3 + 1)-free posets.

In this work, we define a further extension of the chromatic symmetric function to 
multiple sets of variables, also known as a multisymmetric function. The different sets of 
variables will represent a partition of V (G) into nonempty parts, where each part gets 
its own variable set. This allows us to generalize results of [11] and [25] and characterize 
further graph modifications that preserve the chromatic symmetric function. In particu-
lar, not every linear combination L of chromatic symmetric functions lying in the kernel 
of the map X : Γ → Λ represents a universal graph modification; however, in this paper 
we show that every such linear combination L does naturally give rise to a family of 
graphs within which L always represents such a graph modification.

In particular, the chromatic multisymmetric function captures the importance of ho-
mogeneous partitions of a graph G, meaning partitions V (G) = V1 � · · · � Vk �W such 
that for every vertex w ∈ W and every i, either w is adjacent to every vertex of Vi, or no 
vertex of Vi. The notion of homogeneous partitions occurs naturally in structural graph 
theory; the particular case of homogeneous pairs (where k = 2) occurs in the original 
form of the decomposition theorem that underlies the famous proof of the Strong Per-
fect Graph Theorem by Chudnovsky, Robertson, Seymour, and Thomas [7]. The more 
specific case of homogeneous pairs of cliques (where V1 and V2 are both cliques) play a 
vital role in the structure theorem of Chudnovsky and Seymour [8] for claw-free graphs, 
which in particular include all incomparability graphs of (3 + 1)-free posets.
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As an example, note that if a poset is not (2 + 2)-free, then its incomparability 
graph contains an induced four-vertex cycle, or C4. We show how Guay-Paquet’s relation 
reducing the Stanley-Stembridge conjecture [17] may be viewed naturally in terms of 
chromatic multisymmetric functions. To do so, we leverage the nontrivial fact (implicitly 
proved by Guay-Paquet’s structure theorem with Morales and Rowland in [18], and 
directly proved in Section 5.3) that if G is the incomparability graph of a poset that is 
(3 +1)-free but not (2 +2)-free, then for each induced C4 in G, there exists a homogeneous 
pair of cliques such that each clique contains two vertices of the C4. Guay-Paquet used 
this to his advantage in [17] by finding an appropriate local relation on the subgraph 
induced by these cliques to show that the chromatic symmetric function of the original 
graph is equal to a convex combination of chromatic symmetric functions of graphs in 
which the C4 is eliminated.

This paper is organized as follows: in Section 2, we introduce the notation, termi-
nology, and basic ideas needed from symmetric function theory and graph theory. In 
Section 3, we introduce k-vertex-labelled graphs, defined by labelling the vertices of a 
graph G with one of k labels, and thus inducing a partition of its vertex set V (G) into k
parts. We extend the definition of the chromatic symmetric function to a chromatic k-
multisymmetric function on such partitioned graphs, and demonstrate that this function 
has properties and basis expansions naturally generalizing those of the usual chromatic 
symmetric function.

In Section 4, we build on [11] and [25] by introducing an algebra Γk of k-vertex-labelled 
graphs, and characterizing the kernel of the map Xk : Γk → Λk, where Λk is the space of 
k-multisymmetric functions. Then in Section 5 we determine the algebraic relationships 
between the maps Xk for different values of k, including that elements in Ker(Xk) may 
be projected to elements of Ker(X), or in some cases lifted to elements of Ker(Xk+1). 
We put this all together to show how to derive further elements of Ker(X) from a given 
one (and thus better describe how graphs can have equal chromatic symmetric function) 
in a systematic way, and show examples from the literature that can be recovered in this 
manner. Finally, in Section 6 we provide some further possible directions for research.

2. Background

2.1. Fundamentals of partitions and symmetric functions

A set partition of a set S is a collection of nonempty, pairwise nonintersecting blocks
B1, . . . , Bk satisfying B1 ∪ · · · ∪ Bk = S. We will specify that a union of blocks is a set 
partition by writing � for disjoint union, using the notation B1 � · · · �Bk.

An integer partition is a tuple λ = (λ1, . . . , λk) of positive integers such that λ1 ≥
· · · ≥ λk. The integers λi are the parts of λ. If 

∑k
i=1 λi = n, we say that λ is a partition 

of n. The number of parts equal to i in λ is given by ni(λ).
We may use simply partition to refer to either a set or integer partition. We write 

π � S to mean that π is a set partition of S, and λ � n to mean that λ is an integer 
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partition of n. For these partitions, we write |π| = |S| and |λ| = n. The length of a set 
partition is its number of blocks, and the length of an integer partition is its number of 
parts. For π and λ as above, these are denoted by l(π) and l(λ) respectively. When π
is a set partition, we will write λ(π) to mean the integer partition whose parts are the 
sizes of the blocks of π.

A function f(x1, x2, . . . ) ∈ C[[x1, x2, . . . ]] is symmetric1 if f(x1, x2, . . . ) = f(xσ(1),

xσ(2), . . . ) for every permutation σ of the positive integers N. The algebra of symmetric 
functions Λ is the subalgebra of C[[x1, x2, . . . ]] consisting of those symmetric functions 
f that are of bounded degree (that is, there exists a positive integer n such that every 
monomial of f has degree less than or equal to n). Furthermore, Λ is a graded algebra, 
with natural grading

Λ =
∞⊕
d=0

Λd

where Λd consists of symmetric functions that are homogeneous of degree d. For more 
on the basics of symmetric function theory see [20,27].

Each Λd is a finite-dimensional vector space over C, with dimension equal to the 
number of integer partitions of d (and thus, Λ is an infinite-dimensional vector space 
over C). Some commonly-used bases of Λ that are indexed by partitions λ = (λ1, . . . , λk)
include:

• The monomial symmetric functions mλ, defined as the sum of all distinct monomials 
of the form xλ1

i1
. . . xλk

ik
with distinct indices i1, . . . , ik.

• The power-sum symmetric functions, defined by the equations

pn =
∞∑
k=1

xn
k , pλ = pλ1pλ2 . . . pλk

.

• The elementary symmetric functions, defined by the equations

en =
∑

i1<···<in

xi1 . . . xin , eλ = eλ1eλ2 . . . eλk
.

We also make use of the augmented monomial symmetric functions, defined by

m̃λ =
( ∞∏

i=1
ni(λ)!

)
mλ.

Given a symmetric function f and a basis b of Λ, we say that f is b-positive if when 
we write f in the basis b, all coefficients are nonnegative.

1 The choice of coefficient ring is irrelevant for the work in this paper so long as it is a field of characteristic 
0.
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2.2. Fundamentals of graphs and colorings

We use standard graph terminology as in [11].
A graph G = (V, E) consists of a vertex set V and an edge multiset E where the 

elements of E are (unordered) pairs of (not necessarily distinct) elements of V . Given 
an edge e ∈ E, its two vertices are called its endpoints. An edge e ∈ E that contains 
the same vertex twice is called a loop. If there are two or more edges that each contain 
the same two vertices, they are called multi-edges. A graph is called simple if its edge 
multiset contains no loops or multi-edges.

Given a graph G = (V, E) and S ⊆ V , let E|S denote the set of edges of G with both 
endpoints in S. The graph G|S = (S, E|S) is called the subgraph of G induced by S. A 
graph H is said to be an induced subgraph of G if there exists a set S ⊆ V such that H
is isomorphic to G|S , and in this case we say that G|S is an induced (copy of) H in G. 
If H is not an induced subgraph of G, we say that G is H-free. The set S ⊆ V is called 
a stable set if E|S = ∅.

A complete graph is a simple graph such that for each pair of distinct vertices u, v ∈
V (G), uv ∈ E(G). Given a simple graph G, its complement G is the graph (V (G), E(G))
where for each pair of distinct vertices u, v ∈ V (G), we have uv ∈ E(G) ⇐⇒ uv /∈ E(G). 
Given graphs G and H, the disjoint union G �H is equal to (V (G) �V (H), E(G) �E(H)).

Given A, B ⊆ V (G) with A ∩B = ∅, we say that B is complete to A if for every a ∈ A

and b ∈ B, ab ∈ E(G). We say that B is anticomplete to A if for every a ∈ A and b ∈ B, 
ab /∈ E(G).

Given a graph G, there are two commonly used operations that produce new graphs. 
One is deletion: given an edge e ∈ E(G), the graph of G with e deleted is the graph 
G′ = (V (G), E(G)\{e}), and is denoted G\e or G − e. Likewise, if S is a multiset of 
edges, we use G\S or G − S to denote the graph (V (G), E(G)\S).

The other operation is the contraction of an edge e = v1v2, denoted G/e. If v1 = v2 (e
is a loop), we define G/e = G\e. Otherwise, we create a new vertex v∗, and define G/e

as the graph G′ with V (G′) = (V (G)\{v1, v2}) ∪ {v∗}, and E(G′) = (E(G)\E(v1, v2)) ∪
E(v∗), where E(v1, v2) is the set of edges with at least one of v1 or v2 as an endpoint, 
and E(v∗) consists of each edge in E(v1, v2)\{e} with the endpoint v1 and/or v2 replaced 
with the new vertex v∗. Note that this is an operation on a graph that identifies two 
vertices while keeping and/or creating multi-edges and loops.

Let G = (V (G), E(G)) be a graph. A map κ : V (G) → N is called a coloring of G. 
This coloring is called proper if κ(v1) = κ(v2) for all v1, v2 such that there exists an edge 
e = v1v2 in E(G). The chromatic symmetric function XG of G is defined as [26]

XG(x1, x2, . . . ) =
∑

κ proper

∏
v∈V (G)

xκ(v) =
∑

π stable
m̃λ(π)

where the first sum ranges over all proper colorings κ of G, the second sum ranges over 
all (set) partitions π of V (G) into stable sets, and λ(π) is the integer partition whose 
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parts are {|πi| : πi is a block of π}. Note that if G contains a loop then XG = 0, and 
that XG is unchanged by replacing each multi-edge by a single edge.

2.3. Vertex-weighted graphs and their colorings

A vertex-weighted graph (G, w) consists of a graph G and a weight function w :
V (G) → N. For S ⊆ V (G), denote w(S) =

∑
v∈S w(v).

Given a vertex-weighted graph (G, w), if e = v1v2 is a non-loop edge, we define the 
contraction of G by e to be the graph (G/e, w/e), where w/e is the weight function 
such that (w/e)(v) = w(v) if v is not the vertex v∗ arising from the contraction, and 
(w/e)(v∗) = w(v1) +w(v2) (if e is a loop, we define w/e = w, so (G/e, w/e) = (G\e, w)).

The chromatic symmetric function may be extended to vertex-weighted graphs as

X(G,w) =
∑

κ proper

∏
v∈V (G)

x
w(v)
κ(v) =

∑
π stable

m̃λ(π)

where again the sum ranges over all proper colorings κ of G, and λ(π) is the integer 
partition whose parts are {w(πi) : πi is a block of π}. In this setting the chromatic 
symmetric function admits the deletion-contraction relation [10]

X(G,w) = X(G\e,w) −X(G/e,w/e). (1)

3. Extending X(G,w) to a multisymmetric function

Previous work [10] has dealt with extending XG to vertex-weighted graphs using pos-
itive integer weights in order to express a deletion-contraction relation for the chromatic 
symmetric function. Here, we make a further extension to allow for graphs whose weights 
are tuples of nonnegative integers to allow us to systematically describe a family of chro-
matic symmetric function relations including that of Guay-Paquet [17]. To do so, we 
need to introduce and describe the vector space of multisymmetric functions. We de-
scribe only the results we need here; for more information see the foundational works of 
Dalbec [15] and Vaccarino [28].

3.1. Multisymmetric functions

Definition 1 ([15,28]). Let k be a fixed positive integer, and for i = 1, . . . , k, let Xi =
{(x1)i, (x2)i, . . . } be a set of countably many commuting indeterminates. A function 
f ∈ C[X1, . . . , Xk] is multisymmetric if for all permutations σ : N → N with finitely 
many unfixed points, f is unchanged by replacing each (xi)j by (xσ(i))j (that is, f is 
fixed under the diagonal action of SN on the k variable sets simultaneously).

We denote the vector space of multisymmetric functions in k sets of variables (or 
k-multisymmetric functions) by Λk.
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As a vector space, there is a natural grading

Λk =
∞⊕
i=0

Λi
k

where Λi
k consists of those k-multisymmetric functions that are homogeneous of total 

degree i. This may be further decomposed as

Λi
k =

⊕
(i1,...,ik)

Λ(i1,...,ik)
k

where the direct sum ranges over all elements (i1, . . . , ik) of Zk
≥0 such that 

∑
j ij = i

(in other words, all weak compositions of i with k parts), and Λ(i1,...,ik)
k is the vector 

space of k-multisymmetric functions in which every monomial has total degree ij in the 
variable set Xj . Given a tuple (i1, . . . , ik), we let |(i1, . . . , ik)| =

∑
j ij .

Many symmetric function bases have analogues in multisymmetric functions. While 
basis elements of Λi are typically indexed with a multiset of positive integers summing to 
i (or integer partitions of i), basis elements of Λi

k are indexed with a multiset of ordered 
k-tuples of nonnegative integers (where each tuple has at least one positive coordinate) 
such that the sum of all coordinates of all tuples sums to i. We call such multisets k-tuple 
partitions. Where we list integer partitions with their parts in decreasing order, we will 
use the notation λk to denote a generic k-tuple partition λk = (λk

1 , . . . , λ
k
l ) with λk

1 ≥
· · · ≥ λk

l , where each λk
i is an element of Zk

≥0\{0k} and ≥ is the reverse lexicographic 
order. For instance, a basis element of Λ5 might be indexed by (4, 1) or (2, 2, 1), whereas 
a basis element of Λ5

2 might be indexed by ((2, 2), (1, 0)), or ((1, 1), (1, 1), (0, 1)), and a 
basis element of Λ5

3 might be indexed by ((2, 2, 0), (0, 1, 0)) or ((2, 2, 1)).
Furthermore, Λ(i1,...,ik)

k has basis elements indexed by k-tuple partitions such that the 
componentwise sum of all of the tuples is (i1, . . . , ik), so for example ((2, 2, 0), (0, 1, 0))
would index a basis element of Λ(2,3,0)

3 . We define ||λk|| =
∑

i λ
k
i where addition is 

componentwise (so note that this is a k-tuple). In analogy with usual symmetric function 
we define that |λk| is the sum of all integers in all λk

i , l(λk) is the number of tuples of 
λk, and for any k-tuple α, nα(λk) is the multiplicity of α as a tuple of λk.

For example ((1, 2), (1, 1), (0, 2)) is a 2-tuple partition, and we have ||((1, 2), (1, 1),
(0, 2))|| = (2, 5) and |((1, 2), (1, 1), (0, 2))| = 7. We also have l((1, 2), (1, 1), (0, 2)) = 3, 
and n(1,2)((1, 2), (1, 1), (0, 2)) = 1, while n(1,0)((1, 2), (1, 0), (1, 0), (0, 1)) = 2.

Throughout this paper, we will use the shorthand x(j1,...,jk)
i = ((xi)1)j1 . . . ((xi)k)jk . 

We will often use α ∈ Zk
≥0\{0k} to denote a k-tuple, and we let εi,k denote the particular 

k-tuple with ith coordinate equal to 1, and all others equal to 0 (the subscript k will be 
dropped when it is clear from context).

The following functions indexed by k-tuple partitions each give bases of Λ(i1,...,ik)
k

when taken over all k-tuple partitions λk such that ||λk|| = (i1, . . . , ik) [15]:
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• The monomial k-multisymmetric functions mλk , defined as the sum of all distinct 
monomials of the form xλk

1
i1

. . . x
λk
l

il
with distinct indices i1, . . . , il. For example, if 

k = 2 we have

m((1,2),(0,1)) =
∑
i�=j

(x(1,2)
i x

(0,1)
j ) =

∑
i�=j

(xi)1(xi)22(xj)2.

• The augmented monomial k-multisymmetric functions m̃λk , defined by

m̃λk =
(∏

α

nα(λk)!
)
mλk .

• The power-sum k-multisymmetric functions, defined by the equations

p((i1,...,ik)) =
∞∑
j=1

x
(i1,...,ik)
j , pλk = pλk

1
pλk

2
. . . pλk

l
.

For example,

p((1,2),(0,1)) =
(∑

i

(xi)1(xi)22

)⎛⎝∑
j

(xj)2

⎞⎠ .

• The elementary k-multisymmetric functions, defined by the equations

e((i1,...,ik)) = m̃(ε1i1 ,...,εk
ik ), eλk = eλk

1
eλk

2
. . . eλk

l
.

Where εijj means ij copies of εj . For example,

e((1,2),(0,1)) = (m̃((1,0),(0,1),(0,1)))(m̃((0,1)))

=

⎛⎝2
∑

i1,i2,i3 distinct
(xi1)1(xi2)2(xi3)2

⎞⎠⎛⎝∑
j

(xj)2

⎞⎠ .

3.2. Chromatic multisymmetric functions of weighted graphs

We will now extend the chromatic symmetric function of integer-weighted graphs given 
in [10] to graphs where the vertex weights may be (non-zero) k-tuples of nonnegative 
integers:

Definition 2. A tuple-weighted graph (G, w, k) consists of a graph G, and a weight function 
w : V (G) → Zk

≥0 \ {0k}.
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Definition 3. The tuple-weighted chromatic symmetric function of (G, w, k) is defined as

X(G,w,k) =
∑

κ proper

∏
v∈V (G)

x
w(v)
κ(v) .

Note that despite the using near-identical notation for simplicity, the input k means 
that this is a k-multisymmetric function. In order for this definition to be consistent 
with previous work, we use the convention that if k is not given it is assumed to be 1, 
in which case it is easy to verify this is just the previously-described integer-weighted 
chromatic symmetric function.

Before going further, the reader will naturally wonder what the motivation is for 
adding more variable sets to the function. Essentially, to capture the full power of certain 
local relationships of X, it is desirable for the function to have some way of detecting 
certain distinguished subsets of V (G) in a graph G.

For example, in his work reducing the Stanley-Stembridge conjecture, Guay-Paquet 
[17] uses a chromatic symmetric function relation that holds only in graphs which have a 
homogeneous pair V1 and V2 of cliques, meaning that V1 and V2 are each separately either 
complete or anticomplete to V (G)\(V1 ∪V2). In such graphs, given a coloring of V1 ∪V2, 
permuting the vertices of either V1 or V2 does not affect how the remainder of the graph 
may be colored; thus, the effect of applying certain local graph modifications on XG|V1∪V2

can be extended naturally to examine the effect of applying the same modifications on 
XG. This is implicitly used by Guay-Paquet in the proof reducing the Stanley-Stembridge 
conjecture to unit interval graphs, but is not able to be directly captured by the chromatic 
symmetric function. We will discuss this in greater detail in Section 5.3.

To address this idea, the motivation is that each of V1 and V2 should have its own set 
of variables (and the remainder of the graph should also have its own set of variables), 
so that we may identify the portions of chromatic symmetric function monomials arising 
from V1 and V2. Thus, if X1 and X2 are the variable sets corresponding to V1 and 
V2 respectively, with X3 corresponding to the remainder of the graph, in the case of 
“unweighted” graphs (those in which each vertex v has weight satisfying |w(v)| = 1), 
a vertex of weight (1, 0, 0) lies in V1, a vertex of weight (0, 1, 0) lies in V2, and one of 
weight (0, 0, 1) lies in V (G)\(V1 ∪ V2). Additionally, in these graphs a variable x(i1,i2,i3)

i

occurring in a chromatic symmetric function monomial tells us how many vertices receive 
the color i in each of those three parts.

With this motivation in mind, we shall now show that many properties of the integer-
weighted X(G,w) extend to the tuple-weighted X(G,w,k). First, note that as in the case 
of X(G,w) (see [10]), many classical multisymmetric function bases may be written as 
chromatic multisymmetric functions of certain graphs:

• If Kλk is the complete graph with vertices of weights λk
1 , . . . , λ

k
l , then X

Kλk = m̃λk .
• If Kλk is the complement of the above graph then

X
λk = pλk . (2)
K
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• If α is a k-tuple of nonnegative integers not all equal to zero, and Gα = Kε
α1
1 ,...,ε

αk
k

(where as before εαj

j means αj copies of εj), then XGα = eα, and thus if Gλk =
�i G

λk
i then XGλk = eλk .

For each of the following theorems, we also note the corresponding result for the 
integer-weighted chromatic symmetric function and (where it exists) for the usual chro-
matic symmetric function.

Theorem 4. If (G, w, k) is a tuple-weighted graph, and e is an edge of G, then

X(G,w,k) = X(G−e,w,k) −X(G/e,w/e,k) (3)

where w/e = w if e is a loop of G, and otherwise if e = v1v2 and the newly-formed 
vertex is v∗, we have (w/e)(v) = w(v) for v = v∗, and (w/e)(v∗) = w(v1) +w(v2) where 
addition is componentwise.

Proof. The proof is very similar to that of [10, Lemma 2]. We demonstrate a one-to-one 
correspondence between monomials of X(G−e,w,k) and those of X(G,w,k) + X(G/e,w/e,k)
by showing that for every choice of e ∈ E(G) there is a weight-preserving bijection 
between proper colorings of G − e and proper of colorings of exactly one of G and G/e. 
In particular, we demonstrate that each proper coloring of G −e corresponds to a proper 
coloring of either G or G/e, but not both.

Let e = v1v2. If v1 = v2, then e is a loop and the statement is trivial. Suppose that 
v1 = v2 and κ is a proper coloring of (G − e, w, k). Let v∗ be the label of the vertex 
obtained by contracting e. We consider two cases, either κ(v1) = κ(v2) or κ(v1) = κ(v2).

If κ(v1) = κ(v2), then this coloring does not correspond to proper coloring of (G, w, k). 
However it corresponds to a proper coloring κ′ of (G/e, w/e, k) with κ′(v∗) = κ(v1) =
κ(v2) and κ′(u) = κ(u) for all u ∈ V (G/e)\{v∗}. By construction (w/e)(v∗) = w(v1) +
w(v2). Notice that xw(v1)

κ(v1) x
w(v2)
κ(v2) = x

w(v1)
κ(v1) x

w(v2)
κ(v1) = x

w(v1)+w(v2)
κ′(v∗) = x

(w/e)(v∗)
κ′(v∗) and thus 

the corresponding monomials from κ and κ′ are equal in the chromatic multisymmetric 
function.

If κ(v1) = κ(v2), then κ is a proper coloring of (G, w, k) and (G −e, w, k), contributing 
the same term to each chromatic multisymmetric function as they have the same weight 
functions, but does not correspond to a proper coloring of (G/e, w/e, k).

In either case there exists a corresponding proper coloring of either G/e or G, but 
not both, and this coloring yields same term in the chromatic multisymmetric function. 
Note that this gives a one-to-one correspondence between proper colorings of G − e and 
the set of proper colorings of G and G/e.

Thus X(G,w,k) + X(G/e,w/e,k) = X(G−e,w,k) and the result holds. �
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Lemma 5. Given a tuple-weighted graph (G, w, k),

X(G,w,k) =
∑

π�V (G)
π stable

m̃λk(π)

where λk(π) is the k-tuple partition whose parts are the total weights of the blocks of π.

Proof. This proof is analogous to that of [10, Lemma 1]. First observe that given a proper 
coloring κ of (G, w, k) using l distinct colors j1 < · · · < jl, V (G) can be partitioned into 
L1, . . . , Ll such that for every v ∈ V (G), v ∈ Li if and only if κ(v) = ji. This is by 
definition a partition π = L1 � · · · �Ll of V (G) into stable sets. So each proper coloring 
corresponds to a stable set partition.

Using Definition 3, κ corresponds to the monomial xκ =
∏

v∈V (G) x
w(v)
κ(v) . Permuting 

the assignment of colors to the Li, where colors are only permuted amongst Li of the 
same weight, produces all colorings corresponding to xκ. Thus the number of proper 
colorings of G that correspond to κ is the number of ways to permute the parts of π
with the same weight.

Summing over all colorings that give a distinct color to each part of π yields a symmet-
ric function of monomials of type λk(π). This is an m-basis element of type λk(π) with 
the coefficient given by the number of colorings κ that yield the set partition π. There 
are 

∏∞
i=1 ni(λk(π))! ways to permute the Li by weight and thus this many colorings for 

each stable set partition π. Since by definition m̃λk = (
∏∞

i=1 ni(λk(π))!)mλk , we have

X(G,w,k) =
∑

κ proper

∏
v∈V (G)

x
w(v)
κ(v) =

∑
π�V (G)
π stable

m̃λk(π). �

Lemma 6. Given a tuple-weighted graph (G, w, k),

X(G,w,k) =
∑

S⊆E(G)

(−1)|S|pλk(S)

where λk(S) is the k-tuple partition whose parts are the total weights of the connected 
components of (V (G), S) with vertex weighting w.

Proof. This proof is an adaptation of the proof of [10, Lemma 3]. We begin by ordering 
the edges of (G, w, k) as f1, f2, ..., fm. Now we apply Theorem 4 repeatedly as follows. 
First we observe that X(G,w,k) = X(G−f1,w,k) − X(G/f1,w/f1,k) and we can apply the 
deletion-contraction to both (G − f1, w, k) and (G/f1, w/f1, k) where we delete and 
contract f2 to get a new equation for X(G,w,k) with four terms from of deletion and 
contraction of f1 and then f2. We repeat this process on each new term where edge fi is 
deleted and contracted from each term at the ith step from all 2i−1 terms is the equation 
for X(G,w,k). This process terminates after m iterations. The final function will be of the 
form
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X(G,w,k) =
∑

S⊆E(G)

(−1)|S|X(G(S),w(S),k)

where (G(S), w(S), k) is the graph where the edges in S are contracted and the edges 
in E(G) \ S are deleted. Note that this graph has no edges and is thus the complement 
of a complete graph. For each vertex v in G(S) where y1, . . . ym are the vertices of G
contracted to v, we have w(v) =

∑
yi
w(yi), so as given by equation (2), we see that 

X(G(S),w(S),k) = pλk(S) and thus the result holds. �
4. The kernel of the chromatic multisymmetric function

In [25], Penaguião considered the chromatic symmetric function as a map X : Γ → Λ
from the Hopf algebra Γ of vertex-labelled graphs to the space of symmetric functions 
by defining X(G) = XG and extending linearly. If Γ is enlarged to include vertex-
weighted graphs, then it is easy to verify that the kernel of the map from this space 
to symmetric functions is generated by vertex relabellings and the deletion-contraction 
relation. Penaguião resolves the more difficult case of restricting Γ to unweighted graphs 
by showing that in this case the kernel of X is generated by vertex relabellings and the 
triangular modular relation introduced by Orellana and Scott in [22]. One consequence 
of this is that given two vertex-labelled graphs G and H with equal chromatic symmetric 
functions, it follows that XG−XH ∈ Ker(X), and so the linear combination XG−XH is 
generated by a finite sum of very specific elements of Γ. Intuitively this tells us that other 
than graph isomorphisms, repeated applications of the triangular modular relation is in 
some sense the only way that two graphs can have equal chromatic symmetric function.

In this section, we similarly consider the chromatic k-multisymmetric function as a 
map Xk : Γk → Λk for an appropriate choice of Γk as an algebra of labelled graphs, 
and show that the kernel of Xk is generated by a very similar set of relations. In the 
multisymmetric setting, a tuple-weighted graph (G, w, k) is said to be unweighted if every 
vertex v ∈ V (G) satisfies |w(v)| = 1, so each vertex has weight εi for some i. Thus, these 
graphs still have k distinct types of vertices that can occur, one for each weight εi for 
i ∈ {1, . . . , k}; this can be viewed as representing a partition of V (G) into k blocks 
V1 � · · · �Vk, where the vertices of weight εi are in block i. The following definition fixes 
the proper analogue of unweighted vertex-labelled graphs to the multisymmetric setting.

Definition 7. A k-vertex-labelled graph is a tuple-weighted graph (G, w, k) in which the 
vertex set V (G) consists of ordered pairs (i, j) ∈ N ×N such that

• For some k-tuple (α1, . . . , αk) of nonnegative integers, V (G) = {(i, j) : i ∈
{1, . . . , k}, j ∈ {1, . . . , αi}} (if αi = 0 there are no vertices with first coordinate 
i); and

• For each (i, j) ∈ V (G), we have w((i, j)) = εi. Furthermore, the set of vertices of 
weight εi will be denoted Vi, so V = �k

i=1 Vi.



L. Crew et al. / Advances in Applied Mathematics 158 (2024) 102718 13
(3, 1)

(2, 1)

(1, 1)

(3, 2)

(2, 2)

(1, 2)

Fig. 1. This is a 3-vertex labelled graph in which the corresponding tuple is (2, 2, 2), and the Vi each 
receive a different color in the figure. The black vertices have weight (1, 0, 0), the white vertices have weight 
(0, 1, 0), and the grey vertices have weight (0, 0, 1). This graph is also I((2,0,1),(0,2,1)) using the notation of 
Definition 9.

An example of a 3-vertex-labelled graph is given in Fig. 1.

Definition 8. The algebra Γk consists of formal linear combinations of k-vertex-labelled 
graphs.

Since w is determined by k and the set V (G), we will remove it from the notation from 
now on. We will also typically suppress k when it is clear from context; however, note 
that the choice of k must be specified: taking an m-vertex-labelled graph and appending 
a 0 to the end of the weight tuple of each vertex will produce an (m +1)-vertex-labelled 
graph with equal chromatic multisymmetric function (since the (m + 1)st variable set 
will not appear), but which is nonetheless a different object which lies in Γm+1. If k
is not specified, it should be assumed that k is equal to the highest value of any first 
coordinate of a vertex in V (G) unless otherwise specified.

As in the typical Hopf algebra of vertex-labelled graphs, the labelling of the ver-
tices is an inherent and important part of the graph. For example, in Γ2, the graphs 
G1 and G2 with V (G1) = V (G2) = {(1, 1), (2, 1), (2, 2)} and edge sets V (G1) =
{(1, 1)(2, 1), (2, 1)(2, 2)} and V (G2) = {(1, 1)(2, 2), (2, 1)(2, 2)} are isomorphic as (un-
labelled) graphs, but are different objects as 2-vertex-labelled graphs. In particular, the 
weight decomposition V (G) = �k

i=1Vi does not by itself determine G as a k-vertex-
labelled graph.

Now, for the sake of clarity we let Xk : Γk → Λk represent the map defined by letting 
Xk(G) be the chromatic k-multisymmetric function of G for each k-vertex-labelled graph, 
and extending linearly.

In [25], Penaguião proved the aforementioned representation of Ker(X) by showing 
that using just two basic kinds of elements of Γ, any graph may have its chromatic 
symmetric function written as a linear combination of chromatic symmetric functions 
of complete multipartite graphs, graphs which admit a partition of the vertex set into 
maximal stable sets S1, . . . , Sk, meaning that each Si is complete to each Sj with i = j

(equivalently, a complete multipartite graph is the complement of a disjoint union of 
cliques). We emulate this proof and show that an analogous result holds in the case of 
k-multisymmetric functions.
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Definition 9. For an integer k-partition λk, define Iλ
k to be the k-vertex-labelled graph 

with vertex set I1�· · ·�Ik where Ij = {(a, b) : a ∈ {1, . . . , k}, b ∈ {(λk
1)a+· · ·+(λk

j−1)a+
1, . . . , (λk

1)a + · · · + (λk
j )a}} and that contains edges {vivj : vi ∈ Ii, vj ∈ Ij , i = j}, and 

no other edges (in graph theoretic terms, Iλk is a complete multipartite graph formed 
as the complete join of the stable sets Ij).

We define rλk to be the chromatic k-multisymmetric function of Iλk .

For example, the 3-vertex-labelled graph in Fig. 1 is Iλ3 for λ3 = ((2, 0, 1), (0, 2, 1)). 
Note that {(1, 1), (1, 2), (3, 1)} is a stable set, as is {(2, 1), (2, 2), (3, 2)}, and that all other 
edges are present.

Lemma 10. The set {rλk : |λk| = (i1, . . . , ik)} is a basis for Λ(i1,...,ik)
k .

Proof. Clearly we have that each rλk ∈ Λ(i1,...,ik)
k since each graph Iλk has total weight 

(i1, . . . , ik). Note that the stable sets of Iλk are subsets of the Ij , 1 ≤ j ≤ l(λk). Let 
π∗ � V (Iλk) be the stable partition of Iλk with the smallest number of blocks, so 
π∗ = �j Ij . Moreover, for set partitions π1, π2 � V (Iλk), we say π1 ≤ π2 if π1 is a 
refinement of π2 as a set partition. From Lemma 5, we see that

rλk =
∑

π�V (Iλk
)

π stable

m̃λk(π) =
∑
π≤π∗

m̃λk(π).

So each rλk can be expressed as a linear combination of the m̃ functions. Furthermore, 
consider the basis transition matrix from rλk to m̃λk , with the rows and columns each 
indexed by all integer k-partitions listed in reverse lexicographic order. It is straight-
forward to see that this matrix is upper triangular and non-zero on the diagonal, so is 
invertible. Hence, {rλk : ||λk|| = (i1, . . . , ik)} is a basis for Λ(i1,...,ik)

k . �
Corollary 11. The set {rλk : |λk| = m} is a basis for Λm

k , and the set {rλk} is a basis for 
Λk.

We now proceed to characterize Ker(Xk).

Definition 12. The following distinguished elements of Γk are elements of Ker(Xk):

• For a k-vertex-labelled graph G with vertex set V (G) = �k
i=1Vi, let SG = SV1 ×

· · · × SVk
. Given σ ∈ SG, let Gσ denote the k-vertex-labelled graph arising from G

by applying σ to V . Then

�iso(G, σ) := G−Gσ ∈ Γk.

• Given a k-vertex-labelled graph G, let v1, v2, v3 be distinct vertices of V (G) such 
that {v1v2, v1v3, v2v3} ⊆ E(G). Define
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�os(G; v1, v2, v3) = G−G\{v1v2} −G\{v1v3} + G\{v1v2, v1v3}.

Note that �os(G; v1, v2, v3) depends on the order of v1, v2, v3 as this fixes one edge 
that is left unchanged.

Furthermore, define Tiso(k) = {�iso(G, σ) : G a k-vertex-labelled graph, σ ∈ SG}, and 
Tos(k) = {�os(G; v1, v2, v3) : G a k-vertex-labelled graph, v1, v2, v3 ∈ V (G) as above}.

The first part of this definition is telling us that given a k-vertex-labelled graph, we can 
rearrange its vertices in any way that preserves vertex weights to get the same chromatic 
k-multisymmetric function, since this will preserve which variable set is used for each 
vertex. Thus, this partial set of relabellings is the k-vertex-labelled equivalent of graph 
isomorphism with respect to the chromatic k-multisymmetric function.

The second part of the definition tells us that we may freely extend the Orellana-Scott 
modular relation given in [22] to k-multisymmetric functions (hence the notation �os). 
In particular, this relation holds independently of the vertex weights.

We will now characterize Ker(Xk). First, we prove a well-known auxiliary lemma. 
A K1 � K2 in a graph G is a subgraph G|{v1,v2,v3}, where v1, v2, v3 ∈ V (G) are such 
that exactly one of v1v2, v1v3, v2v3 is an element of E(G). If G contains no such three 
vertices, it is said to be K1 �K2-free.

Lemma 13 (Folklore). A graph is K1 �K2-free if and only if it is a complete multipartite 
graph.

Proof. We first prove that all complete multipartite graphs are K1 �K2-free. Suppose 
otherwise for a contradiction; let G be a complete multipartite graph containing K1�K2

as an induced subgraph. Say v1, v2, v3 ∈ V (G) make up this subgraph with the edge 
v1v2 ∈ E(G). Since v1, v2 are adjacent, they lie in different maximal stable sets. But 
since v3 is non-adjacent to both v1 and v2, it lies in the same maximal stable set as both 
v1 and v2, a contradiction.

For the other direction, let G be a minimal counterexample. Note that if G contains no 
edges, then it is complete multipartite with a single stable set. Otherwise, let U � V (G)
be a maximal stable set and consider a vertex v outside of U . Then v must be adjacent to 
a vertex in U , otherwise U is not maximal. But then v must be adjacent to every vertex 
in U , since otherwise there is an induced K1 �K2. So V (G) \U is complete to U . Lastly, 
note that the graph induced by V (G) \ U is complete multipartite by the minimality of 
G. Hence, G is complete multipartite. �
Theorem 14. With Xk, Tiso(k), and Tos(k) defined as above,

span(Tiso(k), Tos(k)) = Ker(Xk).
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Proof. We first show span(Tiso(k), Tos(k)) ⊆ Ker(Xk). Note that Tiso(k) ⊆ Ker(Xk)
as a relabelling of the graph maintaining vertex weights does not alter the chromatic 
multisymmetric function. Furthermore, using the same arguments as in [25], it is easy 
to see that Tos(k) is a modular relation and thus an element of the kernel.

It remains to show that Ker(Xk) ⊆ span(Tiso(k), Tos(k)). Let a ∈ Ker(Xk) be an 
arbitrary element. Define So to be the set of all linear combinations of elements of Tos(k)
and Si to be the set of all linear combinations of elements of Tiso(k). Then we endeavor 
to show that there exists o ∈ So, i ∈ Si such that a − o − i = 0, from which it would 
follow that a = o + i ∈ span(Tiso(k), Tos(k)).

Recall from Lemma 13 that a graph is complete multipartite if and only if it is 
K1 � K2-free. The key idea is to apply elements of span(Tiso(k), Tos(k)) to a kernel 
element until it contains no K1 �K2 as an induced subgraph of any graph present with 
non-zero coefficient. Then we get a linear combination of r-basis elements, which we 
show evaluates to 0.

Consider a linear combination of graphs equal to a. Let G be a graph in this lin-
ear combination with a non-zero coefficient and an induced K1 � K2 and subject to 
these conditions, with as many non-edges as possible. Let v1, v2, v3 be the vertices 
of G in the induced K1 � K2 such that v2v3 ∈ E(G) and v1v2, v1v3 /∈ E(G). Then, 
G − �os(G ∪ {v1v2, v1v3}; v1, v2, v3) = G ∪ {v1v2} +G ∪ {v1v3} −G ∪ {v1v2, v1v3}, which 
is a linear combination of graphs with fewer non-edges. We repeat this process for each 
instance of an induced K1 �K2 subgraph in the linear combination. Note that the pro-
cess terminates as the number of non-edges in each new graph formed at each step is 
strictly decreasing (and bounded below by zero), and graphs with zero non-edges are 
K1 �K2-free; in particular, if a given graph with non-zero coefficient has k non-edges in 
the initial linear combination, it must require at most 3k iterations to expand this into 
a linear combination of graphs that are K1�K2-free. Furthermore, all remaining graphs 
with non-zero coefficient must have no induced K1 �K2, as otherwise by definition the 
process cannot have terminated.

Once this process has terminated, we apply the elements of Tiso(k) such that each 
graph in the resulting linear combination is one of the Iλ

k . Then in total, we have 
shown that for each a, there exists o ∈ So, i ∈ Si such that a − o − i =

∑
cλkIλ

k , and 
Xk(a − o − i) =

∑
cλkrλk . But then, since a − o − i ∈ Ker(Xk),

0 = Xk(a− o− i) =
∑

cλkrλk .

But the {rλk} form a basis of Λk, so cλk = 0 for all k-tuple partitions. Hence, a −o −i = 0
and a ∈ span(Tiso(k), Tos(k)). �
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5. Applications to chromatic symmetric function relations

In this section, we apply the theory built so far to collect some previously known 
relations for XG under the same umbrella, and provide some extensions. To do so, we 
need to formally relate the Ker(Xk) to Ker(X) via projection.

5.1. The algebra in the background

Definition 15. Let πΓk
: Γk → Γk−1 be given by extending linearly the operation that 

relabels a k-vertex-labelled graph by relabelling its αk vertices of weight εk as (k −
1, αk−1 + 1), . . . , (k − 1, αk−1 + αk) (thus folding the vertex set Vk into Vk−1).

Let πΛk
: Λk → Λk−1 be given by extending linearly the mapping taking (xi)k to 

(xi)k−1.

Lemma 16. The following diagram commutes:

Γk Λk

Γk−1 Λk−1

Xk

�πΓk
πΛk

Xk−1

Proof. This follows by direct computation. �
Corollary 17. Let L = c1H1+· · ·+cmHm ∈ Γk be a linear combination of k-vertex-labelled 
graphs such that L ∈ Ker(Xk), and let π = πΓ2 ◦ · · · ◦ πΓk

. Then π(L) ∈ Ker(X).

Thus, describing the Ker(Xk) is one approach to finding more insight for Ker(X). 
To make full use of this, we want to take relations on small graphs and use them to 
understand patterns on larger graphs, which we will do by adding structure around a 
labelled graph:

Definition 18. Let H ∈ Γk be a k-vertex-labelled graph with vertex set V = �k
i=1 Vi. If 

H∗ is a (k + 1)-vertex-labelled graph such that V (H∗) = V � Vk+1, where all vertices of 
Vk+1 have weight εk+1 and all vertices of V have the same weights as in H, we call H∗

an augmentation of H. In this case, we define the lift of H to H∗ as

Lift(H;H∗) = H∗ �E(H)

Furthermore, we may view Lift as a map from Γk to Γk+1 by extending linearly, so if 
L = c1H1 + · · · + cmHm ∈ Γk is a linear combination of k-vertex-labelled graphs with 
the same vertex set with shared augmentation H∗, then

Lift(L;H∗) = c1(H∗ � E(H1)) + · · · + cm(H∗ � E(Hm)).
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Corollary 17 shows that Ker(Xk) gets “strictly smaller” as k increases; but we can 
use the Lift operation to nonetheless describe certain elements of Ker(Xk) for higher k
relative to elements of lower ones.

Observation 19. Let o ∈ Tos(k) (so o is a four-term linear combination of k-vertex-labelled 
graphs satisfying the triangular modular relation). Then for every augmentation H∗ of 
the shared vertex set of the graphs in o, we have Lift(o; H∗) ∈ Tos(k + 1).

Observation 20. Let G be a k-vertex-labelled graph, and let G −Gσ ∈ Tiso(k). Let H∗

be an augmentation of G, and let σ′ be the permutation of V (H∗) that is the identity 
on elements of Vk+1(H∗), and restricts to σ otherwise.

Then Lift(G; H∗) − Lift(Gσ; H∗
σ′) ∈ Tiso(k + 1).

Note that although Observation 19 essentially characterizes all elements of any Tos(k)
(as would be expected since this is a modular relation for all graphs), the elements 
formed by Observation 20 do not capture all possibilities for Tiso(k + 1) since we have 
not included isomorphisms induced by permutations that act nontrivially on Vk+1.

5.2. Chromatic symmetric function relations

We now show how to use the above observations in conjunction with Corollary 17 to 
give a systematic way to construct more complex elements of Ker(X) from simpler ones.

Definition 21. If L = c1H1+ · · ·+cmHm ∈ Γk is a linear combination of k-vertex-labelled 
graphs with the same vertex set V = �k

i=1 Vi such that L ∈ Ker(Xk), we say that a 
kernel-form presentation of L is an expression L = I + O, where I ∈ span(Tiso(k)) and 
O ∈ span(Tos(k)). We say that S ⊆ SV1 × · · · × SVk

is a sufficient (permutation) set for 
L if there exists a kernel form presentation L = I + O such that I ∈ span({liso(G, σ) :
G a k-vertex-labelled graph with V (G) = �k

i=1 Vi, σ ∈ S}).

Note that there may be multiple distinct choices of S that form a sufficient permuta-
tion set for L.

Theorem 22. Let L = c1H1 + · · · + cmHm ∈ Γk be a linear combination of k-vertex-
labelled graphs with the same vertex set V = �k

i=1 Vi. Suppose that L ∈ Ker(Xk), and 
let S ⊆ SV1 × · · · × SVk

be a sufficient permutation set for L.
Suppose that H∗ is a (k + 1)-vertex-labelled graph that is an augmentation of the Hi, 

and suppose furthermore that for every σ ∈ S we have H∗ = H∗
σ′ , where σ′ is as in 

Observation 20 (note that this is an equality, not just an isomorphism). Then

Lift(L;H∗) ∈ Ker(Xk+1).
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+
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v1

Fig. 2. The relevant subgraphs of G represented by �os(G; v1, v2, v3) are given here.

Proof. Let us fix a kernel-form presentation L = I + O, where I is a sum of element of 
Tiso(k) and O is a sum of elements of Tos(k). By Theorem 14, it suffices to show that 
for each summand i of I, and each summand o of O, that Lift(i; H∗) ∈ Tiso(k + 1) and 
Lift(o; H∗) ∈ Tos(k + 1).

For the former, each summand of i is of the form c(G − Gσ) for some constant c, 
k-vertex-labelled graph G, and some σ ∈ S. Then

Lift(c(G−Gσ);H∗) = c[Lift(G;H∗) − Lift(Gσ;H∗)] =

c[Lift(G;H∗) − Lift(Gσ;H∗
σ′)]

and this is an element of Tiso(k + 1) since Lift(G; H∗) is isomorphic to Lift(Gσ; H∗
σ′) via 

the mapping σ′. An analogous argument proves the claim for Tos(k + 1). �
To show how we can use this, we provide an illustrative example originally introduced 

by Orellana and Scott:

Corollary 23 ([22], Theorem 4.2). Suppose that G is a graph with four vertices u, v, w, z
such that uz, uw, zw, vw ∈ E(G) and uv, zv /∈ E(G), and suppose further that there exists 
an automorphism φ of G −wz−wu such that φ({u, w}) = {v, z} and φ({v, z}) = {u, w}. 
Then G has the same chromatic symmetric function as G − uw + vz (Fig. 2 illustrates 
the relevant induced subgraphs of G and G − uw + vz).

Proof. We present here a proof different from that in [22] by showing how to derive the 
result using Theorem 22.

Given the conditions φ({u, w}) = {v, z} and φ({v, z}) = {u, w}, there are four possi-
bilities for the tuple (φ(u), φ(v), φ(w), φ(z)). It is easy to verify that two of these are not 
automorphisms even on these four vertices, so we are left with two possible cases, each 
of which is an involution on {u, v, w, z}.

If φ exchanges u and v, and exchanges w and z, then φ(uw) = vz and φ(zw) = zw, 
so the graphs G and G − uw + vz are isomorphic, and the result follows trivially.

Thus, from now on we suppose that φ exchanges u and z, and exchanges v and w. 
Then φ does not extend to an isomorphism of the graphs in question, since φ(zw) = uv, 
and zw ∈ E(G) but uv /∈ E(G − uw + vz).

Letting H = G −uw+vz, we wish to show that G −H ∈ Ker(X). To take advantage 
of our assumption, we instead view each of G and H as 3-vertex-labelled graphs on vertex 
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z
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−
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Fig. 3. This element of Ker(X2) should be extended via Corollary 23.

set V1 � V2 � V3, where V1 = {u, z}, V2 = {v, w}, and V3 = V (G)\{V1 ∪ V2}. The precise 
labelling of the vertices does not otherwise matter; we may for example choose u =
(1, 1), z = (1, 2), v = (2, 1), w = (2, 2), and likewise for the remaining vertices. Then by 
Corollary 17, it is sufficient to show that as 3-vertex-labelled graphs, G −H ∈ Ker(X3).

By Theorem 22 and our assumption about the existence of φ, it is sufficient to show 
that we may express the linear combination of four-vertex graphs depicted in Fig. 3 as 
an element of Ker(X2) using only elements of Tos(2) and elements of Tiso(2) that arise 
from the restricted map φ swapping u with z and v with w simultaneously. Expressing 
the latter requirement more precisely, we should only use from SV1 × SV2 the identity 
element, and the permutation that simultaneously swaps (1, 1) with (1, 2) and (2, 1) with 
(2, 2). This is done in Fig. 4, where we note that the last two graphs are isomorphic via 
φ, completing the proof. �

Let us briefly summarize what this example illustrates. Suppose that L = c1H1 +
· · · + cmHm is an element of Ker(X) in which every graph has the same vertex set V . 
In previous work by the first and last authors [11], we give a necessary and sufficient 
condition for L to be a modular relation, meaning that it satisfies the stronger property 
that for any graph G with V (G) ⊇ V (H) we have that c1(G � E(H1)) + · · · + cm(G �
E(Hm)) ∈ Ker(X). This provides a characterization of when we can universally extend 
certain elements of Ker(X) to larger ones.

But there are some natural instances where we do not need our kernel elements to 
have a universal extension to any graph, but simply to a sufficiently nice class of graphs. 
Consider the linear combination H1 −H2 from Fig. 3 as an element of Ker(X) without 
the vertex groupings. It can be shown that H1−H2 is not a modular relation (in fact for 
two graphs G1 and G2, G1 −G2 is never a modular relation unless G1 = G2). However, 
with Theorem 22, we can nonetheless determine a class of graphs with certain symmetries 
such that we may lift H1 −H2 to larger elements of Ker(X) using graphs in the class.

5.3. Homogeneous partitions

An important special case of Theorem 22 is that whenever L ∈ Ker(Xk) is a linear 
combination of graphs with vertex set V1 � · · · � Vk, and H∗ is a (k + 1)-vertex-labelled 
graph with vertex set V1 � · · · � Vk+1 that is fixed under every permutation in SV1 ×
· · · × SVk

× IdVk+1 (where IdVk+1 is the identity permutation of Vk+1), then Lift(L; H∗)
is always an element of Ker(Xk+1).
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Fig. 4. The combination in Fig. 3 is expressed in appropriate kernel-form presentation.

(1, 2)

(1, 1) (2, 1)

(2, 2)

(3, 1)

(3, 2)

−

(1, 2)

(1, 1) (2, 1)
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(3, 1)
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Fig. 5. These are nonisomorphic graphs with equal chromatic 3-multisymmetric function arising from lifting 
an element of Ker(X2) to Ker(X3) with a homogeneous pair. Note that (3, 1) and (3, 2) are complete to 
{(1, 1), (1, 2)} and anticomplete to {(2, 1), (2, 2)}. Deleting (3, 2) from both graphs and removing the labels 
yields the smallest example of nonisomorphic graphs with equal chromatic symmetric function [26].

Definition 24. In a graph G, a partition V (G) = V1 � · · · �Vk �W is called homogeneous
if for every i ∈ {1, 2, . . . , k} and every w ∈ W , we have that w is either complete or 
anticomplete to Vi (as defined in Section 2.2). In this case, we say that V1, . . . , Vk form 
a homogeneous collection in G. In the particular case k = 1 we call V1 a homogeneous 
set, and when k = 2 we call V1 � V2 a homogeneous pair.

Note that whether V1 � · · · � Vk is a homogeneous collection only depends on edges 
from the Vi to W , and not on edges with both endpoints in W or with both endpoints 
among the Vi.

From the above discussion and Theorem 22, we may easily derive the following corol-
lary (see Figure 5).

Corollary 25. Let L =
∑

ciHi ∈ Ker(Xk) be a linear combination of k-vertex-labelled 
graphs with common vertex set V1�· · ·�Vk, and let H∗ be a (k+1)-vertex-labelled graph 
with vertex set V (Hi) � Vk+1 such that V1 � · · · � Vk is a homogeneous collection in H∗. 
Then Lift(L; H∗) is an element of Ker(Xk+1).

Thus, if we are working within a graph class in which we can find homogeneous 
collections, we can simplify or reduce problems for chromatic symmetric functions in 
that class.

Implicitly, this was part of the approach taken by Guay-Paquet in [17] when reducing 
the Stanley-Stembridge conjecture that incomparability graphs of (3 +1)-free posets are 
e-positive:
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Theorem 26 ([17], Theorem 5.1). Suppose that G is the incomparability graph of a (3 +1)-
free poset. Then XG may be written as a convex combination (a linear combination with 
nonnegative coefficients summing to 1) of the chromatic symmetric functions of graphs 
that are incomparability graphs of (3 + 1)- and (2 + 2)-free posets.

This theorem demonstrates that to prove the Stanley-Stembridge conjecture, it is 
sufficient to determine the e-positivity of incomparability graphs of (3 +1)- and (2 + 2)-
free posets, or equivalently unit interval graphs.

Guay-Paquet’s proof of Theorem 26 relied heavily on the structure theorem for incom-
parability graphs of (3 +1)-free posets established in [18]. In what follows we summarize 
his proof approach in [17], rewriting relevant portions using the methodology developed 
thus far, in the process creating a proof that does not require reference to the stronger 
structure theorem of [18]. This will be summarized in five steps.

We first give a brief overview of poset notation for clarity: a poset P = (V, <P ) consists 
of a set V of vertices, and a partial order <P on V . Elements v, w ∈ P are comparable if 
v <P w or w <P v, and otherwise they are incomparable. The incomparability graph of 
a poset P is a simple graph with the same vertex set V , and where two distinct vertices 
v and w are adjacent if and only if they are incomparable in P .

The (3 + 1) poset has vertices a, b, c, d with partial order a <P b <P c (and d incom-
parable with a, b, c). The (2 + 2) poset has the same vertex set, but with partial order 
a <P c and b <P d, and no other relations. The notions of poset isomorphism, induced 
posets, and P -free posets are exactly analogous to the corresponding graph notions.

1. Suppose that G is the incomparability graph of a (3 + 1)-free poset P , and that G
contains an induced C4 (meaning that P contains an induced (2 +2) poset). Then the 
vertices of this C4 may be labelled a, b, c, d such that there exists a homogeneous pair 
of cliques V1�V2 in G with a, b ∈ V1 and c, d ∈ V2. This was implicitly demonstrated 
by Guay-Paquet, Morales, and Rowland in [18] as a consequence of their structure 
theorem for such graphs; we give a direct proof below from the point of view of the 
poset P .

Lemma 27. Let P be a (3 +1)-free poset, and let a, b, c, d be an induced (2 +2) poset, 
with a <P c and b <P d (so a is incomparable with b and d, and b is incomparable 
with c).
Let V1, V2 ⊆ P be maximal with respect to inclusion such that
(a) a, b ∈ V1 and c, d ∈ V2.
(b) All elements of V1 are pairwise incomparable, and all elements of V2 are pairwise 

incomparable.
(c) For every nonempty A � V1, there exists an induced (2 +2) poset with one vertex 

in A, one vertex in V1\A, and two in V2.
(d) For every nonempty B � V2, there exists an induced (2 +2) poset with one vertex 

in B, one vertex in V2\B, and two vertices in V1.
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(e) For every x ∈ V1 and every y ∈ V2, either x <P y or x and y are incomparable.
Then V1 and V2 are a homogeneous pair of cliques in the incomparability graph G of 
P , meaning that in the poset they satisfy:
(f) For every v ∈ P\(V1 ∪ V2), v is either comparable to every element of V1 or 

incomparable with every element of V1, and likewise for V2.

Conditions (a), (b), and (f) are the ones we want V1 and V2 to satisfy, and condition 
(e) will be convenient for later steps.
Conditions (c) and (d) are the poset version of the notion of a square-connected
homogeneous pair of cliques in a graph, meaning a homogeneous pair of cliques 
V1 �V2 such that for every partition of one of the Vi into two nonempty parts A �B

for i ∈ {1, 2}, there exists an induced C4 with one vertex in A, one vertex in B, and 
two vertices in V3−i.
The notion of square-connected homogeneous cliques occurs naturally in the study 
of claw-free perfect graphs [6], where they are used to find homogeneous pairs. Here, 
it is used to provide necessary structure for the proof.

Proof. Throughout, we will switch between the graph and poset perspectives. In 
particular, when we say that v, w ∈ V are neighbors, we mean they are adjacent in 
G, so are incomparable in P .
Note that there is at least one choice of (V1, V2) that satisfies (a), (b), (c), (d), and 
(e) above, since we may take V1 = {a, b} and V2 = {c, d}. Among all such choices, 
choose one such that V1 and V2 are maximal with respect to inclusion. We prove 
that such a choice satisfies (f).
We suppose otherwise for a contradiction; without loss of generality, we assume 
there exists v ∈ V \(V1 ∪ V2) such that v has at least one neighbor and at least one 
nonneighbor in V2 (the case replacing V2 by V1 can be done analogously by reversing 
<P ).
Note that there do not exist y, y′ ∈ V2 such that y <P v <P y′ since y and y′ are 
incomparable by assumption.
Suppose first that all of the nonneighbors of v in V2 are <P -smaller than v. Then 
applying property (d), choosing B to be the set of nonneighbors of v, there exist 
y ∈ B, y′ ∈ V2\B, and x, x′ ∈ V1 that form an induced (2 + 2) with x <P y and 
x′ <P y′. But then x, y, v form a chain, and together with y′ the four vertices form 
an induced (3 + 1), which is a contradiction.
Thus, v is <P -smaller than all of its nonneighbors in V2. Applying (d) as above again, 
we find x, x′, y, y′ such that v <P y and x <P y, and x, v, y all incomparable with 
y′. Then x is not comparable with v, as otherwise x, v, y, y′ would form an induced 
(3 + 1). Thus, v has at least one neighbor in V1.
Suppose now that v has at least one nonneighbor in V1. By the same proof as above, 
v is not <P -smaller than its nonneighbors in V1, so v must be larger than all of its 
nonneighbors in V1. Let N(V1) and N(V2) be the sets of nonneighbors of v in V1 and 
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V2 respectively. Then for x ∈ N(V1) and y ∈ N(V2), we have x <P y by transitivity. 
On the other hand, for x ∈ N(V1) and y′ ∈ V2\N(V2), if y′ is incomparable with v, 
and it is not the case that y′ is incomparable to x, then for every y ∈ N(V2), we 
have that x, v, y, y′ forms an induced (3 + 1). Thus, for all such x and y′, we have 
x <P y′ by property (e). But this means that property (c) is violated when choosing 
A = N(V1), since there are no edges between N(V1) and V2, a contradiction. Thus, 
v has no nonneighbors in V1.
Then it is easy to verify that the pair (V1 ∪ {v}, V2) satisfies properties (a), (b), (d), 
and (e).
We now show that it also satisfies (c). Clearly (c) is satisfied whenever both A and 
(V1 ∪ {v})\A contain vertices other than v since (V1, V2) satisfies (c), so it suffices 
to show that an induced (2 + 2)-poset exists containing v, a vertex of V1, and two 
vertices of V2. Applying property (d) to (V1, V2) as before with B = N(V2), we 
obtain x, x′, y, y′ with x′ <P y′ and x′ incomparable with y. Then as v <P y and v
is incomparable with y′, the vertices v, x′, y, y′ form an induced (2 + 2).
Therefore, (V1 ∪ {v}, V2) satisfies (a), (b), (c), (d), and (e), contradicting the maxi-
mality of (V1, V2). It follows that our choice of a vertex v which has both a neighbor 
in V2 and a nonneighbor in V2 is impossible. Applying the proof again for V1 with 
<P reversed, the conclusion follows that (V1, V2) satisfies (f). �

2. We have found a pair of homogeneous cliques V1 and V2 in G. Let |V1| = m and 
|V2| = n, and suppose without loss of generality that m ≤ n (the other case is 
analogous). Let the vertices of V1 � V2 be v1, . . . , vm, w1, . . . , wn. Define the graphs 
Gk for k ∈ {0, 1, . . . , m} to have vertex set V1 � V2 and edge set {vivj : 1 ≤ i < j ≤
m} ∪ {wiwj : 1 ≤ i < j ≤ n} ∪ {viwj : 0 ≤ i ≤ k, all j}.
Guay-Paquet uses the triangular modular relation of Ker(X) and a novel linear 
algebraic argument to show that the chromatic symmetric function of G|V1�V2 may 
be written as a convex combination of the chromatic symmetric functions of the 
Gk, such that the coefficient of XGk

in XG|V1�V2
is equal to the probability that a 

randomly chosen map L : {1, . . . , m} → {1, . . . , n} will satisfy that exactly k of the 
pairs vjwL(j) are edges of H [17, Sections 4-5].
It is not hard to verify that the same argument holds entirely analogously in the 2-
vertex-labelled setting for the coefficient of X(Gk,2) in X(G|V1�V2,2) where the vertices 
are labelled in the natural way; the only part that requires additional verification 
is the proof of [17, Proposition 4.1 (i)], where in the original proof the intermediate 
step is taken of reducing using elements of Ker(X) to express XG|V1�V2

as a linear 
combination of graphs with vertex set V1 � V2 whose edges between V1 and V2 form 
a matching; but it is easy to check that this process only uses elements of Ker(X)
that are also present as elements of Ker(X2) when viewing the graphs as 2-vertex-
labelled.
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3. We lift the above to a convex combination of 3-vertex-labelled graphs and apply 
Corollary 25 and Corollary 17 to find that the analogous relation holds for the overall 
graph G.

4. We define Hk as the graph formed by taking G and replacing G|V1�V2 by Gk. In 
the above steps, we have shown that the chromatic symmetric function of G may be 
written as a linear combination of the chromatic symmetric functions of the Hk. We 
now show that the Hk are incomparability graphs of (3 + 1)-free posets.

Lemma 28. Let G be the incomparability graph of a (3 + 1)-free poset P , and define 
Hk as above. Then Hk is also the incomparability graph of a (3 + 1)-free poset.

Proof. First we verify that Hk remains an incomparability graph. Let Q = (V, <Q)
have the same vertex set as P formed by letting <Q be an asymmetric relation on 
vertex pairs that is the same as <P , except that in V1 � V2, we remove all relations 
between vertex pairs that are now edges in the graph Hk, and for all nonedges xy
with x ∈ V1 and y ∈ V2, we let x <Q y.
First, we verify that Q is a poset. Clearly <Q is asymmetric and reflexive if <P is, 
so we only need to verify that transitivity holds. Suppose otherwise, that we have 
vertices x, y, z such that x <Q y <Q z but x ≮Q z. This cannot happen if all three 
vertices lie in V1�V2 since there is no chain x <Q y <Q z of three elements. Likewise, 
if zero or one of the vertices lie in V1 �V2, or if two of the vertices lie in the same Vi, 
since then no relations among these vertices have changed from P to Q, contradicting 
that P is a poset.
Thus, we may assume that among {x, y, z}, there is one vertex in V1, one in V2, and 
one outside of V1 � V2; call these u, v, w respectively (so {u, v, w} = {x, y, z}). As 
before, note that if u <Q w, then also u′ <Q w for every u′ ∈ V1 by homogeneity 
(property (f) of (V1, V2)) and the fact that vertices of V1 are pairwise incomparable 
(property (b)), and analogously for other relationships between w and either u or v. 
Note that all relations involving w are unchanged between P and Q.
Furthermore, in P , we have a, b ∈ V1 and c ∈ V2 such that a <P c and b ≮P c, so 
we may find vertices u′ ∈ V1 and v′ ∈ V2 such that all pairwise relations between 
u′, v′, w hold in P if and only if the corresponding relations hold in Q. But then if 
{u, v, w} violate transitivity in Q, {u′, v′, w} violates transitivity in P , contradicting 
that P is a poset.
Thus, this newly formed Q is a poset, and Hk is its incomparability graph.
It remains to show that Q is (3 + 1)-free. Suppose otherwise, that there is X ⊆ V

with |X| = 4 such that Q|X is an induced (3 + 1). Clearly |X ∩ (V1 � V2)| is not 
equal to 0, 1, or 4, since the original poset P was (3 + 1)-free, and Q|V1�V2 is now 
(3 + 1)-free.
Suppose first that |X ∩ (V1 �V2)| = 3. Then some two vertices v1, v2 ∈ X ∩ (V1 �V2)
lie in the same Vi. Since every vertex outside V1 �V2 is either less than both, greater 
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than both, or adjacent to both of v1, v2, and in each case we may verify that Q|X is 
not an induced (3 + 1).
It remains to check the case when |X ∩ (V1 � V2)| = 2. Using the above reasoning, 
among the two vertices of this intersection, there is one in each Vi. Thus, let x ∈
X ∩ V1, y ∈ X ∩ V2, and v, w ∈ X\{V1 � V2} be given. We suppose for the sake of 
contradiction there is an induced (3 + 1) formed by these vertices.
We proceed similarly to the above argument for proving the transitivity of <Q. Since 
a, b ∈ V1 and c ∈ V2 such that a <P b and a ≮P c using the vertices of the C4, we 
may choose y′ ∈ V2 such that a <P y′ if and only if x <Q y. All other relations in 
Q amongst the vertices of X are identical to those in P since all such pairs have at 
least one vertex outside of V1 � V2. But then if X is an induced (3 + 1) in Q, then 
(X\{x, y}) ∪ {a, y′} is an induced (3 + 1) in P , contradicting that P is (3 + 1)-free.
Thus, it follows that Q remains (3 + 1)-free. �
The above proof demonstrates how homogeneous pairs are useful for preserving for-
bidden induced subgraphs, and similar arguments were used in [6,7].

5. We prove that no new induced C4 is introduced in Hk, so that repeatedly applying 
this process to the resulting graphs eventually terminates.

Lemma 29. Let G, P, Hk, Q be as in Lemma 28. Then Q has strictly fewer induced 
(2 + 2) posets than P .

Proof. Since {a, b, c, d} now do not form an induced (2 + 2) in Q, it suffices to show 
that there is no X ⊆ V with |V | = 4 such that Q|X is an induced (2 + 2) but P |X
is not. As above, clearly |X ∩ (V1 � V2)| ∈ {2, 3}.
If |X ∩ (V1 � V2)| = 3, then there is some Vi such that |X ∩ Vi| ≥ 2. But then the 
vertex of X\(V1 � V2) is smaller than, larger than, or incomparable with all vertices 
in X ∩ Vi, and it is easy to check that then Q|X is not an induced (2 + 2).
It remains to check the case when |X ∩ (V1 � V2)| = 2. By the argument above, we 
may assume that X contains x ∈ V1, y ∈ V2, and v, w ∈ V \{V1 � V2}. We check two 
cases:
• Case 1: x <Q y. Without loss of generality suppose that v <Q w, and v and w

are incomparable with x and y. By homogeneity it follows that v and w are then 
incomparable with all of V1 �V2. Then consider (V1 ∪{v}, V2 ∪{w}) in P . Clearly 
this pair satisfies properties (a), (b), and (e) of Lemma 27, and it is easy to check 
that (c) and (d) are satisfied as well as in the proof of Lemma 27. But this violates 
the maximality of (V1, V2), a contradiction.

• Case 2: x and y are incomparable, and thus v and w are incomparable. Suppose 
first that w <Q x. Then w is incomparable with y and also w <P x. By property 
(c) of Lemma 27 we can find y′ ∈ V2 such that x <P y′, while by homogeneity w
is incomparable with y′, but this contradicts w <P x <P y′.
Analogous arguments show that none of v <Q x, v >Q y, or w >Q y hold.
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So, we may assume that v <Q y and w >Q x. Then as in the previous part, we 
may check that the pair (V1 ∪ {v}, V2 ∪ {x}) satisfies all properties other than (f) 
of Lemma 27, contradicting the maximality of (V1, V2). �

Thus, each Hk has strictly fewer induced C4s than G, and so by repeatedly applying 
these steps we eventually write G as a convex combination of incomparability graphs 
of (3 + 1)- and (2 + 2)-free posets.

6. Further directions

The approach outlined at the end of the previous section could be applied to a number 
of different problems in the theory of chromatic symmetric functions.

First, it seems plausible that the proof above in Lemma 27 (that each C4 in the 
incomparability graph of a (3 + 1)-free poset can be extended to homogeneous pair of 
cliques) can work in a larger class of graphs, thus giving more examples of e-positive 
graphs when combined with Guay-Paquet’s argument in [17]. For instance, it is not the 
case that each C4 in a claw-free graph necessarily extends to a homogeneous pair of 
cliques, but it may be true upon adding a much smaller number of forbidden induced 
subgraphs than are necessary for the large class of all incomparability graphs.

Second, expanding a graph’s chromatic symmetric function into the e-basis is equiva-
lent to writing it as a linear combination of graphs which are disjoint unions of cliques. 
Such graphs are also precisely the set of all graphs that have no induced three-vertex 
path as noted previously. Perhaps it is possible to find some explicit way of determining 
e-basis coefficients by determining a modifiable structure in unit interval graphs with 
such an induced subgraph.

Third, the original purpose of studying Ker(X) more closely is to make progress on 
the tree isomorphism conjecture [26], which purports that if T and T ′ are nonisomorphic 
trees then XT = XT ′ . In fact, to the best of the authors’ knowledge it is not known 
whether there are bipartite graphs with equal chromatic symmetric function; bipartite 
graphs may be particularly natural to view through the lens of chromatic multisymmetric 
functions.
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