
Programmatic Representation
of

Quantum Many Body Systems

by

Xiu-Zhe Luo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2024

© Xiu-Zhe Luo 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Yi-Zhuang You
Assistant Professor, Dept. of Physics,
University of California San Diego

Supervisor: Roger G. Melko
Professor, Dept. of Physics and Astronomy, University of Waterloo
Associate Faculty, Perimeter Institute for Theoretical Physics

Internal Member: Anton Burkov
Professor, Dept. of Physics and Astronomy,
University of Waterloo

Internal Member: Crystal Senko
Associate Professor,
Institute for Quantum Computing
and Dept. of Physics and Astronomy,
University of Waterloo

ii

Internal-External Member: Pierre-Nicholas Roy
Professor, Dept. of Chemistry,
University of Waterloo

Other Member(s): Timothy H. Hsieh
Adjunct Faculty, Dept. of Physics and Astronomy,
University of Waterloo
Senior Faculty, Perimeter Institute for Theoretical Physics

iii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iv

Statement of Contributions

Publications

The paper contains material from the following publications (organized chronologically):
Yao. jl: Extensible, efficient framework for quantum algorithm design
Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang
Quantum, 2020

Quantum optimization of maximum independent set using Rydberg atom
arrays
Sepehr Ebadi, Alexander Keesling, Madelyn Cain, Tout T Wang, Harry Levine,
Dolev Bluvstein, Giulia Semeghini, Ahmed Omran, J-G Liu, Rhine Samajdar,
Xiu-Zhe Luo, Beatrice Nash, Xun Gao, Boaz Barak, Edward Farhi, Subir Sachdev,
Nathan Gemelke, Leo Zhou, Soonwon Choi, Hannes Pichler, S-T Wang, Markus Greiner,
V Vuletić, Mikhail D Lukin.
Science, 2022

Operator Learning Renormalization Group
Xiu-Zhe Luo, Di Luo, Roger Melko
arXiv:2403.03199

Open-Source Software

A substantial portion of the work in this thesis was implemented in the following open-
source software packages (organized chronologically by creation):
Yao
Extensible, Efficient Quantum Algorithm Design for Humans. (2019)
https://github.com/QuantumBFS/Yao.jl

v

https://github.com/QuantumBFS/Yao.jl

ZXCalculus
An implementation of ZX-calculus in Julia (2020)
https://github.com/QuantumBFS/ZXCalculus.jl

YaoCompiler
an SSA-based compiler for quantum circuits (2020)
https://github.com/QuantumBFS/YaoCompiler.jl

Quon
Topological Evaluation of Quantum Information (2020)
https://github.com/QuantumBFS/Quon.jl

OpenQASM
Parsers and Tools for OpenQASM (2020)
https://github.com/QuantumBFS/OpenQASM.jl

Expronicon
Collective tools for metaprogramming on Julia Expr (2021)
https://github.com/Roger-luo/Expronicon.jl

Bloqade.jl
Julia package for the quantum computation and quantum simulation based on the neutral-
atom architecture. (2022)
https://github.com/QuEraComputing/Bloqade.jl

bloqade-python
Python package for the quantum computation and quantum simulation based on the
neutral-atom architecture. (2023)
https://github.com/QuEraComputing/bloqade-python

teal
Python package for operator learning renormalization group. (2024)
https://github.com/Roger-luo/teal

vi

https://github.com/QuantumBFS/ZXCalculus.jl
https://github.com/QuantumBFS/YaoCompiler.jl
https://github.com/QuantumBFS/Quon.jl
https://github.com/QuantumBFS/OpenQASM.jl
https://github.com/Roger-luo/Expronicon.jl
https://github.com/QuEraComputing/Bloqade.jl
https://github.com/QuEraComputing/bloqade-python
https://github.com/Roger-luo/teal

Breakdown of Contributions

My personal contributions to the above publications and software packages are as follows:
For the paper Yao.jl: Extensible, efficient framework for quantum algorithm design, I am
the main author of the paper, and one of the main developers of the Yao.jl package. Jinguo
Liu also contributed to the development in various features as a main developer. Pan Zhang
and Lei Wang was funding the project, and provided guidance on the development of the
package.
For the paper Quantum optimization of maximum independent set using Rydberg atom ar-
rays, This is a collaborative work with many authors. I contributed to the exact simulation
of the experiment and hyperparameter tuning of the optimizer and partially helped build
the software that connects the optimizer and experiment. This work led to the software
development kit Bloqade for neutral atom arrays later. I am the lead developer of the
Bloqade package.
For the paper Operator Learning Renormalization Group, I am the main author of the
paper and the main developer of the teal package. I independently developed the theory,
algorithm, and software package. Di Luo contributed helpful discussions and was thus
included as a co-author. Roger Melko provided guidance and various support on the
research. All the authors contributed to the writings of the paper.
For the software package Expronicon, Bloqade, teal, I am the main developer of the
package.
For the software package ZXCalculus, I mentor the main developer, Chen Zhao, and
provided guidance and ideas on the development of the package.
For the software package OpenQASM, I implement the main parser implementation, with
the help from Taine Zhao on the parser generator.
For the software package YaoCompiler, I am the main developer of the package, Valintin
Churavy and William Mose contributed to the maintainance and discussions of the package.
For the software package Quon, I organized the development of the package, and contributed
the data structure design. Chen Zhao implemented the main idea, and Xun Gao provided
theoretical guidance.

vii

Abstract

The problem of simulating quantum many-body systems is fundamental in condensed
matter physics, quantum computing, and quantum chemistry. The exact simulation of
quantum many-body systems is generally intractable on classical computers, and develop-
ing efficient simulation methods is crucial for understanding and utilizing quantum systems.
Meanwhile, from the computer science community, the development of formal languages
has dramatically improved programming and software efficiency. Thus, it is natural to
ask whether we can develop and utilize such representations to simulate quantum many-
body systems. We propose so-called programmatic representations for simulating quantum
many-body systems on computational devices.

We begin with introducing the programmatic representations for quantum circuits,
quantum operators, quantum states, pulse sequences, and more general quantum pro-
grams with control flows are discussed. We further introduce the transformation of and
between these representations, which leads to the development of several software frame-
works, including Yao and Bloqade, which achieved state-of-the-art performance in simulat-
ing quantum circuits and Rydberg atom array dynamics. We introduce the transformation
for automatic differentiation and show that by utilizing the reversibility of the quantum
circuits, only constant memory overhead is needed for the automatic differentiation of
quantum circuits in simulators. As a result, we report the differentiation of 10,000-layer
quantum circuits that no previous software can achieve.

On top of these technical developments in exact simulation, hardware modeling, and
automatic differentiation, we generalize the numerical renormalization group formulations
from Wilson and White, namely Wilson’s NRG and White’s DMRG, which we call the
operator learning renormalization group (OLRG). OLRG allows solving general quantum
many-body problems with arbitrary operator maps in lieu of a state ansatz. We introduce
a theory framework guiding the design of OLRG loss functions, providing a rigorous error
bound for real-time evolution. We further show OLRG can solve the quantum many-body
problems with arbitrary operator maps such as neural networks using the Operator Matrix
Map (OMM), and can be used to generate control parameters for a quantum device using
the Hamiltonian Expression Map (HEM). We explore different hyperparameters for both
OMM and HEM for a 1D transverse field Ising model and show that our theoretical loss
function correctly guides both the OMM and HEM to ground truth using differentiable
programming.

We conclude by discussing the future directions of applying programmatic representa-
tions to quantum many-body systems and the future directions of quantum many-body
system simulation.

viii

Acknowledgements

I would like to thank all the people who made this thesis possible. My PhD journey
has been a long and winding road due to the unpredictable global environment. Therefore,
I would like to thank my supervisor Roger G. Melko and previous supervisors, Lei Wang
and Pan Zhang, who took care of me when I was almost homeless. My achievements are
impossible without their effort in maintaining a free and stressless research environment.
My work has been unusual in both the physics and computer science communities, and
I am grateful for their support and guidance in developing the software and the theory.
I thank my Ph.D. committee members Anton Burkov, Crystal Senko, and Tim Hsieh for
their helpful discussion and advice. I also want to thank my potential supervisor, Steven
Flammia, for trying to help me with the visa for various positions I applied for.

My Ph.D. has also gone through the COVID-19 pandemic, and I would like to thank
Sebastian Wetzel from Perimeter Institute Quantum Intelligence Lab (PIQuIL) for his
friendship and accompaniment during the pandemic. Special thanks are due to my super-
visor, Roger Melko, for the best New Year party in his backyard during the pandemic. I
would also like to thank other PIQuIL friends, including Anna Golubeva, Bohdan Kulchyt-
skyy, Giacomo Torlai, Ejaaz Merali, Roeland Wiersema, Alev Orfi, Estelle Inack, Danny
Kong, Schuyler Moss, Stefanie Czischek and many others for their friendship and support
during my Ph.D.

The software development and the theory in this thesis result from the collaboration of
many people and a few failed attempts. I want to thank my collaborators, who supported
me along this journey with enlightening discussions and hard work: Jinguo Liu, Di Luo,
Chen Zhao, Xun Gao, Valentin Churavy, William Moses, Taine Zhao, Madelyn Cain,
Shengtao Wang, Alexander Keesling, Dolev Bluvstein, Jing Chen, Phillip Weinberg.

I also would like to thank my friends and colleagues who contributed helpful discus-
sions in the development of the software and the theory: Tim Besard, Mike Innes, Harrison
Grodin, Juan Gomez, Christopher J. Wood, Damian Steiger, Damian Steiger, Craig Gid-
ney, corryvrequan, Johannes Jakob Meyer, Nathan Killoran, Divyanshu Gupta, Wei-Shi
Wang, Yi-Hong Zhang, Tong Liu, Yu-Kun Zhang, Si-Rui Lu, Hao Xie, Arthur Peash, Miles
Stoudenmire, Matthew Fisherman, Hsin-Yuan Huang, Fangli Liu, Juan Carrasquilla, Qi
Yang, Hai-Jun Liao, Hao Xie, Jonathan Wurtz, Hong-Ye Hu.

Last, thanks to the people behind the open-source community who made developing
the software and the theory possible. Specifically, I would like to thank Viral Shah, Chris
Rackauckas, Jeff Bezanson, Stefan Karpinski, Keno Fischer, and many others who spent
their time and effort on issues related to my work.

ix

Dedication

This is dedicated to my parents, Dehui Luo and Zixia Qing, and my partner, Fan Zhang,
for their endless support and love.

x

Table of Contents

Examining Committee Membership ii

Author’s Declaration iv

Statement of Contributions v

Abstract viii

Acknowledgements ix

Dedication x

List of Figures xv

List of Tables xx

List of Abbreviations xxi

1 Introduction 1

1.1 Getting Started . 5
1.1.1 5 Ways of Describing the Projectile Motion 5
1.1.2 What is Programmatic Representation? 7

1.2 Motivation . 8

xi

1.2.1 Bridging the Gap between Theoretical, Computational and Experi-
mental Physics . 8

1.2.2 Building Performant, Sophisticated and Multi-purpose Software Frame-
work . 10

1.2.3 A way of thinking . 10
1.3 Useful Concepts and Techniques . 11

1.3.1 Expression . 11
1.3.2 Sum Types . 12
1.3.3 Pattern Matching . 14
1.3.4 Backus-Naur Form . 15

2 Representation 17
2.1 Quantum Circuit . 17
2.2 Quantum Registers . 24
2.3 Quantum Operators . 30
2.4 Quantum Hardwares . 37
2.5 Static Single Assignment Form . 43

3 Transformation 50
3.1 Fast Exact Simulation . 50

3.1.1 Manipulating Quantum Circuits . 50
3.1.2 Quantum Circuit Simulation . 53
3.1.3 Generating Matrix . 67
3.1.4 Simulating Rydberg Dynamics . 69

3.2 Automatic Differentiation . 71
3.2.1 Forward Mode . 72
3.2.2 Reverse Mode . 74
3.2.3 Making Use of Reversibility . 79
3.2.4 Forward Mode: Faithful Quantum Gradients 84

xii

3.3 Benchmark . 86
3.3.1 Benchmark: Exact Circuit Simulation 86
3.3.2 Benchmark: Exact Rydberg Atom Dynamics Simulation 92

3.4 Discussion . 94

4 Generalization: Operator Learning Renormalization Group 96

4.1 NRG and Density Matrix Renormalization Group (DMRG) in the Tradi-
tional Formulation . 99

4.2 Operator Learning RG Framework . 101
4.2.1 The Scaling Consistency Condition 104
4.2.2 Loss Function for Real-Time Evolution 108

4.3 Formal Definitions . 113
4.3.1 Scaling Consistency . 113
4.3.2 Growing Operator of Rescalable Local Hamiltonians 117

4.4 Scaling Consistency Condition for Real Time Evolution 120
4.5 OLRG Algorithms . 129

4.5.1 Classical Algorithm: Operator Matrix Map 132
4.5.2 Quantum Algorithm: Hamiltonian Expression Map 135
4.5.3 Error and Resource Estimation . 140

4.6 Transforming Time-dependent Hamiltonians 143
4.7 Results . 144

4.7.1 OMM . 145
4.7.2 HEM . 147
4.7.3 Transfer Learning between Time Points 151

4.8 Additional Results . 152
4.8.1 Training History . 152
4.8.2 Batch and Sampling Size . 154
4.8.3 Step Size . 157

xiii

4.9 Discussion . 158
4.9.1 Improving Loss Function . 160
4.9.2 Improving Operator Maps . 162
4.9.3 Finding the Loss Function for Other Properties 163
4.9.4 Higher Dimension Lattice and Other Geometry 163
4.9.5 Relation with Matrix Product State (MPS) Time-Dependent Varia-

tional Principle (TDVP) . 163
4.9.6 Implementation . 164
4.9.7 Optimization . 165

5 Conclusion 166

References 170

Glossary 201

xiv

List of Figures

1.1 Structure of the thesis. Arrows indicate possible orders of reading. 4
1.2 Projectile Motion . 5
1.3 Written Representation, Mathematical Representation and Programmatic

Representation . 7
1.4 Bridging the Gap between Theoretical, Computational and Experimental

Physics . 9
1.5 Expression Tree of (a) x+ y ∗ z; (b) exp(−it[X ⊗ Y,−Z]) 11
1.6 The Backus-Naur Form (BNF) definition of the syntax for simple arithmetic

expression with plus and multiplication . 16

2.1 Quantum block intermediate representation plays a central role in Yao. The
images of Graph Processing Unit (GPU) and quantum circuits are taken
from JuliaGPU [1] and IBM q-experience [2]. 19

2.2 Quantum Fourier transformation circuit. The red and blue dashed blocks
are built by the hcphases and cphase functions in the Listing. 21

2.3 Quantum Fourier transformation circuit as a quantum block intermediate
representation (QBIR). The red nodes are roots of the composite Chain-
Block. The blue nodes indicate the composite ControlBlock and Put-
Block. Green nodes are primitive blocks. 21

2.4 The BNF definition of the syntax for the quantum circuits in Yao. ⟨index⟩
refers to an expression representing index 24

2.5 5-qubit quantum Phase estimation circuit. This circuit contains three com-
ponents. First, apply Hadamard gates to n ancilla qubits. Then, the con-
trolled unitary is applied to n + m qubits, and finally, the inverse QFT is
applied to n ancilla qubits. 27

xv

2.6 The BNF definition of the syntax for the quantum operators in Liang. . . 33
2.7 The BNF definition of the syntax for the quantum basis in Liang. 34
2.8 The BNF definition of the syntax for the quantum states in Liang. 36
2.9 Rabi frequency amplitude specified by this pulse program with sweep_time

assigned to 2.3 . 39
2.10 Adiabatic evolution that prepares a Z2 state 40
2.11 The Intermediate Representation (IR) for the pulse program in bloqade-python 40
2.12 The IR for the channel in bloqade-python 41
2.13 The IR for the waveforms in bloqade-python 42

3.1 Kronecker product of two X gates . 54
3.2 Kronecker product of two X gates . 54
3.3 A brief history of automatic differentiation and its development in quan-

tum many-body physics. Theano (2007) [3], Evaluating Derivatives Book
(2008) [4], Tapenade (2013) [5, 6], TensorFlow (2015) [7], ForwardDiff/Re-
verseDiff [8], PyTorch (2016) [9], JAX (2018) [10], Zygote (2018) [11], dif-
ferentiating dominant eigensolver (2020) [12], Enzyme (2020) [13], Diffrax
(2022) [14]. Due to space limitations, many other libraries and algorithmic
developments around 2015 and after are not included. The selected works
represent the development of automatic differentiation relevant to the topic
discussed in this thesis. 72

3.4 The forward process on computational graph of the expression y = xT Ax +
b · x + c . 76

3.5 The backward process on computational graph of the expression y = xT Ax+
b · x + c . 77

3.6 Builtin automatic differentiation engine Yao.AD. Black arrows represent
the forward pass. The blue arrow represents uncomputing. The red arrows
indicate the backpropagation of the adjoints. 82

3.7 Benchmarks of (a) Pauli-X gate; (b) Hadamard gate; (c) CNOT gate; (d)
Toffolli gate. 89

xvi

3.8 (a) A parameterized quantum circuit with single qubit rotation and CNOT
gates; (b) Benchmarks of the parameterized circuit; (c) Benchmarks of the
parametrized circuit, the batched version. Line “yao" represents the batched
registers, “yao (cuda)" represents the batched register on GPU, “yao × 1000"
is running on a non-batched register repeatedly for 1000 times. 90

3.9 Benchmark of the exact Rydberg atom dynamics simulation. 93

4.1 Workflow of Numerical Renormalization Group (NRG), DMRG, and Op-
erator Learning Renormalization Group (OLRG). X → V †XV is the ba-
sis transform into low-energy spectrum subspace or chosen-state subspace.
From the left is the set of relevant operators in the calculation. The op-
erator map finds a virtual set of relevant operators on the right. The red
color corresponds to Wilson’s NRG, whose relevant operators only contain
Hamiltonian. The orange color corresponds to White’s DMRG, whose rele-
vant operators contain Hamiltonian and boundary operators. The blue color
corresponds to OLRG, whose relevant operators contain arbitrary operators
involved in the calculation. Both operator maps for NRG and DMRG are
linear basis transforms, which fall into the category of Operator Matrix Map
(OMM). The operator map for OLRG is an arbitrary operator map, which
contains both OMM and Hamiltonian Expression Map (HEM). 97

4.2 Illustration of three OLRG growing steps starts from a 3-site system. Gl

denotes the operation of adding k sites into the system. f θ
n denotes the

operator map of n-site system with parameters θ. (Left) When f θ
n is an

isometric matrix, this process is equivalent to a canonical MPS. The red
circles mark the physical legs, and the blue triangle denotes the isometric
matrix. (Middle) The blue box depicts the set of operators that are used
to calculate the target property. The dashed box denotes the grown box.
The arrow represents the operator map f θ

n. (Right) The flow chart of this
process. S(2)

5 = G1[S(2)
4] = (G1 ◦ f θ

4)[S(1)
4] = (G1 ◦ f θ

4 ◦G1 ◦ f θ
3)[S(0)

3]. 102
4.3 Comparing 2 OLRG growing steps and the ground truth starts from a 2-site

system. Denote S(q)
n as the system of size n by applyingDl for q times. Green

nodes depict the ground truth. Blue nodes represent algorithm growing
steps. Orange nodes represent the 5-site system applying only f θ

3 . The red
nodes denote the computed property at each 5-site system p(Gl[S(q)

n]). . . . 107

xvii

4.4 For a geometrically w-local Hamiltonian, the growing operator stops chang-
ing the system after it grows outside the boundary band of stretch w after
applying G2

l = G2l. This results in a saturated yellow band where only
terms within this yellow band interact with the system Hamiltonian. . . . 109

4.5 2nd-order Time-ordered Boundary Correlator (TOBC) for 5-site 1D Trans-
verse Field Ising Model (TFIM) at T = 5.0 for the two-point correlation
function ⟨Z1Z2⟩T =5.0 with |00000⟩ as the initial state and h = 1.0. 112

4.6 Illustration of neural OMM. X is a batch of input relevant operators, QR
is the QR decomposition, V †XV is a batch of output relevant operators by
applying the batch of isometric matrices onto X. Gl is the growing operator,
Sn is the input set of relevant operators and Sn+l is the output set of relevant
operators . 134

4.7 Illustration of HEM. (a) In the initialization step, HEM maps the emula-
tion of n0-site problem Hamiltonian dynamics into the n0-site device Hamil-
tonian dynamics. Then the device dynamics is used to build grown sys-
tem Sn0+l, forwarding to recursive steps; (b) In recursive steps, HEM maps
dynamics UG

n+l = exp
[
−itGl[Hdev

n]
]

to the device Hamiltonian dynamics
Udev

n+l = exp
[
Hdev

n+l

]
. Bi are the w-qubit digital gates, L =

∥∥∥(∂Hn)Gl

∥∥∥ is the
size of saturated boundary. Udev

n is the dynamics of n-site device Hamiltonian.138
4.8 Comparison of OMM optimized at different loss function orders. (a) two-

point correlation function ⟨Sz
1S

z
2⟩; (b) The relative error of the two-point

correlation function ⟨Sz
1S

z
2⟩. 145

4.9 Comparison of different depths of the neural network in OMM optimized
with 2nd order loss function. (a) The two-point correlation function ⟨Sz

1S
z
2⟩;

(b) The relative error of the two-point correlation function ⟨Sz
1S

z
2⟩. 146

4.10 The loss function of different depths of neural OMM with 2nd order loss
function at T = 2.0 with a moving average of window size 5. 147

4.11 Comparison of HEM optimized at different loss function orders. (a) The
two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative error of the two-

point correlation function ⟨Sz
1S

z
2⟩. 148

4.12 Comparison of the HEM optimized at different widths of neural networks
with depth 4. (a) The two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative

error of the two-point correlation function ⟨Sz
1S

z
2⟩. 149

xviii

4.13 Comparison of HEM optimized at different depths of neural networks with
width 4. (a) The two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative

error of the two-point correlation function ⟨Sz
1S

z
2⟩. 150

4.14 Transfer learning to different time points. Compared by a different order of
loss function. The y-axis is the ratio between the relative error of initializa-
tion from previous time point ϵprevious and random initialization ϵrand. Above
the line y = 100 means random initialization is better; below the line means
initialization from the previous time point is better. (a) neural OMM; (b)
HEM targeting Rydberg Hamiltonian; . 151

4.15 Training history of relative error. Left is the training history of the classical
algorithm, and right is the training history of the quantum algorithm. . . 152

4.16 Training history of the loss function. Left is the training history of the clas-
sical algorithm, and right is the training history of the quantum algorithm.
. 153

4.17 Training history of the training by reusing previous time point’s parameters.
(a) The history of loss function for OMM. (b) The history of loss function
for HEM. 154

4.18 Comparison of different batch sizes at order 2, with depth 8 for OMM. (a)
The value of ⟨Sz

1S
z
2⟩; (b) the relative error. 155

4.19 Comparison of different sampling sizes at order 2, with depth 8 for OMM.
(a) The value of ⟨Sz

1S
z
2⟩; (b) the relative error. 156

4.20 Comparison of different sampling sizes at order 2, with depth 8 for HEM.
(a) The value of ⟨Sz

1S
z
2⟩; (b) the relative error. 157

4.21 Comparison of different step sizes δ at order 2, with depth 8. 158
4.22 3rd-order TOBC for 5-site 1D TFIM at T = 5.0 for the two-point correlation

function ⟨Z1Z2⟩T =5.0 with |00000⟩ as initial state and h = 1.0. We fix
t3 = 2.5 and plot the TOBC for t1, t2 ∈ [0, 5.0]. 161

xix

List of Tables

3.1 Matrix types of gates in Yao. 68
3.2 Matrix types conversion under matrix multiplication (*)/kronecker product

(kron)/addition (+)/hadamard product (.*). Here I, D, P, S, M stands for
IMatrix, Diagonal, PermMatrix, SpasreMatrixCSC and Matrix respectively. 69

3.3 Packages in the benchmark. 87
3.4 The environment setup of the machine for benchmark. 88

4.1 A review of previous RG-like variational methods by loss function at each
scale and RG transformation. H denotes the Hamiltonian. ρ denotes the
density matrix. M denotes the maximum rank of the low-rank approximation.101

xx

List of Abbreviations

AD Automatic Differentiation 3, 19, 20, 71–74, 77–81, 84, 91, 92

AST Abstract Syntax Tree 17

BNF Backus-Naur Form xiii, xiv, 15–17, 23, 24, 33, 34, 36

CPU Central Processing Unit 24, 25, 88–92, 147, 164

DMET Density Matrix Embedding Theory 107, 115

DMRG Density Matrix Renormalization Group xi, xv, 1, 3, 10, 96–101, 103, 104, 106,
114, 129, 132, 134, 158, 159, 161–164, 167, 168

GPU Graph Processing Unit xiii, xv, 2, 19, 20, 24, 29, 71, 88, 90, 145, 164

HEM Hamiltonian Expression Map xvi, xvii, 97, 99, 132, 138, 140, 141, 143, 147–154,
157, 159, 162, 167–169

IR Intermediate Representation xiv, 2, 39–47, 49, 78, 166, 167

MPS Matrix Product State xii, xv, 98, 102, 103, 131–133, 135, 151, 159, 162–164

NISQ Noisy Intermediate-Scale Quantum 18, 136

NRG Numerical Renormalization Group xv, 1, 3, 10, 96–101, 103, 106, 129, 132, 134,
158, 159, 163, 167

ODE Ordinary Differential Equation 93, 135, 139, 141, 143, 144, 157, 158

xxi

OLRG Operator Learning Renormalization Group xv, 10, 97–99, 101, 102, 106–108, 111,
113, 114, 117, 130, 134, 135, 140, 141, 144, 146, 158, 159, 163–165, 167–169

OMM Operator Matrix Map xv–xvii, 97–99, 132, 134, 141, 144–147, 151–156, 158, 159,
162, 168, 169

QASM Quantum Assembly Language 44

QBIR quantum block intermediate representation xiii, 18, 20, 21, 23, 24, 30, 32, 37, 50,
67, 71, 80, 84, 85, 87, 91

SPMD Single Program Multiple Data 29, 91, 141

SSA Static Single Assignment 43–47, 49, 78, 166, 167

TDVP Time-Dependent Variational Principle xii, 131, 132, 159, 163, 164, 168

TFIM Transverse Field Ising Model xv, xvii, 99–101, 104, 112–116, 118–120, 130, 133,
139, 144, 156–161, 168

TNO Tensor Network Operator 105

TNS Tensor Network State 132

TOBC Time-ordered Boundary Correlator xv, xvii, 111–113, 125, 127, 130–132, 135, 136,
139–143, 145, 153, 154, 156, 158, 160, 161, 164

VMC Variational Monte Carlo 1, 96, 131, 133, 168, 169

VQA Variational Quantum Algorithms 1, 96, 136, 140, 159

xxii

Chapter 1

Introduction

Quantum many-body systems are one of the most common and important systems in
physics. They are crucial in studying the behavior of a wide range of physical systems,
including quantum materials and quantum chemistry [15–17]. While the behavior of small-
scale quantum systems has been well understood, the behavior of large-scale quantum
systems is still not well understood. This leads to the emergence of condensed matter
physics. Quoting from PW Anderson’s "More is Different" [18], the behavior of large-scale
quantum systems is not simply the sum of the behavior of small-scale quantum systems.
New physics may emerge when the number of particles increases. Computational simu-
lations and predictions are crucial in understanding the behavior of large-scale quantum
systems. However, the simulation of quantum many-body systems is a challenging task.
The general problem has been proven to be hard [19, 20]. This complexity has moti-
vated the development of various classical frameworks to tackle this problem, including
quantum Monte Carlo [21–23], linked cluster expansion [24, 25] and variational frame-
works such as Wilson’s NRG [26], White’s DMRG [27, 28] and Variational Monte Carlo
(VMC) [29, 30]. While these frameworks have been successful in understanding the be-
havior of many practical quantum systems, they are not without limitations. Quantum
computation has been proposed as a promising hardware solution to simulate and un-
derstand the behavior of large-scale quantum systems [31]. Quantum frameworks such
as quantum phase estimation [32, 33], Hamiltonian simulation [34–36] and Variational
Quantum Algorithms (VQA) [37–39] has also been proposed with the promise of potential
quantum advantage. In combination with conventional computational methods, developing
new methods and software tools can help understand the behavior of large-scale quantum
systems.

Concurrently, the development of hardware has seen significant progress in the past

1

decade, including progressing fidelity in manipulating quantum many-body systems, in-
cluding superconducting circuits, Rydberg atoms, and Ion traps [40–42]. This urges the
development of new methods and software tools to utilize, control, simulate, and char-
acterize these systems. Developing such new methods and software tools has brought
new concepts and techniques to the field of physics. New ways to represent quantum
many-body systems have been proposed, including mathematical representations such as
ZX calculus [43], Quon [44] and IR for programming quantum hardwares [45, 46]. The
connection between computational process and many-body systems has been seen in the
development of quantum algorithms and quantum simulations in recent decades [19]. Com-
plex behavior arises from the composition of primitive components that share the same
nature as the composition of primitive components in the computational process.

Furthermore, the development of formal languages [47] and especially programming
languages [48–50] have brought concepts in understanding complex compositions. A holy
grail of designing programming languages is to make the composition of primitive com-
ponents as simple as possible while still being expressive and versatile across different
machines. Solving this problem has led to the development of type systems [51], compiler
optimizations [52], etc. On top of programming languages, many representations have
been developed to build the digital twin of the physical world [53, 54]. Although the ini-
tial motivation of formal languages was to describe the syntax and semantics of natural
languages, the development of such languages has brought powerful mathematical tools to
represent and understand compositions. From an implementation perspective, the devel-
opment of computational condensed matter physics can benefit from such tools. Moreover,
these concepts and techniques may help physicists revisit existing frameworks and enhance
the simulations and predictions.

The development of large-scale scientific facility [55–57] in high-energy physics has led
to many breakthrough discoveries since last century. Similarly, starting a decade ago,
scientific software development is crucial in many condensed matter physics discoveries.
These software and algorithms are the large-scale "accelerators" in this century, such as
Gaussian [58], OpenFermion [59], ALPS [60], etc. Another classic example is the deep
learning software stacks including software frameworks like TensorFlow [7], PyTorch [9]
and hardware programming facility like CUDA [61]. The entire field of deep learning is
made possible with these software efforts. Thus, scientific software development has seen
significant growth in the past decade. More sophisticated software frameworks have been
developed for multiple applications. This imposes challenges in software engineering, such
as performance, maintainability, correctness, etc. Moreover, in the twilight of Moore’s
law, we must seriously consider developing scientific software to fully utilize current and
emerging hardware, such as GPU, quantum computers, neuromorphic computers, etc. The

2

development of representations mentioned previously has brought powerful tools to address
these challenges.

Combining the development of formal languages and scientific software development,
we can develop new methods and software tools to understand the behavior of large-scale
quantum systems. In this thesis, we will refer to these representations as programmatic rep-
resentations, as their primary purpose is to represent the physical entity in a computational
program rather than creating formal definitions. We will introduce programmatic represen-
tations explored in the related work in Chapter 2, including representations for quantum
circuits, quantum operators, quantum registers, and Rydberg atom arrays. Then, we will
introduce the transformation of and between these representations in Chapter 3, includ-
ing the transformation of quantum circuits for simulation and Automatic Differentiation
(AD). Furthermore, we will introduce how we generalize the well-known Willson’s NRG
and White’s DMRG from a programming and machine-learning perspective in Chapter 4.
Finally, we conclude this thesis by discussing the future directions of applying program-
matic representations in quantum many-body systems in Chapter 5.

3

Introduction
• getting started
• definition
• motivation
• concepts and techniques

Representation
• expressions
• static single assignment

Transformation
• fast exact simulation
• automatic differentiation
• benchmark

Generalization Operator Learning Renormalization Group
• NRG and DMRG
• Framework
• Algorithms
• Results

Conclusion

Figure 1.1: Structure of the thesis. Arrows indicate possible orders of reading.

In this chapter, starting with a simple projectile motion example, we will introduce
the basic concepts of programmatic representations and discuss their motivation in more
detail. We will also introduce the basic concepts and techniques used in this thesis. While
much of this thesis’s content is referred to as formal language, we will introduce them with
more concrete examples for physicists without going deep into formalism unless necessary.

4

g

Figure 1.2: Projectile Motion

1.1 Getting Started

In this section, we will introduce the basic concepts of programmatic representations
through the very simple example of projectile motion. Let’s start with representing the
same physical system in different ways.

1.1.1 5 Ways of Describing the Projectile Motion

Let’s first start with some standard textbook representations
List of Positions if we are able to observe a projectile motion from the experiment, we
can represent this process as a list of positions at different times:

x(t1), x(t2), · · · , x(tn) (1.1)

Diagram we can also draw a diagram to represent the projectile motion by plotting the
curve of positions:

y = g

2x
2 (1.2)

Differential Equation using the Newton’s law, we can represent the projectile motion as
a differential equation:

d2r⃗

dt2
= g⃗ (1.3)

Lagrangian using the Lagrangian mechanics, we can represent the projectile motion as a
Lagrangian:

L = T − V (1.4)

5

What if we ask you to pick one of the above representations and write a computer program
to calculate y given x? If x is in our list of positions, then List of Positions seems to
be the most straightforward representation. The corresponding data structure would be a
1-D array of positions.

However, this is not true if we want to calculate y for a continuous x. In this case, we
need to use Diagram, Differential Equation, or Lagrangian. They all can predict y
given a random x.

The situation changes when we start thinking about more generic cases. If we are
now looking for a variant of projectile motion with acceleration at each x⃗ and y⃗ direction,
then Diagram is not generic enough to describe such system. Differential Equation
is the best way to describe such a system because the acceleration is a direct parameter
in the representation. On the other hand, if we are looking for a variant of path, such
that the energy is preserved. The Lagrangian becomes a good representation because
it has a more explicit representation on energy. However, if we obtain a solution from
Differential Equation, we still need to convert it to List of Positions to visualize the
trajectory because List of Positions is a more native representation when we draw the
curve on a screen.

From here, we can see different representations have their strength. Solving a problem
requires one to transform between multiple representations. This is also true when we talk
about writing a program.

The most straightforward representation is List of Positions because we can represent
it directly using list, a primitive data structure in python. Diagram is a bit more
complicated but still straightforward. It requires one to define the corresponding function.
Differential Equation will then require one to define a numerical integrator to solve the
differential equation. Lagrangian is the most complicated one because it requires one
to define the Lagrangian function and then use the Euler-Lagrange equation to solve the
equation of motion.

6

1.1.2 What is Programmatic Representation?

written

math

programmatic

Figure 1.3: Written Representation, Mathematical Representation and Programmatic Rep-
resentation

When discussing the programmatic representation, we compare it with the written and
mathematical representation. The written representation is the most straightforward way
to represent a physical system. It is how we describe a physical system in natural symbols,
language, and diagrams. Mathematical representation is the way we describe a physical
system in mathematical language. The programmatic representation is the way we describe
a physical system with the consideration of being able to execute the representation in a
computer program. The three representations are shown in Figure 1.3.

An example of written and mathematical representation could be Euclid’s Elements,
where mathematical and written representations describe geometry. The most common
example of programmatic representation is the general-purpose programming languages,
such as Python, Julia, C++, etc. Programming languages serve as the most generic way
to represent programs that a computer can execute.

As one can imagine, mathematical representations and programmatic representations
can be written. Similarly, programmatic representations can always be formally defined
by mathematical representations. However, the written or mathematical representations
are not necessarily executable by a computer. The programmatic representations are exe-
cutable by a computer but not necessarily human-readable.

7

However, creating only general-purpose programming languages is insufficient for rep-
resenting physical systems. Because the details about the physics are not encoded in the
general-purpose programming languages, diagrammatic representations can sometimes be
programmatic as well. Thus, specific knowledge and understanding of the representations
within the context of quantum many-body physics is necessary.

In summary, the programmatic representation is about the mathematical representa-
tions that a computer can execute. It considers the formal definitions, the implementation
details, and the domain knowledge. This thesis discusses the more specific programmatic
representations that physicists can use in experiments, simulations, and theory.

1.2 Motivation

There are several motivations for using programmatic representations in physics. The
most obvious motivation is bridging different fields by "speaking" the same language. Us-
ing programmatic representations also leads to powerful software tools and an alternative
understanding of theories in physics from an entirely different perspective. In this section,
we will discuss some of the motivations that result in the development of work presented
in this thesis.

1.2.1 Bridging the Gap between Theoretical, Computational and
Experimental Physics

The most obvious motivation for utilizing a programmatic representation appears when ex-
perimental, computational, and theoretical physicists work together. The physicists know-
ing both experimental and theoretical physics are rare. The fields of physics are becoming
more and more specialized. Even within the same field, theoretical, computational, and
experimental physicists may use different representations and terminologies. This makes
communication between physicists difficult, obstructing the development of new theories
and the lack of understanding of the physical systems.

Theoretical physicists often use mathematical representations to describe the physical
systems. Computational physicists use numerical representations to simulate the physical
systems and provide guidance for the experimental physicists. The experimental physicists
then use the physical devices to perform experiments and collect data. such workflow
works okay if the experiment is only executed a few times. But if many experiments are
needed and their configuration and setup are different, then a unified machine-executable

8

Theoretical Repr
(Equation, Diagram, …)

Computational Repr
(Array, CPU, GPU, …)

Experimental Repr
(Pulse, Lasers, …)

compile

compile

Figure 1.4: Bridging the Gap between Theoretical, Computational and Experimental
Physics

representation is needed. This is where the programmatic representation comes in. It
can be used to represent the physical system in a way that can be written by theoretical
physicists, simulated by computational physicists, and executed by experimental physicists.

Assuming there are three physicists, Alice, Bob, and Charlie. If each of them works
with different representations A,B,C, without a unified representation, 3·(3−1)

2 = 3 different
conversions are needed, and this scales with the number of physicists as O(n(n−1)

2). If there
is a unified representation, then only n conversion is needed, and this scales with the number
of physicists as O(n). This compilation between hierarchical representations significantly
reduces the complexity of communication between physicists.

More specifically, as shown in Figure 1.4, by utilizing programmatic representations,
theoretical physicists can write down equations and diagrams and then compile them into
machine executable representations such as primitive data structures such as integers, float-
ing points, and arrays. Computational physicists can then use these machine-executable
representations to simulate the physical systems and further generate representations that
the experimental devices, such as pulse sequences and laser configurations, can execute.

9

1.2.2 Building Performant, Sophisticated and Multi-purpose Soft-
ware Framework

From the design patterns in general-purpose software to the design of a domain-specific
language, the programmatic representations can help us architect the software framework
in a performant, sophisticated, and multi-purpose way while staying composable. Thus,
it brings existing methods to a new level of usability and performance. An example is
the optimization of the exact methods. Using the circuit representations we introduced
in Section 2.1, we can automatically optimize the exact simulation by dispatching the
general simulation of a unitary to the simulation of different patterns. The match-and-
dispatch technique helps us build one of the fastest exact circuit emulators in Section 3.1.
Furthermore, by applying the techniques from the compiler community, we can further
automate the optimization process using the rewrite rules. Potentially, we also see future
directions in optimizing the program for quantum devices, such as the optimization of
quantum circuits for quantum hardware.

1.2.3 A way of thinking

Programmatic representations can unveil alternative methods to solve problems as a way
of thinking. By understanding existing methods from a programmatic perspective, we
can generalize them more abstractly. This way of thinking can lead to the discovery of
alternative methods that solve broader problems. For example, by switching the floating
points with tropical numbers, one can solve combinatorial optimization problems using the
algorithm used for linear algebra and tensor networks[62]. In Chapter 4, we will show the
generalization of NRG[26] and DMRG[27, 28] to the OLRG. This generalization is inspired
by revisiting the implementation of the DMRG algorithm and understanding it from a
programmatic perspective. By generalizing the DMRG algorithm, we remove the limitation
of the numerical RG formulation in higher dimensions and hardware platforms. This led
to the discovery of the OLRG algorithm, which utilizes machine learning techniques on
conventional and quantum computers.

10

1.3 Useful Concepts and Techniques

In this section, we will introduce some useful concepts and techniques from computer
science that are used in this thesis. We will not discuss the formal definition of these
concepts and techniques, but instead, we will introduce them with concrete examples for
physicists without going deep into formalism. For readers familiar with these concepts and
techniques, they can skip this section.

1.3.1 Expression

Using the expression is the most generic way to represent a programmatic representation.
An expression is a combination of symbols that denotes a value. Due to the nature of
composition, a tree data structure arises naturally to represent an expression. In parsing,
this tree structure is also called a syntax tree. However, we will not go deep into the
parsing in this thesis. Instead, we will focus on the tree structure and its operations.

For example, consider the mathematical term x+y∗z. This can be represented as a tree
structure as shown in Figure 1.5 (a). One of the reasons why we are particularly interested
in the expression tree is that although it can be very generic, the tree data structure fits
into modern computer architecture very well. It can be easily represented using arrays and
pointers and traversed using recursion.

(a) +

x *

y z

(b) exp

*

-it ad

⊗

X Y

-

Z

Figure 1.5: Expression Tree of (a) x+ y ∗ z; (b) exp(−it[X ⊗ Y,−Z])

11

However, in practice, representing the expression tree requires heterogeneous node types
because the nodes in an expression tree represent a function that takes several arguments
(its children) and returns a value (itself). This results in a non-uniform data structure. As
shown in a more complicated example in Figure 1.5 (b), representing an expression of a
quantum operator exp(−it[X ⊗ Y,−Z]) requires different primitive functions such as exp,
⊗, ad (the commutator), etc. Representing such data structure cannot be done statically
using a uniform data structure with the same number of fields. This implementation
consideration motivates us to discuss the sum types in the next section.

1.3.2 Sum Types

The sum type is a composite type representing the type formed by combining other types.
The sum type is also called tagged union, disjoint union, or variant type. It is one of the
common classes of algebraic data types. 1. In the context of programmatic representation,
combined with product types (such as tuples), sum types are beneficial in representing the
heterogeneous node types in an expression tree.

A typical sum type represents a choice between a fixed set of alternatives. For example,
consider the following definition of nodes in Python:

1See also https://en.wikipedia.org/wiki/Algebraic_data_type

12

https://en.wikipedia.org/wiki/Algebraic_data_type

Listing 1 A simple sum type in Python
from dataclasses import dataclass

@dataclass
class Node:

pass

@dataclass
class Var(Node):

name: str

@dataclass
class Const(Node):

value: float

@dataclass
class Add(Node):

left: Node
right: Node

@dataclass
class Mul(Node):

left: Node
right: Node

@dataclass
class Neg(Node):

value: Node

In this example, Const, Add, Mul, and Neg are possible variants of the sum type Node.
Each of them is a class that extends the base class Node. We can see that the minimum
requirement to represent such a data structure is a tag and a list of fields. Because runtime
input determines the node type’s tag, we have to allocate memory for a maximum number
of fields (in this case, 2) for each possible instance of Node. Furthermore, the memory
layout of the data structure is not guaranteed to be aligned in a cache-friendly way. Thus,
in optimizing compilers, the memory layout of the data structure is often rearranged to
improve the performance of the program[50, 63, 64]. We will not discuss the details of

13

memory layout in this thesis, but it is important to note that the memory layout of the
data structure is an important factor in the program’s performance.

1.3.3 Pattern Matching

Pattern matching is a comprehensive concept. In the context of this thesis, we refer
to pattern matching a sub-expression in an expression tree. The sub-expression can be
a single node or a subtree. One can describe the pattern as the same expression plus
a pattern variable. Pattern matching is a widespread operation in computer programs.
Pattern matching aims to provide a concise and readable way to extract information from
a data structure. Moreover, pattern matching serves as a fundamental tool in manipulating
representations. In this section, we will introduce the pattern matching with some concrete
examples in Python, Julia, and rust for readers familiar with different languages.

First, look at the pattern matching in Python for a concrete example. Python 3.10
introduced the pattern-matching feature. For instance, we can use the following matching
statement to extract the sub-expression of multiplication from an arithmetic expression

Listing 2 A simple example of pattern matching in Python
def simplify(expr):

match expr:
case Mul(left, Const(1.0)):

return left
case _:

return expr

>>> simplify(Mul(Add(Var("a"), Const(1.0)), Const(1.0)))
Add(left=Var(name="a"), right=Const(value=1.0))

In Listing 2, our simplify function matches the multiplication expression with a con-
stant 1.0 on the right-hand side. If the pattern matches, the function returns the left-hand
side of the multiplication. Otherwise, it returns the original expression. Thus, the sym-
bolic expression can be simplified in this way. In the practice of programming or compiler,
pattern matching refers to matching a sub-expression from an expression tree.

14

In Julia, the pattern matching is implemented as a package MLStyle. A more main-
tained version is also implemented for Liang (introduced in Section 2.3). 2.

Listing 3 A simple example of pattern matching in Julia. Mul is the corresponding sum
type in Julia.
using MLStyle

@active struct Mul
left
right

end

@match Mul(left, 1.0) begin
Mul(left, 1.0) => left
_ => Mul(left, 1.0)

end

With pattern matching, we can now rewrite an existing expression into a new one.
Pattern matching is a powerful tool for manipulating representations. In this section, we
will introduce the rewrite with some concrete examples in Python, Julia, and rust for
readers familiar with different languages. Listing 2 is a simple example of rewrite, where
we rewrite the multiplication expression with a constant 1.0 on the right side into the left
side of the multiplication.

1.3.4 Backus-Naur Form

In Chapter 2, we will use BNF extensively to introduce several expressions, including
circuits, operators, and pulse programs. The Backus-Naur Form is a notation technique
for context-free grammars, which is used to describe the syntax of programming languages,
command-line interfaces, and communication protocols. It is named after the two computer
scientists, John Backus and Peter Naur, who introduced it in the 1960s. The BNF is
a standard format for the formal description of the syntax of a language, namely the
expressions, statements, and program structures. It is widely used in the field of computer
science and software engineering.

2The pattern matching package is contained in the repository of Liang at the time of writing

15

⟨expr⟩ ::= ⟨+⟩ | ⟨∗⟩
⟨+⟩ ::= ⟨expr⟩+ ⟨expr⟩
⟨∗⟩ ::= ⟨expr⟩ ∗ ⟨expr⟩

Figure 1.6: The BNF definition of the syntax for simple arithmetic expression
with plus and multiplication

The BNF denotes a node in the expression tree using ⟨...⟩, taking Figure 1.5 (a) as
an example, the generic expression is denoted as ⟨expr⟩, and node + representing a plus
expression is denoted as ⟨+⟩. Similarly, the node * representing a multiplication expression
is denoted as ⟨∗⟩. Then, the children are defined using a statement, e.g., ⟨expr⟩ := ⟨+⟩|⟨∗⟩,
meaning the generic expression can be either a plus or multiplication. The children can
be further defined recursively, e.g., ⟨+⟩ := ⟨expr⟩+ ⟨expr⟩. The BNF is a powerful tool to
describe a language’s syntax and a good way to introduce the expression tree of quantum
objects. In this thesis, we will focus more on presenting the tree structure using BNF
instead of focusing on the concrete syntax of a language.

16

Chapter 2

Representation

Representations are the most important concept in this thesis. They are the foundation
of building algorithms and software. They are also the key to understanding the quantum
systems. Good representations can unveil the hidden structure and make the computation
more efficient. In this chapter, we will introduce the definition of three different representa-
tions for quantum objects: expressions, diagrams, and composite representation. Although
the reader may be familiar with the corresponding concepts in physics, we will introduce
them while considering their computational implementation, such as the data structure and
the formalism. In the next chapter, we will introduce the transformation of and between
these representations, which contain more application-oriented content.

We begin with expressions of quantum circuits, operators, and hardware pulse se-
quences. Expressions are the most common programmatic representation. As we have
introduced in Section 1.3.1, they are also referred to as Abstract Syntax Tree (AST),
term, expression tree in different contexts. They can be represented as a tree structure,
a natural data structure for computer programs. Expressions are easy to manipulate and
transform programmatically. They are also easy to visualize and understand. This section
will introduce expressions defined for various quantum objects using BNF introduced in
Section 1.3.4.

2.1 Quantum Circuit

Quantum circuits are the most common representation of quantum algorithms. They are a
sequence of quantum gates, which are unitary operators and measurements. The quantum

17

gates are applied to the qubits in the circuit. The most general definition of a quantum
circuit is probably just a sequence of unitaries U1U2 · · ·Un. However, in practice, there
are more structures within these unitaries. For example, they can be the composition
of elementary gates or the unitaries representing an existing quantum algorithm. This
motivates us to define a more structured representation of quantum circuits. This section
will discuss the QBIR in Yao to give readers a concrete example of a quantum circuit
representation. Then, we will discuss the process of creating such a representation in a
more formal way.

In our previous work Yao, we explored the expression tree of a quantum circuit. Yao
is a software for solving practical problems in quantum computation research. Given the
limitations of Noisy Intermediate-Scale Quantum (NISQ) circuits [65], treating quantum
devices as co-processors and complementing their abilities with classical computing re-
sources is advantageous. Variational quantum algorithms have emerged as a promising
research direction in particular. These algorithms typically involve a quantum circuit with
adjustable gate parameters and a classical optimizer. Many of these quantum algorithms,
including the variational quantum eigensolver for ground states [37–39], quantum approx-
imate optimization algorithm for combinatorial problems [66], quantum circuit learning
for classification and regression [67, 68], and quantum circuit Born machine for generative
modeling [69, 70] have had small scale demonstrations in experiments [71–76]. There are
still fundamental issues in this field that call for better quantum software alongside hard-
ware advances. For example, variational optimization of random circuits may encounter
exponentially vanishing gradients [77] as the qubit number increases. Efficient quantum
software is crucial for designing and verifying quantum algorithms in these challenging
regimes. Other research demands also call for quantum software that features a small
overhead for repeated feedback control, convenient circuit structure manipulations, and ef-
ficient gradient calculation besides simply pushing up the number of qubits in experiments.

On the other hand, deep learning and its extension differentiable programming offer
great inspiration and techniques for programming quantum computers. Differentiable pro-
gramming [78] composes differentiable components to a learnable architecture and then
learns the whole program by optimizing an objective function. The components are typ-
ically, but not limited to, neural networks. The word "differentiable" originates from the
usual requirement of a gradient-based optimization scheme, which is crucial for scaling
up to high dimensional parameter spaces. Differentiable programming removes laborious
human efforts and sometimes produces even better programs than humans can produce
themselves [79].

Differentiable programming is a sensible paradigm for variational quantum algorithms,
where parameters of quantum circuits are modified within a particular parameter space

18

Quantum RegistersQBIRQuantum Algorithms

Matrix Representation
Tagging

Parameter ManagementArithmetics

Figure 2.1: Quantum block intermediate representation plays a central role in Yao. The im-
ages of GPU and quantum circuits are taken from JuliaGPU [1] and IBM q-experience [2].

to optimize a loss function. In this regard, programming quantum circuits in the differ-
entiable paradigms address a much long term issue than the short-term considerations
of compensating low-depth noisy quantum circuits with hybrid quantum-classical algo-
rithms. Designing innovative and profitable quantum algorithms is, in general, nontrivial
due to the lack of quantum intuitions. Fortunately, differentiable programming offers a new
paradigm for devising novel quantum algorithms, much like what has already happened to
the classical software landscape [79].

The algorithmic advances in differentiable programming hugely benefit from rapid de-
velopment in software frameworks [7, 9, 80–83], among which the AD of the computational
graph is the key technique behind the scene. A computational graph is a directed acyclic
graph that models the computational process from input to output of a program. In order

19

to evaluate gradients via the automatic differentiation, machine learning packages [7, 9, 80–
83] construct computational graphs in various ways.

It is instructive to view quantum circuits from the perspective of computational graphs
with additional properties such as reversibility. In this regard, contextual analysis of the
quantum computational graphs can be even more profitable than neural networks. For
example, uncomputing (adjoint or dagger) a sub-program plays a central role in reversible
computing [84] since it returns qubit resources to the pool. While in differentiable program-
ming of quantum circuits, exploiting the reversibility of the computational graph allows
differentiating through the quantum circuit with constant memory independent of its depth.
Constant memory usage is a significant advantage over the traditional approach of stor-
ing intermediate states for backpropagation. The traditional approach requires memory
allocation that is linear in the circuit depth. We discuss such approaches in Section 3.2.3.

Inspired by differentiable programming software, we design Yao to be around the
domain-specific computational graph, the quantum block intermediate representation QBIR).
A block refers to a tensor representation of quantum operations, which can be quantum
circuits and quantum operators of various granularities (quantum gates, Hamiltonian, or
the whole program). As shown in Figure 2.1, QBIR offers a hardware-agnostic abstrac-
tion of quantum circuits. It is called an intermediate representation due to its stage in
the quantum compilation, which bridges the high-level quantum algorithms and low-level
device-specific instructions. Yao provides rich functionalities to construct, inspect, manip-
ulate, and differentiate quantum circuits in terms of QBIR.

Yao adds a unique solution to the landscape of open-source quantum computing soft-
ware, includes Quipper [85], ProjectQ [86], Q# [87], Cirq [88], qulacs [89], PennyLane [90],
qiskit [91], and QuEST [92]. References [93–95] contain more complete surveys of quantum
software. Most software represents quantum circuits as a sequence of instructions. Thus,
users need to define their abstraction for circuits with rich structures. Yao offers QBIR
and related utilities to compose and manipulate complex quantum circuits. Yao’s QBIR is
nothing but an abstract syntax tree, which is a commonly used data structure in modern
programming languages thanks to its strong expressibility for control flows and hierarchical
structures. Quipper [85] has adopted a similar strategy for the functional programming
of quantum computing. Yao additionally introduces Subroutine to manage the scope of
active and ancilla qubits. Besides these basic features, Yao puts a strong focus on differen-
tiable programming of quantum circuits, which will be discussed in Section 3.2.3. In this
regards, Yao’s batched quantum register with GPU acceleration and built-in AD engine
offers significant speedup and convenience compared to PennyLane [90] and qulacs [89].

The QBIR is a domain-specific representation for quantum operators, including circuits

20

hcphases cphase

H shift shift

H shift

H

Figure 2.2: Quantum Fourier transformation circuit. The red and blue dashed blocks are
built by the hcphases and cphase functions in the Listing.

chain

chain

put

H

control

shift

control

shift

chain

put

H

control

shift

chain

put

H

Figure 2.3: Quantum Fourier transformation circuit as a QBIR. The red nodes are roots of
the composite ChainBlock. The blue nodes indicate the composite ControlBlock and
PutBlock. Green nodes are primitive blocks.

and observables. Figure 2.2 shows the quantum Fourier transformation circuit [96–98]
which contains the hcphases blocks (marked in red) of different sizes. Each block itself
is also a composition of Hadamard gates and cphase blocks (marked in blue) on various
locations. In Yao, it takes three lines of code to construct the QBIR of the QFT circuit.

The function cphase defines a control phase shift gate with the control and shift
functions. The function hcphases defines the recursive pattern in the QFT circuit, which
puts a Hadamard gate in the first qubit of the subblock and then chains it with several
control shift gates. The chain block is a composition of blocks with the same number of
qubits. It is equivalent to matrix multiplication in reverse order mathematically. Finally,
one composes the QFT circuit of a given size by chaining the hcphases blocks. Over-
all, these codes construct a tree representation of the circuit shown in Figure 2.3. The
subtrees are composite blocks (ChainBlock, ControlBlock, and PutBlock) with different
composition relations indicated in their roots. The leaves of the tree are primitive blocks.

In Yao, to execute a quantum circuit, one can simply feed a quantum state into the
QBIR.

21

Listing 4 Quantum Fourier transformation circuit in Yao.
julia> using Yao

julia> cphase(i, j) = control(i, j=> shift(
2π/(2^(i-j+1))));

julia> hcphases(n, i) = chain(n, i==j ?
put(i=>H) : cphase(j, i) for j in i:n);

julia> qft(n) = chain(hcphases(n, i)
for i in 1:n)

julia> qft(3)
nqubits: 3
chain

chain
put on (1)

H gate
control(2)

(1,) shift(1.5707963267948966)
control(3)

(1,) shift(0.7853981633974483)
chain

put on (2)
H gate

control(3)
(2,) shift(1.5707963267948966)

chain
put on (3)

H gate

Listing 5 apply! and pipe.
julia> rand_state(3) |> qft(3);

same as apply!(rand_state(3), qft(3))

22

Listing 6 Inspecting gates.
julia> using Yao, SymEngine

julia> @vars θ
(θ,)

julia> shift(θ) |> mat
2×2 LinearAlgebra.Diagonal
{Basic,Array{Basic,1}}:
1 ·
· exp(im*θ)

julia> control(2,1,2=>shift(θ)) |> mat
4×4 LinearAlgebra.Diagonal{Basic,

Array{Basic,1}}:
1 · · ·
· 1 · ·
· · 1 ·
· · · exp(im*θ)

Here, we define a random state on 3 qubits and pass it through the QFT circuit. The
pipe operator |> is overloaded to call the apply! function which applies the quantum
circuit block to the register and modifies the register inplace.

The generic implementation of QBIR in Yao allows supporting both numeric and sym-
bolic data types. For example, one can inspect the matrix representation of quantum gates
defined in Yao with symbolic variables.

Here, the @vars macro declares the symbolic variable θ. The mat function constructs
the matrix representation of a quantum block.

The QBIR in Yao is designed as an expression tree for quantum circuits. Readers can
get a concrete feeling by inspecting the tree structure from examples of Yao. We will
now discuss a more formal definition of a toy circuit representation in BNF. To design
such a representation, we need to consider the primitive operations in quantum circuits,
the elementary gates from various use cases, the composition of quantum circuits, and
the measurement of quantum circuits. A simple BNF definition of the syntax for the

23

⟨circuit⟩ ::= ⟨gate⟩ | ⟨gate⟩⟨circuit⟩
⟨gate⟩ ::= ⟨composite⟩ | ⟨primitive⟩

⟨composite⟩ ::= ⟨put⟩ | ⟨control⟩ | ⟨subroutine⟩
⟨primitive⟩ ::= ⟨shift⟩ | ⟨Pauli⟩ | . . .

⟨put⟩ ::= ⟨gate⟩ ⟨index⟩
⟨control⟩ ::= ⟨gate⟩ ⟨index⟩ ⟨index⟩

Figure 2.4: The BNF definition of the syntax for the quantum circuits in Yao.
⟨index⟩ refers to an expression representing index

quantum circuits in Yao is shown in Figure 2.4. For readers unfamiliar with BNF, we
refer to Section 1.3.4 for a brief introduction to simple arithmetic expressions in BNF. The
⟨primitive⟩ expression contains the definitions of basic quantum gates. Thus, it can be
extended to include more gates. The ⟨composite⟩ expression contains the definitions of the
composition of quantum circuits.

The circuit expression might be the simplest expression for quantum objects. However,
the expression we introduced in Yao shows a lack of expressiveness when we look at broader
quantum operators. We will discuss this in the next section by introducing the Bloqade
package built on top of Yao.

2.2 Quantum Registers

The quantum register stores hardware-specific information about the quantum states. In
classical simulation on a Central Processing Unit (CPU), the quantum register is an array
containing the quantum wave function. For GPU simulations, the quantum register stores
the pointer to a GPU array. In an experiment, the register should be the quantum device
that hosts the quantum state. Yao handles all of these cases with a unified apply! interface,
which dispatches the instructions depending on different types of QBIR nodes and registers.

24

Listing 7 CUDA register
julia> using CuYao

construct the |1010> state
julia> r = ArrayReg(bit"1010");

transfer data to CUDA
julia> r = cu(r);

Instructions on Quantum Registers

Quantum registers store quantum states in contiguous memory, which can either be the
CPU memory or other hardware memory, such as a CUDA device.

Each register type has its own device-specific instruction set. They are declared in Yao
via the "instruction set" interface, which includes

• gate instruction: instruct!

• measure instruction: measure and measure!

• qubit management instructions: focus! and relax!

The instruction interface provides a clean way to extend support to various backends
without the user worrying about changes to frontend interfaces. We note that the function
with a ! suffix modifies the register in place. This particular convention in Julia indicates
that the function modifies its argument. In the experiment, the instruction measure is
impossible to implement due to the non-cloning theorem.

For example, the rotation gate shown in Figure 2.1 is interpreted as instruct!(reg,
Val(:Rx), (2,), θ). The second parameter specifies the gate, which is a Val type with
a gate symbol as a type parameter. The Val type is a Julia type that carries a value
at compile time. This allows the compiler to specialize the function for the specific gate.
The third parameter is the qubit to apply, and the fourth parameter is the rotation angle.
The CNOT gate is interpreted as instruct!(reg, Val(:X), (1,), (2,), (1,)), where
the last three tuples are gate locations, control qubits, and configuration of the control
qubits (0 for inverse control, 1 for control). Respectively. The measure function simulates
measurement from the quantum register and provides bit strings, while measure! returns
the bit string and also collapses the state.

25

Listing 8 Instructions on quantum registers
julia> r = zero_state(4);

julia> instruct!(r, Val(:X), (2,))
ArrayReg{1, Complex{Float64}, Array...}

active qubits: 4/4

julia> samples = measure(r; nshots=3)
3-element Array{BitBasis.BitStr{4,Int64},1}:
0010 (2)
0010 (2)
0010 (2)

julia> [samples[1]...]
4-element Array{Int64,1}:
0
1
0
0

26

In the last line of the above example, we convert a bit string 0010(2) to a vector [0, 1,
0, 0]. Note that the order is reversed since the readout of a bit string is in the little-endian
format.

Active qubits and environment qubits

In certain quantum algorithms, one only applies the circuit block to a subset of qubits.
For example, see the quantum phase estimation [33] shown in Figure 2.5.

H

H

H

H

H

U1 U2 U4 U8 U16

QFT

|0 Q1

|0 Q2

|0 Q3

|0 Q4

|0 Q5

|? Q6|? Q7|? Q8

Figure 2.5: 5-qubit quantum Phase estimation circuit. This circuit contains three compo-
nents. First, apply Hadamard gates to n ancilla qubits. Then, the controlled unitary is
applied to n+m qubits, and finally, the inverse QFT is applied to n ancilla qubits.

The QFT circuit block defined in Listing 4 can not be used directly in this case since
the block size does not match the number of qubits. We introduce the concept of active
and environment qubits to address this issue. Only the active qubits are visible to circuit
blocks under operation. We manage the qubit resources with the focus! and its reverse
relax! instructions.

Since it is a recurring pattern to first focus!, then relax! on the same qubits in many
quantum algorithms, we introduce a Subroutine node to manage the scope automatically.
Hence, the phase estimation circuit in Figure 2.5 can be defined with the following codes.

The matblock method in the codes constructs a quantum circuit from a given unitary
matrix.

27

Listing 9 focus! and relax!
julia> reg = rand_state(10)

julia> focus!(reg, (3,6,1,2))

julia> reg |> qft(4)

julia> relax!(reg, (3,6,1,2); to_nactive=10)

Listing 10 quantum phase estimation
PE(n, m, U) = chain(

n+m, # total number of qubits
repeat(H, 1:n), # apply H from 1:n
chain(control(

k,
n+1:n+m=>matblock(U^(2^(k-1))))
for k in 1:n

),

apply inverse QFT on a local scope
subroutine(qft(n)', 1:n)

)

28

Listing 11 batched quantum registers
julia> reg = rand_state(4; nbatch=5);

julia> reg |> qft(4) |> measure!
5-element Array{BitBasis.BitStr{4,Int64},1}:
1011 (2)
1011 (2)
0000 (2)
1101 (2)
0111 (2)

Batched Quantum Registers

The batched register is a collection of quantum wave functions. It can be samples of
classical data for quantum machine learning tasks [99] or an ensemble of pure quantum
states for thermal state simulation [100]. For both applications, having the batch dimension
not only provides convenience but may also significantly speed up the simulations.

We adopt the Single Program Multiple Data (SPMD) [101] design in Yao similar to
modern machine learning frameworks so that it can make use of modern multi-processors
such as multi-threading or GPU support (and potentially multi-processor QPUs). Applying
a quantum circuit to a batched register means applying the same quantum circuit to a
batch of wave functions in parallel, which is extremely friendly to modern multi-processors.
SPMD is also adopted in Bloqade to save compilation time and improve experimental task
latency.

The memory layout of the quantum register is a matrix of the size 2a × 2rB, where
a is the number of system qubits, r is the number of remaining qubits (or environment
qubits), B is the batch size. For gates acting on the active qubits, the remaining qubits
and batch dimension can be treated on an equal footing. We put the batch dimension as
the last dimension because Julia array is column majored. As the last dimension, it favors
broadcasting on the batch dimensions.

One can construct a batched register in Yao and perform operations on it. These
operations are automatically broadcasted over the batch dimension.

Note that we have used the measure! function to collapse all batches.
The measurement results are represented in BitStr type which is a subtype of Integer

29

and has a static length. Here, it pretty-prints the measurement results and provides a
convenient readout of measuring results.

2.3 Quantum Operators

When we start looking at broader quantum operators, additional composition operations
are needed. In Yao, this is done by providing two extra composition operations – ⟨Add⟩
and ⟨Scale⟩ to represent the addition and scalar multiplication of quantum operators. As a
step further, we build the corresponding representations for Hamiltonian on top of QBIR.
In Yao, the Hamiltonian is represented as a recursive addition of quantum operators. For
example, the 1D transverse field Ising model

H =
∑

i

σz
i σ

z
i+1 − h

∑
i

σx
i (2.1)

is represented as the following

30

Listing 12 the 1D transverse field Ising model
julia> transverse_ising(4, 1.0)
nqubits: 4
+

+
repeat on (1, 2)

Z
repeat on (2, 3)

Z
repeat on (3, 4)

Z
repeat on (1, 4)

Z
[+] +

put on (1)
X

put on (2)
X

put on (3)
X

put on (4)
X

On top of this representation, we developed the representations for Rydberg atoms
in Bloqade[102] for simulating the dynamics. However, the symbolic expressions are not
enough for the numerical simulations. We further developed the representations for simu-
lating dynamics as the sum of linear operators. The data structure of this representation
is a composition of a list of linear operators, such as dense matrix, sparse matrix, etc.,
and a list of time-dependent coefficients. This representation throws away some of the
symbolic information but adds the numerical details on sparsity. We are removing the
need for sparse matrix addition, which is costly. Moreover, this representation allows fur-
ther specialization in matrices to utilize special matrix multiplication, such as the general
permutation matrix, Pauli matrix, etc.

In the Rydberg atoms, we further developed the representations for representing more
structured Hamiltonian coefficients, called the pulse sequence. This representation is a set
of time-dependent Hamiltonian coefficients for programming analog Hamiltonian devices.

31

we will discuss them in the Section 2.4. However, in the development of the representations,
we found limitations of QBIR in representing the time-dependent Hamiltonian coefficients
as well as broader quantum operators. More specifically, the QBIR is designed mainly for
quantum circuits instead of broader quantum operators. Thus, as a result, information
about the time-dependent Hamiltonian coefficients is wrapped as a black box in the QBIR.
However, the ⟨Add⟩ and ⟨Scale⟩ operations work well for simple and small-scale cases.
When working with symmetries and large-scale (> 1000 sites) or high-dimensional (3D or
4D) expressions, this becomes a bottleneck quickly – the symmetry information is hiding
behind the 1000 ⟨Add⟩ nodes, and the memory of storing such expression grows linearly
with number of terms. This becomes an obstacle for further compiling and verifying the
pulse sequence for hardware. On the other hand, in the case of general quantum operators,
the QBIR lacks the information about the basis, which is necessary for the numerical
simulations and many other algebraic transforms.

32

⟨operator ∈ H⟩ ::= ⟨const⟩ | ⟨primitive⟩ | ⟨intrinsic⟩ | ⟨call⟩ | ⟨annotation⟩
⟨primitive⟩ ::= 0 | I | X | Y | Z · · ·
⟨intrinsic⟩ ::= ⟨linalg⟩ | ⟨subscript⟩ | ⟨reduction⟩ | ⟨outer⟩
⟨call⟩ ::= ⟨name⟩ ⟨args⟩

⟨annotation⟩ ::= ⟨operator⟩ % ⟨basis⟩
⟨linalg⟩ ::= ⟨add⟩ | ⟨mul⟩ | ⟨kron⟩ | ⟨comm⟩ | ⟨acomm⟩ |

⟨pow⟩ | ⟨kronpow⟩ | ⟨adjoint⟩ | ⟨T ⟩ | ⟨unary⟩
⟨subscript⟩ ::= ⟨operator⟩ [⟨index ∈ N⟩]
⟨reduction⟩ ::= ⟨sum⟩ | ⟨prod⟩
⟨outer⟩ ::= ⟨outer⟩ ⟨state⟩ ⟨state⟩
⟨add⟩ ::= ⟨scalar⟩ ⟨operator⟩ | ⟨scalar⟩ ⟨operator⟩ + ⟨add⟩
⟨mul⟩ ::= ⟨operator⟩ * ⟨operator⟩
⟨kron⟩ ::= ⟨operator⟩ ⊗ ⟨operator⟩

⟨comm expr⟩ ::= ⟨comm bracket⟩ ⟨operator⟩ ⟨operator⟩ |
⟨comm bracket⟩ ⟨operator⟩ ⟨operator⟩ ⟨power ∈ N⟩

⟨comm bracket⟩ ::= comm | acomm
⟨pow⟩ ::= pow ⟨operator⟩ ⟨operator⟩

⟨kronpow⟩ ::= kronpow⟨operator⟩ ⟨power ∈ N⟩
⟨adjoint⟩ ::= ⟨operator⟩†

⟨time-ordered⟩ ::= T ⟨operator⟩
⟨unary⟩ ::= ⟨builtin unary⟩ ⟨operator⟩

⟨builtin unary⟩ ::= exp | log | inv | sqrt | conj | transpose
⟨outer⟩ ::= ⟨state⟩ ⟨state⟩

Figure 2.6: The BNF definition of the syntax for the quantum operators in Liang.

To address these limitations, we developed the symbolic expression for broader quantum
operators in Liang, including several different expressions for scalar, quantum operators,
states, and basis. Their formal definitions are introduced in the following. The formal
syntax of symbolic operator expression is defined in Figure 2.6. The expression follows a

33

more complicated tree structure compared to our circuit expression. We will introduce the
details of the expression in the following.

⟨const⟩ and ⟨primitive⟩ operators

The ⟨const⟩ are numerical values similar to a literal value in programming languages. It
can be a dense matrix, sparse matrix, Pauli string, or general permutation matrix. The
⟨primitive⟩ are the basic quantum operators, such as I, X, Y , Z, etc. The ⟨primitive⟩ will
be lowered into the ⟨const⟩ in the compilation process when the basis is provided.

Basis Annotation

⟨basis⟩ ::= ⟨space⟩ ⟨operator⟩
⟨space⟩ ::= ⟨primitive⟩ | ⟨product⟩ | ⟨pow⟩ | ⟨subspace⟩

⟨primitive⟩ ::= qubit | qudit ⟨index ∈ N⟩ | spin ⟨index⟩

Figure 2.7: The BNF definition of the syntax for the quantum basis in Liang.

The design of basis annotation primarily considers the composibility between expressions.
Instead of requiring an explicit basis annotation at each operator expression, we ask a
compiler to infer the basis information automatically when possible. For example, the
Rydberg Hamiltonian

H =
∑
⟨i,j⟩

C

∥ri − rj∥6ninj +
∑

i

Ωiσ
x
i −

∑
i

∆ini (2.2)

can be defined on either ground states |0⟩ , |r⟩ or hyperfine states |1⟩ , |r⟩. Thus, a
Rydberg atom array with 3 levels can be written as

H = H|0r⟩ +H|1r⟩ (2.3)

If we require the definition to be annotated with the basis, e.g

34

H|0r⟩ =
∑
⟨i,j⟩

C

∥ri − rj∥6 (ni : |0r⟩)(nj : |0r⟩) +
∑

i

Ωiσ
x
i : |0r⟩ −

∑
i

∆ini : |0r⟩ (2.4)

the expression H|0r⟩ will not be able to be repurposed for the expression H|1r⟩. Thus,
instead, we allow the basis to be annotated only when necessary, as one naturally writes
the expression

H = H : |0r⟩+H : |1r⟩ (2.5)

The compiler is responsible for inferring the basic information for the sub-expressions.

Addition and Scalar Multiplication

Inspired by previous work in more general purpose symbolic engine [103], we adopt the
compact data structure of storing operations that are communicative and associative using
a dictionary of expression and scalar coefficients, where the keys are the scalar coefficients
and the values are the expressions. This removes redundancy. Equivalent forms of the
expression, such as 2A + 3B and 3B + 2A, are equivalent. All the expressions are fur-
ther designed to be hash constant, which allows the compiler to check the equivalence of
the expressions quickly. Thus, similar term merging is automatically done by dictionary
operations.

Subscript and Reduction

The ⟨subscript⟩ expression is a way to define the site index of the quantum operator.
When the corresponding ⟨index⟩ is a constant, it becomes a convenient short-hand for
⟨kron⟩ operations. The ⟨reduction⟩ expression is a way to define the operators on a large
number of sites. For example, the transverse field Ising model on Kagome lattice can be
written as

35

Listing 13 the transverse field Ising model on Kagome lattice in Liang
sum(

Lattice.bonds(Lattice.kagome(5)),
[index"i", index"j"]=>Op.Z[index"i"] * Op.Z[index"j"]

) + scalar"h" * sum(
Lattice.sites(Lattice.kagome(5)),
[index"i"]=>Op.X[index"i"]

)

This expression is more generic than what we have in Yao, and preserves the geometry
information of the lattice without linearly growing the memory usage thus it is more suit-
able for large-scale representations and potentially can serve as a high-level representation
for quantum hardware at 104 sites scale. The basis inference is also supported in such
expression by virtually evaluating the reduction loop.

Outer Product and States

⟨state ∈ H⟩ ::= zero | ⟨eigen⟩ | ⟨product ∈ N⊗n⟩ | ⟨kron⟩ | ⟨add⟩ | ⟨annotate⟩
⟨eigen⟩ ::= ⟨operator⟩ ⟨index ∈ N⟩
⟨kron⟩ ::= ⟨state⟩ ⟨state⟩
⟨add⟩ ::= ⟨scalar⟩ ⟨state⟩ | ⟨scalar⟩ ⟨state⟩ + ⟨add⟩

⟨annotate⟩ ::= ⟨state⟩ % ⟨basis⟩

Figure 2.8: The BNF definition of the syntax for the quantum states in Liang.

The most generic form of the state is a list of complex numbers representing the amplitudes.
However, when we look at more specific quantum states, especially in terms of a symbolic
expression, the representation can often be just the addition of a few product states. And
the product states are usually the eigenstates of a quantum operator. Thus, we define the
⟨state⟩ expression as an expression composed of ⟨eigen⟩, ⟨kron⟩ and ⟨add⟩. Additionally,
one can represent the configuration of a basis state as |041012⟩ without explicitly writing

36

the operator. When the basis is given for such sites, the compiler can infer the basis
information for each site, e.g

Listing 14 inferring basis for product states Liang
kron(Op.X % Qubit, Op.Z % Spin(1)) * State.Product([0, 1])

2.4 Quantum Hardwares

The representation for hardware can have multiple layers ranging from low-level control
signals to high-level pulse programs for an analog Hamiltonian. This section will mainly
discuss the high-level pulse program of an analog Hamiltonian that we developed in the
bloqade-python software. The high-level pulse program we discuss in this section are the
details of Ω (Rabi frequency), ∆ (detuning), and ϕ (phase) of the following analog Rydberg
Hamiltonian

H =
∑
⟨i,j⟩

C6

∥ri − rj∥
ninj +

∑
i

Ω
2 (eiϕi |gi⟩ ⟨ri|+ e−iϕi |ri⟩ ⟨gi|)−

∑
i

∆ini (2.6)

where C is the interaction constant that depends on the particular Rydberg state used. For
our reference device in [104], we use C6 = 862690×2πMHzµm6 for |r⟩ =

∣∣∣70S1/2
〉

of the 87Rb
atoms, where |gi⟩ = |0⟩ or |gi⟩ = |1⟩ if the hyperfine state is used. In Bloqade, the primary
goal is to emulate this device at high-level pulse program. Thus the representation is the
same as Yao’s QBIR with Add extension. In bloqade-python, the primary goal becomes
actually running programs on such device. More consideration has been put into designing
the representation of time sequence Ω(t) and ∆(t) at both |0⟩ and |1⟩ levels as well as
the capability of utilizing arbitrary geometry of the device. Furthermore, considering the
use cases from varitional quantum algorithms, we also need to consider parameterized
pulse programs, and allow our representation to be capable of optimizing or sweeping over
parameters.

We first introduce a high-level representation of the pulse program aiming to ease the
construction of such programs. An example of creating a Z2 state in 1D Rydberg atom
chain is demonstrated in Listing 15. A chain of methods constructs the program calls,
namely the "builder"s. This is a typical design pattern for building complicated objects in
Python with linear method calls. Such construction is made possible because, in analog
mode, the Rydberg atom array cannot have feedback during the execution, thus resulting in

37

no control flows. The execution procedure behind these pulse programs is some paralleled
linear programs. Therefore, the procedure for creating such programs always has a fixed
order. With such an assumption, we can use the builder pattern and Python’s method
chaining to guide the construction of the pulse program with the help of the editor’s auto-
completion feature. This is a good example of how the representation can be designed to
guide the user in constructing the program correctly.

Listing 15 1D Z2 state preparation in bloqade-python
Define relevant parameters for the lattice geometry and pulse schedule
n_atoms = 11
lattice_spacing = 6.1
min_time_step = 0.05
omega_max = np.pi * 2 * 4.3
U = 2 * np.pi * 15.0
Define Rabi amplitude and detuning values.
Note the addition of a "sweep_time" variable
for performing sweeps of time values.
rabi_amplitude_values = [0.0, omega_max, omega_max, 0.0]
rabi_detuning_values = [-U, -U, U, U]
durations = [0.3, "sweep_time", 0.3]

time_sweep_z2_prog = (
Chain(n_atoms, lattice_spacing=lattice_spacing)
.rydberg.rabi.amplitude.uniform

.piecewise_linear(durations, rabi_amplitude_values)
.detuning.uniform.piecewise_linear(durations, rabi_detuning_values)

)

Allow "sweep_time" to assume values from 0.05 to
2.4 microseconds for a total of 20 possible values.
Starting at exactly 0.0 isn't feasible, so we use
the `min_time_step` defined previously.
time_sweep_z2_job = time_sweep_z2_prog.batch_assign(

sweep_time=np.linspace(min_time_step, 2.4, 20)
)

The pulse program created in Listing 15 creates a pulse program demonstrated in Fig-

38

Figure 2.9: Rabi frequency amplitude specified by this pulse program with sweep_time
assigned to 2.3

ure 2.9. The pulse controls the Rydberg atom array to evolve into a Z2 state adiabatically.
We can simulate the time evolution and check the density on the Rydberg (excited) state
as shown in Figure 2.10.

A formal IR is designed to model the analog machine Aquilla from QuEra before sending
it to the hardware [104]. This IR is designed similarly to the expression structure as
mentioned previously, with extra considerations on serialization over web protocols. We
introduce the formal definition of this IR in Figure 2.11.

39

Figure 2.10: Adiabatic evolution that prepares a Z2 state

⟨expr⟩ ::= ⟨sequence⟩ | ⟨named⟩ | ⟨slice⟩
⟨sequence⟩ ::= ⟨sequence⟩ ⟨pulse⟩ | sequence ⟨pulse⟩
⟨named⟩ ::= named ⟨string⟩ ⟨expr⟩
⟨slice⟩ ::= slice ⟨expr⟩ ⟨interval⟩
⟨pulse⟩ ::= ⟨level coupling⟩ ⟨pulse expr⟩

⟨level coupling⟩ ::= rydberg | hyperfine
⟨pulse expr⟩ ::= ⟨pulse slice⟩ | ⟨fields⟩ | ⟨concat⟩
⟨pulse slice⟩ ::= ⟨pulse expr⟩ ⟨interval⟩
⟨concat⟩ ::= ⟨concat⟩ ⟨pulse expr⟩ | ⟨pulse expr⟩ ⟨pulse expr⟩
⟨fields⟩ ::= ⟨field name⟩ ⟨channels⟩

⟨channels⟩ ::= ⟨channel⟩ | ⟨channels⟩ ⟨channel⟩
⟨field name⟩ ::= rabi amplitude | rabi phase | detuning

Figure 2.11: The IR for the pulse program in bloqade-python

The formal definition of the high-level IR is shown in Figure 2.11. The general program
is constructed via the definition of atom positions and the ⟨expr⟩. The atom positions are
a list of coordinates generated by lattice constructors. The ⟨expr⟩ is a description of the

40

waveforms at different level coupling (i.e., Rydberg or hyperfine) and various fields of the
Rydberg Hamiltonian (i.e., Rabi amplitude Ωi, Rabi phase ϕi, and detuning ∆i). We
define the ⟨sequence⟩ as a list of ⟨pulse⟩, and the ⟨sequence⟩ can be named or sliced to
form a ⟨expr⟩. The ⟨pulse⟩ describes the waveforms at the different level coupling. The
⟨pulse expr⟩ describes the waveforms at various fields. Each ⟨field⟩ describes the waveforms
at different terms in the Rydberg Hamiltonian. They can be composed by concatenation or
slicing at every level of abstraction. We then further discuss the definition of the ⟨channel⟩
in Figure 2.12.

⟨channel⟩ ::= ⟨spatial modulation⟩ ⟨waveform⟩
⟨spatial modulation⟩ ::= uniform | ⟨variable⟩ | ⟨assigned variable⟩ | ⟨scaled locations⟩

⟨variable⟩ ::= var ⟨string⟩
⟨assigned variable⟩ ::= assign ⟨variable⟩ ⟨decimal⟩
⟨scaled locations⟩ ::= ⟨scaled location⟩ | ⟨scaled locations⟩⟨scaled location⟩
⟨scaled location⟩ ::= ⟨location⟩ ⟨scalar⟩

Figure 2.12: The IR for the channel in bloqade-python

The ⟨channel⟩ provides information about the spatial modulation of the waveform.
The spatial modulation means the atom to which the given waveform will be applied. The
⟨spatial modulation⟩ can take three types

1. ⟨uniform⟩, the waveform is applied to all atoms, which is also referred as the analog
Hamiltonian.

2. ⟨variable⟩, the waveform is applied to a variable location determined by the input at
runtime. This allows users to reconfigure atom positions between each shot.

3. ⟨assigned variable⟩, this is a special case of ⟨variable⟩ where the variable is assigned a
value at the beginning of the program. This is useful for partially evaluated programs
generated in the middle of compilation.

4. ⟨scaled locations⟩, the most general case where the waveform is applied to a group
of atoms with a rescaling factor.

41

The ⟨location⟩ is simply an integer representing the unique ID of an atom. This is po-
tentially compatible with representing atom shuttling in the future [105]. The ⟨scalar⟩ is a
standard expression representing scalar values in R. We will now introduce the ⟨waveform⟩
in Figure 2.13.

⟨waveform⟩ ::= ⟨instruction⟩ | ⟨smooth⟩ | ⟨slice⟩ | ⟨append⟩ |
⟨negative⟩ | ⟨scale⟩ | ⟨add⟩ | ⟨record⟩ | ⟨sample⟩ | ⟨aligned⟩

⟨instruction⟩ ::= ⟨linear⟩ | ⟨constant⟩ | ⟨poly⟩ | ⟨python function⟩
⟨smooth⟩ ::= smooth ⟨kernel⟩ ⟨waveform⟩
⟨slice⟩ ::= ⟨waveform⟩ ⟨interval⟩

⟨append⟩ ::= ⟨waveform⟩ ⟨waveform⟩
⟨negative⟩ ::= - ⟨waveform⟩
⟨scale⟩ ::= ⟨waveform⟩ ⟨scalar⟩
⟨add⟩ ::= ⟨waveform⟩ - ⟨waveform⟩

⟨record⟩ ::= record ⟨string⟩ ⟨waveform⟩
⟨sample⟩ ::= sample ⟨waveform⟩ ⟨interpolation⟩ ⟨scalar⟩
⟨aligned⟩ ::= ⟨alignment⟩ ⟨waveform⟩

⟨alignment⟩ ::= left | right
⟨record⟩ ::= ⟨waveform⟩ ⟨variable⟩ ⟨side⟩
⟨side⟩ ::= start | end

Figure 2.13: The IR for the waveforms in bloqade-python

The ⟨waveform⟩ is defined by composing primitive functions defined on f : R → R
including ⟨linear⟩, ⟨constant⟩, ⟨poly⟩, and ⟨python function⟩, where ⟨linear⟩ represents a
simple linear function, ⟨constant⟩ represents a constant function without varying with time,
⟨poly⟩ represents a polynomial function, and ⟨python function⟩ represents a foreign func-
tion defined in python by the user. The ⟨smooth⟩ is a function that smooths the waveform
with a kernel, such as a moving average kernel, as used in the previous experiment [106].
The ⟨slice⟩, ⟨append⟩ are similar to previous composition operations. ⟨add⟩ adds up the
amplitude of two waveforms. ⟨record⟩ stores the waveform amplitude value at the start or
end of the waveform. This semantic exists because in experiment, one will need to scan
the duration of waveform. Due to the nature of piecewise waveform, the start and end

42

points of the waveform will vary. For example, consider the example in ?? of preparing a
quantum scar in experiment [41, 107]. The ⟨sample⟩ is a function that samples the wave-
form into an interpolation of a given number of points. This emulates how the machine
works under the scene and thus can help our compiler identify hardware constraints before
sending the program to the hardware. The ⟨aligned⟩ node is for aligning the schedule with
waveforms on other spatial modulation. This is useful when the program contains multiple
local controls. While more flexible asynchronous semantics may be required to express a
more complicated schedule, we find such semantic is sufficient for a variety of use cases in
the current hardware introduced in [104].

2.5 Static Single Assignment Form

Our previous discussion introduced the expression for quantum circuits, operators, and
hardware. However, when dealing with programs with control flows, such as an error cor-
rection protocol where one needs to measure a qubit and decide the next operation based
on the measurement result, using expression as a representation becomes no longer conve-
nient. This section will introduce a different representation called Static Single Assignment
(SSA) for representing quantum programs.

The SSA is usually used as an intermediate representation. Here, IR refers to the
representation of a program that is used as an intermediate step between the source code
and the target code. It is usually a format designed mainly for the convenience of the
compiler, rather than for the convenience of the human reader.

SSA IR [108] is a widely adopted IR in traditional compiler engineering, such as
LLVM [49]. This form offers a simple way to handle control flows and run data flow
analysis on the program. Basic Block, a basic block contains a set of statements, where
the last statements are branches that terminate the instruction stream, such as a goto
statement. The return value of each statement will be assigned to a variable which will
only be statically assigned once. Terminator A terminator is a control flow statement
that jumps to another basic block, such as goto, return. PhiNode a ϕ-node represents
the possible value from various branches. Thus, in SSA IR, the basic blocks define the
vertices of a control flow graph (CFG), and the terminators define the edges in the CFG.
In the Julia compiler, the SSA IR is introduced as IRCode or CodeInfo.

We extend the static SSA IR for quantum programs using a similar structure to M
IR [109]’s region in Julia compiler’s SSA IR. Besides the basic block and terminator, we
define two new building blocks in the control flow graph of SSA IR, which are the Quantum

43

Block and Quantum Terminator. A quantum block is a list of statements that only
contains pure quantum operations, such as applying a gate, and a quantum terminator is
usually the measurement operation that causes the program jump from a quantum block
to a classical statement or a basis change operation which cause the program jump from
one quantum block on basis A to basis B. Thus, a quantum block is always inside a
basic block. We note that a similar idea has been mentioned in Pennylane [90] referred
to as quantum nodes inside the tape for automatic differentiation (also known as Wengert
Lists [110]). However, at the time of writing, PennyLane does not support control flows or
hybrid programs.

An intermediate observation is that a classical statement can be permutated with a
quantum operation as long as they do not have variable dependencies. Thus, a straight-
forward algorithm can be found to group small quantum blocks into larger ones by looking
up variable dependencies using standard data flow analysis on the SSA form program.

We do not aim to design an assembly language or architecture at this level; we only
aim to provide a high-level intermediate representation for program analysis, compiler
optimization, and code generation. Thus, our SSA IR is orthogonal to lower-level languages
for machine execution (Quantum Assembly Language (QASM), QUIL, eQASM, etc.) or
higher-level languages for better expressiveness (Silq, Q#, etc.).

Intrinsic Semantic

Unlike most quantum programming languages or intermediate languages, where qubits are
treated as a primitive type and passed to gate operations in a function-like statement.
We define our semantics as an operator-centric language. The operator language has been
used in quantum physics for decades - everything happens in quantum mechanics can be
described as an operator.

We find as a high-level semantic, this representation naturally becomes compatible
with tensor network diagrams and quantum channels. By splitting out the semantics of
qubits or registers from the core representation, we are able to generalize the program to
an arbitrary basis, which is crucial to non-qubit-based systems such as a 3-level Rydberg
atom system. The same operator X can be applied in the Rydberg system with either
hyperfine or Rydberg pulse. Thus, once the user has defined the operator program, it can
be reused on both hyperfine pulse and Rydberg pulse as long as the program does not have
basis specifications.

On the other hand, mutability can be a problem in quantum programming due to the
non-cloning theorem. Every quantum operation has to be mutable to avoid cloning on

44

the memory. However, the representation of operators is purely classical and thus can
be immutable. Thus, the intrinsic semantics defined by operators can be pure functions
whose return value does not depend on the system’s state. This is a significant advantage
for program analysis and transformation, as it allows the compiler to perform aggressive
optimization on the program like the classical compiler.

Instead of an array of qubits objects with indexing semantics, the operator-centric
semantic leads to the tensor index semantic of operators. Each operator in the program
will have a local location. Calling another user-defined function in a local location results
in an automatic location mapping.

Consider the quantum Fourier transform (QFT) example, we recursively call the qft
function, inside a local location range 2:n, the callee location space will be automatically
mapped into 2:n.

Listing 16 Quantum Fourier transform
@device function qft(n::Int)

1 => H
for k in 2:n

@ctrl k 1 => shift(2π / 2^k)
end

if n > 1
2:n => qft(n - 1)

end
end

The qft function in Listing 16 is a recursive function that applies the Hadamard gate on
the first qubit, then applies the controlled phase shift gates on the rest qubits, and finally
calls itself on the rest qubits. The @ctrl macro is used to apply the controlled phase shift
gates. The @ctrl macro is a syntax sugar that is equivalent to control(control_location,
gate, gate_location) for the control function, which is used to apply a controlled gate.
The control function takes two arguments: the control qubit and the target qubit. The
control function is used to apply a controlled gate. The control function takes two argu-
ments: the control qubit and the target qubit. This function is forwarded to Julia compiler
to generate the SSA IR, combined with the compiler plugin provided by YaoCompiler, we
obtain the following SSA IR.

45

Listing 17 A glance of generated SSA IR for QFT. #<number> refers to the basic block
ID. %<number> refers to the SSA variable.
1 %1 = Base.getfield(var"#op#", :args)::Tuple{Int64}

%2 = Base.getfield(%1, 1, true)::Int64
%3 = Main.H::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %3, $(QuoteNode(Locations(1)))

)::Any
%5 = Base.sle_int(2, %2)::Bool
%6 = Base.ifelse(%5, %2, 1)::Int64
%7 = Base.slt_int(%6, 2)::Bool

goto "#3" if not %7
2 goto "#4"
3 goto "#4"
4 · · · %11 = ϕ ("#2" => true, "#3" => false)::Bool

%12 = ϕ ("#3" => 2)::Int64
%13 = ϕ ("#3" => 2)::Int64
%14 = Base.not_int(%11)::Bool

goto "#10" if not %14
5 · · · %16 = ϕ ("#4" => %12, "#9" => %31)::Int64

%17 = ϕ ("#4" => %13, "#9" => %32)::Int64
%18 = invoke Base.power_by_squaring(2::Int64, %16::Int64)::Int64
%19 = Base.sitofp(Float64, %18)::Float64
%20 = Base.div_float(6.283185307179586, %19)::Float64
%21 = Main.shift::Any

...

29 %113 = Base.string("got ", %107, " in parent space ", %43)::Any
%114 = YaoLocations.LocationError(%113)::Any

YaoLocations.throw(%114)::Union{}
unreachable

30 goto "#31"
31 · · · %118 = ϕ ("#28" => %111, "#30" => nothing)::Core.Const(nothing)

return %118
32 return nothing

46

This SSA IR of QFT as a generic definition of the QFT circuit allows the creation of
the QFT circuit on any number of qubits with classical controls representing the function
recursion, given a concrete number of qubits n. The compiler can propagate the constant
within the callee function, thus resulting in a pure quantum circuit.

Constant Propagation

Constant propagation further allows users to create abstractions and thus reuse the routines
created by others. The user can define a high-level routine with control flows from the host
language while running such a program on a quantum device that can only execute pure
quantum circuits. The following is an example of calling other routines, and the compiler
can automatically propagate the constant and generate the pure quantum circuit.

Listing 18 calling other routines with constant propagation
@device function test_basic(theta, phi)

syntax sugar
1 => X
@gate 2 => Z
@ctrl 1 4 => Rx(theta)
@ctrl 2 4 => Ry(phi)
a = @measure 3
direct intrinsic
apply(Y, 3)
apply(X, 1, 4)
c = measure(2)
return (a = a, b = c)

end

@device function test_pure_quantum()
ret = @gate 1:4 => test_basic(1.0, 2.0)
@ctrl 2 1 => Rx(2.2)
return ret

end

The compiler is able to generate the following SSA IR, which represents a pure quantum
circuit.

47

Listing 19 A pure quantum circuit generated from Listing 18
1 %1 = Main.X::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %1, $(QuoteNode(Locations(1)))

)::Any
%3 = Main.Z::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %3, $(QuoteNode(Locations(2)))

)::Any
%5 = Main.Rx::Any
%6 = (%5)(1.0)::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %6, $(QuoteNode(Locations(4))),
$(QuoteNode(CtrlLocations(1)))

)::Any
%8 = Main.Ry::Any
%9 = (%8)(2.0)::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %9,
$(QuoteNode(Locations(4))), $(QuoteNode(CtrlLocations(2)))

)::Any
%11 = invoke YaoCompiler.Intrinsics.measure(

var"#register#"::AnyReg,
$(QuoteNode(Locations(3)))::Locations{Int64}

)::MeasureResult{Int64}
%12 = Main.Y::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %12, $(QuoteNode(Locations(3)))

)::Any
%14 = Main.X::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %14,
$(QuoteNode(Locations(1))), $(QuoteNode(CtrlLocations(4)))

)::Any
%16 = invoke YaoCompiler.Intrinsics.measure(

var"#register#"::AnyReg,
$(QuoteNode(Locations(2)))::Locations{Int64}

)::MeasureResult{Int64}
%17 = %new(

NamedTuple{(:a, :b), Tuple{MeasureResult{Int64}, MeasureResult{Int64}}}, %11, %16
)::NamedTuple{(:a, :b), Tuple{MeasureResult{Int64}, MeasureResult{Int64}}}
%18 = Main.Rx::Any
%19 = (%18)(2.2)::Any

YaoCompiler.Intrinsics.apply(
var"#register#", %19,
$(QuoteNode(Locations(1))), $(QuoteNode(CtrlLocations(2)))
)::Any

return %17 48

The inlining and elimination of dead code used by the above compilation are powered
by the Julia compiler. Thus, we only provide the aggressive constant propagation strategy
and the corresponding semantics of quantum instructions as a compiler plugin.

Discussion

The SSA IR is a convenient format for analyzing data flows between variables. Thus
it allows optimization such as constant propagation. On the other hand, it simplifies
the data flow analysis such as variable dependency analysis. Such analysis is critical for
implementing automatic differentiation Section 3.2.

Supporting hybrid programs at high-level circuit/gate abstraction is not useful in prac-
tice due to the lack of hardware support on actually executing these classical instructions,
and the latency of today’s hardware does not require fast execution of classical program
with control flows (i.e., the Rydberg atom array has shot rate only at 3 shot per second
level [104]). On the other hand, algorithms require hybrid semantics such as error cor-
rection does not require general structured control flows but only requires a simple if
statement, which can be easily hardcoded as a special intrinsic in the compiler (i.e., the
record intrinsic in stim [111]). Moreover, even the quantum computing device is perfectly
co-located with a classical processor. The low-latency control flows are likely programmed
in lower-level semantics closer to the controller. Thus, the high-level quantum program is
not the right place to handle control flows.

However, the general principle of program analysis and transformation finds its use-
fulness in lower-level programs in the quantum computation stack. For example, in the
Rydberg atom array, the atom shuttling and control of the laser are naturally asynchronous
operations that require classical control flows and data flow analysis to optimize the pulse
program. Furthermore, real-time control requires optimization on the duration of instruc-
tion execution. Basic transformations, such as constant folding, variable dependency anal-
ysis, and dead code elimination, already provide value when compiling such programs. The
SSA IR thus becomes a perfect fit at this level.

49

Chapter 3

Transformation

With representations defined in previous sections, we can now delve into the transforma-
tion of and between these representations. Almost all the problems can be formalized into
transformations between the same or different representations. Transforming between the
same representations is often called optimization, while transforming between different rep-
resentations is often called code generation. Even simple transformations can be compelling
in improving the performance of simulation. In this section, we will introduce the trans-
formation for optimizing the exact simulation of quantum systems and the transformation
for automatic differentiation.

3.1 Fast Exact Simulation

The most straightforward application of transformation is to optimize an existing simula-
tion. We will first introduce the expression manipulation in Yao

3.1.1 Manipulating Quantum Circuits

In essence, QBIR represents the algebraic operations of a quantum circuit as types. Being
an algebraic data type system, QBIR automatically allows pattern matching with Julia’s
multiple dispatch mechanics. Thus, one can manipulate quantum circuits in a straightfor-
ward manner using pattern matching on their QBIR.

For example, consider a practical situation where one needs to decompose the Hadamard
gate into three rotation gates [112]. The codes in Listing 20 define compilation passes by

50

Listing 20 Gate decomposition for a QFT circuit
julia> decompose(x::HGate) =

Rz(0.5π)*Rx(0.5π)*Rz(0.5π);

julia> decompose(x::AbstractBlock) =
chsubblocks(x, decompose.(subblocks(x)));

julia> qft(3) |> decompose
nqubits: 3
chain

chain
put on (1)

chain
rot(ZGate, 1.5707963267948966)
rot(XGate, 1.5707963267948966)
rot(ZGate, 1.5707963267948966)

control(2)
(1,) shift(1.5707963267948966)

control(3)
(1,) shift(0.7853981633974483)

chain
put on (2)

chain
rot(ZGate, 1.5707963267948966)
rot(XGate, 1.5707963267948966)
rot(ZGate, 1.5707963267948966)

control(3)
(2,) shift(1.5707963267948966)

chain
put on (3)

chain
rot(ZGate, 1.5707963267948966)
rot(XGate, 1.5707963267948966)
rot(ZGate, 1.5707963267948966)

51

Listing 21 Inverse QFT
julia> iqft(n) = qft(n)';

julia> iqft(3)
nqubits: 3
chain

chain
put on (3)

H gate
chain

control(3)
(2,) shift(-1.5707963267948966)

put on (2)
H gate

chain
control(3)

(1,) shift(-0.7853981633974483)
control(2)

(1,) shift(-1.5707963267948966)
put on (1)

H gate

dispatching the decompose function on different quantum block types. For the generic
AbstractBlock, we apply decompose recursively to all its sub-blocks and use the function
chsubblocks defined in Yao to substitute the blocks. The recursion terminates on primitive
blocks where subblocks returns an empty set. Due to the specialization of decompose
method on Hadamard gates, a chain of three rotation gates are returned as a subblock
instead.

Besides replacing gates, one can also modify a block by applying tags to it. For example,
the Daggered tag takes the hermitian conjugate of the block. We use the ' operator to
apply the Daggered tag. Similar to the implementation of Transpose on matrices in
Julia, the dagger operator in Yao is "lazy" in the sense that one simply marks the block as
Daggered unless there are specific daggered rules defined for the block. For example, the
hermitian conjugate of a ChainBlock reverses the order of its child nodes and propagate
the Daggered tag to each subblock. Finally, we have the following rules for primitive
blocks,

52

• Hermitian gates are unchanged under dagger operation

• The hermitian conjugate of a rotational gate Rσ(θ)→ Rσ(−θ)

• Time evolution block e−iHt → e−iH(−t∗)

• Some special constant gates are hermitian conjugate to each other, e.g. T and Tdag.

With these rules, we can define the inverse QFT circuit directly in Listing 21.

3.1.2 Quantum Circuit Simulation

We will first introduce some basic routines for exact simulation of quantum circuits. Then
in the next subsection, we will use pattern match dispatching matched circuits to these
routines.

Brief Review of Operations in Quantum Circuits

To be simple, simulating quantum circuits, or to be more specific simulating how quantum
circuits act on a quantum register, is about how to calculate large matrix-vector multipli-
cation that scales exponentially. The most brute-force and accurate way of doing it via
full amplitude simulation, which means we do this matrix-vector multiplication directly.

The vector contains the so-called quantum state and the matrices are quantum gate,
which are usually small. The diagram of quantum circuits is a representation of these
matrix multiplications. For example, the X gate is just a small matrix

0 1

1 0

 (3.1)

In theory, there is no way to simulate a general quantum circuit (more precisely, a
universal gate set) efficiently. However, in practice, we could still do it within a rather
small scale with some tricks that make use of the structure of the gates. To understand
how to calculate a quantum circuit, we need to introduce two kinds of mathematical
operations

Tensor Product/Kronecker Product, this is represented as two parallel lines in
the quantum circuit diagram, e.g

53

Figure 3.1: Kronecker product of two X gates

and by definition, this can be calculated by

(
a11 a12
a21 a22

)
⊗
(
b11 b12
b21 b22

)
=

a11

(
b11 b12
b21 b22

)
a12

(
b11 b12
b21 b22

)

a21

(
b11 b12
b21 b22

)
a22

(
b11 b12
b21 b22

)
 (3.2)

Matrix Multiplication, this is the most basic linear algebra operation, we’ll skip
introducing this. In quantum circuit diagram, this is represented by blocks connected by
lines.

Figure 3.2: Kronecker product of two X gates

As a conclusion of this subsection, one can see simulating how pure quantum circuits act
on a given quantum state is about how to implement some special type of matrix-vector
multiplication efficiently. For readers familiar with Basic Linear Algebra Subprograms
(BLAS), this kind of operations are only BLAS level 2 operations, which does not require
any smart tiling technique and are mainly limited by memory bandwidth.

General Unitary Gate Subroutine

Thus the simplest way of simulating a quantum circuit is very straightforward: we can just
make use of Julia’s builtin functions: kron and *.

54

Listing 22 Simplest Quantum Circuit Simulation
using LinearAlgebra
function naive_broutine!(r::AbstractVector, U::AbstractMatrix, loc::Int)

n = Int(log2(length(r))) # get the number of qubits
return kron(I(1<<(n-loc+1)), U), I(1<<loc)

end

However, this is obviously very inefficient:

1. we need to allocate a 2n × 2n matrix every time we try to evaluate the gate.

2. the length of the vector can only be 2n, thus we should be able to calculate it faster
with this knowledge.

if we know an integer is 2n, it is straight forward to find out n by the following method:

Listing 23 log2i specialized for 64-bit integers
log2i(x::Int64) = if !signbit(x)

(63 - leading_zeros(x))
else

throw(ErrorException("nonnegative expected ($x)"))
end

log2i(x::UInt64) = 63 - leading_zeros(x)

this is because we already know how long our integer is in the program by looking at
its type, thus simply minus the number of leading zeros would give us the answer. But
don’t forget to raise an error when it’s an signed integer type. We can make this work on
any integer type by the following way

55

Listing 24 log2i for arbitrary integers
for N in [8, 16, 32, 64, 128]

T = Symbol(:Int, N)
UT = Symbol(:UInt, N)
@eval begin

log2i(x::$T) =
!signbit(x) ? ($(N - 1) - leading_zeros(x)) :
throw(ErrorException("nonnegative expected ($x)"))

log2i(x::$UT) = $(N - 1) - leading_zeros(x)
end

end

the command @eval here is called a macro in Julia programming language, it can be
used to generate code. The above code generates the implementation of log2i for signed
and unsigned integer types from 8 bits to 128 bits.

Let’s now consider how to write the general unitary gate acting on given locations of
qubits.

Listing 25 Signature of broutine!
function broutine!(

r::AbstractVector,
U::AbstractMatrix,
locs::NTuple{N, Int}

) where N
end

this matrix will act on certain qubits in the register, e.g., given an 8 × 8 matrix, we
want it to act on the 1st, 4th, and 5th qubits. Based on the implementation of X and
Z, we know this is about multiplying this matrix on the subspace of 1st, 4th, and 5th
qubit, which means we need to construct a set of new vectors whose indices iterate over
the subspace of 0xx00x, 0xx01x, 0xx10x, 0xx11x etc. Thus, we must first find a generic
way to iterate through the subspace of 0xx00x. Then, by adding an offset such as 1 « 1
to each index in this subspace, we can get the subspace of 0xx01x etc.

To iterate through the subspace, we could iterate through all indices in the subspace.

56

Listing 28 Left moving
(xxx & ~0b001) << 1 + (xxx & 0b001) # = xx00x

For each index, we move each bit to its position in the whole space (from the first bit to
the last). This will give us the first subspace, which is 0xx00x.

Before we move on, we need to introduce the concept of binary masks: it is an integer
that can help us "filter" out some binary values, e.g. we want to know if a given integer’s
4th and 5th bit, we can use a mask 0b11000, where its 4th and 5th bit is 1, the rest is 0,
then we can use an and operation get the value. Given the location of bits, we can create
a binary mask via the following bmask function

Listing 26 bmask function
function bmask(itr)

isempty(itr) && return 0
ret = 0
for b in itr

ret += 1 << (b - 1)
end
return ret

end

where itr is some iterable. However, there are quite a few cases which we don’t need
to create it via a for-loop, so we can specialize this function on the following types

Listing 27 bmask function specialized on UnitRange
function bmask(range::UnitRange{Int})

((1 << (range.stop - range.start + 1)) - 1) << (range.start - 1)
end

To move the bits in the subspace to the correct position, we need to iterate through
all the contiguous regions in the bitstring, e.g., for 0xx00x, we move the 2nd and 3rd bit
in subspace by 3 bits together. This can be achieved by using a bit mask 001 and the
following binary operation

57

We define this as a function called lmove. Now we need to generate all the masks by
counting contiguous regions of the given locations

Listing 29 group_shift function
function group_shift(locations)

masks = Int[]
region_lens = Int[]
k_prv = -1
for k in locations

if current position in the contiguous region
since these bits will be moved together with
the first one, we don't need to generate a
new mask
if k == k_prv + 1

region_lens[end] += 1
else

we generate a bit mask where the 1st to k-th bits are 1
push!(masks, bmask(0:k-1))
push!(region_lens, 1)

end
k_prv = k

end
return masks, region_lens

end

Now, to get the index in the whole space, we simply move each contiguous region by
the length of their region, where the initial value of ‘index‘ is the subspace index, and after
the loop, we will get the index in the whole space. To abstract the iteration further, we
will define an abstraction called an iterator BitSubspace as the following

58

Listing 30 BitSubspace iterator
struct BitSubspace

n::Int # total number of bits
n_subspace::Int # number of bits in the subspace
masks::Vector{Int} # masks
region_lens::Vector{Int} # length of each region

end

And we can construct it via

Listing 31 BitSubspace constructor
function BitSubspace(n::Int, locations)

masks, region_lens = group_shift(locations)
BitSubspace(1 << (n - length(locations)), length(masks), masks, region_lens)

end

The corresponding whole-space index of each index in the subspace can be calculated
by the following function

Listing 32 next function
@inline function Base.getindex(it::BitSubspace, i)

index = i - 1
for s in 1:it.n_subspace

@inbounds index = lmove(index, it.masks[s], it.region_lens[s])
end
return index

end

We can loop through the subspace by overloading a few more interfaces, as shown
below.

59

Listing 33 iterate function
Base.length(it::BitSubspace) = it.n
Base.eltype(::BitSubspace) = Int
@inline function Base.iterate(it::BitSubspace, st = 1)

if st > length(it)
return nothing

else
return it[st], st + 1

end
end

julia> for each in BitSubspace(5, [1, 3, 4])
println(string(each, base=2, pad=7))

end
00000
00010
10000
10010

The next step is to perform the matrix-vector multiplication in the subspace. This
requires generating the indices in the subspace. For example, for a unitary on the 1, 3, 4
qubits of a 5-qubit register, we need to multiply the matrix at 0xx0x, 0xx1x, 1xx0x and
1xx1x. Thus we can create the subspace of x00x0 by BitSubspace(5, [1, 3, 4]) and
subspace of 0xx0x by BitSubspace(5, [2, 5]), then add each index in x00x0 to 0xx0x,
which looks like

60

Listing 34 Matrix-vector multiplication in the subspace
subspace1 = BitSubspace(5, [1, 3, 4])
subspace2 = BitSubspace(5, [2, 5])

Julia uses 1-based index, we need to convert it
indices = collect(b + 1 for b in subspace2)

@inbounds for i in subspace1
add an offset i to all the indices of 0xx0x
this will give us 0xx0x, 0xx1x, 1xx0x, 1xx1x
idx = indices .+ i
state[idx] = U * state[idx] # matrix multiplication on the subspace

end

now we notice subspace2 is the complement subspace of subspace1 because the full
space if [1, 2, 3, 4, 5], so let’s redefine our BitSubspace constructor a bit, now instead
of define the constructor BitSubspace(n, locations) we define two functions to cre-
ate this object bsubspace(n, locations) and bcomspace(n, locations) which stands
for binary subspace and binary complement space, the function bsubspace will create
subspace1 and the function bcomspace(n, locations) will create subspace2. They
have some overlapping operations, so we move them to an internal function _group_shift
as shown in Listing 35.

Thus, we have the routine for general unitary gates as shown in Listing 36.

General Controlled Unitary Gates

We have introduced the routine for general unitary gates. A more specific type of general
routine is the controlled unitary gates, which have a more specific pattern than the general
unitary gates. This allows us to specialize the routine for better performance further.
Implementing the controlled unitary gates is similar to the general unitary gates except
that instead of iterating in the applied space, the subspace we will look at contains two
parts: the bits on control locations are 1s, and the bits on gate locations are 0s.

61

Listing 35 Refined group_shift function
@inline function group_shift(locations)

masks = Int[]
shift_len = Int[]
k_prv = -1
for k in locations

_group_shift(masks, shift_len, k, k_prv)
k_prv = k

end
return masks, shift_len

end

@inline function complement_group_shift(n::Int, locations)
masks = Int[]
shift_len = Int[]
k_prv = -1
for k in 1:n

k in locations && continue
_group_shift(masks, shift_len, k, k_prv)
k_prv = k

end
return masks, shift_len

end

@inline function _group_shift(
masks::Vector{Int},
shift_len::Vector{Int},
k::Int,
k_prv::Int

)
if current position in the contiguous region
since these bits will be moved together with
the first one, we don't need to generate a
new mask
if k == k_prv + 1

shift_len[end] += 1
else

we generate a bit mask where the 1st to k-th bits are 1
push!(masks, bmask(0:k-1))
push!(shift_len, 1)

end
end

62

Listing 36 General unitary gate routine
function broutine!(

st::AbstractVector,
U::AbstractMatrix,
locs::NTuple{N, Int}

) where N
n = log2i(size(st, 1))
subspace = bsubspace(n, locs)
comspace = bcomspace(n, locs)
indices = [idx + 1 for idx in comspace]
@inbounds @views for k in subspace

idx = indices .+ k
st[idx] = U * st[idx]

end
return st

end

Loop Unroll and Parallelization

The above routine is already very efficient, but we can still improve it by unrolling the
loop and parallelizing it because, in most simulations, the gate matrix is only a small
2 × 2 matrix. The loop unrolling can be implemented by a macro. However, for easier
understanding, we will show the plain code here.

As a result, the benchmark of the two routines is shown in Listing 38. We can see that
the unrolled routine is faster than the general routine.

63

Listing 37 Loop unrolling
function broutine2x2!(st::AbstractVector{T}, U::AbstractMatrix, locs::Tuple{Int}) where T

U11 = U[1, 1]; U12 = U[1, 2];
U21 = U[2, 1]; U22 = U[2, 2];
step_1 = 1 << (first(locs) - 1)
step_2 = 1 << first(locs)

@inbounds if step_1 == 1
for j in 0:step_2:size(st, 1)-step_1

ST1 = U11 * st[j + 1] + U12 * st[j + 1 + step_1]
ST2 = U21 * st[j + 1] + U22 * st[j + 1 + step_1]

st[j + 1] = ST1
st[j + 1 + step_1] = ST2

end
elseif step_1 == 2

for j in 0:step_2:size(st, 1)-step_1
Base.Cartesian.@nexprs 2 i->begin

ST1 = U11 * st[j + i] + U12 * st[j + i + step_1]
ST2 = U21 * st[j + i] + U22 * st[j + i + step_1]
st[j + i] = ST1
st[j + i + step_1] = ST2

end
end
elseif step_1 == 4
for j in 0:step_2:size(st, 1)-step_1

Base.Cartesian.@nexprs 4 i->begin
ST1 = U11 * st[j + i] + U12 * st[j + i + step_1]
ST2 = U21 * st[j + i] + U22 * st[j + i + step_1]
st[j + i] = ST1
st[j + i + step_1] = ST2

end
end

elseif step_1 == 8
for j in 0:step_2:size(st, 1)-step_1

Base.Cartesian.@nexprs 8 i->begin
ST1 = U11 * st[j + i] + U12 * st[j + i + step_1]
ST2 = U21 * st[j + i] + U22 * st[j + i + step_1]
st[j + i] = ST1
st[j + i + step_1] = ST2

end
end

else
for j in 0:step_2:size(st, 1)-step_1

for i in j:8:j+step_1-1
Base.Cartesian.@nexprs 8 k->begin

ST1 = U11 * st[i + k] + U12 * st[i + step_1 + k]
ST2 = U21 * st[i + k] + U22 * st[i + step_1 + k]
st[i + k] = ST1
st[i + step_1 + k] = ST2

end
end

end
end
return st

end

64

Listing 38 Benchmark of broutine! and broutine2x2!
julia> U = rand(ComplexF64, 2, 2);

julia> locs = (3,);

julia> st = rand(ComplexF64, 1<<15);

julia> @benchmark broutine!(r, $U, $locs) setup=(r=copy($st))
BenchmarkTools.Trial:

memory estimate: 512 bytes
allocs estimate: 8

minimum time: 67.639 µs (0.00% GC)
median time: 81.669 µs (0.00% GC)
mean time: 86.487 µs (0.00% GC)
maximum time: 125.038 µs (0.00% GC)

samples: 10000
evals/sample: 1

julia> @benchmark broutine2x2!(r, $U, $locs) setup=(r=copy($st))
BenchmarkTools.Trial:

memory estimate: 0 bytes
allocs estimate: 0

minimum time: 21.420 µs (0.00% GC)
median time: 21.670 µs (0.00% GC)
mean time: 21.818 µs (0.00% GC)
maximum time: 45.829 µs (0.00% GC)

samples: 10000
evals/sample: 1

65

Specializing Other Gates

One can further specialize on the matrix entries of the gates. For example, the X and Z
gates result in a more straightforward loop pattern and thus can be further specialized.
The X gate only requires swapping the two elements in the subspace, and the Z gate only
requires multiplying the elements in the subspace by -1. More generally, one can implement
the routine of applying a column of specific gates.

Specializing Batch of Circuits

For simulating mid-circuit measurements, sampling the measurement result in the middle
of circuit execution is often necessary. This requires simulating a batch of quantum circuits,
which can be optimized by specializing the routine on matrix-matrix multiplication in the
subspace.

Dispatch by Matching Patterns

The main technique behind the fast, exact simulation of quantum circuits in Yao is dis-
patching by matching circuit patterns. The idea is to encode the pattern of a circuit into
Julia’s type system. Thus, by utilizing the multiple dispatch mechanism, we can dispatch
the simulation of a circuit using a specialized method. This is a very powerful technique, as
it allows us to write the simulation of a circuit at a very high level and gradually improve
the overall performance by manually specializing every different pattern. A common pat-
tern in quantum circuits is repeatedly applying a single-qubit gate on all the qubits. This
pattern can be seen as a special bit subspace and only requires applying a single routine.
Thus, reduce the complexity of simulating n gates for n qubits to simulating a single gate
for n qubits. Other patterns include the QFT circuits, the time evolution circuits, and the
circuits with neighboring CNOTs.

Discussion

This subsection introduced the techniques behind implementing fast circuit simulation
routines. These routines can also be used in the context of tensor network contraction
because one can see the above matrix-vector multiplication as a contraction of a few legs
in a giant tensor (the state) with legs of a small tensor (the gate). Such operations happen
frequently in tensor network contraction, and thus, the routines can be helpful for fast
tensor network contraction, as demonstrated in a recent work [62].

66

Listing 39 Heisenberg Hamiltonian
julia> using KrylovKit: eigsolve

julia> bond(n, i) = sum([put(n, i=>σ) * put(
n, i+1=>σ) for σ in (X, Y, Z)]);

julia> heisenberg(n) = sum([bond(n, i)
for i in 1:n-1]);

julia> h = heisenberg(16);

julia> w, v = eigsolve(mat(h)
,1, :SR, ishermitian=true)

3.1.3 Generating Matrix

Quantum blocks have a matrix representation of different types for optimized performance.
By default, using their matrix representations, the apply! method applies quantum blocks
to quantum registers. The matrix representation is also useful for determining operator
properties such as hermicity, unitarity, reflexivity, and commutativity. Lastly, one can
also use Yao’s sparse matrix representation for quantum many-body computations such as
exact diagonalization and (real and imaginary) time evolution.

For example, one can construct the Heisenberg Hamiltonian and obtain its ground
state using the Krylov space solver [113] via the KrylovKit.jl [114] in Listing 39. The
arithmetic operations * and sum return ChainBlock and Add blocks, respectively. It is
worth noticing the differences between the QBIR arithmetic operations of the quantum
circuits and those of Hamiltonians. Since the Hamiltonians are generators of quantum
unitaries (i.e., U = e−iHt), it is natural to perform additions for Hamiltonians (and other
observables) and multiplications for unitaries. YaoExtensions provides some convenience
functions for creating Hamiltonians on various lattices and variational quantum circuits.

The mat function creates the sparse matrix representation of the Hamiltonian block.
To achieve an optimized performance, we extend Julia’s built-in sparse matrix types for
various quantum gates. In Table 3.3, we summarize the matrix types used for the basic
quantum gates.

67

Gate Matrix Type
I2 IMatrix
Z, T, S, Rz Diagonal
X, Y, CNOT, CZ, SWAP PermMatrix
P0, P1, Pu, Pd, PSwap SparseMatrixCSC
H, Rx, Ry Matrix

Table 3.1: Matrix types of gates in Yao.

The SparseMatrixCSC type is provided in Julia’s builtin SparseArrays. The identity
matrix IMatrix and general permutation matrix PermMatrix [115] are defined in
LuxurySparse.jl [116]. The PermMatrix allows having values other than one in the non-
zero entries. For example, the matrix of ISWAP gate is given by

Listing 40 ISWAP matrix
julia> PermMatrix([1,3,2,4], [1,1.0im,1.0im,1])
4×4 PermMatrix{Complex{Float64},Int64,Array{Complex{Float64},1},Array{Int64,1}}:
1.0+0.0im 0 0 0

0 0 0.0+1.0im 0
0 0.0+1.0im 0 0
0 0 0 1.0+0.0im

where the first argument represents the column indices and the second argument the
entries.

These types of specifications for quantum gates allow fast arithmetics. Table 3.2 lists the
type conversion under matrix multiplication, Kronecker product, and addition operations.

Besides these specialised sparse matrices, Yao.AD uses low rank matrix types for back-
propagation, c.f. Equation (3.10) in the main texts. For this we define the OuterProduct
matrix type for both memory and computation efficiency.

Time evolution under a quantum Hamiltonian invokes the Krylov space method [117],
which repeatedly applies the Hamiltonian block to the register. In this case, one can use the
cache tag to create a CachedBlock for the Hamiltonian. Then, the apply! method makes

68

I D P S M
I I/I/D/I D/D/D/D P/P/S/D S/S/S/D M/S/M/D
D D/D/D/D D/D/D/D P/P/S/D S/S/S/D M/S/M/D
P P/P/S/D P/P/S/D P/P/S/P S/S/S/P M/S/M/P
S S/S/S/D S/S/S/D S/S/S/P S/S/S/S M/S/M/S
M M/S/M/D M/S/M/D M/S/M/P M/S/M/S M/S/M/M

Table 3.2: Matrix types conversion under matrix multiplication (*)/kronecker product
(kron)/addition (+)/hadamard product (.*). Here I, D, P, S, M stands for IMatrix,
Diagonal, PermMatrix, SpasreMatrixCSC and Matrix respectively.

use of the sparse matrix representation cached in the memory. Continuing from Listing 39,
the following codes in c41 show that constructing and caching the matrix representation
boosts the performance of time-evolution.

On the other hand, in many cases Yao can make use of efficient specifications of the
apply! method for various blocks and apply them on the fly without generating the
matrix representation. The codes in Listing 42 show that this approach can be faster for
simulating quantum circuits.

3.1.4 Simulating Rydberg Dynamics

Rydberg Blockade is one of the most important properties of neutral-atom quantum com-
puting based on Rydberg states. It naturally encodes the independent set constraint. More
specifically, Rydberg blockade implies that two atoms cannot be both excited to the Ry-
dberg state |r⟩ if they are close to each other, whereas independent set constraint means
two vertices cannot be both in the independent set when they are connected by an edge.
Thus, one can consider atoms in the Rydberg state as vertices in an independent set. See
the proposal in [106] for more details.

In particular, one can use the ground state of the Rydberg Hamiltonian to encode
the maximum independent set problem, which is to find the largest independent set of a
given graph. For a particular subclass of geometric graphs, the so-called unit disk graphs,
the Rydberg Hamiltonian can encode the solution without any overhead in the number of
qubits. In fact, an experimental demonstration of quantum optimization has been realized

69

Listing 41 Hamiltonian evolution is faster with cache
julia> using BenchmarkTools

julia> te = time_evolve(h, 0.1);

julia> te_cache = time_evolve(cache(h), 0.1);

julia> @btime $(rand_state(16)) |> $te;
1.042 s (10415 allocations: 1.32 GiB)

julia> @btime $(rand_state(16)) |> $te_cache;
71.908 ms (10445 allocations: 61.48 MiB)

Listing 42 Circuit simulation is faster without cache
julia> r = rand_state(10);

julia> @btime r |> $(qft(10));
550.466 µs (3269 allocations: 184.58 KiB)

julia> @btime r |> $(cache(qft(10)));
1.688 ms (234 allocations: 30.02 KiB)

70

in solving the maximum independent set problem up to 289 qubits in [118].
The simulation is implemented in the open-source package Bloqade [102]. Bloqade

provides an extension of the operator expressions in QBIR in Yao. Taking from the symbolic
expression of the Rydberg Hamiltonian and pulse sequence, Bloqade then compiles the
expression into the sum of linear operators utilizing Yao’s specialized routines and matrices
as well as CUDA [61] acceleration.

In Bloqade, we can also take advantage of this effect by allowing users to run emulation
in a truncated subspace, i.e., by throwing out states that violate the blockade constraint.
This can help accelerate the simulation and enable simulation for a larger system size. In
this section, we will show how to create a blockade subspace, create registers in the sub-
space, obtain the Hamiltonian matrix in the subspace, and run emulation in the subspace.
This enables a 51-atom simulation of the random-graph Rydberg atom array with the help
of GPU.

3.2 Automatic Differentiation

AD is a method to evaluate the derivatives of a given program. One may hear this in
the context of deep learning as back-propagation. However, the situation can be more
complicated in a general scientific context. Thus, it’d be necessary to understand the
mechanism of automatic differentiation better.

The history of automatic differentiation can be traced back to the 1960s when computer
science was still in its infancy. The method has been re-discovered many times in different
fields and has been used in many different contexts. The development of automatic differ-
entiation leads to an entirely new philosophy of programming, which is called differentiable
programming. In this section, we will briefly introduce the automatic differentiation of for-
ward mode and reverse mode. Then, we will introduce automatic differentiation in the
context of quantum circuits and simulating quantum many-body systems.

71

Age of heores
(1960s)

Theano (2007)
The adjoint method

(2007)

Evaluating Derivatives
Book (2008)

Tapenade (2013)

TensorFlow (2015)

PyTorch (2016)

Forward/
ReverseDiff (2016)

Zygote (2018)
Neural ODE (2018)
TorchDiffEq (2018)

JAX (2018)

Enzyme (2020)
DiffEqFlux (2020)

Dominant Eigensolver
(Hao Xie et al, 2020)

Diffrax (2022)

Figure 3.3: A brief history of automatic differentiation and its development in quantum
many-body physics. Theano (2007) [3], Evaluating Derivatives Book (2008) [4], Tapenade
(2013) [5, 6], TensorFlow (2015) [7], ForwardDiff/ReverseDiff [8], PyTorch (2016) [9], JAX
(2018) [10], Zygote (2018) [11], differentiating dominant eigensolver (2020) [12], Enzyme
(2020) [13], Diffrax (2022) [14]. Due to space limitations, many other libraries and algo-
rithmic developments around 2015 and after are not included. The selected works represent
the development of automatic differentiation relevant to the topic discussed in this thesis.

3.2.1 Forward Mode

The forward mode AD is usually implemented using dual numbers. A dual number is a
pair of real numbers (x, x′), where x is the value of the function and x′ is the value of the
derivative. The dual number is defined as x+x′ε, where ε2 = 0. The arithmetic operations
of dual numbers are defined as follows:

(a+ bε) + (c+ dε) = (a+ c) + (b+ d)ε,
(a+ bε)− (c+ dε) = (a− c) + (b− d)ε,
(a+ bε) · (c+ dε) = ac+ (ad+ bc)ε,

a+ bε

c+ dε
= a

c
+ bc− ad

c2 ε.

(3.3)

Thus one can implement the dual number as a Julia struct as follows:
Any function written as a composition of arithmetic operations can be automatically

differentiated using the dual number. Similarly, one can overload other operations, such
as sin, cos, exp, log, etc., to support the differentiation of these functions.

The forward mode AD is the simplest way of implementing an AD system. The above
dual number is one way to implement forward mode AD with a generic type system. More

72

Listing 43 Dual number data structure in Julia
struct Dual{T<:Real} <: Real

a::T
b::T

end

Dual(a) = Dual(a, one(a))
Base.show(io::IO, x::Dual) = print(io, x.a, "+", x.b, "ϵ")
Base.:(*)(x::Dual, y::Dual) = Dual(x.a * y.a, x.a * y.b + x.b * y.a)
Base.:(+)(x::Dual, y::Dual) = Dual(x.a + y.a, x.b + y.b)

Listing 44 A simple real value function
function f(x)

x1 = sin(x)
x2 = sin(x1)
x3 = cos(x2) + x2

end

formally, we say forward mode AD is to apply the chain rule on primal derivatives when we
evaluate the value of an expression, e.g., if we are going to evaluate the function f defined
in Section 3.2.1, that is mathematically defined as f(x) = cos(sin(sin(x))) + sin(x), we can
evaluate the function on dual number algebra to obtain its derivative.

When we put in a dual number, we actually perform the following calculations:

1. evaluate sin(x) and its derivative, store them in ‘x1‘.

2. evaluate sin(x1) and its derivative, multiply the derivative of ‘sin(x1)‘ to previous
derivative since we have P ′(x)bϵ term in the dual number.

3. evaluate the derivative of cos(x2) and do the same thing as above, but let’s call the
intermediate value of cos(x2) to be y.

4. evaluate the value of y+x2 and derivative then multiply and store them in x3

Thus, every time we evaluate the derivative, we can throw away the variables we calcu-
lated before, but for every single scalar number, we need to calculate the entire function.

73

As a result, this gives us the time complexity O(mn) where n is the number of parameters
and m is the complexity of the original code. The memory complexity is O(m+ n), where
m is the memory complexity of the original code.

We further formalize the above process in terms of the chain rule. The forward mode
means we evaluate the derivatives in the following accumulation:

∂yn

∂x
= ∂yn

∂yn−1

∂yn−1

∂x

= ∂yn

∂yn−1
(∂yn−1

∂yn−2

∂yn−2

∂x
)

= · · ·

= ∂yn

∂yn−1
(∂yn−1

∂yn−2
· · · (∂y2

∂y1

∂y1

∂x
))

(3.4)

We can further generalize this to multi-variable cases using Jacobians

∂y⃗n

∂x
= ∂y⃗n

∂y⃗n−1

∂y⃗n−1

∂x

= ∂y⃗n

∂y⃗n−1
(∂y⃗n−1

∂y⃗n−2

∂y⃗n−2

∂x
)

= · · ·

= ∂y⃗n

∂y⃗n−1
(∂y⃗n−1

∂y⃗n−2
· · · (∂y⃗2

∂y⃗1

∂y⃗1

∂x
))

(3.5)

now we see to calculate the derivative of ∂y⃗n

∂x
it is actually about calculatnig a chain of

Jacobian-vector product.

3.2.2 Reverse Mode

For a large number of parameters, the reverse mode is more efficient. This method has
been rediscovered many times in history in different fields. One may hear it called back-
propagation in the context of deep learning. The reverse mode AD can be implemented
via operator overloading as well, which has been the main approach of many well-known
software packages such as autograd, AutoDiff.

Similar to forward mode AD, the reverse mode AD is actually about calculating the
chain rule in the following accumulation:

74

∂y⃗n

∂x
= (∂y⃗n

∂y⃗n−1
)∂y⃗n−1

∂x

= ((∂y⃗n

∂y⃗n−1
)∂y⃗n−1

∂y⃗n−2
)∂y⃗n−2

∂x

= · · ·

= (· · · ((∂y⃗n

∂y⃗n−1
)∂y⃗n−1

∂y⃗n−2
· · · ∂y⃗2

∂y⃗1
)∂y⃗1

∂x

(∂y⃗n

∂x
)T = (∂y⃗1

∂x
)T (∂y⃗2

∂y⃗1
)T · · · (∂y⃗n−1

∂y⃗n−2
)T (∂y⃗n

∂y⃗n−1
)T

(3.6)

Thus, the reverse mode automatic differentiation is about Jacobian-transpose-vector
product. An intermediate advantage of this accumulation is that if x is a vector, we can
directly calculate the derivative of this vector by a chain of matrix multiplication.

This process will be easier to understand if we use a graphical language to describe
it. This is the computational graph. To demonstrate this better, we will use a more
complicated function

y = xT Ax + b · x + c (3.7)

We will need to call several functions in Julia to get the result y, which is

1. z1 = xT : transpose function.

2. z2 = z1A matrix-vector multiplication, which can be gemv in LinearAlgebra.BLAS,
or just *.

3. y1 = z2x vector dot operation, which is LinearAlgebra.dot

4. y2 = b · x another vector dot

5. y1 + y2 + c a scalar add function, one can calculate it by simply calling + operator in
Julia.

In fact, we can draw a graph of this expression, which illustrates the relationship be-
tween each variable in this expression. Each node in the graph with an output arrow
represents a variable and each node with an input arrow represents a function or an oper-
ator.

75

(a)

𝑥 𝑏 𝑐

𝐴𝑧1 = 𝑥𝑇

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(b)

𝑥 𝑏 𝑐

𝐴𝑧1 = 𝑥𝑇

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(c)

𝑥 𝑏 𝑐

𝐴𝑧1 = 𝑥𝑇

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(d)

𝑥 𝑏 𝑐

𝐴𝑧1 = 𝑥𝑇

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

Figure 3.4: The forward process on computational graph of the expression y = xT Ax + b ·
x + c

The evaluation of the math equation in Figure 3.4 can then be expressed as a process
called forward evaluation. It starts from the leaf nodes, which represent the inputs of the
whole expression, e.g., they are x,A,b, c in our expression. Each time we receive the value
of a node in the graph, we mark the node with green. The derivative calculation can be
then visualized as follows

76

(a)

𝑥 𝑏 𝑐

𝐴

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(b)

𝑥 𝑏 𝑐

𝐴

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(c)

𝑥 𝑏 𝑐

𝐴

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

(d)

𝑥 𝑏 𝑐

𝐴

𝑧2 = 𝑧1𝐴

𝑦1 = 𝑧2𝑥

𝑦1 = 𝑧2𝑥

𝑦1 + 𝑦2 + 𝑐

𝑦2 = 𝑏 · 𝑥

Figure 3.5: The backward process on computational graph of the expression y = xT Ax +
b · x + c

In Figure 3.5, we demonstrate the backward propagation of the derivatives. Unlike
the forward mode, the intermediate results are not kept. The reverse mode must store
the intermediate values in its forward propagation, which is necessary to calculate the
derivatives in backward propagation. The benefit is that the reverse mode can calculate all
the derivatives of the vector without running the forward propagation for every parameter.
Thus, we need a specific data structure to store these values. This data structure is often
called the computational graph, tape, or Wengert list [110]. The problem of implementing
reverse mode AD becomes how to create the tape. Because we need to store the values at

77

each calculation step, this is precisely a special case of the SSA IR in Section 2.5.
We can do reverse mode ‘automatic’ differentiation ‘manually’ first to get a feel for it.

We will use the package ChainRules here, which contains a function rrule that defines
the differentiation rules for the primitive function we need to use, such as the sin function.

Listing 45 Reverse mode ADfor a single function
x = 3.0
y, sin_pullback = rrule(sin, x)
julia> y, sin_pullback = rrule(sin, x)
(0.1411200080598672, ChainRules.var"#sin_pullback#1289"{Float64}(-0.9899924966004454))

julia> sin_pullback(1)
(ChainRulesCore.NoTangent(), -0.9899924966004454)

We can manually generate the pullback function for a given function defined on some
primal functions. In AD, we usually call these functions adjoints.

Let’s use the previous example ‘foo‘ here

function adjoint_foo(x)
x1, x1_pullback = rrule(sin, x)
x2, x2_pullback = rrule(sin, x1)
y, y_pullback = rrule(cos, x2)
x3, x3_pullback = rrule(+, y, x2)

return x3, function pullback(∆)
_, partial_y, partial_x2_1 = x3_pullback(∆)
_, partial_x2_2 = y_pullback(partial_y)
_, partial_x1 = x2_pullback(partial_x2_1 + partial_x2_2)
_, partial_x = x1_pullback(partial_x1)
return Zero(), partial_x

end
end

Thus the simplest reverse mode ADis about how to create this tiny pullback function
automatically, and to know how to create this pullback function, we need to know what
primal functions are called by the given function, so that we can simply reverse the order
of calls and replace them with the pullback functions. The easiest way of creating a tape

78

is using operator overloading. Operator overloading means the same way we implemented
our toy symbolic program in the previous section. For example, we can define our own
type to dispatch the functions to a track function so that we can store the function call
into a tape.

Listing 46 A simple ADengine in Julia
mutable struct Variable{T} <: ADExpr

value::T
grad::T

Variable(val::T) where T = new{T}(val)
Variable(val::T, grad::T) where T = new{T}(val)

end

struct Node{FT <: Function, ArgsT <: Tuple, KwargsT <: NamedTuple} <: ADExpr
f::FT
args::ArgsT
kwargs::KwargsT

end

then overload some primal functions to track the call into tape

Listing 47 Overloading sin function
Base.sin(x::ADExpr) = register(Base.sin, x)

We will not proceed to implement the full ADengine here. Going forward, One should
expect implementing such an ADengine to be quite simple. However, the real challenge
is to make it efficient and to make it work with a wide range of programs. This is why
research interests have been put into source-to-source AD, which synthesizes the above
pullback function via a transformation between the same representations.

3.2.3 Making Use of Reversibility

Automatic differentiation efficiently computes the gradient of a program. It is the engine
behind the success of deep learning [119]. The technique is particularly relevant to differ-
entiable programming of quantum circuits. In general, there are several modes of AD. The

79

reverse mode caches the intermediate state and evaluates all gradients in a single backward
run. The forward mode computes the gradients in a single pass together with the objective
function, which does not require caching the intermediate state but has to evaluate the
gradients of all parameters one by one.

Yao’s builtin reverse mode AD engine (Section 3.2.2) provides more efficient circuit
differentiation for variational quantum algorithms compared to conventional reverse mode
differentiation and forward mode differentiation (Section 3.2.1). By taking advantage of
the reversible nature of quantum circuits, the memory complexity is reduced to constant
compared to typical reverse mode AD [119]. This property allows one to simulate very deep
variational quantum circuits. Besides, Yao supports the forward mode AD (Section 3.2.4),
which is a faithful quantum simulation of the experimental situation. In the classical sim-
ulation, the complexity of forward mode is unfavorable compared to reverse mode because
one needs to run the circuit repeatedly for each component of the gradient.

The submodule Yao.AD is a built-in AD engine. It back-propagates through quantum
circuits using the computational graph information recorded in the QBIR.

In general, reverse mode AD needs to cache intermediate states in the forward pass for
the backpropagation. Therefore, the memory consumption for backpropagating through a
quantum simulator becomes unacceptable as the depth of the quantum circuit increases.
Hence simply delegating AD to existing machine learning packages [7, 9, 80–83] is not a
satisfiable solution. Yao’s customized AD engine exploits the inherent reversibility of quan-
tum circuits [4, 120]. By uncomputing the intermediate state in the backward pass, Yao.AD
mostly performs in-place operations without allocations. Yao.AD’s superior performance is
in line with the recent efforts of implementing efficient backpropagation through reversible
neural networks [120, 121].

In the forward pass, we update the wave function |ψk⟩ with in-place operations

. . .

|ψk+1⟩ = Uk|ψk⟩,
. . .

(3.8)

where Uk is a unitary gate parametrized by θk. We define the adjoint of a variable as
x = ∂L

∂x∗ according to Wirtingers derivative [122] for complex numbers, where L is a real-
valued objective function that depends on the final state. Starting from L = 1 we can
obtain the adjoint of the output state.

To pull back the adjoints through the computational graph, we perform the backward

80

calculation [123]

. . .

|ψk⟩ = U †
k |ψk+1⟩

|ψk⟩ = U †
k |ψk+1⟩

. . .

(3.9)

The two equations above are implemented Yao.AD with the apply_back! method. Based
on the obtained information, we can compute the adjoint of the gate matrix using [123]

Uk = |ψk+1⟩⟨ψk|. (3.10)

This outer product is not explicitly stored as a dense matrix. Instead, it is handled
efficiently by customized low rank matrices described in Section 3.1.3. Finally, we use
mat_back! method to compute the adjoint of gate parameters θk from the adjoint of the
unitary matrix Uk.

Figure 3.6 demonstrates the procedure in a concrete example. The black arrows show
the forward pass without any allocation except for the output state and the objective
function L. In the backward pass, we uncompute the states (blue arrows) and backprop-
agate the adjoints (red arrows) at the same time. For the block defined as put(nbit,
i=>chain(Rz(α), Rx(β), Rx(γ))), we obtain the desired α, β and γ by pushing the ad-
joints back through the mat functions of PutBlock and ChainBlock. The implementation
of the AD engine is generic so that it works automatically with symbolic computation. One
can also integrate Yao.AD with classical automatic differentiation engines such as Zygote
to handle mixed classical and quantum computational graphs, see [100].

To demonstrate the efficiency of Yao’s AD engine, we use the codes in Listing 48 to
simulate the variational quantum eigensolver (VQE) [37] with depth 10, 000 (with 300, 010
variational parameters) on a laptop. The simulation would be extremely challenging with-
out Yao, either due to overwhelming memory consumption in the reverse mode AD or
unfavorable computation cost in the forward mode AD

Here, variational_circuit is predefined in YaoExtensions to have a hardware ef-
ficient architecture [72] shown in Figure 3.8. The dispatch! function with the second
parameter specified to :random gives random initial parameters. The expect function
evaluates expectation values of the observables; the second argument can be a wave func-
tion or a pair of the input wave function and circuit ansatz like above. expect' evaluates
the gradient of this observable for the input wave function and circuit parameters. Here,

81

1 U1 U2 U3 U4 5

1

1

U1 U2 U3 U4

5

put(nbit, i=>...)

chain(...)

Rz() Rx() Rz()

Figure 3.6: Builtin automatic differentiation engine Yao.AD. Black arrows represent the
forward pass. The blue arrow represents uncomputing. The red arrows indicate the back-
propagation of the adjoints.

82

Listing 48 10000-layer VQE
using Yao, YaoExtensions
n = 10; depth = 10000;
circuit = dispatch!(variational_circuit(n, depth),:random)

julia> gatecount(circuit)
Dict{Type{var"#s54"} where var"#s54" <: AbstractBlock,Int64} with 3 entries:

RotationGate{1,Float64,ZGate} => 200000
RotationGate{1,Float64,XGate} => 100010
ControlBlock{10,XGate,1,1} => 100000

julia> nparameters(circuit)
300010

h = heisenberg(n);

for i = 1:100
_, grad = expect'(h, zero_state(n)=>circuit)
dispatch!(-, circuit, 1e-3 * grad)
println("Step $i, energy = $(expect(h, zero_state(10)=>circuit))")

end

83

we only make use of its second return value. For batched registers, the gradients of circuit
parameters are accumulated rather than returning a batch of gradients. dispatch!(-,
circuit, ...) implements the gradient descent algorithm with energy as the loss func-
tion. The first argument is a binary operator that computes a new parameter based on
the old parameter in c and the third argument, the gradients. Parameters in a circuit can
be extracted by calling parameters(circuit), which collects parameters into a vector
by visiting the QBIR in depth-first order. The same parameter visiting order is used in
dispatch!. In case one would like to share parameters in the variational circuit, one can
simply use the same block instance in the QBIR. In the training process, gradients can be
updated in the same field. After the training, the circuit is fully optimized and returns the
ground state of the model Hamiltonian with zero state as input.

3.2.4 Forward Mode: Faithful Quantum Gradients

Compared to the reverse mode, forward mode AD is more closely related to how one
measures the gradient in the actual experiment.

The implementation of the forward mode AD is particularly simple for the “rotation
gates” RΣ(θ) ≡ e−iΣθ/2 with the generator Σ being both hermitian and reflexive (Σ2 = 1).
For example, Σ can be the Pauli gates X, Y and Z, or multi-qubit gates such as CNOT,
CZ, and SWAP. Every two-qubit gate can be decomposed into Pauli rotations and CNOTs
(or CZs) via gate transformation [124]. Under these conditions, the gradient to a circuit
parameter is [68, 125–127]

∂⟨O⟩θ
∂θ

= 1
2
(
⟨O⟩θ+ π

2
− ⟨O⟩θ− π

2

)
(3.11)

where ⟨O⟩θ denotes the expectation of the observable O with the given parameter θ. There-
fore, one just needs to run the simulator twice to estimate the gradient. YaoExtensions
implements Equation (3.11) with Julia’s broadcasting semantics and obtains the full gra-
dients with respect to all parameters. Similar features can be found in PennyLane [90] and
qulacs [89]. We refer this approach as the faithful gradient, since it mirrors the experi-
mental procedure on a real quantum device. In this way, one can estimate the gradients
in the VQE example Listing 48 using Equation (3.11)

this will be slow
julia> grad = faithful_grad(h, zero_state(n)=>circuit; nshots=100);

84

Listing 49 The eigendecomposition of a QBIR.
julia> O = chain(5, put(5,2=>X), put(5,3=>Y))
nqubits: 5
chain

put on (2)
X

put on (3)
Y

julia> E, U = YaoBlocks.eigenbasis(O)
(nqubits: 5
chain

put on (2)
Z

put on (3)
Z

, nqubits: 5
chain

put on (2)
H

put on (3)
chain

H
S

)

where one faithfully simulates nshots projective measurements. In the default setting
nshots=nothing, the function evaluates the exact expectation on the quantum state. Note
that simulating projective measurement, in general, involves rotating to eigenbasis of the
observed operator. Yao implements an efficient way to break the measurement into the
expectation of local terms by diagonalizing the observed operator symbolically as bellow.

The return value of eigenbasis contains two QBIRs E and U such that O = U*E*U'.
E is a diagonal operator that represents the observable in the measurement basis. U is a
circuit that rotates computational basis to the measurement basis.

The above gradient estimator Equation (3.11) can also be generalized to statistic func-
tional loss, which is useful for generative modeling with an implicit probability distribution

85

Listing 50 Gradient of the maximum mean discrepancy
julia> target_p = normalize!(rand(1<<5));

julia> kf = brbf_kernel(2.0);

julia> circuit = variational_circuit(5);

julia> mmd = MMD(kf, target_p);

julia> g_reg, g_params = expect'(
mmd, zero_state(5)=>circuit);

julia> g_params = faithful_grad(
mmd, zero_state(5)=>circuit);

given by the quantum circuits [70]. The symmetric statistic functional of order two reads
Fθ = ⟨K(x, y)⟩x ∼ pθ, y ∼ pθ, (3.12)

where K is a symmetric function, pθ is the output probability distribution of a parametrized
quantum circuit measured on the computational basis. If the circuit is parametrized by
rotation gates, the gradient of the statistic functional is

∂Fθ

∂θ
= ⟨K(x, y)⟩x ∼ pθ+ π

2
, y ∼ pθ

−⟨K(x, y)⟩x ∼ pθ− π
2
, y ∼ pθ, (3.13)

which is also related to the measure valued gradient estimator for stochastic optimiza-
tion [128]. Within this formalism, Yao provides the following interfaces to evaluate gradi-
ents with respect to the maximum mean discrepancy loss [129, 130], which measures the
probabilistic distance between two sets of samples.

3.3 Benchmark

3.3.1 Benchmark: Exact Circuit Simulation

As introduced above, Yao features a generic and extensible implementation without sacrific-
ing performance. Our performance optimization strategy heavily relies on Julia’s multiple

86

dispatch. As a bottom line, Yao implements a general multi-control multi-qubit arbitrary-
location gate instruction as the fallback. We then fine-tune various specifications for better
performance. Therefore, in many applications, the construction and operation of QBIR do
not even invoke matrix allocation. While in cases where the gate matrix is small (num-
ber of qubits smaller than 4), Yao automatically employs the corresponding static sized
types [131] for better performance. The sparse matrices IMatrix, Diagonal, PermMatrix
and SparseMatrixCSC introduced in Section 3.1.3 also have their static version defined in
LuxurySparse.jl [116]. Besides, we also utilize unique structures of frequently used gates
and dispatch to specialized implementations. For example, Pauli X gate can be executed
by swapping the elements in the register directly.

We benchmark Yao’s performance with other quantum computing software. Note
that the exact classical simulation of the generic quantum circuit is doomed to be ex-
ponential [132–135]. Yao’s design puts a strong emphasis on the performance of small to
intermediate-sized quantum circuits since the high-performance simulation of such circuits
is crucial for the design of near-term algorithms that run repeatedly or in parallel.

Benchmark Setup

Package Language Version
Cirq [88] Python 0.8.0
qiskit [91] C++/Python 0.19.2
qulacs [89] C++/Python 0.1.9
PennyLane [90] Python 0.7.0
QuEST [92] C/Python 3.0.0
ProjectQ [86] C++/Python 0.4.2
Yao Julia 0.6.2
CuYao Julia 0.2.2

Table 3.3: Packages in the benchmark.

Although QuEST is a package originally written in C, we benchmark it in Python via
pyquest-cffi [136] for convenience. Pennylane is benchmarked with its default back-
end [137]. Since the package was designed primarily for being run on the quantum hard-
ware, its benchmarks contain a certain overhead that was not present in other frame-

87

works [138]. qiskit is benchmarked with qiskit-aer 0.5.1 [139] and qiskit-terra
0.14.1 [140] using the statevector method of the qasm simulator.

Software Version
Python 3.8.3
Numpy 1.18.1
MKL 2019.3
Julia 1.5.2

Table 3.4: The environment setup of the machine for benchmark.

Our test machine contains an Intel(R) Xeon(R) Gold 6230 CPU with a Tesla V100
GPU accelerator. SIMD is enabled with AVX2 instruction set. The benchmark time is
measured via pytest-benchmark [141] and BenchmarkTools [142] with minimum running
time. We ignore the compilation time in Julia since one can always get rid of such time
by compiling the program ahead of time. The benchmark scripts and complete reports
are maintained online at the repository [143]. For more detailed and latest benchmark
configuration one should always refer to this repository.

Single Gate Performance

We benchmark several frequently used quantum gates, including the Pauli-X Gate, the
Hadamard gate (H), the controlled-NOT gate (CNOT), and the Toffoli Gate. These bench-
marks measure the performance of executing one single gate instruction.

88

5 10 15 20 25
nqubits

102

103

104

105

106

107

108

109

ns

X gate

5 10 15 20 25
nqubits

102

103

104

105

106

107

108

109

ns

H gate

5 10 15 20 25
nqubits

102

103

104

105

106

107

108

109

ns

CNOT gate

5 10 15 20 25
nqubits

102

103

104

105

106

107

108

109
ns

T gate

Yao
qiskit

cirq
projectq

pennylane
pyquest-cffi

qulacs

Figure 3.7: Benchmarks of (a) Pauli-X gate; (b) Hadamard gate; (c) CNOT gate; (d)
Toffolli gate.

Figure 3.7 shows the running times of various gates applied on the second qubit of
the register from size 4 to 25 qubits in each package in the unit of nano seconds. One
can see that Yao, ProjectQ, and qulacs reach similar performance when the number of
qubits n > 20. They are at least several times faster than other packages. Having similar
performance in these three packages suggests that they all reached the top performance
for this type of full amplitude classical simulation on CPU.

89

Parametrized Quantum Circuit Performance

(b)

(a)

(c)

Figure 3.8: (a) A parameterized quantum circuit with single qubit rotation and CNOT
gates; (b) Benchmarks of the parameterized circuit; (c) Benchmarks of the parametrized
circuit, the batched version. Line “yao" represents the batched registers, “yao (cuda)"
represents the batched register on GPU, “yao × 1000" is running on a non-batched register
repeatedly for 1000 times.

Next, we benchmark the parameterized circuit of depth d = 10 shown in Figure 3.8(a).
This type of hardware-efficient circuits was employed in the VQE experiment [72]. These
benchmarks further test the performance of circuit abstraction in practical applications.

The results in Figure 3.8(b) shows that Yao reaches the best performance for more than
10 qubits on CPU. qulacs’s well tuned C++ simulator is faster than Yao for fewer qubits.
On a CUDA device, Yao and qulacs show similar performance. qiskit cuda backend

90

shows better performance for more that 20 qubits. These benchmarks also, show that
CUDA parallelization starts to be beneficial for a qubit number larger than 16. Overall,
Yao is one of the fastest quantum circuit simulators for this type of application.

Lastly, we benchmark the performance of batched quantum register introduced in Sec
2.2 in Figure 3.8(c) with a batch size 1000. We only measure Yao’s performance due
to the lack of native support of SPMD in other quantum simulation frameworks. Yao’s
CUDA backend (labeled as yao (cuda)) offers large speed up (>10x) compared to the
CPU backend (labeled as yao). For reference, we also plot the timing of a bare loop over
the batch dimension on a CPU (labeled as yao × 1000). One can see that batching offers
substantial speedup for small circuits.

The overhead of simulating small to intermediate-sized circuits is particularly relevant
for designing variational quantum algorithms where the same circuit may be executed
million times during training. Yao shows the least overhead in these benchmarks. qulacs
also did an excellent job of suppressing these overheads.

Matrix Representation and Automatic Differentiation Performance

As discussed in Section 3.1.3 and Section 3.2.3, Yao features highly optimized matrix rep-
resentation and reverse mode automatic differentiation for the QBIR. We did not attempt
a systematic benchmark due to the lack of similar features in other quantum software
frameworks.

Here, we simply show the timings of constructing the sparse matrix representation
of 20 site Heisenberg Hamiltonian and differentiating its energy expectation through a
variational quantum circuit of depth 20 (200 parameters) on a laptop. The forward mode
AD discussed in Section 3.2.4 is slower by order of a hundred in such simulations.

91

Listing 51 Benchmark mat and AD performance
julia> using BenchmarkTools, Yao,

YaoExtensions

julia> @btime mat($(heisenberg(20)));
6.330 s (10806 allocations: 10.34 GiB)

julia> @btime expect'($(heisenberg(20)),
$(zero_state(20))=>

$(variational_circuit(20)));
5.054 s (58273 allocations: 4.97 GiB)

3.3.2 Benchmark: Exact Rydberg Atom Dynamics Simulation

We benchmark the exact rydberg atom dynamics simulation on a 1D chain comparing
to the qutip [144] in Figure 3.9. We see speedups at 10x in small systems and similar
performance at larger system size on CPU. In the CUDA backend, our implementation is
slower than CPU before 12 atoms. At 20 atoms, the CUDA provides about 80x speedup.
With the blockade subspace approximation, we can see a speedup of 1000x at 20 atoms.

92

Figure 3.9: Benchmark of the exact Rydberg atom dynamics simulation.

Besides the utilization of hardware acceleration through CUDA, comparing to existing
implementations, Bloqade utilizes the highly optimized matrix representation from Yao
and the highly optimized Ordinary Differential Equation (ODE) solver from DiffEq. Al-
gorithm advancements such as adaptive stepping and the use of subspace approximation
also contribute to the performance improvement. On the other hand, at smaller size, our
CPU backend sees 10-100x speedup comparing to qutip. This is due to the adaptive step-
ping which reduces the number of steps required during the integration. However, as the
exact simulation grows eventually, the performance for the CPU backend converges to the
same level as qutip at 20 atoms.

93

3.4 Discussion

In this chapter, we have introduced the transformation from an expression into the sub-
space matrix-vector multiplication routine and special matrices, which actually execute the
simulation. Moreover, we introduced the techniques for implementing these routines and
special matrices in the context of exact simulation. On top of these building blocks, we
introduced the transformation for automatic differentiation, which is a powerful tool for
optimizing the simulation and understanding the physical system. We also benchmarked
the performance of the exact simulation and the automatic differentiation and showed that
the exact simulation is already approaching the limit of the classical computer. Moreover,
we showed that by utilizing the reversibility of the quantum circuits, we can achieve sig-
nificant speedup in the automatic differentiation that no previous software can achieve.
This section discusses the future directions of quantum circuits and Hamiltonian dynamics
simulation.

The convergence in our benchmark Section 3.3.1 shows that we are already approach-
ing the limit of the exact simulation on a classical computer. Both benchmarks in Yao
and Bloqade are converging with more straightforward simulation strategies used in other
simulations at larger sizes because the simulation engine is designed for general purposes.
Thus, there is a lack of understanding of a specific problem. On the other hand, we do not
want to lose the ability to simulate a variety of problems. Thus, an important future direc-
tion is to find expression transformations that can automatically specialize the simulation
on problems with specific properties.

For example, the simulation of quantum circuits can utilize the circuit’s structure, thus
leading to the exact contraction of a tensor network. While Yao provides the functionality
of compiling circuit expression into tensor network contraction tree, we may not have the
optimal strategy for finding the contraction orders. Previous work has shown a promising
routine in utilizing a symbolic rewrite system for finding the optimal contraction order [145].
With the recent advancements in equality saturation [146], we can expect to see more
powerful expression transformation techniques in the future.

Similar to the exact simulation of Rydberg Hamiltonian dynamics or other Hamiltonian
dynamics. In the worst case, one will need a quantum computer to simulate such dynam-
ics unless P = BQP [31]. We can still expect to see a significant speedup in finite-size
simulation by utilizing the structure of the Hamiltonian. For example, the Hamiltonian of
Rydberg atoms can be also expressed in a diagonalized Hamiltonian at the short time as

exp[−iδH] = exp
−iδ∑

⟨i,j⟩
Vijninj

 exp
[
−iδ

∑
i

ΩiHZH

]
exp

[
−iδ

∑
i

∆ini

]
(3.14)

94

where the dynamics of Rydberg Hamiltonian at a short time δ can be decomposed into a
few diagonal matrices with the similarity transform being a Hadamard matrix. Applying
such a unitary approach to a given state can thus be further specialized. This also leads to
the utilization of the symplectic structure of the Hamiltonian, which conserves the norm
of the state and thus results in better numerical stability when simulating very oscillating
dynamics.

Furthermore, one may expect the specialization mentioned above to happen for a large
class of real problems. Philosophically, this occurs because the physical entities in reality
often contain structures that are not arbitrary. In our latest software framework Liang, we
aim to answer the question of automatic specialization by thinking about the transforma-
tion of more general operator expressions. We see opportunities to utilize the structure of
the physical system to specialize in simulation. While the effort of pushing the boundary
of exact simulation will have theoretical limitations, the techniques developed for these
optimizations will also help compile simulation tasks for quantum computers. Similar to
compiling the expression describing the problem into simulation routines, we can also com-
pile the expression into routines of a quantum device. Thus, developing such classical
simulations will also lead to the progress of quantum computing.

95

Chapter 4

Generalization: Operator Learning
Renormalization Group

In the previous chapters, we have introduced programmatic representation as a power-
ful technique to work with computational software and experimental quantum computing
hardware. In this section, we will discuss how to rethink the representation and the al-
gorithm using the concepts instead of the techniques we learned from programmatic rep-
resentations and how this leads to discovering an alternative variational principle. While
techniques we introduced in previous chapters will be used, such as automatic differentia-
tion and representations of analog Hamiltonian, unlike previous chapters, this chapter will
present in a more traditional physics fashion, focusing more on the theory, algorithm, and
numerical results.

Simulating quantum many-body systems is a fundamental problem in physics with
many applications, including the understanding and design of quantum materials, molecules
and matter [15–17]. However, the general simulation problem has been proven to be
hard [19, 20]. This has motivated the development of various classical frameworks to tackle
the problem heuristically, including Wilson’s Numerical Renormalization Group NRG) [26],
White’s Density Matrix Renormalization Group DMRG) [27, 28] and VMC [29, 30]. It has
also motivated strategies for leveraging quantum hardware for simulation, where frame-
works such as quantum phase estimation [32, 33], Hamiltonian simulation [34–36] and
variational quantum algorithms VQA) [37–39] have been proposed to take advantage of
devices with potential quantum advantage.

Despite the hardness of the problem, a useful observation is that, upon scaling the sys-
tem size, many properties of interest (i.e., observables, entanglement entropy, spectrum,

96

etc.) can exhibit minimal fluctuations and demonstrate consistent behavior across adja-
cent system sizes. [147–149]. This hints that, given an oracle to query observable properties
from the n − 1, n − 2, · · · , 1-site system with tractable cost, predicting a property in n-
site system might be possible. Technically, predicting larger system properties by solving
smaller system properties is an appealing direction, allowing the observations and the-
ory relevant to small-system solvers to be transferred into large-scale many-body system
solvers. Historically, numerical renormalization formulations such as NRG and DMRG
have been motivated by this observation.

OLRG DMRG NRG

grow

Operator Map

HEM

OMM

𝑋 → 𝑉 †𝑋𝑉

Figure 4.1: Workflow of NRG, DMRG, and OLRG. X → V †XV is the basis transform into
low-energy spectrum subspace or chosen-state subspace. From the left is the set of relevant
operators in the calculation. The operator map finds a virtual set of relevant operators
on the right. The red color corresponds to Wilson’s NRG, whose relevant operators only
contain Hamiltonian. The orange color corresponds to White’s DMRG, whose relevant
operators contain Hamiltonian and boundary operators. The blue color corresponds to
OLRG, whose relevant operators contain arbitrary operators involved in the calculation.
Both operator maps for NRG and DMRG are linear basis transforms, which fall into the
category of OMM. The operator map for OLRG is an arbitrary operator map, which
contains both OMM and HEM.

The success of NRG and especially DMRG relies largely on the linear ansatz for the
operator map and the loss function of the spectrum error or average expectation error of a
chosen state [26–28, 150], which can be solved directly using an eigensolver. Linearity is one
of the key reasons behind the fast convergence of DMRG, where the local optimal point of
the loss function can be identified directly using an eigensolver. However, this linearity also

97

limits the expressiveness, leading to the limitations encountered by MPS in simulating high-
dimensional systems or long-time dynamics. While the tensor network formalism [151–164]
has been developed to address this issue, it is possible that the limitation of expressiveness
in linear functions may be fundamental [165–172]. As for the loss function, the spectrum
error or average expectation error of a chosen state is a natural choice. However, compared
to optimizing the error of the target property directly, the spectrum error or average
expectation error of a chosen state may introduce a bias when these are not the target
property themselves [30]. Given these arguments, it is natural to ask whether one could
generalize the NRG and DMRG algorithms, such that instead of using a linear operator
map for an intermediate target, an arbitrary operator map can be used as an ansatz for
the final target.

We view this question through a modern machine-learning perspective. For both ground
state and dynamics, predicting properties of a n-site system from smaller system properties
can be framed as a machine-learning task. An algorithm can learn from a data set of
n − 1, · · · , 1-site properties and predict the n-site property. Looking closely at NRG and
DMRG, the algorithms take a set of n-site operators as input and generate a compact
representation of these operators as output. Then, the compact operators are grown by
one site and used as the operators for an n+ 1-site system as shown in Figure 4.1. From a
learning perspective, aside from the details of the loss function for a specific problem, this
can be seen as a generative learning procedure, where the model tries to generate a set of
virtual compact operators relevant to calculating the target property. Thus, we take as the
key idea of our algorithm the perspective of learning operator maps, i.e., generalizations of
the linear operator maps in NRG and DMRG, as opposed to learning parameterized states
as in the tensor network formalism.

We call the algorithm thus the OLRG. In a similar spirit to the renormalization group
and embedding theory [173–175], the OLRG framework provides a route to leverage the
techniques developed for small-system solvers for large-scale many-body systems. While
our framework is general enough to address arbitrary simulation problems, we prove rig-
orous bounds for the loss function of real-time dynamics in particular. The loss function
is designed to minimize the error of a target property directly instead of an intermediate
target. The philosophy of removing intermediate steps is commensurate with end-to-end
(e2e) learning [176, 177], which has been a core concept in the success of modern deep
learning, leading to many state-of-the-art results [178–181]. As a result, instead of model-
ing a quantum state, arbitrary operator maps are allowed as ansatzes by this variational
principle. For classical simulation, the operator map is called an OMM. In this chapter,
we will focus on demonstrating OMM implemented by a neural network. Furthermore,
this variational principle has a broader application when considering operators not repre-

98

sented by matrices, such as a pulse sequence in a real quantum device. Considering an
operator map of a problem Hamiltonian to a device Hamiltonian expression, this leads
to an alternative quantum simulation algorithm for near-term devices that are not fully
fault-tolerant [40, 118, 182, 183], which we call the HEM.

This chapter is organized as follows. We first review the NRG and DMRG algorithms in
their traditional setting in Section 4.1. In Section 4.2, we introduce the general framework
of OLRG, including the scaling consistency condition, a general principle guiding the design
of the loss function. Then, we explore the concrete scaling consistency condition for the
real-time evolution of a geometrically local Hamiltonian. In Section 4.5, we introduce two
variant algorithms of OLRG for classical and quantum simulation of real-time dynamics.
By viewing the operator map as OMM, we discuss using OLRG as a variational algorithm
on conventional computers. By viewing the operator map as HEM, we discuss using OLRG
as a variational quantum algorithm for near-term digital-analog quantum devices. In Sec-
tion 4.7, we study the two-point correlation function of a one-dimensional (1D) TFIM to
demonstrate our theory and the effects of different hyperparameters for OMM and HEM.
Finally, we discuss open questions and potential improvements in Section 4.9.

4.1 NRG and DMRG in the Traditional Formulation

To further understand the motivation and thought process of the NRG and DMRG al-
gorithms, we will review them in their traditional formulations from an operator map
perspective. Wilson’s NRG starts with a simple idea: to obtain the low-energy properties
of a N -site system, where N is a large number or infinity. We can start by dividing the
N -site system into identical n-site small systems named a block, assuming N = 2qn. Then,
the block Hamiltonian HSn on a small system Sn of n sites can be compressed from 2n×2n

to some size M ×M by finding an approximation of the matrix HSn . Wilson proposed to
use a low-rank approximation of the Hamiltonian V †

nHSnVn such that V †
nHSnVn preserves

the low-energy eigenstates of HSn . Naturally, Vn are the M lowest eigenstates of HSn ,
which preserves the low-energy spectrum. Then, we can grow the system by copying the
n-site system to form a 2n-site system and repeat the process. For single particle mod-
els such as HSn = ∑

i Xi, this is relatively straightforward. Since each small system of n
sites does not interact with each other, the 2n-site Hamiltonian HSnHSn can be written as
HSn ⊗ I + I ⊗HSn , and with the compressed Hamiltonian V †

nHSnVn ⊗ I + I ⊗ V †
nHSnVn.

With q steps, this process should eventually lead to a n2q-site system, approximating an
infinite system. In summary, NRG uses the error of the low-energy spectrum as the opti-
mization target and a basis transform Vn as the ansatz. Thus, at each step, we produce a

99

virtual Hamiltonian V †
nHSnVn to replace the original one. However, such approximation is

sub-optimal for two reasons: (i) the choice of low-energy eigenstates is suboptimal when
the only properties of interest are the ground-state properties. (ii) copying the small sys-
tem does not reflect the effect of boundary conditions. As a result, NRG works well for
low-energy spectrum problems without a strong effect on boundary condition [26] but fails
for more general quantum lattice ground-state problems in real-space form [184].

Historically, White’s DMRG was presented as a generalization of NRG. We will explain
the process using 1D TFIM Hamiltonian Hn = ∑

i ZiZi+1 + h
∑

i Xi. Assuming a chain
of “good” compression V1, V2, · · · , VN−1 in a similar RG process has been found but for
arbitrary ground state observables in the infinite system. Then, given a n-site system
Sn and environment En, Vn+1 should produce a good approximation of Sn • •En named a
superblock, where • means a new physical site, and its Hamiltonian is written as HSn ⊗
In+2 +HSn• +H•• +H•En + In+2 ⊗HEn , and without compression

HSn• = I⊗n−1 ⊗ Z ⊗ Z ⊗ I⊗n+1

H•• = I⊗n ⊗ Z ⊗ Z ⊗ I⊗n

H•En = I⊗n+1 ⊗ Z ⊗ Z ⊗ I⊗n−1
(4.1)

The construction of Sn • •En requires addressing the effect of a neighboring site at the
boundary Sn• then addressing the effect of environment bath •En. Thus, a superblock
can be a good test of the boundary and environment effect. Then, applying Vn+1 on Sn•

and •En will result in a virtual Sn • •En system. Comparing an arbitrary ground state
observable A on Sn• results in the following error estimation,∥∥∥tr(ρSn•A)− tr

(
V †

n+1ρSn•AVn+1
)∥∥∥ (4.2)

where ρ = tr• En(|ψ0⟩) is the ground state on Sn•. Since A is an arbitrary observable, the
optimal Vn+1 should be the isometric map to the low-rank approximation of ρ [27, 150],
namely a basis transform into the ground state subspace. To build the Hamiltonian of the
next 2n+ 4-site superblock, except the virtual Hamiltonian from the n+ 1-site system and
environment, we also need the virtual operator HSn+1•, H• • and H• En+1 , which are I⊗n⊗Z,
Z ⊗ I⊗n and I⊗n+1 in the n + 1-site space. Then, one can repeat this process until the
target system size is N . In summary, in DMRG, the superblock is used instead of a block
to test the effect of boundary and bath. Besides the Hamiltonian itself, we keep track of
some extra virtual operators to build the superblock. The transform Vn+1 is then optimized
based on the loss function defined on the superblock. A comparison of loss functions is
shown in Table 4.1. This thought process of generating virtual operators describing the
same n-site system is the key idea of our generalization.

100

Method Loss function RG transformation
NRG [26] low-energy spectrum error isometry

DMRG [27, 28] ∥ρ− ρ̂∥F rank ρ̂ ≤M isometry
OLRG scaling consistency arbitrary

Table 4.1: A review of previous RG-like variational methods by loss function at each scale
and RG transformation. H denotes the Hamiltonian. ρ denotes the density matrix. M
denotes the maximum rank of the low-rank approximation.

4.2 Operator Learning RG Framework

The procedure in Section 4.1 is the key idea of our generalization. The strategy can be
summarised as follows:

Instead of considering all n-site operators and having a static definition of operators in
the block object, we only focus on the subset of operators required to calculate the target

output.

We call these operators as the set of “relevant” operators and denote them as a set Sn

for a n-site system. And denote S(0)
n as the ground truth without altering any relevant

operators. In NRG, this is only the Hamiltonian Sn = {Hn}, and in our 1D TFIM DMRG
example, this is Sn = {Hn, I

⊗n−1 ⊗ Z,Z ⊗ I⊗n−1}. We then look at the target output
and rough RG procedure to trace back the minimum required operations by removing the
details from Section 4.1.

First, we denote the target output at n-site system calculated by these operators as
pn[Sn], where pn is called a property function. Here by “property function”, we mean
a function that maps the set Sn to a scalar value, such as the ground state energy, the
two-point correlation function, the entanglement entropy, etc. A formal definition of pn

is introduced in Section 4.3.1. Denote the operator map as f θ
n : An → An, where An is

the space of Hermitian operators and θ are the parameters. The operator map f θ
n maps

a Hermitian operator to another Hermitian operator of the same number of sites. For
example, when pn is the expectation of a two-point correlator at time T evolved by the
TFIM Hamiltonian,

S(0)
n = {ρ0, Hn, Bn, O

ab
n } (4.3)

where Bn = I⊗n−1Z, applying f θ
n onto S(0)

n result in

S(1)
n = f θ

n[S(0)
n] = {f θ

n[ρ0], f θ
n[Hn], f θ

n[Bn], f θ
n[Oab

n]} (4.4)

101

𝑓𝜃3
(arbitrary)

𝑓𝜃3
(linear)

(1)
𝑆(0)3 = {𝐻(0)

3 , 𝜌
(0)
3 , 𝑂

(0)
3 ,…}

𝑆(1)3 = {𝐻(1)
3 , 𝜌

(1)
3 , 𝑂

(1)
3 ,…}

𝐺𝑙(𝑆
(1)
3) 𝑆(0)3 𝑆(1)3

𝑆(1)4

𝐺𝑙

𝑓𝜃3

(2)
𝑆(0)3 = {𝐻(0)

3 , 𝜌
(0)
3 , 𝑂

(0)
3 ,…}

𝑆(1)3 = {𝐻(1)
3 , 𝜌

(1)
3 , 𝑂

(1)
3 ,…}

𝑆(2)4 = {𝐻(2)
4 , 𝜌

(2)
4 , 𝑂

(2)
4 ,…}

𝐺𝑙(𝑆
(1)
3)

𝐺𝑙(𝑆
(2)
4)

𝑆(0)3 𝑆(1)3

𝑆(1)4 𝑆(2)4

𝑆(2)5

𝐺𝑙

𝐺𝑙

𝑓𝜃3

𝑓𝜃4

NRG/DMRG OLRG

site

site

Figure 4.2: Illustration of three OLRG growing steps starts from a 3-site system. Gl

denotes the operation of adding k sites into the system. f θ
n denotes the operator map of

n-site system with parameters θ. (Left) When f θ
n is an isometric matrix, this process is

equivalent to a canonical MPS. The red circles mark the physical legs, and the blue triangle
denotes the isometric matrix. (Middle) The blue box depicts the set of operators that are
used to calculate the target property. The dashed box denotes the grown box. The arrow
represents the operator map f θ

n. (Right) The flow chart of this process. S(2)
5 = G1[S(2)

4] =
(G1 ◦ f θ

4)[S(1)
4] = (G1 ◦ f θ

4 ◦G1 ◦ f θ
3)[S(0)

3].

102

In NRG and DMRG, this is the basis transform f θ
n[X] = V †

nXVn. Constructing a
n + 1-site operator from a n-site operator is denoted as G1. In DMRG, this corresponds
to the step that adds one site •. Then, starting from an operator X in n-site system, we
can write down the output operator in the N -site system after performing the entire RG
process as G1 ◦ f θ

N−1 ◦ · · · ◦G1 ◦ f θ
n︸ ︷︷ ︸

q times

[X]. This is the corresponding virtual operator in the

N -site system, where N = n + q. We can then obtain the entire set of virtual relevant
operators in the N -site system, denoted as S(q)

N = G1 ◦ f θ
N−1 ◦ · · · ◦G1 ◦ f θ

n︸ ︷︷ ︸
q times

[S(0)
n], where (q)

means we transformed the system for q times by applying f θ
n, · · · , f θ

N−1. Thus the error of
output is

∥∥∥pN(S(0)
N)− pN(S(q)

N)
∥∥∥, where S(0)

N = Gq
1[S(0)

n] by definition. If we can minimize
this error, we will obtain a set of virtual operators S(q)

N resulting a similar property value.
In summary, it doesn’t matter if our set of virtual operators S(q)

N is a complete set of real
operators describing the N -site system properties. As long as it can compute the property
pN with a good error, it is probably a set of real operators.

Thus, instead of approximating states, the NRG and DMRG algorithms can be viewed
as generative learning algorithms [185] that generate a set of virtual relevant operators at
each scale. As shown in Figure 4.2 (right), (1) starting from S

(0)
3 = {H(0)

3 , ρ
(0)
3 , O

(0)
3 , · · · },

we generate S(1)
3 = f θ

3 [S(0)
3] = {H(1)

3 , ρ
(1)
3 , O

(1)
3 , · · · }. Assuming this new set of operators

is sufficient to approximate the properties we would like to calculate, we use this set of
operators as if they were the ground truth. If they are “good” approximations, we should
be allowed to grow the virtual system by 1 site (marked by a dashed box). We can obtain
the next 4-site system as S(1)

4 = G1[S(1)
3]. (2) We then use S(1)

4 as the input to generate
another set of operators S(2)

4 = f θ
4 [S(1)

4] and grow it into S
(2)
5 to calculate p5[S(2)

5] as an
approximation of p5[S(0)

5].
In the case of classical simulation, the virtual relevant operators should use less storage

than the original to keep the algorithm running within a constant memory. Thus in NRG
and DMRG, they are generated by linear isometric functions f θ

nq
(X) = V †

nq
XVnq , nq =

n, n + 1, · · · , N . These functions take the matrix of the original operator and return a
compressed matrix at each scale. As shown in Figure 4.2 (left), the chain of fnq forms the
canonical MPS. Next, the functions f θ

nq
are optimized by a loss function that is defined

on the data of block NRG) or superblock DMRG) generated by a small-system solver,
e.g., the low-energy spectrum error or average expectation error of a chosen state. The
loss function heuristically controls the final error. Thanks to the linear nature of f θ

nq
, the

optimal point of such loss functions can be identified directly using an eigensolver without
actually generating the whole data set of operators. This loss function heuristically allows

103

the set S(1)
n = f θ

n[S(0)
n] to grow into the set S(2)

n+1 = G1[S(1)
n] with the final error controlled.

Thus, the learning process can be repeated until the target system size is reached.
This perspective further guides us to investigate the requirement of implementing

proper loss functions, such that the requirement of a linear f θ
n can be extended. As a

result, we suggest a fundamental principle for creating such loss functions, which we call
the scaling consistency condition. This principle is outlined and compared with other
heuristic approaches in Table 4.1. In the following, we define this process and its underly-
ing concepts through formal definitions and corresponding examples. Then, we introduce
the error upper bound due to satisfying the scaling consistency condition. Next, we look
into the real-time evolution of a geometrically local Hamiltonian and further reduce the
loss function to local-observable errors. Last, we discuss these local observables and the
corresponding evaluation of the loss function. In fact, this paradigm above shares the same
philosophy as so-called duck typing in programming languages [186, 187] (e.g as used in
a DMRG tutorial [188]). By way of definition,

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

4.2.1 The Scaling Consistency Condition

Next, we explain how to define a tractable loss function such that for arbitrary f θ
n we can

(a) preserve the properties we want to calculate in the target system and (b) allow the
system to grow to the target size with final error controlled. This is the main goal of the
following definitions and theorems. We first need to formally define Gl to understand what
it means to grow the system by l sites. Before diving into the formal definition, we can
look at how one rewrites the n-site Hamiltonian Hn of the 1D TFIM as the n − 1-site
Hamiltonian

Example 1 (Growing the TFIM Hamiltonian). For example, for the 1D TFIM model,
the Hamiltonian of an n-site 1D system is constructed by extending the Hamiltonian of
an n− 1-site 1D system and adding terms that incorporate the n-th site:

Hn = G1[Hn−1]
= Hn−1 ⊗ I + I⊗n−1 ⊗ Z ⊗ Z︸ ︷︷ ︸

new site interaction

+hI⊗n ⊗X︸ ︷︷ ︸
new site field

, (4.5)

and more generally we can rewrite the n+ l-site 1D TFIM Hamiltonian as n-site 1D TFIM

104

Hamiltonian as follows

Hn+l =Hn ⊗ I⊗l + I⊗n−1 ⊗ Z ⊗ Z ⊗ I⊗l−1 + · · ·+︸ ︷︷ ︸
l − 2 terms

I⊗n+l−2 ⊗ Z ⊗ Z + I⊗n ⊗ h ·X ⊗ I⊗l−1+
I⊗n ⊗ h ·X ⊗ I⊗l−1 + · · ·+︸ ︷︷ ︸

l − 2 terms

I⊗n+l−1 ⊗ h ·X
(4.6)

We can see the Equation (4.5) as breaking the entire system into 1-site fragment, then
each time Gl is applied, it puts l fragments back. Naturally, one can define the growing
operator as a building operation that puts l fragments back after dividing the total N -site
operator. This is the main idea of the following definition.

Definition 1 (Growing operator, informal). A growing operator Gl is a superoperator that
increases the size of the system by l-sites. This superoperator formalizes how one grows a
given operator An of n sites by l sites. In general, Gl can be represented as follows,

Gl[An] = An ⊗R[An] +
∑

i

Bi
n ⊗R[Bi

n], (4.7)

where Bi
n and R[Bi

n] are pairs of operators that connect the n-site system and the l-site
environment. We call the operators Bi

n the boundary operators. The index i goes over all
possible decomposition and thus can be exponentially large in the most general case. A
more detailed definition will be given in Section 4.3.1.

In summary, the concept of a growing operator is pivotal in understanding how an
operator of a n+ l-site system can be expressed in terms of an operator of a n-site system
by first dividing the total system of N sites into N/l fragments. This will be particularly
clear to those familiar with tensor networks: the growing operator can be analogously
represented as a tensor within the Tensor Network Operator (TNO) formalism [189, 190].
Each time applying the tensor creates a few new physical legs. However, in our subsequent
theorem, we opt not to use the TNO formalism. Our rationale is to present our proof from
an algebraic standpoint, which we find more suitable for our generalization purposes. To
further elucidate this concept, the growing operator can also be applied to other operators,
such as the density matrix operator of the zero-state.

Example 2 (Growing the zero state). ρn = (|0⟩ ⟨0|)⊗n can be written as,

ρn = G1[ρn−1] = ρn−1 ⊗ |0⟩ ⟨0| . (4.8)

105

As mentioned, the growing operator is defined by dividing the total system into frag-
ments and combining them. The two-point correlation function is a typical example of an
operator that requires dividing the total system into fragments otherwise the definition of
the two-point correlation function could be ambiguous.

Example 3 (Growing the two-point correlator). In a similar vein, and without loss of
generality, consider a two-point correlator expressed as

Oxy
n = I⊗x ⊗X ⊗ I⊗y ⊗ Y ⊗ I⊗n−x−y−2. (4.9)

The growing operator from a smaller size n− 1 to a larger size n can be written as

Oxy
n = G1[Oxy

n−1] =

Oxy
n−1 ⊗ I if n < x

or x < n < y

or n > y

Oxy
n−1 ⊗X if n = x

Oxy
n−1 ⊗ Y if n = y

(4.10)

The e2e-style loss function can be written as the error
∥∥∥pN [S(0)

N]− pN [S(q)
N]
∥∥∥, as demon-

strated in Figure 4.2 (blue nodes). Then, our goal will be minimizing this loss function
by optimizing the parameters θ in the OLRG steps. The parameters θ can appear in two
places: (a) the operator map f θ

nq
itself, similar to NRG and DMRG; (b) the output operator

f θ
nq

[X]. We will discuss them in Section 4.5. However, this quantity, as the loss function,
is infeasible to calculate. We wish to simplify it into a more tractable form within each
growing step. Naively, as shown in Figure 4.2 (blue nodes), for calculating 5-site system
starting from 3-site system, one may use

∥∥∥p3[S(0)
3]− p3[S(1)

3]
∥∥∥ +

∥∥∥p4[S(1)
4]− p4[S(2)

4]
∥∥∥ as the

loss function instead. However, this does not necessarily bound the final error. In fact,
we show that such a loss function fails to bound the error in Section 4.7 as the 0th-order
loss function in our theory. This motivates us to introduce the following definition and
theorem.

Definition 2 (ϵ-scaling consistency). An operator map f θ
n : An → An is said to satisfy

ϵ-scaling consistency for a set of relevant operators Sn and property pN where N ≥ n, if
∃ϵ > 0,∀q = 1, 2, · · · , (N − n)/l we always have∥∥∥pN [Gq

l [Sn]]− pN [(Gq
l ◦ f θ

n)[Sn]]
∥∥∥ ≤ ϵ. (4.11)

The ϵ-scaling consistency condition measures the error caused by applying the operator
map f θ

nq
at each OLRG step. This error appears because the n-site part within a N -site

106

system is transformed by f θ
n, thus resulting in an error between two N -site systems (Gq

l [Sn]
and (Gq

l ◦ f θ
n)[Sn]). It is worth noting that the conceptualization of growing operators

shares numerous commonalities with Density Matrix Embedding Theory (DMET) [173,
174]. For readers versed in DMET, the terminology of “scaling consistency” also takes
inspiration from the self-consistency principle in DMET. In OLRG, the optimization of the
operator map is directed not toward aligning the properties of individual fragments with
the original system but rather toward achieving consistency in properties across varying
scales. Denote one step of growing and transforming as Dl = Gl ◦ f θ

nq
called an OLRG

step. For convenience, we let nq being adaptive to the number of sites in Dl. The target
property can be written as pN(Dq

l [Sn]). Then we have the following theorem:

𝑆(0)3

𝑆(0)4

𝑆(0)5

𝑆(1)3

𝑆(1)4

𝑆(1)5

𝑆(2)4

𝑆(2)5

𝐺𝑙

𝐺𝑙

𝐺𝑙

𝐺𝑙 𝐺𝑙

𝑓𝜃3

𝑓𝜃4

𝑝 𝑝 𝑝

‖ ○ −○ ‖ ≤ 𝜀 ‖ ○ −○ ‖ ≤ 𝜀

𝑝(𝑆(0)5) 𝑝(𝑆(1)5) 𝑝(𝑆(2)5)

Figure 4.3: Comparing 2 OLRG growing steps and the ground truth starts from a 2-site
system. Denote S(q)

n as the system of size n by applying Dl for q times. Green nodes depict
the ground truth. Blue nodes represent algorithm growing steps. Orange nodes represent
the 5-site system applying only f θ

3 . The red nodes denote the computed property at each
5-site system p(Gl[S(q)

n]).

Theorem 1 (System scaling error). For target system size N and starting system size
n, where N ≥ n, if for nq = n, n + l, · · · , N , the operator map f θ

nq
satisfy the ϵ-scaling

107

consistency condition for Sn, Sn+1, · · · , SN−1, and q = (N − n)/l then ∃ϵ > 0 such that

∥pN [Gq
l [Sn]]− pN [Dq

l [Sn]]∥ ≤ qϵ. (4.12)

Proof. This is obvious by inserting zeros of neighboring values p(Gq−j
l Dj

l [Sn])−p(Gq−j
l Dj

l [Sn])
into the left-hand-side then use triangular inequality. A visual proof is shown in Figure 4.3.
Section 4.3.1 provides a more detailed proof.

Theorem 1 suggests that to implement an e2e-style loss function rather than minimizing
the differences in properties at the current system size, one should optimize the discrepancy
between properties at the target system size N at each OLRG step. This concept is
exemplified by the error observed between the last blocks of each column in Figure 4.3.
Instead of optimizing properties from the blue blocks (S(0)

3 and S
(1)
3 , S(1)

4 and S
(2)
4), one

should optimize the properties from the blocks at the bottom (S(0)
5 and S(1)

5 , S(1)
5 and S(2)

5).
With Theorem 1, we convert the problem of reducing the error ∥p(Gq

l [Sn])− p(Dq
l [Sn])∥

into reducing the error defined by ϵ-scaling consistency (Definition 2). While the quantity
in ϵ-scaling consistency is still infeasible to evaluate, intuitively, such error is caused by
applying f θ

n to the n-site system. Thus, the error must come from the change of some
operators in the n-site system. To control the error, we only need to expand our set of
relevant operators to include these operators. In the next subsection, while the rigorous
ϵ-scaling consistency condition for the ground state and imaginary time dynamics remains
an open question, we will show what kind of operators in the n-site system will contribute
to this error for the real-time evolution of a geometrically local Hamiltonian.

4.2.2 Loss Function for Real-Time Evolution

Nevertheless, when we look closer to a more realistic system, it is usually geometrically
local. More specifically, geometrically w-local means given a Hamiltonian of the form
Hn = ∑

a Ha, each term Ha can only act on neighboring w sites geometrically. In this case,
applying Gl for q times will result in the following equation, where by definition, Gq

l = Gql

and,
Gql[Hn] =

Hn ⊗ I⊗kq +
∑

i∈(∂Hn)Gl

Bi
n ⊗R(Bi

n) + I⊗n ⊗K, (4.13)

where (∂Hn)Gl denotes a set of operators acting on the boundary of Hn. The set (∂Hn)Gl

will saturate once the growing operator applies outside the system boundary as demon-
strated in Figure 4.4. The size of (∂Hn)Gl is proportional to the boundary size of the

108

system Sn and the number of operators Bi
n ⊗ R[Bi

n], as previously defined in the context
of a growing operator Gl (depicted in the yellow band in Figure 4.4). Furthermore, K rep-
resents the Hamiltonian of the environment. A more detailed and formal discussion about
the set (∂Hn)Gl is included in Section 4.3.2, where the geometrically local Hamiltonian is
generalized into the geometrically local Hamiltonian with constant non-geometrically local
terms. This approach simplifies the criterion for scaling consistency, necessitating consis-
tency only within (∂Hn)Gl , since geometrically, the operator transformation f θ

n affects only
operators within this range. This leads to the following proposition.

𝐺𝑙 𝐺𝑙

environment

(𝜕𝐻𝑛)
𝐺system

Figure 4.4: For a geometrically w-local Hamiltonian, the growing operator stops changing
the system after it grows outside the boundary band of stretch w after applying G2

l = G2l.
This results in a saturated yellow band where only terms within this yellow band interact
with the system Hamiltonian.

Proposition 1. If we can effectively break down the property function pN(Gq
l [Sn]) and

pN(Gq
l [f θ

n(Sn)]) into expectation values separately on system and environment, this might
offer a more practical way to develop the e2e-style loss function:

pN(Gq
l [Sn]) =

∞∑
i=0

αi ⟨Ai⟩ ⟨Bi⟩

pN(Gq
l [f θ

n(Sn)]) =
∞∑

i=0
αi ⟨A′

i⟩ ⟨Bi⟩
(4.14)

where i is the index of the series expansion, αi represents the scalar factor at each order,
⟨Ai⟩ represents observables on the n-site system and ⟨Bi⟩ corresponds to observables on the
kq-site environment. ⟨A′

i⟩ is the transformed observable on the n-site system. For example,

109

if ⟨Ai⟩ = tr(ρ0 exp{itHn}Ai exp{−itHn}) is the expectation of a time evolved observable,
then ⟨A′

i⟩ = tr(f θ
n[ρ0]U ′(t)†f θ

n[Ai]U ′(t)) is the expectation value re-calculated using the
virtual operators, where U ′(t) = exp

{
−itf θ

n[Hn]
}
. If we optimize our operator mapping

function such that ∥⟨Ai⟩ − ⟨A′
i⟩∥ ≤ ϵ, it follows that

∥∥∥p(Gq
l [S(0)

n])− p(Gq
l [f θ

n(S(0)
n)])

∥∥∥ ≤
ϵ
∑∞

i=0 αi ⟨Bi⟩. Provided that ∑∞
i=0 αi ⟨Bi⟩ converges to a finite value, the convergence of

the e2e-style loss function can be ensured.

We further explore the expectation value of an observable On(T) in the Heisenberg
picture On(T) = eiT HnOne

−iT Hn , where T is the total evolution time, Hn is a geometrically
local Hamiltonian, with an product state ρn as initial state,

p(Sn) = tr(ρ0e
iHnTOne

−iHnT). (4.15)

Without loss of generality, we assume On is local and Gl(On) = On ⊗ R[On]. Because ρn

is a product state such that Gk(ρn) = ρn ⊗ R[ρn]. This expectation p(Sn) can expand
into a series of expectation values in the n-site system and the environment (detailed in
Section 4.4). Thus, we find the desired series expansion proposed in Proposition 1. This
leads us to the subsequent theorem:

Theorem 2 (Real-time ϵ-scaling consistency). Given that a w-local Hamiltonian Hn and
its growing operator Gl will saturate, denote the set as (∂Hn)Gl. ∃ϵ > 0 and expectation
values χ(Sn), such that if ∀χ we have∥∥∥χ(Sn)− χ(f θ

n[Sn])
∥∥∥ ≤ ϵ. (4.16)

For Sn = {Hn, B
i
n, ρ = ρn ⊗ R[ρn], O = On ⊗ R[On]} and N = n + kq then the error of

expectation pN [Gq
k[Sn]] =

〈
ρeiT HNOe−iT HN

〉
is bounded by∥∥∥pN [Gq

l [Sn]]− pN [(Gq
l ◦ f θ

n)[Sn]]
∥∥∥

≤ ϵC exp
{
T
∥∥∥(∂Hn)Gl

∥∥∥C/2}, (4.17)

where C is a constant, T is the total evolution time. A detailed theorem and its proof can
be found in Section 4.4

Theorem 2 gives a single step error, thus combined with Theorem 1, we have the total
error of q steps upper bounded by

qϵC exp
{
T
∥∥∥(∂Hn)Gl

∥∥∥C/2}. (4.18)

110

This indicates that if we can optimize the error of these expectations χ at nq = n, n +
l, · · · , N -site system due to applying f θ

nq
, we should be able to optimize the error of the

target property at the target system size N . Since the norm
∥∥∥(∂Hn)Gl

∥∥∥ is a constant, this
error is independent of system size N and only accumulates linearly with the number of
OLRG steps.

Thus, we can tailor the loss function’s design for real-time evolution by considering it
as the cumulative error of all observables, as detailed in Theorem 2 with an order cutoff
in the series. Then Theorem 2 can guarantee as we increase the order the output will
directly move towards the ground truth. This aligns with the e2e learning. Theorem 2
has a very similar bound as Lieb-Robinson bound [147] and other results derived from
it [191]. Intuitively, the reason why real-time dynamics can have this bound is also due to
the limitation of propagating correlations. However, we do not use Lieb-Robinson bound
in our proof in Section 4.4. It is interesting to see if we can derive a similar bound using
the Lieb-Robinson bound. This will provide a more general understanding of the error
bound in our framework.

Next, based on the proof in Section 4.4, we introduce the definition of χ. Denote the
operator Bi

n from Equation (4.13) in the Heisenberg picture as Bi
n(t) = eiHntBi

ne
−iHnt where

0 ≤ t ≤ T . The proof of this theorem reveals that the observables are essentially time
correlation functions defined on the operator Bi

n(t) and the part of our target observable
on the system On(T). We refer to these as the TOBC denoted as χ:

⟨χi,t,σ(Sn, T)⟩ = tr(ρn

∏
i,t,σ

adBi
n(t),σ[On(T)]), (4.19)

where ρn is the initial state of the system, the multi-index

i, t, σ = i1, i2, · · · , ik, t1, t2, · · · , tk, σ1, σ2, · · · , σk (4.20)

, each index in i iterates over (∂H)G, t are the checkpoints in the time evolution, and
σ = ±1. As mentioned, the input Sn denotes the set of relevant operators at n-site system.
For TOBC specifically, Sn are the primitive operators required to calculate TOBCs defined
as Sn = {ρ,On, Hn, B

i
n} where Bi

n ∈ (∂Hn)Gl . The notation adA,σ(B) = AB + σBA and
adA,+1(B) = {A,B} = AB + BA, adA,−1(B) = [A,B] = AB − BA, their composition
denotes the recursive commutators and anti-commutators adA,+1adB,+1(C) = {A, {B,C}},
adA,−1adB,+1(C) = [A, {B,C}]. For the kth-order TOBC, the notion of ∏i,m,σ denotes the
following product

ad
B

i1
n (t1),σ1

ad
B

i2
n (t2),σ2

· · · ad
B

ik
n (tk),σk

[On(T)]. (4.21)

111

For example, we can write down the TOBC at different orders. For the 0-th order, this
refers to the observable On(T). For the 1st order, for 0 ≤ t ≤ T , we have,

χi,t,−1(Sn, T) = [Bi
n(t), On(T)]

χi,t,+1(Sn, T) = {Bi
n(t), On(T)}.

(4.22)

For the 2nd order, for 0 ≤ t1 ≤ t2 ≤ T , we have,

χi,t,{−1,−1}(Sn, T) = [Bi1
n (t1), [Bi2

n (t2), On(T)]]
χi,t,{−1,+1}(Sn, T) = [Bi1

n (t1), {Bi2
n (t2), On(T)}]

χi,t,{+1,+1}(Sn, T) = {Bi1
n (t1), {Bi2

n (t2), On(T)}}
χi,t,{+1,−1}(Sn, T) = {Bi1

n (t1), [Bi2
n (t2), On(T)]}.

(4.23)

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , − }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , − }

0.0

0.2

0.4

Figure 4.5: 2nd-order TOBC for 5-site 1D TFIM at T = 5.0 for the two-point correlation
function ⟨Z1Z2⟩T =5.0 with |00000⟩ as the initial state and h = 1.0.

In practice, the time points t1, t2, · · · are checkpoints from the small-system solver.
Many correlators in this setup are nearly zero. These can be further pinpointed by intro-
ducing a specific Hamiltonian and observables into the correlator expression. For example,

112

for a 5-site 1D TFIM model, where B1
5 = Z5 = I⊗4 ⊗ Z, two of its 2nd order TOBC,

⟨[Z5(t1), {Z5(t2), (Z1Z2)(5.0)}]⟩ ≈ 0
⟨{Z5(t1), [Z5(t2), (Z1Z2)(5.0)]}⟩ ≈ 0,

(4.24)

are nearly zero, as shown in Figure 4.5. However, in a worst-case scenario, the number of
potentially non-zero TOBC increases exponentially with the order l. Assuming there are
M checkpoints, there are O(2M∥(∂Hn)Gl∥)l TOBCs. This exponential rise renders a com-
prehensive evaluation of the entire loss function at higher orders impractical. A uniform
sampling at each order without time ordering is proposed as an effective solution. This is
because we optimize a summation of the correlators’ error, thus resulting in a uniform dis-
tribution. When the original dynamics are faithfully approximated, the extra correlators
not in time order should also have a small error. In practical terms, this approach involves
selecting a batch of operators for sampling, akin to using data batches in Stochastic Gradi-
ent Descent (SGD) in conventional deep learning algorithms. Significantly, this sampling
technique is highly compatible with advanced accelerated computing frameworks, such as
CUDA [61], which are designed for batch operations.

There might be concerns regarding the typically large value of M and the consequent
size of each operator batch, potentially leading to an extensive sampling requirement. As
shown in Figure 4.5, for nonzero TOBC, in practice, many points are nearly zero and thus
contribute little to the loss function. Thus, since M is only a factor in the loss function
rather than the small-system solver, if the dynamics of interest are smooth, a fine step
size is not necessary in practice to obtain satisfactory results. In Section 4.8.3, we include
some additional results on the step size of the TOBC sampling, which does not show a
significant difference in the final relative error.

4.3 Formal Definitions

In this section, we provide formal definitions of the OLRG framework. We first introduce
the concept of a system, property function, connecting operator, growing operator, and
scaling consistency. Then, we prove the error upper bound of the OLRG process.

4.3.1 Scaling Consistency

The scaling consistency condition is generic to arbitrary properties of the system. To
demonstrate this, we first introduce the definition of a system, property function, connect-

113

ing operator, growing operator, and scaling consistency. Then, we prove the error upper
bound of the OLRG process
Definition 3 (Many-body Hilbert space). Denote the many-body Hilbert space with d
local states and n sites as H(Cd)⊗n and the self-adjoint operators on H(Cd)⊗n as An.
Definition 4 (Property function). A property function pn is a function that maps a set
of self-adjoint operators to a real value quantity, denoting the domain of p as dom(pn) ⊆
An × · · · × An, we have pn : dom(pn)→ R.

Property functions include the expectation value of an observable, the correlation func-
tion, the entanglement entropy, energy, etc. As an example, the two-point correlation
function on 1st and 2nd sites at time T is defined as

⟨Z1Z2⟩T = tr
(
ρ0U(T)†Z1Z2U(T)

)
(4.25)

where ρ0 is the initial state, U(T) is the time-evolution operator, and Z1, Z2 are the Pauli
operators acting on the 1st and 2nd sites respectively. Thus, it can be defined as a function
on An×An where one input operator is the initial state ρ0 and the other is the Hamiltonian
H.
Definition 5 (Connecting operator). A connecting operator is the superoperator Rl :
An → Al such that given an operator L ∈ An we have R[L] ∈ Al. The expression
L⊗Rl[L] characterizes the connection between the n-site system and l-site system.

To elucidate this concept, consider the following 1D TFIM Hamiltonian:

H =
∑

i

ZiZi+1 + h
∑

Xi (4.26)

For 1D TFIM, given a n+ l-site TFIM, the connection between n-site TFIM and l-site
TFIM is ZnZn+1, and the operator on the n-site TFIM is L = Zn = I⊗n−1 ⊗ Z, thus the
connecting operator on this operator is defined as R1(L) = Z. Similarly, for the Heisenberg
Model:

H =
∑

i

XiXj + YiYj + ZiZj (4.27)

There are three types of connections thus L = Xn, Yn, Zn, and the connecting operators
are defined as R1(L) = X, Y, Z respectively. It is worth noting that although the name
"Connecting Operator" was not mentioned in the literature to the best of our knowledge,
the concept of the connecting operator has been widely used in the implementation of
the DMRG algorithm [188, 192]. The connecting operator describes how one can add
new physical sites into an existing system, thus this allows the definition of the growing
operator.

114

Definition 6 (Growing operator). A growing operator is the superoperator Gl : An →
An+l such that given an operator X ∈ An we have Gl[X] ∈ An+l. The growing operator
has a general form defined using connecting operator Rl as:

Gl[X] = X ⊗Rl[X] +
∑

i

Bi ⊗Rl[Bi] (4.28)

where {Bi ∈ Sn | Gl(X) ∈ H(Cd)⊗n+l}, and we call Bi the boundary operators.

The growing operator is defined with a connecting operator Rl. The summation ∑
i

does not limit the number of Bi. Thus, such decomposition exists for any operator X.
For a Hamiltonian with a general form of n such as the TFIM or Heisenberg Hamiltonian,
where the Hamiltonian has a definition over arbitrary n sites, the definition of the growing
operator is straightforward.

Corollary 1. For finite operators with definition on a fixed number of sites, because
assuming there exists X0, X1, · · · , Xn and X0 ∈ H(Cd), we have the following relationship

X1 = X0R1[X0] +
∑

i

L1
iR1[L1

i]

X2 = X1R1[X1] +
∑

i

L2
iR1[L2

i]

· · ·
Xn = Xn−1R1[Xn−1] +

∑
i

R1[Ln
i]

(4.29)

thus, the final operator Xn is a summation of single operator strings. Without limiting
the summation ∑

i to be polynomial, we can always decompose a given operator on the
summation of n single operator strings denoted as Xn. This allows the definition of all
previous operatorsX0, · · · , Xn−1. Thus, following this procedure, we can define the growing
operator for any operator X on a fixed number of sites, such as the two-point correlation
function on n-site system at a specific location i, j as we introduced in Section 4.2.

From a different perspective, inspired by DMET [173, 175], one can see such definition
as a process of creating fragments of the operator like in DMET. We define the growing
operator as the process of adding fragments back. This leads to the definition of the
rescalable operator.

Definition 7 (Rescalable Operator). With connecting operator Rl and growing operator
Gl, we can define the rescalable operator Xn as the set Xn = {Xn, ∂Xn, Rl}, where Xn is

115

the operator at current scale, ∂Xn is a set of operators describing the effect of environment
on the system, and thus the growing operator Gl of such operator can be recursively defined
as

Gl[Xn] = Xn ⊗ I⊗l +
∑

B∈∂Xn

B ⊗Rl[B] (4.30)

where X0 is a constant operator, B ∈ ∂Xn.

For example, we can define the rescalable HamiltonianHn as the setHn = {Hn, ∂Hn, Rl},
where Hn is the Hamiltonian at current scale, ∂Hn is a set of operators describing the effect
of environment on the system referred as the boundary set in the following context, and
thus the growing operator Gl of such Hamiltonian operator can be recursively defined as

Gl[Hn] = Hn ⊗ I⊗l +
∑

B∈∂Hn

B ⊗Rl[B] (4.31)

where H0 is a constant operator, B ∈ ∂Hn.

Definition 8 (Rescalable System). Given a property pN , where N is the number of sites,
we can define the system SN as a set of operators such that SN ∈ dom(pN). Then for
n ≤ N , we can define the rescalable system Sn as the set Sn = {Sn, ∂Sn, Rl}, where Sn

is the operator at current scale, ∂Sn is a set of boundary operators, and thus the growing
operator Gl of such system can be recursively defined as

Sn+l = Gl[Sn] = {Gl[X] | X ∈ Sn} (4.32)

For example, for the two-point correlation function ⟨Z1Z2⟩T at time T for 4-site 1D
TFIM with |0 · · · 0⟩ as initial state, we have

S4 = {|0000⟩ ⟨0000| , H4, Z ⊗ Z ⊗ I ⊗ I} ∂S4 = {Z4}
S3 = {|000⟩ ⟨000| , H3, Z ⊗ Z ⊗ I} ∂S3 = {Z3}
S2 = {|00⟩ ⟨00| , H2, Z ⊗ Z} ∂S2 = {Z2}
S1 = {|0⟩ ⟨0| , H1, Z} ∂S1 = {Z1}

(4.33)

where Hi, i = 1, 2, 3, 4 is the TFIM Hamiltonian of i sites. The boundary set ∂Si, i =
1, 2, 3, 4 only contains the ∂Hi because |0 · · · 0⟩ ⟨0 · · · 0| and Z,Z⊗Z,Z⊗Z⊗I, Z⊗Z⊗I⊗I
have no boundary operators. Now, with the definition of the rescalable system, we can
study the behavior of an operator map f θ

n : An → An where θ is the parameter of the
operator map.

116

Definition 9 (OLRG step). Given an operator map f θ
n : An → An, we define the one

OLRG step Dk as applying f θ
n on all operators in Sn and then growing the system to Sn+l,

thus we have Dl = Gl ◦ f θ
n. Here we assume Dl is adaptive on the system size n.

Definition 10 (ϵ-scaling consistency). An operator map f θ
n : An → An is said to sat-

isfy ϵ-scaling consistency for system Sn and property pN where N ≥ n, if ∃ϵ > 0,∀q =
1, 2, · · · , (N − n)/l we always have∥∥∥pN [Gq

l [Sn]]− pN [(Gq−1
l ◦Dl)[Sn]]

∥∥∥ ≤ ϵ (4.34)

The ϵ-scaling consistency condition allows us to bound the error of the OLRG process.
While the OLRG process does not necessarily use the same f θ

nq
at each step Dl, without

loss of generality, we present the following theorem by assuming f θ
nq

= f θ is the same
between Sn and Sn+l for convenience.

Theorem 3 (System scaling error). For target system size N and starting system size
n, where N ≥ n, if the operator map f θ satisfy the ϵ-scaling consistency condition for
Sn, Sn+1, · · · , SN−1, and q = (N − n)/l then

∥pN [Gq
l [Sn]]− pN [Dq

l [Sn]]∥ ≤ qϵ (4.35)

Proof. denote ηi = pN [(Gq−i
l ◦Di

l)[Sn]], where Gq−i
l = Gl ◦ · · · ◦Gl︸ ︷︷ ︸

q−i times

and Di
l = Dl ◦ · · · ◦Dl︸ ︷︷ ︸

i times

= ∥η0 − ηq∥ = ∥η0 − η1 + η1 − ηq∥ (4.36)

=

∥∥∥∥∥∥
q−1∑
i=0

ηi − ηi+1

∥∥∥∥∥∥ ≤
q−1∑
i=0
∥ηi − ηi+1∥ = qϵ (triangular inequality) (4.37)

The above theorem breaks the system error of OLRG into errors between each step at
target size N . This allows us to further bound the error of the OLRG process by looking
at more specific Hamiltonians and properties.

4.3.2 Growing Operator of Rescalable Local Hamiltonians

In general, the ϵ-scaling consistency cannot be evaluated on a small system directly because
Theorem 3 requires evaluating the property function at size N . However, intuitively, the

117

discrepancy caused by applying f on system Sn can be traced back to the change of
some operators in the system of size n. If the interaction of the Hamiltonian is local, the
propagation of the discrepancy should not be far. This motivates us to study the rescalable
local Hamiltonians defined as follows.

Corollary 2 (Rescalable Local Hamiltonian). For a rescalable Hamiltonian Hn, if ∀B ∈
∂Hn, B act on x sites andR(B) acts on w−x sites for x = 0, 1, · · · , w, then this Hamiltonian
is a w-local Hamiltonian at every scale.

Notably, for local Hamiltonian, I⊗n ∈ ∂H because R[B] can act on m at most. Phys-
ically, this represents the terms that only affect the environment but not the system. For
example, in the TFIM, the h ·X term only appears in the environment.

Corollary 3 (Local Hamiltonian). For w-local Hamiltonian of N sites, one can always
define the corresponding rescalable w-local Hamiltonian up to N sites.

This is because one can always cut the N -site w-local Hamiltonian into fragments,
then we can create the definition of Hn recursively by defining H1. Define the H1 as one
fragment, ∂H1 as the interaction terms between H1 and another fragment. Thus, we define
H2 as the composition of two fragments and repeat until we have HN .

Lemma 1 (Boundary set of geometrically local Hamiltonian). For a geometrically local
Hamiltonian Hn+l, the boundary set ∂Hn+l has the following form

∂Hn+l = {I⊗l ⊗Bi | Bi ∈ ∂Hn} (4.38)

Proof. Without loss of generality, we can always assume B = ⊗x
i=1 Xi where Xi ∈ H(Cd)⊗,

because if B is not a tensor product, we can always decompose it onto Pauli basis with
coefficients B = ∑

b cb · Pb1 ⊗ Pb2 ⊗ · · · ⊗ Pbx , where Pi is a Pauli operator. Thus resulting
redefinition of B as cb · Pb1 ⊗ · · · ⊗ Pbx . The effect of the environment will not change by
rescaling, and new terms cannot be applied outside of the m sites at the boundary by the
definition of geometrically local, thus ∂Hn+l = {I⊗l ⊗Bi | Bi ∈ ∂Hn}

As shown in Figure 4.4, for geometrically w-local Hamiltonian, applying the growing
operator q > w times on the Hamiltonian will saturate the boundary set. This motivates
us to define the following concept.

Corollary 4 (Saturated Boundary Set for geometrically local Hamiltonian). For a geomet-
rically w-local Hamiltonian H, the boundary set (∂Hn) will saturate for Gl as l increases.

118

Denote as (∂Hn)Gl . For l > w,
∥∥∥(∂H)G

l

∥∥∥ scales with the boundary size for geometrically
local Hamiltonians as

O(nLn−1) (4.39)

where L = max |dimi|, i = 1, · · · , n, e.g in 1D it scales as O(1), and in 2D scales as O(2L).

For 1-D geometrically w-local Hamiltonian, with Gl always adding sites on one side of
the original system, we have

∥∥∥(∂Hn)Gl

∥∥∥ =

l∥∂Hn∥ l < w − 1
(w − 1)∥∂Hn∥ l ≥ w − 1

(4.40)

where m is the number of species of connecting operators in Gl.

Corollary 5. the growing operator Gq
l defined on a geometrically w-local Hamiltonian can

be rewritten as the following form

Gq
l [Hn] = H ⊗ I⊗ql +

∑
Bi∈(∂H)Gl

Bi ⊗R[Bi] + I⊗n ⊗K (4.41)

In Section 4.2.2, we mention this is a property of geometrically local Hamiltonian, which
can be generalized to rescalable local Hamiltonian with constant non-geometrically local
terms. This can be shown by constructing a system with periodic boundary conditions,
where the interaction term at the boundary is not geometrically local. Still, there are only
a constant number of them. Thus, we have the following example

Example 4 (Saturated Boundary Set for Periodic Boundary). Consider the 1D periodic
boundary TFIM Hamiltonian of n sites

Hn =
n−1∑
i=1

ZiZi+1 + ZnZ1 + h ·
∑

i

Xi (4.42)

We can define G1 as follows

G1[Hn] =Hn ⊗ I + I⊗n−1 ⊗ Z ⊗ Z︸ ︷︷ ︸
connection with new site

+ I⊗n ⊗ h ·X︸ ︷︷ ︸
field term on the new site

− Z ⊗ I⊗n−2 ⊗ Z ⊗ I︸ ︷︷ ︸
old interaction at n − 1-site boundary

+ Z ⊗ I⊗n−1 ⊗ Z︸ ︷︷ ︸
new interaction at n-site boundary

(4.43)

119

applying G1 twice, we have

G2
1[Hn] =Hn ⊗ I⊗2 + I⊗n−1 ⊗ Z ⊗ Z ⊗ I + I⊗n ⊗ Z ⊗ Z︸ ︷︷ ︸

connection with new site

+ I⊗n ⊗ h ·X + I⊗n+1 ⊗ h ·X︸ ︷︷ ︸
field term on the new site

− Z ⊗ I⊗n−2 ⊗ Z ⊗ I⊗2︸ ︷︷ ︸
old interaction at n − 1-site boundary

+ Z ⊗ I⊗n ⊗ Z︸ ︷︷ ︸
new interaction at n-site boundary

(4.44)
which still results in a saturated boundary set, equivalent to the saturated boundary set
for open boundary 1D TFIM Hamiltonian (the geometrically local Hamiltonian) plus the
operator at n-site periodic boundary {−Z ⊗ I⊗n−2 ⊗ Z,Z ⊗ I⊗n−1}. Note that, unlike
geometrically local Hamiltonian, in this case, the result of connecting the operator on
R(Z ⊗ I⊗n−1) is changing as the system grows I ⊗Z, I⊗2 ⊗Z, · · · . But this will not affect
the set of Bi on the system’s boundary.

Thus, for a more general case, we have the following

Corollary 6 (Saturated Boundary Set of Rescalable Local Hamiltonian). For the rescal-
able w-local Hamiltonian Hn, if there is only a constant number of non-geometrically local
terms in ∂Hn, then applying Gq

l for arbitrary q times, will result in a saturated set (∂Hn)Gl .

4.4 Scaling Consistency Condition for Real Time Evo-
lution

To prove the scaling consistency condition for real-time evolution, we need to find a series
expansion for our time-evolved observables. We first introduce the following notation of
commutators and anti-commutators.
Notation 1 (Adjoint). We denote the commutator for operator A,B as adA,−1(B) =
[A,B] = AB−BA, and the anti-commutator as adA,+1(B) = {A,B} = AB+BA, and for
σ = ±1, we denote adA,σ(B) = AB + σBA.

Then we have the following lemma due to linearity of the commutator and anti-
commutator.

Lemma 2 (Adjoint expansion). We can expand the adjoint of the sum of operators ∑n
i=1 Ai

with an operator B as following:

ad∑n

i=1 Ai,σ
(B) =

n∑
i=1

adA,σ(B) (4.45)

120

Proof. This is due to the linearity of the commutator and anti-commutator.

Furthermore, we can denote the composition of the adjoints as following
Notation 2 (Composition of Adjoints). We have the following notation for the adjoint of
the composition of operators

adA,σ(adB,σ(C)) = adA,σadB,σ(C) (4.46)
adk

A,σ(B) = adA,σ(adk−1
A,σ (B)) (4.47)

And we have the following lemma

Lemma 3 (Adjoint power). We can expand the power of the adjoint of the sum of operators∑n
i=1 Ai with an operator B as following:

adk∑n

i=1 Ai,σ
(B) =

∑
k1,··· ,kn

n∏
i=1

adAki
,σ = (

n∑
k=1

adAk,σ)k (4.48)

Proof.

adk∑n

i=1 Ai,σ
(B) (4.49)

= adk−1∑n

i=1 Ai,σ
(ad∑n

k1=1 Ak1 ,σ(B)) (4.50)

=
n∑

k1=1
adk−1∑n

i=1 Ai,σ
(adAk1 ,σ(B)) (4.51)

=
n∑

k1=1
· · ·

n∑
kn=1

(
k∏

i=1
adAki

,σ)(B) (4.52)

We can verify the correctness by checking for k = 2, n = 2, σ = −1, denote adA,−1 =
adA, we have

121

(adA1 + adA2)2 (4.53)
= ad2

A1 + ad2
A2 + adA1adA2 + adA2adA1 (4.54)

ad2
A1+A2(B) (4.55)

= adA1+A2(adA1+A2(B)) (4.56)
= adA1+A2(adA1(B) + adA2(B)) (4.57)
= adA1+A2(adA1(B)) + adA1+A2(adA2(B)) (4.58)
= ad2

A1(B) + adA2adA1(B) + adA1adA2(B) + ad2
A2(B) (4.59)

Lemma 4 (Adjoint of Tensor Product). The power of adjoint of tensor product of operators
adk

A⊗B,σ can be expanded as following:

adk
A⊗B,σ = 1

2k

∑
σ1,σ2,··· ,σk∈{+,−}

(
k∏

i=1
adA,σi

)⊗ (
k∏

i=1
adB,σσi

)

= 1
2k

(
∑

σi∈{+,−}
adA,σi

⊗ adB,σσi
)k

(4.60)

where adA ⊗ adB is defined as adA(X)⊗ adB(Y) = (adA ⊗ adB)(X ⊗ Y)

Proof. It can be checked that

adA⊗C,σ(B ⊗D) = 1
2
∑

σ=+,−
adA,σ(B)⊗ adC,σσ(D) (4.61)

by iterating this equation,

adA⊗C,σ(adA,σ1(B)⊗ adC,σσ1(D))

= 1
2

∑
σ2=+,−

adA,σ2(adA,σ1(B))⊗ adC,σσ2(adC,σσ1(D)) (4.62)

we can get
adk

A⊗C,σ(B ⊗D)

= 1
2k

∑
σ1,σ2,··· ,σk

(
k∏

i=1
adA,σi

)(B)⊗ (
k∏

i=1
adC,σσi

)(D)

= 1
2k

(
∑
σi

adA,σi
⊗ adC,σσi

)k(B ⊗D)

(4.63)

122

Lemma 5 (Lie-Trotter product formula [193]). For arbitrary operators A,B ∈ H(Cd)⊗n,
we have

exp[A+B] = lim
n→∞

(exp[A/n] exp[B/n])n (4.64)

where exp[A] = ∑∞
k=0

Ak

k! .

Lemma 6 (Baker-Campbell-Hausdorff formula [194]). For arbitrary operators X, Y ∈
H(Cd)⊗n, we have

exp[X]Y exp[−X] =
∞∑

k=0

1
k!ad

k
X,−(Y) (4.65)

Lemma 7 (Von Neumann’s trace inequality [195]). if A,B are complex n × n matrices
with singular values

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0, β1 ≥ β2 ≥ · · · ≥ βn ≥ 0 (4.66)

then
|tr(AB)| ≤

n∑
i=1

αiβi (4.67)

Equipped with the above lemmas, we can now prove an important series expansion for
the time-evolved observable that splits the observable into system and environment parts.
Although the following lemma can be seen as a variant of the Dyson series on operators.
To the best of our knowledge, we did not find a similar lemma in the literature. Thus, we
will introduce the proof of this lemma in the following.

Lemma 8 (Growing Dyson series). Given observable defined as OS ⊗OE where OS ∈ An

is the observable of the system and OE ∈ AN−n is the observable of the environment.
Providing the rescalable local Hamiltonian Hn = {Hn, ∂Hn, Rl}, denote the corresponding
growing operator as Gl

Gl[Hn] = Hn ⊗ I +
∑

Bi∈∂Hn

Bi ⊗Rl[Bi] + I⊗n ⊗K (4.68)

and total evolution time as T , we can expand the time-evolved observable OS(T)⊗OE(T)
as following:

exp{iTGl[Hn]}OS ⊗OE exp{−iTGl[Hn]} = lim
M→∞

∑
k

δk

2kk! (
M−1∑
m=0
TB(mδ))k(OS(T)⊗OE(T))

(4.69)

123

where δ = t/M , TB(t) = ∑
i,σ adBi(t),σ⊗adRl[Bi](t),−σ, and ∀t1 ≤ t2 ∈ R we define TB(t2)TB(t1) =

TB(t1)TB(t2), thus the product of T is time-ordered. And

OS(T) = exp{itH}OS exp{−itH}, OE(T) = exp{itK}OE exp{−itK}
Bi(t) = exp{itHn}Bi exp{−itHn}, R[Bi](t) = exp{itK}R[Bi] exp{−itK}

(4.70)

Proof. The proof uses previous lemmas to expand the operator onto system and envi-
ronment parts, then simplify the series by reorganizing the summation. First by using
Lemma 5, we divide our evolution into small time steps t/M

eitGl[Hn]OS ⊗OEe
−itGl[Hn] = lim

M→∞
(eit/MGl[Hn])MOS ⊗OE(e−it/MGl[Hn])M (4.71)

We can see this product as M steps of time evolution with time step δ = t/M .

lim
M→∞

eiδGl[Hn](eiδGl[Hn] · · · (eiδGl[Hn]OS ⊗OEe
−iδGl[Hn]) · · · e−iδGl[Hn])e−iδGl[Hn] (4.72)

Because δ → 0, we can move the terms only depending on the system or environment onto
the observables, leaving only the boundary terms in the time evolution.

eiδGl[Hn]OS ⊗OEe
−iδGl[Hn] = eiδ

∑
i

Bi⊗Rl[Bi]OS(δ)⊗OE(δ)e−iδ
∑

i
Bi⊗Rl[Bi] (4.73)

to further expand the boundary terms, using Lemma 6 we have

=
∑

k

(iδ)k

k! adk∑
i

Bi⊗Rl[Bi],−(OS(δ)⊗OE(δ)) (4.74)

and Lemma 4 we have

=
∑

k

(iδ)k

2kk! (
∑
i,σ

adBi,σ⊗adRl[Bi],−σ)k(OS(δ)⊗OE(δ)) =
∑

k

(iδ)k

2kk! T
k

B(0)(OS(δ)⊗OE(δ)) (4.75)

and because the product of T is time-ordered, we always do the multiplication in the order
of time steps, making the product commutative. Now, if we apply eiδGl[Hn]Xe−iδGl[Hn]

again, because e−itHn cancels eitHn , they can be merged into the time evolution of each
separate system. Resulting in the following

∑
k1,k2

(iδ)k1+k2

2k1+k2k1!k2!
T k2

B(0)T
k1

B(δ)(OL(2δ)⊗OR(2δ)) (4.76)

124

Because the product of T is commutative, reorganizing the summation index as k = k1 +k2
we have

=
∑

k

(iδ)k

2kk! (TB(0) + TB(δ))k(OL(2δ)⊗OR(2δ)) (4.77)

By re-using Equation (4.77) iteratively, we reach the general form

exp{itGl[Hn]}OS ⊗OE exp{−itGl[Hn]} = lim
M→∞

∑
k

δk

2kk! (
M−1∑
m=0
TB(mδ))k(OS(t)⊗OE(t))

(4.78)

Lemma 8 is exactly the series expansion we are looking for. Before proceeding into the
proof, we introduce the notion of multi-index for convenience.
Notation 3 (Multi-index). The multi-index sum and product are defined as the following∑

i
=

∑
i1,i2,··· ,ik∏

i
Ai = Ai1Ai2 · · ·Aik∑

i

∏
i
Ai =

∑
i1,i2,··· ,ik

Ai1Ai2 · · ·Aik

(4.79)

Now, we can check if summing up the components of the environment converges to a
value.

Definition 11 (Time-Ordered Boundary Correlator). Given a rescalable Hamiltonian
Hn = {Hn, ∂Hn, Rl} and an observable O and an initial state ρ on the current scale,
denote the corresponding growing operator as Gl, the total evolution time as T , we can
define the k-th order Time-Ordered Boundary Correlator (TOBC) as following:

⟨χi,t,σ(Sn, T)⟩ = ⟨χi,t,σ(ρ,Hn, O, T)⟩ = tr(ρ[T
∏
i,t,σ

adBi(t),σ]O(T)) (4.80)

where Sn is the corresponding rescalable system, Bi ∈ (∂Hn)Gl , t ∈ [0, T], σ ∈ {+1,−1},
and i, t, σ is a multi-index of size k. The product is time-ordered, i.e. adBi(t1),σ1adBj(t2),σ2 =
adBj(t2),σ2adBi(t1),σ1 for t1 > t2.

From a physics perspective, TOBC describes how the environment affects the system.
Higher order TOBC corresponds to longer-time, longer-distance correlations. It is derived
from the following theorem.

125

Theorem 4 (Real-time ϵ-scaling consistency). Given a w-local rescalable Hamiltonian
Hn = {Hn, ∂Hn, Rk} that has a saturated boundary set (∂Hn)Gl. If ∃ϵ > 0 for ρ =
ρS ⊗ ρE, O = OS ⊗OE and ∀i, t, σ such that∥∥∥⟨χi,t,σ(Sn, T)⟩ −

〈
χi,t,σ(f θ[Sn], T)

〉∥∥∥ ≤ ϵ (4.81)

then for N = n+ kq, the error of expectation pN [Gq
k[Sn]] =

〈
ρeitHNOe−itHN

〉
is bounded by

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵC exp

{
T
∥∥∥(∂Hn)Gl

∥∥∥C/2} (4.82)

where C is the maximum of max{∥R[Bi]∥∞ | Bi ∈ ∂Hn} and ∥OR∥∞.

Proof. Using Lemma 8 and Corollary 5 on Gq
l we have

exp(itGq
l [Hn])OS ⊗OE exp(−itGq

l [Hn]) =
∑

k

(iδ)k

2kk! (
M−1∑
m=0
TB(mδ))k(OS(T)⊗OE(T)) (4.83)

where Bi ∈ (∂Hn)Gl instead of ∂Hn, checking the k-th order, where the T on the right
denotes the products are time-ordered, we have

(
M−1∑
m=0
TB(mδ))k = T (

∑
i,m,σ

adBi(mδ),σ ⊗ adR[Bi](mδ),−σ)k (4.84)

we can expand the power of sum into the sum of tensor products on the system and
environment ∑

i,m,σ

T
∏

i,m,σ

adBi(mδ),σ ⊗ adR[Bi](mδ),−σ (4.85)

here, the multi-index notion is defined as the following∑
i,m,σ

T
∏

i,m,σ

Ai,m,σ =
∑

i1,i2,··· ,ik

∑
m1,m2,··· ,mk

∑
σ1,σ2,··· ,σk

T Ai1,m1,σ1Ai2,m2,σ2 · · ·Aik,mk,σk
(4.86)

applying the k-th order back to the observable OS(T)⊗OR(T), we obtained the observables
on the system and environment∑

i,m,σ

[T
∏

i,m,σ

adBi(mδ),σ(OS(T))]⊗ [T
∏

i,m,σ

adR[Bi](mδ),−σ(OE(T))] (4.87)

126

taking the expectation, the left-hand side of the tensor product is the k-th order TOBC,
which we assume to be bounded by ϵ, and the right-hand side is the observable on the
environment. Thus, we can write the expectation as

pN [Gq
k[Sn]] = tr([ρE ⊗ ρS] exp(itGq

k[Hn])[OS ⊗OE] exp(−itGq
k[Hn]))

=
∑

k

(iδ)k

2kk!
∑

i,m,σ

tr[ρST
∏

i,m,σ

adBi(mδ),σ(OS(T))] · tr[ρET
∏

i,m,σ

adR[Bi](mδ),−σ(OE(T))]

=
∑

k

(iδ)k

2kk!
∑

i,m,σ

⟨χi,m,σ(Sn, T)⟩ · tr[ρET
∏

i,m,σ

adR[Bi](mδ),−σ(OE(T))]

(4.88)
Next, because f θ only applies to the operators in the system, leaving the environment
untouched, we can write the error of expectation as∥∥∥pN [Gq

k[Sn]]− pN [(Gq−1
k ◦Dk)[Sn]]

∥∥∥ =∥∥∥∥∥∥
∑

k

(iδ)k

2kk!
∑

i,m,σ

(⟨χi,t,σ(Sn, T)⟩ −
〈
χi,t,σ(f θ[Sn], T)

〉
) · tr[ρET

∏
i,m,σ

adR[Bi](mδ),−σ(OE(T))]

∥∥∥∥∥∥
(4.89)

Using triangular inequality, we have∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤

∑
k

δk

2kk!

∥∥∥∥∥∥
∑

i,m,σ

(⟨χi,t,σ(Sn, T)⟩ −
〈
χi,t,σ(f θ[Sn], T)

〉
) · tr[ρET

∏
i,m,σ

adR[Bi](mδ),−σ(OE(T))]

∥∥∥∥∥∥
(4.90)

Because we assume the TOBC is bounded by ϵ > 0 and ∥a · b∥ = ∥a∥ · ∥b∥, we have

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵ

∑
k

δk

2kk!

∥∥∥∥∥∥
∑

i,m,σ

tr[ρET
∏

i,m,σ

adR[Bi](mδ),−σ(OE(T))]

∥∥∥∥∥∥
(4.91)

Notice that sum over all possible commutator and anti-commutator in ∑i,m,σ recovers the
product of operators in application order. Applying the triangular inequality again, we
have∥∥∥∥∥∥

∑
i,m,σ

tr[ρET
∏

i,m,σ

adR[Bi](mδ),−σ(OE(T))]

∥∥∥∥∥∥ ≤
∑
i,m

∥∥∥∥∥∥tr[ρET (
∏
i,m
R[Bi](mδ))OE(T)]

∥∥∥∥∥∥ (4.92)

127

Using Lemma 7 on the trace, we have∥∥∥∥∥∥tr[ρET (
∏
i,m
R[Bi](mδ))OE(T)]

∥∥∥∥∥∥ ≤
∑

a

αaβa (4.93)

where αa is the eigenvalues of ρE and ∑a αa = 1 by definition of density matrix, βa is the
eigenvalues of T ∏i,m,σ adR[Bi](mδ),−σ(OE(T)), taking the maximum of βa we have∥∥∥∥∥∥tr[ρET (

∏
i,m
R[Bi](mδ))OE(T)]

∥∥∥∥∥∥ ≤ βmax
∑

a

αa = βmax (4.94)

βmax is equivalent to the operator 2-norm of the operator, thus

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵ

∑
k

δk

2kk!
∑
i,m

∥∥∥∥∥∥T (
∏
i,m
R[Bi](mδ))OE(T)

∥∥∥∥∥∥
op

(4.95)

Next, we can replace the variable δ → δ
2 and rescale the environment HamiltonianK → 2K,

thus R[Bi](mδ)→ R[Bi](mδ/2) and OE(T)→ OE(T/2), this allows us to remove the factor
of 2k in the summation so that we can find the summation later, now we have

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵ

∑
k

(δ/2)k

k!
∑
i,m

∥∥∥∥∥∥T (
∏
i,m
R[Bi](mδ))OE(T)

∥∥∥∥∥∥
op

(4.96)

note that the Hamiltonian for R[Bi](mδ/2) and OE(T/2) here is 2K instead of K. Next,
we can use the sub-multiplicative of norm ∥AB∥ ≤ ∥A∥∥B∥ This allows us further to break
the product into the norm of each operator

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵ

∑
k

(δ/2)k

k!
∑
i,m
T (
∏
i,m
∥R[Bi](mδ/2)∥op)∥OE(T/2)∥op

(4.97)
Because time evolution is unitary, the norm of the operator is preserved, thus ∥R[Bi](mδ/2)∥op =
∥R[Bi]∥op, and ∥OE(T/2)∥op = ∥OE(T)∥op, thus if we have C = max{∥R[Bi]∥op | Bi ∈
∂Hn} and ∥OR∥op, we have

∥∥∥pN [Gq
k[Sn]]− pN [(Gq−1

k ◦Dk)[Sn]]
∥∥∥ ≤ ϵ

∑
k

(δ/2)k

k!
∑
i,m

Ck+1 (4.98)

128

Now we can sum over the multi-index i,m, the sum of m is Mk and the sum of i is |∂Hn|k,
thus we have
∥∥∥pN [Gq

k[Sn]]− pN [(Gq−1
k ◦Dk)[Sn]]

∥∥∥ ≤ ϵC
∑

k

(δM/2)k

k! (|∂Hn|C)k = ϵC exp
{
T
∥∥∥(∂Hn)G

∥∥∥C/2}
(4.99)

4.5 OLRG Algorithms

We have successfully relaxed the linearity constraint on the functions f θ
nq
, nq = n, n +

l · · · , N − l for a specific observable ON at N -site system. Since f θ
nq

can now be an ar-
bitrary operator map, it can act as the map between operator matrices, as well as the
map between operator expressions. This allows parameterized f θ

nq
or parameterized out-

put f θ
nq

[X] when the output is an expression. This leads to the classical and quantum
algorithms we introduce in this section.

One can then search for the optimal parameters for f θ
nq

or the output f θ
nq

[X]. For
special f θ

nq
or f θ

nq
[X], like the linear map in NRG and DMRG, the optimal point can be

identified directly. In the general case, we employ gradient-based optimization [196] to
search for optimal parameters θ. The gradient can be obtained using modern differentiable
programming frameworks [7, 10, 13, 90, 197–201] and their automatic differentiation algo-
rithms [4, 12, 121, 202, 203] that work not only on classical computers but also on quantum
devices. This leads to the following general variational algorithm (Algorithm 1) that starts
with a small system and iteratively enlarges the system until it reaches the target system
size (the blue blocks in Figure 4.3).

129

Algorithm 1 OLRG Algorithm

1. Input: a small system of n sites with the set of relevant operators Sn, and a classical
or quantum solver.

2. Applying the operator map f θ
n to the set of relevant operators Sn to obtain the set

of virtual operators f θ
n(Sn).

3. Sampling a batch of the index i, t, σ for the TOBCs χi,t,σ.

4. Evaluate the value χi,t,σ(Sn, T) by calling the solver.

5. Evaluate the value χi,t,σ(f θ
n(Sn), T) by calling the solver.

6. Evaluate the average error of the sampled TOBCs Ln =∑
i,t,σ

∥∥∥χi,t,σ(Sn, T)− χi,t,σ(f θ
n(Sn), T)

∥∥∥.
7. Enlarge the set of virtual operators and use it as the n + l-site relevant operators:
Sn+l = Gl(f θ

n(Sn)).

8. Reiterate from step 1, accumulating the loss function L ← L+Ln until reach target
system size N .

9. Optimize the loss function concerning the parameters of f θ
n. Compute the update ∆

of the parameters θ by calling an optimizer, e.g ADAM [196]. Applying the update
to parameters θ ← θ + ∆.

10. Repeat the above steps until the loss function converges.

The OLRG algorithm is a general variational algorithm that can be applied to both
classical and quantum systems. Before introducing more details about the operator map f θ

n

for the classical and quantum cases, to illustrate the algorithm further, we will go through
a concrete example of the algorithm in the context of calculating the real-time evolution
of the two-point correlation function ⟨Z1Z2⟩T in a 1D TFIM model. Starting from a 2-site
system, the relevant operators are S2 = {H2, B2 = IZ, ρ2 = |00⟩ ⟨00| , O2 = ZZ}. Applying
our operator map f θ

2 we have f θ
2 [S2] = {f θ

2 [H2], f θ
2 [IZ], f θ

2 [|00⟩ ⟨00|], f θ
2 [ZZ]}, then we can

sample a batch of indices i, t, σ with batch size b, evaluate the TOBCs by solving the
Heisenberg equation of IZ, ZZ for the 2-site system. One must save the checkpoints at t

130

for the boundary operator IZ. This allows us to calculate the loss function

L2 = 1
b

∑
i,t,σ

∥∥∥χi,t,σ(S2, T)− χi,t,σ(f θ
2 (S2), T)

∥∥∥. (4.100)

This batch of sampled TOBCs is usually referred as the mini-batch in deep learning. The
size of this batch is a crucial hyperparameter controlling the variance of the gradient and
thus impacts the optimizer’s behavior. When b = 1, the algorithm is called Stochastic
Gradient Descent (SGD), and when b is all the TOBCs, the algorithm is plain gradient
descent. Then, assuming we are taking the simplest growing strategy that grows the system
by 1 site at each step, we can grow the relevant operators using G1, resulting in a new set
of relevant operators S3 = {H3, B3, ρ3, O3} defined as,

H3 = G1[f θ
2 [H2]]

= f θ
2 [H2]⊗ I + f θ

2 [B2]⊗ Z + I ⊗ (h ·X)
B3 = I ⊗ Z
ρ3 = f θ

2 [|00⟩ ⟨00|]⊗ |0⟩ ⟨0|
O3 = f θ

2 [O2]⊗ I.

(4.101)

Here, we assume f θ
2 [I] = I, thus applying I without calculating f θ

2 [I] in B3. I automatically
adjusts to the size of the corresponding system, e.g. B3 = I ⊗ Z; I should share the same
size as f θ

2 [ZZ], and in O3, I should share the same size as |0⟩ ⟨0|. Then we can repeat the
previous steps to obtain L3, and S4 until we get L10 and S10. We then calculate the total
loss as L = L2 + · · · + L10. Finally, we can differentiate the loss function L with respect
to the parameters θ and update the parameters θ using a gradient-based optimizer. This
is called one epoch of the algorithm. We can repeat the above steps until the loss function
converges.

However, this training process directly optimizes towards a target observable at time
T . If one is interested in the time points 0 ≤ t1 ≤ t2 ≤ · · · ≤ T , a transfer learning [204]
strategy can be employed. We can optimize the parameters θ at the first time point t1
resulting in the optimized parameters θt1 . Then, we use θt1 as the initial point for opti-
mizing t2, and so on. This method is similar to the strategy employed in other variational
algorithms, such as MPS TDVP and time-dependent VMC [205–208]. However, in our
setup, the parameters θ do not always represent an explicit state. In other variational
algorithms, the states are passed through to the next time point explicitly by evolving in
the parameter space. In our setup, the states are implicitly passed through as the param-
eters θ. In special cases, an explicit state can be constructed from f θ

nq
, which results in a

131

similar algorithm as MPS TDVP. This therefore leads to potential improvements of the
MPS TDVP algorithm to address long-time correlations. The detailed relation between
this transfer learning strategy and the MPS TDVP algorithm is discussed in Section 4.9.5.

Based on how one defines f θ
nq

and the representation of operators, the general algorithm
can find different applications. In the following, we will introduce two specific algorithms for
the classical and quantum case. For the classical case, we will use f θ

nq
as a parameterized

OMM. For the quantum case, we will use f θ
nq

as a map from the problem Hamiltonian
expression to the device Hamiltonian expression with parameters, namely HEM.

4.5.1 Classical Algorithm: Operator Matrix Map

The simulation challenge is more pronounced in real-time dynamics on conventional com-
puters than in ground state, where no efficient classical algorithm is known for simulating
the general real-time evolution of a quantum system. This further motivates the devel-
opment of previous variational frameworks for real-time dynamics by employing a varia-
tional ansatz to model the system’s state and subsequently evolving this ansatz over time
by optimizing the variational parameters through the TDVP [205–207]. Born from the
development of DMRG, the MPS TDVP is the most successful strategy for solving 1D
many-body physics. A holy grail of the field is to find an algorithm that performs as well
in D > 1, with contenders like Tensor Network State (TNS) [151–164] and neural network
states (NNS) [208–222] continually making progress.

Our approach mirrors the workflows of NRG and DMRG but relaxes the linearity
constraint on the operator map f θ

nq
, allowing for a more expressive operator map. We

also propose a loss function that directly minimizes the error of the target property, thus
allowing us to use the same workflow for real-time dynamics. This is achieved by optimizing
the error of the TOBCs, as detailed in Section 4.2.2.

In the same spirit as DMRG, we design f θ
nq

as a parameterized compression function
OMMθ

nq
[X] of the operator matrices X and parameters θ. However, if OMMθ

nq
[X] is

a dense linear function with a fixed size, the operator map is equivalent to an MPS,
thus providing no advantage in expressiveness over MPS. From a physics perspective,
approximating a larger pure system using a smaller pure system is not always possible.
On the other hand, from the expressiveness perspective, the sum of matrix product states
requires exponentially more parameters to represent the same state, despite that in certain
cases when the tensors contain more structure, one can further compress the MPS via
singular value decomposition [155]. Both suggest that letting OMMθ

nq
[X] be an ensemble

of linear maps, which creates an ensemble of small pure systems, will be more expressive.

132

This shares the idea of using an ensemble of MPS generated by a recurrent neural network
to represent the wave function in VMC [223]. In summary, instead of generating a single
set of relevant operators from input Sn, we will generate an ensemble of relevant operators
sampled by a probability based on the input Sn. Starting from z copies of the pure system,
we can sample a single set of relevant operators from each copy and then forward them
to the next step. This allows us to sample a chain of ensemble systems while growing the
system size. For example, in our previous 1D TFIM example, we can start with 10 copies
of the 2-site system S2, then applying OMMθ

2 to each copy will sample a corresponding
OMMθ

2[S2]. This results in 10 sets of relevant operators OMMθ
2[S2] based on a probability

distribution defined by OMMθ
2. The loss function L2 is instead evaluated as the average

the sampled index batch b of these 10 systems

L2 =
1

10b
∑
S2

∑
i,t,σ

∥∥∥χi,t,σ(S2, T)− χi,t,σ(OMMθ
2[S2], T)

∥∥∥. (4.102)

Then, we can apply G1 to the 10 sets of relevant operators to obtain the ensemble of 3
sites. Other steps stay the same as the general algorithm.

133

X 𝒩(0, 1)

QR

𝑉 †𝑋𝑉

𝑆𝑛

𝐺𝑙
𝑆𝑛+𝑙

Figure 4.6: Illustration of neural OMM. X is a batch of input relevant operators, QR is the
QR decomposition, V †XV is a batch of output relevant operators by applying the batch
of isometric matrices onto X. Gl is the growing operator, Sn is the input set of relevant
operators and Sn+l is the output set of relevant operators

Treating f θ
nq

as a compression function from an input operator matrix to an output
operator matrix aligns well with the idea of generative models in deep learning, where the
model generates a set of outputs from a given input and a noise, which models a condi-
tional probability distribution. For readers familiar with computer vision, this problem is
similar to an image compression, generation, or manipulation problem, where we generate
a new image based on an input image. Under this context, the linear map in NRG and
DMRG can be seen as a similar method of principal component analysis (PCA) for image
compression [224]. More modern image generation in deep learning utilize more powerful
generative models including Generative Adversarial Networks (GANs) [185], Variational
AutoEncoders (VAEs) [225], normalizing flows [226, 227] and diffusion models [228, 229].

In our demonstration, For simplicity, we use the same neural network for each step of
the OLRG, thus OMMθ

nq
= OMMθ. This requires the compression function always reduce

134

the size from 2n+l × 2n+l to 2n × 2n to match the input size for next OLRG step. As
depicted in Figure 4.6, we employ the simplest toy neural network architecture used in
GAN [185] that takes the operator matrix X and a noise vector z sampled from Gaussian
distribution N (0, 1) as input and generates an isometric matrix V as output. The isometric
matrix V then applies to the operator matrix X to generate the transformed operator. This
guarantees the function does not change I and the trace of the operator. Thus, it may have
better numerical stability. In the following, we denote this operator map as OMMθ(X, z).
The neural network part of the operator map is a feed-forward neural network (FFNN)
using ReLu [230, 231] activation, each layer layeri(x) defined as following

layeri(x) = ReLU(Wix + bi), (4.103)
where Wi and bi are the weight matrix and bias vector of the i-th layer. The neural
network’s input is the operator matrix reshaped into a vector concatenated with the noise
vector sampled from the Gaussian distribution. The neural network’s output is reshaped
into a square matrix and then performs QR decomposition to generate an isometric matrix
V . Then V is applied to the input operator as V †XV .

In evaluating the loss function, the exact solver for solving TOBCs is an ODE solver.
Thus, because the same OMMθ

nq
is shared as OMMθ between OLRG steps Dl, the auto-

matic differentiation needs to go through an ODE solver. Practically, this differentiation
is typically achieved using the adjoint method, as detailed in various sources [14, 121, 232–
234]. If OMMθ

nq
is not shared then only trivial linear algebra rules are needed for automatic

differentiation.
We opted for a product state as the initial state, primarily due to the clear and well-

defined nature of the growing operator in this context. This decision was influenced by
the straightforward representation of a n+k-site product state as a composition of smaller
system product states. For instance, a n+ k-site zero state can be written as the following
composition of a smaller system and thus defines its growing operator:

Gk(|0 · · · 0⟩ ⟨0 · · · 0|︸ ︷︷ ︸
n sites

) = |0 · · · 0⟩ ⟨0 · · · 0|︸ ︷︷ ︸
n sites

⊗ |0 · · · 0⟩ ⟨0 · · · 0|︸ ︷︷ ︸
k sites

. (4.104)

It is unclear how to write a n+ l-site state for a non-trivial state as the composition of
smaller system states. Intuitively, MPS might be suitable for constructing such a formalism.

4.5.2 Quantum Algorithm: Hamiltonian Expression Map

An alternative approach to simulate the real-time dynamics of quantum many-body sys-
tems is to use a quantum computer. The development of quantum simulation [31, 235–237]

135

demonstrated that a quantum computer can efficiently simulate the real-time evolution of
a quantum system. While algorithms based on Hamiltonian simulation [34–36, 238–241]
have been proposed with rigorous bounds and polynomial complexity, the resource re-
quirement [242] of these algorithms is beyond the capabilities of NISQ computers [65]. For
example, the requirement of circuit depth and noise level are still beyond the capabilities
of current devices [40, 104, 105, 182, 243]. As a result, heuristic algorithms such as vari-
ational quantum algorithms VQA) [37, 39, 66, 71, 72, 244–262] have been proposed for
near-term devices. Notably, digital, analog, and logical resources typically coexist in near-
term devices. Evidence in digital-analog quantum algorithms (DAQA) [263–265] show the
potential advantages of using the entire device capabilities. Yet, achieving practical quan-
tum advantage remains an open problem for these heuristic algorithms. These challenges
motivate us to search for an alternative framework that can inherit the advantages of the
above frameworks and potentially lead to different perspectives on the simulation problem.

In our quantum algorithm, because one can utilize real quantum dynamics, the storage
complexity is no longer a concern. Instead, the main objective is to translate the problem
of Hamiltonian dynamics into the dynamics of the quantum device. This involves finding
the appropriate control parameters of the device Hamiltonian that can closely replicate
the dynamics of the problem Hamiltonian. Rather than viewing f θ

nq
as an Operator Ma-

trix Map, f θ
nq

= HEMnq now maps the input expression of a Hamiltonian into device
Hamiltonian expression at each system size nq = n, n + l, · · · , N , leaving other opera-
tors untouched. The expressions are parameterized by control parameters in the device
pulse sequence. The process begins with the relevant set of operators for n-site problem
Sn = {Hn, B

i
n, ρn, On}, applying HEMn, we have HEMn[Sn] = {Hdev

n (θn, tn), Bi
n, ρn, On}.

Hdev
n (θn, tn) is the device Hamiltonian with control parameters θn and an input time tn.

Thus the effect of HEMn is swapping the operator expression from Hn to Hdev
n (θn, tn). Then

we can sample a batch of indices i, t, σ with batch size b, evaluate the TOBCs by running
a classical solver for the problem Hamiltonian and the device Hamiltonian to compute
the first loss function Ln. Next, applying the growing operator Gl on HEMn[Sn] result in
Sn+l = {Hn+l, Bn+l, ρn+l, On+l}, where Bn+l, ρn+l, On+l stays the same as problem system,
and Hn+l is defined by following,

Hn+l = Gl[Hdev
n (θn, tn)]

= Hdev
n (θn, tn)⊗ I +

∑
i

Bi
n ⊗Rl(Bi

n). (4.105)

From the second step, we can evaluate the TOBCs for the dynamics described by Hn+l

using the quantum device. If l ≪ n, then a large component of the dynamics is governed
by the device Hamiltonian. We can then use a product formula, such as trotterization to

136

simulate the dynamics of Hn+l using the quantum circuit depicted in Figure 4.7. Each
trotter step results in the following unitary

exp
(
−iδGl[Hdev

n (θn, tn)]
)

= [exp
(
−iδHdev

n (θn, tn)
)
⊗ I] ·

∏
i

exp
(
−iδBi

n ⊗Rl(Bi
n)
)
.

(4.106)

137

𝑈𝐺𝑛+𝑙 𝑈𝐺𝑛+𝑙 𝑈𝐺𝑛+𝑙 𝑈𝐺𝑛+𝑙 𝑈𝐺𝑛+𝑙

𝑈dev𝑛
𝐵1 𝐵2 ⋯ 𝐵𝐿

𝑈dev𝑛0 𝑈dev𝑛0 𝑈dev𝑛0 𝑈dev𝑛0 𝑈dev𝑛0

I L I K E

D U C K R G B E T T E R

T H A N O L R Gclassical emulation
of 𝑛0-site dynamics

𝑈dev𝑛+𝑙 𝑈dev𝑛+𝑙 𝑈dev𝑛+𝑙 𝑈dev𝑛+𝑙 𝑈dev𝑛+𝑙

analog analog+digital digital

HEM

𝐺𝑙

𝑆𝑛0+𝑙

𝐺𝑙

𝑆𝑛+2𝑙

𝐺𝑙

𝑆𝑛

HEM

(a) initialization step

(b) recursive step

Figure 4.7: Illustration of HEM. (a) In the initialization step, HEM maps the emulation
of n0-site problem Hamiltonian dynamics into the n0-site device Hamiltonian dynamics.
Then the device dynamics is used to build grown system Sn0+l, forwarding to recursive
steps; (b) In recursive steps, HEM maps dynamics UG

n+l = exp
[
−itGl[Hdev

n]
]

to the device
Hamiltonian dynamics Udev

n+l = exp
[
Hdev

n+l

]
. Bi are the w-qubit digital gates, L =

∥∥∥(∂Hn)Gl

∥∥∥
is the size of saturated boundary. Udev

n is the dynamics of n-site device Hamiltonian.

138

If the problem system is w-local, then Bi
n ⊗ Rl[Bi

n] only applies on w qubits. Thus,
the circuit only requires w-qubit high-quality gates at the boundary of the n-site system.
Next, we can evaluate the TOBCs for the dynamics described by Gl[Hdev

n (θn, tn)] and
Hdev

n+l(θn+l, tn+l) to obtain the next loss function Ln+l. Other steps stay the same as the
general algorithm. In summary, the quantum device here plays the role of an exact solver,
and HEMnq generates the parameterized device Hamiltonian expressions. The control
parameters in the device Hamiltonian expressions are optimized to minimize the error of
the target property.

Like previous, we explain this algorithm by simulating the real-time dynamics of two-
point correlation function ⟨Z1Z2⟩T in 1D TFIM using a Rydberg atom device, as described
in recent experimental demonstrations [104, 105]. The 2-level Rydberg Hamiltonian is
defined as follows

Hryd
n (θn, tn)

=
∑
⟨i,j⟩

V θn
ij ninj + Ωθn(tn)

∑
i

Xi −∆θn(tn)
∑

i

ni
(4.107)

where V θ
ij denote the strength of interaction, and Ωθ(t) and ∆θ(t) are two time-dependent

functions, commonly called pulse functions. Note that the 2-level Rydberg Hamiltonian is
not universal and thus is restricted in the expressiveness of representing arbitrary dynamics.
We begin with the set of relevant operators for the 2-site system S2 = {H2, B2 = IZ, ρ2 =
|00⟩ ⟨00| , O2 = ZZ}, where H2 is the 2-site TFIM Hamiltonian with h = 1.0. We use two
FFNNs as the parameterized pulse function Ωθ(t) and ∆θ(t) and another FFNN represent-
ing the strength V θ

i,j so that the effective duration of the device can be controlled. Thus
our HEMnq now maps a given Hamiltonian to a 1D Rydberg Hamiltonian with the pulse
functions V θ

i,j, Ωθ(t) and ∆θ(t). We first run a classical ODE solver to evaluate the TOBCs.
This results in the same loss function in Equation (4.100), where χi,t,σ(HEM2(S2), T) is
the TOBCs for the 2-site parameterized Rydberg Hamiltonian. Next, we apply the growing
operator G1 to the 2-site parameterized Rydberg Hamiltonian to obtain the set of relevant
operators for the 3-site system S3 = {H3, B3, ρ3, O3}, where,

H3 = G1[Hryd
2 (θ2, t2)]

= Hryd
2 (θ2, t2)⊗ I +B2 ⊗ Z + I ⊗ (h ·X)

B3 = I⊗2 ⊗ Z
ρ3 = |000⟩ ⟨000|
O3 = ZZ ⊗ I.

(4.108)

Next, we apply HEM3 on S3 result in
HEM3[S3] = {Hryd

3 (θ3, t3), B3, ρ3, O3}. (4.109)

139

The TOBCs for HEM3[S3] can be evaluated on a standard analog Rydberg atom device.
We use the circuit in Figure 4.7 to evaluate the TOBCs of H3 = G1[Hryd

2 (θ2, t2)]. Each
trotter step results in the following unitary

exp
(
−iδG1[Hryd

2 (θ2, t2)]
)

=[exp
(
−iδHryd

2 (θ2, t2)
)
⊗ I]·

[I ⊗ exp(−iδZ ⊗ Z)]·
[I⊗2 ⊗ exp(−iδh ·X)].

(4.110)

Denote UG(t) = exp
(
−itG1[Hryd

2 (θ2, t2)]
)
. We can write down the 1st order TOBC〈

χi,t,{−}
〉

as an example of the full circuit〈
χi,t,{−}

〉
(S3, T)

= tr
[
ρ3UG(t2)†Z3UG(T − t2)†Z1Z2UG(T)

]
−

tr
[
ρ3UG(T)†Z1Z2UG(T − t2)Z3UG(t2)

]
.

(4.111)

After obtaining the TOBCs for S3, we can calculate the loss function L3 and repeat
the steps until we reach our target size. Like the general algorithm, we optimize the total
loss function until convergence to search for the optimal pulse functions. The HEM-based
OLRG is not limited to the product state because the operator map HEMnq does not
alter the state operator. Thus, we do not need an explicit growing operator for the state
operator.

Through HEM, OLRG allows us to leverage large analog and a few digital resources.
Moreover, by adjusting the l in the growing operator, we can trade off the digital-analog
resources. For example, if we grow the system by 1 site at each step, the algorithm is closer
to a VQA, and if we grow the system by 1≪ l sites at each step, the algorithm is closer to a
product formula. Lastly, OLRG also bridges classical algorithms for simulating dynamics in
the first step. Instead of competing with classical algorithms, HEM-based OLRG allows us
to use the results from classical algorithms in n-site system as a starting point and then use
the quantum device to grow into N -site system where n < N . Thus, improvements in the
first-step classical simulation will improve HEM-based OLRG, allowing both communities
to push the limits of quantum dynamics simulation together.

4.5.3 Error and Resource Estimation

Theoretically, the source of error in our framework originates from the estimation and
optimization of the e2e-style loss function, as well as the expressiveness of operator maps.

140

This aligns with e2e learning. However, it is important to note that the error bound
presented in Theorem 2 is not a tight bound. In practice, it intends to predict a large
error. Combined with the truncation error arising from estimating the series expansion,
the actual error estimation is often inaccurate in our current algorithm. The primary
purpose of the theorem is to direct us toward defining a systematically improvable loss
function rather than to provide an exact error estimation. A more precise error estimation
requires finding a tighter bound in Theorem 2. We discuss intuitions and potential methods
to improve this in Section 4.9.1.

In the OMM-based OLRG, denote the time complexity of the evaluation of OMM as
WOMMθ and the time complexity of the small-system solver as Q, for L growing steps, the
time complexity of evaluating the loss function is O(L(WOMMθ +2Q)). The time complexity
of evaluating the derivative of the loss function depends on whether OMMθ is shared
between different scales. We denote the time complexity of differentiating the operator
map evaluation as W ′

OMMθ and the adjoint method as Q′. Heuristically, Q′ = 2Q [14].
Thus, if OMMθ is shared, the time complexity of evaluating the derivative of the loss
function is O(L(W ′

OMMθ + 2Q′)) ≈ O(L(W ′
OMMθ + 4Q)). However, if OMMθ is not shared,

then there is no need to differentiate through the exact solver. The time complexity
becomes O(LW ′

OMMθ). In terms of storage complexity, aside from the batch and sampling
size, we denote the storage complexity of evaluating OMMθ as SOMMθ . If OMMθ is shared,
since the pure system ODE is reversible, the best algorithm solving the derivative has a
constant overhead by using reversibility [4, 14]. We denote this constant overhead as CQ.
The total storage complexity is only O(SOMMθ + CQL). However, if OMMθ is not shared,
the storage complexity becomes O(LSOMMθ). Thus, in the OMM-based OLRG, one can
trade storage for time complexity and vice versa by deciding how many OMMθ are shared.
For simplicity, we do not discuss the complexity of estimating the k-th order TOBCs in
the OMM-based OLRG here because it only requires O(k) times matrix multiplication in
the small system. When considering the batch and sampling size, they create a constant
factor over the time and storage complexity. It is worth noting that the overhead created
by batch and sampling size can be easily reduced by parallelization and distributed storage
due to their simplicity. This fits well into the modern processor architecture designed for
single-program-multiple-data SPMD) [61, 266].

In HEM-based OLRG, the classical computation components are relatively cheaper.
Thus, we focus on discussing the cost of quantum operations. Because our algorithm
involves analog circuits, we use the effective pulse duration (i.e., the scaling of the pulse
duration to execute the circuit) as the measure instead of using circuit depth. We assume
that the optimization only creates a constant prefactor in terms of the pulse duration for

141

simulating Gl(Hn) as Cθτ(
∥∥∥(∂Hn)Gl

∥∥∥). Cθ is the overhead caused by variational optimized
pulse sequence. τ(

∥∥∥(∂Hn)Gl

∥∥∥) is the overhead caused by product formula, e.g. for 1st-order
trotterization τ(

∥∥∥(∂Hn)Gl

∥∥∥) =
∥∥∥(∂Hn)Gl

∥∥∥. And there are M ≫ 1 checkpoints and total
time T , for evaluating one k-th order TOBC using 1st-order trotterization, the average
effective pulse duration is O(Cθ

∥∥∥(∂Hn)Gl

∥∥∥kT) and the worst effective pulse duration is
O(2Cθ

∥∥∥(∂Hn)Gl

∥∥∥kT).
Denote the checkpoints for k-th order TOBC as t1, · · · , tk, and assuming the constant

overhead in product formula for implementing O(
∥∥∥(∂Hn)Gl

∥∥∥) number of w-qubit gates
result in total. The total effective pulse duration is O(Cθτ(

∥∥∥(∂Hn)Gl

∥∥∥)t) for the evolution
exp

{
−itGl(Hdev

n)
}
. Cθ is the overhead due to variational optimized pulse in effective pulse

duration. The prefactor τ(
∥∥∥(∂Hn)Gl

∥∥∥) depends on the product formula, e.g for 1st-order
trotterization τ(

∥∥∥(∂Hn)Gl

∥∥∥) =
∥∥∥(∂Hn)Gl

∥∥∥. Thus the total effective pulse duration for a
single k-th order TOBC with 1st-order trotterization is Cθ

∥∥∥(∂Hn)Gl

∥∥∥(2t1 + 2t2 + · · ·+ tk +
T − tk + T) = Cθ

∥∥∥(∂Hn)Gl

∥∥∥(2T + 2∑k−1
i=1 ti). The worst case effective pulse duration is

O(2Cθ

∥∥∥(∂Hn)Gl

∥∥∥kT). Because we are sampling b TOBCs for each loss function, we now
analyze the average effective pulse duration for a single loss function. For M checkpoints,
the average effective pulse duration is Cθ

∥∥∥(∂Hn)Gl

∥∥∥2T +2
∑k−1

i=1 ti

Mk thus summing over all the
k-th order TOBCs, we have

∑
t1,··· ,tk

2T + 2∑k−1
i=1 ti

Mk
=

∑
t2,··· ,tk

2MT + 2(T (1 +M)/2 +M
∑k−1

i=2 ti)
Mk

=
∑

t3,··· ,tk

2M2T + 2(TM(1 +M)/2 + TM(1 +M)/2 +M2∑k−1
i=3 ti)

Mk

= 2MkT + (k − 1)TMk−1(1 +M)
Mk

= (2 + (k − 1)1 +M

M
)T

(4.112)
Taking M ≫ 1, we have the average effective pulse duration as O(Cθ

∥∥∥(∂Hn)Gl

∥∥∥(k+1)T) =
O(Cθ

∥∥∥(∂Hn)Gl

∥∥∥kT) when using 1st order trotterization. This removes n from the effective
pulse duration when comparing to pure trotterization. However, this does not mean we
break the optimal bounds such as [241]. Part of the complexity is moved into Cθ which
becomes heuristic.

Due to our Hamiltonian has a large component of the dynamics governed by the device
Hamiltonian, there is no dependencies of the total number of sites N in the effective

142

pulse duration. However, this does not mean we break existing gate depth bounds [241].
This complexity is moved into Cθ. Further analysis is required to understand Cθ in our
effective pulse duration after reaching the optimal point. As for the digital resources, our
HEM circuit requires O(

∥∥∥(∂Hn)Gl

∥∥∥T) digital gates on w qubits at the boundary depicted
in Figure 4.7.

Next, we discuss the complexity of shots. For each k-th order TOBC, there are O(2k)
expectations to evaluate. Thus for batch size b there are O(b2k) expectations to evaluate.
Assuming each expectation requires E shots for L growing steps, the total number of
shots required is O(bLE2k). Last, without loss of generality, we discuss the complexity of
evaluating the gradients using the parameter shift rule or finite difference. For other ways
of evaluating the gradients [267, 268], one can derive in the same fashion. The complexity
of evaluating the gradient of the loss function using finite difference depends on the number
of parameters in device Hamiltonian, such as the Ω and ∆ in our Rydberg Hamiltonian
case. The rest of the parameters in the classical pulse function can be calculated via
classical automatic differentiation. Thus, for P parameters in device Hamiltonian, we
require O(bLEP2k+1) shots in total.

4.6 Transforming Time-dependent Hamiltonians

The representation of a time-dependent Hamiltonian can be written as a sum of different
time dependencies

H(θ, t) =
n∑

i=1
βi(θ, t)Hi (4.113)

where βi(θ, t) is the time-dependent coefficient of a constant HamiltonianHi optionally with
parameters θ. There are many ways to transform this Hamiltonian expression into another
time-dependent Hamiltonian. However, different ways of transformation may result in
different computational costs and may result in loss of information. For example, one
may directly transform the matrix of H(t) given the time t as f θ[H(t)]. However, this
requires evaluation of the entire f θ[H(t)] within the ODE solver, thus can be expensive.
In the context of jax, the compiler cannot identify runtime-created closure. This can also
easily lead to memory leak due to repeated runtime compilation of the same function 1.
A different approach is to map the constant components ahead of time. This approach is
more efficient regarding runtime because fewer matrix operations are required within the

1See also the jax issue: https://github.com/google/jax/issues/16226

143

https://github.com/google/jax/issues/16226

ODE solver loop. Thus we can define f θ[H(t)] as follows

f θ[H(θ, t)] =
n∑

i=1
g[βi(θ, t)]h[Hi] (4.114)

where g : R → R is a function modifies the output of βi(θ, t), and h : A → A is a
function of the constant components. This approach only requires evaluation of the time-
dependent coefficients within the ODE solver. Thus, this is cheaper compared to the
previous approach when simulating classically. For OMM, this map can be written as

OMMθ
n[H(t)] =

n∑
i=1

βi(t)hθ[Hi] (4.115)

where hθ is the compression function that compresses the constant components of the
Hamiltonian. We do not alter βi(t) here because the time-dependent coefficients can be
adjusted by hθ in the classical case.

This also allows direct transform between Hamiltonian expressions from pulse param-
eters to pulse parameters. In our OMM demonstration, because the TFIM Hamiltonian
is constant, we only use a single h[Hi]. In our NEM demonstration, because we always
map the constant Hamiltonian to a Rydberg Hamiltonian, thus the transform is defined as
follows

HEMn[Gl(Hryd
n (θn, tn))] = g1(θn, tn)

∑
i

nini+1 + g2(θn, tn)
∑

i

Xi + g3(θn, tn)
∑

i

ni (4.116)

where we simplified the map from g(βi(θ, t)) to gi(θ, t) and set h to map constant compo-
nents from Gl(Hryd

n (θn, tn)) to the constant components of the Rydberg Hamiltonian. Here
because h is a deterministic function, it contains no parameters.

4.7 Results

To illustrate the convergence of OLRG as a variational principle and the associated classi-
cal and quantum algorithms, we applied our algorithm to the TFIM model as previously
discussed. We investigated various hyperparameters to understand the algorithm’s perfor-
mance better. The implementation is available at the author’s GitHub repository as an
early-stage Python package [187]. Additionally, for other hyperparameters and training
dynamics, we discuss the training dynamics in Section 4.8.1 for different orders of loss
functions. For other hyperparameters without much impact on our reported results, we in-
clude the extra results in tuning batch and sampling sizes in Section 4.8.2 and the training
using different step sizes of checkpoints in Section 4.8.3.

144

4.7.1 OMM

For our implementation of OMM, we initialize the system size at n = 4 and aim for a target
system size of N = 10, setting the field parameter at critical point h = 1.0. The initial state
is ρ0 = |0000⟩. The results of observable predictions are taken at the epoch with minimum
moving average loss of window size 10. OMM is implemented by a neural network as
discussed in Section 4.5.1, referred to as neural OMM in the following. The loss function is
optimized via the gradient obtained from the adjoint method via jax.experimental.ode.
The simulation utilizes only a single GPU. Our results are obtained from various different
GPUs, including P100, V100, and A100.

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
order 0

order 1
order 2

order 3

Figure 4.8: Comparison of OMM optimized at different loss function orders. (a) two-point
correlation function ⟨Sz

1S
z
2⟩; (b) The relative error of the two-point correlation function

⟨Sz
1S

z
2⟩.

We first evaluate the performance of loss functions at different TOBC orders. Theoret-
ically, increasing the order should enhance the precision of the loss function in estimating
discrepancies, thus resulting in better performance. To test this, we measure the relative
error of the time-evolved two-point correlation function ⟨S1

zS
2
z ⟩t against the exact result. In

our study, the depth of neural OMM is 8. We train the neural OMM with 6000 epochs at
each time point, starting from randomly initialized parameters. As depicted in Figure 4.8,

145

we observed that at short-time intervals, the order of the loss function does not significantly
impact the results. However, at longer times, the 0-order and 1-order loss functions failed
to produce the correct results in the OMM-based OLRG.

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
depth 2

depth 4
depth 6

depth 8

Figure 4.9: Comparison of different depths of the neural network in OMM optimized with
2nd order loss function. (a) The two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative

error of the two-point correlation function ⟨Sz
1S

z
2⟩.

In neural OMM, the depth of the neural network corresponds to the expressiveness of
the operator map. As depicted in Figure 4.9, we find that the depth of the neural network
influences the relative error as well as the speed of convergence as shown in Figure 4.10.
Deeper networks tend to converge faster and with a lower relative error. This is likely
because deeper networks are more expressive and have better local minimums, thus allowing
the algorithm to converge to a better solution faster.

146

0 1000 2000 3000 4000 5000 6000
training epoch

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

depth 2 depth 4 depth 6 depth 8

Figure 4.10: The loss function of different depths of neural OMM with 2nd order loss
function at T = 2.0 with a moving average of window size 5.

4.7.2 HEM

For our implementation of HEM, we initialize the system size at n = 2 and aim for a
target system size of N = 6, setting the field parameter at critical point h = 1.0. The
initial state is chosen as ρ0 = |0 · · · 0⟩. The results of observable predictions are taken at
the epoch with the minimum moving average loss with window size 10. We use a 2-level
Rydberg Hamiltonian as the target device Hamiltonian. The pulse function is represented
by a small feedforward neural network that takes the clock t as input and returns the
corresponding pulse value at time t. The simulation of the HEM algorithm is conducted on
a single CPU. The loss function is also optimized via the gradient obtained from the adjoint
method via jax.experimental.ode. In practice, the gradient could also utilize quantum
gradient [68, 126, 267–269], finite difference, or other optimization algorithms suitable for
the real device.

147

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
order 0

order 1
order 2

order 3

Figure 4.11: Comparison of HEM optimized at different loss function orders. (a) The
two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative error of the two-point correlation

function ⟨Sz
1S

z
2⟩.

We also evaluate the performance of HEM at different orders of the loss function. As
depicted in Figure 4.11, similar to the classical algorithm, we observe that at short-time
intervals, the order of the loss function does not significantly impact the results. At longer
times, the 0-order loss functions drifts more from the exact result. However, the 3-order
loss also drifts in t = 1.9, 2.0. We suspect this is due to insufficient optimization, because
higher orders requires optimizing more discrepancies.

148

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact width 2 width 4 width 6 width 8

Figure 4.12: Comparison of the HEM optimized at different widths of neural networks
with depth 4. (a) The two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative error of the

two-point correlation function ⟨Sz
1S

z
2⟩.

For HEM, the expressiveness of representing a quantum dynamical process is mainly
provided by the device Hamiltonian. Thus, the hyperparameters of the neural network
affect the optimization rather than the expressiveness. We conduct a comparative analysis
of the neural network’s width and depth. As illustrated in Figure 4.12, we find that the
width of the neural network (set at a depth of 4) does not significantly influence the
algorithm’s performance. In contrast, the depth of the neural network (set at a width of
4) shows a notable impact. As depicted in Figure 4.13, a deeper neural network leads to
diminished performance, likely due to a vanishing gradient that does not provide a better
landscape. Conversely, shallower networks are more successful in identifying an appropriate
pulse function. All the results of HEM start drifting after T = 1.1. We hypothesize that
this is due to the 2-level Rydberg Hamiltonian not being universal.

149

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact depth 2 depth 4 depth 6 depth 8

Figure 4.13: Comparison of HEM optimized at different depths of neural networks with
width 4. (a) The two-point correlation function ⟨Sz

1S
z
2⟩; (b) The relative error of the two-

point correlation function ⟨Sz
1S

z
2⟩.

150

4.7.3 Transfer Learning between Time Points

10 2
10 1
100
101
102
103

pr
ev

io
us

/
ra

nd

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 1
100
101
102

pr
ev

io
us

/
ra

nd

(b)

order 0 order 1 order 2 order 3

Figure 4.14: Transfer learning to different time points. Compared by a different order
of loss function. The y-axis is the ratio between the relative error of initialization from
previous time point ϵprevious and random initialization ϵrand. Above the line y = 100 means
random initialization is better; below the line means initialization from the previous time
point is better. (a) neural OMM; (b) HEM targeting Rydberg Hamiltonian;

We investigate the transfer learning between time points with uniformly training each time
point for a fixed number of epochs. For neural OMM, we allocated 1000 epochs at each time
point, while for HEM, we allocate 500 epochs. As depicted in Figure 4.14, this approach
reduces the number of epochs needed compared to initialization from random parameters,
yet it still delivers similar performance levels. Additionally, initializing from the parameters
of the previous time point results in the lower order loss function achieving a better relative
error than when starting from random parameters. This improved performance can be
attributed to the smooth nature of this specific time evolution, which allows high-order
correlations to propagate through the parameter initialization. In contrast, when OMM
represents a pure isometry, it is possible to express an explicit state as a MPS. Therefore,
initializing from the parameters of the previous time point can be viewed as utilizing an
implicit quantum state as input.

151

4.8 Additional Results

4.8.1 Training History

The training history at different orders of OMM and HEM are shown in Figure 4.15 and
Figure 4.16. The left column is OMM, and the right is HEM. Each row is ordered by time.
In a short time, there isn’t a significant difference between each order. However, with time
increase, the higher order loss function approaches higher precision faster and can reach
significantly higher precision over a long time than the lower order loss function.

10 9
10 7
10 5
10 3
10 1

(t=0.1)

10 9
10 7
10 5
10 3
10 1

10 5
10 4
10 3
10 2
10 1

(t=1.0)

10 4
10 3
10 2
10 1

10 510 410 310 210 1
(t=1.5)

10 1

100

0
10

00
20

00
30

00
40

00
50

00
60

00

10 510 410 310 210 1
(t=2.0)

0
10

00
20

00
30

00
40

00
50

00
10 3
10 2
10 1
100

re
la

tiv
e

er
ro

r

epoch

order 0 order 1 order 2 order 3

Figure 4.15: Training history of relative error. Left is the training history of the classical
algorithm, and right is the training history of the quantum algorithm.

152

10 5
10 3
10 1

(t=0.1)

10 5

10 3

10 1

10 3
10 2
10 1
100

(t=1.0)

10 2
10 1
100
101

10 2
10 1
100

(t=1.5)

10 2
10 1
100
101

0
10

00
20

00
30

00
40

00
50

00
60

00
10 2
10 1
100

(t=2.0)

0
10

00
20

00
30

00
40

00
50

00
10 2
10 1
100
101

lo
ss

epoch

order 0 order 1 order 2 order 3

Figure 4.16: Training history of the loss function. Left is the training history of the classical
algorithm, and right is the training history of the quantum algorithm.

We also show the history of the loss function when we reuse the previous time point’s
parameters in Figure 4.17. The left column is the OMM, and the right is the HEM. Each
row is ordered by time. The loss function is larger at higher order, we suspect the higher
order TOBC is harder to optimize because the search space is larger than the lower order
thus resulting in a worse absolute value of the loss function but a better relative error.

153

0 5000 10000 15000 20000

10 3

10 1

101(a)

0 2500 5000 7500 10000
epoch

10 4

10 2

100
(b)lo

ss
order 0 order 1 order 2 order 3 order 4

Figure 4.17: Training history of the training by reusing previous time point’s parameters.
(a) The history of loss function for OMM. (b) The history of loss function for HEM.

This also reflects our theoretical bound in Theorem 2 is not a tight bound. As pointed
out in Section 4.9.1, the loss function contains many zero TOBCs, thus they do not actually
contribute to the loss function. Gradient-based optimization towards a truth value of zero is
often hard due to vanishing gradients. On the other hand, these TOBCs do not contribute
to the final error. Thus we expect the loss function can be improved by removing the zero
TOBCs.

4.8.2 Batch and Sampling Size

We also compared the batch size and sampling size. The batch size controls the sampling
variance of the neural OMM, which parameterizes an ensemble of small systems. Increasing
batch size will reduce the variance of gradient estimation. We did not observe a significant
difference in tuning batch size. The results are shown in Figure 4.18.

154

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
batch 5

batch 10
batch 40

batch 20

Figure 4.18: Comparison of different batch sizes at order 2, with depth 8 for OMM. (a)
The value of ⟨Sz

1S
z
2⟩; (b) the relative error.

This is actually reasonable because the batch does not contribute to the expressiveness.
When the average error of the ensemble start decreasing in zero, the variance caused by
small batch size should not be significant in the optimization as the gradient will approach
zero.

The sampling size controls how many observables are sampled to estimate the loss
function at each evaluation. Increasing the sampling size should decrease the variance in
the gradient. We did not observe a significant difference in tuning sampling size. The
results are shown in Figure 4.19 and Figure 4.20.

155

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
#samples 5

#samples 10
#samples 40

#samples 20

Figure 4.19: Comparison of different sampling sizes at order 2, with depth 8 for OMM. (a)
The value of ⟨Sz

1S
z
2⟩; (b) the relative error.

Based on the exact results in Figure 4.5 and Figure 4.22, we believe the actual non-zero
TOBCs at each order for TFIM could only be polynomial. Thus, increasing the number
of samples will not actually “hit” the non-zero TOBCs by a large factor. As a result, this
does not increase the performance of gradient-based optimization. We also hypothesize
that the variance of the loss function is useful for SGD exploring better minimum, which
compensates for the performance drop caused by sampling. On the other hand, the toy
problem we ran our simulation with might be too simple to demonstrate the difference.
As one may expect, all the TOBCs to be non-zero in a more complex problem. We also
observe a flat trend in the relative error of Figure 4.19 and Figure 4.9, indicating the error
can stay around 10−3 for longer times.

156

0.0
0.05

0.1
0.15

0.2
0.25

〈S
z 1
S
z 2
〉

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
time

10 6
10 5
10 4
10 3
10 2
10 1

re
la

ti
ve

er
ro

r

(b)

exact
#samples 10

#samples 20
#samples 30

#samples 40

Figure 4.20: Comparison of different sampling sizes at order 2, with depth 8 for HEM. (a)
The value of ⟨Sz

1S
z
2⟩; (b) the relative error.

For the HEM-based OLRG algorithm, following the discussion from Section 4.7, we
observe a consistent bump between t = 1.2 to t = 1.8 with similar values across different
hyperparameters from Figures 4.11 to 4.13 and 4.20. This indicates that the optimization
has converged at these time points. The relative error is consistent across different hy-
perparameters, indicating that the optimal point within the space of the 2-level Rydberg
Hamiltonian with a global pulse sequence has been reached. Thus we suspect this perfor-
mance drop is due to the non-universal nature of the 2-level analog Rydberg Hamiltonian.
We see the rise of the relative error decrease at t = 1.9, 2.0 with a relatively smooth change
in the absolute value. Thus we suspect this is only due to coincidence, where the Rydberg
Hamiltonian dynamics are close to the two-point correlation dynamics of the TFIM at
these time points.

4.8.3 Step Size

As for the step size δ in the sampling, we tune the number of checkpoints M in an ODE
solver, which controls the step size as δ = T/M . While smaller step sizes generally increase
the precision of the loss function, we did not observe a significant difference in the tuning

157

step sizes. The results are shown in Figure 4.21. As discussed in Section 4.2, this is likely
because the TOBC in 1D TFIM has many zeros and is quite smooth. Thus, the loss
function is not sensitive to the step size.

0.040 0.020 0.013 0.010 0.008 0.007 0.006 0.0050.00

0.01

0.02

0.03

0.04

0.05

0.06

re
la

tiv
e

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

relative error
loss

Figure 4.21: Comparison of different step sizes δ at order 2, with depth 8.

This result is consistent with our analysis in Section 4.2 about TOBCs. Because the
actual dynamics across the entire time of evolution are smooth. The step size of checkpoints
in a small-system solver does not need to be very small. This heuristic analysis eliminates
the concerns about fine step sizes in the ODE solver when simulating practical systems.
However, we expect the step size to be smaller when simulating fast oscillating dynamics,
when the TOBCs are not smooth.

4.9 Discussion

In this work, we have introduced an algorithmic framework named OLRG, an alternative
variational principle that generalizes Wilson’s NRG and White’s DMRG. The algorithm’s
e2e-style loss function directly bounds the real-time dynamics of target observables. The
OLRG framework allows us to introduce different categories of ansatzes for an operator map
between a real and a virtual system. We designed operator maps for real-time dynamics
simulation on conventional computers and quantum devices. This includes the OMM and

158

the HEM. OMM opens up new possibilities to provide more expressiveness than the linear
operator map in NRG and DMRG. This could lead to opportunities to explore challenging
real-time dynamics problems, e.g. in higher dimension lattices, by exploring different forms
of the growing operator Gk (Section 4.9.4). As a side product of this work, we also see
OLRG as a potentially complementary variational principle to address high-order and long-
time correlations for MPS TDVP in Section 4.9.5. In addition, our HEM-based OLRG
provides a digital-analog quantum algorithm that integrates the product formula, VQA,
and classical simulators for simulating quantum dynamics. Finally, we discussed tuning
different hyperparameters and training schedules to improve the algorithm’s performance
in calculating two-point correlations for TFIM undergoing real-time dynamics.

Advancement to the OLRG framework can be made by enhancing the operator map
and loss function. For the loss function, one could derive a more specific loss function
for the target problem and further explore the relationship between superblock formalism
from DMRG and series expansion (Section 4.9.1). Because Theorem 1 is general for any
properties. Another future direction is finding the loss function directly for other proper-
ties such as ground state properties, phase transition points, entanglement entropy, etc.
(Section 4.9.3). This will align the framework further with e2e learning for calculating
other properties. Such loss functions likely exist due to the success of NRG and DMRG in
evaluating various properties especially in solving ground-state problems.

For the operator map, as a further step one can consider the implementation of OMM
including tensor network ensembles and deep neural network architectures. The target
device Hamiltonian of HEM could be expanded to universal neutral atom arrays, ion traps,
and superconducting circuits with different control capabilities. We discuss various ansatz
designs under the OLRG framework in Section 4.9.2. In this paper, we only investigated
the simplest OMM implemented by a feedforward neural network and a HEM targeting
the non-universal 2-level Rydberg Hamiltonian. More powerful operator maps remain to
be explored in future research. For real quantum devices, skipping the step of compiling
the Hamiltonian terms into gates and directly using the pulse sequence may result in a
non-trivial pulse sequence that is more efficient than 1 or 2-qubit gates. This is because, for
real devices, certain global unitaries are easier to implement with shorter pulse sequences
than decomposing into gates [270]. Thus, one may expect the effective pulse duration
to be shorter than performing small-qubit gate compilation. The HEM-based OLRG can
thus be also viewed as a quantum-assisted quantum compilation algorithm [271]. A future
direction is to benchmark the effective pulse duration in this case. Another interesting
direction is exploring the generalization capability of the operator map for a larger system
size trained at a small system size. By utilizing previous theoretical work about finite
size error [149], one may derive the e2e-style loss function for infinite-size systems. Then,

159

one could attempt to train the operator map to predict properties directly for infinite-size
systems.

4.9.1 Improving Loss Function

The theoretical bounds we present for real-time evolution in Theorem 2 is a general es-
timation for arbitrary geometrically local Hamiltonian. Thus, it is rather a loose bound
considering more specific system properties. We believe that a tighter bound can be es-
tablished for specific system properties. This may result in a better loss function and
a more efficient algorithm. Furthermore, the global loss function and modeling by e2e
provide advantages in that every learning step optimizes the target problem but also has
limitations [272]. The usage of e2e heavily relies on optimization and thus may result in
a slow convergence and ill-conditioned optimization. Our framework also allows theoreti-
cal improvements through a better theoretical understanding of the problem, such as the
analytical or heuristic understanding of the TOBCs. This will incorporate the theoretical
knowledge into the loss function and thus may potentially improve the algorithm’s effi-
ciency. For example, as shown in Figure 4.5 and Figure 4.22, some TOBCs can be almost
perfectly zero, and the nonzero TOBCs are also very sparse in 1D TFIM dynamics, where
many points are relatively small thus result in a small contribution to the loss function.
This suggests that by looking into specific Hamiltonian and TOBCs, we may be able to
design a better loss function that can be more efficient in practice.

160

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , + , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , − , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , + , − }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ + , − , − }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , + , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , − , + }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , + , − }

t1

0 1 2 3 4 5

t 2

0

1

2

3

4

5
𝜒i,t,{ − , − , − }

0.0

0.2

0.4

0.6

0.8

Figure 4.22: 3rd-order TOBC for 5-site 1D TFIM at T = 5.0 for the two-point correlation
function ⟨Z1Z2⟩T =5.0 with |00000⟩ as initial state and h = 1.0. We fix t3 = 2.5 and plot
the TOBC for t1, t2 ∈ [0, 5.0].

On the other hand, there is a different possible style of constructing the loss function
by reusing existing scales. Using the same superblock construction as DMRG, one can see
such loss function as the following concept. If we can prepare good representations of the
systems at size n1, n2, then concatenating them into a system at size n1 + n2 should be a
good representation of the system at size n1 + n2. This is a very natural assumption, and
it is also the core idea of superblocks. From a series expansion perspective, assuming we
have the series expansion of a property p as

p(Sn1 ⊗ Sn2) =
∞∑

i=0
αi⟨Ai⟩⟨Bi⟩ (4.117)

Here, we can use the infinite DMRG style loss function as an example. If we are promised
to have a good representation of Sn1 , copying it then the concatenating system Sn1 ⊗ Sn1

should be a good representation of 2n1 system. This is exactly the description of infinite
DMRG [150] in the traditional fashion. If we assume the property we are calculating is
the same observable. The series expansion becomes a sum of square expressions:

161

p(Sn1 ⊗ Sn1) =
∞∑

i=0
αi⟨Ai⟩2 (4.118)

If the loss function is then set as the error of observables on this superblock, we can
see we are optimizing the error of some high-order terms in the Dyson series.

L =
∥∥∥p(Sn1 ⊗ Sn1)− p(S ′

n1 ⊗ S
′
n1)
∥∥∥

=
∥∥∥∥∥

∞∑
i=0

αi⟨Ai⟩2 −
∞∑

i=0
αi⟨A′

i⟩2
∥∥∥∥∥ (4.119)

However, it remains uncertain whether this loss function is upper-bounded in a manner
that would rigorously ensure the scaling consistency condition. Utilizing superblocks in
practice will improve the efficiency of evaluating the loss function, as now one does not
need to solve time-evolved operators but can directly evaluate the discrepancies between
expectation values in superblocks instead. This is similar to using the superblock in DMRG
to evaluate the system’s energy.

4.9.2 Improving Operator Maps

Like all other variational algorithms, the expressiveness of the operator map is crucial to
the algorithm’s performance. In our current implementation, we only use some vanilla
operator maps without much careful design.

For OMM, the power of optimizing operator maps, such as deep neural networks or
tensor network ensembles, is yet to be explored. Furthermore, one can use different operator
maps for larger system sizes for different scales and only share at closer scales. This
naturally creates a hierarchical structure of the operator map, similar to how depth of
neural networks are used in deep learning [273]. As we now utilize an operator map for
operator mapping rather than a state, the expressiveness of such an operator mapping
remains to be determined. More specifically, although our neural OMM has the potential
of expressiveness representing MPS with exponential large bonds. Because they are no
longer ansatzes for states, it is unclear what the limit of such operator maps is.

For HEM, we only use a simple and small neural network to parameterize the pulse,
which does not consider more realistic pulse shapes. Thus, the result pulse shape does not
necessarily execute on real hardware due to violation of hardware constraints. On the other
hand, our HEM targets a non-universal Hamiltonian, thus resulting in worse performance

162

over a longer time despite increasing the order. It is important to explore more realistic
pulse shapes, universal Hamiltonians, and more detailed device capabilities to develop a
better understanding of the algorithm.

4.9.3 Finding the Loss Function for Other Properties

We have demonstrated the existence of a loss function that effectively bounds the real-time
dynamics of local observables. However, this methodology might not be entirely end-to-
end (e2e) when dealing with target properties that are complex functions not directly
derived from local observables, such as phase transition points or entanglement entropy.
Additionally, our Theorem 2 does not extend to imaginary-time evolution or ground-state
simulations. Because the series expansion we derived does not hold in these cases. Despite
these limitations, our framework is not intrinsically confined to real-time dynamics alone,
as suggested by Theorem 1. The proven effectiveness of NRG and DMRG inspires the
possibility that suitable loss functions for imaginary time and ground state challenges may
also exist. To further follow the e2e principle in solving real-world quantum many-body
simulation problems, we seek if there is a loss function that guarantees scaling consistency
for other properties such as entanglement entropy, phase transition points, etc.

4.9.4 Higher Dimension Lattice and Other Geometry

While our numerical results are confined to a 1D lattice in Section 4.7, it’s important
to note that, like NRG and DMRG, the variational principle, OLRG framework is not
inherently limited to this geometry. Indeed, the OLRG framework can be applied to
any geometric configuration. However, in geometries other than 1D, the implementation
of the growing operator presents a range of alternative strategies that have yet to be
fully explored. Moreover, by incorporating the growing scheme into the loss function,
our operator map no longer necessitates an exponential increase in storage, provided that
f θ

nq
is not a dense isometric map. Consequently, techniques developed for navigating 1D

ansatzes, such as MPS [274] and autoregressive neural networks [217], could be adapted
and prove beneficial in 2D and other configurations within this framework.

4.9.5 Relation with MPS TDVP

When f θ
nq

is a linear map, the OLRG framework is equivalent to a tensor network. For
example, if f θ

nq
is not shared by each OLRG step, and denoting f θ

nq
for q-th OLRG step,

163

the set {f θ
nq
} represents the tensors in an MPS as shown in the left column of Figure 4.2.

On the other hand, the MPS TDVP algorithm projects an MPS |ψ(t)⟩ at time t to the
MPS |ψ(t+ δ)⟩ at time t+ δ by solving the Schrödinger equation in the subspace of MPS.
Assuming the bond dimension does not change from |ψ(t)⟩ to |ψ(t+ δ)⟩, the MPS TDVP
should find the optimal MPS representation for |ψ(t+ δ)⟩. By optimal |ψ(t+ δ)⟩ we mean
this state has the minimum error for arbitrary observables at t+δ. Thus, this is equivalent
to optimizing support of observables at t + δ using OLRG starting from the initial point
|ψ(t)⟩, which is the transfer learning algorithm we introduced in Section 4.7.3.

From this perspective, plugging the small duration δ into Theorem 4, we can see that the
loss function of the MPS TDVP algorithm directs the optimization towards the t+ δ time
observables instead of the final time T observables. Thus, only the error of χi,t={δ},σ(Sn, t+
δ) are optimized in the MPS TDVP algorithm for an arbitrary observable O(t), thus
missing longer time correlations in the optimization target. This is consistent with the
recent analysis of the MPS TDVP algorithm in the ancillary Krylov subspace TDVP [275].

With this observation, we can see that the OLRG framework can be a complementary
approach to the MPS TDVP algorithm. A potential improvement to the MPS TDVP
algorithm is to add the loss function of the OLRG framework as a regularization term for
long-time TOBCs, and thus help the MPS TDVP algorithm to include long-time correla-
tions in the optimization target and increase the efficiency of the MPS TDVP algorithm
for longer time by increasing the step size δ. However, the gradient-based optimization in
OLRG also has its limitations, as it may not be able to adjust bond dimension variation-
ally, thus for pure MPS, it can only be used as a regularization term instead of the main
optimization target.

4.9.6 Implementation

Both classical and quantum algorithms were optimized using the ADAM optimizer [276]
and implemented via the recent automatic differentiation frameworks and GPU computing
jax [10] and flax [277] frameworks. Due to the absence of sufficient sparse matrix support
when the author implements the software in jax, a brute-force solver was employed to
compute the observables. This limitation restricted the quantum algorithm’s simulation
to no more than 6 sites due to memory limitation. The classical algorithms use single
NVIDIA GPUs, while the quantum algorithms are executed on 1 CPU cores. From an
implementation perspective, the OLRG framework opens the door to adapting good small-
system solvers to larger systems. Thus, like DMRG, all the technologies developed for
small-system solvers can be transferred into large system calculations. We believe that

164

by integrating with better small-system solvers, the practical performance of the OLRG
framework can be further improved. We thank the support of the open-source community
in the development of the following software, they contributed directly in producing our
results: jax [10], flax [277], optax [278], tqdm, wandb, matplotlib [279], Yao [201],
Makie [280].

4.9.7 Optimization

Differentiable programming is a powerful technique for optimizing and training arbitrary
operator maps. One should not expect gradient-based optimization always to work well.
Besides the advantages we have demonstrated in this paper, the disadvantages of differen-
tiable programming include longer convergence time and higher evaluation cost compared
to iterative optimization, such as utilizing eigensolvers. Future directions in improving
gradient-based optimization include co-designing optimization and operator maps by in-
corporating symmetries and guidance from real data in medium-size systems [281, 282].
Because a large component in the time complexity can be parallelized, potential technical
improvements may be seen in utilizing distributed gradient descent [283].

165

Chapter 5

Conclusion

In this thesis, starting from the motivation of integrating physicists from different sub-
fields in our community, designing high-performance multi-purpose software frameworks
for quantum many-body systems, and understanding the existing methods from a pro-
grammatic perspective, we have introduced the concept of programmatic representation
and its application in quantum many-body physics. We introduced three tree-based rep-
resentations for quantum circuits, general quantum operators, and pulse sequences. All
these representations have been tested and iterated in many real-world simulations and
experiments, including but not limited to previous experiments mentioned in the white pa-
per [104]. Thus we see the success of using the programmatic representation to accelerate
scientific discoveries. We further show that more sophisticated representations can be built
by combining the semantics of these representations with the concept of static single assign-
ment (SSA) form. This representation as an intermediate representation (IR) allows more
complicated analysis of the representation, such as constant propagation and dead code
elimination [284]. While the use of SSA IR for high-level circuit-based quantum programs
could be an overkill, we discussed the potential of using SSA IR for low-level compilation
on quantum devices due to the needs of asynchronous and real-time execution. Thus,
we see the opportunities in designing a more sophisticated IR for quantum many-body
physics that covers a broader range of problems and potentially leads to better simulation
algorithms and performance using both conventional and quantum computers. By incorpo-
rating multiple levels of IR, we expect the communities of theoretical, computational, and
experimental physicists will once again be united by compilation techniques [64, 109, 285],
allowing the community to push the boundary of quantum many-body physics further.

We further introduced the transformations on top of these representations. Starting
from the techniques pushing exact simulations to hardware limits, we introduced the trans-

166

formation from an expression into the subspace matrix-vector multiplication routine and
special matrices, which execute the simulation. Moreover, we introduced the techniques for
implementing these routines and special matrices in the context of exact simulation. On
top of these building blocks, we introduced the transformation for automatic differentiation
and the use of SSA IR for implementing automatic differentiation. We also benchmarked
the performance of the exact simulation and the automatic differentiation and showed that
the exact simulation is already approaching the limit of the classical computer. Thus, our
software implementation of these exact simulations achieved state-of-the-art performance
compared to other available software with only thousands of lines of code [201]. These
performance improvements also lead to the study of using the Rydberg atom array for
combinatoric optimization problems [118].

Moreover, we showed that by utilizing the reversibility of the quantum circuits, only
constant memory is required for performing automatic differentiation in classical emulation.
The memory complexity improvement leads to the example of differentiating a 10,000-layer
parameterized quantum circuit, which no previous software can achieve. Thus, the reverse
mode AD by reversibility opened the possibility of exploring large variational quantum algo-
rithms with automatic differentiation. We further discuss the future directions of studying
the transformations on these representations and the potential of using these transforma-
tions to automatically specialize the simulation on problems with specific properties, which
we hope can be achieved in the next-generation software framework Liang.

Based on our previous progress and understanding in programmatic representations,
exact simulation, and automatic differentiation, we revisit the well-known Wilson’s NRG
and White’s DMRG algorithms [26, 27]. By reviewing these two numerical renormalization
group formulations proposed a few decades ago. We have shown that the concept of pro-
grammatic representation is not only a concept for software engineering but also a concept
for designing new theories and methods in our recent work OLRG [286]. We introduced an
alternative variational principle for quantum many-body systems allowing arbitrary oper-
ator maps as ansatzes in lieu of state ansatzes. A theory guiding the design of end-to-end
loss functions is also proposed. We further proved that a loss function exists with rig-
orous error bound for real-time evolution. We proposed the neural operator matrix map
(OMM) for simulation on conventional computers and the Hamiltonian Expression Map
(HEM) for simulation on quantum computers. By building on top of classical algorithms,
the HEM-based OLRG as a quantum algorithm integrates the conventional computational
algorithms and the quantum algorithms. Furthermore, As a generalization of Wilson’s
NRG and White’s DMRG, our framework is also compatible with tensor networks, thus
can potentially improve existing tensor network algorithms.

We see our framework aligns well with conventional deep-learning algorithms. The

167

model processes operators, generates operators as output, and then takes the output op-
erators as input for the next iteration. This hierarchical procedure naturally creates the
concept of depth in the model. Our setup also aligns well with the idea of the mini-batch
from deep learning, as the model is trained on a dataset of operators. The utilization of
batch allows our framework to be highly efficient in utilizing the parallelism of modern
hardware such as GPUs and TPUs. Furthermore, the concept of end-to-end learning also
allows us to eliminate the unnecessary bias caused by intermediate targets, which aligns
well with the concept of end-to-end learning.

An early-stage software framework has been implemented for exploring this direc-
tion [187]. Using this software framework, we demonstrate the convergence of our the-
oretical loss function by solving the two-point correlation function dynamics of TFIM. For
the OMM, we explored the effect of different hyperparameters on the relative error of our
prediction. We show that the neural network’s depth helps improve the relative error and
optimization while other hyperparameters remain less important. We also show that the
OMM can be used to simulate the dynamics of the two-point correlation function of a 1D
10-site TFIM with a relative error of 10−3 at t = 2.0. This result is not yet the state of the
art. However, we discussed the relationship between OLRG and TDVP. The theoretical
analysis indicates that TDVP will lack long-time correlations, and thus, the optimization
will throw information necessary for calculating long-time results at each time step. We
thus see the potential of OLRG to be state of the art in high-dimensional long-time dynam-
ics. Concurrently, we also demonstrated the HEM-based OLRG, which allows compilation
of an input problem Hamiltonian into target quantum device pulse sequence. We show
the HEM-based OLRG can achieve 10−3 relative error before t = 1.0 in simulating the
two-point correlation function dynamics for a 1D 6-site TFIM Hamiltonian. Our results
show promising precision before t = 1.0 compared to the state of the art [262], while af-
ter t = 1.0, we see a bump in relative error between t = 1.2 to t = 1.7 consistently on
all the hyperparameters we explored. We suspect future research targeting a universal
Hamiltonian should be able to solve this problem.

The OLRG framework has also led to many interesting open problems in both theory,
numerics and experiments. We discussed them in detail at the end of introducing this work.
For example, the loss function, in principle, does not have to be the error of observables but
can be the error of the final target directly, e.g., the phase transition point, entanglement
entropy. The loss function for these properties remains an open problem in theory. Due to
the success of DMRG and time-dependent DMRG, we believe such a loss function should
exist. In the context of numerics, there are many interesting generative models that can
be directly borrowed from the deep learning community. Compared to VMC, which uses
discrete configurations as input, the operator matrices as input and output align well with

168

images in computer vision. This field has seen significant progress due to deep learning.
Unlike using neural networks in VMC, there is no need to engineer complex numbers in
OMM. The color channels in images have a natural connection with complex numbers.

Furthermore, the operator matrices are naturally continuous numbers built on top
of primitive operators such as Pauli operators. Such matrices as input allow the use of
generative models such as flow models [227] and diffusion models [229], which has been
hard to incorporate into the VMC framework. Such possibilities open the imagination of
designing more expressive models that may lead to better performance. In the context
of experiments, the OLRG framework can be used in the context of quantum computing.
Especially on Rydberg atom arrays, our HEM-based algorithm can utilize the unique multi-
qubit gates and analog Hamiltonian dynamics in Rydberg atom arrays. By using device
native operations, the HEM-based OLRG leads to the potential of using Rydberg atom
arrays to simulate quantum dynamics by directly programming the control parameters
using a few high-quality gates.

Following these applications of programmatic representation, we see that thinking from
the programmatic perspective allows physicists to open up the imagination beyond sim-
ple representations such as matrices and tensors. A good example is the HEM-based
OLRG. The representation of an operator does not have to be a matrix but can be any
programmatic representation. Thus, our operator map can also be a map from the input
Hamiltonian expression to the expression of a pulse sequence. A similar idea might be
applied to other problems in quantum many-body physics. Furthermore, in the age of
language models, programmatic representations provide a perfect “language” describing
the domain physicists are interested in. One may see future applications of training large
language models on programmatic representations rather than natural languages, which is
almost always ambiguous due to the lack of formal semantics.

To conclude this thesis, in the age of programming, programmatic representation, as
a fundamental concept for creating computational processes, will be an essential way to
design new software, theories, and methods in quantum many-body physics.

169

References

[1] Tim Besard, Christophe Foket, and Bjorn De Sutter. Effective extensible program-
ming: Unleashing julia on gpus. CoRR, abs/1712.03112, 2017.

[2] Guillermo García-Pérez, Matteo A. C. Rossi, and Sabrina Maniscalco. Ibm q ex-
perience as a versatile experimental testbed for simulating open quantum systems,
2019.

[3] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry
Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexan-
der Belopolsky, et al. Theano: A python framework for fast computation of mathe-
matical expressions. arXiv e-prints, pages arXiv–1605, 2016.

[4] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation, volume 105. Siam, 2008.

[5] Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool:
principles, model, and specification. ACM Transactions on Mathematical Software
(TOMS), 39(3):1–43, 2013.

[6] Valérie Pascual and Laurent Hascoët. Tapenade for c. In Advances in Automatic
Differentiation, pages 199–209. Springer, 2008.

[7] Martín Abadi et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), pages 265–283, 2016.

[8] Reversediff.jl: Reverse mode automatic differentiation for julia. https://github.
com/JuliaDiff/ReverseDiff.jl.

[9] Adam Paszke, Sam Gross, Francisco Massa, et al. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

170

https://github.com/JuliaDiff/ReverseDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, volume 32, pages 8024–8035. Curran Associates, Inc., 2019.

[10] James Bradbury, Roy Frostig, Peter Hawkins, et al. JAX: composable transforma-
tions of Python+NumPy programs, 2018.

[11] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. CoRR,
abs/1810.07951, 2018.

[12] Hao Xie, Jin-Guo Liu, and Lei Wang. Automatic differentiation of dominant eigen-
solver and its applications in quantum physics. Physical Review B, 101(24):245139,
2020.

[13] William S. Moses, Valentin Churavy, Ludger Paehler, et al. Reverse-Mode Automatic
Differentiation and Optimization of GPU Kernels via Enzyme. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’21, New York, NY, USA, 2021. Association for Computing Machinery.

[14] Patrick Kidger. On neural differential equations. arXiv preprint arXiv: 2202.02435,
2022.

[15] Alexander Altland and Ben D Simons. Condensed matter field theory. Cambridge
university press, 2010.

[16] Werner Heisenberg. Zur theorie des ferromagnetismus. Springer, 1985.

[17] Garnet Kin-Lic Chan and Sandeep Sharma. The density matrix renormalization
group in quantum chemistry. Annual review of physical chemistry, 62:465–481, 2011.

[18] Philip W Anderson. More is different: Broken symmetry and the nature of the
hierarchical structure of science. Science, 177(4047):393–396, 1972.

[19] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum
computation. Number 47. American Mathematical Soc., 2002.

[20] Sevag Gharibian, Yichen Huang, Zeph Landau, et al. Quantum hamiltonian com-
plexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282,
2015.

[21] Anders W Sandvik. Stochastic series expansion method with operator-loop update.
Physical Review B, 59(22):R14157, 1999.

171

[22] Anders W Sandvik. Stochastic series expansion methods. arXiv preprint
arXiv:1909.10591, 2019.

[23] WMC Foulkes, Lubos Mitas, RJ Needs, and Guna Rajagopal. Quantum monte carlo
simulations of solids. Reviews of Modern Physics, 73(1):33, 2001.

[24] KA Brueckner. Many-body problem for strongly interacting particles. ii. linked clus-
ter expansion. Physical Review, 100(1):36, 1955.

[25] Ann B. Kallin, Katharine Hyatt, Rajiv R. P. Singh, and Roger G. Melko. Entan-
glement at a two-dimensional quantum critical point: A numerical linked-cluster
expansion study. Phys. Rev. Lett., 110:135702, Mar 2013.

[26] Kenneth G Wilson. The renormalization group: Critical phenomena and the kondo
problem. Reviews of modern physics, 47(4):773, 1975.

[27] Steven R White. Density matrix formulation for quantum renormalization groups.
Physical review letters, 69(19):2863, 1992.

[28] Steven R. White. Density-matrix algorithms for quantum renormalization groups.
Physical review. B, Condensed matter, 48 14:10345–10356, 1993.

[29] William Lauchlin McMillan. Ground state of liquid he 4. Physical Review,
138(2A):A442, 1965.

[30] Federico Becca and Sandro Sorella. Quantum Monte Carlo Approaches for Correlated
Systems. Cambridge University Press, 2017.

[31] Richard P Feynman et al. Simulating physics with computers. Int. j. Theor. phys,
21(6/7), 2018.

[32] A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv
preprint quant-ph/9511026, 1995.

[33] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge university press, 2010.

[34] Andrew M Childs. Universal computation by quantum walk. Physical review letters,
102(18):180501, 2009.

172

[35] András Gilyén, Yuan Su, Guang Hao Low, et al. Quantum singular value transfor-
mation and beyond: exponential improvements for quantum matrix arithmetics. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 193–204, 2019.

[36] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, et al. Quantum algorithm for
simulating real time evolution of lattice hamiltonians. SIAM Journal on Computing,
52(6):FOCS18–250–FOCS18–284, 2023.

[37] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, et al. A variational eigenvalue
solver on a photonic quantum processor. Nature communications, 5(1):4213, 2014.

[38] Dave Wecker, Matthew B Hastings, and Matthias Troyer. Progress towards practical
quantum variational algorithms. Physical Review A, 92(4):042303, 2015.

[39] Jarrod R McClean, Jonathan Romero, Ryan Babbush, et al. The theory of variational
hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

[40] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. Quantum supremacy using a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[41] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Om-
ran, Hannes Pichler, Soonwon Choi, Alexander S Zibrov, Manuel Endres, Markus
Greiner, et al. Probing many-body dynamics on a 51-atom quantum simulator. Na-
ture, 551(7682):579–584, 2017.

[42] Dolev Bluvstein, Ahmed Omran, Harry Levine, Alexander Keesling, Giulia Semegh-
ini, Sepehr Ebadi, Tout T Wang, Alexios A Michailidis, Nishad Maskara, Wen Wei
Ho, et al. Controlling quantum many-body dynamics in driven rydberg atom arrays.
Science, 371(6536):1355–1359, 2021.

[43] Bob Coecke and Ross Duncan. A graphical calculus for quantum observables.
Preprint, 2007.

[44] Zhengwei Liu, Alex Wozniakowski, and Arthur M Jaffe. Quon 3d language for quan-
tum information. Proceedings of the National Academy of Sciences, 114(10):2497–
2502, 2017.

173

[45] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, et al. Openqasm 3: A broader
and deeper quantum assembly language. ACM Transactions on Quantum Computing,
3(3):1–50, 2022.

[46] Alexander McCaskey and Thien Nguyen. A mlir dialect for quantum assembly lan-
guages. In 2021 IEEE International Conference on Quantum Computing and Engi-
neering (QCE), pages 255–264. IEEE, 2021.

[47] Michael A Harrison. Introduction to formal language theory. Addison-Wesley Long-
man Publishing Co., Inc., 1978.

[48] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[49] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In International symposium on code generation and
optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[50] Jeff Bezanson, Alan Edelman, Stefan Karpinski, et al. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[51] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[52] David F Bacon, Susan L Graham, and Oliver J Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys (CSUR), 26(4):345–420,
1994.

[53] Ross Tate, Michael Stepp, Zachary Tatlock, et al. Equality saturation: a new ap-
proach to optimization. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 264–276, 2009.

[54] Joanna A Ellis-Monaghan and Iain Moffatt. Graphs on surfaces: dualities, polyno-
mials, and knots, volume 84. Springer, 2013.

[55] Lyndon Evans and Philip Bryant. Lhc machine. Journal of instrumentation,
3(08):S08001, 2008.

[56] Haohuan Fu, Junfeng Liao, Jinzhe Yang, et al. The sunway taihulight supercomputer:
system and applications. Science China Information Sciences, 59:1–16, 2016.

174

[57] Scott Atchley, Christopher Zimmer, John Lange, et al. Frontier: Exploring exascale.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’23, New York, NY, USA, 2023. Association
for Computing Machinery.

[58] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Car-
icato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.
Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,
F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Per-
alta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman,
and D. J. Fox. Gaussian~16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.

[59] Jarrod R. McClean et al. Openfermion: The electronic structure package for quantum
computers, 2017.

[60] Alexander Gaenko, Andrey E Antipov, G Carcassi, T Chen, X Chen, Qiaoyuan Dong,
Lukas Gamper, Jan Gukelberger, Ryo Igarashi, Sergei Iskakov, et al. Updated core
libraries of the alps project. Computer Physics Communications, 213:235–251, 2017.

[61] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020.

[62] Jin-Guo Liu, Lei Wang, and Pan Zhang. Tropical tensor network for ground states
of spin glasses. Physical Review Letters, 126(9):090506, 2021.

[63] Jeff Bezanson, Stefan Karpinski, Viral B Shah, et al. Julia: A fast dynamic language
for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[64] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada
Letters, 34(3):103–104, 2014.

[65] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,
2018.

175

[66] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate op-
timization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[67] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on
near term processors. arXiv e-prints, page arXiv:1802.06002, February 2018.

[68] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, et al. Quantum circuit learn-
ing. Physical Review A, 98(3):032309, 2018.

[69] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, et al. A generative model-
ing approach for benchmarking and training shallow quantum circuits. npj Quantum
Information, 5(1), May 2019.

[70] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born machines.
Physical Review A, 98(6):062324, 2018.

[71] Peter JJ O’Malley et al. Scalable quantum simulation of molecular energies. Physical
Review X, 6(3):031007, 2016.

[72] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, et al. Hardware-efficient
variational quantum eigensolver for small molecules and quantum magnets. Nature,
549(7671):242, 2017.

[73] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, et al. Supervised learning
with quantum-enhanced feature spaces. Nature, 567(7747):209, 2019.

[74] Daiwei Zhu et al. Training of quantum circuits on a hybrid quantum computer.
Science Advances, 5(10):eaaw9918, 2019.

[75] G. Pagano, A. Bapat, P. Becker, et al. Quantum Approximate Optimization with a
Trapped-Ion Quantum Simulator. 2019.

[76] Vicente Leyton-Ortega, Alejandro Perdomo-Ortiz, and Oscar Perdomo. Robust im-
plementation of generative modeling with parametrized quantum circuits. arXiv
preprint arXiv:1901.08047, 2019.

[77] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, et al. Barren plateaus in
quantum neural network training landscapes. Nat. Commun., 9(1):4812, 2018.

[78] Differentiable Programming. https://en.wikipedia.org/wiki/Differentiable_
programming.

176

https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming

[79] Karpathy, Andrej. Software 2.0. https://medium.com/@karpathy/
software-2-0-a64152b37c35.

[80] Tianqi Chen et al. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[81] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless
gradients in numpy. In ICML 2015 AutoML Workshop, volume 238, 2015.

[82] Michael Innes, Elliot Saba, Keno Fischer, et al. Fashionable modelling with flux.
CoRR, abs/1811.01457, 2018.

[83] Mike Innes, Alan Edelman, Keno Fischer, et al. Zygote: A differentiable program-
ming system to bridge machine learning and scientific computing. arXiv preprint
arXiv:1907.07587, 2019.

[84] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, Nov 1973.

[85] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, et al. Quipper: a scalable
quantum programming language. In ACM SIGPLAN Notices, volume 48, pages
333–342. ACM, 2013.

[86] Damian S Steiger, Thomas Häner, and Matthias Troyer. Projectq: an open source
software framework for quantum computing. arXiv preprint arXiv:1612.08091, 2016.

[87] Krysta Svore, Martin Roetteler, Alan Geller, et al. Q#: Enabling scalable quantum
computing and development with a high-level dsl. Proceedings of the Real World
Domain Specific Languages Workshop 2018 on - RWDSL2018, 2018.

[88] Cirq: A Python framework for creating, editing, and invoking noisy intermediate
scale quantum (NISQ) circuits. https://github.com/quantumlib/Cirq.

[89] qulacs: Variational Quantum Circuit Simulator for Quantum Computation Research.
https://github.com/qulacs/qulacs.

[90] Ville Bergholm, Josh Izaac, Maria Schuld, et al. Pennylane: Automatic differentiation
of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968, 2018.

[91] Héctor Abraham et al. Qiskit: An open-source framework for quantum computing,
2019.

177

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://github.com/quantumlib/Cirq
https://github.com/qulacs/qulacs

[92] Tyson Jones, Anna Brown, Ian Bush, et al. Quest and high performance simulation
of quantum computers. Scientific Reports, 9(1), Jul 2019.

[93] Mark Fingerhuth, Tomáš Babej, and Peter Wittek. Open source software in quantum
computing. PloS one, 13(12):e0208561, 2018.

[94] Ryan LaRose. Overview and Comparison of Gate Level Quantum Software Platforms.
Quantum, 3:130, March 2019.

[95] Marcello Benedetti, Erika Lloyd, Stefan Sack, et al. Parameterized quantum circuits
as machine learning models. Quantum Science and Technology, 4(4):043001, nov
2019.

[96] D Coppersmith. An approximate fourier transform useful in quantum computing.
Technical report, Technical report, IBM Research Division, 1994.

[97] Artur Ekert and Richard Jozsa. Quantum computation and shor’s factoring algo-
rithm. Reviews of Modern Physics, 68(3):733, 1996.

[98] Richard Jozsa. Quantum algorithms and the fourier transform. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
454(1969):323–337, 1998.

[99] William James Huggins, Piyush Patil, Bradley Mitchell, et al. Towards quantum
machine learning with tensor networks. Quantum Science and Technology, 2018.

[100] Jin-Guo Liu, Liang Mao, Pan Zhang, et al. Solving quantum statistical mechanics
with variational autoregressive networks and quantum circuits. 2019.

[101] Frederica Darema, David A George, V Alan Norton, et al. A single-program-multiple-
data computational model for epex/fortran. Parallel Computing, 7(1):11–24, 1988.

[102] Bloqade.jl: Package for the quantum computation and quantum simulation based
on the neutral-atom architecture., 2023.

[103] Shashi Gowda, Yingbo Ma, Alessandro Cheli, et al. High-performance symbolic-
numerics via multiple dispatch. ACM Commun. Comput. Algebra, 55(3):92–96, jan
2022.

[104] Jonathan Wurtz, Alexei Bylinskii, Boris Braverman, et al. Aquila: Quera’s 256-qubit
neutral-atom quantum computer. arXiv preprint arXiv:2306.11727, 2023.

178

[105] Dolev Bluvstein, Harry Levine nAff, Giulia Semeghini, et al. A quantum processor
based on coherent transport of entangled atom arrays. Nature, 2022.

[106] Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D. Lukin.
Quantum optimization for maximum independent set using rydberg atom arrays.
arXiv preprint arXiv: 1808.10816, 2018.

[107] Maksym Serbyn, Dmitry A Abanin, and Zlatko Papić. Quantum many-body scars
and weak breaking of ergodicity. Nature Physics, 17(6):675–685, 2021.

[108] Ron Cytron, Jeanne Ferrante, Barry K Rosen, et al. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[109] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. Mlir: A compiler infrastructure for the end of moore’s law. arXiv preprint
arXiv:2002.11054, 2020.

[110] Michael Bartholomew-Biggs, Steven Brown, Bruce Christianson, et al. Automatic
differentiation of algorithms. Journal of Computational and Applied Mathematics,
124(1-2):171–190, 2000.

[111] C. Gidney. Stim: a fast stabilizer circuit simulator. QUANTUM, 2021.

[112] Peter J Karalekas, Nikolas A Tezak, Eric C Peterson, et al. A quantum-classical
cloud platform optimized for variational hybrid algorithms. Quantum Science and
Technology, 5(2):024003, apr 2020.

[113] Jitse Niesen and Will M Wright. Algorithm 919: A krylov subspace algorithm for
evaluating the ϕ-functions appearing in exponential integrators. ACM Transactions
on Mathematical Software (TOMS), 38(3):1–19, 2012.

[114] Krylovkit.jl: Krylov methods for linear problems, eigenvalues, singular values and
matrix functions. https://github.com/Jutho/KrylovKit.jl.

[115] General Permutation Matrix. https://en.wikipedia.org/wiki/Generalized_
permutation_matrix.

[116] A luxury sparse matrix package for julia. https://github.com/QuantumBFS/
LuxurySparse.jl.

179

https://github.com/Jutho/KrylovKit.jl
https://en.wikipedia.org/wiki/Generalized_permutation_matrix
https://en.wikipedia.org/wiki/Generalized_permutation_matrix
https://github.com/QuantumBFS/LuxurySparse.jl
https://github.com/QuantumBFS/LuxurySparse.jl

[117] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a performant and
feature-rich ecosystem for solving differential equations in julia. The Journal of
Open Research Software, 5(1), 2017. Exported from https://app.dimensions.ai on
2019/05/05.

[118] S. Ebadi, A. Keesling, M. Cain, et al. Quantum optimization of maximum indepen-
dent set using rydberg atom arrays. Science, 376(6598):1209–1215, 2022.

[119] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, et al. Au-
tomatic differentiation in machine learning: a survey. Journal of machine learning
research, 18(153), 2018.

[120] Aidan N Gomez, Mengye Ren, Raquel Urtasun, et al. The reversible residual network:
Backpropagation without storing activations. In Advances in neural information
processing systems, pages 2214–2224, 2017.

[121] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, et al. Neural ordinary differential
equations. In Advances in neural information processing systems, volume 31, pages
6571–6583, 2018.

[122] Akira Hirose. Complex-valued neural networks: theories and applications, volume 5.
World Scientific, 2003.

[123] Mike Giles. An extended collection of matrix derivative results for forward and
reverse mode algorithmic differentiation. Technical report, 2008.

[124] Gavin E Crooks. Gradients of parameterized quantum gates using the parameter-
shift rule and gate decomposition.

[125] Jun Li, Xiaodong Yang, Xinhua Peng, et al. Hybrid quantum-classical approach to
quantum optimal control. Phys. Rev. Lett., 118:150503, Apr 2017.

[126] Maria Schuld, Ville Bergholm, Christian Gogolin, et al. Evaluating analytic gradients
on quantum hardware. Phys. Rev. A, 99(3):032331, 2019.

[127] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal optimization
for quantum-classical hybrid algorithms.

[128] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, et al. Monte carlo gradient
estimation in machine learning.

180

[129] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, et al. MMD GAN: Towards Deeper
Understanding of Moment Matching Network.

[130] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, et al. A kernel two-sample
test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

[131] Statically sized arrays for Julia. https://github.com/JuliaArrays/
StaticArrays.jl.

[132] Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quan-
tum circuit. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 33. ACM, 2017.

[133] Igor L Markov and Yaoyun Shi. Simulating quantum computation by contracting
tensor networks. SIAM Journal on Computing, 38(3):963–981, 2008.

[134] Edwin Pednault, John A Gunnels, Giacomo Nannicini, et al. Breaking the 49-qubit
barrier in the simulation of quantum circuits. arXiv preprint arXiv:1710.05867, 2017.

[135] Fang Zhang et al. Alibaba cloud quantum development kit: Large-scale classical
simulation of quantum circuits. arXiv preprint arXiv:1907.11217, 2019.

[136] Pyquest-cffi: A python interface to the quest quantum simulator (cffi based). https:
//github.com/HQSquantumsimulations/PyQuEST-cffi.

[137] PennyLane is a cross-platform Python library for quantum machine learning, au-
tomatic differentiation, and optimization of hybrid quantum-classical computations.
https://github.com/XanaduAI/pennylane.

[138] Review of PennyLane benchmark. https://github.com/Roger-luo/
quantum-benchmarks/pull/7.

[139] Aer is a high performance simulator for quantum circuits that includes noise models.
https://github.com/Qiskit/qiskit-aer.

[140] Terra provides the foundations for Qiskit. It allows the user to write quantum circuits
easily, and takes care of the constraints of real hardware. https://github.com/
Qiskit/qiskit-terra.

[141] py.test fixture for benchmarking code. https://github.com/ionelmc/
pytest-benchmark.

181

https://github.com/JuliaArrays/StaticArrays.jl
https://github.com/JuliaArrays/StaticArrays.jl
https://github.com/HQSquantumsimulations/PyQuEST-cffi
https://github.com/HQSquantumsimulations/PyQuEST-cffi
https://github.com/XanaduAI/pennylane
https://github.com/Roger-luo/quantum-benchmarks/pull/7
https://github.com/Roger-luo/quantum-benchmarks/pull/7
https://github.com/Qiskit/qiskit-aer
https://github.com/Qiskit/qiskit-terra
https://github.com/Qiskit/qiskit-terra
https://github.com/ionelmc/pytest-benchmark
https://github.com/ionelmc/pytest-benchmark

[142] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments. arXiv
preprint arXiv:1608.04295, 2016.

[143] Benchmarking Quantum Circuit Emulators For Your Daily Research Usage. https:
//github.com/Roger-luo/quantum-benchmarks.

[144] J Robert Johansson, Paul D Nation, and Franco Nori. Qutip: An open-source
python framework for the dynamics of open quantum systems. Computer Physics
Communications, 183(8):1760–1772, 2012.

[145] Gleb Kalachev, Pavel Panteleev, and Man-Hong Yung. Multi-tensor contraction for
xeb verification of quantum circuits. arXiv preprint arXiv: 2108.05665, 2021.

[146] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. egg: Fast and extensible equality saturation. Proc. ACM
Program. Lang., 5(POPL), January 2021.

[147] Elliott H Lieb and Derek W Robinson. The finite group velocity of quantum spin
systems. Communications in mathematical physics, 28(3):251–257, 1972.

[148] Matthew B. Hastings and Tohru Koma. Spectral gap and exponential decay of
correlations. Communications in Mathematical Physics, 265:781–804, 2006.

[149] Zhiyuan Wang, Michael Foss-Feig, and Kaden RA Hazzard. Bounding the finite-
size error of quantum many-body dynamics simulations. Physical Review Research,
3(3):L032047, 2021.

[150] Ulrich Schollwöck. The density-matrix renormalization group. Reviews of modern
physics, 77(1):259, 2005.

[151] Roger Penrose et al. Applications of negative dimensional tensors. Combinatorial
mathematics and its applications, 1:221–244, 1971.

[152] David Elieser Deutsch. Quantum computational networks. Proceedings of the royal
society of London. A. mathematical and physical sciences, 425(1868):73–90, 1989.

[153] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of physics, 326(1):96–192, 2011.

[154] Steven R White and Adrian E Feiguin. Real-time evolution using the density matrix
renormalization group. Physical review letters, 93(7):076401, 2004.

182

https://github.com/Roger-luo/quantum-benchmarks
https://github.com/Roger-luo/quantum-benchmarks

[155] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, et al. Time-evolution methods
for matrix-product states. Annals of Physics, 411:167998, 2019.

[156] Glen Evenbly and Guifré Vidal. Tensor network states and geometry. Journal of
Statistical Physics, 145:891–918, 2011.

[157] Michael P Zaletel and Frank Pollmann. Isometric tensor network states in two di-
mensions. Physical review letters, 124(3):037201, 2020.

[158] Román Orús. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of physics, 349:117–158, 2014.

[159] Guifre Vidal. Entanglement renormalization: an introduction. arXiv preprint
arXiv:0912.1651, 2009.

[160] G. Vidal. Class of quantum many-body states that can be efficiently simulated. Phys.
Rev. Lett., 101:110501, Sep 2008.

[161] Frank Verstraete, Valentin Murg, and J Ignacio Cirac. Matrix product states, pro-
jected entangled pair states, and variational renormalization group methods for quan-
tum spin systems. Advances in physics, 57(2):143–224, 2008.

[162] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems.
Phys. Rev. Lett., 93:040502, Jul 2004.

[163] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density operators:
Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93:207204,
Nov 2004.

[164] Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, et al. Time-evolving a
matrix product state with long-ranged interactions. Phys. Rev. B, 91:165112, Apr
2015.

[165] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states
with deep neural networks. Nature communications, 8(1):662, 2017.

[166] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response re-
gions of deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

183

[167] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, et al. On the number of linear
regions of deep neural networks. Advances in neural information processing systems,
27, 2014.

[168] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks.
In Conference on learning theory, pages 907–940. PMLR, 2016.

[169] Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of
recurrent neural networks. arXiv preprint arXiv:1711.00811, 2017.

[170] Maithra Raghu, Ben Poole, Jon Kleinberg, et al. On the expressive power of deep
neural networks. In international conference on machine learning, pages 2847–2854.
PMLR, 2017.

[171] Jing Chen, Song Cheng, Haidong Xie, et al. Equivalence of restricted boltzmann
machines and tensor network states. Phys. Rev. B, 97:085104, Feb 2018.

[172] Sujie Li, Feng Pan, Pengfei Zhou, et al. Boltzmann machines as two-dimensional
tensor networks. Physical Review B, 104(7):075154, 2021.

[173] Gerald Knizia and Garnet Kin-Lic Chan. Density matrix embedding: A strong-
coupling quantum embedding theory. Journal of Chemical Theory and Computation,
9(3):1428–1432, 2013. PMID: 26587604.

[174] Sebastian Wouters, Carlos A. Jiménez-Hoyos, Qiming Sun, et al. A practical guide
to density matrix embedding theory in quantum chemistry. Journal of Chemical
Theory and Computation, 12(6):2706–2719, 2016. PMID: 27159268.

[175] Qiming Sun and Garnet Kin-Lic Chan. Quantum embedding theories. Accounts of
Chemical Research, 49(12):2705–2712, 2016. PMID: 27993005.

[176] Urs Muller, Jan Ben, Eric Cosatto, et al. Off-road obstacle avoidance through end-
to-end learning. Advances in neural information processing systems, 18, 2005.

[177] Felp Roza. End-to-end learning, the (almost) every purpose ml method. Medium,
2019.

[178] Ronan Collobert, Jason Weston, Léon Bottou, et al. Natural language processing
(almost) from scratch. Journal of machine learning research, 12(ARTICLE):2493–
2537, 2011.

184

[179] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

[180] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[181] David Silver, Julian Schrittwieser, Karen Simonyan, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

[182] Dolev Bluvstein, Simon J Evered, Alexandra A Geim, et al. Logical quantum pro-
cessor based on reconfigurable atom arrays. Nature, pages 1–3, 2023.

[183] Andrew J Daley, Immanuel Bloch, Christian Kokail, et al. Practical quantum ad-
vantage in quantum simulation. Nature, 607(7920):667–676, 2022.

[184] Steven R White and Reinhard M Noack. Real-space quantum renormalization groups.
Physical review letters, 68(24):3487, 1992.

[185] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. Generative adversarial
networks. Communications of the ACM, 63(11):139–144, 2020.

[186] Wikipedia. Duck typing — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Duck%20typing&oldid=1207784910,
2024. [Online; accessed 22-February-2024].

[187] Xiuzhe(Roger) Luo. A software package for operator learning renormalization group.
https://github.com/Roger-luo/olrg-teal, 2024.

[188] James R. Garrison and Ryan V. Mishmash. Simple dmrg 1.0, November 2017.

[189] B Pirvu, V Murg, J I Cirac, et al. Matrix product operator representations. New
Journal of Physics, 12(2):025012, feb 2010.

[190] C. Hubig, I. P. McCulloch, and U. Schollwöck. Generic construction of efficient
matrix product operators. Phys. Rev. B, 95:035129, Jan 2017.

[191] Andrew M. Childs, Yuan Su, Minh C. Tran, et al. A theory of trotter error. arXiv
preprint arXiv: Arxiv-1912.08854, 2019.

[192] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor Soft-
ware Library for Tensor Network Calculations. SciPost Phys. Codebases, page 4,
2022.

185

http://en.wikipedia.org/w/index.php?title=Duck%20typing&oldid=1207784910
http://en.wikipedia.org/w/index.php?title=Duck%20typing&oldid=1207784910

[193] Brian C Hall and Brian C Hall. Lie groups, Lie algebras, and representations.
Springer, 2013.

[194] Wulf Rossmann. Lie groups: an introduction through linear groups, volume 5. Oxford
University Press on Demand, 2006.

[195] J. Von Neumann. Some matrix-inequalities and metrization of matrix-space. Tomsk
Univ, Rev. 1(286-300), 1937. Reprinted in Collected Works (Pergamon Press, 1962),
iv, 205-219.

[196] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3rd ICLR 2015, Conference Track Pro-
ceedings, 2015.

[197] William Moses and Valentin Churavy. Instead of rewriting foreign code for machine
learning, automatically synthesize fast gradients. volume 33, 2020.

[198] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. arXiv
preprint arXiv:1810.07951, 2018.

[199] Adam Paszke, Sam Gross, Francisco Massa, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[200] Mike Innes. Flux: Elegant machine learning with julia. Journal of Open Source
Software, 3(25):602, 2018.

[201] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, et al. Yao.jl: Extensible, Efficient Framework
for Quantum Algorithm Design. Quantum, 4:341, October 2020.

[202] Mike Giles. An extended collection of matrix derivative results for forward and
reverse mode automatic differentiation, 2008.

[203] Matthias Seeger, Asmus Hetzel, Zhenwen Dai, et al. Auto-differentiating linear al-
gebra. arXiv preprint arXiv:1710.08717, 2017.

[204] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2009.

[205] P Kramer. A review of the time-dependent variational principle. In Journal of
Physics: Conference Series, volume 99, page 012009. IOP Publishing, 2008.

186

[206] J Broeckhove, L Lathouwers, E Kesteloot, et al. On the equivalence of time-
dependent variational principles. Chemical physics letters, 149(5-6):547–550, 1988.

[207] Xiao Yuan, Suguru Endo, Qi Zhao, et al. Theory of variational quantum simulation.
Quantum, 3:191, October 2019.

[208] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[209] Giuseppe Carleo, Federico Becca, Marco Schiró, et al. Localization and glassy dy-
namics of many-body quantum systems. Scientific reports, 2(1):243, 2012.

[210] Giuseppe Carleo, Federico Becca, Laurent Sanchez-Palencia, et al. Light-cone effect
and supersonic correlations in one-and two-dimensional bosonic superfluids. Physical
Review A, 89(3):031602, 2014.

[211] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the
electronic schrödinger equation. Nature Chemistry, 12(10):891–897, 2020.

[212] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, et al. Neural-network quan-
tum state tomography. Nature Physics, 14(5):447–450, 2018.

[213] Zi Cai and Jinguo Liu. Approximating quantum many-body wave functions using
artificial neural networks. Phys. Rev. B, 97:035116, Jan 2018.

[214] Juan Carrasquilla and Giacomo Torlai. How to use neural networks to investigate
quantum many-body physics. PRX Quantum, 2(4):040201, 2021.

[215] Mohamed Hibat-Allah, Martin Ganahl, Lauren E Hayward, et al. Recurrent neural
network wave functions. Physical Review Research, 2(2):023358, 2020.

[216] Jannes Nys, Zakari Denis, and Giuseppe Carleo. Real-time quantum dynamics of
thermal states with neural thermofields. arXiv preprint arXiv: 2309.07063, 2023.

[217] Di Luo, Zhuo Chen, Juan Carrasquilla, et al. Autoregressive neural network for
simulating open quantum systems via a probabilistic formulation. Phys. Rev. Lett.,
128:090501, Feb 2022.

[218] Michael J Hartmann and Giuseppe Carleo. Neural-network approach to dissipative
quantum many-body dynamics. Physical review letters, 122(25):250502, 2019.

187

[219] Kenny Choo, Titus Neupert, and Giuseppe Carleo. Two-dimensional frustrated
j 1- j 2 model studied with neural network quantum states. Physical Review B,
100(12):125124, 2019.

[220] Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. Constructing exact rep-
resentations of quantum many-body systems with deep neural networks. Nature
communications, 9(1):5322, 2018.

[221] Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. Fermionic neural-network
states for ab-initio electronic structure. Nature communications, 11(1):2368, 2020.

[222] Alessandro Sinibaldi, Clemens Giuliani, Giuseppe Carleo, et al. Unbiasing time-
dependent variational monte carlo by projected quantum evolution. arXiv preprint
arXiv:2305.14294, 2023.

[223] Zhuo Chen, Laker Newhouse, Eddie Chen, et al. Autoregressive neural tensornet:
Bridging neural networks and tensor networks for quantum many-body simulation.
NEURIPS, 2023.

[224] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin philosophical magazine and journal of science,
2(11):559–572, 1901.

[225] Diederik P. Kingma and M. Welling. Auto-encoding variational bayes. International
Conference on Learning Representations, 2013.

[226] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estima-
tion algorithms. Communications on Pure and Applied Mathematics, 66(2):145–164,
2013.

[227] Papamakarios George, Nalisnick Eric, Rezende Danilo Jimenez, et al. Normalizing
flows for probabilistic modeling and inference. The Journal of Machine Learning
Research, 2021.

[228] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, et al. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on
machine learning, pages 2256–2265. PMLR, 2015.

[229] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851.
Curran Associates, Inc., 2020.

188

[230] Kunihiko Fukushima. Visual feature extraction by a multilayered network of ana-
log threshold elements. IEEE Transactions on Systems Science and Cybernetics,
5(4):322–333, 1969.

[231] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural net-
work model for a mechanism of visual pattern recognition. In Shun-ichi Amari and
Michael A. Arbib, editors, Competition and Cooperation in Neural Nets, pages 267–
285, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[232] L. S. Pontryagin et al. The mathematical theory of optimal processes. International
Series of Monographs in Pure and Applied Mathematics. Interscience, New York.,
1962.

[233] William W. Hager. Runge-kutta methods in optimal control and the transformed
adjoint system, December 2000.

[234] CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS, volume Volume 6:
5th International Conference on Multibody Systems, Nonlinear Dynamics, and Con-
trol, Parts A, B, and C of International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, 09 2005.

[235] Aram W Harrow and Ashley Montanaro. Quantum computational supremacy. Na-
ture, 549(7671):203–209, 2017.

[236] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, et al. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14(6):595, 2018.

[237] Charles Neill, Pedran Roushan, K Kechedzhi, et al. A blueprint for demonstrating
quantum supremacy with superconducting qubits. Science, 360(6385):195–199, 2018.

[238] Sergio Blanes and Fernando Casas. A concise introduction to geometric numerical
integration. CRC press, 2017.

[239] Masuo Suzuki. General theory of fractal path integrals with applications to many-
body theories and statistical physics. Journal of Mathematical Physics, 32(2):400–
407, 1991.

[240] Andrew M. Childs, Yuan Su, Minh C. Tran, et al. Theory of trotter error with
commutator scaling. Phys. Rev. X, 11:011020, Feb 2021.

189

[241] Jeongwan Haah, Matthew B Hastings, Robin Kothari, et al. Quantum algorithm for
simulating real time evolution of lattice hamiltonians. SIAM Journal on Computing,
(0):FOCS18–250, 2021.

[242] Dave Wecker, Bela Bauer, Bryan K Clark, et al. Gate-count estimates for performing
quantum chemistry on small quantum computers. Physical Review A, 90(2):022305,
2014.

[243] Youngseok Kim, Andrew Eddins, Sajant Anand, et al. Evidence for the utility of
quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.

[244] Marcello Benedetti, Erika Lloyd, Stefan Sack, et al. Parameterized quantum circuits
as machine learning models. Quantum Science and Technology, 4(4):043001, 2019.

[245] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure optimiza-
tion for parameterized quantum circuits. Quantum, 5:391, 2021.

[246] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-classical al-
gorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[247] Tobias Haug, Kishor Bharti, and MS Kim. Capacity and quantum geometry of
parametrized quantum circuits. PRX Quantum, 2(4):040309, 2021.

[248] Tobias Haug and MS Kim. Natural parametrized quantum circuit. Physical Review
A, 106(5):052611, 2022.

[249] Jules Tilly, Hongxiang Chen, Shuxiang Cao, et al. The variational quantum eigen-
solver: a review of methods and best practices. Physics Reports, 986:1–128, 2022.

[250] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, et al. Variational quantum eigensolver
with fewer qubits. Phys. Rev. Research, 1(2):023025, Sep 2019.

[251] Daochen Wang, Oscar Higgott, and Stephen Brierley. Accelerated variational quan-
tum eigensolver. Physical review letters, 122(14):140504, 2019.

[252] Ya Wang, Florian Dolde, Jacob Biamonte, et al. Quantum simulation of helium
hydride cation in a solid-state spin register. ACS nano, 9(8):7769–7774, 2015.

[253] Yangchao Shen, Xiang Zhang, Shuaining Zhang, et al. Quantum implementation of
the unitary coupled cluster for simulating molecular electronic structure. Physical
Review A, 95(2):020501, 2017.

190

[254] Stefano Paesani, Andreas A Gentile, Raffaele Santagati, et al. Experimental bayesian
quantum phase estimation on a silicon photonic chip. Physical review letters,
118(10):100503, 2017.

[255] James I Colless, Vinay V Ramasesh, Dar Dahlen, et al. Computation of molecular
spectra on a quantum processor with an error-resilient algorithm. Physical Review
X, 8(1):011021, 2018.

[256] Raffaele Santagati, Jianwei Wang, Antonio A Gentile, et al. Witnessing eigenstates
for quantum simulation of hamiltonian spectra. Science advances, 4(1):eaap9646,
2018.

[257] Abhinav Kandala, Kristan Temme, Antonio D Córcoles, et al. Error mitigation ex-
tends the computational reach of a noisy quantum processor. Nature, 567(7749):491–
495, 2019.

[258] Cornelius Hempel, Christine Maier, Jonathan Romero, et al. Quantum chemistry
calculations on a trapped-ion quantum simulator. Physical Review X, 8(3):031022,
2018.

[259] Christian Kokail, Christine Maier, Rick van Bijnen, et al. Self-verifying variational
quantum simulation of lattice models. Nature, 569(7756):355–360, 2019.

[260] Ying Li and Simon C Benjamin. Efficient variational quantum simulator incorporat-
ing active error minimization. Physical Review X, 7(2):021050, 2017.

[261] Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace-search variational
quantum eigensolver for excited states. Physical Review Research, 1(3):033062, 2019.

[262] Suguru Endo, Jinzhao Sun, Ying Li, et al. Variational quantum simulation of general
processes. Phys. Rev. Lett., 125:010501, Jun 2020.

[263] Adrian Parra-Rodriguez, Pavel Lougovski, Lucas Lamata, et al. Digital-analog quan-
tum computation. Physical Review A, 101(2):022305, 2020.

[264] Ana Martin, Lucas Lamata, Enrique Solano, et al. Digital-analog quantum algorithm
for the quantum fourier transform. Phys. Rev. Res., 2:013012, Jan 2020.

[265] Jonathan Z. Lu, Lucy Jiao, Kristina Wolinski, et al. Digital-analog quantum learning
on rydberg atom arrays. arXiv preprint arXiv: 2401.02940, 2024.

191

[266] F. Darema, D.A. George, V.A. Norton, et al. A single-program-multiple-data com-
putational model for epex/fortran. Parallel Computing, 7(1):11–24, 1988.

[267] Leonardo Banchi and Gavin E Crooks. Measuring analytic gradients of general
quantum evolution with the stochastic parameter shift rule. Quantum, 5:386, 2021.

[268] David Wierichs, J. Izaac, C. Wang, et al. General parameter-shift rules for quantum
gradients. QUANTUM, 2021.

[269] Jiaqi Leng, Yuxiang Peng, Yi-Ling Qiao, et al. Differentiable analog quantum com-
puting for optimization and control. Advances in Neural Information Processing
Systems, 35:4707–4721, 2022.

[270] Harry Levine, Alexander Keesling, Giulia Semeghini, et al. Parallel implementa-
tion of high-fidelity multiqubit gates with neutral atoms. Physical review letters,
123(17):170503, 2019.

[271] Sumeet Khatri, Ryan LaRose, Alexander Poremba, et al. Quantum-assisted quantum
compiling. Quantum, 3:140, May 2019.

[272] Tobias Glasmachers. Limits of end-to-end learning. In Asian conference on machine
learning, pages 17–32. PMLR, 2017.

[273] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

[274] Edwin M Stoudenmire and Steven R White. Studying two-dimensional systems
with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys.,
3(1):111–128, 2012.

[275] Ming-Jay Yang and Steven R. White. Time-dependent variational principle with
ancillary krylov subspace. Physical Review B, 102, 2020.

[276] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. International
Conference on Learning Representations, 2017.

[277] Jonathan Heek, Anselm Levskaya, Avital Oliver, et al. Flax: A neural network
library and ecosystem for JAX, 2023.

[278] DeepMind, Igor Babuschkin, Kate Baumli, et al. The DeepMind JAX Ecosystem,
2020.

192

[279] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[280] Simon Danisch and Julius Krumbiegel. Makie.jl: Flexible high-performance data
visualization for Julia. Journal of Open Source Software, 6(65):3349, 2021.

[281] Stefanie Czischek, M. Schuyler Moss, Matthew Radzihovsky, et al. Data-enhanced
variational monte carlo simulations for rydberg atom arrays. Phys. Rev. B,
105:205108, May 2022.

[282] M. Schuyler Moss, Sepehr Ebadi, Tout T. Wang, et al. Enhancing variational monte
carlo using a programmable quantum simulator. arXiv preprint arXiv: 2308.02647,
2023.

[283] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradi-
ent descent. arXiv preprint arXiv:1704.05021, 2017.

[284] YaoLang: The next DSL for Yao and quantum programs. https://github.com/
QuantumBFS/YaoLang.jl.

[285] J. Bezanson. “Why is Julia fast? Can it be faster?” 2015, JuliaCon India. https:
//www.youtube.com/watch?v=xUP3cSKb8sI.

[286] Xiu-Zhe Luo, Di Luo, and Roger G. Melko. Operator learning renormalization group.
arXiv preprint arXiv: 2403.03199, 2024.

[287] Bidirectional transformation between Yao Quantum Block IR and QASM. https:
//github.com/QuantumBFS/YaoQASM.jl.

[288] Multi-language suite for high-performance solvers of differential equations. https:
//github.com/JuliaDiffEq/DifferentialEquations.jl.

[289] Symbolics.jl: A symbolic math library written in Julia modelled off scmutils. https:
//github.com/MasonProtter/Symbolics.jl.

[290] SymEngine is a fast symbolic manipulation library, written in C++. https:
//github.com/symengine/symengine.

[291] An efficient symbolic term rewriting engine. https://github.com/
HarrisonGrodin/Rewrite.jl.

193

https://github.com/QuantumBFS/YaoLang.jl
https://github.com/QuantumBFS/YaoLang.jl
https://www.youtube.com/watch?v=xUP3cSKb8sI
https://www.youtube.com/watch?v=xUP3cSKb8sI
https://github.com/QuantumBFS/YaoQASM.jl
https://github.com/QuantumBFS/YaoQASM.jl
https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/MasonProtter/Symbolics.jl
https://github.com/MasonProtter/Symbolics.jl
https://github.com/symengine/symengine
https://github.com/symengine/symengine
https://github.com/HarrisonGrodin/Rewrite.jl
https://github.com/HarrisonGrodin/Rewrite.jl

[292] ZXCalculus.jl: An implementation of ZX-calculus in Julia. https://github.com/
QuantumBFS/ZXCalculus.jl.

[293] YaoTensorNetwork: Dump a quantum circuit in Yao to a tensor network graph
model. https://github.com/QuantumBFS/YaoTensorNetwork.jl.

[294] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Diagram-
matic Reasoning. In Bob Coecke and Matthew Leifer, editors, Proceedings 16th
International Conference on Quantum Physics and Logic, Chapman University, Or-
ange, CA, USA., 10-14 June 2019, volume 318 of Electronic Proceedings in Theoretical
Computer Science, pages 229–241. Open Publishing Association, 2020.

[295] Edward Grant, Marcello Benedetti, Shuxiang Cao, et al. Hierarchical quantum clas-
sifiers. npj Quantum Information, 4(1):65, 2018.

[296] Dmitri Maslov, Gerhard W Dueck, D Michael Miller, et al. Quantum circuit sim-
plification and level compaction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(3):436–444, 2008.

[297] Thomas Häner, Damian S Steiger, Mikhail Smelyanskiy, et al. High performance
emulation of quantum circuits. In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 866–874.
IEEE, 2016.

[298] Vivek V. Shende, Igor L. Markov, and Stephen S. Bullock. Minimal universal two-
qubit controlled-not-based circuits. Phys. Rev. A, 69:062321, Jun 2004.

[299] Roger B Sidje. Expokit: A software package for computing matrix exponentials.
ACM Transactions on Mathematical Software (TOMS), 24(1):130–156, 1998.

[300] Raban Iten, David Sutter, and Stefan Woerner. Efficient template matching in quan-
tum circuits. arXiv preprint arXiv:1909.05270, 2019.

[301] Manuel Krebber. Non-linear associative-commutative many-to-one pattern matching
with sequence variables. arXiv preprint arXiv:1705.00907, 2017.

[302] Xiang Fu et al. eqasm: An executable quantum instruction set architecture. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 224–237. IEEE, 2019.

[303] Adam Paszke, Sam Gross, Soumith Chintala, et al. Automatic differentiation in
pytorch. 2017.

194

https://github.com/QuantumBFS/ZXCalculus.jl
https://github.com/QuantumBFS/ZXCalculus.jl
https://github.com/QuantumBFS/YaoTensorNetwork.jl

[304] James T. Moore and Jonathan F. Bard. The Mixed Integer Linear Bilevel Program-
ming Problem. Operations Research, 38(5):911–921, oct 1990.

[305] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus.
arXiv preprint arXiv:1903.10477, 2019.

[306] Michael R Geller, John M Martinis, Andrew T Sornborger, et al. Universal quan-
tum simulation with prethreshold superconducting qubits: Single-excitation subspace
method. Physical Review A, 91(6):062309, 2015.

[307] Diego Ristè, Marcus P da Silva, Colm A Ryan, et al. Demonstration of quantum
advantage in machine learning. npj Quantum Information, 3(1):16, 2017.

[308] Julian Kelly et al. State preservation by repetitive error detection in a superconduct-
ing quantum circuit. Nature, 519(7541):66, 2015.

[309] Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, et al. Learning and inference on generative
adversarial quantum circuits. Physical Review A, 99(5):052306, 2019.

[310] Lov K Grover. A fast quantum mechanical algorithm for database search. arXiv
preprint quant-ph/9605043, 1996.

[311] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[312] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[313] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using
20 million noisy qubits. arXiv preprint arXiv:1905.09749, 2019.

[314] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical review letters, 103(15):150502, 2009.

[315] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep learning. arXiv
preprint arXiv:1412.3489, 2014.

[316] Keno Fischer and Elliot Saba. Automatic full compilation of julia programs and ml
models to cloud tpus. arXiv preprint arXiv:1810.09868, 2018.

[317] Tim Besard, Bjorn De Sutter, Andrés Frías-Velázquez, et al. Case study of multiple
trace transform implementations. The International Journal of High Performance
Computing Applications, 29(4):489–505, 2015.

195

[318] Mike Innes et al. On machine learning and programming languages. Association for
Computing Machinery (ACM), 2018.

[319] Daniel R Simon. On the power of quantum computation. SIAM journal on comput-
ing, 26(5):1474–1483, 1997.

[320] Peter W Shor. Scheme for reducing decoherence in quantum computer memory.
Physical review A, 52(4):R2493, 1995.

[321] Bert Speelpenning. Compiling fast partial derivatives of functions given by algo-
rithms. Technical report, Illinois Univ., Urbana (USA). Dept. of Computer Science,
1980.

[322] John V. Guttag and James J. Horning. The algebraic specification of abstract data
types. Acta informatica, 10(1):27–52, 1978.

[323] Thomas Häner, Damian S Steiger, Krysta Svore, et al. A software methodology for
compiling quantum programs. Quantum Science and Technology, 3(2):020501, 2018.

[324] Mu Li, Li Zhou, Zichao Yang, et al. Parameter server for distributed machine learn-
ing. In Big Learning NIPS Workshop, volume 6, page 2, 2013.

[325] Andrew W Cross, Lev S Bishop, John A Smolin, et al. Open quantum assembly
language. arXiv preprint arXiv:1707.03429, 2017.

[326] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum in-
struction set architecture. arXiv preprint arXiv:1608.03355, 2016.

[327] The Q# programming language. https://docs.microsoft.com/en-us/quantum/
language/?view=qsharp-preview.

[328] CuYao.jl: CUDA extension for Yao.jl. https://github.com/QuantumBFS/CuYao.
jl.

[329] Andrew Cross. The IBM Q experience and QISKit open-source quantum computing
software. In APS Meeting Abstracts, 2018.

[330] Nathan Killoran, Josh Izaac, Nicolás Quesada, et al. Strawberry fields: A software
platform for photonic quantum computing. Quantum, 3:129, 2019.

[331] Dougal Maclaurin. Modeling, inference and optimization with composable differen-
tiable procedures. PhD thesis, 2016.

196

https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://github.com/QuantumBFS/CuYao.jl
https://github.com/QuantumBFS/CuYao.jl

[332] RBNF: A DSL for modern parsing. https://github.com/thautwarm/RBNF.jl.

[333] David E Rumelhart and Geoffrey E Hintonf. Learning representations by back-
propagating errors. Nature, 323:9, 1986.

[334] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[335] Zhao-Yu Han, Jun Wang, Heng Fan, et al. Unsupervised generative modeling using
matrix product states. Phys. Rev. X, 8:031012, Jul 2018.

[336] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, et al. Simulation of low-
depth quantum circuits as complex undirected graphical models. arXiv preprint
arXiv:1712.05384, 2017.

[337] Jianxin Chen, Fang Zhang, Mingcheng Chen, et al. Classical simulation of
intermediate-size quantum circuits. arXiv preprint arXiv:1805.01450, 2018.

[338] Chu Guo, Yong Liu, Min Xiong, et al. General-purpose quantum circuit simulator
with projected entangled-pair states and the quantum supremacy frontier. Phys.
Rev. Lett., 123:190501, Nov 2019.

[339] Michael Levin and Cody P Nave. Tensor renormalization group approach to two-
dimensional classical lattice models. Physical review letters, 99(12):120601, 2007.

[340] Song Cheng, Jing Chen, and Lei Wang. Information perspective to probabilistic
modeling: Boltzmann machines versus born machines. Entropy, 20(8):583, 2018.

[341] E Miles Stoudenmire and David J Schwab. Supervised learning with quantum-
inspired tensor networks. arXiv preprint arXiv:1605.05775, 2016.

[342] Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New
Journal of Physics, 16(9):093021, sep 2014.

[343] Weishi Wang, Jin-Guo Liu, and Lei Wang. A variational quantum state compression
algorithm. to appear.

[344] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[345] Song Cheng, Lei Wang, Tao Xiang, et al. Tree tensor networks for generative mod-
eling. Phys. Rev. B, 99:155131, Apr 2019.

197

https://github.com/thautwarm/RBNF.jl

[346] Ivan Glasser, Ryan Sweke, Nicola Pancotti, et al. Expressive power of tensor-network
factorizations for probabilistic modeling. In Advances in Neural Information Process-
ing Systems, pages 1496–1508, 2019.

[347] Tai-Danae Bradley, E M Stoudenmire, and John Terilla. Modeling sequences with
quantum states: a look under the hood. Machine Learning: Science and Technology,
1(3):035008, jul 2020.

[348] Feng Pan, Pengfei Zhou, Sujie Li, et al. Contracting arbitrary tensor networks:
general approximate algorithm and applications in graphical models and quantum
circuit simulations. arXiv preprint arXiv:1912.03014, 2019.

[349] T. Altenkirch and J. Grattage. A functional quantum programming language. 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’ 05).

[350] Leonardo Banchi, Nicola Pancotti, and Sougato Bose. Quantum gate learning in
qubit networks: Toffoli gate without time-dependent control. npj Quantum Informa-
tion, 2(1), Jul 2016.

[351] Xiaoguang Wang, Zhe Sun, and Z. D. Wang. Operator fidelity susceptibility: An
indicator of quantum criticality. Physical Review A, 79(1), Jan 2009.

[352] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, et al. Learning the quantum
algorithm for state overlap. New Journal of Physics, 20(11):113022, Nov 2018.

[353] Patrick Kofod Mogensen and Asbjørn Nilsen Riseth. Optim: A mathematical opti-
mization package for Julia. Journal of Open Source Software, 3(24):615, 2018.

[354] Richard H Byrd, Peihuang Lu, Jorge Nocedal, et al. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–
1208, 1995.

[355] Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, et al. Variational fast forwarding for
quantum simulation beyond the coherence time, 2019.

[356] Ryan LaRose, Arkin Tikku, Étude O’Neel-Judy, et al. Variational quantum state
diagonalization. npj Quantum Information, 5(1), Jun 2019.

[357] Piotr Gawron, Dariusz Kurzyk, and Łukasz Pawela. Quantuminformation.jl—a julia
package for numerical computation in quantum information theory. PLOS ONE,
13(12):e0209358, Dec 2018.

198

[358] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert
spaces. Phys. Rev. Lett., 122:040504, Feb 2019.

[359] Giulia Semeghini, Harry Levine, Alexander Keesling, et al. Probing topological spin
liquids on a programmable quantum simulator. Science, 374(6572):1242–1247, 2021.

[360] Xizhi Han, Sean A Hartnoll, Jorrit Kruthoff, et al. Bootstrapping matrix quantum
mechanics. Physical Review Letters, 125(4):041601, 2020.

[361] David Silver, Thomas Hubert, Julian Schrittwieser, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[362] J Werschnik and EKU Gross. Quantum optimal control theory. Journal of Physics
B: Atomic, Molecular and Optical Physics, 40(18):R175, 2007.

[363] Sergio Blanes, Fernando Casas, Jose-Angel Oteo, et al. The magnus expansion and
some of its applications. Physics reports, 470(5-6):151–238, 2009.

[364] Pierre Nataf and Frédéric Mila. Exact diagonalization of heisenberg su (n) models.
Physical review letters, 113(12):127204, 2014.

[365] Michel Caffarel and Werner Krauth. Exact diagonalization approach to correlated
fermions in infinite dimensions: Mott transition and superconductivity. Physical
review letters, 72(10):1545, 1994.

[366] Daniel Alonso and Inés de Vega. Multiple-time correlation functions for non-
markovian interaction: Beyond the quantum regression theorem. Phys. Rev. Lett.,
94:200403, May 2005.

[367] Ryogo Kubo. Generalized cumulant expansion method. Journal of the Physical
Society of Japan, 17(7):1100–1120, 1962.

[368] Sepehr Ebadi, Tout T Wang, Harry Levine, et al. Quantum phases of matter on a
256-atom programmable quantum simulator. Nature, 595(7866):227–232, 2021.

[369] Hsin-Yuan Huang, R. Kueng, and J. Preskill. Predicting many properties of a quan-
tum system from very few measurements. Nature Physics, 2020.

[370] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, et al. Provably efficient machine
learning for quantum many-body problems. Science, 377(6613):eabk3333, 2022.

199

[371] Hai-Jun Liao, Jin-Guo Liu, Lei Wang, et al. Differentiable programming tensor
networks. Physical Review X, 9(3):031041, 2019.

[372] Juan Carrasquilla, Giacomo Torlai, Roger G Melko, et al. Reconstructing quantum
states with generative models. Nature Machine Intelligence, 1(3):155–161, 2019.

[373] J Ignacio Cirac and Frank Verstraete. Renormalization and tensor product states
in spin chains and lattices. Journal of physics a: mathematical and theoretical,
42(50):504004, 2009.

[374] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[375] Albert Gordo, Jon Almazan, Jerome Revaud, et al. End-to-end learning of deep
visual representations for image retrieval. International Journal of Computer Vision,
124(2):237–254, 2017.

[376] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(61):2121–2159, 2011.

[377] Frank Verstraete, Michael M Wolf, David Perez-Garcia, et al. Criticality, the area
law, and the computational power of projected entangled pair states. Physical review
letters, 96(22):220601, 2006.

[378] Matthew B Hastings. Solving gapped hamiltonians locally. Physical review b,
73(8):085115, 2006.

200

Glossary

differentiable programming A programming paradigm that allows the automatic dif-
ferentiation of programs 18–20, 71, 79, 129

end-to-end A machine learning paradigm that learns a system from input to output 98,
163, 167, 168

faithful gradient A gradient that can be evalulated on quantum computer 84

syntax sugar A syntactic feature that makes the code easier to read or write 45

201

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Getting Started
	5 Ways of Describing the Projectile Motion
	What is Programmatic Representation?

	Motivation
	Bridging the Gap between Theoretical, Computational and Experimental Physics
	Building Performant, Sophisticated and Multi-purpose Software Framework
	A way of thinking

	Useful Concepts and Techniques
	Expression
	Sum Types
	Pattern Matching
	Backus-Naur Form

	Representation
	Quantum Circuit
	Quantum Registers
	Quantum Operators
	Quantum Hardwares
	Static Single Assignment Form

	Transformation
	Fast Exact Simulation
	Manipulating Quantum Circuits
	Quantum Circuit Simulation
	Generating Matrix
	Simulating Rydberg Dynamics

	Automatic Differentiation
	Forward Mode
	Reverse Mode
	Making Use of Reversibility
	Forward Mode: Faithful Quantum Gradients

	Benchmark
	Benchmark: Exact Circuit Simulation
	Benchmark: Exact Rydberg Atom Dynamics Simulation

	Discussion

	Generalization: Operator Learning Renormalization Group
	NRG and DMRG in the Traditional Formulation
	Operator Learning RG Framework
	The Scaling Consistency Condition
	Loss Function for Real-Time Evolution

	Formal Definitions
	Scaling Consistency
	Growing Operator of Rescalable Local Hamiltonians

	Scaling Consistency Condition for Real Time Evolution
	OLRG Algorithms
	Classical Algorithm: Operator Matrix Map
	Quantum Algorithm: Hamiltonian Expression Map
	Error and Resource Estimation

	Transforming Time-dependent Hamiltonians
	Results
	OMM
	HEM
	Transfer Learning between Time Points

	Additional Results
	Training History
	Batch and Sampling Size
	Step Size

	Discussion
	Improving Loss Function
	Improving Operator Maps
	Finding the Loss Function for Other Properties
	Higher Dimension Lattice and Other Geometry
	Relation with MPS TDVP
	Implementation
	Optimization

	Conclusion
	References
	Glossary

