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Abstract

Purpose:

Diagnosing medical images necessitates years of experience to ensure accurate diagnoses.
However, the current workforce available for this task falls significantly short compared
to the volume of images requiring assessment. This places a considerable burden on the
medical system during diagnosis. Additionally, medical images often contain artifacts, fur-
ther complicating and prolonging the diagnostic process. This thesis serves as a solution
to expedite diagnosis by enhancing the image quality of Optical Coherence Tomography
Angiography (OCTA) images, thereby alleviating the strain on the system.

Aims:

1. Method 1 (Chapter 2): Removal of motion artifacts from OCTA images. It is one
of the toughest artifacts to be removed from an image.

2. Method 2 (Chapter 3): Super-Resolution of OCTA image. Increasing the dimen-
sions of the image and enhancing the quality to make diagnosis process efficient.

Conclusion: This work allows the removal of motion artifacts from the OCTA image
and then enhance the quality of the image using super-resolution. In chapter 4 we show
that the scatterplots were used to compare the correlations of the most commonly used
parameters, Foveal Avascular Zone (FAZ) area, perimeter, and circularity index, between
before and after super-resolution at ×2 and ×3 magnification. A p-value < 0.05 was
considered significant for all statistical tests. Thus, making the diagnosis process simpler
and better for medical practitioners.
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Introduction
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1.1 Retina

The retina, a delicate and intricate layer of tissue lining the inner surface of the eye, plays
a pivotal role in the process of vision. Comprising several layers with specialized functions,
the retina is essential for converting light stimuli into neural signals that the brain can
interpret as vision. This article delves into the structure and functioning of the retina,
exploring the layers that contribute to its remarkable capabilities.

1.1.1 Structure of Retina

The retina can be likened to the film in a camera, capturing visual information and trans-
mitting it to the brain for interpretation. Structurally, the retina is composed of several
layers, each with distinct roles in the visual process.

1. Retinal Pigment Epithelium (RPE):
At the outermost layer of the retina lies the RPE. This layer is responsible for nour-
ishing the photoreceptor cells, maintaining the health of the outer segments of pho-
toreceptors, and absorbing excess light to prevent scattering within the eye.

2. Photoreceptor Layer :
The photoreceptor layer contains two main types of cells - rods and cones. Rods are
sensitive to low light conditions and facilitate peripheral vision, while cones operate
in bright light and are responsible for color vision. Photoreceptor cells capture light
and convert it into electrical signals.

3. Outer Nuclear Layer (ONL):
The ONL contains the nuclei of the photoreceptor cells, playing a crucial role in the
production and maintenance of these light-sensitive cells.

4. Outer Plexiform Layer (OPL):
The OPL is where synapses occur between photoreceptor cells and bipolar cells and
horizontal cells are present. It serves as a crucial site for signal processing before
transmitting information to the inner layers of the retina.

5. Inner Nuclear Laye (INL):
The INL consists of various cell bodies of interneurons, including bipolar cells, hor-
izontal cells, and amacrine cells. These cells play vital roles in modulating and
processing visual information before it reaches the ganglion cells.
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6. Inner Plexiform Layer (IPL):
The IPL is where synapses take place between bipolar cells, amacrine cells, and
ganglion cells. This layer is critical for refining visual information and transmitting
it to the ganglion cells.

7. Ganglion Cell Layer:
Ganglion cells are the final output neurons of the retina, sending processed visual
information to the brain through the optic nerve. Some ganglion cells are specialized
for detecting motion, while others contribute to the perception of color and contrast.

8. Nerve Fiber Layer:
The nerve fiber layer contains the axons of ganglion cells, which bundle together to
form the optic nerve. This layer is the conduit through which visual information
travels from the retina to the brain.

1.1.2 Functioning of Retina

Phototransduction in Photoreceptor Cells:

At the heart of retinal function lies phototransduction, the process by which light signals
are converted into electrical signals. This occurs primarily in the outer segments of the
photoreceptor cells – rods and cones. The outer segments contain stacks of membranous
disks that house photopigments, proteins sensitive to light. When struck by photons, these
pigments undergo structural changes, initiating a cascade of events that culminate in the
generation of electrical signals.

In rods, the photopigment rhodopsin plays a central role, while cones possess differ-
ent photopigments responsible for color vision – short-wavelength cones for blue, middle-
wavelength cones for green, and long-wavelength cones for red. The variations in these
pigments contribute to the perception of a diverse spectrum of colors.

Signal Processing in the Inner Layers:

Once the photoreceptor cells capture light and generate electrical signals, the information
undergoes intricate processing in the inner layers of the retina. Bipolar cells, positioned in
the inner nuclear layer, receive signals from photoreceptor cells and serve as intermediaries
in transmitting information to the ganglion cells.
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Horizontal cells, found in the INL, modulate signals laterally, allowing for the enhance-
ment of contrasts and the sharpening of edges in the visual scene. Amacrine cells, present
in both the inner nuclear layer and inner plexiform layer, contribute to the processing of
motion and other complex visual features.

Synaptic Transmission in the Inner Plexiform Layer:

The inner plexiform layer is a crucial site for synaptic transmission, where bipolar cells
synapse with both amacrine cells and ganglion cells. This synaptic network allows for
the integration of signals and the extraction of essential features from the visual input.
Amacrine cells play a pivotal role in shaping the receptive fields of ganglion cells, influencing
their responses to different aspects of visual stimuli.

Ganglion Cells: The Conduits to the Brain:

Ganglion cells, situated in the ganglion cell layer, are the final output neurons of the
retina. These cells have diverse functional properties, with some responding to changes
in luminance, others specializing in detecting motion, and yet others contributing to the
perception of color and form. The axons of ganglion cells converge to form the optic nerve,
which carries the compiled visual information to the brain for further processing.

Retinal Processing and Visual Perception:

The complex interactions within the retinal circuitry result in the extraction of fundamental
features from the visual input. The processing of visual information includes edge detection,
contrast enhancement, and motion perception. The parallel processing of different aspects
of visual stimuli allows for the integration of diverse features, contributing to our holistic
perception of the visual scene.

Adaptation and Dynamic Range:

The retina exhibits adaptive mechanisms to accommodate a wide range of light intensi-
ties. Photoreceptor cells adjust their sensitivity to light levels through processes like pho-
topigment regeneration and changes in the responsiveness of synaptic connections. This
adaptation ensures that the retina can function optimally in both bright and dim lighting
conditions, providing us with a consistent perception of the visual environment.
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Figure 1.1: Layers in Retina. Image taken from [11] is licensed under CC BY.

In conclusion, the functioning of the retina is a finely orchestrated symphony of cellular
and molecular processes. From the initial capture of light by photoreceptor cells to the com-
plex processing in the inner layers and the transmission of refined signals through ganglion
cells, the retina demonstrates an incredible capacity for visual information processing. Un-
derstanding these intricacies not only deepens our appreciation for the physiological marvel
of vision but also offers insights into the remarkable adaptability and efficiency of biolog-
ical systems. Figure 1.1 shows the pictorial representation of different layers that exist in
retina.

5
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1.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that uses light
waves to capture detailed, cross-sectional images of biological tissues. It was first developed
in the early 1990s and has since become a valuable tool in various medical fields, partic-
ularly ophthalmology and cardiology. OCT enables high-resolution, real-time imaging of
biological tissues at micrometer-scale resolution.

1.2.1 Basic Principle

OCT is based on the principle of interferometry, specifically low-coherence interferometry.
The key components include a light source, a beamsplitter, a reference arm, and a sample
arm. A beam of light is split into a reference arm and a sample arm. The light reflected
from the tissue and the reference arm is recombined, and interference patterns are analyzed
to generate detailed images.

Figure 1.2 is an OCT image of the different retinal layers.

Figure 1.2: A Typical OCT Image with Retinal Layers.

1.2.2 Types of OCT

Different types of OCT are discussed here.

1. Time-Domain OCT (TD-OCT)[5]:

6



• Principle: TD-OCT is the original form of OCT and operates by physically
scanning the reference arm’s mirror to vary the optical path length.

• Advantages:

– Proven technology with a long history of use.

– Suitable for various applications, especially in ophthalmology.

• Limitations:

– Limited imaging speed due to mechanical scanning.

– Susceptible to motion artifacts.

2. Frequency-Domain OCT (FD-OCT)[7]:

• Principle: FD-OCT eliminates the need for mechanical scanning by using a
spectrometer to measure the interference spectrum. It is also known as Fourier-
Domain OCT.

• Types of FD-OCT:

– Spatially Encoded Frequency-Domain OCT [3]: Utilizes spatial en-
coding techniques to improve the imaging speed and sensitivity.

• Advantages:

– Higher imaging speed compared to TD-OCT.

– Improved sensitivity and signal-to-noise ratio.

• Limitations:

– More complex instrumentation.

3. Swept-Source OCT (SS-OCT)[24]:

• Principle: SS-OCT employs a tunable laser source that rapidly sweeps through
a range of wavelengths. It is a specific type of FD-OCT.

• Advantages:

– Improved imaging depth and speed.

– Reduced sensitivity roll-off with depth.

– Suitable for imaging highly scattering tissues.

• Limitations:

– Requires stable, high-speed tunable lasers.
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– Susceptible to motion artifacts.

4. Full-Field OCT (FF-OCT)[26]:

• Principle: In FF-OCT, the entire field of view is illuminated simultaneously,
and the interference pattern is analyzed for each point in the field.

• Advantages:

– High-speed imaging over a large field of view.

– Suitable for imaging biological tissues in vivo.

• Limitations:

– Complex instrumentation.

– Limited depth penetration.

5. Polarization-Sensitive OCT (PS-OCT)[6, 4]:

• Principle: PS-OCT measures the polarization states of the backscattered light
to provide additional contrast information.

• Applications:

– Differentiation of tissues with varying birefringence (e.g., muscle and nerve
fibers).

– Detection of pathological changes in tissue structure.

• Advantages:

– Enhanced tissue contrast.

• Limitations:

– Requires specialized components.

6. Optical Coherence Elastography (OCE)[38]:

• Principle: Combines OCT with elastography to assess tissue mechanical prop-
erties.

• Applications:

– Detection of tissue stiffness changes, useful in cancer diagnosis.

– Monitoring changes in tissue elasticity during interventions.

• Advantages:
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– Provides additional functional information.

• Limitations:

– Limited by the need for specialized elastography techniques.

7. Multi-Modal OCT[31]:

• Principle: Combines OCT with other imaging modalities (e.g., fluorescence
imaging, confocal microscopy) to obtain complementary information.

• Applications:

– Enhanced tissue characterization.

– Improved identification of specific structures or molecules.

• Advantages:

– Comprehensive information.

• Limitations:

– Increased complexity.

8. Spectral-Domain OCT (SD-OCT)[30, 20]:

• Principle: In SD-OCT, a broadband light source is used to illuminate the
tissue, and the backscattered light is interfered with a reference beam. Instead
of physically scanning the reference arm, a spectrometer is employed to analyze
the interference spectrum. The spectrum is then transformed using a Fourier
transform, revealing depth information about the sample.

• Applications:

– Enhanced tissue characterization.

– Improved identification of specific structures or molecules.

• Advantages:

– High Imaging Speed.

– Improved Sensitivity.

– Reduced Motion Artifacts.

– Increased Depth Resolution.

– Real-Time Imaging.

– Versatility.

• Limitations:
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– Instrumentation can be complex.

– There may be trade-offs between imaging depth, resolution, and speed.

– The need for stable light sources and calibration is crucial for obtaining
accurate and reliable results.

Figure 1.3: The Schematic diagrams of A:TD-OCT, B:SD-OCT, C: SS-OCT and D:FF-
OCT machines. Image taken from [69].

1.2.3 Applications of OCT

1. Ophthalmology:

• Retinal Imaging: OCT is extensively used for imaging the retina, enabling
visualization of the different layers of the retina and aiding in the diagnosis
and management of various eye diseases such as macular degeneration, diabetic
retinopathy, and glaucoma.
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• Corneal Imaging: OCT is employed for imaging the cornea, providing detailed
information about corneal thickness and morphology.

2. Cardiology:

• Intravascular OCT (IVOCT): This application involves imaging blood ves-
sels from within, providing high-resolution images of arterial structures. It is
particularly useful in assessing coronary artery disease and guiding interven-
tions.

• Corneal Imaging: OCT is employed for imaging the cornea, providing detailed
information about corneal thickness and morphology.

3. Other Medical Fields:

• Dermatology: OCT is used for skin imaging, assisting in the diagnosis of skin
conditions and monitoring treatment responses.

• Gastroenterology: OCT can be used for imaging the gastrointestinal tract,
aiding in the detection and characterization of lesions.

1.3 Optical Coherence Tomography Angiography

OCTA is an advanced imaging technique that provides high-resolution, non-invasive visual-
ization of the vasculature in various tissues. It has revolutionized the field of ophthalmology,
providing detailed images of retinal and choroidal blood flow without the need for contrast
dyes or invasive procedures. OCTA utilizes principles of traditional OCT combined with
angiography to produce volumetric images of blood vessels.

1.3.1 Principles of OCTA

1. Interference-Based Imaging: Similar to conventional OCT, OCTA relies on low-
coherence interferometry to measure the backscattered light from tissue. By compar-
ing the interference patterns between consecutive scans, it can detect motion caused
by blood flow.

2. Blood Flow Detection: OCTA distinguishes static tissue from flowing blood by
detecting variations in signal intensity over time. This enables the visualization of
both structural and blood flow information.
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3. Depth-Resolved Imaging: With advancements in technology, OCTA can provide
depth-resolved images, allowing visualization of blood flow at different layers of the
tissue. This capability is particularly useful in assessing various retinal and choroidal
pathologies.

1.3.2 Applications of OCTA

1. Retinal Diseases: OCTA has become an invaluable tool in the diagnosis and man-
agement of retinal diseases such as diabetic retinopathy, age-related macular degener-
ation, and retinal vascular occlusions. It enables clinicians to visualize microvascular
changes associated with these conditions, facilitating early detection and treatment
monitoring.

2. Glaucoma: OCTA aids in assessing the optic nerve head and peripapillary vascula-
ture, providing insights into the pathophysiology of glaucoma. It helps in identifying
vascular abnormalities associated with glaucomatous optic neuropathy and monitor-
ing disease progression.

3. Choroidal Imaging: OCTA allows visualization of the choroidal vasculature, aiding
in the evaluation of choroidal neovascularization in age-related macular degeneration
and other choroidal diseases. It provides detailed information about the location, ex-
tent, and flow characteristics of these abnormal vessels, guiding treatment decisions.

1.4 Different types of Artifacts in OCTA images

OCTA images capture blood flow in the retina and are utilized in ophthalmology for
diagnosing various eye conditions. Different types of artifacts can occur in OCTA images,
which can affect the interpretation and analysis of the images. Here are some common
types of artifacts found in OCTA images:

1.4.1 Projection Artifacts

Projection artifacts, also known as decorrelation tail artifacts, are a common occurrence in
OCTA imaging. These artifacts arise from the projection of blood vessels from superficial
retinal layers onto deeper layers, leading to false positive signals and potentially misleading
interpretations of the vasculature.
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The phenomenon of projection artifacts has been extensively studied in the field of
ophthalmology. A study by [56] investigated the characteristics of projection artifacts in
OCTA images and proposed methods for their identification and mitigation. The authors
emphasized the importance of distinguishing between true flow signals and artifacts to
avoid misinterpretation of retinal vascular patterns.

Moreover, the study conducted by [65] delved into the development of advanced algo-
rithms for the suppression of projection artifacts in OCTA images. By employing complex
signal processing techniques and machine learning algorithms, they demonstrated signifi-
cant improvements in artifact reduction, thereby enhancing the reliability of OCTA imaging
for clinical diagnosis and research purposes.

Projection artifacts pose a challenge in the accurate interpretation of OCTA images,
particularly in assessing the vascular morphology and detecting pathological changes in the
retina. Clinicians and researchers need to be aware of these artifacts and utilize appropriate
strategies to minimize their impact on image analysis and interpretation.

1.4.2 Shadow Artifacts

OCTA images occur due to reduced signal penetration through retinal layers, often caused
by dense retinal pigment or blood vessels casting shadows onto deeper layers. These arti-
facts can obscure underlying structures and affect the interpretation of vasculature patterns
in the retina.

Research in the field of ophthalmology has shed light on the characteristics and impli-
cations of shadow artifacts in OCTA imaging. For instance, the study by [19] highlighted
the impact of shadowing from overlying retinal vessels on the visualization of deeper reti-
nal layers in OCTA images. The authors emphasized the need for strategies to mitigate
shadow artifacts to improve the accuracy of retinal vascular analysis.

Furthermore, the work of [21] investigated the influence of RPE alterations on shadow
artifacts in OCTA images. They observed that disruptions in the RPE, such as atrophy
or hypertrophy, can exacerbate shadowing effects, leading to decreased image quality and
potential misinterpretation of retinal vasculature.

To address the challenge posed by shadow artifacts, advanced image processing tech-
niques have been developed. For instance, the study by [66] proposed a method for shadow
artifact removal in OCTA images based on adaptive thresholding and morphological op-
erations. Their findings demonstrated the efficacy of this approach in enhancing image
clarity and facilitating accurate vascular analysis.
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In summary, shadow artifacts represent a significant challenge in OCTA imaging, im-
pacting the visualization and interpretation of retinal vasculature. Recognizing these arti-
facts and employing appropriate correction methods are essential for improving the relia-
bility of OCTA-based diagnosis and research.

1.4.3 Bulk Motion Artifact

Bulk motion artifacts are a common issue in OCTA imaging, arising from sudden shifts
or movements of the entire eye during image acquisition. These artifacts can distort the
image and lead to inaccuracies in the assessment of retinal vasculature.

Several studies have investigated the characteristics and implications of bulk motion
artifacts in OCTA imaging. For example, the study by Gao et al. [15] highlighted the im-
pact of eye movement on OCTA image quality and the occurrence of bulk motion artifacts,
particularly in cases where patients are unable to maintain stable fixation during image
acquisition. The authors emphasized the need for effective motion correction techniques
to mitigate the influence of bulk motion artifacts on OCTA image interpretation.

Moreover, the study by [9] focused on the development of algorithms for real-time
motion correction in OCTA imaging. By implementing sophisticated image processing
techniques and motion tracking algorithms, they demonstrated significant improvements
in artifact reduction and image quality enhancement.

Additionally, research efforts have been directed towards the integration of eye-tracking
systems into OCTA devices to minimize bulk motion artifacts. The study by [66] inves-
tigated the efficacy of an integrated eye-tracking system for real-time motion correction
during OCTA image acquisition. Their findings highlighted the potential of eye-tracking
technology in reducing bulk motion artifacts and improving the accuracy of retinal vascular
analysis.

Bulk motion artifacts pose a significant challenge in OCTA imaging, impacting the
quality and reliability of vascular assessment. Recognizing these artifacts and implementing
appropriate correction methods are essential for ensuring accurate diagnosis and research
outcomes in ophthalmology.

1.4.4 Motion Artifact

Motion artifacts represent a significant challenge in OCTA imaging, resulting from invol-
untary eye movements during image acquisition. These artifacts can lead to blurred or
distorted images, affecting the interpretation of retinal vasculature.
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Several studies have investigated motion artifacts in OCTA imaging and proposed meth-
ods for their mitigation. For instance, the study by [56] examined the impact of motion
artifacts on OCTA image quality and emphasized the importance of motion tracking and
correction techniques to improve image clarity and reliability. They highlighted the need
for real-time monitoring of eye movements to minimize motion artifacts during image ac-
quisition.

Furthermore, the work by [49] focused on the development of algorithms for motion
artifact detection and correction in OCTA images. By utilizing advanced image processing
techniques and motion tracking algorithms, they demonstrated significant improvements
in artifact reduction and image quality enhancement.

Moreover, the study by [14] investigated the efficacy of deep learning-based approaches
for motion artifact removal in OCTA images. By training convolutional neural networks on
a large dataset of OCTA images with motion artifacts, they achieved promising results in
automatically detecting and correcting motion artifacts, thereby improving image quality
and diagnostic accuracy.

Motion artifacts pose a significant challenge in OCTA imaging, impacting the reliability
and accuracy of vascular analysis. Recognizing these artifacts and implementing appropri-
ate correction methods are crucial for ensuring the quality of OCTA-based diagnosis and
research in ophthalmology.
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Chapter 2

Removal of Motion Artifacts

This chapter is based on:

1. Bhardwaj R, Abdul Rasheed M, Jothi Bal-
aji J, Lakshminarayanan V. Training method
for the Removal of Motion Artifacts from
OCTA images. In submission at Journal of
Medical Optics.
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2.1 Overview

There are different kinds of artifacts found in OCTA images which make the entire diagnosis
process of retinal diseases by the medical practitioners complicated. In this work, we
propose a training technique which is able to simply as well as efficiently remove motion
artifacts from the OCTA images. We generate artificial motion artifacts in an image which
helps us to create a training image pair of one with and without motion artifacts in it.
We also show the generation of cardinal mask which plays a pivotal role in the removal
of these artifacts. This training method is used with other architectures which makes it a
plug-and-play system in the entire removal process.

2.2 Introduction

OCT is a rapid and non-invasive optical imaging technology utilized not only in laboratory
research but also in clinical applications [18]. Its extension, OCTA, has found application
in diverse fields such as ophthalmology, dermatology, and brain functional imaging. For
diagnosing retinal conditions like diabetic retinopathy [52], macular degeneration[61], and
choroidal neovascular membrane[46], OCTA plays a crucial role. While OCTA plays a piv-
otal role in the mentioned applications, it is highly susceptible to various types of artifacts.
These artifacts result in the loss of crucial information from the images, complicating the
diagnosis process for medical practitioners. Numerous approaches [13, 28, 32] have been
introduced to address various types of artifacts; however, mitigating motion artifacts in
OCTA images remains one of the most challenging tasks.

Motion artifacts in OCTA images pose significant challenges to the diagnosis process
for medical practitioners. These artifacts can arise from involuntary eye movements, pa-
tient motion, or even instability in the imaging system itself. They manifest as blurring,
distortion, or ghosting in the acquired images, leading to the loss of critical structural and
vascular details. This loss of information impedes accurate interpretation and diagnosis of
retinal conditions such as diabetic retinopathy, macular degeneration, and choroidal neo-
vascular membrane. For instance, a study by [14] demonstrated that motion artifacts in
OCTA images can obscure subtle changes in retinal vasculature, potentially masking the
presence of pathological features. Similarly, the work by [56] highlighted how motion arti-
facts can affect the assessment of choroidal vasculature in diseases like age-related macular
degeneration. Consequently, addressing motion artifacts in OCTA imaging is essential for
improving diagnostic accuracy and enhancing clinical outcomes.

17



In this paper, we try to tackle the problem of motion artifacts in the OCTA images. We
propose a training process that can be used with architectures like UNet[48], UNet++[70]
and ENet[43] to remove motion artifacts. In this proposed training method, we produce
artificial motion artifacts in a OCTA images that remarkably replicate real motion artifacts
found in an OCTA image. Using this technique we are able to achieve a training pair,
with and without the artifact, which makes the entire feature learning process for the
architecture simpler. First, we collect two images of the same eye of a patient taken at
different timestamps. Both the images would never perfectly align and a disparity would
exist between the two images due to the natural motion of the eye. Upon aligning, we
horizontally split the image into multiple images each with smaller heights. An image pair
is selected from the same region of the two aligned images. Then, we crop a thin stripe of
image from one of the pair and paste it into the other at the same aligned location. We
also generate a cardinal mask along the stripe which takes the non artifact region of the
image into account. This cardinal mask plays a very crucial role in the removal of motion
artifact. The synthetically generated motion artifact image along with the cardinal mask
serves as a input to the network. This simple yet efficient technique is able to achieve
promising results in removing motion artifacts from the OCTA image.

2.3 Method

In this section, we delineate the steps involved for the removal of motion artifacts from
the OCTA image. In 2.3.1, we elucidate the data collection steps and how it is annotated.
In 2.3.2, the two images taken of the same eye are aligned using image registration. In
2.3.3, we show the main part of this work in which we generate artificial motion artifacts
in OCTA images for training. Finally, in 2.3.4, we explain the creation of cardinal mask
which plays a crucial role in the removal of motion artifacts from the image.

2.3.1 Data Collection and Annotation

In this step, we take two images of the same eye of a patient taken at two different timesteps.
Since the eye undergoes natural motion, there would exist some kind of disparity between
the two images. Then, the regions having the motion artifacts in the collected images
are annotated by the optometrists. This annotation will also be used in generating the
cardinal mask, explained in 2.3.4, which will play a pivotal role for the removal of artifact.
Pictorial representation of this step is shown in Fig 2.1.
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(a) (b)

(c) (d)

Figure 2.1: (a) and (b) are two images taken of the same eye at different timestamps. (c)
and (d) consist of the annotation of motion artifacts in (a) and (b) respectively by the
optometrist.

2.3.2 Image Registration

As already mentioned, the two images taken at different timesteps consists of disparity due
to the natural motion of the eye. In order to align the images, we first extract the features
from the two annotated images individually. Then, we match the features extracted from
these images. We just take the top 20% of the matched features into consideration. Finally,
we obtain an aligned image using homography[12] from the matched features. Fig 2.2 shows
an example of aligned image.
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(a) (b)

Figure 2.2: (a) is now aligned with (b) using homography[12]

2.3.3 Generating faux motion artifacts

Upon aligning the images using homography[12], we have two annotated images that are
aligned to each other. The second image is the original image with no changes and the
first image is aligned to the first image. Then, both the images are cropped from the same
region along their width. This technique helps to produce more number of images for
training as well as we discard the cropped image pairs if it consists on real motion artifact
that were annotated by the optometrists.

After obtaining the two cropped images with no motion artifacts in them, we randomly
select a thin strip from the second image. The height of this thin strip varies from 3 to
8 pixels. This thin strip is cropped and pasted onto the first image exactly at the same
location it was extracted from in the second image. Thus, we obtain finally obtain a pair
of images, with and without the motion artifact, which would be served as input to the
model. While performing this process, we do not restrict ourselves to just one artifact
per pair. We randomly introduce two artifacts in a single pair as well for the model to
efficiently learn removing the artifacts if multiple of them are close enough. This step is
pictorially represented in Fig 2.3.
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(a) (b)

(c)

Figure 2.3: (a) and (b) are two images cropped from the Fig 2.2. (c) shows how a thin
strip is taken from (b) and pasted in (a), replicating a motion artifact. (c) consisting of
motion artifact is served as one of the inputs to the model and (a) acts as a ground truth
image with no artifact.

2.3.4 Cardinal mask

The generation of cardinal mask plays the most vital role in the removal of motion artifacts.
Initially, we start by taking a mask along the strip in the synthetically generated image.
Then, we perform Otsu’s Thresholding [41] on the horizontal image crops in order to
retrieve the most relevant parts of the image and suppress the motion artifacts. Finally,
we multiply the Otsu’s generated image with the cardinal mask which allows to obtain the
mask along the most relevant part of the motion artifact region. Fig 2.4 shows how the
cardinal mask looks like and generated.

(a) (b)

(c)

Figure 2.4: (a) shows the result after using Otsu’s Thresholding [41]. (b) is the mask
highlighting the region where the motion artifact exists. (c) is produced by multiplying
(a) with (b).
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2.3.5 Working

In this section, we delineate the inputs provided to the model and the anticipated outcome.
Two inputs are provided to the network. ζ is defined as the image consisting of the
artificially generated motion artifact, also shown in (c) of Fig 2.3. ϱ denotes the cardinal
mask highlighting the relevant portions to the motion artifact to be focused on, also shown
in (c) of Fig 2.4. Γ represents the network used.

ψ̂ = Γ([ζ, ϱ]) (2.1)

2.3.6 Loss Function

The original image ψ which was tampered to be introduced with artificial motion artifact
serves as the ground truth image, shown in (a) of Fig 2.3. The Limg is mathematically
represented as:

Limg = |ψ − ψ̂| (2.2)

Subsequently, in order for the model to specifically focus on motion artifact region, we
apply the mask loss.

Lmask = |ψ ∗ ϱ− ψ̂ ∗ ϱ| (2.3)

2.4 Experiments

2.4.1 Dataset

We assess the performance of the proposed training method in 140 images taken from 70
eyes. For every 70 eyes two images were taken after different timestamps. Each image is
of the resolution 410 × 410. These images were collected in Sankara Nethralaya, Chennai,
India. Foveal microvascular dimensions (Angioplex) were imaged using optical coherence
tomography angiography (OCTA; Cirrus 5000 Angioplex; Carl Zeiss Meditec Inc., Dublin).

2.4.2 Setup

All the training was done conducted on a single Nvidia Titan V Graphics processing unit
(GPU) with 12 gigabytes of memory. All reported results and training times are specific
to this GPU configuration. We utilized the PyTorch library [44] for the implementation.
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2.4.3 Quantitative Results

The proposed training method is used on UNet[48], ENet[43] and UNet++[70]. Here we
show the quantitative results for architectures only along the stripe in the image consisting
of motion artifacts.

Table 2.1: PSNR and SSIM results across various architectures on the proposed training
method.

Architecture PSNR ↑ SSIM ↑

ENet[43] 14.79 0.36
UNet++[70] 15.41 0.45
UNet[48] 16.68 0.51

Table 2.2: Training time and different architectures.

Architecture Training Time
(hours)

ENet[43] 9
UNet++[70] 6
UNet[48] 2.5

In table 2.1, we show the PSNR and SSIM of various architectures on the proposed
training method. In table 2.2, we show the training time taken by the networks.

2.4.4 Qualitative Results

In this section, we show the the qualitative results of the proposed method. In Fig 2.5,
we can see how different architectures overcome the motion artifacts in the image that are
supplied as input to them. The red arrow highlights those regions in the image that consist
of the motion artifact. Green arrow highlights the resolved part, removing the artifact.

2.5 Conclusion

OCTA images are used for the diagnosis of retinal diseases. However, different kinds of
artifacts are commonly found in them. In this work, we propose a training method which
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ENet [41] UNet++ [66] UNet [46]

Figure 2.5: Red arrow shows the part of the image consisting of motion artifact. Green
arrow shows how the architecture removes the motion artifact.

removes motion artifacts from the OCTA images. First, the annotation of the motion
artifacts is performed by the optometrists. Then, the annotated images are aligned using
homography[12]. After the alignment, we generate the artificial motion artifacts in the
image which remarkably replicate the real ones. Finally, we create a cardinal mask which
plays a crucial role in the removal of motion artifacts in the image. Since this training
method can be used with multiple architectures, it becomes a plug-and-play system to
overcome these artifacts.
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Chapter 3

Super-Resolution of the OCTA image

This chapter is based on:

1. R Bhardwaj, J J Balaji, and V Lakshmi-
narayanan. ”OW-SLR: Overlapping Win-
dows on Semi-Local Region for Image Super-
Resolution”. In MDPI: Journal of Imaging
2023, Vol. 9(11), p.246
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3.1 Overview

There has been considerable progress in implicit neural representation to upscale an image
to any arbitrary resolution. However, existing methods are based on defining a function to
predict the RGB value from just four specific loci. Relying on just four loci is insufficient
as it leads to losing fine details from the neighboring region(s). We show that by taking
into account the semi-local region leads to an improvement in performance. In this paper,
we propose applying a new technique called Overlapping Windows on Semi-Local Region
(OW-SLR) to an image to obtain any arbitrary resolution by taking the coordinates of
the semi-local region around a point in the latent space. This extracted detail is used to
predict the RGB value of a point. We illustrate the technique by applying the algorithm to
the OCTA images and show that it can upscale them to random resolution. This technique
outperforms the existing state-of-the-art methods when applied to the OCT500 dataset.
OW-SLR provides better results for classifying healthy and diseased retinal images such as
diabetic retinopathy and normals from the given set of OCTA images. The project page
is available at https://rishavbb.github.io/ow-slr/index.html.

3.2 Introduction

The primary objective of super-resolution (SR) is to obtain a credible HR image from
a LR image. The major challenge is to retrieve the information which is too minute or
almost non existent, and to extrapolate this information to higher dimensions which is
plausible to the human eye. Furthermore, the availability of paired HR-LR image data
poses another concern. Typically, an image is downsampled using a specific method in the
hope of encountering a real-life LR image that is somewhat similar. The aim of SR models
is to fill in the deficient information between the HR and LR images, thereby bridging the
gap. Also, for high-dimensional inputs like videos and 3D scans there are quite a few work
in the literature [55, 58, 34, 59, 33, 16].

Most of the architectures [36, 53, 67, 45, 37] proposed for SR of images upsample them
by a fixed factor only. This means that a separate architecture needs to be trained for each
unseen upscaling factor. However, the real world is continuous in nature, whereas images
are represented and stored as discrete values in 2D arrays. Inspired by [50, 42, 40, 54] for
3D shape reconstruction using implicit neural representation, [8] proposed Local Implicit
Image Function (LIIF) to represent images in a continuous fashion. Some postprocessing is
performed to obtain the RGB value of the query point. This approach enables representing
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and manipulating images in a continuous manner, departing from the traditional discrete
representation in 2D arrays.

In our work, we draw partial inspiration from advancements in 3D shape reconstruction,
but we extend the approach by considering a semi-local region rather than relying solely on
four specific locations. Our method allows for extrapolation to any random upscaling factor
using the same architecture. This architecture takes into account the semi-local region and
specifically learns to extract important details related to a query point in the latent space
that needs to be upscaled. In this paper, we propose an image representation technique
called Overlapping Windows for Semi-Local Representation in a continuous domain and we
fine our work as follows: (i) Each image is represented as a set of latent codes, establishing
a continuous nature. To determine the RGB value of a point in the HR image within
the latent space, we employ a decoding function. (ii) This semi-local region is fed into
network as input which generates the embeddings of the intricate details in it which have
high probability of getting lost when an entire image is taken into consideration by the
networks. (iii) The overlapping window technique allows for effective learning of features
within the semi-local region around a point in the latent space using the embeddings. (iv)
A decoder takes the features derived from the overlapping window technique and produces
the RGB value of the corresponding point in the HR image.

In summary, our work makes two key contributions. Firstly, we introduce a novel
technique called overlapping windows, which enables efficient learning of features within
the semi-local region around a point. This approach allows for more effective representation
and extraction of important details. Secondly, our architecture is capable of upscaling an
image to any arbitrary factor, providing flexibility and versatility without the need for
separate architectures for different upscaling factors. This contribution enables seamless
and consistent image upscaling using a unified framework.

3.3 Related Work

During the early stages of SR research, images were typically upsampled by a certain
factor using simple interpolation techniques, and the network was trained to learn the
extrapolation of the LR images [10, 22]. However, this approach presents some issues.
Firstly, the pre-upsampling process introduces more parameters compared to the post-
upsampling process. Pre-upsampling is defined as upscaling the input image and then
passing it through the network, whereas post-upsampling is defined as passing the image
through the network and then upscaling the feature map. Secondly, due to the higher
requirement of parameters more training time becomes a requisite. The network needed
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to learn the intricacies of the pre-upsampling method, which added to the overall training
complexity. Finally, the pre-upsampling process using traditional bicubic interpolation
does not yield realistic results during testing. Since it is the first step of the SR pipeline,
the network often attempts to mimic this interpolation, which limits the realism of the
output images. On the other hand, post-upsampling approaches, where the LR image
is downscaled in the very first step, typically involve the use of bicubic interpolation for
resizing. However, downscaling an image, even with bicubic interpolation, tends to yield
more realistic results compared to upscaling. As a result, the research focus has shifted
towards post-upsampling techniques, which provides more efficient and realistic SR results
by leveraging downscaling with appropriate interpolation methods in the very first step.

As already mentioned, downscaling of images happens as the initial step in post-
upsampling process. The network learns features from the downscaled image and the
upsamples the learned features towards the very end. A technique proposed by Shi et
al. [53] in their work is known as sub-pixel convolution. Sub-pixel convolution handles
the extrapolation of each pixel by accumulating the features along the channel of that
pixel. By rearranging the feature channels, sub-pixel convolution enables the network to
effectively upscale the LR image to a higher resolution. While sub-pixel convolution pro-
vides a practical solution for upsampling by integral factors (×1,×2,×3, etc.), it does not
support fractional upsampling factors (×1.4,×2.9, etc.). However, for cases where fixed
integral upsampling factors are sufficient, sub-pixel convolution offers an efficient approach
to achieving high-quality upsampling. The work by Ledig et al. [29] introduced the use of
multiple residual blocks for feature extraction in SR tasks. Their approach demonstrated
the effectiveness of residual blocks in capturing and enhancing image details. Building upon
Ledig et al.’s work, Lim et al. [37] proposed an enhanced SR model that incorporated in-
sights regarding batch normalization. They postulated that removing batch normalization
from the residual blocks could lead to improved performance for SR tasks. This is because
batch normalization tends to normalize the input, which may reduce the network’s ability
to capture and amplify the fine details required for SR. Removing batch normalization
not only results in a reduction in memory requirements but also makes the network faster.
Additionally, the work by Shi et al. [53] contributed to the development of various ap-
proaches for SR using Convolutional Neural Networks (CNNs). These approaches include
methods proposed by [67, 29, 39, 68]. These methods aimed to enhance feature extraction
capabilities specifically tailored for SR problems, further advancing the state-of-the-art in
SR research.

After the success of CNNs in SR tasks, researchers explored the use of Generative
Adversarial Networks (GAN)s to further improve SR performance. Several works, such
as [29, 51, 63], introduced different GAN architectures for extrapolating LR images to
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higher resolution. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)
proposed by Wang et al. [64] introduced a perceptual loss function and modified the
generator network to produce HR images. This perceptual loss function aimed to align
the visual quality of the generated HR images with that of the ground truth HR images,
improving the perceptual realism of the results.

In Real-ESRGAN [62], the authors addressed the issue of using LR images downsampled
with simple techniques like bicubic interpolation during training. They note that real-
world LR images undergo various types of degradations, compressions, and noise, unlike the
simple interpolation-based downsampling. To simulate realistic LR images during training,
they proposed a novel technique that subjected the training images to various degradation
processes, mimicking real-life scenarios. Additionally, Real-ESRGAN[62] introduced an U-
Net[48] discriminator to enhance the adversarial training process and improve the quality
of the generated HR images.

3.4 Method

We illustrate the three main components of our approach in this section along with its
pictorial representation in Figure 3.1. In Section 3.4.1, we introduce the backbone of our
framework. We represent the LR image as a feature map, which serves as the basis for
subsequent processing and analysis. In Section 3.4.2, we demonstrate how we find the
semi-local region of an arbitrary point in the HR image. This region contains valuable
information that helps determine the corresponding RGB value. In Section 3.4.3, we
highlight the Overlapping Windows technique, which plays a crucial role in predicting
the RGB value of a point in the HR image. We accomplish this by leveraging the semi-
local region extracted around the sampling points of the feature map. These three parts
collectively form the foundation of our approach, allowing for accurate prediction of RGB
values.

3.4.1 Backbone Framework

To extract features from the LR image, we employ the Enhanced Deep Residual Networks
(EDSR) [37]. Specifically, we utilize the baseline architecture of EDSR[37], which consists
of 16 residual blocks.

ψ = EDSR(ILR) (3.1)
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Figure 3.1: (a) An LR image is taken. (b) It is passed through EDSR [37] and a feature
map is produced. (c) Locating the semi-local region (M = 6) around a random selected
point from HR image. (d) Semi-local region is passed through the proposed Overlapping
Windows. (e) This output is passed through the MLP to give out the RGB value of a
randomly selected point. Steps (c-e) are performed for all the points in the HR image.

Given an LR image denoted as ILR ∈ RH×W×C , we express it in the form of a feature map
ψ ∈ RP×Q×D . Here,H andW represent the height and width of the LR image, respectively,
and C signifies the number of channels. P and Q represent the spatial dimensions of the
feature map, and D denotes the depth of the feature map.

3.4.2 Locating the Semi-Local Region

In our scenario, we aim to predict the RGB value at any random point in a continuous HR
image of arbitrary dimensions. Let IHR ∈ RX×Y×C represent the HR image. To predict
the RGB value at a specific point, we first select a point of interest. Then, we identify its
corresponding spatially equivalent point in the feature map ψ obtained from the LR image
using bilinear interpolation denoted as ℧BI .

x̂ = ℧BI(x, ψ) (3.2)

where x̂ and x are the 2D coordinates of the ψ and IHR respectively.

Furthermore, we extract a square semi-local region around this corresponding point.
The size of this region is determined by a length parameter M units, where each unit
dimension of the square region corresponds to the inverse of the dimensions P and Q of
the feature map ψ along its length and breadth respectively defined in Equation (5) which
is used to find the discrete positions in the semi-local region. Once we have identified the
square semi-local region around the corresponding point in the feature map ψ, we proceed
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to extractM ×M depth features from this region using Equation (3). These depth features
capture the important information necessary for predicting the RGB value at the desired
point in the HR image. To extract these features, we employ a closest Euclidean distance
approach denoted by ðED. Each point within the M × M region in ψ is mapped to the
nearest point in the latent space, which represents the extracted depth feature. Figure 3.2
illustrates the working of selecting of features from the feature map. This mapping ensures
that we capture the most relevant information from the semi-local region.

X̂ = (x̂x − ψx ∗ i, x̂y − ψy ∗ j) (3.3)

i = {−M
2
,
−M
2

+ 1, . . .
+M

2
− 1,

+M

2
}, j = {−M

2
,
−M
2

+ 1, . . .
+M

2
− 1,

+M

2
} (3.4)

ψx =
1

P
, ψy =

1

Q
(3.5)

Thus, X̂ holds the 2D coordinates of all the M × M points.

S = ðED(X̂, ψ) (3.6)

Figure 3.3 illustrates how the semi-local region is identified and used to extract the
M × M depth features from the feature map ψ. This depiction helps to visualize the steps
involved in the feature extraction process.

3.4.3 Overlapping Windows

After extracting the semi-local region S ∈ RM×M×D, our objective is to obtain the RGB
value of the center point using this region. To achieve this, we employ a overlapping
window-based approach. We start with four windows, each with a size ofM−1, positioned
at the four corners of S. Each window extracts information from its respective region and
passes it on to the next subsequent window in the process. With each iteration, the size
of the window decreases by 1 until it reaches a final size of M

2
. This iterative process

ensures that information is progressively gathered and refined towards the center point.
This approach allows us to effectively capture and utilize the information from the semi-
local region while focusing on the features that are most relevant for determining the RGB
value.

Γ = si ∗ wi (3.7)

In each iteration i, where the window size decreases by 1 for the next step, we utilize
weights wi for combining the features from all four corners. This ensures that the infor-
mation from each corner is properly incorporated and made available for the subsequent

31



Figure 3.2: To extract features from a feature map of size 3 × 3, we focus on a specific
query point represented by a red dot. In order to determine which pixel locations in the
feature map correspond to this query point, we compute the Euclidean distance between
the query point and the center points of each pixel location. In the provided image, the
black line represents the closest pixel location in the feature map to the query point.

iteration. In the last step, we take a final window size of 2, but instead of being positioned
at the corners as in previous iterations, it is centered around the target point of interest.
The features extracted from this final window are then passed through a MLP to make the
final prediction.

By adapting the window positions and sizes throughout the iterations, we effectively
capture and aggregate the relevant information from the semi-local region. This approach
allows us to make accurate predictions at the target point, utilizing the combined features
from all iterations and the final MLP-based processing. Figure 3.4 shows the working of
the overlapping windows.

32



(a)

(b) (c)

0.35

0.65

0.60.4

0.35

0.65

0.4 0.6

Figure 3.3: (a) Given an HR image, a point of interest (red dot) is selected to predict
its RGB value. (b) Its corresponding spatially equivalent 2D coordinate is selected from
the feature map. (c) Locating the semi-local region (M = 6) around the calculated 2D
coordinate.

3.5 Results and Discussion

3.5.1 Dataset

We used the OCT500 [35] dataset and randomly sampled 524 images from it to train
our network. It consists of 300 3× 3 OCTA images and 224 6× 6 OCTA images. For
evaluation, 80 images were selected and we report the results using PSNR metric.

3.5.2 Implementation Details

During the training process, we apply downsampling to each image using bicubic inter-
polation in PyTorch [1]. This downsampling is performed by selecting a random factor,
which introduces the desired level of degradation to the images. For training, we utilize a
batch size of 16 images. From each HR image, we randomly select 1500 points for which
we aim to calculate the RGB values. These points serve as the targets for our network
during the optimization process.

To optimize the network, we employ the L1 loss function and use the Adam opti-
mizer [23]. The learning rate is initialized as 1.e − 4 and is decayed by a factor of 0.3
at specific epochs, namely [40, 60, 70]. We train the network for a total of 100 epochs,
allowing it to learn the necessary representations and refine its predictions over time.
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Figure 3.4: The first iteration of overlapping windows, where the window size = M − 1
(M = 6). Assuming the feature map is of negligible depth and four windows are positioned
at the four corners of the feature map.

Furthermore, each LR image is converted into a feature map of size 48 × 48 with a
depth of 64 using the EDSR-baseline architecture. This conversion process ensures that
the LR images are properly represented and aligned with the architecture used in the
training process.

3.5.3 Quantitative Results

In Figure 3.5, we present a comparison of the performance of our proposed OW-SLR
method against existing works. The original image patch is first downsampled using bicubic
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interpolation to a lower resolution. It is evident that there is a significant loss of image
quality in the LR patches compared to the Ground Truth (GT) image. However, our model
outperforms the other existing methods, demonstrating a significant improvement when
the LR image is extrapolated to a higher scale. The results obtained by our model show
better preservation of details and higher fidelity compared to the other approaches when
the given image is extrapolated to higher scale. The PSNR results of each image are shown
in Table 3.1.

Input

24x24

32x32

48x48

Bicubic
(96x96)

x4 x4 x4 x4

x3 x3 x3 x3

x2 x2 x2 x2

SRCNN
(96x96)

 EDSR
(96x96)

    OW-SLR
(ours - 96x96)

   GT
(96x96)

  

Figure 3.5: A 96× 96 patch is taken and its size is reduced to 24× 24 (first row), 32× 32
(second row) and 48× 48 (third row) using bicubic interpolation. Our architecture uses
the same set to weights reproduce the given results. However, others require different set
of weights for a newer scale to be trained on. The PSNR results of each image are shown
in Table 3.1.

It is worth noting that our model achieves these results for different scaling factors
using the same set of weights trained once. In contrast, the other models would need to
be retrained for each new scale to which the LR image is extrapolated. This highlights the
versatility and efficiency of our model in handling various scaling factors without the need
for additional training.

In Table 3.2, we provide the upscaling time taken by the proposed model by different
factors, while training it just once.

In Table 3.3, we present the results of this technique compared to the existing state-of-
the-art methods on the OCT500 [35] dataset. The evaluation metric used in this case is the
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Table 3.1: PSNR result of each of the input images across different methods shown in
Figure 3.5.

Patch Size Bicubic SRCNN [10] EDSR [37] OW-SLR
(Ours)

24 × 24 11.96 12.87 13.79 13.92
32 × 32 14.18 15.10 16.04 16.26
48 × 48 15.37 16.89 17.66 17.98

Table 3.2: Time taken to extrapolate a 320× 320 image on a single Nvidia Titan V of 12
Gigabyte size.

Extrapolation Factor Time Taken (In Seconds)

2× 6.48
2.4× 8.90
3× 12.01
3.9× 19.46
4.5× 26.29
5× 33.75

PSNR. Our work demonstrates superior performance compared to LIIF, highlighting the
effectiveness of considering the semi-local region instead of solely focusing on four specific
locations. By incorporating the information from the semi-local region, our approach
achieves improved results in terms of PSNR, showcasing the benefits of our methodology
for super-resolution tasks.

3.6 Conclusion

OCTA images help us for the diagnosis of retinal diseases. However, due to various reasons
like speckle noise, movement of the eye, hardware incapabilities, etc. we lose onto intricate
details in the capillaries that play a crucial role for correct diagnosis. We propose this
architecture which upscales a given LR image to arbitrary higher dimensions with enhanced
image quality. First, we extract the image features using a backbone architecture. We then
select a random point in the HR image and calculate its equivalent spatial point in the
extracted feature map. We find the semi-local region around this calculated point and pass
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Table 3.3: PSNR result on the 300 images from OCT500 [35]

Methods PSNR ↑

Real-ESRGAN [64] 15.66
SRCNN [10] 16.51
EDSR [37] 17.49
LIIF [8] 17.60

OW-SLR (ours) 17.93

it through the proposed Overlapping Windows architecture. Finally, an MLP is used to
predict the RGB value using the output of the overlapping window architecture. We hope
our work will help the people in the medical field in their diagnosis. PSNR 17.93 is achieved
for the OCT500 dataset which outperforms the other state-of-the-art work. The technique
outperforms the existing methods and allows upscaling images to arbitrary resolution by
training the architecture just once.

While effective, it is worth noting that this algorithm does come with a slightly higher
computational cost due to its consideration of the semi-local region. There remains poten-
tial for further enhancements in both computational efficiency and accuracy while taking
the semi-local region into account. This work will provide a stepping stone for future
researchers to make strides in this direction.
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Chapter 4

Evaluation of Clinical Parameters
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4.1 Introduction

OCTA images are used for the diagnosis of retinal diseases. In Chapter 2, we remove one
of the most difficult artifacts - motion artifacts - from the OCTA image. In Chapter 3,
we take the image, free from motion artifacts and increase the dimensions of the image to
allow better diagnosis by the medical practitioners using super-resolution. In this chapter,
we will be evaluating if this higher dimension image is distorting the clinical parameters
or maintaining the similar trend.

4.2 Software

To perform the evaluation process, we use the software FAZSeg[60] which gives 15 param-
eters related to the FAZ in the OCTA image. The 15 parameters that FAZSeg[60] outputs
are (i) Area, (ii) Diameter, (iii) Major Axis Length, (iv) Minor Axis Length, (v) Perimeter,
(vi) Fmin, (vii) Fmax, (viii) Inner Circle Radius, (ix) Eccentricity, (x) Circum Circle Radius,
(xi) Orientation, (xii) Tortuosity, (xiii) Vessel Diameter Index, (xiv) Circularity and (xv)
Vessel Diameter Index. The user interface of the FAZSeg[60] software can be seen in Fig
4.1.

Figure 4.1: FAZSeg[60] software being used to find the 15 parameters.
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4.3 Data

For the entire evaluation process we use the FAZID[2] dataset. This dataset consists of
diabetic, normal and myopia images. For our evaluation process we use 10 normal images.

4.4 Experiment

As already mentioned, we take 10 normal images for evaluation. We remove the motion
artifacts from the images and upscale each image by ×2 and ×3, thus now having 30 images
in total. The FAZSeg[60] software is able to accept only 420×420 images. We manually
crop the upscaled images to size 420×420 centered in the FAZ, since that is the region of
interest to get the 15 parameters. In order to maintain the consistency of results rendered
by the FAZSeg[60] software, we run each image four times through the software and then
take an average of all the parameters.

After averaging the parameters for each image, we then move on to average the param-
eters for all the 10 images to understand the trend of the raw image and the extrapolated
image. The table 4.1 shows the averaged values across the 10 images. A p-value < 0.05
was considered significant for all statistical tests.

4.5 Result and Discussion

All statistical analyses were performed using SPSS version 20[57]. Table 4.1 shows the final
results of impact of FAZ dimensions before and after applied super resolution. Out the
15 different FAZ parameters, expect the circularity index, orientation, tortuosity all other
dimensions showed significant difference (p =< 0.05) after the super resolution.

In order to check the linear relationship between FAZ dimension before and after the
super resolution, a correlation plot was done for the common and widely used parameters
FAZ’s area, perimeter and circularity index. The results of correlation showed in figures
4.2, 4.3 and 4.4. All three parameters showed a positive and linear with all three param-
eter. However, the area and perimeter had an asymmetrical correlation co-efficient values
between ×2 and ×3. The highest correlation co-efficient (r2 => 0.9) was seen between
×1 and ×2 in circularity index and the least correlation co-efficient (r2 =< 0.21) was
seen between ×1 and ×3 in area. These variation possibly due FAZSeg[60] application
limitation.
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Table 4.1: A comparison of FAZ parameters before and after super-resolution.

Raw Image
(×1)

(×2) (×3) p−V alue&

Area (mm2) 0.32 ± 0.07 1.08 ± 0.23 2.53 ±0.45 < 0.001

Circularity Index ▲ 0.75 ±0.06 0.75±0.07 0.76±0.06 0.166

Circumcircle radius (mm) 382.59±47.17 714.16±94.77 1083.22±89.17 < 0.001

Diameter (mm) 638.39±70.92 1168.13±126.58 1788.33±161.72 <0.001

Eccentricity (mm) 84.72±24.68 191.53±40.69 302.45±49.64 <0.001

Fmax (mm) 761.91±95.46 1426.24±189.95 2158.94±176.64 <0.001

Fmin (mm) 605.83±65.96 1104.35±134.8 1672.56±175.95 <0.001

Inner circle radius (mm) 264.61±25.49 477.68±56.11 744.61±97.53 <0.001

Major axis length (mm) 718.04±88.23 1336.15±177.52 2021.5±189.87 <0.001

Minor Axis Length (mm) 580.2±61.33 1051.29±113.59 1627.76±179.19 <0.001

Orientation (◦) -15.21±14.09 -20.25±15.67 -18.37±12.67 0.301

Perimeter (mm) 2328.99±340.34 4259.78±598.54 6469.74±653.35 <0.001

Tortuosity ▲ 1.35±0.06 1.37±0.08 1.4±0.08 0.585

Vessel Avascular Density
(VAD) ▲

0.42±0.01 0.35±0.01 0.28±0.02 0.007

Vessel Diameter Index
(VDI) (mm)

29.21±0.73 39.55±1.55 44.52±0.77 <0.001

mm:millimeters, ▲: dimensionless, ◦: degree, &: Friedman Test
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Figure 4.2: Correlation between FAZ area measured before and after super-resolution.

Figure 4.3: Correlation between FAZ perimeter measured before and after super-resolution.
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Figure 4.4: Correlation between FAZ circularity index measured before and after super-
resolution.
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Chapter 5

Conclusion and future research

OCTA images help us for the diagnosis of retinal diseases. In this work, we first start
by removing one of the most difficult artifacts found in OCTA images - motion artifacts.
Initially, optometrists annotate the motion artifacts present in the images. Subsequently,
the annotated images undergo alignment using homography techniques. Following align-
ment, we simulate artificial motion artifacts in the images that closely resemble real ones.
Lastly, we develop a cardinal mask essential for effectively removing motion artifacts from
the images. This training methodology is adaptable across various architectures, making
it a versatile solution for mitigating these artifacts.

After the obtaining an image free from motion artifacts, we perform super-resolution
to enhance the qualtiy of the image. To address this, we propose an architecture capable
of upscaling LR images to higher dimensions with improved image quality. Initially, we
extract image features using a backbone architecture. Subsequently, we identify a random
point in the HR image and determine its corresponding spatial point in the extracted
feature map. From there, we define a semi-local region around this point and process
it through our proposed Overlapping Windows architecture. Finally, we employ a MLP
to predict RGB values based on the output of the overlapping window architecture. We
anticipate that our approach will benefit medical professionals in their diagnostic endeavors.

Regarding the drawbacks, it is a necessity to annotate the image every time to remove
the motion artifacts. One of the ideas for the future research could be to develop a system
which automatically annotates the motion artifacts. However, it would require a lot of
images and skilled optometrists to generate the training images. In case of super-resolution,
it is important to note that this algorithm carries a slightly higher computational overhead
due to its consideration of semi-local regions. There is room for optimizing computational
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efficiency without compromising accuracy while incorporating semi-local information. This
research serves as a foundation for future advancements in this field, paving the way for
more sophisticated algorithms and improved diagnostic capabilities in medical imaging.
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[3] Baumann B, Pircher M, Götzinger E, and Hitzenberger CK. Full range complex
spectral domain optical coherence tomography without additional phase shifters. Opt
Express.15(20):13375-87. PMID: 19550607; PMCID: PMC2978327., 2007.

[4] B. Baumann. Polarization sensitive optical coherence tomography: A review of tech-
nology and applications. Applied Sciences, vol. 7, no. 5, p. 474, 2017.

[5] H. G. Bezerra, M. A. Costa, G. Guagliumi, and et al. Intracoronary optical coherence
tomography: A comprehensive review: Clinical and research applications. JACC:
Cardiovascular Interventions, vol. 2, no. 11, pp. 1035-1046, 2009.

[6] J. F. De Boer, C. K. Hitzenberger, and Y. Yasuno. Polarization sensitive optical
coherence tomography-a review. Biomedical Optics Express, vol. 8, no. 3, pp. 1838-
1873, 2017.

[7] Bouma, Brett, Yun, Seok-Hyun, Vakoc, Benjamin, Suter, Melissa, Tearney, and
Guillermo. Fourier-domain optical coherence tomography: Recent advances toward
clinical utility. Current opinion in biotechnology, vol. 20, pp. 111-8, 2009.

[8] Y. Chen, S. Liu, and X Wang. Learning continuous image representation with lo-
cal implicit image function. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

46



[9] WooJhon Choi, Eric M Moult, Nadia K Waheed, Mehreen Adhi, ByungKun Lee,
Chen D Lu, Talisa E de Carlo, Vijaysekhar Jayaraman, Philip J Rosenfeld, Jay S
Duker, et al. Ultrahigh-speed, swept-source optical coherence tomography angiog-
raphy in nonexudative age-related macular degeneration with geographic atrophy.
Ophthalmology, 122(12):2532–2544, 2015.

[10] C. Dong, C.C. Loy, K. He, and X Tang. Image super-resolution using deep convolu-
tional networks. IEEE Trans. Pattern Anal. Mach. Intell., 2015.

[11] Mariantonia Ferrara, Gaia Lugano, Maria Teresa Sandinha, Victoria R Kearns, Bren-
dan Geraghty, and David HW Steel. Biomechanical properties of retina and choroid: a
comprehensive review of techniques and translational relevance. Eye, 35(7):1818–1832,
2021.

[12] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[13] Alejandro F Frangi, Wiro J Niessen, Koen L Vincken, and Max A Viergever. Mul-
tiscale vessel enhancement filtering. In Medical Image Computing and Computer-
Assisted Intervention—MICCAI’98: First International Conference Cambridge, MA,
USA, October 11–13, 1998 Proceedings 1, pages 130–137. Springer, 1998.

[14] Simon S Gao, Yali Jia, Miao Zhang, Johnny P Su, Gangjun Liu, Thomas S Hwang,
Steven T Bailey, and David Huang. Optical coherence tomography angiography. In-
vestigative ophthalmology & visual science, 57(9):OCT27–OCT36, 2016.

[15] Simon S Gao, Gangjun Liu, David Huang, and Yali Jia. Optimization of the split-
spectrum amplitude-decorrelation angiography algorithm on a spectral optical coher-
ence tomography system. Optics letters, 40(10):2305–2308, 2015.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convolutional net-
works for accurate object detection and segmentation. IEEE Trans. Pattern. Anal.
Mach. Intell., 2016.

[17] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[18] David Huang, Eric A Swanson, Charles P Lin, Joel S Schuman, William G Stinson,
Warren Chang, Michael R Hee, Thomas Flotte, Kenton Gregory, Carmen A Puliafito,
et al. Optical coherence tomography. science, 254(5035):1178–1181, 1991.

47



[19] Yali Jia, Ou Tan, Jason Tokayer, Benjamin Potsaid, Yimin Wang, Jonathan J Liu,
Martin F Kraus, Hrebesh Subhash, James G Fujimoto, Joachim Hornegger, et al.
Split-spectrum amplitude-decorrelation angiography with optical coherence tomogra-
phy. Optics express, 20(4):4710–4725, 2012.

[20] Schuman JS. Spectral domain optical coherence tomography for glaucoma (an aos
thesis). Trans Am Ophthalmol Soc. 2008;106:426-58. PMID: 19277249; PMCID:
PMC2646438, 2008.

[21] Amir H Kashani, Chieh-Li Chen, Jin K Gahm, Fang Zheng, Grace M Richter, Philip J
Rosenfeld, Yonggang Shi, and Ruikang K Wang. Optical coherence tomography
angiography: a comprehensive review of current methods and clinical applications.
Progress in retinal and eye research, 60:66–100, 2017.

[22] J. Kim, J.K. Lee, and K.M. Lee. Accurate image super-resolution using very deep
convolutional networks. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[23] D.P. Kingma and J.A. Ba. A method for stochastic optimization. arXiv:1412.6980,
2014.

[24] S. Kishi. Impact of swept source optical coherence tomography on ophthalmology.
Taiwan Journal of Ophthalmology, vol. 6, no. 2, pp. 58-68, 2016.

[25] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[26] Wang L, Fu R, Xu C, and Xu M. Methods and applications of full-field optical
coherence tomography: a review. J Biomed Opt.27(5):050901. PMID: 35596250;
PMCID: PMC9122094., 2022.

[27] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[28] Max WK Law and Albert CS Chung. Three dimensional curvilinear structure detec-
tion using optimally oriented flux. In Computer Vision–ECCV 2008: 10th European
Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings,
Part IV 10, pages 368–382. Springer, 2008.

[29] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, and Z. Wang. Photo-realistic single image super-resolution using
a generative adversarial network. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

48



[30] R Leitgeb, C. Hitzenberger, and A. F. Fercher. Performance of fourier domain vs. time
domain optical coherence tomography. Optics Express, vol. 11, no. 8, pp. 889-894,
2003.

[31] Rainer A Leitgeb and Bernhard Baumann. Multimodal optical medical imaging con-
cepts based on optical coherence tomography. Frontiers in physics, vol. 6, pp. 114,
2018.

[32] Ang Li, Jiang You, Congwu Du, and Yingtian Pan. Automated segmentation and
quantification of oct angiography for tracking angiogenesis progression. Biomedical
optics express, 8(12):5604–5616, 2017.

[33] H. Li, Y. Yang, M. Chang, H. Feng, Z. Xu, Q. Li, and Y. Chen. Srdiff: Single image
super-resolution with diffusion probabilistic models. Neurocomputing, 2022.

[34] H. Li and P. Zhang. Spatio-temporal fusion network for video super-resolution. Pro-
ceedings of the International Joint Conference on Neural Networks, 2021.

[35] M. Li, Y. Chen, S. Yuan, and Chen. Q. Octa-500. 2019.

[36] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R.S. Timofte. Image restoration
using swin transformer. Proceedings of the IEEE/CVF international Conference on
Computer Vision, 2021.

[37] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep residual networks
for single image super-resolution. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017.

[38] Singh M, Zvietcovich F, and Larin KV. Introduction to optical coherence elastography:
tutorial. Opt Soc Am A Opt Image Sci Vis;39(3):418-430. PMID: 35297425; PMCID:
PMC10052825., 2022.

[39] Y. Mei, Y. Fan, and Y. Zhou. Image super-resolution with non-local sparse atten-
tion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[40] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A Geiger. Occupancy
networks: Learning 3d reconstruction in function space. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[41] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

49



[42] J.J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape representation. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[43] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A
deep neural network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[45] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and Geiger. Convolutional occu-
pancy networks. Proceedings of the Computer Vision–ECCV, 2020.
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