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Abstract

In this thesis, we analyze a space-time hybridizable discontinuous Galerkin (HDG)
method for the time-dependent advection-dominated advection-diffusion problem. It is
well-known that solutions to these problems may admit sharp boundary and interior layers
and that many numerical methods are prone to non-physical oscillations when resolving
these solutions. This challenge has prompted the design of many new numerical methods
and stabilization mechanisms. Among others, HDG methods prove to be capable of resolv-
ing the sharp layers in a robust manner. The design principles of HDG methods consist
of discontinuous Galerkin (DG) methods and their strong stability properties, as well as
hybridization to reduce the computational cost of the numerical method.

The analysis in this work focuses on a space-time formulation of the time-dependent
advection-diffusion problem and an HDG discretization in both space and time. This
provides a straightforward approach to discretize the problem on a time-dependent domain,
with arbitrary higher-order spatial and temporal accuracy. We present an a priori error
analysis that provides Péclet-robust error estimates that are also valid on moving meshes.
A key intermediate step towards our error estimates is a Péclet-robust inf-sup stability
condition.

The second contribution of this thesis is an a posteriori error analysis of the space-time
HDG method for the time-dependent advection-dominated advection-diffusion problem on
fixed domains. This is motivated by the efficiency of combining a posteriori error estimators
with adaptive mesh refinement (AMR) to locally refine or coarsen a mesh in the presence
of sharp layers. When the solution admits sharp layers, AMR may still lead to optimal
rates of convergence in terms of the number of degrees-of-freedom, unlike uniform mesh
refinement.

In this thesis, we present an a posteriori error estimator for the space-time HDG method
with respect to a locally computable norm. We prove its reliability and local efficiency.
The proof of reliability is based on a combination of a Péclet-robust coercivity type result
and a saturation assumption. In addition, efficiency, which is local both in space and time,
is shown using bubble function techniques. The error estimator in this thesis is fully local,
hence it is an estimator for local space and time adaptivity in the AMR procedure.

Finally, numerical simulations are presented to demonstrate and verify the theory. Both
uniform and adaptive refinement strategies are performed on problems which admit bound-
ary and interior layers.
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Chapter 1

Introduction

This thesis presents an a priori and an a posteriori error analysis of a space-time hybridiz-
able discontinuous Galerkin (HDG) method for the time-dependent advection-diffusion
problem. The a priori error analysis considers the problem on a time-dependent polygonal
(d = 2) or polyhedral (d = 3) domain Q(t) C R? that evolves continuously in the time
interval ¢ € [0,7]. The problem is given by

o+ V - (Bu)—eru:f in Q(t), 0<t<T, (1.1)

in which V = (0,,,0,,,...,0,,) denotes the spatial gradient, 3 is a given divergence-free
advective field, ¢ > 0 is a constant diffusion coefficient, and f is a forcing term. The
a posteriori error analysis considers eq. (1.1) on a fixed spatial domain Q(t) = Q. We
also introduce the (d + 1)-dimensional polyhedral space-time domain as £ = {(¢,z) :
r e Q1),0 <t < T} cC R In section 2.1, we will recast eq. (1.1) to its space-time
formulation.

We will assume that 3 € [Wh2(&)]%, HBHLOO(& < 1 and, following [12], that HBHWLoo(S) <

c HBHLOO(S) < ¢. We further assume that the size of 2 is order 1, following [31, 95], and hence

e~! is the Péclet number of eq. (1.1). The focus in this thesis is the advection-dominated
regime (¢ < 1).



1.1 Stabilization of the advection-dominated advection-
diffusion problem

The time-dependent advection-dominated advection-diffusion equation eq. (1.1) arises in
various application areas [92]. Examples include, but are not limited to, the linearized
Navier—Stokes equations of fluid dynamics with large Reynolds number [60, 80], the simu-
lation of oil extraction from underground reservoirs [49], convective heat transport problems
with large Péclet numbers [65], and multiphase flows [58].

When advection dominates in the advection-diffusion equation, its solution is well-
known to potentially admit sharp boundary and interior layers [43, 57]. Accurately cap-
turing these solutions proves to be nontrivial, and it is well understood that when applied
to such problems, standard finite element methods are prone to global nonphysical oscil-
lations. In response to this difficulty, various stabilization strategies have been proposed
over the recent decades [11, 68, 73, 91, 92]. A prominent example is the streamline up-
wind Petrov—Galerkin method (SUPG) [21, 24, 39, 72] which achieves robust solutions by
introducing artificial diffusion in the streamline direction of the advective field. However,
spurious oscillations in the narrow boundary /interior layer region have been observed in
SUPG solutions [2]. To smear out these oscillations, nonlinear artificial crosswind diffusion
terms are added and this is the design principle of the spurious oscillations at layers di-
minishing method (SOLD) [70, 69, 71]. An alternative approach is the continuous interior
penalty method (CIP) which enhances stability by penalizing the jump of the streamline
derivative on interior faces of the mesh [22, 26, 27, 42]. The stabilization term of CIP
methods is symmetric, unlike SUPG methods. Another member of symmetric stabiliza-
tion techniques is the local projection stabilization method (LPS). It was introduced under
the framework of projection-based stabilizations and is capable of attaining SUPG-type
stability [77, 78, 79]. Finally, we remark that nonlinear artificial crosswind diffusion terms
have also been combined with CIP and LPS methods, see [17, 25].

The numerical methods discussed above can be considered as stabilized variants of con-
tinuous finite element methods (CG) which use piecewise polynomial approximations that
are continuous across interior facets of the mesh. An alternative is to use a discontinu-
ous Galerkin (DG) finite element method which uses a discontinuous piecewise polynomial
approximation.

With the DG method the PDE is discretized locally on each element and adjacent local
discrete systems are coupled through a numerical flux defined on the element boundary.
See the left panel of fig. 1.1 for an illustration. Under the framework of numerical fluxes,
many existing DG methods can be unified and categorized by the specific choice of the

2
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Figure 1.1: Red dots depict dofs. Left: DG dofs on the element K directly interact with
dofs on a neighboring element IC,,. Right: HDG dofs on the element K only interact with
dofs on facets.

numerical flux [10]. Suitably devised numerical fluxes render DG methods locally conserva-
tive, which is an important feature when local conservation of certain physical quantities is
desired. Furthermore, the localized nature of DG methods opens up opportunities to highly
parallelizable implementations, general meshes (meshes with hanging nodes, elements with
nonstandard shapes, etc.), and hp-adaptivity (h-adaptivity: refining and coarsening local
elements; p-adaptivity: the polynomial degree may vary between elements).

It is because of the aforementioned reasons that we consider a class of DG methods
in this thesis. In the context of the advection-dominated advection-diffusion problem, DG
methods have been extensively studied in [12, 37, 38, 46, 87]. Comparison studies of dif-
ferent stabilization techniques, including DG methods, on advection-dominated advection-
diffusion problems can be found in [11, 20]. We also mention that published monographs
on DG methods include [30, 41, 74, 86, 90].

1.2 Space-time hybridizable discontinuous Galerkin
methods

DG methods are known to be expensive; on the same mesh, and when using polynomi-
als of the same degree, DG methods have a larger number of degrees-of-freedom (dofs)
compared to, for example, CG methods. Hybridizable DG (HDG) methods have been
designed specifically to reduce the number of globally coupled degrees-of-freedom by using
hybridization [36, 35]. This is achieved by introducing new dofs on the facets and designing
the numerical flux such that element dofs communicate only with facet dofs, see the right
panel of fig. 1.1 for an illustration. As such, element dofs are local dofs and can be cheaply
eliminated through static condensation. This results in a reduced system of equations for
only the globally coupled facet dofs. For higher-order approximations this reduced system
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Figure 1.2: Using CG, DG, HDG, we solve a Poisson problem on a unit square mesh with
34 elements. We use polynomials of order 6 and plot the sparsity pattern. We observe that
DG leads to a larger linear system (952) than CG (661). HDG further adds and additional
(413) facet dofs. However, after static condensation, the facet dofs form the global system
to be solved, which is smaller than CG’s system (due to using high-order finite elements).
Implementations for this example are done in the finite element library NGSolve [94].

of equations may be smaller than that of a CG discretization on the same mesh. See
fig. 1.2 for the sparsity patterns of CG, DG, HDG before static condensation, and HDG
after static condensation when applied to a Poisson problem.

Space-time discontinuous Galerkin methods: To discretize the time-dependent advection-
diffusion equation, this thesis considers a space-time HDG method. In the space-time
framework, a time-dependent PDE on a d-dimensional spatial domain is first converted to

a ‘stationary’ PDE on a (d + 1)-dimensional space-time domain. This space-time problem

is then discretized simultaneously in space and time by a finite element method on the

(d 4+ 1)-dimensional space-time mesh. At the expense of increased memory requirement,
space-time methods excel at the automatic treatment of time-dependent domains, are ar-
bitrarily higher-order accurate in both space and time, are straightforward to parallelize,
and easily allows for local space and time adaptivity.

The space-time HDG method traces back to using DG time-stepping in space-time
discretizations [66, 67]. On fixed domains, for example, DG time-stepping combined with
SUPG was analyzed for the advection-diffusion equation in [64], while space-time DG,
in which DG is applied both in space and time, was analyzed for a nonlinear advection-
diffusion problem in [51]. The space-time DG method for the (linear) advection-diffusion
problem on a time-dependent domain was analyzed in [98] by considering the space-time
discretization on a space-time mesh consisting of anisotropic (in space and time) elements.
This enabled them to obtain error estimates in terms of the spatial mesh size and the



time-step. Their work was an extension of the analysis of DG methods for the stationary
advection-diffusion problem on anisotropic spatial meshes [53] to space-time.

The extension of HDG to space-time, in which HDG is used to discretize a PDE in both
space and time, was presented in [88, 89]. Application and analysis of HDG methods for
the stationary advection-dominated advection-diffusion equation can be found in [34, 44,
85, 106]. The first a priori error analysis of a space-time HDG method for the advection-
diffusion problem on time-dependent domains appeared in [76], which extended the space-
time anisotropic framework used in [98] to HDG. However, despite the space-time HDG
method in [76] performing well in practice for ¢ < 1, the well-posedness result proven in
[76] does not hold in the advection dominated regime.

The a priori error analysis of this thesis. In this thesis we revisit the analysis in
[76], however, with focus on the advection-dominated regime. We start by identifying the
standard coercivity argument as the main source of the error estimate being nonrobust
with respect to the Péclet number. Specifically, coercivity is a special stability bound
derived by choosing the test function as exactly the trial function in the weak formulation.
This typically leads to a bound in terms of an energy-type norm that involves the H!-
seminorm scaled by /2 and the L?-norm. The coercivity bound typically has a constant
factor that requires a positive reaction coefficient when the advective field is divergence-
free (see, for example, [106, Lemma 4.2], [86, Lemma 4.59]). This means that a simple
advection-diffusion problem with a constant advective field, which is necessarily divergence-
free, would lose coercivity in the energy-type norm.

In [76, Lemma 4.3], a similar coercivity argument was able to circumvent the need
of a strictly positive reaction term while retaining a bound for the energy-type norm.
However, the resulting coercivity constant depends on e, entailing a weakened stability
when ¢ < 1. Moreover, this e-dependence of the stability constant eventually manifests
in the error analysis, resulting in a nonrobust a priori error estimate with respect to the
Péclet number.

The pivotal development in deriving a stronger stability bound of finite element methods
for advection-diffusion-reaction equations appeared in [12] which is inspired by an analysis
on the PDE itself from decades earlier [40]. The latter provides a well-posedness analysis of
the PDE in its pure hyperbolic limit (¢ = 0) by imposing the following regularity conditions
on the advective field B: (1) 8 € WH(Q); (2) B has no stationary point in the domain,
ie., |B(x)] # 0 for any = € ; (3) B has no closed curves. The last condition means that
any subcharacteristic £,(7), defined as the solution of the ordinary differential equation
d€ — B(&(r)) with £(0) = z € Q, leaves the domain Q in a finite time. See also [92, Part

dr
IIT Chapter 1] for related discussions.



One theoretical implication of the aforementioned set of assumptions on /3 is the exis-
tence of a smooth function 1 such that 3 - Vi (z) > by for some constant by > 0, which
depends on the inverse of the diameter of the domain €2. This function ¢ turns out to be
the key theoretical devise which [12] employs to obtain a stronger stability estimate for
the DG method therein. In particular, they define a weighting function ¢ = exp(—1) + ¥,
with y a free to choose positive constant. Then, instead of choosing the test function
as the trial function itself, they use the product of the trial function and the weighting
function ¢ as the new test function. This results in a coercivity-type bound with respect
to an energy-type norm and simultaneously, a stability constant independent of the dif-
fusion parameter €. By projecting this weighted test function to the DG finite element
space and by taking into account the corresponding projection estimate, they are able to
prove a discrete inf-sup stability in the advection-dominated regime. A Péclet-robust a
priori error analysis follows in a standard fashion. Additionally, they demonstrate that
the inf-sup condition can be further enhanced to bound a norm that also provides control
of the streamline derivative. The same idea is used to analyze an HDG method for the
stationary advection-diffusion problem in the advection-dominated regime in [52].

Inspired by the weighted test function approach, we will construct a weighted test func-
tion to show stability of the space-time HDG method. However, we make the important
observation that in the space-time formulation of the time-dependent advection-diffusion
problem, the space-time advective field combines the time derivative and the spatial ad-
vective field, du + V - (Bu) = V - (Bu) with 8 := (1, ) and V := (9;, V), and hence has a
constant component in the time direction (see section 2.1 for the detailed setup). With the
assumption that 3 € W1*°(Q), this constant component ensures that (1) 3 € Wh=(&);
(2) 8 has no stationary point in the space-time domain &; and (3) 8 has no closed curves.
The last statement is because any subcharacteristic leaves the space-time domain £ in a
finite time bounded by T'. Therefore, differing from [12, 52], we are guaranteed for free a
smooth function v such that 5 - Vi(x) > by for some constant by > 0, which depends on
the inverse of the diameter of the space-time domain £.

A further development shows that we are able to simplify the analysis by explic-
itly constructing the smooth function as ¢ = ¢/T and the weighting function as ¢ =
eT exp(—t/T) + x (see eq. (4.3)), i.e., the weighted test function depending only on the
time variable and by depending only on 1/7" (the inverse of the diameter of the space-time
domain in the time direction). Based on this choice of the weighted test function, we
prove an inf-sup stability with its constant independent of the diffusion parameter € (see
eq. (4.2a)) in place of the coercivity result [76, Lemma 4.3]. The proof is similar to its coun-
terparts in [12, 52] where a projection estimate of the weighted test function (see lemma 4.4)
is combined with a coercivity-type Péclet robust stability bound (see lemma 4.1).



Based on this new Péclet-robust inf-sup stability, we prove the second Péclet-robust
inf-sup stability in an enhanced norm which provides control on the time derivative. This
result finds its counterpart in [76, Theorem 4.4]. However, the choice of our test function
proves more convoluted (see eq. (4.42)). Finally, analogous to [12], we further enhance the
second inf-sup stability to a norm that also provides control on the streamline derivative.
This results in the main Péclet-robust inf-sup stability of our a priori error analysis, see
theorem 4.1. The Péclet-robust a priori error estimate can be shown based on the inf-sup
stability in a standard fashion. To the best of the author’s knowledge, this is the first
a priori error analysis of an HDG method for the time-dependent advection-dominated
advection-diffusion problem on moving domains.

1.3 Adaptivity and a posteriori error analysis

A segue: why adaptivity? When solving advection-dominated advection-diffusion prob-
lems with uniform mesh refinement, which is the assumed refinement strategy in the a priori
error analysis, and when sharp boundary and/or interior layers are present in the solution,
the local approximation error in the narrow boundary /interior layer region tends to domi-
nate the global error. This imbalance of error distribution can manifest itself in a dramatic
fashion where only a small portion of the elements contribute to, for example, more than
99% of the error.

The objective of adaptivity is therefore to allocate more elements/dofs to areas of
the domain where the local numerical approximation has the largest errors. This alter-
native mesh refinement strategy is known as adaptive mesh refinement (AMR). In the
case of advection-dominated advection-diffusion problems, resolving sharp layers with suf-
ficiently small approximation errors requires mesh elements at a similar scale as the bound-
ary/interior layer width. Meanwhile, outside this narrow layer region, a similar level of
local approximation error can be achieved with much coarser elements. A successfully ex-
ecuted AMR procedure, therefore, balances the local errors throughout the mesh and has
the potential to yield an “optimal mesh” associated with a specific global error tolerance.
Figure 1.3 shows a test case of eq. (1.1) on the space-time domain [0,1]> with the exact
solution being

u(t,z,y) = (1 — exp(—t)) (% +x— 1) (% +y— 1) .
The solution exhibits boundary layers of width O(e) near the boundary of the domain
where x = 1 or y = 1. Two solutions are shown in fig. 1.3 implemented with uniform mesh



refinement and AMR respectively. We observe that with less dofs, the solution on the
adaptively refined mesh successfully resolves the boundary layer whereas its counterpart
on the uniformly refined mesh does not.

We remark that, under the same principle, special layer-adapted meshes have been
devised for layer problems [92]. This, however, requires the location of the layer to be
known a priori which is typically not possible especially for time-dependent problems.
AMR, on the other hand, does not require a priori information of the solution and hence
is generally a more suitable approach. The lack of a priori information of the solution also
rules out a priori error estimates as a viable guide for the AMR procedure. A standard form
of an a priori error estimate is |[u — s’ g < 32 Kea Chi |lul> ., which contains unknown
local quantity |ul, , of the exact solution. Thus it does not pro%zide a computable local error
estimate and it is ﬁsually used to show the asymptotic convergence rate under uniform mesh
refinement. This motivates the a posteriori error estimation, which purports to provide
local error estimates that can be computed at a low cost using known and computable
quantities only, such as the finite element solution wu,, the problem data, the boundary
conditions, and the geometric data of the mesh. With an a posteriori error estimator, the
standard AMR procedure is enabled and proceeds as follows:

SOLVE —— ESTIMATE —— STOP? — MARK —— REFINE/COARSEN

I |

Inside this loop, in the SOLVE step we obtain the finite element solution w; on the current
mesh 7, and in the ESTIMATE step we compute the local error estimate on each element.
This estimate is denoted by 7. The summation of n over all K € 7T, gives an estimate for
the global error ||u — up| ;.. In the STOP step we check whether the global error estimate
is smaller than a prescribed error tolerance. This serves as the stopping criterion of the
procedure. If the error tolerance has not been reached, we proceed with the MARK step in
which we mark all elements with nx bigger than a prescribed threshold. Common marking
strategies include: (1) a certain percentage of the elements with the biggest local error
estimates are marked; (2) elements with error estimates bigger than a certain percentage of
the biggest local estimate are marked; and (3) elements whose local error estimates together
constitute a certain percentage of the global error estimate are marked. Similarly, a portion
of elements with relatively smaller error estimates are marked for coarsening. Finally the
REFINE/COARSEN step applies a prescribed refinement strategy to the elements marked
for refinement and coarsens the elements marked for coarsening. We then proceed again to
the SOLVE step, now on this new mesh. In this thesis, we only consider regular refinement




Refinement | Number of elements | Number of facet dofs | L%-error S?atlal
H*"-error
Uniform 1,404,928 17,009,664 4.1e-3 1.6e-1
Adaptive 1,173,990 16,801,500 7.9e-4 9.7e-2

Figure 1.3: This is a boundary layer example implemented using the space-time HDG
method in this thesis. Uniform refinement (upper row) and adaptive refinement (lower
row) are employed and their spatial solutions at the final time are plotted. With slightly
less dofs, adaptive refinement resolves the boundary layer whereas the uniform refinement
still has not. Furthermore, numbers of elements and dofs on the global space-time mesh
as well as global L?- and H'-errors are tabulated. The degree to which the boundary layer
has been resolved is reflected in the errors.



whereby a hexahedral element is divided into eight smaller hexahedral elements by joining
the midpoints of edges.

For the AMR loop to properly function, we expect two crucial properties of the a pos-
teriori error estimator n. Firstly, the stopping criterion requires the global error estimate
to bound the exact global error as follows

. 1/2
lu—unllg < (D mg) (1.2)
KeT

With eq. (1.2), if (3 et n,%)l/ ? < 7, the prescribed error tolerance, we can conclude that
|luw — upll, < 7, up to a multiplicative constant ¢*. The constant ¢* should be independent
of the mesh-size parameters and ideally be O(1) at all levels of refinement. This is known
as the reliability property of an a posteriori error estimator. Secondly, for a well-informed
selection of elements during the MARK step, we want the local error estimate to be a lower
bound for the exact local error

e < e lu—uplle, V€T (1.3)

With eq. (1.3), if nx surpasses the marking threshold, we deduce that |u — ]| is also
greater than the marking threshold, up to a multiplicative constant c,. Similarly, the
constant ¢, should be independent of the mesh-size parameters and ideally be O(1) at
all levels of refinement. This property of the error estimator is known as local efficiency.
Furthermore, the ratio between the estimated error, (ZKGT}L 77,%)1/ 2, and the exact error,
|u — upl|, measures the quality of the error estimator and should ideally be O(1) at all
levels of refinement. This ratio is called the efficiency index. Combining reliability and
(local) efficiency leads to a bound for the efficiency index, [1/c¢*, ¢,].

For solutions of the advection-dominated advection-diffusion equation, a reliable and
locally efficient error estimator might still prove insufficient in driving the AMR procedure.
This usually manifests when the efficiency index is dependent on the problem parameter,
which, in this case, is the Péclet number e~!. Particularly, when the Péclet number grows,
the sharpness of the reliability and local efficiency bounds eqs. (1.2) and (1.3) deteriorates.
In other words, as the layers become sharper, which corresponds to a larger Péclet number
and which signals a greater demand for AMR, the quality of the error estimator worsens.
Therefore, it is of great interest to aim for the independence of the reliability and local effi-
ciency constants with respect to the problem parameter that behaves singularly, a property
aptly termed robustness of the error estimator.

The a posteriori error analysis of this thesis. We present an a posteriori error analysis
for a space-time HDG method for the time-dependent advection-diffusion problem on fixed
domains.
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For the stationary advection-diffusion problem, in the advection-dominated limit, a
posteriori error analysis has been done for various finite element methods. Examples
include a posteriori error analysis for conforming finite element methods [81, 93, 100, 103],
DG methods [47, 48, 56, 95, 109], and HDG methods [6, 33, 96]. The focus of these studies
has been the robustness of the error estimator with respect to the Péclet number.

Nonrobustness of the error estimator for the standard energy norm was first observed
in [100]. The analysis therein was based on the standard coercivity (which is used to show
reliability) and boundedness (which is used to show local efficiency) with respect to the
standard energy norm of the weak formulation of the PDE (see [100, Section 4]). It showed
that the upper and lower bound constants (as in egs. (1.2) and (1.3) respectively) differ by
a factor e~/2 particularly when narrow layer regions have not been sufficiently resolved.
This behaviour may be attributed to the lack of measurement of the streamline derivative
in the standard energy norm. Furthermore, a space-time version of the error estimator in
[100] is derived and analyzed in [7] for the time-dependent advection-diffusion problem,
inheriting the nonrobustness.

To attain robustness, one possible approach is to augment the energy norm to measure
the streamline derivative. Then, based on the enhanced norm, one may derive an inf-sup
condition in place of the coercivity and a new boundedness result. Ideally, these two results
lead to upper and lower bound constants that are independent of €. This idea forms the
basis of the newly introduced dual norm in [103] which measures the error in the streamline
derivative. A Péclet robust continuous inf-sup condition was proved with respect to the
augmented energy norm by the dual norm. Meanwhile, a boundedness result with respect
to the augmented norm is shown with no dependence on the Péclet number. Combining
the corresponding upper and lower bounds results in robustness (see [103, Lemma 3.1
and Theorem 4.1]). This approach was also used in the a posteriori error analysis of DG
methods for the stationary advection-diffusion problem (see [48, 95]). An alternative dual
norm, argued to be more suitable for advection-dominated problems, was presented in [93].
Their residual-based estimator was shown to be almost robust in one spatial dimension.

Based on [103], the dual norm technique is extended to analyzing an a posteriori error
estimator for the time-dependent advection-diffusion problem in [102], which is shown to be
robust. Computing the space-time error estimator therein is not trivial and requires solving
an auxiliary stationary reaction-diffusion problem. Similarly, the error estimator in [95] for
the DG method, which is also robust with respect to an energy norm augmented by a dual
norm, is extended to the time-dependent problem in [31, 32]. The latter extension follows
the elliptic reconstruction technique [55, 82, 83], which provides a general framework to
extend error estimators for the stationary problem to the time-dependent problem.
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However, the dual norm approach is not without its downside. Particularly, the na-
ture of it being dual with respect to a global (energy) norm renders its local evaluation
or estimation impossible. Therefore, the efficiency bound (as in eq. (1.3)) for the error
estimator can only be global. An a posteriori error analysis, not involving dual norms,
was presented in [33] and was later extended to the Oseen problem in [6]. The reliability
analysis is based on a Péclet-robust coercivity-type result. This result, as an alternative
of the Péclet robust continuous inf-sup condition proved for the dual norm, was inspired
by the a priori error analysis in [12]. As we discussed previously in this chapter on the
a priori error analysis, the analysis in [12] is based on the weighted test function and the
assumptions that 3 lives in W1>°(Q) and has no closed curves nor stationary points. Using
the weighted test function, a coercivity-type bound is derived (see [12, Lemma 4.4]) and
it is closely related to the bound used to show reliability in [33, 6] (see, respectively, [33,
Lemma 4.1], [6, Lemma 3.6]). Robustness of the a posteriori error estimator was shown in
[33] for the stationary advection-diffusion problem. Furthermore, without any dual norm,
the norm in [33] is locally-computable and a local efficiency result is provided.

This has naturally led us to exploit the Péclet-robust a priori error analysis in this thesis
in order to obtain an a posteriori error estimator for the space-time HDG discretization
of the time-dependent advection-diffusion problem. Analogous to [33], the basis for the
a posteriori error analysis in this thesis is the intermediate Péclet-robust coercivity result
(see lemma 4.1) we proved for the a priori error analysis. This results in a reliability bound
for the L?- and spatial H'-norms of the error, but not for the error of the time derivative.
For the latter, we use a saturation assumption, inspired by [23].

Let 7, be a given mesh and let 7y be a mesh obtained by applying a level of refinement
on 7Ty. Let uy be the finite element solution on mesh 7, and wuy the finite element solution
on mesh 7. A saturation assumption supposes that u, has a strictly smaller error than
up,. In other words, we have

lu—uglly < pllu—willy for p<1.

By a triangle inequality, we then have

1

lu = unllg < 37— lluy — unllg -

The saturation assumption provides an approach to estimate ||u — uyl|, by estimating
|uy — up|| instead. For the latter, one can typically rely on a combination of discrete
inf-sup stability and Galerkin orthogonality. This was done in [23] for an a posteriori error
analysis of the advection-reaction equation. Certain restrictions had to be placed on the
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subgrid refinement to construct theoretically viable 7Ty in [23] which prevents the analysis
to be applicable in three-dimensions. In this thesis, since desired error estimation is for the
error in the time derivative, we rely on a subgrid constructed by halving the time-step of
every space-time element. A time derivative error estimate is then obtained by combining
a Galerkin orthogonality and a discrete inf-sup stability. The latter comes from the inf-sup
condition we proved for the a priori error analysis with respect to a norm that involves
a term that measures the time derivative. See eq. (4.2b) and theorem 5.3. Finally, we
remark that the saturation assumption may fail in general. See [1, Section 5.2] and [18].

Due to that the saturation assumption of our interest does not hold for constant poly-
nomial approximation in time, we will use linear polynomial approximation in time in
the space-time HDG discretization. The resulting a posteriori error analysis is thus for
a second order accurate in time and arbitrary order accurate in space space-time HDG
discretization of the time-dependent advection-diffusion problem. We remark that despite
a nonrobust a posteriori error bound, as shown in theorems 5.1 and 5.2, the norm we use
is locally computable and also measures the error in the time derivative. Furthermore, the
error estimator in this work is fully local hence it is an estimator for local space and time
adaptivity in the AMR procedure.

1.4 Implementations in this thesis

Numerical experiments in this thesis are implemented in the finite element library deal.ll
[8, 9] with distributed memory parallelization [16]. In contrast with shared memory paral-
lelization, the mesh is decomposed by the pdest library [29] and each processor only stores a
subset of elements with a distributed data structure. The communication between machines
is then handled by an implementation of Message Passing Interface (MPI). This allows our
implementation to run test cases with up to 1000 processors and 50 million dofs (after
static condensation). The linear system arising from the space-time HDG discretization is
solved all-at-once using the Multifrontal Massively Parallel Solver (MUMPS) [3, 4]. We
remark that on uniformly refined meshes, the solution process can alternatively be carried
out using a slab-by-slab approach. By partitioning the global time interval into subinter-
vals, the initial space-time domain is divided into space-time slabs. Each space-time slab
is then tessellated and the PDE is discretized and solved on the space-time slab mesh from
one time subinterval to the next using the solution on the current space-time slab as an
initial condition for the next. See fig. 1.4 for an illustration. Besides MUMPS, we also
used preconditioned GMRES in PETSc [14, 13, 15] to solve the linear system arised from
the slab-by-slab approach. The GMRES is preconditioned by classical algebraic multigrid
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Figure 1.4: The slab-by-slab approach: The discretization on the global space-time mesh
is solved one slab at a time, exemplified by the three slabs above. The solution of slab 1 is
used as initial condition for the problem on slab 2, etc. When solving on a time-dependent
domain, the slab moves forward in time according to the domain deformation mapping.

from BoomerAMG [59] with an absolute solver tolerance of 107*2. Finally, we remark
that the memory requirement is always lower for the slab-by-slab approach compared to
the all-at-once approach. However, the all-at-once approach allows for a straightforward
implementation of space-time adaptivity and so we adopt the all-at-once approach for the
AMR procedure in this thesis.

We acknowledge that the research in this thesis is enabled by support provided by

e Math Faculty Computing Facility at the University of Waterloo (https://uwaterloo.
ca/math-faculty-computing-facility/);
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1.5 Thesis outline

The subsequent chapters of this thesis are organized as follows:

Chapter 2: The time-dependent advection-diffusion problem on a moving domain is re-
cast into its space-time formulation on the (d + 1)-dimensional space-time domain. This
formulation automatically accounts for the domain deformation. To tessellate the space-
time domain, we introduce geometric objects such as space-time slabs, elements, facets
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(d-dimensional faces) and edges ((d — 1)-dimensional faces) and describe regularity con-
ditions thereof. Finite element spaces are then defined on the space-time mesh and a
space-time HDG method is introduced.

Chapter 3: Before we lay out the a priori and a posteriori error analyses of the space-
time HDG method, we present in this chapter the useful theoretical tools such that scaling
arguments, inverse and trace inequalities, local projection estimates, approximation esti-
mates of an averaging operator (also known as the Oswald approximation operator), and a
subgrid projection estimate. All these bounds, inequalities, and estimates are formulated
and proved with space-time anisotropy.

Chapter 4: As the first contribution of this thesis, this chapter presents a Péclet-robust
a priori error analysis of the space-time HDG method when applied to the advection-
dominated advection-diffusion problem on moving domains. Based on a weighted test
function technique, a novel inf-sup condition is proved as the key result to attain Péclet-
robustness. This inf-sup stability is then extended to a norm that also measures the error
of the streamline derivative. The error analysis and numerical examples conclude this
chapter.

Chapter 5: The second contribution of this thesis is an a posteriori error analysis of
the space-time HDG method when applied to the advection-dominated advection-diffusion
problem on fixed domains. We present the a posteriori error estimator and prove its relia-
bility and local efficiency. A novel saturation assumption along with a subgrid projection
estimation are employed to estimate the error in the time derivative. Finally, we illustrate
the theory with numerical examples that involve boundary and interior layers.

Chapter 6: The thesis concludes with discussions on potential future work based on the
research in chapters 3 to 5.
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Chapter 2

Space-time HDG for
advection-diffusion problems

In this chapter, we introduce the space-time formulation of the time-dependent advection-
diffusion equation and a space-time HDG method. The analysis of the latter will be
the focus of this thesis. In section 2.1, the time-dependent advection-diffusion equation
eq. (1.1) is reformulated into eq. (2.1), which is more convenient for the analysis. In
section 2.2, the space-time HDG method is subsequently introduced in detail with two
parts: in section 2.2.1 we describe geometries of space-time slabs, elements and facets
as well as regularity conditions imposed on these geometric objects; in section 2.2.2, we
present the finite element spaces, norms, conditions on the problem data, and finally, the
space-time HDG discretization eq. (2.9).

2.1 The advection-diffusion problem

The space-time formulation of the advection-diffusion equation consists in recasting eq. (1.1)
as a problem in (d + 1)-dimensional space-time. For this, we define the (d + 1)-dimensional
polyhedral space-time domain as £ := {(t,z) : 2 € Q(t),0 <t < T} C R4, Its boundary,
0E, consists of three disjoint parts

Q(0) :={(t,z) € 9 : t =0},
UT) :={(t,x) € 0 : t =T},
Qe :={(t,x) €0 : 0 <t <T}.
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The outward space-time normal vector to O€ is denoted by n := (n;,n), where n; and n
are temporal and spatial components of the space-time normal vector, respectively. In-
troducing the space-time advective field 3 := (1, 3) and the space-time gradient operator
V := (0;, V), the space-time formulation of eq. (1.1) is given by

V- (Bu) — eVou = fin €. (2.1a)

We consider a nonoverlapping partition of the domain boundary, € = 0Ep U 0€y, and
impose the boundary conditions

—CuB-n+eVu-n =g on 0&y, (2.1b)

u=0on 9&p. (2.1c)
The Dirichlet 0p and Neumann 0y boundaries are defined by:

06p :={(t,z) 1z €'p(t),0 <t <T},
0N ={(t,z) :x e Tn(t) UQO)UQT),0 <t <T},

where we also prescribe a nonoverlapping partition of the boundary of (), i.e., 0(t) =
I'p(t) UT n(t). Furthermore, ¢~ is an indicator function for the inflow (where 5 -n < 0)
part of the boundary of £. Therefore, the boundary condition on 0&y also imposes the
initial condition u(z,0) = g(z) on ©(0). Finally, we assume that the forcing term f lies in
L*(€) and that the Neumann boundary data g lies in L*(0Ey).

2.2 The space-time HDG method

2.2.1 Description of space-time slabs, elements, facets and edges

An initial partition of the space-time domain £ consists of dividing the time interval [0, 7]
into time levels 0 = tg < t; < --- < ty = T and defining the nth time interval as
I, = (tn,tny1). The space-time domain is divided into space-time slabs £ := £N(I,, x RY),
which are then divided into space-time elements, £" = U;K%. To construct the space-time
element K, we divide the domain €(¢,) into nonoverlapping spatial elements K’/ so that
Q(t,) = U;K}. Let T be the transformation describing the deformation of the domain.
The spatial elements K;-”l at t,41 are obtained by mapping the nodes of the elements K7
into their new position via the transformation Y. Each space-time element K7 is obtained
by connecting the elements K7 and K7*' via linear interpolation in time following [99].
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When domain is fixed, we remark that T becomes the identity mapping. We denote the
set of all space-time elements tessellating the space-time domain by 7p,.

The boundary of a space-time element IC with ¢ € (¢, t*) is partitioned as 0K = QxURk
where Rx = K,UK*, QxNRx = 0, and where K, denotes the facet of K at time ¢t = ¢, and
K* denotes the facet of KC at time t*. On 0K, the outward unit space-time normal vector is
denoted by n* = (nf, %), where nf and 7" are the temporal and spatial components of
the space-time normal vector, respectively. For ease of notation, we omit the superscript
K from now on. Note that n is the zero vector on an R-facet, i.e., that n = 0 on K* and
K., and that n # 0 on a Q-facet. The a posteriori error analysis in this thesis also requires
the (d — 1)-dimensional edges of K* and K,. We denote such an edge by Fi.

We will allow at most 1-irregularly refined space-time elements in the space-time mesh
Tn. The facets in the mesh can be divided into three cases: (1) boundary facets; (2)
interior facets shared by two elements at the same refinement level; (3) interior facets
shared between more than two elements. We denote the set of all facets by F,. Within
this set, the sets of all interior facets, boundary facets, Q-facets (facets on which n # 0),
and R-facets (facets on which 7 = 0) are denoted by Fi, F¢, Fon, and Fr p, respectively.
The union of all facets in Fj is denoted by I'. Furthermore, we denote by 97, the set of
element boundaries, by Qj, the set that consists of parts of an element boundary on which
n # 0, by Ry the set that consists of parts of an element boundary on which 7 = 0, and
by 0T, the set of element boundaries excluding the part of the element boundary that lies
on 0€.

We denote by wy the union of elements K’ such that 9K NOK' # 0, and denote by oy
the union of elements that share at least one vertex with IC. Consider now a facet F. Any
elements containing facets F’ such that F' N F’ is itself a facet belong to the set wp. See
fig. 2.1 for a depiction of wy, ox, and wp.

To define the finite element spaces, we require the mapping ®x between a fixed reference
clement K = (—1,1)*"" and space-time element K € 7;. Following [53] and [98], this
mapping @K(ﬁ) = K is decomposed into two parts. First, G;C(I/C\) — K denotes the affine
mapping defined by G (Z) = AxZ + b, where Ax = diag (0tx/2,hk/2,...,hi/2) and
b € R™ a constant translation vector such that the brick K := (0,0tc) x (0, hg)?, see
fig. 2.2. In the following, hy is used to denote the spatial size of the element K and dtx
the time-step. We then define ®x := ¢ o Gg, where ¢k is a diffeomorphism such that
orc(K) = K (see fig. 2.2). Note that G sets the size of the element K while ¢ sets its
shape. Following [53] and [98], we assume that ¢x is close to the identity, i.e., we will

assume that ¢y satisfies:

S ldetdoel S Nyl Se 00 <d VKET,  (22)
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2277

(a) wi and ok

(b) wr

Figure 2.1: Depiction of sets wx, ox, and wp on conforming and l-irregularly refined
meshes. Figure (a): elements in the set wyi are the grey colored elements excluding the
hatched elements; elements in the set o are colored grey and include the hatched elements.

Figure (b): elements in the set wg are colored grey.

o)
Lt
1 (1?1’1) 5t;g E -
Gk b
& et | K
(—1,—'1,—1) v L
f————]/;[—(————)

Figure 2.2: Construction of the space-time element K through an affine mapping Gy :
K — K and a diffeomorphism ¢x : K — K [98]. Note that the front and back faces of K
have constant t-coordinate and hence are parallel to each other.
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where c is a generic constant independent of hg, dtx, €, and T, where Jy € R(+Dx(n+1)
is the Jacobian of the diffeomorphism ¢, and where the index 0 denotes the coordinate
of the time direction. Since t only depends on t,

(Jox)op =0, 1<k<d, VKeT,. (2.3a)
We remark that when domain is fixed, z, is independent of  for 1 < k < d, thus, we have
(Jox) o =0, 1<k<d, VKeT,. (2.3b)
For the inverse of Jy,, let det Js,\m, denote the (m,n) minor of Jy . We will assume that:

¢t < |det J(;C1| <c¢, |det Jdnc\mnHLoo(;E) <ec, VKET,. (2.4)

Let FJQ be a Q-face where z; is fixed in its affine domain. The parametrization of F, 7

obtained from the restriction of ¢x to the boundary of K where z; is fixed, is denoted by
¢py. Then, (see [84, Theorem 21.3 and Definition on page 189] and appendix A),

12

. f(x)ds = /ﬁ ]. f (6ro(@)) (det ()" J2.)) " d5, (2.5)

where Ji}c € RM+Uxn i obtained by removing the j™ column vector from Jy,.. We will
assume that ' o
¢t < (det ()T )P <e, 0<i<d. (2.6)

To account for local time-stepping, consider a space-time element K in space-time slab
E™. Then we introduce, in addition to the local time-step dtx set by @k, the slab time-step
Aty :=t, 1 — t,, i.e., the length of I,. Note that 0t < Atx with dtx < Atx when using
local time-stepping. We will assume that Aty /dtxe < ¢ for all K € Tj,. An illustration of a
(d + 1)-dimensional space-time mesh in slab £", with d = 2, is shown in fig. 2.3.

2.2.2 Finite element spaces and the discretization

Let 9%v, with a a multi-index, be the weak derivative of v and let H*(U) := {v € L*(U) :
9% € L*(U) for |a| < s}, where s is a nonnegative integer and U C R" is an open domain
with z := (x1,...,2,) denoting the coordinates of R". The norm of H*(U) is defined by
|| ?JS(U) =D lal<s |02v|[7,, where ||-||,, is the usual L*norm on U.

We also require anisotropic Sobolev spaces. Following [98] we only consider anisotropy
between spatial and temporal variables with no anisotropy between the spatial variables.
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(a) A spatial mesh Q(t,) = U; K} (b) A space-time slab &,. The facets dyed in red
form Qg while Ry is the union of K* and K.

Figure 2.3: Illustration of a moving spatial domain Q(t) C R? for ¢ € I,, resulting in the
space-time slab " C R+ (with d = 2). Local time-stepping within a space-time slab is
featured in fig. 2.3b. Here K* = K" and K, = K™.

As such, let s, and s; denote the spatial and temporal Sobolev indices, respectively. For
ag, a5, > 0,1 <4 < d, the anisotropic Sobolev space of order (sq, s;) is defined on an open
domain U C R4 by (see [53]):

HE)/(U) = {v € L*(U) : 00%v € L*(U) for oy < s, |ovs| < 55},

where a5 = (,,...,05,) and & = (21,...,24) denotes the spatial coordinates. The

anisotropic Sobolev norm reads ||v||§{(st,SS)(U) =D s o< 108 050 7.

For the HDG method, we require the following finite element spaces

V)= fuy, € L* () s vnlc 0 ¢ 0 G € QPP (K) VK € Tr},
M) = {, € L* () : pialr 0 ¢ 0 G € QW) (F)  VF € Fyy, iy = 0 on 9Ep},

where Q®P)(U) denotes the set of all tensor product polynomials of degree p, in the
temporal direction and p, in each spatial direction on a domain U. For simplicity of
notation, we omit the superscript (p;, ps) from now on and define V;, = V,, x M, and
denote the pairs (v, u) € Vi, and (u,\) € Vi, as v = (v, ) and w = (u, \).

On an element boundary we denote the HDG jump by [v,] := (v, — ) and on a facet
F € F}, where F C 0K; N OK,, we denote the usual DG jump by [vs] := (vpin1 + vagns).
Next, consider two elements Ky and Ky such that K7 = K, .. Denote the restriction of
pn to Ok, and Qx, by pp1 and ppe, respectively. The jump of py, across edges of K7 is
defined by ((fn)) == ptn1 — pr2- Note that for pairs of K7 and K, such that Ki C Ky, or
Ky, € K7, we do not define any edge jump.

=

21



To end this section we introduce V :=V x M, where V := {v € H'(E)|v|ge, = 0} N
H?(E) and M its trace space, and define the extended function space V'(h) := V(h) x M (h)
where V(h) := V;, +V and M (h) := M), + M. We will require the following three norms
on V(h):

] 1/2 2 12 2
loll2, =3 ol + > 18 =380l [l + D W28l ull,  (27a)

KeTy KeTh FecoEn
— 2 - 2
+ > el Vol + > ehi 15,
KeTh KeTn
2 2 2
HollZ, =Ml , + D = 0wl (2.7b)
KeTh
2 2 2 Stich? 2
ollZ, =Nl + ol = 1ol2, + > i [T, (8- Vo)l (2.7¢)
KeTn

where IIj, denotes the L2-projection onto Vj, and the parameter 7. in the definition of
[[v]l[,, depends on the size of the space-time element compared to the diffusion parameter
e:
T. 1= Atgé,

where

1 ifKeT:={KeT)otx <hx <c},

g :={ gl/2 it CeT? = {Keﬂ\étngg<h;{},
£ if K€ T¢:={K¢eThle<dtx <hg}.

Finally, 85 := sup(, e |8 - nl, for FF C OK. It is useful to remark that

inf (B, —1%6-n)>1 max |3 n VF € OK, VK € Ty, (2.8)

(z,t)EF — 2 (zt)er

Let u,v € [L*(U)] for 1 < r < d+ 1. We will write (u,v)y = [,u-vdz if
U c R™ and (u,v)y = [,u-vds if U C R% Furthermore, we define (u,v)y, :=

ZICeTh(uvv)’Ca <u7v>37—h = ZICGT,L<U7U>8IC7 <u7v>Qh = ZKeTh<uav>Q)ca and <U’7v>a<€N =
FeF NOEN <u7 U>F‘

The space-time HDG method for eq. (2.1) is given by: Find u;, € V', such that

an (un, i) = (f, o) + (9, tn)oey  Yon € Vip, (2.9)
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with ap(up, vy) == apa(wp, Vi) + ap(un, v;,) and where

Here, Vv := Vo - 7o denotes the directional derivative, 8, > 0 is a penalty parameter and
(" denotes the outflow boundary indicator on a facet.
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Chapter 3

Inequalities, approximations and
projections

This chapter presents theoretical results that are useful for the a priori error analysis in
chapter 4 and the a posteriori error analysis in chapter 5. Sections 3.1 to 3.3 list our
scaling arguments, inverse inequalities, trace inequalities and local projection estimates in
the space-time setting. For this we take into account the anisotropy between spatial and
temporal variables. When the domain is fixed, which we assume for the a posteriori error
analysis, special cases of these inequalities and additional useful inequalities are included
at the end of each section.

Furthermore, sections 3.4 to 3.6 cover results that are only relevant to the a posteriori
error analysis and hence a fixed domain is assumed. Specifically, section 3.4 presents useful
local projection estimates; section 3.5 presents approximation estimates of an averaging
operator (also known as the Oswald approximation operator); finally, section 3.6 presents
several results related to a subgrid projection.

3.1 Scaling arguments

Following [53, Definition 2.9], we define
H'(K) = f{v e LK) : (voox) e H'(K)}.

Consider an element K and let Fg C Qf and Fr C Rg. For v e H? (K), the following
scaling arguments between the reference domain and the affine domain can be shown based
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on [97, Lemma B.7]

—d—1

1012 = (3) ot h 0% (3.1a)

—d _

1%, = (3) " ot h I, | (3.1b)
d

1o1%, = ()~ retl711%, | (3.1¢)

1957118 = (3) d“5t,zlh;<d“\lazﬁ\|,%7 vi<i<d, (3.1d)
—d+1 _ ~

107012 = (3)°" Stch 1070 (3.1¢)

Furthermore, we have the following scaling arguments between the affine domain and the
physical domain

cHolle < l9llz < ellvllc (3.2a)

cHvllp, <IPllz, < cllvllp, (3.2b)

vl <IWl7, < cllvllp, (3.2¢)

105,0||g <c||Vvll, VI<i<d, (3.2d)

1070 <c (10wl + [IVollc) - (3.2¢)

Here, eq. (3.2a) follows from a change of variables, egs. (2.2) and (2.4), while eqgs. (3.2b)

and (3.2¢) follow from a change of variables and eqgs. (2.5) and (2.6).
Equation (3.2¢) follows from the chain rule, eq. (2.2), change of variables and eq. (2.4):

d 2
ol = [ (Y onveoc () dias
£ \i=
d
<c (/ (O o ¢c)” dtdT + Z/ (0,0 0 pxc)° d’fdﬁf)
K ‘oK
d
<c </ (&w)Q |det J; | dt da + Z/ (ijv)Q |det J; ] dt dx)
K = K

= 1 \2
< c(llowlle + IVolle)”
Similar steps, combined with eq. (2.3a), are used to show eq. (3.2d).

Special cases and additional inequalities on a fixed domain: Following similar
steps in showing eq. (3.2e), combined with eq. (2.3b), we have the following reduced version
of eq. (3.2¢)

1050l < c O]l - (3.3)
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Furthermore, when 7, € Q(K) we have
N 1-d/2 - ~
10l = (3)* dtchic 10l 7, (3.4a)
1070n] 5, < ¢ l|Ovvnll e -

Equation (3.4a) follows by extending [53, Lemma A.3] to (d + 1)-dimensions in the space-
time setting, while eq. (3.4b) follows from the chain rule, eq. (2.3b), a change of variables,
and egs. (2.5) and (2.6):

2
||ag5h||fgﬁ_/~ (D) dx—/ (Zax]vhoqﬁ,c J)) 47
Fr Fr

7=0

= /~ (Opvp, © ¢1c)2 (g—%)Q dr = /~ (Opvp, © ¢,C)2 dx
Fr Fr

_ /ﬁ (Byvn 0 bp, ) dT < c/~ (Bhon © b ) (det ((J9) Jg,c))”2 dz < c|9onl, -

Fr
When we consider an edge Ex such that ¢;¢(E,C) = FE, we have

cHwnllg, < llvnllg, < clltnllz, - (3.5)

Equation (3.5) is analogous to eq. (3.2b) in an integral domain with one lower dimension
and can be shown with similar steps.

3.2 Anisotropic inverse and trace inequalities

Consider again an element K and let ﬁg C Qg and Fr C Rg. For any K € 7, and
v € H'(K), we have the following trace inequalities from [97, Lemma B.6]

1117, < e (ht 1Tl% + 1911z IVollg) (3.6a)
19115, < e Ot [Tl% + 15l 19:0lg) - (3.6b)

Adapting [53, Corollaries 3.49, 3.54] to the space-time context, specifically taking into
account the spatial mesh size hx and time-step dtx of a space-time element K € T, we
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have the following anisotropic inverse and trace inequalities, which hold for all v, € V}:

10wnllc < (0t 4+ hi") lnllc » (

vahH/c < Chf?l HUhH/m (3.7b
lonllg < e unllic (3.7c
onllae < e (@t + b’ [lunllc (3.7d

where ¢, is a constant independent of hg, dtx, €, and T. (We distinguish ¢, from ¢ to
prove lemma 4.1.) The following lemma introduces an additional inequality.

Lemma 3.1. Let I € T}, be a space-time element. For all py, € My,
10un ]l g < € (0tic™ + hi!) ll1nll g - (3.8)

Proof. The d-dimensional hypersurface Fg is embedded in R%*! and in general it may be
curved. Therefore, we cannot use eq. (3.7a) directly to conclude eq. (3.8). Instead, we first
map Fg to the affine domain. For this, let (bFQ(ﬁQ) = Fo, i.e., the transformation of a face
from the affine domain to the physical domain. We then observe that one of the spatial
coordinates, which is denoted by z; without loss of generality, of Fg is fixed. This means

we can view Fg in the R? domain with coordinates (£, Ty, . ..  Tj—1,Zj41,--.,2q) and apply
the d-dimensional versions of eq. (3.7a) and eq. (3.7b) to Fo:

1057 | 7y < e (Gt~ +hi) linllz, - VARl 7, < chi 77, - (3.9)
Using the mapping ¢p,, eqgs. (2.5) and (2.6),
1/2

HachHQFQ = [ [(at (/jh © ¢;7;)) © ¢FQ]2 [det ((Ji;c)T Ji;c)] ds

Fo

S C[ [(&g (ﬁhogb;;)) O¢FQ]2d§.
Fo
By the chain rule,

_ _ ot ~ 0z;
0. (o 652) = (0 o 652) o + (05.7in) © 67L) S

1<i<d,i#j

We note that 22t is the (i,0)-element of J;, which equals (—1)" det Joreri0/ det Jy,. Sim-

corresponds to the (0,0)-element of J;* which equals det Jy, ./ det Js. Now

ot

ilarly, 5;
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using eq. (2.2), eq. (2.4), eq. (3.9), definition eq. (2.5), and eq. (2.6) we find that:

~ 2
10upanll 7, < € (/~ (%ﬁh)2d§+/~ (Vi) ds)
Fo Fo

_ _ ~ i i 172 o _ _
< (0t 2+ th)/~ 1 [det ((JéK)T Jin)} ds < c (0t > + hi?) Hﬂh”?rg )

Fo
which is eq. (3.8). O
Special cases and additional inequalities on a fixed domain: The following ver-

sions of egs. (3.7a), (3.7d) and (3.8) adapted to fixed domains can be shown by considering
eq. (2.3b)

10l < bt |Jonlle  Yon € Vi, (3.10a)
ol < 0t lonlle  Vou € Vi, (3.10D)
|Onll gy < et lmllgy  Vium € M. (3.10c)

The following lemma introduces additional inequalities for fixed domains:

Lemma 3.2. Let K € T, be a space-time element and pu, € My. For any Fr C Rx and
Fo C Ok, we have

IV kil < chig! Nl - (3.11a)

linll g < ot limllpy,  VEx C Fo, (3.11b)
—1/2

il < chic ™ linllpy,  VEx C Fr. (3.11c)

Proof. Equation (3.11a) is a result of applying eq. (3.7b) on Fr while eq. (3.11c¢) is a direct
application of a standard isotropic trace inequality on Ex (see, for example, [45, Lemma
12.8]). As for eq. (3.11b), consider gzﬁFQ(E;C) = Ex. Applying eq. (3.7d) on the affine
domain gives us

~ —1/2 |~
[Finll e < St Nl 5, -

We conclude eq. (3.11b) via scaling arguments eqs. (3.2b) and (3.5). O
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3.3 Anisotropic projection estimates

Let II be the L2-projection onto Mj,. It can be shown that for v € H*(K), we have

lv = Tholl < e @tk 10wl + T [Vlc) (3.12a)
IV (v = 1)l < c[[Voll, (3.12Db)
10; (v = )l < e (0wl + Vollc) . (3.12¢)
T — T vl o, < eyl Vo]l (3.12d)

Proof. To begin, we note that the projection operator on K and K are related to the
projection operator on C as follows (see [53, Definition 3.12]):

L0 = (I, (Do ¢ ) ode Vo€ LXK), o= (I, (00Gc))oGe Vie LX(K).
Similarly, on any F' € 0K, we have the following relations:
75 = (I (30 65Y)) 0 6 ¥ € LA(F), 170 = (I (70 G3)) 0 G ¥0 € LA(F),
where G and ¢p are the restrictions of G and ¢ on F', respectively.

Equation (3.12a) is the standard anisotropic projection estimate (see, for example, [53,
Lemma 3.13]) and hence we omit its proof here. To show eq. (3.12b) we first note that

the following projection estimate holds on K for any 1 < i < d (see [53, Lemma 3.7, eq.

(3.12))):

1, (v —T10)|[g < c|0z:0]g - (3.13)

By the chain rule 0z, (v — I1,0) = 2ht0s, (0 — I1,7) o Gx) o G, using that |[det Gi| =
Stichd-27471 and using eqs. (3.1d) and (3.13), we find

10z, (7 — WD)z < edtchl® |0:,0]7 < cl|os 7% (3.14)

To obtain the result on the physical element, consider first that by the chain rule,

(v =Tpv) = Y (95, (v = Tw) 0 d) © $ic) (= 1) (det Ty )~ det Jpy)

1<j<d

where we used that ¢ only depends on ¢ in ¢" and that gi;?' = (1) (det Jy )"t det Jpri5-

By assumptions eq. (2.2) and eq. (2.4), and using eq. (3.14), we therefore find that:

~ = 2 ~ = 2
10, (v —TL)[g < ¢ Y 105, @ -0 |g <c¢ > 1050]% < cl[ Vol

1<j<d 1<j<d
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where the last step uses eq. (3.2d). The proof for eq. (3.12¢) is similar and therefore
omitted.

For eq. (3.12d), we consider a d-dimensional hypersurface Fg € Q. We first map
Fg to the reference domain. For this, let ¢p, o G FQ(F\Q) = Fy, i.e., the transformation
of a face from the reference domain to the physical domain. We then observe that one
of the spatial coordinates, which is denoted by Z; without loss of generality, of Fg is
fixed. We further consider a decomposition of II = milli<i<aTz, where 7; and 7z, are the
one-dimensional L2-projection operators applied in the time direction and in the spatial
direction 7;, respectively. Similarly, (I17) | 7o = Tli<i<d,izz,- By [53, Definitions 3.1,
3.6], we have:

|10 — 175 5, = IRl lucicaissa, (0 — 720l 5, < 5 - 7a,ll 5, < clldsdle. (3.15)

where the equality is by commutativity of 7z, and 7z, (i # j) and the last two inequalities
are due to the boundedness of any composition of projections 7 and [53, Lemma 3.3]. Next,
using eq. (3.1b), eq. (3.15), and eq. (3.1d),

~ ~L 2 12
IT,0 — 1070 7y, < chue (105,011
Therefore, also using eq. (2.5) and eq. (2.6),
2 ~ . ~=r__,2 2 = 2
Ty = T 0y < ¢TI0 = T 0] 7, < chic 105,01l < chi [Vl
where we reverse the scaling arguments in the final inequality, proving eq. (3.12d). O]

Special cases and additional inequalities on a fixed domain: It can be shown
that by using eq. (2.3b) in the proof of eq. (3.12¢), eq. (3.12¢) reduces to the following

1010 — T0) e < ¢ 9ro]]. (3.16)
Additionally, the following projection estimate can be shown similarly as eq. (3.12d):
(T, = T07) ]l g, < 88 100 - (3.17)

3.4 Projection estimates for the a posteriori error anal-
ysis

The following lemma presents local projection estimates that will be useful in showing
reliability of the error estimator eq. (5.1).
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Lemma 3.3. Let v € HY(K) and consider 11, the L*-projection onto Vy,. For any K € Ty,
and any Fg C Ok, Fr C Ry, assuming that dtx = O(h3%), the following projection
estimates can be shown

v — | < eAe (hre? ([0 + Y2 | Volle + [[vlle) » (3.18a)
lo = Tyl < chyl?e™? (hice'? 0] + 72 Vo]lc) (3.18h)
v — o], < ce 2 (he 0| + V2|Vl s (3.18c¢)

where A\ := min {1, hge™/?}.

Proof. Consider the following local trace inequality, which holds for all K € T,, Fg C
Ok and v € HY(K) and it can be shown by combining eq. (3.6) and scaling arguments
egs. (3.2b) to (3.2d) and (3.3)

oll7, < e (hx lolle + vl IV7llc) (3.19a)
1ol < e (0t lolle + lloll 19:lc) - (3.19b)

Using eq. (3.12a), we have

v — vl < chie™? (2hdt 1Bl + 7 W)

— (3.20)
< chiee 2 (2 hit ot Oyl + €2 Vol + [lvll)
while boundedness of the projection operator II; gives
o= Mol < cllvlle < (V2 ste Biell + €2 [Tl + loll) . (3.21)
Combining egs. (3.20) and (3.21) yields
v — T < ehe (V2R ot |0 + €2 Vol + 1]l - (3.22)

Furthermore, combining the trace inequalities eq. (3.19) with the projection bounds eqs. (3.12b)
and (3.16), we obtain:

lv = Tyl g, < es™2 (Stichi P2 0lle + hil*e? [Voll,) . (3.23a)
lv — T, < ce™ 2 (5t %V2 |00l + Rt e [Vl - (3.23b)

Lemma 3.3 is now an immediate consequence of eq. (3.23), eq. (3.22), and using dtx =
O(h%). O
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3.5 Approximation estimates of an averaging opera-
tor

We define an averaging operator Z; : Vj, — Vj, N CY(&). For any vy, € V},, we first construct
the coarsest conforming refinement 7, of 7j; the operator Zyv;, is prescribed at vertices of
T,¢ by the average of the values of vy, at the vertex (see [33, Lemma 3.4] and [45, Section
22.2]). For the Dirichlet boundary nodes, i.e. nodes on d€p, Z »Un 1s prescribed by zero.
Furthermore, given a space-time element K € 7, we introduce Qi to denote the union of
O-facets in F; that have a non-empty intersection with OK. Similarly we introduce RZ .

Lemma 3.4. For a space-time element K € Ty, the averaging operator Z; : V; —
Vi, N CY(E) satisfies the following

lon — Tevnlc < c( RS A 6t1/2H[[vh]]HF>. (3.24)

FeQi FeR

Proof. The proof below combines an estimate for the averaging operator on conforming
meshes (extended from [45, Lemma 22.3] to space-time meshes), and an auxiliary mesh
technique (see, for example, [63, 75, 108, 109]).

We start by proving eq. (3.24) on a conforming (d + 1)-dimensional space-time mesh.
Within this conforming mesh, consider ox (see fig. 2.1) which consists of a space-time
element K and K;, ¢ = 1,...,30¢*) — 1. We map ox to the reference domain while
preserving connectivity relations between the elements. This is achieved by combining ®x
with @k, (i = 1,...,3@) — 1), where ®, are ®x with suitable linear translations.

Applying [45, Lemma 22.3] to ox in the reference domain,

I8n — Titnlle < c (Y Iz + D ]lz) (3.25)

X3 1
Fc Q/c FCRK

We remark that in the proof of [45, Lemma 22.3], the only intermediate result that restricts
the domain dimension to be lower than or equal to three is [45, Lemma 21.4]. We argue
that [45, Lemma 21.4] can be extended to the space-time domain & C R4 due to it being
Lipschitz. With scaling arguments egs. (3.1a) to (3.1c¢) and (3.2), eq. (3.25) is transformed
back to the physical domain:

lon = Ziwnlle < e (D bl IToallle+ D 06 oalll ) - (3.26)

FCQZ FCT\’,z
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We now consider the case of a 1-irregular mesh. Let IC € T;, and let 7,° be the coarsest
refinement of 7,. We consider two cases: (1) K is not refined on 7,%; and (2) K is refined
on 7. In fig. 3.1, we provide examples of both cases to illustrate the geometric objects
involved in the following proof.

Case 1. If K is not refined on 7,°, we denote by of the local patch of elements
associated with IC on 7,°. Applying eq. (3.26) on of gives

lon=Zionlle <e (D P Nwlle+ Do ot [Iollg) (3.27)

FCOR\QL FCRE\Ri

where O and Ry are defined similarly as Qi and Ri, but for K on 7,¢, and where Qi
and S)V‘i’;c are unions of newly generated Q-faces and R-faces that divide an element in 7},
to create 7;°. Note that [v,] vanishes on Qi and Ry, explaining why they are excluded
from the summation in eq. (3.27). Equation (3.24) then follows from eq. (3.27) by noting
that

S oy < > m ol

FCOR\Qi FCQj
1/2 1/2
Dl [ 8 [P N | A [
FCREA\SRL FCRi

Case 2. When K is refined on 7, into My elements, K = Uj]\i’clle, where My < 29+,
We apply eq. (3.26) on each ok, resulting in

lon = Zionlle, <c (> WA+ > st o) - (3.28)

PCOIEND FORIEARY

Combining eq. (3.28) for all j =1,..., M gives eq. (3.24) by noting that

My
S ol < Y w2 Tl

j=1 FcQ;g; \Ok, FCOj
My

1/2 1/2
ST Bl < Y n ol
=L FOR A\ FCRi.
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(a) An example of Case 1 in the proof of lemma 3.4

,C ,,*,: EE@pER
K11 K Kia

(b) An example of Case 2 in the proof of lemma 3.4

Figure 3.1: Examples of Case 1 and 2 in the proof of lemma 3.4.

Left column: the space-time element I on the 1l-irregular mesh 7. Thick solid lines are
the union of facets in Ri and Q.

Centre column: Coarsest refinement of 7;, (in dashed lines) is applied to construct 7,¢. In
fig. 3.1a, K is not refined in 7,°. Elements in of are colored in grey. In fig. 3.1b, K is
refined to Ky, KCo, K3, KCy (ie., My = 4). We only highlight Ky for this illustration and
elements in oj. are colored in grey.

Right column: thick lines (solid and dashed) are the union of facets in 7?% and Q;CC In
fig. 3.1a, thick dashed lines are the union in facets of Rk and Qi. In fig. 3.1b, thick dashed
lines are the union of facets of R and Qi .
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3.6 Subgrid projection estimates

Let 7Ty be the subgrid obtained by halving the time-step of each element in 7,. We now
define a set of objects within the subgrid that will be useful in the ensuing analysis. As a
rule of thumb, objects that are associated with the upper half time-step are denoted with
an asterisk superscript while objects that are associated with the lower half time-step are
denoted with an asterisk subscript.

For each K € T,, we introduce K* and K. to denote the two resulting space-time
elements in 7, ie., K = KU IC*, and write T = {IC* «}. Furthermore, every Q-facet
Fo C Qg is d1v1ded into F5 and Fg,. We define Fj; := OK* N 3/C* and introduce Ey
to denote any edge of Fjz. Finally, for any vy € Vj, when considering a K € 7, with
K = K*UK,, we let vy and vy, denote vy|g. and vg|g , respectively. See figs. 3.2 and 3.3
for illustrations in (1+1), (2+1) and (34 1)-dimensional space-time domains respectively.

The following trace inequalities are obtained by applying eq. (3.11b) and eq. (3.11c).

Lemma 3.5. On the subgrid Ty, the following trace inequalities hold (where, for each
inequality, it is implicitly assumed that E is an edge of the facet on the right-hand side):

-1/2

—-1/2
/ Fé’ th7*HE < CétK

ol < et

5] 10,4l . »

(3.29)

—-1/2 1/2

Iyl = chie ™ lloglle o onsllg, < el vl -

Definition 3.1. We define the following restriction operator:

Yo : Vi = Vi o (v pn) = (0,770 (Vr))

pn, VF € FonUFrnp, (3.30)
Yrp (Vn) =
Uh, VF € FR,'J \FR,h-

Furthermore, let i (vy) denote the LQ—pmjectz’on of vy onto Vi, and let i, (uy) be defined
as follows. For any facet F € Fy,, if F € Fy, (i3 (uy)) |r := (,up,) |r; else, (i7 (1)) | is the
L*-projection of wy onto Mh If F € Fry\Fr.n we define (iy (1)) |r = (uy)|r. See fig. 3.4
for an illustration of how i, projects onto interior Q-facets in Fop. We then define the
projection operator:

in: Vg = Vi o (vg, i) = 7 (i (0) 37 (1)) -
We have the following projection estimates.
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\
4

QT A QT

subgrid  p------F -

> X > T

Qo Qo

(a) (14 1)-dimensional example

(b) (2 4 1)-dimensional example

Figure 3.2: In the left-hand side of the figure we show a (1 4+ 1)-dimensional example of
constructing the subgrid while the right-hand side of the figure gives a (2 4 1)-dimensional
illustration of the new facets and edges resulting from the subgrid refinement. We point
readers to fig. 3.3 for a (3 4 1)-dimensional illustration.

36



E: a hyperedge of Fj

xs

x

" 2
X

Figure 3.3: A (3 + 1)-dimensional illustration of new hyperfaces of dimension 2 and 3
resulting from the subgrid refinement. In the left-hand side panel, a 4-dimensional space-
time element K is shown. Hexahedra K* and K, are boundary facets of K in Rx. The
subgrid facet F is obtained by halving the time-step of K. In the right-hand side panel,
one of the six O-facets of K is shown by connecting A* with A,, B* with B,, C* with C,
and D* with D,. The quadrilateral formed by 1401, B , C and D is highlighted as one of the
six hyperedges of F.
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oy Ly

oy 120
F F
2 Uy
v v
o F SF
Up My Lh My

Figure 3.4: Illustration of subgrid projection 7 onto an interior Q-facet in Fgj. The

neighboring elements of the Q-facet are on the same refinement level in the left column
and are on different refinement levels in the right column.

Lemma 3.6. Let vy, € VY, let the projection operator ij, be defined as in definition 5.1.
Then,

(I — i) vyl < ¢ (515,;/2““%]]“% + 5753,52“[[@@,,]]“%) for K € T, (3.31a)

I =) il < e O G|, + 06 €@unts)]| ) for Fo € Fon,  (3.31D)
where IC on the right-hand side of eq. (3.31b) is chosen such that Fg C Q.

Proof. We show eq. (3.31) based on an idea in the proof of [19, Lemma 3.1]. On the
reference element KC, let vy be defined as follows

4 o~
* Sp1ap2 | APd
D 0<pi<pet<i<d by p 1T Ty -+ Ty

E * ~p1 P2 ~Dd »
Uy = + 2 o<pi<paiziza U p,T1 T2 Ty on K |
' 2 : P11 op2 ~pa

0<pi<ps,1<i<d Epy . pa st @y - Ty

~P1 P2 ~Pd
+ Zogpigps,lgigd bpy..pas®h Ty - Ty on Ky,

~%

~
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and let

~o ,__ E : 1 (7.% TP op2 ~Pd
wh T 2 (k:pl.‘.pd + kpl---l)d,*) twl $2 to xd

0<p;<ps,1<i<d

E 1 (g% ~PLP2 | APd
+ 2 (bpl...pd + bpl---pdv*) T T xd :
0<p;<ps,1<i<d

Then, by Holder’s inequality for sums and Fubini’s theorem, we have

~ o~ 2 ~ N .
Hvb N wZHE :/ﬁ < Z % (k;1.~~pd - kplu-Pd,*) txll)lx? o _de

0<pi<ps
2 ~
+ Z % <b;1---17d - bpl---pdy*) 55]1)15? - -/x\sd> dzdt
0<p;<ps
2 ~
SC/;E ( Z (k;1~~-pd - kpr-.pd,*) Ty - -’x\sd> 2 dzdt
0<pi<ps
s 2 (3.32)
i C/;e (D Gpros = bovopee) )il
0<pi<ps
2
Sc/ ( Z (kgl-..pd - kp1...pd,*) 5:.\11)1/.%\52 e f§d> d/.’L'\
PEl-LUT So<pip,
2
* c[e[ 1,1]¢ ( Z (bzl---l’d - bpl---pd»*) 1,1131I1202 T 'xfld> dIa
TS ngigps
We further observe that
o~ T 112 112 - L
105115, + ol = [ U b ) )
TELUT 0<pi<ps
2
* /Ae[ L1 (> (ko pe = Fpropas) BB - 25) T, (3.33)
T OSP’LSPS

Combining egs. (3.32) and (3.33) we conclude that

inf & 1By — @nllg < 1195 — @hllg < c (115115, + 1106l ) -

Wy, €Q(L:pPs)

Since the L2-projection is optimal [45, eq.(18.32)], we have shown eq. (3.31a) on the refer-
ence element, i.e.,

I =) Byllg < e (1] 5, + 100111, ) -
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Scaling arguments eqs. (3.1a), (3.1¢) and (3.4a) now give us
~K\ ~ 1/2 1~ 3/2 ~
I =) Tollg < e O N5, + 6 03] 5,) - (3.34)

Combining eq. (3.34), egs. (3.2a), (3.2¢) and (3.4b), we conclude eq. (3.31a). The proof of
eq. (3.31b) is similar, but in one lower spatial dimension. O

Lemma 3.7. Let vy € Vg, there holds:

1/2
1onllle, < e D B = 3801 illlenp, < clllvsllly (3.35)
IGCET)C
1]l < ¢ D Nowsllagnm, < ¢ D St |0y | - (3.35b)
KeTx KeTx
—-1/2 1/2
1o, < chic D 1B = 38l ol g, (3.35¢)
’%ET}C

—1/2 *
+ 00t (N0l + ol . )

(@)l < chic 5t > [[dwy iy (3.35d)
IQCGT)(

+ ot (I[w]

o+ Nl )

Proof. For eq. (3.35a), we write the DG jump in terms of HDG jumps by inserting the
facet variable:

([l ) = (o logene, — 98] Lo, )’

= (v/2/318, = 58| [wg] logr, — V2185 = 581" [wg] Lo, or,)

where we factor in |8, — 3 -n]1/2 due to that |3, — % 'n|1/2 = /3/2 on an R-face if

2
ny = —1and |§, — 3 -n|1/2 = /1/2 on an R-face if n; = 1; eq. (3.35a) then follows by
the triangle inequality and the definition of |[-[||, .

For eq. (3.35b), we expand the DG jump and apply the triangle inequality; the trace
inequality eq. (3.7d) then concludes the bound.

To show eq. (3.35c) we require a more involved splitting. For the edge Ey on a Q-face
Fg, we observe the following:

{uo) B, = =[5l logunmy + (o] log nme + (vp) e (3.36)
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where vy and vy, denote the HDG solution pairs on K* and IOC*, respectively. We apply
the triangle inequality on || (1) || B, and use trace inequalities eq. (3.29) to obtain:

1D s, < I€os)lls, + ol + Nlonadlls,
< (" o]l +5t*”2mvbu L+ 0t (ol )

12 1/ 1/2
<c(h” Y 1B =58 -0l oyl + St 03]
ICET)C

—1/2
py 0 oyl ) -

To show eq. (3.35d) we again use the splitting eq. (3.36), followed by the triangle inequality,
trace inequalities eq. (3.29) and eq. (3.7d), and inverse inequality eq. (3.8) to obtain:

140D 5, < 140D 15, + 11003+ Orwg]l 5,
¢ (hc " 119D, +6t*“2matv;] L 0t [0yl gy )

—1/2 1/2 —3/2
e (S ng ot 0wyl + ot )]
/CET}C

IN

| /\

—3/2
py 0 o0l )

]

Lemma 3.8. Let vy € V and let the projection operator i;, be defined as in definition 5.1.
Consider an element K € Ty, such that it has a Q-facet Fo C Qx such that Fg € Fg .
There holds that (ikvy) |ry = i7, (vy]ry) on Fop.

Proof. We verify the equivalence by showing that /z'\’,f@h = ?hf vy on the reference domain.
On K, let vy be defined as follows

A~ %
o

* FhopP1aP2 | SPd
By = 20<p0<pt 0<p; <ps,1<i<d kpom pt0TT Ty Ty on ’E )
0/\p1/\p2 . ©
ZO<p0<pt,O<pZ<ps,l<’L<d Kpop: ...pas AP 1Ty xyt on K.

Suppose that
TR 7 ThoaPIAP2 | AP
LUy = E : Kpopy..pat™ Ty Ty" - Ty
0<po<p¢,0<p;<ps,1<i<d

By definition of the projection, for any 0 < ¢o < p;and 0 < ¢; < p,, 1 <1< d

Do — i%0,) (1079722 ... 3% d7 dl = 0.
Uy hUb 1 42 Ty
K
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Let us denote the Q-face on which Z; = 1 by Ey. Then, without loss of generality, and
using Fubini’s theorem,

E * _ I Thotaopita | opatad 15 A7
/;* (k;po‘..pd pr---pd) t xl xd dx dt
0<po<pt,0<p;<ps,1<i<d
_ 5 ot+qopitar || ~patad 35 47
+ /A E , (Fpo..pae = Kpo.pa) T Ly dzdt
Ko 0<po<pr,0<pi<ps,1<i<d
_ 1
_ § : * - Ipo+qopi+ar | Pd-119d-1 35 ~Pd+qa 35
- /;* _ (kpo...pd pr-npd)t :C]. xd—l dS xd dxd
0<po<pt,0<p;<ps,1<i<d \ 7~ NFu -1

1
T otgopitar || ~Pd-1T4dd-1 35 ~pa+qd 15
+ /A =N (kp0~~-pd,* kp0~~~pd)t Ty xd—l ds/ xd dxd

K.NE, .
1 o~
= ghatad gz * _ Tho+qopi+tar || ~Pd-1Fdd-1 3o
= E / Ty Ay /A _ (Kpypa = Fpopa) 371 Ta—1 ds
0<po<pe,0<pi<ps,1<i<d ’ 1 K nF,
+ (k — E )%700+QO£101+(11 .. .i_\pd—1+(Id71 ds
~_ Fpo..pax =~ Kpo...pa 1 a1
K.nFy

Note that f_ll 2Pt 47y = 0 for pg + g4 odd. Then, for each 0 < g4 < p, leaving out py’s
such that p; + g4 is odd, we have:

1
§ / i?];d"rq(i d/fd

Ppd s.t. pa+qq is even 1

E * _I hot+aopitar | APd—1Fdd-1 3o
(//;* . (kp()...pd prWPd)t $1 md—l ds

0<po<pi,0<pi<ps,1<i<d—1 YK NFa

_I pot+qopitar | APd-1tda—1 3o N
+ /A (kpompd,* kpo-upd)t Ly L dS) = 0.
K«NFy

Using that f_ll 2% dzy = 2/(2k + 1) and introducing

= * _ I ot+qopitar | ~Pda-1tda-1 3o
“pa T Z (/A* . <kPO~~-Pd Kpo..pg) t Ty Tg_q ds

0<po<ps,0<p;i<ps,1<i<d—1 7K NFa

_TI Po+aopitar | ~Pd—1+4d-1 3o
+ /A (kponpcz,* kpo-npd) t Ty xd—l dS) )
K«NFy
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we have for each 0 < ¢4 < p,
3 f_zpd+ =0
pa s-t. pg+qq is even Pd Qa

Writing this as a linear system we find, for p, even,

1 1 1 - 1 -
Lo 05 pr | | 20 0
R NI
3 ? 5 ? 7 P 2 0
RN
5 07 0 3 75 | |22 0
: . : : Zps—l O
1 1 1 1

| potl 0 oo 0 505 - opetl| L Ps 0]

When p; is odd we find:

[ 1 1 1r . s
SO SR TR I
(1) 3 (1) 5 ? nz || & 0
R S 0 2 0
0 5 U 7 0 e | |5 | =
5 0 7 0 3 O O 0
S A N .

1 1 1
0 o 0 5 0 g LA ] LY

After suitable transformations, the above matrices can be written as, when p, is even,

1 1 1
L s 3 PSR 0
1 1 1 1 0 v v 0
Porod
: = 5 e 0 0
: ; 0
1 1 1 1
ps+1  ps+3  pst5 2ps+1 [1) ) (1) ; (3.37)
: 1 1 1
: 5 7 ps+3
1 1 1
I 0 0 0 0 0 -7 s 71 |
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and, when p, is odd,

1 1 1
1 3 = - 0 0
1 1 1 1 0 0
3 5 7 Ps+2
1 1 1 1 0 0
5 7 9 ps+4
: : : 0
1 1 1 1
Ps ps+2 ps+4 2ps_1 ? 1 ?
1 1 1
1 1 1
| 0 0 0 0 0 pst2  pst+4 2ps+1 |

(3.38)

We observe that two diagonal block matrices in egs. (3.37) and (3.38) are examples of the
Hankel matrix (a square matrix in which elements on each skew-diagonal are constant).
They can further be shown to be totally positive, see [50, Example 0.1.8]. Therefore, we
conclude that both block matrices egs. (3.37) and (3.38) are nonsingular and z; = 0 for

0<i<p,, ie.,
E * _ T Thotaospita | APd-1t4d-1 3o
</;* —~ (kpo...pd kpo---Pd)t l‘l xd*l dS
0<po<pt,0<pi<ps,1<i<d—1 & NFa

_TI Pot+qopitar | APd—1+dd-1 3o\ _
+ /A (Kpo..pare — Kpo..pa) t 51 Ti—1 dS) =0,

K«NFy

for any 0 < gy < prand 0 < ¢q; < ps, 1 <@ < d— 1. Therefore, considering

A~ %
o

* ThoP1sp2 | APd-1 ol
i py = 2 20<po<pi 0<pi<pat<i<d—1 Fpo..pgt "1 T2 L1 on K N Fy,
Pd T -~ > o~
posP1Ap2 || APd—1
D 0<po<pr0<pi<pe 1 <icd—1 Fpo.past L1 Ty - Tgly on KN g,
3 ._ E ’ 1. Thoopiope | aPd-1 [
/\hvpd = kpo---Pdt I T Ly O Fy,

0<po<pt,0<p;<ps,1<i<d—1

(3.39)

we conclude from eq. (3.39) that 77 iy, = /):;Wd. Further, observing that vg|z = >~ H.p,

that (iX0y) | B = Dpy Xb,p . and that projection is linear, we conclude that (iX7y) | B =

i, (Byl7,).
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Chapter 4

Péclet-robust a priori error analysis

An a priori error analysis of a space-time HDG discretization of the time-dependent
advection-diffusion equation is presented in this chapter. We prove the inf-sup stabil-
ity of the space-time HDG method in section 4.1. Based on the inf-sup stability esti-
mate, a Galerkin orthogonality and projection estimates, we present the error analysis
in section 4.2. Finally, in section 4.3, we illustrate the theoretical results with numerical
examples.

4.1 Stability

The main goal of this section is to prove theorem 4.1 which states stability of the space-
time HDG method for the advection-diffusion equation with respect to a norm that includes
measurement of the streamline derivative, i.e., |-, defined in eq. (2.7¢c). We will prove
that this result is robust with respect to the Péclet number. A similar result for the
stationary problem is shown in [12, Theorem 4.6]. For this and following sections, cr
denotes a constant independent of hg, dtx, and e, but linear in 7.

Theorem 4.1. There exists 6ty, independent of e and T, such that when ot < min(hg, dto)
on all K € Ty, and for all wy, € Vy,

- an(Wh, V)
cr llwnlllge < sup =i (4.1)
vREV), |thH|s,h
The following two inf-sup conditions with respect to, respectively, [[-[l[,, and [[|-[[l .
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and which hold under the same conditions as theorem 4.1, are used to prove theorem 4.1:

_ ap(wp, v

Gl < sup ROy, ey (1.20)
’ vREV H"vhmmh

_ ap(wp, v

M llawnll,, < sup 2B gy (4.2D)

onevi lloallln

We prove eqs. (4.2a) and (4.2b) in sections 4.1.1 and 4.1.2, respectively. We then prove
theorem 4.1 in section 4.1.3. To prove these results we introduce, for 7" > 1, the weighting
function

o =eTexp(—t/T) + x, (4.3)

where the positive constant y will be determined later. For 0 < T < 1 we propose
©(t) = eexp(—t)+x. In our analysis, however, we will only consider T > 1; the analysis for
T < 1 follows identical steps as the T" > 1 case, resulting in inf-sup conditions theorem 4.1
and egs. (4.2a) and (4.2b) independent of 7. Denoting the cell mean of 3 by By, we will
also use that (see [28]),

18 = Boll ey < chiclBlwreey VK € Th. (4.4)

4.1.1 The inf-sup condition with respect to || - ||

v,h
To prove eq. (4.2a) we first require the following lemmas.

Lemma 4.1. Let o be defined as in eq. (4.3) with x chosen such that x > (e—/2)T/ (v/2 — 1).
Furthermore, choose the penalty parameter o in eq. (2.9) such that o > 1 + 4c2, with c,
the constant in eq. (3.7¢). Then for all wy, = (wy, s,) € V-

- 2 — 2 2
an(wn, gwn) 23T +x) (X e IVunlly + Y b lwallld, ) +3 D Nl
KeTh KeT, KeTh

1/2 2 1/2 2
+ (T4 ) (11581 sl + D2 1B = 381" [wil ) -
KeTh

Proof. On an element K € T, we have —w,3 - V (pwy,) = —3V - (pfw}) — swif - V.
Using Gauss’s theorem, [pwy] = ¢ [wy], and that (T6-n = (8-n+|8-n|)/2, we note that

ah,C(wfw prh) - (%wi’ B VSO)E + <%30%l2m p-n+ |B ’ n|>351\7
— (Lpw?, B-n)or, + (@ [wa)?,sup |8 - nl)or, + (@3 [wh], B n)or.
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Since — 1wl + 54, [wy] = —3 [wy]” — 2567, 5, is single-valued on element boundaries, 3, = 0

on 0Ep, we have by definition of ¢ and using that —3 - V¢ > 1:

1/2 2 2
ane(wn, pwn) > (T +x) |38 0" snll e +3 D llwnllx
KeTn

(T +x) S B = 38l fwdlll,. . (45)
KeT,

Next, noting that Vi = 0, and using the Cauchy-Schwarz inequality and eq. (3.7c),

J— 2 _
ana(wn, pwp) > (T+x) Y e[Vl + (T +x)a Y ehi [[wi]lg,
KeTh KeTh
= 3 26 e (T + X) [Vunl 20 wonlllg, -
KeTy
Using Holder’s inequality for sums and the inequality az?® — 2bxy + dy? > (ad — b?)(2? +
y*)/(a + d), which holds for positive real numbers a,b,d and ad > b* (see [36]) allows us
to obtain
Oé_(c*(eT+><))2

= 2 _
apa(wy, pwpy) > (T + x) —2 (Y e[Vl + > ehi! [[willl3,) -

KeTh KeTh

Since y and a are chosen such that x > (e—+/2)T/ (v/2 — 1), so that T+x > (eT+x)/V2,
and o > 1+ 4c2, it follows that

= 2 -
ana(wn, pwn) > 5(T+x) (Y ellVwnlle + Y ehi [wallg,) - (4.6)
KeTh KeTh,
The result follows after combining egs. (4.5) and (4.6). O

The following lemma extends the L2-projection estimates of [12, Lemma 4.2] to space-
time elements, taking into account the spatial mesh size hx and time-step dtx.

Lemma 4.2. Let ¢ be the function defined in eq. (4.3). For any w, € Vj, the following
estimates hold:

(1 =10 (pwn) | ¢ < et flwnllyc (4.7a)

IV (I = 10) (pwn) e < eotichi [[wnllc (4.7b)
IV (1 = T0y) (pwn))llo,. < edtichi’”? llwnllyc (4.7c)
(I = T0n) (pwn) [l o, < cdtichi ™ lwnllc (4.7d)

(7 = T0) (pwn) e < bt [l - (4.7e)
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Pmof We first observe that when ¢ is a function of the time variable only on K, so are ¢
and » on K and K respectively. Therefore, for w, € Vj,, and for 1 <4,5 <d, j # 1,

O (pwn) = 05 O, (pwn) = 95 O (pwn) = 0. (4.8)

The equivalent derivatives above are also zero on the reference domain K. Furthermore,

162 (@wn) || < et [|Tnll (4.92)
10285, (wn) ||z < bt hig* |[@nllk (4.9b)
Equation (4.9a) can be shown using the general Leibniz rule, that OF "%, = 0, that

||8§t90”1€ <eforall 1 <j, <p,+1, that eq. (3.7a) reduces to ||0;0, |z < C(St,cl ||vh||ﬁ on the

axiparallel element K (see [53, Corollary 3.54]) and using that dtc < 1. Similar arguments
can be used to show eq. (4.9b).

To prove eq. (4.7a) we follow the proof of [12, Lemma 4.2], and apply the projec-

tion estimates in [62, Lemma 3.4] when considered on the affine domain K, eq. (4.8) and
eq. (4.9a),

| — T (20) I < edt™* 02 (i) | < et [Tnlle.  (4.10)

A scaling argument applied to eq. (4.10) from K to K vields eq. (4.7a).
We next prove eq. (4.7b). First note,

~ ~ 2 ~
IV (wn — T (i) ||z < 3 ehi5tx 195, (Fn — Ty (F0m) 1 (4.11)
1<i<d

Following similar steps as in the proof of [54, Lemma 7.5], the right-hand side of eq. (4.11)
can be bound further using the triangle inequality, commutativity of 0z, with %\tﬂlgjgd,#ﬁr\xj,
boundedness of 7 Il1<j<q;xiTs;, the projection estimates in [62, Lemma 3.4] and [54,
Lemma 7.3], eq. (4.8), eq. (3.1a), and eq. (4.9b),
105, (2w — T (2wn)) | ¢ < 1105, 2w — T (95,800l + ¢ |7, (05,5W0) — 05, (7, (1))l
< c|ap 05, Gl < chi ot |wnlg
(4.12)

Combining the right-hand side of eq. (4.12) with eq. (4.11), we find:
IV (pn — T (pwn))llg < edtichy |wnllg - (4.13)
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A scaling argument applied to eq. (4.13) from K to K yields eq. (4.7b). With similar steps
it can be shown that B
10 (pwn, — 1Ty (pwn)) || < c|lwallz- (4.14)

We next prove eq. (4.7¢c). We start with a scaling argument to transform the integral
on a Q-face Fg,, from the affine domain to the reference domain. Note that, without loss

of generality, subscript m denotes the index of the spatial coordinate for which z,, = 1.
Using eq. (3.1b) we find

IV (pwn — I ()7, < D edtchs:® 10, (Pwn — W (Pun))llz,,, - (4.15)

Consider now the right-hand side term. Following [54, Lemma 7.9] we consider the cases
t = m and ¢ # m separately, starting with ¢ = m. Using the commutativity of 0z with
Telli<j<dj#mTe,, the triangle inequality, and [53, Lemma 3.47] (see also [54, Lemma 7.8]),

19z, (Pwn — I (pwn)ll 7, ,, <1102, (Pwr) = Ta,, Oa,, (Pwi)ll 5, ,

+ c||72,,05,, (Pwn) — Tulli<j<d jpmTa; (T, 05, (PWR)) |2
(4.16)

The first and third terms on the right-hand side of eq. (4.16) vanish by [54, Lemmas 7.2
and 7.3] and eq. (4.8). The second term on the right-hand side of eq. (4.16) is bounded
using the same argument as in the proof of [62, Lemma 3.4] by noting that 7, and 7,
are one-dimensional L?-projections applied in the spatial direction Z,, and time direction,
respectively, the commutativity of 7, with 8%”“ and 8%;“ (j # m), the boundedness of
Te,, and eq. (4.8),

17,05, (PW0h) — Tellicj<ajimTs; (FanOs,, (PW0R))lIg < |02 05, (Fwn)lle,  (4.17)
so that eq. (4.16) becomes:
10z, (Fwh — 1 (Zwn) 17, < cllOF™" 0, (Fuwn)l5 - (4.18)

We now consider the right-hand side of eq. (4.15) with i # m. We have by a triangle
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inequality

105, (@wn — T (W)l . < 1105, (PWR) — R O, (P05, .
+ (1 = Tilli<j<a i jtm ;) T O, (Pwi) 5,
+ 10z, (Pwn) — O, (Pw0n) 7,
+ (I = 7,.) (Oz, (Pwh) — Oz, 7, (Pwi)) 5,
+ 11 = Tilli<j<a i jtmTa;) Ta (O, (PWR) = Ox 7w, (Pwn)) |,

(4.19)

For the second and the fifth terms on the right-hand side, we observe that the functions
inside the norms are polynomials in the Z,,-direction. Therefore, [54, Lemma 7.8| gives us,
using similar steps used to find eq. (4.17),
(I = Telli<j<d jtijtmTa;) o Oz, (SO/IU\h)HﬁQ N
I = Tl <j<aizijtmTe;) To (O (Pwn) — 03,70, (Pwi))l 7,
<c (16705, (Pl g + 110 (O, (Pwh) — 05,7, (Pwh)) )
el Y 10 (05 (Pwh) — 05,7, (200) ) -

1<j<d,j#m,j#i

Next, using that 7., and 0z, commute, using [54, eq.(7.5) in Lemma 7.3] and eq. (4.8), we
ﬁndthatforanyj%iwherelgigdandogjgdwith/x\oz%\,

195, (9, (Pwh) — 0.7, (Pw))IIz < c |05 0, (Pun)|

2

Therefore, the second and fifth terms on the right-hand side of eq. (4.19) are bounded by

c ||8?pt+1855i (@Eh)H’6 All remaining terms on the right-hand side of eq. (4.19) vanish by
combining [54, Lemmas 7.2 and 7.3] eqgs. (3.6) and (4.8) and so, for ¢ # m,

105, (Pwh — L1, (Pwn))ll g, < €102 0, (Pwn) (4.20)

Il
Combining eqs. (4.15), (4.18) and (4.20) and applying egs. (3.1a) and (4.9b) we obtain:
IV (@ — 0 (Gwn))l| 7, < cOtichi”™ | @nllie - (4.21)

A scaling argument applied to eq. (4.21) from K to K yields eq. (4.7¢).
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Equation (4.7d) follows directly by combining the local trace inequality eq. (3.6a) with
egs. (4.10) and (4.13):

Pt — T (Pwn) |5, < chi "t |[wallg (4.22)

and a scaling argument applied to eq. (4.22) from K to K. Lastly, eq. (4.7e) follows by
combining the local trace inequality eq. (3.6b) with egs. (4.10) and (4.14):

g — T (), < cbte” [[@nlle (4.23)

and a scaling argument applied to eq. (4.23) from K to K. O

Lemma 4.3. Let I}, (pwy,) := (I, (pwy) , T3 (p3a,)) for all wy, := (wp, 36,) € V. The
following holds:
1L, (ewn)lll,,, < erlllwnll, -

Proof. We start with volume terms in the definition of [||-[[[, , eq. (2.7a). Due to bounded-
ness of I, and using eq. (3.12b),

= 2
> M (ewn) e + D e IV ([ (pwn) e < e (eT + x)* [wall - (4.24)
KeTy KeTh

Next, the diffusive facet terms are bounded using a triangle inequality, eq. (3.12d), and
boundedness of 117 :

- 2
> ehit I (pwn) =TI (p3a)llo,
KeET,

4.25)
- iV 2 - 2 2 2 (
<) ehidhi IV (pwn)llc +¢ Y ehi e lwnllg, < (el +x)* [lwill,

KeT KeTh
For the Neumann boundary term in the definition of [[-[||, ,, consider first a single facet
F € 0EN. Then,

1/2
1136 - 0|2 10T (w3,
1/2 1/2
<158 -l (0 (p3a) — Ty ()|l + 128 - 0> T (pwn) |, o= T + IT.
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For term I, using that |5 -n| < (maxgg)er |8 - n|), that 7 1 (ewy,) = I (ewy) on F
boundedness of II7 and a triangle inequality we have:

1138 -0 (I (w30) — Ty (0wn)) | < (3 max |5 n)? o5 — T0 (own) |

s@(;n?x 161D lpsan — ol

1/2
+ (5 max |60 (T = ) (o)l

Using that |p| < eT + x and eq. (2.8) for the first term on the right-hand side, and using
eq. (4.7d) and that dtx < hg for the second term, we obtain

I<(eT+x)11(8s = 18-0)" Gan — wi)ll p + ¢ wnll, (4.26)

where K is the space-time element of which F' is a facet. Next, for term I, by a triangle
inequality, using eq. (4.7d), that dtx < hg, || < eT + x, and eq. (2.8),

1/2 1/2 1/2
1< ||L8-nl" (I—Hh>(<pwh)HF+ 1136 - 0" o(wn — sa)|| . + (€T + x) 118 - n["* 5a4]],
1/2 1/2
< ¢ lwnll + (€T +x) 1185 = 38 - 0] (wn — 5a)[| o+ (€T +x) 158 - 0] 5]l .

For a facet I’ € OEy we therefore conclude that

1188 -0l I (50| < (€T + X) (B = 48 - 1) (o — wn)l,

1/2
+cllwnlle + (T +x) 138 -l sanll o (4.27)
We find for the Neumann term in the definition of |[[-[||,, ,:
1/2 2 2
Y 58 -nl" 7 (o)l < cllBll ey Y lwnlli
Feoln KeTh
1/2 2 1/2 2
+ (T + )" (D Il ) Gay = wn)llpe + D 380l sall,) . (4.28)
KeTn FedEn

Finally, we consider the advective facet terms in the definition of |||-|||, ,. On a single facet
we have:

118, = £8- | (Ta (own) = TIF (0320l < o max_|B-n)) Y2 (I (pwn) = 17 (0520) | -
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Using identical steps as used to find the bound for I in eq. (4.26), we find:

1185 — 18- " (T (pwn) — T (w30))l
<c(eT+ ) 1(8s = 18- 1) Gan — wi)ll . + ¢ wnllc »
so that
S8 = 48 nl"? (T (pon) — T (230)) .

KeTh
1/2 2
(T30 32 18— 381" G~ )l + e (3 ) (429)
KeT, KeTh,
The result follows after collecting the bounds in eqgs. (4.24), (4.25), (4.28) and (4.29). O
Lemma 4.4. For any w := (w, ») € L*(€) x L*("), let dw = (w — [w, 3¢ — 11 5). The
following holds for all wy, € V,:

an(wy, 8 (pwy)) <or (Y [ Vunlle + > ehi [fwallig,) + > (1/8+ dtx) lwnlk

KeTh KeTy KeTh

1/2 1/2 2
tor (0 M8l + S 18— 38l wlll,)

Fedén KeTn

Proof. Let z € H(T,) and @ € L*(F},) such that @|se, = 0. Let z := (z, ). Integrating
(ﬁwh,Vz)Th by parts and using that ((5-n) s, @)ar, = ((B-n) s, @)se,, because s,
and w are single-valued on I' and zero on d€p, we have:

ap c(wh7 ) (/8 vwhv ) Tn <% (5 : TL) [wh] 7Z>8Th

+{((Bs = 3 (8-n)) [wa], 2)o7, — (B [wa] , @)ar, + (5 (18- 0l — B 1) 00, @)y
(4.30)

At this point, note that & (pw,) = & (eI exp(—t/T)w,) because § (xwy) = 0. Further-
more, let 5y = (1, 5y). By definition of IIj, the following vanishes

(Bo - Vwn, (I —1y) (eT exp(—t/T)) wp) 7, = 0.
From eq. (4.30), with z = 6 (eT exp(—t/T)wy,), we now find that:
ane(wn, & (eT exp(=t/T)) wy) = ((8 — Bo) - Vs, (I =) (T exp(—t/T)w)) 7,
— (5 (B-n) [wy], (I —T0) (T exp(—t/T)wn)) o,
(Bs =3 (8- n)) [wa], (I = L) (eT exp(=t/T)wn))or,

5 (180 =B -n) s, (I =TIy (€T exp(—t/T) 7))o,
1+ My + M3 + My,
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where, by definitions of II7 and s, (8s [wy], (I — 1) (eT exp(—t/T)s))o7, = 0. We will
now bound each of the terms M;, i = 1,...,4 separately.

We observe that (8 — 3y) - Vwy, = (8 — Bo) - Vwy, because the first components of 3 and
Po are 1. We then bound M; using the Cauchy—Schwarz inequality, eq. (4.4), eq. (4.7a),
and eq. (3.7b):

My <Y chuchid [lwall St lwnlle = ¢ > Stic lJwnll - (4.31)
KeTh KeTh

We proceed with bounding Ms and Mj. Using the Cauchy—Schwarz inequality, eq. (2.8),
eq. (4.7d), and eq. (4.7¢), we find that

_ 1/2
My + My < ey otehi (118 — 18- ] fwilll o lwnllc
KeTh

1/2
T+ 37 st 18— 18-l fwalll Il
KeTy

Since 0tx < hg, 5t,<h;{l/ % can be bounded by 1. Therefore, applying Young’s inequality,

1/2
M+ Ms < > 18— 5 (8- m)" [walll e lwnllc
KeT,

2
<303 lunlf+ 8™ D0 18— 5 (8- m)["* [wall -

KeT KeT

(4.32)

For My, we first apply the Cauchy—Schwarz inequality and the triangle inequality:

1/2 1/2 1/2
My<e Y 580" sall, (138 - nl" sl + 1158 - 0l 10 (eT exp(—t/T)sa)| ) -
FedEn

(4.33)

The second term in parentheses on the right-hand side of eq. (4.33) is bounded following
identical steps in showing eq. (4.27). Applying also Young’s inequality, and denoting by
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K r the space-time element of which F' is a facet,

2
My <e 3" 1580l sl

FecoEN
1/2 1/2 1/2
e S BBl sl (er 1158 " seull+ e 18e = 58 1) fwnl | + lwnli, )
FedEn
1/2 2
=(c+cr) Z |||%5”| %hHF
FedEn
1/2 1/2 1/2
+or 3 58l sallp 18— 38 m) fwnlllye +¢ 3o 158wl sall lwnlc,
FedEn Feotn
, - 1/ 2 1/2 2
<3N el + (er+ ) ST 80l sall Her D0 18— 58 m) [wallly
KeT, Fedey FedEn

(4.34)
We proceed with the diffusive term aj 4. With test function z = § (eT exp(—t/T)wy,),

nat (1,8 (T exp(—/T)) wy) = (Vun, ¥ (I — T1y) (T exp(—t/T)) wn)) .
—<aah—1[ o) (I — ) (€T exp(—t/T)uwn)) g,
+ (ahi! wil (1 = 1) (e exp(—4/T) [wn))o,

(ea

— (e [ ] a (L = 1Ip) (eT exp(—t/T)wn))) g,
+ (eVawy, (I, — I (eT exp(—t/T)wp)) o,

— (eVawn, (I = T17) (eT exp(—t/T) [wh])) o,
=:Ms + Mg + M7 + Mg + Mg + M.

To bound Mj; we use the Cauchy-Schwarz inequality, eq. (4.7b), the assumption that
0t < hg, and Young’s inequality:

Ms < ¢ e[Vl dtchi llwnlle <363 llwally +es67 > e|[Vulle.  (4.35)
KeTy KeTn KeTy

To bound Mg we apply the Cauchy—Schwarz inequality, eq. (3.12d), and Young’s inequality:

Ms < Y ehi llwnlll g, il IIV (T exp(—t/T)wy,)ll

T (4.36)
_ = 2 '
<cr Y e [wills, +er Y e[Vl
KeTh KeTh
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M5 can be bounded using the boundedness of II7:

Mp <y ehi lllwallge I(1 = 1) (€T exp(—t/T) [wal)ll g < er D ehi lfwalllg, -

KET, KEeT,
(4.37)
Terms My and My are bounded in a similar way as Mg and M7, and using eq. (3.7¢):
_ = .2
My + Mg < er Y ehi [willg, +er > e[Vl (4.38)
KeTy KeTn

Finally, we bound Mjy using the Cauchy—Schwarz inequality, eq. (4.7¢), the assumption
that dtx < hx, and Young’s inequality:

My < Y ellfwilll g, IV (1 = I0) (e exp(—t/T)wn)) |l o,

KeTy
—3/2
<> ellwnlllgy Stchi” il (4.39)
KeTy
<10 |lwnllf 4+ e Y ehit [[[walll, -
KeTy KeTn

Collecting egs. (4.31), (4.32) and (4.34) to (4.39) we find that

an(wh, & (pwy)) < > bt |lwalli +26 Y [lwnllx

KeTs, KeT,
1/2 1/2 2

ter+ ) (0 ML sl 30118 — 56 nl? fwnll

FeoEN KeTh

_ = 2 _

ter+ i) (3 e [Tl + 3 ehid mwh]u‘;,C) -

KeT, KeTh

The result follows by choosing § = 1/16. O

We are now ready to prove eq. (4.2a).

Proof of eq. (4.2a). Choose dtg = 1/8. When dtc < dtq for all K € T, we find, by combin-
ing lemmas 4.1 and 4.4,

a(wn, T, (pwy) > (KT +x) = or) (D e |[Vunlle + Y ehi fwall5) + 5 > llwallk

KeTh KeThn KeTh
1/2 1/2 2
+(T+x—cr)( D 1380l %hIIFJrZIIIﬁs—- n 7 w50 -
FedEy KeTh
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Choosing x to satisfy x > 4c¢p in addition to the conditions of lemma 4.1, we obtain

an(wi, My (pwn)) > glllwally, = ez lllwall, 1T (wn)ll, - (4.40)

where the second inequality is due to lemma 4.3. We therefore conclude eq. (4.2a). O

4.1.2 The inf-sup condition with respect to ||| - |||s.1
The following boundedness result will be useful in the proof of stability eq. (4.2b)
|an,a(un, va)| < cllunlll, plllvalll,, — VYun,va € Vi (4.41)

To prove this, we have by the Cauchy—Schwarz inequality and eq. (3.7¢),

’ah,d(thh)\
< 2 Vunlle e [Vuonlle +a Y e2h? [ualll o, €2k llfonl o,
KeTh KeTh
—1/2 E—1 E—1 —1/2
+e (D e 2h P unlll g 2 [Vunlle + 3 €2 [Vunll 2h " lvnlll g, )
KeT, KeTh,

after which eq. (4.41) follows immediately.

To prove eq. (4.2b), we first construct the test function y,, := (yn,Vs) as a function of
wyp, = (wy, 5,) € V. The elemental test function yy, is defined as:

Yp = Tsat’u)h. (4423)

To define the facet test function 1, we consider four different sets of facets. First we
consider facets F' in 0KC; NI, N Qﬁl and such that there is no difference in the refinement
level in the time direction between K; and Ky. This means that dt, = dti, =: dtx and,
since Ky and Ky must come from the same space-time slab, Ati, = Atx, =: Atx. We then
define:

Aty Oy, Ot < hg, <¢€,0tx < hg, <&,
19h = At;cgl/Qﬁt%h, 6t,c <e< hKla(Sth <e< hK2, (442b)
0, otherwise.
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We next consider facets F' in 0K, N, N Q’ﬁl and such that there is one level of refinement
difference between Ky and Ko in the time direction. Without loss of generality, we assume

that 20tx, = dtx,. Furthermore, since Ky and Ky must come from the same space-time
slab, Atx, = Aty, := Atx. We then define:

Aty Oy sn, O, < hi, <¢,0tk, < hg, <¢,
9y, = At;cgl/28t%h, 6tIC1 <e< hKl, (St/CQ <e< hKQ, (442C>
0, otherwise.

For facets I in 9K N Q% we define:

At Oy, Ot < hg <,
O = ¢ Atee?0p50,, Ot < e < hy, (4.42d)
0, otherwise.

Finally, for facets F' in R;, we define:

Uy, = 0. (4.42¢)

We observe from definition eq. (4.42) that ¥, = 0 on 07, which denotes the set of
element boundaries of space-time elements in 7,°. Furthermore, for any space-time element
K e T4 .= T2 U T,®, we introduce Q% to denote those Q-faces on which ¥}, is prescribed
in egs. (4.42b) and (4.42c) to be zero. We will define Q) := Uxer, Q%. Consider now
K € T° which denotes the set of space-time elements in 7,%* for which Q% # ). Then,
there exists a K" such that 0K’ NIK # () and that either hx < e < hys (or hgr < e < hg),
or 0t < e < Oty (or Ot < e < dtx). For the former case, since spatial elements are
shape-regular and the difference of refinement levels in the spatial direction between two
adjacent space-time elements is at most one, we have ¢ thy < hx < chg. If the latter
case holds, since 0t = %ét;c/, it holds that dtx ~ . Therefore,

hg <e<chg or g <e<citx VK e T (4.43)

Lemmas 4.5 and 4.6 will be used to prove eq. (4.2b). The proofs of these lemmas will
repeatedly use the following set of inequalities: For all K € T,

hit <6ty Atg <cdtg, 7. <Atg, <1, (4.44)

o8



Lemma 4.5. Assume that dtx < hg for all space-time elements K € T;,. Let w;, =
(wp, 361) € Vi, and let y,, be defined by eq. (4.42). The following holds:

lynlllsn < clllwnllls - (4.45)

Proof. We start with the volume terms of |[-[[|, ,. Using eq. (3.7a) and eq. (4.44), we have:
D lwnlle < D 7 llowwllk (4.46)
KETh KETh

For the diffusive volume term, using commutativity of V and 9;, eq. (3.7a) and eq. (4.44):
= 2 = 2 = 2
> Vil = D w20 (Vun)lle < ¢ Y e [Vl (4.47)
KeTn KeTh KeTn

The time-derivative volume term is treated similarly, using eq. (4.44):

ST lownly <> e 0aomlly-. (4.48)
KeTh KeTh
For the diffusive facet term in the definition of |[-[[|, ,, we use lemma 3.1, eq. (3.7c), that

¥, vanishes on 97, that ), vanishes on Q% when K € T,%%, that ¢ < §tx and ehj’r. < 1
on 7,5, and that eh; 2. < ¢ on T,7° due to eq. (4.43):

> it lwallla,

KeTh
_ 2 - 2 - 2
= Z chi' 7 ||[at'wh]”g,<\gg)C + Z chi' 72 ||atwh||Q0,C + Z ch' 72 ||atwh||g,C (4.49)
KeT;te KeTde KeTye
_ 2 2
<c Y ehi fwalllge +¢ D 7 l|0wnllk
KeTn KeTs

For the advective facet term, using lemma 3.1, eq. (3.7d), eq. (4.44), that &2 < eh}' on
K € T;% since hi < ¢ on T,% and & = /2 on T,*:

1/2 2
DB =381 [l

KeTh
2 2 2
<e( X lownllane + 2 7 10unliewey + 3 7 l0mnlle) (450
’CE'Thdz Kefrhda: ]C€77LC
_ 2 2
<c (D2 ehit lwallbeoy) +e D 7 1o}
,CE'Thdz ’CE771C
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Finally, the Neumann boundary term is bounded using the triangle inequality, Young’s
inequality, lemma 3.1, eq. (3.7¢), eq. (4.44), and that hx < e for K € T,

1/2 2 2 2
S8l P Olly e, <6 S T2 N0l IB,cpes Fe S T I0wnl B, nae,

KeTd KeTd KeTgde
» ) ) (4.51)
<c Y ehid llwalllg noe, +¢ > 7 llOmwnllk -
KeTd® KeTd®
Combining eqgs. (4.46) to (4.51) yields eq. (4.45). O

Lemma 4.6. Assume that dtx < hx for all space-time elements KK € T,. Let wy, =
(wp, 2) € Vi, let y, be defined as in eq. (4.42), and let II (pwy) be defined as in
lemma 4.3. There exists a positive constant ¢ such that

llwnll2), < an(wn, 2 (yy, + cIL, (wp))).

Proof. Let us first note that 1, vanishes on R; and 07,°. Therefore, defining Q;lf =
OT,* N Qy, we find after some algebraic manipulation that:

ane(wn, yp,) = (V- (Bwy), yh)Th ((Bs = 36 - n) [wh] ,yn)or, — (38 n[wi], yn)om

<% (16 -n|—=B-n)sa, [thastQ;lf + <% (I8-n|—=pB-n) %h,yh>astgzz
+ (B [wn], [y ])g;gx\gg — (Bs [wn] , yn) g 0o -
Furthermore, since (V- (Bws),yn)y, = (Qswn, T-Opwn) 1. + (V- (Bwy) , T.0pwp) 7., we find
that
Z Te ||8twh||;2c =ap(Wh, Yp) — and(Wh, Yp) — (V- (Bwn) ,Taatwh)fh
KeT,
— (B = 38 n) [wi] , =0nwn)or, + (36 - n [wi] , -0wn)or,
— (Bs [ws] , 7 [3twh]>gzz\gg + (Bs [wh] 7Tsatwh>ggg1\gg
+ (2080l = B )3, 72 [Oewn]) gy (452

- <%(|5 n| = B n)x, Taatwh>agNmQ;lf
:ah(wha yh) - a’h,d(wha yh) - (v ' (Bwh) 7Taatwh)7’h
+ T+ T+ T3+ Ty + Ts + Tg.
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We will bound the last eight terms on the right-hand side of the above equation. First, by
eq. (4.41), lemma 4.5, and Young’s inequality, we have

5 1/2
ana(wn, yn) <ellwnlll,pllwally, < e (Y = 0wnlle) ™ + llewalll, ) llwall,
, KT ) (4.53)
<c(L+07Y) llwnlls, + 30 Y 7 10wl
KeTh
Next, using the Cauchy—Schwarz and Young’s inequalities, dtx < € for K € T,9%, eq. (3.7b)

and eq. (4.44):

. ) _
(V- (Bun) , m0iwn)p <= > 7 ||duwn]2 + 67 7 [ Vwnl[x
2

KeTy KeTy
d 2 -1 = 2 -1 2
<3 > louwnlle + 6™ D e [Vwnlle + 67> flwllx. -
KeT KeTn KeTh

(4.54)

T, and T, can be bounded using the Cauchy—Schwarz inequality, % 1B -n| < |Bs — %ﬁ - n|
for all F' € 0Ty, eq. (3.7d), eq. (4.44), and Young’s inequality:

2
T+ T <38 Y 7 ldwnly+e6 > 18— 380l [will, (4.55)
KeTn KeTn

Similarly T3 and T}y are bounded using the Cauchy—Schwarz inequality, lemma 3.1, eq. (3.7¢),
eq. (2.8), 0t < hg < e for K € T2, eq. (4.44), and Young’s inequality. Note that we also
make use of £ < z—:l/QhI_(l/2 on 771‘[”” since on 771‘1, € =1 and hx < e while on 7,7, € = gl/2

and hg < 1:

Ty+Ti<e Y 718 — 380l [willlg g (Ot +hi) lwnlllgeoq + A’ I9swall)

KeTde

<c 3 B =38l fwalll g 0p E Nwnlllgeoq + AL E [0wnl)
KeTde

<c 3 B =380l fwnlll g oq (20 lwilll gy + 727 19ewnll)
KeTde

<16 3 e lBnenlE ¢ 3 et wally, + e (157 S (18— 380l faon .
KeTn KeTn KeTn (4'56)
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Similarly, to bound T5 and T, we use the Cauchy—Schwarz inequality, lemma 3.1, eq. (3.7¢c),
that 6t < hxg <efor K € T¢, eq. (4.44), £ < 51/2h;<1/2 on 7% and Young’s inequality:

TsATs < 36 > 7 Guwnli+e Y ehid Nwall+e (1 +671) S 1550/ %hugm&v

KeTn KeTn KeTn
(4.57)
Combining eqgs. (4.52) to (4.57) and choosing § = 1/5 we obtain
> el ovwnllz < an(wn, 2y,) + cllwall} .- (4.58)

KeTh

Adding \||wh|||ih to both sides of eq. (4.58), the first bound in eq. (4.40) yields the result.
[

We end this section by proving eq. (4.2b).

Proof of eq. (4.2b). By eq. (3.12¢) and using that 7. < cg, because on 7,9, 7. < At <
cot < ce and on T,¢, 7. = Atxe < e(< ce), we find

S o (M () <e (32 7 o (pun) I+ 3 7 IV ()

KeTn KeTh KeTh
= 2
<c(¢ (T mlowli +e X e 1Fuily) + ¥ lunl)
KeTh KeTh KeTh

2
<cllwnll;,-

Therefore, using lemma 4.3, we conclude that

XL, (pwi)lll p < erlllwnlll - (4.59)
Equation (4.2b) can now be shown to hold after combining eq. (4.59) with lemmas 4.5
and 4.6. O
4.1.3 The inf-sup condition with respect to ||| - ||[|ssn

Proof of theorem 4.1. We construct the test function Ky, := (kn,ss) such that for K € Ty,

Knlk ;zchffk I, (8 - Vwy,) while ¢, vanishes on all faces of Fj,. We first show that there
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exists a positive constant ¢;, independent of hg, dtx, €, and T such that the following
holds:

Ienlllsn < erllwnll s - (4.60)
We bound each term of [||-|[, ,, starting with the volume terms. Noting that éit’cf}f <1
and using the definition of ||-||,,, in eq. (2.7c), we have:

> el <llwnlZg - (4.61)

KeTh

The diffusive volume term is bounded using ¢ < 1, 5it’ChK hi? <1 and eq. (3.7b):

= 2 Steh2 \ 2, _
Z ellVhnlle < ¢ Z (5tf<m+}fz<> ([T (B - Vo) H/c = CHwhHsdh (4.62)
KeTy KeTy,

For the time derivative volume term, we need eq. (4.44) and eq. (3.7a):

2 2
S" nllowllz < e S bt (5t + hih)’ (g;jfj,fk) T, (8- Vwn) |2 < cllwnll?,, - (4.63)
KeTy KeTn

Next we turn to the facet terms. To bound the diffusive facet term, we apply eq. (3.7¢):

3 et i, = 3 et (ki) M (8- V),

T T (4.64)
Stich?
<o 3 P, (8- Vw2 < cllwnl?,, -
KeTh
2
We use eq. (3.7d) and that (515,C + h_l/Z) 5‘2@5 < 2 to bound the advective facet term:
1/2 2 Stich? 2
S8~ 38l Il < 0 S () (8- V)
KT T (4.65)
<o D i T (8- V) < el
= St thi h Rl = hllsdh -
KeTh

The Neumann boundary term vanishes since ¢, = 0. We can therefore conclude eq. (4.60)
from eqs. (4.61) to (4.65).

We next show that there exists a positive constant ¢y, independent of hg, dtx, €, and
T such that
2
[wnllsq,, — c2lllwnlll pllwnll g, < an(wn, &) (4.66)
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We first write the advective part of the bilinear form as:

a;hc(wh, K';h) = (V . (511}}1) ,/‘Qh)Th + <<55 — ﬁ . n) [wh] s th)c’)Th = T1 + Tz. (467)

We bound 77 using the definition of the projection operator I1j:

T = (1= T0) (8 Vuwn) s st (8- Vaon)) .+ (T (8- Vuon) , il (8- V)

= Hwhllid,h :
(4.68)

For T,, we note that |5, — - -n| < 2|8 — %ﬁn! for any F© € T,. Then, also using
eq. (3.7d) and Hélder’s inequality for sums,

T, <c Z H|5s 15 n’W h]HaK %th (8- th)Ha,C < C|||wh|||s,h|’wh||sd,h'
KeTn

(4.69)
For the diffusive part of the bilinear form, we write:

apa(wp, Kp) = (Eth,v/-ﬁh)Th — (e [wy), Vakn) g, — (ekn, Vawn) g, + {(aehy [wa], kn)o,
=. [1+IQ+[3—|—[4.
(4.70)

For I, we apply the Cauchy-Schwarz inequality, eq. (3.7b), and Hélder’s inequality for
sums:

Stich2
LY el[Vunlle s [V (I, (8 Vo) ¢

KeT,
o oot 17 (4.71)
<c Z e'l? IV wn, | (5t;<K+hK) ITLs (8 - V) [ < elllwalll, pllwnllsa, -
KeT,

For I, we apply the Cauchy—Schwarz inequality, eqs. (3.7b) and (3.7c), and Hélder’s
inequality for sums:

Stich?
L< Y elllwillloy s IV (I (8- Vuow))ll o,
-
e (4.72)

~1/2 Stich2 \1/2
<o S o ()" 11 (8- Tun) e < cllewnlllenas
KeTn
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Similarly for I3 and I, we apply the Cauchy—Schwarz inequality, eq. (3.7¢), and Holder’s
inequality for sums:
I+ In < cfllwlll; pllwnll sq, - (4.73)

Combining eqgs. (4.67) to (4.73), we conclude eq. (4.66).
Combining eq. (4.66) and eq. (4.60) then yields:
an(Wn, K1) _ an(wn, Kn) an(wp, V1)

cllwnllan = Menllon — wnevi llonllon

it (Ileonllsa = colllwnll, ) <
By combining the above with eq. (4.2b),

an(wp, v
(1 + (e tes + 1)CT) sup M

Z Cl_l||wh||sd,h + |||wh”|sh - C|||wh|||ss h>
vREV), thms,h

proving eq. (4.1). O

4.2 Error analysis

The following projection estimates for II, and II; were shown to hold for any ulx €
HPHLest ()0 KC € T, see [76, Lemma 5.2], [98, Lemma 6.1 and Remark 6.2], and [53,
Lemmas 3.13 and 3.17]:

lu — Tullf < e (B2 4 5t t?) ||u\|2<pt+1,ps+1)(,@ : (4.74a)

IV (u — Tyu) [ < ¢ (b2 + 5t ) [ (4.74D)

10 (u — Iyu) ch sc (thS + 5t1€2pt) HuH?—I(Pﬁ-l,ps-H)(}C) g (4.74c)

|V (v — I,u) ||Q < e (h2 ™" + hig ot *2) ullfymet.mesn ) (4.74d)

Ju — Hh“”a/c <c (h2ps+1 + 5th2pt+1) ||u||?{(1’t+1,ps+1)(l€) ’ (4.74e)

lu — thu”a;c <c (hifS“ + 5th2pt+1) ||u||?{(l’t+1,?s+1)([€) ~ (4.74f)

Let us define h := maxyer, hx and 0t := maxge7;, 0tx. An immediate consequence of

eq. (4.74) is the following estimate.

Lemma 4.7. Let u, with ulx € HP+LesHO(K) for all K € Ty, and define u = (u,u|r).
Let Tlyu = (Iyu, I u). Then,

llw — T2, , < ¢ [B%(h + e + E6t) + 6t (5t + eh™'6t)]

where the constant ¢ depends on 3 xcr. |[ull ge+1me k) -
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Proof. By eq. (4.74a),
Ju — Tyul3 < c (h%fSJrQ + 5t ?) ”UHz(ptH,psﬂ)(;c) : (4.75)
Next, eq. (4.74b) gives us:
= 2
3 ||V (U — HhU)HK S ce (h%s + (St;g2pt+2) ||U||12q(pt+1,ps+1)(lc) . (476)

For the advective facet terms, we use egs. (4.74e) and (4.74f) and the triangle inequality:

1/2 2 1/2 2
[18: = 480" ((u = Tyu) — (v(w) = Iy (w)) e H138 - 0l (v(w) = T (@) o
<c (higs—ﬂ + (575;C2pt+1) ||u||i[<17t+laps+1)(]€) . (4.77)

Similarly, for the diffusive facet term, we again apply the triangle inequality and egs. (4.74e)
and (4.74f):

_ 2 . _
ehi! [[(u = Tyu) — (y(u) = 7 y(w)llg, < e (R + hi0tc™ ™) [l romam s iy -

(4.78)
For the streamline derivative term, we use eqs. (4.74b) and (4.74c) and that ;t’ch%{ <
kthi
5t;ChK:
Stich? 2 = 2 9
S| [T, (8- V (u = Tyu)) || <edtchi (IV (u = ) [[i + 1105 (w — Tu)|[x) (4.79)
SCét}ChK (hz(ps + (St’CQPt) |‘u"§{(pt+1’p5+1)(’(:) .
Finally, for the time-derivative term, using eq. (4.74c),
¢ (h?fS(St;C + oty ||u||12q(pt+1,ps+1)(1c) if K € Ty,
7e |0 (u — Hhu)||12C < Qe (higsdtﬁ + Ot ”uHi{(z’tJrlmﬁl)(lC) it € e Ty, (4.80)

ce (higséth + ot ||U/H§{(Pt+1ﬁs+1>(]€) it € €Ty

<ce (hiﬁsét;c + 575/62}%“) HUH?{(mH,pSH)(;Q .
The result follows after combining eqs. (4.75) to (4.80) and summing over all K € 7. O

The following lemma will be used to prove the global error estimate of theorem 4.2.

66



Lemma 4.8. Let u, with u|x € HPHLPs+)(K) for all K € Ty, solve eq. (2.1) and define
u = (u,\) with A = ulp. Let u = (Hyu, I u) and let wy, = (up, \p,) € Vi, be the
solution to eq. (2.9). The following holds:

|ah(u — Hhu, ’Uh)|
1 1/2 = 2 \1/2
< [elliw = Myl + eI, = 38" (= Tl + (3 ehuc Vi (w = o) [5,) |
KeTy,

ol b

Proof. We start with the advective part of ay(-,-). Writing (*5-n = (8-n+|5-n|)/2 and
using the triangle inequality,

|ane(w — Ty, vy)] < [(B (u = Tyu), Vop)p [+ (3 (B-n+ 8- n]) (A =TI A) , pn)aey |
+[{(B-n) A =TIFN) + B [u — TLyul, [va])or | = I + I + Is.

To bound I, we follow the proof of [12, Theorem 5.1] by noting that if 8y = (1, 3) then

(Bo (u —Ipu), Vvh)Th = 0and ((8 — Bo) (u — ju) >Vvh)frh = ((B = Bo) (u — Tyu) >vvh)7’h'
Then, using the Cauchy—Schwarz inequality, eq. (4.4), eq. (3.7b), and Hélder’s inequality
for sums, we obtain

L< S ellu— Tl o
KeTn

Using the Cauchy—Schwarz inequality, we bound I, as:

1/2

1/2
L <clllz8-nl"" (A =T M)lpe, 158 01" palloe,, -

With 8-n <sup|f-n| <2(sup|B-n| — 15 n), for all F' € 97y, and the Cauchy—Schwarz
inequality, we bound I3 as:

Is < cl{(sup |8 -n| — 38 -n) (A =TT A + [u — Iyu)) , [ws])or, |

1/2 1/2
<e Y MB—= 38 nl" (u =Tl 118 = 38 - 0l [oa]ll -
KETh

Collecting the bounds for I, I, and I3, and using Holder’s inequality for sums,

1/2
|anc(w — Ty, vp)| < (cllu = Thyull,, +clllBs = 58 nl " (u =)l ) sl
(4.81)
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We now proceed with the diffusive part of a,(+,-). By the triangle inequality,
|ana(u — T, vy)| <[(eV (u—TTu), Vo) g | + [(eahy’ [u — Tul, [vh])o, |
+ (e [u — Iyu], Vava) g, | + [(eVa (u — Thu) , [va]) o, |-

By applying the Cauchy—Schwarz inequality, the first two terms on the right-hand side can
be bounded by (1 + o) [|[u — ILyull|, ,[lvall,,- For the last two terms, by the Cauchy—
Schwarz inequality and eq. (3.7c¢),

(e [ — ], Vavs) o, [+ [V (u — Tu) , [vh]) o, |
<c Y e |[u — Tyull|o, € [Vonlc
KeTn

1/2 —-1/2
+ 30 L [V (0= T gy, 220 o]l
KeTh

Therefore, using Holder’s inequality for sums,

— 9 1/2
lana(u — My, v)| < (cllu — Tl , + (D chi Vi (u — ), )

KeTh

) llwnllly s

(4.82)
The result follows by combining eq. (4.81) and eq. (4.82). O

Theorem 4.2 (Global error estimate). Let w and wy, be as in lemma 4.8. Then

Nl —wnl|?,, < er B2 (h+ & + &6t) + 627 (1 4+ eh )]

ss,h =
where cr depends on 3 i [l ge1me i) -
Proof. We start by noting that Galerkin orthogonality was shown in [76]:

ap(w — up,vp) =0 Yop = (vp, pp) € V. (4.83)
By a triangle inequality, theorem 4.1, and eq. (4.83) we find:

ap(u — ITyu, vy)

Hluh_umssh < |Hu Hhu”lssh—i_cT sup
vREV), H’vh”‘s,h

Using lemma 4.8,

Ilan =l < erlla = MWyl , +cr 118, = 38 -0l (w = )|l

— 1/2
+cT(§ ehi [V (u— ) ) . (4.84)
KeTh
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The second term on the right-hand side of eq. (4.84) is bounded using eq. (4.74e):

1/2 2
> B — 38+ n P (u— hw) [ e, < € (hPH 4 567 > Nl e ey - (4.85)
KeTh KeTh

The last term on the right-hand side of eq. (4.84) is bounded using eq. (4.74d):

= 2
> ehi [Va (u—Thu)llg, < cz (W% + 672 [l 10000 - (4.86)
KeTs KETs,

The result follows after combining eqs. (4.84) to (4.86) and lemma 4.7. O

Remark 1. The error estimate of theorem 4.2 shows that ife < 6t = h then |[u—us||,,, =
O(hPs T2 4 §tPt1/2) while if 5t = h < & then ||lu — upll,,, = O(hP* + 5tP).

4.3 Numerical examples

The space-time HDG method eq. (2.9) is implemented in this section using the finite
element library deal.Il [8] on unstructured hexahedral space-time meshes with p4est [16]
to obtain distributed mesh information. We use PETSc [14, 13, 15] to solve the linear
systems arising at each time-step (GMRES preconditioned by classical algebraic multigrid
from BoomerAMG [59] with an absolute solver tolerance of 1071%).

In our implementation we furthermore choose the penalty parameter o = 8p? (see, for
example, [90]). For both numerical examples, we show the rates of convergence for different
polynomial degrees when the error is measured in [||-]||,,, for ¢ = 107> and ¢ = 107°,
respectively.

4.3.1 A rotating Gaussian pulse test on moving domain

We consider the solution of a two-dimensional rotating Gaussian pulse on a deforming
domain [89] to demonstrate the convergence properties of the space-time HDG method
predicted by theorem 4.2. In eq. (2.1) we set § = (1,—4x2,4;1:1)T and f = 0. Defining
T1 1= x1cos(4t) + xosin(4t) and Ty := —xq sin(4t) + x4 cos(4t), the exact solution to this
problem is given by

_ o2 _ (@1—210)°+ (@2 —z20)?
u(t, o1, o3) = 2555 €xp ( 202 +det ),
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Figure 4.1: The spatial mesh and the ring of elements with an extra level of refinement
deform over time. The solution shown is for ¢ = 107%. Plots correspond to time levels

t =0.2,0.5,0.8 from left to right.

with initial and boundary conditions set appropriately. We choose o = 0.1 and (1., Z2.) =
(—0.2,0.1). The deforming domain §2(¢) is obtained by transforming a uniform mesh, with
coordinates (2%, z%) € (—0.5,0.5)2, to

= + AL — 2)sin(2r (3 — 2} +1¢), 1=1,2,

where (x7, ) = (29, 21) and A = 0.1. We consider this problem for ¢ € [0, 1].

To create our coarsest mesh, we start with an initial mesh with elements of size h ~
5t = 107!, Space-time elements in a ring prescribed by |((x$)? + (25)*)'/2 — 0.2| < 0.1,
where (z,z5) is the spatial coordinate of the centre of a space-time element, are then
uniformly refined once and are of size h &~ dt = 0.05. See fig. 4.1 for plots of the solution
and spatial mesh at different time levels. The reason to consider two sets of elements is to
verify that the analysis of previous sections hold on 1l-irregular space-time meshes. Finer
meshes are obtained by uniformly refining our coarsest mesh.

In the third row of table 4.1 we have that h ~ 6t = 1.25 x 1072 inside the refined
ring while elsewhere h ~ 0t = 2.5 x 10~2. Therefore, for the first three rows in table 4.1,
h ~ 6t > ¢ = 1072 and we observe a rate of convergence of approximately p + 1/2. In
the following three rows we observe a drop in the rate of convergence to approximately p.
This happens in two stages since there are two sets of elements in our mesh, see fig. 4.1.
In the first stage (the fourth row of table 4.1), elements in the refined ring are such that
h =~ 6t = 6.25 x 1073 < ¢, but elsewhere h ~ §t = 1.25 x 1072 > £. In the next stage
(fifth row of table 4.1), all elements satisfy h ~ 0t < ¢, resulting in a rate of convergence
of p after the fifth row. In table 4.2 we observe that h ~ 6t > ¢ = 10~% for all cycles and
the error converges at a rate of approximately p+ 1/2. These observations from tables 4.1
and 4.2 are in agreement with remark 1.
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Table 4.1: The solution errors measured in ||| - |||ss,» and corresponding rates of convergence
when using polynomial approximation p = 1,2, 3 for the case ¢ = 1072.

Cells per slab Number of slabs | p=1 Rates | p=2 Rates | p=3 Rates

296 10 4.7e-2 - 7.8e-3 - 1.3e-3 -

1100 20 1.8e-2 14 | 1.6e-3 24 |12e4 3.6

4372 40 773 1.3 | 324 23 |17e5 34
17572 80 3.7¢-3 1.1 | 73e-b 21 |1l4e6 3.2
70540 160 2.0e-3 0.9 |23ed 1.7 |24e7T 24
282580 320 9.0e-4 1.1 |49e6 22 |25e8 3.3

Table 4.2: The solution errors measured in ||| - |||ss,» and corresponding rates of convergence

when using polynomial approximation p = 1,2, 3 for the case ¢ = 1078,

Cells per slab Number of slabs | p=1 Rates | p=2 Rates | p=3 Rates
289 10 1.1e-1 - 1.6e-2 - 2.8e-3 -
1086 20 3.9e-2 15 |28e-3 27 |23e4 38
4372 40 1.1e-2 1.8 |44e4 2.7 | 185 3.7

17572 80 34e-3 1.7 | T71e-5 2.6 |1lde6 3.7
70540 160 1.1e-3 1.6 |12e5 26 |1.1le7 3.6
282580 320 4.0e-4 1.5 |21le6 25 [9.7e9 3.6
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4.3.2 A boundary layer test case on a fixed domain

In this example, we consider the solution of a two-dimensional boundary layer test case on
a fixed domain (z1,73) € (0,1)* and ¢ € [0,1] [52]. In eq. (2.1) we set 8 = (1,1,1)T and
with suitably chosen source term f, the exact solution is given by

u(t, 1, 2) = (1 — exp(—t))

(552 422 —in 2 yin 2+ SR =l )1 ey

2
The solution develops boundary layers of width O(e) near the domain boundary where
xr =1 and y = 1. The trigonometry terms in the solution are added such that the exact
solution does not behave like quadratic polynomials away from the boundary layer (see
[12, Section 6, example 4]). This helps to verify the rates of convergence when using p > 1.

In table 4.3, the convergence history is presented for ¢ = 1072. In the fourth row of
table 4.1, all elements satisfy h = 0t = 0.0125 > ¢, while in the fifth row of table 4.1, all
elements satisfy h = §t = 6.25 x 1073 < . Hence, the boundary layer has been resolved in
the last two rows, which show a rate of convergence p. The rate of convergence p+1/2 in the
pre-asymptotic regime, i.e., prior to the layer being resolved, is not observed in this case.
We remark that this may be due to that, in the pre-asymptotic regime, ||wl e, +1.ps41) (i for
a space-time element K within the layer region may be as large as O(¢~1). The errors in
these elements dominate |[|u —wpll,, ;, but they are not accounted for in the error estimate
in lemma 4.7. See the left panel of fig. 4.2 for the solution solved with 320 space-time slabs
and plotted at the final time ¢ = 1.0.

In table 4.4, the convergence history is presented for ¢ = 107%. For this case, the
bounday layer is unresolved throughout all refinement levels due to the most refined level
corresponding to h = dt = 3.125 x 1072 > 107%. As a result, the sharp gradient in
the boundary layer region is not resolved. This becomes the dominating source of the
global error |[|[u — u,,,. Therefore, we choose to compute the solution error measured
in [[||ll,,, only in that part of the domain that excludes the boundary layer, i.e., in [0, 1] x
[0,0.9] x [0,0.9] € £. Outside of the boundary layer, the solution is “smooth” and hence
[[wll grer-+1.0051) iy can be bounded by O(1). We observe that the error converges at a rate of
approximately p+ 1/2 in agreement with remark 1 in regard to the pre-asymptotic regime.
See the right panel of fig. 4.2 for the solution solved with 320 space-time slabs and plotted
at the final time ¢t = 1.0.
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Figure 4.2: The solutions shown are for the boundary layer test case with e = 1072 (left
panel) and € = 107® (right panel) respectively. Both are solved with 320 space-time slabs
(corresponding to the last rows of table 4.3 and table 4.4) and plotted at the final time
t = 1.0. We observe that the boundary layer has been resolved for e = 10~2 whereas for
e = 1078, the layer has not yet been resolved.

Table 4.3: The solution errors measured in ||| - [||ss,, and corresponding rates of convergence
when using polynomial approximation p = 1,2, 3 for the case ¢ = 1072,

Cells per slab  Number of slabs | p =1 Rates | p=2 Rates | p=3 Rates
100 10 4.0e-1 - 2.5e-1 - 1.3e-1 -
400 20 2.6e-1 0.6 |1.lel1 1.2 |33e2 2.0
1600 40 1.5e-1 0.8 [3.5e2 1.6 |6.0e-3 2.5
6400 80 8.0e-2 0.9 [97e3 19 |87e4 28
25600 160 4.0e-2 1.0 |25be-3 2.0 |1.1led 3.0
102400 320 2.0e-2 1.0 |6.2e-4 2.0 |1.4e5 3.0
Table 4.4: The solution errors measured in ||| - |||ss,» for space-time elements that lie in

[0,1] x [0,0.9] x [0,0.9] and corresponding rates of convergence when using polynomial
approximation p = 1,2, 3 for the case ¢ = 1078,

Cells per slab Number of slabs | p=1 Rates | p=2 Rates| p=3 Rates
100 10 1.4e-2 - 7.0e-3 - 4.8e-3 -
400 20 1.3e-3 3.3 | 1.0e5 94 5.3e-8  16.5
1600 40 4.4e-4 1.6 | 1.6e-6 2.7 3.6e-9 3.9
6400 80 1.5e-4 1.6 | 2.7e-7 2.6 | 2810 3.7
25600 160 5.1e-b 1.5 | 4.6e-8 2.6 |23e11 3.6
102400 320 1.8e-5 1.5 | 7.9e9 25 |21lel12 35
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Chapter 5

A posteriori error analysis

This chapter is dedicated to the a posteriori error analysis of the space-time HDG method.
In section 5.1, the error estimators and the main reliability and local efficiency results
are presented. Section 5.2 introduces a saturation assumption and a subgrid projection.
These two theoretical devices are combined to derive an a posteriori error estimation of
the error of the time derivative. The reliability of the a posteriori error estimator is proven
in section 5.3 and the local efficiency in section 5.4. Finally, we illustrate the theoretical
results with numerical examples in section 5.5.

5.1 The error estimator and the main results

We present the residual-based a posteriori error estimator for the space-time HDG method,
eq. (2.9), in this section. Firstly, we need the following element and facet residuals

RN = f + eV u, — V- (Bup) VK € Th,
RY :=g—eVu, -n+Cupf-n VF € 0Ey.

Furthermore, we define

B2
M = M 1By nhy = by e | [Vrun] || gy e
2 2y 1/2 2 2)1/2
77§,2 = ((77?’2,1) + (77§,2,2) ) ) 77?,3 = ((77J,3,Q) + (77J,3,R) ) )
1/2
TIECJ = hK/ 12 ”R]]lVHQ;cﬂaEN ) ngc,z = ||RhN||aion = llg — unlloxnq, -
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where

~1/2 /4 _
Mo = hic e[ unl g, Mo = byl e |l g,
_ 1/2 ) 1/2
Mrso = 1Bs = 580l [l Miar = 1B = 36 - 1" [un]ll 5, -
We then introduce the following a posteriori error estimator for the solution u;, € V', to
eq. (2.9):
2
n? = Z ()", (5.1)
KeTy
where (77’C)2 = (ng)Q +57 (nfi)2 + 23:1 (ngc,j)2- Finally, a modified version of the
norm |[|-|||, , is needed. For v € V'(h), we define
2 2 1/2 2 12 2
ol =Y lole + D 1B = 38-n Wl +T > W38 -l ull,
KeTh KeTh Fedén
= 2 — 2 2
+T Y el Vol + Y ehgt Ivlllg, + Y 7= llowlk.
KeTh KeTh KeTn

The following theorems establish reliability and efficiency of the a posteriori error estimator
eq. (5.1). Their proofs are given in sections 5.3 and 5.4, respectively.

Theorem 5.1 (Reliability). Let u solve eq. (2.1), w = (u,ulr), and let uy, solve eq. (2.9).
Assuming that 6t = O(h%), we have the following reliability estimate
lle = wnlllz,, < cTe™"?n. (5.2)

Theorem 5.2 (Efficiency). Let w and wy, be as in theorem 5.1 and assume that dtx =
O(h%). Furthermore, let oscl := A ||(I — IL,) R} ||« and oscy := h}(/2€*1/2 (I —TI7)RY || &,
where 117 denotes the L?-projection onto M. Then, for all K € Ty,

"t <c Z e V212 |y — Ul g7 p i + coscy + coscy (5.3)
KCwi
where
2 ) 2 1/2 2 172 2
ol = ol +118s = 380l Wl + T > 15680l ull,
FedEnNNOK
= 2 _ 2 2
+Te [ Vol + eh [[v]llge + 7= 10wl -
Remark 2. From theorem 5.2, and by definition of €, we have that on sufficiently refined
elements K € T the following estimate holds:

"t <c Z e V2||ju — Ul g7 + coscy + cosch .
KCwi
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5.2 Saturation assumption and time derivative error
estimation

We pose problem eq. (2.9) on the subgrid mesh Ty, i.e., find uy € V' such that
ay (uy, vy) = (f,v5) 7 + (9 to)oe, Yoy € V. (5.4)

Lemma 5.1 (Galerkin orthogonality). Let w;, and wy be the solutions of eq. (2.9) and
eq. (5.4), respectively. With the restriction operator defined in eq. (3.30), we have the
following Galerkin orthogonality result:

ay (Uh — % (Uh) Y (’Uh)) =0 VYv, €V, (55)
Proof. For any v, € V,

an (Wn, v1) = (f,0n) 7. +(9: n)oey
ay (wy, vy (vn)) = (f,on) 5 + (9,75 (Vn))oey = (fson) g + (9, n)oey

and thus a (un,vy) = ay (uy, 7 (v)). To show eq. (5.5), it remains to show that
an (wn, v1) = ay (9 (wn) , 74 (vs)). First, note for the element integrals we have,

(5Vuh,Vvh)Th — (ﬁuh, vvh)Th = (svuh,vwl)% — (Buh, vvh>7;) R

and for the diffusion facet terms,

(eViun, [Va]) o, + (€ [un], Vavn) o, = (eVun, [ (vn)]) o, + (€ [ (un)] , Vavn) o,
Next, since [vy (v,)] =0 on Ry \ Ry, we have
(B n) vz (un) + Bs [y (wn)] s [ (0n)])or, = (B 1) A + Bs [wn], [vn])or,,
and similarly, on the Neumann boundary, we have for the advective facet terms
(T8 - nyry (un) ,v7p (Vn))aey = (CT8 - 1w, n)oey -
Finally, for the penalty term,
(eahy [y (wn)], [y (vn)]) o, = (el [un] . [vnl)o,.,

because the spatial element size parameter hx does not change from K to K. Therefore,
ap(un, vy) = ay (’Yh (un), Y ('vh)) for any v, € V;, and hence eq. (5.5). O
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Following [23, Section 4, especially Remark 2], we assume that the following saturation
assumption holds uniformly on the family of meshes {7,},: There exists p < 1, independent
of hg, dtx, and e, such that:

ST o —up)lly < 0* D l|o(u —u)]y.. (5.6)

KeTy KeTh

With the saturation assumption we prove the following useful theorem.

Theorem 5.3 (Time derivative estimation). Let w be the solution to eq. (2.1) and let
up, = (up, Ap) be the solution to eq. (2.9). If the saturation assumption eq. (5.6) holds, and
if ot = O(h3%), then

Z 7|00 (u — uh)||/2< < cT%e 2. (5.7)
KeTh

Proof. By the triangle inequality and eq. (5.6) we find

<Z 7e |0 (u — uh)Hz,C)l/Q . %p (Z 100 (un Uh)HZK>1/2-

KeTh KeT

By the inf-sup condition eq. (4.2b), we have

(5.8)

N 1/2 ay (wy — (), vy)
(32 7100 g =)l < ellay = (el < er sup ==t b=
Ke,rh 'UhEVr, h SJ)

Using Galerkin orthogonality eq. (5.5), that Q7 consists of R-facets only and that (I —iy ) i
vanishes on R-facets, we have

ay(wy — Yy (un), vy) = ay(uwy — v (un), (I —ix) vy)
= (f, (L= dy) v)y + (g (L= iy ) in)ogxng, — ap (v (un), (I = in) vp).

Using integration by parts on (ﬁuh,%b)ﬁ and (ﬁub, Wh)ﬁ,’ using the definition of the
residual Réf, and applying the Dirichlet and the Neumann boundary conditions, we have
ay(wy, vy) = (f = Ry, vy) . + (eVitun, ) o, 08 — (B - nty, ig)ory\oe
+(eVauy — (7B nuy, py)oey — (78 - n[wp], 11y) oy (5.9)
— (e [ug], Vi) g, + (ahi! [wy], [vg]) o, + ((Bs — B~ n) [us] , [vy]) o7 -
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We will replace the trial and test functions (wy,vy) in the above by the trial and test
functions (vy(wus), (I — ip)vy). To simplify what follows, we write out the definitions of
these trial and test functions:

(uh, )\h); VF € fg’b U fR,h,

Yo(un) = (un, vrp(un)) = {(Uh up), VF € Fry\Frn

and

)
oy (ifs (vy), in (1)), VF € Fap U Frp,
(ify (vg), ify (v9)),  VF € Frp\Fron,

iy (vy), 17 (1)), VF € FopUFrp,
iN(vy), ix(vy)), VF € Frp\Fron,
(I — i)y, (I —if ), VF € FopUFrop,
( —iy(vy)), VF € Frp\Fron-

We now consider each term of ay(yy(wp), (I — in)vy) separately. First, let us note that

(f = By o)y = (f = Ry, (1= i )uy) 1
(eVimuy, 11y) opr\oe —(EVaun, (I — 7, )1y) 0y\0¢

Next,

<ﬁ - Nuy, (I — Z'{L:)/Lb>a7-h\35 VI € ]:QJ) U JERV}Z

(B - nup, iy — if(%))fﬁ’h\ag VF € Fry \ Frp

Note, however, that (8- nuy, iy — i (vy))ornoe = 0 on facets F € Fry \ Frp. This is
because ju, — iy (vy) and uy, are single-valued on F € Fry \ Frpand f-n~ = —f-nt on

F € Fry \ Frn Let OT denote that set 07y excluding all facets F' € Fry \ Frn. We

may therefore write:

(B - nuy, py)or\os — {

(8- nuy, Yoy \oe — (B - nun, (I =i, ) ) o7 o
= (B-nup, (I — if)/%)mhﬁ\as + (B nun, (1 — i, ) i) Fre \Fron
= (B - nun, (I — iy, ) ) o706
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where we added the zero term (3 - nuy, (I — i, )py) 7\ 7, (indeed, by definition of i on
FeFrp\Frp, (I — ’Lf)uh = 0). Next, we have:

(€ [wy], Vvg) o, —(e [%(Uh)] Va((I =iy )vy)) g

(cahi! [ug], [vy)) o, —(eahy’ ['Yh(uh)]a[( —in)vp)) o,
((Bs = B-n) [uy], [v ])aﬂ, —((Bs = B-n) [yg(un)], [( — in)vy))or;.
(CTB - nluy], py)aey —(CT6 - n[%( W (I =i, ) ) oey
(eVimuy — B - nuy, py)oey, —(EVaun — ¢ B - nup, (I —if, ) y) 0ynoey

where the third term can be divided into two cases

((Bs = B+ n) [yy(un)], (I — in)ve))or,
_ {((55 — B-n) [y (wn)], (I =iy vy — (I — i ) py)or, VF € FouUFrp,
((Bs = B 1) [y (un)], (I = i )vy = (g — i) (vg)))or, =0 VF € Frp \ Fron

Returning to eq. (5.9), we find

an(uy — 5 (un), vy)
= (R{;C7 (I - if)vh)’]}]
+ [ (eVaun, (I =)o) og\oe + (B - nun, (I — iy, ) pty)oro¢]

+ (e [%(Uh)] V(I =iy )vy)) o,
— (eahy! [%(Uh)] (1 = in)ve) o,
+ [—((Bs = B-n) [y (wn)] [(I = in)vg))or, + (CF5 - n [y (wn)], (I — i3, )y oe ]
+ (g — €Vnuh + ¢ (B n)un, (I — iy ) ) oyroex

=: My + My + M3+ My + Ms + Ms.

(5.10)

We will bound the M;’s separately.

Bound for M;. M; is bounded using the Cauchy—Schwarz inequality, eq. (3.31a), egs. (3.35a)
and (3.35b), and that dtx = O(h%):

(RE (I — i) vg)y = (RE, (1= i) vy)

<c Y Ml BE Il max {hie!? 1} (L — i) vyl

KeTh,
1/2 —
<e 3 ARl max {72, }(Z 1185 — 26 - n|” wolllpor, + D 5t,ChK1H8tvh||,€).
KeTn KeTx KeTx
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On elements where max {e'/2, hyc} = €'/, using that dtxc = O(h%), we find /25t ch " ||9pvp || <
crd!? |0svg || - On elements where max {'/2, hyc} = hy we have, by eq. (3.10a), hidtchi |0y ¢ <
c|lvyl/g. Therefore,

max {e'/2, hy} Z Stichy H@tvhHK Z /2 | Opvp]| g + Z |vg | - -
ICET}C /CGT)C ’CET)C

Using furthermore that max {e'/2, hx} < 1 and Holder’s inequality for sums, we find

b 1/2 971/2
My <e (S () {Z (3 (18— 38 n1" oyl + 7272 10yll + llonlle) ) ]
KeTs KeTn KeTx
1/2
<c (3" @) Mgl
KeTh

Bound for M,. We first write
My = \—<8vﬁuh, (I - ihf)ﬂh>gh\ag+fﬁ “nup, (I — ihf)/ih%ﬂ,\ag-

-~ -~

M2 Moz

For My;, using that (-,-)g,\ae = (-,")g,\0¢, Writing element-wise integrals as facet inte-
grals on interior facets, using the Cauchy—Schwarz inequality and the projection estimate
eq. (3.31b), we find

My <c Z ‘<[[€vﬁuh]], (I — 1) Nh)FQ|

FQE.FiQ h

<c D L EVandlln, (1), + ot (D], )

FQEJ—-Q,h

(5.11)

where I in the last step is chosen such that Fg C Q. Consider the two terms on the
right-hand side of eq. (5.11) separately. First, using eq. (3.35¢) and dtx = O(h% ), we have

S MeVaunlllmg ot Gl s,

FQG]'—iQh
<c Y e P [EVaun]llg,

FQG}—Q}L

1/2 1/2 —-1/2 * —-1/2
(085 D7 1B = 380l Woplllgge, + i N3y + €25 o]y )
ICGTIC
2 1/2
<c (3 )) el
KeTh
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The second term on the right-hand side of eq. (5.11) can be bounded similarly by using
eq. (3.35d) and &tchy'el/? < erd/?.

9 1/2
> EVrunllly, 0t 1B ) 1, < e (> () ) sl
FQE]'—Z'QY KeTh

Therefore, we have that

1/2
My < (D 50)°) " sl

KeTh

For Ma,, we first note that since (I — i) py vanishes on Ry we have that

Moo = (B - nuy, (I — iy, ) py)orinoe = (B - nup, (I — i3, ) 1ty) op\0¢ -

Then, similar to eq. (5.11), we have using eqgs. (3.31b), (3.35¢) and (3.35d), that dtx =
O(h%), e <1, hg <1, that HﬁHLoo < 1, and noting that (8- nAs, (I — i) y)o,\0e =0

by single-valuedness of A\, 5 - n, and (I — ) py on element boundaries,
Moo =(B - n[un] , (I —1iy) p19) 0, \06
<c Y ot [l[unlllop (ol + Ot 1 €rpa) )

KeTh
1/2 —1 2 1/2
<e 3 Nl - (3 00 16 = 45l ol g,
KeTy ICET;C
—1/2 *
+otchi™ Y7 19yl + ol + ||[vb,*J||FQ,*)
I&ETK
1/2 — 1/2
<e 30 e unllg, - (X0 115~ 38 11” lgg,
KeTy KeTx
—1/2 * —1/2
+ D IOl + i Pl + R H[vh,anQ,*)
I&ETK
24 1/2
SC(Z (775,2,2) ) |th|Hs,h‘
KeTh

Combining the bounds for My, and My, we obtain:

My <e[(2 0500+ (X 0522 ol

KeThn KeTh
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Bound for Mj. For Mj, using the Cauchy—Schwarz inequality, the trace inequality
eq. (3.7¢), the inverse inequality eq. (3.7b), the subgrid projection estimate eq. (3.31a),
egs. (3.35a) and (3.35b), that dtx = O(h%), and Holder’s inequality for sums,

Mz < Y ehi ]l g il IV (1 — i) vg) o

KeTh
—1/2 — 1/2 3/2
<e > ehi wnlllo bt (97 1Tl + 0622 00, )
KeTh
<e 3 P ]l i o1
KeTn
1/2
(18~ 381 [yl + 3 79t
’&GT)C ’%GT)C
c 2\ 1/2
§C(Z (M72.1) ) H|Uh‘”s,h-
KeTh

Bound for M,. Let K e T and Fg C Q. We write My := My; + Mo where My, is the
sum of integrals over Fg € Fgop and My, the sum of integrals over Fg ¢ Fop. The latter
case occurs when the neighboring element of K over F, o is coarser than K. To bound My,
we first note that for Fg € Fgy, we have

(I —in)vy) = (I —iy) vy — (I — iy ) puy = (I — i) (05 — pay) (5.12)

where the last step is by lemma 3.8. Then, note that by the Cauchy—Schwarz inequality
and boundedness of the projection i}, we have

(eahi [ (un)] | [(T = in) vgl)mo < ¢ (V20 Nunlll o) (6720 Nwnlllg )+ (5.13)

so that

1/2
My <c (Z (n§2,1)2> [[v][l -

KeTh

We now consider My,. Consider an Fg ¢ Fgy. Denote the coarser neighboring element of
K over Fg by K,;, and denote the restriction of vy to K., by v,p5. We have

[(I - ih) Uh] = ([ - @E) Uy + Unpy — gy + if/ﬁh — Unb,h

. . . (5.14)
= (I —i})vy+ (I —i7) (g — pty) — (I — i) U,
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where the last step is by lemma 3.8. We have:

(eahi by(un)], (1 — in) wg)) o =(eahi [un] , (I —iy) vg) g
+(eahy [un], (I —iy) [Vans]) o (5.15)
— (eahy! [up] , (I = iy) Vb) o
The second term on the right-hand side of eq. (5.15) is bounded in the same way as
eq. (5.13). For the first term on the right-hand side of eq. (5.15), using the Cauchy—Schwarz

inequality, the trace inequality eq. (3.7¢), the subgrid projection bound eq. (3.31a), that
ot = O(h%), and egs. (3.35a) and (3.35b), we find

(eahi [ug], (I — zf) Vy) Fo
< e (2 fuallloe) (D2 (N18s = 58l wolll e, + 722 0s]|1) ) -
IGCG'T;C

The third term on the right-hand side of eq. (5.15) is bound in the same way. For My we

therefore find that 12
2
M <e (D 0550)") " ol
KeTh

Combining the bounds for My, and Mys,

2\ 1/2
My < C(Z (775,2,1) ) |||'Uh|||s,b'
KeTn

Bound for Ms;. For Ms we first write
M; = — ((Bs = B n) [y (un)], (T — in)ve])or; + (€78 - n [y (wn)], (I — i )iy oy -

v~ Vv

Ms1 M2

To bound Ms; we consider the Q-facets and R—Ofacets separately. For the Q-facets we follow
the same steps as used in bounding M,. Let K € Tx and Fg C Q. If Fg € Fgy, we use
eq. (5.12), the Cauchy—Schwarz inequality, boundedness of the projection 7, and eq. (2.8):

(B = B m) Dp(un)] [(1 = in) wel) gy < c18e = 380l Tl o 11B. — 28 ] [yl -

If Fg ¢ Fop, we have, using eq. (5.14),
((Bs = B m) [yo(wn)] [(T = in) wy]) g =((B: = B+ ) [y (wn)], (1 — i) vo) g

((Bs = B-n) [y(un)] . (I — i) [Vl ro (5.17)
((Bs = B n) [y (un)], (I = i) Vnby) Fo-
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The second term on the right-hand side of eq. (5.17) is bounded in the same way as
eq. (5.16). For the first term on the right-hand side of eq. (5.17) we use the Cauchy—Schwarz
inequality, the trace inequality eq. (3.7¢), the subgrid projection estimate eq. (3.31a), the
estimates egs. (3.35a) and (3.35b), and eq. (2.8) to find:

((Bs = B-n) [ur], (I — i) vy) rg
< e 2|8 = 380" [unlll o, (Z (18 = 58+ 0" [yl g, + 7272 ||8tvh||i€)> :

/OCGTIC
(5.18)

The third term on the right-hand side of eq. (5.17) is bounded in the same way. Combining
egs. (5.16) and (5.18), we bound the contributions from the Q-facets to Ms; as follows:

(Be— 8- n) Pi(un)] [(T— i) wglay, < =2 (3 (50.02) “Mwnllsy (5:19)
KeTh,

Next we consider the contributions of the R-facets to Ms;. Using that (I — ] ) uy = 0 on
F € Frp, and that [ys(up)] =0 on F € Frpy\ Frp, using the Cauchy—Schwarz inequality,
the trace inequality eq. (3.10b), the subgrid projection estimate eq. (3.31a), the estimates
egs. (3.35a) and (3.35b) the inverse estimate eq. (3.11a), we find

((Bs = B n) [y(un)], [(1 = in) vy))r, = ((Bs — B n) [wn], (I — i) vo)w,,
<e > e 18— 180" [unllg,

KeTn
: (Z 118, = 381" wglll e + > ﬁ/?\\at%“,&) (5.20)
l&ET/C /QCGT)(
_ 1/2
< (37 sr)’) " vl

KeTh
We can now bound M3, by combining egs. (5.19) and (5.20):
_ 2,1/2 2, 1/2
My < ee 2 [(3 050)") " + (D0 an)) | wslll
KeT, KeTh,

For Msy we use that (I —4))py = 0 on F' € Fry, the Cauchy-Schwarz inequality, the
boundedness of the projection i7, and eq. (2.8) to find that

. 1/2
(B n ()], (I =) Yoy < e Y M8 = 38017 [wnlll o moey 557 sl oroey -
KETh

(5.21)
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To bound /2 161 oo+ consider a facet Fo C Qx N OEN. By the mean value theorem
for definite integrals (see, for example, [5, Theorem 14.16]), there exists (¢, z,,) € Fg such
that

1/2 2 2
118 - n|" 1o g :/F |6 0| gy ds = [B - n| ’(tm,zm)/F i ds = |8+ 1] | ) 1105115, -
2 o)

(5.22)
Let (tyr,xpn) € Fg be the point on which | - n| attains its maximum S5 on Fg. Since [
is Lipschitz continuous and n is constant on Fg (since Q-facets are flat), we deduce that
B - n is Lipschitz continuous on Fg. Thus, using that dtx < hg, we have

1B = 18 0l |tz | < €1(tm, Tm) = (tar, 2ar)| < ch. (5.23)

A consequence of eq. (5.22), eq. (5.23), and eq. (3.7¢) is the following bound:

2 2 .
Bs [l o moey < 18- 1l ltmam) 116l genaey T P 1] g noey
Lo 2 2 2
< 18- 0" | gaey + el 1ol Groey + e I8l enoey  (5.24)
- 12 2 2 - 2
<ce ! [”W 0" 1ol ooy + sl + it wal[ ey | -

Combining egs. (5.21) and (5.24), we find the following bound for Mss:

B 2\ 1/2
Msy < ce™/? (Z (n§,3,g) ) [[vg[] 5
KeTs,

Combining the bounds for Ms5; and M5, we find that

_ 1/2 1/2
M < ™2 |(3 (fa)’) + (D0 0far)) | vl

KeTh KeT

Bound for Mg. The derivation of a bound for Mjg is similar to that of the bound for Mas:
1/2

Ms < e (Y (e)) " llvslll

KeTh
Combining egs. (5.8) and (5.10) with the bounds for M; to Mg we find:

(3 w0ty —wl2) " <er((X ) 4 (X i)

KeTn KeTy, KeT,
2, 1/2 2,1/2 _ 2, 1/2 2, 1/2
(X0 02’ (X0 (a0)’) e (D )+ (X (b)) ).
KeT, KeTy, KeTh KeT
Equation (5.7) follows by using Holder’s inequality for sums. O
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5.3 Reliability of the error estimator

In this section we prove theorem 5.1. Let e, := u — u;, denote the true error. To derive an
upper bound for e, we follow [56, 61, 95, 107] and consider the following decomposition of
up, = Zyup+uy,. Here Zj is the averaging operator defined in section 3.5 and uj, := up—Z;up,.
We further introduce €, := u — Zjuy. Applying the triangle inequality,

ST elVeullet Y lleally < e (D ellVeelle + S llesle + - el Vuplle + 3 iy .

KeTn KeTh KeTh KeTh KeTh KeTh

In this section we will use the same weighting function as in eq. (4.3)
p = el exp(—t/T) + x,

where the positive constant y will be determined later. We further introduce the following
forms (see [56, 95, 109]):

kn(u,v) = —(e[u], Vav)o, = (eVau, [v])o,,

bh<)\’ /‘L> - <C+B ' TZA, :u>(951\7)

Zih(“’? U) = ah(ua ’U) - kh(”? ’U) - bh()‘v :u)

Lemma 5.2. Let ¢ be as in eq. (4.3). Then,

< c|? c c
XD ellVeslic+ 3 Y llecllz + 3x Y 18- n[Ye HagN < ZT (5.25)

KeTh KeTh KeTh

where

Ty = (Ryy, (I —1y)(pe;)) 7,
T2 = —(eViun, (I = 7)) (pes)) o + (By, (I = 107 (pes)) oen\ar
= (eahy! [upn], (I, — 117 (pes)) o, — (& [wn], Vi (I (9€5))) 04
= (B - nun, (I = TI7) (pes))ors + ((Bs — B-n) [wn], (T = TI) (0€5,) a7,
= (VI =TI7) un, V (9€;)) 7. — (B = T5) un, V (we;)) 1,
= (B n (un — Tiun) , ooy — (€8 - nfwn] Ty (pes))aey
+((Bs — 8- n) [un], (I — IIY) (€ ))oeraaz -
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Proof. Using the definition of the weighting function eq. (4.3), that ¢ > x, that 8- Ve =
Oyp = —eexp(—t/T) and that Vo = 0, we have
(eVer, Vper))r, = xe (Ve Vey)y  and =35 ((8- Vo) ey eh)g = 5 (ef, €h)r, .
so that
X > elVesle+ 3 ST leslly < (eVes, Vi (wet))y, — 5 (8- Vi) es,eh)y . (5.26)

KeTh KeTy

For the right-hand side of eq. (5.26), using that —1(8 - V)(e)? = etV - (Bes) — 3
(Bp(€f)?) because V - B = 0, integration by parts, that 3 -n, ¢, and ¢ are single-valued
on element boundaries, that e vanishes on 0&p, the divergence theorem, and eq. (2.1a),
we find:

(eVes, V(pen))y — 5 (B- Vo) e eh)p
— (Vw060 ) 7, + (eVru, e o,y — (EVIiun, V (€))7,
+ (V- (Bu),pe) . — (V- (BZpun) , pes) g, — 5(8 - nes, per)osy
= (f,0¢0) 1 + (eVau, pes) o noex — (eVIiun, V (pef)) (5.27)
+ (BZhun, V (peg)) 7. — (B - nTiun, pes)oe — 5(6 - neg, veq)oey
= (f,0¢5)7, — an(Ziun, Trun), (€5, peq)) + (eVau, pes) o,noey
— (B - nLyup, e, )osy — 1(5 nes,, Pes) oy -

Using (8 -n = % (B-n—15-n|), the last term above, excluding Qr C 0€y, is rewritten
as follows

— (B nel, pe) oen\or
—(C7B - nu, pes)aear — 3(18 - nlu, pel)osar + 5 (B - nTiun, 0el) oe\0n-

Therefore, using the Neumann boundary condition eq. (2.1b), the right-hand side of
eq. (5.27) becomes

(f, pen) 7, + (9, pen)oenar — an((Zyun, Lyun), (pey, vey)) — (B - nZyun, peq,)oey
— 5B ne, pet)ar — 568 - nlu, wes)aear + 58 - nTiun, weg)oen\or
= (f,0¢0) 7 + (9, pei)oen\ar — an(Tiun, Tiun), (weg, veq)) — 5(8 - nLiun, we5)oey\ar
— (8- nTyup, peg)a, — 5(8 - neg, peiar — (18 - nlu, pel)agy\ar

=(f,pey) . + (9, peu)oen\ar — an(Zyun, Tyun), (pey, pey)) — B,
(5.28)
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where in the last step we collect remaining boundary terms in 8j:

B, = 5(0 - nLjun, ;) oe\ar + 3(8 - nLiun, ve)a,
+ %(5 N, Py )y + %<|5 “nlu, 90€Z>85N\QT-

Next, the HDG method eq. (2.9) with test functions TIj,(peS, pel) := (II1,(¢e), IT7 (pel)),
and noting that IT] (peS) = 0 on OEp, becomes:

— (f, Tn(pe;)) 7, — (9, 1Ty (w€s))oen o
+an (un, Iy (pey, ef)) + kn(wn, I (el per) + ba(An, Iy (wef)). (5.29)
Adding eq. (5.29) to eq. (5.28), the right-hand side of eq. (5.26) becomes

(eVes, V(eey))r — 5 (B Vo)eg, e
= (f, (I =) (pes)) 7, + (g, (I =TI ) (i)Y oenrar
— an(un, (I —IL) (e, ey,)) — R,
+ ko (wn, Iy (e, pet)) + bu (A, 117 (9e)) — B,

where Ry, := an(Zyun, Ziug), (pes, pes)) —an(wn, (e, pet)). By definition of @y, the first
three terms on the right-hand side of eq. (5.30) become

(f, (I = T0) (€))7, + (g, (I = TIy) (es))aenr
— (eVup, V(I =10y) (pe)) 7, — (eahi! [un], [(I = TL) (e, oei)]) o,
+ (Bun, V(I —IIy) (pey)) 7 — (B - ndn + Bs [un] , [(I — Iy) (e, pei)])om,
= (R, (I = Tn)(€5)) 7, + (By', (I = TI7) (e ))oenrar + (the! [un], (T — 117)) (0€5)) o,

(5.30)

— (eVaun, (I — Hf) (0e5)) i + (eVaun, (I, — TI7) (we;) o,
+ (1= ¢7) B nup, (I =TI (e ))oenrar + (B - nun, (I = T17) (9€5))orivg,
+ (B nAn + B [wn], (I — I07) (wes))or, — (B - nup, (I — 1) (€ ))or

(5.31)
For the kyp,, by, and R, terms on the right-hand side of eq. (5.30), we have
ko (wn, T, (e, pey,)) = — (e fun], Vi (T (9€5))) 0, — (€Vaun, (T = 117) (pes)) o,
bh()‘fw Hi— (9062)) - <<+6 “nAp, H{L: ((10616;»851\77

Ri = — (eV (I = Ip) un, V (€})) 7, + (B(I = I5) up, V (pes))
(5.32)

Using egs. (5.30) to (5.32), and the definition of —B; we obtain eq. (5.25). O
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Lemma 5.3. Let ¢ be as in eq. (4.3) and assume that 6t = O(h%). The following estimate
holds:

- c|? c|2 1/2 ¢)?
T el Vel + 3 D ez +T Y 18-l ellx

K€Th KeTh Feden
< N (TP + T2 (f5)" + T2t (0f5y)" + T2 () (5.33)
KeTn

_ 2 2 2 2
+T% 1(775,3,71) + 717 (77§,3) + 17 (UECJ) +T(n§072) )

Proof. We start by bounding the T;, 7 = 1,...,6, terms in lemma 5.2.

Bound for 7;. Using the Cauchy—-Schwarz inequality, the local projection estimate
eq. (3.18a), that T+ x < |p| < €T + x and that 1 < |0yp| < e, and Young’s inequal-
ity, and that dtx = O(h%) and T > 1, we find that

T <) BRI 10— ) (pel)

KeTh
<e Y AclIBN [l (€T + x) (e |0l + €2 VSl + lles )

KeTh

+ 3 A IBRY e (ehie + T+ x) 1€l
KeTh

<c > g (T +x) (he'? |0l + €7 Ve e + llesl)

KeTh

c 2 2 c S c c|12 c c|12
SET+x)° D ) +L(T+x) D eVl +2 ) mloesle +2 D leslic

KeTn KeT, KeTn KeTh

Bound for 75. We write T3 as

Ty = _<€vﬁuh’ (] - Hh]:) (QDQZ»Q}'L +\<Rijlva (I - Hh]:> (¢62)>88N\(QTUQO)J+\<R;’LV’ (] - Hh]:) (@BZ»QQ'

>
~\~ g

To1 Toa Tos

For Ty, we write element boundary integrals as facet integrals in which we use that
(I —TI) (¢ec) is continuous across a facet, use the Cauchy—Schwarz inequality, the trian-
gle inequality, the local projection estimate eq. (3.18b), the projection bound eq. (3.12d),
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and that 0t = O(h%), T > 1, and Young’s inequality to find

Tn < Y IEVaunlllp I = I) (pei) -

Fe}‘igyh
< ST MEVaunllle (1 = 1) (wel) | + 11 (T — 117 (9el)l| )

Fe]-'igyh
<c Y mle VP [EVaulllp (T + X) (hie? [0l + 2 [[VeS )

Fe}‘ig’h

1/2 — — c
+e Y hle 2| [EVaun]llp 1€
Fe]—'iQ’h

c 2 2 c = c12 c cl12 c c12

<ET+X) Y5+ LT+ Y eVl +2 > mloeclle + 23 lleslx -

KeT, KeTn KeTh KeTn

Term 755 can be bounded similarly:

c 2 c - c 2 c c ¢ c
T < §(T+x)" Y (lon) +5 (T+x) D elVeilers Y mldeili+s D lleclk
KeT KeTn KeTy KeTh

For Ty3 we have, by the Cauchy—Schwarz inequality, boundedness of II, that |8 - n| =1
on €2y, and Young’s inequality:

Tos < 37 IR gy 102 =TI (95

FrCQo
1/2
<c(T+x) Y IBN g 11380l €l
FrCQo
c 2 . 12 o
<5 (T+X) D (Mea) +9T+x) D 38" el -
KeTy FrCQo

Combining the bounds for Ts, Th,, and Th3, we obtain:

T, <§ (T + X)? Z (U§1)2 +5(T+ X)? Z (77§C,1)2 + 55 (T +x) Z (Ugcz)

2

KeTy, KeTn KeTh
= .c2 c c
+c8(T+x) Y, elVeillic+ed > mlldesllc +ed > lleslix
KeTh KeTh KeTh
c 1/2 e
+9(T+x) Y, 38-nl" el -
FrCQo
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Bound for T;5. We write T3 as

Ty = (eahy [wi], (I = 1I})) (p€;)) o, (e [un], Vi (I (€5))) o,

~\~

Ts1 T3z

Term T3, is bounded using the Cauchy—Schwarz inequality, the projection bound eq. (3.12d),
and Young’s inequality:

Ty <c Y ehi [funlll g (T = TI7) (65l o,

KeTn
—1/2 =1
<c(T+x) Y e2ng? Nunlllo, €/ IVeS
KeTh,
c 2 C 7 .C 2
SETM+X) Y 050) +2(T+x) Y Vel
KeTs, KeTn

For T3, we use the Cauchy—Schwarz inequality, the trace inequality eq. (3.7c), the first
bound in eq. (3.16), and Young’s inequality to find:

Ty <c Y ellfunlloe IV (I (9¢) o
KeTh

<c Y elllunlllg hr " IV (I (peg)) i
KeTh

<c(T+x) Y e2n? [unlllo, e 1VeS e
KeTh,

2 = c12
<55 (T'+x) Z (nf21) + 9 (T +x) Z e||Ves |l -
KeTh KeT,

Combining the bounds for T3; and T3, we obtain:

c 2 < c?
Ty <$(T+x) Y, (1) +0(T+x) > Vel
KeTy KeTy

Bound for Tj. Using that (3 - n\, (I —IIj) (pes))ors = 0 we start by writing T4 as

Ty = (B nlun), (I = 1) (pep))or; + ((Bs — B n) [wa] , (Ih — II7) (ep)) o

Next, by a triangle inequality, using eq. (2.8), that |55 — %6 -n|'/? < ¢, and the Cauchy—
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Schwarz inequality,

Ty <e > I8 — 380l funll o, (17 = T05) ()l o, + (T = T1) (el o, )
KeTy
+e 3 18— 380" [l (1 = T0) (pe)llg,. + 11 = T17) (065) |1, )
KeT
=Ty + Tyo.

For Ty; we use the local projection estimate eq. (3.18b), the projection estimate eq. (3.12d),
and Young’s inequality to find:

1/2 —
T <c Y il 2 [unlllgp (T +X) (2272 10hes e + 22 (Ve )

KeTh
1/2 _ B
+e Y b [l gy el
KeTn
c 2 2 c o .c? c cl2 c cl2
SETH+X) ) Mhan) +C(T+x) ) ellVedle + 2> mlloesllc + 2 ) lles|lx -

KeT, KeTh KeTy, KeTh

For Ty, we use the local projection estimate eq. (3.18¢), the projection estimate eq. (3.17)
using that dtx = O(h3% ), and Young’s inequality,

_ 1/2
Tia <e 32 218, — 48l funllly, (T + x) (72 |00et i + £ [T
KeTh
_ 1/2 c
ey e 1B =58l [unllg, €Sl
KeTh
— 2 2 - c2?
<N T+ Y (har) +9(T+x) D el Vel
KeTh KeTh
c cl||2 c c2
+2 Y ol +2 ) el
KeTs KeTh

Combining the bounds for T}; and Ty, we obtain:

C 2 C-~— 2
Ty <5(T+ x)° Z (77§,2,2) + %N (T+ X)? Z (7753772)
KeTy KeTh

o .c? c c
+ed(T+x) Y elVeill +ed Y mlldeglc+ed Y lledlc-
KeTy KeTh KeTy,
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Bound for T5. We write T5 as
Ty = V(1 =T un, ¥ (wei))y, — (31— T3 wn, ¥ (0e))y,

~

-~ -~

Ts1 T2

For T5; we use the Cauchy-Schwarz inequality, the inverse inequality eq. (3.7b), the ap-
proximation estimate of the averaging operator eq. (3.24), that dtx = O(h%), and Young’s
inequality to find

T <) eIV U =T unll IV (we5)

KeTh
<e Y ehil 10 = Z5) unll IV (0e) i

KeTy

_ 1/2 1/2 ~ c

<e Yy ehi (D0 m Mlwnlle + Y 6t [Tunllle) IV (0e)

KeTh, FCOL FCRL
<> e

KeTh

1/2 1/2 - ¢
(D0 D Mwlllgy, + 2 D0 D7 1B =380l [wnlllg,,) (T + ) V€5l
FcQi K'Cwr FCRi. K'Cwr

c 2 2 c = c12

<E T+ D (520" + (32)) + (T +2) Y | Vesy
KeTn KeTh

For Ty, we first write

Tsy = — (un — Ly un, O (9062))7,1 - (B(Uh - Iﬁuh),v (WGZ))T@'

. AN

vV vV
T521 Ts22

We bound 7591 using the Cauchy—Schwarz inequality, the approximation estimate of the
averaging operator eq. (3.24), and that dtx = O(h%). We further note that on 7, we have

that 5*1/2h;(1/2 < h}(/A‘s*l and on 7, we have that 5*1/2h;<1/2 < 5*1h}(/2. Therefore,

T <e 3 (30 30 20 lfwnll o, ) (T + ) 7210k e + e )

KeT, FCQ}C K'Cwp

e 3 Y E I = 18l P g, ) (T +x) 72/2)9ue e +lesl o)

KeTh FCR K'Cwr

_ 2 2 — 2
§§5 ! (T + x) Z (n§,2,1) + §5 ! (T + x) Z (U§,2,2)
KeTh KeTy

C 2 c c
+5eT T+ ) () +260 Y |0l +2¢0 Y el
KeTh KeTn KeTh

2

93



For T59, using the Cauchy—Schwarz inequality, the approximation estimate of the averaging
operator eq. (3.24)

T <cy (>, D hilZe™2 | [un]llg,, + Yoo s - LR [uh]”R,C/)

KET, Fcgi K'Cwp FCRL K'Cwr
(T +x) 2| Ves

c 2 - 2 c . 2
SE(T+2) Y (5 + e s)’) +2(T+x) Y e |Veslly.
KeTh KeTh

. 2 _ 2 . = o2
Tso2 < 55 (T + x) Z ((n§,2,2) +e! (n§,3,n) ) + 76 (T +x) Z el[Veyllx -
KeT KeTh

Combining the bounds for T5y; and Ty we find that

2

Tso S%Eil (T + X)2 Z (775,2,1)

KeTh
. 2
+5(T+x) |e [ YT+ x) +%} > (1)
KeTh
. 2
+ 5 (T +x) [(T+x) + %} > (hsx)
KeTn
= 2
+200 Y 7| OheSllE 4208 Y [lesllE + L (T +x) D ellVedll
KeTn KeTh KeTh

Combining the bounds for T5; and T5, we obtain:

Ts <S(T+X) [=7 (T +x) + 3] 3 )’

KeTh
+£(T+x) [ YT +x) + %} Z (n§2,2>2
KeTy,
L (T4 {5—1 [(T+x)+ 3] + %} S 0fsn)

KeTn

c c o .c?
+208 3 7 OeslE + 268 3 lecllE + e (T+x) Y e | Veslly
KeTh KeTh KeTy,
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Bound for Tz. We write T as follows:

=((8 = ) [w], (T = T (95) o,

T [< (= Tiun) s 9oy — (CFBn [wn] TIF (65 ) |

+ (8- n(un — Trun) , wei)oeror — (7B - n[wn] 1Ty (9e))oen\or
(8, = 8 m) [ual, (T = T7) (965 e
(B, = B m) [ua], (T = TI7) (65 )y

= Tg1 + Too + T3 + Toa.

For T4, we use the Cauchy—Schwarz inequality and the projection bound eq. (3.12d)

1 2
Tor <c Y ]l axnoe, b IV (0e5)
KeTn

c 2 C = .c?
ST+ Y, (ae) +2(T+x) ) Vel

KeTh KeTh

For Tgo we first write

Ty = (C*B - (un — Tgun) ey —{(C75 - n[wn] TIF (65}

Vv Vv
Te21 To22

We bound Tgs, using the Cauchy—Schwarz inequality, the trace inequality eq. (3.10b),
the approximation estimate of the averaging operator eq. (3.24), that 6tx = O(h%), and
Young’s inequality:

Too1 < Z l|up — IzuhHR,CmQT HSOQZHR,CmQT

KeTn
1/2 1/2
<e > EYT YT Sl o, + D D 18— 380l [l
KeT, FCQi K'Cwr FCRi K'Cwr

AT+ )18 -1 el g,
. — 2 2
Sge (T+x) Y o) +5 T +x > sr)

KeTn KeTn
1/2 C
KeThn
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Next, we bound Tg92 using the Cauchy—Schwarz inequality, the boundedness of the projec-
tion operator II7, and Young’s inequality:

1/2 1/2 ¢
Tooa <Y 1B = 380l nlll, e, (T+X) 18- 02 €lllmran
KeTy,
c 2 c 1/2 ¢
<E(T4+) S ar) + 2T+ S 18- 01" el
KeTh KeTh

Combining the bounds for Tge; and Tgee we find that

C 2 Ct C
T < 5 (T+0) Y )+ @+ Y 05an) +22 (T +x) 3 18-l el
KeTy KeTy FCQr

For T63 we write T63 = T631 + T632 -+ T633 where

Toz1 = (¢ B - n (up — Tyup) ) PCo)IENNQ
Tssr := —(CT 0 - n[us], Hf (peq))oennon
Toz3 = ((Bs — B-n) [ug], (1), — H{) (per))oennay -

To bound Tg31, we use the Cauchy—Schwarz inequality, the trace inequality eq. (3.7¢), the
approximation estimate of the averaging operator eq. (3.24), and Young’s inequality:

—1/2 1/2
Tosr < chid " flun = Teunll 118 - 0l 08| o roen

KeTh
1/2
<Dl D0 Mwllog+ Do X2 llwllley,) N8 -2l ¢eill gy
KeTn F’CQl K'Cwpr F/CRZ K'Cwpr
_ 1/2 1/2
<D el 0 >0 m T  lalll + 32 D0 18 =38 nl T wlllg,,)
KeTh F'cQi K'Cwpr F'CRy K'Cwpr

1/2
|8 - n| / ‘Pezugma&v

<2 T+ Y )+ 5T +0 Y ar) + (T +x) S 180",

KeTy KeTn Feoen

For Tg32, using the Cauchy—Schwarz inequality, eq. (2.8), and boundedness of the projection
operator 117 | we find

1/2 c
Tore < ) 1B = 380" [wnlllg ey, (T + %) B2 el ggroey
KeTh
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Using similar steps as used to bound Ms5, in the proof of theorem 5.3, we note that
Balleclz < 1118 - n]l/zefbﬂi + chi |le]|%. Furthermore, using eq. (3.19) and Young’s in-
equality we then find

1/2 1/2 ¢ 1/2 4 ¢
Tosa <c Y 18— 380" [unll g poer (T +X) (1B -1 6llgrven + il gl o noes)
KeTn
1/2
<c Y 1B = 38l [unlll g e, (T+X)
KeTh,
1/2 ¢ 1/2 1/2 1/2
-<||m-n|/ |\Q,<masN+H€quc+h/ Ve e e 1)
1/2
<c Y 1B = 38l [unlll g ey, (T+X)
KeTh,

(I8 - n|1/2 CHQmasN + H%H;c + hi ||V€u||;c)

c 2 c c 1/2 ¢
<ET XY a0 +2 3 Mlecli + 2 (T +x) D B -nle I

KeTn KeTh FCOEN
c 2 C . c|?
+ 5 (T+x) Y ) +2(T+x) Y eVl
KeTn KeTy

Next, we consider Tgsz3. Using the Cauchy—Schwarz inequality, the projection estimate
eq. (3.12d), and Young’s inequality we find

Toss <c ) Nunlllggroey | = T17) (0€5) g rmaey

KeTn
1/2 _— </ c
<c > hl2e P |[unlll g noey, €2 (T + ) V(€5
KeTn
c 2 c 7. .Cc 2
SET+X) D (0520) +2(T+x) Y Vel

KeTy KeTn

Combining the bounds for T6317 T632, and T633 we find that

Tos <se N(T+x) Y 50)" +6(T+x) Y (500) + (T +%)> D ()

KeTy KeTy KeT

C C = ¢ 2 . .
+2 3 el + e (T+x) 3 el Teslie + 5 (T4 3o 18- nl il

KeTh KeTy FCOEN

For Tg4, we use the Cauchy—Schwarz inequality, the projection estimate eq. (3.17), and
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Young’s inequality to find

1/2 c
Tos <c > 18y = 380" [wnlllg, mo, 100 = T17) (965l
KeTy
_ 1/2 c
<c > e P IB = 38l [unlll g g, (T +X) 727 101€ I
KeTh
1/2 ¢
+e Y 18— 381" [l gy €l
KeTy
<§e” (T+X) Z 77J3R +2 Z 7e || Orel, ||1c 5 Z ||€Z||12C
KeTn KeTh KeT,

Combining the bounds for Ty, Tso, Ts3 and Tgs, we obtain

C 2 C 2
Ts < >5¢ (T‘i‘X) Z (775,2,1) + 3—5 (T+X> Z (77§,2,2)

KeT, KeTn
c — 2 c 2
+ 2T+ X)) an) T XD ()
KeTn KeTn
c cl2 c2
+ 23w Ghellly +ed Y fleslx
KeTh KeTh
C X7 .C 2 1/2 c
+38(T+x) Z el[Vegllx +3cd (T + x) Z 118 - n|" ”F
KeTh FCOEN

With each of the terms T}, i = 1,...,6 bounded, we now bound ZKGT}L T, ||8te§||,2c. By the
triangle inequality and eq. (5.7),

D loeille < el e Y e l|0(un — Tiun)lli
KeTh KeTh

For the second term on the right-hand side, using the inverse inequality eq. (3.10a), the
approximation estimate of the averaging operator eq. (3.24), Holder’s inequality for sums,
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and that ot = O(h%),
> |0 (un — Tyl

KeTh

<cd e( Y hdtc 1uadlz + D llualllz)

KeTy, FC Q’L Fc'ﬁ,i

<ed E(0 D0 hd Mallo, + 30 D2 18— 58 nl " fuall)

KeTy, FCQ’L K'Cwp FC??,2 K'Cwp

<ee 'Y () e Y ()

KeTy KeTy

Combining egs. (5.25) and (5.34) with the bounds for T} to Tg, we have

= c? c |2 1/2 ¢
XD elVele+3 > el +3x D l18-nl'?e Iy

KeTh KeTh FCOoEN
SAIIL c 2 ¢
<ed(T+x) Y elVeelle+ed > el +ed(T+x) Y 1B-nle Iy

KeThn KeThn Fcén

C C 2
FET ) )+ T+ > ()
KeTy, KeTn

LX) o) T+ D (e

KeTh KeTh

Fe(b40) (T+xPe™ Y (o) + 5§ T+ X7 Y (an)”

KeT KeTh

(5.34)

2

+5(T+ X) e Z (77§,3,R)2 T <% * 5) (T +x)° Z (77§73)2 '

KeT KeTn

The result eq. (5.33) follows by choosing x =T and 6 = 1/(8¢). O
We end this section by proving theorem 5.1.

Proof of theorem 5.1. Using the triangle inequality, Young’s inequality, and eq. (2.8), we
have

2 = c2 c |2 1/2 ¢
ot — P <e (TS e[ Veile+ S lleslz+7 S 158 a2 e

KeTh KeTh FCOoEn

2 2
+ Z Te ||at@u||21c + Z ((7752,1) +T(?7§,3) ) + I + I + I3,
KETh KeT,

(5.35)
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where

= 2
L=l Y eIV =Tl L=c ) II=T)unl,
KeTh KeTh
1 1/2 C 2
L= Y (1480 (1 - T)ull,
FCOEN

Using the inverse inequality eq. (3.7b), the approximation estimate of the averaging oper-
ator eq. (3.24), and that dtx = O(h% ), we bound I; as follows:

L<el Y e( ) hg llwlliE+ ) Iluadll7)

KETh  Fcdj FCR
1/2 2
< Y (D D0 il llwllig, + D Do 18— 380 fwllly,,)
KeTh chl K'Cwp FcRZ K'Cwp
2 2
<cT Z ((7752,1) + (77§,3,R) )
KeTh

Using the approximation estimate of the averaging operator eq. (3.24), then similar to the

bound of I; we have: ) )
I, <c Z ((77§,2,2) + (U§,3,R) )
KeTh

Finally, using the trace inequalities eqs. (3.7c) and (3.10b), the approximation estimate of
the averaging operator eq. (3.24), and that dtx = O(h%), we can bound I3 as follows:

2
Iy < T Z Flan)” + (aw)) -
KeTh

Combining the bounds for Iy, Iy, and I3 with eq. (5.35) we find that

2 = c2 c |2 1/2 ¢
llw = wnllZp, < (T elVesle+ > leslic +T D 1138+ n| ‘| )

KeTh KeTh FCoen
2
+ Z Te ||at€u||;2<+c Z 77J22 ST Z 77J21 (W§,3) )
KeTn KeTn KeTn

100



By lemma 5.3 this is further bound as:

2 2 _ 2 _ 2
e — gy <e 3 (T? GEY + T2 (5 ) + T2 (1 ) + T2 (1)
KeTh

_ 2 2 2 2
+T% 1(77§,3,R) +71? (77§,3) + 717 (U§C,1) + T(Ugcg) )

+ Z Te HateUH2IC
KeTh
<P+ > 7Ol
KeTy

We conclude eq. (5.2) using theorem 5.3. O

5.4 Local efficiency of the error estimator

In this section we prove theorem 5.2. Given any space-time element X, we introduce
element bubble function ¥ = C@H?i_;IH]CJ‘, where 0 ; denotes the linear Lagrangian basis

polynomial associated with the i-th vertex of IC, and the constant factor ¢y is such that
[kl pooic) = 1. We observe that (¢x)|ox = 0. Given any v € Vj, the element bubble
function satisfies the following estimates (see [100, Lemma 3.3] and [103, Lemma 3.6]):

lexvlle < cllvle,  ellvlle < (v,dcv)c, (5.36)

We also need facet bubble functions. For an element IC ind one of its Q—fagets F e O,

we first transform to the reference domain and consider K = ®'(K) and F = &' (F).
Without loss of generality, we let Z; denote the spatial coordinate such that z; = —1 on F.
Given any number € (0, 1], we denote by ¥, the mapping from (¢,21,...,%;,...,24) to
(t,21,... k(T 4+ 1) —1,...,24) and we let IE,{ = \IJ,{(IE) We introduce the following facet
bubble function

5 {Ce P2 O pie on Ky,

D = 4 o O B

0 on I\ Ky,

where HA;Q Fi,x denotes the linear Lagrangian basis polynomial associated with the i-th vertex
of KC,; that is also on F'. Similarly, the constant factor cy p is such that HzﬁK,FﬁHLw(ﬁ) =1.
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Furthermore, given any p € M, and considering i = pu o ®x, we have the following
estimates: . ) .
[k prfillp < cllillz cllillz < (i, dr pwit) py
1/2

(5.37)

1k rwitle < e&'?0llp, Vi maille < ex iz,

where the first estimate is a result of [|ilxc g (7 = 1 and the remaining estimates are
shown in [101, Lemma 3.4].

We remark that the facet function p in eq. (5.37) is continued to functions on elements
using the continuation operator defined in [100]. We furthermore remark that eqs. (5.36)
and (5.37) are proven in [100, 101, 103] on n-simplices and parallelepipeds, with n > 2.

However, these inequalities also hold for our mesh due to the assumptions on ¢x eqs. (2.2)
and (2.4) resulting in a Jacobian bounded independent of hx and 0.

To define the facet bubble function on wg, we consider three cases in fig. 5.1:

Case 1 The neighboring element of I across F', denoted by IC,, is at the same refinement
element as K.

Case 2 The 2¢ neighboring elements of K across F', denoted by K,;; with i = 1,...,2% are
finer.

Case 3 The neighboring element of K with respect to facet F' is coarser, which is denoted by
ICnb,O'

For Case 1, we let

bro = | Voo B on ks (5.38)
Fr -— ~ _ .
wlCnb,F,/i o ®’C’}Lb on ’Cnb~

For Case 2, we consider the refinement of K := U?illCZ- such that [ is refined to the set of
{Fz}fil where I; = Qx, N Q... We further denote by wg, the union of K; and K, and
define a ¥p,,; on wp, as in eq. (5.38) on each Fj.

For Case 3, we consider the coarsest refinement of KC,; o such that one of the refined
elements K., has the property that F' = Qx N Qk,,. We denote the union of K and K,
by wp.. Then, ¢, is defined on wp, as in eq. (5.38).

Applying the scaling arguments egs. (3.1) and (3.2) to eq. (5.37), using the definition
of ¢ described above, choosing x = £'/2¢/2 and dropping the subscript & from ., we
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(a) Facet bubble when the neighboring el- (b) Facet bubble when the neighboring el-
ement, K, of IC is at the same refinement ement, /C,;, of K is finer
level

(c) Facet bubble when the neighboring el-
ement, /C,, of K is coarser

Figure 5.1: Given an element K and a Q-facet ' € Qx, depending on the refinement level
of K’s neighboring element(s), we consider three different cases of the facet bubble function
Y for F € Q.
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obtain the following estimates:

2
[rpllp < cllpllp, el < brp)e,
lrull,, < chil?E74e ullp, 1Vypull, < chy?e A4 ||,

wWp —

(5.39)

With the above bubble functions defined, we proceed with proving theorem 5.2.

Proof of theorem 5.2. Each term of n** will be bound separately. However, let us first note
that since 7y, and 7y, are part of [|u — w4, these terms are trivially bounded.

Bound for 7n%. By the triangle inequality and Young’s inequality,
2 2 2
1R e < 2 TRy e + 2 [1(1 — T0) Ryl - (5.40)

We bound the first term on the right-hand side. Using estimate eq. (5.36), with ¢; and ¢,
the constants in the first and second inequalities of eq. (5.36), respectively, the Cauchy—
Schwarz inequality, and Young’s inequality with constant c¢;, we note that

. 2 2 2
G IRy e < (Ry, oIl Ry + 52 (1 — ) Ry [l (5.41)

Combining eqgs. (5.40) and (5.41), and using the boundedness of the projection IIj, so that
I(7 = TL)RE [ < e||(I = ) RE|| | RE |, we obtain

2
M By e < e (Riy eI Ry ) + e 12 = T0n) By [l [1R3 | - (5.42)

To bound the first term on the right-hand side of eq. (5.42), we use the definition of R},
integrate by parts, and use that V- 8 = 0, to find for any z € H}(K),

(R, 2)c = (3V (u — up), e*V2) e + (B - V(u —up), 2)c + (Op(u —up), 2)c . (5.43)

Choosing z = Il RY, we bound each term on the right-hand side of eq. (5.43) separately.
Using the Cauchy—Schwarz inequality, the inequality eq. (3.7b), estimate eq. (5.36), and
boundedness of the projection II,, we obtain:

(£ /2V (u — wn), eV (eIl RY)) e <ce'? [V (w = up) || c €2 hit | R |l (5.44a)
(B~ V(u—un), TRy <ce'? [V (u —up)|lc e || Ry | (5.44b)
(0w — up), Uil Ry ) e <er2? 1|0 (u — up) || 722 | R Il (5.44c)
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From eq. (5.43) with z = ¢ I, R} and eq. (5.44) we therefore obtain:
(Ryy, il R ) < C<(€1/2h1_<1 +e )2V (u = up)| o
P o = wle ) IR (649

Using that dtx = O(h%) we note that A\g(e/2h;! + e Y/2) < c&71/2e7Y/2. Therefore,
multiplying both sides of eq. (5.45) by A, we find

M (Ry Il Ry ) < ce 2712 (2 [V (w —un) || + 7272 100w — un) ) 1R Il
(5.46)
Combining egs. (5.42) and (5.46), and using the definitions of ||| —wn||| 7 k- nk and oscy,

g < ce7 22 lw — gl g, i + cOSCH

Bound for 7§,. Let F be a facet such that I C Qx \ d€. To bound n;; we consider
separately Case 1, Case 2, and Case 3.

Case 1. For any F C Qx and 2 € Hj(wr), we have

(e[Vaunl, 2)r = — (€Y (u —up),e'*Vz),, — (
— (8- V(u—up),2),, + (Ry,2

O (u —up), z
(o= un): 2)e (5.47)

)WF °

Choosing z = ¥re[Vauy], using eq. (5.39), and the Cauchy-Schwarz inequality, we obtain
hi e | Vmunl |l < eV (0 — un),,

the V2 MEV (T P2 10 (u — un) |, + 722V (u = ), + A A IBE ) -
(5.48)

Using 6tx = O(h%), hxe 1/2Y2 <1 and e V48" max {hx,'/?} < 1, we find

1/2 ~ — ~
e |[Vaunlllp < ¢ Y7 e e 4l — wnll e + A I1RE L, -

KCwp

Case 2. Identical steps as in Case 1 gives

WL | [Taunll, < ™96 [T (0 = wy),,, +es 472 0w — un)l,, +hc IR, -
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Summing over all F;’s,

1/2 ~7 - =
hil*e P Vrunllle < ¢ - e el — wlll g + M IBE L,

KCwpg

Case 3. Identical steps as in Case 1 gives
e 2 | [Vaun]l p < ce™ Ve A2V (w = up) |, +eE T 0w — ), + A IBE L, -
Since wp . C wp, we then find

1/2 Avi - =
h e PVl < e 32 e e = wnllpe + e 1B e

KCwp

For each of the three cases, summing over all facets F© C Q \ 0, and using the
definitions of 7/, and 1, we find

i< 3N [ il + ]
FeQx\9€ KCwr

Bound for 75¢,,. To bound 75, let F be a facet such that F C Qx NdEy. By the
triangle inequality and Young’s inequality,

2 2 2
1BR [ < 21107 By |l + 2 1(2 = T Ry (5.49)

We bound the first term on the right-hand side. Using estimate eq. (5.39), with ¢; and ¢,
the constants in the first and second inequalities of eq. (5.39), respectively, the Cauchy—
Schwarz inequality, and Young’s inequality with constant c¢;, we note that

c1 2 c3 2
SN Ry e < (RR, wrTly RY e + 52 (11 = T Ry || (5.50)

Combining eqgs. (5.49) and (5.50), and using the boundedness of the projection I so that
2 .
I(1 = TRy |l < ell(1 = 7)) Ryl o | Ry || o, we obtain
2
1R [ < e(By el Ry ) + e |(1 =TI Ry |l o | Ry |1 (5.51)

Let z € H'(wp) be such that z[g,,\r = 0. Note that wp = K. Similar to eq. (5.47), we
have:

(R, 2)c = (€Y3V (u — up), €2V 2) o +(0s(u — up), 2) o+ (B - V(u — up), 2) e — (Vi (u—up), 2) .
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The last term on the right-hand side can be rewritten using eq. (2.1b) resulting in

(R,ZLV, 2Vp = (51/2v(u - uh),51/2vz),c + (Op(u —up), 2)c + (B - V(u —up), 2)
— (R, 2)e — (¢ (w—pn)B-n,2)p + (¢ [un] B-n,2)p.

Choosing 2z = YpIlf RY in eq. (5.52) and using eqs. (2.8) and (5.39) and boundedness of
I

(5.52)

Ch}(/25_1/2<3;1y, Vplly Ry ) p < (5_1/45_1/451/2 IV (u — up) ||
+ chye e E (1100 — un) e + IV (0 = un) | + 1R )

_ 1/2 1/2
+ g2 V2 (1138 -0l (u— )| + 118 — 18-l [uth)) IR |

The first two terms on the right-hand side are identical to the right-hand side in eq. (5.48)
and so can be bounded similarly:

chyl?e VA(RY WpI RY ) p < (6_1/45_1/4”!“ — [l e + M B
1/9 _ 1 1/2
2 (1160l (0= )+ 18— 15l ) ) WA (559

At this point, let us note that hy/’e=1/2 < &1/2 for 5t = O(h%). Therefore, for the last
term on the right-hand side of eq. (5.53) we have

chi*e ™ (1138 - nl'"? (w = )l + 118 = 38 nl"” [ualllp) < & 2lw = will o
(5.54)
Combining egs. (5.51), (5.53) and (5.54), summing over all F' € Qx N Iy, using that
E7Y2 < e71/1271/1 and the definitions of 5., and 7f, we find that

N

_1/45_1/4|||'U' - uthST,h,IC + cng + coscy, .

K
Npc1 < CE

Bound for 75,. Let F be a facet such that ' C Rx N Q. By eq. (2.1b) we have
that ¢ = —uf - n = u. Therefore,

5cs = llu—unllp < llu— pallp + ]l p < cllle = wnll g, k-
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Bound for 7, ,. Let F be a facet such that ' C Qx\dE. Using again that h%%‘l/? <
712 for 6t = O(h%), we have

K —1/4x-3/4
Njo2 S € /g3 [l — uh|||sT,h,IC'
Combining the bounds for nl, n%5,, nSc1, e, and nh,,, and since e~M/4e71/4 <
e~1/2671/2 we conclude eq. (5.3). O

5.5 Numerical examples

In this section, we solve the space-time HDG method eq. (2.9) with AMR using the a
posteriori error estimator n* introduced in eq. (5.1). The implementation uses the finite
element library deal.Il [8, 9] on unstructured hexahedral space-time meshes with p4est [16]
to obtain distributed mesh information. Furthermore, in our implementation we choose the
penalty parameter o = 8p? (see, for example, [90]). The linear system is solved all-at-once
using the Multifrontal Massively Parallel Solver (MUMPS) [3, 4]. In each refinement cycle,
the local error estimate 7% is computed for all X € T, and then ordered according to the
magnitude of . The top 25% of elements are marked for refinement and the bottom 10%
of elements are marked for coarsening. The test cases in this section are implemented for
both §tx = hi and ot = O(h%). In each example we will also investigate the efficiency
index, which is defined as 7/||w — w||| ;7 -

Remark 3. By theorem 5.1, theorem 5.2 and remark 2 we expect the efficiency index to
be bounded below by O(c'/?) and above by O(e~1) in the pre-asymptotic regime and above
by O(e7/2) in the asymptotic regime.

5.5.1 A rotating Gaussian pulse test

This test case involves a Gaussian pulse on the spatial domain © = (—0.5,0.5)? and we
simulate its rotation in the time interval I = (0, 1]. We set § = (1, —4x5,421)" and f = 0.
Initial and boundary conditions are then chosen such that the exact solution to the problem
is given by

g2 G —21.)2+(Fa—za.)?
U(t, 1, 1'2) T o242¢t exp ( 202 +4et ) ’

where Ty := z cos(4t) + xosin(4t) and Ty 1= —x sin(4t) + x4 cos(4t). We choose o = 0.1
and (21, x2.) = (—0.2,0.1). To demonstrate the motion of the pulse and the adaptive mesh
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Figure 5.2: The spatial mesh and the rotating pulse. The solution is shown for ¢ = 107
Plots correspond to time levels ¢t = 0.2,0.5,0.8 from left to right.

refinement, we plot the spatial meshes and the solutions at ¢t = 0.2,0.5,0.8 for ¢ = 10~ in
fig. 5.2.

We perform three convergence tests with ¢ = 1073, 107, and 1075. In fig. 5.3, for
ot = O(hg) and 0t = O(h% ), we present the convergence histories of the error estimator
1, the true error [|u—uy|| 7, when using AMR, and the true error [||u—wup|||7;, when using
uniform refinement. Additionally, we compute the efficiency index after each refinement
cycle and plot its history. All tests are implemented with p, = ps = 1.

For both 6t = O(hg) and ot = O(h3;) we observe on fig. 5.3 that solutions on adap-
tively refined meshes are slightly more accurate than their counterparts on uniformly refined
meshes although there is not too much advantage of using AMR for this smooth test case.
Both solutions exhibit convergence rate O(N~/ %) which is optimal in the pre-asymptotic
regime (see remark 1). These results correspond to what we expect from reliability and
efficiency of the estimator proven in theorem 5.1 and theorem 5.2. Nonrobustness of the
error estimator 7 is observed with the efficiency index being of order e~1/2. This lies within
the interval commented on in remark 3.

5.5.2 A boundary layer test

We now consider problem eq. (2.1) in which the solution exhibits boundary layers. The
problem is set up on the spatial domain = (0,1)? and the time interval I = (0, 1] with
S = (1,1,1)". The initial and boundary conditions and the source term are chosen such
that the exact solution is given by

xp((x1—1 —1 xp((z2—1 -1
u(t, w1, 09) = (1 — exp(—1)) (SRATUIL 4 gy — 1) (22U 4 gy — 1)
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Figure 5.3: Convergence histories of the rotating pulse test case. From left to right:
e=10"2e=10"* and e = 107°. Top row: dtx = hyg; middle row: §tx = O(h%); bottom
row: efficiency index for both dtx = hx and ot = O(h%).
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(a) Boundary layer test case. (b) Interior layer test case.

Figure 5.4: The boundary and interior layer solutions at time ¢ = 1.0 for sections 5.5.2
and 5.5.3 respectively. Both solutions are for ¢ = 1073.

It is known that for small ¢, the solution features boundary layers of width O(e) at the
outflow boundary of the spatial domain. See fig. 5.4a for an example when ¢ = 1073 and
T, has 20663 elements.

Set p, = ps = 1. We perform three convergence tests with ¢ = 1072, 1073, and 10~
For 0tx = O(hg) and 0t = O(h3%) we present in fig. 5.5 the convergence histories of
[l — |||z, for both uniform and adaptive mesh refinements, and of 7 for adaptive mesh
refinement.

For both dtx = O(hg) and dtx = O(h%) we observe that for e = 1072,107 and with
AMR, the error [|lu — up|| g, converges with optimal rate O(N ~1/3) in the asymptotic
regime where the layer has been sufficiently resolved. This is not the case for ¢ = 10~ where
more refinement cycles are needed to resolve the layer. However, solutions on adaptively
refined meshes show better accuracy than those on uniformly refined meshes. These results
verify reliability and efficiency of the estimator proven in theorem 5.1 and theorem 5.2.
Furthermore, the efficiency indices depicted in fig. 5.5 show nonrobustness of order e~'/2
in the pre-asymptotic regime and robustness in the asymptotic regime. These results once
again lie within the interval commented on in remark 3.

5.5.3 An interior layer test

In this test case, problem eq. (2.1) is set up on the spatial domain Q = (—0.5,0.5)% and
the time interval I = (0,1]. We set 8 = (1,1,1)" and set the initial condition, boundary
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Figure 5.5: Convergence histories of the boundary layer test case. From left to right:
e=10"2,e=10"% and e = 10~*. Top row: dtx = hyg; middle row: §tx = O(h%); bottom
row: efficiency index for both dtx = hx and ot = O(h%).
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condition and the source term such that the exact solution is given by

—X X 2
u(t, zy,x2) = (1 — exp(—t)) (arctan(i’[—ze)) (1 - %) )
This solution has a diagonal interior layer on the spatial domain. See fig. 5.4b for an
example when ¢ = 1073 and when 7, has 23169 elements.

As in section 5.5.2, we perform three convergence tests with e = 1072, 1073, and 107
For 6t = O(hg) and 0t = O(h%), we present in fig. 5.6 the convergence histories of
llw — usl|| s, for both uniform and adaptive mesh refinements, and of 7 for the adaptive
mesh refinement.

Both for dtx = O(hg) and dtx = O(h%), when € = 1072, solutions obtained on
adaptively refined meshes converge with the optimal rate O(N~1/3). On uniformly refined
meshes, solutions converge slightly slower than the optimal rate. For e = 1073, adaptive
meshes yield better solutions which converge slightly faster than the optimal rate in the
asymptotic regime. Solutions on uniformly refined meshes converge with a sub-optimal
rate. For ¢ = 107%, both solutions on adaptively refined meshes and uniformly refined
meshes converge sub-optimally. However, the former still performs better than the latter.
Efficiency indices for all three cases are bounded above by 10, demonstrating robustness
of the error estimator 7 for this test case.

The results from fig. 5.6 verify reliability and efficiency of the estimator proven in
theorem 5.1 and theorem 5.2. The robustness result of the error estimator n again lies
within the interval commented on in remark 3.
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Figure 5.6: Convergence histories of the interior layer test case. From left to right: ¢ =
1072, e = 1073 and ¢ = 10~*. Top row: dtx = hg; middle row: 6t = O(h%); bottom row:
efficiency index for both dtx = hx and ot = O(h%).
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Chapter 6

Conclusion

In this thesis we provided an a priori error analysis of a space-time HDG method for the
time-dependent advection-dominated advection-diffusion equation on deforming domains.
We proved a novel inf-sup stability result in theorem 4.1 for the space-time HDG dis-
cretization (eq. (2.9)) in the advection-dominated regime with respect to a norm (|[|-[|l,,
in eq. (2.7¢)) that measures the error in its usual energy-type norm, its time derivative and
its streamline derivative. Based on this inf-sup stability result, we derived in theorem 4.2
an a priori error estimate that shows a drop from p + 1/2 to p in the rate of convergence
when transitioning from a mesh size larger than the diffusion parameter € to a mesh size
smaller than €. A numerical example with a smooth Gaussian rotating pulse supports our
error estimate. When the exact solution exhibits sharp layers, and when the mesh size is
sufficiently small to resolve the layer, the error estimate predicts a rate of convergence p.
This prediction is supported by a boundary layer example. We also demonstrated that in
the pre-asymptotic regime, and when measuring the error only in that part of the domain
that excludes the layer, we obtain a rate of convergence p + 1/2, again in agreement with
the error estimate.

We then presented and analyzed an a posteriori error estimator for the space-time HDG
method of the time-dependent advection-diffusion problem with adaptive mesh refinement
on fixed domains. We proved, and verified numerically, reliability and local efficiency of
the error estimator with respect to a locally computable norm. Numerical simulations
showed, through an AMR procedure, that the error estimator is able to produce meshes on
which solutions converge optimally. In particular, when sharp layers are present, optimal
convergence occurs in the asymptotic regime. Furthermore, both the reliability and the
local efficiency results derived in theorems 5.1 and 5.2 are nonrobust and together they lead
to a bound for the efficiency index in the interval [¢!/2,¢7!]. In the numerical simulations,
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we observed the efficiency index to fall within this range. Finally, we remark that the proofs
of theorems 5.1 and 5.2 assume dtx = O(h%). The numerical examples, however, have
shown that this assumption may be relaxed since similar numerical results are obtained

with 5t,€ = O(hK)

We conclude this thesis by discussing potential directions for future work. As shown in
section 5.5, the mesh size ratio constraint §tx = O(h% ) appears to be an assumption that
can be relaxed in practice. It is therefore of significant interest to pursue an a posteriori
error analysis based on dtx = O(hg). An equally interesting direction lies in removing the
saturation assumption in the reliability proof. Besides the obvious theoretical improvement,
this would potentially lead to an a posteriori error analysis for arbitrary order accurate in
time space-time HDG discretizations. Two additional extensions of the theory should be
mentioned and, in the author’s opinion, pose less of a challenge. The first is to incorporate
hp-adaptivity in the reliability and local efficiency bounds and into the AMR procedure;
the second is to extend the analysis so that it applies to problems that evolve on moving
domains.

Finally, a possible next venue of the Péclet-robust a priori error analysis and the novel
inf-sup stability therein is the time-dependent Oseen equation (which can be viewed as
advection-diffusion of the linear momentum in fluid dynamics) on moving domains. With
such an a priori error analysis available, it would be a natural next step to derive and
analyze an a posteriori error estimator and implement the AMR procedure for the time-
dependent Oseen equation.
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Appendix A

Some facts from differential geometry

Given a parameterization g : (—1, 1)k — S, where S is a k-dimensional hypersurface in R"
(n > k), integration over the surface S is defined as (see [84, Theorem 21.3 and Definition
on page 189]):

do 0o 0@)
r)dr = olgy | —, =—,--., = | d&, Al
[r@ar= [ rlete)von (5258 58 ) as (A1)
where 50 8 3 "
g 0p Y T
| =, =—,. ..., = | = (det
VOl (85178527 78514;) ( € <Qk9k>) )
in which gj denotes the n X k matrix with column vectors {g—é}KKk.

In the context of the space-time element IC, the diffeomorphism ¢x maps K from its
affine domain to its physical domain. Given a Q-facet Fg of I, which is in general curved
in its physical domain, we denote the restriction of ¢x on F' by ¢r,. Furthermore, without
loss of generality, we assume that z; is fixed on F for some 1 < j < d. Based on eq. (A.1),
we can view ¢r as a parameterization of the facet F' from its affine domain to its physical
domain and define the integration over F' as follows

(o) da = /~ £ (650 (@) voly <3¢FQ 09r, Obry Opry 6¢FQ> 45
Fg

— T, ey T, = R e
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_/I;Qf((ﬁ]c(x)) VOld( ag,, 651,...,8%}‘_1,a:,fj+1,...,a—§d) dx (AQ)
1

= [ oct@) @et ()" 5,))" da
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where Jé}c denotes the (n + 1) x n submatrix of J,. by selecting all but its j® column
vectors.

In [99, Appendix B], an alternative definition of eq. (A.2) is given:

f(x)dx:/~ f(¢,<(z))aifA%A---A 0dr_ \ 09 ... 0% dz, (A.3)
Fg Fo

ot 833'1 8553-,1 (9@“ 8@

where the outer product “A” is used. In general, v = w; A -+ Aw,_1, for n — 1 vectors w;
in R", is defined component-wise by the rule:

vl = det(wl, st >wn—1vej)>

with v/ denoting the j*" component of the vector v and e; denoting the 5" basis vector in
R™.

The two definitions, eq. (A.2) and eq. (A.3), are indeed equivalent. Below, we show the
equivalence using generic notations as in eq. (A.1) where we consider a parameterization
0:(=1,1)""" = S with S being a (n — 1)-dimensional hypersurface in R™:

2 n ?
0o 0o )
A=A A = det ( =—,..., =—. €

851 062 aSn—l i
- 851 YA a&-nil b2 851 VAR a&nil b2

n T T
0n—10n—-1 016
= det "
[ ezTQn—l 1 ]

-1
= det(@ﬁngn-1> (1——6f9n_1(ggﬁlgn_1> QZL16{>)
T T -1
=<%t@540m4) n—Wr(@L10m19n1> in)

= det (szlgn—1> )
where we used a few facts from linear algebra: det (AB) = det (A)det (B), det (AT) =

A B
¢ D

’8@ do do

det (A), det — det (A)det (D — CA™'B) and finally, tr (A (ATA)" AT) =

rank (A).
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