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Abstract

Amid the recent surge in next-generation sequencing technologies, alignment-free algorithms
stand out as a promising alternative to traditional alignment-based methods in phylogenetic
analyses. Specifically, the use of genomic signatures has enabled the success of supervised
machine learning-based alignment-free methods in taxonomic classification. Motivated
by this success, this dissertation investigates the potential of unsupervised learning-based
alignment-free algorithms in genomic signature categorization. We conclude that meaningful
information can be learned without reliance on labels, suggesting that supervision can be
effectively eliminated from the learning process.

First, we developed a Deep Learning-based Unsupervised Clustering method for DNA
Sequences, DeLUCS. It trains a discriminative neural network to identify meaningful
taxonomic clusters without supervision. In this process, we designed and conducted
several proof-of-concept experiments to validate the effectiveness of our methodology in
various datasets. Building on the contrastive nature of DeLUCS, we enhance it through
self-supervised representation learning. We introduce iDeLUCS and its applicability in
non-parametric clustering of DNA sequences, matching the performance of alignment-
based and alignment-assisted clustering algorithms. In addition, we successfully apply
unsupervised learning to categorize the genomic signatures of microbial extremophiles. We
provide quantitative evidence suggesting that microbial extremophile genomes may contain
information beyond ancestry or taxonomy. The evidence provided by our computational
experiments led to the biological insight that a pervasive environmental component exists in
the genomic signature of extremophilic organisms and could potentially redefine the concept
of genomic signature. Finally, we introduce BarcodeBERT, a transformer-based encoder
optimized for DNA barcodes. Since barcodes are short DNA fragments that contain enough
information for the taxonomic identification of an organism, our model learns this taxonomy
information and generates expressive embeddings that enable efficient classification of
barcodes of novel specimens. We evaluate the quality of these embeddings through several
downstream tasks, such as supervised fine-tuning and linear probing for species classification
of known species and nearest neighbours probing for genus classification of unknown species.
Additionally, the learned embeddings proved effective in a zero-shot classification framework
for images of insects, underscoring the model’s utility in integrating genomic and visual
data for species identification.

Our work attempts to connect the worlds of biodiversity and taxonomic identification
with the world of deep unsupervised learning. Our findings reveal deep learning’s untapped
potential to capture taxonomic information, even without supervision. The methodologies
presented in this dissertation can also be used to learn expressive DNA embeddings and
test evolutionary hypotheses.
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Chapter 1

Introduction

1.1 Overview

The term “biodiversity” encompasses every living creature on our planet, including plants,
bacteria, animals, and humans. Despite our best efforts in studying biodiversity, we have
only scratched the surface of this vast landscape, with only about 1.2 million species formally
identified and described [140]. Although this number might seem like there is not much left
to be discovered, several studies indicate that the number of species yet to be identified
varies between 2.2 million and 1 trillion for microbial biodiversity [118, 120], and between
161 million to 370 million for eukaryotes [110, 114, 210].

These estimates are enough to assert that cataloging all life on our planet is a monumental
challenge that even with considerable effort, is projected to only be completed by the end
of this century. Nevertheless, the pace of discovery is accelerating, with the rate of species
discovered per year constantly increasing from thousands to tens of thousands [56]. Such
ambitious goals and current progress demand the development of novel technologies for
taxonomic identification that can manage the influx of new data and scale with the rapid
pace of species discovery. Within this broader context of system development for species
discovery and identification, we found the development of efficient models for taxonomic
categorization to be a key area for focused study. It opens up two primary avenues for
exploration: firstly, we can focus on developing models capable of classifying novel DNA
sequences into known species or flag them as unknown. Secondly, we can focus on clustering
DNA sequences of evolutionarily related organisms into operational taxonomic units (OTUs)
without any attached semantic meaning. Considering that the taxonomic identifiers of
newly discovered organisms are still uncertain, it is reasonable to suggest that the latter
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strategy is arguably more appropriate for the task, and it is also helpful in comprehending
the diverse evolutionary pathways leading to today’s biodiversity.

Both classification and clustering are well-established concepts in machine learning and
pertain to different learning paradigms. Classification is linked with supervised learning,
where a model is trained to categorize unknown data points into known categories. In
contrast, clustering is associated with unsupervised learning, where a model deduces patterns
or properties from data, grouping similar data points together without prior knowledge of
possible categories.

This dissertation attempts to put machine learning at the service of biodiversity and sets
out to achieve two main objectives. Firstly, we aim to develop models and techniques for
categorizing DNA sequences without supervision. Our models should be able to take DNA
sequences extracted from organisms across different domains of life and group sequences of
closely related organisms together without any prior knowledge of their taxonomic identifiers.
Secondly, we aim to use unlabelled data to enhance supervised classification pipelines for
taxonomic classification. This involves developing models that can provide a simplified
representation of a DNA sequence, enabling a straightforward supervised classifier to assign
a pre-defined taxonomic identifier accurately. In essence, our research explores the potential
of unlabelled data in the context of DNA sequence categorization.

The methods and analyses presented in this dissertation are motivated by other gen-
eral problems in bioinformatics. They may offer valuable insights into addressing them,
particularly those involving unsupervised learning on genomic data. For example, our
findings could facilitate the grouping of reads or contigs into genomes via non-parametric
clustering, aiding genome reconstruction. They could also be used to develop systematic
methods to estimate evolutionary relationships among species based on genomic signatures.
Furthermore, our research underscores the necessity for developing robust, scalable systems
to process the increasing volume of genomic data efficiently. The development of such
systems will complement innovation in all the other processes involved in DNA barcoding.
Collectively, these advancements can bring us closer to a future where we can monitor
biodiversity in real time at specific locations and assess biodiversity loss due to habitat
destruction and overexploitation. Moreover, these new systems could not only provide
more insight into the genetic composition of groups defined by current taxonomy but also
redefine boundaries to identify novel taxonomic groups.
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1.2 Related work

Machine learning has significantly transformed numerous fields, delivering groundbreaking
results across various scientific domains. These advancements, however, often hinge on the
availability of extensive annotated datasets. Fields like computer vision and natural language
processing, where data annotation is relatively cost-effective, have led the development of
general machine learning algorithms, paving the way for their broader adoption. In contrast,
disciplines such as the “omic” sciences (genomics, transcriptomics, proteomics), where data
collection and annotation have been historically expensive, have seen much slower progress
in adopting machine learning-based methodologies.

In the realm of biodiversity and taxonomic categorization, the advent of next-generation
sequencing (NGS) technologies have significantly changed the landscape by producing vast
amounts of genomic data. Despite these advancements, many of these novel algorithms
still depend on traditional alignment-based methods, which limit the range of data they
can effectively analyze. Prominent among the tools for DNA sequence classification that
have found widespread application in both research and industry are BLAST (Basic Local
Alignment Search Tool) [126], CLUSTAL [176], and MEGA [107]. While highly accurate
for specific applications, these methods are prohibitively expensive, computationally, and
inaccurate in the presence of whole genomes or non-homologous sequences.

The computational demands of alignment-based classifiers [204] and their reliance on
homologous sequences have spurred the development of alignment-free methods [224, 225],
presenting a viable alternative. Notably, the growing amount of data has encouraged the
development of innovative machine learning-based taxonomic classifiers, often by adapting
successful techniques from fields like computer vision or natural language processing. Su-
pervised learning-based approaches have demonstrated remarkable success in classifying
DNA sequences [112, 116, 213], with k-mer count-based methods emerging as both popular
and efficient alternatives [224]. These methods have surpassed traditional alignment-based
techniques in various applications, including whole-genome phylogenies [162], microbial
community profiling [116], and species-level DNA barcoding [203]. The success of these
methods is driven by the use of genomic signatures [97], a concept that encapsulates any
measurable characteristic or representation for which patterns from sequences of closely
related organisms are more similar to each other than patterns in sequences from distantly
related organisms. The use of genomic signatures [116, 184] and suitable numerical represen-
tations [1], alongside machine learning methodologies enables alignment-free evolutionary
analysis and constitutes one of the primary motivations of our unsupervised methodologies.

These highly performant supervised learning algorithms rely heavily on accurate taxo-
nomic labels of sequences in the training set for successful classification. Naturally, errors or
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disputes in the “ground truth” labels can lead to inaccuracies in subsequent classifications.
This motivates the shift in our approach towards using unsupervised machine learning, as
it has the potential to be more efficient for sequence categorization. Unsupervised learning,
which operates on unlabelled sequences, can identify patterns in data while avoiding the
propagation of labelling errors in the training data points and facilitating the classification
of novel sequences by forming new clusters.

Nevertheless, the application of unsupervised learning to genomic sequence clustering
has progressed more slowly than supervised classification. Previous efforts have focused
mainly on applying generic algorithms like K-means or Gaussian Mixture Models (GMM)
to various representations of DNA sequences, with studies exploring K-means clustering
[4, 11, 25, 88, 89] and digital signal processing techniques [3, 77, 130]. Recent proposals
have introduced advanced methodologies to accelerate parametric and non-parametric
clustering algorithms [60, 89]. Deep-learning-based approaches have also made significant
inroads into the realm of metagenomic binning, a field studying microbial communities and
their functions. Several methods closely related to our work, such as those presented in
[150, 154, 207, 220], have demonstrated the potential of employing neural-based clustering
to group metagenomic fragments effectively.

Finally, foundation models, inspired by large language models (LLMs), represent a new
paradigm in genomics. These models are pretrained in an unsupervised manner on a broad
corpus of unlabelled data, learning general patterns before being fine-tuned for specific
tasks. Several examples of this semi-supervised approach are provided in the literature,
[38, 92, 149, 222], and our work incorporates language modelling techniques within larger
architectures to embed DNA barcodes into a meaningful representation space for various
downstream tasks.

1.3 Outline and contributions

In this dissertation, we explore unsupervised learning techniques for the categorization
of genomic signatures across a broad spectrum of genomic data: homologous and non-
homologous sequences; specific genic regions and whole genomes; mitochondrial and nuclear
DNA and prokaryotic and eukaryotic genomes. Our methods bridge the performance gap
between supervised and unsupervised training paradigms and correspond to meaningful
steps toward the broader goal of creating a comprehensive catalogue of life on Earth.

Chapter 2 sets the foundation for our dissertation. It provides relevant biology
background as well as all the mathematical background for supervised and unsupervised
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deep-learning, optimization, neural network architectures and key concepts in information
theory.

Chapter 3 introduces DeLUCS, a novel algorithm that learns from unlabelled genomic
sequences and clusters them based on their similarity. For each input sequence, DeLUCS
generates suitable data augmentations and learns to maximize the predictability of cluster
assignments between the real samples and the augmented copies. It then aggregates the
predictions of various independently trained networks to reduce the variance and boost
overall performance. To the best of our knowledge, DeLUCS was the first deep learning-
based clustering method based on genomic signatures. This chapter draws upon the
collaborative work of Millán Arias, Alipour, Hill, and Kari [134], where Alipour and Millán
Arias are equal first co-authors.

Chapter 4 capitalizes on the contrastive nature of DeLUCS and improves it through
self-supervised representation learning, introducing iDeLUCS. This chapter introduces
the contrastive learning framework, its core components, and the information-theoretic
clustering ensemble that serves as an alternative to traditional majority voting. It also
introduces an additional performance evaluation metric and explores the extension of this
framework to support non-parametric clustering outcomes. The content of this chapter is
based on Millán Arias, Hill, and Kari [136], where Millan Arias is the first author.

Chapter 5 presents a biological application of alignment-free methodologies and machine
learning algorithms and utilizes them to investigate the patterns in the genomic signatures
of prokaryotic extremophiles. First, a dataset of 693 genomes of prokaryote extremophiles
is curated, and the organisms are categorized based on taxonomy and environment. Then,
both supervised and unsupervised machine learning algorithms are used to find high-quality
clusters that correctly approximate the data distribution. Interestingly, even without
supervision, the algorithms group some organisms based on shared environmental conditions
rather than solely on genetic relatedness. This finding indicates that adaptations to extreme
temperatures and pH conditions may leave a discernible imprint on the genomic signatures of
microbial extremophiles. The results in this chapter challenge traditional taxonomy-centric
views and suggest that both environmental and taxonomic factors influence the genomic
signature of specific organisms, especially in extreme conditions. This chapter is based on
joint work by Millán Arias, Butler, Randhawa, Soltysiak, Hill and Kari [135], with Millán
Arias being the first computer science author and Josepth Butler being the first Biology
author.

Chapter 6 explores the application of self-supervised representation learning to various
DNA barcode classification tasks. We pretrain our model, BarcodeBERT, on a database of
∼1.5 million barcodes using an auxiliary loss function. After pretraining, our model embeds
barcode sequences into an expressive representation space suitable for classifying new
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specimens. We evaluate our self-supervised model’s embedding quality against those from
supervised convolutional neural networks and fine-tuned foundational models across various
classification tasks. BarcodeBERT outperforms other models, even without fine-tuning,
in complex taxonomic identification tasks, such as the partial taxonomic identification of
barcodes from previously unobserved invertebrate species. The content of this chapter is
based on a paper by Millán Arias et al. [137], with Millán Arias, Safari and Sadjadi as
equal first co-authors.

Chapter 7 summarizes our work, identifies the remaining challenges and discusses
future work.
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Chapter 2

Foundations

This chapter lays the groundwork necessary for understanding the interdisciplinary field that
this research is situated in, at the intersection of biology and computer science, focusing on
applying machine learning techniques to biological data. The chapter is divided into three
main sections, each designed to provide a foundation for readers of varying backgrounds.

In Section 2.1, we introduce the basic biological concepts essential for computer scientists
venturing into comparative genomics. This section is further subdivided into topics that
cover the fundamental building blocks of life, including nucleic acids described in Section
2.1.1 as the “Alphabet of Life,” the structure and function of genes and genomes in Section
2.1.2, and an exploration of genomes’ evolutionary relatedness in Section 2.1.3. These
subsections aim to equip readers with a basic understanding of molecular biology necessary
for the application of computational analyses in our work.

Section 2.3 introduces a few basic concepts from information theory, setting the stage
for their usage and application in subsequent chapters.

Finally, Section 2.2 shifts focus towards introducing machine learning concepts. This
section begins with an overview of supervised machine learning in Section 2.2.1, followed by
a more substantial dive into deep neural networks in Section 2.2.2. Section 2.2.3 discusses
the critical aspect of optimization in machine learning models, and Section 2.2.4 broadens
the scope to include unsupervised learning and other machine learning paradigms beyond
the supervised framework. This section introduces only the machine learning concepts used
in our methodologies.
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2.1 Molecular biology

Despite the vast evolutionary timescale, the molecular building blocks of life have demon-
strated remarkable stability [99]. Nucleic acids, comprising deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA), are essential macromolecules that enable most of the biological
functions of all living organisms [151]. Throughout our work, as is customary in bioinfor-
matics, we will use a simplified representation of these macromolecules as strings and, for
the most part, will not deviate from this representation. However, this section explains the
composition of these macromolecules, their associated terminology, and how they interact,
as this information is essential to interpret the subsequent analyses in this work.

2.1.1 Nucleic acids: the alphabet of life

Both nucleic acids, DNA and RNA, are composed of chains of nucleotides called strands.
Each nucleotide consists of three main components: a sugar, either ribose in RNA or
deoxyribose in DNA, a phosphate group, and a nitrogenous base or nucleobase (adenine [A],
guanine [G], cytosine [C], and thymine [T] in DNA, which is replaced by uracil [U] in RNA).
There are five carbon atoms labelled from 1′ to 5′ in the sugar such that the nucleobase
and the phosphate group are connected to the 1′ and the 5′ carbon, respectively. The sugar
also contains a hydroxyl group (composed of one hydrogen atom and one oxygen atom)
connected to its 3′ carbon. The alternating sugars and phosphate groups are connected by
covalent bonds in each single strand, forming the backbone DNA strand (see Figure 2.1 a-b).
For each DNA single strand, the unconnected phosphate group on a nucleotide at one end
is called the 5′ end of the strand, and the other is called the 3′ end.

DNA can appear both as a single-strand or double-stranded biomolecule, where two
single DNA strands of opposite orientation bind to each other to form a chemical structure
that resembles a double-helix (see Figure 2.1c). This process is made possible by the
hydrogen bonds that form between the nucleotides at each position. Specifically, an A on
one strand will form two hydrogen bonds with a T on the opposing strand, while a C on one
strand will form three hydrogen bonds with a G on the opposing strand. This phenomenon
is known as Watson-Crick complementarity.

Throughout our work, each DNA single strand is automatically associated with its
corresponding DNA sequence as follows: Given the DNA alphabet Σ = {A, C, G, T }, the
word b1b2, . . . , bn ∈ Σ∗ represents the physical DNA sequence b1b2, . . . , bn read in the 5′ to
3′ direction. Furthermore, given a nucleotide b, we denote its complementary nucleotide as
b̄. The reverse complement of a sequence s = b1 . . . bn is the sequence s̄ = b̄n . . . b̄1 formed
by taking the complement of each nucleotide in s, then reversing the resulting sequence.
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Figure 2.1: Diagrams showing the chemical structure of a DNA molecule. a) Each DNA
nucleotide consists of a nucleobase (A, C, G, T), a sugar molecule (with a hydroxyl group),
and a phosphate group. The sugar’s five carbon atoms are labelled from 1′ to 5′. The
nucleobase attaches to the 1′ carbon, the hydroxyl group to the 3′ carbon, and the phosphate
group to the 5′ carbon. b) Depiction of the interconnection of multiple nucleotides to form
DNA’s sugar-phosphate backbone. P represents the phosphate group, S represents the
sugar and each bi, i ∈ {1, . . . , 4}, represents an arbitrary nucleobase. c) Illustration of
DNA’s double-helix structure and the three main components of each nucleotide. The
figure illustrates the hydrogen bonds between Watson-Crick complementary nucleotide
pairs: adenine-thymine and guanine-cytosine.

2.1.2 Genes, genomes and the central dogma

There are three fundamental information transfers involved in the central dogma of molecular
biology: DNA replication, DNA-RNA transcription and RNA-protein translation. This
theory states that there is a unidirectional flow of information between each type of molecule.
Information flows from DNA to RNA and from RNA to proteins, but never the other
way around [87]. It is important to note that exceptions to the central dogma have been
observed, where RNA direct replication and RNA-DNA reverse transcription can occur [99].
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DNA replication

Reproduction is a fundamental property of all living systems and can be observed at several
levels [99]. At the molecular level, DNA replication is the most basic form of reproduction.
This process involves unwinding the double helix in the DNA double-strand, with each
strand serving as a template for synthesizing a new complementary strand. Replication
proceeds bidirectionally, starting from specific sites known as origins and terminating under
various biochemical conditions. This process is assisted by the DNA-polymerase enzyme,
which recognizes the origins, unfolds the strands and facilitates the synthesis. The origin of
replication may not be unique, so organisms with larger genomes present multiple origins
and termination sites, ensuring the replication process is efficient [151].

DNA-RNA transcription

Although transcription, the synthesis of RNA from a DNA template, shares the fundamental
mechanisms with replication, it is different in its execution [99]. In transcription, only one
strand of DNA is transcribed into RNA, and instead of DNA polymerase, the catalyst
is RNA polymerase, which unwinds the DNA to expose a segment for RNA synthesis
(Figure 2.2). Unlike replication, transcription is highly selective, transcribing only specific
segments of DNA, regulated by distinct start and stop signals. These signals correspond to
special strands within the genome recognized by the RNA polymerase to determine the
transcription region.

After transcription, another process called alternative splicing takes place. Here, the
RNA transcript, or pre-mRNA, is edited before it is translated into a protein. Non-coding
regions within the pre-mRNA, also called introns, are removed, and coding regions, also
called exons, are joined together into genes, which serve as a template for protein synthesis.
Not all transcribed RNA serves the purpose of creating genes [99]; RNA molecules are
categorized based on their function: messenger RNA (mRNA) encodes proteins, ribosomal
RNA (rRNA) participates untranslated in the structure of the ribosome, transfer RNA
(tRNA) are untranslated strings that facilitate protein synthesis, and small nuclear RNA
(snRNA) plays a role in processing mRNA.

RNA-protein translation

Before describing this cellular process, it is important to introduce another basic type of
biomolecule, the amino acid. While a detailed exploration of their chemical structure is
beyond the scope of this dissertation, we note that these are organic acids, each containing
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a specific side chain that acts as an identifier. Among the numerous amino acids found in
Nature, only 20 play a crucial role in the RNA-protein translation process; hence, we say
that the amino acid alphabet has 20 symbols.

In the RNA-protein translation process, mRNA sequences are translated into amino
acid sequences, also called polypeptide chains or proteins (See Figure 2.2). The translation
process is string-to-string transduction, where the protein is the functional agent, and the

Codon

A G T

tRNA
docking

tRNA
leaving

TranslationCytoplasm

DNA

RNA

Nucleus

Transport to
cytoplasm

mRNA
Ribosome

Transcription

Growing Amino 
Acid Chain

tRNA

Amino acid

Figure 2.2: Illustration of the central dogma of molecular biology and the general flow of
genetic information within a cell: from DNA to RNA and from RNA to proteins. The
process begins with DNA-RNA transcription, where a segment of DNA is transcribed into
messenger RNA (mRNA). This segment exits the nucleus, enters the cytoplasm, and is
translated into a polypeptide chain in the ribosome with the assistance of transfer RNA
(tRNA). Each tRNA molecule carries a specific amino acid to the ribosome, matching its
anticodon with the corresponding codon on the mRNA strand.
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polypeptide chain is to be viewed exclusively as a string over the amino acid alphabet
[87, 151]. The fact that the nucleotide alphabet contains four elements and the amino
acid alphabet contains 20 has forced nature to implement a translation mechanism where
substrings of length dlog 20/ log 4e = 3 nucleotides, known as codons, encode a single
amino acid. With 43 = 64 possible codons and only 20 amino acids, this system exhibits
redundancy, averaging 3.2 codons per amino acid. The actual map from codons to amino
acids is known as the genetic code.

Translation takes place in the ribosome, a complex structure composed of proteins and
rRNA. It acts as a molecular machine by reading mRNA sequences and creating proteins.
To match codons on the mRNA with their corresponding amino acids, the ribosome uses
tRNA as an adaptor. Each tRNA is specific to a codon-amino acid pair and carries the
amino acid and an anticodon (the reverse complement of a codon triplet) that binds to the
mRNA codon. Protein synthesis begins when a particular tRNA initiates the polypeptide
chain, with subsequent tRNAs adding amino acids in sequence until a codon coding for a
stop operation ends the process. The resulting polypeptide then folds into its functional
form as a protein.

2.1.3 Evolution and the Tree of Life

The study of evolution sheds light on the existence of life and how living systems have
changed over time. Most evolutionary theories hold that the diversity of life arose by
inherited variation through an unbroken line of descent [39, 40, 47]. This concept of
common ancestry, supported by extensive evidence ranging from genetic to fossil records,
forms the foundation of taxonomic classifications and evolutionary theories that describe the
diversity of life [40, 183]. Another related concept central to the study of early evolution and
life’s origin is the concept of the last universal common ancestor of all life forms (LUCA), or
the progenote. In this theory, the LUCA is a hypothetical primitive entity in the evolution
of life that preceded prokaryotes (single-celled organisms without a nucleus) from which all
current biodiversity originated [48, 208, 211].

The evolutionary journey, from prokaryotic ancestors to today’s biodiversity, is captured
in the universal tree of life, a conceptual model that describes the relationships between
organisms through time. Efforts to classify the immense variety of life have evolved
from morphology-based systems using phenotypic traits as classification criteria to those
incorporating genetic information, revealing relationships that are not apparent through
physical characteristics alone. One of these models, based on ribosomal RNA, is the Three
Domain System introduced by Woese, Kandler, and Wheelis [212] (Figure 2.3) and is the
most widely adopted model for the universal tree of life. This system describes a tripartite
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Figure 2.3: Illustration of the three-domain characterization of the Tree of Life. This system
describes a tripartite division of life into Archaea, Bacteria, and Eukarya based on genetic
similarities. The figure highlights the role of the last universal common ancestor (LUCA)
in the tree as a hypothetical organism representing the most recent common ancestor to all
organisms in the three domains.

division of life into Bacteria, Archaea, and Eukarya. This last group comprises all the
organisms whose cells have a membrane-bound nucleus.

More precisely, Bacteria are prokaryotic organisms that are present almost anywhere
on Earth. They comprise a wide range of organisms, from pathogens to vital symbiotic
species like those that fix nitrogen in the soil or aid human digestion. Archaea, a more
recently discovered group, also comprise prokaryotic organisms that surprisingly share
many genetic similarities with eukaryotes despite their morphological similarities to bacteria
[212]. In particular, they possess similar genes and enzymes involved in transcription and
translation [185, 212]. Eukarya includes all multicellular organisms and some single-celled
ones, all made of complex cells with nuclei and organelles like mitochondria and chloroplasts.
Eukaryotes are subdivided into four major kingdoms: animals, plants, fungi, and protists.
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2.1.4 Evolutionary relationships: Reconstructing the Tree of Life

The scientific field that studies the evolutionary history of a species or group is known
as phylogeny. This field utilizes a “phylogenetic” tree with individual species as leaf
nodes to capture the evolutionary history of specific groups. Taxonomy, a related field,
is the discipline of categorizing organisms into distinct evolutionarily related groups at
many different levels, starting from top-level domains such as Eukaryota and descending
through kingdoms, phyla, classes, orders, families, and genera to finally reaching individual
species. Unlike older taxonomic systems, which grouped organisms based solely on physical
similarities, modern taxonomy has now adopted the use of molecular phylogenetic analyses
that are based on genomic similarities to accurately assign organisms to taxonomic groups.

Comparative biology and phylogenetic analyses usually rely on the fundamental concept
of homology. In genetics, “homolog” refers to a protein and its corresponding gene, which
share a common ancestry. A gene inherited by two or more species from a common ancestor
is considered a homologous gene. Although homologous genes may result in similar sequences,
sequence similarity does not necessarily indicate homology [87, 99]. Conserved regions with
homologous sequences are useful for estimating evolutionary distances and constructing
phylogenetic gene trees using alignment-based algorithms such as the Smith-Waterman
[181] for local alignment or the Needleman-Wunsch [147] global alignment. This comparison
among sequences allows the classification of new sequences by comparing them to gene
sequences from known taxa [51, 113, 126]. After sequence alignment, alignment information
can be used to construct various phylogenetic tree topologies, each evaluated by several
optimality criteria to determine its suitability in describing the data. Two commonly used
reconstruction criteria are maximum parsimony and maximum likelihood. While maximum
likelihood is particularly effective for analyzing homologous sequences from distantly related
organisms [53], its computational complexity [32] and dependence on accurate sequence
alignment make it impractical for whole genome analysis.

The advent of biochemical research in the late 20th and early 21st centuries has
significantly enhanced phylogenetic analyses, primarily through advancements in DNA
sequencing technologies. Researchers now have access to various methods and bioinformatics
tools that provide precise estimates of species divergence. A key method enabling these
advancements is the polymerase chain reaction (PCR), a standard laboratory technique
that produces multiple copies of specific segments of double-stranded DNA, making it
possible to sequence DNA more effectively. Although performed in vitro, PCR is based on
natural DNA replication mechanisms, and it selectively amplifies a specific DNA region,
generating millions of copies. As shown in the first row of Figure 2.4, the input of PCR is
contained within a solution that includes a double-stranded DNA template, nucleotides
(not shown in the figure), a special heat-stable DNA polymerase (not shown in the figure),
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and the forward (F ) and reverse (R) primers. These primers are short single strands of
DNA that are complementary to the ends of the segment that is to be amplified and serve
as sequence-specific starting points for DNA synthesis.

Figure 2.4 illustrates the steps involved in each PCR cycle: First, in denaturation, the
hydrogen bonds between the two strands of the DNA double-helix are broken at high
temperatures, usually > 94°C, resulting in two single strands (forward and reverse) called
the templates. Next, the temperature is decreased to 45-68°C for the primers to attach to
the templates. This process is called annealing. The forward (F ) primer attaches to the
complementary site on the reverse DNA strand while the reverse (R) primer attaches to the
complementary site on the forward DNA strand; DNA synthesis is initiated at each of the
two primer sites by DNA polymerase. Finally, during extension, the polymerase extends
the newly synthesized DNA sequence by incorporating the individual nucleotides, each
complementary to the corresponding nucleotide of the template, creating a new strand that
is Watson-Crick complementary to the template DNA. The temperature of this step varies
between 65°C and 75°C depending on the protocol [28]. After each cycle, the quantity of
the DNA segment flanked by the primers doubles, producing 2n copies of the target DNA
region after n cycles. Most thermocycling protocols include 30-45 cycles.

Another highly influential technology fundamental to the success of molecular methods
for phylogeny and taxonomy is DNA sequencing. The first of these methods, Sanger
Sequencing, was invented in the 1970s and was considered the gold standard for DNA
sequencing due to its high quality. The process involves using a DNA polymerase to create
a complementary copy of a single-stranded DNA template. This process is initiated by
a complementary primer at the 5’ end of the template, and nucleotides are sequentially
added according to Watson-Crick complementarity. Besides free-floating nucleotides, the
input to the reaction also contains four di-deoxynucleotides (ddNTPs), each corresponding
to a DNA base. While ddNTPs are similar to nucleotides and can attach to the growing
chain, they lack the 3’ hydroxyl group required for further DNA extension, resulting in the
termination of the chain once they are incorporated. Each type of ddNTP is tagged with
a unique fluorescent dye, allowing for automated reading of the DNA sequence through
light emission at different wavelengths. This method generates multiple copies of DNA
fragments of varying lengths, with distinct ddNTPs marking the termination of each chain
at different positions in the template molecule. The original DNA sequence is determined
by aggregating the fluorescent emissions of the ddNTPs.

Sanger sequencing has been slowly replaced by NGS systems over the last decade.
Although with less precision, these systems enable the processing of millions or even billions
of sequencing reactions simultaneously, which usually leads to producing longer DNA
sequences at a fraction of the cost [66]. Although different machines, with many technical
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Figure 2.4: The figure illustrates one polymerase chain reaction (PCR) cycle generating
two copies of the template sequence. The inputs are contained within a solution, usually
called PCR mix, including a double-stranded DNA template, shown in the first row, a
forward (F) and a reverse (R) DNA single-stranded primer, are also present in the first
row. Free-floating nucleotides (not shown) and DNA polymerase (not shown). Each PCR
cycle has three steps: denaturation, annealing, and extension. During the denaturation
step, the temperature increases, and the template breaks into two single strands. During
the annealing step, the temperature decreases, and the single strands from the template
attach to the corresponding primers. Finally, during the extension step, the primers are
extended by DNA polymerase using the free-floating nucleotides present in the solution
according to the template strands and the rules of Watson-Crick complementarity.
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variations, have been invented, they all share some standard features, such as sample
preparation, sequence amplification, raw data collection and signal aggregation. For a more
comprehensive description of modern sequencing technologies, we refer the reader to [179].
It is important to acknowledge that these are not error-free technologies. There are instances
where the hardware utilized to read the signal corresponding to specific nucleobases in
the DNA sequence cannot differentiate them with certainty. In such cases, sequencing
technologies may generate an N symbol instead of the expected {A,C,G,T} symbols to account
for the uncertainty. This is a recognized challenge in the field of bioinformatics, and we
employ various strategies to effectively address this issue in our work.

So far, we have introduced the basic terminology and briefly mentioned the key techno-
logical advancements that have greatly improved the precision and accuracy of phylogenetic
tree representations and taxonomic classifications. From all the frameworks using these
technologies, we will expand on the two methodologies close to our work: DNA barcoding
and alignment-free analysis using genomic signatures.

DNA barcoding

Although related to taxonomy and phylogenetic inference, DNA barcoding is a tool designed
specifically for species identification with limited applicability at lower taxonomic levels.
This tool leverages sequence variation in short, standardized homologous genic regions,
called DNA barcodes, to discriminate species [28]. Despite being proposed in 2003 as a
taxonomic identification method for organisms in the kingdom Animalia [28, 74], DNA
barcoding has been successfully extended to other kingdoms within Eukarya (Plant, Fungi,
Protista) [165]. The homologous DNA barcode region, or simply barcode, found to be the
most effective for organisms in the kingdom Animalia is a 648-base pair (bp) fragment
near the 5’-end of the mitochondrial cytochrome c oxidase subunit I (COI) gene. It was
selected for identification purposes due to its advantageous properties, including a high
copy number per cell, maternal inheritance without recombination, a higher nucleotide
substitution rate facilitating species differentiation, and the absence of introns simplifying
sequence comparison [165].

Despite its capacity to provide accurate identification at multiple taxonomic levels and
contribute to understanding phylogenetic diversification, DNA barcoding was not designed
to reconstruct phylogenetic relationships. Its primary function is to distinguish between
species. DNA barcoding does have some limitations. For example, it may not be able
to differentiate between recently diverged species, and the presence of multiple barcode
variants within an individual may hinder accurate sequence recovery [28]. Nevertheless,
DNA barcoding has become a dependable and effective tool for species identification and
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discovery. It has significantly improved biodiversity cataloging and expanded our knowledge
of species distribution. In particular, the International Barcode of Life Consortium (iBOL)
and the Barcode of Life Database System [164], have enabled the collection and storage of
more than 16M total barcodes from more than 250,000 animal species, more than 72,000
plant species and more than 25,000 other species.

Genomic Signatures

Evolutionary analyses traditionally focus on studying homologous genes inherited from
a common ancestor to determine the relationships between species. While this approach
remains fundamental, scientists have been aware of other unique, species-specific patterns
within the genome since the early 1960s. Early biochemical experiments, for example,
showed evidence that the relative abundance of dinucleotides might be a unique species-
specific nonrandom pattern [93]. However, the significance of these patterns as a potential
tool for evolutionary analysis remained underexplored until the 1990s. It was not until
this decade that Karlin and Burge [97] formally introduced the concept of a genomic
signature, highlighting its value in studying evolutionary relationships beyond the analysis
of homologous sequences. They defined a genomic signature as any numerical quantity
that shows greater similarity among DNA sequences of closely related organisms compared
to those of more distantly related organisms. Initially, dinucleotide relative frequencies
were proposed as a robust signature that describes inter- and intra-species variations.
This revelation of characteristic DNA sequence patterns through k-mers frequency profiles
(normalized histograms of counts of subwords of length k) has enabled the development of
alignment-free methods. Such methods identify genomic similarities without the necessity
of homologous sequences, essentially capturing part of the phylogenetic information from
the signature [42].

Before these developments, in 1990, Jeffrey applied the Chaos Game Representation
(CGR) to DNA sequences, uncovering hidden species-specific structural patterns [90]. CGRs
offer a two-dimensional graphical representation of genomic sequences. In this construction,
each nucleotide in the DNA alphabet is mapped to a corner of a unit square. Formally, the
mapping w is defined by w(A) = (0, 0), w(C) = (0, 1), w(G) = (1, 1), w(T ) = (1, 0). Given
a DNA sequence s = b1b2 . . . bn, the CGR sequence S = {(xi, yi) | 1 ≤ i ≤ n} of s consists
of the collection of points with coordinates recursively defined as follows:

x0 =

(
1

2
,
1

2

)
xi =

1

2
(xi−1 + w(bi)) .

This marked the first instance of genome sequences being visualized, thereby illuminating
their local and global characteristics. Notably, CGRs and k-mer frequency vectors are
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Figure 2.5: Frequency chaos game representation at a resolution k = 9 of (a) The first 25,000
bp of the Bacillus mycoides genome in domain Bacteria — Accession ID: NZ_CP009691.1;
(b) The complete mitochondrial genome of Equus Caballus in kingdom Animalia –Accession
ID:NC_001640; (c) Chromosome 1 in genome assembly GRCh38.p14 of the Homo sapiens
in kingdom Animalia; (d) Random DNA sequence avoiding letters G and C with high
probability; (e) Random DNA sequence avoiding letter G with high probability; (f) Random
DNA sequence avoiding sub-string CG with high probability.
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interconnected through the fCGRk representation, which discretizes the continuous CGR
into a two-dimensional unit square image. The intensity of each pixel within this image
represents the frequency of a specific k-mer in the sequence [43]. This renders fCGRk both
as a graphical and numerical representation, encoding patterns characteristic of each species’
genome. For example, consider the representations in the top row of Figure 2.5. These
correspond to fCGRs of real DNA sequences at a resolution k = 9, each having a specific
fractal pattern (genomic signature). On the other hand, consider the representations in
the bottom row of Figure 2.5. These correspond to the representations of mathematical
sequences, whose construction is based on sub-string avoidance. This comparison shows
that visual patterns in fCGRs from real DNA sequences can be used to infer properties
of the original sequence. Note that comparison by visual inspection is only possible for
distantly related organisms; more careful mathematical and computational models are
necessary to compare closely related organisms. These alignment-free methods based on
genomic signatures present a competitive alternative to alignment-based methods both in
phylogenetic [163, 224, 225] and taxonomic classification studies [7, 112, 116] and are an
inspiration for the methods developed in this dissertation.

2.2 Information theory

In this section, we introduce the basic concepts from information theory that are relevant
to our work. For a more thorough exposition of the field, the reader is referred to [36, 123].

2.2.1 Entropy

Given a discrete random variable x that takes values x ∈ X and has probability mass
function p(x) = P (x = x), the entropy H(x) is a measure of the average uncertainty in the
random variable and is defined by

H(x) = −
∑
x∈X

p(x) log2 p(x). (2.1)

The base of the log used is typically 2, so the information is measured in bits (short for
binary digits). If the base of the log is used in e, the unit of information is called a nat.
Throughout the rest of this chapter, we will measure information in nats to omit the base
for convenience. H(x) represents the average number of bits/nats required to describe the
random variable x.
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For distributions p and q over the same event space X , the cross entropy HCE is defined as:

HCE = −
∑
x∈X

p(x) log q(x) (2.2)

serving as a measure of the dissimilarity between q and the true distribution p and commonly
used as a loss function in machine learning.

2.2.2 Mutual information

For a second random variable x̃ that takes values x̃ ∈ X̃ , we define the conditional entropy
H(x|x̃), for a pair sampled from a joint probability distribution p(x, x̃) = P (x = x, x̃ = x̃),
as the entropy of a random variable x conditional on having some knowledge about the
variable x̃ as:

H(x|x̃) = −
∑

x∈X ,x̃∈X̃

p(x) log
p(x, x̃)

p(x)
(2.3)

The reduction in the uncertainty of x introduced by the additional knowledge provided by
x̃ is called mutual information, and it is defined by

MI(x, x̃) = H(x)−H(x|x̃) =
∑

x∈X ,x̃∈X̃

p(x, x̃) log
p(x, x̃)

p(x)p(x̃)
. (2.4)

Mutual information measures the dependence between the two random variables and
represents the amount of information one random variable contains about another. I(x, x̃) is
symmetric, always non-negative, and is equal to zero if and only if x and x̃ are independent.

2.2.3 Kullback-Leibler divergence

For two arbitrary distributions p and q, it is also useful to define a relative measure to identify
the proximity between them. We say that D(p, q) is a divergence measure if D(p, q) ≥ 0,
with equality if and only if p = q. Note that to be a metric, D must also satisfy the triangle
inequality D(p, q) ≤ D(p, r) +D(r, q) and be symmetric D(p, q) = D(q, p). There are many
possible divergence measures used to determine the proximity of distributions. Here, we
focus on a particular one, the Kullback-Leibler (KL) divergence, also known as the relative
entropy between two distributions p and q. For discrete distributions, the KL divergence is
defined as:

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.5)
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Note that the previous expression can be re-written in terms of the other quantities as:

DKL(p||q) =
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x) (2.6)

= −H(p) +HCE(p, q). (2.7)

For distributions p and q of a continuous random variable x, the KL divergence is defined
as:

DKL(p||q) =

∫
x∈X

p(x) log
p(x)

q(x)
dx. (2.8)

Finally, we note that the mutual information between random variables x and x̃ can now
be expressed in terms of the KL of their respective marginal and conditional distributions
p(x), p(x̃), p(x, x̃) as:

MI(x,x) = DKL(p(x, x̃) || p(x)q(x̃)) (2.9)

emphasizing the information gained from using the joint distribution over independent
marginal distributions.

2.3 Machine learning

This section provides the necessary technical background on machine learning and artificial
neural networks (ANN), but it is not meant to be a thorough exposition of the field. For a
more exhaustive presentation, the reader is referred to [63, 65, 143].

2.3.1 Supervised machine learning

Supervised machine learning is a fundamental approach in the vast landscape of machine
learning methodologies. The primary goal is to learn a parameterized mapping function,
f(x;θ), that connects inputs x ∈ X to outputs y ∈ Y . Inputs, also known as features,
covariates, or predictors, are typically represented as fixed-dimensional vectors of numerical
values. For example, in genomics, these inputs could be DNA or RNA sequences. In
classification tasks within supervised learning, the output space is a discrete set of mutually
exclusive labels, Y = {1, 2, . . . , K}, where each label corresponds to a distinct class. In
genomics, these could correspond to the presence or absence of a pattern in the input
sequence.
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Formally, the training data for a supervised learning model consists of a set of N ∈ N
input-output pairs D = {(xn, yn)}Nn=1, known as the training set. The model learns from
this data to accurately predict the output y given a new input x. From a probabilistic
standpoint, the function f(x;θ) encapsulates the conditional probability of the target
variable y given the input x, symbolized as p(y|x,θ). Conceptually, this is equivalent to
approximating the posterior predictive distribution of the target based on new input data
grounded in an assumed probabilistic model.

Binary classification is a particular case of this problem where Y can take on one of two
possible values, e.g., y ∈ {0, 1}. An example of binary classification in bioinformatics can
be identifying patterns that serve functional roles within the genome where labels 0 and
1 correspond to the presence or absence of the pattern. Multi-class classification is also
applied in the context of genomics and is very close to our work. In this context, the set X
consists of DNA sequences that must be classified, for example, into different taxonomic
categories comprising the set Y .

2.3.2 Deep neural networks

Inspired by the structure of the human brain [125], deep neural networks consist of a
particular composition of functions called layer functions or simply layers. These layers are
interconnected, modelling the stimuli propagation of brain synapses [111]. More specifically,
given input and output spaces X and Y , respectively, the function fl = f(x;θl) is called a
parameterized “layer function”. An ANN is a mapping y = f(x;θ) defined as a composition
of a finite number L ∈ N of layer functions.

f(x;θ) = fL ◦ · · · ◦ f1(x,θ) (2.10)

The function f1 is called the input layer, fL is called the output layer, and all the others are
referred to as the hidden layers. Neural networks are usually called deep as the number of
hidden layers increases and are categorized according to the behaviour of their main layers,
interconnections, and architectures. In this subsection, we briefly describe the generalities
for each class of networks related to our work.

Multi-Layer Perceptron

In a Multi-Layer Perceptron (MLP) [169] or deep feedforward network, each layer function
consists of a linear operator parameterized by a weight matrix Wl. These layers are also
called fully connected layers because the output depends on all the components of the input
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Figure 2.6: The figure illustrates three distinct neural network architectures utilized in this
dissertation: a) the multi-layer perceptron (MLP) or feedforward neural network, which
consists of multiple layer functions that process inputs sequentially; b) the convolutional
neural network (CNN) architecture, as a composition of convolution and pooling layers,
usually followed by an MLP for prediction; and c) the transformer encoder architecture as
a stack of encoder layers each consisting of a multi-head attention block and an MLP using
residual connections and layer normalization (Adapted from [201]).

via the weight matrix. Each fully connected layer is followed by a non-linear activation
function ψ(·). More specifically, each layer’s function fl, combines the previous layer’s
output, or representation zl−1, with its own non-linear activation ψl:

zl = fl(zl−1) = ψl(Wlzl−1) (2.11)

Though any differentiable function could be an activation function, non-linearity is
essential for approximating arbitrary functions [81]. In practice, several activation functions
have been proposed in the literature [63], but the most commonly used are the Rectified
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Linear Units (ReLU) [63], defined as:

ψ(x) = ReLU(x) = max(x, 0) (2.12)

Appropriate non-linear activation functions ensure that MLP can act as universal
function approximations [81]. Note that although an MLP with a single hidden layer can
achieve this, deeper networks have been empirically and theoretically proven to surpass
architectures with fewer layers [111].

Convolutional Neural Networks

The expressive power of MLPs is theoretically enough to approximate arbitrary functions.
However, learning the optimal parameters becomes harder as the number of parameters
increases, which may occur with an increase in the dimensionality of input space or
when more layers are added to the network. MLPs struggle with high-dimensional data
modalities such as images or raw audio. Moreover, an extra level of complexity of these
modalities is that salient patterns can appear in different “positions” across the input, so the
model’s prediction must be invariant to the translation of these patterns across the input.
Convolutional neural networks (CNNs) became popular in this context, where translational
invariance and shared parameters are essential to effectively learn patterns in the input
data [143]. The idea behind this type of architecture is to replace the linear operators Wl

in MLPs with a more versatile linear operator with fewer parameters that could act as a
template across the input. That could be achieved through the convolutional operator,
which will be detailed below.

Given two functions h, g : RD → R, the convolution (h ∗ g) : RD → R is defined as:

(h ∗ g)(u) =

∫
RD
h(u− z) · g(z)dz (2.13)

For discrete signals x,w : Z→ R, the convolution operation is defined by

(x ∗ w)[n] =
∞∑
−∞

x[n−m] · w[m] (2.14)

where x[n] is the input signal and w[n] is called the convolution kernel, represented by
an array of parameters, or weights, optimized through the learning process. In the context
of CNNs, the main layer functions become

fl[zl−1] = ψ(zl−1 ∗ wl),
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where the outputs of each layer, or hidden representations zl = fl[zl−1], are often called the
feature maps.

Convolutions can retain useful positional information, but for tasks like image classifica-
tion where location invariance is desired (an object can be present anywhere in the image),
convolution layers must be alternated with pooling layers. A max-pooling layer selects
the maximum value from its inputs. In contrast, an average pooling calculates the mean
in fixed-sized windows, summarizing the feature maps and making the output unaffected
by the input pattern’s location. A typical CNN design alternates between convolutional
and pooling layers and uses a linear output layer. This type of architecture, as seen in
Figure 2.6, is specialized in learning patterns from data with a known grid-like topology, i.e.,
contains spatial structure, because the parameters in the convolution kernel can be shared
and optimized to extract meaningful information throughout the entire input. Furthermore,
they can massively compute and combine feature maps to derive non-linear input-output
relationships, proving effective in visual applications for classification and feature extraction
[111], as well as in analyzing short homologous DNA sequences [52, 189].

Transformer Models

In the neural networks described so far, hidden representations zl are obtained through
linear transformations, followed by non-linear activation functions as zl = ψ(Wlzl−1).
However, transformer models [201] use a sophisticated way to quantify the dependency of
one part of the input on other parts of the input and scale the weight matrices accordingly.
This attention mechanism introduces a more flexible approach where the weights depend
on the input, allowing for dynamic interactions between input elements and enhancing the
model’s capability to learn long-range dependencies in the data. Given this novel feature,
transformer models became state-of-the-art in many tasks involving sequential data, such
as machine translation [201], language modelling [44], text summarization [24] and protein
sequence generation [124]. For a more comprehensive list of applications and efficient
implementation of transformer models, see [190].

The transformer model comprises stacked encoder layers, each consisting of multi-headed
attention, residual connections, feedforward layers, and layer normalization, as illustrated
in Figure 2.6-c. We will describe each of the components below. These blocks enable the
transformer to process sequential data effectively, making it a powerful tool for various
sequence generation tasks.
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Self-Attention:

Given a sequence of n input embeddings xi, each represented as a row of a matrix X ∈ Rn×d,
the self-attention mechanism aims to model interactions between each input and every other
input in the sequence. This mechanism enables the capture of contextual relationships in
data, regardless of their positional distances within the sequence.

The self-attention function sa(·, X) for an input xi is defined as a weighted sum of all
inputs embeddings, where the weights encode the relevance of each embedding:

sa(xi, X) =
n∑
j=1

a[xi,xj] · Φvx
T
j (2.15)

Here, Φv is a linear transformation applied to the input embeddings xj , and the attention
weights a[xi,xj] are computed as follows:

a[xi,xj] =
exp(Φqxi · (Φkxj)

T )∑n
l=1 exp(Φqxi · (Φkxl)T )

(2.16)

This expression can be understood as a soft look-up table where the terms Φqxi
and Φkxj represent the query and key vectors, respectively, obtained by applying linear
transformations Φq and Φk to the inputs. The dot product Φqxi · (Φkxj)

T measures the
similarity between the query and key.

To efficiently compute self-attention for all inputs simultaneously, we leverage matrix
operations:

saQKV (X) = softmax
(
XQ(XK)T√

dk

)
XV (2.17)

where X is the matrix with inputs i as rows, and Q, K, and V are parameter matrices
for queries, keys, and values, respectively. The factor

√
dk is used for scaling the dot

products to control the gradient’s variance during training.

In practice, several attention matrices are learned simultaneously to aggregate differ-
ent relevant dependencies in the data. Multi-head attention computes l independent
attention functions (or “heads”) Ti(·) and then concatenates their outputs:

Multi-Head(X) = Concat(T1, . . . , Tl)Wo (2.18)
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Ti(X) = softmax
(
XQi(XKi)

T

√
d

)
XVi (2.19)

Wo is a linear transformation applied to the concatenated outputs, integrating informa-
tion across heads. This approach enables the model to capture a richer representation of
the input data.

Residual connections, feedforward layers, and layer normalization

Besides the attention mechanism, transformer layers incorporate more components for
improved training stability and enhanced testing performance. In particular, layer normal-
ization standardizes the activations within a layer, reducing training time and improving
the model’s generalization. Residual connection, corresponding to bypass connections in
the network architecture that enable gradient flow directly across layers, improving train-
ing efficiency and preventing gradient vanishing during SGD optimization. To complete
the transformer layer function, an additional MLP(·) layer is included to capture more
complex dependencies within the data, along with an extra residual connection and layer
normalization. Formally, these operations are expressed as:

z = LayerNorm(x+ MultiHeadAttention(x)),

z = LayerNorm(z + MLP(z)).

These components of the transformer layer function are stacked together. In practice, the
most used architecture, popularized by [201], consists of 12 encoder layers and 12 attention
heads.

Positional encodings

Even with attention, the previously described transformer encoder layers lack an inherent
understanding of sequence order. This means that we could permute the input elements
(tokens), and that would be irrelevant to the model. If sequence order is important for
our applications, as it usually is, we need to provide positional information to the model.
For this, sinusoidal functions are used to encode a continuous pattern that helps the
model discern the relative positions of the input elements. We represent these positional
embeddings as a position matrix P ∈ Rn×d calculated as:

P (pos, 2i) = sin

(
pos

10000
2i
d

)
(2.20)
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P (pos, 2i+ 1) = cos

(
pos

10000
2i
d

)
(2.21)

The oscillations allow the model to understand sequential order without introducing
discontinuities. Alternatively, positional embeddings can be learned as part of the model’s
parameters. In either case, positional encoding is the first component of the transformer
model, and the input is encoded before being fed through the stack of encoder layers.

Note that we have briefly introduced the encoder layers of the model, as these are the only
ones used in this dissertation. For a more comprehensive description of an encoder-decoder
transformer model, see [201].

2.3.3 Optimization

In machine learning, parameter estimation is a pivotal goal, where we aim to identify
the optimal parameters θ ∈ Θ that minimize or maximize an objective function, such
as a loss function L(θ) or a reward function γ(θ), respectively [143]. The parameter
space Θ is typically assumed to be continuous, lying within RD, with D representing the
dimensionality of the parameters. Optimization methods commonly rely on first-order
derivatives of the objective function to determine “downhill” directions, albeit without
considering the curvature information:

θt+1 = θt + ηtdt (2.22)

In this equation, ηt denotes the learning rate or step size, and dt represents a descent
direction, typically the negative gradient, given by gt = ∇θL(θ)|θt . Stochastic optimization
is often used to optimize the expected value of the function:

L(θ) = Ex∼q(x)[L(θ,x)] (2.23)

This approach involves using random training examples x from the training set. With the
assumption that the distribution q is independent of the parameters, unbiased gradient
estimates can utilize gt = ∇θLt(θt), leading to the stochastic gradient descent (SGD)
method that converges to a stationary point where the gradient equals zero.

Many methods have been proposed to accelerate the optimization process. One such
method is the momentum approach, which accelerates the optimization process by push-
ing updates toward consistently favourable directions while mitigating oscillations in the
directions where the gradient changes abruptly, much like a rolling ball gaining momen-
tum on a downhill. The AdaGrad [50] method adapts learning rates for each parameter
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to accommodate the sparsity of gradients, improving optimization for convex functions.
Although this method dynamically adjusts learning rates, the effective learning rate may
decrease significantly over time due to the cumulative nature of the denominator term. The
RMSProp method addresses this by employing an exponentially weighted moving average of
squared gradients. Finally, the Adam optimizer [101] combines the concepts of momentum
and adaptive gradients, making it an efficient choice for large-scale and quick-converging
optimization tasks in machine learning. It calculates moving averages of gradients and
squared gradients, adjusting updates accordingly.

The integration of momentum and adaptive learning rates into the Adam optimizer
positions it as a preferred method for various machine learning optimization challenges. It
balances the benefits of SGD and advanced heuristics for improved optimization efficiency.

2.3.4 Beyond supervised machine learning

Labelled data fuel supervised machine learning. Nevertheless, even without labelled training
samples, we can still uncover useful patterns within the data. For example, unsupervised
representation learning focuses on training a network to produce as output meaningful
intermediate representations zl that could potentially be used for subsequent analyses.
These trained models, or feature extractors, can generate representations of novel data
points without categorizing them into predefined classes. If a new model is later trained on
the representations in a supervised way, this approach is called semi-supervised learning.
Another example of how to make use of unlabelled data is clustering, which consists of
the categorization of the training data points based on their similarity. In this section,
we introduce foundational unsupervised learning techniques, including autoencoders and
variational autoencoders. This lays the groundwork for more advanced methodologies like
self-labelling, contrastive methods, and transformer model-based semi-supervised learning,
which will be detailed in subsequent chapters.

Autoencoders

Autoencoders, a class of deep neural networks, are designed to learn compressed representa-
tions of data through two primary components: an encoder f(x;θ) that maps an input x
to a representation z = f(x) in a lower dimensional space, and a decoder gϕ that aims to
reconstruct the input from this representation, yielding x̂ = g(z). The encoder and decoder
can either be MLPs or CNNs and are trained simultaneously to minimize a reconstruction
loss L(x, x̂), ideally preserving significant properties of the original data within a compact
lower-dimensional space. Autoencoders find applications in denoising and dimensionality
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reduction, showcasing their utility in extracting and preserving salient features from the
data.

The latent space learned by autoencoders may lack continuity, meaning that arbitrary
points in the latent space do not necessarily translate back into plausible data points.
Generative models, particularly Variational Autoencoders (VAE) [102], address this by
ensuring that the latent space is continuous and structured, enhancing the model’s ability
to generate new data instances. VAEs model the encoder and decoder as conditional
distributions, with the encoder approximating a simple, fixed distribution (e.g., a Gaussian
with mean zero and unit variance). The decoder, or generator, samples from this distribution
to reconstruct the original training samples with high fidelity. The loss function for VAEs
combines a reconstruction term with a Kullback-Leibler divergence term (see Section 2.2),
encouraging the latent space to adhere to the prior distribution:

LVAE = −Ez∼q(z|x) [log p(x|z)] +DKL (q(z|x)‖p(z)) . (2.24)

Clustering

Clustering aims to partition data into groups of “similar” items without predefined labels.
This is especially relevant in bioinformatics, as clustering can be used to identify DNA or
RNA sequences with similar patterns. In the context of DNA, the clustering problem is
formally stated as follows [64].

Let Σ = {A,C,G, T} and L the length of the sequences to be clustered. The goal of
the sequence clustering problem is to assign N sequences into a maximum of K clusters,
assuming that K is a given parameter.

In the more specific problem of characterization of biodiversity, it is required that each
cluster c corresponds to a unique species or OTU with distribution pc. More precisely, the
goal is to find a decision rule δ : ΣL → {1, . . . , K} which correctly maps each DNA sequence
to its respective genome bin or OTU. In contrast with the “taxonomic classification” or a
more general clustering problem, the subgroups or bins will remain unlabelled, the clustering
should be as fine-grained as possible, and the assessment will be done using clustering-
specific metrics. Unlike general domains, one of the most challenging characteristics of this
problem is the complexity of the output space, since there could be thousands of species
present in a sample. Here, we present some of the earliest and more general approaches to
unsupervised clustering, K-means, and GMMs. These are classic and versatile algorithms
we often use as baselines throughout our work. These are parametric clustering algorithms,
where the computation of the cluster label assignments for each training sample is selected
from a fixed number of n_clusters (K), given as an extra input to the models.
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K-means algorithm seeks to minimize the sum of squared distances between data
points and their assigned cluster centroids. Its objective function can formally express this:

L =
K∑
i=1

ni∑
j=1

∥∥∥x(i)
j − µi

∥∥∥2 , (2.25)

where K is the number of clusters, ni is the number of points in cluster i, x(i)
j is the jth

point in cluster i, and µi is the centroid of cluster i. The algorithm iteratively updates
cluster assignments and centroids until convergence, aiming for a partition that minimizes
within-cluster variances.

Gaussian Mixture Model (GMM) is a probabilistic model that assumes data points
are generated from a mixture of several Gaussian distributions, each representing a cluster.
The model’s parameters are optimized using the Expectation-Maximization algorithm
[131], which iteratively updates the probabilities of cluster assignments and the Gaussian
parameters to maximize the likelihood of the data. The GMM can accommodate clusters of
different sizes and shapes, making it more flexible than K-means in capturing the complexity
of data distributions, with the caveat that it can be more computationally expensive.

Through these unsupervised learning methodologies, we can discern meaningful patterns
and structures in datasets where direct annotations or labels are unavailable.

Clustering evaluation metrics

Given the available information at test time, clustering results can be evaluated post hoc
using external or internal validation methods. The key distinction is that external methods
evaluate performance against the ground truth of the data, and internal methods do not
use any ground truth and measure other data properties instead. We focus on external
evaluation methods, as achieving agreement with the ground truth (taxonomy) is ultimately
one of the main goals of this research.

For a DNA sequence dataset S = {sn}Nn=1, we say that a clustering partition of S ,
πC = {C1, . . . , CR}, represents a set of R clusters such that πC(si) = ci corresponds to the
clustering assignment of sequence si, and each Cr = {s ∈ S | πC(s) = r} corresponds to the
set of all sequences assigned to cluster r. The true labelling partition πL = {L1, . . . LK}
of S , represents a set of K clusters, such that πL(si) = li corresponds to the true label of
sequence si and Lk = {s ∈ S | πL(s) = k} is the set of all sequences with the true label k.

Based on this notation, we consider the following clustering external measures:
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• Unsupervised Clustering Accuracy: Proposed in [214], this metric is considered
to be the primary evaluation criteria in our analysis as it is based on the computation
of the optimal mapping ξ between numerical cluster label assignments and true
taxonomic labels. Formally, this metric is defined as:

ACC = max
ξ

∑N
i=1 1[li = ξ (ci)]

N
, (2.26)

where 1[condition] ∈ {0, 1} is an indicator function equal to 1 if and only if the
condition is true, and ξ(ci) denotes the true taxonomic label assigned by ξ. The
mapping ξ ranges over all possible one-to-one mappings between clusters and labels
and can be calculated, for example, by the Hungarian algorithm [105]. A value of
ACC = 1 stands for a perfect match, and ACC = 0 indicates that all samples were
wrongly assigned. A larger value is correlated with a better matching with the ground
truth.

• Homogeneity: Proposed in [168], it measures the extent to which each cluster
contains only samples belonging to a single class. It is defined as:

Homogeneity(πL, πC) =

{
1 if H(πL, πC) = 0

1− H(πL|πC)
H(πL)

otherwise

H(πL|πC) is the conditional entropy of the class distribution given by the clustering
partition, and H(πL) is the entropy of the true class labels. The entropies are
calculated as:

H(πL|πC) = −
∑
C∈πC

∑
L∈πL

|L ∩ C|
N

log
|L ∩ C|
|C|

H(πL) = −
∑
L∈πL

|L|
N

log
|L|
N

(2.27)

The homogeneity score ranges between 0 and 1, with 1 indicating perfect homogeneity.

• Completeness: Proposed in [168], it measures whether or not all data points that
belong to a given class are assigned to the same cluster. In other words, a clustering
result satisfies completeness if all data points from a single class are assigned to a
single cluster. Formally:

Completeness(πL, πC) =

{
1 if H(πC , πL) = 0

1− H(πC |πL)
H(πC)

otherwise
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The entropies are calculated as:

H(πL|πC) = −
∑
C∈πC

∑
L∈πL

|L ∩ C|
N

log
|L ∩ C|
|L|

H(πC) = −
∑
c∈πC

|C|
N

log
|C|
N

(2.28)

The completeness score ranges from 0 to 1, with higher values indicating better
clustering performance.

• Normalized Mutual Information (NMI): Measures the amount of overlap be-
tween the clustering partition πC and the ground truth partition πL. We define the
probability that a random element in S whose true label is l gets assigned to cluster
C as P (C,L) = |C∩L|

N
. Similarly, we define the probability that a random element

gets assigned to C or has a label L independently as P (C) = |C|
N

and P (L) = |L|
N
,

respectively. These definitions allow the computation of the mutual information
between the two labellings according to equation 2.4:

MI(πC , πC) = −
∑
C∈πC

∑
L∈πL

p(C,L) log
P (C,L)

P (C)P (L)
(2.29)

The value determined by equation 2.29 is between 0 and min{H(πC), H(πL)}. That
means that it is possible to achieve the maximum value with a partition with multiple
small clusters. For this reason, the normalized version of the metric is preferred.

NMI(πC , πL) =
2MI(πC , πL)

H(πC) +H(πL)
(2.30)

The value determined by equation 2.30 is between 0, indicating no mutual information,
and 1 indicating a perfect correlation between the clustering and the ground truth
partitions.

• Adjusted Rand Index (ARI): Also measures the agreement between two dataset
partitions. Unlike previous information-theoretic metrics, ARI is a combinatorial
measure focusing on the correct or incorrect assignment of sample pairs to the same
or different clusters. It is given by the equation:

RI =
TP + TN(

N
2

) , (2.31)
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where TP (True Positives) represents the count of sample pairs correctly placed in the
same category both by the clustering partition πC and the ground truth partition πL;
TN (True Negatives) denotes the count of sample pairs correctly placed in different
categories by both πC and πL. The sum of these values is divided by the total
number of pairs of samples in the dataset. The formula in equation 2.31 measures the
proportion of correct decisions made by the clustering partition; however, its lowest
possible value of zero rarely occurs in practice. The Adjusted Rand Index (ARI) [161]
is introduced, applying normalization to account for randomness:

ARI =
RI − E[RI]

max(RI)− E[RI]
(2.32)

where E[RI] is the expected RI under random chance. This adjustment ensures that
ARI has a value near 0 for random label assignments, irrespective of the number of
clusters or sample size, and a value of exactly 1 for perfectly matching clustering. ARI
can also adopt values below 0, indicating clustering agreements worse than random
and with a lower bound of −0.5.
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Chapter 3

Alignment-free neural information-based
clustering of DNA sequences

This chapter is an adaptation and extension of the paper “DeLUCS: Deep Unsupervised
Clustering of DNA Sequences.” [134], of which I was first co-author. Here, we explore a
novel methodology for deep clustering of DNA sequences.
Section 3.1 describes the related work. Particularly, Section 3.1.1 explores the evolution
of general machine learning-based methods in genomics, and Section 3.1.2 describes new
neural methodologies and motivates their adaptation to genomics. In Section 3.2, the
core aspects of the methodology for the adaptation of unsupervised information-based
frameworks to genomics are given. The first key component is to generate appropriate
data augmentations, as detailed in Section 3.2.1. The second major component involves
training a neural network by enforcing the mutual predictability of the original sequences’
cluster assignments and the assignments of their corresponding augmentations. Different
approaches to this procedure are described in Section 3.2.2. The last step aggregates the
predictions of various independently trained networks to reduce the variance and boost
overall performance, as detailed in Section 3.2.3. Section 3.3 describes the experimental
setup we followed, including the compilation of datasets and the training details.
Section 3.4 contains updated results obtained after following the proposed methodology,
and Section 3.5 discusses the proposed method’s strengths and limitations.
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3.1 Related work

3.1.1 DNA sequence classification and clustering

We have discussed that with the advent of NGS technologies, many innovative machine
learning-based taxonomic classifiers have emerged, sometimes by adopting successful method-
ologies in other fields such as computer vision or natural language processing. These
methodologies have demonstrated remarkable success in classifying DNA sequences, match-
ing or surpassing traditional alignment-based techniques in various applications, including
whole-genome phylogenies [7, 162], microbial community profiling [112, 116] and general
taxonomic classification [52, 184, 203, 219]. Despite their applicability and utility, su-
pervised machine learning algorithms are limited by their dependence on the stability of
taxonomic labels, as any errors in the “ground truth” can be perpetuated in subsequent
classifications. Moreover, despite the great utility of expert annotations, they suffer from
instability due to occasional inaccuracies and temporary assignments, particularly in cases
with limited information or characterization (e.g., [6, 158, 182]). This issue is compounded
by the occasional absence of a definitive “ground truth” in taxonomic labelling, leading
to classification disputes. For example, the field of microbial taxonomy has undergone
considerable changes, most notably through the recent efforts of the Genome Taxonomy
Database (GTDB) [29, 157], in which, for example, over 32,000 genomes had their species
names updated in the last release [156] with respect to the corresponding National Center
for Biotechnology Information (NCBI) taxonomy. Considering the challenges presented by
the labour-intensive and time-consuming task of assigning taxonomic labels and biological
annotations to raw sequences, a significant bottleneck in the field, as highlighted by [133],
our approach pivoted towards unsupervised machine learning. This strategic shift is further
justified by the advancements in sequence acquisition techniques, which require more precise
and efficient classification methodologies.

Unsupervised learning, operating on unlabelled sequences, has the potential to infer
patterns from the data without the biases of pre-existing labels. It avoids propagating
labelling errors and can categorize novel sequence types by dynamically forming new clusters.
However, clustering large datasets using unsupervised learning is a challenging problem,
and the progress in using unsupervised learning for the clustering of genomic sequences
has not been as rapid as that of its supervised classification counterparts [96]. Previous
efforts mostly focused on applying generic algorithms like K-means or GMMs to various
numerical representations of DNA sequences. Several studies have explored K-means
clustering with different DNA sequence representations [4, 11, 25, 88, 89]. Other approaches
have employed digital signal processing techniques [3, 77, 130]. Despite their versatility,
these methods face limitations in high-dimensional spaces. For instance, K-means assumes
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spherical clusters and often struggles with the “curse of dimensionality,” where both the
increase in the number of dimensions and in the number of samples lead to a significant rise
in computational complexity and a decrease in the distinctiveness of nearest neighbours.
GMM, while more flexible regarding data distribution, encounters difficulties in parameter
estimation and convergence in high-dimensional spaces, often requiring dimensionality
reduction techniques for effective clustering [2, 19, 63]. These challenges have prompted the
exploration of advanced methodologies for speeding up classic non-parametric algorithms for
general clustering [60, 89] or, more specifically, in the field of metagenomic binning, where
deep-learning-based approaches [150, 207, 220] have begun to show promise in clustering
metagenomic fragments, underscoring the potential of neural-based clustering methods.

3.1.2 Neural unsupervised clustering

The general application of neural networks in unsupervised learning tasks dates back to
the origins of neural networks themselves [73, 104]. Although applications were not widely
adopted until the last decade, recent advancements have highlighted their potential.

Self-labelling approaches

One of the earliest and most notable approaches to deep learning-based clustering was
proposed by [214]. The method, termed Deep Embedded Clustering (DEC), simultaneously
learns the parameters of a neural encoder that maps feature data points xi ∈ X into a lower
dimensional embedding space Z , and a set of cluster centroids {µj}kj=1 in the embedding
space [214]. DEC iteratively optimizes a clustering objective based on soft K-means
assignments and the KL divergence between them and an auxiliary target distribution.
Each soft assignment is computed using the Student’s t-distribution as a kernel to measure
the similarity between an embedding point zi and a centroid µj:

qij =
(1 + ‖zi − µj‖2 /α)−

α+1
2∑

j′(1 + ‖zi − µj′‖2 /α)−
α+1
2

(3.1)

where zi = f(xi;θ) ∈ Z corresponds to xi ∈ X after the embedding, α are the degrees
of freedom of the Student’s t-distribution and qij can be interpreted as the probability of
assigning sample i to cluster j (i.e., a soft assignment). The training objective is the KL
divergence between the soft assignments qi and an auxiliary distribution pi. This auxiliary
distribution pi corresponds to a soft refinement of qi that puts more weight into highly
confident predictions and normalizes the contribution of each centroid to prevent large
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clusters from distorting the embedding space. Formally, the parameters of the distribution
are calculated as:

pij =
q̃ij∑
j′ q̃ij′

, (3.2)

where q̃ij =
q2ij∑
i qij

. This method inspired a new class of deep learning-based self-learning
methods that attempted to refine their performance based on high confidence predictions
[115, 199].

Information based techniques

Neural information-based clustering is rooted in two fundamental principles: fairness [23]
(sometimes referred to as balance [62, 83]) and decisiveness [23] (or separation [62, 83]). A
robust clusterer should assign samples to all available clusters, avoiding collapse to trivial
solutions and exhibiting certainty in its decisions for all samples. The previous desiderata
can be achieved by maximizing the mutual information between the input and the output
of a classifier, assuming its output are soft labels [23].

Given a random variable x with sample space X and distribution p(x) and its cor-
responding class assignment y with distribution p(y) and sample space Y , their mutual
information can be calculated combining equations 2.8 and 2.9 as:

MI(y,x) =

∫∫
p(y,x) log

p(x, y)

p(x)p(y)
dy dx (3.3)

By applying Bayes’ theorem, the previous expression can be rewritten as:

MI(y,x) =

∫∫
p(y|x)p(x) log

p(y|x)

p(y)
dy dx (3.4)

Considering that y is a discrete random variable, taking values in Y = {1, . . . , K}, the
expression can be further refined as:

MI(y,x) =

∫∫
p(y|x)p(x) log p(y|x)dydx−

∫∫
p(y|x)p(x) log p(y)dydx

= Ex∼p(x)

[
K∑
j=1

p (yj|x) log p (yj|x)

]
− Ex∼p(x)

[
K∑
j=1

p (yj|x) log p (yj)

]
(3.5)
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Here, K is the number of clusters in the categorical distribution for y, xi are the
sampled points from the distribution p(x), and yj represents each cluster in the categorical
distribution of y. The inner sum over j (from 1 to K) accounts for the contribution of each
category in the distribution of y for a given xi. Assuming that N is the number of samples
drawn from p(x), the expression can be approximated using Montecarlo integration:

MI(y,x) =
1

N

N∑
i=1

K∑
j=1

p (yj|xi) log p (yj|xi)−
K∑
j=1

log p (yi)Ex∼p(x) [p (yj|x)]

=
1

N

N∑
i=1

K∑
j=1

p (yj|xi) log p (yj|xi)−
K∑
j=1

log

(
1

N

N∑
i=1

p (yi|xi)
)
· 1

N

N∑
i=1

p (yj|xi)

= −H (σiθ) +H
(
σiθ

)
(3.6)

Equation 3.6 demonstrates that the mutual information between the inputs and cor-
responding labels can be estimated by computing the difference between the entropy of
the average of the outputs and their average entropy. Both averages are computed over
the training set (or mini-batch in practice). It is worth noting that H(σ) reaches its
maximum value when the clusters are assigned an approximately equal number of samples
(fairness), and H(σ) reaches its minimum value when the model is confident in all its
predictions (decisiveness). Therefore, finding the parameters that maximize the mutual
information between the input and the assigned labels is equivalent to determining the
parameters of a discriminative classifier that satisfies both fairness and decisiveness. This
can be accomplished using stochastic gradient descent and the negative of the expression in
equation 3.6 as the loss function. This method is also known as entropy-based clustering.

In practice, optimization of this function is not sufficient to escape from degenerate
solutions (all data points assigned to the same cluster). Several successful techniques
based on different regularization criteria have been proposed to improve the performance of
entropy-based clustering. In particular, one of the most successful strategies is enforcing
consistency of the representations of multiple views of a given training sample [62, 83].
Some of these strategies are specific to clustering and will be explored later in this chapter
in the context of clustering DNA sequences. The next chapter will detail a strategy related
to self-supervised representation learning.
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3.2 DeLUCS: Deep Learning for Unsupervised Cluster-
ing of DNA Sequences

This section builds upon the previous discussion on the evolution of classification and
clustering methodologies for genomic signatures inspired by advances in other fields. We
focus on adapting neural approaches for effective clustering of DNA sequences, emphasizing
information-based techniques over self-labelling strategies due to their superior performance,
versatility, and scalability, as will be later discussed.

The general pipeline of DeLUCS, illustrated in Figure 3.1, consists of three main steps:

1. Each DNA sequence in the dataset is augmented with several artificialmimic sequences,
presumed to be in the same cluster. These mimics are generated through a probabilistic
model employing transitions and transversions. Subsequently, k-mer counts for the
original, and its corresponding mimic sequences are computed to produce the k-mer
feature vectors.

2. Pairs of feature vectors are used to train multiple ANNs independently. This training
employs an information-based loss function, focusing on maximizing the mutual
predictability of cluster assignments for each training pair.

3. Due to the observed high variance in the training outcomes of the ANNs, a majority
voting mechanism is implemented. This approach aggregates the results from step 2,
assigning each sequence to a final cluster based on the consensus among the various
ANNs.

DeLUCS leverages normalized k-mer frequency vectors as input features for all computa-
tional experiments, specifically opting for k = 6. This choice is empirically determined to
strike an optimal balance between clustering performance and computational efficiency.

3.2.1 Mimic sequences: Data augmentations for learning taxo-
nomic information from DNA sequences

Regularization is critical in improving neural information-based clustering and preventing
model collapse. The most effective approach, as supported by the literature [62, 83, 115],
involves enforcing consistency in representations across augmented versions of input samples.
While popular in computer vision, this approach presents unique challenges in genomics
due to the complexity of defining suitable augmentation schemes.
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Cluster 1

Cluster 2

Cluster K

s = ACACAGACCAGACAGATTGACG

1. Generation of mimic sequences

2. Training of m independent ANNs

Figure 3.1: Overview of the DeLUCS pipeline. The process begins with the original DNA
sequences intended for clustering. Step 1 generates artificial mimic sequences from the
original sequences using a probabilistic model (tj) of transitions and transversions. In step 2,
normalized k-mer frequency vectors for all original and mimic sequences are calculated.
Then, m independent neural networks f(x;θ) are trained, guided by an information-based
loss function enforcing the consistency of the network predictions for a sequence and its
mimic. Finally, step 3 employs majority voting to finalize each sequence’s cluster assignment.

In general, given a data set X = {x1, . . . ,xn}, the goal is to construct the auxiliary
training set of paired data

A =
{(
x1, x̃

1
1

)
,
(
x1, x̃

2
1

)
,
(
x1, x̃

3
1

)
, . . . , (xi, x̃

m
i ) | 1 ≤ i ≤ n

}
,

where the data points in each pair (xi, x̃
j
i ) are considered similar according to some criteria

based on prior knowledge, e.g., invariance to distortions or spatial proximity. Each original
sample xi corresponds to a true sample in the original dataset, and x̃ji corresponds to an
augmentation that may not be present in the original dataset.

In the particular context of DNA sequences, the proposed data augmentations correspond
to creating m artificial mimic sequences per original sequence using a probabilistic model
based on transitions and transversions while preserving the original sequences. For each
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sequence si, 1 ≤ i ≤ N , we use a simple probabilistic model tj(·) based on DNA substitution
mutations (transitions and transversions) to produce different mimic sequences, as follows.
Given a sequence si and a particular position ι in the sequence, we fixed independent
transition and transversion probabilities pts [ι] and ptv [ι] respectively. Next, we produce
the following mimic sequences, probabilistically: t1(s) with only transitions, t2(s) with only
transversions, and tj(s) with both transitions and transversions, for all 3 ≤ j ≤ m. The
parameter m is determined for each experiment based on the particulars of its dataset. Its
default value is 3 to account for the use of the two individual substitution mutations and
their combination. Still, it may have to be increased if the number of available sequences
per cluster is insufficient to obtain a high classification accuracy.

After computing the sequence mimics, each original sequence and its corresponding
mimics are converted into a numerical vector containing the counts of all of its k-mers,
where a k-mer is defined as a subsequence of length k that does not contain the symbol N.
Finally, each k-mer count vector is converted into a k-mer frequency vector by dividing its
k-mer counts by the total length of the sequence minus the number of N symbols in the
original DNA sequence. This operation is represented as xs = k-mer(s), with the subindex
usually omitted to lighten the notation.

Although the use of transition and transversion probabilities for generating mimic
sequences is biologically inspired it is applied here as a mathematical tool, focusing on
creating minimally divergent sequences through random base substitutions. The selected
probabilities are empirically determined to optimize classification accuracy, and we consider
the prior that transitions are twice as frequent in nature than transversions [99]. While
these rates draw from biological concepts, they do not claim biological precision due to
inherent variability in mutation rates across different regions, species, and estimation
methods [5, 144, 172]. In practice, selecting species-specific mutation rates is not feasible
without taxonomic labels.

3.2.2 Leveraging data augmentations to enhance information-based
loss functions

The information bottleneck principle [193, 194], which is part of the information-theoretic
approach to clustering, suggests that effective clustering should capture relevant semantic
information from the input while discarding irrelevant information. This objective can be
realized through the explicit maximization of the mutual information between the input
and the discrete output probability distribution, which, as we have discussed in section
3.1.2, is approximated by equation 3.6. If x̃ corresponds to a random variable, sampled
from the space of augmentations X̃ , a regularization term can be added to enforce the
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consistency of the assignments for several views of a given sample. The regularized loss
function becomes

L = −MI(y|x) +R(x, x̃). (3.7)

Here, R penalizes dissimilarity in representations between original and augmented data
points, using penalty measures like KL divergence or cross-entropy [83].

An alternative formulation, Invariant Information Clustering (IIC), introduced by [91]
for computer vision tasks, also aims to learn from paired data, i.e., from pairs of samples
(x, x̃) ∈ X × X̃ drawn from a joint probability distribution p(x, x̃). This formulation
does not directly maximize the mutual information between input and output random
variables. Instead, artificial copies x̃ of each true sample x are created, and it aims to learn
a mapping Φ(x;θ) of a discriminative classifier that retains commonalities between x and
x̃ while discarding information that is not relevant for categorization. The resulting space
Y = Φ(X ) is then a compressed representation space that encodes the semantic clusters
present in X .

The mapping Φ can be implemented by an ANN f(x,θ) and a softmax output layer,
Φ(x) = softmax(fθ(x)). For a dataset with K expected clusters, we define σ = Φ(x) ∈
[0, 1]K as the distribution of a discrete random variable z over the K clusters for each
sample x. Specifically, σc = P (z = c|x) represents the probability that sample x is assigned
to cluster c. It is possible to maximize the predictability of zi from z̃i = Φ(x̃i) across all
samples, by maximizing the mutual information MI(σ, σ̃). This can be estimated using
the alternative definition in equation 2.9:

MI(σ, σ̃) = DKL(P (z, z̃)||P (z)P (z̃)). (3.8)

Here, P (z), P (z̃) are the marginal distributions, and P (z, z̃) is the discrete joint probability
distribution. The mutual information is calculated as follows:

MI(σ, σ̃)λ =
K∑
j=1

K∑
k=1

P (zi = j, z̃i = k|xi, x̃i) log
P (zi = j, z̃i = k|xi, x̃i)
[P (zi = j)P (z̃i = k)]λ

(3.9)

The joint probability is calculated assuming independence and symmetrized to prevent
clustering collapse. During neural network training, we minimize the negative weighted
mutual information. From equation 2.4, the loss function derived from this formulation, is
thus:

L(x, x̃) = −MI(σ, σ̃)λ ≈ −(2λ− 1)H(σ) +H(σ | σ̃) (3.10)

The hyper-parameter λ ≥ 1 is introduced to weigh the contribution of the entropy
term in equation 2.4. Note that the loss function derived from this alternative formulation
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aligns with the original design principles of the information-based theory for discriminative
clustering described in Section 3.1.2. The entropy term H(σ) in equation 3.10 measures
the amount of randomness present in the network’s output; this value is maximized when
all clusters are assigned the same number of samples (fairness). The conditional entropy
term H(σ | σ̃) in equation 3.10 measures the uncertainty in the original sample x, given
its counterpart x̃. This uncertainty must be minimized since the original sample x should
be perfectly predictable from x̃ (decisiveness).

3.2.3 Determination of final assignment: Majority voting

During training, since a definitive ground truth is not available, it becomes crucial to
standardize the outputs from various neural network models, especially since labels may
undergo permutations across different training runs. To ensure consistent labelling, our
approach uses the initial set of predictions as a reference and applies the Hungarian
algorithm [105] to match and adjust subsequent model labels to this reference. This creates
a standardized label assignment across models. Once labels are aligned, we take the mode of
the predictions for each sample in the dataset to aggregate final predictions. This approach
also mitigates outliers and reduces overall variance, making our predictions more robust
even in the absence of a ground truth.

Although the Hungarian algorithm is effective for label alignment, exploring alternatives
like ensemble learning methods could enhance performance. These alternatives, offering
potentially more refined alignment or aggregation, will be discussed in the next chapter,
examining their efficacy in improving prediction accuracy without ground truth.

3.3 Experimental setup

3.3.1 Datasets

Three types of datasets were used in our proof-of-concept experiments: mitochondrial
genomes, bacterial genome segments, and viral genes. The datasets, detailed in Table 3.1,
Table 3.2, and Table 3.3, were sourced from public databases.

Mitochondrial genomes: We analyzed vertebrate mitochondrial genomes, selecting
13,300 sequences from Geneious 2020.2.4, constrained to lengths between 14,000 bp and
24,500 bp. The sequences were retrieved from NCBI as of November 16, 2020; these
sequences allow the assessment of DeLUCS across various taxonomic levels, focusing on
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the largest cluster at each level. Being a deep entropy-based clustering method, DeLUCS
performs optimally with balanced clusters, defined by size uniformity and a minimum of
20 sequences. Clusters failing to meet the minimum size were excluded, as were sequences
without a sub-taxon identifier. Oversized clusters were randomly sampled to meet size
constraints, resulting in test-dependent cluster compositions. We followed a decision-tree
approach to direct the selection of clusters for computational Tests 1 to 6 within Vertebrata,
with the sequence count varying across tests due to the min/max cluster size parameters,
see Table 3.1.
For example, in Test 3, only 250 out of the total 2,723 available Ostariophysi sequences were
selected due to the need to achieve cluster balance, while the min/max cluster size parameters
of Test 4 allowed for 383 Ostariophysi sequences to be used. The remaining Ostariophysi
sequences could not be selected in either test since most belonged to the over-represented
Order Cypriniformes (2,171 available sequences). Tests 1 and 2 illustrate a different scenario:
500 of the total 7,876 Actinopterygii sequences were used in Test 1 since this cluster size was
sufficient for high accuracy. In contrast, in Test 2, only 113 Actinopterygii sequences could
be used due to the under-representation of class Polypteriformes (33 available sequences)
and over-representation of class Neopterygii (7,715 available sequences).

Table 3.1: Details of the datasets used in computational tests 1 through 6 (full vertebrate
mitochondrial genomes).

Test # Dataset
Total
no.of
seq.

Min
clus.
size

Max
clus.
size

Min.
seq.len.
(bp)

Avg.
seq.len.
(bp)

Max
seq.len.
(bp)

1 Subphylum Vertebrata (Fish: 500, Amphibians: 500, 2,500 500 500 14,127 16,951 24,317
Birds: 500, Mammals: 500, Reptiles: 500)

2 Class Actinopterygii (Neopterygii: 40, 113 33 40 15,531 16,623 18,062
Polypteriformes: 33, Chondrostei: 40)

3 Subclass Neopterygii (Ostariophysi: 250, 1,475 226 250 15,564 16,688 19,801
Clupeomorpha: 250, Elopomorpha: 226,
Acanthopterygii: 250, Paracanthopterygii: 249
Protacanthopterygii: 250)

4 Superorder Ostariophysi (Cypriniformes: 130, 383 123 130 15,664 16,635 17,998
Characiformes: 123, Siluriformes: 130)

5 Order Cypriniformes (Cyprinidae: 80, 545 70 80 16,061 16,610 17,282
Cobitidae: 80, Balitoridae: 75, Nemacheilidae: 80,
Xenocyprididae: 80, Acheilognathidae: 70,
Gobionidae: 80)

6 Family Cyprinidae (Acheilognathus: 47, 447 26 47 16,070 16,632 17,426
Acrossocheilus: 46, Carassius: 45, Labeo: 45,
Microphysogobio: 35, Notropis: 26,
Onychostoma: 29, Rhodeus: 28,
Schizothorax: 31, Sarcocheilichthys: 45,
Cyprinus: 43, Sinocyclocheilus: 27)

Bacterial genomic fragments: The second dataset comprises 3,200 bacterial DNA
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segments from eight families across three phyla, as studied in [77]. We pursued a balanced
representation of diversity, adhering to GTDB (release 95) guidelines [156] and selecting a
uniform cluster size of 400 sequences per family. The selection process involved random
sampling of genomes or segments, ensuring family representation within the dataset. A
random selection of up to 400 species or genomes was made for families with sufficient
species or genomes. Otherwise, contigs were divided into segments up to 500 kbp, creating
a pool from which 400 segments were chosen. The composition of each cluster is detailed in
Table 3.2.
In addition to the inter-phylum classification of bacterial sequences into families (Test 7), we
assessed the performance of DeLUCS for an intra-phylum classification into families within
the Proteobacteria phylum only (Test 8). The dataset for Test 8 was simply the subset of
the dataset in Test 7, including only the segments from genomes in bacterial families from
phylum Proteobacteria. Test 7 comprises randomly selected genome segments from bacterial
families across several phyla (min. segment length 150,499 bp, average segment length
433,613 bp, max. segment length 500,000 bp). Test 8 consists of the genome segments in
Test 7 that belong to phylum Proteobacteria (min. segment length 150,499 bp, average
segment length 434,150 bp).

Table 3.2: Details of the datasets used in computational tests 7 and 8 containing randomly
selected bacterial genome segments. The datasets in these computational tests contain 400
segments per family, each of length between 150 kbp and 500 kbp.

Test # Phylum Family
No.
Species

No.
Genomes

Total
No. of
Seg.

Avg.No.
Seg./

Genome

Avg.
Seg.len.
(bp)

7 Spirochaetes Treponemataceae 46 153 400 2.3 387,939
Bacillaceae 47 400 400 1 493,999

Firmicutes Clostridiaceae 136 400 400 1 443,267
Staphylococcaceae 77 400 400 1 404,889
Enterobacteriaceae 379 400 400 1 446,887

Proteobacteria Rhodobacteriaceae 400 400 400 1 464,632
Desulfovibrionaceae 73 99 400 2.5 359,337
Burkholderiaceae 400 400 400 1 465,707

8 Proteobacteria Enterobacteriaceae 379 400 400 1 446,887
Rhodobacteriaceae 400 400 400 1 464,632
Desulfovibrionaceae 73 99 400 2.5 359,337
Burkholderiaceae 400 400 400 1 465,707

Viral genomes: The third dataset includes viral DNA sequences, with cluster size de-
termined like that of the mitochondrial DNA datasets. Test 9 features 949 sequences of
segment 6 of the Influenza A virus genome, sourced from NCBI [13]. Test 10 consists of
1,633 full Dengue virus genomes from NCBI [68], and Test 11 includes 1,562 full Hepatitis
B virus genomes from the Hepatitis Virus Database [69]. Each dataset represents different
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virus subtypes, with descriptions provided in Table 3.3.

Table 3.3: Details of the datasets used in computational tests 9, 10 and 11 (Influenza virus
NA-encoding gene, Dengue virus full genomes, Hepatitis B virus full genomes).

Test # Dataset
Total
no.of
seq.

Min
clus.
size

Max
clus.
size

Min.
seq.len.
(bp)

Avg.
seq.len.
(bp)

Max
seq.len.
(bp)

9 Influenza A (NA-encoding gene) 949 187 193 1,345 1,409 1,469
(Subtypes H1N1: 191, H2N2: 187,
H5N1: 188, H7N3: 193, H7N9: 190)

10 Dengue complete genomes 1,633 407 409 10,161 10,559 10,991
(Subtypes 1: 409, 2: 409, 3: 408,
4: 407)

11 Hepatitis B complete genomes 1,562 258 263 3,182 3,210 3,227
(Subtypes A: 258, B: 262, C: 263,
D: 260, E: 261, F: 258)

3.3.2 Training details

Given the relatively smaller dataset sizes in our proof-of-concept experiments compared to
typical datasets in machine learning, we observed that commonly effective deep-learning
architectures for visual or natural language processing tasks were not entirely suitable for our
genomic data. Consequently, we employed a simpler yet versatile architecture tailored for
clustering DNA sequences. The input to the network are pairs (x, x̃) = (k-mer(s), k-mer(s̃))
representing the k-mer frequency vectors of original DNA sequences s and their mimic
sequences s̃. The architecture, depicted in Figure 3.2, comprises two fully connected layers,
Linear (512 neurons) and Linear (64 neurons), each one followed by a ReLU and a Dropout
layer with a dropout rate of 0.5. The output layer Linear (K_clusters), where K is a
numerical parameter representing the upper bound of the number of clusters, is followed by a
softmax activation function. The ReLU layers mitigate vanishing gradient issues during SGD
optimization, while the Dropout layers prevent overfitting. This is crucial in unsupervised
learning to avoid degenerate solutions like assigning all samples to a single cluster. Finally,
the softmax layer gives as output a K-dimensional vector σ = Φ(x) ∈ [0, 1]K , such that σj
represents the probability that an input sequence s belongs to a particular cluster j.

Note that this general architecture was designed to successfully cluster all the diverse
datasets presented in this study. Nonetheless, the DeLUCS pipeline is flexible enough to
accommodate other architectures, including those leveraging the two-dimensional nature of
fCGR patterns, like convolutional neural networks, for specific genomic data types.

The training hyperparameters were selected for optimal performance in the mitochondrial
DNA datasets. Network initialization used the Kaiming method [70] to maintain input
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Figure 3.2: The ANN architecture used by DeLUCS. It receives k-mer frequency vectors
as input. Each linear layer indicates neuron counts, except for the output layer, which is
parameterized by the expected number of clusters K. The dropout rate is specified in each
case, and the output is a probability distribution via the softmax function.

magnitude consistency. This is crucial for our method because poor initialization may
lead to degenerate solutions, as one of the terms in the loss function becomes dominant.
Training employed the Adam optimizer [101] at a learning rate of 5× 10−5 for 150 epochs
without early stopping. The batch size, set at 512, was crucial for accurate estimates of the
output distribution. The hyperparameter λ was fixed at 2.5, as per equation 3.10.

3.4 Results

For each dataset, we compare the performance of DeLUCS with that of two classic clustering
algorithms, the K-means algorithm and a GMM. We also consider DEC, a self-labelling,
deep-learning-based algorithm (see Section 3.1.2), as our deep learning-based baseline.
DeLUCS’s methodology can be implemented with any information-based loss function
that enforces consistency of the augmentations (mimic sequences). We consider the loss
in equation 3.6 with a cross-entropy regularization penalty (DeLUCSi/o), and the IIC
method with the loss function in equation 3.10 (DeLUCSIIC ), referred to as DeLUCS
hereafter for consistency with our published work [134]. We clustered the eleven datasets
detailed in Section 3.3.1, and assessed the performance of each algorithm using metrics from
Section 2.3.4, especially focusing on the ACC metric (equation 2.26) for its correspondence
with taxonomic labels.

In the vertebrate mtDNA dataset (Table 3.4), our methods consistently outperformed
other unsupervised algorithms, achieving mean accuracies of 87% for DeLUCS and 86%
for DeLUCSi/o , outperforming K-means, the best classical clustering algorithm, by ∼10%
and DEC, our deep learning baseline, by ∼16%. This performance advantage over DEC
highlights the effectiveness of our information-based approaches. The necessity of increasing
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the number of mimic sequences for datasets with fewer than 150 sequences per cluster
was noted to maintain classification accuracy. It is noteworthy that k-means outperforms
DEC, suggesting that the DEC could also benefit from the regularization of overconfident
predictions using augmentations.

Table 3.4: Performance of different clustering algorithms on the mtDNA datasets in
Table 3.1, tests 1 to 6. The reported values for all the metrics: homogeneity, completeness,
normalized mutual information (NMI), adjusted Rand index (ARI) and unsupervised
clustering accuracy (ACC) correspond to the average over 10 runs of the algorithms.

Dataset Model No. Mimics Homogeneity Completeness NMI ARI ACC

Vertebrata K-means - 0.65 0.67 0.66 0.64 0.81
GMM - 0.59 0.64 0.62 0.54 0.66
DEC - 0.52 0.54 0.53 0.47 0.64
DeLUCS 3 0.84 0.84 0.84 0.83 0.92
DeLUCSi/o 3 0.83 0.83 0.83 0.83 0.92

Actinopterygii K-means - 0.66 0.68 0.66 0.63 0.85
GMM - 0.66 0.68 0.66 0.63 0.85
DEC - 0.58 0.60 0.58 0.57 0.80
DeLUCS 8 0.96 0.96 0.96 0.97 0.99
DeLUCSi/o 8 0.95 0.95 0.95 0.96 0.99

Neopterygii K-means - 0.59 0.66 0.62 0.48 0.64
GMM - 0.48 0.52 0.50 0.41 0.59
DEC - 0.46 0.55 0.50 0.30 0.59
DeLUCS 3 0.67 0.68 0.67 0.61 0.80
DeLUCSi/o 3 0.68 0.69 0.68 0.63 0.83

Ostariophysi K-means - 0.56 0.56 0.56 0.49 0.68
GMM - 0.58 0.58 0.58 0.51 0.74
DEC - 0.15 0.16 0.15 0.15 0.54
DeLUCS 8 0.66 0.67 0.66 0.67 0.87
DeLUCSi/o 8 0.57 0.58 0.57 0.57 0.81

Cypriniformes K-means - 0.66 0.68 0.66 0.56 0.76
GMM - 0.67 0.68 0.67 0.57 0.76
DEC - 0.30 0.31 0.29 0.21 0.48
DeLUCS 8 0.68 0.69 0.68 0.58 0.77
DeLUCSi/o 8 0.69 0.70 0.69 0.58 0.77

Cyprinidae K-means - 0.88 0.86 0.89 0.83 0.87
GMM - 0.86 0.91 0.88 0.76 0.81
DEC - 0.62 0.63 0.60 0.47 0.62
DeLUCS 8 0.87 0.88 0.87 0.84 0.88
DeLUCSi/o 8 0.86 0.87 0.85 0.78 0.86

For bacterial DNA, DeLUCS and DeLUCSi/o again surpassed other algorithms in
clustering long bacterial genome fragments, with average accuracies of 78% and 74%,
respectively, over the two datasets. Notably, this is an average improvement of > 14%
over the best classical clustering algorithm (GMM) and > 25% compared to the DEC
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baseline. That said, the overall accuracy was lower than that observed for mitochondrial
DNA, highlighting the complexity of this task.

This dataset’s heterogeneity, coupled with recent taxonomic reclassifications, posed a
significant challenge for clustering methods. Yet, DeLUCS’s methodology effectively coped
with these complexities, as misclassifications predominantly occur among previously related
families now reclassified into separate phyla [156]. Further analysis within the Proteobacteria
phylum confirms the hypothesis that dataset heterogeneity impacts classification accuracy.
By focusing solely on intra-phylum clustering, DeLUCS’s accuracy improves significantly,
underscoring its capability in more homogeneously composed datasets.

Table 3.5: Performance of different clustering algorithms on the bacterial datasets in
Table 3.2, Test 7 and 8. The reported values for all the metrics: homogeneity, completeness,
normalized mutual information (NMI), adjusted Rand index (ARI) and unsupervised
clustering accuracy (ACC) correspond to the average over 10 runs of the algorithms.

Dataset Model No. Mimics Homogeneity Completeness NMI ARI ACC

Bacteria K-means - 0.57 0.60 0.59 0.44 0.60
GMM - 0.66 0.71 0.68 0.56 0.71
DEC - 0.59 0.63 0.61 0.45 0.59
DeLUCS 3 0.66 0.67 0.66 0.57 0.73
DeLUCSi/o 3 0.64 0.67 0.65 0.55 0.71

Proteobacteria K-means - 0.21 0.26 0.23 0.16 0.43
GMM - 0.45 0.51 0.48 0.38 0.59
DEC - 0.20 0.25 0.22 0.15 0.40
DeLUCS 3 0.68 0.68 0.68 0.66 0.83
DeLUCSi/o 3 0.61 0.63 0.62 0.57 0.78

In clustering viral sequences, including Influenza A, Dengue, and Hepatitis B virus
genomes into subtype-based clusters, both K-means and DeLUCS methods exhibited almost
perfect performance despite the sequences’ close similarities, with K-means marginally
outperforming DeLUCS by 2% in the Influenza-A dataset.

These results demonstrate DeLUCS’s capability to discern meaningful clusters from
unlabelled, diverse DNA sequences, outperforming classical unsupervised methods that rely
on k-mer counts. In addition to quantitative assessments, we evaluated DeLUCS’s clustering
ability qualitatively through a visual inspection of the training process. Figure 3.3 shows the
ANN’s training progress in identifying clusters over different training epochs. Each epoch
represents a complete pass through the dataset. In Figure 3.3, clusters are represented as
vertices of a regular polygon (with c = 5 vertices in this case), each potentially corresponding
to a taxonomic label. Initially, sequences are equally likely to be assigned to any cluster,
as indicated by their central location. As training progresses, sequences increasingly align
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Table 3.6: Performance of different clustering algorithms on the viral sequences datasets,
Table 3.3, Tests 9, 10, and 11. The reported values for all the metrics: homogeneity,
completeness, normalized mutual information (NMI), adjusted Rand index (ARI) and
unsupervised clustering accuracy (ACC) correspond to the average over 10 runs of the
algorithms.

Dataset Model No. Mimics Homogeneity Completeness NMI ARI ACC

Dengue K-means - 1.00 1.00 1.00 1.00 1.00
GMM - 1.00 1.00 1.00 1.00 1.00
DEC - 1.00 1.00 1.00 1.00 1.00

DeLUCS 3 1.00 1.00 1.00 1.00 1.00
DeLUCSi/o 3 1.00 1.00 1.00 1.00 1.00

HBV K-means - 1.00 1.00 1.00 1.00 1.00
GMM - 0.87 0.93 0.90 0.77 0.76
DEC - 0.85 0.91 0.88 0.76 0.78

DeLUCS 3 1.00 1.00 1.00 1.00 1.00
DeLUCSi/o 3 1.00 1.00 1.00 1.00 1.00

Influenza-A K-means - 0.98 0.98 0.98 0.98 0.99
GMM - 0.81 0.90 0.85 0.71 0.73
DEC - 0.56 0.92 0.70 0.49 0.59

DeLUCS 3 0.91 0.93 0.89 0.88 0.97
DeLUCSi/o 3 0.69 0.84 0.75 0.65 0.75

with their respective clusters. The qualitative and quantitative results affirm DeLUCS’s
efficacy in unsupervised learning from unlabelled DNA sequences, marking its advancement
over traditional clustering methods.

Figure 3.3: Visualization of the clustering process for 2,500 vertebrate mtDNA full genomes
into five clusters. Each point represents a sequence, with its position reflecting the probability
of belonging to a particular cluster. Initially, sequences are equally probable for all clusters
(centred) but gradually align with specific vertices (clusters) as training progresses. Overlap
occurs for sequences with identical probability vectors.
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3.4.1 Ablation studies

In this section, we empirically study the DeLUCS methodology to understand the impact of
different components within our framework. Table 3.7 presents model variants as different
components of DeLUCS are added or removed. Initial observations indicate that the IIC
loss function marginally outperforms the entropy-based loss function. However, the latter
seems to be invariant with respect to the addition or elimination of the other components of
our methodology. Additionally, we compare these clustering methods against a supervised
learning classification method. For this purpose, the same neural network architecture
described in the previous section is trained using labelled data and the cross-entropy loss
function. The classification accuracy is calculated by first taking 70% of the data for
training and 30% of the data for testing, and it is defined as the ratio of the number of
correctly predicted testing sequence labels to the total number of testing sequences.

Table 3.7: Optimal performance metrics from ten trials per dataset under different inclu-
sion/exclusion scenarios. The average accuracy for each dataset was calculated, and these
were averaged across all datasets to calculate a unified measure for each configuration.

Method Mimics Noise Majority Voting Loss ACC

1 DeLUCS 3 3 3 IIC 0.92 ± 0.08
2 7 3 3 IIC -
3 3 7 3 IIC 0.83 ± 0.13
4 3 3 7 IIC 0.88 ± 0.15

5 DeLUCSi/o 3 3 3 HC 0.90 ± 0.08
6 7 3 3 HC 0.89 ± 0.09
7 3 7 3 HC 0.88 ± 0.11
8 3 3 7 HC 0.89 ± 0.13

9 Supervised - - - CE 0.96 ± 0.06

IIC: Invariant Information Clustering, HC: Entropy-based clustering, CE: Cross-Entropy.

Mimic Sequences: In the DeLUCS framework, the role of mimic sequences is crucial,
particularly when integrated with the IIC loss function, as its use is impossible without them.
When considering the entropy loss, Table 3.7 incorporating mimic sequences alongside a
regularization cross-entropy term enforcing the consistency of the predictions has a marginal
impact on performance. The optimal quantity of mimic sequences is determined through
empirical evaluation. We have established three mimic sequences per sample as the standard
setting for our methodologies. This baseline was chosen because increasing the number of
mimics beyond this threshold does not substantially enhance accuracy in datasets with an
ample number of sequences per cluster. Our findings indicate that for datasets anticipated
to contain fewer than 150 sequences per cluster, setting the number of mimic sequences to
at least eight per sample is necessary to achieve competitive outcomes.
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Adding Gaussian Noise: Gaussian noise was introduced to the network parameters
at intervals of every 30 epochs to address the model’s tendency to converge to suboptimal
solutions. This strategy empirically improved accuracy, as demonstrated in rows 3 and
7 in Table 3.7 and in Figure 3.4. The Figure showcases the learning curves for a single
ANN with and without Gaussian noise. Introducing noise periodically prevents convergence
to less optimal solutions, boosts classification accuracy, and is more relevant for the IIC
metric.

Figure 3.4: Learning curves for a single ANN during the training process, showing the effect
of Gaussian noise addition on classification accuracy for the vertebrate mtDNA genome
dataset (Test 1). The top graph illustrates training without noise, and the bottom graph
with noise addition highlights improving classification accuracy from approximately 82% to
96%

Majority Voting for Variance Mitigation: Given the high variance observed in
the outcomes of training multiple ANNs independently, a majority voting scheme was
employed by training five ANNs for each dataset and combining the results. This approach
reduced prediction variance and improved classification accuracies across all tests, as shown
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in Figure 3.5 and rows 4 and 8 in Table 3.7.
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Figure 3.5: Accuracy comparison between single ANN training (light blue) and an ensemble
of 5 ANNs (light green) with majority voting. Each test was conducted one hundred
times to evaluate variance, with the ensemble approach showing both reduced variance and
increased accuracy in all cases.

After assessing the significance of each component in DeLUCS, a final observation from the
results obtained in Table 3.7 is that, on average, the performance of DeLUCS is still behind
that of a model trained using taxonomic annotations by approximately 4%. Nevertheless,
the integration of entropy-based clustering loss functions holds promise in narrowing this
performance gap even further with the introduction of better optimization techniques and
improved regularization. Moreover, while supervised methods may demonstrate performance
superiority, this advantage can be diminished by the requirement for excessive manual
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annotations. Finally, it is crucial to acknowledge the potential for incorrect annotations,
which poses a challenge when comparing unsupervised methods using external evaluation
metrics. Some clustering assignments obtained through DeLUCS initially deemed incorrect,
might actually be correct, but they have been evaluated against an incorrect assumed-
to-be-real taxonomic assignment. These results emphasize the nuanced balance between
classification accuracy, algorithmic complexity, and efficiency.

3.5 Discussion

DeLUCS represents a pioneering effort in applying unsupervised deep learning for clustering
unlabelled DNA sequences. This method represents a breakthrough for processing large
and diverse datasets, which often pose challenges for conventional clustering methods
due to the lack of homology or incomplete biological annotations. Importantly, DeLUCS
brings the principles of entropy-based clustering, previously confined to computer vision,
into computational biology, promising to revolutionize our approach to genomic data
analysis. That being said, DeLUCS has some limitations. For example, being an entropy-
based clustering technique, it performs best when the clusters are evenly distributed.
However, this scenario is not typically achieved in practice where some taxonomic groups
are overrepresented. Additionally, there is a high variance in results across multiple runs of
the training process, making the method highly sensitive to initialization and reducing both
performance and reproducibility. Finally, as a parametric clustering technique, DeLUCS
requires a well-defined range for the expected number of clusters, which may not always be
possible in practice.

There are various ways to enhance DeLUCS and overcome its current limitations. One
crucial area of focus is to improve the loss function to handle unbalanced datasets more
effectively. Additionally, developing more advanced clustering ensemble techniques could
also lead to improved performance. Another promising approach is to optimize parameter
initialization, which has the potential to enhance results and reduce the variance in each
training run. Ideally, this could even reduce the need for clustering ensembles, making
clustering faster and more efficient using a single neural network. Finally, one can enforce
the consistency of the intermediate representations learned by each discriminative model
and utilize these representations as part of non-parametric clustering methodologies. Some
of these ideas will be explored in the upcoming chapter.
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Implementation and code availability

Some of the code implementing the DeLUCS methodology is available on GitHub https://
github.com/millnap95/DeLUCS as part of the Supplementary information in [134], enabling
users to replicate our results or cluster new sequences. Testing was conducted on the Cedar
cluster of Compute Canada, which was equipped with Intel E5-2650 v4 CPUs, 32 GB RAM,
and 1 NVIDIA P100 Pascal GPU.
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Chapter 4

Improving DNA sequence clustering
with contrastive self-supervision

We have discussed how clustering algorithms can play a fundamental role in bioinformatics,
as they are used to study the structural composition of DNA sequence datasets, discover
novel OTUs, and complement phylogenetic analysis. In the previous chapter, we presented
DeLUCS, a methodology that leverages deep neural networks, to significantly outperform
classical unsupervised learning algorithms in discovering genomic-signature-based clusters
at different taxonomic levels. These promising initial results motivated the development of
iDeLUCS, which also uses mimic sequences and enforces the consistency of the predicted
labels. A key observation is that it is also possible to enforce the consistency of the
intermediate representations learned by the network. iDeLUCS considers this observation
and other implementation optimizations to cluster datasets comprising more than 400
Mbp. Finally, iDeLUCS exhibits several novel features that enhance the interpretability of
its results, and a graphical user interface (GUI) was developed to improve the method’s
applicability for bioinformatics practitioners.

The contents of this chapter are an adaptation of a paper I co-authored titled “iDeLUCS:
A deep learning interactive tool for alignment-free clustering of DNA sequences” [136]. In
Section 4.1, the contrastive learning framework and its integral components are presented.
Following this, Section 4.2 delves into our novel method, delineating the main distinctions
from the DeLUCS approach. Section 4.4.1 describes the components of our methodology
in light of the contrastive learning framework. Concurrently, Section 4.2.2 presents an
information-theoretic clustering ensemble posited as an alternative to the conventional
majority voting scheme.

Section 4.3 explores the seamless extension of the framework to accommodate non-
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parametric clustering outcomes, simultaneously spotlighting the versatile applications
of representations derived through contrastive learning in various domains. Section 4.4
presents the updated results derived from applying the proposed methodology, including an
additional evaluation metric employed in this chapter to assess performance more rigorously.
Concluding the chapter, Section 4.5 offers a reflective discussion of the method’s strengths,
limitations, and implications of these findings.

4.1 Related work

Our methodology is motivated by self-supervised representation learning, where models are
encouraged to learn the similarity between semantically transformed versions of the input
data points (augmentations). This principle aligns with the underlying design principles
considered for our clustering methodology in DeLUCS. In particular, contrastive self-
supervised methods learn useful representations by mapping data into an embedding space
where representations of augmented views (positive pairs) must be close to each other and
far from the rest of the data (negative pairs). Although several of these algorithms have
been proposed, they all follow the same framework, now known as the contrastive-learning
framework [30]. It contains three major components:

• A dataset of paired data. Given a data set X = {x1, . . . ,xn}, the goal is to construct
the auxiliary training set of augmentations

A =
{(
x̃1, x̃

1
1

)
,
(
x̃1, x̃

2
1

)
,
(
x̃1, x̃

3
1

)
, . . . , (x̃i, x̃

m
i ) | 1 ≤ i ≤ n

}
,

where the data points in each pair (x̃i, x̃
j
i ) are considered similar according to some

criteria based on prior knowledge, e.g., invariance to distortions or spatial proximity.
Note that in this framework, samples x̃i and x̃ji may not be present in the original
dataset and can be both an augmented version of the original sample xi. We refer to
this module as the data augmentation module, consisting of a set T of augmentation
functions t, such that each t ∼ T applies a different augmentation to a given sample
in the original dataset.

• A neural encoder. To learn from the paired dataset, the goal is to learn a mapping
that encodes only what is common between x̃i and x̃ji while dropping all the irrelevant
information. If such a mapping Φ is found, the image Y = Φ(X ) becomes a lower
dimensional representation of the original space X and can be used for downstream
tasks. The best candidate for Φ is a deep neural network Φθ as its parameters θ can
be optimized via SGD.
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• A contrastive loss function. Depending on the unsupervised learning task of interest,
any “pretext” task that attempts to minimize the distance between representations of
pairs of samples (zi, z̃i) can be used as inspiration for the loss function. A general
formulation of unified contrastive losses was proposed by [192] as a family of loss
functions

Lφ,ψ(θ) =
N∑
i=1

φ

(∑
j 6=i

ψ
(
‖zi − z̃i‖22 − ‖zi − zj‖

2
2

))
, (4.1)

where φ and ψ are monotonously increasing, differentiable scalar functions and .

Another more informal but perhaps more intuitive characterization of a contrastive
loss is described in [31]. Here, any contrastive function can be written as

Lcontrastive = w · Lalignment + (1− w) · Ldistribution, (4.2)

where Lalignment encourages representations of paired samples to be consistent and
Ldistribution encourages representations to match a target distribution. w is the weight-
ing parameter defining the importance of each term in the final loss.

4.2 Proposed method: iDeLUCS

iDeLUCS builds upon the pipeline proposed in the previous chapter, consisting of: (i)
calculating the k-mer frequencies for each DNA sequence, (ii) computing the data augmen-
tations (mimic sequences), (iii) training multiple deep neural networks to learn the cluster
assignments, and (iv) computing the majority voting cluster assignment for each sequence.
In addition to multiple algorithmic optimizations to the pipeline, iDeLUCS significantly
extends it in four main aspects. First, it uses the contrastive learning framework introduced
in the previous section and incorporates an additional contrastive term in the loss func-
tion, which enforces the consistency of the hidden representations learned by the artificial
neural networks. These hidden representations are learned simultaneously with the cluster
assignments via backpropagation. Second, it replaces the majority voting scheme with a
more robust clustering ensemble based on information theory, which reduces the variance
and boosts the accuracy. Third, it uses the information provided by the ensemble and the
consistency of the hidden representations to provide an intrinsic quantitative assessment of
the clustering assignment (silhouette coefficient), as well as to output the confidence score
for the cluster assignment of each sequence in the dataset. The new contrastive learning
framework can be combined with non-parametric clustering algorithms, such as HDBSCAN
([127]), to automatically determine the number of clusters.
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4.2.1 Contrastive learning-based pipeline

In this subsection, we illustrate how the methodology proposed in iDeLUCS fits into the
contrastive learning framework. We describe its main components and compare them
against the pipeline presented in Chapter 3.

Data augmentation

Inspired by DeLUCs, we use the same probabilistic model based on DNA substitution
mutations (transitions and transversions) to produce different mimic sequences. For
each DNA sequence in the dataset, this process produces 2m artificially created training
samples, considered positive training pairs, even though they are not in the original training
dataset. Specifically, given a sequence si and a particular position j in the sequence,
we fix independent transition and transversion probabilities pts [j] and ptv [j] respectively.
Each augmentation function t ∈ T applies three different augmentations sequentially:
Two random DNA substitution mutations, i.e., transitions and transversions with fixed
independent substitution probabilities pts = 10−3 and ptv = 5−3 respectively, and a random
assignment of r = 20 nucleotides to symbol N (representing an unidentified nucleotide).
This composition of augmentations incorporates robustness into the model and allows
the networks to learn the structure of more complex datasets. Each augmented training
sequence is then converted into a numerical vector containing the counts of all of its k-mers,
where a k-mer is defined as a subsequence of length k that does not contain the symbol N.
Finally, each k-mer count vector is converted into a k-mer frequency vector by dividing its
k-mer counts by the total length of the sequence minus the number of N symbols in the
original DNA sequence.

Neural network - Base encoder

As it is illustrated in Figure 4.1, we divide our architecture into a base encoder fθ(·) that
extracts a meaningful lower dimensional representation and a clustering layer gθ(·) such
that Φθ(x) = softmax(gθ(fθ(x))). For a mini-batch XMB = {(xi, x̃i)}Ni=1 of 2N augmented
k-mer vectors, all the k-mer vectors are passed through the encoder, that consists of two
fully connected layers, Linear (512 neurons) and Linear (64 neurons), each one followed by
a ReLU and a Dropout layer with dropout rate of 0.5. The hidden representation zi = f(xi)
are then passed through the clustering layer Linear (K_clusters), where K represents the
upper bound of the number of clusters. The distribution over the K output clusters is
calculated using a softmax activation function.
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Contrastive loss function

The negative weighted mutual information loss function, as described in equation 3.10,
aligns with the general principles of a contrastive loss within the contrastive learning
paradigm described in the previous section (equation 4.2). Minimizing the conditional
entropy H(Φ(x) | Φ(x̃)), enforces sample x to be precisely predictable from its augmented
counterpart x̃. Moreover, maximizing the entropy term in equation 3.10 can be interpreted
as maximizing the KL divergence between the output distribution and a uniform distribution
across clusters, H(Φ(x)) = DKL(Φ(x) || Unif(y)), where y spans the set of possible cluster
assignments Φ(X ). This interpretation of the loss shows how it satisfies the two principles
of alignment and distribution.

iDeLUCS leverages this framework to learn cluster assignments concurrently with
a hidden representation that quantifies distances between samples in distinct clusters.
It achieves this by integrating the weighted mutual information loss in equation 3.10,
with a consistency-enforcing loss function for intermediate representations during training.
Specifically, the normalized temperature-scaled cross entropy (NT-Xent) [30] loss is employed
for this purpose, as defined by:

LNT-Xent = − 1

2N

∑
(i,j)∈P

log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k 6= i] exp (sim (zi, zk) /τ)
, (4.3)

where zi = f(xi) represents the learned representation, the cosine similarity sim (zi, zj)
measures the distance between sample representations, P is the set of pairs of indices
representing positive examples in the mini-batch, 1[k 6= i] is an indicator function, and τ is
the temperature parameter fine-tuning the similarity range, set to τ = 1 in our case.

The collective loss function of iDeLUCS is articulated as:

L = w · LI + (1− w) · LNT-Xent, (4.4)

with the hyper-parameter w adjusting the balance between the loss components. Figure 4.1
illustrates how iDeLUCS incorporates the additional contrastive term into the final loss
to enforce the consistency of the hidden representations learned by the artificial neural
networks. This provides robustness with respect to unbalanced datasets, as the learned
representation of sequences in the same cluster are close to each other but far from the
sequences in other clusters.

4.2.2 Information theoretic clustering ensemble

For a given dataset X = {x1, . . . , xN}, a partition π can be represented as a set of K
clusters π = {L1, . . . , LK}, such that π(xi) denotes the cluster label assigned to xi by the
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Maximize
Similarity

Maximize
Predictability

× m

Figure 4.1: iDeLUCS maximizes the mutual information between the corresponding soft
assignments σ and σ̃ of the augmentations x, x̃ from each training sequence after random
mapping t, while maximizing the similarity of the hidden representations z and z̃.

partition. Suppose we are given a set Π = {π1, ..., πT} of T partitions of the data set X .
The problem of clustering combination is to find the consensus partition πC that best
summarizes the information present in Π. In general, combining multiple partitions in
an unsupervised setting is a challenging problem, as each partition in the combination is
represented as a set of labels assigned by an independent clustering algorithm with no trivial
mapping between the assignments. Here, we provide a detailed explanation of the concepts
used in iDeLUCS, which are a combination of the work presented in [138, 186, 195]. We
use an information theoretic approach to the problem that does not compute an explicit
mapping between the assignments. In this framework, the quality of the consensus partition
πC = {C1, . . . , CK} is determined by the amount of information it shares with all the
partitions πi = {Lij | 1 ≤ j ≤ K} ∈ Π, where Lij is the j − th cluster in the i-th partition.
The best possible partition is then determined by

πbestC = arg max
πC

T∑
i=1

MI(πC , πi) , where

MI(πC , πi) =
K∑
r=1

K∑
r=1

p(Cr, L
i
j) log

(
p(Cr, L

i
j)

p(Cr)p(Lij)

)
(4.5)

is the classical Shannon mutual information between partitions. The previous optimization
problem represents a difficult combinatorial problem [186]. However, the work in [195] shows
that it is possible to consider a generalized definition of mutual information to simplify
the problem. The generalized entropy of degree s for a discrete probability distribution

63



P = (p1, . . . , pn) is defined as

Hs(P ) = (21−s − 1)−1

(
n∑
i=1

psi − 1

)
, s > 0, s = 1.

Hence, the generalized quadratic mutual information (s = 2) becomes:

I2(πC , πi) = H2(πi)−H2(πi | πC)

= −2

(
K∑
j=1

p
(
Lij
)2 − 1

)
+ 2

K∑
r=1

p (Cr)

(
K∑
j=1

p
(
Lij | Cr

)2 − 1

)

= 2
K∑
r=1

p (Cr)
K∑
j=1

p
(
Lij | Cr

)2 − 2
K∑
j=1

p
(
Lij
)2
.

(4.6)

With the following estimates, p(Cr) = |Cr|/N , p(Lij) = |Lij|/N , and p(Lij | Cr) = |Lij ∩
Cr|/|Cr|, the quadratic mutual information I2(πC , πi) can be expressed in terms of the
category utility score ∆ as I2(πC , πi) = 2∆(πC , πi) [186]. This is relevant because in
[138], Mirkin showed that a solution to the optimization problem of the utility function
can be obtained by transforming the categorical labels into standardized binary features.
iDeLUCS uses the same transformation, replacing each partition πi by K binary features
and standardizing each binary feature to a zero mean. More specifically, for each data
point x, and each partition πi ∈ Π, the values of the new features are calculated as
yij = 1[Lij = πi(x)] − p(Lij). The final solution of the consensus partition problem can
be obtained by a classic clustering algorithm operating over the new features yij. This
clustering ensemble technique introduces robustness into the method and provides a better
estimate of the confidence score of iDeLUCS for each sequence in the dataset.

4.3 Clustering and representation learning: A general
framework to cluster DNA sequences

For scenarios where the number of expected clusters may be unknown, non-parametric
clustering tools that automatically identify the number of clusters may be preferred.
Fortunately, the contrastive learning framework can be seamlessly integrated with non-
parametric clustering algorithms when some homology is expected. In this context, we
have enhanced iDeLUCS with an additional option to infer the number of clusters using
the classical non-parametric clustering algorithm HDBSCAN [127]. To achieve this, we set
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the invariant information component of the loss in equation 4.4, responsible for network
assignment, to zero, while the predominant component becomes the NT-Xent loss. The
learned 64-dimensional latent features are then used as input to HDBSCAN to compute
the final clustering. We recommend using this feature only when the resulting clusters
are expected to correspond to the lowest possible taxonomic level since HDBSCAN is a
density-based method and higher taxonomic groups usually contain several subclusters.

4.4 Experimental setup

4.4.1 Datasets

To evaluate the efficacy and versatility of iDeLUCS, we conducted tests across a diverse
range of datasets from real and simulated data with known ground-truth annotations.
Besides the datasets described in the previous chapter (described in (a)), we test the
performance of iDeLUCS over 3 additional mitochondrial datasets compiled from NCBI
in June 2022 (described in (b)); one dataset of metagenomic reads simulated from eight
microbial genomes using the Pacific Biosciences SMRT error model for long metagenomic
reads [209] (described in (c)), and 12 synthetic datasets totalling 246,625 artificial DNA
sequences (described in (d)). Each dataset was selected for its unique characteristics, as
described herein.

(a) Eight datasets from Kingdom Animalia, Kingdom Bacteria, and three datasets of viral
sequences, obtained from [134]. Six mitochondrial DNA datasets of vertebrates at
taxonomic levels from Subphylum to Family; two bacterial datasets to be clustered
into families; and three viral datasets (Dengue, Influenza-A, Hepatitis B) clustered into
virus subtypes. The maximum number of clusters per dataset is 12, and the maximum
cluster size is 500 sequences, with an average sequence length of 16,700 bp for mtDNA,
433,882 bp for bacterial, and 5,058 bp for viral sequences. The composition of this
datasets is summarized in Tables 3.1, 3.2 and 3.3, in the previous chapter

(b) Three new mitochondrial DNA datasets created to enhance the representation across
Kingdoms of Life: A dataset of 2,581 mitochondrial genomes from Kingdom Protista
(average sequence length 17,141 bp) clustered into three phyla/subphyla; a dataset of
9,027 mitochondrial genomes from class Insecta (average sequence length 15,841 bp)
clustered into seven orders; and a dataset of 1,759 mitochondrial genomes from King-
dom Fungi (average sequence length 62,644 bp), clustered into three phyla/subphyla.
The composition of this dataset is summarized in Table 4.1
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Table 4.1: Description of the new mitochondrial DNA datasets (b), and the simulated metagenomic
reads from eight microbial genomes introduced by [209]. Note that there is a balanced version
of each new dataset (Fungi, Protists, Insects), where the number of sequences per cluster in the
balanced version was selected according to the number of sequences available in the smallest
cluster.

Dataset Total no.
sequences

Min. seq.
length (bp)

Avg. seq.
len. (bp)

Max. seq.
len. (bp)

Total no.
clusters

Cluster
min. size

Cluster
avg. size

Cluster
max. size

Insects 9,027 14,602 15,841 26,613 7 652 1,290 1,976
Fungi 1,759 20,063 62,644 99,976 3 335 586 889
Protists 2,581 5,493 17,141 69,503 3 315 860 1,642
Insects–balanced 4,550 14,602 15,897 25,011 7 650 650 650
Fungi–balanced 1,005 21,684 60,657 99,976 3 335 335 335
Protists–balanced 945 5,498 24,697 69,503 3 315 315 315

Simulated reads 432,333 5,000 8,511 37,216 8 8,538 54,042 119,330

(c) One dataset of simulated metagenomic reads from eight microbial genomes, obtained
from [209]. This dataset comprises 432,333 sequencing reads to be clustered into
eight species (seven Bacteria and one Archaea). The reads were simulated using the
PacBio sequencing simulation parameters, with a maximum cluster size of 119,330
sequences and an average sequence length of 8,511 bp. The composition of this dataset
is summarized in the last row in Table 4.1.

(d) 12 synthetic datasets from [60]. These are artificial datasets, each consisting of 100
random template sequences representing the true clusters and a random number of
mutated copies that were generated from each template according to a predefined
identity threshold. Each dataset contains at most 25,000 sequences, with a minimum
dataset size of 18,210. The maximum number of clusters for each dataset is 12, the
maximum cluster size is 400 sequences, and the average sequence length is 20,552 bp.
The composition of this dataset is summarized in Table 4.2

4.4.2 Evaluation metrics

In addition to the external validation methods described in Section 2.3.4, which are the
most appropriate for our application domain, as discussed in the previous chapter, we
consider an intrinsic evaluation metric to assess the impact of the learned representations in
the clustering. The results are calculated in the representation space and not in the k-mer
space, following [121].
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Table 4.2: Summary of the twelve synthetic datasets from [60] included in the study. The
number in the name of each dataset represents an identity score threshold, indicating that
each sequence in a cluster is within this threshold from the cluster center.

Dataset Total no.
sequences.

Min. seq.
len. (bp)

Avg. seq.
len. (bp)

Max. seq.
len. (bp)

Total no.
clusters

Cluster
min. size

Cluster
avg. size

Cluster
max. size

Medium-60 18,210 653 1,365 2,062 100 13 182 397
Medium-70 18,731 678 1,359 2,027 100 7 187 399
Medium-80 20,939 664 1,425 2,043 100 17 209 383
Medium-90 21,266 730 1,340 2,016 100 9 213 398
Medium-95 24,039 724 1,446 2,038 100 18 240 396
Medium-97 20,772 736 1,358 2,022 100 6 208 399
Long-60 20,885 1,393 2,758 4,039 100 10 209 400
Long-70 18,558 1,441 2,754 4,062 100 6 186 399
Long-80 20,525 1,396 2,639 3,974 100 9 205 396
Long-90 22,518 1,489 2,586 3,964 100 6 225 397
Long-95 20,222 1,461 2,890 4,049 100 14 202 401
Long-97 19,960 1,486 2,715 3,988 100 9 200 396

• Silhouette Coefficient: This measure compares the cluster assignment of a sequence
with the assignment of the closest sequence assigned to a different cluster. Specifically,

Silhouette =
1

N

N∑
i=1

b− a
max(a, b)

(4.7)

where N is the number of sequences in the dataset, b is the distance between the
representation of a sequence and the representation of the nearest sequence in a cluster
it does not belong to, and a is the mean intra-cluster distance. The best possible score
is 1, which decreases as the cluster overlap increases. Scores with negative values
indicate that most of the sequences have been placed in the wrong cluster, with the
worst possible value being −1.

4.4.3 Results

In this section, we build on the proven effectiveness of DeLUCS over classical clustering
algorithms and the DEC baseline. Here, we focus on comparing the performance of iDeLUCS
on the datasets in (a) and (b) against its predecessor. This comparative analysis is detailed
in Table 4.4 for the new datasets and Table 4.3 for the eleven benchmarking datasets.

In particular, iDeLUCS outperforms DeLUCS on the real datasets in (a) and (b), most
of which consist of non-homologous sequences. For example, for the mitochondrial genome
datasets, the average accuracy (ACC) of iDeLUCS is 92.4%, a substantial increase compared
to DeLUCS, for which the average accuracy was only 75.42%. This difference is mainly due
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Table 4.3: Comparison of the performance of iDeLUCS against DeLUCS on the benchmark
datasets (a), using an intrinsic cluster evaluation metric (silhouette coefficient) and external
evaluation metrics (homogeneity, completeness, adjusted Rand index ARI, normalized mu-
tual information NMI, and unsupervised clustering accuracy ACC). The boldface indicates
the best result, and “balanced” indicates the balanced version of the datasets.

Dataset Model No. Silhouette Homogeneity Completeness NMI ARI ACC
Mimics Score

Vertebrata DeLUCS 3 0.37 0.85 0.86 0.85 0.86 0.94
iDeLUCS 3 0.54 0.93 0.93 0.93 0.94 0.97

Actinopterygii DeLUCS 8 0.35 0.99 0.98 0.98 0.99 1.00
iDeLUCS 7 0.22 0.95 0.95 0.95 0.95 0.98

Neopterygii DeLUCS 3 0.34 0.69 0.70 0.70 0.64 0.83
iDeLUCS 3 0.44 0.75 0.75 0.75 0.71 0.87

Ostariophysi DeLUCS 8 0.13 0.73 0.74 0.73 0.75 0.90
iDeLUCS 8 0.08 0.68 0.69 0.68 0.69 0.85

Cypriniformes DeLUCS 8 0.26 0.68 0.69 0.68 0.58 0.77
iDeLUCS 8 0.48 0.72 0.72 0.71 0.63 0.80

Cyprinidae DeLUCS 8 0.33 0.88 0.89 0.87 0.80 0.89
iDeLUCS 8 0.66 0.87 0.87 0.86 0.78 0.87

Bacteria DeLUCS 3 0.30 0.67 0.68 0.67 0.59 0.74
iDeLUCS 3 0.42 0.78 0.79 0.79 0.72 0.83

Proteobacteria DeLUCS 3 0.16 0.67 0.67 0.67 0.65 0.83
iDeLUCS 3 0.11 0.75 0.76 0.75 0.74 0.86

Dengue DeLUCS 3 0.75 1.00 1.00 1.00 1.00 1.00
iDeLUCS 3 0.07 0.99 0.99 0.99 1.00 1.00

HBV DeLUCS 3 0.77 1.00 1.00 1.00 1.00 1.00
iDeLUCS 3 0.59 0.99 0.99 0.99 0.99 1.00

Influenza-A DeLUCS 3 0.58 0.97 0.97 0.97 0.98 0.99
iDeLUCS 3 0.69 0.98 0.98 0.98 0.98 0.99
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to the drop in performance of DeLUCS on the new mitochondrial datasets, chosen to be
from particularly challenging taxa.

As seen in Table 4.1, for the newly introduced mitochondrial datasets, iDeLUCS
showcases clustering accuracies between 78% and 89.7%, outperforming DeLUCS, which
ranges from 60.1% to 88.1%. Indeed, although iDeLUCS performs better overall on balanced
datasets, both the improved clustering ensemble and the new contrastive loss function
provide robustness with respect to unbalanced datasets, as equation (4.4) is not dominated
by the entropy term in favour of a uniform output distribution.

For simulated data, we explore iDeLUCS’s capabilities against various baselines on
previously untested data types. Hence, for the dataset of simulated reads (c), we include
a comparison with DeLUCS, classical clustering algorithms (k-means and GMM), and
a specialized binning algorithm for long metagenomic reads [209], and the results are
summarized in 4.5. Additionally, for synthetic data (d), compiled from [60], we benchmark
against MeShCLust v.3.0, a leading alignment-assisted method requiring a predefined
similarity threshold. Results are detailed in Tables 4.6 and 4.7.

In the clustering of the dataset of simulated long metagenomic reads (c), the accuracy
of iDeLUCS is 84%, ∼ 16% higher than that of DeLUCS and ∼ 7% higher than that of

Table 4.4: Comparison of the performance of iDeLUCS against DeLUCS on the new
mtDNA datasets (b), using an intrinsic cluster evaluation metric (silhouette coefficient)
and external evaluation metrics (homogeneity, completeness, adjusted Rand index ARI,
normalized mutual information NMI, and unsupervised clustering accuracy ACC). The
boldface indicates the best result, and “balanced” indicates the balanced version of the
datasets.

Dataset Model No. Silhouette Homogeneity Completeness NMI ARI ACC
Mimics Score

Insects DeLUCS 3 0.25 0.64 0.63 0.63 0.60 0.73
iDeLUCS 3 0.52 0.78 0.76 0.79 0.80 0.84

Fungi DeLUCS 3 0.46 0.50 0.48 0.49 0.40 0.63
iDeLUCS 3 0.28 0.67 0.63 0.64 0.56 0.78

Protists DeLUCS 3 0.51 0.54 0.45 0.49 0.36 0.62
iDeLUCS 3 0.81 0.60 0.79 0.56 0.65 0.81

Insects – balanced DeLUCS 3 0.37 0.67 0.68 0.67 0.59 0.78
iDeLUCS 3 0.57 0.82 0.83 0.82 0.80 0.89

Fungi – balanced DeLUCS 3 0.32 0.52 0.52 0.52 0.50 0.76
iDeLUCS 3 0.26 0.88 0.88 0.88 0.91 0.97

Protists – balanced DeLUCS 3 0.53 0.70 0.70 0.70 0.70 0.88
iDeLUCS 3 0.37 0.66 0.67 0.67 0.65 0.86
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Table 4.5: Comparison of the performance of iDeLUCS against K-means, GMM, DeLUCS and
LRBinner on the dataset of simulated metagenomic reads from eight microbial genomes introduced
by [209], using an intrinsic cluster evaluation metric (silhouette coefficient) and external evaluation
metrics (homogeneity, completeness, adjusted Rand index ARI, normalized mutual information NMI,
and unsupervised clustering accuracy ACC). The boldface indicates the best result. Note: GMM
did not converge in this experiment.

Dataset Model No. Silhouette Homogeneity Completeness NMI ARI ACC
Mimics Score

Simulated K-means - 0.055 0.86 0.81 0.79 0.75 0.77
reads DeLUCS 3 0.68 0.65 0.70 0.68 0.64 0.67

LRBinner - 0.91 0.97 0.99 0.98 0.97 0.98
iDeLUCS 3 0.80 0.90 0.86 0.90 0.87 0.83

Table 4.6: Comparison of the performance of iDeLUCS + HDBSCAN (iDeLUCS – auto)
against MeShClust v3.0 clustering algorithms on the medium synthetic datasets intro-
duced by [89], using external evaluation metrics (homogeneity, completeness, adjusted Rand
index ARI, normalized mutual information NMI, and unsupervised clustering accuracy
ACC). The boldface indicates the best result. “MeShCLust” denotes MeShCLust v3.0 run
with the option of automatically identifying the identity threshold parameter.

Dataset Model No. Clusters Homogeneity Completeness NMI ARI ACC

MediumTest-60 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 68 0.93 1.00 0.96 0.84 0.89

MediumTest-70 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 79 0.97 1.00 0.98 0.95 0.94

MediumTest-80 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 92 0.99 1.00 0.99 0.98 0.97

MediumTest-90 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

MediumTest-95 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

MediumTest-97 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

K-means. However, it trails the specialized metagenomic binning baseline by ∼ 16%. That
said, the potential inclusion of coverage information could further enhance iDeLUCS’s
performance in this domain.

For the synthetic datasets in (d), iDeLUCS attains near-parity with MeShCLust v3.0,
securing an average accuracy of 98.5% when the expected number of clusters is given as a
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Table 4.7: Comparison of the performance of iDeLUCS + HDBSCAN (iDeLUCS – auto)
against MeShClust v3.0 clustering algorithms on the long synthetic datasets introduced
by [89], using external evaluation metrics (homogeneity, completeness, adjusted Rand index
ARI, normalized mutual information NMI, and unsupervised clustering accuracy ACC).
The boldface indicates the best result. “MeShCLust” denotes MeShCLust v3.0 run with
the option of automatically identifying the identity threshold parameter.

Dataset Model No. Clusters Homogeneity Completeness NMI ARI ACC

LongTest-60 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 99 0.99 1.00 0.99 0.99 0.99

LongTest-70 MeShCLust 100 1.00 0.92 0.95 0.97 0.93
iDeLUCS-auto 82 0.98 1.00 0.99 0.98 0.97

LongTest-80 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 0.99

LongTest-90 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

LongTest-95 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

LongTest-97 MeShCLust 100 1.00 1.00 1.00 1.00 1.00
iDeLUCS-auto 100 1.00 1.00 1.00 1.00 1.00

parameter and 97.3% with automatic cluster determination via HDBSCAN. This is slightly
below MeShCLust v3.0’s 99.3% average accuracy, highlighting iDeLUCS’s competitive edge
even with alignment-assisted non-parametric methods.

Overall, iDeLUCS has a robust performance across these very different types of datasets:
small (113 sequences) or large (432,000 reads); real, simulated, or synthetic; at different
taxonomic levels ranging from phyla to subtypes; with balanced clusters or with unbalanced
clusters; with cluster number varying from 3 to 100 clusters; comprising long sequences
(500,000 bp) or short sequences (650 bp); consisting of homologous sequences or of non-
homologous sequences. On these datasets, the unsupervised clustering accuracy (ACC)
obtained by iDeLUCS ranges from 78% to 100%, with an average accuracy of 90%.

4.4.4 Ablation studies

We studied the impact of the specific changes in iDeLUCS over the previous pipeline.
Our study assessed the performance of iDeLUCS with and without each change made
across several non-simulated datasets under different scenarios. We removed each change
introduced in iDeLUCS one at a time and averaged the accuracies over ten trials to establish
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a consolidated performance measure. These values were then averaged across all datasets
to determine a unified effectiveness measure for each configuration.

Table 4.8: Optimal performance metrics derived from ten trials for each non-simulated
dataset across different scenarios, selecting the best result per dataset. These top perfor-
mances were averaged across all datasets to establish a unified effectiveness measure for
each configuration.

Method Contrastive Loss Clustering Ensemble ACC

1 iDeLUCS 3 3 0.89 ± 0.07
2 3 7 0.87 ± 0.11
3 7 3 0.84 ± 0.16

4 DeLUCS 7 7 0.84 ± 0.12

We first examine the effects of the improved contrastive loss by training the network using
the new loss function on the new datasets and maintaining the naive majority voting scheme
followed by DeLUCS. Our results show that this change alone leads to an improvement
of ∼3% over the DeLCUS pipeline, as seen in the second row of Table 4.8. Interestingly,
removing the contrastive term in the loss function while keeping the information-theoretic
clustering ensemble was only marginally better than DeLUCS on average. However, our
findings indicate that the newly introduced clustering ensemble provided lower variance
when compared to majority voting on the 11 benchmarking datasets introduced in the
previous chapter, as illustrated in Figure 4.2-a).

Furthermore, we observed that enforcing the consistency of the hidden representations
in iDeLUCS provided robustness to local optima. Unlike the previous pipeline, iDeLUCS
does not require the addition of external noise to the network parameters during training.
The network learned an embedding where the representations of sequences in the same
cluster were close to each other but distant from the representations of sequences in other
clusters. Figure 4.2 b-c) illustrates the reduction in the variance of independent runs of
the clustering algorithm. The figure aggregates the learning curves for fifty independently
trained ANNs on the mtDNA Vertebrates (Table 3.1). The same behaviour is observed
across all the eleven datasets presented in the previous chapter. i.e., mitochondrial, bacterial
and viral DNA. Overall, both incorporations reduced the variance for independent runs of
the algorithm by ∼ 18%.
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(a)

(b) (c)

Figure 4.2: Comparison of the performance of iDeLUCS against the performance of
DeLUCS on 11 benchmark datasets. (a) The box plot represents the performance of
the clustering ensemble of iDeLUCS against the majority voting used in DeLUCS.
Fifty models with five voters were trained over the eleven benchmark datasets using
both strategies. (b) Contrastive loss as a function of the training epoch for 100 runs
of the training algorithm on the Vertebrata dataset. (c) Unsupervised clustering
accuracy as a function of the training epoch for 100 runs of the training algorithm on
the Vertebrata dataset.
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4.5 Software description

iDeLUCS is a standalone software tool that exploits deep learning capabilities to cluster
genomic sequences. It is agnostic to the data source, making it suitable for genomic sequences
taken from any organism in any kingdom of life. iDeLUCS assigns a cluster identifier to
every DNA sequence present in a dataset while incorporating several built-in visualization
tools that provide insights into the underlying training process and the composition of
the datasets, as illustrated in Figure 4.3. iDeLUCS offers an evaluation mode to compare
the dataset sequences’ ground-truth label assignments (or hypothesized label assignments)
with their discovered cluster labels. This is accompanied by a visual qualitative assessment
of the clustering, using the uniform manifold approximation (UMAP, see [128]) of the
learned lower dimensional embedding. Finally, iDeLUCS outputs confidence scores for all
cluster-label predictions for enhanced interpretability. The software was developed using
Python 3.9 and can be deployed with or without a graphics processing unit (GPU)

Note: At the moment of writing this dissertation, completely reproducible results are not
guaranteed across PyTorch releases, individual commits, or platforms. Furthermore, results
may not be reproducible between CPU and GPU executions, even when using identical
seeds. That said, users may attempt to produce results similar to the ones obtained in this
paper using the default parameters. Additional information about extra hyper-parameters
and test scripts can be found in the Examples folder of the paper repository. All of the
tests were performed on one of the nodes of the Beluga cluster of the Digital Research
Alliance of Canada (16 x Intel Gold 6148 Skylake @ 2.4 GHz CPU, 32 GB RAM) with
NVIDIA V100SXM2 (16 GB memory).

4.6 Conclusion

Overall, our analysis shows that iDeLUCS is an accurate and scalable clustering method,
performant on datasets of long, homology-free DNA sequences, not tractable via alignment-
based methods due to either lack of alignment or excessive time complexity. The modifica-
tions introduced by iDeLUCS are representative as it still outperforms other algorithms in
clustering sizeable datasets of unlabelled DNA sequences while improving interpretability
and speed. Future work is needed to systematically test and optimize iDeLUCS for datasets
with short reads or datasets where more than 200 clusters are expected.
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Figure 4.3: Snapshot of the training tab of iDeLUCS as it learns to cluster 9,027 mitochon-
drial genomes of insects into 7 different clusters. The left panel displays a summary of the
main training parameters, as well as some statistics about the dataset under study. The
center panel contains a qualitative assessment of the learning progress. The right panel
contains a dynamic plot with the learning curves of the different models. Four models have
been trained for thirty epochs each, and the training process of the fifth model is going
through the third epoch.
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Chapter 5

Case study: Discovering traces of
convergent evolution in the genomic
signatures of microbial extremophiles

This chapter is an adaptation and extension of a paper [135] of which I was co-author, titled
“Environment and taxonomy shape the genomic signature of microbial extremophiles.” We
leverage alignment-free methodologies and machine learning algorithms to unearth evidence
suggesting that adaptations to extreme temperatures and pH conditions leave a discernible
mark on the genomic signatures of microbial extremophiles.

Section 5.1 outlines our study’s context and goals, emphasizing the exploration of genomic
analysis to understand extremophiles’ adaptations. Section 5.2 details our approach, from
dataset compilation (Section 5.2.1) and supervised sequence classification (Section 5.2.2)
to unsupervised sequence clustering (Section 5.2.3), setting the stage for our analytical
exploration.

Section 5.3 presents our analysis, which demonstrates the capabilities of supervised
learning in identifying features of genomic adaptation, as detailed in Subsection 5.3.1.
Further, it explores the application of both parametric and non-parametric clustering
methods (Sections 5.3.2 and 5.3.3) to uncover genomic patterns and potential candidates for
convergent evolution. The Discussion (Section 5.4) reflects on our findings’ evolutionary sig-
nificance, comparing them with existing literature and presenting some of their implications
for understanding extremophiles’ adaptability.

Section 5.5 concludes the chapter and summarizes our contributions to extremophile
genomics, underscoring the importance of genomic analysis in revealing life’s adaptability
to extreme conditions and suggesting future research directions.
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5.1 Introduction

It is hypothesized that all life forms on our planet originated from a common ancestor and
that organisms in each domain branched at different times during evolutionary history
[39, 48]. The now standard three-domain system classifies organisms into three domains
based on evolutionary relatedness: Archaea, Bacteria, and Eukarya. Although extremophiles
are present in all three domains, as illustrated in Figure 5.1, microbial ones (Bacteria and
Archaea) have garnered special attention for their unique phenotypic traits and largely
unexplored genomic landscapes. Investigating the genomic organization and diversity of
extremophiles could shed light on their adaptation strategies and the evolution of life
under extreme conditions, with potential implications for biotechnology and astrobiology
[80, 153, 198, 217].

Last Bacterial 
Common 
Ancestor

Last Archaeal 
Common 
Ancestor

Last Eukaryotic 
Common Ancestor

Last Universal 
Common Ancestor 

(LUCA)

BacteriaEukaryaArchaea

Pyrococcus 
Furiosus

Acidobacterium 
cf. capsulatumM. tardigradum

Figure 5.1: Illustration of the three-domain characterization of the tree of life, including
examples of representative extremophiles from each domain: M. tardigradum in phylum
Tardigrada as representative of Eukaryotes, P. furiosus in phylum Euryarchaeota as a
representative of Archaea, and Acidiobacterium cf capsulatum in phylum Acidobacteriota as
a representative of Bacteria

.

These organisms have developed many structural, biochemical, and metabolic strategies
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to ensure cell viability in inhospitable environments. These adaptations, potentially resulting
from convergent evolution across different taxa, manifest both at proteomic and genomic
levels. At the proteomic level, organisms in extreme environments exhibit a significant
amino acid compositional bias, attributed to convergent proteomic adaptations [59, 173, 218].
Distinctive codon usage patterns have also been linked to the selective pressures exerted by
extreme environmental conditions [117, 178, 205]. Finally, at the genomic level, the genomes
of microbial extremophiles are still subject to superimposed large changes in composition
due to mutational biases [57, 58].

The concept of genomic signatures, defined as pervasive quantitative measures along
a genome that discriminates between different species, has been effectively employed in
genome analysis, comparison, and sensitive taxonomic classification, even in unsupervised
contexts [43, 95, 97, 116, 162, 184, 225] (See Section 2.1.4). These studies have reinforced
the notion of a robust phylogenetic signal within genomic signatures, offering an alternative
perspective to alignment-based taxonomic analyses.

In this chapter, we set out to provide a comprehensive quantitative analysis suggesting
that microbial extremophiles’ adaptation to extreme temperatures or pH is reflected in their
genomic signatures. Defined here as the k-mer frequency vector of a 500 kbp DNA fragment,
representing a genome where k is a fixed positive integer (1 ≤ k ≤ 6), we investigate the
genomic signatures across a dataset of 693 high-quality genomes from bacterial and archaeal
organisms adapted to extreme conditions. Employing supervised machine learning, we first
analyzed genomic signatures labelled with taxonomic or environmental category labels to
explore the taxonomic and environmental components. The classification accuracies obtained
support the presence of an environmental component and a well-established taxonomic
component. Further, using interpretability tools on supervised learning algorithms enabled
the identification of specific k-mers that are most relevant for environmental category
classification.

The presence of the environmental component was also independently verified through
unsupervised clustering analysis. By assessing the ability of various unsupervised algorithms
to discern the taxonomic structure of unlabelled data, we identified several organisms
with genomic signatures indicating convergent adaptations despite significant taxonomic
divergences. Hyperthermophile bacteria and archaea, such as Thermocrinis ruber, Pyrococcus
furiosus, Thermococcus litoralis, and Pyrococcus chitonophagus, emerged as exemplars of
organisms whose genomic signatures were consistently grouped together across all machine
learning analyses, regardless of their taxonomic disparities.

Overall, the results of machine learning analyses, corroborated in the exemplar cases by
observations of shared characteristics of the isolating environments, suggest the existence
of an environmental component that co-exists with a strong taxonomic component in the
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genomic signatures of organisms living in extreme temperatures or extreme pH conditions.
The work presented in [135] is among the most detailed examinations of prokaryotic ex-
tremophiles’ genomic signatures, offering new insights into the coexistence of environmental
and taxonomic components within the genomic signatures of organisms adapted to extreme
conditions.

5.2 Materials and methods

5.2.1 Datasets

All the data were collected through a systematic literature search focused on identifying
extremophilic microbes adapted to environments of extreme temperature and pH. The
search was conducted on the PubMed Database (accessed September 2022) and Google
Scholar (accessed September 2022) for primary research articles and reviews, and 768
microbial species or strains for which extremophilic characteristics were recorded were
identified. Subsequently, these species/strains were identified in the Genome Taxonomy
Database (GTDB; release R207 April 8, 2022, Accessed February 2023), the gold-standard
database for taxonomy [197], and only GTDB species representative genomes with reported
completeness of over 95%, and contamination of under 5% were selected. Species/strains
were mapped to their identified extremophilic characteristic(s), along with genome assembly
numbers provided by GTDB for each given organism. The extremophilic characteristic(s)
was validated for each organism by searching PubMed with the given strain/species name
and identifying a primary article/review or reliable BacDive database (accessed February
2023) entry to confirm the accuracy of the characteristic(s). Entries lacking consistent
observations related to the growth characteristics of the respective microbe were removed
from the dataset.

We used the following definitions, based on the Optimal Growth Temperature (OGT),
respectively Optimal Growth pH (OGpH): Psychrophile (OGT of < 20ºC)[132], mesophile
(OGT of 20-45ºC)[132], thermophile (OGT of 45−80ºC)[132], and hyperthermophile (OGT
of > 80ºC)[132], acidophile (OGpH < pH 5)[132] and alkaliphile (OGpH > pH 9)[132]. The
dataset was then curated for 154 descriptors that comply with the temperature and pH
intervals used in the above definitions. Fourteen entries could not be validated and were
discarded from the dataset.

This selection process resulted in 693 annotated high-quality extremophile microbial
genome assemblies. These high-quality assemblies were then used to form two datasets
according to two extremophilic characteristic(s), as follows. The first dataset, called the
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Figure 5.2: Histograms depicting the coding DNA density and sequence length across
genomes of microbial extremophiles: Bacteria (blue) and Archaea (yellow), with brown
representing an overlap between the two histograms. The figures are arranged by dataset
type: Temperature (left panels) and pH (right panels). The top histograms illustrate the
coding DNA density. On average, over 85% of the sequences consist of coding DNA, which
could impact the presence of a genome-wide pervasive environmental component in the
genomic signature. The bottom histograms correspond to the sequence length. These
are used to select a suitable threshold for the maximum length of non-specific fragments
for genomic signature analysis, given the notable differences in genome lengths between
bacterial and archaeal extremophiles.
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Temperature Dataset, is composed of 148 psychrophile genomes (8 archaeal, 140 bacterial),
190 mesophile genomes (84 archaeal, 106 bacterial), 183 thermophile genomes (67 archaeal,
116 bacteria), and 77 hyperthermophile genomes (70 archaeal, seven bacterial) for a total of
598 organism genomes (229 archaeal, 369 bacterial) (Table 5.1). The second dataset, called
the pH Dataset, is composed of 100 acidophile genomes (39 archaeal, 61 bacterial) and 86
alkaliphile genomes (30 archaeal, 56 bacterial) for a total of 186 organisms (69 archaeal,
117 bacterial) (Table 5.2). Note that 91 organisms were identified to belong to both the
Temperature Dataset and the pH Dataset.

Selecting a genomic fragment s to represent an organism’s genome is a process that has
to consider several factors, including fragment length, taxonomic level, and computational
complexity of the algorithms used. For methods that rely on k-mer frequency for sequence
classification, some studies [20, 42] suggest the relation k = log4(| s |), where | s | is the
minimum length of sequence s that is necessary, in theory, to obtain statistical significance.
However, in practice, longer sequences are needed. For example, another study [134] used
sequence length of 500 kbp in conjunction with k = 6 to cluster bacterial sequences at the
family level, even though in theory a length of 4,096 bp would have sufficed for this value
of k. Each genome (assembly) was represented by a single, arbitrarily selected 500 kbp
DNA fragment. The values for k, namely 1 ≤ k ≤ 6, were empirically chosen to balance
the trade-off between classification accuracy and computational complexity and to explore
multiple scales of the k-mer analysis.

A DNA fragment was arbitrarily selected for each DNA genome/assembly. First, the
contigs of the assembly were sorted by length, from the longest to the shortest. Then, if
the longest contig was longer than 500 kbp, a 500 kbp fragment was randomly selected
as the representative DNA sequence for that genome. Otherwise, the sorted contigs were
concatenated one by one until the desired length of 500 kbp was reached, which became
the DNA representative sequence for that genome. The k-mers were counted starting from
the beginning of the representative DNA sequence by using a sliding window with step
size 1. To avoid spurious k-mers that could arise from the concatenation of contigs, the N
character was added as a separator between contigs or contig fragments. Still, no k-mers
that contain N were considered when calculating k-mer counts. Also, note that the inserted
letters N were not counted towards the length of the DNA sequence representing each
genome/assembly. To eliminate the variable of the strand orientation of the uploaded DNA
sequences, the final k-mer frequency vector of a sequence was computed as the sum between
the vector of its k-mer counts and the corresponding vector of k-mer counts of its reverse
complement. [103] In the remainder of the chapter, a k-mer and its reverse complement
will be considered to be indistinguishable. Only the canonical k-mer of a pair (the first, in
alphabetical order, of the two reverse complementary k-mers) will be listed.
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Table 5.1: Composition of the Temperature Dataset: 598 DNA fragments from microbial
genomes/species (369 DNA fragments from bacterial genomes, and 229 DNA fragments
from archaeal genomes).

Domain Temperature
Category # Phyla # Classes # Orders # Families # Genera # Species

Archaea Psychrophiles 2 4 4 5 7 8
Mesophiles 4 6 7 20 45 84
Thermophiles 6 11 14 21 41 67
Hyperthermophiles 5 6 8 15 31 70

Bacteria Psychrophiles 4 4 6 13 19 140
Mesophiles 3 3 6 10 14 106
Thermophiles 15 19 24 27 47 116
Hyperthermophiles 5 5 5 5 5 7

Table 5.2: Composition of the pH Dataset: 186 DNA fragments from microbial
genomes/species (117 DNA fragments from bacterial genomes and 69 DNA fragments
from archaeal genomes).

Domain pH
Category # Phyla # Classes # Orders # Families # Genera # Species

Archaea Acidophiles 4 5 7 11 24 39
Alkaliphiles 2 5 5 9 18 30

Bacteria Acidophiles 10 12 13 13 32 61
Alkaliphiles 12 14 25 30 36 56

5.2.2 Supervised machine learning for sequence classification

To test the hypothesis of the existence of an environmental component in the genomic
signature of microbial extremophiles, the two previously described datasets (Temperature
and pH) were classified using supervised machine learning algorithms, and the average
accuracy of each classification was computed. For each dataset, computational experiments
were performed using six different classifiers and different values of k, as detailed below.
In addition, for each computational experiment, three different scenarios for labelling the
training dataset were analyzed as follows:

(1) All DNA sequences used in training were labelled taxonomically by their domain
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(bacteria or archaea),

(2) All DNA sequences used in training were labelled by their environment category
(psychrophile, mesophile, acidophile, etc.),

(3) All DNA sequences used in training were labelled with pseudo-labels sampled from
a discrete uniform distribution. More specifically, sequences in the Temperature
Dataset are given a random pseudo-label sampled from Unif(0, 3) because there are
four possible environmental labels in this dataset. Respectively, sequences in the pH
Dataset are given a random pseudo-label sampled from Unif(0, 1) because there are
two possible environmental labels in this dataset. This third scenario was introduced
as a control, and it was expected to result in predictions of the correct pseudo-labels
with probabilities equal to the sampling probability for each dataset.

The six classifiers used for these classification tasks were selected as representative
algorithms of four main categories in the classification of DNA sequences. Support Vector
Machines (SVM) were selected as a representative of Kernel Methods, with a radial basis
function kernel [200]. Random Forest was selected to represent Tree-Based Methods, with
the Gini index as the classification criteria [76]. The third algorithm was an Artificial Neural
Network (ANN), with a simple and versatile architecture consisting of two fully connected
layers, Linear (512 neurons) and Linear (64 neurons), each one followed by a Rectified
Linear Unit (ReLU) and a Dropout layer with a dropout rate of 0.5. Lastly, a Digital Signal
Processing framework[162] was considered, whereby pairwise distances between numerical
representations of DNA sequences are computed and then used in conjunction with Linear
Discriminant (MLDSP-1), with Quadratic SVM (MLDSP-2), or with Subspace Discriminant
(MLDSP-3) machine learning algorithms.

Two different types of computational experiments were performed for each combination
of (a) the two datasets (Temperature and pH), (b) the supervised machine learning classifier
(six classifiers), (c) the value of k (1 ≤ k ≤ 6), and (d) training data labelling (taxonomy,
environment category, random).

In the first type of experiment, called restriction-free, the predictive power of the
algorithms was tested using standard stratified 10-fold cross-validation, as follows. The
dataset was split into ten distinct subsets, called folds, and a model was trained using 9
of the folds as training data; the resulting model was validated on the remaining part of
the data (i.e., it was used as a validation set to compute a performance measure such as
accuracy). The performance measure reported by 10-fold cross-validation was calculated as
the average of the classification accuracy for each of the ten possible validation sets.
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The second type of experiment, called restricted, or non-overlapping genera, was designed
to address the possibility that a contributing taxonomic component may influence a correct
environment category label classification. For example, one goal was to ensure that a
DNA sequence was not classified as a hyperthermophile simply due to its similarity to
DNA sequences of the same genus that happened to belong to the same hyperthermophile
category. To this end, we adopted a grouped 10-fold cross-validation approach, whereby all
sequences of the same genus appeared in exactly one fold. At the same time, to align with
the principles of stratified cross-validation, the distribution of the labels in each fold was
kept the same as the distribution of the corresponding labels in the entire dataset. In this
restricted (non-overlapping genera) scenario, if a DNA sequence is in the test set, then no
other sequence of the same genus is present in the training set. This approach attempts to
disentangle, at the genus level, the taxonomic component from the environmental component
of the genomic signature.

As an independent method for assessing the environmental component of the genomic
signature, we employed interpretability tools for machine learning methods. Global inter-
pretability tools were preferred as they help understand the general mechanisms in the
data through a global importance measure. Given the high correlation between the k-mers,
the mean decrease in impurity (MDI) for Random Forest was selected as a k-mer global
importance measure and then used to learn the actual k-mers relevant to the environment
category classification. (This measure was preferred over the widely adopted global-agnostic
Permutation Feature Importance method, as that method is not suitable for handling
highly correlated features [187].) The methodology used to determine the relevant k-mers
is as follows. First, a one-vs-all classifier was trained for each environment category in the
dataset using stratified 10-fold cross-validation. Second, the MDI algorithm was used to
compute the global importance of each k-mer in each fold, and the average taken over all
folds was used to create a ranked list of k-mers in decreasing order of their contribution.
Finally, for each environment category, the “most relevant subset of k-mers” was computed,
defined as the subset of the ranked k-mer list that was sufficient to classify the dataset
with the same classification accuracy as when all k-mers were used in that classification.

5.2.3 Unsupervised learning for sequence clustering

In unsupervised learning, no labels are provided for the DNA sequences in the dataset, and
various algorithms are used to cluster similar genomic signatures and explore the structure
of the space of the genomic signatures in the dataset.

Two groups of tests with unsupervised learning algorithms were performed: parametric
clustering algorithms (that take the number of expected clusters as an input parameter)
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and non-parametric clustering algorithms (that automatically determine the number of
clusters). In the first group, four parametric clustering algorithms were used: K-means,
GMM, K-medoids, and DeLUCS [134]. The computation of the cluster label assignments
for each sequence in the Temperature and the pH Datasets was performed with various
values of the parameter n_clusters (the expected number of clusters) in each algorithm,
n_clusters ∈ {2, 4, 8} for the Temperature Dataset, and respectively n_clusters ∈ {2, 4}
for the pH Dataset, based on the number of potential true clusters in each dataset.

For each dataset, the strength of each of the two components of the signature (taxonomic,
environmental) was assessed by comparing the clustering accuracies in two scenarios, the
first where the clustering was evaluated against the true taxonomic groups and the second
when the clustering was assessed against the true environment category groups. The
performance was evaluated in each case using the unsupervised clustering accuracy metric
in equation 2.26.

In the second type of test, we assessed whether non-parametric clustering algorithms can
discover the clusters of each dataset at the lowest possible taxonomic level (genus). For this
purpose, we used two non-parametric clustering algorithms, HDBSCAN [127] and iterative
medoids [150], combined with three different dimensionality reduction techniques: VAE,
Deep Contrastive Learning (CL), and UMAP [128]. We also used iDeLUCS [136], which
is semi-parametric, in the sense that its parameter n_clusters (herein = 300) represents
an upper limit of the number of clusters found by the algorithm. These seven clustering
algorithms were used to recover the lowest taxonomic groups. The following metrics were
defined to assess the quality of the found clusters: the completeness of each cluster (defined
as the number of occurrences of the most common genus present in the cluster, divided by
the total number of sequences of that genus in the dataset), and the contamination of each
cluster (defined as the number of sequences that belong to the most common genus in the
cluster, divided by the cluster size). The overall quality of each clustering algorithm was
then calculated as the total number of clusters that are at least 50% complete and at most
50% contaminated.
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5.3 Results

5.3.1 Supervised machine learning analysis

Supervised classification by taxonomy, environment category, and random label
assignment

We conducted several computational tests using supervised machine learning to classify
genomic signatures from the Temperature and pH Datasets based on taxonomy labels,
environment category labels, and randomly assigned environment category labels. These
tests employed six machine learning algorithms over k-mer lengths 1 ≤ k ≤ 6, under two
scenarios: (a) restriction-free with stratified 10-fold cross-validation, and (b) restricted with
stratified 10-fold cross-validation ensuring non-overlapping genera.

For the restriction-free case, summarized in Table 5.3, taxonomy label-based training
achieved high classification accuracies, exceeding 97.49% and 94.18% for the Temperature
and pH Datasets, respectively, for k = 6. Environment category label-based training yielded
medium-high accuracies, with over 77.59% for the Temperature Dataset and 84.95% for
the pH Dataset. Random label assignments, as expected, resulted in low accuracies, not
surpassing 28.09% and 50.06% for the Temperature and pH Datasets, respectively.

In the restricted case, detailed in Table 5.4, taxonomy label-based classifications main-
tained high accuracies over 95.30% and 91.90% for the Temperature and pH Datasets,
respectively. Environment label-based classifications showed a dip to medium accuracies
for the Temperature Dataset (61.90%) and medium-high for the pH Dataset (79.24%).
Random label assignments remained low, aligning with the probabilities of environment
category labels.

In both the restriction-free and the restricted cases, the classification of genomic
signatures for k = 1 corresponds precisely to a classification based on the G+C content of
the sequences (this is due to k-mers being counted from a DNA fragment together with its
reverse complement). As seen from Table 5.3, the supervised classification accuracies for
k = 1 were relatively low for taxonomic classifications and even lower for the environment
category classifications. These results suggest that previous observations[173] of high G+C
content of archaeal tRNA sequences being correlated with DNA stability in high-temperature
environments (≥ 60◦C) may not generalize to pervasive genomic signatures and larger
datasets. This inference is also supported by the single nucleotide composition summary
for the datasets (Figure 5.3).

Overall, we first note that the classification accuracy improved with higher values
of k for both datasets. Second, we observe that for both datasets, the classification
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accuracies obtained when using a random label assignment were approximately equal to the
probabilities that a sequence had one of the environment category labels (around 25% in
the case of the four temperature labels and around 50% in the case of the two pH labels).
Third, note that the classification accuracies in the restricted scenario were slightly lower
than in the restriction-free scenario for both the taxonomic and the environment category
classifications. This decrease could be partly attributed to the reduction in the amount of
training data in the restricted scenario. This being said, even in the restricted scenario, the

Figure 5.3: Single nucleotide composition of the sequences in the temperature Dataset,
separated by extremophile environment: Hyperthermophile environment (top) and psy-
chrophile environment (bottom). The nucleotide composition is averaged over the different
genera, and the color of each genus and domain pair represents the specific domain, either
bacteria (black) or archaea (magenta).
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environment category classification accuracies were significantly higher than those for the
random label assignment scenario.

These supervised machine learning classification experiments suggest the presence of
an environmental component in the genomic signature of temperature and pH microbial
extremophiles, able to provide discriminating power for k-mer values 3 ≤ k ≤ 6. This
environmental component of the genomic signature appears to co-exist with a more robust
taxonomic component, providing discriminating power for k-mer values 2 ≤ k ≤ 6.

Sets of k-mers relevant to environment category classifications computed by
interpretability tool of supervised learning algorithm

Of the six supervised classifiers used in the previous section, in this section, we use the
Mean Decrease in Impurity (MDI) algorithm for the Random Forest classifier to compute a
global measure of feature importance. This interpretability tool provides insight into each
feature’s relative contribution (k-mer) to the successful classification.

To this end, we first conducted 10-fold cross-validation on a one-vs-all Random Forest
classifier, achieving specific accuracy for each environment category. In the four computa-
tional experiments associated with the Temperature Dataset, the psychrophile category
was correctly separated from the other sequences in the Temperature Dataset with 86.31%
accuracy, the mesophile category with 71.14% accuracy, the thermophile category with
75.22% accuracy, and the hyperthermophile category with 89.62% accuracy. Similarly, in
the two computational experiments associated with the pH Dataset, the alkaliphile category
was classified with 86.45% accuracy and the acidophile category with 83.76% accuracy.

We then used the trained models obtained in these computational experiments in
conjunction with Random Forest’s interpretability tool, the MDI algorithm, to compute
a global importance measure for each k-mer (for k = 6, the maximum value analyzed) to
determine their relative contribution to the one-vs-all environment category classification.
This global importance can be visualized using the fCGRk to identify potential patterns,
as seen in Figure 5.4. A visual inspection of Figure 5.4 suggests that the set of 6-mers that
is relevant for distinguishing DNA sequences from a given environment category from the
rest of the dataset (darker k-mers) is specific to that environment category.

To confirm these findings and supplement the analysis with previous observations
on codon usage patterns and amino acid compositional biases in extremophiles, we also
examined the value k = 3. Note that not all the 3-mers identified by our method as relevant
to the classification are codons because 3-mers are not counted only from coding sequences
or translation frames. For each environment category, the MDI algorithm was used to

88



Table 5.3: Classification accuracies of six supervised learning classifiers trained on the
Temperature Dataset and pH Dataset, in the restriction-free scenario, for three different
label assignments (taxonomy, environment category, and random label assignment), and
values of 1 ≤ k ≤ 6. The classification accuracy in each cell is calculated using standard
stratified 10-fold cross-validation.

Dataset k-value Class
Labelling Type

Classification Model Accuracy (%)
RBF
SVM

Random
Forest ANN MLDSP-1 MLDSP-2 MLDSP-3

Taxonomy 62.88 53.87 62.21 47.99 54.85 59.03
k = 1 by Environment 39.97 35.29 38.65 26.92 32.27 31.44

Random 22.26 29.42 31.77 27.59 26.92 27.59

Taxonomy 96.65 95.14 96.14 86.79 92.64 86.79
k = 2 by Environment 74.58 76.91 74.42 46.49 68.06 46.32

Random 23.25 28.10 27.09 26.42 25.08 25.75

Taxonomy 98.82 97.99 97.32 92.64 96.82 92.64
k = 3 Environment 82.11 81.59 75.41 71.91 74.58 71.24

Temperature Random 23.58 25.08 27.76 25.59 26.09 24.58

Taxonomy 99.50 98.33 98.66 98.16 97.16 98.16
k = 4 Environment 83.29 84.11 82.28 78.43 75.08 80.43

Random 25.06 23.74 27.59 25.42 26.92 23.58

Taxonomy 99.50 98.16 99.33 97.32 97.32 98.16
k = 5 Environment 83.27 84.76 83.29 69.23 77.26 81.77

Random 24.08 20.23 23.07 26.09 25.42 24.25

Taxonomy 99.50 98.50 99.33 99.16 97.49 98.83
k = 6 Environment 83.46 83.94 84.12 79.60 77.59 82.44

Random 27.24 22.91 26.58 28.09 25.59 24.25

Taxonomy 65.2 66.70 62.37 52.69 56.99 58.06
k = 1 by Environment 56.52 58.10 51.14 54.30 53.23 54.30

Random 51.20 53.39 50.53 49.46 53.23 50.54

Taxonomy 95.15 93.48 95.09 84.95 91.40 84.41
k = 2 by Environment 87.72 83.33 85.00 80.65 82.26 81.72

Random 51.14 52.72 51.67 54.84 52.69 55.91

Taxonomy 97.34 94.09 96.78 94.62 96.24 94.62
k = 3 Environment 90.94 90.94 90.38 81.18 83.87 80.11

Random 44.15 52.72 55.91 54.84 46.77 44.62

Taxonomy 97.87 96.29 96.81 93.01 95.16 97.85
k = 4 Environment 90.44 88.80 91.58 84.95 86.02 89.78

pH Random 49.42 47.84 49.01 44.62 44.62 47.85

Taxonomy 98.42 96.81 95.79 95.70 96.24 98.92
k = 5 Environment 91.55 88.30 87.81 88.17 86.02 90.32

Random 55.35 53.77 52.13 48.39 46.24 46.24

Taxonomy 98.42 94.71 94.18 98.92 96.77 98.39
k = 6 Environment 91.99 88.30 86.70 92.47 84.95 92.47

Random 47.81 49.06 50.06 50.00 45.70 46.77
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Table 5.4: Classification accuracies of six supervised learning classifiers trained on the
Temperature Dataset and pH Dataset, in the restricted scenario, for three different label
assignments (taxonomy, environment category, and random label assignment), and values
of 1 ≤ k ≤ 6. The classification accuracy in each cell is calculated using stratified 10-fold
cross-validation with non-overlapping genera.

Dataset k-value Class
Labelling Type

Classification Model Accuracy (%)
RBF
SVM

Random
Forest ANN MLDSP-1 MLDSP-2 MLDSP-3

Taxonomy 60.05 49.49 58.99 50.20 53.30 58.50
k = 1 by Environment 30.87 29.72 26.38 23.70 30.80 31.30

Random 23.91 25.12 25.15 24.20 23.40 28.30

Taxonomy 94.11 91.12 93.79 85.80 90.80 85.60
k = 2 by Environment 57.30 53.75 54.99 33.30 48.20 33.10

Random 22.59 27.56 25.80 24.20 24.40 24.10

Taxonomy 98.82 95.13 97.14 87.00 94.60 87.00
k = 3 Environment 65.57 63.25 58.10 44.80 53.30 44.50

Temperature Random 24.93 21.40 26.12 26.60 27.10 26.60

Taxonomy 99.16 96.13 97.81 95.00 94.50 97.20
k = 4 Environment 70.55 63.75 63.29 54.00 56.70 59.90

Random 25.94 26.60 27.22 26.40 26.90 25.40

Taxonomy 99.16 96.13 98.82 92.50 94.50 97.20
k = 5 Environment 72.21 64.13 66.89 50.00 62.70 65.40

Random 26.74 23.23 22.49 24.20 26.80 26.40

Taxonomy 99.16 96.47 97.81 99.20 95.30 98.00
k = 6 Environment 74.17 65.48 67.88 61.90 64.70 67.90

Random 24.20 26.74 24.59 24.90 24.10 27.90

Taxonomy 65.09 67.31 62.37 51.10 50.50 58.60
k = 1 by Environment 53.30 49.91 47.75 51.10 52.70 59.10

Random 41.78 55.89 48.60 47.80 50.00 52.70

Taxonomy 92.98 90.29 94.09 79.60 86.00 79.60
k = 2 by Environment 75.09 75.15 82.66 80.60 79.60 81.20

Random 51.52 54.14 45.79 55.90 46.80 55.90

Taxonomy 97.37 93.54 96.78 88.70 92.50 88.20
k = 3 Environment 79.24 86.73 84.04 73.70 76.30 74.20

pH Random 54.91 48.57 55.96 43.50 54.30 44.10

Taxonomy 97.37 96.20 96.78 88.20 92.50 94.10
k = 4 Environment 81.43 83.51 85.61 73.10 79.60 80.60

Random 46.83 41.74 47.31 52.70 48.40 49.50

Taxonomy 97.89 97.28 96.23 94.60 92.50 96.80
k = 5 Environment 80.91 88.83 83.01 77.40 79.60 83.90

Random 46.73 54.83 52.44 46.80 50.00 50.00

Taxonomy 98.42 96.23 95.73 97.30 91.90 96.80
k = 6 Environment 83.54 86.70 79.24 81.70 80.10 86.60

Random 53.15 48.69 55.62 47.30 50.50 52.70
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Figure 5.4: Frequency chaos game representation (fCGRk) of the global importance of
various 6-mers in the classification of DNA sequences of each environment category from
the rest of the dataset. The top panel shows the fCGRk for the Temperature Dataset, and
the bottom panel shows the fCGRk for the pH Dataset, both for k = 6. The colour and
intensity of each pixel represent the relative importance (relevance) of its corresponding
6-mer (dark blue pixels represent the most relevant 6-mers, etc., as described in the colour
bar legend).

identify the specific 3-mers that are relevant for each of the one-vs-all Random Forest
environment category classifications.

To investigate further the concept of relevance and explore its connection with the
over-representation and under-representation of codons/amino acids as described in the
literature, we computed the histograms of the 3-mers’ deviation from the dataset mean for
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each dataset and environment category. Figures 5.5 and 5.6 display these histograms and
single out (in green) the 3-mers relevant for each environment category in the Temperature
Dataset (Figure 5.5) and the pH Dataset (Figure 5.6). To complement this analysis,
Table 5.5 and Table 5.6 list the sets of relevant 3-mers displayed in Figures 5.5 and 5.6,
respectively, alongside with the relevant literature on biological observations of codon/amino
acid compositional biases associated with extreme temperature and pH environments. Note
that each set of relevant 3-mers is listed in an environment category panel in Figure 5.5
(Figure 5.6), ordered left-to-right alphabetically on the x-axis of the panel, corresponds to a
set of relevant 3-mers in a matching environment category column in Table 5.5 (Table 5.6),
ordered top-to-bottom alphabetically by the abbreviation of the amino acid they would
encode if they were codons.

As seen in the tables, most of our findings regarding over- and under-representing 3-mers
match existing observations in the literature about codon/amino acid bias in extremophiles’
genomic sequences. Disagreements could be due to several factors. First, the 3-mers are not
codons: they are counted from an arbitrarily selected 500 kbp DNA fragment representing
a genome, and their frequency profile (the genomic signature) is quasi-constant along a
genome. Thus, some 3-mers could be relevant for the one-vs-all temperature/pH category
classification in ways unrelated to transcriptional or proteomic adaptations. Second, the
fact that a 3-mer is relevant for a temperature/pH category indicates that it belongs to a set
of 3-mers that collectively contribute to distinguishing sequences in that temperature/pH
category from the rest of the dataset. In this sense, the concept of “relevant k-mer set” is
more general, and the fact that a k-mer belongs to the relevant set of k-mers for classification
does not necessarily imply that it is over- or under-represented in the genomic sequences of
that environment category.

5.3.2 Parametric unsupervised clustering

The supervised learning computational experiments suggested the existence of an en-
vironmental component in the genomic signature of microbial extremophiles in both a
restriction-free scenario and a restricted scenario where sequences from the same genus as
the test sequence were absent from training.

It should be noted that the considered datasets are not comprehensive since the discovery
and sequencing of genomes of extremophilic organisms is an ongoing complex process given
the challenging environments in which they are found, which are difficult to reproduce to
culture and further characterize microbial extremophiles [223]. In particular, the datasets’
sparsity and sampling bias do not allow computational experiments in restricted scenarios
at taxonomic levels higher than the genus level. This is because such restrictions could
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Figure 5.5: Histograms of the deviation of 3-mer counts in each environment category from
the Temperature Dataset mean. A 3-mer and its reverse complement are considered to be
indistinguishable, and only canonical 3-mers are listed. Relevant 3-mers for the one-vs-all
classification are highlighted in green. The height of each bar represents the difference
between a 3-mer’s count in that temperature category and the mean of that 3-mer’s counts
over the entire Temperature Dataset (in percentage points).
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Histograms illustrating the deviation of the 3-mer counts in each environment category
from the mean 3-mer counts in the pH Dataset

Figure 5.6: Histograms of the deviation of 3-mer counts in each environment category
from the pH Dataset mean. A 3-mer and its reverse complement are considered to be
indistinguishable, and only canonical 3-mers are listed. Relevant 3-mers for the one-vs-all
classification are highlighted in green. The height of each bar represents the difference
between a 3-mer’s count in that pH category and the mean of that 3-mer’s counts over the
entire pH Dataset (in percentage points).

eliminate many of the labelled sequences from the cross-validation training sets, rendering
them insufficient in size for supervised learning purposes.

To address this challenge, in this section, we explore the genomic signatures of the
Temperature Dataset and pH Dataset through an unsupervised clustering approach. In
unsupervised clustering, no taxonomic or environment category labels for DNA sequences
are used during the entire learning process, and ground-truth labels are used exclusively
to evaluate the quality of clustering (if applicable). In the first set of tests, we applied
parametric unsupervised algorithms for the task of clustering both datasets with different
values for the parameter n_cluster (the number of clusters). When compared to the highest
taxonomic level (domain), the ACC measure (Equation 2.26) for the clustering assignments
computed by each algorithm suggests that for the Temperature Dataset, all algorithms
can partially cluster sequences according to their real taxonomic labels at n_clusters
= 2, with iDeLUCS (68%) outperforming the others by a small margin (see Table 5.7
for accuracies). For the pH Dataset, all algorithms are unsuccessful at separating by the
domain (see Table 5.8 for accuracies). For values of the parameter n_clusters greater
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Table 5.5: Over- and under-representation of the relevant 3-mers, found by our method
to be collectively associated with genomic signatures of temperature-adapted prokaryotic
extremophiles. The symbol ↑ (↓) indicates over-representation (under-representation) of a
3-mer/codon. Matched arrows, e.g., (↑, ↑ref) indicate that our method and reference ref
agree in their finding. Mismatched arrows indicate disagreement. See Supplementary Table
S4 for details on the observations in biological literature.

Psychrophiles Mesophiles Thermophiles Hyperthermophiles Corresponding
Amino acid

GCA (↑, ↑ [22]) Ala

AGG (↓, ↓ [167]) AGG (↑, ↑ [218]) AGG (↑, ↑ [41]) Arg
AGA (↑, ↑ [218]) AGA (↑, ↑ [41])

CAA (↑, ↑ [173]) Gln

GAA (↓, ↑ [16]) Glu

GGA (↓, ↓ [22, 61, 166]) GGA (↑, ↑ [41]) Gly

CAC (↑, ↓ [167]) His

ATC (↑, ↓ [188]) Ile

CTC (↓, ↓ [173]) CTC (↑, ↑ [218]) CTC (↑, ↑ [61]) LeuCTA (↑, ↑ [61])

AAA (↑, ↓ [61]) Lys

ATG (↑, ↑ [61]) ATG (↑, ↑ [155]) Met

CCA (↓, ↓ [106]) CCA (↑, ↑ [67]) ProCCC (↑, ↑ [67])

AGC (↑, ↑ [166]) SerTCA (↑, ↑ [166]) TCA (↑, ↑ [188])

ACT (↓, ↓ [67, 173]) ThrACG (↑, ↓ [67, 173])

GTA (↑, ↑ [22]) GTA (↑, ↑ [41]) Val

than 2, the accuracy increases for both datasets. Still, the increase is more significant for
the pH Dataset where the ACC increases by ∼ 30%, which suggests a good separation by
environment category within each domain in the pH Dataset. Overall, the unsupervised
clustering accuracy computed using taxonomic labels as ground truth is higher than when
calculated using environment category labels as ground truth. This confirms the supervised
machine learning results in the previous section, suggesting that the taxonomic component
is stronger than the environmental component of genomic signatures.

In a second set of tests, six different non-parametric algorithms (the number of clusters is
discovered by the algorithm instead of being given as a parameter) and the semi-parametric
algorithm iDeLUCS were employed to cluster both datasets. Subsequently, all clusters
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obtained from each algorithm were compared with GTDB labels at the genus level, hereafter
referred to as true genera, and only those clusters meeting the predefined quality criteria
(> 50% completeness and < 50% contamination, see Methods) were selected for evaluation.

The outcomes, presented in Figure 5.7, speak to the effectiveness of deep learning clus-
tering methodologies in accurately recovering the true genera and illustrate the importance
of choosing appropriate algorithms for specific datasets. For the datasets considered in this
chapter, the VAE with the Iterative Medoids method (VAE+IM) demonstrated superior
performance in recovering clusters that meet the predefined quality criteria. Specifically,
VAE+IM successfully recovered 61 out of 93 true genera represented by more than two
sequences in the Temperature Dataset and 31 out of 37 true genera represented by more
than two sequences in the pH Dataset.

Based on this analysis, the five algorithms that were able to recover at least 20%
of the total number of true genera were VAE+HDBSCAN, CL+HDBSCAN, VAE+IM,

Table 5.6: Over- and under-representation of the relevant 3-mers, found by our method to
be collectively associated with genomic signatures of pH-adapted prokaryotic extremophiles.
The symbol ↑ (↓) indicates over-representation (under-representation) of a 3-mer/codon.
Matched arrows, e.g., (↓, ↓ref) indicate that both our method and reference ref agree in
their finding. Mismatched arrows indicate disagreement. See Supplementary Table S5 for
details of observations in biological literature.

Alkaliphiles Acidophiles Corresponding
Amino Acid

AGG (↓, ↑ [79]) AGG (↑, ↓ [100]) Arg
CGA (↑, ↑ [100])

AAC (↑, ↑ [100, 142]) Asn
AAT (↓, ↑ [100])

GAC (↑, ↑ [100]) Asp

CAG (↑, ↑ [100]) Gln

CAA (↓, ↓ [100]) CAA (↑, ↑ [100]) Glu

GGA (↓, ↓ [100]) GGA (↑, ↑ [100]) Gly

ATA (↓, ↓ [100]) Ile

CTC (↑, ↑ [100]) CTC (↓, ↓ [100]) Leu

ATG (↓, ↓ [100]) Met

CCA (↓, ↑ [100]) CCA (↓, ↑ [142]) Pro

TCA (↑, ↓ [100]) TCA (↓, ↓ [100]) Ser

ACG (↑, ↑ [100]) Thr
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Table 5.7: Accuracies (ACC) of the unsupervised clustering of the Temperature Dataset,
for several parametric clustering algorithms, and several values of the pre-specified number
of clusters. For each value of the number of clusters parameter, the unsupervised clustering
accuracies are computed using the taxonomic labels as ground truth (top row) and the
environment category labels as ground truth (bottom row).

No. Clusters Labelling Unsupervised Clustering Accuracy (%)

K-means K-medoids GMM iDeLUCS

2 Tax 63.84 63.92 63.23 68.97
Env 36.27 36.50 36.26 38.23

4 Tax 63.99 77.65 68.45 75.44
Env 34.37 40.81 38.30 48.31

8 Tax 87.81 82.13 77.79 81.48
Env 50.99 49.63 53.74 56.77

Table 5.8: Accuracies (ACC) of the unsupervised clustering of the pH Dataset for several
parametric clustering algorithms and several values of the pre-specified number of clusters.
For each value of the number of clusters parameter, the unsupervised clustering accuracies
are computed using the taxonomic labels as ground truth (top row) and the environment
category labels as ground truth (bottom row).

No. Clusters Labelling Unsupervised Clustering Accuracy (%)

K-means K-medoids GMM iDeLUCS

2 Tax 52.22 52.66 51.08 56.72
Env 50.89 50.94 51.04 50.53

4 Tax 78.69 80.45 76.72 87.43
Env 63.56 74.23 67.81 75.59
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UMAP+HDBSCAN, and iDeLUCS for the Temperature Dataset, respectively VAE+HDBSCAN,
CL+HDBSCAN, VAE+IM, CL+IM, and iDeLUCS for the pH Dataset. These five al-
gorithms were thus selected as sources of information for subsequent analysis since they
performed best when compared to true genera groupings.

5.3.3 Non-parametric clustering: Finding candidates of conver-
gent evolution

Following the selection of the five top-performing unsupervised clustering algorithms in the
previous section, the clusters discovered by these algorithms were used in conjunction with
a majority voting scheme to determine concrete “candidates” that is, concrete exemplars
of taxonomically different organisms that were clustered together presumably due to the
environmental component of their genomic signatures. This computational process identified
a list of pairs of hyperthermophilic, alkaliphilic, and acidophilic candidate sequences, each
belonging to a different taxonomic domain, which were nevertheless grouped together by
the majority of the aforementioned unsupervised clustering algorithms.

Of these candidates, we then proceeded to select sequences for which the unexpected
results of the clustering could be independently confirmed by (i) supervised machine learning
for the prediction of environment category, by (ii) supervised machine learning for the
prediction of the taxonomic labels, and by (iii) observations of shared characteristics of
their isolating environments. In these experiments, thermophiles and hyperthermophiles
were treated as part of a single environment category called “high-temperature” to enhance
the rigour of the confirmation procedure, given the lack of definitive knowledge of the
precise threshold separating these two environment categories from each other.

The goal of the experimental design was to devise challenging scenarios that would
demonstrate the presence of the environmental component in the genomic signature of
each candidate. To this end, for each candidate sequence to be tested, a challenge training
set was created by selecting all DNA sequences of organisms from the opposite domain
(i.e., archaea or bacteria) and sequences within the same domain but under a different
environment category. The classifiers were then trained to perform two different tasks.

In experiments (i), a classifier was trained to predict the environment category of a
candidate test sequence, as follows. For instance, if the test sequence was of a hyperther-
mophilic bacteria, the training set comprised all archaeal sequences (different domain)
and mesophilic and psychrophilic bacterial sequences (same domain, different environment
category). The objective was to determine if the hyperthermophilic bacterial test sequence
would be assigned the correct label “high-temperature,” despite the training set’s absence
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of high-temperature bacterial sequences. If this were the case, it would indicate that the
correct temperature label assignment was due to the similarity of this bacterial sequence
to other high-temperature archaeal sequences in the dataset, further suggesting that the
environmental component overrides the taxonomical component in the genomic signature
of the candidate sequence.

In experiments (ii), a classifier was trained to predict the domain of each candidate test
sequence, as follows. For example, if the candidate test sequence was of hyperthermophilic
archaea, the training set comprised all bacteria sequences (different domain) and all the
mesophilic and psychrophilic archaeal sequences (same domain, different environment
category). The objective was to determine if the hyperthermophilic archaeal sequence
would be assigned the incorrect label “Bacteria”. If this were indeed the case, it would
indicate that the assignment of this archaeal sequence to domain Bacteria was likely due
to its similarity to the high-temperature bacterial sequences, further suggesting that the
environmental component overrides the taxonomic component of the candidate sequence.

Figure 5.7: Number of true genera (blue) vs. the number of genera identified by seven
clustering algorithms for each environment category in the Temperature Dataset (left),
respectively the pH Dataset (right). Only true genera represented by more than two
sequences in the respective dataset (Temperature or pH) are considered, and only clusters
meeting the quality criteria are counted.
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All candidate sequences generated by the unsupervised clustering experiment underwent
both computational experiments (i) and (ii). Of these, the following four sequences were
assigned by the majority of the classifiers (SVM, Random Forest, ANN, MLDSP) to the
correct environment category in experiment (i), and to the incorrect domain in experiment
(ii): the bacterial sequence Thermocrinis ruber – Accession ID: GCA_000512735.1, and the
three archaeal sequences, Pyrococcus furiosus DSM 3638 (formerly Pyrococcus sp000211475) –
Accession ID: GCA_000007305.1, Thermococcus litoralis DSM 5473 (formerly Thermococcus
litoralis NS-C) – Accession ID: GCA_000246985.3, and Pyrococcus chitonophagus (formerly
known as Thermococcus chitonophagus) – Accession ID: GCA_002214605.1. Note that
the current release of Genome Taxonomy Database (GTDB release R214 April 28, 2023)
defines Thermococcus litoralis as a strain type of species Thermococcus alcaliphilus. We
refer to it as “Thermococcus litoralis” given its classification in the database version used to
create the dataset.

Indeed, in experiments (i), all environment-trained classifiers correctly predicted these
four microbial sequences belonging to the high-temperature environment category. How-
ever, all genomic sequences used to train the classifier to predict temperature conditions
were from a domain different from the test sequence. Moreover, in experiments (ii), all
taxonomy-trained classifiers erroneously predicted the genomic sequences of these micro-
bial extremophiles as belonging to a different domain, likely due to their environmental
characteristic.

For biological corroboration (iii), a literature search was undertaken to correlate the
candidate species to the context of phenotypic traits and the characteristics of the isolating
environments. It was determined that few phenotypic traits were congruent between
candidates, including gram-negative cell walls, OGpH falling within the neutrophilic range
(pH 5.0 to 9.0) for each candidate, presence of intergenic sequences, and emissions of light
hydrocarbons from the nearby environment[17, 26, 33, 54, 85, 86, 148, 152]. However,
several more phenotypic traits display dissimilarities between organisms.The particular
environments from which each species was initially isolated were analyzed in greater detail.
It was found that two Joint Genome Institute’s Genomes OnLine Database-derived (JGI-
GOLD) ecosystem classifiers describe the isolating environment of all four species, as follows:
ID 4027 for P. furiosus and P. chitonophagus, and ID 3991 for T. litoralis and T. ruber
[18, 86, 141]. The descriptors for these classifiers are “aquatic marine hydrothermal vent”
and “aquatic thermal hot springs,” respectively [141].

Although these environments are classified differently by JGI-GOLD, as ID 3991 and
ID 4027, respectively, the descriptors accurately describe these environments due to the
presence of hydrothermal systems [152, 175]. Note that T. litoralis (ID 3991) has been
recently isolated from the Guaymas Basin, albeit from a geographic site of the Guaymas
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Basin that was different from the isolation site of P. chitonophagus[221]

For additional insight, the pairwise distance matrix of all genomic signatures generated
by ML-DSP[162] for each dataset, with k = 6, was analyzed. The pairwise distance matrix
of the Temperature Dataset revealed that the DNA fragment with the shortest distance from
that of Thermocrinis ruber (bacterium) belonged to Thermococcus_A litoralis (archaea)
with a distance value of 0.0327 (the distance ranges between 0 and 1, with 0 the minimum
distance, between identical sequences, and one the maximum distance).

5.4 Discussion

We note that the six supervised machine learning algorithms produced highly accurate
taxonomic classifications of extremophile prokaryotic genome sequences and medium to
medium-high accurate environment category classifications of the same sequences. These
results suggest that, in addition to the taxonomic information present in the genomic signa-
tures of extremophiles, a distinct k-mer frequency profile associated with each environment
category also exists. Thus, if the bacteria and archaea sequences in the training set are
labelled by environment category, then the supervised learning algorithms will likely assign
a new sequence to its correct environment category, regardless of its taxonomy. Also, note
that the classification accuracies obtained when the datasets were taxonomy-labelled and
environment category-labelled were significantly higher than those obtained when the same
datasets were assigned random labels. These findings are consistent with the claim that
these taxonomic and environment category classifications are not due to chance and support
the hypothesis of the presence of both a taxonomic and an environmental component in
the genomic signatures of microbial extremophiles.

Additional analyses revealed that the classification accuracies obtained in restriction-
free supervised classification scenarios were higher than those obtained in the restricted
(non-overlapping genera) supervised classification scenarios. However, even in the restricted
scenario, the accuracy of environmental category classifications was higher than those in
the control “random label” scenario. Together, these results suggest that the taxonomic
component of the genomic signature is stronger than the environmental component but
that the latter is discernible and provides discriminating power.

Note that while the subsets of 3-mers relevant for the environment category classification
identified by the MDI algorithm provide insights into the relations between genomic
signatures and extreme environmental conditions, caution should be taken when interpreting
the results. This is because the experiment prioritizes accuracy, and the identified subsets of
relevant 3-mers may partially reflect a correlation between taxonomy and environment. In
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other words, especially due to the bias and sparsity of both datasets, it is likely that some
taxonomic information may also have influenced the process of computational discovery of
these subsets of relevant 3-mers. This being said, the overlap between the subsets mentioned
above of relevant 3-mers and codon usage patterns and amino acid compositional biases
found to be associated with extreme environments in the biological literature still suggest a
detectable environmental component of genomic signatures in temperature and pH-adapted
microbial extremophiles.

The use of unsupervised learning algorithms for exploring the space of genomic signatures
holds significant value, as these algorithms effectively discover clusters of genomic fragments
possessing similar genomic signatures, free from the influence of any human annotations.
Since the precise definition of the term “genomic signature” entails the differentiation of
genetically distant organisms from each other, a high-performing clustering algorithm should
primarily yield clusters corresponding to the true genera within the dataset. That being
said, ascertaining causality for fragments assigned to erroneous clusters proves challenging,
given the potential for similar genomic signatures to coincide with taxonomic information at
a lower level and the inherent systematic errors in each algorithm. Therefore, in the present
study, identifying pairs exhibiting a similar environmental component in their genomic
signature based on the clustering assignments relies predominantly on the consensus of the
high-performing clustering algorithms. Furthermore, only pairs of fragments originating
from organisms in different domains were retained. Additional confirmation steps by
supervised learning in challenging scenarios were applied to the remaining pairs, and four
hyperthermophilic exemplars successfully passed all these stringent tests. Thus, other
candidates from the list identified by unsupervised clustering could be viable, such as pairs
for which only some supervised tests yielded successful results. One such example is the
pair of acidophilic organisms Thermoanaerobacterium thermosaccharolyticum (bacterium)
and Caldisphaera lagunensis (archaea) in the pH Dataset, which were clustered together
despite their domain-level taxonomic differences. Further analysis is needed to confirm
such additional pairs by, e.g., an analysis that utilizes, as a genome representative, multiple
DNA fragments combined into a single genomic signature.

5.5 Conclusion

In this chapter, we have demonstrated the successful application of supervised machine
learning algorithms for highly accurate taxonomic classifications of extremophile prokary-
otic genome sequences and medium to medium-high accurate classifications of the same
sequences based on their environment category (hyperthermophile, psychrophile, acidophile,
alkaliphile, etc.). The use of k-mer frequency vectors of arbitrarily selected 500 kbp DNA
fragments as genomic signatures reveal a strong taxonomic component for 2 ≤ k ≤ 6
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and a discernible environmental component for 3 ≤ k ≤ 6. Furthermore, specific k-mer
profiles associated with distinct environment categories are identified, partially agreeing
with previous observations in the literature using alignment-based analyses. Finally, these
findings are confirmed using unsupervised learning clustering algorithms, revealing spe-
cific exemplar organisms whose environmental component appears to be as strong as the
taxonomic component of their genomic signature. When applied to a substantial dataset,
this multi-pronged approach significantly strengthens the hypothesis of an environmen-
tal component in the genomic signature of microbial extremophiles adapted to extreme
temperature or pH environmental conditions.
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Chapter 6

Encoding DNA barcodes with
transformer models and self-supervision

This chapter explores the application of pretrained transformer models as feature extractors
for the taxonomic classification of DNA barcodes. The content in this chapter is an
adaptation and extension of a paper titled “BarcodeBERT: Transformers for Biodiversity
Analysis” presented at the 4th Workshop on Self-Supervised Learning: Theory and Practice
at the NeurIPS 2023 conference.

Section 6.1 highlights the significance of DNA barcodes in biodiversity studies and the role
of computational methods in their classification. Section 6.2 reviews existing methodologies,
including those using supervised convolutional neural networks and foundation models
using different DNA encodings and self-supervised learning strategies.

Section 6.3 outlines the datasets (Section 6.3.1) used in our analysis, providing a basis for
the subsequent introduction of our method. Section 6.4 describes our approach, detailing the
network architectures (Section 6.4.1), training and optimization strategies (Section 6.4.2),
and our comprehensive evaluation and experimental setup (Section 6.4.3). BarcodeBERT
represents the first self-supervised method specifically designed for general biodiversity
analysis on DNA barcodes, leveraging a vast reference library of invertebrate DNA barcodes.

Finally, Section 6.5 demonstrates the efficacy of BarcodeBERT, particularly in the
taxonomic classification of DNA barcodes (Section 6.5.1) and its application in Bayesian
zero-shot learning (BZSL) for image analysis using DNA as side information (Section
6.5.2). Our findings demonstrate the superiority of BarcodeBERT in species and genus-level
identification tasks, outperforming existing models without the need for fine-tuning.
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6.1 Introduction

In this dissertation, we have emphasized that the quest to map and comprehend Earth’s
biodiversity presents an enduring challenge. While traditional taxonomic methods have
been a bottleneck for discovering new species given the vast amounts of sequencing data,
BIOSCAN is a pioneering global initiative focused on species discovery and identification
based on DNA barcodes. The project strives to overcome the limitations of traditional
approaches, such as the high computational complexity introduced by the alignment of
complete genes, to develop a DNA-based system for species discovery and identification
at a global scale [164]. The aim is not only to isolate and identify species in laboratories
but also to dynamically identify them using DNA barcodes (see Section 2.1.4) as species
discriminators. This methodology bypasses both the experimental challenge of sequencing
whole genomes and the computational challenge of excessive time complexity of multiple-
sequence alignment algorithms. Ultimately, the project envisions tracking ecosystem
dynamics and cataloging our planet’s vast array of multicellular life.

Our work in this chapter closely aligns with the ambitious objectives of BIOSCAN, and
we build on its leading technology, DNA barcoding, a successful species-level specimen
identification tool. For animals, DNA barcoding uses a 648 base pair segment of the
COI gene, which we refer to as barcode and has become an invaluable tool in biodiversity
studies [122]. Although the technologies utilized for DNA barcoding have evolved and
expanded, the underlying process remains constant [28]. Figure 6.1 illustrates the entire
DNA barcoding workflow. Initially, DNA is extracted from an individual specimen using
a small sample or tissue like an insect leg, hair/feathers, or mouth swab. The second
stage involves amplification with appropriate primers in the PCR (see Section 2.1.4) to
replicate the specific barcode region millions of times to prepare it for sequencing, which
is the third stage. The amplified DNA sample is fed into a DNA sequencing platform to
provide the nucleotide sequence representing the barcode as output. The final step entails
all computational analyses and is this chapter’s primary focus.

These DNA barcodes can be easily stored, and new sequences can be compared against
a reference library using alignment-based techniques [74], as specified in Section 2.1.4. Most
barcoding biodiversity data is publicly available in the Barcode of Life Database (BOLD)
[164]. This library is BIOSCAN’s multi-modal powerhouse, and it incorporates genomic
data and visual and geographic information for each isolated specimen. Currently, BOLD
contains more than 16M total barcodes from more than 250,000 animal species and more
than 72,000 plant species [164]. This comprehensive database enables efficient species-level
identification and acts as a continuously growing catalogue of global biodiversity, providing
an unmatched resource for scientific research.
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Among the numerous taxonomic groups present in BOLD, arthropods stand out as
an incredibly diverse and taxonomically complex group, where multiple new species are
described daily [15, 129]. Hence, they provide an excellent testbed for evaluating new
algorithms to be incorporated in the DNA barcoding workflow. We leverage the extensive
and high-quality arthropod data publicly available on BOLD and explore advanced machine
learning techniques with two main objectives: design efficient algorithms that allow us to
gain insight into arthropod diversity, and test the general suitability of these algorithms to be
included in the general DNA barcoding workflows. Previous efforts have laid the groundwork

Figure 6.1: Description of the essential stages in DNA barcoding, starting with DNA
extraction from specimens, followed by DNA amplification via PCR to amplify the barcode
region for sequencing. The nucleotide sequence is then obtained through a DNA sequencing
platform, after which different computational methods can be used for taxonomic identifi-
cation and classification. For example, data can be filtered for inclusion in the reference
library or can be used as a query for taxonomic identification. (This figure is adapted from
figure 9 in [28].)
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in this context by employing CNNs and transformer models for species and genus-level
identification over images, demonstrating notable successes. Introducing BarcodeBERT, we
present a self-supervised learning approach specifically designed for DNA barcoding. Our
method is trained on a reference library containing 1.5 million invertebrate barcodes [45] and
represents a significant leap forward in the field. It learns meaningful data embeddings for
efficient species-level classification and showcases the potential of self-supervised pretraining
in enhancing barcode-based identification accuracy across various taxonomic levels.

We provide a comprehensive comparison between BarcodeBERT, fine-tuned foundation
models and a successful CNN baseline trained in a supervised manner. We evaluate
their performance in several taxonomic classification tasks, including Bayesian zero-shot
classification of insect images using DNA as side information [8]. Our method is the first
successful SSL approach for taxonomic identification using the COI gene. By harnessing
the capabilities of transformer-based models, we significantly improve the taxonomic
identification process, supporting the global efforts of BIOSCAN and beyond.

6.2 Related work

Various algorithmic approaches can expedite the taxonomic categorization of novel specimens.
For example, a natural approach is to embed the sequences into a vector space such that the
geometric distance in the target space allows a faster computation of a similarity measure
between each uncategorized sequence and sequences in a database [34]. Grouping the
barcodes into different OTUs based on sequence similarity is also possible. Each OTU acts
as an algorithmic proxy for species, particularly useful for species without consensus on the
taxonomy [49, 165].

Given the classification-oriented nature of these tasks, machine learning provides many
methods that can be applied to biodiversity analyses on DNA barcodes. A recent study
[9] proposes a Bayesian framework based on CNNs which, when combined with visual
information, achieves high accuracies in species-level identification of seen species and
genus-level inference of novel species in a dataset of ∼32,000 insect DNA barcodes. This
method uses supervised learning to compute meaningful embeddings that can be used as
side information in a two-layer Bayesian zero-shot learning framework.

Transformer-based models [201], which have demonstrated superiority over convolutional
neural networks (CNNs) in various tasks [27, 196], are known for their ability to capture
complex patterns in sets and sequences. These models have found applications across diverse
domains thanks to their effectiveness in learning from large unlabelled datasets [24, 196].
Transformers pretrained with self-supervised learning (SSL) at scale, also referred to as
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“foundation models,” are often task-agnostic and expected to perform well after fine-tuning
for various downstream tasks. Yet, their application for taxonomic identification using
DNA barcodes had not been extensively explored until now. Foundation models for DNA
primarily target human sequences [38, 92, 222], which intuitively makes them unsuitable
for barcode data. While DNABERT employs masked token prediction and same-segment
prediction tasks, its successor, DNABERT-2, introduces Byte Pair Encoding for versatile
tokenization, pretrained on a vast multi-species genomic dataset. However, adapting these
models to barcode data has encountered hurdles, mainly due to the fact that DNA barcodes
correspond to a very specific region in mitochondrial DNA, and patterns learned from other
regions in the genome might be irrelevant to this type of genomic data.

Efforts to use foundation models to map DNA barcodes into vector embeddings revealed
that although models such as DNABERT could be fine-tuned for species classification,
the computational demand significantly exceeded that of training simpler CNN models.
This highlighted the need for an efficient approach that combines the pattern recognition
capabilities of transformers with the computational efficiency of CNNs. This backdrop
motivates the design of our new tool, BarcodeBERT, a novel transformer-based approach
meant to address the limitations of other methods by being both efficient and effective in
transforming DNA barcodes into meaningful encodings. We utilize the extensive resources
available through BOLD and address the computational obstacles that previously hindered
the integration of transformers into DNA barcoding. We leverage the transformer’s ex-
ceptional pattern recognition capabilities and make this technology readily accessible for
integration into DNA barcoding workflows, which could potentially facilitate the completion
of BIOSCAN’s ambitious goals.

6.3 Methods

In this section, we outline the key elements of our methodology. We begin with a detailed
account of our data processing pipeline, where we include all the steps taken to curate our
dataset from the reference library, followed by a brief description of the architectures and
hyper-parameters used. Finally, we describe our evaluation framework and the downstream
tasks used for testing.

6.3.1 Dataset

The primary source of data for this study is the reference library for Canadian invertebrates
[45], containing 1.5M DNA samples, which was directly queried from the barcode of life
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database (BOLD) [164].

Data Pre-Processing: To ensure data integrity and consistency, we performed a series
of pre-processing steps over this dataset. First, empty entries were removed, and IUPAC
Ambiguity Codes (non-ACGT symbols), including alignment gaps, were uniformly replaced
with the symbol N. Duplicated sequences, even with different identifiers, were removed
to avoid redundancy and increase the complexity of the training and pretraining tasks.
Sequences with trailing N’s were truncated. Finally, sequences falling below 200 base pairs
or exhibiting over 50% N content were excluded.

Table 6.1: The distribution of barcode sequences used in the pretraining phase.

Phylum name # ID # BIN # Class # Order # Family # Genus # Species # Sequences

Annelida 2102 516 2 16 48 150 329 2102
Arthropoda 888934 61328 14 67 929 6211 13991 888934
Brachiopoda 20 2 1 2 2 2 2 20
Bryozoa 5 4 3 3 3 2 2 5
Chordata 289 102 5 18 37 67 89 289
Cnidaria 112 46 4 10 24 25 24 112
Echinodermata 276 79 5 17 26 43 74 276
Hemichordata 4 2 1 1 1 2 1 4
Mollusca 1912 372 6 30 97 162 271 1912
Nematoda 24 8 2 5 10 5 2 24
Nemertea 56 22 3 2 5 5 5 56
Platyhelminthes 1 1 0 0 0 0 0 1
Porifera 7 5 1 3 4 4 3 7
Priapulida 1 1 1 1 1 1 1 1
Tardigrada 1 1 1 1 1 0 0 1

Data Split: After pre-processing, 965,289 sequences were obtained. The dataset was
divided into three distinct subsets for various evaluation purposes: (i) Supervised Seen:
This dataset was curated for assessing the model’s efficacy in classifying known species. It
comprises 1,390 species, each represented by at least 10 and at most 50 barcodes. These
sequences were further partitioned into training (70%), testing (20%), and validation
(10%) subsets. (ii) Unseen: This dataset was created to emulate the real-world scenario
of encountering previously unknown species during testing. It includes 4,278 sequences
from 1,826 species that are absent from the training data. Only species with a minimum
of 50 records were included, and exactly 50 DNA sequences per species were chosen for
this dataset for genus-level identification. (iii) Unsupervised pretraining: The remaining
sequences, including sequences with incomplete taxonomic annotations at different levels,
constitute this dataset. To benchmark against prior works, we additionally use the INSECT
dataset as introduced in [8], henceforth referred to as Badirli et al.
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Figure 6.2: Distribution of orders in the Fine-tuning (left) and unseen (right) datasets.

6.3.2 Proposed method: BarcodeBERT

This section presents an account of the data processing pipeline, including the steps taken
to curate the dataset from the reference library and a description of the architectures
and hyperparameters used. In addition, it describes the evaluation framework and the
downstream tasks used for testing.

Network architectures

In this section, we introduce the key network architectures employed in our study for DNA
sequence analysis.

CNN baseline: Adapted from [8], it comprises three convolutional layers, each followed
by batch normalization and max-pooling. The output of the third convolutional layer is
flattened, batch normalized, and connected to a linear layer with 500 units that are finally
connected to the output layer.

Foundation models: Our comparison includes two pretrained foundation models
based on the Bidirectional Encoder Representations from Transformers model (BERT).
These are capable of converting sequence inputs into embedding vectors, and they can be
further trained using self-supervised and/or supervised objectives. Within this transformer-
based architecture, multi-head attention units play a vital role in capturing relations among
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input sequences at various scales, encompassing both small-scale and large-scale interactions.
The first model, DNABERT, captures global and transferable genomic understanding by
leveraging nucleotide contexts using an overlapping k-mer window for tokenization. The
model is highly accurate at predicting splicing and transcriptor factor binding sites. The
second, DNABERT2, pioneers the use of Byte-Pair Encoding (BPE) in this domain and
overcomes inefficiencies in genomic tokenization through non-overlapping k-mers.

Our model: Also inspired by the BERT architecture, it features 12 attention heads,
12 layers, and a maximum sequence length of 512. After DNA barcodes are segmented
into non-overlapping k-mers, the BERT model encodes the sequence of k-mers into a
sequence of d-dimensional vectors (d = 768). Since our primary objective is to generate an
embedding vector that encapsulates information across the entire DNA barcode, following a
self-supervised training phase, we merge these d-dimensional vectors for each DNA sequence
to create a comprehensive vector representation for the entire sequence using global average
pooling.

Training and optimization

As previously mentioned, our method entails the segmentation of each DNA barcode into a
series of non-overlapping k-mers. The standard DNA alphabet comprises the nucleotides A,
C, G, and T. However, note that specific DNA barcodes may incorporate other symbols, such
as N’s or alignment gaps ‘-’ within their sequences, denoting ambiguity. Our vocabulary
encompasses all possible combinations of k-length strings derived from the nucleotide
alphabet, supplemented by two special tokens: <MASK> and <UNK>. The <MASK> token is
utilized for masking k-mers during the training phase, and k-mers containing any symbol
that is not present in the nucleotide alphabet are assigned the <UNK> token. Consequently,
the total vocabulary size is determined by the expression 4k + 2.

We implement the BERT model using the Hugging Face Transformers library and
PyTorch. During training, we focused exclusively on masked token prediction, masking
50% of the input tokens and optimizing the network with a cross-entropy loss. We utilize
the AdamW optimizer [119] and incorporate a linear scheduler with an initial learning rate
of 1× 10−4 during the optimization process. Additionally, we performed experiments across
different k-mer lengths (4 ≤ k ≤ 6) to observe the impact of k-mer length on embedding
quality.
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Evaluation and experimental setup

To explore the applicability of transformer architectures for DNA barcode-based biodiversity
analyses, we employ different SSL evaluation strategies [10] and contrast their performance

Figure 6.3: Architecture of BarcodeBERT, a transformer-based model employing a self-
supervised learning strategy. The model is trained on non-overlapping k-mers from DNA
sequences as tokens. Any token containing a character that is not in the nucleotide
vocabulary is replaced by the <UNK> token. Pretraining involves masking certain input
parts and predicting these masked elements using a linear classification layer. The masking
is implemented using the <MASK> token to represent masked k-mers during pretraining.
Following the notation in [92], Et, It and Ot denote the positional encoding, the input
embedding and the last hidden state at token t, respectively.
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against a supervised baseline. Initially, we perform task-specific fine-tuning, i.e., we
fine-tune the models on the supervised training dataset and assess their performance at
species-level classification. Second, we gauge the influence of pretraining on DNA barcodes
by using the models as feature extractors.

We first implement genus-level 1-NN probing on sequences from unseen species, providing
insights into the models’ ability to generalize to new taxonomic groups. Additionally, we
perform species-level classification using a linear classifier trained on embeddings from the
pretrained models. Throughout the evaluation process, our pipeline remains consistent
with the training process. DNA barcodes are tokenized into non-overlapping k-mers, and
the sequence of tokens is fed into the model.

To generate an overall embedding for the entire DNA barcode, we calculate the average
vector obtained from the constituent non-overlapping k-mers within that specific barcode.
Finally, in a novel exploration, following [8], we evaluate our model’s performance in the
context of Bayesian zero-shot learning on the INSECT dataset for species classification
as a downstream task, applying a Bayesian model that generates a posterior predictive
distribution (PPD) for both seen and unseen categories with image features as prior and
DNA features as side information. Due to the absence of unseen categories’ image features
in the training set, to allow the BZSL model to generate the PPD for each unseen category,
the model selects the K-nearest seen categories of the unseen category in the DNA feature
space and uses their image features as a local prior. We consider both employing the DNA
feature embeddings directly from the pretrained BERT models and fine-tuning the models
through supervised learning of the species classification task on the INSECT dataset using
the DNA barcodes as input. We utilize image features from the INSECT dataset mentioned
in [8], pre-extracted using ResNet-101 [71], to ensure that our results can be compared
effectively with those in [8]. We compare our model’s performance to the supervised CNN
used in [8] as well as pretrained DNABERT [92] and DNABERT-2 [222] models. We
tokenize the barcode data using overlapping k-mers for DNABERT, k = 6, and the BPE
tokenizer for DNABERT-2.

6.4 Results

6.4.1 Taxonomic classification of DNA barcodes

In our evaluation based on traditional classification setups, detailed in Table 1, fine-tuning
revealed no significant performance gap, with the CNN baseline marginally outperforming
all transformer models. Genus-level 1-NN probing displayed a similar trend. Linear probing,
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however, favoured the pretrained model by a slight margin. It’s noteworthy that both our
model and DNABERT2 consistently outperformed DNABERT. This likely stems from the
non-overlapping tokenization approach and the fact that DNABERT2 was not exclusively
pretrained on human data. Although the baseline model performed well, the transformer-
based models demonstrate their potential to contribute significantly to DNA barcode
analysis.
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Figure 6.4: Mask prediction loss over 40 training epochs for different k-mer lengths.

As detailed in Table 6.2, fine-tuning revealed no significant performance gap, with
DNABERT-2 marginally outperforming all other models. In the genus-level 1-NN probing
task, BarcodeBERT and DNABERT-2 outperformed the baseline, with DNABERT-2
performing less competitively. Linear probing, however, favoured our pretrained models and
DNABERT-2 over the baseline and DNABERT. It is noteworthy that both BarcodeBERT
and DNABERT-2 outperformed DNABERT in two out of three tasks. This likely stems
from the non-overlapping tokenization approach and the fact that DNABERT-2 was not
exclusively trained on human data. Although the baseline model performed well, the
transformer-based models demonstrate their potential to contribute significantly to DNA
barcode analysis.
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Table 6.2: Classification accuracy of DNA barcode models under different SSL evaluation
strategies. Some models supported variable stride length; for these, we show results at
several k-mer lengths.

Species-level acc (%) Genus-level acc (%)
of seen species of unseen species

Model Fine-tuned Linear-probe 1-NN probe

CNN baseline 98.2 51.8 47.0
DNABERT-2 98.3 87.2 40.9

k-mer length k=4 k=5 k=6 k=4 k=5 k=6 k=4 k=5 k=6

DNABERT 96.3 96.9 97.4 47.1 38.4 41.2 38.2 41.6 48.5
BarcodeBERT (ours) 98.6 98.5 98.7 93.0 88.6 84.0 49.0 58.4 57.6

6.4.2 Bayesian zero-shot learning of images with DNA as side in-
formation

While we experimented with the alignment of barcodes mentioned in [8], we found in
practice that further alignment of DNA barcodes did not significantly affect the results.
Therefore, the DNA barcodes we used for experiments with all the models are not aligned
and taken as-is from the BOLD database. For each model before and after fine-tuning,
we perform a grid search over the same hyperparameter space used by [8] for Bayesian
zero-shot learning. The resulting accuracy for seen and unseen test species, as well as the
harmonic mean, are presented in Table 6.3.

Even without fine-tuning, BarcodeBERT substantially outperforms DNABERT and
DNABERT-2 on unseen species, regardless of whether they had been fine-tuned previously
or not. BarcodeBERT achieves similar performance to the reported baseline CNN results
[8] and improves on the harmonic mean score by 1.2% and unseen accuracy by 1.9%,
respectively. We thus find that in the zero-shot learning task of predicting insect species,
employing BERT-like models that have also been trained on insect DNA barcodes as DNA
encoders can improve performance.

6.5 Conclusions

Our research shows that pretraining masked language models on DNA barcode data,
as demonstrated by BarcodeBERT, is both effective and essential for arthropod species
identification. This underscores the need to diversify datasets beyond human DNA sequences
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Table 6.3: Evaluation of DNA barcode models in a Bayesian zero-shot learning task on the
INSECT dataset. The pretraining and fine-tuning data source is indicated by the respective
DNA type, and ‘–’ signifies the absence of training for that type. We also indicate the most
specific taxon subset. For the baseline CNN encoder, we report the original paper result
(left) and reproduced result (right).

Data sources Species-level acc (%)

Model SSL pretraining Fine-tuning Seen Unseen Harmonic Mean

CNN encoder – Insect 38.3 / 39.4 20.8 / 18.9 27.0 / 25.5
DNABERT Human – 35.0 10.3 16.0
DNABERT Human Insect 39.8 10.4 16.5
DNABERT-2 Multi-species – 36.2 10.4 16.2
DNABERT-2 Multi-species Insect 30.8 8.6 13.4

BarcodeBERT (ours) Arthropod – 38.4 16.5 23.1
BarcodeBERT (ours) Arthropod Insect 37.3 20.8 26.7

to advance the field of biodiversity science. While we have made strides in improving the
classification of arthropod species using both DNA sequences and images, our findings point
to a wealth of untapped data, e.g., the BOLD dataset, currently comprising 14 million DNA
barcodes, continuously augmented by data from previously seen or unseen species. Future
work includes further investigation of such DNA barcode data to develop more robust and
scalable self-supervised models for taxonomic classification.
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Chapter 7

Summary and future work

One of the central motivations for this dissertation stems from the ongoing debates regarding
taxonomic identifiers for certain organisms and the uncertainty surrounding identifiers of
newly discovered species. This uncertainty and lack of consensus make it reasonable to
suggest that strategies less reliant on taxonomic labels may be better suited to achieve the
overarching goal of creating a comprehensive record of life on our planet. Two different
aspects of this challenge have been explored throughout the topics of this thesis. First,
we explored how to effectively categorize DNA sequences without relying on traditional
taxonomic labels, and group together DNA sequences from closely related organisms across
different domains of life. Second, we sought to use unlabelled data to enhance supervised
classification pipelines. Ultimately, our research aims to use unlabelled genomic data to
improve our understanding of biodiversity and facilitate a more efficient categorization of
DNA sequences.

We start by developing DeLUCS, our deep learning-based unsupervised clustering
method. To cluster a given sequence dataset, DeLUCS first generates artificial mimic
sequences from the original sequences using a probabilistic model, and calculates normalized
k-mer frequency vectors for both the original and the mimic sequences. Then, using an
information-based loss function, m independent neural networks are trained to maximize
the mutual predictability of cluster assignments for a sequence and its corresponding mimic
sequences. Finally, we employ majority voting to finalize each sequence’s cluster assignment.

Through the development of DeLUCS, we have shown that it is possible to train a
discriminative neural network to identify significant taxonomic clusters in datasets of
mitochondrial DNA from eukaryotes or fragments of nuclear DNA from prokaryotes. This
method, pioneering in its application of unsupervised deep learning for clustering unlabelled
DNA sequences, marks a significant advance in analyzing large and diverse datasets. These
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datasets, often challenging for traditional unsupervised methods due to their size and lack
of DNA sequence homology, are now more accessible thanks to DeLUCS. This approach
introduces the principles of contrastive learning to comparative bioinformatics and sets
a new benchmark for unsupervised DNA sequence clustering, promising a transformative
impact on genomic data analysis.

Refining DeLUCS to enable good performance, even in the case of unbalanced datasets,
and developing more sophisticated clustering ensemble techniques were key areas with room
for further improvement. Building on this, we introduced iDeLUCS, an improvement of
DeLUCS that uses self-supervised representation learning. The mimic sequences are now
used as part of a more general contrastive framework, where the consistency of both the
final cluster assignments and the intermediate representations learned by the network are
enforced during training. These learned representations are also suitable for non-parametric
clustering of long DNA sequences, as our software tool matched or surpassed the performance
of alignment-based methodologies in synthetic datasets. As a standalone tool, iDeLUCS
exemplifies the flexibility of the contrastive learning framework across various genomic
datasets, facilitating insightful visualizations and evaluations of the training process and
dataset compositions. Various avenues could be explored to improve iDeLUCS, such as
adapting the contrastive learning framework to enable the processing of raw DNA sequences
and other DNA sequence representations, such as CGRs. We are also actively searching for
more precise mathematical formulations for calculating mimic sequence augmentations that
are dataset-independent. Lastly, better optimization or initialization techniques could be
implemented to eliminate the need for a clustering ensemble.

The emergence of high-performing unsupervised learning algorithms such as iDeLUCS
inspired an investigation into the genomic signatures of microbial extremophiles. This
case study showcases how the joint use of both supervised and unsupervised machine
learning-based methodologies can lead to meaningful biological discoveries. We explore the
hypothesis that an organism’s genome could contain other information beyond ancestry or
taxonomy and found evidence of a pervasive, genome-wide environmental component in
the genomes of some extremophiles. These findings offer a new lens through which to view
adaptations to extreme conditions and could potentially redefine the concept of genomic
signature. Future work includes a systematic selection and compilation of the genomic
signatures to guarantee uniform coverage across the genome of both bacterial and archaeal
organisms. Furthermore, similar analyses can be performed for larger datasets and other
extremophilic characteristics.

Finally, we attempt to bridge the performance gap between supervised and semi-
supervised taxonomic classification using DNA barcodes. Our model, BarcodeBERT, is a
transformer model pretrained on a 1.5 million barcode database using a masked language
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modelling loss function. After pretraining, BarcodeBERT embeds barcode sequences into
an expressive representation space that can be exploited for various classification tasks. We
compare the quality of the embeddings learned by our self-supervised model against the ones
produced by supervised convolutional neural networks and fine-tuned foundation models
across different classification tasks: supervised fine-tuning over a dataset with novel species,
kNN probing for the classification of unseen species into seen genera, and linear probing for
the classification of novel specimens from seen species. Our results show that BarcodeBERT
outperforms all other models, even without fine-tuning, in complex identification tasks.

Through the development of our model, BarcodeBERT, we illustrate the essential role
of pretraining on DNA barcode data for species identification. This approach highlights
the importance of expanding our datasets to encompass a broader spectrum of biodiversity,
pointing to the future of robust, self-supervised models for taxonomic classification. Future
directions will incorporate data augmentation techniques into the training process to increase
the robustness of the model. Future work also includes investigating the different pretext
tasks and masking strategies, such as the ones used by recently proposed foundation models
in genomics. Ultimately, BarcodeBERT could also be coupled with a transformer-based
decoder to exploit the learned representations for hierarchical, fine-grained taxonomic
classification.

In summary, in this dissertation we have investigated how to unite the fields of bio-
diversity and taxonomic categorization with the field of deep unsupervised learning. We
successfully trained neural networks for representation learning of DNA barcodes and
unsupervised clustering of genomic signatures. The neural nature of our methodologies
makes our software tools stand out in terms of robustness and scalability, making them
suitable for the ever-increasing volume of new genomic data being generated. We conclude
that meaningful information can be learned without reliance on labels, and our work not
only introduces novel methodologies to do so but also paves the way for future explorations
into different neural architectures and comprehensive analyses of biodiversity data.
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Appendix A

Default Notation

We follow the notation from the Deep Learning [63] textbook:

Numbers and Arrays
a A scalar (integer or real)

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets
A A set

N The set of natural numbers

Z The set of integers

R The set of real numbers

X ,Y ,Z The arbitrary domains/codomains of a given
function

{0, 1} The set containing 0 and 1

{a, . . . , b} The set of all integers between a and b

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

Functions
f : X → Y The function f with domain X and range Y
f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ (Sometimes
we write fθ(x) to lighten notation)

log x Natural logarithm of x

softmax(x) Softmax function,
exp (xi)∑K
j=1 exp(xj)

||x||p Lp norm of x

||x|| L2 norm of x

1[condition] is 1 if the condition is true, 0 otherwise

145



Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set

S

Probability and Information Theory
P (a) A probability distribution over a discrete vari-

able

p(a) A probability distribution over a continuous
variable, or over a variable whose type has not
been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] Expectation of f(x) with respect to P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and
covariance Σ
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Glossary of Biology Concepts

alternative splicing Cellular process whereby exons from the same gene are assembled
in various combinations, resulting in multiple, related mRNA transcripts. These
transcripts can then be translated into different proteins with unique structures and
functions. 10

central dogma The central dogma of molecular biology, introduced by Francis Crick in
1958, is a theory that proposes a one-way transfer of genetic information from DNA
to RNA to protein. It asserts that information cannot be transferred from a protein
back to nucleic acids or to another protein, establishing a strict pathway for genetic
information flow in biological systems. However, subsequent scientific discoveries have
identified numerous exceptions to this theory. 9

codon A codon is a DNA or RNA sequence of three nucleotides that encodes for a specific
amino acid or a stop signal for protein synthesis. Among the 64 possible codons,
61 encode the 20 amino acids that form proteins, and the remaining three are stop
signals. 12

deoxyribonucleic acid Deoxyribonucleic acid (DNA) is the macromolecule responsible
for encoding all the genetic information necessary for the development and functioning
of all living organisms. It is made of two single strands that wind around each
other. These strands comprise a sugar (deoxyribose) and phosphate backbone, with
one of four nucleobases (adenine, cytosine, guanine, or thymine) attached to each
sugar. Adenine pairs with thymine and cytosine with guanine through chemical bonds,
connecting the two strands. 8

exon Region of the genome that will form an mRNA molecule after introns have been
removed by RNA splicing. The term exon refers to the DNA sequence within a gene
and the corresponding sequence in RNA transcripts. 10
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gene The gene is considered the basic unit of inheritance. Genes are passed from parents to
offspring and contain the information needed to specify physical and biological traits.
Most genes code for specific proteins, or segments of proteins, which have differing
functions within the body. Humans have approximately 20,000 protein-coding genes
10

intron A region of the genome that is part of a gene but does not code for amino acids, as
it is removed from the final mature mRNA molecules after transcription. 10

nucleotide Basic building block of nucleic acids. A nucleotide consists of a sugar molecule,
either ribose in RNA or deoxyribose in DNA, attached to a phosphate group and a
nitrogenous nucleobase. The nucleobases present in DNA are adenine (A), cytosine
(C), guanine (G) and thymine (T). In RNA, thymine is replaced by uracil (U). 8

progenote The most recent common ancestor to all organisms now living on Earth;
specifically, the most recent progenitor of all archaea, bacteria and eukaryotes. 12

ribonucleic acid Ribonucleic acid (RNA), structurally similar to DNA, exists in all living
cells, often as a single strand. An RNA molecule has a backbone of alternating
ribose sugar and phosphate groups, with one of four nucleobases (adenine, uracil,
cytosine, guanine) attached to each ribose. RNA types include messenger RNA
(mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), which have roles in
gene expression regulation. Some viruses also use RNA as their genetic material. 8

transitions DNA substitution mutations in which nucleobases with similar chemical
structures get interchaneged. This involves changes between two-ring nucleobases,
also known as purines (A and G), or one-ring nucleobases, also known as pyrimidines
(C and T). 42

transversions DNA substitution mutations in which nucleobases with different chemical
structures get interchanged. This involves changes between a two-ring nucleobase (A
or G) and a one-ring nucleobase (C or T). 42
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