
Type-Aware Optimizations with
Imperfect Types

by

Jeremiah Ikosin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Jeremiah Ikosin 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

JavaScript, a programming language originally designed for web browsers, has become
ubiquitous, experiencing adoption across multiple platforms. Its dynamic type system
and prototype-based object orientation are well-known properties that make the language
applicable to several programming paradigms, particularly functional and object-oriented
programming. However, issues such as global scope pollution, implicit type conversion,
the absence of native null safety features, and the complexities of asynchronous callback
structures, among others, make the language difficult to work with. To address these chal-
lenges, particularly within the context of large-scale application development, TypeScript
was introduced.

TypeScript incorporates a structural type system and compiles to JavaScript. The de-
sign objective is to ensure seamless interoperability with JavaScript, incorporating various
ergonomic features, notably static typing. TypeScript introduces improved tooling, IDE
support, ES6 features with extensions, and compatibility with existing JavaScript code.
Despite these advantages, TypeScript deliberately refrains from optimizing its JavaScript
output. Although JavaScript’s flexibility can often be useful in practice, a naive imple-
mentation of the language would be slow. Modern JavaScript engine implementations
are intricate systems that employ cutting-edge optimization techniques to achieve efficient
executions.

This thesis introduces a method for improving the runtime performance of JavaScript
by utilizing type information from TypeScript. It categorizes TypeScript types based on
usage into two groups: nominal (similar to classes in Java) and non-nominal (structural
or arbitrary). Although TypeScript’s type system is inherently unsound, types tend to be
consistent in most nominal use cases. This characteristic renders a significant proportion
of type information amenable to optimization with reasonable guarantees.

I modified the TypeScript compiler (tsc) to leverage nominal type usage for optimiza-
tions. This modification produces optimized code through the utilization of enhanced
heuristics for runtime optimizations. Additionally, I integrated WebKit’s JavaScript en-
gine, JavaScriptCore (JSC), by introducing a new runtime intrinsic specifically designed
to utilize type information from TypeScript.

Performance is assessed by comparing JavaScript programs from the JetStream 2.1
JavaScript test suite with equivalent programs ported to TypeScript. These TypeScript
programs are then compiled to JavaScript using the modified TypeScript compiler in two
modes: with optimizations enabled and with optimizations disabled. The results show
that adopting a nominal typing style in TypeScript leads to improved performance in the
resulting JavaScript when compiled with optimizations enabled, by up to 12%.

iii

Acknowledgements

I am thankful to God Almighty, whom I call Father, for guiding me through every step
of the journey. I am grateful to my parents for their endless love and support throughout
my education. I am grateful to my advisor, Gregor Richards, for his unwavering patience
and support throughout my program. I am grateful for the support from friends and
family, the ones with whom I share timeless and excellent connections. I am grateful for
the McEacherns, the Acorns, the Stewarts, the wonderful people of Bethel Chapel, and
the excellent folks from the Thursday Night Study Group. Of course, this page would be
incomplete without mentioning friends who have stuck closer than a brother. I am ever
grateful for Thomas, Smit, and Andrew. May our stars ever shine so brightly.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Contributions . 2

1.2 Overview . 3

2 Background 5

2.1 JavaScript . 5

2.1.1 JavaScript Syntax and Semantics 5

2.1.2 Dynamic Typing . 8

2.2 JavaScript Engines . 9

2.2.1 Optimization Techniques and Challenges 10

2.3 JavaScriptCore . 11

2.3.1 Execution Pipeline Architecture . 13

2.3.2 Bytecode . 13

2.3.3 Fast Path / Slow Path . 15

2.3.4 OSR . 15

2.3.5 LLInt . 16

v

2.3.6 Baseline JIT . 18

2.3.7 DFG and FTL JIT . 18

2.3.8 Optimization Techniques . 19

2.3.9 Speculation . 23

2.4 Bun . 23

2.5 TypeScript . 24

2.5.1 TypeScript Syntax and Semantics 24

2.5.2 Type System . 27

2.6 Nominal Typing . 28

2.7 Why TypeScript? . 29

3 Implementation 30

3.1 Heuristic Guided Optimization . 30

3.2 Type Classification . 34

3.3 Heuristics . 35

3.4 Case Study: Nominal Types . 36

3.4.1 Explicit Type Casts . 36

3.4.2 Implicit Type Casts . 39

3.4.3 Delete Operations . 40

3.5 Modifications . 41

3.6 TypeScript . 41

3.6.1 Checking Nominality . 41

3.6.2 Optimization Metadata . 45

3.6.3 Shape Mutation . 48

3.6.4 Emitting JavaScript . 49

3.6.5 tsconfig.json Configuration . 52

3.7 JavaScriptCore . 52

3.7.1 get by id offset Bytecode Instruction 52

3.7.2 LLInt . 53

3.7.3 Baseline . 54

3.7.4 Intrinsic Instructions . 56

3.8 Bringing it All Together . 59

3.8.1 A Complete Example . 59

vi

4 Evaluation 62

4.1 Benchmarks . 62

4.1.1 Microbenchmarks . 65

4.2 Methodology . 65

4.3 Results . 66

4.3.1 Bjet . 66

4.3.2 Bµ . 69

4.3.3 Intrinsics . 71

4.4 Discussion . 72

4.4.1 Bjet . 72

4.4.2 Bµ . 73

4.4.3 Heuristics . 74

4.5 Closing Remarks . 75

5 Related Work 77

5.1 JavaScript Performance and Optimization Challenges 77

5.2 Performance Optimization Techniques . 79

5.2.1 Concrete Types for TypeScript . 80

5.2.2 Leveraging Property Access Optimization in V8 81

5.2.3 Typed JavaScript . 82

6 Future Work 84

7 Conclusions 86

References 88

APPENDICES 96

A Symbol and PropertyAccessExpression 97

B Nominal Type Properties for Object Layout 99

C tsconfig.json support for optimizeWithTypes 100

D Builtin mode in JavaScriptCore 102

vii

List of Figures

2.1 A simple JavaScript function. 6

2.2 Objects in JavaScript. 6

2.3 Creating objects using constructors in JavaScript. 7

2.4 Classes in JavaScript. 8

2.5 Dynamic typing in JavaScript. 8

2.6 A simple JavaScript engine architecture. 9

2.7 A JIT triggering example [48]. 10

2.8 The tiers of JavaScriptCore [15]. 12

2.9 JavaScriptCore architecture [15]. 12

2.10 Example timeline of a simple long loop executing in JavaScriptCore [15]. . 13

2.11 A simple JavaScript program compiled to bytecode. 14

2.12 Hypothetical fast path / slow path implementation of an add instruction. . 15

2.13 A high-level view of LLInt. 16

2.14 mov and to string implementation in LLInt, defined in LowLevelInter-
preter64.asm [10] . 17

2.15 Objects and structures in JavaScriptCore [15]. 20

2.16 Property access in JavaScript. 21

2.17 Memory layout of an object in JavaScriptCore [15]. 21

2.18 An interface in TypeScript. 24

3.1 JavaScript class with two properties demonstrating property access. 31

3.2 Layout of obj in JavaScriptCore. 31

3.3 Regular property access as seen in obj.x. 32

3.4 Optimized property access for obj.x. 32

viii

3.5 Example of dynamic property assignment. 33

3.6 Deleting an object’s property in JavaScript. 33

3.7 Deleting an object’s property in TypeScript. 34

3.8 Classification of types according to usage. 35

3.9 Direct property deletion through cast to any. 37

3.10 Indirect property deletion through cast to any. 37

3.11 Structural type casts in TypeScript. 37

3.12 Class and interfaces with similar types. 38

3.13 Type coercion to any through assignment. 38

3.14 Type coercion in function parameters. 39

3.15 Type coercion in assignment. 40

3.16 Deleting the property y of the Point object pt. 40

3.17 Pseudocode for type checking expressions. 42

3.18 Pseudocode for checking if a property access is within a constructor. 43

3.19 |this— property access in a class constructor. 43

3.20 Derivation of satisfiesClsTy. 43

3.21 Pseudocode for deriving isEligibleClsTy. 45

3.22 Checking for flagged types. 45

3.23 Layout, flagged types, and maximum inline slots definitions. 46

3.24 Implementation of getOffset. 46

3.25 Pseudocode for attaching layout and offset metadata to a property access
node. 47

3.26 Decomposition of property access expressions. 48

3.27 Pseduocode for detecting shape mutation through deletion. 48

3.28 class Point with field initializations matching computed layout information. 49

3.29 Pseudocode for emitting a constructor with extension for layout metadata. 50

3.30 Transformation of class fields to object layout instructions. 50

3.31 Pseudocode for emitting property access expressions. 51

3.32 Transformation of a property access expression to an intrinsic function call. 51

3.33 Definition of get by id offset opcode format. 54

3.34 Implementation of get by id offset in LLInt. 54

ix

3.35 Pseudocode for emit op get by id offset in Baseline. 55

3.36 Slow path implementation of op get by id offset in Baseline. 56

3.37 Implementation of emit intrinsic getByIdOffset by walking the func-
tion call AST node. 58

3.38 Intrinsic function call to bytecode. 58

3.39 Extract from the n-body system implementation used in benchmarks. . . . 60

3.40 Optimized JavaScript for the n-body simulation. 61

4.1 Performance comparison of nts and pts in Bjet across TL, TB and TLB

configurations. Lower is better. 68

4.2 Performance comparison of nts, pts and ojs in Bjet across TL, TB and TLB

configurations. Lower is better. 68

4.3 Performance comparison of nts and pts in Bµ across TL, TB and TLB

configurations. Lower is better. 70

4.4 Nominal type violation and missed access optimizations. 75

A.1 Definition of PropertyAccessExpression AST node. 97

A.2 Representation of |Symbol— in TypeScript. 98

B.1 Computing layout metadata. 99

C.1 optimizeWithTypes configuration in CompilerOptions type definition. . . 100

C.2 optimizeWithTypes configuration in CommandLineOption array. 101

D.1 Implementation of concat for ArrayPrototype.js in JSC [10]. 102

x

List of Tables

4.1 Benchmark programs and their descriptions. 63

4.2 Benchmark setup. 64

4.3 Microbenchmark programs and their descriptions. 65

4.4 Performance comparison of nts and pts in Bjet across three configurations
of JavaScriptCore. Lower is better. 67

4.5 Performance comparison of nts, pts and ojs in Bjet across three configura-
tions of JavaScriptCore. Lower is better. 67

4.6 Geometric mean of nts and pts in Bjet. Lower is better. 69

4.7 Speedup of pts over nts in Bjet. For speedup, higher is better. 69

4.8 Performance comparison of nts and pts in Bµ across three configurations
of JavaScriptCore. Lower is better. 70

4.9 Geometric mean of nts and pts in Bµ. Lower is better. 70

4.10 Speedup of pts over nts in Bµ. For speedup, higher is better. 71

4.11 Benchmark programs and emitted intrinsics. 71

4.12 Benchmark programs and emitted intrinsics. 71

xi

Chapter 1

Introduction

JavaScript, originally created by Netscape, stands out as a versatile and extensively em-
ployed programming language recognized for its pivotal role in constructing dynamic con-
tent for the web. It has evolved into a foundational technology for web development,
characterized by its high-level, interpreted, and dynamic nature, accommodating multiple
programming paradigms. Noteworthy features include client-side scripting, event-driven
programming, asynchronous capabilities, dynamic typing, prototype-based object orienta-
tion, and cross-browser compatibility. JavaScript’s influence extends beyond traditional
web development. Its adaptability is evident in various domains, including mobile app
development through frameworks like React Native [35] and server-side scripting through
Node.js [33]. Furthermore, JavaScript plays a significant role in desktop application devel-
opment, particularly through frameworks like Electron [22].

Although JavaScript’s flexibility can often be useful in practice, a naive implemen-
tation of the language will exhibit suboptimal performance. Modern JavaScript engine
implementations have evolved into intricate systems that employ cutting-edge optimiza-
tion techniques, including just-in-time (JIT) compilation [46] and the implementation of
sophisticated inline caching techniques [59, 67]. These optimizations have significantly con-
tributed to the improvement of JavaScript performance over time. Additionally, a prevalent
practice among JavaScript engines is the adoption of type-feedback-based JIT compilers to
unlock further optimization possibilities [93]. In some engines, this concept is taken a step
further by incorporating multi-tier JIT compiler pipelines. In these pipelines, each JIT
tier enhances performance by focusing on specific areas, building upon the improvements
made in the previous tier.

Despite the appealing features of JavaScript, certain challenges diminish its ease of use.
Global scope pollution, implicit type conversion, the lack of built-in null safety features,
and intricate asynchronous callback structures are notable obstacles. These issues can
impede code reliability and maintainability, especially in the development of large-scale
applications. Recognizing these shortcomings, TypeScript was introduced as a solution to
enhance the robustness and scalability of JavaScript code in large development projects.

1

TypeScript incorporates a structural type system and compiles to JavaScript. The pri-
mary design objective is to ensure seamless interoperability with JavaScript, incorporating
several ergonomic features, most notably static typing. TypeScript introduces enhanced
tooling, IDE support, ES6 features, and compatibility with existing JavaScript code.

Despite these benefits, TypeScript intentionally avoids optimizing its JavaScript output.
Indeed, one of TypeScript’s explicit non-goals is the aggressive optimization of runtime per-
formance of compiled programs [16]. In practical terms, while TypeScript identifies types
during compilation, this type information is not directed towards producing JavaScript
code that can be better optimized for performance by an optimizing JavaScript engine.
Consequently, the engine must deduce the types used at runtime even though much of the
same type information is available to the TypeScript compiler at compile-time, sacrific-
ing potential performance optimizations. Modern JavaScript engines, such as JavaScript-
Core [9] and V8 [5], utilize profiling to dynamically infer types for speculative compilation
[15, 63].

1.1 Contributions

This thesis introduces a broadly applicable method for enhancing the performance of
JavaScript programs through the utilization of type information derived from TypeScript.
To achieve this objective, types in TypeScript are classified according to their usage into
nominal (similar to classes in Java) and non-nominal (structural or arbitrary) categories.
Despite the unsound nature of TypeScript’s type system, a notable consistency in types is
observed in the majority of use cases involving classes (nominal typing). This consistency
provides a substantial basis for optimization, similar to how type information is utilized
for optimizations in statically typed languages such as C and C++.

In this thesis, I made modifications to the TypeScript compiler (mtsc) to leverage nom-
inal type usage during type checking, enabling the generation of optimized code guided by
special heuristics. Additionally, WebKit’s JavaScriptCore, the underlying JavaScript en-
gine for the Safari browser [36] and the Bun runtime [29] are modified. Within JavaScript-
Core, a new runtime intrinsic is introduced to harness type information from TypeScript,
offering support at both the interpreter (LLInt, Low Level Interpreter) and Baseline JIT
levels. The Bun runtime is chosen for performance evaluation because it stands out as the
sole non-trivial open source JavaScript runtime compatible with Node.js [33] while utilizing
WebKit [29].

The evaluation of the implementation involves a performance comparison of JavaScript
programs from the JetStream 2.1 JavaScript benchmark suite [18, 20]. The same programs
are then ported to TypeScript and compiled with mtsc in two modes: with optimizations
and without optimizations. In particular, when TypeScript programs are written in a nom-
inal style, the resulting JavaScript, generated by compiling TypeScript with optimizations,
outperforms the JavaScript derived from compiling TypeScript without optimizations, by

2

up to 12%. Furthermore, when non-nominal typing styles are employed, the performance
of JavaScript with optimizations is comparable to the original JavaScript from JetStream
2.1 without significant degradation.

In summary, this thesis makes the following key contributions:

1. The development of an enhanced TypeScript compiler (mtsc) tailored for type-guided
performance optimization.

2. The introduction of new runtime intrinsics in JavaScriptCore designed to collaborate
seamlessly with mtsc.

3. The comprehensive evaluation of the performance outcomes produced by the config-
ured setup.

1.2 Overview

The main aim of this thesis is to leverage TypeScript’s type information to optimize
JavaScript’s runtime performance. In the industry, TypeScript is steadily gaining trac-
tion in the development of web applications due to its numerous ergonomic improvements
and advantages over JavaScript [70, 25]. This trend is evident as several popular web
frameworks, such as Angular [28] and NestJS [32], prioritize a TypeScript-first develop-
ment experience. Additionally, TypeScript has been adopted for large-scale projects by
companies like Microsoft, Slack, Airbnb, and Asana [70]. Furthermore, it is increasingly
common for new web application projects to adopt TypeScript instead of JavaScript. Given
these factors, ensuring performant JavaScript is essential when writing TypeScript code.
To achieve this objective, a fundamental understanding of concepts such as JavaScript
engines, the JavaScript and TypeScript languages, challenges in JavaScript optimization,
and runtime optimization intrinsics is essential (Chapter 2).

The central idea for optimization revolves around utilizing type information in Type-
Script to optimize property access operations (Chapter 3). These optimizations involve
eliminating object shape checks and full property lookup operations by leveraging nominal
type information from TypeScript. These optimizations are implemented at two levels:
the TypeScript compiler and the JavaScript engine. In the TypeScript compiler, layout
instructions are generated (when necessary) for objects adhering to nominal type usage,
facilitating the utilization of runtime intrinsics for optimizing property-access operations
on these objects. Additionally, at the JavaScript engine level, a new runtime intrinsic is
developed to support the access optimizations applied by the TypeScript compiler.

The changes made to both the TypeScript compiler and the JavaScript engine are
evaluated using a set of benchmarks (Chapter 4). The first benchmark is a standard
JavaScript benchmark commonly used by popular browser engines [18], while the second
is a microbenchmark comprising a series of programs specifically designed to isolate the

3

performance enhancements resulting from the implemented optimizations. The results
from both benchmarks show a significant improvement in performance across multiple
programs as a result of the optimizations that were developed.

4

Chapter 2

Background

This chapter presents fundamental concepts and background information essential for a
clear understanding of the thesis. It encompasses discussions on JavaScript and JavaScript
engines, with a focus on JavaScriptCore, TypeScript, the Bun runtime environment, and
the rationale behind optimizing with TypeScript. Given the complexity of these tech-
nologies, the chapter aims to offer a succinct understanding without delving into detailed
tutorials or formal specifications.

2.1 JavaScript

JavaScript is a widely used programming language renowned for its pivotal role in web
development. Initially conceived for web browsers, it has since transcended its origins and
found widespread adoption across multiple platforms. Developed in 1995, JavaScript has
become fundamental to web development, offering high-level, interpreted, and dynamic
capabilities that support procedural and object-oriented programming paradigms. The
language’s dynamic nature, coupled with its adaptability, makes JavaScript a powerful
tool, albeit one that developers navigate carefully in the pursuit of robust and efficient
solutions, as it is very trivial to write code with unintended behaviour.

2.1.1 JavaScript Syntax and Semantics

Although JavaScript supports a number of features, the following discussion emphasizes
objects, functions, and classes without delving into in-depth details.

Functions

Functions in JavaScript work similarly to those in most imperative C-family programming
languages. Functions are reusable blocks of code that can accept arguments and return

5

values. The program in Figure 2.1 illustrates how functions can be defined and used.

1 function add(x, y) {

2 return x + y;

3 }

4

5 add(1, 2); // returns 3

Figure 2.1: A simple JavaScript function.

Unlike many imperative languages, JavaScript functions are first-class values that can
be used for object-oriented programming, although the introduction of classes somewhat
diminishes this use. Statements in JavaScript are usually terminated with a semicolon,
similar to C. However, unlike C, semicolons can be omitted due to automatic semicolon
insertion (ASI) [21], although this is usually not recommended.

Objects

JavaScript objects are fundamental data structures that allow developers to represent and
organize data in a structured manner. Objects in JavaScript are collections of key-value
pairs, where each key serves as an identifier for the associated value. This key-value
pairing facilitates the creation of complex and hierarchical data structures. Objects can
encapsulate various data types, including primitive values, other objects, and functions,
providing a versatile means of modeling real-world entities. In JavaScript, objects can be
defined using literal notation or by instantiating a constructor function. The program in
Figure 2.2 shows how objects may be defined and used.

1 const person = {

2 firstName: "John",

3 lastName: "Doe",

4 age: 30,

5 greet: function() {

6 console.log(`Hello, ${this.firstName} ${this.lastName}!`);

7 }

8 };

9

10 // prints "John"

11 console.log(person.firstName);

12 // calls the greet function in the object person. Prints "Hello, John Doe!"

13 person.greet();

Figure 2.2: Objects in JavaScript.

6

In JavaScript, prototypes are the mechanism by which objects inherit features from
one another [26]. Every object has a built-in prototype, which is itself an object. This
prototype object, in turn, has a prototype of its own, and so on, until an object is reached
with null as its prototype [24]. null has no prototype and acts as the final link in this
prototype chain.

Constructors

Functions in JavaScript may also be defined as object constructors. The prototype-based
nature of JavaScript allows implementing “methods” on these constructors. The example
in Figure 2.3 defines a Point constructor with an add method invokable on the constructed
object.

1 function Point(x, y) { // constructor

2 this.x = x;

3 this.y = y;

4 }

5

6 Point.prototype.add = function(inc) {

7 this.x += inc;

8 this.y += inc;

9 }

10

11 const p1 = new Point(1, 2);

12 p1.add(5);

Figure 2.3: Creating objects using constructors in JavaScript.

Classes

Classes were introduced in JavaScript to provide a cleaner and clearer way for supporting
object-oriented patterns. Classes provide a way to encapsulate data and behaviour and to
create reusable components. The program in Figure 2.3 can be written using classes, as
seen in Figure 2.4.

JavaScript is a prototype-based language [44] and does not support true classes, as
found in languages like Python [34] and Ruby [65]. Instead, it utilizes prototypes to inherit
properties from one object to another. Despite their apparent simplicity, prototypes in
JavaScript serve as the fundamental building blocks for many of its language constructs.
For example, data structures such as Array, JSON and Date are fundamentally objects in
JavaScript.

7

1 class Point {

2 constructor(x, y) {

3 this.x = x;

4 this.y = y;

5 }

6

7 add(inc) {

8 this.x += inc;

9 this.y += inc;

10 }

11 }

12

13 const p1 = new Point(1, 2);

14 p1.add(5);

Figure 2.4: Classes in JavaScript.

Due to JavaScript’s prototype-based nature, the programs presented in Figures 2.3 and
2.4 are identical and semantically equivalent. The object created by invoking the Point

function constructor in Figure 2.3 is identical to the one created using the Point class in
Figure 2.3. Therefore, when both programs are executed, they exhibit the same behaviour.

2.1.2 Dynamic Typing

The program in Figure 2.5 demonstrates dynamic typing in JavaScript. The error in line 17
is statically detectable, but only occurs at runtime.

1 let x = "foobar";

2 let y = [1, 2, 3];

3

4 // x is assigned an array with no errors

5 x = y;

6

7 // x is reassigned an object with no errors

8 x = { name: "John", age: 25 };

9

10 // this errors at runtime, even though this error is statically detectable

11 // -> Uncaught TypeError: x is not a function

12 x(1, false);

13

14 const p = 12;

15 // this errors at runtime since no type errors are statically detectable in JS

16 // -> Uncaught TypeError: Assignment to constant variable.

17 p = 10;

Figure 2.5: Dynamic typing in JavaScript.

8

2.2 JavaScript Engines

In its simplest form, a JavaScript engine functions as an interpreter that executes JavaScript
code. However, modern JavaScript engines have evolved into complex pipelines comprising
multiple components.

Typically, the front end comprises lexical and semantic analysis. The backend often
includes a code generator for a custom instruction set (bytecode) and a (stack- or register-
based) virtual machine that executes the instruction set. The code generator traverses
the AST to emit bytecode, which is then executed by the virtual machine. The engine
also automatically manages memory used at runtime, typically implemented using well-
defined garbage collection algorithms. However, engines with a JIT compilation system
may introduce additional complexities.

Figure 2.6: A simple JavaScript engine architecture.

A naive implementation of a JavaScript engine may rely entirely on interpretation, as
illustrated in Figure 2.6. However, the semantics of JavaScript can make such an approach
suboptimal due to its heavy reliance on prototypal objects. Modern JavaScript engines of-
ten employ a combination of interpretation and compilation techniques to achieve optimal
performance. These engines utilize JIT compilers to gather runtime information, which
is then used to optimize the performance of a running program. During program execu-
tion, a JIT compiler identifies opportunities to optimize certain code paths for improved
performance. It compiles these “hot” code paths (based on heuristics such as frequency
of execution) into machine code, which is then executed for optimal performance. JIT
compilers may employ traditional compiler optimization techniques (e.g., common subex-
pression elimination, range analysis, dead code elimination, alias analysis, loop-invariant
code motion, etc.) to eliminate or elide runtime checks.

However, because JavaScript is dynamically typed, assumptions made during optimiza-
tion may no longer hold true during subsequent execution (e.g., due to changes in program
state or input of an unexpected type). As a result, the optimized code may become invalid.
In such cases, the compiled code may be discarded or reverted to a less optimized form,
and execution reverts to interpretation or the less optimized code. This process is known
as deoptimization [68].

9

Chrome’s JavaScript engine, V8 [5], initially utilized a non-optimizing baseline compiler
to compile JavaScript code just-in-time, before execution. However, this method led to
significant memory consumption during execution. To address this issue, V8 introduced
the Ignition interpreter [12] to alleviate memory consumption [11].

JavaScriptCore interprets JavaScript bytecode on a register-based virtual machine.
However, it employs JIT compilation to convert the bytecode into machine code for native
execution, provided that sufficient profiling information has been gathered and certain JIT
heuristics are satisfied. Firefox’s JavaScript engine, SpiderMonkey [2], follows a similar
approach to JavaScriptCore [1].

2.2.1 Optimization Techniques and Challenges

Although modern JavaScript engines utilize JIT compilation for performant JavaScript
execution, this is not without its challenges.

1 function add(a, b) {

2 return a + b;

3 }

4

5 add("a", 1);

6 add(1, "b");

7

8 for (let i = 0; i < 100000; i++) {

9 add(1, 2);

10 }

11

12 add("a", "b");

Figure 2.7: A JIT triggering example [48].

Consider the program in Figure 2.7. Within the add() function (line 1), the expres-
sion a + b exhibits varied semantics based on the operand’s type: numerical addition for
numbers, concatenation for strings, and so forth. Consequently, the JavaScript engine ac-
quires runtime type information, which is pivotal for optimizing the function concerning
frequently encountered types. In this instance, the variable a is consistently observed to
store values of type number across numerous function calls within the for loop at line 8.
As a result, during the JIT compilation phase, the compiler speculates that these types will
persist unchanged and proceeds to emit native code to swiftly execute numerical addition
[48]. Such speculative optimizations foster the creation of efficient code tailored to each
data type.

10

Nevertheless, the dynamic typing inherent in JavaScript implies that assumptions re-
garding observed types may become invalidated over time. In Figure 2.7, this is demon-
strated by the function call to add() with a string parameter at line 12. Consequently,
JIT compilers are compelled to emit supplementary type checks to ascertain the validity of
their optimization assumptions at runtime. Failed validations prompt a bailout or deopti-
mization [68], where the observed type information is revised and factored into potential
recompilations [48].

Moreover, runtime validations not leading to deoptimization consume valuable CPU cy-
cles without advancing a program’s execution. Consequently, JavaScript engines endeavor
to eliminate superfluous checks, such as those grounded on assumptions proven to hold
universally. For instance, considering that numerous built-in Math function calls return
values of type number, optimization passes within the code might emit native arithmetic
instructions eliding runtime type checks [48]. Challenges like these complicate the task of
optimizing JavaScript correctly and contribute to the sophistication required in optimizing
JIT compilers.

Type Inference

Modern JavaScript engines utilize runtime type inference in their optimizing JIT compilers
to enhance optimizations and opportunistically eliminate runtime checks. JavaScriptCore
employs speculation (discussed in Section 2.3.9) to infer types in the DFG and FTL JITs,
leveraging value profiling data from the LLInt and Baseline tiers. SpiderMonkey [2] employs
an optimistic whole-program, hybrid (static and dynamic) analysis approach to infer types
for stack slots, arguments, and local variables [63]. V8 uses dynamic type inference in
its optimizing JIT tier, known as Crankshaft, to eliminate redundant IR instructions and
runtime checks [50].

2.3 JavaScriptCore

At the core of the WebKit project [3] lies JavaScriptCore, the native JavaScript engine
for WebKit [9], implementing the ECMA-262 specification [62]. JavaScriptCore consists of
a low-level interpreter called LLInt, written in a portable assembly dialect, and multiple
JIT compilers. The Baseline compiler, functioning as a template JIT compiler, occupies
the foundational tier among these compilers. It shares a significant amount of code with
LLInt and integrates fundamental optimizations, making it highly efficient for native code
generation. Succeeding the Baseline JIT is the Data Flow Graph compiler, also known as
DFG JIT, which produces more optimal code compared to the Baseline JIT. The Faster
Than Light JIT compiler, or FTL JIT, succeeds the DFG JIT. The FTL JIT is a fully
optimizing compiler that employs various classical compiler optimizations, resulting in
more efficient code compared to the DFG JIT. Figures 2.8 and 2.9 illustrate the tiers of
JavaScriptCore.

11

Figure 2.8: The tiers of JavaScriptCore [15].

Figure 2.9: JavaScriptCore architecture [15].

The tiered architecture of the engine facilitates speculation [15], enabling the optimiz-
ing tiers (DFG and FTL) to produce efficient code at runtime. Speculation, discussed in
Section 2.3.9, enables the application of traditional compiler optimization techniques to
dynamically typed languages. Additionally, it provides a secondary benefit by allowing
a nuanced adjustment of the trade-off between throughput and latency on a per-function
basis. Some functions, especially those that execute once, might incur higher costs if
subjected to compilation compared to interpretation. Conversely, functions with longer
execution times might exceed the overall execution time required for efficient compilation
by an aggressive optimizing compiler. However, a nuanced scenario emerges, encompassing
functions that fall between these extremes. These functions operate for durations insuffi-
cient to warrant an aggressive compiler’s intervention but are long enough to benefit from
intermediate compiler designs, providing notable speed improvements.

JavaScriptCore employs various optimization strategies to determine when to transition
execution between LLInt and the JIT tiers, a process known as tiering-up. Section 2.3.8
discusses some of the heuristics guiding this process. The LLInt and JIT tiers form in-
tricate systems designed to collaboratively deliver performance for a dynamically versatile
language like JavaScript.

12

2.3.1 Execution Pipeline Architecture

In JavaScriptCore, bytecode is the source of truth across all tiers, persisting in memory
throughout the entire program execution [13]. LLInt initiates execution by interpreting
the generated bytecode and collecting profiling data. After gathering sufficient profiling
information for frequently executed code, say, a function, LLInt tiers-up to the Baseline
compiler for that function.

The Baseline compiler is launched in a separate thread within the same process. It
begins compiling the function, leveraging the available profiling information, while exe-
cution continues in LLInt. Once the Baseline JIT completes compilation to native code,
the function’s current execution (and future calls) transitions from LLInt to the Baseline-
generated native code. Upon reaching a certain threshold during execution of the function,
the Baseline tiers-up to the DFG. Similarly, the DFG tiers-up to the FTL JIT. However,
the FTL does not tier-up, which is the highest available tier.

Figure 2.10: Example timeline of a simple long loop executing in JavaScriptCore [15].

Empirically, the performance hierarchy among JavaScriptCore’s tiers reveals that the
Baseline JIT executes code approximately 2 times faster than LLInt, DFG executes code
about 5 times faster than Baseline, and the FTL JIT executes code about 1.5 times faster
than DFG [15]. These findings, demonstrated through the execution of a long-running loop
[15], are depicted in Figure 2.10. JavaScriptCore also employs a garbage collection strategy
that simplifies the implementation of the virtual machine and supports speculation. Some
key features of the garbage collector include conservative stack scanning for pointers, non-
movement of objects, and fixpoint completion. These features streamline the compiler and
make it easier for speculation and other optimizations to be implemented and invoked.

2.3.2 Bytecode

JavaScriptCore’s bytecode instructions consist of an opcode along with one to three operands
and associated metadata information. They follow a three-address code format and operate
over virtual registers [13]. Although only a small number of virtual registers are typically
used, the instructions are allowed to assume the presence of an infinite number of registers.

13

The bytecode closely mirrors the high-level nature of JavaScript, incorporating trans-
formations only when performance remains uncompromised. It is directly interpretable,
functioning seamlessly as a unified stream for interpretation, caching, and compilation.
Moreover, it is untyped, as virtual registers and the majority of opcodes lack static types.
This design choice ensures consistency across tiers and facilitates profiling before type
inference.

1 function operate(a, b, c) {

2 a.acc *= b;

3 a.acc /= c;

4 return a.acc;

5 }

6

7 // Compiled bytecode snippet:

8

9 Compiled #AsSAYq into bytecode 45 instructions in 0.373708 ms.

10 operate#AsSAYq:[0x1120dc340->0x11209d700, NoneFunctionCall, 45]: 9 instructions

11 (0 16-bit instructions, 0 32-bit instructions, 5 instructions with metadata);

12 141 bytes (96 metadata bytes); 4 parameter(s); 6 callee register(s);

13 5 variable(s); scope at loc4

14

15 bb#1

16 Predecessors: []

17 [0] enter

18 [1] get_by_id dst:loc5, base:arg1, property:0, valueProfile:1

19 [7] mul dst:loc5, lhs:loc5, rhs:arg2, profileIndex:0,

20 operandTypes:OperandTypes(126, 126)

21 [13] put_by_id base:arg1, property:0, value:loc5, flags:

22 [19] get_by_id dst:loc5, base:arg1, property:0, valueProfile:2

23 [25] div dst:loc5, lhs:loc5, rhs:arg3, profileIndex:1,

24 operandTypes:OperandTypes(126, 126)

25 [31] put_by_id base:arg1, property:0, value:loc5, flags:

26 [37] get_by_id dst:loc5, base:arg1, property:0, valueProfile:3

27 [43] ret value:loc5

28 Successors: []

29

30

31 Identifiers:

32 id0 = acc

Figure 2.11: A simple JavaScript program compiled to bytecode.

JavaScriptCore compiles programs into a bytecode graph of basic blocks. Figure 2.11
shows a simple function and the bytecode snippet associated with its basic block. In
the bytecode snippet, bb# identifies the basic block in the graph. Predecessors is a list
containing the predecessors of the current basic block (bb#1) in the graph. The left column

14

represents the offset of the instruction in the instruction stream. The middle column lists
the actual opcodes corresponding to each bytecode instruction, and the right column the
operands associated with each opcode. Consider the mul instruction that implements a
multiplication operation:

mul dst:loc5, lhs:loc5, rhs:arg2, profileIndex:0, operandTypes:OperandTypes(126, 126)

dst:loc5 represents the destination register, lhs:loc5, and rhs:arg2 are register
operands (and, in fact, registers themselves) corresponding respectively to the left-hand
side and right-hand side of the operation. The remaining operands include profiling and
type metadata associated with the instruction. At the end of the basic block is Successors,
a list of reachable blocks from the current basic block.

2.3.3 Fast Path / Slow Path

Bytecode instructions can be implemented prioritizing runtime type checks for what the
implementer deems as the most probable scenario.

1 function op_add(a, b) {

2 if (isInt32(a) && isInt32(b))

3 return a + b;

4 return slowAdd(a, b);

5 }

Figure 2.12: Hypothetical fast path / slow path implementation of an add instruction.

When an opcode is designed to prioritize inline operations for a specific type over
other types, it is said to have a fast path for that type and a slow path for others. Fig-
ure 2.12 illustrates a hypothetical implementation of an add instruction with a fast path
for 32-bit integers and an out-of-line slow path for additions involving other value types.
This implementation pattern is pervasive in JavaScriptCore, where fast paths are typically
implemented inline, while slow paths involve out-of-line calls.

2.3.4 OSR

On stack replacement (OSR) is the process by which execution is transferred from one tier
to another. In OSR, values are transferred from the current running tier to the location
they should be in the next tier, allowing for continued execution. When transitioning from
LLInt to the Baseline, the values are already in the correct locations as specified by the
compiled bytecode, requiring no further action. However, in optimizing tiers, the process
of transitioning values becomes non-trivial and must be performed.

15

2.3.5 LLInt

LLInt is an interpreter responsible for executing bytecode produced by the parser. It follows
the JIT application binary interface (ABI) of JavaScriptCore and adheres to the calling,
stack, and register conventions used by the JIT compilers [9]. This alignment facilitates
cost-effective calls between LLInt and JITed functions, as well as OSR between LLInt and
the JIT tiers [15]. LLInt also incorporates inline caching optimizations to ensure efficient
property access.

LLInt is written in Offlineasm, a specialized assembly dialect designed specifically for
LLInt. Offlineasm introduces its own mnemonics and register names, aligning with the
portable assembly used in the JIT tiers. Some high-level mnemonics require lowering, and
Offlineasm designates specific scratch registers (e.g., t0, t1, t2, t3, t4) for this purpose.
Offlineasm features a functional macro language that allows the passing of macro closures,
offering better abstractions compared to native assembly [15]. In Offlineasm, a macro is
a lambda expression, which can be either anonymous or named, capable of taking zero or
more arguments.

The Offlineasm compiler, written in Ruby [65], compiles to multiple CPU architectures
(x86, ARM, RISC-V) and C++. The decision to implement LLInt in Offlineasm, rather
than in C++ as in other tiers, makes it easier for LLInt to utilize the same stack used
by the code compiled with the JIT tiers when operating in the interpreter. Consequently,
it eliminates the need to manage multiple stacks, such as a C++ and a JavaScript stack,
simplifying OSR from LLInt to the Baseline compiler and vice versa.

1 LOOP:

2 Inst = InstructionStream[PC++]

3 Decode(Inst):

4 Case Add -> DstReg = doAdd()

5 Case Sub -> DstReg = doSub()

6 // other cases..

Figure 2.13: A high-level view of LLInt.

LLInt also follows a conventional virtual machine instruction cycle [66], iterating over
bytecode and executing each instruction based on its intended purpose [14]. This process
is illustrated in Figure 2.13. Additionally, LLInt gathers profiling information during byte-
code execution and maintains counters that measure code execution frequency [14, 15].
These parameters play a vital role in optimizing code and enabling JIT tiering through
OSR.

Furthermore, LLInt enables JavaScriptCore to execute code in no-JIT mode (commonly
referred to as “mini mode”), offering advantages such as increased security and reduced

16

memory usage [15]. This mode proves particularly useful on CPUs without JIT support,
where LLInt excels.

1 macro llintOpWithReturn(opcodeName, opcodeStruct, fn)

2 llintOp(opcodeName, opcodeStruct, macro(size, get, dispatch)

3 makeReturn(get, dispatch, macro (return)

4 fn(size, get, dispatch, return)

5 end)

6 end)

7 end

8

9 # mov

10 llintOpWithReturn(op_mov, OpMov, macro (size, get, dispatch, return)

11 get(m_src, t1)

12 loadConstantOrVariable(size, t1, t2)

13 return(t2)

14 end)

15

16

17 # to_string

18 llintOpWithReturn(op_to_string, OpToString, macro (size, get, dispatch, return)

19 get(m_operand, t1)

20 loadConstantOrVariable(size, t1, t0)

21 btqnz t0, notCellMask, .opToStringSlow

22 bbneq JSCell::m_type[t0], StringType, .opToStringSlow

23 .opToStringIsString:

24 return(t0)

25

26 .opToStringSlow:

27 callSlowPath(_slow_path_to_string)

28 dispatch()

29 end)

Figure 2.14: mov and to string implementation in LLInt, defined in LowLevelInter-
preter64.asm [10]

Figure 2.14 presents implementation details for mov and to string opcodes. The
op to string opcode has a fast path for values that are already strings and a slow path for
other value types. Specifically, mov is responsible for assignment storage, while to string

handles string conversion in JavaScript. mov is implemented by loading a value from a
source register to a destination register using temporary registers. The to string oper-
ation is implemented using a fast path/slow path pattern. The fast path checks whether
the value to be converted into a string is already a string; if so, the value is returned.
Otherwise, the slow path is taken to convert the value into a string. The following sections
discuss the JIT compilers available in JavaScriptCore.

17

2.3.6 Baseline JIT

The Baseline compiler operates as a method JIT, compiling entire functions and generating
a machine code template for each bytecode instruction without considering relationships
between multiple instructions in the function [15]. Baseline achieves performance speedups
over LLInt by fundamentally eliminating interpreter dispatch for bytecode execution. In-
terpreter dispatch is a costly aspect of bytecode execution, as the indirect branches used
for selecting the implementation of an opcode are challenging for the CPU to predict [86].

The Baseline JIT becomes active for functions that are invoked at least N times or
execute a loop body at least L times. Usually, N is 6 and L is 100, but these values may
vary as the actual heuristics depend on factors such as function size and current memory
pressure [9].

Both LLInt and Baseline collect lightweight profiling information to enable speculative
execution in the DFG tier. This information includes recent values loaded into arguments,
retrieved from the heap, or obtained from a call return. Moreover, the design of all inline
caching mechanisms in both LLInt and Baseline is tailored to facilitate the easy retrieval of
type information by the DFG. For instance, the DFG can determine whether a heap access
sometimes, often, or always encounters a particular type by examining the current state of
an inline cache [9]. This capability proves crucial in determining the most advantageous
level of speculation.

Baseline performs minimal optimizations beyond the generation of code templates and
avoids register allocation between instruction boundaries [15]. However, it provides support
for polymorphic inline caching [67] for heap accesses [9]. Some localized optimizations are
implemented by the designers, such as recognizing when an operand for a mathematical
operation is a constant or leveraging profiling information gathered by LLInt [15].

2.3.7 DFG and FTL JIT

The Data Flow Graph (DFG) JIT compiler transforms bytecode into the specialized com-
piler intermediate representation DFG IR, enabling sophisticated reasoning about specula-
tion while prioritizing efficient code generation. The DFG JIT becomes active for functions
invoked at least N times or undergoing a loop at least L times. Usually N is 60 and L is
1000; however, the precise values are subject to additional heuristics [9].

The Faster Than Light (FTL) JIT compiler specializes in extensive compiler optimiza-
tions, emphasizing peak throughput while purportedly maintaining fast compilation speeds.
It builds upon and extends optimizations from the DFG JIT, working with multiple in-
termediate representations such as DFG IR, DFG SSA IR, Bare Bones Backend (B3) IR,
and Assembly IR to enhance overall performance. Activation of the FTL JIT occurs for
functions that are invoked thousands of times or loop tens of thousands of times [9].

18

2.3.8 Optimization Techniques

JavaScriptCore employs various optimization techniques to deliver performant JavaScript
execution. It relies on numerous heuristics to identify when specific optimizations are
applicable and to determine the most suitable optimizations for particular scenarios. This
section discusses one of these strategies.

Inline Caching

Property accesses and function calls pose significant optimization challenges in JavaScript
due to the dynamic nature of objects and polymorphic nature of function calls (see Fig-
ure 2.7). JavaScriptCore addresses these challenges using inline caches (ICs) [59].

Inline caches in JavaScriptCore precisely record the shape of an object, along with
any known properties being accessed on the object. An object’s shape refers to the fields
of the object. In JavaScript engines such as V8 and JavaScriptCore, an object’s shape
encompasses its property names along with the corresponding storage location offsets for
the property values [51, 15]. In JavaScriptCore, object shapes are known as structures.

Inline caches applies not only to monomorphic access, that is, property access involving
a single object shape, but also to polymorphic access, covering up to 8 different shapes
and can be done inline. Both LLInt and Baseline collect profiling information used to
implement ICs, and they also directly implement ICs, contributing to faster execution in
these tiers. This dual role makes the cost of collecting profiling information worthwhile, as
the gathered data can be immediately utilized while still in the lower-level tiers.

JavaScriptCore utilizes polymorphic inline caches which extend inline caches to have
more than one shape [67]. Dynamic property access is implemented by integrating in-
line caches with structures, inspired by maps in Self [55]. The inclusion of structures is
fundamental to optimizing object properties in JavaScript, as objects often serve as or-
dered mappings from strings to JavaScript values, undergoing operations such as lookup,
insertion, deletion, replacement, and iteration.

Structures Structures in JavaScriptCore are hash consed, which implies that objects
with the same properties in the same order are likely to share the same structure. Object
representation is divided into the object itself, containing property values and a structure
pointer, and the structure, which acts as a hash table mapping (string) property names
to indices in objects with that structure. This design allows for O(1) checks for object
structures and establishes a mechanism for efficient property lookup. For example, checking
if an object has a particular structure is achieved by simply loading the structure pointer
from the object header and comparing the pointer to a known value.

The key insight from Self [55] is that property access sites in a program often involve
objects that share the same structure. Figure 2.15 illustrates objects represented using
structures. A structure specifies the property names of an object and their order.

19

Figure 2.15: Objects and structures in JavaScriptCore [15].

Structures can also indicate whether objects are in dictionary or uncacheable dictionary
mode, which represent two levels of hash table complexities resulting from the dynamic
attachment of properties to objects. In both scenarios, the structure ceases to be hash
consed and is directly associated on a one-to-one basis with its object. For dictionary
objects, new properties can be added in-place without altering the structure. Similarly,
uncacheable dictionary objects allow properties to be deleted without affecting the struc-
ture.

Objects JavaScriptCore models objects with a 64-bit header, consisting of a 32-bit struc-
ture ID and 32 bits for additional object state information, such as type information and
array metadata. Each object can have one or two pieces of memory. The first piece
of memory contains the structure ID of the object, state information and inline storage
slots, while the second piece of memory corresponds to out-of-line storage, accommodating
properties that do not fit in the inline slots. Both pieces of memory are allocated in 64-bit
chunks, simplifying the memory allocator and garbage collector. Each piece of memory
is indexable using 64-bit accesses. An object’s structure ID is always accessible from the
object pointer (referring to the first piece of memory) by reading the first 32-bit value.

JavaScriptCore employs two tiers of storage for objects, determined by the nature of
their properties: inline slots and out-of-line slots. Statically configurable, inline slots act as
the primary storage for object properties. The allocation of inline slots is determined by a
straightforward static analysis around the object’s allocation site. Named object properties
may exist in inline slots, out-of-line slots, or both.

When a property exceeds the capacity of inline slots, an additional storage is allocated

20

to store extra properties out-of-line. This out-of-line storage is also allocated for properties
that are not statically detectable or are assigned far from an object’s allocation. Access to
this storage is available from an object through the out-of-line pointer.

Property Access

Consider the code snippet in Figure 2.16:

1 const obj = {x: 2, y: 3};

2 const res = obj.y;

Figure 2.16: Property access in JavaScript.

Figure 2.17 depicts the memory layout of the object obj. JavaScriptCore stores prop-
erties x and y of obj in the object’s inline slot. As obj has only two statically known
properties, JavaScriptCore does not allocate any out-of-line storage; therefore, the out-of-
line pointer in this case is null.

Figure 2.17: Memory layout of an object in JavaScriptCore [15].

When accessing the value of the property y in the object obj, the structure ID of
the object is utilized to look up the object’s structure in a structure table maintained by
JavaScriptCore for each VM thread state. Fetching the object’s structure from this table
roughly translates to an index access. Once the specific structure is identified, the property

21

table associated with that structure is accessed. This property table, implemented as a
hash table, contains pointers from property names to indices in the object’s inline slots
or in its out-of-line storage slots. Since the object obj has properties that are statically
detectable at compile time, the property names stored in the structure’s property table
directly correspond to the indices in the object’s inline storage. In Figure 2.17, property
y maps to an inline slot index of 1 in the structure’s property table, which corresponds to
the value 3 in the object’s inline slots.

If the name of a property in an object property access is known, along with the unique
structure ID of the object on which the property access is being performed, the property
value can be efficiently retrieved. The JavaScriptCore object model is designed to make
fast property access possible by capitalizing on scenarios like the one mentioned, using
inline caching. Inline caching is implemented using the fast path / slow path pattern.

Inline Caching in LLInt

Consider the JavaScript code in Figure 2.16, assuming all objects flowing into the code
have structure ID 35, similar to the object in Figure 2.17, inline caching this property
access involves emitting code like the following:

if (obj->structureID == 35)

res = obj->inlineStorage[0]

else

res = slowGet(o, "y")

Determining that object obj has structure 35 is not statically available in JavaScript.
Inline caches obtain this information during runtime using self-modifying code. LLInt
implements property access using the bytecode instruction get by id. The format of this
instruction is defined as follows:

get_by_id <dst> <base> <property> <cachedStructureID> <cachedOffset>

dst represents the destination register for the property access value, property is the prop-
erty name, cachedStructureID indicates the cached structure ID, and cachedOffset

specifies the property offset in the structure’s property table. Before execution, the cached
structure ID is initialized with a unique value that is unusable by any structure, signifying
the absence of a cached value. An example property access bytecode instruction could be:

get_by_id dst:loc5, base:loc6, property:0, cachedStructureID:-1, cachedOffset:-1

During the execution of the get by id instruction, LLInt attempts to follow the fast
path. This path involves loading the property at the cached offset if the object’s structure

22

ID matches the cached structure ID. However, since the cached structure ID is initially
set to an invalid value, LLInt takes the slow path. This slow path performs a complete
property lookup, updating the metadata of the get by id bytecode instruction by storing
the structure ID and property offset obtained during the full lookup. Upon subsequent
property access, LLInt takes the fast path of get by id if the object has the same structure
ID as that found in the cached bytecode metadata. In this case, the instruction simply
loads the property at the cached offset, optimizing the process.

Inline caches not only enhance performance but also serve as an excellent source of
profiling data due to the highly amenable nature of the metadata used for caching. This
strategy is pervasive across all execution tiers, serving as a comprehensive optimization
technique. Beyond its primary role in accelerating code execution, inline caching acts as
a precise profiling source, providing insights into the type cases observed during runtime
operations. When coupled with structures, inline caches facilitate the transformation of
dynamic property accesses into instructions that are inherently straightforward to optimize.

2.3.9 Speculation

Speculation in language optimization aims to apply traditional compiler techniques to
enhance the performance of dynamic languages such as JavaScript. Traditional compiler
optimizations are challenging due to the absence of type information in dynamic languages,
preventing meaningful optimizations for fundamental operations. Speculative compilers
employ profiling to dynamically infer types and generate code with dynamic type checks.
If the program diverges from the profiled types during execution, the optimized code is
discarded and the process is repeated. This approach allows optimizing compilers to work
with a statically typed representation of a dynamically typed program. JavaScriptCore
implements diamond and OSR speculation [15] in its optimizing tiers.

2.4 Bun

Bun is a JavaScript runtime designed for the modern JavaScript ecosystem [29]. It is built
around JavaScriptCore, purportedly offering rapid startup times and efficient code execu-
tion. With a streamlined set of APIs, Bun simplifies common tasks such as initializing
an HTTP server and handling file operations. Additionally, Bun enhances the JavaScript
development experience by adopting a batteries-included approach, providing a compre-
hensive toolkit for building JavaScript applications, which includes a package manager,
test runner, and bundler. Furthermore, Bun serves as a drop-in replacement for Node.js
[33], implementing hundreds of its APIs [29].

23

2.5 TypeScript

TypeScript is a gradually-typed programming language [91, 90, 92] released by Microsoft
in 2012 [7, 6]. It was designed as a syntactic superset of JavaScript, introducing static
typing capabilities for identifying error-prone JavaScript constructs and addressing the
deficiencies of developing large-scale applications in JavaScript.

TypeScript enriches JavaScript by introducing features such as interfaces, (enhanced)
classes, a flexible module system, and a static structural type system [49]. Its module and
type systems readily accommodate common JavaScript programming practices while also
providing tooling and IDE experiences similar to those of languages like Java and C. For
example, the type system aids in catching errors statically and offers additional support
for program development, such as suggesting potential methods that can be called on an
object in editor-like applications.

In its execution process, TypeScript source code is compiled into plain JavaScript code,
which can be run on any browser or JavaScript runtime.

2.5.1 TypeScript Syntax and Semantics

TypeScript supports features such as interfaces, well-typed classes, union and intersection
types, and every feature supported by JavaScript. This section discusses a few of these
features without going into in-depth details.

Interfaces

TypeScript is structurally typed, therefore interfaces can be defined by modeling the shape
of an object. Interfaces define contracts that specify what properties an object must have
and help make code more maintainable. Figure 2.18 defines a User interface consisting of
three properties.

1 interface User {

2 name: string;

3 age: number;

4 id: string;

5 }

Figure 2.18: An interface in TypeScript.

24

Now an object can be defined to conform to the shape of this interface:

const user: User = {

name: "Alan Turing",

age: 23,

id: "obxff",

};

Since user is annotated with the User interface, if it happens to be missing any field of
the interface, for example, id, the TypeScript compiler errors with Property "id" is

missing in type "{ name: string; age: number; }" but required in type

"User".

Classes

Classes in TypeScript work the same as in JavaScript, with the added benefit of static
typing:

class Account {

name: string;

constructor(name: string) {

this.name = name;

}

}

TypeScript supports inheritance using the extends keyword:

class UserAccount extends Account {

age: number;

readonly id: string;

constructor(name: string, age: number, id: string) {

super(name);

this.age = age;

this.id = id;

}

}

Due to TypeScript’s structural typing, the variable user can be annotated with type User,
as it conforms to the shape of the class UserAccount.

const user: User = new UserAccount("John Doe", 12, "bridgesort");

25

Fields in classes are public by default, but may be designated as private. Unlike pri-
vate fields, public fields are accessible directly outside the class. Fields annotated with
the readonly modifier can be accessed both inside and outside the class but cannot be
reassigned after initialization. Since readonly members cannot be modified outside the
class, they must either be initialized at declaration or within the class constructor.

Functions

In TypeScript, it is common practice to type function parameters, although it is not strictly
required. Untyped parameters are implicitly assigned type any. However, in some cases,
such as with higher-order functions, functions with untyped parameters may be inferred
to more precise types because the surrounding code is already typed or inferable. This
concept is known as contextual typing [75].

const numbers = [1, 2, 3, 4, 5];

// TypeScript infers the type of the array element `num` as number

// because it is in an array of numbers. This outputs: 2, 4, 6, 8, 10

numbers.forEach((num) => console.log(num * 2));

Unions and Intersections

A union type describes a value that can be one of several types:

type StringOrNumber = string | number;

let j: StringOrNumber = "fox";

j = 5;

Intersection types enable the combination of multiple types into a single type, allowing for
the extension of a type with additional features. Intersection types offer the convenience
of extending types without the need to define a new class, as is required in inheritance:

type Animal = {

name: string;

}

type Bear = Animal & {

hasHoney: boolean;

}

const bear: Bear = {name: "Pooh", hasHoney: true};

bear.name;

bear.hasHoney;

26

2.5.2 Type System

The type system includes a number of advanced constructs and concepts, which include
structural type equivalence (rather than nominal type equivalence), types for object-based
programming (as in object calculi), gradual typing, subtyping of recursive types and type
operators [49]. Collectively, these elements aim to enhance the web development experi-
ence.

The primary aim of TypeScript is not to introduce a new programming language but
to augment and bolster JavaScript development [49]. This goal leads to a number of
distinctive properties of the type system, some of which are discussed below.

Full type erasure [49]

Type erasure occurs when all types are removed from TypeScript code during compilation
to JavaScript. TypeScript removes type annotations, interfaces, type aliases, and other
type system constructs during compilation [27], leaving no trace of types in the JavaScript
emitted by the compiler. Subsequently, there are no runtime representations of types, and
hence no run-time type checking [49].

interface Cat {

name: string;

}

class Lion {

name: string;

}

let pet: Cat;

// OK, because of structural typing

pet = new Lion();

Type inference [49]

TypeScript supports type inference, which makes type annotations optional in several pro-
gramming contexts. Type inference alleviates the need to fully annotate code, eliminating
type clutter and improving readability. TypeScript uses a bidirectional type checking al-
gorithm [61] and supports flow-sensitive typing or type narrowing [76, 79]. In practice,
often only a small number of type annotations need to be provided for the compiler to
infer meaningful type signatures [49].

Gradual typing [49]

TypeScript adds an object-oriented gradual type system to JavaScript [81]. Although
gradual typing typically incorporates run-time checks when transitioning between typed

27

and untyped code, TypeScript does not do this due to type erasure. As a result, typing
errors not identified statically may remain undetected until runtime [49].

Unsoundness

TypeScript encourages programming patterns that avoid reliance on runtime metadata and
aims to strike a balance between correctness and productivity [16], prioritizing practicality
over soundness. Consequently, its type system is considered unsound [49], lacking robust
type safety guarantees. This unsoundness allows for the inclusion of unsafe operations
that cannot be fully verified at compile-time, necessitating runtime checks. Furthermore,
in order to maintain compatibility with the existing JavaScript ecosystem, TypeScript
incorporates design decisions such as type casting, which contribute to the unsoundness of
its type system [49].

Type casting

Typescript includes an any type that permits unsafe casting between types. Types can
be upcasted (widened) or downcasted (narrowed). However, since TypeScript fully erases
types during compilation, there are no runtime checks to ensure the safety of these casts.
The following code snippet demonstrates unsafe type casting valid in TypeScript:

let j = "foo";

let b = (j as any as number) * 2;

// prints NaN

console.log(b);

The cast to any is necessary because TypeScript does not allow casting directly from type
string to number, as they are disjoint types. When executing the code, the result is the
value NaN, which ideally should not occur if the cast were caught statically or with runtime
type checks.

2.6 Nominal Typing

Given two types T1 and T2, in a nominal, or nominative, type system, these types are
considered the same if they share the same name. Type T1 is considered a subtype of type
T2 if T1 is explicitly declared to be a subtype of T2.

However, in the context of nominal types in this thesis, additional constraints based on
heuristics discussed in Section 3.3, which aid in property access optimizations, are imposed
due to the semantics of TypeScript’s type system. Nominal types remain stable and are not
subject to mutation. These types enable safe optimization of objects because guarantees
about their properties hold consistently throughout their usage.

28

2.7 Why TypeScript?

Even though the type system is unsound, it has proven to be very useful in practice [49].
Futhermore, integrating soundness into the type system is not without its own costs.

Rastogi et al. [81] developed Safe TypeScript, a sound gradual type system built on
TypeScript, by enforcing stricter static checks and embedding residual runtime checks in
generated code. Although Safe TypeScript can catch more type errors at compile-time and
runtime, it also incurs a runtime overhead of up to 15% [81].

Compiler optimizations are often tailored to specific scenarios based on defined heuris-
tics. For instance, prediction propagation in JavaScriptCore, which predicts types, is in-
herently unsound because the resulting types are mere predictions. However, this process
is optimized to be useful (i.e., to make good predictions) by leveraging the results of value
profiling within JavaScriptCore’s optimizing JIT compilers [15].

When used in a type-correct manner, TypeScript can be leveraged for cooperative op-
timization between the compiler and the executing JavaScript engine. In such scenarios,
TypeScript produces performance-oriented JavaScript code by harnessing runtime intrin-
sics of the underlying engine for performance, based on type properties encountered in the
TypeScript code.

Consider the following code snippet:

class Book {

constructor(public title: string, public author: string) {}

}

const austen = new Book("Pride and Prejudice", "Jane Austen");

console.log(austen.title);

If the Book object is always used strictly according to its type as defined by its construc-
tor, it can be optimized to eliminate runtime checks related to the object’s shape during
property access operations.

This thesis focuses on optimizing JavaScript performance in JavaScriptCore by leverag-
ing TypeScript and its type system, developing and implementing heuristics for cooperative
optimization in tsc and JavaScriptCore.

29

Chapter 3

Implementation

This chapter presents the primary contributions of the thesis, focusing on the concept
of leveraging type information from TypeScript for optimization in JavaScriptCore. Ad-
ditionally, it discusses the modifications made to both the TypeScript compiler and the
JavaScriptCore engine. Specifically, it delves into the heuristics developed for optimizing
JavaScript, changes to TypeScript’s type checker and emitter, as well as modifications to
JavaScriptCore’s LLInt and Baseline tiers. The code presented in this chapter mostly com-
prises incomplete pseudocode programs, omitting details that do not directly contribute
to or advance the explained concepts.

3.1 Heuristic Guided Optimization

The object model, specifically object shapes (structures), plays a pivotal role in the runtime
performance of JavaScriptCore. Therefore, this thesis primarily focuses on optimizations
related to object structures, particularly property access operations. However, the under-
lying principle developed in this work is applicable to other forms of optimization.

Figure 3.1 presents a JavaScript program demonstrating property access on an object.
The object obj is consistently typed, and its memory layout in JavaScriptCore is depicted
in Figure 3.2. The properties x and y of the object are defined near the object’s allocation,
that is, within the class constructor.

The JavaScript VM uses the structure ID of the object to look up its structure in a
table maintained by the VM when accessing the value of the property x in the object obj
in Figure 3.1. Once the specific structure is identified, the VM accesses property table
associated with that structure. This property table, implemented as a hash table, contains
pointers from property names to indices in the object’s inline slots or its out-of-line storage
slots. In Figure 3.3, the property x maps to an inline slot index of 0 in the structure’s
property table, and inline slot 0 holds the value 5.

30

1 class Point {

2 constructor(x, y) {

3 this.x = x;

4 this.y = y;

5 }

6 }

7 const obj = new Point(5, 2);

8 obj.x;

Figure 3.1: JavaScript class with two properties demonstrating property access.

Figure 3.2: Layout of obj in JavaScriptCore.

This method of property access in JavaScriptCore is optimized for inline caching. Ob-
jects’ structure IDs and property offsets accessed on such objects are easily cached. As a
result, repeated property accesses do not traverse the entire lookup chain; instead, they use
the cached structure ID and property offset after a successful structure check. However,
when objects are assigned new properties at runtime or far from their allocation site, the
assignment mutates the structure of these objects. Consequently, their previously cached
structure ID and property offsets no longer apply. Therefore, future property accesses must
traverse the full lookup chain again if the object’s new structure ID and the offset of the
property being accessed do not already exist in the inline caches. This makes inline caches
more polymorphic. The LLInt and Baseline tiers of JavaScriptCore impose limits on the
extent of polymorphism their inline caches can handle, limiting the use of inline caches for
polymorphic objects and functions.

If the object layout, as well as the offset of the property being accessed, is statically
known in the underlying engine, it becomes possible to optimize property access operations
to completely avoid the full lookup chain without relying on inline caches and structure
checks. This optimization is achievable using TypeScript.

TypeScript can bridge the gap between statically or compile-time known types, which
are not immediately available to the JavaScript engine for runtime optimizations, and
the additional runtime type inference performed by the JavaScript engine. Since type
information is statically known and available in TypeScript, it can be leveraged at the
engine level to eliminate redundant runtime operations and improve runtime performance,
especially around object structures and property accesses.

31

By utilizing type information, an object’s layout can be carefully constructed so that its
known properties are stored at statically computable offsets within the object’s structure
at runtime. Property access can then be made efficient by transforming such operations
into C-like indexing operations using the structure ID and the compile-time known offset
of the property. Figure 3.4 illustrates this optimization process.

Figure 3.3: Regular property access as seen in obj.x.

Figure 3.4: Optimized property access for obj.x.

The problem with the aforementioned optimization is twofold: the dynamic nature of
JavaScript and the unsound (unsafe) nature of TypeScript. Due to its dynamic nature,
JavaScript allows properties to be defined on objects dynamically or far from the object’s
allocation site. There is no guarantee that such properties can be stored in the (limited)
inline slots of the object. While defining properties in this manner is valid in JavaScript,
it compromises the integrity of the object’s structure by modifying its shape.

In JavaScriptCore, objects are allocated a specific number of inline slots based on a
straightforward analysis conducted at the allocation site [15]. For objects instantiated
using classes, this analysis is typically performed within the constructor. Therefore, when

32

1 class Cat {

2 constructor(name) {

3 this.name = name;

4 }

5 }

6

7 const cat = new Cat("Tangerine");

8 // ... several lines later ...

9 cat.eats = true;

Figure 3.5: Example of dynamic property assignment.

a property is assigned to an object outside or far from its constructor, as illustrated in
Figure 3.5, it is unlikely that the value of the property is stored in the object’s inline slots.
Properties that are not stored in inline slots are stored out-of-line [15]. Furthermore, the
optimization process is complicated by the ability to remove object properties at runtime
using the delete keyword in JavaScript, as demonstrated in Figure 3.6.

1 class Cat {

2 constructor(name) {

3 this.name = name;

4 }

5 }

6

7 const cat = new Cat("Tangerine");

8 delete cat.name;

9

10 // shows undefined

11 console.log(cat.name);

Figure 3.6: Deleting an object’s property in JavaScript.

While TypeScript does not permit attachment of properties not belonging to an object’s
type (though type casting can sometimes circumvent this behaviour), as an extension of
JavaScript, it does allow the deletion of properties. However, only optional properties
or properties with types containing the value undefined can be deleted. Deleting an
optional property or a property with the type undefined from an object can also alter the
object’s shape. As a result, there is no guarantee that a property actually exists in either
storage (inline or out-of-line) during property access. In Figure 3.7, the type Cat includes
a property name of type undefined. Therefore, deleting this property is considered valid
in TypeScript.

33

1 class Cat {

2 constructor(name: string | undefined) {

3 this.name = name;

4 }

5 }

6

7 const cat = new Cat("Tangerine");

8 delete cat.name;

9

10 // shows undefined

11 console.log(cat.name);

Figure 3.7: Deleting an object’s property in TypeScript.

To address these issues, the TypeScript compiler must invoke optimizations only when
object types are consistently used and when access operations involve properties that are
guaranteed to exist on an object. Type consistency can be achieved by using classes
in TypeScript as if they are classes written in languages like Java and C++. For this
purpose, TypeScript types are classified into two categories: nominal and non-nominal.
Types that fall under the nominal category are similar to class types in Java and C++,
while non-nominal types include structural or arbitrary types. Compared to non-nominal
types, nominal types are more amenable to optimizations. Therefore, the approach in this
thesis uses nominal type information for optimizations through the application of special
heuristics.

3.2 Type Classification

Nominal types represent types consistently utilized across all usage points. In contrast,
non-nominal types conform to the usage expected by the TypeScript compiler, representing
the default behaviour. Additionally, non-nominal types are associated with dynamic and
potentially unsafe type usage. These distinct patterns of type usage are illustrated in
Figures 3.8a, 3.8b and 3.8c.

Nominal types contribute to typing consistency and concreteness, unlike non-nominal
types. In TypeScript, type casting implicitly or explicitly presents a significant soundness
issue, and is often used to bypass the type checker and perform operations not permitted
prior to the cast. A common example is casting to any, as discussed in Section 2.5.2.

While nominal types may also be subject to unsafe type casting, such as downcasting
an object’s field or property or the object’s type itself, nominality checks (discussed in
Section 3.6.1) ensure that optimizations are only applicable in cases where nominal type
usage is guaranteed and enforced. In the optimizations developed in this thesis, I prefer

34

nominal types over non-nominal types. This preference stems from their ability to facilitate
the application of optimizations to dynamic JavaScript, akin to statically typed languages
such as C++ and Java.

1 let fby: any = {};

2 for (const p of ["c", "am"]) {

3 x[p + "ount"] = 12;

4 }

5 fby.deductions = 14;

6 compute(fby.amount - fby.deductions);

(a) Non-nominal with arbitrary types.

1 type Fooby = {amount: number};

2 let fby2: Fooby = {

3 unit: "dollar",

4 fox: 23,

5 } as Fooby;

6 compute(fby.amount);

(b) Non-nominal with structural types.

1 class Fooby {

2 constructor(public readonly amount: number){}

3 }

4 let fby = new Fooby(23);

5 compute(fby.amount);

(c) Nominal with classes.

Figure 3.8: Classification of types according to usage.

Property existence and layout is ensured by optimizing property accesses when they
fully comply with nominal type usage. A type satisfies nominal type usage when it meets
the heuristics discussed in Section 3.3. Types resembling nominal types can undergo shape
mutation through the deletion of properties or fields. During type checking and nominal
type analysis, mtsc flags nominal types with deleted properties and eliminates all opti-
mizations on such types.

3.3 Heuristics

Structure and access optimizations are applicable when objects experience nominal type
usage through classes at all access points. Nominal type usage involves the consistent use
of fields or properties as originally typed from the class constructor.

Object layout information is crucial for the optimizations presented in this thesis. This
information, derived from an object’s fields or properties, is employed to construct the
object during runtime. However, utilizing layout information for optimization of access
operations can present challenges, particularly when deleting a field or property from the
object. In such cases, the JavaScript VM may store new properties in the slot previously
occupied by the deleted property. This issue becomes evident when attempting to access

35

the deleted property again. Instead of retrieving undefined as specified in the JavaScript
specification [62], the value of the new property occupying the deleted property’s slot is
returned, thus violating the expected semantics. Hence, objects created from such classes
must not undergo mutation concerning their fields, such as through field deletion.

An additional requirement imposed by my approach for optimization is that access
operations involve base class objects, i.e., objects from classes not included in an inheritance
chain. This requirement is due to the increased complexity in object layout introduced by
inheritance, which affects the object model along an inheritance chain. Such objects could
be optimizable using similar techniques in the future.

3.4 Case Study: Nominal Types

A type satisfies nominal type usage if objects created from it are used nominally according
to the heuristics discussed in Section 3.3. During nominal type analysis, types undergo
scrutiny against both explicit and implicit type casts within assignment statements and
cast expressions. In TypeScript, any type can be cast to the type any. Such casting serves
as a means to circumvent the type checker, allowing operations might be disallowed by the
checker. For instance, casting to type any may enable the deletion of properties that are
not initially optional or did not contain the undefined type.

Tracking these types and the operations performed on them becomes challenging, mak-
ing it difficult to define corresponding object layouts for access optimizations. Apart from
casting to any, types may also be cast to structural types that precisely match their shape.
While such casts are considered safe in TypeScript, they pose the same tracking challenge
mentioned earlier.

Furthermore, these casts may subsequently be upcast to any or a broader structural
type to execute unsupported operations on the original type. As this chain of possibilities
expands with each cast, I have adopted a conservative approach for nominal type usage.
Namely, for a type to satisfy nominal type usage, it must refrain from any form of casting,
whether implicit or explicit, except for casting to itself (an operation that is of little utility).

3.4.1 Explicit Type Casts

In Figure 3.9, the variable p has the type Point. Before line 13, Point may be classified
as a nominal type because p remains consistent from its construction. However, at line 13,
p is cast to any, and its property x is then deleted. It is impossible to delete any of the
properties of p without casting to any, as the types of the properties x and y do not include
undefined.

Similarly, in Figure 3.10, the variable ab is first cast to any and then assigned to a new
variable. This variable is subsequently used to delete the property x.

36

Both of these cases fail nominal type checks. The code in Figure 3.10 fails nominal type
checks even if line 13 is removed. This failure stems from the cast to any at line 12.

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = a;

8 }

9 }

10

11 let p = new Point(1, 2);

12 // below line fails nominal type checks

13 delete (p as any).x;

14 p.x + p.y;

Figure 3.9: Direct property deletion
through cast to any.

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = a;

8 }

9 }

10 let ab = new Point(12, 13);

11 // below line fails nominal type checks

12 let ab2 = ab as any;

13 delete ab2.x;

14 ab2.x + ab2.y

Figure 3.10: Indirect property deletion
through cast to any.

In Figure 3.12, a program features a class Point and two interfaces, PointLike and
PointLike2, with similar shapes to Point. In Figure 3.11a, the Point type is cast to the
type PointLike. Furthermore, PointLike is cast to any, and the property y of Point is
deleted.

Similarly, in Figure 3.11b, the same operations are executed. However, unlike the
PointLike interface in Figure 3.12, the PointLike2 type contains optional fields that can
be directly deleted. Hence, casting to any is unnecessary. In both cases, the type Point

fails nominal type usage due to the cast and delete operations.

1 let cd = new Point(3, 5);

2 // below line fails nominal type checks

3 let px = <PointLike> cd;

4 delete (px as any).y;

5 cd.x + cd.y

(a) Cast to identical structural type.

1 let cd1 = new Point(3, 5);

2 // below line fails nominal type checks

3 let px1 = <PointLike2> cd1;

4 delete px1.x;

5 cd1.x + cd1.y

(b) Cast to type with optional fields.

Figure 3.11: Structural type casts in TypeScript.

37

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = b;

8 }

9 }

10

11 interface PointLike {

12 x: number;

13 y: number;

14 }

15

16 interface PointLike2 {

17 x?: number;

18 y?: number;

19 }

Figure 3.12: Class and interfaces with similar types.

Nominal type checks not only inspect cast expressions but also assignment statements. In
Figure 3.13, the Point variable ef is assigned to a variable gt typed any. This assignment
allows operations on gt that would be flagged by the type checker if performed on ef. mtsc
detects this by inspecting types of the source (RHS) and target (LHS) of an assignment
during nominal type checking. As with previous cases, this example also fails nominal type
usage.

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = a;

8 }

9 }

10 let ef = new Point(5, 7);

11 // below line fails nominal type checks

12 let gt: any = ef; // type `Point` coerced to `any`

13 delete gt.x; // now delete becomes possible here

14 ef.x + ef.y

Figure 3.13: Type coercion to any through assignment.

38

3.4.2 Implicit Type Casts

The program in Figure 3.14 almost satisfies nominal type usage. However, the Point

variable qx is passed as an argument to a function with a single parameter typed any.

In this case, the Point type is implicitly coerced to type any, permitting any kind of
operation on the object. If line 17 is removed, then the Point type satisfies nominal type
usage at all points in the program.

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = b;

8 }

9 }

10

11 function breakThings(p: any) {

12 delete p.x;

13 }

14

15 let qx = new Point(12, 13);

16 // below line fails nominal type checks

17 breakThings(qx);

18 qx.x + qx.y

Figure 3.14: Type coercion in function parameters.

In JavaScript and TypeScript, objects are assigned by reference. Figure 3.15 presents
a subtle case of implicit type coercion. In line 11, the variable qj is implicitly typed as
any because it is not yet assigned to any type.

However, assigning the Point variable qx to qj does not change the type of qj. Type-
Script simply coerces the type of qx to any. Since qj is typed as any, it can be used
to perform any kind of operation permitted on the any type. Thus, the Point type fails
nominal usage in this case.

39

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = b;

8 }

9 }

10

11 let qj; // implicitly typed `any`

12 let qx = new Point(12, 13);

13 // below line fails nominal type checks

14 qj = qx; // qx assigned to type `any`

15 qx.x + qx.y;

Figure 3.15: Type coercion in assignment.

3.4.3 Delete Operations

In some cases, a nominal type may fail to satisfy nominal type usage even without explicit
and implicit casts. In Figure 3.16, the Point object almost passes nominality checks but
fails at line 15 when the property y of the Point object pt is deleted.

1 class Point {

2 public x?: number; // x has an optional type

3 public y?: number; // y has an optional type

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = b;

8 }

9 }

10

11 let pt = new Point(12, 13);

12 // ! is the non-null assertion operator which tells tsc that pt.x is non-null

13 console.log(pt.x! + pt.y!);

14 // below line fails nominal type checks

15 delete pt.y;

16 console.log(pt.x, pt.y);

Figure 3.16: Deleting the property y of the Point object pt.

40

While some of these examples may appear restrictive, this conservative approach to
nominality checks is implemented to ensure that optimizations are only applied to opera-
tions that are guaranteed to be safe.

3.5 Modifications

This work explains modifications made to both the TypeScript compiler and the JavaScript-
Core engine in WebKit to support this thesis. The TypeScript compiler is adjusted to
produce optimized JavaScript code for TypeScript programs that meet previously men-
tioned heuristics. This optimization involves restructuring the object layout to unlock
further possibilities. The restructured layout enables optimized property access operations
by leveraging intrinsics developed for the underlying JavaScript engine, JavaScriptCore.
The implementation of the concepts presented in this thesis in the TypeScript compiler
and the JavaScriptCore engine, excluding configuration, build, and installation scripts, to-
taled approximately 350 lines of code: 200 lines in the TypeScript compiler and 150 in
JavaScriptCore. The remainder of this chapter examines these modifications in detail.

3.6 TypeScript

This section discusses the concepts and implementation details of the extensions to tsc.
The extended TypeScript compiler is called mtsc.

3.6.1 Checking Nominality

Nominality checks inspect various expressions and statements within a TypeScript pro-
gram to determine if types are used nominally based on previously developed heuristics.
Nominality checks scrutinize the types used in expressions such as casts, function calls,
property deletions, assignments, and property accesses. If a type violates nominal type
usage in any of these expressions, it is flagged. In such cases, if layout information has
already been derived for the type, the compiler discards the information and does not apply
optimizations to the type.

Several examples demonstrating violations of nominal type usage are discussed in Sec-
tion 3.4. However, if a type satisfies nominality checks by not violating nominal type usage,
the compiler computes layout information for the type at property access points. This in-
formation is not only utilized in creating the object’s layout at runtime but also employed
to optimize the access expression. This optimization involves determining the slot in the
computed layout where the property is located and fetching the property directly using
runtime intrinsics.

41

Nominal type detection is implemented within TypeScript’s type checking pass by iden-
tifying nominal type patterns using an indirect whole-program analysis approach [45]. To
accomplish this, the type checker is modified to examine nominal type usage in specific
expressions and statements. This strategy eliminates the complexity of an additional anal-
ysis pass, which would need to consider all TypeScript constructs, a task exacerbated by
TypeScript’s lack of a compact intermediate representation. Additionally, it ensures low
overhead and lazy computation.

Figure 3.17 presents pseudocode for the function used by the TypeScript compiler to
check expressions and statements. This function acts as a dispatcher, by inspecting the
type of an AST node, and invoking the corresponding type checking function on such
nodes.

1 function check(node: AST) -> Type {

2 const kind = node.kind;

3 if kind is Identifier:

4 return checkIdentifier(node)

5 else if kind is DeleteExpression:

6 return checkDeleteExpression(node)

7 else if kind is QualifiedName:

8 return checkQualifiedName(node)

9 else if kind is ElementAccessExpression:

10 return checkElementAccess(node)

11 else if kind is PropertyAccessExpression:

12 return checkPropertyAccessExpression(node)

13 // several other checks...

14 else:

15 FAIL

16 }

Figure 3.17: Pseudocode for type checking expressions.

The type checker examines property access expressions and determines their type using
a utility function. This function not only handles the type checking of property access
expressions, but also that of expressions resembling property access (see Appendix A) such
as a qualified name (e.g., namespace Foo.Bar). Nominal type detection is performed only
after the property access expression has been successfully type-checked.

If an access expression has been successfully type checked, the type checker populates
a locally defined prop variable, which is a Symbol (see Appendix A), with the resolved and
linked property name.

Additionally, assignment targets, such as foo.bar = 3, are excluded from the analy-
sis, as optimization efforts focus on access operations within expressions (or RHS sources)
that are not being assigned to (isAssignmentTarget(..)). Furthermore, the expression

42

is verified to ensure it does not involve property access on a this variable within a con-
structor by utilizing the function isThisPropertyAccessInConstructorStrict depicted
in Figure 3.18. This precaution prevents the optimization of field access on an object that
may not have been fully constructed or initialized. Figure 3.19 illustrates property access
expressions in a class constructor that would not be optimized.

1 function isThisPropertyAccessInConstructorStrict(node: PropertyAccessExpression) {

2 return isThisProperty(node) and getThisContainerKind(node) is Constructor;

3 }

Figure 3.18: Pseudocode for checking if a property access is within a constructor.

1 class Show {

2 margin: number;

3 constructor(public item: string) {

4 this.margin = this.item.length / 4;

5 }

6 }

Figure 3.19: this property access in a class constructor.

Given the type of the object involved in a property access operation, denoted as typ,
the operation satisfies nominal type usage and becomes optimizable when three criteria
are met:

1. typ is class-like or satisfies class-like properties (satisfiesClsTy).

2. typ is also an eligible class type (isEligibleClsTy).

3. typ is not flagged for shape mutation resulting from property deletion (isNotFlaggedTy).

1 const satisfiesClsTy = (

2 !isBuiltinTy && !isAbstract && isClassLikeTy &&

3 !(["name", "length", "caller", "arguments", "prototype"].includes(_name))

4);

Figure 3.20: Derivation of satisfiesClsTy.

43

A check is performed to ensure that the apparent type is not a built-in type (isBuiltinTy),
as shown in Figure 3.20. This check involves verifying whether the type’s name is present
in the built-in globals symbol table.

TypeScript supports abstract classes, which are classes that cannot be instantiated
directly. They are intended to be extended by other classes, which then provide implemen-
tations for the abstract methods declared in the abstract class [74]. Since the heuristics
defined in Section 3.3 aim to provide optimization for concrete nominal classes, properties
found on abstract classes are automatically deemed ineligible and filtered out. Determin-
ing whether a class is abstract (isAbstract) is achieved by checking if the declaration
associated with typ includes an Abstract syntactic modifier flag.

In Figure 3.20, isClassLikeTy verifies that the type of the left-hand side of the property
access expression, typ, genuinely represents a class type or resembles one. This check is
achieved by verifying that the type’s instantiations, base constructors, and target properties
are defined, indicating that they are not undefined, as is typically the case in nominal
classes.

In TypeScript, all properties of an object are available in the type of the object itself,
including built-in properties. If a collision occurs, where a property name clashes with
a built-in name, the nominality check is aborted. For instance, arguments is a built-
in property associated with functions in JavaScript, and mistaking it for a user-defined
property name may lead to unintended behaviour. To mitigate this risk, a conservative
approach is taken by ensuring that any collision aborts the check entirely.

Hence, an object’s type (typ) is considered class-like or satisfies class-like properties
under the following conditions:

1. The apparent type typ is not a built-in type.

2. The declaration containing the field or property is not abstract.

3. The type is nominal or class-like.

4. The property name found does not conflict with very common names associated with
built-in types.

If typ satisfies the first condition (satisfiesClsTy), it undergoes further inspection to
determine its eligibility for optimization. typ qualifies as an eligible class type if it is
either a base class or a class not included in an inheritance chain. Figure 3.21 shows the
derivation of class eligibility.

The third criterion is verified by ensuring that the type has not been flagged. In
nominality checks, flagged types are those that may satisfy the first two nominal type
usage criteria but undergo shape mutation due to property deletion or are used in a type
cast, whether implicit or explicit. These types are monitored during the type checking of
function calls, cast expressions, delete expressions, as well as assignment expressions and

44

1 const isEligibleClsTy = (

2 (typ.hasResolvedBaseTypes() or (isThis && typ.hasPropertyNodes())) // valid class

3 and typ.hasNoHeritageClauses() // inheritance

4);

Figure 3.21: Pseudocode for deriving isEligibleClsTy.

statements. In property access expressions, the type of the object whose property is being
accessed is checked to ensure it has not been flagged during these other checks. Figure 3.22
illustrates the verification process for flagged types.

Additionally, AST nodes for which layout metadata has been computed during the
check are also monitored. If a type is flagged, any optimization metadata applied to
nodes of that type is erased. Satisfying these criteria implies meeting nominality check
requirements.

1 const isNotFlaggedTy = !flaggedTypes.has(typ.symbol.id);

Figure 3.22: Checking for flagged types.

3.6.2 Optimization Metadata

If the three criteria (satisfiesClsTy, isEligibleClsTy, and isNotFlaggedTy) are met,
the next step is to compute layout metadata for the class type (typ), if it has not already
been computed, and to determine the offset of the property being accessed relative to the
computed layout.

The layout metadata is obtained in two steps. First, the properties of typ are retrieved
using its declaredProperties or properties fields, which are arrays containing all prop-
erties (fields and methods) defined in the type as Symbols. In certain cases, such as during
type checking a this property access expression, declaredProperties may be empty or
undefined, in which case properties serves as a fallback.

Since declaredProperties or properties may also include class methods, the array
is filtered to include only properties or fields (see Appendix B). As fields in TypeScript can
be declared and initialized in various places, such as outside a class constructor or directly
within the constructor parameter list, the ordering of initialization statements in a class
constructor emitted as JavaScript can be somewhat arbitrary or non-deterministic. To
ensure that the object layout is deterministic and computable for optimization purposes,
the filtered properties are sorted according to their order of declaration, i.e., in the order

45

they appear in the original TypeScript source. This is crucial because the order of field
initialization in a class constructor determines its layout in JavaScriptCore.

The obtained properties, represented as Symbols, are mapped to their textual names
using their escapedName. The resulting array, propertyNames, serves as layout informa-
tion during the JavaScript emitting phase. This array is attached as metadata to the
constructor node associated with the class obtained from typ. The number of properties
in this array is limited to ensure it does not surpass the maximum number of inline slots
for an object in the version of JavaScriptCore utilized, which is 64 (maxInlineSlots in
Figure 3.23). Therefore, layout information is only emitted for properties that do not ex-
ceed this limit. Additionally, access optimizations are only applied to properties that fall
within this limit. Consequently, properties that fall outside this limit are stored out-of-line
in JavaScriptCore.

1 // First Node is the property access expression, second is the constructor

2 type OptInfo = [Node, Node];

3 // store types flagged against nomality checks - key is the type id

4 const flaggedTypes = new Map<number, Type>();

5 // store all nodes for which layout metadata has been computed - key is the type id

6 const computedLayouts = new Map<number, OptInfo[]>();

7 // max inline slots

8 const maxInlineSlots = 0x40;

Figure 3.23: Layout, flagged types, and maximum inline slots definitions.

In certain scenarios, some classes do not define their constructors, either having all
fields statically initialized or having no fields at all. In the former case, the metadata is
attached to the node corresponding to typ itself. The layout metadata computed during
nominality checks is stored in computedLayouts (Figure 3.23) for effective tracking and
erasure casting and during shape mutation.

However, for optimizing the property access expression itself, the offset of the property
name is obtained from the resulting array (propertyNames). This offset corresponds to
the offset in the inline slots where the value associated with the property in the access
expression would be found, if laid out accordingly. The offset is computed using the helper
function getOffset, shown in Figure 3.24.

1 const getOffset = (props: string[], ppty: string) => {

2 const index = props.indexOf(ppty);

3 return index !== -1 ? index : undefined;

4 };

Figure 3.24: Implementation of getOffset.

46

If the offset returned by the function is not undefined, the property (Symbol) is re-
trieved from the modified properties array and inspected for getters and setters. Getters
and setters in JavaScript and TypeScript are special methods for encapsulating object
properties and are invoked using property access syntax instead of method call syntax. If
the expression is indeed not a getter or setter access, the obtained offset, along with the
property name, is attached as metadata to the AST node of the property access expression
in preparation for the emitter. Figure B.1 presents the implementation of this metadata
extraction process.

1 // get the property offset

2 const offset = getOffset(propertyNames, name);

3 if (offset is not undefined) {

4 // ensure that the property is not a setter / getter

5 const sym = properties[offset];

6 const getter = obtainGetAccessor(sym);

7 const setter = obtainSetAccessor(sym);

8 if (is not getter and is not setter) {

9 // attach access optimization metadata

10 node.accessMetadata = { property: name, offset };

11 const typeID = getTypeID(typ);

12 const constructor = getConstructorOfType(typ);

13 const target = constructor or getTypeDeclaration(typ);

14 if (target has no layout) {

15 target.layoutMetada = propertyNames;

16 }

17 if (typ not in computedLayouts) {

18 computedLayouts.set(typeID, [[node, target]]);

19 } else {

20 const saved = computedLayouts.get(typeID);

21 saved.push([node, target]);

22 }

23 }

24 }

Figure 3.25: Pseudocode for attaching layout and offset metadata to a property access
node.

The nominality checks, layout, and property offset computation aim to transform the
code illustrated in Figure 3.26a into the structure depicted in Figure 3.26b. By ensuring
that the ordering of constructor field initialization statements emitted by the emitter is
statically determinable and aligns with the offset metadata generated during type checking,
property optimization using offsets becomes feasible.

47

1 class Point {

2 constructor(x, y) {

3 this.x = x;

4 this.y = y;

5 }

6 }

7 const obj = new Point(5, 2);

8 obj.x;

9 obj.y;

(a) Class with field initialization state-
ments in constructor.

↗

// effectively an index access

obj[0]; // x

obj[1]; // y

(b) Optimization denotation.

Figure 3.26: Decomposition of property access expressions.

3.6.3 Shape Mutation

Shape mutation is detected by inspecting delete expressions during type checking. To
accommodate this behaviour, I extended the function responsible for type-checking delete
expressions.

1 function checkDeleteExpression(node: DeleteExpression): Type {

2 // ..

3 const expr = getTheExpression(node);

4 if (isPropertyAccessExpression(expr)) {

5 const type = check(expr);

6 const typeID = getTypeID(type);

7 const layouts = computedLayouts.get(typeID);

8 if (layouts is not undefined) {

9 for (const data of layouts) {

10 removeAccessMetadata(data);

11 removelayoutMetada(data);

12 }

13 }

14 if (not flaggedTypes.has(typeID)) {

15 flaggedTypes.set(typeID, type);

16 }

17 }

18 }

Figure 3.27: Pseduocode for detecting shape mutation through deletion.

When encountering a delete expression, the function examines the expression itself.
If the expression represents a property access, the type on the left-hand side is obtained

48

by type checking the expression and added to the flagged types tracker (flaggedTypes)
using its symbol ID, if not already present. Additionally, if layout and offset optimization
metadata have been computed for such a type, the metadata is erased entirely. This process
is part of ensuring strict adherence to nominal type usage during class optimization.

Property access optimization specifically targets properties guaranteed to be in inline
slots—those laid out by the TypeScript compiler itself. This approach not only avoids
disruption from foreign properties, which are not subject to optimization, but also ensures
that properties are exactly where the TypeScript compiler expects them to be at runtime
when invoking optimizations on access operations. Consequently, shape mutation that
adversely affects access optimization only occurs through deletion. Figure 3.27 presents
the pseudocode for detecting shape mutation and erasing optimizations.

3.6.4 Emitting JavaScript

Constructors

The function responsible for emitting class constructors is extended to emit layout code
for the constructor of a class that has layout metadata. The layout metadata, attached
during type checking, is retrieved from the constructor node. Each field in the array is
initialized as follows: for every field or property specified in the array, an intrinsic function
call, $__putByIdDirect, is emitted to store the field in inline-slots by assigning it the value
undefined. The value undefined is obtained by mapping a field to its corresponding offset
that is subsequently cast to void. A void cast in JavaScript is semantically equivalent
to undefined. Assigning undefined using this method is especially helpful for debugging
purposes.

1 class Point {

2 x: number;

3 y: number;

4 // computed layout: ['x', 'y']

5 constructor(ax: number, ay: number) {

6 this.x = ax;

7 this.y = ay;

8 }

9 }

10 const obj = new Point(5, 2);

Figure 3.28: class Point with field initializations matching computed layout information.

Generating layout instructions ensures that an object’s shape in JavaScriptCore con-
forms to the layout expected for the application of property access optimizations. However,

49

in some cases, certain objects already conform to the desired layout. For instance, in Type-
Script, the constructor of an object may contain field initialization statements in the order
in which they are defined outside the constructor, as seen in Figure 3.28. In such scenarios,
layout instructions are not generated for the corresponding objects.

1 function emitConstructor(node: ConstructorDeclaration) {

2 emitModifiers(node, node.modifiers);

3 writeKeyword("constructor");

4 {

5 const body = node.body;

6 const layoutMetadata = getLayoutMetadataFromNode(node);

7 if (layoutMetadata and body and isBlock(body)) {

8 if (not alreadyHasLayout(layoutMetadata)) {

9 const statements = emitLayoutMetadata(layoutMetadata);

10 updateStatements(body.statements, statements);

11 }

12 }

13 }

14 emitSignatureAndBody(node);

15 }

Figure 3.29: Pseudocode for emitting a constructor with extension for layout metadata.

In Figure 3.30a, the class Point has the layout shown in Figure 3.30b. Although the
layout information may appear redundant for simple and straightforward code like in Fig-
ure 3.30a, it proves valuable for non-trivial or complex constructors. In such cases, where
fields are declared and initialized outside the class constructor, or where field initialization
involves control flow leading to non-deterministic order of field initializations, having the
layout information guarantees determinism.

1 class Point {

2 x: number;

3 y: number = 2;

4 constructor(ax: number) {

5 this.x = ax;

6 }

7 }

8

9 const obj = new Point(5);

10

(a) Class in TypeScript.

→

class Point {

constructor(x, y) {

$__putByIdDirect(this, "x", void 0);

$__putByIdDirect(this, "y", void 1);

this.y = 2;

this.x = x;

}

}

(b) Layout in JavaScript.

Figure 3.30: Transformation of class fields to object layout instructions.

50

Intrinsics

getByIdOffset

Figure 3.31 presents pseudocode that extends the function used by the compiler for emitting
access expressions. Property access expression nodes with a metadata payload attached
by the type checker during nominality detection are emitted differently from those without
the access payload. A new function is defined to emit optimized property access expres-
sions. This function emits a special JavaScriptCore intrinsic called getByIdOffset, which
is discussed in Section 3.7.4. Intrinsics emitted are prepended with $ to disambiguate
them from regular function calls in the JavaScript engine.

The getByIdOffset intrinsic accepts three arguments: the object on which the prop-
erty is being accessed, the property name for debugging purposes, and the offset of the
property computed earlier by the type checker. It retrieves the property directly from the
inline slot of the object, bypassing all shape checks. Unlike the inline caches employed in
JavaScriptCore, which are updated when the structure or shape of an object changes (that
is, becoming increasingly polymorphic), shape changes or modifications (resulting from
adding extra properties to an object far from its allocation) do not affect the intrinsic.

1 function emitPropertyAccessExpression(node: PropertyAccessExpression) {

2 // if access optimization metadata is set, emit optimized property access

3 if (node has accessMetaData) {

4 return emitOptimizedPropertyAccessExpression(node);

5 }

6 // emit regular property access expression

7 emitExpression(node.expression);

8 }

Figure 3.31: Pseudocode for emitting property access expressions.

In Figure 3.32, the expression obj.x from Figure 3.1 is transformed into an intrinsic
call. The property x corresponds to index 0 in the underlying object layout in the engine,
enabling direct retrieval of the property value.

let j = obj.x; → let j = $__getByIdOffset(obj, "x", 0);

Figure 3.32: Transformation of a property access expression to an intrinsic function call.

51

putByIdDirect

The putByIdDirect instruction is a preexisting intrinsic function in JavaScriptCore, and
may be used to directly assign a value to an object’s property. It has the following format:

put_by_id_direct <base> <property> <value>

base is a virtual register that represents the target object for the property access value,
property is the name of the property being accessed, and value is the right-hand side of
the assignment. In the emitter, the function presented in Figure 3.29 utilizes a utility func-
tion to emit the layout metadata in class constructors. Particularly, the putByIdDirect

intrinsic for specifying the layout in such constructors.

3.6.5 tsconfig.json Configuration

The modifications to the TypeScript compiler are managed through a new configuration op-
tion introduced in tsconfig.json named optimizeWithTypes (presented in Appendix C).
When this option is set to true, the optimization changes implemented in mtsc are exe-
cuted whenever applicable.

3.7 JavaScriptCore

This section discusses the implementation details of the extensions to JavaScriptCore. In
both the interpreter (LLInt) and JIT (Baseline) tiers, the implemented optimization focuses
on enabling efficient object property access. This optimization is achieved by retrieving
the accessed property directly from the object using the known offset, which maps to its
storage location in the object.

3.7.1 get by id offset Bytecode Instruction

Object property access is implemented in LLInt using the get by id bytecode instruction.
To handle optimized property accesses, a new instruction called get by id offset, similar
to get by id, has been developed. The get by id offset instruction has the format:

get_by_id_offset <dst> <base> <property> <propertyOffset>

The instruction behaves almost identically to get by id (Section 2.3.8): dst represents
the destination register for the property access value, and property is the name of the
property being accessed. However, unlike get by id, it also includes a property offset,

52

which corresponds to the position where the property value can be found in the object’s
inline slots, as described earlier in Section 2.3.8.

An advantage of get by id offset over get by id is its ability to directly fetch an
object’s property without traversing the object access chain/link or using a cache. This
optimization is achieved by encoding the offset of the property to be accessed directly
into the instruction itself. Furthermore, structure validation and checks around property
access, present in get by id, are completely eliminated in get by id offset. Changes in
an object’s shape/structure that require cache updates (when inline caches are employed)
and validation (to ensure the correct object structure is fetched) in get by id do not affect
get by id offset.

3.7.2 LLInt

At a high level, object property access optimization in LLInt is achieved by utilizing the
offset of the accessed property to retrieve the corresponding value from the object. The
get by id offset opcode fetches the property value using the offset specified in the byte-
code instruction and stores it in a destination register, skipping all shape-related checks as
they are redundant.

In LLInt, bytecode instructions are defined in a template file that is used in generating
implementation files containing utility functions and instruction encoding schemes. The
get by id offset opcode is implemented in LLInt by initially defining the opcode in the
template file and then implementing the actual opcode behaviour in Offlineasm.

Figure 3.33 defines the get by id offset opcode. The args field defines the arguments
accepted by the opcode, while metadata contains additional information following the
format of get by id. Additionally, valueProfile is an extra metadata within args used
for value profiling [15], although it remains unused in LLInt.

The get by id offset instruction is designed to maintain compatibility with get by id

and can easily be cast to get by id. This compatibility is the reason why it retains the
metadata field, despite not being particularly useful to the instruction itself. Furthermore,
compatibility with get by id is necessary to support tiers that are not directly supported
by the get by id offset instruction.

The implementation of get by id offset in Offlineasm is straightforward. First, the
object is loaded into a temporary register using a custom macro (loadConstantOr
VariableCellUnchecked), which skips object structure ID tests. Then, the property offset
is loaded into another temporary register and used to compute the actual offset in the
storage slots. Subsequently, the corresponding property value is loaded into a temporary
register using the computed offset, which is then returned. Figure 3.34 contains a snippet
of the core implementation in Offlineasm.

53

1 op :get_by_id_offset,

2 args: {

3 dst: VirtualRegister,

4 base: VirtualRegister,

5 property: unsigned,

6 propertyOffset: unsigned,

7 valueProfile: unsigned, # not used in llint

8 },

9 metadata: {

10 structureID: StructureID,

11 offset: unsigned,

12 }

Figure 3.33: Definition of get by id offset opcode format.

1 llintOpWithMetadata(op_get_by_id_offset, OpGetByIdOffset,

2 macro (size, get, dispatch, metadata, return)

3 # metadata(OpcodeID opcodeID, unsigned metadataID)

4 metadata(t2, t0)

5 # m_metadata->get<Metadata>()[metadataID]

6 get(m_base, t0)

7 # load object into t3 using size, and index t0 -- skip checks

8 loadConstantOrVariableCellUnchecked(size, t0, t3)

9 loadi OpGetByIdOffset::Metadata::m_offset[t2], t1

10 get(m_propertyOffset, t5)

11 # add the appropriate/direct offset to t1

12 addp t5, t1, t1

13 # propertyOffsetAsInt=t1, objectAndStorage=t3, value/propdst=t0

14 loadPropertyAtVariableOffset(t1, t3, t0)

15 valueProfile(size, OpGetByIdOffset, m_valueProfile, t0, t2)

16 return(t0)

17 end)

Figure 3.34: Implementation of get by id offset in LLInt.

3.7.3 Baseline

In the Baseline, property access optimization is accomplished by emitting native code that
utilizes the offset of the accessed property to retrieve the corresponding value from the ob-
ject during the access operation. Similar to the LLInt implementation, the get by id offset

opcode fetches the property value using the offset specified in the bytecode instruction and
stores it in a destination register.

54

JavaScriptCore contains a template file used by the Baseline JIT for defining opcodes,
similar to the template file used by LLInt. Opcodes are defined using C++ macros. These
macros are employed for native code emission dispatch within a switch block, specifically
within a function handling the compilation pass. They serve as wrappers for generating
C++ case statements that map an opcode name to a call to the opcode’s fast and slow
path code generation functions. get by id offset is defined using both macros.

Template JIT

The get by id offset instruction is implemented in the Baseline JIT as both a bytecode-
to-native code transformation and an intrinsic function.

1 void JIT::emit_op_get_by_id_offset(const JSInstruction* currentInstruction){

2 auto bytecode = currentInstruction->as<OpGetByIdOffset>();

3 VirtualRegister resultVReg = bytecode.m_dst;

4 VirtualRegister baseVReg = bytecode.m_base;

5 const Identifier* ident = &(m_unlinkedCodeBlock->identifier(bytecode.m_property));

6

7 const auto propOffset = bytecode.m_propertyOffset;

8 using BaselineJITRegisters::GetById::baseJSR;

9 using BaselineJITRegisters::GetById::resultJSR;

10 using BaselineJITRegisters::GetById::stubInfoGPR;

11

12 emitGetVirtualRegister(baseVReg, baseJSR);

13 auto [stubInfo, stubInfoIndex] = addUnlinkedStructureStubInfo();

14 loadConstant(stubInfoIndex, stubInfoGPR);

15

16 JITGetByIdGenerator gen(...);

17

18 gen.generateBaselineDataICFastPath(*this, propOffset);

19

20 setFastPathResumePoint();

21 emitValueProfilingSite(bytecode, resultJSR);

22 emitPutVirtualRegister(resultVReg, resultJSR);

23 }

Figure 3.35: Pseudocode for emit op get by id offset in Baseline.

The bytecode-to-native code transformation involves generating code using the fast path/slow
path pattern. Optimistic inline operations are implemented in the fast path, while other
operations are delegated to the slow path. Therefore, the transformation is handled by two
separate JIT methods: emit op get by id offset for the fast path and emitSlow op get by

id offset for the slow path.

55

The fast path implementation closely resembles that of LLInt, as illustrated in Figure
3.35. The bytecode arguments for get by id offset are fetched and used to generate
template native code using a utility function of the code generator. However, in the
Baseline implementation, the property offset is directly loaded into a scratch register.

Subsequently, the value corresponding to the offset in the scratch register is loaded
into a general-purpose register, ensuring that property access is completely inline. This
implementation not only eliminates structure checks and associated jumps but also guar-
antees that no slow path exit occurs. In other words, execution of get by id offset in
the Baseline JIT never jumps to the slow path implementation.

Why, then, is there a slow path implementation? The slow path implementation is re-
quired by JavaScriptCore for all opcode implementations. However, for the get by id offset

instruction, the slow path is merely a formality and is never executed. Since get by id offset

is compatible with get by id, the slow path logic of get by id is reused.

1 void JIT::emitSlow_op_get_by_id_offset(

2 const JSInstruction*,

3 Vector<SlowCaseEntry>::iterator& iter)

4 {

5 ASSERT(BytecodeIndex(m_bytecodeIndex.offset()) == m_bytecodeIndex);

6 JITGetByIdGenerator& gen = m_getByIds[m_getByIdIndex++];

7 linkAllSlowCases(iter);

8 gen.reportBaselineDataICSlowPathBegin(label());

9 emitNakedNearCall(

10 InlineCacheCompiler::generateSlowPathCode(vm(), gen.accessType())

11 .retaggedCode<NoPtrTag>()

12);

13 }

Figure 3.36: Slow path implementation of op get by id offset in Baseline.

3.7.4 Intrinsic Instructions

JavaScriptCore allows functions that directly map to an operational implementation in the
engine to be used within certain contexts, known as built-in mode. These functions are
referred to as intrinsics. In built-in mode, the JavaScript parser embedded in JavaScript-
Core permits the usage of specific code syntax that would normally result in a syntax
error. This syntax allows identifiers to begin with an @ symbol and enables direct access
to intrinsic functions in JavaScriptCore. For example, the property foo of an object obj
may be accessed directly using @getByIdDirect(obj, "foo") instead of the dot access
operation obj.foo.

Intrinsics are implemented during the code generation pass of the bytecode compiler.
JavaScriptCore parses JavaScript source into an AST based on the parse mode, which

56

may be either Builtin or NotBuiltin mode. When parsing in Builtin mode, function
calls resembling intrinsics are recognized and validated. Validation involves checking if
the intrinsic name is a well-known symbol or a built-in name; otherwise, a syntax error is
generated. Well-known symbols typically begin with double @, for example, @@iterator,
@@isConcatSpreadable, etc. Built-in names, on the other hand, begin with a single @,
such as @getByIdDirect mentioned earlier. Builtin mode in JavaScriptCore is used for
parsing and compiling built-in JavaScript modules, which extensively utilize well-known
symbols and built-in names (see Appendix D).

AST nodes are transformed into bytecode by the bytecode compiler. During this trans-
formation, an intrinsic function call is directly translated into bytecode, utilizing the argu-
ments provided to the function in the underlying implementation. The get by id offset

bytecode can be accessed in Builtinmode using the syntax @getByIdOffset(obj, "prop",

offset). Here, obj corresponds to the JavaScript object on which the property access is
being performed, "prop" is a string denoting the name of the property, and offset is
an unsigned integer representing the property offset. While the property name is included
in the intrinsic function call, it is only necessary for the slow path implementation in the
Baseline JIT and for debugging purposes, such as in a bytecode dump of a program.

Allowing Intrinsic Access

While intrinsics are extremely useful, they are inaccessible and trigger a syntax error in user
code, as JavaScript does not support function calls beginning with an @ symbol. To address
this syntax limitation, the JavaScript parser in JavaScriptCore is modified to recognize
function calls beginning with a $ as a built-in name or intrinsic. Additionally, the parser
is adjusted to parse code only in Builtin mode, enabling direct access to intrinsics.

The drawback of these alterations is that functions can no longer be declared with
names starting with $ in user code, as such declarations could potentially lead to crashes
in the engine. Additionally, parsing code in Builtin mode raises security considerations and
is not suitable for production. Nonetheless, for the objectives and applications outlined in
this thesis, I believe these modifications are entirely reasonable. The get by id offset

intrinsic may be accessed as follows:

$__getByIdOffset(object, "property", offset)

This approach prevents syntax error squiggles and highlighting in code editors such as VS
Code [40]. Furthermore, intrinsic function calls tend to stand out from ordinary function
calls. Since Bun leverages JavaScriptCore, the modifications made to JavaScriptCore be-
come directly accessible in Bun. However, the modified WebKit project within Bun must
be rebuilt for changes to take effect.

57

Implementation

The intrinsic for get by id offset is implemented by utilizing the arguments of the
function-call AST node corresponding to an intrinsic function call. This involves gen-
erating the get by id offset bytecode using a bytecode generator, with operands corre-
sponding to the argument nodes of the function call expression. Figure 3.37 presents the
implementation.

1 RegisterID* BytecodeIntrinsicNode::emit_intrinsic_getByIdOffset(

2 BytecodeGenerator& generator,

3 RegisterID* dst)

4 {

5 ArgumentListNode* node = m_args->m_listNode;

6 RefPtr<RegisterID> base = generator.emitNode(node);

7 node = node->m_next;

8 ASSERT(node->m_expr->isString());

9 const Identifier& ident = static_cast<StringNode*>(node->m_expr)->value();

10 ASSERT(node->m_next);

11 node = node->m_next;

12 ASSERT(node->m_expr->isNumber());

13 unsigned offset = (unsigned)(static_cast<NumberNode*>(node->m_expr)->value());

14 return generator.emitGetByIdOffset(

15 generator.finalDestination(dst), base.get(), ident, offset

16);

17 }

Figure 3.37: Implementation of emit intrinsic getByIdOffset by walking the function
call AST node.

Figure 3.38: Intrinsic function call to bytecode.

58

3.8 Bringing it All Together

To implement the concepts of this thesis, I have enhanced the TypeScript compiler to
optimize property access operations in the resulting JavaScript code. This optimization
strategy capitalizes on nominal type information from TypeScript code, while integrating
optimization intrinsics provided by JavaScriptCore. Furthermore, modifications are made
to JavaScriptCore to support optimized property accesses at both the LLInt and Baseline
tiers. Additionally, an intrinsic function is provided, which can be directly utilized for
optimizing these operations. The following section presents an example tying together the
concepts discussed.

3.8.1 A Complete Example

Figure 3.39 contains an extract of the n-body system simulation ported to TypeScript from
the JetStream 2.1 benchmark suite [19], modified for use as an example. In this example,
the type Body satisfies nominal type usage throughout the program.

When this code is compiled using mtsc with optimizations enabled in the tsconfig.json
configuration file, the result is the JavaScript code presented in Figure 3.40. In Figure 3.40,
mtsc has optimized property access expressions to calls to the get by id offset intrin-
sic. Additionally, layout specification using put by id is omitted because the constructor
of the class Body has field initializations matching the layout metadata computed during
nominality checks in mtsc.

In each call to get by id offset, the object and the offset of the property being
accessed is utilized. For example, the property vx has an offset of 3, vy has an offset
of 4, and so on. The property mass, being the last property in the layout, has an offset
of 6. In this example, mtsc creates code that signals optimizations to be performed by
JavaScriptCore.

59

1 const PI = 3.141592653589793;

2 const SOLAR_MASS = 4 * PI * PI;

3 const DAYS_PER_YEAR = 365.24;

4

5 class Body {

6 constructor(

7 public x: number, public y: number,

8 public z: number, public vx: number, public vy: number,

9 public vz: number,

10 public readonly mass: number

11) {

12 }

13

14 offsetMomentum(px: number, py: number, pz: number) {

15 this.vx = -px / SOLAR_MASS;

16 this.vy = -py / SOLAR_MASS;

17 this.vz = -pz / SOLAR_MASS;

18 return this;

19 }

20 }

21

22 const saturn = new Body(

23 8.34336671824457987e+00,

24 4.12479856412430479e+00,

25 -4.03523417114321381e-01,

26 -2.76742510726862411e-03 * DAYS_PER_YEAR,

27 4.99852801234917238e-03 * DAYS_PER_YEAR,

28 2.30417297573763929e-05 * DAYS_PER_YEAR,

29 2.85885980666130812e-04 * SOLAR_MASS);

30 let px = 0.0;

31 let py = 0.0;

32 let pz = 0.0;

33 for (let i = 0; i < 10; i++) {

34 px += saturn.vx * saturn.mass;

35 py += saturn.vy * saturn.mass;

36 pz += saturn.vz * saturn.mass;

37 }

38 saturn.offsetMomentum(px, py, pz);

39 console.log(saturn);

Figure 3.39: Extract from the n-body system implementation used in benchmarks.

60

1 const PI = 3.141592653589793;

2 const SOLAR_MASS = 4 * PI * PI;

3 const DAYS_PER_YEAR = 365.24;

4 class Body {

5 constructor(x, y, z, vx, vy, vz, mass) {

6 // consistent field initializations, no layout metadata emitted

7 this.x = x;

8 this.y = y;

9 this.z = z;

10 this.vx = vx;

11 this.vy = vy;

12 this.vz = vz;

13 this.mass = mass;

14 }

15 offsetMomentum(px, py, pz) {

16 this.vx = -px / SOLAR_MASS;

17 this.vy = -py / SOLAR_MASS;

18 this.vz = -pz / SOLAR_MASS;

19 return this;

20 }

21 }

22 const saturn = new Body(

23 8.34336671824457987e+00,

24 4.12479856412430479e+00,

25 -4.03523417114321381e-01,

26 -2.76742510726862411e-03 * DAYS_PER_YEAR,

27 4.99852801234917238e-03 * DAYS_PER_YEAR,

28 2.30417297573763929e-05 * DAYS_PER_YEAR,

29 2.85885980666130812e-04 * SOLAR_MASS

30);

31 let px = 0.0;

32 let py = 0.0;

33 let pz = 0.0;

34 for (let i = 0; i < 10; i++) {

35 // access expressions are transformed into intrinsic calls

36 px += $__getByIdOffset(saturn, "vx", 3) * $__getByIdOffset(saturn, "mass", 6);

37 py += $__getByIdOffset(saturn, "vy", 4) * $__getByIdOffset(saturn, "mass", 6);

38 pz += $__getByIdOffset(saturn, "vz", 5) * $__getByIdOffset(saturn, "mass", 6);

39 }

40 saturn.offsetMomentum(px, py, pz);

41 console.log(saturn);

Figure 3.40: Optimized JavaScript for the n-body simulation.

61

Chapter 4

Evaluation

This chapter evaluates the performance optimizations implemented in this thesis on a
series of benchmark programs. It discusses the benchmark programs utilized, as well as
the evaluation methodology. It presents the results obtained from the benchmark process,
and discusses in detail the implications of said results.

4.1 Benchmarks

The benchmark programs are adapted from the JetStream 2.1 [20] JavaScript and We-
bAssembly benchmark suite, which is designed for assessing advanced web application
performance [19]. Developed by the WebKit team, JetStream 2.1 is a browser benchmark
that can be executed on most web browsers. It has been used to evaluate the performance
of Chrome [30] (V8 JavaScript engine) and Safari [36] (WebKit) [18].

To evaluate the performance optimizations presented in this thesis, I have selected six
benchmark programs from JetStream 2.1, as listed in Table 4.1. As JetStream 2.1 pri-
marily comprises programs written in JavaScript, I have carefully ported each benchmark
program to TypeScript. The ports use TypeScript-specific syntax and semantics, such
as namespaces and typed classes, as needed, while also prioritizing nominal type usage
wherever possible to enable better chances for optimizations. The ported programs are
compiled using mtsc compiler discussed in Chapter 3. The columns Oloc and Ploc in Ta-
ble 4.1 correspond to the number of lines of code in the original JavaScript programs from
the test suite and the ported TypeScript programs, respectively.

Most of the ported programs have fewer lines of code compared to their original versions.
This is because the original JavaScript programs did not utilize modern features such as
classes to concisely model object behaviour. Instead, they frequently relied on constructor
functions extended by direct prototype manipulation, resulting in a significant amount of
boilerplate code. Additionally, the choice of formatting in the original sources also affects
the number of lines of code. For instance, in the program hash-map, when defining blocks,

62

Benchmark Bjet Description Oloc Ploc

hash-map A JavaScript implementation of Apache Harmony’s
java.util.HashMap, designed to perform hash table inser-
tions, queries, and iteration over the associated entrySet.
This program serves to test object-oriented JavaScript id-
ioms and object construction [20].

521 377

n-body A classic solar system simulation benchmark from The
Great Computer Language Shootout [39]. It models the
dynamics of the Sun and the four gas giants for a spec-
ified number of iterations, evaluating both mathematical
computation and object access performance.

155 156

navier-stokes A fluid simulation focusing on floating-point array perfor-
mance [20].

381 354

raytrace An implementation of a ray tracer written in JavaScript
which tests object construction performance and floating
point math.

739 633

richards An implementation of an operating system’s task dis-
patcher ported to JavaScript. It tests object property ac-
cess performance.

479 337

splay The original JavaScript implementation of splay tests
the manipulation of splay trees represented using plain
JavaScript objects [20]. However, in the port of splay to
TypeScript utilized in this benchmark, classes are employed
judiciously. This benchmark particularly emphasizes the
performance of the garbage collector.

373 264

Table 4.1: Benchmark programs and their descriptions.

opening braces are placed on a new line; however, this is not the case in my port, as opening
braces always start at the current line where they are being defined.

For each JavaScript program, the corresponding TypeScript port is compiled with mtsc

in two modes: normal and patched. In normal mode, mtsc produces JavaScript as if it
were a regular TypeScript compiler, without invoking any of the optimizations discussed
in Chapter 3. The resulting JavaScript code is referred to as nts, representing JavaScript
from normal TypeScript. In patched mode, the same TypeScript program is compiled to
JavaScript using mtsc, with optimizations enabled and invoked whenever possible. The
resulting JavaScript code is referred to as pts, representing JavaScript from patched Type-
Script. The original JavaScript program from JetStream 2.1 is identified as ojs.

Compilation in these two distinctive modes is set up as follows: For each JavaScript pro-
gram, two separate TypeScript projects are created, each containing a root tsconfig.json
file. This means that each ported JavaScript program is embedded in a directory and

63

adapted into two separate TypeScript subdirectories corresponding to nts and pts within
the same program directory.

Both nts and pts contain the exact same TypeScript code; however, their tsconfig.json
files differ by a single line of configuration. In pts, the configuration optimizeWithTypes is
set to true, indicating that the TypeScript compiler should apply optimizations discussed
in Chapter 3, whenever possible. However, nts does not include such configuration, im-
plying that the TypeScript code should be compiled like a regular, unmodified TypeScript
compiler would.

Subsequently, mtsc generates JavaScript code for each program, applying optimizations
where possible (pts) and producing JavaScript code without optimizations (nts). The
details of the benchmark setup are presented in Table 4.2.

Setup tsc Comp. Mode Optimization

Program
nts normal disabled
pts patched enabled
ojs original unavailable

Table 4.2: Benchmark setup.

Although nts and pts are carefully adapted from ojs, each benchmark program in-
cludes a checksum. These checksums are inherent to the original JavaScript programs
from JetStream and are designed to validate the computed results of each program at run-
time after a successful run. The checksum also helps to ensure that the ported programs
maintain semantic equivalence with the original JavaScript programs and exhibit the same
observable behaviour. While the benchmarks are executed for ojs, nts, and pts, the eval-
uation in this chapter primarily focuses on the performance of JavaScript in nts and pts.
This emphasis is because they are much more syntactically and semantically equivalent
compared to the original JavaScript programs [4].

It is worth noting that the tests selected from JetStream 2.1 are complete working
programs that implement specific features. Due to the diverse nature of these programs,
isolating the effect of optimizations developed in this thesis is challenging. Therefore, an
additional set of microbenchmark programs has been developed in TypeScript to properly
evaluate the effectiveness of discussed optimizations in isolation. These programs do not
implement specific features, but perform computations utilizing access expressions that are
optimizable.

For the purpose of distinguishing benchmarks, the benchmark programs from JetStream
2.1 are referred to as Bjet, while the microbenchmark programs are referred to as Bµ.

64

4.1.1 Microbenchmarks

Table 4.3 presents the list of programs used in the microbenchmarks, along with their
descriptions and number of lines of code (Oloc). These programs have been developed from
scratch in TypeScript and compiled with mtsc in two modes, similar to the JetStream
benchmark programs: nts (optimizations disabled) and pts (optimizations enabled).

To evaluate execution performance in the microbenchmarks, the performance of nts is
compared with pts. Similar to Bjet, each microbenchmark program incorporates a check-
sum that validates the computation performed and ensures that semantics are preserved
across nts and pts.

The microbenchmark programs execute computations over a long-running loop, utiliz-
ing property access expressions within each computation. These programs perform com-
putations at specific intervals within each iteration. The programs listed in Table 4.3 are
variations of each other.

Benchmark Bµ Description Oloc

micro-k Performs computations over a number of iterations at even and
multiples of three intervals.

97

micro-x Performs computation over a number of iterations at multiples
of two, three, and four intervals.

100

micro-y Similar to micro-x, this program performs computation over a
number of iterations at multiples of two and three intervals.

104

micro-z Combines computation in micro-x and micro-y with a slight
variation on intervals and additional object method calls during
each computation.

96

Table 4.3: Microbenchmark programs and their descriptions.

4.2 Methodology

The benchmarks were conducted on a 64-bit Ubuntu 22.04.4 LTS machine featuring an
AMD EPYC 9754 processor with 256 cores, 768 GB of RAM, a clock speed of 2.25 GHz,
and 4 TB of storage. To assess the impact of optimizations applied to both the LLInt and
Baseline tiers of JavaScriptCore, the benchmark runs for both Bjet and Bµ are divided into
three categories of JavaScriptCore configurations across all test suites:

• LLInt only (TL)

• Baseline only (TB)

• LLInt and Baseline only (TLB)

65

These configuration modes are used to isolate the impact of the optimizations in the
LLInt and Baseline tiers of the JavaScript engine. For the TL category, JavaScriptCore is
modified to run only on LLInt and never JIT compile to any of the JIT tiers. Running
code solely in the LLInt tier of JavaScriptCore is known as executing in no-JIT or “mini
mode” [15]. In the TB category, JavaScriptCore is modified to always JIT-compile and
execute code in the Baseline, without utilizing LLInt or higher JIT tiers. In the TLB

category, JavaScriptCore is modified to run both in LLInt and JIT-compile to the Baseline
when applicable; however, higher JIT tiers are not utilized. In each test category, other
configuration options in JavaScriptCore are kept at their default values.

While JavaScriptCore serves as the engine modified in this thesis, the Bun JavaScript
runtime [29] is employed to evaluate these modifications by executing the programs in
the test suite. This decision is driven by the fact that the programs heavily rely on
runtime APIs, most of which are not provided by the JavaScriptCore engine but are instead
delegated to a runtime environment. The Bun runtime utilizes JavaScriptCore under the
hood. Therefore, modifications made to JavaScriptCore are applied to Bun, which is then
recompiled in release mode for test execution. For the evaluation process, a recent version
of Bun, 1.0.14, is utilized. Additionally, the TypeScript compiler extended is also recent
(4.9.5).

The benchmarks Bjet and Bµ are conducted separately. In both benchmarks, each
program listed in Tables 4.1 and 4.3 is executed for 10 iterations. For each iteration,
10 warm-up runs are conducted, followed by the actual benchmark runs consisting of 50
executions.

The main focus of Bjet is to compare tests between nts and pts, prioritizing them
over ojs due to their similarity. Hence, the benchmark Bjet is conducted in two phases:
firstly with nts and pts, and secondly with nts, pts, and ojs. Both benchmark processes
measure the execution time in seconds of each running program and are executed using the
command-line benchmarking tool, hyperfine [80]. Additionally, iterations are conducted
separately for each JavaScriptCore configuration (TL, TB, and TLB), utilizing a Python
script [34] that automates hyperfine.

4.3 Results

This section presents results from benchmarks Bjet and Bµ.

4.3.1 Bjet

The benchmark results for nts and pts are shown in Table 4.4. These results represent the
average runtime across all runs of each iteration for each test program. Additionally, the
results are obtained for each configuration mode of JavaScriptCore. The column labeled
rel indicates the relative time of each test compared to the fastest runtime.

66

Bjet TL TB TLB

Program kind time min-time max-time rel-time time min-time max-time rel-time time min-time max-time rel-time

n-body
nts 0.231 0.216 0.237 1.000 0.089 0.083 0.092 1.044 0.080 0.075 0.083 1.047
pts 0.231 0.213 0.237 1.000 0.085 0.080 0.088 1.000 0.077 0.071 0.079 1.000

richards
nts 0.307 0.293 0.313 1.035 0.111 0.105 0.115 1.128 0.119 0.108 0.123 1.088
pts 0.297 0.286 0.303 1.000 0.098 0.093 0.102 1.000 0.109 0.100 0.114 1.000

splay
nts 0.202 0.194 0.206 1.007 0.125 0.117 0.130 1.017 0.126 0.118 0.132 1.017
pts 0.201 0.193 0.204 1.000 0.123 0.116 0.125 1.000 0.124 0.116 0.129 1.000

navier-

stokes

nts 1.310 1.240 1.343 1.000 0.733 0.719 0.746 1.000 0.596 0.587 0.600 1.000
pts 1.311 1.249 1.339 1.000 0.733 0.719 0.744 1.000 0.597 0.588 0.604 1.000

hash-map
nts 0.231 0.221 0.237 1.024 0.733 0.117 0.108 1.034 0.129 0.117 0.135 1.018
pts 0.226 0.216 0.232 1.000 0.113 0.104 0.117 1.000 0.127 0.114 0.132 1.000

raytrace
nts 0.363 0.352 0.368 1.024 0.165 0.157 0.170 1.050 0.166 0.156 0.172 1.031
pts 0.355 0.344 0.361 1.000 0.158 0.150 0.161 1.000 0.161 0.153 0.165 1.000

Table 4.4: Performance comparison of nts and pts in Bjet across three configurations of
JavaScriptCore. Lower is better.

The results obtained from performing the same benchmarks using nts, pts, and ojs

for TL, TB, and TLB configurations are also shown in Table 4.5. Although the performance
of nts and pts compared to ojs is reported, the results of ojs are not central to the
succeeding discussion.

Bjet TL TB TLB

Program kind time min-time max-time rel-time time min-time max-time rel-time time min-time max-time rel-time

n-body
nts 0.231 0.218 0.236 1.013 0.089 0.083 0.092 1.044 0.080 0.075 0.083 1.046
pts 0.230 0.215 0.236 1.011 0.085 0.080 0.088 1.000 0.076 0.071 0.079 1.000
ojs 0.228 0.212 0.235 1.000 0.090 0.084 0.094 1.057 0.080 0.074 0.083 1.045

richards
nts 0.307 0.294 0.312 1.087 0.111 0.105 0.114 1.124 0.119 0.109 0.125 1.088
pts 0.296 0.286 0.301 1.049 0.099 0.092 0.102 1.000 0.109 0.099 0.114 1.000
ojs 0.282 0.268 0.287 1.000 0.111 0.104 0.114 1.121 0.127 0.111 0.136 1.165

splay
nts 0.202 0.193 0.206 1.009 0.126 0.117 0.130 1.021 0.126 0.118 0.130 1.016
pts 0.200 0.192 0.204 1.000 0.123 0.116 0.127 1.000 0.124 0.117 0.127 1.000
ojs 0.276 0.268 0.281 1.376 0.134 0.126 0.138 1.091 0.136 0.128 0.139 1.094

navier-

stokes

nts 1.306 1.248 1.354 1.000 0.733 0.719 0.743 1.002 0.596 0.587 0.601 1.000
pts 1.308 1.236 1.338 1.001 0.733 0.718 0.742 1.001 0.597 0.588 0.603 1.001
ojs 1.307 1.229 1.350 1.001 0.732 0.721 0.743 1.000 0.596 0.586 0.603 1.000

hash-map
nts 0.231 0.220 0.237 1.022 0.117 0.108 0.122 1.035 0.129 0.117 0.135 1.014
pts 0.226 0.217 0.231 1.000 0.113 0.105 0.117 1.000 0.127 0.112 0.134 1.001
ojs 0.236 0.225 0.240 1.042 0.114 0.106 0.118 1.012 0.127 0.115 0.132 1.000

raytrace
nts 0.363 0.350 0.369 1.024 0.165 0.158 0.171 1.051 0.166 0.157 0.172 1.031
pts 0.355 0.345 0.361 1.000 0.157 0.149 0.162 1.000 0.161 0.153 0.164 1.000
ojs 0.549 0.538 0.555 1.548 0.263 0.254 0.268 1.672 0.265 0.254 0.274 1.649

Table 4.5: Performance comparison of nts, pts and ojs in Bjet across three configurations
of JavaScriptCore. Lower is better.

Figure 4.1 compares the performance of nts and pts using the data obtained from
Table 4.4. Specifically, the results of each test in nts and pts are compared for each
configuration mode. Furthermore, the performance of nts, pts, and ojs is compared
across tiers for each test program, as shown in Figure 4.2.

67

Figure 4.1: Performance comparison of nts and pts in Bjet across TL, TB and TLB config-
urations. Lower is better.

Figure 4.2: Performance comparison of nts, pts and ojs in Bjet across TL, TB and TLB

configurations. Lower is better.

The data from Table 4.4 is also utilized in the computation of the geometric mean [72]
of all tests conducted within each configuration, as shown in Table 4.6. This method is akin
to the computation of browser benchmark performance scores across multiple workloads
conducted by Speedometer 3 [37, 38]. Finally, the percentage speedup of pts over nts for
each test and in each benchmark mode for all iterations and across all configurations in
Bjet are presented in Table 4.7.

When comparing the results of pts and nts across each configuration (TL, TB, and
TLB) using the geometric mean score, it is observed that TLB exhibits the best performance

68

Bjet nts pts

TL 0.341 0.336
TB 0.161 0.154
TLB 0.158 0.153

Table 4.6: Geometric mean of nts and pts in Bjet. Lower is better.

compared to the other two modes, with pts outperforming nts. However, the configuration
TLB is only slightly more performant than TB. Additionally, pts outperforms nts in every
configuration and exhibits significantly better performance than nts in TB. Table 4.7
shows richards demonstrates the best performance speedups across all configurations. In
TL, a speedup of 3.5% is observed, 12.8% in TB, and 8.8% in TLB. The increase in speedup
in the Baseline tier might be attributed to the absence of warm-up time in TB, as execution
directly starts natively. This is further reflected in raytrace by the decline in speedup
from 12.8% to 8.7%. In contrast, n-body improves across each mode, with no speedup in
TL, 4.4% speedup in TB, and 4.7% speedup in TLB.

Bjet TL TB TLB

Program time % speedup time % speedup time % speedup

n-body 0.231 0.0 0.089 4.4 0.080 4.7
richards 0.307 3.5 0.111 12.8 0.119 8.8
splay 0.202 0.7 0.125 1.7 0.126 1.7

navier-stokes 1.310 0.0 0.733 0.0 0.596 0.0
hash-map 0.231 2.4 0.117 3.4 0.129 1.8
raytrace 0.363 2.4 0.165 5.0 0.166 3.1

Table 4.7: Speedup of pts over nts in Bjet. For speedup, higher is better.

4.3.2 Bµ

In Table 4.8, the results of the microbenchmarks are presented, detailing the performance
comparison between nts and pts across the TL, TB, and TLB settings. This performance
comparison is further illustrated in Figure 4.3, utilizing the data from the aforementioned
table. Additionally, Table 4.9 presents the geometric mean of performance across all tests
for each JavaScriptCore configuration mode. Furthermore, Table 4.10 displays the per-
centage speedup of pts over nts.

Comparing the performance of pts and nts across each configuration (TL, TB, and
TLB) using the geometric mean score reveals consistent trends. Like Bjet, TLB consistently
demonstrates better performance compared to the other two modes, with pts consistently
outperforming nts. Moreover, pts surpasses nts in every configuration, nearly doubling

69

Bµ TL TB TLB

Program kind time min-time max-time rel-time time min-time max-time rel-time time min-time max-time rel-time

micro-y
nts 0.362 0.335 0.380 1.137 0.197 0.187 0.202 1.335 0.154 0.146 0.157 1.601
pts 0.319 0.300 0.325 1.000 0.147 0.140 0.150 1.000 0.096 0.089 0.099 1.000

micro-x
nts 0.379 0.352 0.393 1.127 0.208 0.197 0.213 1.267 0.167 0.158 0.170 1.650
pts 0.336 0.325 0.343 1.000 0.164 0.155 0.170 1.000 0.101 0.094 0.104 1.000

micro-k
nts 0.318 0.291 0.348 1.119 0.170 0.161 0.176 1.320 0.133 0.125 0.137 1.642
pts 0.284 0.268 0.296 1.000 0.129 0.121 0.133 1.000 0.081 0.074 0.083 1.000

micro-z
nts 0.273 0.250 0.278 1.144 0.157 0.146 0.163 1.461 0.117 0.110 0.120 1.685
pts 0.238 0.227 0.248 1.000 0.107 0.100 0.111 1.000 0.069 0.063 0.073 1.000

Table 4.8: Performance comparison of nts and pts in Bµ across three configurations of
JavaScriptCore. Lower is better.

its speedup with each transition from TL to TLB. micro-z showcases the most significant
performance improvements across all configurations, with a speedup of 14.4% in TL, 46.1%
in TB, and 68.5% in TLB.

Figure 4.3: Performance comparison of nts and pts in Bµ across TL, TB and TLB config-
urations. Lower is better.

Bµ nts pts

TL 0.330 0.292
TB 0.182 0.135
TLB 0.141 0.086

Table 4.9: Geometric mean of nts and pts in Bµ. Lower is better.

70

Bjet TL TB TLB

Program time % speedup time % speedup time % speedup

micro-y 0.362 13.7 0.197 33.5 0.154 60.1
micro-x 0.379 12.7 0.208 26.7 0.167 65.0
micro-k 0.318 11.9 0.170 32.0 0.133 64.2
micro-z 0.273 14.4 0.157 46.1 0.117 68.5

Table 4.10: Speedup of pts over nts in Bµ. For speedup, higher is better.

4.3.3 Intrinsics

Tables 4.11 and 4.12 present the test programs along with the number of classes defined
and the optimization intrinsics emitted per program (pts) in Bjet and Bµ respectively. The
optimization intrinsics are divided into layout intrinsics and access intrinsics for object
layout metadata and property access optimizations, respectively. In cases where there are
no layout intrinsics (i.e., 0), it implies field layout instructions were omitted as the class
constructor field initializations already conform to the layout metadata computed by mtsc,
as discussed in Section 3.6.4.

Benchmark Bjet classes layout intrinsics access intrinsics total intrinsics emitted

hash-map 9 6 108 114
n-body 2 1 41 42

navier-stokes 2 0 6 6
raytrace 14 14 219 233
richards 7 20 87 107
splay 2 0 49 49

Table 4.11: Benchmark programs and emitted intrinsics.

Benchmark Bµ classes layout intrinsics access intrinsics total intrinsics emitted

micro-k 2 0 209 209
micro-x 2 0 239 239
micro-y 2 0 226 226
micro-z 2 0 206 206

Table 4.12: Benchmark programs and emitted intrinsics.

In both Bjet and Bµ, the number of layout intrinsics emitted does not directly correlate
with the amount of performance speedup gained by pts over nts. This lack of correlation
is attributed to the fact that the runtime behaviour of the program is not solely dependent

71

on property accesses. Additionally, the static number of intrinsics is not reflective of the
number of times the intrinsic is executed dynamically, for instance, in a loop.

4.4 Discussion

4.4.1 Bjet

The results of the benchmarks reveal that in TL (LLInt only), pts is faster than nts.
Particularly for tests such as richards, hash-map, and raytrace, a speedup of 3.5%, 2.4%,
and 2.4% is attained, respectively. However, a speedup of less than 1% is observed in the
other test cases. In fact, there is no speedup in n-body and navier-stokes. Predictably,
the performance in TL is the slowest in all three configurations, as LLInt executes bytecode
only in a virtual machine. Perhaps due to the structure of some of the programs, it is
difficult to achieve better speedups by relying entirely on LLInt.

Also, in TB (Baseline only), a much higher speedup is recorded for tests: richards

(12.8%), raytrace (5.0%), and n-body (4.4%). Additionally, splay has a higher speedup
of 1.7% an improvement compared to its speedup in TL. However, navier-stokes remains
the same with no speedup.

richards is a program that simulates the task dispatcher of an operating system and
tests object property access performance [20]. Given that the optimizations in this thesis
target object property access operations, the highest speedup observed in this test is ex-
pected. Additionally, the program demonstrates good usage of nominal types, primarily
employing nominal classes. Consequently, access optimizations are applied across a wide
range of code sections in the generated JavaScript.

n-body also performs better in TB compared to TL, and the same is true for raytrace
and hash-map. Interestingly, while n-body showed no speedup in TL, it exhibits a dramatic
speedup in TB compared to TL. Additionally, the speedup of raytrace in TB doubles,
while richards quadruples. It is reasonable to suspect that some opcode implementa-
tions in LLInt are subpar compared to their counterparts in the Baseline. This suspicion
arises from the fact that the interpreter is designed with a focus on portability, while per-
formance optimization is primarily delegated to the JIT tiers [9, 15]. For instance, the
Baseline implementation of the opcode get by id, responsible for object property access
in JavaScriptCore, is extensively optimized through the use of sophisticated inline caching
techniques, unlike LLInt. In fact, the Baseline and higher JIT tiers boast a superior inline
caching implementation compared to LLInt [15].

In TLB (LLInt-Baseline only), there is a decline in speedups compared to TB. Specifi-
cally, richards exhibits a speedup of 8.8%, raytrace 3.1%, and hash-map 1.8%. However,
n-body experiences a speedup of 4.7%, while navier-stokes shows no speedup. The de-
cline in performance might be due to the warm-up time required to move execution from
LLInt to the Baseline JIT. Code execution would have persisted in LLInt for a while before

72

being transferred to the Baseline, resulting in more time spent executing in LLInt than in
the Baseline.

Additionally, the lack of speedup of navier-stokes across all configurations might be
due to the program’s heavy emphasis on floating-point array performance, which may limit
the effectiveness of the optimizations implemented. Floating-point arithmetic and array
accesses are prevalent throughout the entire source code. In fact, pts in navier-stokes

has the lowest number of intrinsic calls compared to other test programs. Therefore, access
optimizations do not prove effective because more time is spent performing floating-point
arithmetic using arrays.

Figure 4.2 compares the benchmark results of nts, pts, and ojs. Although pts and
nts were ported to TypeScript from ojs, they are semantically equivalent to ojs in terms
of JavaScript output, but differ in the language constructs utilized. nts and pts have
been ported using TypeScript constructs where suitable, but TypeScript constructs may
not always translate to performant JavaScript. For instance, the use of namespaces in
TypeScript translates to immediately invoked function expressions (IIFE) [23], which may
not be as performant as using classes or objects for encapsulation. That being said, in TL,
ojs outperforms nts and pts in n-body by 1.3% and 1.1%, respectively, and in richards

by 8.7% and 4.9%, respectively. However, pts exhibits speedups over ojs in splay by
37.6%, hash-map by 4.2%, and raytrace by 54.8%.

In TLB, the performance difference between pts and ojs is more pronounced. pts ex-
hibits a speedup of 5.7% over ojs in n-body, 12.1% in richards, 9.1% in splay, and 67.2%
in raytrace. The significant performance gap between pts/nts and ojs in raytracemight
be attributed to differences in implementation constructs. In ojs, direct manipulation of
a function object’s prototype is distributed across several code sites, whereas in pts and
nts, the implementation relies on classes as much as possible and avoids direct prototype
manipulation where possible. This observation aligns with the findings of Ahn et al. [43],
which highlights object prototype mutation as the primary cause of type unpredictability,
impacting performance in V8.

4.4.2 Bµ

Table 4.3 presents the results of the microbenchmarks, including the relative speedup of
pts over nts. In these results, the effects of the applied optimizations are isolated and
much more observable in the LLInt and Baseline tiers. In LLInt, access optimizations are
shown to be beneficial and provide up to a 14% speedup. This improvement is especially
useful for JavaScriptCore when running in mini-mode, that is, LLInt only, as preferred by
some users for security and portability reasons [15].

Furthermore, the results in Table 4.10 show that performance improvements and speedups
nearly double across each tier, from TL to TB, and from TL to TLB, aligning with estab-
lished performance metrics of the tiers in JavaScriptCore on the JetStream 2 benchmarks

73

[15]. In TL, a performance speedup of 14.4% (micro-z) of pts over nts is recorded. More-
over, in TB, a speedup of 46.1% (micro-z) is observed, and in TLB, a speedup of 68.5%
(micro-z) is observed.

The results in Figure 4.3 indicate that TB surpasses TL in performance. This perfor-
mance difference stems from various factors. Firstly, code compiled by the Baseline runs
natively, eliminating the need for interpretation encountered in LLInt. This alone reduces
the overhead associated with interpreter dispatch for bytecode instruction decoding and
execution [13]. Interpreter dispatch is particularly costly due to the difficulty the CPUs
face in predicting the indirect branches used for selecting the implementation of an opcode
[47].

TLB represents the combination of LLInt and Baseline, where LLInt is permitted to
transition execution to the Baseline. From Table 4.10, the speedups of TLB over TL are
largely similar to those of TB over TL. It is not surprising that the Baseline performs
slightly better because TLB initially executes code in LLInt and transitions to the Baseline
only after frequent execution, unlike TB, where JavaScript code is directly compiled to
machine code before execution.

Similar to Bjet, the geometric mean of the performance of nts and pts in each con-
figuration indicates that pts outperforms nts in all configurations, and TLB is the best
configuration in terms of performance. However, unlike Bjet, TLB appears to be significantly
more performant than TB.

4.4.3 Heuristics

One limitation of the optimization heuristics (Section 3.3) and consequently mtsc is that
during nominality checks, if a type is identified as non-nominal, its usages are considered
unoptimizable. This means that other objects created from the type will not be optimized,
even if they are used nominally.

Consider the program in Figure 4.4. The Point type does not satisfy nominal type
usage because the Point variable p1 is cast to any at line 11. However, the Point variable
p2 at line 15 is used nominally. mtsc fails to optimize the program because nominal type
usage for the type Point has already been violated by variable p1.

In benchmark Bjet, when porting the programs to TypeScript, I took advantage of
classes to satisfy nominal type usage requirements when possible. This contrasts with the
original programs where constructor functions are used with prototype extensions.

My inheritance constraint for nominal types excludes types that satisfy nominal type
usage but are part of an inheritance chain. This requirement impacts the hash-map and
raytrace test programs in Bjet. In hash-map, three classes were created using inheri-
tance, and in raytrace, two classes were created using inheritance. However, the original
JavaScript test programs never utilized class inheritance; instead, they extended objects
by modifying their prototypes.

74

(a) Code in TypeScript.

1 class Point {

2 public x: number;

3 public y: number;

4

5 constructor(a: number, b: number) {

6 this.x = a;

7 this.y = a;

8 }

9 }

10 let p1 = new Point(12, 13);

11 let k = p1 as any;

12 p1.x + p1.y;

13

14 // used nominally but not optimized

15 let p2 = new Point(5, 6);

16 p2.x * p2.y;

→

(b) Generated JavaScript.

class Point {

constructor(a, b) {

this.x = a;

this.y = a;

}

}

let p1 = new Point(12, 13);

let k = p1;

p1.x + p1.y;

let p2 = new Point(5, 6);

p2.x * p2.y;

Figure 4.4: Nominal type violation and missed access optimizations.

4.5 Closing Remarks

The results from Bjet and Bµ exhibit interesting similarities and differences. In both bench-
marks, pts outperforms nts across all configurations. Additionally, according to the geo-
metric mean score, TLB emerges as the optimal configuration. However, notable differences
arise between the two benchmarks. In Bjet, performance increases from TL to TB, but de-
creases in TLB, unlike in Bµ where performance nearly doubles with each configuration
from TL to TLB. It is quite plausible that in Bµ, the programs run for longer, leading
to the amortization of the effect of execution transitioning from LLInt to the Baseline in
TLB, as more time is spent in the Baseline compared to LLInt. Additionally, most of the
test programs used in Bjet are general implementations of complete working algorithms,
with emphasis on specific areas of the JavaScript engine. In contrast, test programs in Bµ

specifically target access operations.

In both Bjet and Bµ, the benchmarks are conducted on the LLInt and Baseline tiers,
with the DFG and FTL tiers excluded. The DFG and FTL JITs are intricate pieces of
software with numerous optimizations implemented over time [9, 15], and they are ac-
tively under development [31]. The cost-to-benefit ratio in these tiers is likely to be high.
Additional optimization support in these tiers may not yield substantial performance im-
provements, considering that the JITs already perform numerous optimizations in those
areas. Therefore, it might be more beneficial to focus on improving speculation to reduce
deoptimization in these tiers, which could lead to overall performance enhancements. Ad-
ditionally, this work is a research prototype with limited implementation time, making it

75

impractical to support the higher JIT tiers.

76

Chapter 5

Related Work

This chapter examines previous academic and industrial endeavours aimed at optimizing
the runtime performance of dynamic languages, with a particular emphasis on JavaScript
engines and JavaScript programs. It is broadly divided into two sections: The first section
provides an overview of performance considerations, including optimization techniques and
associated challenges. The second section delves into relevant research and developments
pertinent to this thesis.

5.1 JavaScript Performance and Optimization Chal-

lenges

Modern JavaScript engines employ various optimization strategies to enhance the per-
formance of JavaScript programs. One prevalent method is the utilization of just-in-time
(JIT) compilers. These compilers utilize several optimization techniques, including runtime
type inference [41] and type feedback [69], to generate efficient code.

Type-feedback JIT is a speculative technique that utilizes runtime information to gen-
erate efficient code, reusable in future executions if types remain unchanged [69, 93]. This
approach enables type specialization by instrumenting the code at runtime to collect and
store observed types [71]. Type inference, on the other hand, deduces value types that must
be correct and specializes code based on these deductions [71]. Unlike type feedback, type
inference does not require runtime code instrumentation. In dynamic language engines,
type inference is typically performed on a per-function basis for hot functions, which are
adaptively detected during execution [71].

Despite advancements in optimization techniques, JavaScript’s dynamic nature contin-
ues to pose a challenge for achieving optimal performance. This inherent characteristic
permits the creation of code that undermines assumptions made by JIT compilers for
aggressive optimizations, resulting in performance regressions [87, 93].

77

An empirical study examining the dynamic behaviour of a corpus of widely-used JavaScript
programs found on popular websites, focusing on the utilization of dynamic features and
their rationales, reveals that several assumptions made by optimizing JavaScript engines do
not directly apply to real-world code [84]. For instance, the assumption of prototype hier-
archy invariance suggests that the hierarchy remains unchanged after an object’s creation.
However, the study indicates that libraries often modify JavaScript’s built-in prototypes
to introduce behaviours to types (such as Object and Array), which would typically be
immutable in a stricter language. Additionally, the assumption that properties are added
during object initialization implies that most changes to an object’s fields and methods
occur at initialization, making it reasonable to assign an almost complete type to objects
upon creation, with only a small number of properties marked as potential. However, this
was found to be true for only a subset of sites. Furthermore, the assumption that properties
are rarely deleted seldom holds true.

One of the most common sources of performance bottlenecks in modern engines is type
mutation [93]. At the JIT level, type mutations can lead to deoptimization, fallback to
inline caching, weakening of optimizations, and increased garbage collection pressure [93].
Ahn et al. [43] identified type unpredictability as a significant factor contributing to poor
performance in JavaScript websites. Type predictability, crucial for performance optimiza-
tion, is assessed based on the compiler’s ability to anticipate object types at access sites
(type-hit-rate) and the variability of observed object types at those sites (polymorphism)
[43].

In their study focusing on V8 [5] as a case example, Ahn et al. found that changes
in (object and function) prototypes and method bindings are the primary causes of type
unpredictability. V8, like JavaScriptCore and Self [55], utilizes hidden classes to represent
types. Objects created in a similar manner are grouped into the same hidden class, allowing
V8 to generate efficient code by recording the offset where a property for a particular
object type is located [43]. Although popular JavaScript engine benchmarks often assume
that object prototypes and method bindings remain static, Ahn et al. observed a more
dynamic behaviour in website code, where prototypes and method bindings frequently
change, consistent with the findings of Richards et al. [84].

The immutability of prototypes in hidden classes allows for automatic prototype checks
when a hidden class is examined in inline caches [43]. However, a drawback of this approach
is that, to maintain prototype immutability, a new hidden class needs to be created for
every change in the prototype [43]. This issue is exacerbated by the absence of limits on the
number of hidden classes that can be created due to prototype changes. By restructuring
the V8 compiler to decouple prototypes and method bindings from an object’s type, a
36% reduction in the execution time of JSBench [83] and a 49% decrease in the dynamic
instruction count were achieved [43].

Identifying and understanding performance issues related to type mutation can often
be daunting and laborious. In large codebases, type mutation may be challenging to
comprehend and thus difficult to address. Xiao et al. [93] developed JSweeter, a tool for

78

detecting performance issues resulting from type mutations based on type evolution graphs
extracted from program executions. These graphs are generated from operational logs
containing type update operations for objects and deoptimization information, obtained
through instrumentation of a JavaScript engine [93]. The application of refactoring hints
generated by JSweeter increases JavaScript performance on average by 5.3% and up to
23% [93].

Another empirical study, examining 98 resolved performance issues across 16 JavaScript
open-source projects, encompassing both client-side and server-side code, popular libraries,
and widely used application frameworks, revealed inefficient API usage as the most preva-
lent root cause [88]. Common examples include runtime type checks, invocations of function
objects, and object property checks [88]. TypeScript, being a superset of JavaScript, can
be employed to mitigate API misuse issues. Furthermore, many of these issues can be ad-
dressed through optimizations that involve only a few lines of code, without significantly
affecting the complexity of the source code [88]. For instance, replacing a for-in loop,
which iterates over object properties, with code that first computes the object’s proper-
ties using the built-in Object.keys() function and then iterates through them using a
traditional for loop [88], often allows for optimization by the JIT compiler in V8 [88].

Although type feedback and type inference optimization strategies have individually
demonstrated effectiveness [42], there may still be potential performance gains from com-
bining both approaches, as demonstrated in the work of Hackett et al. [64]. The key insight
of their study involves a hybrid type inference algorithm obtained through the fusion of
unsound constraint-based static inference of expression and heap value types with targeted
dynamic type updates and runtime checks. In this approach, type feedback information is
utilized to enhance the effectiveness of type inference.

On a similar note, Kedlaya et al. [71] take a slightly different approach by investigating
the interplay between these two methods. They propose two novel methods to combine
type feedback and type inference, aiming to amplify their collective benefits while reducing
their aggregate overhead. In their approach, type feedback supports type inference by
categorizing function invocations based on the types of function arguments at the time of
invocation. Conversely, type inference supports type feedback by leveraging inferred type
information to strategically place type profiling hooks, thereby significantly minimizing
profiling overhead.

5.2 Performance Optimization Techniques

Although numerous efforts have been dedicated to the performance optimization of JavaScript
engines and dynamically typed programming languages in general [58, 56, 89, 52, 60, 53],
the following section specifically highlights those efforts that are closely related to the work
conducted in this thesis.

79

5.2.1 Concrete Types for TypeScript

StrongScript [85] is an extension of TypeScript featuring a new type system. It introduces
a single type constructor for concrete types that offers enhanced semantic guarantees. The
type system provides developers with the flexibility to choose among untyped code, where
all variables are of type any; optionally typed code, which does not affect the semantics of
dynamic programs; and concretely typed code, offering traditional correctness guarantees
but influencing the semantics of dynamic code.

One of the primary objectives of StrongScript is to enable typing for common pro-
gramming idioms in JavaScript. As such, all JavaScript programs are considered valid
well-typed StrongScript programs. Additionally, the majority of TypeScript programs are
compatible with StrongScript.

Concrete types are denoted by !C and represent objects that are instances of the corre-
sponding class or its subclasses, exhibiting behaviour akin to types in nominally-statically-
typed languages. Static type checking is conducted on these types, and no dynamic checks
are necessary in the absence of downcasts. In addition to providing correctness guarantees,
concrete types in StrongScript are utilized for optimizing property access.

To effectively utilize concrete types, StrongScript employs a sound type system that
necessitates certain modifications to TypeScript’s (overly permissive) type rules and the
underlying implementation. At runtime, a distinction is made between dynamic objects
created using JavaScript syntax ({ x:y }) and objects that are instances of a class, created
with the new keyword. Casts are explicit, and in many cases, they require runtime checks.
StrongScript employs nominal subtyping for classes to ensure that the memory layout of
parent classes is a prefix of child classes, facilitating fast property access.

The implementation of StrongScript comprises two components: an extension of the
TypeScript 0.9.1 compiler and the Truffle JavaScript engine (TruffleJS). While the compiler
generates portable JavaScript code capable of running on any JavaScript virtual machine,
performance enhancements stem from type-related extensions to the compiler. These ex-
tensions include support for concrete types and dynamic contracts at explicit downcasts,
checked downcasts (implicit and unsound in TypeScript), and function code suitable for
both typed and untyped invocation. The compiler ensures the sound use of concrete types
by inserting dynamic contracts wherever unsafe downcasts occur, whether explicit or im-
plicit. This safety is achieved through the $$check function, which verifies that a value
conforms to a specified type. Additionally, the compiler emits intrinsics that describe the
layout of concretely-typed objects, similar to intrinsics emitted by mtsc for object layout
and access optimizations. Furthermore, TruffleJS is extended to comprehend and utilize
these intrinsics for efficient property access in concrete types, similar to the extensions I
implemented in JavaScriptCore.

Concrete types allow for object layout to be determined at compile time, enabling
direct access to fields and methods by their known locations within the object. This
optimization eliminates the need for hash-table lookups. However, JavaScript lacks a

80

mechanism to explicitly define object layouts. To leverage known concrete objects, the
JavaScript code generated by StrongScript includes calls to intrinsic operations. These
operations access fields using explicit offsets within objects. While these intrinsics act as
no-ops on non-supporting engines, they are implemented as direct accesses on TruffleJS,
the only supporting engine. The intrinsics, known as direct and directWrite, facilitate
direct reading and writing to offsets within an object, respectively.

The results from StrongScript and its integration with TruffleJS demonstrate speed-ups
ranging between 2% and 32% across a limited number of benchmarks. These performance
enhancements stem from type specialization intrinsics and direct access to fields in class
instances. Additionally, property access intrinsics remain unaffected by subclass polymor-
phism, resulting in consistently faster performance. However, when StrongScript-generated
code is executed on Node.js (V8), the presence of runtime checks incurs a performance cost,
presumably due to V8’s lack of support for the developed intrinsics and the additional time
spent constructing checked classes.

While StrongScript offers several benefits, its performance optimizations come at the
expense of a constrained type system with eager type checking [82]. Furthermore, it intro-
duces new syntax to the TypeScript language, and its implementation is now considered
dated. Finally, the argument against hash-table lookups may be obsolete, as most modern
JavaScript engines utilize shapes (structures, hidden classes, etc.) for property lookups.

5.2.2 Leveraging Property Access Optimization in V8

Lindroth’s work [73] aimed to enhance JavaScript performance in the V8 engine by identi-
fying and eliminating JavaScript code patterns that frequently resulted in deoptimization
events [68]. The study specifically focused on the impact of property access optimizations
on runtime performance within the V8 JavaScript engine, analyzing real-world application
code implementations.

In particular, the research delved into the consequences of deoptimization events caused
by incorrect type speculation, which often lead to the removal of optimized machine code
and a context switch in the underlying runtime environment.

To assess the performance implications of deoptimization events and the state of inline
caches, Lindroth constructed a benchmarking environment to isolate the behaviour of these
effects. The first suite (Suite 1) analyzes the impact of inline cache state when functions
are optimized and running optimized machine code. A second suite (Suite 2) measures
the performance penalty associated with triggering the wrong map deoptimization event.
Suite 2 aimed to identify correlations between performance loss due to deoptimizations
and inline cache state, as well as the performance cost of modifying inline cache state.
Finally, a third suite (Suite 3) investigates how the size of inline caches affects property
access performance when executing bytecode through Ignition, the JavaScript interpreter
in V8. This setup isolated property lookup operations and facilitated the examination of
performance variations by manipulating the size of the inline caches.

81

Optimized property lookup using a single monomorphic inline cache is significantly
faster compared to polymorphic and megamorphic caches within the optimized category
(Suite 1). Interestingly, neither the occurrence of a deoptimization event nor an increase
in the degree of polymorphism had a significant impact on runtime performance (Suite
2). However, performance regressions from monomorphic property access to polymorphic
property access is observed when an additional hidden class is introduced to a monomorphic
access. In the interpreted category (Suite 3), there is a much smaller relative difference
among the various inline cache states. The results indicate inconclusively a potential linear
relationship between the number of introduced hidden classes and runtime performance,
despite the experiment primarily focusing on the state of the inline caches rather than the
number of hidden classes.

To enhance the performance of JavaScript programs based on the experimental findings,
the author proposed five actionable steps:

1. Determining the level of dynamism in the program.

2. Identifying problematic property access sites.

3. Probing objects with a checker function.

4. Implementing changes to the original code.

The checker function in step 3 is designed to identify potential deoptimizations caused by
incorrect maps based on a set of rules. The four-step strategy is applied in the analysis
of applications and libraries included in the Octane 2.0 Benchmarks [54]. While the op-
timization proved effective for some application code (e.g., GameBoy, with up to a 24.7%
improvement), it performed poorly on others due to the limited capability of the checker
function in detecting the cause of deoptimizations [73].

One drawback of this optimization strategy is that it requires manual modification of
the code, which increases the risk of introducing bugs, particularly in complex software.
Additionally, steps 1 and 2 may be laborious in non-trivial application code. While the
author argues that this strategy is broadly applicable to other VMs, a potential downside
is that it may lead to conflicts and performance impairment when targeting multiple VMs
with the same application code. This impairment is because what may be optimizable in
one JavaScript engine may be deoptimized in another.

5.2.3 Typed JavaScript

Typed JavaScript (Typed JS) [57] is a subset of JavaScript specifically designed for running
web applications on mobile devices. Its primary focus is on reducing memory footprint and
binary size while achieving high performance. Typed JS employs type-decorated syntax
(type annotations) and is transpiled to C++ 11. Subsequently, it is compiled ahead-of-time

82

(AOT) into a target-specific, optimized binary executable. Despite this transformation,
Typed JS retains several core JavaScript semantics, including its object model, prototype,
functions, closures, and garbage collection.

Furthermore, Typed JS offers type checking and portability benefits to the JavaScript
mobile ecosystem. One of its key design principles is strict typing, which mandates that the
types of objects be specified during declaration and prohibits runtime type mutation. While
Typed JS supports the traditional JavaScript prototypal object model, it also introduces
sealed classes for enhanced runtime performance. A sealed class prevents the runtime
addition or deletion of properties and is specifically designed to directly map a JavaScript
object to a C++ class, further optimizing performance.

Typed JS utilizes a fixed object layout, allowing for object access using memory offsets.
It employs property access optimizations using hidden classes and inline caching techniques
similar to those found in V8 and JavaScriptCore. Frequently accessed property offsets
are cached, enabling direct access to property values using the cached offset. Moreover,
Typed JS achieves a smaller memory footprint and binary size through AOT compilation,
replacing the need for a VM with a compact native runtime library.

Benchmark experiments conducted using the SunSpider JavaScript Benchmark suite
[8] demonstrate that Typed JS is memory-efficient and achieves better performance com-
pared to industry-leading JavaScript engines on the Tizen mobile platform, an open-source
mobile operating system developed by Samsung Software R&D Center. Typed JS outper-
forms V8 and JavaScriptCore by up to 3.5× while consuming up to 20× less memory.
However, Typed JS is surpassed by JavaScriptCore (and V8) on recursive and mathemat-
ical test suites, reportedly due to inefficient lambda functions in C++11 and the absence
of JIT compilation. Furthermore, when the same tests are conducted in a Linux desktop
environment, similar results are observed, albeit with a reduced magnitude of difference.
Test suites are observed to run up to 10× faster on a desktop platform.

Although Typed JS achieves impressive performance and aims to become the default
language for mobile applications, its compilation of JavaScript code is platform-specific,
requiring the same code to be compiled for multiple platforms. Additionally, it suffers
from poor string performance due to suboptimal string implementation. Furthermore,
the requirement for type annotations, stemming from a lack of mature type inference
implementation changes the language and may hinder code reuse within a large JavaScript
application codebase that targets multiple platforms.

83

Chapter 6

Future Work

An extension that could enhance this work is the integration of the developed intrinsic into
the optimizing tiers, namely the DFG and FTL JIT compilers. However, it is reasonable
to suspect that any performance improvement from this addition would be minimal, given
that both tiers already implement numerous optimizations, particularly related to property
access.

Presently, optimizations are erased when an object’s shape is mutated through property
or field deletion, even though the object’s type may otherwise undergo nominal usage.
Developing new heuristics based on usage patterns to address this limitation could enhance
performance when such scenarios arise.

Alternatively, some analysis may be performed to determine if such delete operations
may have an adverse result on an object’s shape, or have no effect at all. For instance, an
object whose property is deleted but never dynamically assigned a new property may still
maintain a stable shape, albeit with extra unused storage, and may benefit from nominal
optimizations.

Furthermore, current optimizations do not extend to inheritance. An important future
direction for this work is to include support for property access expressions in inherited
classes, ensuring that classes adhere to a layout where property access in any object,
whether superclass or subclass, can be directly mapped to an offset at compile time. This
expansion would broaden the optimization scope to larger application codebases. Addi-
tional intrinsics could be developed to further optimize performance by targeting frequently
used patterns, similar to how superinstructions [78] expedite bytecode execution by com-
bining multiple instructions into one. Such extensions have the potential to double current
performance speedups.

The implementation currently parses JavaScript code exclusively in Builtin mode in
JavaScriptCore. This approach may raise security concerns, as it grants user code ac-
cess not only to intrinsics relevant to this work but also to all preexisting intrinsics in
JavaScriptCore. Misuse of intrinsics can lead to undefined behaviour, segmentation faults,

84

and memory-related issues. A potential solution is to modularize intrinsics in JavaScript-
Core by exporting only the required intrinsics in a non-builtin (NotBuiltin) mode, which
the TypeScript compiler can target.

A possible future direction is integrating mtsc into the upstream TypeScript compiler
for production. However, considering that TypeScript is a fast-moving language, and the
core developers do not prioritize optimizations over industrial usage issues, this may not
be feasible.

Furthermore, in a scenario where mtsc is integrated into production, there is still a need
to migrate the implemented optimizations in JavaScriptCore to other JavaScript engines,
as mtsc currently only targets JavaScriptCore. Ultimately, this could potentially become
more of a burden than a benefit.

85

Chapter 7

Conclusions

JavaScript is a programming language that is widely used in web and application develop-
ment. Its dynamic nature presents challenges for performance optimizations. State-of-the-
art engines employ various optimization strategies, including the utilization of sophisti-
cated just-in-time compilers (JITs) to compile JavaScript code at runtime for performance
enhancements.

This thesis proposes a method to enhance the performance of JavaScript using Type-
Script. TypeScript’s type system is classified into nominal and non-nominal types, with
nominal types (linked to consistent use of classes) being particularly relevant and applicable
for optimization. Considering that a significant portion of JavaScript’s performance hinges
on optimizing objects and operations performed on them, the implemented optimizations
primarily target property access operations on objects. These optimizations are integrated
into both the TypeScript compiler and JavaScriptCore, the JavaScript engine utilized in
the WebKit project, which powers the Safari browser.

The effectiveness of these optimizations is empirically evaluated using two sets of bench-
marks. The first benchmark (Bjet) comprises six test programs from the JetStream 2.1
JavaScript benchmark suite, widely utilized by several browser engines. The second is a
microbenchmark (Bµ) consisting of four test programs. The results from both benchmarks
indicate an improvement in runtime performance when a nominal typing style is employed
in TypeScript.

The empirical evaluation of the optimizations reveals that for JavaScript code heavily
utilizing objects and property access operations, such operations may significantly impact
performance. While the optimizations are implemented in JavaScriptCore, similar perfor-
mance improvements can be expected in modern JavaScript engines, as they model objects
in a similar manner and apply comparable optimizations.

Although property access optimizations offer performance improvements, the speedups
in LLInt (TL) in the Bjet benchmark were slightly lower than anticipated. This outcome is
surprising considering that LLInt performs no specific optimizations apart from the use of
inline caches.

86

An especially intriguing idea is to compare the results obtained in this thesis with the
application of these optimizations to another multi-tiered JavaScript engine, such as V8.
Such a comparison may help answer the question of whether optimizations provide benefits
in the interpreter tier beyond the security considerations imposed by a JIT.

A particular challenge in implementing the optimizations is developing reliable heuris-
tics with applicable optimization techniques. Despite TypeScript being statically typed, it
exhibits unsoundness in its type system. Hence, relying on the type system for guarantees
required by several optimization strategies is challenging, making optimizations difficult
to apply. This thesis implements optimizations for access operations on nominal types.
Extending the heuristics developed by streamlining them can enable more optimization
possibilities.

While this thesis primarily focuses on structure-related optimizations in JavaScript,
there is potential to further extend the idea of leveraging types in TypeScript for non-
intrusive JavaScript optimization by identifying optimization opportunities within the ar-
chitecture of JavaScript engines that are suitable for the type system. The main goal of
the thesis is to demonstrate the feasibility of this approach and to serve as inspiration for
future research.

87

References

[1] JavaScript Interpreter. https: // firefox-source-docs. mozilla. org/ js/

index. html# javascript-interpreter .

[2] Spidermonkey. https: // firefox-source-docs. mozilla. org/ js/ index. html .

[3] The WebKit Open Source Project. https: // webkit. org/ project/ .

[4] Measuring program similarity for efficient benchmarking and performance analysis of
computer systems. PhD thesis, 2006.

[5] What is V8? https: // v8. dev/ , 2008.

[6] Announcing TypeScript 0.8.1. https: // devblogs. microsoft. com/ typescript/
announcing-typescript-0-8-1/ , 2012.

[7] Typescript: JavaScript Development at Application Scale. 2012.

[8] Announcing SunSpider 1.0. https: // www. webkit. org/ blog/ 2364/

announcing-sunspider-1-0/ , 2013.

[9] JavaScriptCore. https: // trac. webkit. org/ wiki/ JavaScriptCore , 2014.

[10] Sources | JavaScriptCore. https: // github. com/ WebKit/ WebKit , 2014.

[11] Firing up the Ignition Interpreter. https: // v8. dev/ blog/

ignition-interpreter , 2016.

[12] Ignition. https: // v8. dev/ docs/ ignition , 2016.

[13] A New Bytecode Format for JavaScriptCore. https: // www. webkit. org/ blog/

9329/ a-new-bytecode-format-for-javascriptcore/ , 2019.

[14] JavaScriptCore Internals Part 1: Tracing JavaScript Source to Bytecode. https:

// zon8. re/ posts/ jsc-internals-part1-tracing-js-source-to-bytecode ,
2020.

[15] Speculation in JavaScriptCore. https: // webkit. org/ blog/ 10308/

speculation-in-javascriptcore/ , 2020.

88

https://firefox-source-docs.mozilla.org/js/index.html#javascript-interpreter
https://firefox-source-docs.mozilla.org/js/index.html#javascript-interpreter
https://firefox-source-docs.mozilla.org/js/index.html
https://webkit.org/project/
https://v8.dev/
https://devblogs.microsoft.com/typescript/announcing-typescript-0-8-1/
https://devblogs.microsoft.com/typescript/announcing-typescript-0-8-1/
https://www.webkit.org/blog/2364/announcing-sunspider-1-0/
https://www.webkit.org/blog/2364/announcing-sunspider-1-0/
https://trac.webkit.org/wiki/JavaScriptCore
https://github.com/WebKit/WebKit
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://v8.dev/docs/ignition
https://www.webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore/
https://www.webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore/
https://zon8.re/posts/jsc-internals-part1-tracing-js-source-to-bytecode
https://zon8.re/posts/jsc-internals-part1-tracing-js-source-to-bytecode
https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://webkit.org/blog/10308/speculation-in-javascriptcore/

[16] TypeScript Design Goals | Non-goals. https: // github. com/ Microsoft/

TypeScript/ wiki/ TypeScript-Design-Goals# non-goals , 2020.

[17] TypeScript Compiler Internals. https: // basarat. gitbook. io/ typescript/

overview , 2021.

[18] Jetstream 2. https: // webkit. org/ blog/ 13146/

introducing-jetstream-2-1/ , 2022.

[19] JetStream 2. https: // browserbench. org/ JetStream/ , 2022.

[20] JetStream 2 In-Depth Analysis. https: // browserbench. org/ JetStream/

in-depth. html , 2022.

[21] Automatic semicolon insertion. 2023.

[22] Electron | Build cross-platform desktop apps with JavaScript, HTML, and CSS.
https: // www. electronjs. org/ , 2023.

[23] IIFE. https: // developer. mozilla. org/ en-US/ docs/ Glossary/ IIFE , 2023.

[24] Inheritance and the prototype chain. https: // developer. mozilla. org/ en-US/

docs/ Web/ JavaScript/ Inheritance_ and_ the_ prototype_ chain , 2023.

[25] JetBrains Dev Report: TypeScript Is Fastest-Growing Programming Lan-
guage. https: // visualstudiomagazine. com/ articles/ 2023/ 02/ 02/

jetbrains-survey. aspx , 2023.

[26] Object prototypes. https: // developer. mozilla. org/ en-US/ docs/ Learn/

JavaScript/ Objects/ Object_ prototypes , 2023.

[27] What is type erasure? https: // github. com/ microsoft/ TypeScript/ wiki/

FAQ# what-is-type-erasure , 2023.

[28] Angular | The web development framework for building the future. https: //

angular. io/ , 2024.

[29] Bun is a JavaScript runtime. https: // bun. sh/ , 2024.

[30] Chrome | The browser built to be yours. https: // www. google. com/ intl/ en_

ca/ chrome/ , 2024.

[31] Commits | JavaScriptCore. https: // github. com/ WebKit/ WebKit/ commits ,
2024.

[32] Hello, nest! https://nestjs.com/, 2024.

[33] Introduction to Node.js. https: // nodejs. org/ en/ learn/ getting-started/

introduction-to-nodejs , 2024.

89

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#non-goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals#non-goals
https://basarat.gitbook.io/typescript/overview
https://basarat.gitbook.io/typescript/overview
https://webkit.org/blog/13146/introducing-jetstream-2-1/
https://webkit.org/blog/13146/introducing-jetstream-2-1/
https://browserbench.org/JetStream/
https://browserbench.org/JetStream/in-depth.html
https://browserbench.org/JetStream/in-depth.html
https://www.electronjs.org/
https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://visualstudiomagazine.com/articles/2023/02/02/jetbrains-survey.aspx
https://visualstudiomagazine.com/articles/2023/02/02/jetbrains-survey.aspx
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://github.com/microsoft/TypeScript/wiki/FAQ#what-is-type-erasure
https://github.com/microsoft/TypeScript/wiki/FAQ#what-is-type-erasure
https://angular.io/
https://angular.io/
https://bun.sh/
https://www.google.com/intl/en_ca/chrome/
https://www.google.com/intl/en_ca/chrome/
https://github.com/WebKit/WebKit/commits
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs

[34] Python. https: // www. python. org/ , 2024.

[35] React Native | Learn once, write anywhere. https: // reactnative. dev/ , 2024.

[36] Safari. Blazing fast. Incredibly private. https: // www. apple. com/ ca/ safari/ ,
2024.

[37] Speedometer 3. https: // www. browserbench. org/ Speedometer3. 0/ about.

html , 2024.

[38] Speedometer 3.0: The Best Way Yet to Measure
Browser Performance. https: // webkit. org/ blog/ 15131/

speedometer-3-0-the-best-way-yet-to-measure-browser-performance/ ,
2024.

[39] The Computer Language 23.03 Benchmarks Game. https: //

benchmarksgame-team. pages. debian. net/ benchmarksgame/ index. html ,
2024.

[40] Visual Studio Code | Code editing. Redefined. https: // code. visualstudio. com/ ,
2024.

[41] Ole Agesen. Concrete type inference: delivering object-oriented applications. PhD
thesis, Stanford, CA, USA, 1996. UMI Order No. GAX96-20452.

[42] Ole Agesen and Urs Hölzle. Type feedback vs. concrete type inference: a compar-
ison of optimization techniques for object-oriented languages. In Proceedings of the
Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’95, page 91–107, New York, NY, USA, 1995. Association for
Computing Machinery.

[43] Wonsun Ahn, Jiho Choi, Thomas Shull, Maŕıa J. Garzarán, and Josep Torrellas.
Improving JavaScript Performance by Deconstructing the Type System. PLDI ’14,
page 496–507, New York, NY, USA, 2014. Association for Computing Machinery.

[44] Marcus Arnström, M. G. Christiansen, and Daniel Sehlberg. Prototype-based pro-
gramming. 2003.

[45] D.C. Atkinson and W.G. Griswold. The design of whole-program analysis tools. In
Proceedings of IEEE 18th International Conference on Software Engineering, pages
16–27, 1996.

[46] John Aycock. A Brief History of Just-in-Time. volume 35, page 97–113, New York,
NY, USA, jun 2003. Association for Computing Machinery.

[47] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Brown. Context Thread-
ing: A Flexible and Efficient Dispatch Technique for Virtual Machine Interpreters.
volume 2005, pages 15–26, 01 2005.

90

https://www.python.org/
https://reactnative.dev/
https://www.apple.com/ca/safari/
https://www.browserbench.org/Speedometer3.0/about.html
https://www.browserbench.org/Speedometer3.0/about.html
https://webkit.org/blog/15131/speedometer-3-0-the-best-way-yet-to-measure-browser-performance/
https://webkit.org/blog/15131/speedometer-3-0-the-best-way-yet-to-measure-browser-performance/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://code.visualstudio.com/

[48] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and Thorsten
Holz. JIT-Picking: Differential Fuzzing of JavaScript Engines. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, page 351–364, New York, NY, USA, 2022. Association for Computing Machinery.

[49] Gavin Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding TypeScript. In
Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented
Programming - Volume 8586, page 257–281, Berlin, Heidelberg, 2014. Springer-Verlag.

[50] Camillo Bruni. A closer look at crankshaft, v8’s optimiz-
ing compiler. https: // wingolog. org/ archives/ 2011/ 08/ 02/

a-closer-look-at-crankshaft-v8s-optimizing-compiler , 2017.

[51] Camillo Bruni. Fast properties in V8. https: // v8. dev/ blog/ fast-properties ,
2017.

[52] Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer, and Gustavo Alonso. Compiler-
assisted object inlining with value fields. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and Implementa-
tion, PLDI 2021, page 128–141, New York, NY, USA, 2021. Association for Computing
Machinery.

[53] John Peter Campora, Mohammad Wahiduzzaman Khan, and Sheng Chen. Type-
Based Gradual Typing Performance Optimization. volume 8, New York, NY, USA,
jan 2024. Association for Computing Machinery.

[54] Stefano Cazzulani. Octane: the JavaScript benchmark suite
for the modern web. https: // blog. chromium. org/ 2012/ 08/

octane-javascript-benchmark-suite-for. html , 2012.

[55] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF a
dynamically-typed object-oriented language based on prototypes. In Conference
Proceedings on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA ’89, page 49–70, New York, NY, USA, 1989. Association for Computing
Machinery.

[56] Jiho Choi, Thomas Shull, and Josep Torrellas. Reusable inline caching for JavaScript
performance. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 889–901, New York, NY,
USA, 2019. Association for Computing Machinery.

[57] Ryan H. Choi and Youngil Choi. A lightweight JavaScript engine for mobile devices.
In Proceedings of the 3rd International Workshop on Mobile Development Lifecycle,
MobileDeLi 2015, page 3–4, New York, NY, USA, 2015. Association for Computing
Machinery.

91

https://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler
https://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler
https://v8.dev/blog/fast-properties
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html

[58] Jan de Mooij, Matthew Gaudet, Iain Ireland, Nathan Henderson, and J. Nelson Ama-
ral. CacheIR: The Benefits of a Structured Representation for Inline Caches. In
Proceedings of the 20th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes, MPLR 2023, page 34–46, New York, NY, USA,
2023. Association for Computing Machinery.

[59] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL ’84, page 297–302, New York, NY, USA, 1984.
Association for Computing Machinery.

[60] Gem Dot, Alejandro Mart́ınez, and Antonio González. Removing checks in dynam-
ically typed languages through efficient profiling. In Proceedings of the 2017 Inter-
national Symposium on Code Generation and Optimization, CGO ’17, page 257–268.
IEEE Press, 2017.

[61] Jana Dunfield and Neel Krishnaswami. Bidirectional Typing. volume 54, New York,
NY, USA, may 2021. Association for Computing Machinery.

[62] ECMA International. ECMAScript® 2022 Language Specification. ecma interna-
tional, 13 edition, June 2022.

[63] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, page 239–250, New York, NY, USA, 2012.
Association for Computing Machinery.

[64] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, page 239–250, New York, NY, USA, 2012.
Association for Computing Machinery.

[65] John L. Hennessy and David A. Patterson. The Ruby Programming Language. O’Reilly
Media, Inc, 1005 Gravenstein Highway North, Sebastopol, CA 95472, 1st edition, 2008.

[66] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2011.

[67] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed
Object-Oriented Languages With Polymorphic Inline Caches. In Proceedings of the
European Conference on Object-Oriented Programming, ECOOP ’91, page 21–38,
Berlin, Heidelberg, 1991. Springer-Verlag.

92

[68] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with dy-
namic deoptimization. In Proceedings of the ACM SIGPLAN 1992 Conference on Pro-
gramming Language Design and Implementation, PLDI ’92, page 32–43, New York,
NY, USA, 1992. Association for Computing Machinery.

[69] Urs Hölzle and David Ungar. Optimizing Dynamically-Dispatched Calls with Run-
Time Type Feedback. PLDI ’94, page 326–336, New York, NY, USA, 1994. Association
for Computing Machinery.

[70] Md Saiful Islam. JavaScript alternative (TypeScript) and its effectiveness in web
development. diplomathesis, Tampere University of Applied Sciences, 2023.

[71] Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, and
Ben Hardekopf. Improved type specialization for dynamic scripting languages. In
Proceedings of the 9th Symposium on Dynamic Languages, DLS ’13, page 37–48, New
York, NY, USA, 2013. Association for Computing Machinery.

[72] Gary King. How Not to Lie With Statistics: Avoiding Common Mistakes in Quanti-
tative Political Science. volume 30, page 666–687, August 1986.

[73] Jonathan Lindroth. Leveraging property access optimization in the V8 JavaScript
engine for improved runtime performance. diplomathesis, University of Uppsala, 2021.

[74] Microsoft. abstract Classes and Members. [77].

[75] Microsoft. Contextual Typing. [77].

[76] Microsoft. Narrowing. [77].

[77] Microsoft. The TypeScript Handbook. Microsoft, 2024.

[78] Lukas Miedema. QuickInterp - Improving interpreter performance with superinstruc-
tions. June 2020.

[79] David J. Pearce. Sound and Complete Flow Typing with Unions, Intersections and
Negations. In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Ver-
ification, Model Checking, and Abstract Interpretation, pages 335–354, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[80] David Peter. hyperfine, March 2023.

[81] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris.
Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, page 167–180, New York, NY, USA, 2015. Association for Computing
Machinery.

93

[82] Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM already knew that:
leveraging compile-time knowledge to optimize gradual typing. volume 1, New York,
NY, USA, oct 2017. Association for Computing Machinery.

[83] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construction
of JavaScript benchmarks. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’11,
page 677–694, New York, NY, USA, 2011. Association for Computing Machinery.

[84] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of JavaScript programs. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’10, page
1–12, New York, NY, USA, 2010. Association for Computing Machinery.

[85] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete Types for Type-
Script. In European Conference on Object-Oriented Programming, 2015.

[86] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman, Wayne A. Wong,
Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy. The structure and perfor-
mance of interpreters. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
VII, page 150–159, New York, NY, USA, 1996. Association for Computing Machinery.

[87] Marija Selakovic and Michael Pradel. Automatically Fixing Real-World JavaScript
Performance Bugs. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2, ICSE ’15, page 811–812. IEEE Press, 2015.

[88] Marija Selakovic and Michael Pradel. Performance issues and optimizations in
javascript: An empirical study. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 61–72, 2016.

[89] Manuel Serrano. Of JavaScript AOT compilation performance. volume 5, New York,
NY, USA, aug 2021. Association for Computing Machinery.

[90] Jeremy Siek and Walid Taha. Gradual Typing for Objects. In Erik Ernst, editor,
ECOOP 2007 – Object-Oriented Programming, pages 2–27, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[91] Jeremy G. Siek. Gradual Typing for Functional Languages. 2006.

[92] Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler,
Sam Tobin-Hochstadt, and Matthias Felleisen. Towards Practical Gradual Typing. In
John Tang Boyland, editor, 29th European Conference on Object-Oriented Program-
ming (ECOOP 2015), volume 37 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4–27, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

94

[93] Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang. Uncovering JavaScript
Performance Code Smells Relevant to Type Mutations. In Proceedings of the 13th
Asian Symposium on Programming Languages and Systems (APLAS 2015), pages
335–355, November 2015.

95

APPENDICES

96

Appendix A

Symbol and PropertyAccessExpression

A property access expression in TypeScript is represented as an AST node, defined by the
interface PropertyAccessExpression. This node contains four members: kind, expression,
name, and an optional questionDotToken. The kind member is an enum type called
SyntaxKind, which represents both the TypeScript token and AST node types. Specifically,
the kind of a property access expression is set to SyntaxKind.PropertyAccessExpression.
The expression member represents the left-hand side expression, while the name mem-
ber represents the property name found in the access expression. Figure A.1 presents the
definition of PropertyAccessExpression in TypeScript.

1 interface PropertyAccessExpression extends MemberExpression, NamedDeclaration {

2 readonly kind: SyntaxKind.PropertyAccessExpression;

3 readonly expression: LeftHandSideExpression;

4 readonly questionDotToken?: QuestionDotToken;

5 readonly name: MemberName;

6 }

Figure A.1: Definition of PropertyAccessExpression AST node.

A Symbol connects declaration AST nodes to other declarations contributing to the
same entity [17]. Symbols are produced by the Binder in tsc. Figure A.2 presents the
definition of Symbol in TypeScript.

97

1 interface Symbol {

2 flags: SymbolFlags; // Symbol flags

3 escapedName: __String; // Name of symbol

4 declarations?: Declaration[]; // Declarations associated with this symbol

5 valueDeclaration?: Declaration; // First value declaration of the symbol

6 members?: SymbolTable; // Class, interface or object literal instance members

7 exports?: SymbolTable; // Module exports

8 id?: SymbolId; // Unique id (used to look up SymbolLinks)

9 mergeId?: number; // Merge id (used to look up merged symbol)

10 parent?: Symbol; // Parent symbol

11 }

Figure A.2: Representation of Symbol in TypeScript.

98

Appendix B

Nominal Type Properties for Object
Layout

In some cases, symbols corresponding to multiple types may be merged by the binder,
for example, classes declared in separate sources but with the same name. To prevent
the utilization of properties not defined in the actual class for which the check is being
performed, the sorted properties are filtered again to include only properties whose parent
nodes have the same ID as that of the type being inspected (typ). Figure B.1 presents a
pseudocode for computing object layout information.

1 const isNotMethodOrFunction = (nd: Node) =>

2 !(isMethodDeclaration(nd) || isFunctionDeclaration(nd) || isFunctionExpression(nd));

3 let properties = (typ.declaredProperties || typ.properties).filter(

4 (sym: Symbol) => isNotMethodOrFunction(sym.valueDeclaration!)

5);

6 properties.sort((a: Symbol, b: Symbol) =>

7 a.valueDeclaration!.pos - b.valueDeclaration!.pos);

8 properties = properties.filter((propSym: Symbol) => (

9 propSym.parent && propSym.parent.valueDeclaration &&

10 propSym.parent.valueDeclaration.id === typ.symbol.valueDeclaration.id

11));

12 // layout metadata

13 const namedProperties = properties.map((x: Symbol) => x.escapedName)

14 .slice(0, maxInlineSlots);

Figure B.1: Computing layout metadata.

99

Appendix C

tsconfig.json support for
optimizeWithTypes

The integration of optimizeWithTypes involves the addition of a new parameter to the
CompilerOptions interface, as well as adjustments to the command-line options utilized
in tsc. Figures C.1 and C.2 present the optimizeWithTypes configuration in the compiler
and command-line options, respectively.

1 interface CompilerOptions {

2 allowJs?: boolean;

3 allowUnreachableCode?: boolean;

4 allowUnusedLabels?: boolean;

5 alwaysStrict?: boolean;

6 checkJs?: boolean;

7 noEmitOnError?: boolean;

8 noErrorTruncation?: boolean;

9 noFallthroughCasesInSwitch?: boolean;

10 noImplicitAny?: boolean;

11 noImplicitReturns?: boolean;

12 noImplicitThis?: boolean;

13 optimizeWithTypes?: boolean;

14 }

Figure C.1: optimizeWithTypes configuration in CompilerOptions type definition.

100

1 const commandOptionsWithoutBuild: CommandLineOption[] = [

2 // CommandLine only options

3 {

4 name: "version",

5 shortName: "v",

6 type: "boolean",

7 showInSimplifiedHelpView: true,

8 category: Diagnostics.Command_line_Options,

9 description: Diagnostics.Print_the_compiler_s_version,

10 defaultValueDescription: false,

11 },

12 // ...

13 {

14 name: "optimizeWithTypes",

15 type: "boolean",

16 category: Diagnostics.Language_and_Environment,

17 description: Diagnostics.Allow_optimizations_with_types_when_possible,

18 defaultValueDescription: false,

19 },

20]

Figure C.2: optimizeWithTypes configuration in CommandLineOption array.

101

Appendix D

Builtin mode in JavaScriptCore

Builtin mode in JSC is used for parsing and compiling built-in JavaScript modules, which
extensively utilize well-known symbols and built-in names as seen in Figure D.1.

1 function concat(first)

2 {

3 "use strict";

4

5 if (@argumentCount() === 1

6 && @isJSArray(this)

7 && @tryGetByIdWithWellKnownSymbol(this, "isConcatSpreadable") === @undefined

8 && (

9 !@isObject(first)

10 || @tryGetByIdWithWellKnownSymbol(first, "isConcatSpreadable") === @undefined)

11) {

12

13 var result = @concatMemcpy(this, first);

14 if (result !== null)

15 return result;

16 }

17

18 return @tailCallForwardArguments(@concatSlowPath, this);

19 }

Figure D.1: Implementation of concat for ArrayPrototype.js in JSC [10].

102

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Overview

	Background
	JavaScript
	JavaScript Syntax and Semantics
	Dynamic Typing

	JavaScript Engines
	Optimization Techniques and Challenges

	JavaScriptCore
	Execution Pipeline Architecture
	Bytecode
	Fast Path / Slow Path
	OSR
	LLInt
	Baseline JIT
	DFG and FTL JIT
	Optimization Techniques
	Speculation

	Bun
	TypeScript
	TypeScript Syntax and Semantics
	Type System

	Nominal Typing
	Why TypeScript?

	Implementation
	Heuristic Guided Optimization
	Type Classification
	Heuristics
	Case Study: Nominal Types
	Explicit Type Casts
	Implicit Type Casts
	Delete Operations

	Modifications
	TypeScript
	Checking Nominality
	Optimization Metadata
	Shape Mutation
	Emitting JavaScript
	tsconfig.json Configuration

	JavaScriptCore
	get_by_id_offset Bytecode Instruction
	LLInt
	Baseline
	Intrinsic Instructions

	Bringing it All Together
	A Complete Example

	Evaluation
	Benchmarks
	Microbenchmarks

	Methodology
	Results
	Bjet
	B
	Intrinsics

	Discussion
	Bjet
	B
	Heuristics

	Closing Remarks

	Related Work
	JavaScript Performance and Optimization Challenges
	Performance Optimization Techniques
	Concrete Types for TypeScript
	Leveraging Property Access Optimization in V8
	Typed JavaScript

	Future Work
	Conclusions
	References
	APPENDICES
	Symbol and PropertyAccessExpression
	Nominal Type Properties for Object Layout
	tsconfig.json support for optimizeWithTypes
	Builtin mode in JavaScriptCore

