Classifying Code as Human
Authored or GPT-4 Generated

by

Oseremen Joy Idialu

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2024

© Oseremen Joy Idialu 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Statement of Contributions

Some parts of this thesis (Chapters 1-4, 6-8) come from a multi-authored paper of which
I am the first author. Pending its publication by Association for Computing Machinery
(ACM), this multi-authored paper is publicly available as a preprint, cited below:

Idialu, O. J., Mathews, N. S., Maipradit, R., Atlee, J. M., & Nagappan, M. (2024).
Whodunit: Classifying Code as Human Authored or GPT-4 Generated—A case study
on CodeChef problems. arXiv preprint arXiv:2403.04013.

il

Abstract

Artificial intelligence (AI) assistants such as GitHub Copilot and ChatGPT, built
on large language models like GPT-4, are revolutionizing how programming tasks are per-
formed, raising questions about whether generative AI models author code. Such questions
are of particular interest to educators, who worry that these tools enable a new form of aca-
demic dishonesty, in which students submit Al-generated code as their work. Our research
explores the viability of using code stylometry and machine learning to distinguish between
GPT-4 generated and human-authored code and attempts to explain the predictions.

Our study comprises two analyses, each based on different datasets, one sourced
from CodeChef and the other from an introductory programming course. Both datasets
encompass human-authored solutions alongside Al-authored solutions generated by GPT-
4. The human-authored solutions selected are from before 2021 to ensure that the solutions
were not contaminated with contributions from an Al coding assistant. The initial analysis
serves to establish the potential of our approach, while the subsequent analysis extends
our approach to actual programming assignments.

In our first analysis, our classifier outperforms the baselines, achieving an F1l-score
and AUC-ROC score of 0.91. Even a variant of our classifier, which excludes gameable
features (features susceptible to manipulation e.g., empty lines, whitespace), maintains a
good performance, achieving an F1-score and AUC-ROC score of 0.89. We also conducted
an evaluation based on the difficulty level of programming problems, revealing little to no
differences across the difficulty levels. Specifically, the F1l-score and AUC-ROC remained
consistent with scores of 0.89 for easy and medium problems and a slight decrease to 0.87
for harder problems. These results highlight the promise of our approach regardless of the
complexity of the programming tasks.

In our second analysis, our classifier, trained and evaluated on programming assign-
ments achieved an Fl-score of 0.69 and an AUC-ROC of 0.73. A subsequent evaluation
trained and evaluated our classifier on assignments submitted in 2023, a period after the
release of Copilot and ChatGPT; we identified 13 out of 54 submissions as GPT-4 gener-
ated with an accuracy rate of 73%. We believe educators should recognize and proactively
address this emerging trend within academic settings.

v

Acknowledgements

I would like to thank my supervisors, Meiyappan Nagappan and Joanne Atlee. I would
also like to thank members of the SWAG and WATFORM research groups, and others who
provided advice and support towards the completion of this work.

As a member of the University of Waterloo, I acknowledge that this work took place
on the traditional territory of the Neutral, Anishinaabe and Haudenosaunee peoples.

Dedication

This work is dedicated to my family and friends.

vi

Table of Contents

Author’s Declaration
Statement of Contributions
Abstract
Acknowledgements
Dedication

List of Figures

List of Tables

1 Introduction

1.1 Contributions e,

2 Related Work

ii

iii

iv

vi

ix

N}

2.1 Detecting Al-generated Code
2.2 Code Stylometry
2.3 Machine Learning Approaches

vil

S O ot

Study Design 7
3.1 Data Collection

3.2 Feature Extraction 12
3.3 Classification 14
Results 18

4.1 RQ1. How well can code-stylometry features distinguish human-authored
code from GPT-4 generated code? 18

4.2 RQ2. How influential are non-gameable features in differentiating human-
authored vs. GPT-4 generated code? 21

4.3 RQ3. How well does the classifier perform when trained and evaluated on
only correct solutions? 22

4.4 RQ4. How well does the classifier perform when trained and evaluated
across varying levels of problem difficulty? 24

Evaluation on Introductory Programming Assignments 25

5.1 Replicating Our Approach Using Introductory Programming Assignments . 25

5.2 Investigating the Authorship of Submissions in the Era of Al Assistants . . 30
Discussion 36
6.1 Correctly Predicted Solution 37
6.2 Incorrectly Predicted Solution 39

6.3 Differences in Results on CodeChef vs. Programming Assignments Datasets 39

Threat to Validity 41
7.1 External Threat to Validity 41
7.2 Construct Validity 41
Conclusion 42
References 44

viii

List of Figures

1.1

3.1
3.2

4.1
4.2

5.1
5.2
2.3

5.4
2.5
5.6
5.7
2.8
2.9

6.1
6.2
6.3

Solutions to a palindrome problem from CodeChef 2

An overview of our approach in detecting GPT-4 generated code 7

Prompt used for generating 2 GPT-4 code solutions for CodeChef problems 11

SHAP feature importance of our approach 21

SHAP feature importance of non-gameable features 23

Prompt used for generating 2 GPT-4 code solutions for assignment questions 26
SHAP feature importance among all assignment features 28

SHAP feature importance of classifier built on non-gameable assignment

features L 29
Code classified as GPT-4 generated with a high probability of 0.9 31
Code classified as human-authored with a high probability of 0.98 31
Code classified as GPT-4 generated with a low probability of 0.56 32
Code classified as human-authored with a low probability of 0.56 34
Code classified as GPT-4 generated with an average probability of 0.77 . . 35
Code classified as human-authored with an average probability of 0.78 . . . 35
Correctly predicted human code 36
Correctly predicted GPT-4 generated code. 37
Human code predicted incorrectly as GPT-4 generated code 38

X

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

5.1

5.2
5.3
5.4

Difficulty Levels of Selected CodeChef Problems
Final Problem Set Binned into 3 Classes of Difficulty
Code Stylometry and Code Complexity Features

Python Keywords
Python AST Node Types.

Classifier Performance Comparison among Different Approaches for Distin-
guishing between Al-generated and Human-authored Code

Classifier Performance Comparison on Correct and Randomly Sampled So-
lutions e

Classifier Performance Comparison Across Levels of Problem Difficulty

Introductory Programming Course Assignments: Pre (2019, 2020) and Post
(2023) Copilot and ChatGPT release

Python Keywords
Python AST Node Types.

Classifier Performance on Introductory Programming Assignments Trained
on 2019 Assignments and Evaluated on 2020 Assignments.

Chapter 1

Introduction

AT tools like Github Copilot [21], ChatGPT [13], and Code Whisperer [17] are disrupting
how educators teach and assess programming. These tools are promoted as “coding assis-
tants” that aim to improve developer productivity by suggesting code snippets, bug fixes,
code refactorings, and test cases. The use of Al assistants in introductory programming
courses has been shown to increase the productivity of novice programmers in solving intro-
ductory programming problems, both in terms of improving the quality of their programs
and easing the cognitive load and development effort required [33].

Eventually, however, educators need to assess how well students can program with-
out the aid of their coding assistants, and they are worried about academic dishonesty.
Programming courses already suffer from high levels of plagiarism [3] and contract cheat-
ing [I1]. The ease with which these new tools can automatically generate code raises
concerns about a new form of academic dishonesty, in which students submit Al-generated
programs as their work [5, 22, 37]. Existing approaches to detecting plagiarism among
student-submitted programs rely on automated similarity comparison tools, but these tools
are unlikely to detect Al-generated solutions because Al-generated code has low similarity
to student-authored code [10].

Consider the following real-world example of code-style differences between human
and GPT-4 generated code to motivate our work. Figure 1.1 presents two Python pro-
grams, both of which compute the sum of all palindromic numbers within an input range
of integers': Figure 1.1a represents a user submission obtained from CodeChef, whereas
Figure 1.1b was generated by ChatGPT. The two solutions exhibit clear differences in
coding styles. The Al-generated code includes empty lines, and helper functions, whereas

1https ://www.codechef .com/problems/SPALNUM

https://www.codechef.com/problems/SPALNUM

1 for _ in range(int (input())):
21, r = map(int, input().split())

3 result = 0
. for i in range(l, r + 1):
5 if str(i) == str(i)[::-1]:

6 result += i
7 print (result)

(a) Example of human code

| def is_palindrome(n):
2 return str(m) == str(m)[::-1]

4 def palindromic_numbers_sum(l, r):
total = O

6 for n in range(l, r+1):

if is_palindrome(n):

8 total += n

9 return total

11 t = int (input ())

13 for i in range(t):

14 1, r = map(int, input().split())

15 result = palindromic_numbers_sum(l, r)
16 print (result)

(b) Example of ChatGPT code

Figure 1.1: Solutions to a palindrome problem from CodeChef

the human-authored code uses shorter identifiers. These differences and other code-style
patterns (e.g., frequency of different keywords, complexity of expressions) used in prior
studies on author attribution led us to question whether we could use code-stylometry
features to build a classifier that distinguishes between human-authored code and GPT-4
generated code.

The goal of our research is to determine the viability of constructing a classifier that
can distinguish between GPT-4 generated and human-authored code. We hypothesize that
the low similarity between student-authored and GPT-4 generated code suggests that code
stylometry and machine-learning classification can be used to distinguish between the two.

1.1 Contributions

In this thesis, we make the following contributions: (1) We make a best-effort attempt at
constructing a classifier for detecting GPT-4 generated Python code, using a combination

of supervised machine learning (XGBoost [10]), and a collection of 140 code-stylometry fea-
tures. The classifier is trained and evaluated on a dataset comprising 798 human-authored
solutions and 798 GPT-4 generated solutions to 399 Python problems of varying degrees
of difficulty from CodeChef.? To our knowledge, this is the first attempt to construct a
classifier for detecting GPT-4 generated code based on a dataset with over 1000 solutions.
(2) Our evaluation focuses on four research questions:

RQ1: How well can code-stylometry features distinguish human-authored code
from GPT-4 generated code?

Prior work has shown that a classifier trained on code-stylometry features can dis-
tinguish among different human developers. We conjecture that a classifier can be
built to differentiate code developed by humans from code generated by Al tools.

RQ2: How influential are non-gameable features in differentiating human-
authored vs. GPT-4 generated code?

Coding styles are deemed gameable if they can be easily and strategically altered or
avoided with minimal effort, particularly to mask the Al-generated nature of the code.
Examples of such gameable styles include the use of empty lines and whitespace for
readability, which can be quickly adjusted without significantly impacting the overall
code structure or functionality. If a classifier relies heavily on gameable features,
then it may be relatively easy to disguise a GPT-4 generated solution through simple
code edits. We hypothesize that a classifier built using non-gameable code-stylometry
features can effectively identify GPT-4 generated code.

RQ3: How well does the classifier perform when trained and evaluated on only
correct solutions?

We hypothesize that a dataset containing incorrect GPT-4 generated solutions may
exhibit distinctive characteristics that could potentially enhance a classifier’s ability
to identify GPT-4 generated solutions.

RQ4: How well does the classifier perform when trained and evaluated across
varying levels of problem difficulty?

We hypothesize that as the complexity of coding problems increases, the discrimi-
native features between human and GPT-4 generated code may become more pro-
nounced. This could be attributed to the unique problem-solving approaches em-
ployed by human developers compared to Al systems when faced with complex pro-
gramming tasks.

’https://www.codechef . com/

https://www.codechef.com/

(3) Our dataset comprising 399 problems and 1596 human and GPT-4 generated solutions
is itself a contribution that we make publicly available to other researchers working on the
problem of identifying GPT-4 generated code. We also provide a subset of the dataset
comprising 161 problems whose solutions have been checked for correctness. We provide a
replication package,® which includes raw data, feature lists, and code scripts.

(4) We extend our approach to a dataset of introductory programming assignments span-
ning three years (2019, 2020, and 2023). In this evaluation, we train a classifier on 80
submissions, 40 human and 40 GPT-4 generated submissions from 2019. Subsequently, we
evaluate the classifier on 108 submissions from 2020, predating the release of Copilot and
ChatGPT. Lastly, we assess the classifier’s performance on 54 submissions from 2023, well
after the release of these Al assistants, to gauge their usage in assignments. This evaluation
offers insights into how promising our approach is on real-world assignments, contributing
to the ongoing discourse surrounding the use of Al assistants in academic settings.

The rest of the thesis is organized as follows. Chapter 2 discusses related work.
Chapter 3 describes the approach used in this study (including the data collection, feature
extraction, and classification phases) and discusses the baselines. Chapter 4 presents the
results of our analyses using CodeChef data. In Chapter 5, we replicate our approach
on introductory programming assignments and discuss the results. Chapter 6 explains
the classifier’s predictions, focusing on correctly and incorrectly predicted code. Chapter
7 highlights the threats to validity. Chapter 8 concludes the paper and discusses future
work.

3https://zenodo.org/doi/10.5281/zenodo. 10152237

4

https://zenodo.org/doi/10.5281/zenodo.10152237

Chapter 2

Related Work

In this chapter, we review related work on Al-generated code detection, code stylometry,
and machine learning applications.

2.1 Detecting Al-generated Code

The prevalence and potency of Al assistants have led researchers to start investigating the
problem of detecting code generated by Al assistants. Puryear and Sprint [16] investigated
how well-established plagiarism detection tools, MOSS [2], Codequiry [12], and CopyLeaks
[15], could detect Copilot-generated solutions among a set of data science programming
assignments. They found that Copilot-generated solutions exhibited little similarity to so-
lutions authored by students. The highest observed similarity, identified by MOSS at 36%,
fell well below the thresholds of similarity between student solutions that suggest plagia-
rism. Moreover, when “similar” Copilot and student solutions were manually inspected, the
researchers determined that code similarities often reflected standard, commonly employed
coding solutions or expected variable declarations. In work that is closest to ours, Bukhari
et al. [8] attempt to use machine learning to distinguish between 28 student-authored
and 30 Al-generated solutions for a C-language programming assignment involving singly-
linked lists. Their approach leverages lexical and syntactic features in conjunction with
multiple machine-learning models, achieving an accuracy rate of 92%.

We are also starting to see commercial tools such as HackerRank [26] and Coderbyte
[13] that claim to identify Al-generated code within user-submitted code. Unfortunately,
evidence of their performance has not been provided and is not freely available for third-
party evaluation.

Our study expands on the body of work in this emerging field, employing a more
diverse problem set and more descriptive features for interpretability compared to the
study by Bukhari et al. [3].

2.2 Code Stylometry

A related research problem focuses on identifying code authorship, typically by using code
stylometry, which analyzes distinct coding styles that reflect patterns in the way program-
mers write code. There exists a substantial body of work on coding constructs that can
serve as distinctive identifiers of individual coding styles. Pioneering work by Oman and
Cook in 1989 [12] analyzed the authorship of 18 distinct Pascal programs published in
six independently authored computer science textbooks. More recent studies have used
code stylometry for authorship attribution [1, 9, 16, 23, 28, 50] and plagiarism detection
[19, 44, 51]. Although these terms are sometimes used interchangeably, authorship attri-
bution deals with identifying the author of code, whereas plagiarism detection assumes the

author is known and aims to identify instances of unoriginal code [31]. In these studies,
different code stylometry features were found to be effective, with layout or typographical
features [12] proving to be more accurate than Halstead’s metrics [27], a conventional

complexity metric. Some studies used syntactic features [1, 16, 23, 28, 50], whereas others
combined layout, lexical, and syntactic features [0, 19, 51].

Our work leverages many of the code stylometry features used in the above studies
for a new purpose: to distinguish between human-authored and GPT-4 generated code.

2.3 Machine Learning Approaches

More generally, machine learning techniques have been applied in various code analysis

tasks such as testing [11], defect defection [1], refactoring [35, 19], vulnerability detection
[20, 32, 34], program comprehension [18], code smells detection [15], authorship attribution
[1, 9, 16, 23, 28, 50], and plagiarism detection [19, 11, 51]. In our work, we use a machine

learning technique to determine whether or not a program is GPT-4 generated.

'Halstead’s metrics are measurable properties based on the author’s hypothesis that the structure of
code is based on two independent properties—operators and operands.

Chapter 3

Study Design

In this chapter, we describe the different phases of our approach, including data collection,
feature extraction, and classification. These phases are illustrated in Figure 3.1.

@ Data Collection @ Classification

GPT-4 @ Feature Extraction
399 coding problems 1596 solutions Classifier XGBoost Classifier Results
Generated prompts from 798 Al 140 features Construction Classifier Evaluation
D utions o () "
coding problems 5o

—— — ——Ccdndpitlems e Gl N— Extraction s 2 5 (% o \//,
G— & —d&— 6 |l

< T R 3530 OAN il

798 human soloutions

Figure 3.1: An overview of our approach in detecting GPT-4 generated code

3.1 Data Collection

The data collection phase is depicted on the left of Figure 3.1. We collected Python
problems and human solutions from a repository of programming problems, and we used
an Al assistant to generate Al solutions. We chose Python specifically due to its sta-
tus as a beginner-friendly language [7] commonly adopted in introductory programming
courses [36]. To ensure a wide range of programming problems, we chose CodeChef as
our problem repository. CodeChef is a renowned competitive coding platform known for
offering problems of varying difficulty levels. We believe that there are no inherent differ-

Table 3.1: Difficulty Levels of Selected CodeChef Problems

Level Range Count

Beginner 0-999 12

1* Beginner 1000 - 1199 45
1* Advanced 1200 - 1399 71
2* Beginner 1400 - 1499 55
2% Advanced 1500 - 1599 56
3* Beginner 1600 - 1699 60
3* Advanced 1700 - 1799 53
4* 1800 - 1999 30

5% 2000 - 2199 14

6* 2200 - 2499 2

7% 2500 - 5000 1
399

ences across other competitive programming platforms, so our approach’s performance on
CodeChef should be similar to its performance on these other platforms.

Due to the absence of public APIs, we extracted data by scraping CodeChef’s website,
obtaining both problem sets and user submissions. The data collection process is divided
into two steps, as highlighted in Figure 3.1. We briefly describe each step below.

Problem Set and Human Solutions Extraction. In this step, we curated a problem
set of coding problems from CodeChef and their corresponding human solutions.

CodeChef assigns each problem on its platform a difficulty score and classifies ranges
of difficulties into 11 buckets, as depicted in Table 3.1. To ensure that our study’s problem
set has a good distribution with respect to difficulty, we fetched the 100 most popular
problems from each difficulty level. Here popularity refers to the number of accepted
solution attempts that existed when the data was scraped (November 2023). In the case
that a user submits multiple solutions to the same problem statement, we collect only the
latest correct solution submitted by the user. Thus, we began our filtering process with
1100 problem statements.

To further refine our problem set, we selected those problems with at least two correct
solutions submitted in 2020. This year was specifically chosen as it postdates the end-of-
life for Python 2 in January 2020 and predates the release of Al assistants like Copilot in
October 2021 and ChatGPT in November 2022. We purposefully excluded solutions sub-
mitted after the release of these Al assistants to ensure that the human-authored solutions

Table 3.2: Final Problem Set Binned into 3 Classes of Difficulty

Difficulty Difficulty Scores - Range Average Count

Basy 828 - 1417 1224.95 133
Medium 1419 - 1646 1529.51 133
Hard 1647 - 3420 1827.50 133

in our dataset are not polluted with Al-generated code. We also purposefully excluded
incorrect solutions to avoid including incomplete submissions that do not reflect a typical
attempt at a successful solution. In the context of our study, a solution is deemed correct
if it passes CodeChef’s public tests.! Such a solution represents successfully interpreted
and executed code, effectively solving the specified problem as far as the public tests are
concerned.

After this filtering, the number of problems in our dataset was reduced to 419. Upon
closer inspection, we found 20 problems that were tagged as “Python3” problems but had
only Python2 solutions. These problems were therefore excluded from our study, resulting
in a problem set comprising 399 problems, each with at least two correct human-authored
Python3 solutions submitted in 2020. In addition, each problem includes comprehensive
details from the platform such as the problem statement, unique problem code ID, in-
put and output formats, assigned difficulty score, subtasks, constraints, problem names,
user-assigned tags, computed tags, and sample test cases containing input, output, and
explanations.

After filtering we noted that we were left with very few problems in the highest levels
of difficulty as shown in Table 3.1. This could be attributed to the fact that competitive
programmers often choose C/C++ over Python for various reasons, particularly in contests
involving problems of higher difficulty. To mitigate issues with inference due to disparities
in the number of problems per category, we re-binned the 399 problems into three classes of
difficulty (easy, medium, and hard) of equal size. The classes contain 133 problems each,
with average difficulty scores of 1224.95, 1529.51, and 1827.50 respectively as shown in
Table 3.2. This reclassification of difficulty attempts to ensure a balanced representation
across categories and enables a fair evaluation of how well our classifiers fare with respect
to problems of different difficulty.

Not including comments. Although comment-based features like commentsDensity [9],
inlineCommentsDensity [12], and blockedCommentsDensity [12] have been used in past

'In the context of competitive programming, a submission is deemed correct if it passes all public and
private test cases; however, we had access only to CodeChef’s public tests for each problem.

works on authorship attribution, we have chosen not to include comments for two reasons:

1. Comments may make it too easy for a classifier to determine if the code is human-
authored or GPT-4 generated. This is because when you specifically ask for comments
from a model like GPT-4, the number of comments is far more than any human would
normally write. By excluding comments we handicap our approach and thus provide
a lower bound for our classifier. Besides this, comment-based features are easily
gameable.

2. The amount of comments present in GPT-4 generated code varies by the prompt that
we give. If we simply query the API of the model to write a program for the problem
at hand, the model generates code only and no comments. Alternatively, if we prompt
the model to explain the code, then almost every line of code is commented on. Given
that the focus of this work is to explore whether we can differentiate between human-
authored and GPT-4 generated code, we did not want the choice of prompt to be a
variable of the experiment.

Hence we explicitly asked the GPT-4 model not to explain the code and then we
stripped all comments that may have been included even by mistake. We apply the
same comment-stripping technique to remove any comments from the human code as well.
Therefore in this study, we explicitly avoid using comment-related features for classifica-
tion.

AT Solutions Generation. To generate Al solutions to the problems in our problem
set we used GPT-4 (Version 0613 from OpenAl [30]), which is one of the most powerful
and easily accessible generative models available to consumers as of November 2023. We
set the temperature to 0 so that our results are reproducible (at the time of this writing,
setting a seed for consistent generation was not available through the API). We used the
prompt shown in Figure 3.2 to obtain two GPT-4 solutions for each of the 399 problems
in our problem set, resulting in 798 unique solutions. In constructing our prompt, we em-
ployed strategies recommended by OpenAl for effective prompt engineering.? The specific
strategies we followed are outlined below:

e Include Details in Your Query to Get More Relevant Answers: The prompt
specifies the details of the task by defining the format of the input (problem state-
ment, input format, output format, constraints) and the required output (two Python
solutions). This helps in getting relevant and specific answers tailored to the given
programming problem.

thtps ://platform.openai.com/docs/guides/prompt-engineering/strategy-provide-reference-text

10

https://platform.openai.com/docs/guides/prompt-engineering/strategy-provide-reference-text

You are an expert Python Programmer. Your job is to look at a programming puzzle
provided by the user and output 2 different ways to solve the solution in python.

The Input is provided with the following contents:

{The problem statement }

{How the input would be formatted},

{Format to be followed in the output generated},

{Constraints on the variables specified in the problem}

Make sure to take the input from the user considering the input format Output should be
printed as defined in the output format

Do not attempt to explain the solution only output the code in the following format:
[PYTHONI1]

{Solution to given puzzle in Python}

[\PYTHONI1]

[PYTHONZ2]

{Alternate solution to given puzzle in Python}

\PYTHON?2]

Figure 3.2: Prompt used for generating 2 GPT-4 code solutions for CodeChef problems

e Ask the Model to Adopt a Persona: The prompt begins with “You are an
expert Python Programmer.” This tactic of persona adoption sets a context for the
responses expected and guides the Al to frame its responses within the expertise of
a Python programmer.

e Use Delimiters to Clearly Indicate Distinct Parts of the Input: The prompt
uses a structured format with clear delimiters, such as [PYTHON1] and [PYTHONZ2],
to separate the two different solutions. This helps the Al understand that two distinct
solutions are required and organizes the output in a clear, readable manner. It also
enables us to programmatically process the outputs generated.

e Specify the Steps Required to Complete a Task: While the prompt implicitly
suggests the steps (understand the problem, code the solution), it does not explicitly
break down the task into smaller steps. In tasks like programming, outlining steps
such as analyzing the problem, considering algorithms, and then coding can enhance
the quality of the response.

We opted for a zero-shot inference approach. We intentionally did not constrain the
output length within the prompt or provide a detailed step-by-step breakdown, among the

11

other suggested strategies to accommodate the diverse nature of problems in our dataset.
While this prompt could be further refined, our goal was to develop a pragmatic, ‘best
effort’” prompt reflective of what a typical user might employ.

All generated GPT-4 solutions were syntactically valid and could be successfully
parsed, which was important for AST-based features. In the case of duplicate solutions to
a problem, we reran the prompt to obtain a new solution to swap in.

Private tests for the problems could not be scraped from the platform, thus we
evaluated the GPT-4 generated solutions on the available public tests to check whether
they were correct to some degree. We found that only 137 problems had two GPT-4
solutions that satisfy the available public tests, and another 24 problems had only one of
the solutions passing the test cases. We used this information to create a sanitized set
of 161 problems that includes one to two correct GPT-4 solutions for each problem and
an equal number of unique and correct human solutions to those problems for RQ3. This
dataset is a contribution of the thesis provided in the replication package.?

3.2 Feature Extraction

Our study leverages a combination of layout, syntactic, and lexical features that have been
effectively used in previous studies for authorship attribution and plagiarism detection
among human programmers [9, 18, 21, 25]. Layout features refer to the visual organiza-
tion of code, such as indentation and spacing. Lexical features, on the other hand, are
derived from analyzing the tokens within the code, capturing elements such as keywords
and literals whereas syntactic features are extracted based on the code’s structural pat-
terns, involving the arrangement and relationships between various code elements. Our
study also incorporates Halstead’s metrics [27], which have been used in previous studies
for authorship attribution [0, 12]. We also included additional complexity metrics such as
maintainability index [14] and cyclomatic complexity [10] to enrich our approach.

In the feature extraction phase (shown in the middle of Figure 3.1), we iterate through
the Python solution files, systematically generating these code stylometry and complexity
features essential for training and evaluating our classifier.

We extracted 27 base features excluding Halstead metrics (all shown in Table 3.3) plus
variants, leading to 140 features. Most base features have no variants. Feature keywords-
Density has 28 variants, out of 35 Python keywords; these are listed in Table 3.4. Features
ASTNodeTypesTF and ASTNodeTypeAvgDep each have 42 variants, out of 130 possible

3https://zenodo.org/doi/10.5281/zenodo. 10152237

12

https://zenodo.org/doi/10.5281/zenodo.10152237

Table 3.3: Code Stylometry and Code Complexity Features

Feature Description

ASTNodeTypesTF [9] Term frequency of 130 possible AST node types excluding leaves

ASTNodeTypeAvgDep [9] Average depth of 130 possible AST node types excluding leaves

avgFunctionLength [21] The average length of lines in a function

avgldentifierLength [21] The average length of identifier names

avgLineLength [9] The average length of characters in each line

avgParams [9] The average number of parameters across all functions

branchingFactor [9] Average branching factor of the code’s AST

cyclomaticComplexity [10] The number of decisions within a block of code

emptyLinesDensity [9] The number of empty lines divided by source code lines

keywordsDensity [9] Frequency of Python keywords divided by source lines of code

maintainabilityIndex [11] A metric that gauges the ease of supporting and modifying the source code

maxDecisionTokens The maximum number of tokens in decision conditions excluding ternary conditions

maxDepthASTNode [9] Maximum depth of an AST node

nestingDepth [9] Deepest level to which conditional statements, loops, and functions are nested within each
other

numAssignmentStmtDensity [18] The total number of assignment statements divided by source code lines

numClassesDensity The total number of classes divided by source code lines

numFunctionCallsDensity [1] The total number of function calls divided by source code lines

numFunctionsDensity [18] The number of functions divided by source code lines

numInputStmtsDensity [18] The total number of input statements divided by source code lines

numKeywordsDensity [J] The total number of unique Python keywords divided by source code lines

numLiteralsDensity [9] The number of literals divided by sloc

numStatementsDensity [15] The total number of statements divided by source code lines

num VariablesDensity [1] The total number of assignment variables divided by source code lines

numberOfDistinctOperands [27] The number of distinct operands

numberOfDistinctOperators [27] The number of distinct operators

sloc [25] The total number of source code lines

stdDevLineLength [9] The standard deviation of character lengths of each line

stdDevNumParams [9] The standard deviation of the number of parameters across all functions

totalNumberOfOperands [27] The total number of operands

totalNumberOfOperators [27] The total number of operators

whiteSpaceRatio [] The ratio of whitespace characters to non-whitespace characters

AST node types; these are listed in Table 3.5. The prefixes “nttf” for ASTNodeTypesTF,
“ntad_” for ASTNodeTypeAvgDep, and the suffix “_Density” for KeywordsDensity were
adopted to correlate variants with their respective base features. This accounts for why
there are less features extracted from this dataset than CodeChef’s.

Our approach to feature extraction varies somewhat from prior studies [9, 18, 12].
We normalized our features by source lines of code rather than by character count [9] or
by omitting normalization altogether [18, 12]. Additionally, we refrained from logarithmic
transformations of some features, as practiced by Caliskan et al. [9], to facilitate the ease
of interpretability of our feature set, particularly for visual analysis. For the nestingDepth
feature, we considered node types rather than actual tokens. The MaintainabilityIndex
feature measures code maintainability by evaluating complexity and modularity and is cal-

13

culated using complexity metrics such as Cyclomatic Complexity, and SLOC. Our version
was computed with the Radon Python library,* which uses a modified formula different
from that used in the study by Coleman et al. [l1]. Although our dataset contains only
single-file solutions, the MaintainabilityIndex feature is included in our study as it may
yield insights into the relative maintainability of code produced by Al assistants compared
to code authored by humans, potentially impacting the performance of our classifier.

Of the 140 features extracted, four are Halstead metrics, selected to explore their
viability in this context. Their ineffectiveness in the context of authorship attribution in
human code has been pointed out by Berghel and Sallach [6] and Oman and Cook [12], but
we included them for completeness. Our research is directed at assessing how well these
metrics can identify GPT-4 generated code.

Table 3.4: Python Keywords

and as break class continue def del
elif else except False for from global
if import in is lambda None not

or pass return True try while yield

Table 3.5: Python AST Node Types

arg arguments Assign Attribute AugAssign BinOp

BoolOp Call ClassDef Compare comprehension Delete

Dict DictComp ExceptHandler Expr For FormattedValue
FunctionDef GeneratorExp If IfExp Import ImportFrom
JoinedStr keyword Lambda List ListComp Module

Name Return Set SetComp Slice Starred
Subscript Try Tuple UnaryOp While Yield

3.3 Classification

The righthand side of Figure 3.1 provides an overview of the classification phase, where
we construct a model to distinguish between GPT-4 generated and human-authored code
and subsequently evaluate its performance. We describe each step of this phase below.

Classifier Construction. To construct our classifier, we chose XGBoost [10], because

“https://pypi.org/project/radon/

14

https://pypi.org/project/radon/

it is an effective and scalable machine learning algorithm. Additionally, in the study by
Bukhari et al [¢], XGBoost with syntactic and lexical features had the best performance
when considering accuracy and F1 score. This allows us to compare our approach with the
best of the earlier study’s approaches. XGBoost constructs decision trees iteratively, refin-
ing the model by correcting misclassifications at each step. During training, the algorithm
optimizes an objective function to strike a balance between prediction accuracy and model
simplicity. At each tree, the algorithm assigns scores to examples, and each example’s final
prediction is calculated by summing the scores [10]. Through this aggregation process, the
resulting model classifies code as either human-authored or GPT-4 generated.

Classifier Evaluation. To evaluate the classifier’s performance on unseen data, we em-
ploy ten-fold cross-validation, which divides the dataset into ten subsets. This approach
provides robust assessments by training on nine subsets and testing on the remaining sub-
set. This process is iterated ten times, guaranteeing that each subset serves as the test set
exactly once.

To enhance the evaluation process and avoid data poisoning during training, we
grouped solutions based on the specific coding problem they addressed, resulting in 399
distinct groups corresponding to the 399 coding problems in our dataset. We employed
GroupKFold to ensure that each group, representing solutions to a particular problem,
appeared only once in the test set across all folds. This grouping strategy maintains
the integrity of the evaluation by preserving the context of solutions within each problem,
preventing the model from training and testing on the same problem sets since each problem
set contains multiple solutions.

The classifier’s predictions yield four possible outcomes, described below.

e True Positive (TP): A true positive occurs when the classifier correctly labels a
GPT-4 generated code.

e True Negative (TIN): A true negative occurs when the model classifier correctly
labels a human-authored code.

e False Positive (FP): A false positive occurs when the classifier incorrectly labels
human-authored code as GPT-4 generated.

e False Negative (TN): A false negative occurs when the model incorrectly labels
code generated by GPT-4 as human-authored.

Based on these possible outcomes, the model’s performance is measured in terms of
accuracy, recall, precision, F1-score, and AUC-ROC. We describe each metric below.

15

Accuracy: Accuracy gauges the model’s overall correctness in classifying both GPT-
4 generated and human-authored code. It is calculated as

TP + TN
TP+ TN+ FP +FN

Accuracy = (3.1)

Precision: Precision measures the proportion of code classified as GPT-4 generated
that were truly GPT-4 generated. It is calculated as

TP
Precision = TP+ TP (3.2)

Recall: Recall is the measure of sensitivity that quantifies the model’s ability to
identify all GPT-4 generated code correctly. It is calculated as

TP
l= —— .
Reca TP T TN (3.3)

F1-score: Fl-score is the harmonic mean of precision and recall ensures a balanced
evaluation when precision and recall need equal consideration. It is calculated as

Precision x Recall
Fl1- =2. A4
seore Precision + Recall (3.4)

Area Under the Curve of the Receiver Operating Characteristic (AUC-
ROC): AUC-ROC evaluates the model’s ability to differentiate between GPT-4 gen-
erated code and human-authored code. It uses the true positive rate (TPTJF%) Versus
false positive rate (FPIZF%) at various thresholds settings. AUC ranges from 0 to 1,
higher values indicate better performance.

Baselines Comparison. In our model comparison, we evaluate our approach along-

side two baselines: (1) a naive baseline approach, based on the assumption that GPT-4
generated code can be detected through random guessing, and (2) the approach presented
by Bukhari et al. [8] that identified Al-generated solutions for C programming assign-
ments. To benchmark our classifier, we replicated the methodology of Bukhari et al. [3]
using Python and an XGBoost classifier, selecting XGBoost because it performed the best
in their study on syntactic and lexical features. We compare the performances of our clas-

sifier and these baseline models using metrics such as accuracy, recall, precision, F1-score,
and AUC-ROC.

16

Given that our case study focuses solely on utilizing the CodeChef dataset, we will
not employ statistical significance tests like the Mann-Whitney U or T-test between our
approach and the second baseline. These tests typically require multiple datasets, a re-
quirement our single-dataset study does not meet. Additionally, such tests cannot be
employed on the classifier’s raw prediction scores due to the presence of high probability
misclassifications. Furthermore, applying statistical significance tests to performance met-
rics derived from ten-fold cross-validation is problematic due to the overlap of the training
dataset across folds, with about 80% of data shared between each pair of training sets [17].
This overlap leads to interdependence among the folds, thereby violating the independence
assumption of these tests. As a result, we risk incorrectly rejecting the null hypothesis
even in instances where there may be no actual difference.

17

Chapter 4

Results

In this chapter, we present the results of our evaluations based on the four research ques-
tions introduced in Chapter 1. We first outline our approach to addressing each research
question, followed by the observed results.

4.1 RQ1. How well can code-stylometry features dis-
tinguish human-authored code from GPT-/ gen-
erated code?

Approach. To address our research question, we build a classifier trained on code stylom-
etry features. After training, we evaluate its performance using ten-fold cross-validation,
focusing on precision, recall, F1-score, and AUC-ROC metrics. High scores in these metrics
will support our research hypothesis, demonstrating our approach’s ability to distinguish
human-authored code from Al-generated code. Additionally, we compare this classifier
with an alternative classifier trained on the same feature set but augmented with Hal-
stead’s metrics. The objective is to evaluate the impact of Halstead’s metrics in detecting
GPT-4 generated code. This will involve a comparative analysis of the classifiers’ perfor-
mances with and without Halstead’s metrics. Moreover, we contrast the performance of
our classifier with two baselines.

The Naive Baseline is a random guess and its performance metrics can be computed
by applying statistics to our dataset. The precision is calculated by dividing the number
of GPT-4 generated code by the total number of solutions:

18

Table 4.1: Classifier Performance Comparison among Different Approaches for Distinguish-
ing between Al-generated and Human-authored Code

Our Approach Baseline

All Non-Gameable Naive n-grams + L
n=2 n=3

Accuracy 0.91 0.89 - 0.86 0.88
Precision 0.91 0.89 0.5 0.86 0.87
Recall 0.91 0.89 0.5 0.88 0.88
F1-score 0.91 0.89 0.5 0.87 0.88
AUC-ROC 0.91 0.89 - 0.86 0.88
Precision — number of GPT-4 generated code 05 (4.1)

total number of solutions

The recall is 0.5, reflecting the classifier’s two possible outcomes—identifying code
as either GPT-4 generated or human-authored. This results in a probability of 0.5 for
classifying solutions as GPT-4 generated. Based on precision and recall values, the F1-
score of the naive baseline is 0.5 and is computed using Equation 3.4.

Results. As shown in Table 4.1,! our approach achieved a high average precision and
recall of 0.91, ensuring accurate and comprehensive identification of GPT-4 generated code.
This highlights the potential of code stylometry in differentiating between GPT-4 generated
and human-authored code. Comparing the classifiers, one with and the other without
Halstead metrics, we found a striking similarity in their performance metrics. Between
both classifiers, all the metrics considered were the same, except recall which was higher for
the classifier with Halstead metrics by 0.01. This observation suggests that the presence
of Halstead metrics does not considerably enhance the classifier’s ability to distinguish
between human-authored and GPT-4 generated code, supporting past work [25, 38].

When compared to the baselines, our classifier shows a considerable improvement. It
notably outperformed the Naive Baseline, which has a precision and recall of 0.5, demon-
strating that our classifier considerably exceeds what would essentially be random guessing.
We also compare with the work presented in Bukhari et al. [3] that incorporated lexical
features of 2-4 n-grams. However, in our replication, we could only process 2-3 n-grams

Tt is just a coincidence that the performance metrics for our models all have the same value when
considering all features (0.91) and all non-gameable features (0.89)

19

due to the memory-intensive nature of the task. The data for the 4-gram model was at
least 212.33 GBs, resulting in out-of-memory errors on our machine (Macbook Air 2020,
with 16GBs of RAM). Also, it took more than 8 hours to extract the data for the 4-gram
model. However, our classifier took less than 3 minutes with no additional space. We were
also able to achieve higher precision and recall by 4% and 3% respectively.

Moreover, unlike the baseline models, which may obscure the reasoning behind pre-
dictions, our model uses a feature set that clarifies the decision-making process. To un-
derstand the influence of specific features on our model’s predictions, we used the SHAP
framework [39], a method renowned for its interpretability of machine learning models.
SHAP offers tools for both local (individual) and global (overall) explanations of model
predictions.

The global interpretive power of our classifier is demonstrated in the SHAP summary
plot depicted in Figure 4.1. This plot visualizes key features in our classifier, arranging
them on the y-axis by their aggregate SHAP values, with the highest predictive feature
at the top. The x-axis displays these SHAP values, showing how each feature shifts the
prediction from a neutral base value, indicated by the vertical line at 0 on the x-axis.
Deviations to the left or right increase the likelihood of the prediction being a human or
GPT-4 class, respectively. The plot uses a blue-to-red color gradient to signify feature
magnitudes, and the data points represent feature values across instances.

For example, in Figure 4.1, the avgLineLength is the most important feature, dis-
tinctly separating human and GPT-4 classes where lower values are typically associated
with the human class and higher values are typically associated with the GPT-4 class. This
implies that a line of code from a human is shorter on average compared to a line of code
from GPT-4. In contrast, the ntad_Name is the tenth most important feature and quanti-
fies the average depth at which the Name nodes occur within an AST. Name nodes in the
AST of a Python program represent identifiers, which are the names of variables, functions,
classes, modules, or other objects in the code. The distribution of the ntad_Name feature
across all instances shows a relatively narrow range of SHAP values, suggesting that its
impact on the model is less compared to the features ranked above it. It is important to
note that SHAP functions as an explanation model that provides an interpretable approx-
imation of our classifier. Therefore, while SHAP values offer a simplified and interpretable
view, the feature importance rankings derived directly from our classifier are based on the
classifier’s internal mechanisms. Consequently, the feature importance rankings from our
classifier, do not entirely align with SHAP’s. Despite these differences, there is considerable
overlap in the primary features identified by both methods. This overlap highlights the
value of SHAP in interpreting the model’s predictions, offering insights into how features
influence outcomes rather than detailing the classifier’s internal mechanisms.

20

High
avglLinelLength
maxDecisionTokens
ntad Assign

def Density
whiteSpaceRatio

avgFunctionLength

Feature value

emptyLinesDensity
avgldentifierLength
maintainabilitylndex

ntad_Name

T T T T T T LOW
-6 —4 -2 0 2 4

SHAP value (impact on model output)

Figure 4.1: SHAP feature importance of our approach

4.2 RQ2. How influential are non-gameable features
in differentiating human-authored vs. GPT-j
generated code?

Approach. To assess the impact of non-gameable features on the detection of GPT-4
generated code, we build a classifier that excludes gameable features.

In our analysis, we consider the non-code layout features emptyLinesDensity and
whiteSpaceRatio as gameable features. After training on the non-gameable features, we
evaluate the performance of this classifier in contrast to our classifier with both gameable
and non-gameable features. We also evaluate this classifier with the same n-grams baseline
compared in RQ1, as that baseline does not include any feature we consider gameable in
its feature set. Through these comparisons, we aim to evaluate the relative importance of

21

Table 4.2: Classifier Performance Comparison on Correct and Randomly Sampled Solutions

Our Approach Baseline (n-grams + L)

C R C R

Accuracy 0.86 0.87 0.83 0.84 0.87 0.86
Precision 0.87 0.87 0.83 0.84 0.87 0.86
Recall 0.86 0.88 0.81 0.85 0.87 0.85
F1-score 0.86 0.87 0.82 0.84 0.87 0.86
AUC-ROC 0.86 0.87 0.83 0.84 0.87 0.86

C = Correct Solutions, R = Random Solutions, L. = Lexical Features

using only non-gameable features in the classification of code as human-authored or GPT-4
generated.

Results. As shown in Table 4.1, there is a noticeable but not severe drop in per-
formance for the non-gameable classifier compared to the classifier built on gameable and
non-gameable features. This suggests that although gameable features contribute to the
classifier’s accuracy, non-gameable features alone still provide a high predictive power. In
comparison to the n-grams baseline, the non-gameable classifier still performs better and
is interpretable as evident in the SHAP summary plot of Figure 4.2. The plot reveals
that, aside from the two gameable features among the ten most important features of our
origin classifier trained on both gameable and non-gameable features shown in Figure 4.1,
the other features remain consistent with a slight reordering. The absence of these two
gameable features accounts for the performance dip in the non-gameable classifier. Con-
sequently, stdDevLineLength and nttf_Name, the latter representing the term frequency
of Name nodes, now appear in the top ten. The stdDevLineLength feature influences
predictions towards the GPT-4 class at lower values and towards the human class at inter-
mediate values. Conversely, nttf Name influences predictions towards the human class at
higher values and towards the GPT-4 class when lower.

4.3 RQ3. How well does the classifier perform when
trained and evaluated on only correct solutions?

Approach. To address this research question, we refine our dataset to include only correct
solutions, resulting in a balanced dataset of 596 correct solutions from both humans and

22

High

avglLinelLength .
maxDecisionTokens
def Density
ntad_Assign
avgFunctionLength

avgldentifierLength

Feature value

maintainabilitylndex
nttf_ Name
ntad Name

stdDevlLinelLength

Low

B NI
SHAP value (impact on model output)

Figure 4.2: SHAP feature importance of non-gameable features

GPT-4. We aim to evaluate our classifier’s predictive power by eliminating the potential
noise that incorrect solutions might introduce. This ensures that the detection of GPT-4
generated solutions is based on inherent characteristics of code, not the errors they might
contain.

Results. Table 4.2 shows a slight decline in performance when compared to the
classifier in Table 4.1. The minor decline could stem from the correct solutions being a
smaller subset. Hence, we randomly sample the solutions comprising both correct and
incorrect solutions with the same distribution of difficulty levels. When compared with
the random solutions classifier, both perform almost the same. This implies that genuine
differences in coding styles between human and GPT-4 generated code are being detected,
rather than errors introduced by incorrect solutions. When compared to the baseline [3],
for correct solutions, our classifier outperformed the 2-gram baseline but was marginally
less effective than the 3-gram. The classifier with randomly sampled solutions showed

23

Table 4.3: Classifier Performance Comparison Across Levels of Problem Difficulty

Our Approach Baseline (n-grams + Lexical Features)

Easy Medium Hard n=2 n=3

Easy Medium Hard Easy Medium Hard

Accuracy 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80
Precision 0.87 0.88 0.89 0.85 0.80 0.79 0.89 0.87 0.80
Recall 0.91 0.90 0.86 0.89 0.77 082 0.88 0.85 0.81
Fl-score 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80
AUC-ROC 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80

noticeable improvement over the 2-gram baseline and was marginally better than the 3-
gram.

4.4 RQ4. How well does the classifier perform when
trained and evaluated across varying levels of
problem difficulty?

Approach. To address this research question, we construct separate classifiers for the
three problem-difficulty levels outlined in Table 3.2. By training and evaluating these clas-
sifiers independently, we evaluate their performance and the potential impact of problem
complexity on the classifier’s ability to correctly identify GPT-4 generated code. This strat-
ified analysis allows us to understand the nuances of classifier performance across problem
difficulty levels.

Results. Table 4.3 shows a correlation between the classifier performance and the
difficulty of the problems. The performance of classifiers of easy and medium problem dif-
ficulty are close as they have the same F1l-score of 0.89. The performance of the classifier
with hard problems had a minor drop in performance with an F1-score of 0.87. When com-
pared to the baseline, there is no considerable difference in the baseline for easy questions.
For both medium and hard questions, our classifiers perform better than both 2-gram and
3-gram classifiers, showing improvements of 3% and 9%, respectively. This result highlights
the effectiveness of our approach.

24

Chapter 5

Evaluation on Introductory
Programming Assignments

In this chapter, we replicate our approach on introductory programming assignments, then
we investigate the viability of assignment submissions being GPT-4 generated in the era
of Al assistants such as Copilot and ChatGPT.

5.1 Replicating Our Approach Using Introductory Pro-
gramming Assignments

To address our research questions within an academic setting, we replicated our approach
with introductory programming assignments, specifically targeting RQ1 and RQ2. Due
to certain limitations, this replication could not be extended to address RQ3 and RQ4.
For RQ3, we were not provided with test suites, preventing the assessment of assignment
correctness. Whereas for RQ4, the limitation was due to assignments not being categorized
into difficulty levels, preventing comparisons across these levels. We collected assignments
(comprising questions, test case requirements, starter code, style guides that students were
expected to follow and student submissions) from 2019 and 2020 as shown in Table 5.1.
Considering the timeline of the release of Al assistants such as Copilot and ChatGPT, we
categorized student submissions from these years as human-authored since they predate the
release of these Al assistants. We collected 27 questions from both 2019 and 2020. However,
from the 27 questions in 2019, we excluded 7 questions because they either depended on
image descriptions for their solutions or they referenced the solutions of previous questions

25

and thus could not be solved independently. For each question in 2019 and 2020, we
randomly selected 2 student submissions and generated 2 corresponding GPT-4 solutions
using a different prompt shown in Figure 5.1 that accommodated the style guide and test
case requirements.

Table 5.1: Introductory Programming Course Assignments: Pre (2019, 2020) and Post
(2023) Copilot and ChatGPT release

Year Questions Submissions
Human AI Total
2019 20 40 40 80
2020 27 54 54 108
2023 27 - - 54

2023 submissions are unlabeled

You are a student in a Python course. Your task is to look at the problem statement en-
closed within <question></question> tags provided by the user, and provide two distinct
Python solutions. Enclose the first solution in <pythonl></pythonl> tags and the sec-
ond in <python2></python2> tags. In addition to the problem statement, the user also
provides you with one or more examples enclosed within <example></example> tags il-
lustrating the expected output of the resulting solution, starter code enclosed within <code-
block></codeblock> tags, restrictions enclosed within <restrictions>< /restrictions>tags
that you must follow when writing your code, an interface script enclosed within <inter-
face>< /interface> tags to assist with the implementation of your code, and a style guide
enclosed within <style></style> tags that you must adhere to when writing your code.
You are also provided with a check module enclosed within <check></check> tags, con-
taining methods for creating test cases for your code. Use this module if asked to in the
problem statement.

The problem statement: <question>{problem statement }</question>

Example(s): <example>{example}</example>

Code block: <codeblock>{code_block}</codeblock>

Style guide: <style>{style_guide}< /style>

Figure 5.1: Prompt used for generating 2 GPT-4 code solutions for assignment questions

To answer RQ1, we extracted 119 code stylometry features from 2019 and 2020
submissions. These features consist of the 31 base features in Table 3.3. However, the base

26

Table 5.2: Python Keywords

and as break continue def elif
else False for from if import
in is lambda None not or

pass return True while with

Table 5.3: Python AST Node Types

arguments Assign Attribute AugAssign BinOp BoolOp
Call Compare comprehension Dict DictComp Expr

For FormattedValue FunctionDef GeneratorExp If IfExp
Import ImportFrom JoinedStr keyword Lambda List
ListComp Module Name Return Slice Starred
Subscript Tuple UnaryOp While With withitem

feature keywordsDensity has 23 variants out of 35 Python keywords; these are listed in
Table 5.2. The base features ASTNodeTypesTF and ASTNodeTypeAvgDep each have 36
variants, out of 130 possible AST node types; these are listed in Table 5.3. All three base
features have fewer variants than those of the corresponding base features in the CodeChef
dataset. This accounts for why fewer features are extracted from this dataset than from
CodeChef’s. Subsequently, we constructed a classifier using the code stylometry features
extracted from 2019 submissions and evaluated its performance on 2020 submissions.

As shown in Table 5.4, the classifier built with all features achieved precision, recall,
and F1-Score of 0.82, 0.59, and 0.69 respectively. These results indicate that although the
classifier prioritizes correctly identifying GPT-4 submissions, it tends to overlook many
actual GPT-4 submissions. In academia, this is pardonable as erring on the side of caution
is preferable because falsely accusing a student of cheating can have serious implications.

To better understand the classifier’s predictions, we look at the important features
in the SHAP summary plot shown in Figure 5.2. The most important feature is the
avgLineLength which indicates that submissions from students have less code on each line
on average in contrast to GPT-4 solutions, a finding that is consistent with our analysis
of CodeChef solutions. The next important feature is the avgldentifierLength which shows
that identifier names in student submissions are typically shorter or of medium length,
whereas GPT-4 tends to generate identifiers that are longer on average. This observation
suggests that GPT-4 solutions are characterized by more meaningful identifier names.

To answer RQ2, we built a classifier using only non-gameable features from the 2019
submissions and evaluated its performance using non-gameable features from the 2020

27

Table 5.4: Classifier Performance on Introductory Programming Assignments Trained on
2019 Assignments and Evaluated on 2020 Assignments

All Non-Gameable

Accuracy 0.73 0.72
Precision 0.82 0.82
Recall 0.59 0.57
F1-Score 0.69 0.67
AUC-ROC 0.73 0.72
| Human GPT-4 | High
avgLinelLength A e --ﬂ-'-t-“ B 2ggde.
avgldentifierLength Sppm s 8. *
stdDevlLinelLength ‘hﬂ‘- 0 onet o oes mboos o

nttf Subscript ltledlae o

numFunctionCallsDensity -w .
avgFunctionLength -.

£ -
igelo-

whiteSpaceRatio ﬁ 'ﬂ
¢
*

Feature value

ntad_Tuple o e oo
numLiteralsDensity L
nttf_Attribute e
T T T T Low
-2 -1 0 1 2

SHAP value (impact on model output)

Figure 5.2: SHAP feature importance among all assignment features

submissions.

As shown in Table 5.4, there is a modest decrease in performance when the clas-

28

sifier relies solely on non-gameable features, rather than a combination of gameable and
non-gameable features. This pattern mirrors the trend observed with classifiers trained on
CodeChef solutions. Notably, while the inclusion of gameable features enhances the overall
accuracy, the non-gameable features by themselves still yield a comparable level of predic-
tive performance. The SHAP summary plot in Figure 5.3 provides insight into the impor-
tant features driving the non-gameable features classifier’s predictions. It reveals that the
top two most important features remain consistent with those from the all-features classifier
and are, notably, non-gameable. However, the whiteSpace Ratio—a gameable feature—also
stands out as significant, ranking among the top ten in the all-features classifier, as shown
in Figure 5.2. This particular feature’s prominence may account for the slight decline in
the non-gameable features classifier’s performance when it is excluded.

l Human GPT-4 | High
avglLinelLength oqifelf s . --}-}{b’ A Y " XTY 18
avgldentifierLength SRR P e et -*
avgFunctionLength fopre-

nttf Subscript cotfipua. o *
stdDevLineLength) Wews o

nttf_Return ol

-
’-

ntad_Tuple ‘ o o oo e
4
a

Feature value

numLiteralsDensity
numKeywordsDensity o

numFunctionCallsDensity "*""‘h °

T T T T Low
-2 -1 0 1 2

SHAP value (impact on model output)

Figure 5.3: SHAP feature importance of classifier built on non-gameable assignment fea-
tures

29

5.2 Investigating the Authorship of Submissions in
the Era of AI Assistants

To investigate the authorship of submissions made well after the release of Copilot and
ChatGPT, we collected assignments, comprising questions and student submissions, from
the year 2023, as shown in Table 5.1. Given the prevalent use of these Al tools at that
time, the origins of these submissions were considered unknown. Accordingly, we treated
the 2023 submissions as unlabeled to reflect this uncertainty. We collected 27 questions
and we randomly selected 2 submissions for each question. Using the all-features classifier
developed from the 2019 submissions, we assessed the authorship of the 2023 submissions.

Although we cannot be entirely certain, we suspect students may be using Al as-
sistants for their programming assignments. In the classification of the 2023 submissions,
13 out of 54 were identified as Al-generated. The classifier trained on 2019 submissions
achieved a 73% accuracy rate when applied to the 2020 submissions, revealing a false
positive rate of 13% and a false negative rate of 41%. Thus, it can be estimated that
the number of Al-generated submissions in the 2023 dataset falls within the range of 11
to 18 submissions, representing approximately 20% to 33% of the total (54) submissions
considered.

To better understand the predictions of the classifier built on 2019 submissions and
evaluated on 2023 submissions, we investigate individual predictions, analyzing the water-
fall plots and code samples for high, low, and average probability predictions and relating
these predictions to the important features in the SHAP summary plot in Figure 5.2.
Consider the code presented in Figure 5.4, classified as GPT-4 generated with a high prob-
ability of 0.9, and its corresponding SHAP waterfall plot. The most important feature
contributing to this classification is avgldentifierLength, which is the second most impor-
tant feature in the summary plot, indicating that GPT-4 generated code is characterized
by having longer identifier names, possibly reflecting more meaningful naming conventions,
as shown with most of the identifiers in the code in Figure 5.4a. Despite avgLineLength
and numlLiteralsDensity having lower values that push the classifier’s prediction towards
the human class, the overall prediction of GPT-4 is strongly influenced by the cumulative
effect of other features. Among these features are five of the most important features.
These include avgldentifierLength, nttf_-Subscript,' stdDevLineLength, numFunctionCalls-
Density, nttf-Attribute.? Code with a combination of the values for these features suggests
that the code is likely GPT-4 generated. Conversely, Figure 5.5 presents code classified as
human-authored with a high probability of 0.98 and its corresponding waterfall plot.

IThe term frequency for node types that access sequence structures like lists and dictionaries.
2The term frequency for accessing an object’s attributes.

30

13
14

15

16

epra)

—_—

9.25 - avgldentifierLength
3 = nttf_Subscript
def calculate_points(all_players, 23.61 = stdDevLinelength
all_goals) : numFunctionCallsDensity +0.36
19.27 = avgLineLength " 0.36,

if all_players==[]: 1 - nttf_BinOp +0.35
return [] 1 = nttf_Attribute

else:).1 numAssignmentStmtDensity . +0.29
T=[[all_players[0], all_goals. 0.5 = numLiteraispensity ~0.29 (]
couni ([all'players [O]])]] 113 other features m
return T + calculate_points(
all_players [1:]1, all_goals) -0 -05 00 A5 10 15 20 25

(b) SHAP waterfall plot showing how features
(a) GPT-4 generated code impact the model’s decision for this code

Figure 5.4: Code classified as GPT-4 generated with a high probability of 0.9

def player_points(player, all_goals)

if all_goals == []:
return O

elif player in all_goals[0]:
return 1 + player_points(player,
all_goals[1:])

else:
return player_points(player, 0 0
all_goals[1:]) qmn__
7 - elif_Density
def calculate_points(all_players, .65 = avglinelength
all goals) . 5 = nttf_Subscript m
if all_players == [1:)29 = numFunctionCallsDensity -0.7
return [] 6 = avgFunctionLength m
else: 9.29 = avgldentifierLength +0.39)
name = all_players [0] 2131 - stdDevLineLength |
points = player_points (name, 5 = nttf_Return -7 (]
all_goals) 14 = sloc ~os (]
return [[name, points]] + 113 other features
calculate_points(all_players - - - - 5
[1:]1, all_goals) Ei10)

(b) SHAP waterfall plot showing how features
(a) Human code impact the model’s decision for this code

Figure 5.5: Code classified as human-authored with a high probability of 0.98

As shown in Figure 5.5b, although two of the classifier’'s most important features
influence the prediction towards the GPT-4 class, all other features influence the classifier’s
prediction towards the human class.

31

To better understand the classifier’s lower-confidence predictions, we analyzed in-
stances of both GPT-4 and human-authored code, each with a low probability score of
0.56, and their corresponding waterfall plots as shown in Figures 5.6 and 5.7, respectively.
In Figure 5.6b, values for stdDevLineLength, and_Density, avgParams, numFunctionCalls-
Density, and avgLineLength push the prediction towards the GPT-4 class despite having a
large number of features indicating human authorship. numdLiteralsDensity influence the
prediction towards the GPT-4 class.

input_prompt = "Please enter a valid
Canadian postal code: "
error_msg = "Invalid postal code."

def isvalid(p):

return (len(p) == 7) and p.
isupper () and (p[0]l+p[2]1+p[5]1).
isalpha() and \

(p[1]l+p[4]+pl[6]) .isdigit () and (p
[38] == " ") and (p.find("D") ==
p.find ("F") \

== p.find("I") == p.find("0") == p
.£ind("Q") == p.£ind("U") == -1)
and \

(not p[0] == "W") and (not p[0] ==
"Z")

def postal_code_w_counter(t):
p = input(input_prompt)
if (t <= 1) and (not isvalid(p)):
print (error_msg)
elif isvalid(p):
abc = "0 =y
ABCDEFGHIJKLMNOPQRSTUVWXYZ" 32.24 = avglineLength

return abc.index(p[0]) *1000%*6 + 1.1 = numFunctionCallsDensity

int (p[11) *1000**5 + \ 0.05 = elif_Density [0es |

abc.index (P [2]) *1000%*4 + int (P 33 = avgFunctionLength
[4]) x1000%*2 + abc.index(pl[5])

%1000 + \ 15 = nttf_Subscript
int (p [6]) 0.67 = avgParams
else: 0.38 = and_Density
print (error_msg) 25.42 - stdDevLineLength
return postal_code_w_counter (t 3.5 - ntad_Expr
-1) 113 other features
def postal_code(): -5 -0 -05 o

return postal_code_w_counter (4)

(b) SHAP waterfall plot showing how features
(a) GPT-4 generated code impact the model’s decision for this code

Figure 5.6: Code classified as GPT-4 generated with a low probability of 0.56
This suggests that although the code shown in Figure 5.6a has feature values that are

32

typically associated with human-authored code, it also has enough feature values to cause
the final prediction to be GPT-4 generated code. Conversely, Figure 5.7b shows that 113
features, and the values for sloc, ntad_Expr,® elif Density, nttf-Subscript strongly influence
the classifier’s final prediction to be the human class; even though the values for avgl-
dentifierLength, numFunctionCallsDensity, avgParams, and_-Density, and avgLineLength
influence the prediction towards the GPT-4 class.

Finally, we look at code examples with average confidence levels of prediction. Con-
sider Figure 5.8, which shows code predicted to be GPT-4 generated with a probability of
0.77, along with its SHAP waterfall plot. Figure 5.9 shows code predicted to be human-
authored with a probability of 0.78 along with its corresponding waterfall plot. Figure 5.8b
shows how the values of some of the ten important features such as stdDevLineLength,
avgLineLength, avgldentifierLength, avgFunctionLength, numLiteralsDensity and another
feature, numAssignmentStmtDensity influence the classifier’s prediction towards the GPT-
4 class. Conversely, in Figure 5.9b, we observe that the values of some of the important
features such as avgldentifierLength, and whiteSpaceRatio among other features influence
the classifier’s decision towards the human class. Notably, the values of three important
features, avgLineLength, avgFunctionLength, and

3The average depth for Expression nodes in the AST

33

w e

15

16

17

19
20

45

46

48

49

50

ey

(SN L e e
IS RO

input_prompt = "Please enter a valid

Canadian postal code: "

error_msg = "Invalid postal code."

def

def

def

def

contains_DFIQOU(s):
if s == "":
return False
elif s[0] in "DFIOQU":
return True
else:
return contains_DFIQOU(s[1:])

four_errors(s, x):
starts_with = s.startswith("W") or s.
startswith("Z")
if x <= 0:
return None
elif (starts_with or (len(s) < 6) or
not (s[3] == " ")
or contains_DFIQOU(s)):
if x <= 1:
print (error_msg)
return four_errors(s, x - 1)
else:
print (error_msg)
s = input(input_prompt)
return four_errors(s, x - 1)
alpha_pos = (s[0].isalpha() and s[5].
isalpha())
number_pos = (s[1].isnumeric() and s
[4] . isnumeric () and
s [6].isnumeric())
if not(alpha_pos and number_pos):
if x <= 1:
print (error_msg)
return four_errors(s, x - 1)
else:
print (error_msg)
s = input (input_prompt)
return four_errors(s, x - 1)
else:
return sum_of_postals(s, 0)

sum_of _postals (s, pos):
if pos == 6:

return 1
if s[0] ==

return sum_of_postals(s[1:], pos+1)
elif s[0].isnumeric():

return int (s[0])*((1000) **x(6-pos)) +
sum_of _postals(s[1:], pos+1)
else:

alph_position = °’
ABCDEFGHIJKLMNOPQRSTUVWXYZ’.index (s [0])
+ 1

return alph_position*((1000)**(6-pos)
) + sum_of_postals(s[1:], pos+1)

"o,

postal_code () :
s = input (input_prompt)
return four_errors(s, 4)

(a) Human code

26.73 = avgLineLength

0.08 = and_Density

15 = nttf_Subscript

0.06 = elif_Density

1.25 = avgParams

0.6 = numFunctionCallsDensity
7.81 = avgldentifierLength

4.5 = ntad_Expr

48 = sloc

113 other features

) — 024
Human (‘xi).244

a=ram

-2.0 =15 -1.0 -0.5 0.0
E[f(X)] =0.007

(b) SHAP waterfall plot showing how features impact the
model’s decision for this code

Figure 5.7: Code classified as human-authored with a low probability of 0.56

34

import math

def feels_like(temp, wind, hum):
vapour = 6.112 * math.pow (10,
(7.5%temp) / (237.7 + temp)) * (
hum/100)
6 windchill = 13.12 + 0.6125*temp -
11.37 * math.pow(wind, 0.16) +
0.3965*xtemp*math.pow (wind, 0.16) oy,
humidex = temp + (5/9)*(vapour - 28.6 - stdDevLineLength
10) 0.09 = elif_Density “
8 0.27 = numFunctionCallsDensity

GA W N

-~

9 if temp >= 15 and humidex == temp 24.69 = avgLineLength
+ 1: 5.29 = avgldentifierLength
10 return humidex 19 = nttf_BinOp
11 12 = avgFunctionLength +0.34
12 elif temp < 15 and windchill == 0.27 = numAssignmentStmtDensity
omp = ie 1.64 = numLiteraispensiy
13 return windchill 113 other features
14
15 else: -10 -0.5 S8 000 O3 10
16 return temp

(b) SHAP waterfall plot showing how features
(a) GPT-4 generated code impact the model’s decision for this code

Figure 5.8: Code classified as GPT-4 generated with an average probability of 0.77

1
2 def feels_like(temp,wind,hum):

3 W = wind ** 0.16 flx) = — 1281
4

| @ Human

V =6.112 *x 10 **x (7.5 * temp / 414 = avgldentifierLength

(237.7 + temp)) * hum / 100

windchill = 13.12 + 0.6125 * temp [evounerenon

ot

- 11.37 * W + 0.3965 * temp * W 017 and Bensity
¢ humidex = temp + 5 / 9 * (V - 10) 0 = numFunctionCalisDensit
7 if temp >= 15 and humidex >= temp 21 = nitf_BinOp
+ 1: 11 = avgFunctionLength
8 return humidex 0.41 = whiteSpaceRatio
9 if temp < 15 and windchill <= temp 0 = ntad_Call

= i3 1.42 = numLiteralsDensity
W return windehill

11 else:

-2.0 -15 -1.0 -0.5 0.0
12 return temp EIf01 = 0.007
13 pass

(b) SHAP waterfall plot showing how features
(a) Human code impact the model’s decision for this code

Figure 5.9: Code classified as human-authored with an average probability of 0.78

35

Chapter 6

Discussion

In this chapter, based on our findings, we make observations about our classifier, examining
why it correctly and incorrectly predicts solutions in specific programs. Understanding the
reason behind its performance on a specific program is crucial for humans to make a final
decision about whether it is human-authored or GPT-4 generated. We also investigate
the reasons behind the differences in results on CodeChef and programming assignments
datasets.

1 n, m = map(int, input().split()) = o
2mi =2 ovgtineLength
Ec = R W empyLinesDensiy
1 ans = [1 for i in range(ma + 1)] ntad_Assign
5 def_Density
6 for i in range (2, int(ma**0.5) + 1): whiteSpaceRatio oo @
7 for j in range(i + i, ma + 1, i) ntad_Name P o
; i Densiy P
8 ans [j] =0 avgldentifierLength ~031 '
9 ans[0] = O avgFunctionLength ~0.27 .
10 ans [1] =0 127 other features

11 print (ans.count (1))

0
ELfX)]
12

13

» (b) SHAP waterfall plot showing how
features impact the model’s decision
(a) Human code for this code

Figure 6.1: Correctly predicted human code

36

| def solve(n, m):
2 return 1 if min(n, m) > 1 else 2

0
LX)

(b) SHAP waterfall plot showing how
features impact the model’s decision
(a) GPT-4 generated code for this code

3

4 n, m = map(int, input().strip().
split ())

5 print (solve(n, m))

Figure 6.2: Correctly predicted GPT-4 generated code.

6.1 Correctly Predicted Solution

Figures 6.1 and 6.2 present examples where our model correctly distinguishes between
human-authored and GPT-4 generated code. By investigating the SHAP waterfall plot!
for each example, we gain insights into the model’s decision-making for individual predic-
tions, in contrast to the important features in Figure 4.1 which suggests insights into the
model’s overall decision-making process. The waterfall plot presents the model’s expected
value, with each row representing how each feature contributes positively (red) towards a
prediction of GPT-4 generated code or negatively (blue) towards a prediction of human-
authored code. For example, Figure 6.1 shows a correctly predicted human-authored code
fragment and its corresponding SHAP waterfall plot. This plot provides a local explanation
of the classifier, visually depicting the key features that influence individual predictions.
At the bottom of the plot in Figure 6.1b, the model’s prediction begins with a base value
depicting the cumulative effect of 127 features whose contributions are relatively minor
and thus aggregated in the plot. The features’ contributions are ranked in ascending order
of SHAP values. For example, the ntad_Assign feature, representing the AST nodes for
assignment operations, has the greatest impact towards the GPT-4 class, with its value of
1.29. The value of this feature, in addition to the value of other features with red arrows in
the plot, is indicative of the GPT-4 generated class. However, the most impactful feature
is avgLineLength, with a value of 14.36 and SHAP value of -4.71; this feature in addition
to the value of other features with blue arrows in the plot influences the model’s decision
towards its final prediction, the human class. Thus, code having an avgLineLength (the

https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/
waterfall.html

37

https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/waterfall.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/waterfall.html

1 def getCount(h,m,i) :

2 h=int (h)

3 m=int (m)

4 h1=0

5 1st=[11,22,33,44,55,66,77,88,99]

6 while (hi<h) :

7 for ml1 in range(O0,m) :

8 if h1<10 :

9 if (m1<10 and hil==m1)
: count[i]+=1

10 if (m1 in 1lst and mi

%10==h1) : count[i]+=1 w0
. il T
avgFunctionLength
12 if (ml1 in 1lst and hil avglineLength
==ml1) : count[i]+=1 numStatementsDensity
13 if (h1 in 1lst and hil
%10==m1) : count[i]+=1
14 hl1+=1

15 t=int (input ())
16 count=[0]*t
17 for i in range(0,t) :

18 h,m=input () .split () 3 3
19 getCount (h,m, i)
- print (i) (b) SHAP waterfall plot showing how
features impact the model’s decision
(a) Human code for this code

Figure 6.3: Human code predicted incorrectly as GPT-4 generated code

average length of characters in each line) of 14.36, emptyLinesDensity, (i.e. the ratio of
empty lines to sloc) of 0.4, def-Density (i.e. term frequency of the def keyword normalized
by sloc) of 0, whiteSpaceRatio (i.e. the ratio of whitespace to non-whitespace characters)
of 0.35, avgldentifierLength (i.e. the average length of identifier names) of 2.67 and no
function is likely human-authored, taking into consideration the other features.

Figure 6.2 shows a correctly predicted GPT-4 generated code fragment and its corre-
sponding SHAP waterfall plot. In Figure 6.2b, the most important feature with a value of
0.25 is the def Density. The value of this feature alongside the value of other features with
red arrows influences the model’s decision towards the final prediction, the GPT-4 class.
This suggests that code having def_Density of 0.25, ntad_Assign of 1, maxDecisionTokens
of 0, maintainabilityInder of 81.856 is likely GPT-4 generated, taking into consideration
other features. MaintainabilityIndex is a feature that isn’t observed by looking at the
code, so it is an interesting find that this complexity metric could potentially influence the
classifier’s decision.

These findings underscore the model’s ability to correctly predict solutions based on
distinctive features, shedding light on the significance of specific code characteristics in the

38

classification process.

6.2 Incorrectly Predicted Solution

Figure 6.3 presents an incorrectly predicted GPT-4 generated code and its corresponding
SHAP waterfall plot. This case is concerning, as the model incorrectly guesses that a
human-authored code is GPT-4 generated. Although a false negative (predicting GPT-
4 generated code as human-authored) is bad, we especially want to avoid false positives
because we do not want to unjustly accuse someone of presenting GPT-4 generated code
when they have authored their code. However, all classification techniques are bound
to have some false positives. We hope that our choice of an explainable model helps
educators look at a prediction’s SHAP waterfall plot and understand the reasons behind
the prediction before making a final decision as to whether to accuse someone of presenting
Al-generated code.

In Figure 6.3b, the two top features that influence the model’s prediction towards
the GPT-4 generated class are related to the length of the code (i.e., avgFunctionLength,
avgLineLength) and have values of 13 and 24.86, respectively. In the case of both avg-
LineLength and avgFunctionLength, their values are high compared to the feature values
of other observations within the dataset, and features with higher avgLineLength and avg-
FunctionLength tend to drive the model’s prediction towards the GPT-4 generated class.

These observations explain why the model predicted this code as GPT-4 generated,
highlighting the challenges in accurately distinguishing certain code characteristics and the
potential consequences of false positives.

6.3 Differences in Results on CodeChef vs. Program-
ming Assignments Datasets

The performance of the classifier built with 140 features extracted from CodeChef solutions,
as shown in Table 4.1 shows an F1-Score of 0.91. In contrast, the classifier constructed
using 119 features from 2019 submissions, shown in Table 5.4, achieved a lower F1-Score of
0.69. Comparing these results, we see a notable decline in performance when the classifier
is adapted to programming assignments.

We identify two potential factors contributing to this performance gap. First, the
dataset from the 2019 submissions is considerably smaller, containing only 188 samples

39

compared to CodeChef’s 1596. Second, and perhaps the more important factor, is the
differences in styling requirements between the CodeChef solutions and programming as-
signments. Unlike CodeChef where adherence to standard style guides is not specified,
programming assignments often demand strict compliance with specific style guides. Ad-
ditionally, these assignments include certain constraints which may influence students’
coding styles. For example, some questions prohibit recursion. We included these style
guides and additional restrictions in the prompt, which we believe could lead to similar
coding styles between students and GPT-4, thereby impacting the classifier’s performance.

40

Chapter 7

Threat to Validity

We break down the threats into two parts, external and construct.

7.1 External Threat to Validity

These threats relate to the ability to generalize based on our results. In this study, we
conducted an empirical investigation on the competitive programming platform CodeChef
for human-authored code and utilized GPT-4 for Al-generated code. We then extended our
approach to introductory programming assignments. A concern is since we only generate
code using GPT-4, the generated code may not be representative of code by other Al
assistants. However, compared to other tools, GPT-4 is the most popular Al assistant and
should represent real-world usage. In future work, we aim to expand to other programming
languages and adapt to a broader range of Al coding assistants.

7.2 Construct Validity

These threats relate to the degree to which our measurements are captured. Regarding the
correctness of Al-generated code, we extract public test cases from CodeChef, which do not
include private tests for the problems. We decided not to pursue direct submissions of Al-
generated code to CodeChef, as this would violate ethical guidelines to submit Al-generated
code as a human solution. This is not applicable to the programming assignments as we
were not provided with public tests.

41

Chapter 8

Conclusion

The advent of Al assistants has introduced a new form of academic dishonesty, where
students submit Al-generated code as their work. In this thesis, we investigated the impact
of using code stylometry features to differentiate between human-authored and GPT-4
generated code, focusing on submissions from CodeChef and GPT-4 generated solutions
in Python. The findings demonstrate our approach’s promise. Our classifier achieved an
F1l-score and AUC-ROC score of 0.91, highlighting its potential as a preliminary tool for
identifying Al-generated code. Moreover, we identified several key distinguishing features,
with the average line length as the most important feature. By providing a means to
identify GPT-4 generated code, our study contributes to the ongoing discourse on the use
and regulation of Al assistance in coding tasks.

Extending our analysis to assignments from an introductory programming course,
our classifier achieved an F1-score of 0.69 and an AUC-ROC score of 0.73. Subsequently,
we evaluated this classifier on assignments submitted post-release of Copilot and ChatGPT
in 2023 revealing that 13 out of 54 submissions were GP'T-4 generated based on a relatively
small dataset (trained on 80 submissions and evaluated on 54). With a false positive rate
of 13% and a false negative rate of 41% observed during the classifier’s evaluation on 2020
submissions, it can be estimated that 20% to 33% of these 2023 submissions may have used
AT assistants. This highlights the growing influence of Al assistance in academic settings,
necessitating awareness and proactive measures from educators.

Future Work. In the future, we could evaluate our hypothesis that our approach can
perform as well on Python programs from other sources such as other competitive pro-
gramming platforms and programming assignments from different courses. We could also
extend our study to include other programming languages to enhance the generalizability of

42

our findings. Additionally, future research could evaluate the effectiveness of our approach
in identifying Al-generated code that has been intentionally modified post-generation or
through prompt engineering. Such investigation would provide valuable insights into the
robustness and shortcomings of our detection methods when Al-generated code is delib-
erately altered to evade identification. These avenues for further exploration would con-
tribute to a deeper understanding of the capabilities and limitations of code stylometry in
distinguishing between Al-generated and human-authored code.

43

References

1]

(6]

[7]

8]

Simran Aggarwal. Software code analysis using ensemble learning techniques. In
Proceedings of the 1st International Conference on Advanced Information Science and

System, AISS 19, pages 1-7, New York, NY, USA, January 2020. Association for
Computing Machinery.

Alex Aiken. Moss - a system for detecting software similarity. https://theory.
stanford.edu/~aiken/moss/.

Ibrahim Albluwi. Plagiarism in Programming Assessments: A Systematic Review.
ACM Transactions on Computing Education, 20(1), 2019.

Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel
Greenstadt. Source Code Authorship Attribution Using Long Short-Term Memory
Based Networks. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
Computer Security — ESORICS 2017, volume 10492, pages 65-82. Springer Interna-
tional Publishing, Cham, 2017. Series Title: Lecture Notes in Computer Science.

Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. Programming is hard - or at least it used to be:
Educational opportunities and challenges of ai code generation. In Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2023,
page 500-506, New York, NY, USA, 2023. Association for Computing Machinery.

H. L. Berghel and D. L. Sallach. Measurements of program similarity in identical task
environments. SIGPLAN Not., 19(8):65-76, aug 1984.

Jason R Briggs. Python for kids: A playful introduction to programming. no starch
press, 2012.

Sufiyan Bukhari, Benjamin Tan, and Lorenzo De Carli. Distinguishing ai- and human-
generated code: A case study. In Proceedings of the 2028 Workshop on Software Supply

44

https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/

Chain Offensive Research and Ecosystem Defenses, SCORED 23, page 17-25, New
York, NY, USA, 2023. Association for Computing Machinery.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss,
Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers via code
stylometry. In 24th USENIX Security Symposium (USENIX Security 15), pages 255~
270, Washington, D.C., August 2015. USENIX Association.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, page 785794, New York, NY, USA, 2016. Association for
Computing Machinery.

Robert Clarke and Thomas Lancaster. Commercial aspects of contract cheating. In
Proceedings of the ACM Conference on Innovation and Technology in Computer Sci-
ence Education (ITiCSE’13), page 219-224, 2013.

Codequiry. Codequiry. https://codequiry.com/.
Coderbyte. Detect candidates that cheat with ai / chatgpt, 2021.

D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software
system maintainability. Computer, 27(8):44-49, Aug 1994.

Copyleaks. Copyleaks. https://copyleaks.com/.

Edwin Dauber, Aylin Caliskan, Richard Harang, and Rachel Greenstadt. Git blame
who? stylistic authorship attribution of small, incomplete source code fragments. In
Proceedings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ICSE 18, page 356-357, New York, NY, USA, 2018. Association for
Computing Machinery.

Thomas G Dietterich. Approximate statistical tests for comparing supervised classi-
fication learning algorithms. Neural computation, 10(7):1895-1923, 1998.

John L. Donaldson, Ann-Marie Lancaster, and Paula H. Sposato. A plagiarism detec-
tion system. In Proceedings of the twelfth SIGCSE technical symposium on Computer
science education - SIGCSE ’81, pages 21-25, St. Louis, Missouri, United States, 1981.
ACM Press.

Wenyuan Dong, Zhiyong Feng, Hua Wei, and Hong Luo. A Novel Code Stylometry-
based Code Clone Detection Strategy. In 2020 International Wireless Communications
and Mobile Computing (IWCMC), pages 15161521, June 2020. ISSN: 2376-6506.

45

https://codequiry.com/
https://copyleaks.com/

[20]

[25]

[26]
[27]

Mojtaba Eshghie, Cyrille Artho, and Dilian Gurov. Dynamic Vulnerability Detection
on Smart Contracts Using Machine Learning. In Proceedings of the 25th International
Conference on Fvaluation and Assessment in Software Engineering, EASE 21, pages
305-312, New York, NY, USA, June 2021. Association for Computing Machinery.

J.A.W. Faidhi and S.K. Robinson. An empirical approach for detecting program
similarity and plagiarism within a university programming environment. Computers

& Education, 11(1):11-19, 1987.

James Finnie-Ansley, Paul Denny, Brett Becker, Andrew Luxton-Reilly, and James
Prather. The robots are coming: Exploring the implications of openai codex on intro-
ductory programming. In Proceedings of the 24th Australasian Computing Education
Conference, ACE ’22, pages 10-19, 02 2022.

Sophia F. Frankel and Krishnendu Ghosh. Machine learning approaches for authorship
attribution using source code stylometry. In 2021 IEEE International Conference on
Big Data (Big Data), pages 3298-3304, 2021.

Github. Copilot: Your AI Pair Programmer. https://github.com/features/
copilot, Oct 2021. [Online; accessed 9-October-2023].

Sam Grier. A tool that detects plagiarism in Pascal programs. ACM SIGCSE Bulletin,
13(1):15-20, February 1981. Number: 1.

HackerRank. Hackerrank launches ai-powered plagiarism detection, 2021.

M. H. Halstead. Natural laws controlling algorithm structure? ACM SIGPLAN
Notices, 7(2):19-26, February 1972. Number: 2.

Pengnan Hao, Zhen Li, Cui Liu, Yu Wen, and Fanming Liu. Towards Improving
Multiple Authorship Attribution of Source Code. In 2022 IEEE 22nd International
Conference on Software Quality, Reliability and Security (QRS), pages 516-526, De-
cember 2022. ISSN: 2693-9177.

Oseremen Joy Idialu, Noble Saji Mathews, Rungroj Maipradit, Joanne M Atlee, and
Mei Nagappan. Whodunit: Classifying code as human authored or gpt-4 generated—a
case study on codechef problems. arXiv preprint arXiv:2403.04013, 2024.

Cheng Jiao, Neel R Edupuganti, Parth A Patel, Tommy Bui, Veeral Sheth, and Neel
Edupuganti. Evaluating the artificial intelligence performance growth in ophthalmic
knowledge. Cureus, 15(9), 2023.

46

https://github.com/features/copilot
https://github.com/features/copilot

[31]

[34]

[35]

[36]

[37]

[38]

[39]

Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and Alina
Matyukhina. Code Authorship Attribution: Methods and Challenges. ACM Comput-
ing Surveys, 52(1):3:1-3:36, February 2019.

Gurpreet Kaur, Yasir Malik, Hamman Samuel, and Fehmi Jaafar. Detecting Blind
Cross-Site Scripting Attacks Using Machine Learning. In Proceedings of the 2018
International Conference on Signal Processing and Machine Learning, pages 22-25,
Shanghai China, November 2018. ACM.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David Wein-
trop, and Tovi Grossman. Studying the Effect of Al Code Generators on Supporting

Novice Learners in Introductory Programming. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI’23), 2023.

Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. Discovering software vul-
nerabilities using data-flow analysis and machine learning. In Proceedings of the 13th
International Conference on Awvailability, Reliability and Security, ARES ’18, pages
1-10, New York, NY, USA, August 2018. Association for Computing Machinery.

Lov Kumar, Shashank Mouli Satapathy, and Lalita Bhanu Murthy. Method Level
Refactoring Prediction on Five Open Source Java Projects using Machine Learning
Techniques. In Proceedings of the 12th Innovations on Software Engineering Con-

ference (formerly known as India Software Engineering Conference), ISEC’19, pages
1-10, New York, NY, USA, February 2019. Association for Computing Machinery.

Wanda M. Kunkle and Robert B. Allen. The impact of different teaching approaches
and languages on student learning of introductory programming concepts. ACM
Trans. Comput. Educ., 16(1), jan 2016.

Sam Lau and Philip Guo. From “Ban It Till We Understand It” to “Resistance is
Futile”: How University Programming Instructors Plan to Adapt as More Students
Use AI Code Generation and Explanation Tools Such as ChatGPT and GitHub Copi-
lot. In Proceedings of the ACM Conference on International Computing Education
Research (ICER’23) - Volume 1, page 106-121, 2023.

Ronald J. Leach. Using metrics to evaluate student programs. SIGCSE Bull.,
27(2):41-43, jun 1995.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. CoRR, abs/1705.07874, 2017.

47

[40]

[41]

[49]

T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
SE-2(4):308-320, December 1976. Number: 4 Conference Name: IEEE Transactions
on Software Engineering.

Aravind Nair, Karl Meinke, and Sigrid Eldh. Leveraging mutants for automatic pre-
diction of metamorphic relations using machine learning. In Proceedings of the 3rd
ACM SIGSOFT International Workshop on Machine Learning Techniques for Soft-
ware Quality Evaluation, MaLLTeSQuE 2019, pages 1-6, New York, NY, USA, August
2019. Association for Computing Machinery.

P. W. Oman and C. R. Cook. Programming style authorship analysis. In Proceedings
of the seventeenth annual ACM conference on Computer science : Computing trends
i the 1990°s Computing trends in the 1990°s - CSC 89, pages 320-326, Louisville,
Kentucky, United States, 1989. ACM Press.

OpenAl. Introducing ChatGPT. https://openai.com/blog/chatgpt, November
2022. [Online; accessed 9-October-2023].

Julia Opgen-Rhein, Bastian Kiippers, and Ulrik Schroeder. Requirements for Author
Verification in Electronic Computer Science Exams:. In Proceedings of the 11th In-
ternational Conference on Computer Supported Education, pages 432-439, Heraklion,
Crete, Greece, 2019. SCITEPRESS - Science and Technology Publications.

Manjula Peiris and James H. Hill. Towards detecting software performance anti-
patterns using classification techniques. ACM SIGSOFT Software Engineering Notes,
39(1):1-4, February 2014.

Ben Puryear and Gina Sprint. Github copilot in the classroom: learning to code with
ai assistance. Journal of Computing Sciences in Colleges, 38(1):37-47, 2022.

Amazon Web Services. What is CodeWhisperer? https://docs.aws.amazon.com/

codewhisperer/latest/userguide/what-is-cwspr.html, 2023. [Online; accessed
9-October-2023].

Zhiyu Sun, Fang Peng, Junrui Guan, and Yanchun Sun. An approach to helping
developers learn open source projects based on machine learning. In Proceedings of
the 11th Asia-Pacific Symposium on Internetware, Internetware '19, New York, NY,
USA, 2019. Association for Computing Machinery.

Irene Tollin, Francesca Arcelli Fontana, Marco Zanoni, and Riccardo Roveda. Change
Prediction through Coding Rules Violations. In Proceedings of the 21st International

48

https://openai.com/blog/chatgpt
https://docs.aws.amazon.com/codewhisperer/latest/userguide/what-is-cwspr.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/what-is-cwspr.html

Conference on FEvaluation and Assessment in Software Engineering, EASE "17, pages
61-64, New York, NY, USA, June 2017. Association for Computing Machinery.

Farhan Ullah, Sohail Jabbar, and Fadi Al-Turjman. Programmers’ de-anonymization
using a hybrid approach of abstract syntax tree and deep learning. Technological
Forecasting and Social Change, 159:120186, October 2020.

Nickolay Viuginov, Petr Grachev, and Andrey Filchenkov. A Machine Learning Based
Plagiarism Detection in Source Code. In Proceedings of the 2020 3rd International
Conference on Algorithms, Computing and Artificial Intelligence, ACAI 20, pages
1-6, New York, NY, USA, March 2021. Association for Computing Machinery.

49

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Contributions

	Related Work
	Detecting AI-generated Code
	Code Stylometry
	Machine Learning Approaches

	Study Design
	Data Collection
	Feature Extraction
	Classification

	Results
	RQ1. How well can code-stylometry features distinguish human-authored code from GPT-4 generated code?
	RQ2. How influential are non-gameable features in differentiating human-authored vs. GPT-4 generated code?
	RQ3. How well does the classifier perform when trained and evaluated on only correct solutions?
	RQ4. How well does the classifier perform when trained and evaluated across varying levels of problem difficulty?

	Evaluation on Introductory Programming Assignments
	Replicating Our Approach Using Introductory Programming Assignments
	Investigating the Authorship of Submissions in the Era of AI Assistants

	Discussion
	Correctly Predicted Solution
	Incorrectly Predicted Solution
	Differences in Results on CodeChef vs. Programming Assignments Datasets

	Threat to Validity
	External Threat to Validity
	Construct Validity

	Conclusion
	References

