
Not All Pull Request
Rejections Are The Same

by

Amirreza Shamsolhodaei

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Amirreza Shamsolhodaei 2024



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In the Open Source Software (OSS) development landscape, evaluating pull requests
extends beyond code quality assessment. Recent research has revealed the significant
influence of social dynamics and perceptions on pull request evaluations, a notion our study
seeks to expand upon. By examining the intricate reasons behind pull request rejections,
we aim to move beyond the traditional view of rejections as a monolithic category.

Utilizing a dataset comprising of 52,829 pull requests across 3,931 projects, we conduct
a large-scale comprehensive analysis identifying twelve distinct categories of rejection rea-
sons. Our findings underscore that although social ties and technical abilities are factors
that influence pull request decisions, they are not consistent across all rejection reasons.
Notably, certain characteristics, such as extensive line changes and team size, exhibit varied
impacts on different types of rejections, indicating the complex interplay between social
and technical factors in pull request assessments.

This study provides a multifaceted understanding of the OSS contribution evaluation
process, highlighting the complexity and diversity of rejection reasons. By describing the
specific features that influence distinct types of rejections, we contribute to the development
of more nuanced strategies for managing contributions. Our findings offer valuable insights
for both contributors and project maintainers, emphasizing the need for a tailored approach
to understanding and enhancing the pull request evaluation process in OSS projects.

iii



Acknowledgements

This thesis would not have been possible without the help, support, and guidance of
many people. First and foremost, I would like to express my utmost gratitude to my
supervisor, Dr. Meiyappan Nagappan, for being the most supportive supervisor and for
his guidance and help during my studies. He has always shown immense patience and his
unwavering support not only covered my studies, but it spanned other aspects of my life
since I have known him.

I would also like to thank Dr. Rungroj Maipradit for providing guidance and feedback
throughout my study, especially these last 6 months.

I am also grateful to Dr. Shane McIntosh and Dr. Pengyu Nie for accepting to be my
reviewers and providing me with constructive feedback.

I wanted to thank the brilliant students at the Software Analytics Group (SWAG) who
made my daily life in the lab a magnificent experience; Including Shaquille, Gareema,
Joy, Farshad, Mahtab, Vikram, Ayinde, Noble, Partha, Arian, Akin, Favour, Mahmoud,
Anubhav, and Gaosen. I also want to show my gratitude to Reza, a dear friend and an
alumni of SWAG lab, who helped me massively in the initial steps and throughout my
studies.

I am proud to be a part of the University of Waterloo community, I will always keep the
knowledge and experiences I have gained in one of the most prestigious Computer Science
programs close to my heart.

I also want to thank my friends who showed amazing support and helped me through
different obstacles that I have faced; Mehran, Mahshid, Ehsan, Mahsa, Iman, Moein,
Arshia, Amir, Amin, Houmaan, Ensie, and Sara to name a few.

Finally and most importantly, none of this could have happened without my parents,
my brothers, and my sisters-in-law, Especially Amirali and Pendar, whose presence has
been a solid rock that I could always rely on.

iv



Dedication

This thesis is dedicated to my grandparents, Talat, Iraj, Zahra, and Hossein;
my parents, Maryam and Mehdi; my brothers, Amirhossein and Amirali; my sisters-in-law,
Tina and Pendar; and my nephew, Hiva.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

2 Related Work 3

2.1 Factors Influencing Pull Request Decisions . . . . . . . . . . . . . . . . . . 3

2.2 Pull Request Rejection Reasons . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Study Design 5

3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Qualitative Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Categorizing based on the comments . . . . . . . . . . . . . . . . . . . . . 7

vi



3.4.1 Labeling the sampled data . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.1 Statistical model development . . . . . . . . . . . . . . . . . . . . . 8

3.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results 14

4.1 What is the relationship between characteristics and pull request rejection
in the sampled data set? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Pull Request Characteristics . . . . . . . . . . . . . . . . . . . 15

4.1.2 Project Characteristics . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Collaborator Characteristics . . . . . . . . . . . . . . . . . . . . 16

4.2 RQ: Do distinct features uniquely influence specific types of pull request
rejections? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Pull Request Characteristics . . . . . . . . . . . . . . . . . . . 17

4.2.2 Project Characteristics . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Collaborator Characteristics . . . . . . . . . . . . . . . . . . . . 19

5 Discussion 21

5.1 Chaotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Merge Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 No Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Not PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.6 No Reason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.7 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.8 Replaced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.9 Resolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.10 Stale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.11 Successful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.12 Unnecessary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



6 Threats to Validity 30

6.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 Conclusion Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Conclusion 33

References 34

viii



List of Figures

3.1 Steps for Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Results of Each model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



List of Tables

3.1 Summary of the Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Pull Request Rejection Categories . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Distribution of Pull Requests in Different Models . . . . . . . . . . . . . . 12

4.1 Important Features for RQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

x



Chapter 1

Introduction

Open Source Software (OSS) development is a global phenomenon that uses platforms like
GitHub at the forefront, facilitating collaborative efforts from developers worldwide. The
lifecycle of collaborative development in GitHub often begins when a developer, known as
the contributor, proposes changes to a project through a pull request. Upon reviewing the
characteristics of the changes, including their defect-proneness, an integrator is assigned
to review the pull request. They conduct a critical assessment of the proposed changes,
considering factors such as code quality and the broader context of the contribution, to
determine whether it should be merged to the code base [1, 2, 3].

Integrators are perceived to evaluate pull requests based on code quality and related
technical factors [4]. However, other factors also influence the pull request outcome. Such
as social dynamics and perceptions [5], social elements [6], ethnicity [7], gender [8], and
geographical location [9]. For instance, women often experience lower acceptance rates
compared to their counterparts, and developers’ national origins also impact pull request
acceptance rates. Furthermore, correlations have been observed between the personalities
of developers and the likelihood of their pull requests being accepted[2]. Nonetheless, there
remains an underexplored aspect in the study of pull request rejections. Recent studies
often generalize these rejections, considering them as a uniform category. This perspective
fails to recognize that rejections come in different forms, each influenced by distinct factors.

Recent contributions by Nadri et al. [10] were the start to tackling this problem,
highlighting the complexity and diversity of pull request rejection. Understanding these
reasons is crucial for targeted and effective strategies for managing contributions in OSS
projects. By providing specific feedback regarding diverse reasons for rejections, project

1



maintainers and integrators can enhance collaboration. Moreover, a detailed understanding
of the rejection reasons can contribute to the development of better tools and processes for
OSS project management, leading to a more efficient review process. Our research aims to
address this gap, potentially improve the contribution process. This work aims to further
explore this varied landscape by addressing a key research question:

RQ: Do distinct features uniquely influence specific types of pull request
rejections?

Results: Our research question delves into the varied dynamics of pull request rejections
within OSS projects. We uncover that there are various reasons for rejection influenced
by distinct factors, challenging the traditional, one-size-fits-all understanding of contribu-
tion evaluation. Through detailed analysis, we identify patterns where certain features
consistently reduce the likelihood of rejection across multiple reasons, while others show
significance only in specific contexts. This approach reveals the complexity of decision-
making processes in OSS projects, emphasizing the need for a tailored examination of
contribution evaluations.

We have made the following contributions:

1. We did a large-scale qualitative analysis and labeled 10,000 pull requests in 12 cate-
gories of rejection reasons based on the pull request comments.

2. We empirically observed the relationship between various pull request rejection rea-
sons with different characteristics of the pull request, submitter, and the correspond-
ing project on 52,829 pull requests.

3. We have provided a replication package of our work that includes our scripts, data
sets, and results to facilitate further research and reproducibility

The rest of the thesis is organized as follows. Section 2 discusses the background and
related work. Section 3 presents our study design, including the data acquisition, our
labeling, and the statistical modeling. Section 4 answers our research question and shows
the findings of our study. Section 5 discusses the results. Section 6 highlights the threats
to validity, and Section 7 provides a conclusion for the thesis.

2



Chapter 2

Related Work

In this section, we discuss the literature related to our work.

2.1 Factors Influencing Pull Request Decisions

Several studies highlight the complex nature of pull request decisions in collaborative soft-
ware projects. Soares et al. [11] identified key elements leading to internal contribution
rejection, highlighting inexperience with pull request mechanisms, contribution complexity,
and the locality of the modified artifacts. Legay et al. [12] presented quantitative evidence
underscoring the importance of a contributor’s experience, as recurrent contributors with
a history of pull request submissions have higher acceptance rates.

Pooput et al. [13] used data mining techniques to extract patterns associated with pull
request rejections. Their analysis revealed that certain code-related metrics, such as the
number of file changes, commit count, and code duplication measures, were strongly as-
sociated with pull request rejection. This underscores the importance of code quality and
structured contributions for pull request acceptance. Zhang et al. [1] identified the rela-
tionship between contributor and integrator as a predominant factor, with self-integration
significantly increasing the odds of pull request acceptance.

The research by Tsay et al. [6], Terrell et al. [8], Rastogi et al. [9], and Nadri et
al. [7] contribute to the understanding of non-technical factors in pull request evaluations.
These studies shed light on potential biases that arise from the perceptible social identity
of contributors, such as race, ethnicity, and gender, suggesting that pull request decisions

3



may be influenced by the integrators’ unconscious biases based on submitters’ personal
attributes.

2.2 Pull Request Rejection Reasons

Recent literature has expanded the perspective on pull request rejection reasons beyond
code quality, encompassing a range of diversity factors. Nadri et al. [10] emphasize that
social identity elements, such as race, gender, and geographical location, may influence
pull request outcomes. This is supported by a qualitative analysis of the comments on
non-merged pull requests, revealing that rejection reasons may exhibit underlying biases,
highlighting the significance of the comments as evidence. Lenarduzzi et al. [14] challenge
the assumption that code quality metrics (e.g., code smells and anti-patterns) are pivotal
for pull request acceptance. Instead, they highlight the developer’s reputation as a criti-
cal determinant, suggesting that the community’s perception could overshadow technical
assessments. They also hint at the potential for unexplored variables, such as test cover-
age and the bug proneness of contributions, which may offer additional insights into pull
request acceptance criteria.

Gousios et al. [15] identify that the likelihood of a pull request being merged is con-
siderably affected by whether it modifies recently modified code. They also find that a
majority of pull request rejections stem from reasons inherent to the distributed nature
of pull-based development, rather than technical shortcomings. Golzadeh et al. [16] delve
into the communicative aspect of pull requests, presenting an empirical study on the dis-
cussions surrounding pull requests. The findings suggest that rejected pull requests are
characterized by more extensive discussions, involving a greater number of participants
and exchanges, indicating that communication plays a significant role in the pull request
lifecycle.

Steinmacher et al. [17] approach pull request rejection from the contributor’s view-
point. They uncover that pull requests are dismissed due to a misalignment between the
developer’s vision and the project team’s objectives and the pull requests from contributors
that are not part of the team, called quasi-contributors, are usually rejected with reasons
such as replaced or duplicated. Their manual analysis also reveals additional factors, such
as community relationships and contributor experience, as influential. Importantly, they
highlight the emotional impact of rejection on contributors, with many expressing demo-
tivation and reluctance to submit future pull requests.

4



Chapter 3

Study Design

In this section, we present our research rationale for selecting our questions and describe
the different phases of our approach, including data acquisition, qualitative labeling, and
quantitative analysis. illustrated in Figure 3.1. We take these steps to answer the following:
To what extent do various characteristics affect the rejection of a pull request?
Motivation: Different factors influence the outcomes of pull requests, and understanding the
important features leading to rejection is crucial in enhancing the collaborative process. By
looking into the factors that affect pull request outcomes within a sampled dataset, we are
following the steps of earlier studies but also tailoring our approach to fit the unique aspects
and limitations of the data we have. Answering this establishes the foundation, and serves
as the baseline to explain the dynamics between various pull request attributes and their
eventual outcomes. This exploration provides a clearer understanding of the characteristics
used in evaluating pull requests. Additionally, it establishes a solid foundation for the
subsequent analysis presented in RQ.

RQ: Do distinct features uniquely influence specific types of pull request
rejections?
Motivation: Understanding the dynamics of pull request rejections is essential in open-
source software (OSS) development. Each pull request rejection reason might be influenced
by a distinct set of factors. In this research question, we aim to examine the differing
features associated with various types of pull request rejections and their potential impact
on how contributions in OSS are perceived and evaluated. Conversely, consistent results
could underscore the broader applicability and reliability of the general model, streamlining
the predictive modeling approach for pull request outcomes.

5



2,507,591 PRs

Nadri et al.

Filtering and
removing deleted PRs

GitHub
Rest API

Mining Comments
2,414,044 PRs

With
Comments

1 Data Acquisition

Sample of 1000 PRs

Establishing 12 Categories

A Categorizing Based on the Comments

10,000 Random
 Samples

Manual Labeling

B Labeling the sampled data

Building Mixed effect
logistic regression models

A Statistical Model
 DevelopmentB Analysis

Comparing
feature coefficients

Analyzing
the results

2 Qualitative Labeling

3 Quantitative Analysis

Figure 3.1: Steps for Methodology

3.1 Data Acquisition

Nadri et al. [7] conducted an empirical study on a dataset comprising 2,507,591 pull
requests from 37,762 distinct projects was curated which provides different characteristics
on pull requests, the submitters and the integrators which were chosen from three sources
[6, 9, 18]. Building on their foundation, we excluded pull requests that were either removed
or made private within their repositories. Through data mining GitHub REST API1, we
collected additional features that revolved around pull request descriptions and comments.
In total, we have a refined dataset comprising 2,414,044 pull requests from 36,358 projects,
as shown in the table 3.1.

1https://docs.github.com/en/rest

6

https://docs.github.com/en/rest


Table 3.1: Summary of the Datasets

Number of Original Filtered Sampled

Projects 37,762 36,358 3,931

Merged PRs 2,039,601 1,980,653 42,829
Non-merged PRs 467,990 433,391 10,000
Total PR 2,507,591 2,414,044 52,829

3.2 Feature Selection

To understand the reasons behind pull request rejections, it’s crucial to identify the as-
sociated characteristics and features. Previous studies have organized these features into
three main categories: the characteristics of the project, those of the collaborator, and the
specific attributes of the pull request itself, drawing on research in bug triaging, developer
recommendation, and pull request and patch acceptance [18, 7].

Leveraging the dataset from Nadri et al. [7], we adopted the same features they analyzed
but focused exclusively on those available to collaborators at the time of pull request
submission. Consequently, we excluded the feature indicating the number of comments
due to its unavailability at submission. We also disregarded ethnicity-related features,
such as the contributor’s and integrator’s ethnicity, as they fell outside our research scope.
This led to the selection of 15 pertinent features, detailed in table 3.3.

3.3 Qualitative Labeling

After collecting the necessary data, we build upon the work conducted by Nadri et al.[10],
who conducted a qualitative study analyzing whether there is evidence of bias based on
perceptible race in the written comments of non-merged pull requests on GitHub. Their
analysis focused on the reasons provided by GitHub developers for rejecting 556 contribu-
tions. In our research, we extended their analysis by include the following components:

3.4 Categorizing based on the comments

In their study, Nadri et al. [7] identified four main reasons why a pull request might not be
merged: ”Successful”, ”Rejected”, ”Replaced”, and ”Resolved”. They further categorized

7



the rejection reasons into eight distinct categories. To gain a deeper understanding of these
reasons, two researchers in our study reviewed the same 556 contributions that Nadri et
al. [10] studied. Subsequently, an additional 1,000 pull requests were randomly chosen for
further investigation, potentially expanding on these rejection reasons. This effort results
in the creation of 12 distinct categories explaining why a pull request does not get merged.
Detailed information regarding these categories is provided in Table 3.2.

3.4.1 Labeling the sampled data

In the subsequent step of our study, we sample data for labeling. To understand the reason
behind the rejection, we randomly selected 10,000 samples. Two researchers were tasked
with labeling and classifying each pull request based on the comments they contained.

To ensure the reliability of the labels assigned by the two researchers, both researchers
independently labeled 2,000 samples. This joint effort yielded a Cohen’s Kappa score of
77.6%. According to standards set by Landis et al. [19] and the comprehensive evaluation
of Cohen’s Kappa by Sun [20], this score indicates a substantial level of reliability within
our labeling process. To address discrepancies in the categorization of rejection reasons for
certain pull requests, the two researchers engaged in discussions to resolve the differences
and arrived at an agreement for those cases. The decision to work with 10000 randomly
chosen samples stemmed from our plan to allocate a dedicated 10-week period exclusively
for data labeling. Following a preliminary assessment with a smaller sample size, we
estimated that approximately 10,000 pull requests could be labeled within this 10-week
timeframe. Consequently, our final sample count reached 10,000 pull requests.

3.5 Quantitative Analysis

The last step in our approach involved a thorough quantitative examination of our efforts.
Guided by our research question, we construct statistical models and extracted findings
that align with our objectives.

3.5.1 Statistical model development

To understand how various features of a pull request influence specific reasons for rejection,
we developed two kinds of mixed effect logistic regression models [21], one for analyzing

8



Table 3.2: Pull Request Rejection Categories

Category Reasoning
Example of the last comment before
closing

Chaotic
PRs are unclear with numerous changes and commits.
Often contains a lot of changes made at the same time.

”This includes too many changes.”,
”these fixes into 1.5.1, but the amount of
changes for the other configs is too big to be
viable.”

Duplicate
Content of the PR is already covered in a preceding PR.
It is mentioned that the functionality has been covered else-
where.

”Duplicate, sorry”,
”It seems like a dup of an old pull request,
closing.”,
”We can close this PR in favor of another PR”

Merge Conflict

Conflicts in code arise due to simultaneous or competing
changes.
Could result in build errors, integration issues, or testing prob-
lems.

”There are merge conflicts here, please re-
base.”
”deal with merge conflicts and I merge this
shortly.”,
”Can you rebase and fix the conflicts? ”

No Comment No comment exists in PR. N/A

No Reason
The pull request gets closed without any provided insight. The
PR does not fit any specific rejection category.

”Ok. So I am closing this now..”
”I am working on this PR.”

Not PR

The content does not describe a typical PR but rather a check-
list.
Might look like a suggestion rather than a proper PR.
Contains phrases such as ”not a bug report” or ”make proper
pr”.

”Closing, probably spam”,
”Pull requests are not to report issues.”,
”This is not an issue section”

Quality
PR does not meet the project’s quality requirements.
Have code style problems or other quality concerns.
Often suggests that improvements or alterations are needed.

”A validator makes sense. I’m closing this.”,
”Buggy function. On the algorithm which is
O(n!).”,
”Closing due to CLA issues.”

Replaced

Another PR or action supersedes the current PR.
References other PR or mentions the work is superseded else-
where.

”Being dealt with by a new pull request”,
”I just saw that you made a new PR. Closing
this.”,
”Closing in favor of a new PR”

Resolved

Changes have been manually merged or applied in a release.
The integrator might have made the change themselves.
Parts of changes have been chosen, has the word ”cherry-
picked”.

”Thanks, it’s been resolved.”,
”I rebased against origin and resolved this
manually.”,
”Cherry-picked into [commit], thanks!”

Stale

Closed due to inactivity from the submitter.
The time between the last comment and PR closing is often
long.
Contains phrases such as ”Closing due to inactivity” or ”Very
Old”.

”Closing this old pull request.”,
”closing as no reply.”,
”This is a stale pull request.”

Successful
PR is approved but closed to maintain commit history.
Changes exist in another commit with credit given.
Often contains positive affirmations or acknowledgments.

”merged in [commit number]”,
”Landed in [commit number], thank you!”,
”Merged [commit number], Thanks again for
the fix”

Unnecessary
Deemed unnecessary by the project’s developers.
Interferes with the developer’s plan.
Changes should be made in another branch.

”This is not a bug, please use the suggestion
site.”,
”It is fine how it is I think. It’s common for
websites.”,
”this is not relevant if you are not cloning all
of it”

9



Table 3.3: Independent Variables

Feature Literature Description

Project Characteristics

repo pr tenure mnth [6],[9]
Numerical variable that indicates how long (in month) the repository
has been active before the examination of pull requests.

repo pr popularity [6],[9],[18]
Numerical variable that indicates how popular the repository is based
on the number of watchers.

repo pr team size [6],[9],[18]
Numerical variable that indicates the number of users associated with
the repository.

perc external contribs [9],[18]
Numerical variable that indicates the percentage of contributors outside
the project.

Collaborator Characteristics

prs experience [9],[18]
Numerical variable that indicates the experience of the submitter by the
number of pull requests submitted by them.

prs succ rate [9],[18]
Numerical variable that indicates the success rate of the submitter when
submitting a pull request.

prs popularity [6],[9],[18]
Numerical variable that indicates the popularity of the submitter by
measuring the number of followers.

prs watched repo [6],[9]
Binary variable that indicates if the submitter is watching the repository
or not.

prs tenure mnth [9] Numerical variable that indicates how long (in months) the submitter’s
account has been active.

prs main team member [6],[9],[18]
Binary variable that indicates if the submitter is a main member of the
repository

prs followed pri
Binary variable that shows if the submitter is following the integrator or
not.

Pull Request Characteristics

pr files changed [6],[9],[18]
Numerical variable that indicates how many files have been changed
while submitting the pull request.

pr lines changed
Numerical variable that indicates how many lines have been changed
while submitting the pull request.

commit counts [9],[18]
Numerical variable that indicates how many commits exist in the pull
request.

intra branch [9],[18]
Binary variable that indicates whether the pull request was made intra
branch.

10



sampled dataset and the other for specific rejection reasons. This approach considers
measurements from the same group as random effects. Submitter identity and repository
identifier were incorporated as random effects, a methodology also adopted by Nadri et al.
[7].

These models were designed to address our research question, with the pull request’s
status (merged or non-merged) as the dependent variable, and features related to submit-
ters, closers, and project repository as independent variables.

To build our models, we required a balanced mix of both merged and non-merged pull
requests. While we specifically labeled 10,000 non-merged pull requests, our approach for
including merged pull requests was more representative. We aimed to mirror the actual
distribution of data by sampling merged pull requests based on the ratio of non-merged to
merged pull requests observed in each repository. For instance, in a repository present in
our labeled dataset with a ratio of 3 non-merged to 9 merged pull requests, we maintained
a sampling ratio of 1:3. This meant that for every non-merged pull request from this
repository, we randomly selected 3 merged pull requests. We refer to this method as
ratio sampling, ensuring our dataset accurately reflects the proportions of merged and
non-merged pull requests across different repositories.

We employed the glmer function from the R package lme4, a generalized linear mixed-
effect model [21] to craft these regression models. We established two types of models:

• Model of sampled dataset:
To answer RQ, we developed a model using the labeled dataset of 10,000 pull requests
and random sampling based on our ratio sampling which was explained before and
resulted in 42,829 sampled merged pull requests. This model uses the pull request’s
status as the dependent variable, with variables listed in Table 3.3 serving as inde-
pendent factors. The intent is to understand pivotal features influencing pull request
rejections and establish a baseline for each rejection reason model.

• Models for specific rejection reasons:
After building our first model, we constructed different datasets, each containing
contributions with a certain rejection reason as one part of the dataset, and the
other parts consist of randomly selected merged pull requests with ratio sampling
from the same repositories to minimize bias, these are the same merged samples that
we gathered in our base model. This resulted in 12 different models, corresponding
to each pull request rejection reason that we have identified in previous steps. The
resulting models and their distribution are in table 3.4

11



Table 3.4: Distribution of Pull Requests in Different Models

Model Merged Non-merged Total

Chaotic 297 42 339

Duplicate 2,010 416 2,426

Merge Conflict 601 119 720

No Comment 4,109 928 5,037

No Reason 2,612 515 3,127

Not PR 112 24 136

Quality 3,562 702 4,264

Replaced 6,298 956 7,254

Resolved 4,858 1,195 6,053

Stale 1,616 309 1,925

Successful 6,085 2,736 8,821

Unnecessary 10,669 2,058 12,727

Total PR 42,829 10,000 52,829

3.5.2 Analysis

In the final step of our study, we analyze the results gathered from training our mixed-
effect logistic regression models. This analysis allows us to discern the impact of various
predictors and understand their significance in the context of the models’ performance,
which will be discussed in Section 4. This is done with three approaches in the specified
order for our research question:

1. Variance Inflation Factors (VIF): After building our models, we assess mul-
ticollinearity through Variance Inflation Factors (VIF) analysis, using the ”VIF”
function from the car package in R [22]. We set a VIF threshold at 3 [7], an interme-
diate value considering previous thresholds of 5 or 2 in software engineering studies
[23, 1]. This approach helps us identify and mitigate multicollinearity amongst the
independent variables.

2. Statistical Significance:

In our analysis, to indicate the strength of evidence against the null hypothesis, we
address statistical significance by evaluating the p-value; a lower p-value indicates a

12



higher statistical significance [24, 9, 25]. It is also worth noting that while looking at
results, practical importance should also be considered[26]. For instance, a feature
with a low p-value but a near-one odds ratio may not be as practically significant as
one with a higher odds ratio.

3. Odds ratio: Drawing on established methodologies from previous research [7, 9, 6,
1], we apply odds ratio analyses to understand the relationship between our depen-
dent and independent variables. This approach enables us to distinguish between
interpretations for categorical predictors, where the odds ratio is compared to the
default level of the categorical variable, and for continuous predictors, where the odds
ratio indicates the increase or decrease in the odds of acceptance for a unit increase
in the factor [6, 9].

In this case, a unit of each measure is one standard deviation from the log-transformed
variables or the presence of a dichotomous variable. An odds ratio above 1 indicates
an increased likelihood of acceptance with each unit increase in the feature, while an
odds ratio below 1 suggests a decrease, in a way where if the odds ratio is greater than
1, it indicates an increased likelihood of the event occurring. The percentage change
for the odds ratio can be calculated as (OddsRatio− 1) ∗ 100. For example, an odds
ratio of 1.50 means there is a 50% increase in the odds of the event occurring compared
to the baseline. It is important to note that in interpreting these odds ratios, an odds
ratio close to 1 might not be practically significant despite its statistical significance.

13



Chapter 4

Results

In this section, we present the approach and findings for our baseline model and research
question.

4.1 What is the relationship between characteristics

and pull request rejection in the sampled data

set?

Approach: The objective of this section is to analyze the different characteristics that are
important when it comes to deciding the outcome of a pull request and whether it is merged
or not. To achieve this, we curated a dataset comprising 52,829 pull requests. This dataset
consists of 10,000 non-merged pull requests, and 42,829 merged pull requests. These were
selected based on the ratio of non-merged to merged pull requests in our filtered dataset,
ensuring both samples come from the same repositories. We then apply analyses based
on three approaches: Variance Inflation Factors (VIF), Statistical Significance, and Odds
Ratio.

Table 4.1 presents the results of our sampled dataset, revealing several key insights into
the factors influencing pull request outcomes.

14



Table 4.1: Important Features for RQ

Feature Coeff. P value Odds Ratio

Pull Request Characteristics

commit counts 0.11 2.25e-09 *** 1.12

pr lines changed 0.09 0.0013 ** 1.09

pr files changed 0.00 0.9584 1.00

intra branch1 -0.84 <2e-16 *** 0.43

Project Characteristics

repo pr tenure mnth 0.26 <2e-16 *** 1.29

perc external contribs -0.08 3.47e-06 *** 0.92

repo pr team size -0.46 <2e-16 *** 0.63

repo pr popularity -0.59 <2e-16 *** 0.55

Collaborator Characteristics

prs experience 0.26 <2e-16 *** 1.30

prs succ rate 0.04 0.0515 1.04

prs tenure mnth 0.00 0.9378 1.00

prs popularity -0.13 7.68e-10 *** 0.88

prs followed pri1 -0.30 <2e-16 *** 0.74

prs watched repo1 -0.47 <2e-16 *** 0.62

prs main team member1 -0.85 <2e-16 *** 0.43

4.1.1 Pull Request Characteristics

The feature indicating the number of line changes in a pull request (pr lines changed),
suggests that pull requests with more line changes are 9% more likely to be rejected. This
finding aligns with insights from Bosu et al. [27], which indicate that larger pull requests,
being more challenging to review, have a higher risk of rejection. It also reinforces the idea
that extensive changes could overwhelm reviewers, potentially leading to misunderstand-
ings. This is because larger pull requests are tougher to review thoroughly, whereas smaller
ones tend to have a higher acceptance rate [27, 15]. Moreover, the pr files changed fea-
ture, with an odds ratio of 1, as well as not being a statistically significant feature, shows
little impact on rejection probability, indicating that the number of files changed is not a

15



significant factor in pull request evaluation. The commit counts feature, which correlates
with a 12% increase in rejection likelihood, suggests a modestly higher risk of rejection for
pull requests with more commits. Finally, the intra branch variable demonstrates a sig-
nificant impact on rejection likelihood. Pull requests made within the same branch are 57%
less likely to be rejected, suggesting they are perceived as less risky or more manageable.

4.1.2 Project Characteristics

In terms of project characteristics, both team size (repo pr team size) and project popu-
larity (repo pr popularity) are associated with a decrease in the likelihood of pull request
rejection. Specifically, for every unit increase in repo pr team size, the likelihood of re-
jection decreases by approximately 37%, and for each increase in repo pr popularity
feature, the likelihood of rejection decreases by about 45%. These figures imply that pull
requests in larger or more popular projects are less likely to be rejected, potentially due to
these projects’ ability to integrate contributions more efficiently, possibly thanks to better
resources or more established processes. This observation contrasts with Gousios et al.’s
[15] suggestion that larger teams might face more rejections due to coordination challenges.
Furthermore, the proportion of external contributors (perc external contribs) is linked
to a slight decrease in the likelihood of pull request rejection. A higher proportion of ex-
ternal contributions correlates with an 8% decrease in rejection rates. The feature with
the most significant impact on pull request rejection is repo pr tenure month. Each
additional month in project tenure increases the likelihood of rejection by 29%, implying
that more established projects on GitHub often have stricter standards for accepting pull
requests; This pattern could reflect a higher bar for contributions in projects with longer
histories or greater maturity.

4.1.3 Collaborator Characteristics

Contrary to the expected benefits of experience, prs experience indicates that seasoned
contributors are actually more likely to face pull request rejections. Specifically, for sea-
soned contributors, there is a 30% increase in the likelihood of their pull requests being
rejected compared to less experienced contributors. This finding implies that, despite their
experience, such contributors’ pull requests might still undergo stringent scrutiny for vari-
ous reasons which we have discussed in the results of RQ. Conversely, certain attributes are
associated with a lower probability of pull request rejection. Specifically, being a main team
member (prs main team member1) is associated with a 57% decrease in rejection like-
lihood, following the integrator (prs followed pri1) correlates with a 26% decrease, and

16



being a popular submitter (prs popularity) is linked to a 12% decrease in the chances of
rejection. These findings underscore the importance of established relationships and recog-
nition within the project community. They align with Tsay et al.’s [6] and Thung et al.’s
[28] observations regarding the significance of sustained engagement and social structures
within project teams.

Summary: Strong social ties within the project community substantially lower the
likelihood of pull request rejection. Conversely, the technical aspects, such as the
scope of changes, require careful management to minimize rejection risks. These
insights provide a foundational understanding for further investigation into the factors
influencing PR evaluations.

4.2 RQ: Do distinct features uniquely influence spe-

cific types of pull request rejections?

Approach:

To tackle our Research Question, we construct 12 distinct models, each corresponding
to a specific reason for pull request rejection. We ensure consistency in our approach by
maintaining the same architectural framework across all models. Figure 4.1 showcases a
heatmap that visualizes the statistically significant features for each rejection reason, side
by side with our baseline model. In this heatmap, the odds ratios of significant features
are represented in each cell. Cells with a deeper shade of red suggest a higher likelihood of
rejection influenced by the respective feature, while cells tending towards blue indicate an
increased likelihood of acceptance for that feature in the specific rejection category. This
analysis aims to clarify the meaning behind these variables for each rejection category and
to compare their impacts, building on the baseline model.

Here, we present an overview of the impact of features across categories, setting the
stage for a more detailed discussion in section 5.

4.2.1 Pull Request Characteristics

In analyzing pull request outcomes, most features align with the base model’s trends. com-
mit counts indicate a higher rejection likelihood for 5 out of the 12 categories, having

17



Figure 4.1: Results of Each model

18



the same direction as the base trend. However, in this category, duplicate pull requests
highlight a unique trajectory and contrast with the general trend, which means a lower re-
jection likelihood. Moreover, pr files changed and pr lines changed consistently show
minimal impact across all categories, reinforcing their limited influence observed in the base
model. Intra branch consistently demonstrates a lower rejection likelihood, indicating a
preference for intra-branch pull requests in 8 out of 12 categories.

4.2.2 Project Characteristics

In the context of project characteristics, our findings reveal how certain features impact
pull request outcomes in diverse ways. repo pr team size shows a consistent trend where
larger teams are associated with a lower rejection likelihood, as seen in successful and
unnecessary categories, aligning with the base model. repo pr popularity demonstrates
that more popular projects generally have a lower rejection rate, a pattern echoed across
five categories, including the base.

repo pr tenure mnth indicates a general increase in rejection likelihood with longer
project tenure, significantly in the not PR category, and similarly impacts replaced and
unnecessary categories. Yet, for resolved and duplicate pull requests, longer tenure cor-
relates with a lower rejection likelihood, marking a departure from the general trend.
perc external contribs consistently suggests that projects with more external contribu-
tions face a lower rejection likelihood, a trend maintained across eight categories including
the base

4.2.3 Collaborator Characteristics

In examining the influences of collaborator characteristics on specific pull request rejection
categories, several features exhibit notable trends. The features prs main team member1
and prs followed pri1 align with the base model across all categories. However, the
submitter’s experience and popularity deviate from the observed base model trend. For
prs experience, merge conflict pull requests suggest that a more popular submitter in-
creases the likelihood of rejection. Conversely, for prs popularity, replaced and unneces-
sary pull requests indicate that a higher experience level of the submitter lowers the risk
of rejection. Two features related to the submitter’s previous success rate and account
duration are not statistically significant in the base model but show significance in spe-
cific categories. Notably, prs succ rate is only significant in unnecessary pull requests,

19



with each unit increase resulting in a minor rise in the likelihood of the pull request being
rejected. Regarding prs tenure mnth, instances with no comments and conflict pull re-
quests indicate a lower chance of the pull request being rejected when the submitter has a
longer tenure at GitHub. However, in resolved pull requests, a longer tenure increases the
risk of rejection.

RQ Summary: The results show that some features diverge from the base model’s
trend. In duplicate pull requests, more commits and longer project tenure decrease
rejection likelihood, which contrasts with the baseline. Some features gain significance
for specific rejection reasons. For example, the contributor success rate and the du-
ration on GitHub show significance in categories like unnecessary pull requests and
merge conflicts. Meanwhile, many categories and features maintain the same influence
on rejection as the base model, such as an intra-branch pull request or a contributor
watching the repository, all pointing to a lower likelihood of rejection with each unit
increase.

20



Chapter 5

Discussion

In the previous section, we systematically analyze the influence of various features on pull
request outcomes across different categories. In the discussion section, we conduct an in-
depth analysis of each category of rejection reasons to shed light on the decision-making
process in open-source software projects.

5.1 Chaotic

In chaotic pull request rejections, our findings highlight the number of commits as the pri-
mary factor influencing outcomes. According to the base model, an increase in the number
of commits raises the chance of a pull request being rejected by 12%. This suggests a
general preference for pull requests with fewer, yet more substantial commits. However,
in this category, the effect is much more pronounced, with a likelihood increase of 269%.
Essentially, a high number of commits in a pull request significantly boosts the likelihood
of the request being perceived as disorganized or overly complex, leading to its rejection.

Takeaway: By looking at the chaotic pull requests, it is crucial to manage the number
of commits to maintain clarity in the pull request, ensuring it is well-received and
effectively reviewed by project maintainers.

21



5.2 Duplicate

In the duplicate category of pull request rejections, our analysis brings to light the signif-
icance of some key factors such as the number of commits, if the contributor is following
the integrator. Diverging from the base model where each additional commit increases
the likelihood of rejection by 12%, the duplicate pull requests present a different scenario.
Here, the impact of the number of commits is less pronounced with 20% less likelihood of
rejection, suggesting that the number of commits in a pull request is not as strongly associ-
ated with its rejection for duplication reasons. This indicates that, in cases of duplication,
the focus may shift away from the volume of commits to other aspects of the pull request.

Regarding whether the contributor is following the integrator, its influence in the du-
plicate pull requests, with a 36% more chance of acceptance, closely replicates its impact
in the base model. This consistency across different contexts implies that following the
repository where change is happening has a uniform effect on pull request outcomes. In the
context of duplicates, a lower odds ratio might suggest that submitters who actively fol-
low the project are slightly less prone to having their contributions rejected as duplicates.
This could be attributed to their broader exposure to the project, potentially making them
more aware of existing contributions and reducing the likelihood of submitting overlapping
content.

Takeaway: Developers can focus on community engagement and awareness of ongoing
work within the project to minimize duplication and the developers who are more
engaged and informed about a project’s activities are better positioned to contribute
effectively without redundancy.

5.3 Merge Conflict

For our model where pull requests are closed due to merge conflicts, the significant features
are the popularity of the contributor, the tenure of the contributor, and if the pull request is
intra-branch. popularity of the contributor shows a notable shift here compared to the base
model. the pull requests with merge conflict present a contrasting picture and show that
pull requests from popular submitters are 38% more likely to face rejection due to merge
conflicts. This increase could imply that contributions from popular contributors and ones
with more followers, which could be more complex or extensive, are more susceptible to

22



integration challenges, potentially leading to merge conflicts. With each added month
to the tenure of the contributor, it is 26% less likely for the pull request to get rejected
because of merge conflicts. possibly due to increased familiarity with projects. It is worth
mentioning that this feature is not significant in our base model.

Pull requests from the same branch are 58% less likely to be rejected, a similar pattern
is also found in the base model. The lower odds ratio in this category could imply that
intra-branch pull requests are less prone to merge conflicts, likely due to the simplicity and
directness of changes made within a single branch.

Takeaway: Popular contributors should exercise caution when syncing their work, as
their pull requests are prone to merge conflicts. Developers are advised to follow good
branch management practices and consolidate changes into a single branch to avoid
integration issues.

5.4 No Comment

In the no comment rejection category, the contributor experience feature indicates that
more experienced contributors have a 49% higher chance of having their pull request re-
jected without comments compared to the base model, where the likelihood of rejection
is 30% higher. During our labeling process, we observed that many pull requests from
experienced contributors are merged into different branches, with their commit numbers
visible on the pull request page despite the absence of comments. Their pull requests
could be clear and concise and integrate directly into other branches, bypassing the need
for extensive discussion.

Based on the number of commits, our results indicate that each additional commit
marginally increases the likelihood of a pull request being rejected without any comments
by 15%. This trend is slightly higher compared to the base model, suggesting a subtle
shift towards preferring fewer commits in cases where pull requests are rejected without
explanation. Regarding the remaining features, our results reveal a consistent pattern sim-
ilar to our base model. This consistency indicates that factors such as project popularity
if the contributor is watching the project, the duration of a contributor’s involvement,
and the relationship between the submitter and the integrator have a similar impact on
the likelihood of a pull request being rejected without comment as in general pull request
evaluations.

23



Takeaway: In analyzing the pull request without comments, we identify that closures
without explicit feedback often signify procedural outcomes, such as integrating con-
tributions into other branches, rather than direct rejections. Submitters with more
experience tend to submit clearer and more concise pull requests. Emphasizing quality
and well-structured submissions is crucial for successfully navigating the acceptance
process in OSS projects. This suggests that silent closures might still represent positive
outcomes.

5.5 Not PR

For the pull requests that are not considered a pull request by the reviewer, the only sig-
nificant feature is how long the repository has existed. This feature, significantly impacts
the rejection reason with 193% more likelihood of rejection, much higher than in the base
model with 29% more chance. This suggests that longer-tenured projects are more likely
to receive, and accordingly reject pull requests for not being pull requests, either due to
clearer guidelines and expectations or the fact that they face a high amount of pull requests
which are issues or general queries.

Takeaway: By looking at results from pull requests that are not genuine, we find that
understanding and adhering to a project’s guidelines becomes increasingly crucial in
longer-term projects. These projects tend to have stricter conditions. Familiariz-
ing oneself with a project’s specific submission criteria can significantly enhance the
acceptance rate of pull requests.

5.6 No Reason

In the pull requests where no reason is given for pull request rejection, our results indicate
a 30% and 35% decrease, respectively, in the likelihood of rejection for pull requests where
the submitter follows the integrator or watches the repository. Compared to the base
model, which shows a decrease of 26% and 38%, we observe slightly less pronounced effects
in instances where no reason is specified. This suggests that following the integrator and
watching the repository reduces the chances of rejection, regardless of whether a reason
is provided. This could imply that these social connections and engagement levels with

24



the repository play a consistent role in different rejection contexts, emphasizing the varied
influence of community involvement on pull request outcomes.

Takeaway: When looking into pull requests that are closed without any explicit
reason, involvement with the project and its contributors improves the visibility of your
contributions and aligns with successful pull request strategies across various scenarios,
including those where no explicit feedback is provided. Therefore, encouraging these
connections can be a strategic move for contributors aiming to improve their pull
request acceptance rates.

5.7 Quality

In the pull requests where quality issues are the concern, the results indicate a 28% and
66% decrease in the likelihood of rejection for pull requests where the submitter follows
the integrator or the contribution is done in the same branch respectively.

For the feature indicating if the contributor is following the integrator, there is a slight
difference between this category and our base model which suggests that submitters who
follow the integrator are less likely to have their pull requests rejected due to quality
concerns.

As for intra-branch pull requests, our results indicate a more significant decrease in
rejection likelihood of approximately 66% in the quality category, compared to a 55% de-
crease in the base model. This suggests that intra-branch pull requests are less likely to
be rejected for quality reasons, emphasizing the advantage of keeping contributions within
the same branch.

Takeaway: From these insights from pull requests with quality issues, maintaining
social connections with the project’s integrators and focusing contributions within the
same branch can significantly influence the acceptance of pull requests, particularly
when quality is a concern.

25



5.8 Replaced

In replaced pull requests, the results reveal an intriguing trend in which experienced con-
tributors have a lower probability of their pull requests being replaced by 18%. This finding
contrasts sharply with the base model, where experienced submitters face a 30% increased
risk of rejection. The result suggests that experienced contributors’ pull requests are less
likely to be replaced by new ones, possibly because of their better alignment with project
objectives and a more profound understanding of project needs from previous contribu-
tions.

With a 19% increase in the change of rejection, it is indicated that longer project tenure
slightly increases the likelihood of pull requests being replaced. This trend aligns with the
base model’s increase of 29%, suggesting a consistent relationship between project tenure
and pull request outcomes across different contexts. Our findings suggest that in the con-
text of replacement, the longevity of a project influences decision-making. Furthermore,
the longer the project has existed, the higher the likelihood that the pull request gets re-
placed with a brand-new one meeting certain standards.

Takeaway: For developers, the replaced pull requests highlight two key takeaways.
Firstly, contributions from experienced contributors are less likely to be replaced,
emphasizing the value of aligning closely with project goals. Secondly, pull requests in
longer-term projects have a higher replacement risk, pointing to the need to be careful
with established standards. Additionally, it’s important to consider that someone
with less experience might not be able to directly influence their experience level in
a short period, but they should be aware of these dynamics and their implications.
Understanding these factors is crucial for newer contributors as they navigate project
contributions and aim to meet the established criteria.

5.9 Resolved

In our resolved category, we observe a 12% decrease in the likelihood of rejection for each
additional month of project tenure, compared to the base model where an increase in tenure
is associated with a 29% increase likelihood of pull request rejection. This indicates that
the longer a project has been active, the slightly less likely it is for new pull requests to be
resolved, perhaps due to evolving or stricter project standards over time.

26



With each additional commit, there is a 19% increase in the likelihood of a pull request
getting rejected. However, some parts of the introduced code are manually integrated
into the codebase. The effect is more pronounced than the base model’s 12% increase,
indicating that pull requests with a higher number of commits are slightly more likely to
include detailed work or corrections that lead to manual project integration.

With each additional month of the submitter’s tenure, there’s a 12% increase in the
likelihood of pull requests being manually integrated. This could indicate that the expe-
rience or established trust of the contributor might play a role in decisions to manually
integrate their contributions.

Takeaway: By examining resolved pull requests, we can suggest that to minimize
reliance on manual integration, it is beneficial to understand the dynamics of project
tenure. While these factors can influence the likelihood of manual resolution, develop-
ers should strive to align their submissions closely with project standards and practices
to maximize the chances of direct acceptance.

5.10 Stale

Based on our results, in the stale category, pull requests from contributors who actively
watch the repository have a 43% decrease in the likelihood of becoming stale, compared
to a 38% decrease in the base model. This suggests that contributors who actively watch
the repository are more engaged, possibly leading to faster responses to discussions and
updates, therefore reducing the risk of the pull request becoming inactive.

Similarly, for pull requests from contributors who follow the integrator, there is a 43%
decrease in becoming stale in this category. Compared to the base model’s 26% decrease,
this highlights the importance of direct engagement and social connections within the
project. Following the integrator may facilitate improved communication and awareness
of the project’s needs, encouraging timely updates and responses.

Pull requests within the same branch show a notable 64% decrease in the likelihood
of becoming stale, compared to a 57% decrease in the base model. This indicates that
intra-branch contributions, which are inherently simpler and more focused, are less prone
to inactivity or being outdated. These contributions may facilitate easier to review and
integration by teams, resulting in quicker action and a decreased likelihood of the pull
request being overlooked.

27



Takeaway: To prevent pull requests from going stale, developers are advised to
actively track project changes by watching repositories and following integrators, fa-
cilitating quicker updates and interactions. Concentrating on intra-branch contribu-
tions can further simplify integration, reducing the chance of inactivity. However, our
findings indicate that staying informed on project developments is the most effective
strategy to prevent pull requests from becoming outdated. Active engagement and
strategic submissions are essential for keeping the pull request away from being stale.

5.11 Successful

In the successful category, where pull requests are accepted but not directly merged, two
features stand out. The results reveal a 75% increase in the likelihood of rejection compared
to the base model’s 30% increase for more experienced contributors. This suggests that
pull requests from experienced contributors are more likely to be recognized for their value,
even if not directly merged, reflecting quality of the pull request.

In the feature indicating the number of commits, the results show an 11% increase in
the likelihood of a pull request being successfully closed but not directly merged for every
additional commit. this is a close resemblance to the base model which suggests a 12%
increase. This minor variance underscores a generally consistent influence of the number
of commits on the outcomes of pull requests across various scenarios.

Takeaway: In the successful category, pull requests submitted from experienced con-
tributors may not be directly merged, however, their contributions are often integrated
in other ways. This reveals an evaluation process where direct acceptance serves as
one indicator of a contribution’s value assessment. It highlights the significant, albeit
indirect, impact experienced contributors have on a project’s development.

5.12 Unnecessary

In our unnecessary category, the results indicate that pull requests in projects with longer
tenure have an 11% increased likelihood of being deemed unnecessary, compared to a 29%
increase in the base model. This suggests that as projects mature, their guidelines and

28



project plans become more defined, possibly leading to a higher standard for accepting
changes.

An increase in the number of commits leads to an 8% higher chance of the pull request
being considered unnecessary. This is slightly lower than the 12% observed in the base
model, indicating that while the volume of changes remains a factor, its impact is less
pronounced in determining the necessity of a pull request. Furthermore, the historical
success rate of a contributor, while not a significant feature in the base model, shows a
subtle increase of 8% in the likelihood of rejection for contributors with a higher success
rate. This could imply that even historically successful contributors can propose changes
that are not aligned with the current project direction or needs.

We also observe that experienced contributors face a 12% reduced chance of their pull
requests being labeled as unnecessary, a notable deviation from the base model where their
experience increases the risk of rejection by 30%. This shift suggests that although expe-
rienced contributors might face higher expectations in general which makes their changes
less likely to be discarded due to being unnecessary.

Takeaway: When analyzing unnecessary pull requests, we observe that in projects
with a longer history, there is slightly higher scrutiny on pull requests, potentially
leading to a higher rate of marking them as unnecessary. However, contributions
from experienced developers are less likely to be dismissed as unnecessary, underlining
the value of aligning closely with the project’s current needs and direction. This
underscores the importance of understanding a project’s context and making directly
relevant contributions, especially in well-established projects.

29



Chapter 6

Threats to Validity

We break the threats into four parts, external, construct, internal, and conclusion validity,
following the convention in empirical software engineering research. [29]

6.1 Construct Validity

This threat is related to the degree our measure captures. As discussed in [1], the measure
of relative importance may change with different methods. Using mixed-effect logistic
regressions and odds ratio might pose issues, such as overestimation with a small sample
size [30, 31]. However, in the context of logistic regression, odds ratios are a common
metric used to represent the strength and direction of the association between a feature
and the outcome [32]. Previous works have considered odds as a measurement to explain
the results of logistic regression models and compare different coefficients with each other
to conclusion [33, 34].

Another potential threat concerns the frequency of pull request rejection types. Since
certain occurrences might be infrequent, it could impact the reliability of the relationship
between feature and outcome [35]. However, in this study, we address this issue by ratio
sampling and having the same ratio across different models between merged and non-
merged pull requests to handle this problem.

Another construct validity in our study involves the potential issues in how certain
features, such as experience, are quantified. We used the number of pull requests submitted
by an individual as a measure of experience. However, this metric might not fully capture
the true breadth or depth of a contributor’s experience, as there may be cases where

30



experience does not directly correlate with the number of contributions. Despite this, such
cases are expected to be infrequent and, therefore, unlikely to pose a significant threat to
the study’s overall construct validity.

6.2 Internal Validity

These threats are related to inferences about cause-effect relationships. The first threat is
associated with potential bias introduced during the labeling process. To mitigate bias,
two researchers independently labeled 2,000 cases, resulting in a substantial agreement
with a kappa score of 77.6%.

The other threat is insufficient instances in some categories. This could be due to
random sampling or could show that there are not enough instances of OSS contributions
that fit the criteria of these classes.

Another internal threat would be our focus on the rejection reasons without considering
whether these rejections are final or whether the issues identified in the pull requests
have been addressed and resubmitted successfully in a different form. This aspect of the
pull request lifecycle, whether rejected contributions are refined and reintegrated into the
project. This offers a potential area for future research, where the subsequent paths of
rejected pull requests could be explored to provide a more comprehensive view of the
contribution process.

6.3 External Validity

These threats concern the generalization of our findings. In this study, we conduct an
experiment on OSS projects extracted from the GitHub platform as introduced by Nadri
et al. [7]. They have used Reporeapers [36] to select non-trivial projects, and GHTorrent
[37] and select a subset of the dataset based on their research needs. We cannot assert
generalizability beyond the projects included in this dataset, which include the projects in
which the submitter and integrator are the same people, non-OSS projects and those not
hosted on the GitHub platform.

31



6.4 Conclusion Validity

These threats concern the robustness of our conclusions when using odds ratios and coef-
ficient estimates in logistic regression models. Since odds ratios compare the likelihood of
an event occurring between different levels of a predictor variable[32], any changes in the
predictor’s distribution can influence their magnitude. When comparing across models,
this can lead to discrepancies in the perceived importance of the same factor, possibly
affecting the consistency and correctness of our conclusions. We mitigated these issues
by including consistent model architecture and using the same data pre-processing across
different models.

32



Chapter 7

Conclusion

In this study, we have expanded our understanding of pull request rejections in Open
Source Software (OSS) projects by doing a large-scale analysis of the pull request com-
ments across 12 distinct rejection categories. Our analysis reveals that rejection rationales
are influenced by diverse, context-specific factors, challenging the traditional, oversimpli-
fied view of OSS contributions. Highlighting the critical need for nuanced interpretations of
rejection reasons, offering substantial insights for contributors seeking to enhance engage-
ment within OSS projects. By acknowledging specific rejection reasons, both contributors
and maintainers can effectively navigate the complexities of the OSS ecosystem.

Overall, the reasons behind the outcome of pull requests in OSS projects span a broad
range of factors, reflecting the rich and varied landscape of OSS contributions. Embracing
the detailed nuances and complexities of these rejection reasons paves the way for higher
rates of acceptance and deeper community involvement. This study suggests a detailed
examination of pull request decisions, encouraging an approach that delves into the details
of contribution dynamics within OSS projects.

33



References

[1] Xunhui Zhang, Yue Yu, Georgios Gousios, and Ayushi Rastogi. Pull request deci-
sions explained: An empirical overview. IEEE Transactions on Software Engineering,
49(2):849–871, 2022.

[2] Rahul N Iyer, S Alex Yun, Meiyappan Nagappan, and Jesse Hoey. Effects of person-
ality traits on pull request acceptance. IEEE Transactions on Software Engineering,
47(11):2632–2643, 2019.

[3] Farshad Kazemi, Maxime Lamothe, and Shane McIntosh. Exploring the notion of
risk in code reviewer recommendation. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 139–150. IEEE, 2022.

[4] Walt Scacchi. Free/open source software development: Recent research results and
methods. Advances in Computers, 69:243–295, 2007.

[5] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in online
peer production: activity traces and personal profiles in github. In Proceedings of the
2013 conference on Computer supported cooperative work, pages 117–128, 2013.

[6] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical
factors for evaluating contribution in github. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, page 356–366, Hyderabad India, May
2014. ACM.

[7] Reza Nadri, Gema Rodriguez-Perez, and Meiyappan Nagappan. On the relationship
between the developer’s perceptible race and ethnicity and the evaluation of contri-
butions in oss. IEEE Transactions on Software Engineering, 48(8):2955–2968, August
2022.

34



[8] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. Gender differences and bias in open source: Pull
request acceptance of women versus men. PeerJ Computer Science, 3:e111, 2017.

[9] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André van der Hoek.
Relationship between geographical location and evaluation of developer contributions
in github. In Proceedings of the 12th ACM/IEEE international symposium on empir-
ical software engineering and measurement, pages 1–8, 2018.

[10] Reza Nadri, Gema Rodriguez-Perez, and Meiyappan Nagappan. Insights into non-
merged pull requests in github: Is there evidence of bias based on perceptible race?
IEEE Software, 38(2):51–57, March 2021.

[11] Daricélio Moreira Soares, Manoel L De Lima Junior, Leonardo Murta, and Alexandre
Plastino. Rejection factors of pull requests filed by core team developers in software
projects with high acceptance rates. In 2015 IEEE 14th international conference on
machine learning and applications (ICMLA), pages 960–965. IEEE, 2015.

[12] Damien Legay, Alexandre Decan, and Tom Mens. On the impact of pull request
decisions on future contributions. arXiv preprint arXiv:1812.06269, 2018.

[13] Panthip Pooput and Pornsiri Muenchaisri. Finding impact factors for rejection of
pull requests on github. In Proceedings of the 2018 VII International Conference on
Network, Communication and Computing, pages 70–76, 2018.

[14] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi. Does code
quality affect pull request acceptance? an empirical study. Journal of Systems and
Software, 171:110806, 2021.

[15] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th international
conference on software engineering, pages 345–355, 2014.

[16] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the effect of discussions on
pull request decisions. In BENEVOL, 2019.

[17] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A Gerosa. Almost
there: A study on quasi-contributors in open source software projects. In Proceedings
of the 40th International Conference on Software Engineering, pages 256–266, 2018.

35



[18] Georgios Gousios and Andy Zaidman. A dataset for pull-based development research.
In Proceedings of the 11th Working Conference on Mining Software Repositories, pages
368–371, 2014.

[19] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159, March 1977.

[20] Shuyan Sun. Meta-analysis of cohen’s kappa. Health Services and Outcomes Research
Methodology, 11(3–4):145–163, December 2011.

[21] D. Bates, M. Maechler, B. Bolker, and S. Walker. lme4: Linear mixed-effects models
using Eigen and S4, 2023. R package version 1.1-34.

[22] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge, 2013.

[23] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
Developer onboarding in github: the role of prior social links and language experience.
In Proceedings of the 2015 10th joint meeting on foundations of software engineering,
pages 817–828, 2015.

[24] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. Determinants
of pull-based development in the context of continuous integration. Science China
Information Sciences, 59:1–14, 2016.

[25] Daniel J Benjamin, James O Berger, Magnus Johannesson, Brian A Nosek, E-J Wa-
genmakers, Richard Berk, Kenneth A Bollen, Björn Brembs, Lawrence Brown, Colin
Camerer, et al. Redefine statistical significance. Nature human behaviour, 2(1):6–10,
2018.

[26] David T Lykken. Statistical significance in psychological research. Psychological bul-
letin, 70(3p1):151, 1968.

[27] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study. In
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering, pages 257–268, 2014.

[28] Ferdian Thung, Tegawende F Bissyande, David Lo, and Lingxiao Jiang. Network
structure of social coding in github. In 2013 17th European conference on software
maintenance and reengineering, pages 323–326. IEEE, 2013.

36



[29] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in software engineering. Springer Science & Business
Media, 2012.

[30] Szilard Nemes, Junmei Miao Jonasson, Anna Genell, and Gunnar Steineck. Bias in
odds ratios by logistic regression modelling and sample size. BMC medical research
methodology, 9:1–5, 2009.

[31] Huw Talfryn Oakley Davies, Iain Kinloch Crombie, and Manouche Tavakoli. When
can odds ratios mislead? Bmj, 316(7136):989–991, 1998.

[32] Susan M Hailpern and Paul F Visintainer. Odds ratios and logistic regression: further
examples of their use and interpretation. The Stata Journal, 3(3):213–225, 2003.

[33] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contribution:
From patch-based to pull-request-based tools. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
871–882, 2016.

[34] Caio Barbosa, Anderson Uchôa, Daniel Coutinho, Filipe Falcão, Hyago Brito, Guil-
herme Amaral, Vinicius Soares, Alessandro Garcia, Baldoino Fonseca, Marcio Ribeiro,
et al. Revealing the social aspects of design decay: A retrospective study of pull re-
quests. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering,
pages 364–373, 2020.

[35] Douglas G Altman, Jonathon J Deeks, and David L Sackett. Odds ratios should be
avoided when events are common. Bmj, 317(7168):1318, 1998.

[36] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
github for engineered software projects. Empirical Software Engineering, 22:3219–
3253, 2017.

[37] Georgios Gousios. The ghtorent dataset and tool suite. In 2013 10th Working Con-
ference on Mining Software Repositories (MSR), pages 233–236. IEEE, 2013.

37


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Related Work
	Factors Influencing Pull Request Decisions
	Pull Request Rejection Reasons

	Study Design
	Data Acquisition
	Feature Selection
	Qualitative Labeling
	Categorizing based on the comments
	Labeling the sampled data

	Quantitative Analysis
	Statistical model development
	Analysis


	Results
	What is the relationship between characteristics and pull request rejection in the sampled data set?
	Pull Request Characteristics
	Project Characteristics
	Collaborator Characteristics

	RQ: Do distinct features uniquely influence specific types of pull request rejections?
	Pull Request Characteristics
	Project Characteristics
	Collaborator Characteristics


	Discussion
	Chaotic
	Duplicate
	Merge Conflict
	No Comment
	Not PR
	No Reason
	Quality
	Replaced
	Resolved
	Stale
	Successful
	Unnecessary

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	References

