
Ghost Recommendations
A Protocol for Efficiently Enhancing User Privacy

by

Kritika Iyer

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Kritika Iyer 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As the amount of online information accessible to users keeps increasing, we have come
to rely more on services such as Netflix, Amazon, and eBay that are successful in recom-
mending choices to users. The main goal of such services is to present the user with a
more personalized set of choices or recommendations. The growing importance of recom-
mendation systems that provide these services can be attested by the efforts the academic
community is taking towards improving their performance. The quality of recommenda-
tion systems is primarily determined by the accuracy of the results they can provide to the
users. To achieve high-accuracy results, these systems count on finding similarities between
different users based on various features, such as the ratings the users provide for the items.
Recommendation systems use different techniques, often harvesting private user informa-
tion, to detect these similarities. Therefore, providing better recommendations frequently
comes at the cost of user privacy and at the risk exposing the user’s preferences. Owing
to growing concerns about this risk, researchers started to investigate recommendation
solutions with better assurances of privacy.

There is a growing body of work with respect to making recommendation systems more
sensitive towards user privacy. The current solutions implemented use various methodolo-
gies like randomization of the dataset, anonymizing the identities of users, using data
aggregation, obfuscating user data, using a trusted third party, and using cryptographic
techniques. However, we are yet to have a solution that not only provides privacy guar-
antees, but is also a practical and efficient system, giving recommendations with high
accuracy.

Our goal in this thesis is to implement a solution that enables high guarantees of user
privacy, is practical and efficient, that scales well over a large dataset, and provides users
with accurate recommendations. A common trend in the solutions mentioned before is to
model a system around one or more trusted third parties. All the critical operations such
as key generation or user authentication are delegated to these trusted third parties and
combined with a threat model that restricts them from behaving in a malicious manner.
We aim at implementing a system that is independent of such a trusted third party. We also
desire a system that makes collusion among servers ineffective unless the number of corrupt
servers exceeds a threshold value. We also want to make all computations independent of
the availability of the participants, so that users would get recommendations even if other
participants are offline. For our use case we have considered a scenario where users would
like to get recommendations of movies that are based on ratings provided for other movies.
To evaluate our system we have used the real world, publicly available “MovieLens” dataset.
Our system consists of the following entities: a set of users or clients, a distributed set of

iii

servers, and a public bulletin board. Our scheme primarily focuses on maintaining the
privacy of user preferences as well as the recommendations and it does not allow anyone
other than the user herself to have access to the data.

iv

Acknowledgements

First, I would like to acknowledge my supervisor, Dr. Ian Goldberg. I am so thankful
for your continuous support. This process was very challenging for me, so I am deeply
appreciative of your guidance and your patience. Thank you, Ian.

I am also extremely grateful to Prof. Robin Cohen and Prof. Florian Kerschbaum. I
am very thankful for Robin and Florian for being on my reading committee and for their
mentorship. Their knowledge and experience has been invaluable.

I would also like to thank my lab-mates in the CrySP group, especially Erinn, Nik,
Justin, and Chris. I appreciate the many discussions had in the lab. All of those discussions
were fun, most of them made sense to me, and some of them even helped shape my thesis.

I also have to thank my family away from home. It has not been easy getting through
this chapter of my life but I am forever indebted to the friends I have made who have
encouraged me and supported me during this time. Niv, Arshee, Jacqueline, Namrah, and
Maggie— I am so glad I met you wonderful women. Each one of you has a special place
in my life. I will always cherish you.

And finally, thank you, Varuni Sakhalkar. You are a gem of a person. Your kindness
and warmth kept me going during the toughest days.

v

Dedication

For my parents,
Dr. Rachna Vishwanathan and Mr. V. Vishwanathan.

Thank you for your unconditional love and support, for being so inspiring and encouraging,
and for your unwavering belief in me. Maa, you are my biggest cheerleader and my idol.
Dad, your advice is invaluable to me and your faith in me makes me feel empowered.

Thank you, Anant Iyer. You are my biggest champion and my best defender. Your
relentless drive to constantly do better and your ability to always take care of others is
inspiring to me. Megha Joshi, I am so grateful for you always looking out for me.

Thank you, Sameer ‘Galya’ Jagdale. You mentioned it was your dream to be included
in a dedication so here it is. And also thank you for being absolutely the best, I don’t
know how I would have made it without you.

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 3

2.1 Fundamentals of recommender systems . 4

2.1.1 Core concepts . 4

2.1.2 Phases . 5

2.1.3 Techniques . 6

2.1.4 Similarity measures . 7

2.2 Privacy concerns in recommender systems 11

2.3 Privacy-preserving techniques used in recommender systems 16

2.4 Solutions for privacy-preserving recommender systems 19

3 Methodology 40

3.1 Ghost Recommendation Protocol . 40

3.2 Notation . 41

3.3 Threat model . 43

3.4 Preliminary definitions . 44

vii

3.4.1 Shamir’s secret sharing protocol . 45

3.4.2 Lagrange interpolation . 46

3.4.3 Oblivious pseudorandom functions 46

3.4.4 NIZK proof and verification . 48

3.5 Construction of Ghost Recommendation Protocol 52

3.5.1 Initialization . 52

3.5.2 Secure request generation phase . 52

3.5.3 Similarity ranking phase . 55

3.5.4 Response decryption phase . 57

4 Evaluation 60

4.1 Experiment specifications . 60

4.1.1 Hardware setup . 60

4.1.2 Data sets . 61

4.2 Results . 62

4.2.1 Regression analysis . 63

4.2.2 Scalability benchmarks . 68

4.3 Bandwidth consumption . 70

4.4 Comparison with other solutions . 72

5 Conclusion 74

References 76

viii

List of Tables

2.1 Comparison of privacy-preserving recommender system solutions 37

3.1 Notation used in Ghost Recommendation Protocol 42

4.1 Sample of ML-1m data set . 61

4.2 Data sets for checking PBS size impact . 62

4.3 Data sets for checking similarity parameter impact 62

4.4 Data sets for checking server threshold impact 63

4.5 Summary of regression analysis model for upload time 64

4.6 Summary of regression analysis model for query time 66

4.7 Summary of 10-fold cross validation on upload time and query time 68

4.8 Scalability benchmarks for PBS size . 69

4.9 Scalability benchmarks for similarity parameter 69

4.10 Scalability benchmarks for server threshold 70

4.11 Bandwidth consumption for Algorithm 1 in bytes 71

4.12 Bandwidth consumption for Algorithm 2 in bytes 71

4.13 Bandwidth consumption for Algorithm 3 in bytes 71

ix

List of Figures

2.1 Phases in recommender system implementation 6

3.1 Participating entities of Ghost Recommendation Protocol 41

4.1 Upload time regression analysis . 65

4.2 Query time regression analysis . 65

x

Chapter 1

Introduction

It is fairly common in today’s society for people to have abundant choices, whether it is
finding a good restaurant nearby or wanting to buy a new laptop. The problem they are
then faced with is to make an informed decision without having enough knowledge about
all the available options. The most intuitive solution for this problem would be to rely on
recommendations from other people. In context of the aforementioned scenario, we would
consider word of mouth, restaurant reviews, or ratings provided on laptop purchases by
other customers, as data that helps us make a more informed decision.

Recommender systems (RS) are an automated extension of this intuitive process. RSs
are a set of tools and techniques that provide suggestions of items to users [RV97]. Broadly,
we can say these suggestions are predictions of items that the user would consider valuable.
These predictions are made on the basis of user preferences such as information provided by
the user or behavioural patterns of the user. RSs aim to provide a more personalized set of
suggestions to the user, saving her the effort and resources spent to explore all the available
options. Proving to be extremely convenient to users, over the past decade RSs have made
significant progress in providing highly valuable and accurate recommendations to their
users by using increasingly sophisticated algorithms. While RSs are highly effective in
filtering recommendations that are most suitable for the user, they do raise crucial concerns
with respect to users’ privacy. The information collected by the RSs in order to provide
accurate recommendations is at risk of being accessed by unauthorized or malicious entities.
RSs inevitably risk mishandling private user information as a trade-off for providing highly
accurate recommendations. This user information that is collected by RSs may include
contact information such as addresses and telephone numbers, geographical location of the
user, information shared on social media, email addresses, financial history, behavioural
patterns of web surfing, and purchase history. Some of this information is characterized as

1

Personally Identifiable Information (PII). Leaking of such PII about users can be especially
catastrophic when we consider RSs in use cases such as medical databases being used by
doctors for finding similar diagnoses or financial databases used by insurance companies
to determine users’ credit scores. Even data that is considered harmless or not sensitive to
user privacy can have undesirable implications when aggregated together.

Along with mishandling user information, another common risk that RSs take arises
from misplaced trust. Such RSs often model their algorithms in an environment which is
not adversarial and assume that all the entities involved in the system are honest. Another
popular approach that RSs employ is to used a separate “trusted” entity to perform all
the critical and secure computations. Such systems depend on this trusted third party to
be honest to provide secure recommendations. But a malicious entity that can gain access
to a trusted third party or collusion between the trusted third party and RS servers can
lead to a single point of failure, resulting in exposing the user preferences.

Our goal in this work is to implement a RS which enables user privacy such that
only the intended user herself has access to the provided preferences and the generated
recommendations. Our protocol does not allow any other entity in the system to be able
to view this information. We summarize our goal in the following thesis statement:

It is possible to construct a recommender system that maintains the privacy
of the users’ preferences as well the recommendations received, by tolerating
collusions among the servers up to a threshold limit, and generate recommen-
dations in an efficient manner without using a trusted third party or relying
on availability of other users.

In Chapter 2 we discuss the working of RSs in general and study the available solutions
for maintaining user privacy in RSs. In Chatper 3 we describe our protocol for a privacy-
preserving RS, and in Chapter 4 we present the results of the tests we performed and
evaluate how they compare to other solutions. Finally we provide a summary of our work
and future prospects related to it in Chapter 5.

2

Chapter 2

Background

With the Internet becoming easily accessible to more parts of the world, and the increase
in the amount of digital information available, we are faced with the information overload
problem. Users have a daunting number of results to choose from when they are searching
for a specific product or service, often not having enough expertise to make this decision.
This challenge faced by users is what primarily led to the development of recommender
systems, as people tend to rely on the recommendations of their peers to make routine
decisions in their daily lives.

Amazon is one of the leading online retailers in the world. It provides a large inventory of
12 million products and services of various categories to its users.1 It uses recommendation
algorithms to provide the user with results based on the query the user makes. This is
an example of how recommender systems assist the users in making better decisions while
also reducing the costs for searching. In doing so the recommender systems are beneficial
to both the users and the service providers, leading to a comprehensive body of work
in improving recommender system techniques. Amazon and Netflix are among the most
popular examples where recommender systems are used to provide new recommendations
to their users based on the shopping and viewing habits.

In order to provide more personalized recommendations, recommender systems need
information about the users. Friedman et al. [FKV+15] mention that the amount, the
quality, and the freshness of user information impacts the caliber of the generated recom-
mendations. However the same factors also impact the severity of a privacy breach on
users. This is referred to as the privacy-personalization trade-off as noted by Awad and
Krishnan [AK06] as well as by Li and Unger [LU12].

1https://www.repricerexpress.com/amazon-statistics/

3

https://www.repricerexpress.com/amazon-statistics/

The rest of the chapter is structured as follows. In Section 2.1 we will provide an
overview of recommender systems and how they work. In Section 2.2 we discuss the
risks faced by users while using services provided by recommender systems. In Section
2.3 we discuss the different types of techniques used to improve privacy guarantees in
recommender systems. Finally, in Section 2.4 we survey the solutions available for providing
more privacy-preserving recommendations.

2.1 Fundamentals of recommender systems

Recommender systems use multiple techniques and algorithms to generate the recommen-
dations. These techniques have become increasingly nuanced as recommender systems be-
came popular. Understanding the functioning of the these recommender systems requires
the knowledge of certain core concepts, techniques, and similarity measures. We provide a
brief summation of these topics in this section as discussed by Isinkaye et al. [IFO15].

2.1.1 Core concepts

Recommender systems offer recommendations of items or products to their users based on
the preferences provided by the users. Users, items, and preferences can be considered as
the inputs for recommender systems, while the recommendations generated are the desired
outputs.

� Users of a recommender system are participants who have diverse interests. User
profiles are key for providing accuracy in some recommendation algorithms and they
consist of multiple parameters such as age, location, and purchase history. These
parameters differ depending on the service the recommender system is providing.

� Items in a recommender system are objects or services that are desired by the users.
The quality of the output of a recommendation algorithm depends on the item profiles
in some cases. Considering an example of a movie dataset, the item profiles for the
movies can consist of parameters such as movie genre, actors, and directors.

� Depending on the purpose of the recommender system, the preferences can be
ratings of books, reviews of movies, or symptoms of medical conditions. Preferences
can be represented in multiple formats such as: integer range [1–5] or binary value
[like, dislike]. Any interaction between the users and items can be used to represent

4

the preferences. The users and items are often represented by a ratings matrix,
so that the correlation between them can be used to improve the final output, the
recommendations.

The quality of the final recommendations depends on the quality of the user profiles,
item profiles, and input preferences provided to the recommendation algorithm. For ex-
ample, Rakesh et al. [RCR15] analyzed the crowdfunding platform Kickstarter in order
to determine what led to some projects reaching their goal as compared to others. They
built a framework to recommend investors to various Kickstarter projects in the crowd-
funding domain. Instead of using just user or item profiles, they used a heterogeneous
mix of project-based traits, personality traits of the investors, location-based traits, and
network-based traits to develop a model for their recommendation algorithm. These in-
cluded parameters such as duration of project, the goal amount, number of shares on
Facebook, number of investors interested in the first three days of the project duration,
amount pledged by the investors, number of updates on the project, comments, location,
details of all the projects in the investor’s history, number of projects hosted by the in-
vestor, and promotion on Twitter. The results collected from the first three days of their
project proved to be an improvement over similar studies done.

2.1.2 Phases

The implementation of recommender systems can be divided into three phases:

1. Data gathering: In this phase the recommender systems collect as much infor-
mation from the users as possible. This can consist of explicit preferences like user
ratings as well as implicit information such as observing the behavioural patterns of
users. These help the recommender system to model a profile for each user.

2. Learning: In the learning phase the recommender systems use the information
collected in the first phase to train its prediction algorithm. The quality of the
user profiles created can be directly associated with the success of the prediction
algorithm.

3. Prediction: In this phase, the prediction algorithm generates recommendations for
the users.

As shown in Figure 2.1 recommender system phases run iteratively, generating a feed-
back loop. This feedback loop helps the recommender system to refine the data gathering
process and improve the prediction algorithm with every pass.

5

data gathering learning prediction

feedback

Figure 2.1: Phases in recommender system implementation

It is very common, for example, while using Amazon for users to put items in their
carts but check out only at a later date. Smith and Linden [SL17] describe how information
such as the number of times a user has viewed the item or compared similar items to it,
helps the recommender system to recognize the user’s interests and preferences as well
as to broadly approximate the user’s skills and abilities. Such implicit information helps
recommender systems identify salient attributes of both users and the items. Based on
the service provided by the recommender system, certain attributes are considered to be
more influential to the prediction process than others. The performance of a recommender
system largely depends on its ability to extract meaningful data from the information
collected. Every interaction between the users and the items is useful in creating nuanced
user profiles.

2.1.3 Techniques

There are three popular approaches to implement a recommender system based on the
filtration design of the recommender model [IFO15].

1. Content-based filtering: Content-based filtering follows an item-centric approach.
In this technique the recommender system relies on the items and their features to
generate recommendations. The recommender system creates user profiles by ex-
tracting features of the items present in the user’s history. The recommender system
suggests new recommendations using these user profiles. This approach does not re-
quire the profiles of other users as they do not affect the recommendations. Instead,
the quality of the items’ metadata influences the quality of the recommendations.
Recommendations for songs, videos, news articles, webpages, and scientific publica-
tions use content-based techniques. Deldjoo et al. [DEC+16] have developed a system
that analyzes YouTube videos and extracts a set of stylistic features such as lighting,

6

colour, and motion. They use these features to obtain recommendations with higher
accuracy as compared to genre-based recommendations.

2. Collaborative filtering: The collaborative filtering approach is mostly user-centric.
In this technique the recommender system combines the profiles of multiple users,
creating a database or matrix of users and items. Explicit user preferences for the
items, the user’s behavioural patterns, or their interactions with the items can be used
to populate this matrix. Using this matrix, the recommender system then calculates
the similarities between the users and provides recommendations that those users
found relevant. Amazon uses this technique to recommend new products to users. It
looks at the similarity of purchase history between users to recommend new items.
Linden et al. [LSY03] describe the recommendation algorithm used by Amazon in
2003, an item-based collaborative filtering technique. In 2003 Amazon was primarily
a book store and since then their approach to getting recommendations has changed
along with the services they provide. Smith et al. [SL17] talk about how they refined
their approach in the years since their original work was published. They emphasize
the importance of nuanced preferences where every interaction between the users and
items is used for providing the recommendations.

3. Hybrid filtering: As the name suggests, this approach combines content-based and
collaborative filtering methods. The two techniques maybe applied consecutively
or applied separately and their outputs are aggregated. Its implementation can be
modified according to the needs of the system. Netflix is an example where hybrid
filtering is used. It recommends movies to users using their watching habits, their
searching habits, as well as other movies having similar characteristics to the ones the
user has watched. Geetha et al. [GSFS18] use a hybrid system for generating movie
recommendations. They first use a content-based algorithm to generate user-rating
vectors for every user in the database using item attributes. Then using Pearson
correlation between the rating vectors, all the users are compared with the active
user and their similarity is measured. The users with the highest similarity form a
neighbourhood. Finally recommendations are predicted from a weighted combination
of the selected neighbour’s ratings.

2.1.4 Similarity measures

Calculation of the similarity measures between users is critical in generating high-accuracy
recommendations. Collaborative filtering is one of the most widely used techniques in rec-
ommender systems where recommendations are provided based on the previous preferences

7

of users having similar interests. Our solution uses a collaborative filtering approach to gen-
erate recommendations for the users. We therefore now examine some ways of calculating
similarity measures commonly utilized in collaborative filtering.

In collaborative filtering the user’s preferences are stored as ratings in some kind of
database like a user-item matrix where ru,i is the rating user u has given item i and rv,i is
the rating user v has given item i.

1. Pearson correlation similarity: The Pearson correlation similarity (PCS) is a
popular metric used in collaborative filtering. It is used to find a linear correlation
between the users and items based on the ratings provided. ru and rv represent the
average rating of user u and user v respectively for items rated by both users. Iuv is
the set of items rated by both users. The PCS measure results in a value between -1
and +1, where a similarity measure of +1 indicates high similarity. It is calculated
as follows:

PCS(u, v) =

∑
i∈Iuv(ru,i − ru)(rv,i − rv)√∑

i∈Iuv (ru,i − ru)
2 +

∑
i∈Iuv (rv,i − rv)

2

Since Pearson correlation similarity considers only those items which have been rated
by both users, it fails to provide an accurate result when two users have only one
rating in common or in the case where users have only a single rated item.

2. Cosine vector similarity: Cosine vector similarity (CVS) is another commonly
used similarity measure. The users are represented as vectors consisting of ratings
the user provided for each item. Cosine vector similarity between two users is the
measure of the cosine of the angle formed between the vectors representing the two
users. A cosine similarity measure closer to 1 indicates high similarity between the
users whereas 0 indicates no similarity. ru,i and rv,i are the vectors consisting of the
list of ratings provided by users u and v. Iuv denotes the set of items rated by both
users, u and v. The similarity measure is computed as follows:

CV S(u, v) =

∑
i∈Iuv ru,irv,i√∑

i∈Iuv ru,i
2
√∑

i∈Iuv rv,i
2

A major drawback of cosine vector similarity is that it does not take into account the
difference in the scale of user ratings. For example, user u has a set of item ratings
(1, 1, 2) and user v has rated the same items as (5, 5, 4). The similarity measure

8

between these two users would be 0.9 indicating a high similarity in user preferences,
even though their ratings indicate the exact opposite.

3. Adjusted cosine vector similarity: The Adjusted cosine vector similarity offsets
the drawback of the cosine vector similarity by subtracting the corresponding user’s
average rating from each co-rated pair of ratings. It is calculated as:

AdjustedCV S(u, v) =

∑
i∈Iuv(ru,i − ru)(rv,i − rv)√∑

i∈Iuv (ru,i − ru)
2
√∑

i∈Iuv (rv,i − rv)
2

Considering the same two users from the previous example, adjusted cosine vector
similarity provides a similarity measure of -1. This value represents the user prefer-
ences more accurately.

4. Jaccard similarity: The Jaccard similarity index compares the similarity between
two sets of user preferences. It records which values are common and which are dis-
tinct. The measure of similarity ranges from 0% to 100%, where a higher percentage
indicates more similar users. Iu and Iv denote the set of items rated by user u and v
respectively. Jaccard index is calculated as:

J(u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv|

Jaccard similarity index considers which items the users have rated and not at the
actual rating values. This leads to a loss of valuable information.

5. Mean squared difference: The Mean squared difference (MSD) considers absolute
ratings instead of the number of common ratings. It measures the similarity between
two users u and v as the inverse of the average squared difference between the ratings
of the two users on co-rated items. Iuv denotes the set of items rated by both users,
u and v. MSD is calculated as:

MSD(u, v) =
|Iuv|∑

i∈Iuv (ru,i − rv,i)
2

9

The mean of the squared differences provides the similarity measure where the
lower the mean squared difference, the greater the similarity between the two users.
Desrosiers et al. [DK11] have noted that finding negative correlation between users
can improve prediction accuracy of collaborative filtering. The disadvantage of using
mean squared difference is that it does not capture negative correlation between the
users.

6. Similarity measure for Ghost Recommendations: The similarity measure we
have used in our solution is relatively straightforward since our main goal is providing
privacy preserving recommendations or Ghost recommendations. Our similarity
measure (Ghost Sim) uses the intersection and difference functions from set theory.
Unlike the Jaccard similarity measure, we consider not just the item but also its
rating, while checking for common values between two users.

Consider Iu to be a set of (item, rating) pairs indicating the preferences of a user
u. The user u is looking for new recommendations from the other n users in the
recommender system, based on the preferences provided by the user u.

For our similarity measure, we first use the intersection function to find the items
that have identical ratings for the users u and v, where v = 1, · · · , n. Iv represents
the preferences of user v. The intersection of the two users u and v, is represented
by Iuv, which includes the common values between them. Next, we check if the total
number of common values between the two users is above a predefined threshold, thr.
Once we find that the user v meets this criteria, we use the set difference function to
check how many dissimilar items are present in the set Iv − Iu. Of all the users that
matched the threshold criteria, only three users having the most dissimilar items are
recommended to user u. argmax3w∈{1,...,n} returns the set of the three values of w for
which the argument is largest, thus selecting the users with the highest number of
dissimilar items. Ghost Sim(u, v) is set to 1 if both the threshold and the argmax3
conditions are met, otherwise it is set to 0.

Ghost Sim(u, v) is calculated as follows:

Ghost Sim(u, v) =

{
0, if |Iuv| ≤ thr

1, if |Iuv| ≥ thr and v ∈ argmax3w∈{1,...,n}(|Iw − Iu|)
(2.1)

The user u will receive three users where Ghost Sim(u, v) = 1. Having a high number
dissimilar items rated by these similar users is useful as they are provided to the user u

10

as new recommendations. Desiring a larger set difference value is not required for the
measure of similarity between the two users, but rather for the measure of usefulness.
A high number of common rating between users u and v indicates common interests,
but also a high number of uncommon ratings indicates the usefulness of the user v
for providing recommendations to the user u.

We have used movie ratings for implementing our solution which uses a “half-star”
rating system having ratings from 1 to 5 with 0.5 increments. Following prior work,
we supplement the input user’s ratings with some extra values, by adding and sub-
tracting 0.5 from each of the rating values. This will ensure that an exact match of
ratings of a given movie between users u and v will result in three matches; ratings
0.5 apart will results in two matches; ratings 1.0 apart will result in one match.

Chapter 3 includes an in-depth description of how we calculate this measure and use
it to acquire useful recommendations.

2.2 Privacy concerns in recommender systems

Friedman et al. [FKV+15] note that in today’s information age, people regard their personal
information as a commodity and that they are willing to give up some personal information
in exchange for more refined services. RSs fit this use case perfectly. Gaining abundant
user information is crucial for providing personalized recommendations to users. RSs thus
benefit greatly by acquiring demographic knowledge provided by their users such as age,
gender, ethnicity, nationality, and location.

Jeckmans et al. [JBE+13] have classified the different kinds of information that the RSs
have access to. We have listed them below.

� Behavioural information consists of implicit data collected by the recommender
system as the user interacts with various items. For example, the time the user
spent viewing a particular item on Amazon before buying it can be considered as
behavioural information.

� Contextual information relates to the context of the service provided by the rec-
ommender system. Location, time, and date of the user interaction are examples of
such information. For example, location based information is typically used by travel
recommender systems to make relevant predictions for their users.

11

� Item metadata includes in-depth knowledge of the item features. Genres of movies
are examples of metadata for a movie recommender system.

� Purchase or consumption history includes list of items previously bought or
services consumed by the user.

� Feedback is the information the recommender system gets from the users after they
have received the recommendations. It is usually represented as a positive or negative
value representing the quality of the recommendations.

� Social information relates to the data that the recommender systems can gather
from social media. Websites like Twitter or Facebook can provide information about
the user’s relationship with other users to the recommender system.

� User attributes are used to represent characteristics of the user. These usually
include demographic details of the users.

� User preferences are the explicitly provided opinions of the users and are rep-
resented in various ways depending on the service provided by the recommender
system. For example a range of values from 1 to 5 or a binary set indicating “like”
or “dislike”.

As the algorithms used by RSs become increasingly sophisticated, they not only gener-
ate recommendations but they have the capability to draw new inferences about the users.
They can correlate the information listed above with data publicly available, to generate
previously unavailable data about the users. Additionally, since this newly extracted data
was not originally provided by the users themselves, depending on the local privacy laws
RSs could use this information however they see fit, without having the explicit consent of
the users. This often leads to misuse of user information. We note examples of such un-
ethical behavior below. Collecting data directly from users and using the newly generated
inferences allows RSs to build a comprehensive model of the user. This allows RS to create
fairly accurate profiles for users who have provided limited data. Exposing, accessing, or
using this inferred data, without the user’s explicit consent, could lead to a major privacy
breach of the user’s information. Some users might not be aware of the implications of
these inferences, in which case they might unknowingly allow this violation of the privacy
of their information.

RSs generally store the information collected from the users in some form of a dataset.
Jeckmans et al. [JBE+13] have observed that privacy risks may also arise depending on
how securely the users’ information was collected and stored in these datasets. We have
listed the privacy risks faced by user related to these datasets below.

12

� Data collection: While subscribing to a recommendation service, users mostly have
no choice of opting out of data gathering performed by the recommender systems.
Data collection relates to the amount of data collected by the recommender systems.

� Data retention: Information the user provides online to recommender systems is
very hard to discard. Even if it is seemingly removed, a copy of it may still exist
elsewhere in the system. The data retention concern is in context with the availability
of the information for a duration longer than the intended duration.

� Data sales: A major concern for storing information online is the risk of it being
sold to interested third parties. The information used by recommender systems
is extremely valuable for marketing companies. Running advertisements generates
income for service providers and information about users can be extremely useful for
providing targeted advertisements to them.

� Improper handling of private information: The recommender system has com-
plete access to the information collected about the users and their preferences. If the
recommender system behaves in an adversarial manner or an adversary has breached
the security of the system, they can leak users’ private information.

� Revealing information through inference: Recommender systems have access
to the user’s input preferences as well as the recommendations provided to them. A
lot of inference can be derived about the users from this data. Inference attacks by
correlating various sets of data can risk the users’ privacy.

Next we discuss examples that illustrate different kinds of privacy risks mentioned
above.

Weinsberg et al. [WBIT12] developed multiple algorithms to infer the gender of a user
using MovieLens and Flixster datasets using machine learning. A user’s profile consists
of a set of (movie, rating) pairs, such that the movies rated by the user are a subset of a
universal set of movies. This user profile is submitted to a recommender mechanism which
implements the gender inference module. This gender inference module is a classification
technique used to profile and label the user’s gender. The recommender and gender infer-
ence mechanisms are presumed to have access to a training dataset consisting of a set of
N = {1, · · · , N} users. Each of these users has rated a set of movies which are present in
the universal set of movies, M = {1, · · · ,M}. Si ⊆ M denotes the set of movies rated
by user i ∈ N . This training set also contains a binary variable yi ∈ {0, 1} indicating
the user’s gender, where 0 is mapped to male users. To train the classifiers, each user in

13

the training set is associated with a characteristic vector xi ∈ RM such that xij = rij,
if j ∈ Si and xij = 0, otherwise. To check whether inferring a user’s gender from their
ratings is possible, Weinsberg et al. used three different types of classifiers: Bayesian clas-
sifiers, support vector machines (SVM), and logistic regression. Each of these classifiers
were evaluated on both the Flixster and MovieLens datasets. They computed the average
precision and recall for the two genders across a 10-fold cross validation. The class prior
classification was used as a baseline method for evaluating the performance of the other
classifiers. Using a training set of about 300 users was enough for the classifiers to get
above 70% precision. Additionally, they used the logistic regression and SVM classifiers
on a binary matrix, which is where a characteristic vector x is defined as x̃ ∈ RM , such
that x̃j = 1xj>0. With this they were able to capture the movies for which a rating is pro-
vided. This shows that the simple binary event “watched or not” is much more significant
compared to having a rating value of a movie available. They found that using the regular
matrix provided a less than 2% improvement, on all measures, as compared to using the
binary matrix. This led Weinsberg et al. to make a key observation that whether the user
watched the movie or not provides a strong correlation to the user’s gender regardless of
the rating given to it. This example illustrates how behavioural information can be
used to predict the gender of other users, who had not originally provided that information.
So regardless of the fact that some users may choose to limit the information they share
about themselves with the RSs, this information is exposed, violating that user’s privacy.
Such inference attacks usually exploit the information provided by some users to derive
sensitive and private information about other users.

Narayanan and Shmatikov [NS08] de-anonymized the Netflix Prize dataset by show-
ing how an adversary having limited information about an individual user can use that
information to identify that user’s records in the anonymized dataset. This dataset con-
sisted of just the user’s ratings and dates when they watched the movies, of 500,000 Netflix
subscribers. All remaining identifying information about the users was removed from the
dataset and the dataset was subject to perturbation. With auxiliary information of just
eight movie ratings, of which two may be wrong, and rating dates known within a 14-day
error were used to uniquely re-identify 99% of the records in the dataset. The authors note
that the auxiliary information can be easily obtained by a adversary from social media
where users might mention their favourite artists or get the public ratings provided by
users on IMDb. The de-anonymization algorithm demonstrates how using this easily ac-
quired, limited information, an adversary can identify whether an individual user’s records
are present in the dataset.

Furthermore, by cross-correlating the anonymized records from the Netflix dataset with
publicly available records from IMDb, the authors were able to learn sensitive information

14

about a user’s political affiliation and sexual preferences. This work effectively demon-
strates how user preferences and social information of users can be used to violate
the user’s anonymity. It also shows how an adversary can acquire personal information
about users from information gathered by RSs.

We have seen several examples of massive data breaches recently which led to sensitive
information about the users being disclosed. The Facebook data breach of 2018 is one
example where personal data on approximately 87 million users was collected without
their consent. Using a third party app, Facebook users were paid to take personality tests
where they consented to the collection of that data for academic purposes. However, the
app also collected information on the test participants’ Facebook friends, without their
consent, resulting in a dataset of tens of millions of users. Cadwalladr and Graham-
Harrison [CGH18] revealed how this data was used to create profiles of users based on
their political leanings in order to target them with personalized political advertisements.
This is an example of how improper handling of data and data sales was used for
the unsolicited collection of user data, unlawful disclosure of that data, and revealing
sensitive information about them. It also shows how users can be influenced by skewing
the information they can view.

Calandrino et al. [CKN+11] show how any person can carry out an inference attack
by using a limited amount of information about a user to surmise their private transactions.
They have tested their solution using data publicly available from websites like Amazon.
Calandrino et al. view the data a recommender system uses to make recommendations as
a matrix with rows representing the users and columns the items. Instead of considering
just the rating provided by a user on a particular item, the cells of this matrix represent
transactions between the user and the item. Every time the user interacts with the system,
the matrix is updated. They demonstrate three passive inference attacks using the public
outputs of the recommender system; specifically they show an inference attack on related-
items list, on the covariance matrix, and on the k-Nearest Neighbours recommender system.
They also used different sources of auxiliary information to perform these inference attacks.
Such sources include websites where users have publicly rated or commented on items,
websites that explicitly mention a verified purchase of the user, user’s sharing their feedback
or reviews of the items on third-party websites, and mentions of a particular item on online
forums.

In the first inference attack, the attacker uses the related-lists the recommender system
outputs. An example of this is Amazon displaying the list, “Customers who bought this
item also bought ..”. Such lists appear on other websites as well. News websites such as
CNN or New York Times provide users suggestions on what articles to read next. The
attacker considers the target user’s auxiliary information list, which consists of items the

15

attacker knows to be associated with a target user. The attacker then monitors related-lists
associated with each auxiliary item and records the movements of each target item in the
these lists. The attacker then computes a score for each target item counting the number of
auxiliary items in whose related-items lists it has appeared or moved up. Checking this over
a period of time, if this score is more than a predefined value, the attacker concludes that
the target item has been added to the user’s record. This approach exploits the changes in
covariance over time. It shows that information revealed by a recommender system, such
as the item similarity lists and item-to-item covariances, are based on the user’s public
transactions. The algorithms leverage this to infer the users’ non-public transactions,
posing a threat to privacy. Although we discuss just one of the attacks mentioned in this
solution to illustrate inference attacks, Calandrino et al. mention several other algorithms
that can be performed to expose the privacy implications that arise in data collected by
recommender systems.

2.3 Privacy-preserving techniques used in recommender

systems

Being a tool that has proven to be extremely useful to its users and also profitable to the
service providers, there has been substantial research conducted over the past 20 years
towards improving the accuracy and performance of recommender systems. At the same
time, the growing awareness of user privacy and the risks to it has led to advances in
academic solutions for developing privacy-preserving recommender systems.

Providing high accuracy of the recommendations, improving the overall performance
of the system, and providing user privacy are some of the goals these solutions aim for.
But achieving all of these goals can be a challenge since these metrics are conflicting in
nature. Owing to the trade-off between accuracy, performance, utility, and privacy, there
are myriad solutions for privacy-preserving recommender systems. Many studies have
been done to understand the different trends in privacy-preserving recommender systems
in order to determine the best metrics of an ideal privacy-preserving recommender system.

In this section we discuss the different privacy-preserving techniques used by recom-
mender systems as presented by Wang et al. [WZJR18] and Ogunseyi et al. [OY18] and
how these techniques are used in various privacy-preserving solutions. The solutions can
be broadly classified into the following categories:

1. Data Perturbation

16

This technique involves modifying the user input. This is achieved by introducing a
measure of randomness or by masking the input data. The goal is to reduce the risk
of exposure of an individual user’s input by adding some noise to it such that the
input is very different from the user’s original input.

Polat and Du [PD03] used perturbation techniques to protect a user’s data by adding
random noise to it before sending it to the recommender system. The recommender
system could provide accurate recommendations to the user as it used the aggregate
of input values from multiple users. As long as the number of users participating
is sufficiently large, the recommendations generated were of decent accuracy. This
technique does trade accuracy for user privacy, but since computational overhead
is low, it is much faster than other solutions that use cryptographic algorithms.
However, this approach is not suitable for providing strong security for user data.
Aggarwal [Agg06] exposed the vulnerabilities of this technique by demonstrating how
it can leak information about the user.

Shokri et al. [SPTH09] proposed a technique to obfuscate the user-item connections
from an untrusted server by ensuring that their users maintain separate online and
offline profiles. While the untrusted server uses the online profiles to generate recom-
mendations for the users, they do not have access to the offline profiles. Moreover,
each user randomly chooses some other users to add items from their offline profiles
to her own profile. This adds another layer of obfuscation for hiding the user’s actual
rated items. However, this system too trades off accuracy of recommendations for
user privacy. It also leaks information about the user’s interest on a broader scale.

Depending on the user’s privacy requirement and sparsity of the input data there are
different kinds of perturbation and obfuscation styles that are used, as mentioned
below:

(a) Data obfuscation by substituting a default value: The user’s data is substituted
with a predefined value.

(b) Data obfuscation by substituting a uniform randomized value: The user’s data
is substituted by a random value chosen uniformly from a range of values.

(c) Data obfuscation by using values from a bell curve: The user generates a stan-
dard normal distribution of her input values. She then chooses a percentile
and selects random numbers from this range to substitute values in her original
input.

(d) Data perturbation using a values from a bell curve: Instead of substituting the
user’s data entirely, we augment the user’s input with some random noise. The

17

random noise is generated in the same way using a standard normal distribution
of the user’s original input.

(e) Data obfuscation by permutation: In this method, clusters of similar items
remain consistent after applying the obfuscation to the user’s input. The ratings
of similar items is swapped between two users. This ensures that the aggregate
of the data after applying permutation is very close to the aggregate of true
data.

(f) Randomized response: This is a fairly common technique used to suppress and
generalize the user’s input. Users can randomize their input using a known
probability distribution, where they provide the true value of the data with a
probability p > 0.5 and for a known probability 1−p, they send a dummy value
for their data. Users can also split their data into groups, and apply randomized
response for each set of the data.

(g) Random filling: This technique deals with masking the unrated data cells. Rec-
ommender systems can populate unrated cells, uniformly selected at random,
and fill them with some default values. The default value may be personalized
depending on the user or item information available. This is used when the data
provided by the user is sparse or incomplete.

2. Anonymization techniques

Another technique for enhancing the user’s privacy is by obscuring the link between
the user and their input data, which can be achieved through anonymizing the input.
In this approach the user’s personally identifiable information (PII) is either removed
from the input or transformed. This is done to protect the user’s identity while
maintaining the utility of their input. The recommender system can compute relevant
recommendations using the aggregate of the input data. The anonymization method
used to hide the user’s PII will impact the security guarantees provided for the data.

3. Using a trusted third party

Using a separate trusted third party is a technique that is widely used for providing
privacy in recommender systems. The assumption in this case is that the trusted
third party will always behave honestly. This trusted third party is used to perform
computations such anonymizing the user’s input and then sending the modified in-
put to the recommender system. Then recommender system can generate private
recommendations for the users without having access to the original user input.

Both these techniques, anonymizing user input and using a trusted third party, are
illustrated in the system designed by Guha et al. [GCF11]. Their system was devel-
oped for providing private advertising to users. Along with users and recommender

18

servers, their system includes an additional participant called the dealer. The dealer
anonymizes the interaction between the user and the servers by encrypting the user’s
input. However, availability of the dealer is critical for the implementation of this
system, which is not ideal.

4. Using cryptographic techniques

Cryptographic techniques are used by most of the latest solutions for privacy-preserving
recommender systems. Compared to the methods discussed before, cryptographic
techniques have proven to be extremely effective in addressing privacy challenges
of recommender systems, although the computational overhead using these meth-
ods is significantly higher. These techniques use tools such as: public key encryp-
tion (PKE) schemes, secure multi-party computations (SMC), verified secret sharing
(VSS), Homomorphic encryption (HE) schemes, partially homomorphic encryption
(PHE) schemes, and garbled circuits (GC). One of the techniques used by recom-
mender systems for getting high-accuracy recommendations is matrix factorization.
This method is used frequently, along with the cryptographic solutions mentioned
before. Matrix factorization uses the user-item interaction matrix. It represents this
matrix into the product of two lower dimentionality matrices therefore generating a
lower dimentionality latent space.

In Section 2.4, we will discuss solutions using these techniques and then compare
them.

2.4 Solutions for privacy-preserving recommender sys-

tems

There is a large body of work available for academic solutions that implement privacy-
preserving recommender systems. These techniques provide varying levels of privacy guar-
antees that depend on the protocols used to design the system.

We have selected the following solutions firstly to illustrate a wide spectrum of different
privacy-preserving approaches. Secondly, we classify them using five characteristics focused
on privacy-preserving aspects. These characteristics are dependence on a trusted third
party, computational overhead incurred, the reliance on the availability of other users,
effectiveness against a malicious adversary, and how well they preserve the integrity and
confidentiality of the users and their data. The solutions selected can each be represented
using these classifiers.

19

We want to provide a comprehensive comparison of the different techniques available.
This comparison also informed us of the different design choices we should implement in
our solution so as to overcome any shortcomings we observed in the solutions noted below.

The selected solutions are presented below in order from least sophisticated to most
sophisticated techniques used, followed by the comparison of the solutions.

Berkovsky et al. [BEKR07] consider a peer-to-peer (P2P) framework to represent their
solution. In order to accommodate the privacy constraints, they initially use data obfus-
cation techniques performed by the users themselves, and then store the users’ profiles
in a distributed manner. One of the key benefits of implementing the privacy-preserving
computation on the client side is that the users can have complete control over their data
and decide exactly how to share their data. Since this solution is implemented in a P2P
network, the connectivity of all the users allows them to directly communicate with each
other.

The active user begins the process to get predictions for a specific item by broadcasting
a request to the other users. This request includes the active user’s profile, which represents
the user’s ratings for a set of items in a ratings vector. Here, the active user can partially
obfuscate the ratings vector before broadcasting it to the other users. The active user
can also select which of the other users to broadcast this request to. Once the active
user’s modified profile is sent out to the other chosen users, each of the chosen users have
the option of responding to the active user’s request. If the user decides to respond, they
compute the cosine similarity measure of their profile with the active user’s modified profile.
This similarity measure and the user’s rating for the specified item is sent back to the active
user. The active user then selects users with the highest similarity measure, and performs
a weighted average of the ratings depending on the similarity measure sent back by the
chosen users.

Although this approach requires sending the active user’s profile over the network, one of
the main contributions of this work is that they have demonstrated that it is possible to get
predictions from a recommender system while using only a small portion of the modified
user profile. They have shown this by using three data obfuscating techniques: default
obfuscation, uniform random obfuscation, and bell curved random obfuscation. These
obfuscation policies were applied to two cases: (1) obfuscate all the ratings, and (2)
obfuscate only extreme ratings. The authors test these polices on (1) predictions of
all ratings, and (2) predictions of extreme ratings. The experiments were conducted
on the MovieLens dataset, where they considered two datasets: full, which consisted of all
the available ratings, and extreme, which consisted of only those ratings where more than a
third of a user’s ratings had the variance farther than the average by more than 50%. Their

20

results showed that the mean square error of the predictions increases linearly with the
data obfuscation rate and approaches the accuracy of non-personalized predictions. With
their results, the authors were successful in showing that the impact of obfuscating extreme
ratings is stronger than of obfuscating moderate ratings. This allowed them to conclude
that the extreme ratings are more important for the accuracy of CF recommendations.

While this solution does not rely on a central server to store user profiles and hence avoid
it being accessed for malicious purposes, the solution offered is not feasible to use in the
real world. Obfuscating the user’s profile does not ensure that integrity or confidentiality
of the user’s data will be maintained. Additionally, depending on the size of the network,
there will be significant costs in communication if a user needs to broadcast the profile
to all the other users in her network, in order to get a prediction value. This is also not
desirable since this would cause a dependency on other users being available at the time.

Next we look at the solution presented by Weinsberg et al. [WBIT12] which uses matrix
factorization for generating recommendations. Matrix factorization is a commonly used
method in collaborative filtering, where both users and items are mapped to a joint latent
factor space of a set dimensionality, such that user-item interactions are modeled as inner
products in that space. It is an effective way of generating latent features between two
different kinds of entities. This solution uses a recommender mechanism that implements
matrix factorization.

As discussed in Section 2.2, Weinsberg et al. demonstrated how easily the gender of
a user could be inferred from their user profile. They used a training dataset containing
users that have rated a set of movies, and where each user is associated with a binary
value indicating their gender. Using a training dataset of 300 users, the machine learning
classifiers were able to predict the gender of new users with an accuracy above 70%. They
also found that whether or not a user has watched a movie has more impact on the gender-
correlation than the rating of the movies. Now we discuss how they used an obfuscation
mechanism to diminish this inference.

The obfuscation mechanism alters the user’s input profile Si for the user i by adding
certain (movie, rating) values to it before sending it to the recommender mechanism for
generating recommendations using matrix factorization. For choosing which movies to add
to the user’s profile, it uses two ordered lists LM and LF , generated by the training set,
for storing male and female correlated movies in decreasing order of the scoring function
w : LM ∪ LF → R and w(j) indicates how closely associated a movie j ∈ LM ∪ LF is
with the user’s gender. k is the number of values added to the input set Si where k <
min(|LM | , |LF |) − |Si| and LM ∩ LF = ∅. For any given female (or male) user i, they set
Si

′ = Si. Then a movie j is picked from LM (or LF), and added to Si
′, if j /∈ Si

′ until

21

k values have been added. They used three strategies for selecting the movies to add to
the user’s profile: random strategy, sampled strategy, and greedy strategy. Considering
a female (or male) user i, the random strategy picks any movie j from the list of the
opposite gender LM (or LF), regardless of the movie scores. The sampled strategy uses
the distribution of the movie scores in the opposite gender’s list. Consider movies j1, j2, j3
are present in LM having scores of 0.5, 0.4, 0.3 respectively. Then for a given female user
i, j1 will be picked with a probability of 0.5, j2 with a probability of 0.4, and j3 with
a probability of 0.3. In the greedy strategy, the movie having the highest score in the
opposite gender’s list is selected.

The next step of the obfuscation mechanism is to assign ratings to the newly added
movie values. As the ratings have low impact on the gender correlation, they were able set
it to whatever value they needed to maintain the quality of the recommendations. They
used two approaches for assigning the rating value. The first approach used an average
rating value of all the movies j ∈ Si

′ − Si and added those to the user’s altered profile
Si

′. The second approach computes the latent factors of movies by performing matrix
factorization on the training dataset, and uses that to predict the ratings. The predicted
ratings for all movies j ∈ S ′

i − Si are added to the altered profile.

The gender-inference accuracy was computed using 10 fold cross validation, where the
model is trained on unadulterated data, and tested on the obfuscated data. They found
that on adding 1% of extra ratings to the user’s profile, the accuracy of predicting the
gender drops to 15% from around 75% and by adding 10% of extra ratings, this is close
to 0.1%. These results were obtained using the logistic regression classifier on the Flixster
dataset while implementing a greedy strategy for selecting the extra movies to be added.
They also evaluated the recommendation quality that the user will observe if they obfuscate
their gender. They measured this impact by computing the RMSE of matrix factorization.
The change in RMSE was not significant with a maximum of 0.015 for Flixster and 0.058
for MovieLens. This method achieves the desired result of decreasing the accuracy of pre-
dicting a user’s gender by obfuscating their rating profile, thus maintaining their privacy.
However, since the output of predicting the user’s gender is considered as a binary space,
the predicted gender will almost always be just the opposite of the user’s actual gender,
rendering this result useless. This solution does mention that adding 5% of extra ratings
to the user’s profile while implementing the sampled strategy to select the movies, results
in the accuracy of gender prediction to be approximately 36%, whereas adding 1% of extra
produces an accuracy of approximately 60%. Using these settings would prove to be a
better strategy while considering this particular use case where the output is binary.

This solution used matrix factorization to obfuscate the users’ data, while still preserv-
ing the quality of recommendations provided to the users. However, it relies on a training

22

set to provide key computations, and therefore assumes that this data is not tampered
with. This approach would not be able provide strong guarantees of confidentiality and
integrity for the user’s data. It also relies on separate entities performing the recommen-
dation and obfuscation mechanisms. Using this setup again relies on these entities acting
honestly, and not being able to defend against adversarial behaviors.

Ying [Yin20] proposes a shared matrix factorization solution for a distributed recom-
mender system, which uses secret sharing. This solution considers federated learning to
protect the user data in the distributed setting. Federated learning is used to improve the
performance of a recommender system by combining user data distributed across multiple
data sources. It enables multiple participants to work together without sharing data, thus
maintaining the users’ privacy. The users’ data is considered to be distributed across differ-
ent data sources. For example users can buy an iPhone from Amazon or from Apple. This
solution considers the scenario where the items are shared across multiple data sources. It
also considers that different users rate the same item but on different data sources.

This solution considers n users and m items where each user has rated a subset of the
m items. This gives a n ×m rating matrix M , where rij ∈ M denotes the rating of item
j by user i. To resolve the possibility of a sparse matrix where not every rij is available,
matrix factorization is used by fitting a bilinear model M ≈ UV on the rating matrix.
The user profile matrix is denoted as U ∈ Rn×d and the item profile matrix is denoted as
V ∈ Rd×m. Ut denotes the user profile for a data source t, where t = 1, · · · , T and T is the
total number of data sources.

Each data source has its own user profile, Ut, which is private. Each data source uses
their respective rating matrix to update these user profiles. The updated Ut is used to
compute the item matrix gradient, gplaint . Then each data source performs secret sharing
to split gplaint into shares gsub1t , · · · , gsubTt . Each data source keeps gsubtt and sends the other
shares to the other respective data sources. Then it computes an interpolation of the
shares it received from the other data sources to compute ghybridt =

∑T
i=1 g

subt
i . This hybrid

gradient value is sent to the central server. The central server computes an interpolation
of the hybrid values received from each data source to get G =

∑T
t=1 g

hybrid
t . As the central

server stores the public item profiles, it uses this interpolated gradient value to update the
item profiles.

This algorithm was tested using the MovieLens dataset. To verify the improvement of
using a distributed recommendation system, the number of data sources used was varied
using one, three, and five data sources. For each additional data source, the number of
users increased by 200, while the number of movies was kept constant at 500. The results
show that with the increase of data sources, the loss of the matrix factorization model goes

23

down. This is because with an increase in data sources and the number of users, the rating
matrix is more perfect, making the item vector fitting better.

They have also compared the performance between the shared matrix factorization al-
gorithm that uses secret sharing against an algorithm that does not use secret sharing.
They find that the communication cost caused by secret sharing is less than the computa-
tion cost by regular matrix factorization. They evaluated this by checking the time it took
for each algorithm to perform for a varying number of data sources.

This method uses matrix factorization and secret sharing techniques which have consid-
erably lower computational overhead. It also relies on a distributed set of servers and thus
does not need a third party that is assumed to act honestly. Using secret sharing ensures
that the confidentiality of the user’s profile is maintained. However, this approach does
not consider that an adversarial user can modify or inject data being sent to the central
server, influencing the value of item profiles, and thus cannot provide integrity guarantees
for the users’ data.

Artail and Farhat [AF14] provide a solution for a system that provides ads to users
based on their preferences. Their system reads the user’s location, the time the request was
made, and considers the usage context to provide these personalized ads, while maintaining
the confidentiality of this data. They use data aggregation and anonymization techniques
to achieve this goal. To deliver personalized ads to users, mobile advertising relies on
content providers like webpages users may visit and applications they may use. These
content providers subscribe to ad servers, where service providers can register their ads.
Every time the user accesses the webpage or the application, an ad request is generated that
includes the user’s location and her preferences. The ad server then uses this information to
deliver targeted ads to the user. Artail and Farhat have designed their system to aggregate
the requests of multiple users in order to hide their identities from the ad-server. Their
design requires co-operation between a set of users that are requesting the ads. A user
can initiate the process by broadcasting an ‘ad announcement’. The users who respond to
this broadcast form a group. The user’s response includes their address and their public
key. The initial user then broadcasts a message nominating a ‘primary peer’ and the
list of the users’ addresses and public keys. All the users generate their requests using
their preferences, location, and billing reports which capture their clicks on previous ads,
and encrypt the request using the primary’s public key. Additionally, each user randomly
selects another user’s public key to encrypt their encrypted requests before broadcasting
them. This ensures that only a particular user, other than the primary, can decrypt the
message before sending it to the primary. Additionally, that particular user who receives
this request will know the identity of the sender but will not be able to decrypt the request
since it has been encrypted using the primary’s public key. This ‘shuffling’ process hides

24

the identity of the users from the primary when the primary finally decrypts the requests
using her private key. The primary then aggregates these requests and sends them to the
ad-server. The ad-server replies back to the primary with ads, who then broadcasts them
to the entire group. In order to improve the privacy further, they implemented their system
by running the shuffling steps multiple times.

They have implemented their solution using Java. They considered a class of users
where some could be marked as malicious. Their solution formed random groups of
users where the primary user is selected and the shuffling process is conducted to gen-
erate aggregated requests. For testing their solution, they designated a ‘key user’ in
the group and after each implementation checked whether the requests of this key user
were discovered or not. They kept a tally of instances where the requests were dis-
covered while repeating the implementation one billion times. They considered three
scenarios where privacy of the user could be jeopardized: 1) attacks by colluding mali-
cious users, 2) attacks by a malicious ad-server, and 3) attacks by colluding malicious
users with the ad-server. They concluded that the probability of the key user’s re-
quests being discovered follows the formula: Probability (discovering a user interest) =
(% malicious users)n+1× (% of colluding malicious users)n where n is the number times of
shuffling is done. They obtained this formula by using a default value of 20 users per group
for n = 1, with 10% colluding malicious users. Their tests showed that the probability of
tracking requests increases from 0 to 1 per 1000 requests as the percentage of malicious
users increases from 0 to 10.

There are a few drawbacks of using this solution. The primary user receives the requests
from the users in the group and is able to decrypt them using her private key. This solution
assumes that the primary user will not behave in a malicious manner. Without this key
assumption, the primary user has the opportunity to alter user requests, impacting data
confidentiality of users’ requests. An adversary could use this vulnerability to distort the
responses received from the ad-server to favour a particular service-provider. Additionally,
even though the identity of the users is kept anonymous while generating the aggregated
requests, the responses received from the ad-server are broadcasted to all members of the
group, diminishing the level of privacy assigned to them.

Samanthula et al. [SCJS15] designed a system for privacy-preserving friend recommen-
dation in online social networks. Other users with similar interests are recommended as
new friends, using a privacy-preserving approach. Their solution considers the topology of
the social network to check the closeness between users where common neighbours is the
measure selected to compute this closeness.

This design uses secure multi-party computation to generate recommendations of a

25

“friend” or another user that has similar interests. Their solution provides two protocols
for performing friend recommendation. Each protocol includes a trade-off between security,
accuracy, and efficiency.

This solution considers A to be the target user that wants to get recommendations for
new friends and Fr(A) denotes the friend list for userA such that Fr(A) =< B1, · · · , Bm >
where Bi is a friend and 1 ≤ i ≤ m. Then the privacy-preserving friend recommendation
(PPFR) protocol can be defined as: PPFR(A,Fr(A), F r(B1), · · · , F r(Bm), t)→ S. Here,
t denotes a threshold value and S denotes the list of recommended friends whose common
neighbours scores with A are greater than or equal to t. The common neighbours score
for any two users is defined as the number of common friends between them. The PPFR
protocol aims to never disclose the Fr(A) to users other than A, keep friend lists of all
users private from the network administrator, and finally to make sure that S is known
only to A.

In the first protocol presented by Samanthula et al., PPFRh, they use a probabilistic
additive homomorphic scheme (HEnc) for providing the security guarantee as well as a
universal hash function. The protocol also assumes that there is a party T , such as the
network administrator, which generates the key pair (pk, pr) using the Paillier encryption
scheme. T publishes the public key pk and threshold t to the users in the network. When-
ever A wants new recommendations for friends, it shares the parameters of the a universal
hash function with each Bi in Fr(A). This hash function is used to hash the IDs of each
Cij in Fr(Bi) into integers less than s, which is the domain size predefined in the hash
function. This creates a pseudo and oblivious candidate space. Bi then generates a ma-
trix Mi of size s × 2. Bi hashes each user Cij in Fr(Bi) and sets the corresponding row
entries to Fr(Bi)[j] and 1 (indicating Fr(Bi)[j] being Bi’s friend). Then each row of Mi

is encrypted using the public key pk. The encrypted matrix M ′
i is sent back to A. Upon

receiving the encrypted matrices from each Bi, A performs component-wise homomorphic
additions to get a new matrix Z. In matrix Z, the second column of each row in Z now
contains a frequency of each ID stored in the first column, while all the data is encrypted
under pk. Next, A permutes each row in Z with a random permutation function to get
Ẑ ← π(Z) before sending it to T . This is done to ensure that no information is leaked to
T . T decrypts the second component of each row of Ẑ using the private key pr which gives
the approximate frequency, freq, of the corresponding hashed user. If freq ≥ t, then T
decrypts the first component of Ẑ. Then T sends the decrypted component β back to A.
A applies the inverse of the random permutation π on β to receive a list of recommended
friend IDs.

PPFRh is able to generate a list of friends for A without disclosing their IDs to the other
users or the network administrator, T . Using additive homomorphic encryption ensures that

26

A and T can both perform computations on encrypted data without incurring significant
overhead. Additionally, A and T are able to securely perform the decryption of the data
in Z without revealing their private inputs. However, the freq, which denotes the score of
each common neighbour, is leaked to T . It also needs to be noted that since the scores are
hashed and a random permutation is performed on it, T will not be able to identify the
source of this data. Although the PPFRh protocol can produce friend recommendations
without disclosing the friend list to any other entity in the system, the computation costs
are dependent on the domain size s. The second protocol presented by Samanthula et al. is
aimed to overcome this shortcoming.

The second protocol, PPFRsp, uses anonymous message routing. In this, the potential
candidates for new friends are allowed to introduce themselves. The list of potential candi-
dates includes all the friends included in friend lists of every member of Fr(A). Bi creates a
random path for a candidate to use to introduce themselves to A. Initially, every potential
candidate, Cij uses as AES encryption algorithm to encrypt their data and the secret key is
split into |Fr(Cij)| shares such that at least t shares are required to reconstruct the secret
AES key. A informs all Bi that they want new friends and generates a key pair using the
RSA public key system, (puA, prA). Once Bi receives this message from A, it randomly
select two users, Xij and Yij, from the network for each friend Cij ∈ Fr(Bi). Then Bi sends
the path Mij = Xij∥Yij∥EpuYij

(A) to Cij. Bi then sends Mij to Cij. Cij receives this value

and checks if |Fr(Cij)| ≥ t. If this is true, Cij generates a share of the key kCij
correspond-

ing to Bi: kBi
Cij

. It also generates the encrypted ID of Cij: AESkCij
(Cij). Then it sends

the following value to Xij: Yij∥EpuYij
(A)∥kBi

Cij
∥AESkCij

(Cij). After Xij receives this value,

it sends EpuYij
(A)∥kBi

Cij
∥AESkCij

(Cij) to Yij. Now Yij can decrypt the first part using their

private key prYij
to get A. Then it forwards the remaining message kBi

Cij
∥AESkCij

(Cij) to

A. Finally A waits and collects the returned messages from each Yij and groups them
based on AESkCij

(Cij). For each group Gij, A performs the following steps. If |Gij| ≥ t,

then A can generate the corresponding key kCij
from any t different keys shares in Gij

using polynomial interpolation. Using key kCij
, A can successfully decrypt the message

AESkCij
(Cij) to get the user ID: Cij of a newly recommended friend. Otherwise, A dumps

the group Gij since the number of partial keys shares are less than the threshold t and A
cannot generate the corresponding key from those.

PPFRsp uses AES encryption scheme and secret sharing to generate friend recommen-
dations for the user A. However, this approach also leaks some user information. Some
common neighbour scores, that are above a threshold value, are revealed to the primary
user. However, since the protocol provides source privacy, the primary user is not able to
identify the users corresponding to those scores. Therefore, A cannot trace back to the

27

source Cij. Although the two random users are necessary for performing this protocol, to
increase security guarantees, there can more than two random users selected. PPFRsp is
more efficient in providing recommendations to A but it comes at the expense of weaker
security guarantees compared to PPFRh.

PPRF h and PPRF sp are the two options that this solution provides, giving the user
the flexibility to adjust the trade-off between security, accuracy, and efficiency depending on
the particular scenario. Samanthula et al. define the privacy guarantees for their solution as
preserving the privacy of each user’s friend list. While both the protocols have accomplished
this goal, they assume that the users and the network administrator operate in a semi-
honest adversarial behavior.

This design was tested on a set of Facebook users consisting of 11,500 users’ friend
lists. Using a crawler on Facebook’s AJAX API, the friend lists were extracted using
regular expressions. This was using only those profiles whose privacy settings allows the
friend list to be public. Using this as as dataset, the experiments were implemented in
C to evaluate the performance of the solution. Samanthula et al. observed that PPFRsp

was more efficient than PPFRh. For a user A having 447 friends and s = 5000, total
running time for PPFRh protocol increased from 80.853 seconds to 553.459 seconds when
the key size was changed from 1,024 to 2,048 bits. Whereas, for the same key size variation,
PPFRsp required less than 50 seconds of runtime. They also observed that while running
the PPFRh protocol, most of the computation time was incurred by the steps performed
by Bi and T .

Now we look at a solution for privacy preserving collaborative filtering provided by
Badsha et al. [BYKB17] that uses a technique based on homomorphic encryption. Their
system design includes a recommender server which generates recommendations and a
decryption server which performs the privacy and decryption computations. Their solution
used the Boneh Goh Nissim (BGN) cryptosystem defined by Boneh et al. [BGN05] where
secure multiplications can be computed by a single server. They consider a rating matrix
MR consisting of ratings provided by all n users for m total items, where rij is the rating
provided by user ui for item ij. They measure cosine distance between two users, ui and
uk, to determine the similarity measure. It is represented as S(ui, uk) =

∑m
j=1Ri.j ·Rk.j.

Their design consists of two stages, initialization and recommendation generation. In
the initialization stage, each user ui first performs the following computation locally.

Ri,j =

⌊
ri,j√

r2i,1 + · · ·+ r2i,m
· t

⌋
(2.2)

28

Here, t is a positive integer such as 10 or 100, to accommodate the limitation that BGN
system has for being unable to work with fractions. Then the decryption server generates a
tuple (q1, q2, G,G1, e), where q1 and q2 are two large prime numbers, G is cyclic group with
generator g and N = q1q2, and e is pairing map e : G × G → G1. The decryption server
picks two random generators g, u from G and sets h = uq2 . Then h is a random generator of
the subgroup of G of order q1. The public key sent to all users is PK = {N,G,G1, e, g, h}
while the private key SK = q1 is kept with the decryption server. Each user then encrypts
their ratings ri,j and Ri,j using this public key as Ai,j = E(Ri,j) = gRi,jhwi and Bi,j =
E(ri,j) = gri,jhxi where ri,j and Ri,j are integers in the set {1, · · · , T} and T ≪ q2. wi

and xi are the random values selected to generate the different encryptions. Once these
encryptions are performed, each user ui sends the message M1,i to the recommender server,
containing the ciphertext: M1,i = {Ai,j, Bi,j}j=1,··· ,m

The recommender servers stores these encrypted values in its storage. Next is the recom-
mendation generation stage where only one user, ui, participates. The recommender server
sends E(Ri,j) of the other users uk to the user ui as follows: M2 = {Ak,j}1≤k≤n;j=1,2,··· ,m.
The primary user, ui, does a similarity check on these values by performing the following
computations locally.

Ci,k,j = (Ak,j)
Ri,j = E(Rk,j)

Ri,j

Di,k =
m∏
j=1

Ci,k,j =
m∏
j=1

E(Ri,j ·Rk,j) = E(s(ui, uk))
(2.3)

Di,k denotes the similarity between the ciphertexts of users ui and uk. User ui returns these
ciphertexts to the recommender server. The recommender server generates recommenda-
tions for ui using the encrypted similarity values and the other user’s encrypted ratings.
The recommender server uses the bilinear pairing of the BGN cryptosystem as follows:

Fi,j =
∏

1≤k≤n,k ̸=i

e(Bk,j, Di,k)h
zk

1

= E(
∑

1≤k≤n,k ̸=i

rk,j · s(ui, uk))
(2.4)

where Fi,j denotes the encrypted recommendation, zk ∈ {1, 2, · · · , N − 1} are random
numbers, and h1 = e(g, h). After this the recommender server permutes the encrypted
recommendations in a random order.

{Hi,j}j=1,2,··· ,m = Perm{Fi,j}j=1,2,··· ,m (2.5)

29

Then the recommender server signs the message M3 which contains this permuted list of
recommendations using a secret key SK1 as δ = Sign(M3, SK1). The recommender server
sends the signed message, its public key PK1, and the permutation order to the user ui

as M4 = {δ, PK1, permutation order}. Once the user ui receives this message from the
recommender server, they remove the permutation order and then pass the rest of the
information to the decryption server. The decryption server first verifies the signature as:

V erify(δ, PK1) = True|False (2.6)

After verifying the signature, the decryption server decrypts the ciphertexts of the en-
crypted recommendations as follows:

di,j = (Hi,j)
q1

Pi,j = loggq1 (di,j) =
∑

1≤k≤n,k ̸=i

rk,j · s(ui, uk) (2.7)

Pi,j represents the recommendation prediction of item ij for user ui. The decryption server
performs these computations and finds the maximum score among all the values in the
permutation list and sends the corresponding index to the user ui. Finally the user ui can
retrieve the actual item by using the permutation order.

This design was tested on the GroupLens data, using 200 users and 500 items. Com-
pared to the previous examples we have discussed, this design is able to provide higher
standards for maintaining the integrity of the user’s input rating as well as the output
recommendations. It does however rely on the servers being semi-honest and the assump-
tion that no collusion takes place between any participants of the system. Additionally,
this design requires significant computations to be performed on the user’s end. The ini-
tialization stage takes 0.02 seconds for all users to encrypt their ratings whereas a single
user ui needs 2.5 seconds to compute the similarity check with the other 199 users. The
recommendation server and the decryption server need 52 and 63 seconds respectively to
perform their tasks.

Erkin et al. [EVTL12] propose encrypting the private data and performing computa-
tions on them using collaborative filtering techniques to generate recommendations. They
aim to keep the user’s data private and preserve the functionality of the system while
protecting the data from an adversarial service provider. This is made possible by intro-
ducing a semi-trusted third party called the privacy service provider (PSP). The users are
upload their encrypted data to the service provider (SP). The service provider and the
PSP generate recommendations for the user by running a cryptographic protocol between

30

them. Since this protocol needs to work with encrypted data, this system uses homomor-
phic cryptosystems, Paillier [Pai99] and DGK [DGK07, DGK09]. The PSP has the private
keys for the Paillier and DGK cryptosystems. The system considers a set of N users and
M items and each user is represented by a preference vector consisting of the user’s rat-
ings. They use cosine similarity measure to generate the similarity measure between two
users. The generated recommendations are kept secret from the SP, the PSP, and all other
users. They are only revealed to the user who asks for the recommendations along with
the number of users L whose ratings were considered for the output.

The system assumes a set of R items out of M , which consists of the most rated items.
For every user i, the user preference vector is split into two parts: V d

i = (vd(i,0), . . . , v
d
(i,R−1))

that consists of the densely rated items and V p
i = (vp(i,0), . . . , v

p
(i,M−R−1)) that consists of

M − R partly rated items. V d
i is used to compute the similarity measure whereas V p

i is
used to get the recommendations. The protocol consists of two phases: (1) constructing
the encrypted database and (2) generating the recommendations.

In the first phase, two inputs V d
i and V p

i are needed from each user. The similarity
measure is then computed over the entire item set using the subset which consists of the R
densely rated items. The vector elements after computing the cosine similarity are scaled
with a constant parameter s and rounded to the nearest integer. The user vectors are now
k-bit integer values: V̂ d

i = (v̂d(i,0), . . . , v̂
d
(i,R−1)). The similarity value computed over R items

is now: sim(A,B) =
∑R−1

r=0 v̂d(A,r) · v̂d(B,r), with each similarity scaled by a factor of s2. Each

user then encrypts her vectors V̂ d
i and V̂ p

i with PSP’s Paillier public key to get [V d
i] and

[V p
i]. (In this solution, all encrypted values are represented within [].) These encrypted

vectors are sent to the SP.

In the second phase, to provide recommendations to a specific user A, the PSP and the
SP undertake a cryptographic protocol using just the encrypted vectors sent by users to the
SP in the first phase. The SP obtains the encrypted products of the vector elements v̂d(A,i)

and v̂d(A,j), and adds them in the encrypted domain. This step is performed R times for a
single similarity computation and the results are multiplied to obtain the encrypted sum.
Doing this same operation for each user excluding A, the SP will have a vector of N − 1
records for user A: SIMA = ([sim(A,0)], . . . , [sim(A,N−2)]). Next, the most similar users to
A are found by comparing each similarity value with a publicly known threshold, δ. Using
the comparison protocol mentioned by Cramer et al. [CDN01], the SP and the PSP compare
each similarity value with δ and get the results as: [ΓA] = ([γ(A,0)], [γ(A,1)], . . . , [γ(A,N−2)]),
where [γ(A,i)] is the results of comparing sim(A,i) and the threshold d. Then the SP finds the
number of users with a similarity value above the threshold and computes the encrypted
sums of the ratings of these users for each item. This is performed by adding all the [γ(A,i)]’s

31

and is denoted as L. Here, to find the encrypted sum of the ratings the SP first runs the
secure multiplication protocol with the PSP to multiply the [γ(A,i)] and the partly rated
elements of user i as follows:

[URi] = ([γ(A,i)]⊗ [vp(i,0)], . . . , [γ(A,i)]⊗ [vp(i,M−R−1)])

=
([

γ(A,i) · vp(i,0)
]
, . . . ,

[
γ(A,i) · vp(i,M−R−1)

])
= [UR(i,0)], . . . , [UR(i,M−R−1)]

(2.8)

where, [URi] =
[
V p
(i,j)

]
if γ(A,i) is 1, and [URi] = ([0], · · · , [0]) if γ(A,i) is 0.

Then to get the sum of the ratings of the L most similar users, the SP multiplies all of
the encrypted UR(i,j) to obtain URsum. The SP sends URsum and L to the user A. The
user A needs the decryptions of URsum and L. This can be done by applying a mask to
these values and sending them to the PSP via the SP for decryptions. This ensures that
user A has the decrypted values and can obtain UR(i,j) and L for all j. The final step
involves dividing each UR(i,j) by L.

By using secure multiplication and decryption protocol on encrypted data, Erkin et
al. reduced the computation overhead significantly as compared to using homomorphic
computations. They also used data packing before encrypting the input values. They
evaluated their system by running tests on a dataset with 10000 users and 1000 items,
in terms of bandwidth and runtime. They do not have a solution for a dynamic protocol
yet, as this system works with a static dataset of users and items. If new values need to
the added to the datasets or current values need to be updated, the SP and PSP need to
run the protocol from the beginning. Additionally, the number of users whose similarity
measure exceeds δ is available to the user A. This system does not provide a solution for
this information leak. They also mention that their design still has scalability challenges.
The recommendation generation step accounts for 76% of the entire computational effort.

Nikolaenko et al. [NIW+13] proposed a design for a privacy preserving recommender
system that learns item profiles from user ratings without accessing the ratings provided by
the users or even learning which items they have rated. Their system uses a ‘crypto-service
provider’ (CSP), a trusted third party, to implement the privacy-preserving computations.
It also includes a recommender system RecSys, that uses a matrix factorization protocol to
generate item profiles, which are then used to provide recommendations to the user. The
CSP prepares a garbled circuit that is used to run the matrix factorization and provides it to
the RecSys. The garbled inputs for this circuit are obtained from the users and oblivious
transfer is used to ensure that neither the RecSys nor the CSP can learn this input.

32

As garbled circuits can only be used once, this approach uses a partially homomorphic
encryption scheme with the garbled circuits to overcome this shortfall as described below.

Each user i encrypts her inputs (j, rij) under the CSP’s public key pkcsp. For each item j
she rates, she submits a pair (i,Encpkcsp(j, rij)) to the RecSys, with a total ofM ratings. The
algorithm used by Enc is partially homomorphic and hence after receiving M ratings from
the user, the RecSys can add randomly generated values µ to obscure them before sending
these values to the CSP: Enc′pkcsp = Encpkcsp ⊕ µ. The RecSys also sends the specifications

to build a garbled circuit which includes the total number of user and item profiles, total
number of ratings, total number of users and items, and the bits that represent the integer
and fraction of a real number in the garbled circuits. On receiving these values from the
RecSys, the CSP decrypts these values to get the masked values: (i, (j, rij) ⊕ µ). The
CSP then uses the matrix factorization circuit provided by the RecSys as a blueprint and
builds a garbled circuit that takes as input the garbled values corresponding to the masks.
Inside the circuit, by removing the masks µ, the corresponding tuple (i, j, rij) is recovered.
Next matrix factorization is performed to generate item profiles V . The CSP then makes
the garbled circuits available to the RecSys. By using oblivious transfer, the RecSys is
able to receive the garbled values of the masks from CSP. Once the RecSys evaluates the
circuits, it has the ungarbled item profiles V . These item profiles can be used to generate
private recommendations. The RecSys sends the item profiles to a user who can solve an
optimization problem to recover her own profile. Once the user has her own profile, she
can use it with the received item profiles to get local recommendations of unrated items.

This design was tested on the MovieLens ML-100K dataset. They compared the rel-
ative error of their approach against that of a system that operates with floating point
representation. The metric used to capture the execution time included time to garble
and evaluate the circuit. They excluded the encryption and decryption times performed
by the users and the CSP, since they were short in comparison to the circuit processing
time. They also calculated the number of bytes that are transmitted between the CSP
and RecSys to capture the size of the circuit. They observe that one iteration of gradient
descent with parameters set to achieve error of 10−4 took 2.9 hours.

This solution assumes that the RecSys and the CSP do not collude. They also assume
that both the RecSys and the CSP work under the honest but curious threat model.
Extensions to this design include a case considering a malicious RecSys, but not a malicious
CSP.

The last solution we discuss is presented by Vadapalli et al. [VBH21] where they present
a digital content delivery system called PIRSONA. The authors provide users with per-
sonalized content recommendations based on their consumption patterns, using a highly

33

efficient and practical solution that also keeps those user consumption patterns private.

The architecture of PIRSONA includes several content distributors where at least four
content distributor servers each have identical copies of records. Users fetch records of
interest from the servers by using an efficient PIR protocol. Along with fetching results for
the the users, the servers also store per-user, secret-shared consumption histories. These
histories are extracted directly from the users’ incoming PIR queries. Here, to maintain
the privacy of the users’ consumption patterns, the PIR protocol used is the Hafiz-Henry
1-private PIR protocol [HH19]. The servers transform these consumption histories into
collaborative filtering item and user profiles using a 4PC variation of Boolean matrix
factorization. These newly generated user and item profiles continue to remain secret-
shared and these profiles are used to generate oblivious, yet personalized recommendations
for the users.

This solution considers a database D modelled by a r · s matrix over a binary field
GF (2w). Each of the r rows has a distinct record D such as a video, an e-book, or an app,
composed of s w-bit words, for some chosen bit length w. A copy of record D resides at
each of the s+ 1 pairwise non-colluding database servers denoted by P0, · · · , Ps.

To fetch a record D⃗j from D, the user constructs a query template by sampling a
length-r vector q⃗ ∈R [0 · · · s]r uniformly at random such that q⃗[j] = 0, where q⃗[j] ∈ [0 · · · s]
represents the jth component of vector q⃗. Then the user selects a permutation σ : [0 · · · s]→
[0 · · · s] uniformly at random. Then for each k ∈ [0 · · · s], the user computes and sends the
vector queryk := q⃗ + σ(k) · e⃗j to each Pk. Here e⃗j := < 0 0 · · · 1 · · · 0 > ∈ Zr denotes the
jth length-r standard basis vector. When Pk receives queryk from the user, it computes
and responds with responsek := ⊕r

i=1D⃗i(queryk[i]), a scalar in GF (2w). Here, queryk[i]

refers to the ith component of queryk and D⃗i(x) := D⃗i[x], which is the xth word of D⃗i.

The user then computes σ(k)th word of D⃗j from the pair (responsek, response0) using

D⃗j[σ(k)] = responsek ⊕ response0.

Next, the authors illustrate how collaborative-filtering was performed on the PIR proto-
col. For this computation, a semi-honest 4-party computation is used. PIRSONA leverages
a latent-factor collaborative filtering algorithm based on Boolean matrix factorization as
described by Koren et al. [KBV09]. In this system there are m distinct users fetching
items from a database comprising r distinct records and let M ∈ {0, 1}m×r denote the
(0, 1)-matrix having one row per user and one column per record and having Mij = 1 if
and only if the ith user has fetched the jth record. This recommender system aims to recom-
mend (i, j) pairs for which Mij = 0. For this, the recommender system implements a user
profile matrix U := [u⃗1; · · · ; u⃗m] ∈ Rm×d and item profile matrix V := [v⃗1; · · · ; v⃗r] ∈ Rr×d

to associate a profile from (R ∩ [0, 1])d to each of the m users and to each of the r records in

34

M . Here d ∈ N is the dimensionality parameter representing the number of latent features
needed to capture user preferences. Then using the gradient descent method, PIRSONA
performs several iterations of the following computations, where each iteration provides a
progressively “better” approximation of M . After several iterations of gradient descent,
the resulting U and V are used to generate recommendations for user i by computing
length-r vector R⃗i := u⃗iV

T − M⃗i, where M⃗i represents the ith row of M . Here the largest
components of R⃗i are the top recommendations for user i.

This design was implemented in C++ using the open-source dpf++ library for (2, 2)-
DPFs. PIRSONA was deployed on Amazon EC2 servers present in four geographically
distant regions. They used the MovieLens ML-100K and ML-Latest datasets to evaluate
the performance of their solution. They compared the MSE between user and item profiles
produced by PIRSONA on the ML-100K dataset with those produced by a non-private
collaborative filtering implementation that uses IEEE double-precision floating-point arith-
metic. The difference was statistically insignificant and the MSE was minuscule with p = 14
or more bits, where p denotes the fractional precision. This work also shows a proof-of-
concept implementation of PIRSONA for generating recommendations for a large-scale
streaming service. It discusses a hypothetical deployment modeled on a Netflix-like system
and shows that PIRSONA can easily scale to such a system, serving thousands of users per
second. They also estimated the cost of performing this deployment, producing an upper
bound of about US$ 0.022 per subscriber per month, where all subscribers are assumed to
streams HD videos 24 hours a day, 7 days a week.

They ran three sets of experiments respectively measuring the impact on training time
of varying the number of queries being trained on, the number of items r in the database,
and the dimension d of the profiles. They also measured how many recommendations were
generated while varying the number of items r. First, for m = 943 users, r = 212 items,
profiles of dimension d = 8, and varying the number of queries ranges from q = 210 up to
216, they had a linear regression that gave R2 = 0.9972. Here, the training times scaled
from about 2.3 ± 0.1 s for q = 210 queries up to 21 ± 3 s for q = 216 queries, an effective
rate of about 3500 queries/s. Second, for m = 943 users, q = 214, profiles of dimension d =
8, and varying the number of items ranges from r = 28 to 214, they had a linear regression
that gave R2 = 0.9889. The training time was 8 ± 1 s for r = 28 items through 28 ± 3 s
for r = 214 items, giving approximately 1 s slowdown per 1000 items. And third, for m
= 943 users, q = 216, r = 210, and profiles of dimensions ranging from d = 4 to 32, linear
regression gives R2 = 0.9978. The training time varied from about 20 ± 3 s for d = 8 up
to 41 ± 3 s for d = 32, giving an approximate 0.9 s slowdown per profile component.

Another experiment compared the training and recommendation times for performing
PIRSONA on the MovieLens ML-100K and ML-Latest datasets. Both datasets included

35

100000 queries and the number of users in ML-100K dataset is m = 943 and in ML-Latest
is m = 610. In the ML-100K dataset, the the mean time for providing one recommendation
to each user was 11 ± 4 s for d = 4, and 13 ± 3 s for d = 8. Whereas, for the ML-Latest
dataset, the mean time for providing one recommendation to each user was 21 ± 3 s for
d = 4 and 22 ± 4 s for d = 8.

In Table 2.1 we have summarized all the solutions that were just discussed and compared
them. Specifically, we compared them with respect to five characteristics, mentioned below.
We also provide a list of techniques mentioned in the table.

� Independent of a trusted third party:
Independent:
Partially dependent:

Dependent:

if there is no dependency on a trusted third party
if the solution has two servers to provide recommendations and
both servers are assumed to not collude with each other
if there is a dependency on a trusted third party

� Low computational overhead:
Low:

High:

if no computationally expensive techniques are used such as homomorphic
encryption schemes or secure multiparty computations
otherwise

� No need for availability of other users:
Yes:
No:

it is independent
if it needs interaction with other users to get output

� Works against a malicious adversary:
Yes
No

solution provides defense against a strong adversarial model
otherwise

� Data protection:
Strong:
Somewhat strong:
Weak:

solution provides data integrity as well as confidentiality
solution provides either data integrity or confidentiality, not both
solution does not provide data integrity or confidentiality

� Techniques:

1. MF: Matrix factorization
2. VSS: Verified secret sharing
3. PKE: Public key encryption
4. PHE: Partially homomorphic encryption
5. TTP: Trusted third party
6. SMC: Secure multi-party computation

36

7. GC: Garbled circuits
8. PIR: Private information retrieval
9. OPRF: Oblivious pseudo-random functions

Table 2.1: Comparison of privacy-preserving recommender system solutions

SOLUTIONS In
de
pe
nd
en
t
of
tr
us
te
d
th
ir
d
pa
rt
y

Lo
w
co
m
pu
ta
ti
on
al
ov
er
he
ad

N
o
ne
ed

fo
r
av
ai
la
bi
lit
y
of
ot
he
r
us
er
s

W
or
ks

ag
ai
ns
t
a
m
al
ic
io
us

ad
ve
rs
ar
y

D
at
a
pr
ot
ec
ti
on

TECHNIQUES USED

Berkovsky et al. [BEKR07] Data obfuscation

Weinsberg et al. [WBIT12] Data obfuscation, MF

Ying [Yin20] MF, VSS

Artail and Farhat [AF14] Data aggregation, PKE

PPFRh Samanthula et al. [SCJS15] SMC, HE

PPFRsp Samanthula et al. [SCJS15] PKE, VSS

Badsha et al. [BYKB17] PHE, TTP

Erkin et al. [EVTL12] PHE, SMC

Nikolaenko et al. [NIW+13] MF, PHE, GC

Vadapalli et al. [VBH21] PIR, 4PC Boolean MF

Ghost Recommendation Protocol VSS, OPRF, modified ElGamal

encryption

Reviewing all the techniques we discussed in Section 2.3 and the solutions we studied
in Section 2.4, we can identify some of the key features that are considered while designing
a privacy-preserving recommender algorithm.

User profiles and/or item profiles are modified by applying obfuscation techniques in
solutions provided by Berkovsky et al. [BEKR07] and Weinsberg et al. [WBIT12]. These
solutions are useful in suppressing the correlation between the user’s private information
and their preferences, while providing high accuracy recommendations. However, without
the strong security guarantees provided by cryptographic techniques, the users are still
vulnerable to privacy risks mentioned in Section 2.2. We will be considering modifying the
user’s input along with other primitives such as hashing in order to improve this approach.

37

Artail and Farhat [AF14] provides a solution using data aggregation by including other
users in the request generation process. This solution leverages user-user interaction to
reduce the risk of exposure of user data by interacting with the main recommender server.
It uses the aggregate of multiple user requests to generate recommendations, while keep-
ing the user identities private. While such techniques were successful in maintaining the
accuracy of output recommendations, the requirement for multiple users to participate
every time a request is made is a major drawback. This is an issue with solutions such as
Samanthula et al. [SCJS15] as it too relies on its neighbors being available to get accurate
recommendations. However, we aim to develop a solution that will perform even if other
users are unavailable.

Multiple solutions we looked at use trusted third parties such as Badsha et al. [BYKB17],
Nikolaenko et al. [NIW+13], and Erkin et al. [EVTL12]. This is done to limit direct in-
teraction between the user and the recommender system. Each of these solutions has split
the functionality of the recommendation system to two servers; recommendation server
and decryption server in Badsha et al., RecSys and CSP in Nikolaenko et al., and SP and
PSP in Erkin et al. Each server performs a part of the computation and the solution then
assumes that these separate entities are semi-honest and do not collude with any other
participant in the system. This assumption is hard to deliver in the real world setting.
Taking this into account, we will be designing our solution to provide recommendations
even if a threshold number of servers in our solution operate in an adversarial manner.

Another characteristic we have evaluated for each solution is whether their implemen-
tation is efficient and has low computational overhead. Discussing the different techniques
used for enhancing user privacy, we noticed that solutions that do not use cryptographic
protocols tend to be faster. This is an obvious conclusion that has led to every new solution
to consider the privacy-efficiency trade-off. Most cryptographic protocols require higher
computational costs. Even within this category of solutions, the efficiency of each solu-
tion varies depending on what protocols were exactly used. Using encryption schemes and
secret sharing have comparably lesser overhead to using homomorphic encryption schemes.

The solutions we have mentioned each use a combination of multiple techniques. The
techniques used in each solution defines the type of data protection it can provide. This
is evident from comparison shown in Table 2.1 where solutions using secure multi-party
computation, homomorphic encryption schemes, and private information retrieval are able
to offer stronger privacy and security guarantees.

Studying these solutions and how they all compare against the five characteristics men-
tioned in Table 2.1, has helped us in understanding what techniques we would like to use
for developing our own solution for a privacy-preserving recommender system.

38

In Chapter 3, we will discuss our design for providing users with recommendations while
maintaining their privacy, in an efficient way and without relying on any external trusted
service.

39

Chapter 3

Methodology

In the previous chapter, we discussed some solutions for privacy-preserving recommenda-
tion systems. In this chapter we will discuss a new scheme that aims to perform without
relying on a trusted third party, is available to users at all times, resists collusion by
malicious entities up to a threshold, and is efficient.

3.1 Ghost Recommendation Protocol

We have designed a protocol for providing recommendations to users based on their pref-
erences. The goal of this design is to perform this computation on the preferences without
revealing them to any other participant of the system. This can be achieved by encrypting
these values. Recommendation systems can use homomorphic computations on encrypted
data to generate recommendations. However, as we have seen in the previous chapter,
working with homomorphic operations leads to high computational overhead. Our pro-
tocol uses alternate ways of processing encrypted data, without introducing significant
amounts of computational and communication costs. Our protocol allows only the user
herself to read the recommendations in plaintext form. Even if this information is acquired
by a server or other malicious entity, they will not be able to unmask it to reveal the true
value of the recommendations, prompting us to title them “Ghost Recommendations”.

The participants of the Ghost Recommendation Protocol are the users who provide
input preferences, a set of distributed servers, and a public bulletin-board server (PBS).
These users can all run this protocol independently.

40

Figure 3.1: Participating entities of Ghost Recommendation Protocol

We demonstrate our design using a movie recommendation system. In our system
the user’s preferences are each represented as a tuple: (movie ID, movie rating). Figure
3.1 depicts the participants of our system. Consider a user Luna, who has certain input
preferences and she would like to get recommendations from the Ghost Recommendation
Protocol without risking the confidentiality or integrity of her preferences. In the rest of
the chapter, we will demonstrate how Luna interacts with our system to get recommen-
dations based on her preferences. The protocol we have implemented requires the use of
a cryptographic group. For efficiency reasons, we select the Curve25519 group introduced
by Bernstein [Ber06].

3.2 Notation

We now list the nomenclature we have used throughout our protocol.

41

Table 3.1: Notation used in Ghost Recommendation Protocol

Notation Definition

m Total number of preferences uploaded by Luna where j = 1, 2, . . . ,m

n Total number of distributed servers where i = 1, 2, . . . , n

k Private OPRF key which is distributed among the servers such that each
server has a ki share

K Public key corresponding to the private OPRF key k, which is distributed
among the servers such that each server has Ki share

thr Similarity parameter enforced for the entire system, which is a percentage
value

thrcount Calculated as: m× thr ÷ 100

t Server threshold value set for secret sharing between distributed servers,
available to everyone

W Public key for Double ElGamal encryption which is distributed among
the servers such that each server has Wi share

w Private key for Double ElGamal decryption which is distributed among
the servers such that each server has wi share

B Generator for Curve25519, available to everyone

dj = (IDj, rj) User preference for a single movie where ID represents the movie ID and
r is the rating given to that movie

F (dj) Output of SHA3 hash function applied on dj such that it is a point on
Curve25519

b OPRF blinding factor

H() SHA3 hash function used in NIZK proofs

T (dj) Interpolated OPRF output

G(dj) Output of SHA3 hash function applied on T (dj)

Aj Double ElGamal encryption of dj

Qmaster 32-byte value selected by Luna to split into m shares: Q1, . . . , Qm

Xj AES encryption output of Aj under key Qmaster

Yj AES encryption output of Qmaster under key T (dj)

42

3.3 Threat model

Our goal is to provide the user Luna with relevant recommendations based on her input
preferences while maintaining the confidentiality and integrity of the preferences as well as
the recommendations. Our solution is designed to ensure that only Luna can access these
preferences and recommendations in plaintext form.

As depicted in Figure 3.1, there are three entities participating in our recommendation
protocol: the user Luna, a set of distributed servers, and the public bulletin-board server.

Our protocol is designed in a way that the distributed servers interact with just the
user and not the PBS. The distributed servers are used to perform threshold encryption
of the user input and threshold decryption of the recommendations. The private key used
for this encryption is split using secret sharing and the distributed servers are each given a
share of this key. A distributed key generation algorithm such as the one defined by Kate
et al. [KHG12] can be used to generate and distribute this private key without relying on a
trusted third party. We use an oblivious pseudorandom function protocol while performing
the threshold encryption steps where the user masks her input with a blinding factor before
interacting with the servers. The blinding factor ensures that the servers cannot retrieve
the user’s input, thus maintaining the confidentiality of the input. Using secret sharing
provides a guarantee that at least a threshold number of servers need to be honest to get
results. Thus we can be sure that as long as a threshold number of servers act honestly,
the integrity of the computations is maintained.

Additionally, the input preferences are also encrypted using a secret value Qmaster,
known only to the user. This value is split into a number of shares, using secret sharing
and a threshold value is set to indicate the minimum number of shares needed to recreate
this secret.

Once the encrypted input is generated, it is sent to the PBS. The PBS stores the en-
crypted inputs of each user, creating a database of encrypted records. The PBS performs
computations on this encrypted database to implement a similarity check against Luna’s
input. Then the PBS sends back the encrypted recommendations to the user which she de-
crypts using the threshold decryption scheme mentioned above. As these computations are
performed on encrypted values, we can preserve the integrity of the user input as well as the
generated recommendations by using the double ElGamal encryption scheme [FKMV12],
which provides IND-CCA2 confidentiality and integrity while allowing for threshold de-
cryption functionality.

The users already present in the PBS have each encrypted their records using a secret
sharing scheme, with a pre-defined threshold value, before uploading their records to the

43

PBS. While performing a similarity check for Luna, the PBS finds other users having
values in common with Luna’s encrypted records. If the number of common values is
greater than the threshold value set, we use Lagrange interpolation to recreate the secret
and thus decrypt the other user’s records. In this scenario, Luna has the ability to verify
whether the response records interpolate and decrypt properly. With these computations,
Luna will be able to identify and prove if the user, whose records she has received from the
PBS, has misbehaved. This characteristic of our protocol provides an incentive for users
to not misbehave while using the protocol.

Using the proof systems defined by Faust et al. [FKMV12], we can provide CCA2-secure
encryption for our scheme. A non-interactive zero-knowledge (NIZK) proof is required to be
attached to the input provided by the distributed servers during the OPRF computations.
The user can verify this proof before proceeding with the rest of the protocol. Similarly,
while performing the threshold encryption of the input preferences, we attach a proof to
the input which can be verified during the decryption of the recommendations.

Luna has access to her own input preferences and the public values mentioned in Table
3.1. We use NIZK proofs while interacting with the distributed servers to ensure that the
confidentiality and integrity of the preferences and recommendations is maintained. The
last participant of our protocol, the PBS, is a bulletin board that is available to everyone.
This is done so that PBS cannot violate the correctness of the user’s data since any user can
cross check if their data was entered incorrectly or not entered at all. The computations
performed at the PBS are simply to optimize the search functionality needed for finding
similar records. The computations done here are all performed on encrypted values, hence
there is no possibility of leaking user information other than the user’s ID, which is just a
numeric value.

With Ghost Recommendation Protocol, we provide a system that can defend against
up to a threshold number of malicious servers and also against covert users.

In the rest of the chapter we will be defining the NIZK proofs used as well as detail the
encryption scheme we have implemented.

3.4 Preliminary definitions

We now provide definitions for of all the schemes we have used for implementing Ghost
Recommendation Protocol.

44

3.4.1 Shamir’s secret sharing protocol

Shamir [Sha79] developed a secret sharing (SSS) protocol to implement secure multi-party
computation. In SSS the dealer divides a secret S between n participants such that each
participant is given a share: S1, .., Sn. The objective in doing so is to ensure:

1. Recovery of secret is possible: It must be possible to reconstruct the secret S if
we have a threshold number, t or more participants combine their shares.

2. Secrecy is maintained: Combining t− 1 or fewer shares should reveal no informa-
tion about the original secret S.

Such a scheme is called a (t, n) threshold scheme. They are essential in enabling robust
key management where we can split the key among a group of mutually suspicious entities.
For a finite field FP , where P is a large prime, we can assume S to be the secret we want to
share, such that 1 ≤ t ≤ n and S ≤ P . We can formalize this using a polynomial function
for a (t, n) scheme where the degree of the polynomial is t–1. We then need to build the
polynomial by choosing random coefficients a1, a2, . . . , at−1 and assigning the secret S to
a0, giving us:

f(x) = a0 + a1x+ a2x
2 + · · ·+ at–1x

t–1 (3.1)

Once we have formed the polynomial, we can provide each participant with an index
and the output of polynomial for the respective point. So for points x = 1, . . . , n we will
have corresponding pairs (x, f(x)).

Procedure 1 Secret Sharing

Input: S, n, t

Output: (x1, f(x1)), . . . , (xn, f(xn))

Dealer

1 : Assign S to a0: a0 = S

2 : Select random values for a1, a2, . . . , at−1

3 : Create polynomial f(x): f(x) = a0 + a1x+ a2x
2 + · · ·+ at−1x

t−1

4 : Select points x = 1, . . . , n and generate f(x) for each point

5 : Send (x, f(x)) pairs back as shares of secret S

45

3.4.2 Lagrange interpolation

As seen in Section 3.4.1, implementing Shamir’s Secret Sharing protocol requires the secret
S to be represented as a polynomial. Lagrange interpolation method is used to form a
polynomial from a given set of data points. We use this interpolation method in our solution
for reconstructing the secret S needed in Shamir’s Secret Sharing protocol, provided we
have more than the threshold number of shares of the secret S.

In order to recover the secret S = a0, we will need a subset of t participants to interpolate
these pairs. We can reconstruct the secret using Lagrange interpolation by calculating only
the free coefficient, i.e. secret S = f(0). We can recover the value of S from any t shares
of (x, f(x)) by:

S = f(0) =
t∑

p=1

f(xp)
t∏

q=1,q ̸=p

xq

xq − xp

(3.2)

Procedure 2 Lagrange Interpolation

Input: (x1, f(x1)), ..., (xt, f(xt))

Output: S = f(0)

Dealer

1 : Perform: f(0) =
t∑

p=1

f(xp)
t∏

q=1,q ̸=p

xq
xq − xp

2 : Send f(0) back as reconstructed secret S

3.4.3 Oblivious pseudorandom functions

An oblivious pseudorandom function (OPRF) is a secure two-party protocol that is used
in applications such as dynamic hashing as shown by Goldreich et al. [GGM84] and for the
construction of deterministic memoryless authentication schemes as shown by Freedman
et al. [FIPR05]. OPRFs compute the output of a pseudorandom function (PRF) fk(x)
on some input x, where the PRF key k and the input x are each provided by a different
participant. Using OPRF ensures that neither participant learns the other’s contribution.

In our scheme, we use the OPRF protocol between a user and the distributed servers.
The user provides the input, a string dj representing her preferences: (IDj, rj), where j =
1, . . . ,m. This string is hashed using the SHA3 hash algorithm, F () such that the hashed

46

string is a point on the Curve25519 group. The user selects the OPRF blinding factor by
randomly generating a scalar value b←$ Z∗

q , where q is the order of the Curve25519 group.
The hashed string is masked with the OPRF blinding factor b by scalar multiplying the
two. The user then sends this value to each of the n servers.

Each server has its own share of the OPRF key ki where i = 1, . . . , n. Every server
then performs a scalar multiplication between its key share ki and the value sent by the
user. Additionally, each server is required to provide a proof attached with its output that
can be verified by the user. The definition for the proof and its verification is provided in
Section 3.4.4. The servers then send back these values to the user.

Once the user has verified the proof provided by each server, she can remove the blinding
factor applied to mask the original input by multiplying the inverse of the OPRF blinding
factor b to the values received from the servers to obtain Ti(dj). The user then performs
an interpolation of the Ti(dj) values using the procedure mentioned in Section 3.4.3 to get
the final desired output of the OPRF procedure, T (dj).

By concealing a part of the information needed from each participant to compute the
final output, the OPRF ensures that the user cannot independently compute the final
output of the PRF, and at the same time even if all the servers work together, they learn
nothing about the user’s input or final output.

Procedure 3 OPRF

Input: User provides dj , servers provide key share ki

Output: T (dj)

User
1: Hash dj to get: F (dj)
2: Select blinding factor: b←$ Z∗

q

3: Scalar multiply: b · F (dj)
b · F (dj)−−−−−→

ki · b · F (dj)←−−−−−−−−−−−
proof(ki · b · F (dj))

8: Verify proof: (ki · b · F (dj))
9: Scalar multiply with b−1 : Ti(dj) = b−1 · ki · b · F (dj)
10: T (dj) = Lagrange Interpolation(T1(dj), . . . , Tn(dj))

Servers: i, . . . , n

4: Receive b · F (dj) from the user
5: Scalar multiply with OPRF key ki
6: Attach proof for ki · b · F (dj)
7: Send output back to user

47

3.4.4 NIZK proof and verification

We use efficient and non-malleable non-interactive zero-knowledge proofs in our solution.
These proofs are variants of a proof of equality of discrete logarithms. This proof is applied
in three components of our protocol. The computations performed to build the proof and
to perform its verification varies for each instance. We have defined each instance below.

1. Proof used in OPRF transaction:

This proof is built by each distributed server while interacting with the user during
the OPRF protocol described in Section 3.4.3. The servers need to apply their share
of the key, ki, to the input sent by the user. Then the servers build a proof using
the values sent by the user, the ki share, a random value c, and B, the generator
of Curve25519. With this proof we are showing DLB(Ki) = DLF (dj)·b(F (dj) · b · ki).
The steps in building the proof and verifying it are listed below.

Procedure 4 Building OPRF proof

Input: F (dj) · b, ki
Output: (F (dj) · b · ki), u, v
Servers: i = 1, . . . , n

1 : Read input received from user: F (dj) · b
2 : Select a random value: c←$ Z∗

q

3 : Hash together values: u = H(B, (ki ·B), (F (dj) · b), (F (dj) · b · ki), c ·B, c · F (dj) · b)
4 : Compute: v = c− u · ki
5 : Send to user: (F (dj) · b · ki), u, v

The verification of this value is done in the next step when the user receives these
values from the servers. She can verify the proof by performing the following steps.

48

Procedure 5 Verification of OPRF proof

Input: Ki, (F (dj) · b), (F (dj) · b · ki), u, v
Output: 0|1
User:

1 : Read input received from server: (F (dj) · b · ki), u, v
2 : Read each server’s public key share Ki

3 : Compute values: T0 = u ·Ki + v ·B and T1 = u · (F (dj) · b · ki) + v · (F (dj) · b)
4 : Hash together values: uverify = H(B,Ki, (ki ·B), (F (dj) · b · ki), T0, T1)

5 : Check if: u == uverify

6 : Return: 1 if True, 0 if False

2. Proof used in Double ElGamal encryption:

The user builds this proof while encrypting her input using a Double ElGamal en-
cryption scheme. The user needs the public key W , her input dj, and three random
values: r0, r1, e. The output is a set of ciphertexts and the proof. We explain why
we have used a Double ElGamal encryption scheme instead of an ordinary pub-
lic key encryption (PKE) scheme in Section 3.5.2. With this proof we are showing
DLB(W) = DLCT1−CT3(CT2−CT4). We define the computations performed below.

49

Procedure 6 Building Double ElGamal encryption proof

Input: Public key W , dj

Output: Ciphertexts: (CT1, CT2, CT3, CT4), NIZK proof: u, v

User:

1 : Reads public values: public key W , generator of Curve25519 B

2 : Convert input string to a point on Curve25519: P = string to point(dj)

3 : Select random values: r0, r1, e←$ Z∗
q

4 : Hash together values: u = H(B,B(r0 − r1),W,W (r0 − r1), e ·B, e ·W)

5 : Perform the following computations:

CT1 = r0 ·B
CT2 = r0 ·W + P

CT3 = r1 ·B
CT4 = r1 ·W + P

6 : Compute: v = e− u(r0 − r1)

7 : User has ciphertext, proof for her input dj : (CT1, CT2, CT3, CT4), u, v

The verification of this proof is performed by each of the distributed servers using
the following steps.

Procedure 7 Verification of Double Elgamal encryption proof

Input: Cipher texts: (CT1, CT2, CT3, CT4), NIZK proof: u, v

Output: 0|1
Servers: i = 1, . . . , n

1 : Read input: CT1, CT2, CT3, CT4, u, v

2 : Read public values: public key W , generator of Curve25519 B

3 : Perform following computations:

T0 = u · (CT1− CT3) + v ·B
T1 = u · (CT2− CT4) + v ·W

4 : Hash together values: uverify = H(B, (CT1− CT3),W, (CT2− CT4), T0, T1)

5 : Check if: u == uverify

6 : Return: 1 if True, 0 if False

3. Proof used in Double ElGamal decryption:

This proof is built by each distributed server while performing the Double Elgamal

50

decryption. Since the user needs the server’s private key share wi to decrypt the
ciphertext value, she sends this ciphertext to each of the distributed servers. Each
of the servers uses its private key share wi, a random value s, and the ciphertext
CT1, received from the user, to build a proof. The servers then send this share of
the decrypted value back to the user, who computes the final decrypted value after
verifying the proof attached to validate each server’s response. With this proof we
are showing: DLB(W) = DLCT1(CT1 · wi). The following steps are implemented for
building and verifying this proof.

Procedure 8 Building proof for Double ElGamal decryption

Input: wi,(CT1, CT2, CT3, CT4, u, v)

Output: (CT1 · wi), u, v

Servers: i = 1, . . . , n

1 : Read input received from user: CT1, CT2, CT3, CT4, u, v

2 : Read private key share wi, generator of Curve25519 B

3 : Select random values: s←$ Z∗
q

4 : Hash together values: u = H(B, (wi ·B), CT1, (wi · CT1), (s ·B), (s · CT1))

5 : Compute: v = s− u · wi

6 : Server has ciphertext, proof for key share wi : (CT1 · wi), u, v

Once this value is sent back to the user, the user performs a verification to check the
response she received from each distributed server, using the following steps.

Procedure 9 Verification of Double ElGamal decryption proof

Input:(CT1 · wi), u, v,Wi

Output: 0|1
User:

1 : Read input read from server:(CT1 · wi), u, v

2 : Read public key share Wi, generator of Curve25519 B

3 : Performs following computations:

T0 = u ·Wi + v ·B
T1 = u · (CT1 · wi) + v · CT1

4 : Hash together values: uverify = H(B,Wi, CT1, (CT1 · wi), T0, T1)

5 : Check if u == uverify

6 : Return 1 if True, 0 if False

51

3.5 Construction of Ghost Recommendation Protocol

In this section we will describe the implementation of our protocol.

3.5.1 Initialization

Before we proceed with the protocol, our design requires a one-time initialization, where
we set up the following values.

We split the private key k and its corresponding public key K into n shares. ki and Ki

shares are used in the OPRF procedure.

Similarly, we split the private key w and its corresponding public key W , each into n
shares. Here W is a point on Curve25519 and W = w ·B where B is the generator for the
Curve25519. W and Wi shares are used in the Double Elgamal encryption scheme.

As mentioned in Section 3.3, in practice, a distributed key generation (DKG) protocol
would be used as a one-time setup to distribute ki, Ki, wi,Wi shares to the correct parties.

Our protocol is divided into the following three phases:

1. Secure request generation phase: We use oblivious pseudorandom functions and
Double ElGamal encryption on Luna’s input preferences to transform them to secure
requests in the first phase. These requests are then uploaded to the PBS.

2. Similarity ranking phase: The PBS stores Luna’s encrypted requests as records in
two hash tables. Based on the requests sent, the PBS performs a similarity ranking
to generate recommendations for Luna.

3. Response decryption phase: In this phase, the Luna decrypts the recommenda-
tions sent by the PBS using Double ElGamal decryption to get the plaintext-form
recommendations.

3.5.2 Secure request generation phase

Consider Luna, having CID as her client ID, has rated a set of e movies. Each movie has
an identifier ID and a rating value r, that ranges from 1 to 5, in increments of 0.5. Luna’s
input preferences would consist of a set of (ID, r) pairs.

52

We begin with pre-processing user input in which we augment Luna’s input ratings
by adding and subtracting 0.5 from each of the r values. This will ensure that an exact
match of ratings of a given movie between Luna and some other user will result in three
matches for that movie in their rating sets; ratings 0.5 apart will result in two matches;
ratings 1.0 apart will result in one match. This helps in calculating the similarity between
users. Performing this computation will provide matches that are close to Luna’s input
and not just exact matches, thus still useful as they will contribute to the similarity score.
Luna now has three times the number of input preferences, m = 3e.

The next step is to perform the OPRF procedure on each of the dj = (IDj, rj) input
pairs, where j = 1, . . . ,m. As shown in Section 3.4.3, in the OPRF procedure Luna hashes
her input dj to a Curve25519 point to get F (dj) and then applies a random blinding factor
b to mask the hashed input string. She then sends this value, b · F (dj) to each of the
distributed servers so that they can apply their ki share to it. Here, we require the servers
to attach a proof of correctness using the steps mentioned in Procedure 4 of Section 3.4.4.
Each server sends ki · b ·F (dj) and the proof back to Luna. Luna uses the steps mentioned
in Procedure 5 of Section 3.4.4 to verify the proof attached. If she is able to correctly verify
the proof sent by the servers, she proceeds with the next steps of the OPRF procedure.
She removes the blinding factor masking her initial input by multiplying each of the values
received from the servers with an inverse of the blinding factor b to get Ti(dj) = ki · F (dj)
values. Then she uses the Lagrange interpolation procedure shown in Section 3.4.2 to
interpolate Ti(dj) values providing her with T (dj). She hashes T (dj) using SHA3 to get
G(dj).

Next, Luna builds the Double ElGamal encryption proof. We use this encryption
scheme instead of regular ElGamal protocol or a simple PKE to provide CCA2-security
guarantees for our protocol while allowing for threshold decryption. Regular ElGamal
encryption is not secure under a chosen ciphertext attack and it needs to be modified to
achieve this security. As shown in Procedure 6, 7, 8, and 9 mentioned in Section 3.4.4, we
use a modified Double ElGamal encryption scheme to maintain the integrity of the input
preferences and the output recommendations. Luna uses this Double ElGamal encryption
to encrypt her input dj using public key W and the basepoint of Curve25519, B. The
output of this proof gives Luna a set of encrypted values:

Aj = [CT1, CT2, CT3, CT4, u, v] (3.3)

We essentially compute two ElGamal encryptions of the input dj: (CT1, CT2) and
(CT3, CT4) in this step. The values u and v are the zero-knowledge proof that show the
plaintexts in the two ElGamal encryptions are the same.

53

After this Luna needs to select a random value Qmaster and split it into m shares using
the secret sharing procedure explained in Section 3.4.1 giving Luna Q1, . . . , Qm shares of
Qmaster. The threshold value used for this procedure is the predefined value, thrcount. For
example, if thr is set to 10, it means that at least 10% of Luna’s preferences need to
match with another user Ginny’s preferences, for Ginny to be considered as a similar user.
Setting a low thr value ideally should give Luna a higher number of recommendations as
a higher number of users would be considered similar to Luna. However, this would also
mean that the threshold number of records needed to reconstruct Luna’s secret, Qmaster

will be lower, increasing the potential of breach in confidentiality of her input preferences.
We call this value the ‘similarity parameter’ which brings on a trade-off between receiving
more recommendations and risking the confidentiality of Luna’s input. In Chapter 4, we
see if modifying this value impacts the recommendations received by the user.

The next step in this phase includes performing two AES encryption computations.
The first is to encrypt Aj with encryption key Qmaster and the second is to encrypt Qj

using encryption key T (dj), for all j = 1, . . . ,m. Luna now has Xj, Yj:

Xj = AESencQmaster(Aj) (3.4)

Yj = AESencT (dj)(Qj) (3.5)

for all inputs where j = 1, . . . ,m.

Finally Luna needs to upload a set of the following encrypted values as to the PBS:

CID,G(dj), Xj, Yj

where CID is the client ID and j = 1, . . . ,m. The other generated values: dj, T (dj), Qj

are kept private and are only available to the user, Luna.

These steps from the secure request generation phase are mentioned below in Algorithm
1.

54

Algorithm 1 Secure request generation algorithm

1: Luna enters her preferences dj = (IDj, rj)
2: Luna augments input preferences: (IDj, rj + 0.5), (IDj, rj − 0.5) ▷ Pre-processing

user input
3: procedure OPRF(dj, ki)
4: Luna performs OPRF with each distributed server
5: Each server provides proof along with ki · b · F (dj) value
6: Luna interpolates values to get T (dj)

7: Luna does G(dj) = SHA3(T (dj))
8: procedure Double ElGamal Encryption(W,dj)
9: Luna does two ElGamal encryptions: (CT1, CT2) and (CT3, CT3)
10: Luna attaches proof u, v

11: User has Aj = (CT1, CT2, CT3, CT4, u, v)
12: procedure Secret Sharing(Qmaster,m, thrcount)
13: Luna splits a random value Qmaster into m shares using security parameter thrcount

14: Luna computes AES encryptions: Xj = AESencQmaster(Aj) and Yj = AESencT (dj)(Qj)
15: Luna now has: dj, T (dj), G(dj), Aj, Qj, Xj, Yj for all inputs j = 1, . . . ,m
16: Luna sends to the PBS: CID,G(dj), Xj, Yj

17: Luna keeps in her private records: dj, T (dj), Qj

3.5.3 Similarity ranking phase

This phase is executed entirely by the PBS. Here, we formalize the Ghost Sim similarity
measure discussed in Section 2.1.4 to find other users similar to Luna.

Once the PBS receives the set of encrypted values from Luna, they are added to two
hashtables: Hashtable1 is indexed by the uploading user’s CID and Hashtable2 is indexed
by the G(dj) value in each encrypted record. In our protocol, all the records having the
same key are concatenated at a single index in the hash tables in order to access the records
in O(1) time.

First the PBS performs the hits tallying procedure. Here, for every G(dj) uploaded
by Luna, the PBS finds records in Hashtable2 using G(dj) as a key. It then reads the
CID of the records it retrieved, maintaining a counter for every CID it comes across
while performing this step. At the end of this procedure the PBS has a list of ‘selected
CIDs’, and a hits count representing the total number of times each CID appeared in the
retrieved records.

55

Next the PBS needs to perform a threshold verification on these selected CIDs.
Consider that the similarity parameter thr set is 10. The PBS checks if the hits count for
each selected CID is more than the thrcount for that respective CID and only those selected
CIDs are used for the next step.

For example, suppose Ginny and Ron each have a total of 60 records available in the
PBS and they both have passed the threshold verification. Now if Ron’s hits count is 12
whereas Ginny’s hits count is 7, the PBS is more inclined to choose Ginny over Ron, since
Ginny has more dissimilar records and could potentially provide more recommendations
to Luna. So after verifying the threshold limit, the PBS selects the three CIDs with the
highest number of dissimilar matches. These users are denoted as ‘similar users’. The
records uploaded by these users to the PBS will be sent back to Luna as recommendations.
Let us consider for our example that Ginny, Neville, and Hermione are similar users to
Luna.

The final step of this phase includes putting together the set of encrypted records to
send back to Luna, as her encrypted recommendations. PBS creates two hash tables,
ResponseHT1 and ResponseHT2. PBS populates these two hash tables with the records
of Luna’s similar users. We use simCID to denote the CID of a similar user and ℓ
represents the record for a single preference of the similar user.

The PBS finds records from Hashtable2 using Luna’s G(dj) values as hash keys. Then
it checks the CID of the retrieved records and adds the entire record to ResponseHT1
if CID = simCID. For populating ResponseHT2, the PBS finds all the records in
Hashtable1 using simCID as the hash key and then adds each those records toResponseHT2.
This is done for each of the three similar users.

These two hash tables are sent back to Luna.

The entire procedure of the similarity ranking phase is detailed in Algorithm 2.

56

Algorithm 2 Similarity Ranking algorithm

1: PBS receives m records from Luna: CID,G(dj), Xj, Yj where j = 1, . . . ,m
2: procedure Populate Hashtable(CID,G(dj), Xj, Yj)
3: Add Luna’s (CID,G(dj), Xj, Yj) to Hashtable1 using CID as the hash key
4: Add Luna’s (CID,G(dj), Xj, Yj) to Hashtable2 using G(dj) as the hash key

5: procedure Hits tallying
6: Read G(dj) from records uploaded by Luna
7: Find the records in Hashtable2 using G(dj) as hash key
8: Keep counter for every CID found in the retrieved records ▷ These are ‘selected

CIDs’ each having hits count

9: procedure Threshold Verification
10: Check if hits count is more than thrcount for each selected CID
11: Sort selected users by descending number of dissimilar records available

12: Select the 3 CIDs having the largest number of dissimilar records as similar users
13: procedure Populate ResponseHT1
14: Find records in Hashtable2 using each G(dj) as hash key
15: if CID = simCID then ▷ For each record retrieved
16: Add (simCID,G(dℓ), Xℓ, Yℓ) to ResponseHT1

17: procedure Populate ResponseHT2
18: Find records in Hashtable1 using each simCID as hash key
19: Add (simCID,G(dℓ), Xℓ, Yℓ) to ResponseHT2 ▷ For each record retrieved

20: ResponseHT1 and ResponseHT2 are sent back to the user.

3.5.4 Response decryption phase

Once Luna receives the two response hash tables, she performs AES decryption on all
the Yℓ values from ResponseHT1. Since all the records in ResponseHT1 are those that
have been selected using Luna’s G(dj) values as hash keys, she can use her private set
of corresponding T (dj) values to decrypt the Yℓ values from ResponseHT1, as seen in
Equation 3.5. This will give Luna a set of Qℓ shares for each similar user selected by the
PBS: Ginny, Neville, and Hermione in our example.

After getting these shares, Luna can obtain Qmaster corresponding to each of the three
similar users using the Lagrange interpolation procedure mentioned in Section 3.4.2.
We can be sure the threshold number of shares required for interpolation will be present as
the PBS performed a threshold verification on the records in the similarity ranking phase.

57

Luna would now have: Qmaster Ginny, Qmaster Neville, and Qmaster Hermione.

Using Qmaster Ginny, Qmaster Neville, and Qmaster Hermione values Luna can perform the
second AES decryption on the Xℓ values present in ResponseHT2. As seen in Equation
3.4 Luna would then have all the Aℓ values corresponding to the three similar users. Each
Aℓ should contain a set of values: CT1ℓ, CT2ℓ, CT3ℓ, CT4ℓ, uℓ, vℓ.

Next, Luna needs to decrypt CT1ℓ from each Aℓ. So she sends Aℓ to each distributed
server where they can apply their wi share to it. Once the servers receive this input, they
first check the proof attached to it using the steps shown in Procedure 7 in Section 3.4.4.
This proof was built by each similar user when they uploaded their preferences to the
PBS. After the servers verify the proof, they apply their share of the Double ElGamal
decryption key wi to CT1ℓ. Along with this the servers attach their own proof that the
user can authenticate using the steps from Procedure 8 in Section 3.4.4. The server sends
back (CT1ℓ · wi), uℓ dec, vℓ dec to the user.

Luna can authenticate the proof attached in (CT1ℓ ·wi), uℓ dec, vℓ dec by performing the
steps shown in Procedure 9 in Section 3.4.4. After the verification of these proofs, Luna
can use the (CT1ℓ ·wi) shares sent by the servers to perform Lagrange interpolation to
get (CT1ℓ · w) for each record present in ResponseHT2.

For each (CT1ℓ · w) Luna has a corresponding CT2ℓ in ResponseHT2. Using this,
Luna can perform the computations mentioned in Procedure 6 in Section 3.4.4 to get the
final recommendations, Pℓ in plaintext form.

Pℓ is a point on Curve25519 representing the string containing plaintext values: (IDℓ, rℓ).
Using a point to string function Luna can retrieve this tuple which represents a similar
user’s preference now provided to Luna as a recommendation. The output recommenda-
tions would be a list of movie (ID, r) pairs, for example: {(3114, 4.5), (480, 3.5)..}. Thus,
Luna can retrieve the recommendations from each of the similar users: Ginny, Neville, and
Hermione. Algorithm 3 has the steps we have just discussed.

58

Algorithm 3 Response Decryption algorithm

1: Read ResponseHT1 and ResponseHT2 received from PBS
2: Luna performs AES decryption: Qℓ = AESdecT (dj)(Yℓ) ▷ Using T (dj) corresponding

to G(dj)
3: procedure Lagrange Interpolation(Q1, Q2, · · · , Qthr count)
4: Qmaster = Lagrange Interpolation(Q1, Q2, · · · , Qthr count) ▷ For all three similar

users
5: Luna performs AES decryption: Aℓ = AESdecQmaster(Xℓ) ▷ For all three similar users
6: Luna has a set of values:
7: Aℓ = CT1ℓ, CT2ℓ, CT3ℓ, CT4ℓ, uℓ, vℓ
8: procedure Double Elgamal Decryption(Aℓ, wi)
9: Luna sends Aℓ to each distributed server
10: Each server performs verification of Double ElGamal encryption proof attached

within Aℓ

11: If the proof is verified, each server sends back CT1ℓ · wi

12: Each server attaches a proof uℓ dec, vℓ dec as well

13: Luna verifies the proof attached with each CT1ℓ · wi received from the servers
14: procedure Lagrange interpolation(CT1ℓ · wi shares)
15: CT1ℓ · w = Lagrange Interpolation(CT1ℓ · wi shares)

16: Luna can perform the following computation to get recommendations from similar
users: Pℓ = CT2ℓ − CT1ℓ · w

17: Luna gets the recommendation in plaintext format by: dℓ = point to string(Pℓ)
18: Luna has recommendation: (idℓ, rℓ) = dℓ

59

Chapter 4

Evaluation

In this chapter we discuss in detail the performance of our solution. First, in Section 4.1,
we describe the system specifications and tools used for implementing our protocol. Then,
in Section 4.2, we report the results of our experiments. In Section 4.3, we analyze the
bandwidth consumption of our protocols. Finally, in Section 4.4, we compare our protocol
with other contemporary solutions mentioned in Chapter 2.

4.1 Experiment specifications

The details of the different components used for implementing our scheme are mentioned
below.

4.1.1 Hardware setup

For conducting our experiments, we needed a system configuration where we could host
multiple participants; i.e., the set of distributed servers, the PBS, and the user. We used
two tick machines from the CrySP RIPPLE Facility [Uni13]. Each of these has 8 Intel
Xeon E7-8870 CPUs with 10 cores each, 1TB of RAM, and runs Ubuntu 14.04.

We simulated a network consisting of distributed servers and the PBS, where a user
uploads her preferences and receives personalized recommendations. In order to recreate
a client-server interaction that closely resembles the real-world environment, we ensured
that the memory allocated to each participant was independent to it and not shared by

60

any other participant. The results obtained in this setting, with respect to the bandwidth
required and wall-clock runtime, should hence be comparable to real-world settings.

4.1.2 Data sets

We required a comprehensive data set of user preferences to examine the results of our
protocol. We used the data sets available on the MovieLens [HK15] research platform.
These include public data sets of multiple sizes that have been widely used in research
studies, education, and the industry. For our protocol we have used the MovieLens 1M
(ML-1m) data set which contains 1,000,209 anonymous ratings of approximately 3,900
movies made by 6,040 MovieLens users and 3,952 movies. Each user in this data set has
rated at least 20 movies. The anonymous ratings in the MovieLens 1M data set are in the
format: (UserID, MovieID, Rating, Timestamp). The ratings provided by the users are on
a 5-star scale. Table 4.1 presents sample entries from the ML-1m data set.

Table 4.1: Sample of ML-1m data set

UserID MovieID Rating Timestamp

23 2117 2 978464541

23 2118 3 978466204

23 1243 3 978465537

23 2119 3 993707016

24 3354 1 978132906

24 2628 3 978135358

24 1259 4 978131980

24 3361 4 978132232

825 1225 4 975376263

825 1230 4 975376069

825 2971 3 975376317

825 1244 4 975376263

825 1247 5 975376317

826 3935 3 975373258

826 581 4 975373420

826 3944 2 975373226

826 3948 1 975373226

826 2064 4 975373457

826 756 3 975373636

826 3077 4 975373610

61

We created multiple data sets using ML-1m, where each data set represents a PBS with
varying dimensions. The dimensions used for our data sets were:

1. Server threshold
2. Similarity parameter
3. PBS size

Once these dimensions were defined, we added UserIDs from ML-1m to an ‘upload
list’ and ran Algorithm 1 for each user in the list. Tables 4.2, 4.3, and 4.4 show the
specifications we used. Then we added 10 userIDs from ML-1m to a ‘query list’, such
that the query list was distinct from the upload list used to create each data set. We
uploaded the preferences of each user in the query list by running Algorithm 1. Once their
preferences were uploaded, we ran Algorithms 2 and 3, 100 times for each userID. All the
results we report in this chapter sample the mean running timings across these 100 trials,
noted along with the standard deviation from the sample mean.

Table 4.2: Data sets for checking PBS size impact

Data set Server threshold Similarity parameter PBS size

PBS 1 (2,5) 25% 296250

PBS 2 (2,5) 25% 551191

PBS 3 (2,5) 25% 1022072

PBS 4 (2,5) 25% 1264334

PBS 5 (2,5) 25% 1545020

Table 4.3: Data sets for checking similarity parameter impact

Data Set Server threshold Similarity parameter PBS size

SP 1 (2,5) 10% 1025396

SP 2 (2,5) 15% 1004025

SP 3 (2,5) 20% 1026667

SP 4 (2,5) 25% 1141543

SP 5 (2,5) 30% 1012678

4.2 Results

We developed the Ghost Recommendation Protocol, shown in Chapter 3, to provide a
user with recommendations based on her preferences, while maintaining the integrity and

62

Table 4.4: Data sets for checking server threshold impact

Data Set Server threshold Similarity parameter PBS size

THR 1 (3,7) 20% 1019475

THR 2 (4,7) 20% 1017742

confidentiality of her data. We now present the results of the experiments we conducted
using the data sets mentioned above.

4.2.1 Regression analysis

In our first set of experiments, we generated a regression model for each, the total upload
time and the total query time. For this experiment we have used the data from all the data
sets mentioned above. We have used multiple linear regression on this data for creating
our predictive models. This method of analysis lets us see the relationship between the
various parameters and how they impact the upload time and query time. In this section,
we present the results of these regression models.

Regression model for upload time

The first regression model is for the total upload time. The total upload time was calculated
as total runtime for performing the steps in Algorithm 1. It includes the runtime for the
pre-processing steps, the OPRF steps where the user interacts with the distributed servers,
the Double ElGamal encryption steps, the secret sharing steps, the two AES encryption
steps, and sending the encrypted user records to the PBS. Specifically, the explanatory
variables we considered for this model were:

� n: total number of distributed servers

� t: threshold number for the distributed server

� m: total preferences uploaded

� sp: m × similarity parameter /100

� PBSsize: PBS size

The function for total upload time’s regression model lm() is as follows:

lm(upload time ∼ n+ t+ t2 + sp+ sp2 +m+ PBSsize) (4.1)

63

Table 4.5: Summary of regression analysis model for upload time

Variable Coefficient Standard Error t-value p-value
n 0.604 0.005 100 2e-16
m 0.0319 0.0002 200 2e-16
t 0.030 0.006 5 0.0000006
sp2 0.00058 0.00004 10 2e-16

PBSsize -0.000000006 0.000000004 -2 0.1
sp -0.022 0.002 -10 2e-16

Intercept -2.56 0.04 -70 2e-16
t2 NA NA NA NA

The summary of this regression model is presented in Table 4.5. It presents the variables
from largest coefficients to smallest since the coefficients tell us how strongly a variable
is associated to the upload time. In this case, the total number of distributed servers
participating provides the most impact on the upload time. These servers perform the
OPRF operation with the user to generate the secure requests in Algorithm 1. From the
summary we can deduce that for every one unit increase in n, the upload time increases
by 0.604 seconds. As m has a coefficient of 0.0319, we can say that even if a user uploads
a large number of input ratings, the upload time increases by just 0.0319 seconds per unit
increase in the number of ratings.

The t-value displays the test statistic which measures how many standard errors the
coefficient is away from zero. Generally, any t-value greater than +2 or less than −2 is
acceptable and the higher the t-value, the greater the confidence we have in the coefficient
as a predictor. This allows us to consider n and m as the most significant variables for
predicting the upload time, from among the variables we selected.

The p-value indicates whether the relationship between each of these variables and the
upload time is statistically significant. A p-value of 0.05 or lower is generally considered
statistically significant. This means that all the variables we considered except the PBSsize

have a significant impact on the upload time of Ghost recommendation protocol.

We note that the values for t2 are not defined by our model. As compared to sp, t
has has a limited range of values (t = 3 and t = 4). For this reason, we have regression
coefficients available for sp2 but not for t2.

Lastly, we show how well this model fits our data. The overall quality of the regression fit
can be assessed using the three quantities, the residual standard error (RSE), the multiple
R-squared value (R2), and the F-statistic value. RSE represents the average variation of

64

the observation points around the fitted regression line. This is the standard deviation of
residual errors. Dividing the RSE by the average value of the outcome variable gives us
the prediction error rate, which should be as small as possible. RSE in our upload time
regression model is 0.1358, meaning that the observed upload time deviates from the true
regression line by approximately 0.1358 seconds in average. In our data set, the mean value
of upload time is 4.054 seconds, and so the percentage error is 0.1358/4.054∗100 = 3.35%.
R2 measures the variation of a regression model and the adjusted R2 value shows how
much of the variation in the dependent variable can be explained by the variation in the
independent variables. So an adjusted R2 that is close to 1 indicates that a large proportion
of the variability in the outcome has been explained by the regression model. In our upload
time regression model, R2 is 0.8692 and adjusted R2 is 0.8691. The F-statistic provides a
way for globally testing if any of the explanatory variables are related to the upload time.
A large F-statistic will corresponds to a statistically significant p-value (p < 0.05). In our
example, the F-statistic is 1.328e+ 04 producing a p-value of less than 2.2e− 16, which is
highly significant.

The regression model for the total upload time for Ghost recommendation protocol is
shown in Figure 4.1.

Figure 4.1: Upload time regression analysis Figure 4.2: Query time regression analysis

65

Regression model for query time

Now we present the regression model for the total query time. The total query time was
calculated as total runtime for performing the steps included in Algorithms 2 and 3. It
includes the runtime for the PBS to perform similarity ranking steps, for the PBS to
send the data back to the user, and for the user to perform the response decryption steps
along with the distributed servers. The explanatory variables we considered for building
the regression model for total query time were:

� n: total number of distributed servers

� t: threshold number for the distributed server

� m: total preferences uploaded

� sp: m × similarity parameter /100

� PBSsize: PBS size

� decA: number of Aℓ strings decrypted by the user

� recs: number of recommendations

The function for total query time’s regression model lm() is as follows:

lm(query time ∼ n+ t+ t2 + sp+ sp2 +m+ PBSsize + decA+ recs) (4.2)

Table 4.6: Summary of regression analysis model for query time

Variable Coefficient Standard Error t-value p-value
n 0.105 0.001 70 2e-16
t 0.040 0.002 20 2e-16
sp 0.0058 0.0006 10 2e-16

decA 0.00409 0.00001 300 2e-16
m 0.00092 0.00001 20 2e-16

PBSsize 0.000000037 0.000000001 30 2e-16
sp2 -0.00011 0.00001 -9 2e-16
recs -0.00145 0.00006 -20 2e-16

Intercept -0.8 0.01 -70 2e-16
t2 NA NA NA NA

66

Table 4.6 summarizes the regression model for query time. The variable with the highest
coefficient is once again n, the total number of distributed servers. The distributed servers
are used in Algorithm 3 to perform the Double ElGamal decryption of Aℓ. Specifically,
each distributed server performs the verification of NIZK proof for the Double ElGamal
encryption attached within Aℓ. Then each server builds a proof for CT1ℓ·wi before returning
this value back to the user. These steps account for the most runtime within the total query
time and as seen in the summary table, n has the most impact on the total query time.
The t-value for decA is 300, meaning that this variable’s coefficient is a good predictor for
our model as well. We can see that all the variable in our regression model are statistically
significant since they all have a p-value much less than 0.05. As with the upload time
model, the coefficient for t2 was not available in the query time model.

Now we look at the RSE, R2, adjusted R2, and F-statistic values for the query time
regression model. The RSE provides us with the average variation of the observation points
around the fitted regression line. RSE for this regression model is 0.03768. The mean query
time for our entire data is 0.708 seconds. So the percentage error is 0.03768/0.708 × 100
= 5.32%. R2 value is 0.9876 and the adjusted R2 value is 0.9876. The F-statistic for
this regression model is 1.197e + 05 with a p-value of less than 2.2e − 16, which is highly
significant. The regression model for total query time for Ghost recommendation protocol
is shown in Figure 4.2.

Validation of the regression models

We have shown the significance of the explanatory variable with the coefficients, the t-
value, and the p-value. We have also analyzed the goodness of fit of the regression models
by measuring the RSE, R2, and F-statistic values. We now perform statistical analysis on
an independent data set. Over-fitting a model occurs when the we get good accuracy for
the training data set but poor results on new data sets. Such models cannot be of much
use in the real world as it is not able to predict outcomes for new cases. By performing
cross-validation, we can train our model with a subset of our data set and then evaluate
using the complementary subset of the data set.

We have used a 10-fold cross validation for checking the effectiveness of our Ghost rec-
ommendation protocol for each, total upload time and total query time. After performing
a 10-fold cross validation, the statistical metrics that we used for evaluating the accuracy
of our regression models are the root mean squared error (RMSE), the mean absolute error
(MAE), and the R2 error. RMSE is the square root of the averaged squared difference
between the actual value and the predicted value of the upload time and the query time.

67

It gives the average prediction error made by the model. MAE gives the absolute differ-
ence between the actual values and the values predicted by the model for the upload time
and the query time. The values for the intercepts and the coefficients for the 10-fold cross
validation is almost identical to the values presented above. We have presented the RMSE,
MAE, and R2 values in Table 4.7 for the total upload time and the total query time.

Table 4.7: Summary of 10-fold cross validation on upload time and query time

Target Variable RMSE MAE R2

total upload time 0.1358 0.1115 0.869
total query time 0.0377 0.0269 0.9876

4.2.2 Scalability benchmarks

In this set of experiments, we selected three parameters to test their impact in our protocol.
With the goal of isolating the effect of varying each of these parameters, we compared the
total upload time and total query time, when all the other parameters were fixed. The
data sets used for these experiments are shown in Tables 4.2, 4.3, and 4.4.

The first parameter we evaluated was the PBS size. We built five data sets (PBS
1–5) of varying PBS sizes, ranging from ≈300,000 records to ≈1,500,000 records as seen
in Table 4.2. To analyze if the size of the PBS influences the output of our protocol, we
kept the other parameters constant. The distributed servers had a (2, 5) threshold set and
the similarity parameter was set to 25%, for this experiment. Then we added 10 userIDs
from ML-1m to a ‘query list’, such that the query list was distinct from the upload lists
used to create the PBS data sets. We used the same query list for each PBS data set. We
uploaded the preferences of each user in the query list by running Algorithm 1. Once their
preferences were uploaded, we ran Algorithms 2 and 3, 100 times for each userID. Table
4.8 shows that for the ten users in the dataset, the mean rate at which the preferences are
uploaded to the PBS is ≈ 28 preferences/second and this does not vary much, since it is
independent of the PBS size. Whereas, for the ten users in the query list, the mean rate
of receiving recommendations varies slightly from ≈ 39 recommendations/second for PBS
having ≈ 300,000 records to ≈ 42 recommendations/second for PBS having ≈ 1,500,000
records. The number of recommendations provided to the users also increases as the PBS
size increases. We note that these PBS data sets were not built cumulatively, and the
benchmarks we have presented here depend on the records present in each PBS.

The second value we analyzed was the similarity parameter that was predefined while
a user uploaded her preferences. We built five data sets (SP 1–5) where the distributed

68

Table 4.8: Scalability benchmarks for PBS size

Data set
Preference upload

rate (per sec)
Mean upload
time (secs)

Recommendation
rate (per sec)

Mean query
time (secs)

Mean number
of recommendations

PBS 1 ≈28 4.1 ± 0.2 ≈39 0.5 ± 0.1 ≈21
PBS 2 ≈28 4.0 ± 0.2 ≈44 0.7 ± 0.2 ≈29
PBS 3 ≈28 4.0 ± 0.2 ≈43 0.7 ± 0.3 ≈28
PBS 4 ≈28 4.0 ± 0.2 ≈43 0.6 ± 0.2 ≈28
PBS 5 ≈28 4.0 ± 0.2 ≈42 0.7 ± 0.3 ≈28

servers had a (2, 5) threshold and each PBS size was set to ≈100,000 records. However
when each data set was built, we changed the similarity parameter of the users in the
upload list as well as the PBS from 10% to 30%, as seen in Table 4.3. Then as before, we
selected a query list that was run on each SP data set 100 times. Table 4.9 shows how
varying the similarity parameter impacted the mean upload time, mean query time, and the
recommendation rate, for the ten users in the query list. We can see the recommendation
rate decreases from ≈ 63 recommendations/second to ≈ 40 recommendations/second as
the similarity parameter varies from 10% to 30%. The mean query time to receive these
recommendations also reduces from 1.1± 0.2 seconds to 0.4± 0.1 seconds as the similarity
parameter increases from 10% to 30%. This same pattern is observed for the number
of recommendations received when the similarity parameter increases. This supports our
hypothesis that if the threshold set for the similarity measure is kept low, it will provide
the user with a higher number of recommendations. Adjusting the value for the similarity
parameter is also key for getting faster recommendations.

Table 4.9: Scalability benchmarks for similarity parameter

Data set
Preference upload

rate (per sec)
Mean upload
time (secs)

Recommendation
rate (per sec)

Mean query
time (secs)

Mean number
of recommendations

SP 1 ≈ 28 4.0 ± 0.2 63 1.1 ± 0.2 ≈ 67
SP 2 ≈ 28 4.0 ± 0.2 51 0.7 ± 0.3 ≈ 37
SP 3 ≈ 28 3.6 ± 0.3 51 0.6 ± 0.2 ≈ 28
SP 4 ≈ 29 3.9 ± 0.2 38 0.5 ± 0.1 ≈ 18
SP 5 ≈ 27 3.7 ± 0.3 40 0.4 ± 0.1 ≈ 14

The last parameter we analyzed was the server threshold. This threshold value was
set for implementing secret sharing among the distributed servers. As seen in Table 4.4,
we created two data sets, THR 1 and THR 2, where the similarity parameter of the users
in the upload list was kept constant but the server threshold was changed from (3, 7) to
(4, 7). We generated a query list of 10 users which was tested against each THR data set
100 times. In Table 4.10, we can see that varying the server threshold does not significantly

69

change the mean upload time as it changes from 4.6± 0.3 seconds to 4.7± 0.3 seconds as
the server threshold increases from (3, 7) to (4, 7). The recommendation rate varies from
≈ 35 recommendations/second to ≈ 33 recommendations/second as the server threshold
increases whereas the change in mean query time again remains insignificant as it goes
from 1.1± 0.3 seconds to 1.1± 0.4 seconds.

Table 4.10: Scalability benchmarks for server threshold

Data set
Preference upload

rate (per sec)
Mean upload
time (secs)

Recommendation
rate (per sec)

Mean query
time (secs)

Mean number
of recommendations

THR 1 ≈ 20 4.6 ± 0.3 35 1.1 ± 0.3 ≈ 37
THR 2 ≈ 20 4.7 ± 0.3 33 1.1 ± 0.4 ≈ 37

The mean upload time calculated for all the data sets together was 4.1 ± 0.4 seconds
and the mean query time was 0.7± 0.3 seconds.

4.3 Bandwidth consumption

Having discussed the computation time in the previous section, in this section we look at
the bandwidth consumption of Ghost recommendation protocol. The architecture of our
protocol has multiple entities, specifically, the user, the distributed servers, and the PBS.
To simulate the conditions of a real world application, we ensured that each entity was
hosted on an independent core and thus not sharing the same memory or logical processor.
The network speed in our simulated environment was 128Gbps, but using the bandwidths
we report in this section, one can compute the contribution of data transfer on upload and
query time for any desired bandwidth.

In Algorithm 1, Ghost recommendation protocol performs secure request generation.
The operations performed in this algorithm solely by the user are the pre-processing op-
erations, the Lagrange interpolation, the Double ElGamal encryption, a secret sharing
computation, and two AES encryption operations. The user only interacts with the n
distributed servers during the OPRF computation where for each of the m preferences, the
user sends 197 bytes to each of the n servers. In their response, each server sends back 97
bytes to the user. At the end of this algorithm, the user uploads the secure requests to the
PBS. Each of these is 357 bytes in size. Table 4.11 summarizes the bandwidth consumption
for Algorithm 1.

The PBS performs all the operations in Algorithm 2 for computing the similarity rank-
ing. At the end of this algorithm the PBS sends back two hashtables which have encrypted

70

Table 4.11: Bandwidth consumption for Algorithm 1 in bytes

Sender\Receiver User Distributed servers PBS
User 197 ·m · n 357 ·m

Distributed servers 97 ·m · n
PBS

records of similar users. The size of each record is 356 bytes in ResponseHT1 and 360 bytes
in ResponseHT2. The number of records present in each hashtable would depend on the
similar users found by the PBS. For the purpose of presenting the bandwidth data, we are
considering rec1 and rec2 as the size of each hashtable. Table 4.12 shows the bandwidth
consumption for Algorithm 2.

Table 4.12: Bandwidth consumption for Algorithm 2 in bytes

Sender\Receiver User Distributed servers PBS
User

Distributed servers
PBS 356 · rec1 + 360 · rec2

In Algorithm 3, the user performs the response decryption steps. Here, the user com-
putes two AES decryptions, two Lagrange interpolations, and the Double ElGamal de-
cryption with the help of the n servers. During the Double ElGamal decryption, for every
decryption of Aℓ, the user sends 197 bytes to each of the distributed servers. The response
sent back by each distributed server consists of 102 bytes. The number of Aℓ decryptions
depends on the quality of the similar users selected by the PBS. For providing an estimate
of the bandwidth consumption, we consider this number to be DE dec. Table 4.13 shows
the bandwidth consumption for Algorithm 3.

Table 4.13: Bandwidth consumption for Algorithm 3 in bytes

Sender\Receiver User Distributed servers PBS
User 197 · n ·DE dec

Distributed servers 102 · n ·DE dec
PBS

Consider an example where a user, Severus, has 50 preferences and n = 5. Severus
would need (197×50×5)+(357×50) = 67.1 KB bandwidth to encrypt the preferences and

71

upload them to the PBS. ConsideringDE dec = 200, the bandwidth required by Severus to
perform the response decryption to get the recommendations would be 102×5×200 = 197
KB.

4.4 Comparison with other solutions

In this section, we evaluate the Ghost recommendation protocol under the same categories
we used to compare solutions in Table 2.1 mentioned in Chapter 2. To recollect, we
compared privacy-preserving solutions offered by several recommender systems against five
characteristics: dependency on a trusted third party, computational overhead incurred,
dependency on the availability of other users in the system, ability to defend against a
strong adversarial model, and the privacy of user’s data.

As discussed in Chapter 3, the design of our system does not include any entity that
acts as a trusted third party. The distributed servers behave according to a (t, n) threshold
encryption scheme, where we consider that up to t− 1 participants can act in an untrust-
worthy manner. Additionally, the PBS is a public database of encrypted records. Any
addition or modification to it can be easily recorded. So we can state that our system does
not consider these participants to be a trusted third party, and consequently, our solution
performs without relying on one.

The second metric we considered was computational overhead. Ghost recommendation
protocol requires an average runtime of 4.1 ± 0.4 seconds to upload the preferences of
a single user to the PBS and an average runtime of 0.7 ± 0.3 seconds to receive new
recommendations for a single user. Our regression model shows that the upload runtime
increases by 0.604 seconds for every unit increase in the number of distributed servers and
by 0.0319 seconds for every unit increase in the number of preferences uploaded. The
regression model for total query time allows us to summarize that a unit increase in the
number of distributed servers, increases the total query time by at most 0.105 seconds,
whereas a unit increase in the threshold number of servers increases the total query time
by 0.040 seconds. This indicates that our solution is scalable and will perform well even as
the number of servers or input preferences increases. As mentioned in Section 2.4, in the
solution presented by Vadapalli et al. [VBH21], using the MovieLens-100K dataset, the
mean time for providing one recommendation to each user was 11 ± 4 seconds for a profile
with dimension d = 4, and 13 ± 3 seconds for d = 8. The mean time for providing one
recommendation using the MovieLens-Latest dataset was 21 ± 3 seconds for d = 4 and
22 ± 4 seconds for d = 8. For Ghost recommendation protocol, using the MovieLens-1M

72

dataset, the mean time for providing a single recommendation to a user is 0.245 ± 0.007
seconds.

The communication cost with respect to the bandwidth requirements is also fairly low
as shown in the example above where a user requires 67.1 KB to upload 50 preferences
and 197 KB to receive new recommendations. We can conclude that the runtimes and
the bandwidth requirement of Ghost recommendation protocol are fairly low and stay
comparatively low as the size of the system increases.

Now we measure our solution for the next characteristic considered, having a depen-
dency on the availability other users. Our solution does not require other users to actively
participate in the protocol to generate recommendations. This metric was included since
solutions using garbled circuits and k-anonymity clusters rely heavily on the availability of
other users, so as to remove the risk of exposing user data to the recommender servers.

The fourth characteristic we considered while comparing various privacy-preserving so-
lutions was its ability to perform against a malicious adversary. As seen in Chapter 2,
most of the solutions consider a semi-honest model where the participants in the system
do not deviate from the defined protocol. However, as shown in Section 3.3, Ghost recom-
mendation protocol is designed to defend against up to a threshold number of malicious
servers. Additionally, it also offers covert defense for the users, deterring them from acting
in a adversarial manner.

The final characteristic considered for comparison is level of data protection provided
by a solution. Using Ghost recommendation protocol, we are able to maintain the confiden-
tiality and integrity of the user’s input preferences as well as the output recommendations.
We consider providing both of these security guarantees as a strong level of data privacy
for the user.

So we conclude that we have designed and implemented a recommender system that
maintains the confidentiality and integrity of a user’s input as well as the recommendations
she receives, that can operate in an adversarial model with a (t, n) threshold, and performs
efficiently, without using a trusted third party or relying on the availability of other users.

73

Chapter 5

Conclusion

With this work we have presented Ghost recommendation protocol, a recommender scheme
that maintains the confidentiality and integrity of users’ preferences as well as the gener-
ated recommendations. It ensures that only the user themselves can access the input
preferences and the received recommendations in plaintext form. It also guarantees that
as long as a threshold number of servers act honestly, the encrypted requests and recom-
mendations cannot be modified or decrypted. The computations needed for conducting
similarity measure are performed on the encrypted records as well. The protocol design
additionally ensures that all computations are performed efficiently, without requiring sig-
nificant runtime or bandwidth. We have tested our protocol using the MovieLens 1 million
dataset and have successfully demonstrated our goals.

In future studies, certain parts of our design can be improved upon. Instead of the
similarity measure currently implemented, a more sophisticated technique such as matrix
factorization can be used. Using matrix factorization can help in capturing the latent
factors of the users and the items, which can in turn help in refining the quality of the
recommendations generated. Additionally, the underlying framework of our design can be
drawn and used in other applications where it is crucial to maintain the privacy of users’
information, such as secure targeted advertisements, healthcare, defense, and banking ser-
vices. Services in these fields require working with intellectual property, or processing
of sensitive customer data, or even performing privacy-preserving data analytics. These
services can be handled by modifying the Ghost recommendation protocol as it allows
performing computations on encrypted data.

In this work, we have designed, implemented, and tested a new protocol to provide
users with recommendations while maintaining the integrity and confidentiality of their

74

data. Our protocol does not use a trusted third party, is efficient, and is secure against up
to a threshold number of malicious servers. We have also reviewed several other solutions
for privacy-preserving recommender systems, highlighted the limitations in some of the
studies, and the current approaches being used. As services providing recommendations are
widespread and extremely useful, we hope this work can be used to guide the future trends
so as to advance the quality of solutions being used in privacy-preserving recommender
systems.

75

References

[AF14] Hassan Artail and Raja Farhat. A privacy-preserving framework for managing
mobile ad requests and billing information. IEEE Transactions on Mobile
Computing, 14(8):1560–1572, 2014.

[Agg06] Charu C Aggarwal. On randomization, public information and the curse of
dimensionality. In 2007 IEEE 23rd International Conference on Data Engi-
neering, pages 136–145. IEEE, 2006.

[AK06] Naveen Farag Awad and Mayuram S Krishnan. The personalization privacy
paradox: an empirical evaluation of information transparency and the will-
ingness to be profiled online for personalization. MIS quarterly, pages 13–28,
2006.

[BEKR07] Shlomo Berkovsky, Yaniv Eytani, Tsvi Kuflik, and Francesco Ricci. Enhancing
privacy and preserving accuracy of a distributed collaborative filtering. In
Proceedings of the 2007 ACM conference on Recommender systems, pages 9–
16. ACM, 2007.

[Ber06] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In In-
ternational Workshop on Public Key Cryptography, pages 207–228. Springer,
2006.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on
ciphertexts. In Theory of cryptography conference, pages 325–341. Springer,
2005.

[BYKB17] Shahriar Badsha, Xun Yi, Ibrahim Khalil, and Elisa Bertino. Privacy preserv-
ing user-based recommender system. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pages 1074–1083. IEEE,
2017.

76

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper B Nielsen. Multiparty computation
from threshold homomorphic encryption. In International conference on the
theory and applications of cryptographic techniques, pages 280–300. Springer,
2001.

[CGH18] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million face-
book profiles harvested for cambridge analytica in major data breach. The
guardian, 17(1):22, 2018.

[CKN+11] Joseph A Calandrino, Ann Kilzer, Arvind Narayanan, Edward W Felten, and
Vitaly Shmatikov. “You might also like:” privacy risks of collaborative filtering.
In 2011 IEEE Symposium on Security and Privacy, pages 231–246. IEEE, 2011.

[DEC+16] Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Garzotto, Pietro Piaz-
zolla, and Massimo Quadrana. Content-based video recommendation system
based on stylistic visual features. Journal on Data Semantics, 5(2):99–113,
2016.

[DGK07] Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. Efficient and secure
comparison for on-line auctions. In Australasian conference on information
security and privacy, pages 416–430. Springer, 2007.

[DGK09] Ivan Damg̊ard, Martin Geisler, and Mikkel Kroigard. A correction to ‘efficient
and secure comparison for on-line auctions’. International Journal of Applied
Cryptography, 1(4):323–324, 2009.

[DK11] Christian Desrosiers and George Karypis. A comprehensive survey of
neighborhood-based recommendation methods. Recommender systems hand-
book, pages 107–144, 2011.

[EVTL12] Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L Lagendijk. Gen-
erating private recommendations efficiently using homomorphic encryption
and data packing. IEEE transactions on information forensics and security,
7(3):1053–1066, 2012.

[FIPR05] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In Theory of Cryptography Con-
ference, pages 303–324. Springer, 2005.

77

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the fiat-shamir transform. In International
Conference on Cryptology in India, pages 60–79. Springer, 2012.

[FKV+15] Arik Friedman, Bart P Knijnenburg, Kris Vanhecke, Luc Martens, and Shlomo
Berkovsky. Privacy aspects of recommender systems. In Recommender Systems
Handbook, pages 649–688. Springer, 2015.

[GCF11] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical privacy in online
advertising. In 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), 2011.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In Workshop on the Theory and Application
of Cryptographic Techniques, pages 276–288. Springer, 1984.

[GSFS18] G. Geetha, M. Safa, C. Fancy, and D. Saranya. A hybrid approach using collab-
orative filtering and content based filtering for recommender system. Journal
of Physics: Conference Series, 1000(1):012101, 2018.

[HH19] Syed Mahbub Hafiz and Ryan Henry. A bit more than a bit is more than a bit
better. Proceedings on Privacy Enhancing Technologies, 4:112–131, 2019.

[HK15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History
and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December
2015.

[IFO15] Folasade Olubusola Isinkaye, Yetunde O. Folajimi, and Bolande Adefowoke
Ojokoh. Recommendation systems: Principles, methods and evaluation. Egyp-
tian informatics journal, 16(3):261–273, 2015.

[JBE+13] Arjan JP Jeckmans, Michael Beye, Zekeriya Erkin, Pieter Hartel, Reginald L
Lagendijk, and Qiang Tang. Privacy in recommender systems. In Social media
retrieval, pages 263–281. Springer, 2013.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42(8):30–37, 2009.

[KHG12] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in
the wild. Cryptology ePrint Archive, 2012.

78

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80,
2003.

[LU12] Ting Li and Till Unger. Willing to pay for quality personalization? trade-
off between quality and privacy. European Journal of Information Systems,
21(6):621–642, 2012.

[NIW+13] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft,
and Dan Boneh. Privacy-preserving matrix factorization. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security,
pages 801–812. ACM, 2013.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008),
pages 111–125. IEEE, 2008.

[OY18] Taiwo Blessing Ogunseyi and Cheng Yang. Survey and analysis of crypto-
graphic techniques for privacy protection in recommender systems. In Interna-
tional Conference on Cloud Computing and Security, pages 691–706. Springer,
2018.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In International conference on the theory and applications of
cryptographic techniques, pages 223–238. Springer, 1999.

[PD03] Huseyin Polat and Wenliang Du. Privacy-preserving collaborative filtering
using randomized perturbation techniques. In Third IEEE International Con-
ference on Data Mining, pages 625–628. IEEE, 2003.

[RCR15] Vineeth Rakesh, Jaegul Choo, and Chandan K Reddy. Project recommenda-
tion using heterogeneous traits in crowdfunding. In Ninth International AAAI
Conference on Web and Social Media, 2015.

[RV97] Paul Resnick and Hal R Varian. Recommender systems. Communications of
the ACM, 40(3):56–58, 1997.

[SCJS15] Bharath K Samanthula, Lei Cen, Wei Jiang, and Luo Si. Privacy-preserving
and efficient friend recommendation in online social networks. Trans. Data
Privacy, 8(2):141–171, 2015.

79

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[SL17] Brent Smith and Greg Linden. Two decades of recommender systems at ama-
zon.com. IEEE internet computing, 21(3):12–18, 2017.

[SPTH09] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-Pierre
Hubaux. Preserving privacy in collaborative filtering through distributed ag-
gregation of offline profiles. In Proceedings of the third ACM conference on
Recommender systems, pages 157–164, 2009.

[Uni13] University of Waterloo. CrySP RIPPLE Facility. https://ripple.

uwaterloo.ca/, 2013. [Online; accessed 23-Oct-2018].

[VBH21] Adithya Vadapalli, Fattaneh Bayatbabolghani, and Ryan Henry. You may also
like... privacy: Recommendation systems meet PIR. Proceedings on Privacy
Enhancing Technologies, 2021(4):30–53, 2021.

[WBIT12] Udi Weinsberg, Smriti Bhagat, Stratis Ioannidis, and Nina Taft. Blurme: in-
ferring and obfuscating user gender based on ratings. In Proceedings of the
sixth ACM conference on Recommender systems, pages 195–202. ACM, 2012.

[WZJR18] Cong Wang, Yifeng Zheng, Jinghua Jiang, and Kui Ren. Toward privacy-
preserving personalized recommendation services. Engineering, 4(1):21–28,
2018.

[Yin20] Senci Ying. Shared MF: A privacy-preserving recommendation system. arXiv
preprint arXiv:2008.07759, 2020.

80

https://ripple.uwaterloo.ca/
https://ripple.uwaterloo.ca/

	List of Tables
	List of Figures
	Introduction
	Background
	Fundamentals of recommender systems
	Core concepts
	Phases
	Techniques
	Similarity measures

	Privacy concerns in recommender systems
	Privacy-preserving techniques used in recommender systems
	Solutions for privacy-preserving recommender systems

	Methodology
	Ghost Recommendation Protocol
	Notation
	Threat model
	Preliminary definitions
	Shamir's secret sharing protocol
	Lagrange interpolation
	Oblivious pseudorandom functions
	NIZK proof and verification

	Construction of Ghost Recommendation Protocol
	Initialization
	Secure request generation phase
	Similarity ranking phase
	Response decryption phase

	Evaluation
	Experiment specifications
	Hardware setup
	Data sets

	Results
	Regression analysis
	Scalability benchmarks

	Bandwidth consumption
	Comparison with other solutions

	Conclusion
	References

