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Abstract

Quantum chemistry faces ongoing challenges in developing methods that combine efficiency
with accuracy, especially for large molecular systems. The Cluster-in-Molecule (CiM) tech-
nique, integrated with Coupled Cluster theory (CC) methods, offers a promising solution
by accurately computing correlated ground state energies through division into compu-
tations of small subsystems. These systems utilize a subset of localized natural orbitals
(LNO) defined by localized orbital domains [1, 2, 3, 4, 5, 6]. The advantage of CiM-CC
approach is that all subsystem calculations can trivially be computed in parallel with a
relatively straightforward algorithm. The main challenges are in defining small orbital
domains in accurate and efficient ways, and the required integral transformation from the
global atomic orbitals (AO) basis to the subset of LNO.

In this work, we enhance the efficiency of calculating two electron repulsion integral
(ERI) through advanced computational techniques that incorporate the Resolution of Iden-
tity (RI) metric matrix and a three-index short-range Coulomb potential with Gaussian-
Type Geminal (GTG) correction. This aspect of the research, inspired by the thesis work
of Dr.Michael J. Lecours in the Nooijen group, focuses on improving the efficiency of
calculating the exchange matrices K while maintaining acceptable error margins [7, 8].
Our newly developed algorithms in the Python module for quantum chemistry platform
(PySCF) program, especially for calculating Coulomb J and exchange K matrices through
the JK-Engine, are shown to achieve a linear correlation between performance and the size
of molecular systems. These improvements are not only vital for CiM but also for Hartree-
Fock (HF) and (hybrid) Density Functional Theory (DFT) mean-field calculations, with
accuracy controlled by a single parameter defining the short-range Coulomb potential’s
range.

Utilizing the exchange matrix, we present an efficient orbital domain construction
scheme for occupied localized molecular orbitals (LMO) based on the pivoted Cholesky
decomposition of the exchange matrix. This method improves the efficiency of the parti-
tioning into LMO subspaces, crucial for CiM calculations.

In summary, our advancements in linear-scaling exchange matrix calculations and or-
bital domain construction mark significant progress toward more efficient and accurate
electronic structure calculations for mean-field and CiM approaches, promising enhanced
computational performance for large molecular systems.

iii



Acknowledgements

I would like to extend my deepest gratitude to my supervisor, Dr.Marcel Nooijen. We
had many bursts of ideas in our academic discussions every week, where we delved into
deriving equations and addressing complex problems. His expertise and guidance have been
instrumental in my development and success during my undergrad and master’s journey.
His encouragement and confidence in my ability have not only fostered my development in
theoretical chemistry but also opened doors for me to engage in significant events like the
Chemical Physics Symposium and the Canadian Quantum Cup.

Additionally, I appreciate the efforts and comments by committee Dr. Pierre-Nicholas
Roy, and Dr. Scott Hopkins. At the same time, I am grateful to my early-stage master’s
group members, Dr. Ondrej Demel, Dr. Michael James Lecours and Haobo Liu. Also,
thanks for all my theoretical chemistry group members and friends, Songhao Bao, Benny
Chen, Azharuddin Alfaz Sarfraz Mohammed, and Wenxue Zhang.

My deepest appreciation also goes to my parents, whose unwavering support and love
have been my constant source of strength.

Lastly, I express gratitude towards OpenAI’s ChatGPT for its assistance in my writing
process, particularly for debugging code and checking grammar [9].

iv



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables xiv

List of Abbreviations xviii

List of Symbols xx

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Local Correlation Methods . . . . . . . . . . . . . . . . . . . . 2
1.3 The CiM Approach in Nooijen Group . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview of Computational Methods for Two-Electron Repulsion Integrals 6
1.5 Overview of Accurate Representations of Two-Electron Integrals Developed

Previously in the Nooijen Group . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Outlook of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Efficient Three-index Two-electron Integrals 13

2.1 Short-range Two-electron Integrals . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Construction of Density Fitting (DF) approximations using short-range 3-

centered integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Delta Correction in Metric Matrix . . . . . . . . . . . . . . . . . . . 19

v



2.3 Implementation in PySCF . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Calculation of Exchange Matrix using Short-range Integrals 34

3.1 New Data Type in Two-electron Integrals . . . . . . . . . . . . . . . . . . . 36
3.1.1 Dynamic Grouping Algorithm . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Conversion from Tensor to Sparse Matrix . . . . . . . . . . . . . . . 38
3.1.3 Sparse Matrix Format and Storage . . . . . . . . . . . . . . . . . . 39

3.2 JK-Engine: Exchange Matrix Algorithm . . . . . . . . . . . . . . . . . . . 42
3.3 JK-Engine: Coulomb Matrix Algorithm . . . . . . . . . . . . . . . . . . . . 47

4 Linear-Scaling Exchange Matrix 50

4.1 Molecular System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Linear-Scaling Property in Hartree-Fock Calculations . . . . . . . . . . . . 54

4.2.1 Timing Consumption in Exchange Algorithm . . . . . . . . . . . . 55
4.2.2 Memory Consumption in Exchange Algorithm . . . . . . . . . . . . 69

5 Construction of Orbital Domain 77

5.1 AO-based Construction of Orbital Domain . . . . . . . . . . . . . . . . . . 78
5.2 Overall Construction of Orbital Domain . . . . . . . . . . . . . . . . . . . 81

6 Conclusion and Future Work 85

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . . . 85

References 86

APPENDICES 92

A Pseudo Algorithm 93

A.1 Two-electron Three-index Integrals . . . . . . . . . . . . . . . . . . . . . . 93
A.1.1 Calculation Distances between Atoms . . . . . . . . . . . . . . . . . 93
A.1.2 Dynamic Grouping: Identify Atom Groups Based on Distance . . . 94
A.1.3 Function: Eliminate Small Entries from Sparse Matrices . . . . . . 95

vi



A.1.4 Recompound Sparse Matrix from aBX to aXB Format . . . . . . . 96
A.1.5 Computation of the Short-range Integrals (αB|x) . . . . . . . . . . 97
A.1.6 Processing Atom Groups for Integral Calculations . . . . . . . . . . 98
A.1.7 Computation and Storage of P and O . . . . . . . . . . . . . . . . . 99
A.1.8 Pseudo Inverse of Matrix . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Algorithm: Exchange Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2.1 Algorithm: Association of LMOs with Atom Blocks . . . . . . . . . 101
A.2.2 Algorithm: Exchange Integrals by Slicing . . . . . . . . . . . . . . . 102
A.2.3 Calculate Sparsity Mask . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 Algorithm: Coulomb Integrals . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4 Algorithm: Construction of Orbital Domain . . . . . . . . . . . . . . . . . 105

A.4.1 AO-based Construct Orbital Domain . . . . . . . . . . . . . . . . . 105
A.4.2 Construct Orbital Domain . . . . . . . . . . . . . . . . . . . . . . . 106

B Additional Data 107

B.1 Variations on Alpha Values . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Variations on threshP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vii



List of Figures

1.1 Illustration of Cluster-in-Molecule Approach [10] . . . . . . . . . . . . . . . 5
1.2 Visual Representation of the Density Tensor: (a) its exact representation,

(b) its representation via RI, and (c) its representation through THC. Solid
blue lines denote contractions over common indices between two tensors,
whereas dotted blue lines signify an element-wise multiplication across linked
indices. The bold red bar illustrates a contraction with the Coulomb oper-
ator 1

r2−r1
. [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The Range-Partitioned Coulomb Potential [7] . . . . . . . . . . . . . . . . 10

2.1 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water
Monomer H2O under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water
Monomer H2O under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water
Dimer (H2O)2 under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water
Dimer (H2O)2 under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for C2H4
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for C2H4
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



2.7 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for C2H6
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for C2H6
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Comparative Analysis of Non-Zero Entries in JK-Engine Algorithm with the
metric matrix Mαβ for C20H42 under various α values in cc-pVDZ basis set
and cc-pvtz-jkfit auxiliary basis set. . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix, threshP for Water Monomer (H2O). . . . . . . . . . . . . . . . . . 29
2.11 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-

sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix threshP for Water Dimer (H2O)2. . . . . . . . . . . . . . . . . . . 29
2.12 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-

sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix threshP for Ethylene (C2H4). . . . . . . . . . . . . . . . . . . . . . 29
2.13 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-

sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix threshP for Ethane (C2H6). . . . . . . . . . . . . . . . . . . . . . . 29
2.14 Further validation of the JK-Engine Algorithm is demonstrated through its

application to four distinct molecules: A. Glycine(C2H5NO2), B. Toluene(C6H5CH3),
C. (3Z,5Z,7Z,9Z,11Z)-12-aminododeca-3,5,7,9,11-pentaen-2-one(C12H15NO),
and D. Benzophenone((C6H5)2C=O) [8]. . . . . . . . . . . . . . . . . . . . 31

3.1 Tensors with different ranks [12] . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Segmentation of Alkane Chains: An Algorithmic Approach A.1.2 to Iden-

tifying Groups within Nonane(C9H20) and Octane(C8H18) with nheavy=2 . 37
3.3 The three-centered block-sparse tensor quantity (αβ|x) in preliminary stage[8]. 39
3.4 The Coordinate List format (COO) format is utilized to represent non-zero

elements within a sparse matrix. For instance, for a non-zero element valued
at 2, it records the row index as 1 and the column index as 2 [13]. . . . . . 40

3.5 The Compressed Sparse Row format (CSR) format is utilized to represent
non-zero elements within a sparse matrix. For instance, for a non-zero ele-
ment valued at 2, it records the row index as 1 and the index pointer as 2
[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Another representation of non-zero elements in a sparse matrix using the
CSR format [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



3.7 The Compressed Sparse Column format (CSC) format is utilized to repre-
sent non-zero elements within a sparse matrix. For instance, for a non-zero
element valued at 8, it records the column index as 0 and the index pointer
as 1 [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Another representation of non-zero elements in a sparse matrix using the
CSC format [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Sketch of Localized Molecular Orbital Grouping Strategy. This figure dis-
plays the method of segregating LMOs according to the β index of the most
significant value in each LMO column. . . . . . . . . . . . . . . . . . . . . 44

3.10 Pseudo Algorithm of Exchange Matrix Kαβ by slicing heavy atoms (same
as Algorithm A.2.2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Pseudo Algorithm of Coulomb Matrix Jαβ by slicing heavy atoms (same as
Algorithm A.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 One example of water systems: water dimer molecular system and the dis-
tance between two oxygen atoms is 20Å . . . . . . . . . . . . . . . . . . . . 51

4.2 One example of alkane chains: C6H14 . . . . . . . . . . . . . . . . . . . . . 52
4.3 One example of cis-transoid polyacetylene chains: C6H8 . . . . . . . . . . . 52
4.4 Comparative Analysis of CPU Time Usage Between JK-Engine Algorithm

with the metric matrix Mαβ and Density Fitting Object from PySCF for
C20H42 under various α values in cc-pVDZ basis set and cc-pvtz-jkfit auxil-
iary basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for C20H42
under various α values in cc-pVDZ basis set and cc-pvtz-jkfit auxiliary basis
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Preliminary Comparative CPU Time for J and K Calculations using PySCF
DF Object, and JK-Engine for Polywater Models (H2O)n in cc-pVTZ basis
set and cc-pvtz-jkfit auxiliary basis set at α Parameters of 1.0. . . . . . . . 55

4.7 Preliminary Comparative CPU Time Analysis for J and K Calculations in
Polywater Models (H2O)n Using the JK-Engine with cc-pVTZ Basis Set
and cc-pVTZ-jkfit Auxiliary Basis Set at α Parameters of 1.0. . . . . . . . 55

4.8 Average and Total CPU Time for Calculating Short-Range Integrals (αx|B)sr

at the Initial Stage in Polywater Systems (H2O)n using the cc-pVTZ Basis
Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0) . . . . . . . . . . . . . . 57

4.9 Average and Total CPU Time for Intermediate Integral (αx|V ) Calculations
in polywater Systems (H2O)n using the cc-pVTZ Basis Set and cc-pvtz-jkfit
Auxiliary Basis Set (α = 1.0) . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Average and Total CPU Time for each LMO Analysis for K-built in polywa-
ter Systems (H2O)n using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



4.11 Comparative CPU Time Analysis for Intermediate Calculations in polywater
Systems (H2O)n. The graph illustrates the average and total CPU times per
LMO block (LBV ) for the calculations of intermediate integral I1(αx|V ) and
elimination of zero elements process of I1, as the number of water molecule
count increases from one to ten (noted as (H2O)1 to (H2O)16) using the
cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . 58

4.12 Comparative CPU Time Analysis for Calculations Polywater Systems (H2O)n.
The graph illustrates the average and total CPU times per LMO for a variety
of computational processes, including sparse mask algorithm, transformed
Q̃xy calculations, exchange contribution Kαβ;µ calculations, and elimination
of zero elements process of Q̃xy, as the number of water molecule count in-
creases from one to ten (noted as (H2O)1 to (H2O)16)using the cc-pVTZ
Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . 59

4.13 Average and Total CPU Time for the Per LMO Sparse Mask Process Cal-
culations in Polywater Systems (H2O)n using the cc-pVTZ Basis Set and
cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . 60

4.14 Average and Total CPU Time for the Per LMO Transformed Q̃xy Calcula-
tions in Polywater Systems (H2O)n using the cc-pVTZ Basis Set and cc-
pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . 60

4.15 Average and Total CPU Time for Excluding Zeros in Q̃xy Per LMO Slice in
Polywater Systems (H2O)n using the cc-pVTZ Basis Set and cc-pvtz-jkfit
Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.16 Average and Total CPU Time for the Exchange Contribution Kαβ;µ Calcula-
tions Per LMO Slice in Polywater Systems (H2O)n using the cc-pVTZ Basis
Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0) . . . . . . . . . . . . . . 60

4.17 Average and Total CPU Time for the Optimized Transformed Q̃xy Calcula-
tions Per LMO in Polywater Systems (H2O)n using the cc-pVTZ Basis Set
and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . 62

4.18 Average and Total CPU Time for Optimized K-built for each LMO in Poly-
water Systems (H2O)n using the cc-pVTZ Basis Set and cc-pvtz-jkfit Aux-
iliary Basis Set (α = 1.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.19 Comparative CPU Time Analysis for J and K Calculations in Polywater
Systems (H2O)n Using the JK-Engine with cc-pVTZ Basis Set and cc-pVTZ-
jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0, and 10.0 . . . . . . . 62

4.20 Comparative CPU Time Analysis for J and K Calculations in Polywater
Systems (H2O)n Using the JK-Engine with cc-pVTZ Basis Set and cc-pVTZ-
jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0, and 10.0 . . . . . . . 63

4.21 Comparative CPU Time for J and K Calculations using PySCF Accurate,
PySCF DF Object, and JK-Engine for Alkane Chain CnH2n+2 with cc-pVTZ
Basis Set and cc-pVTZ-jkfit Auxiliary Basis Setat α Parameters of 1.0, 5.0,
and 10.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



4.22 Comparative CPU Time for J and K Calculations using PySCF DF Object,
and JK-Engine for Alkane Chain CnH2n+2 with cc-pVTZ Basis Set and cc-
pVTZ-jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0, and 10.0. . . . 64

4.23 Average and Total CPU Time for Short-Range Integral (αx|B)sr Calcula-
tions in Alkane Chain CnH2n+2 using the cc-pVTZ Basis Set and cc-pvtz-
jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . 65

4.24 Average and Total CPU Time for Intermediate Integral (αx|V ) Calculations
in Alkane Chain CnH2n+2 using the cc-pVTZ Basis Set and cc-pvtz-jkfit
Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.25 Average and Total CPU Time for each LMO Analysis for K Algorithm in
Alkane Chain CnH2n+2 using the cc-pVTZ Basis Set and cc-pvtz-jkfit Aux-
iliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.26 Comparative CPU Time for J and K Calculations using PySCF Accurate,
PySCF DF Object, and JK-Engine for Cis-transoid Polyacetylene Chain
CnHn+2 with cc-pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary Basis Set un-
der α Parameters of 1.0, 5.0, and 10.0. . . . . . . . . . . . . . . . . . . . . 66

4.27 Comparative CPU Time for J and K Calculations using PySCF DF Object,
and JK-Engine for Cis-transoid Polyacetylene Chain CnHn+2 with cc-pVTZ
Basis Set and cc-pVTZ-jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0,
and 10.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.28 Average and Total CPU Time for Short-Range Integral (αx|B)sr Calcula-
tions for Cis-transoid Polyacetylene Chain CnHn+2 with cc-pVTZ Basis Set
and cc-pVTZ-jkfit Auxiliary Basis Set under α Parameters of 1.0. . . . . . 68

4.29 Average and Total CPU Time for Intermediate Integral (αx|V ) Calculations
for Polyacetylene Chain CnHn+2 with cc-pVTZ Basis Set and cc-pVTZ-jkfit
Auxiliary Basis Set under α Parameters of 1.0. . . . . . . . . . . . . . . . . 68

4.30 Average and Total CPU Time for each LMO Analysis for K Algorithm for
Polyacetylene Chain CnHn+2 with cc-pVTZ Basis Set and cc-pVTZ-jkfit
Auxiliary Basis Set under α Parameters of 1.0. . . . . . . . . . . . . . . . . 68

4.31 Correlation between the number of water molecules and quantity of slices.
The graph illustrates the linear increase in both the number of loaded short-
range (αx|B) slices and the quantity of LMOs, as well as the quadratic
increase in the total number of slices within LBV , as the number of water
molecule count increases from one to ten (noted as (H2O)1 to (H2O)16) using
the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . 70

4.32 Correlation between the number of water molecules and non-zero elements
of intermediate contribution slices. The graph illustrates the linear increase
in total number of the number of non-zero elements (NNZ) in intermediate
I1(αx|µ). In contrast, the average number of NNZ in other contribution
slices remains relatively constant, as the number of water molecule count
increases from one to ten (noted as (H2O)1 to (H2O)16) using the cc-pVTZ
Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . 71

xii



4.33 Correlation between the number of carbon atoms of alkane chain and quan-
tity of slices. The graph illustrates the linear increase in both the number of
loaded short-range (αx|B) slices and the quantity of LMOs, as well as the
quadratic increase in the total number of slices within LBV , as the number of
carbon atoms count increases from two to thirty for alkane system CnH2n+2
using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). 73

4.34 Correlation between the number of carbon atoms of alkane chain and non-
zero elements of intermediate contribution slices. The graph illustrates the
linear increase in total number of NNZ in intermediate I1(αx|µ). In contrast,
the average number of NNZ in other contribution slices remains relatively
constant, as the number of carbon atoms counts increases from two to thirty
for alkane system CnH2n+2 using the cc-pVTZ Basis Set and cc-pvtz-jkfit
Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.35 Correlation between the number of carbon atoms of alkene chain and quan-
tity of slices. The graph illustrates the linear increase in both the number of
loaded short-range (αx|B) slices and the quantity of LMOs, as well as the
quadratic increase in the total number of slices within LBV , as the number of
carbon atoms count increases from two to thirty for cis-transoid polyacety-
lene system CnHn+2 using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.36 Correlation between the number of carbon atoms of alkene chain and non-
zero elements of intermediate contribution slices. The graph illustrates the
linear increase in total number of NNZ in intermediate I1(αx|µ). In contrast,
the average number of NNZ in other contribution slices remains relatively
constant, as the number of carbon atoms count increases from two to thirty
for cis-transoid polyacetylene system CnHn+2 using the cc-pVTZ Basis Set
and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0). . . . . . . . . . . . . . . . . 76

5.1 Pseudo Algorithm of Construction of Orbital Domain Subroutine (same with
Algorithm A.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Pseudo Algorithm of Overall Construction of Domain Orbital, including
entire virtual and occupied space for each center I (same with Algorithm
A.4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 The molecular orbital surface for selected occupied orbitals under different
central I for C12H26 molecule in 3-21G basis sets. . . . . . . . . . . . . . . 84

xiii



List of Tables

1.1 Summary of critical studies to local correlation methods [1, 3, 2, 4, 14, 15,
16, 17, 18, 19, 20, 5, 6, 21, 22, 23] . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Discrepancies between JK-Engine and PySCF DF method for C20H42 under
various α values in cc-pVDZ basis set and cc-pvtz-jkfit auxiliary basis set. . 26

2.2 Discrepancy Evaluation Between JK-Engine without Gaussian Germinal
Corrections (Vgtg(r)) and Density Fitting in PySCF for Various Molecules:
This table shows the differences in computed values for exchange and Coulomb
integrals, exchange energies, and electronic energies between the JK-Engine
algorithm, employing the metric matrix Mαβ, and the Density Fitting ap-
proach in PySCF. These calculations were performed under the setting of
α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary basis set
for molecules including water clusters, ethane, and ethylene. . . . . . . . . 27

2.3 Discrepancy Evaluation Between JK-Engine with Gaussian Germinal Cor-
rections (Vgtg(r)) and Density Fitting in PySCF for Various Molecules: This
table shows the differences in computed values for exchange and Coulomb
integrals, exchange energies, and electronic energies between the JK-Engine
algorithm, employing the metric matrix Mαβ, and the Density Fitting ap-
proach in PySCF. These calculations were performed under the setting of
α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary basis set
for molecules including water clusters, ethane, and ethylene. . . . . . . . . 27

2.4 Error Analysis Between JK-Engine with the metric matrix Mxy and Density
Fitting Object in PySCF for Various Molecules: This table shows the dif-
ferences in computed values for exchange and Coulomb integrals, exchange
energies, and electronic energies between the JK-Engine algorithm, and the
Density Fitting approach in PySCF. These calculations were performed un-
der the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit
auxiliary basis set for molecules including water clusters, ethane, and ethy-
lene. The default threshP = 10−4 is used. . . . . . . . . . . . . . . . . . . 30

xiv



2.5 Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Molecules: This table indicates the dif-
ferences in computed values for exchange and Coulomb integrals, exchange
energies, and electronic energies between the JK-Engine algorithm, and the
Density Fitting approach in PySCF. These calculations were performed un-
der the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit
auxiliary basis set for molecules including water clusters, ethane, and ethy-
lene. The default threshP = 10−4 is used . . . . . . . . . . . . . . . . . . . 30

2.6 Validation Analysis Between JK-Engine and Density Fitting Object in PySCF
for Various Molecules on Additional Molecular System: This table shows
the differences in computed values for exchange and Coulomb integrals, ex-
change energies, and electronic energies between the JK-Engine algorithm,
and the Density Fitting approach in PySCF. These calculations were per-
formed under the setting of α = 0.6 with the cc-pVTZ basis set and the
cc-pvtz-jkfit auxiliary basis set for molecules including glycine, toluene, 12-
aminododeca-3,5,7,9,11-pentaen-2-one, and benzophenone. . . . . . . . . . 32

3.1 List of symbols used in JK-Engine calculations . . . . . . . . . . . . . . . . 38
3.2 List of all thresholds in JK-Engine. These thresholds are integral to the

operation of the JK-Engine, ensuring the balance between computational
efficiency and the accuracy of Coulomb and Exchange matrix calculations. 47

4.1 Summary of Contributions to the Analysis of Timing and Memory Usage in
the JK-Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 List of symbols used in Construction of Orbital Domains (COD) calculations 79
5.2 List of all thresholds in COD Algorithm. The controllable thresholds decide

how many orbitals we select. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 The example of C12H26 molecule in 3-21G basis set: the characteristics (aver-

age position and radial extent) for the occupied orbitals (upper) and virtual
orbitals (lower) under first localized molecular orbital (center I) . . . . . . 83

B.1 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for Water
Monomer H2O under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set: This table presents the differences in calculated values for
exchange integrals (KM−Kpyscf), Coulomb integrals (JM−Jpyscf), exchange
energies (Eex, M − Eex, pyscf), and electronic energies (Eelec, M − Eelec, pyscf)
utilizing different α parameters. . . . . . . . . . . . . . . . . . . . . . . . . 108

xv



B.2 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water
Dimer (H2O)2 under various α values in cc-pVTZ basis set and cc-pvtz-jkfit
auxiliary basis set: This table presents the differences in calculated values for
exchange integrals (KM−Kpyscf), Coulomb integrals (JM−Jpyscf), exchange
energies (Eex, M − Eex, pyscf), and electronic energies (Eelec, M − Eelec, pyscf)
utilizing different α parameters. . . . . . . . . . . . . . . . . . . . . . . . . 109

B.3 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for Ethane
C2H6 under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary
basis set: This table presents the differences in calculated values for exchange
integrals (KM −Kpyscf), Coulomb integrals (JM − Jpyscf), exchange energies
(Eex, M − Eex, pyscf), and electronic energies (Eelec, M − Eelec, pyscf) utilizing
different α parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.4 Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for Ethylene
C2H4 under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary
basis set: This table presents the differences in calculated values for exchange
integrals (KM −Kpyscf), Coulomb integrals (JM − Jpyscf), exchange energies
(Eex, M − Eex, pyscf), and electronic energies (Eelec, M − Eelec, pyscf) utilizing
different α parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.5 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix, threshP for Water Monomer (H2O): This table indicates the dif-
ferences in computed values for exchange and Coulomb integrals, exchange
energies, and electronic energies between the JK-Engine algorithm, and the
Density Fitting approach in PySCF. These calculations were performed un-
der the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit
auxiliary basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.6 Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Threshold in the inversion of Pxy Ma-
trix threshP for Water Dimer (H2O)2: This table indicates the differences
in computed values for exchange and Coulomb integrals, exchange energies,
and electronic energies between the JK-Engine algorithm, and the Density
Fitting approach in PySCF. These calculations were performed under the
setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvi



B.7 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix threshP for Ethylene (C2H4): This table indicates the differences
in computed values for exchange and Coulomb integrals, exchange energies,
and electronic energies between the JK-Engine algorithm, and the Density
Fitting approach in PySCF. These calculations were performed under the
setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.8 Error Analysis Between JK-Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various Threshold in the inversion of Pxy

Matrix threshP for Ethane (C2H6): This table indicates the differences in
computed values for exchange and Coulomb integrals, exchange energies,
and electronic energies between the JK-Engine algorithm, and the Density
Fitting approach in PySCF. These calculations were performed under the
setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvii



List of Abbreviations

AO atomic orbitals iii, xx, 6, 9, 10, 13, 14, 19, 35–37, 43, 44, 46, 47, 78, 80, 81, 97, 98,
101, 102, 105, 106

API Application Programming Interface 21

CC Coupled Cluster theory iii, 1, 2, 4–6

CCSD Coupled Cluster Single Doubles 2, 4

CCSD(T) Coupled Cluster Single Double and Perturbative Triple method 2, 4

CI Full Configuration Interaction 1

CiM Cluster-in-Molecule iii, 2–6, 12, 33, 35, 77, 78, 85, 86

COD Construction of Orbital Domains xv, 77–82, 85

COO Coordinate List format ix, 36, 39–42, 61, 96, 97

COSX chain-of-spheres exchange 7

CPU Central Processing Unit 5, 46, 50, 55, 56, 58, 61, 63, 85

CSC Compressed Sparse Column format x, 39–41

CSR Compressed Sparse Row format ix, 39, 40

DC divide-and-conquer 2, 4

DF Density Fitting v, 6–8, 15–17, 19, 21–23, 27, 34, 53–56, 63, 66

DFT Density Functional Theory iii, 1, 6, 15, 86

DM density matrix 46, 47

ERI electron repulsion integral iii, 2, 6–8, 12–16, 21, 28, 77

FT Fourier transformation 10

xviii



GTG Gaussian-Type Geminal iii, 16, 27, 28, 32

GTO Gaussian-Type Orbitals 13, 19, 21

HDD Hard Disk Drive 42, 46, 47, 86

HF Hartree-Fock iii, 1, 4, 6, 7, 11, 12, 14, 15, 21, 34, 42, 43, 47, 50, 61, 77, 86

LMO occupied localized molecular orbitals iii, x–xiii, 3, 5, 6, 12, 35, 43, 44, 46, 51, 53,
57–62, 65, 68–70, 73, 75, 77–79, 81, 101, 102, 105

LNO localized natural orbitals iii, 3–5

MBPT Many-Body Perturbation Theory 1

MO molecular orbitals 14

MP2 Second-order Møller-Plesset perturbation theory 2, 5, 6, 9, 11

NNZ the number of non-zero elements xii, xiii, 23, 61, 69, 71–76

OOM Out-of-Memory 35, 69

OOP Object-Oriented Programming 33

OSV orbital specific virtual orbital 2, 4

PAO projected atomic orbital 2, 4

PNO pair natural orbital 2, 4

PS pseudospectral 7

PySCF Python module for quantum chemistry platform iii, 12, 21–23, 50, 54–56, 63, 76,
85

RAM random-access memory 5, 37, 46, 69, 75, 85

RI Resolution of Identity iii, 6–8, 11, 15, 17–19, 22, 28, 30, 31, 34, 35, 42, 43, 47, 53, 61,
85, 86

SCF Self-Consistent Field 34, 50

THC tensor hypercontraction 7, 8

xix



List of Symbols

J Coulomb Integrals iii, 104

K Exchange Integrals iii, 35, 102

nao the number of AO 6, 13, 14, 19, 36, 97

nnaux the number of auxiliary orbitals 36, 97

ngatm the number of grouped atoms 21, 43, 71

nheavy the number of heavy atoms in a segment ix, 37, 43

nip the number of interpolation vectors 8

nslice the number of total slices 38

xx



Chapter 1

Introduction

1.1 Motivations

Nowadays, one of the critical concerns in quantum chemistry is to solve electronic prob-
lems, such as electronic energy and molecular properties. With the rapid development
of computers, several approaches, including HF Theory, DFT, and Coupled-Cluster (CC)
Theory, have been implemented to solve electronic systems. To start with, HF Theory is
the most straightforward approach, which only considers a single Slater determinant and
neglects the interactions of correlated motion of electrons, such as Coulomb correlation
and near-degeneracy correlation [24]. Although the HF theory reaches perhaps 99% of
exact energy, the remaining 1% error from approximation is crucial for applications in
quantum chemistry [24], which is primarily concerned with energy differences. Hence, the
post-HF methods are mainly based on HF theory and made some improvements to solve
these restrictions.

When performing different wave-function based post-HF approaches, the value of cor-
relation energy is treated as a measurement of accuracy. The correlation energy (Ecorr)
considers the difference between the exact non-relativistic energy (ξ0) and HF energy (EHF )
with limitation[24, 25]:

Ecorr = ξ0 − EHF (1.1)

The value of correlation energy is always negative, as EHF from variational optimization
is an upper limit of exact energy. There are mainly three types of wave-function based
post-HF methods considering electronic correlation: Full Configuration Interaction (CI),
Many-Body Perturbation Theory (MBPT), and CC Theory [24, 25, 26, 27].

Compared to other methods, the CC theory not only considers the effects of electron
correlation in many-electron systems to provide precise solutions of the Schrödinger equa-
tion but also calculates cluster wavefunctions and electronic energies efficiently by applying
exponential operators [27]. Although the CC theory makes the description of electronic
structure for small- and medium-sized systems feasible and controllable by employing com-
puter techniques, the analysis of electronic correlation in large molecule systems regarding
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high accuracy is still a big challenge nowadays [26]. The most important reason is the high
dependence between computational cost and system size.

The remainder of this chapter consists of four sections that cover the theoretical frame-
work of the local correlation method, a review of previous work on the cluster-in-molecule
(CiM) approach, an overview of computation methods for two-electron repulsion integrals
(ERIs), and a discussion on representation of two-electron integrals developed by the Nooi-
jen group.

1.2 Overview of Local Correlation Methods

In order to make wave function-based ab initio calculations feasible for large molecules,
a variety of local electronic correlation methods have been introduced. Currently, local
correlation methods are available for both ground and also excited states. In applications
to ground state energies, the focus is on the local nature of the correlation energy. A
key feature of local correlation approaches is to approximate the correlation energy by
eliminating distant interactions between localized orbitals [28, 29, 30, 1, 2, 3, 4, 14, 19, 18,
15, 16, 20, 5].

Generally, according to previous studies, the local correlation methods within CC may
be classified into two main groups. On the one hand, the class of “direct” local approaches
allows the application of local approximation to the canonical equations. Typically, this
group incorporates the projected atomic orbital (PAO) method and the pair natural orbital
(PNO) method [28, 29, 30]. On the other hand, the crux of the class of “fragment-based”
local approaches is to partition the overall calculation of a large system into multiple
calculations on smaller subsystems. In these approaches, the overall correlation energy is
the summation of each energy contribution of a fragment. The difference between fragment-
based approaches is the criteria for splitting molecules into subsystems, like atoms, bonding
orbitals, electrons, and electron pairs. This category mainly consists of the divide-and-
conquer (DC) method introduced and the CiM approach [2, 3, 4, 5, 1, 14, 15, 16, 18, 19,
20, 6]. Table 1.1 summarizes the critical studies of local electron correlations.

Neese and co-workers developed a PNO approach based on Coupled Cluster Single
Doubles (CCSD) and Coupled Cluster Single Double and Perturbative Triple method
(CCSD(T)) to local correlation [29, 30]. In the PNO approach each pair of localized
occupied orbitals is related to its own small set of virtual orbitals, the so-called PNOs,
and this greatly reduces the number of excitations. However, the final calculations involve
all excitations in a global calculation on the full system, and the association of different
virtual orbitals with each pair of occupied orbitals greatly complicates the implementation.
In 2011, Yang and colleagues have introduced a method based on orbital specific virtual
orbital (OSV) for local Second-order Møller-Plesset perturbation theory (MP2) and CCSD
calculations [21, 22]. Furthermore, in these local correlation methods, the virtual space
can be described using PNOs or OSVs, as alternatives to PAOs. It has been observed
that although PNOs domain sizes are not smaller than those of PAOs or OSVs by design,
significantly smaller number of PNOs can achieve comparable accuracy [29, 30, 21, 22].
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Since 2002, when Li’s group initially introduced the CiM approach to tackling the com-
putational complexity of large systems using a basis of LMOs, there have been significant
advancements in the method [31]. The CiM method has been further refined and enhanced
by Piecuch’s group [2, 3]. Later in Kállay’s group, a highly efficient implementation uses
LNO based on the CiM approach in which extensive molecular calculation allows partition
into a subset of small calculations of individual electrons, not electron pairs [4, 5]. It is
difficult and relatively expensive to select occupied orbital domains or LMO in the CiM
approach. The next step is to construct a restricted complementary virtual space, strongly
interacting with selected localized orbital domains. Then, the calculation of all localized
occupied orbital domains would be carried in independent calculations. Thus, the compu-
tational cost for the complete system will be simply the sum of the cost of the more minor
calculations. The bottlenecks in the CiM calculations lie in obtaining the subspaces of
orbitals for each smaller calculation, and the transformation of AO integrals to the smaller
basis of selected molecular orbitals. This cost does not scale linearly with the size of the
complete system in large systems. In general, the CiM approach provides efficient com-
putational reduction by orders of magnitude to analyze large molecular systems, but the
bottlenecks in the calculation can be improved still. These bottlenecks are the starting
point for this investigation.
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Authors Methods Key Contributions Limitations

Pulay and
Saebo

PAO
method

Construct virtual space
by PAO
onto complementary
occupied space. Apply to
coupled electron pair
approximation.

The computational ability
for molecules did
not allow implementing
during that time.

Werner,
Schutz,
and co-workers

Extend in
CCSD and
CCSD(T)

Computational cost is
linear scaling to
the system size

Approximation of
domain of orbital pairs
limits the accuracy.

Neese,
and co-workers PNOs

Interacting domains are
defined for electron pairs.
It can connect with
large and flexible
basis sets.
“Black-box” format

Complicated implementation.
Most recent DPLNO uses PAO
in efficient implementation.

Yang,
and co-workers OSV

Apply tensor factorization.
Save computational time and
have controllable errors
by adding a threshold

Inefficient with small
thresholds due to large
number of virtual orbitals.

Flocke and
Bartlett

Natural linear
scaling CC
approach

Localized natural bond
orbitals are applied, other than
the localized occupied
HF orbitals.
Treat extended nonperiodic
systems of infinite basis
set size.

The choice of each
subsystem is mainly
based on chemical intuition,
not mathematics.

Li
and Li

The DC
CC

Separate molecules into
subspaces by their
local environments.

Construct subsystem manually.
The accuracy is based on
choices for separating.

Li and
Piecuch.

CiM
approach

Interacting spaces are
constructed from each
electron contribution with
a parallelism of calculation
and linear scaling.

Application and
calculations in a large
molecular system
are still challengeable.

Kállay
LNO
CiM
approach

Apply local natural orbitals in
the CiM calculations

Calculations in a large
molecular system
are still expensive.

Table 1.1: Summary of critical studies to local correlation methods [1, 3, 2, 4, 14, 15, 16,
17, 18, 19, 20, 5, 6, 21, 22, 23]
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1.3 The CiM Approach in Nooijen Group

Although CC provides the accuracy of correlation interactions for calculation in many-
body systems, it is only suitable for small and medium-sized molecules and will reach its
limits in extensive molecular orbital systems. Several local correlation methods have been
developed based on the CiM approach proposed by Li’s group to tackle these defects. The
basic idea underlying the CiM approach is to break up extensive molecular calculations
into many small pieces of each LMO calculations and constructs virtual space under LMO
domains. The energy can be derived as the sum of the contributions of individual LMO
[1, 2, 3]. By contrast, Kállay and co-workers utilized LNOs as a means to split the molecular
system in the CiM framework, then obtained occupied and virtual LMO subspaces from
the density matrix obtained from an MP2 calculation [4, 5, 6]. Figure 1.1 illustrates
two various orbital domains P and Q in a molecule in CiM approach [10]. The black
orbital in P (or Q) represents the central LMOs, and surrounding blue orbitals represent
interacting LMOs domains that need to be calculated in a fragment. Also, the gray part
in the molecule has weak interactions that can be ignored in the CC calculation. Some of
the remaining correlation can be treated using second order perturbation theory MP2

The advantage of the CiM approach reveals that each subsystem can be evaluated by
regular CC calculations. Moreover, the CiM calculations manifest the parallel calculations
of each orbital domain to reduce the computational resources, including Central Processing
Unit (CPU) time and random-access memory (RAM).

Figure 1.1: Illustration of Cluster-in-Molecule Approach [10]

The electronic correlation energy for closed shell molecules based on CiM approach: [23]

Ecorr =
∑

i,j,a,b

(ia|jb)τ ij
ab

=
∑

I

∑
i∈I

∑
j,a,b

(ia|jb)τ ij
ab ≡

∑
I

∑
i∈I

Ei (1.2)

where the notations of i, j represent localized occupied orbitals, and the notations of a, b
represent localized virtual orbitals. The quantity (ia|jb) is antisymmetrized two-electron
exchange integral, and only considers spatial coordinates. The sum over i is partitioned
in a number of subsystems center I. Besides, the excitation amplitudes τ ij

ab are different in
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MP2 and CC calculations:

τ(CC)ij
ab = tab

ij + tiat
j
b − tjatib (1.3)

τ(MP2)ij
ab = tab

ij (1.4)

There are two challenging difficulties for performing electronic energy of CiM. The first
difficulty of the CiM approach is efficiently partitioning systems into LMO subspaces. The
division criteria will impact the computational timing and accuracy of the exact energy.
Also, another significant issue is to transform from the AO based basis to the orbital
domain.

In the work of Kállay the LMOs are defined based on the MP2 one-particle density
matrix. This approach does not scale well with the size of the system. In preliminary work
in the Nooijen group the orbital selection is based on the calculation of the exchange matrix,
using various selected orbitals to define this quantity for different orbital subspaces (to be
discussed in the final chapter of this thesis). While this is a fundamental improvement in
scaling compared to MP2 one-particle density matrix, the calculation of exchanges matrices
is expensive even today in Hartree-Fock and Hybrid DFT calculations. For example, in
solid state calculations hybrid functionals are rarely used, because of their great expense.
The exchange matrix plays a central role in this research and in the next section, an
overview is presented of work done in the literature. In the following section the work done
in the Nooijen group is discussed and this provides a point of departure for the work in
this thesis. This introductory chapter will be completed with an outline of the thesis.

1.4 Overview of Computational Methods for Two-Electron
Repulsion Integrals

In electronic structure calculations, the calculation of two-electron repulsion integrals
(ERIs), especially during the computation of exchange (K) and Coulomb (J) matrices,
is a fundamental yet computationally demanding task. The accurate two-electron inte-
grals can be expressed by:

(αβ|γδ) =
∫
d3r1d

3r2ξα(r1)ξβ(r1)
1
r12

ξγ(r2)ξδ(r2), (1.5)

where (αβ|γδ) denotes the integral of the product of four atomic orbital functions ξ. The
implementation of these integrals is expensive, scaling with O(N4), where N represents
the number of atomic orbital nao. This leads to the computational burden, especially in
HF, DFT and post-HF.

To mitigate this, several approaches have been introduced. Among them, the the
density fitting (DF) technique, also called resolution of identity (RI) is prevalent for its
efficiency in approximating electron density via an auxiliary basis set, thereby streamlining
the manipulation of the ERIs tensor [18, 32, 33]. The approximation is formulated as
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follows:

ξα(r)ξβ(r) ≈
∑

x

Cαβ
x ϕx(r) (1.6)

(αβ|γδ) ≈
∑
xy

(αβ|x)(x|y)−1(y|γδ) (1.7)

where Cαβ
µ are the expansion coefficients for the auxiliary basis functions ϕx that ap-

proximate the product of the atomic orbitals α and β. Consequently, four-center ERIs
are approximated by three-center integrals and the two-center Coulomb integral, reduc-
ing computational complexity from O(n4) to O(n3) for molecules. Similarly, the Cholesky
Decomposition of two-electron integrals, proposed by Beebe and Linderberg, offers a com-
parable level of efficiency and compactness to RI factorization [34]. The construction of
exchange based on RI:

KRI
αβ = −1

2
∑
ixy

(αi|x)(x|y)−1(y|iβ) (1.8)

where the RI-K algorithm grows in quartic proportion n2
aonoccnaux to the size of the system.

Adopting an alternative approach, Friesner utilized a pseudospectral (PS) method to
approximate ERIs tensor [35, 36, 37]. The PS approach involves constructing a secondary
basis set defined by points in three-dimensional space,

(αβ|γδ) ≈
∑

g

γ(rg)ωα(rg)ωβ(rg)Vγδ(rg) (1.9)

Vγδ(rg) =
∫
dr
ωγ(r)ωδ(r)
|r − rg|

(1.10)

where {rg} is a set of grid points in three-dimensional space and γ(rg) is associated weight
of grids. The advantage of PS is its circumvention of the Coulomb singularity, ensuring
numerical stability in the algorithm. This straightforward PS strategy is effectively im-
plemented in HF theory, resulting in a cubic scaling algorithm. This represents a lower
scaling compared to the traditional quartic scaling of RI-based HF theory. However, a
significant limitation of PS methods is their limited applicability. To solve this limitation,
Neese and co-workers combined semi-numerical integration techniques and DF techniques
for HF exchange part, including Friesner’s PS method and linear-scaling chain-of-spheres
exchange (COSX), both of which demonstrate excellent scalability with the basis set’s
highest angular momentum [38].

Another innovative approach is tensor hypercontraction (THC), which decomposes the
four-index tensor into a series of matrix multiplications, enhancing flexibility and lowering
storage demands from the cubic level in conventional RI method to quadratic level [39, 40,
41, 42].

(αβ|γδ) ≈
∑
KL

ωα(rK)ωβ(rK)MKLωγ(rL)ωδ(rL) (1.11)

where {rK} denotes a chosen set of grid points. Head-Gordon’s group combined an ad-
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Figure 1.2: Visual Representation of the Density Tensor: (a) its exact representation, (b)
its representation via RI, and (c) its representation through THC. Solid blue lines denote
contractions over common indices between two tensors, whereas dotted blue lines signify an
element-wise multiplication across linked indices. The bold red bar illustrates a contraction
with the Coulomb operator 1

r2−r1
. [11]

vanced tensor hypercontraction (THC) factorization approach with interpolative separable
DF for selecting grid points [11, 41]. Here, {rK} are used to approximate the function via
an interpolation vector, ξK(r) [43]. The number of interpolation vectors( nip) influences
the accuracy and efficiency — large nip enhances accuracy, while small nip improves ef-
ficiency. Furthermore, Figure 1.2 visualizes the representation of exact ERIs, RI ERIs,
and THC-RI ERIs respectively.

The exchange matrix based on THC-RI method can be given as:

KT HC
αβ = −1

2
∑
iKL

ωK
α ϕ

K
i MKLϕ

L
i ω

L
β (1.12)

where MKL is Coulomb integral involving interpolation vectors. The THC-RI-K algorithm
grows in cubic proportion naon

2
ip to the size of the system.

Inspired by previous work on exchange matrix, our group has employed range-separated
Coulomb potential to represent DF two-electron integrals. Next, we will review previous
accurate two-electron integral representations by our group.
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1.5 Overview of Accurate Representations of Two-
Electron Integrals Developed Previously in the
Nooijen Group

The calculation of the so-called two-electron integrals

(αβ|γδ) =
∫
d3r1d

3r2ξα(r1)ξβ(r1)
1
r12

ξγ(r2)ξδ(r2), (1.13)

in which ξα represent atomic orbitals AO’s is a crucial ingredient of electronic structure
calculations. The key to efficient computations in quantum chemistry is to avoid calculat-
ing the two-electron integrals directly, but find other representations of this interaction.
Dr.Michael J. Lecours wrote a PhD thesis on this subject while Dr.Ondrej Demel in collab-
oration with Dr.Lecours developed a Laplace MP2 approach based on this representation
of integrals [8, 7]. We will first represent this representation of integrals to put the present
work in perspective.

The Coulomb interaction is partitioned into short- and long-range parts based on a
modified Ewald partitioning. The two-body Coulomb operator 1

r12
, is written as

1
r12

= Vsr(r12) + Vlr(r12). (1.14)

Here, the short-range part Vsr itself consists of two components: the complementary error
function erfc(r12), which is commonly used for this purpose, and a Gaussian-like term

Vsr(r12) = erfc (αr12)
r12

+ 2α√
π
e− α2

3 r2
12 . (1.15)

The long-range part is then

Vlr(r12) = 1
r12
− Vsr(r12). (1.16)

The exponent and prefactor in the Gaussian term in Equation 1.15 is chosen in such a way
that Vsr(r) and its second derivative have a zero limit for r → 0. We note that Vsr(r) is
fully parameterized by the choice of α.

Figure 1.3 illustrates the Coulomb integral is divided into two components, short-
range and long-range. In detail, the short-range component decays rapidly with distance
and is close to the full Coulomb potential at short range, whereas the long-range component
retains the 1/r12 decay at large r12.

The short-range part of the Hamiltonian is treated using density fitting techniques in
standard ways. The respective components of 4-index integrals can be evaluated as

(αβ|γδ)sr =
∑

x

(αβ|x)sr(γδ|x)sr ≡
∑

x

(αβ|x)sr(x|γδ)sr. (1.17)
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Figure 1.3: The Range-Partitioned Coulomb Potential [7]

Here we have introduced an (orthonormalized) auxiliary basis set x. The key feature is
that the number of such short-range 3-center two-electron integrals grows linearly with the
size of the system.

The long-range contribution is evaluated numerically using a Fourier transformation
(FT) in k-space

Vlr(r12) =
∫
d3g Vlr(g) exp(ig · (r2 − r1)). (1.18)

This FT is known analytically. The corresponding long-range component to the 4-center
integrals is then evaluated as

(αβ|γδ)LR =
∑

g

(αβ|g)σg(g|γδ), (1.19)

where g represents a plane wave index. The σg parameter is a sign factor corresponding
to the sign of the Vlr(g) contribution. In this formulation the 3-index quantities (αβ|g)
are calculated efficiently using analytical formulas at a set of grid points g, which are
defined using a numerical integration in spherical coordinates. This Jacobian of spherical
coordinates cancels the g−2 singularity, and accurate results are obtained for small Fourier
grids of about 3000 points. It is surprising that the spherical integration grid has not been
used before in the literature. It is (mostly) accurate and can be used even for compact
core orbitals, which are treated differently in the usual plane wave codes [8].

Unfortunately, the resulting long-range 4-center integrals lose accuracy when the AO
pairs αβ and γδ are separated by a long distance (e.g. 15 a.u.). Individual contributions are
small but they are responsible for long-range forces. Even more, it is deemed important to
correct for the error, as the FT approach may not yield small values due to rapid oscillations
of the integrant.
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For this reason, a third layer of approximation was introduced, which involves a multi-
pole expansion in Cartesian coordinates. Let V be a general radial potential. The position
vector r is expressed as r = A + R. The Taylor expansion of V (r2 − r1) around the point
A = B = 0 is made using the substitution

r1 = A + R1 (1.20)
r2 = B + R2 (1.21)
R = R2 −R1, (1.22)

and takes the general form

V (B−A + R) =
∑
K,L

mK
B f

K,L(R)mL
A, (1.23)

where mK
B and mL

A are polynomials in components of vectors A and B, fK,L(R) consists
of (analytically known) derivatives of potential and components of R vector, and indices
K, L correspond to multipole expansion. For example, the Taylor expansion up to third
order following

K = 0 corresponds zeroth-order term of the expansion

K = 1, 2, 3 corresponds to first-order term

K = 4, . . . , 12 correspond to second order term (nine combinations)

K = 13, . . . , 39 correspond to third order term (twenty seven combinations)

In both HF and Laplace MP2 calculations all three contributions to the Coulomb
potential are judiciously implemented in various steps of the calculation. In previous
publications, it was shown that this overall scheme is indeed accurate [8, 7, 44]. There are
very significant drawbacks, however. First of all a careful selection has to be made when
to switch between Fourier and multipole expansions. More importantly, implementations
become very complicated, even when they exhibit linear scaling as a result. Finally, due
to the complexity, it is hard to write fully optimized code, and the current versions are not
very efficient compared to other approaches in the literature.

In this thesis, we take another look at the representation of integrals using RI. We will
use the same short-range component (using even shorter-range integrals) as in our previous
work, but we introduce a different metric matrix that will allow us to represent the full
two-electron integrals (i.e. not just the short-range component), using a metric matrix as

(αβ|γδ)fr =
∑
x,y

(αβ|x)srMxy(γδ|y)sr ≡
∑
x,y

(αβ|x)srMxy(y|γδ)sr. (1.24)

.
At this point, we are ready to discuss the final section in this introductory chapter.
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1.6 Outlook of the Thesis

This thesis provides a detailed investigation into the efficiency and scalability of the founda-
tion layer of the CiM approach, with a particular focus on the implementation of Coulomb
and exchange matrices. Here is an outlook summarizing the key contributions of each
chapter:

The following Chapter 2 introduces novel computational strategies for the efficient
computation of two-electron repulsion integrals (ERIs), as implemented in the Int-Class
package. By combining density fitting with approximations for short-range potentials,
this new representation of ERIs provides a solid groundwork for JK-Engine, achieving a
reduction in computational time without compromising accuracy. Additionally, it contains
adjustments of several parameters to preserve the accuracy of HF calculations.

Chapter 3 delves into the core development of the algorithm (JK-Engine) for calculat-
ing the Coulomb and exchange matrices, a crucial input component in the CiM approach.
Utilizing the sparsity of short-range integrals, this algorithm shows linear scaling efficiency.
Building on this, Chapter 4 demonstrates a comprehensive analysis of the linear-scaling
calculation for the exchange matrix within both timing and memory consumption, com-
pared with PySCF. It underlines the applicability and scalability of our JK-Engine in large
systems.

Chapter 5 addresses the challenge of partitioning molecular systems into localized
molecular orbital (LMO) subspaces. An algorithm based on pivoted Cholesky decomposi-
tion of exchange matrices is introduced, enabling the efficient and accurate construction of
orbital domains. This development is crucial for the practical implementation of the CiM
approach in extensive simulations.
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Chapter 2

Efficient Three-index Two-electron
Integrals

The starting point for electronic structure calculations is the specification of an initial
molecular structure and the definition of a basis set. In this work we use real atomic
orbitals (AO) centered on the nuclei (or other meaningful centers) that consist of Gaussian
type orbitals Gaussian-Type Orbitals (GTO). The AO basis functions will always be labeled
by Greek indices α, β, γ, δ. Users may specify a particular AO basis set upon input, such
as 6-31G(d,p) or cc-PVTZ, which are commonly used basis sets.

The fundamental building blocks that define the Hamiltonian operator consist of one-
and two-electron integrals over AOs , utilizing atomic orbitals, ξα(r). These basis functions
are non-orthogonal and this is reflected in the overlap integrals

Sαβ =
∫
dr ξα(r)ξβ(r) (2.1)

The one-electron Hamiltonian integrals in the AO basis are defined as:

hαβ = ⟨α|ĥ|β⟩ =
∫
dr ξα(r)ĥ(r)ξβ(r) (2.2)

ĥ = −1
2∇

2 −
∑
A

ZA

|r−RA|
(2.3)

where ZA and RA label the charges and positions of the nuclei, respectively. We will use
atomic units throughout, as is common in quantum chemistry. The one-electron integral
includes the sum of the kinetic energy operator for electrons and the nuclear-electron
attraction potential. These integrals are computationally inexpensive, with O(n2) for a
size nao basis set. For large molecules there is additional sparsity and the integrals decay
in a linear fashion in the limit, as does the overlap matrix.

The most cumbersome building block in electronic structure calculations are the two-
electron repulsion integrals ERIs over spatial atomic orbitals, which in so-called chemist’s
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notation, are defined as,

(αβ|γδ) =
∫
d3r1d

3r2ξα(r1)ξβ(r1)
1
r12

ξγ(r2)ξδ(r2) (2.4)

For small molecules, there are O(n4) of these ERIs where n=nao. For large molecules the
centers of AOs (α, β) have to be relatively close, for the integral to be non-zero, as do
the centers of AOs γ, δ. The number of non-zero ERIs then scales as O(n2), with a large
prefactor.

In Hartree-Fock (HF) theory, the wave function is approximated as a single determinant
of molecular orbitals (MO)s that are linear combinations of AOs:

ψi(r) =
∑

α

ξα(r)Cα,i, (2.5)

The MO coefficients Cα,i are to be determined such that the energy of the single determi-
nant is minimized. The MO coefficients define the one-particle reduced density matrix in
the AO basis

Dαβ =
∑

i∈occ

Cα,iCβ,i, (2.6)

which characterizes the single determinant HF state completely. In the self-consistent
field procedure (SCF) to solve for the optimal MOs, the Fock matrix F is constructed
that includes the effective potential felt by an electron due to both nuclei and the other
electrons’ average repulsion. For a closed shell system the elements of the Fock matrix in
the AO basis are given by:

Fαβ = hαβ +
∑
γδ

Dγδ

(
(αβ|δγ)− 1

2(αγ|βδ)
)
, (2.7)

The contributions to the Fock matrix present different levels of difficulty in actual efficient
HF calculations. We distinguish the (direct) Coulomb matrix

Jαβ =
∑
γδ

(αβ|δγ)Dγδ (2.8)

and the so-called exchange matrix

Kαβ =
∑
γδ

(αγ|βδ)Dγδ, (2.9)

and we obtain
F = h + J− 1

2K (2.10)

The Coulomb matrix quantifies the average repulsion between electrons, representing the
electrostatic interaction among all pairs. In contrast, the exchange matrix is a purely
quantum concept that follows from the antisymmetry requirement of the wave function.
A primary focus of this thesis is the efficient calculation of the Coulomb and in particular
exchange matrices.
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To mitigate the computational burden of calculating two-electron repulsion integrals
(ERIs), especially in methods like HF, DFT and post-Hartree-Fock, the DF technique,
also called RI, is introduced as a strategic solution. The core conceptual idea behind DF
is to approximate the product of two orbitals ξα(r)ξβ(r) using an auxiliary basis set xµ(r)
[45]. This approximation significantly reduces the computational cost associated with ERIs
without substantially sacrificing accuracy. The approximation can be written as:

ξα(r)ξβ(r) ≈
∑

x

Cαβ
x ϕx(r) (2.11)

where Cαβ
µ are the expansion coefficients for the auxiliary basis functions ϕx that approx-

imate the product of the atomic orbitals α and β. By applying DF, the four-center ERIs
can be approximated as:

(αβ|γδ) ≈
∑
xy

(αβ|x)(x|y)−1(y|γδ) (2.12)

where (αβ|x) and (y|γδ) are three-center integrals,

(αβ|x) ≡
∫
d3r1d

3r2ξα(r1)ξβ(r1)
1
r12

ϕx(r2) (2.13)

and (x|y) is the two-center Coulomb integral between auxiliary basis functions.

(x|y) ≡
∫
d3r1d

3r2ϕx(r1)
1
r12

ϕy(r2) (2.14)

The inverse of (x|y) is referred to as the Coulomb metric matrix. The DF strategy reduces
the complexity of the ERIs calculations from O(n4) to O(n3) for small molecules. For larger
systems the number of 3-center integrals still scales as O(n2), although with a much smaller
pre-factor as the four-center ERI. With DF, larger molecular systems can be studied with a
modest loss of accuracy. The key to using the RI approximation is to never construct the 4-
index quantities themselves, but rather optimize the computational steps when calculating
quantities of interest. We will see many examples of this strategy in the remainder of this
thesis.

This thesis will explore variations of the use of DF with the purpose to reduce the cost
of the calculation of the Coulomb and exchange matrices at the HF stage of calculations.
Similar efficiencies can be exploited at the post HF level. The key ingredient is the use of
short-range three-index two-electron integrals in HF computations, which will be discussed
next.

2.1 Short-range Two-electron Integrals

As previously discussed in Section 1.5, the Coulomb potential can be segmented into
short-range and long-range components. In our project, we utilize the Ewald partitioning
approach to address this [46, 47]. The focus here is on the short-range three-index integrals,
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derived by approximating the short-range component of the Coulomb potential. These
short-range integrals can be optimized due to the sparsity that arises from the property of
exponential decay, resulting in linear scaling with respect to molecular system size. The
short-range potential Vsr(r12) can be represented as:

Vsr(r12) = erfc(α|r12|)
|r12|

(2.15)

Vlr(r12) = 1
r12
− Vsr(r12) (2.16)

where erfc(α|r12|) denotes the complementary error function of the product of a decay
constant, α, and the inter-electronic distance, |r12|, providing an effective means to separate
the potential into short-range component and long-range component for computational
purposes. Additionally, the tuning parameter α plays an important role in balancing the
precision and efficiency of the algorithm. Selecting an appropriate value for α, is critical.
A lower α value enhances precision, ensuring the short-range potential near to full-range
potential, an accurate representation of interactions. Conversely, a higher α value reduces
significant interactions, potentially diminishing computational load. The most optimal
value is to be determined.

Next, by computing integrals of atomic basis functions over the range-separated Coulomb
potential, we can also divide two-electron integrals into segments on short-range and long-
range interactions.

(αβ|γδ) = (αβ|γδ)sr + (αβ|γδ)lr (2.17)

The three-center two-electron integral with resolution of identity (RI) can likewise be ex-
pressed by:

(αβ|x) = (αβ|x)sr + (αβ|x)lr (2.18)

In our previous work [44] we used DF to represent short-range integrals, while a Fourier
transform and/or multipole expansion was used to represent the long-range integrals.

Our goal here is to obtain the full Coulomb ERIs, but using a representation in terms
of three-index integrals that have a short-range nature. In the usual Ewald partitioning
the long-range potential at short-range approaches a constant, but is not zero. The value
of the 3-center short-range integrals therefore deviates appreciably from the full Coulomb
integrals, even when all orbitals are close together. To accurately simulate the full short-
range electron-electron repulsion integrals, we introduce the GTG correction for three-
centered integrals. The GTG correction is added to the usual short-range integrals to
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correct for their deficiency at short-range term[8].

Vsr_gtg(r12) = Vsr(r12) + Vgtg(r12)

= erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (2.19)

Vlr_gtg(r12) = 1
r12
− Vsr(r12)− Vgtg(r12)

= 1
r12
− Vsr(r12)−X0e

−γ|r12|2 (2.20)

The parameter X0 and γ are chosen such that the value of Vlr(0) is zero, as well as the
derivative dVlr

dr
|r=0. Through these condition, the α parameter in range-separated Coulomb

determines the value of X0 and γ:

X0 = lim
r→0

erfc(α|r12|)
|r12|

= 2α√
π

(2.21)

d2

dr2Vlr(r = 0) = 2X0(−
α2

3 + γ)

γopt = α2

3 (2.22)

Hence, the potential is controlled by a single parameter, α, with the characteristic that a
smaller α value extends the short-range region’s reach. In the next section we discuss the
construction of variations of DF, in particular using short-range 3-center integrals.

2.2 Construction of DF approximations using short-
range 3-centered integrals.

Despite the widespread and accurate application of the standard RI approximation pre-
viously discussed, it should be noted that the implementation of three-index integrals
(αβ|x) scales quadratically (proportional to naux · nao · L, where L is a constant factor)
with the size of the molecular systems [32, 48, 49, 50]. This scaling property still leads
to escalated computational demands as system size increases, resulting in the standard RI
being resource-intensive. In this section we will first discuss a derivation of the usual RI
approximation, and then generalize the derivation to use short-range 3-center integrals.

The auxiliary basis set is non-orthogonal. The overlap matrix is defined as

Sxy =
∫
d3rϕx(r)ϕy(r) (2.23)

The resolution of the identity takes the form I = ∑
x,y |x)(S−1)xy(y|. Let us first derive

the usual formula for the RI approximation. We will write the real space multiplicative
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potential explicitly in a short-hand notation as V . The integrals can then be represented
as

(αβ|γδ) = (αβ|V|γδ)
= (αβ|VV−1V|γδ) ≈ (αβ|VIV−1IV|γδ)
=

∑
x,y

(αβ|V|x)
[ ∑

t,u

S−1
xt (t|V−1|u)S−1

uy

]
(y|V|γδ) (2.24)

We can then show that the quantity between square brackets is the inverse of the matrix
V with matrix elements (x|V|y):∑

t,u

S−1
xt (t|V−1|u)S−1

uy = (x|V|y)−1 ≡ (V−1)xy (2.25)

The proof essentially follows from a matrix multiply by (w|V|x), and recognizing the res-
olution of the identity∑

x,t,u

(w|V|x)
[
S−1

xt (t|V−1|u)S−1
uy

]
=

∑
u

(w|VIV−1|u)S−1
uy

≈
∑

u

(w|1|u)S−1
uy = δwy (2.26)

The representation of two-electron integrals using an RI expansion using short-range
Coulomb potentials is obtained from

(αβ|V|γδ) = (αβ|(VsrV−1
sr VV−1

sr Vsr)|γδ)
≈ (αβ|(VsrIV−1

sr IVIV−1
sr IVsr)|γδ) (2.27)

Note that VsrV−1
sr VV−1

sr Vsr = V in Equation 2.27 and we proceed by including addi-
tional resolutions of the identity between each operator. If we combine the inverse overlap
matrices inside the I operators with the inverses of the potential and simplify, we find

(αβ|V|γδ) ≈
∑

x,t,u,y

(αβ|Vsr|x)(x|Vsr|t)−1(t|V|u)(u|Vsr|y)−1(y|Vsr|γδ) (2.28)

where the inverse of an operator can be expressed as (Vsr)−1 → (x|Vsr|t)−1 ≡ (V−1
sr )xy in

matrix representations.
Using a more compact notation we write

(αβ|γδ) ≈
∑

x,t,u,y

(αβ|x)sr(x|t)−1
sr (t|u)fr(u|y)−1

sr (y|γδ)sr

≡
∑
x,y

(αβ|x)srMxy(y|γδ)sr, (2.29)

where
Mxy =

∑
t,u

(x|t)−1
sr (t|u)fr(u|y)−1

sr = (V−1
sr VfrV−1

sr )xy (2.30)
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Some observations are in order. In principal the operator Vsr can be arbitrary. In practice
we use a local multiplicative operator, for which the inverse exists. It is important that
intgrals over GTO’s can be obtained efficiently. The calculation of the metric matrix
over the auxiliary basis and the required inverses are not considered to be a bottleneck in
calculations of our current interest, as they are 2-index quantities. To obtain the 2-index
quantities, and the metric matrix Mxy the indices run over the full size of the molecule,
and these steps scale as O(n2) and the matrices are dense. The prefactor is small because
they are 2-index quantities.

The key simplification arises for the 3-center integrals. By using a short-range potential
the 3-center integrals decay, and the integrals are non-zero only if all three Gaussians
ξα, ξβ, ϕx are relatively close together. In detail, this scalability arises because the orbital
β needs to be in proximity to α, showing the decay characteristics of the AO overlap
matrix. Additionally, the auxiliary index x is required to be spatially close to the (α, β)
pair due to the inherently short-range nature of these integrals. Hence, the complexity
for evaluating the short-range two-electron three-centered integral will be reduced to O(n),
where n represents the nao. The prefactor of the scaling depends on the range parameter α
that is used. The accuracy of the approximation needs to be tested for actual calculations.

We have a number of considerations to be tested. The value of α is of interest, as well
as the decision to include the GTO correction to the short-range potential. The results of
the tests may be different for the Coulomb and exchange contributions to the Fock matrix,
and the total energy.

2.2.1 Delta Correction in Metric Matrix

It should be noted that our approach introduces our RI error four times, as detailed in
Equation 2.27. As a result, the metric matrix M may have lost some accuracy. To deal
with this, we suggest here to incorporate a ∆-correction within our metric matrix Mxy.
This correction is predicated on revisiting our approximation strategy. We would like our
new approximation to be as accurate as the original DF approximation. We can adjust
the definition of the 2-center metric matrix as follows.

(αβ|x)fr(x|y)−1
fr (γδ|y)fr ≈ (αβ|x)sr

(
Mxy + ∆xy

)
(γδ|x)sr (2.31)

If we multiply with the transpose of the short-range three-index integrals on both sides:

(αβ|x)T
sr(αβ|x)fr(x|y)−1

fr (γδ|y)fr(γδ|x)T
sr ≈ (αβ|x)T

sr(αβ|x)sr

(
Mxy + ∆xy

)
(γδ|x)sr(γδ|x)T

sr

(2.32)
OT

xy(x|y)−1
fr Oxy ≈ P T

xy

(
Mxy + ∆xy

)
Pxy (2.33)

To enhance the efficiency and conciseness of integral calculations, least square fitting
has been introduced to the metric matrix to find the best-fitting curve to the two-electron
integrals [41, 11]. These improvements involve the definition of two new matrices, Pxy and

19



Oxy, as follows:

Pxy =
∑
αβ

(αβ|x)sr(αβ|y)sr (2.34)

Oxy =
∑
αβ

(αβ|x)fr(αβ|y)sr (2.35)

The matrix P is positive definite and symmetric, but in practice it can have very small
eigenvalues. The equation for ∆ can be expressed in terms of a residual matrix

R1 = OT
xy(x|y)−1

fr Oxy − P T
xyMxyPxy (2.36)

We can then solve for the correction ∆

∆ = (P−1
xy )R1P

−1
xy (2.37)

Because of the presence of small eigenvalues in the Pxy matrix, this Algorithm A.1.8
employs the pseudo-inverse of the Pxy matrix. When the eigenvalues (λ) are smaller than
the thresholdP of 10−6, these eigenvalues are adjusted to zero, and the inverse of Pxy is
computed as P−1 = ∑

λ∈nonzero vλλ
−1vT

λ . The corrected metric matrix (Qxy) should be
implemented with correction term, ∆, which is define by:

Qxy = Mxy + ∆xy (2.38)
R2 = OT

xy(x|y)−1
fr Oxy − P T

xyQxyPxy (2.39)

This represents the new residual R2 after the correction has been applied. Ideally, R2
should be smaller than R1, showing that the correction term ∆ has effectively reduced
the inaccuracies in the metric matrix, thereby enhancing the overall precision of the two-
electron integral calculations.

This refined approach, which integrates the matrices Pxy, Oxy, and the corrected metric
matrix Qxy, should improve the precision of calculated two-electron integrals. Through
careful correction of inaccuracies with the term ∆ and the utilization of sparse matrix
storage, this method strikes an optimal balance between computational efficiency and the
accuracy essential for quantum chemistry simulation.

A disadvantage of inclusion of the correction is that it requires the calculation of the
full-range 3-center integrals. The key is that this has to be only once, and the integrals
can easily be processed in small batches (as discussed in a next chapter). The fact that
one should use a threshold because the matrix P is ill-conditioned is another drawback. In
the later result section, we will explore the effect of including this correction, to see if the
advantages are larger than the drawbacks.
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2.3 Implementation in PySCF

This section introduces the Int-Class, a key component of our algorithm, serving as a bridge
to both the PySCF package and the LibCint integral library, where it interfaces with C
and Fortran Application Programming Interface (API)s for computing one-electron and
two-electron integrals over Cartesian, real-spherical, and spinor Gaussian-type functions
[51, 52]. Especially, a lower-level function called ‘getints’ which accepts ‘intor_name’
to specify the type of integrals (e.g., ‘int2e2c’, ‘int2e3c’ and ‘int2e4c’), is identified as
particularly time-intensive in calculations.

Moreover, this section delves into benchmarking Hartree-Fock calculations against the
PySCF DF object. Specifically, we examine variations in α values and the incorporation of
GTO corrections to improve two-electron integral approximations. Furthermore, it explores
the definition of metric matrices, labeled as Mxy and Qxy, aimed at refining the accuracy of
electron repulsion integral computations. The strategic use of these adjustable parameters,
metric matrices, and thresholds in harmony with the DF approach significantly lowers
the computational demand and enhances the accuracy of ERIs estimations for extensive
molecular systems. The most important insight is there are no universally optimal values
for these parameters, hence the choices made during implementation are tailored to the
specific requirements of the computational task at hand. With this understanding, let us
now explore the impact of varying these parameters:

2.3.1 Efficiency

To optimize the computational efficiency, these matrices are computed by block-sparse
format as outlined in Algorithm A.1.7, and finally will be stored in hard disk drives.
The approach to the molecular division will be further discussed in chapter 3. In this
scenario, our goal is to partition three-index integrals across both the α and β layers,
based on the number of atoms in each group, denoted by ngatm.

Pxy =
nslice∑
s=1

ngatm∑
k=1

ngatm∑
j=1

(AjBk|x)sr(AjBk|y)sr (2.40)

Oxy =
nslice∑
s=1

ngatm∑
k=1

ngatm∑
j=1

(AjBk|x)fr(AjBk|y)sr (2.41)

The storage method for matrices, Pxy and Oxy, on hard drives utilizes a sparse matrix
format. This method specifically manipulates in the npz file format, which is supported
by the SciPy package, to maximize storage efficiency and optimize space utilization.

2.3.2 Accuracy

To analyze the accuracy under various parameters, we evaluate Exchange and Coulomb
integrals using our JK-Engine for Hartree-Fock (HF) calculations, comparing these results
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with the accuracy achieved using the PySCF density fitting (DF) method. More detailed
procedures of JK-Engine will be illustrated in the next chapter, with a current focus on
accuracy across different settings. Below are the configurations set up for evaluation:

Basis set: cc-pVTZ or cc-pVDZ, with a particular focus on the cc-pVTZ basis set for
its importance in accurately modeling these molecular systems.

Auxiliary basis set: cc-pvtz-jkfit
Initial tests on small systems for: Our initial tests are carried out for small systems,

notably, H2O,C2H4, C2H6. These systems are large enough to test some critical aspects.
In addition, selected simulation systems are included (a non-interacting water dimer and a
long alkane chain with 20 carbon atoms) that are large enough that some of the short-range
integrals of (αβ|x)sr with the long distance between (α, β) pairs approach zero. Using these
initial test systems we investigate the following aspects:

Important Aspects for Benchmarking:

• Calculation of the K-matrix (Exchange matrix, Kαβ).

• Calculation of the J-matrix (Coulomb matrix, Jαβ).

• Determination of the total electronic energy E and exchange energy Eex through the
following equations:

E = 1
2Tr(ĥαβ + Fαβ) ·Dαβ (2.42)

Eex = −1
2Tr(Kαβ ·Dαβ) (2.43)

where the term Tr stands for the trace of a matrix, which is the sum of the elements
on the matrix’s main diagonal.

• Reference benchmarking is conducted using Pyscf with the density fitting (DF) ap-
proach, a method chosen for its effective error cancellation capabilities inherent in
the resolution of identity (RI) approach. This involves the instantiation of a density
fitting object (′dfobj = df.DF (Mol).build()′).

We explore several variations in our JK-Engine approach, which include:

a) The choice of a decay constant (α) in the complementary error function for range-
separated Coulomb potential: 0.1, 0.2, 0.3, · · · 2.0, 5.0, 10.0, 15.0, 20.0, 100.

b) The choice of inclusion of Gaussian correction term (Vgtg(r12)).

c) The choice of the threshold for pseudo inversion (ThreshP ).

d) The choice to include a least squares fitting correction term (∆-correction term),
which involves selecting either the metric matrix Mxy or Qxy.
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f) Validation on additional molecules , including A. Glycine(C2H5NO2), B. Toluene(C6H5CH3),
C. (3Z,5Z,7Z,9Z,11Z)-12-aminododeca-3,5,7,9,11-pentaen-2-one(C12H15NO), and D.
Benzophenone((C6H5)2C=O)).

Optimal Settings: We find that lower values of α present more challenges in compu-
tational cost but lead to greater accuracy. It is recommended to evaluate options b), c),
and d) to determine the optimal value of α for specific tasks. These different values of α
should then be used in subsequent calculations for improved accuracy and performance.

a) Variations of the Parameter α

Figure 2.1 through Figure 2.8 present the logarithm of differences in calculated values
for exchange integrals (KM − Kpyscf), Coulomb integrals (JM − Jpyscf), exchange energies
(Eex, M − Eex, pyscf), and electronic energies (Eelec, M − Eelec, pyscf), between our JK-Engine
with metric matrix Mxy and JK from PySCF DF method, utilizing different α parame-
ters with the range from 0.1 to 100. Furthermore, Appendix B, containing Tables B.1,
B.2, B.3, B.4, presents specific values of these discrepancies. The maximum absolute
discrepancies between the JK-Engine and the DF approach from PySCF are computed to
lie within the 10−5 to 10−2 range for exchange integrals, denoted as Kαβ. These discrep-
ancies were observed across several α values, from 0.1 to 20, for small molecular systems
including the water monomer, water dimer, ethane, and ethylene. Additionally, the dark
blue curve in Figure 2.9 illustrates the decrease in the number of non-zero (NNZ) entries
of short-range integral slice (αB|x)sr as the value of α parameter increases in a relatively
large molecular system C20H42. Consequently, this reduction in minor entries may lead to
a decrease in the precision of our algorithm, shown in Table 2.1.

It is noted that a lower value of α leads to increased accuracy and computational cost for
both exchange and Coulomb integrals. Conversely, larger α values significantly reduce the
effective range of the short-range potential, thus increasing the sparsity of the short-range
integrals (αβ|x)sr and offering computational efficiency advantages.
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Figure 2.1: Comparative Analysis of Er-
ror Metrics Between JK-Engine Algorithm
with the metric matrix Mxy and Density Fit-
ting Object from PySCF for Water Monomer
H2O under various α values in cc-pVTZ ba-
sis set and cc-pvtz-jkfit auxiliary basis set.

Figure 2.2: Comparative Analysis of Er-
ror Metrics Between JK-Engine Algorithm
with the metric matrix Mxy and Density Fit-
ting Object from PySCF for Water Monomer
H2O under various α values in cc-pVTZ ba-
sis set and cc-pvtz-jkfit auxiliary basis set

Figure 2.3: Comparative Analysis of Er-
ror Metrics Between JK-Engine Algorithm
with the metric matrix Mxy and Density Fit-
ting Object from PySCF for Water Dimer
(H2O)2 under various α values in cc-pVTZ
basis set and cc-pvtz-jkfit auxiliary basis set.

Figure 2.4: Comparative Analysis of Er-
ror Metrics Between JK-Engine Algorithm
with the metric matrix Mxy and Density Fit-
ting Object from PySCF for Water Dimer
(H2O)2 under various α values in cc-pVTZ
basis set and cc-pvtz-jkfit auxiliary basis set
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Figure 2.5: Comparative Analysis of Error
Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting
Object from PySCF for C2H4 under various
α values in cc-pVTZ basis set and cc-pvtz-
jkfit auxiliary basis set.

Figure 2.6: Comparative Analysis of Error
Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting
Object from PySCF for C2H4 under various
α values in cc-pVTZ basis set and cc-pvtz-
jkfit auxiliary basis set

Figure 2.7: Comparative Analysis of Error
Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting
Object from PySCF for C2H6 under various
α values in cc-pVTZ basis set and cc-pvtz-
jkfit auxiliary basis set.

Figure 2.8: Comparative Analysis of Error
Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting
Object from PySCF for C2H6 under various
α values in cc-pVTZ basis set and cc-pvtz-
jkfit auxiliary basis set
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α KM −Kpyscf KQ −Kpyscf JM − Jpyscf JQ − Jpyscf
0.6 1.08× 10−4 1.08× 10−4 3.52× 10−2 9.31× 10−3

1 8.95× 10−4 8.79× 10−4 5.96× 10−2 1.36× 10−2

5 4.82× 10−3 4.60× 10−3 2.20× 10−1 9.04× 10−2

10 2.78× 10−2 2.74× 10−2 2.73× 10−1 1.45× 10−1

15 9.94× 10−2 9.93× 10−2 3.83× 10−1 3.26× 10−1

20 2.68× 10−1 2.67× 10−1 5.84× 10−1 5.83× 10−1

50 5.93 5.93 3.23 3.23
100 5.03× 10 5.03× 10 8.30× 10 8.30× 10

Table 2.1: Discrepancies between JK-Engine and PySCF DF method for C20H42 under
various α values in cc-pVDZ basis set and cc-pvtz-jkfit auxiliary basis set.

Figure 2.9: Comparative Analysis of Non-Zero Entries in JK-Engine Algorithm with the
metric matrix Mαβ for C20H42 under various α values in cc-pVDZ basis set and cc-pvtz-jkfit
auxiliary basis set.
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b) Variations in Gaussian Corrections Vgtg(r12)

Molecules KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
(H2O)1 2.04× 10−3 3.55× 10−2 5.51× 10−4 4.05× 10−3

(H2O)2 2.04× 10−3 4.05× 10−2 1.10× 10−3 9.14× 10−3

C2H4 3.29× 10−3 7.36× 10−2 8.18× 10−4 8.95× 10−3

C2H6 1.92× 10−3 4.48× 10−2 7.13× 10−4 8.19× 10−3

Table 2.2: Discrepancy Evaluation Between JK-Engine without Gaussian Germinal Cor-
rections (Vgtg(r)) and Density Fitting in PySCF for Various Molecules: This table shows
the differences in computed values for exchange and Coulomb integrals, exchange energies,
and electronic energies between the JK-Engine algorithm, employing the metric matrix
Mαβ, and the Density Fitting approach in PySCF. These calculations were performed un-
der the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary basis
set for molecules including water clusters, ethane, and ethylene.

Molecules KM,gtg −Kpyscf JM,gtg − Jpyscf Eex, gtg − Eex, pyscf Eelec, gtg − Eelec, pyscf
(H2O)1 6.47× 10−4 1.34× 10−2 1.37× 10−4 1.43× 10−3

(H2O)2 6.47× 10−4 1.56× 10−2 2.75× 10−4 3.30× 10−3

C2H4 1.01× 10−3 2.21× 10−2 3.25× 10−4 3.40× 10−3

C2H6 5.27× 10−4 1.41× 10−2 2.69× 10−4 2.70× 10−3

Table 2.3: Discrepancy Evaluation Between JK-Engine with Gaussian Germinal Correc-
tions (Vgtg(r)) and Density Fitting in PySCF for Various Molecules: This table shows the
differences in computed values for exchange and Coulomb integrals, exchange energies, and
electronic energies between the JK-Engine algorithm, employing the metric matrix Mαβ,
and the Density Fitting approach in PySCF. These calculations were performed under the
setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary basis set for
molecules including water clusters, ethane, and ethylene.

In the context of evaluating the impact of Gaussian-Type Germinal (GTG) correc-
tions on computational accuracy, the JK-Engine algorithm includes a Boolean parameter,
JKEngine.gtg, which can be set to True or False. This parameter dictates whether the
short-range three-centered integrals are adjusted for GTG corrections. Table 2.2 illus-
trates the discrepancy analysis in the absence of GTG corrections, contrasting the JK-
Engine algorithm calculated values with those from PySCF DF method. On the other
hand, Table 2.3 represents the results where GTG corrections are applied to the short-
range DF integrals. The discrepancies in calculated values for exchange and Coulomb
integrals, exchange energies, and electronic energies between the two methods are docu-
mented under the same computational conditions, specifically an α value of 0.6, and using
both the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary basis set for a set of molecules.

Vsr_gtg(r12) = Vsr(r12) + Vgtg(r12)

= erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (2.44)
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When comparing the two tables, the calculations with GTG corrections (Table 2.3)
consistently yield more accurate results for exchange and Coulomb integrals, exchange en-
ergies, and electronic energies. To improve the accuracy of future computational analyses,
the parameter JKEngine.gtg will be set to True as default.

c) Variations in the Value of ThreshP

As detailed in the previous discussion, a novel approach for representing effective range
integrals (ERIs) through the use of short-range three-centered integrals and the metric
matrix Mxy addresses the resolution of identity (RI) errors, denoted as R1:

OT
xy(x|y)fr−1Oxy ≈ P T

xy(Mxy + ∆)Pxy (2.45)
R1 = OT

xy(x|y)−1
fr Oxy − P T

xyMxyPxy (2.46)

To mitigate RI errors, we introduce a ∆-correction, aiming to enhance the alignment with
full-range two-electron integrals. The calculation of ∆-corrections involves the pseudo-
inverse of the Pxy matrix. Significantly, the selection threshold for non-zero eigenvalues
within the pseudo-inverse algorithm plays an important role in determining the accuracy
of exchange and Coulomb integrals.

∆ = (P−1
xy )TR1P

−1
xy (2.47)

R2 = OT
xy(x|y)−1

fr Oxy − P T
xy(Mxy + ∆)Pxy (2.48)

Figures 2.10, 2.11, 2.12, 2.13 depict the logarithm of differences in computed values for
exchange (KQ −Kpyscf) and Coulomb integrals (JQ − Jpyscf), exchange energies (Eex, Q −
Eex), and electronic energies (Eelec, Q − Eelec) between the JK-Engine algorithm and the
Density Fitting approach in PySCF, across different pseudo-inverse thresholds denoted
as threshP . These computations were conducted using the settings α = 0.6, the cc-
pVTZ basis set, and the cc-pvtz-jkfit auxiliary basis set for various molecular systems
including water clusters, H2O, (H2O)2, ethane C2H4, and ethylene C2H6. Specifically,
Tables B.5, B.6, B.7, B.8 in Appendix B illustrate the impact of varying the pseudo-
inverse threshold (threshP ) on the RI errors, particularly the least squares fitting error R2,
within water clusters, ethane, and ethylene molecular systems. In principle, the optimal
choice of threshP minimizes R2, thereby enhancing the accuracy of the JK-Engine using
metric matrix Qxy in simulating electronic interactions within these molecules. Although
some of threshP values significantly reduce the least squares fitting error R2, they do
not significantly alter the overall accuracy of the calculations for exchange and Coulomb
integrals. Ultimately, the optimal threshP values for minimizing RI errors, which are
depicted as the minimum points in Figures 2.10 to 2.13, fall within the range of 10−4

to 10−6. The metric matrix Qxy employs a default value of 10−4 for ThreshP .

28



Figure 2.10: Error Analysis Between JK-
Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various
Threshold in the inversion of Pxy Matrix,
threshP for Water Monomer (H2O).

Figure 2.11: Error Analysis Between JK-
Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various
Threshold in the inversion of Pxy Matrix
threshP for Water Dimer (H2O)2.

Figure 2.12: Error Analysis Between JK-
Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various
Threshold in the inversion of Pxy Matrix
threshP for Ethylene (C2H4).

Figure 2.13: Error Analysis Between JK-
Engine with the metric matrix Qxy and Den-
sity Fitting Object in PySCF for Various
Threshold in the inversion of Pxy Matrix
threshP for Ethane (C2H6).
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d) Variations in the Metric Matrices Mxy and Qxy

Molecules KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
(H2O)1 6.47× 10−4 1.34× 10−2 1.37× 10−4 1.43× 10−3

(H2O)2 6.47× 10−4 1.56× 10−2 2.75× 10−4 3.30× 10−3

C2H4 1.01× 10−3 2.21× 10−2 3.25× 10−4 3.40× 10−3

C2H6 5.27× 10−4 1.41× 10−2 2.69× 10−4 2.70× 10−3

Mols KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
(H2O)1 3.22× 10−4 6.57× 10−3 1.82× 10−4 1.30× 10−3

(H2O)2 1.11× 10−3 1.02× 10−2 5.41× 10−4 1.90× 10−2

C2H4 8.13× 10−4 2.08× 10−2 5.42× 10−4 7.37× 10−3

C2H6 6.50× 10−4 1.77× 10−2 5.21× 10−4 3.30× 10−3

Table 2.4: Error Analysis Between JK-Engine with the metric matrix Mxy and Density
Fitting Object in PySCF for Various Molecules: This table shows the differences in com-
puted values for exchange and Coulomb integrals, exchange energies, and electronic energies
between the JK-Engine algorithm, and the Density Fitting approach in PySCF. These cal-
culations were performed under the setting of α = 0.6 with the cc-pVTZ basis set and the
cc-pvtz-jkfit auxiliary basis set for molecules including water clusters, ethane, and ethylene.
The default threshP = 10−4 is used.

Molecuels (R1)max (R2)max

(H2O)1 43.8 0.012
(H2O)2 43.8 3.067
C2H4 65.4 0.412
C2H6 147.3 0.291

Table 2.5: Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Molecules: This table indicates the differences in
computed values for exchange and Coulomb integrals, exchange energies, and electronic
energies between the JK-Engine algorithm, and the Density Fitting approach in PySCF.
These calculations were performed under the setting of α = 0.6 with the cc-pVTZ basis
set and the cc-pvtz-jkfit auxiliary basis set for molecules including water clusters, ethane,
and ethylene. The default threshP = 10−4 is used

Table 2.4 provides comparative error analysis for different molecules using metric ma-
trix Qxy and Mxy respectively, in contrast to the standard PySCF density fitting object.
The observed differences are due to the cumulative approximations within the RI errors,
particularly regarding the transformed two-electron two-centered integrals. The differences
between these transformed integrals, denoted by OT

xy(x|y)−1
fr Oxy, and the transformed met-

ric matrices P T
xyMxyPxy and P T

xyQxyPxy, are represented as residuals R1 and R2. These
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residuals are defined as:

R1 = OT
xy(x|y)−1

fr Oxy − P T
xyMxyPxy (2.49)

R2 = OT
xy(x|y)−1

fr Oxy − P T
xyQxyPxy (2.50)

As shown in Table 2.5, applying the ∆-correction substantially reduces the maxi-
mum residuals from R1 and R2 in the fitting process. However, the Hartree-Fock analysis
demonstrates only slight adjustments, containing exchange integrals, Coulomb integrals,
exchange energy, and electronic energy. This is a surprising result. It indicates that certain
two-electron integrals can be improved, but apparently these integrals are not very impor-
tant in actual calculations. The necessary use of threshP is inconvenient and somewhat
suspect, while additionally, the application of ∆ corrections introduces extra computational
burdens. In particular the calculation of full-range two-electron three-centered integrals
(αβ|x)fr during the computation and storage of Pxy and Oxy matrices is computation-
ally expensive. Therefore, we recommend against incorporating ∆ corrections into our
JK-Engine algorithm for future calculations, while continuing to utilize the metric matrix
Mxy.

We can phrase this conclusion in a more positive fashion. Apparently, it is very hard
to systematically improve on the metric matrix M that we derived by inserting an approx-
imate resolution of the identity four times. This is not the result we anticipated, but it is
a nice bolstering of the mathematical robustness of the applied RI technique.

f) Validation on Additional Molecular Systems

Figure 2.14: Further validation of the JK-Engine Algorithm is demonstrated through its
application to four distinct molecules: A. Glycine(C2H5NO2), B. Toluene(C6H5CH3),
C. (3Z,5Z,7Z,9Z,11Z)-12-aminododeca-3,5,7,9,11-pentaen-2-one(C12H15NO), and D.
Benzophenone((C6H5)2C=O) [8].
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The general applicability of the JK-Engine algorithm is demonstrated through its test-
ing on additional molecular systems, including glycine (C2H5NO2), toluene (C6H5CH3),
12-aminododeca-3,5,7,9,11-pentaen-2-one(C12H15NO), and Benzophenone((C6H5)2C=O)
shown in Figure 2.14. This broadening to various molecules, as illustrated in Table 2.6,
highlights the algorithm’s consistent accuracy, with differences between the JK-Engine and
the Density Fitting approach in PySCF. Such results showcase the algorithm’s adaptability
and its potential for dependably precise applications across extensive molecular systems.

Molecules KM −Kpyscf JM − Jpyscf Eex, M − Eex Eelec, M − Eelec
C2H5NO2 5.48× 10−4 2.63× 10−2 2.16× 10−4 5.17× 10−3

C6H5CH3 4.47× 10−4 5.61× 10−2 2.45× 10−4 8.30× 10−3

C12H15NO 7.64× 10−4 6.95× 10−2 4.77× 10−3 1.77× 10−2

(C6H5)2C=O 4.20× 10−3 3.21× 10−2 7.27× 10−4 5.04× 10−3

Molecules KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
C2H5NO2 4.01× 10−4 2.68× 10−2 1.10× 10−4 1.58× 10−3

C6H5CH3 6.47× 10−4 1.56× 10−2 2.75× 10−4 3.30× 10−3

C12H15NO 6.71× 10−4 6.49× 10−2 4.77× 10−4 1.66× 10−2

(C6H5)2C=O 3.01× 10−3 3.02× 10−2 3.25× 10−4 3.40× 10−3

Table 2.6: Validation Analysis Between JK-Engine and Density Fitting Object in PySCF
for Various Molecules on Additional Molecular System: This table shows the differences
in computed values for exchange and Coulomb integrals, exchange energies, and electronic
energies between the JK-Engine algorithm, and the Density Fitting approach in PySCF.
These calculations were performed under the setting of α = 0.6 with the cc-pVTZ basis
set and the cc-pvtz-jkfit auxiliary basis set for molecules including glycine, toluene, 12-
aminododeca-3,5,7,9,11-pentaen-2-one, and benzophenone.

In conclusion, this chapter emphasizes the critical role of parameter selection in opti-
mizing Hartree-Fock calculations within the PySCF framework, particularly through the
JK-Engine algorithm. The findings highlight several key insights for future analysis:

• α Parameter: Adjusting α impacts accuracy and efficiency. Lower α improves accu-
racy but increases the computational load, ideal for precise simulations. Higher α
boosts efficiency, suitable for simulations with approximations.

• ∆ Corrections: These corrections provide minimal accuracy improvements at a high
computational cost of full-range three-index integrals (αβ|x)fr. Therefore, we rec-
ommend excluding ∆ corrections in metric matrix to reduce computational efforts.

• GTG Corrections: They can enhance accuracy for two-electron integrals and should
be considered as default selection based on computational goals and molecule specifics.

The single parameter α plays the key role in the approximation and provides a trade-off
between accuracy and efficiency. An interesting observation is that no single α parameter
value is universally optimal; therefore, the selection of α parameters during implementation
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might be customized to meet the unique demands of the computational task. Let us analyze
the selection of the α value for specific tasks:

Initially, for the starting geometry optimization of the molecule, precision is less critical
as it’s a rough approximation. Therefore, to expedite the optimization process, we can opt
for a larger α value, prioritizing speed over accuracy. Secondly, when calculating the
total energy at optimized geometry or conducting single-point energy calculations, a high
degree of accuracy is required, so we should employ a smaller α value to ensure precise
results. Thirdly, the cluster-in-molecule (CiM) developed by the Nooijen group employs
the exchange matrix Kαβ to establish the orbital domain. Since the orbital selection
scheme does not require highly accurate results, a larger α value can be selected to enhance
computational efficiency.

In conclusion, no single α value is universally optimal; the appropriate choice varies
based on the specific computational context. Our Int-Class package, which employs Object-
Oriented Programming (OOP), makes adjusting α straightforward for diverse applications.
To find an equilibrium between accuracy and computational efficiency, we will explore α
values of 1.0, 5.0, and 10.0 in Chapter 4, focusing on their impact on timing and memory
consumption.
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Chapter 3

Calculation of Exchange Matrix
using Short-range Integrals

Hartree-Fock (HF) theory approximates the system’s wave function as a single determinant
by determining the occupied molecular orbitals that minimize the total energy of the
system. This leads to the formulation of the Self-Consistent Field (SCF) method, which
iteratively solves the HF equations to find these occupied orbitals. The core of the SCF
method involves computing the Fock matrix Fαβ in the AO basis set, which is derived from
a set of occupied orbitals [53]. The Fock matrix involves three terms: bare h hαβ, Coulomb
matrix Jαβ, and exchange matrix Kαβ. For closed-shell molecules the equations are given
as:

Fαβ = hαβ + 2Jαβ −Kαβ (3.1)
Kαβ =

∑
γ,δ

(αγ|βδ)Dγ,δ (3.2)

Jαβ =
∑
γ,δ

(αβ|δγ)Dγ,δ (3.3)

Here we used that the density matrix is formed from the α-spin orbitals only, as it is
a closed-shell system. As we mentioned in the previous chapter, the two-electron four-
index repulsion integrals are simplified by representing the term of short-range three-index
integral with DF approximation:

(αβ|γδ) ≈
∑
x,y

(αβ|x)srQxy(γδ|y)sr (3.4)

Here (αγ|x)sr are the short-range three-center integrals, and Qxy (usually just Mxy) is the
metric matrix with the RI approximation as discussed in the previous chapter.

When the matrix-RI approximation with short-range integrals is used for the exchange
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calculations, one obtains:

Kαβ =
∑
γ,δ

∑
x,y

(αγ|x)srQxy(βδ|y)srDγ,δ (3.5)

To achieve additional efficiencies in the calculation of the exchange matrix the density ma-
trix Dγ,δ is decomposed as Dγ,δ = ∑

µ LγµL
T
δµ, where Lγµ are occupied localized molecular

orbitals (LMO). There are various methods available for obtaining these LMOs, including
the Foster-Boys localization technique, the Cholesky decomposition of the density matrix,
and the Pipek-Mezey (PM) algorithm.

Kαβ =
∑
γ,δ

∑
x,y

∑
µ

(αγ|x)srQxy(βδ|y)srLγµLδµ (3.6)

Next, we introduce the intermediate integrals, denoted as I(αx|µ), to streamline the
calculation of the exchange contribution. These intermediates are defined as follows:

I(αx|µ) =
∑

γ

(αγ|x)srLγµ, (3.7)

To calculate this intermediate in practice, it is convenient to resort the primitive localized
3-index integrals, which will be reused many times in the process of SCF iterations, or in
the process of a CiM calculation. We will indicate this through a permutation of indices,
e.g.

I(αx|µ) =
∑

γ

(αx|γ)srLγµ, (3.8)

The purpose of these intermediate integrals is to simplify the exchange contribution, which
can now be expressed as:

Kαβ =
∑
x,y

∑
µ

I(αx|µ)QxyI(βy|µ) (3.9)

At this point, it is of interest to analyse what has been achieved in the reformulation.
If the LMO are well localized and efficient short-range integrals are used, the intermediate
I(αx|µ) has a localized nature, where all of the contributing AO’s α and auxiliary basis
functions x are in the vicinity of the localized orbital µ. The intermediate elements I(αx|µ)
can be calculated a few LMOs µ at a time (localized in a similar fashion), and the contri-
butions to the exchange matrix can be obtained. Since x is localized only a subset of Qxy

are needed in the assembly of K. We will use sparse matrix techniques to only sum over
entries that fall above a threshold. The main challenge is to formulate a precise algorithm
that is both memory- and time-efficient. This will be discussed in the remainder of this
chapter.

Although the exchange algorithm has been improved through the application of short-
range three-index integrals using RI approximations, challenges related to memory issues
persist. The main cause of the "out-of-memory", Out-of-Memory (OOM) problem is the
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computation of three-index integrals, specifically (αx|β) and I(αx|µ), which require a
large amount of memory. These integrals lead to a space complexity on the order of O(n3),
resulting in a rapid increase in memory demand as the system size grows.

To address this memory issue, this chapter will dive into another main class in my
algorithm, JK-Engine, by using short-range integrals. This class represents a cornerstone
of our computational framework, which is designed to efficiently process two-electron in-
tegrals for quantum chemistry calculations. Previous efforts by our group, inspired by
Mike Lecours’ exploration of block-sparse structures in molecules, partitioned three-index
integrals using a fixed set of atoms across a single layer. Our new approach expands on
this by employing flexible grouping algorithms that partition large molecules into segments
based on heavy atoms across all three layers, (AjBi|Xk), encompassing α, β, and x. Addi-
tionally, we transform dense three-leg tensors into block-sparse two-leg matrices within our
JK-Engine, which enhances both computational speed and memory efficiency. Through a
detailed exploration of new data types and JK algorithms, this chapter outlines the chal-
lenges of handling a large amount of data and the strategies employed to manage memory
usage effectively, ensuring the algorithm’s applicability to large molecular systems.

3.1 New Data Type in Two-electron Integrals

In this section, we explore a novel approach to managing and calculating two-electron
short-range integrals, a preparation stage of JK-Engine. At the heart of this method
is the transition from traditional dense tensor representations of short-range integral to
a more efficient and scalable sparse matrix format. This transformation is essential in
addressing the intensive computational and memory challenges posed by the increasing
size of molecular systems. There are a number of techniques we employed in our JK-
Engine. We firstly investigated the grouping algorithm to organize the computational
workload around the concept of heavy atoms and adjacent hydrogen atom clusters. The
conversion process from three-dimensional tensors to two-dimensional sparse matrices is
detailed, highlighting the clever use of index transformation and aggregation techniques to
maintain the accuracy and block manipulation of the integral data. This methodology not
only optimizes storage and computational resources but also sets the preliminary stage for
advanced operations in the calculation of exchange and Coulomb matrices.

3.1.1 Dynamic Grouping Algorithm

The critical step in the preparation procedure is to convert the three-index two-electron
short-range integral with the Gaussian correction, three-dimensional tensor, to a sparse
matrix with COO. The three-dimensional tensor (or rank 3 tensor) can be considered
as a cuboid with edges a, b, c and contains abc elements, shown in Figure 3.1. In this
case, the short-range integral (αβ|x) has nao×nao×nnaux elements, where nao represents
the number of AO and nnaux represents the number of auxiliary orbitals. As the size of
the input molecules increases, the memory requirements for calculating these short-range
integrals exceed the available memory, leading to out-of-memory errors.
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Figure 3.1: Tensors with different ranks [12]

To mitigate the issue of high RAM usage during calculations, the integrals will be sliced
based on heavy atoms (non-hydrogen elements such as carbon, nitrogen, and oxygen) and
their related adjacent hydrogen atoms. This method initially categorizes integral groups
by the specific number of heavy atoms to determine the index range of AOs associated
with the atoms within these segments. Each segment’s integral will be centered around
either a single heavy atom up to a few heavy atoms, depending on our preference for ease
of handling.

To group the heavy atoms with adjacent hydrogen atoms, the preparation procedure is
to compute the distance matrix for a set of points (atoms in this case) in a 3D space. The
distance d between any two atoms Pi : (xi, yi, zi) and Pj : (xj, yj, zj) in a 3D Euclidean
space is calculated by the Euclidean distance formula:

d(Pi, Pj) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3.10)

The Algorithm A.1.1 computes a distance matrix d, where the element dij represents
the pairwise distance between two atoms Pi and Pj, thus:

d =


d(P1, P1) d(P1, P2) · · · d(P1, Pn)
d(P2, P1) d(P2, P2) · · · d(P2, Pn)

... ... . . . ...
d(Pn, P1) d(Pn, P2) · · · d(Pn, Pn)

 (3.11)

Figure 3.2: Segmentation of Alkane Chains: An Algorithmic Approach A.1.2 to Identifying
Groups within Nonane(C9H20) and Octane(C8H18) with nheavy=2

For each group of heavy atoms, the Algorithm A.1.2 aims to identify chunks within
nheavy in the whole molecule, specifically looking for hydrogen atoms within a threshold
distance dij from any atom in the heavy atom group. Upon identifying these segments,
the algorithm consolidates each group, containing both the heavy atom or atoms and
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their proximate hydrogen atoms, sorts them, and then incorporates these sorted groups
into the overall list of atom groups. The Figure 3.2 shows a grouping algorithm that
categorizes the carbon atoms into slices, with each slice containing two carbon atoms, as
indicated by the rectangles drawn around pairs of carbon atoms. The molecule nonane
(C9H20) comprises a total of 5 slices, denoted as nslice, while the molecule octane (C8H18)
comprises a total of 4 slices.

Notation Description in the pseudo algorithm
α, β atomic orbital functions
x, y auxiliary basis functions
µ, ν localized molecular occupied orbitals
A,B atomic orbital functions within a specific segment
X, Y auxiliary basis functions within a specific segment
V localized molecular occupied orbitals within a specific segment

Table 3.1: List of symbols used in JK-Engine calculations

After slicing the molecule, the next step involves computing the short-range three-
centered integrals for these segments, denoted as (AB|X)sr, where A,B, and X represent
the specific atomic orbitals and auxiliary orbitals within the slice, shown in Table 3.1. For
the exchange algorithm, it is necessary to preliminary compute the short-range integrals
(αB|x)sr slicing along the β dimension. These three-dimensional integrals are aggregated
by (AB|X)sr along the α and x dimension, then transformed into two-dimensional sparse
matrices, denoted as (αx|B)sr. These matrices are eventually stored on a hard disk.

(αB|x)sr = ∪nslice
j=1 ∪

nslice
k=1 (AjB|Xk)sr (3.12)

The Algorithm A.1.4 details the process of aggregating all segmented integrals (AB|X)sr
into larger segmented integrals, (αB|x)sr, through the union of segments.

3.1.2 Conversion from Tensor to Sparse Matrix

Currently, the Python packages SciPy and NumPy do not offer a robust solution for the
multiplication of three-dimensional and higher-dimensional sparse matrices. Although the
′einsum′ function in NumPy allows for summation across dimensions in dense matrices,
this method is not efficient enough for our specific needs. To address this challenge, Haobo
Liu introduced a Tile structure by iterating over each auxiliary orbital x with three-index
tensors [54]. In our innovative algorithm, we suggest using a new data structure to en-
capsulate these higher-dimensional tensors as sparse 2D matrices, with iteration over each
block of heavy atoms.

The novel method for managing these higher-rank tensors entails converting them into
2D dense matrices through index reorganization. After the computation of (AB|X)sr,
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Figure 3.3: The three-centered block-sparse tensor quantity (αβ|x) in preliminary stage[8].

these segment-specific three-dimensional tensors are first converted into sparse matrices via
index transformation. Specifically, the indices α and β are amalgamated to act as a row
index, while the index of x is designated as a column index. To represent the transformed
compounded matrix (AB;X)sr, we will introduce a new notation by employing a semicolon
for its representation.

idxrow = idxα · nao+ idxβ (3.13)
idxcoln = idxx (3.14)

3.1.3 Sparse Matrix Format and Storage

During implementation, some valuable contributions in our algorithms, such as short-range
three-index integrals (αβ;x) and some intermediate integrals, are always conducted in a
large block-sparse matrix format, making computations expensive during operations. The
sparse-block matrix has high sparsity, even up to 95%, and only 5% of elements have non-
zero values in dense blocks. Specifically, an appropriate data structure for a block-sparse
matrix, which includes element organization, conduction, and storage format, allows the
algorithms of matrix operations like multiplication to be precise and economical.

Considering the importance of operational efficiency and memory utilization, the sparse
matrix format is an important feature of the implementation. There are three basic data
structures to store sparse matrix, COO, CSR, and CSC. The COO format is the most
straightforward method where it only stores the information of non-zero elements. This
includes the value of these elements along with their respective row and column indices,
shown in Figure 3.4.

Although the COO format is user-friendly and easy to understand due to its straight-
forward storage of non-zero elements, it is not as efficient for matrix operations like multi-
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plication or inversion. In contrast, the CSR format is much more economical for arithmetic
operations and row slicing, whereas CSC format is optimized for column-wise operations.
The CSR contains three arrays, shown in Figure 3.5, 3.6, an array of non-zero values, an
array of column indices corresponding with non-zero elements, and an array of row index
pointers. These row index pointers indicate the start index within the value array for each
row, enhancing its efficiency for row-oriented operations. The CSC format utilizes a similar
strategy, shown in Figure 3.7, 3.8.

Figure 3.4: The COO format is utilized to represent non-zero elements within a sparse
matrix. For instance, for a non-zero element valued at 2, it records the row index as 1 and
the column index as 2 [13].

Figure 3.5: The CSR format is utilized to
represent non-zero elements within a sparse
matrix. For instance, for a non-zero element
valued at 2, it records the row index as 1 and
the index pointer as 2 [13].

Figure 3.6: Another representation of non-
zero elements in a sparse matrix using the
CSR format [13].
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Figure 3.7: The CSC format is utilized to
represent non-zero elements within a sparse
matrix. For instance, for a non-zero element
valued at 8, it records the column index as
0 and the index pointer as 1 [13].

Figure 3.8: Another representation of non-
zero elements in a sparse matrix using the
CSC format [13].

In our algorithm, the intermediate short-range integrals (αB;x) will be stored on a hard
disk in the COO format. This format is selected for its convenience in updating indices
during the aggregation process. Additionally, as part of our preprocessing steps after
converting from a dense to a sparse matrix, we implement a strategy to eliminate zero
elements that fall below a certain threshold. This step is crucial for addressing numerical
precision issues for tiny values (which are smaller than 1 × 10−5) and optimizing storage
efficiency. This elimination process is executed within our algorithm after every conversion
of a dense matrix to a sparse matrix. Algorithm A.1.3 details the specific steps involved
in removing zero entities.

According to Equation 3.12, it is necessary to transform the row and column index
of non-zero elements of each sparse matrix slice (AB;X)sr, during the aggregation of these
sparse matrices into a larger sparse matrix representing the entire (aB;x)sr integral set.
The row indices for each slice’s sparse matrix (ABX.row) are adjusted by adding an offset,
equal to the cumulative sum of the number of atomic orbitals along α dimension (nA)
in previous slices multiplied by the number of atomic orbitals along β dimension (nB)
in the slice, effectively mapping the local slice-based row indices to the global integral
matrix (idxglobal_row). In contrast, the column indices (ABX.col) are adjusted by adding
an offset equal to the cumulative sum of the number of auxiliary basis functions (nX) in
previous slices, mapping the local slice-based column indices to the global column indices
(idxglobal_coln) in the combined sparse matrix.

idxglobal_row = ABX.row + (
k−1∑
i=0

nAi
)× nBk

(3.15)

idxglobal_coln = ABX.coln+ (
k−1∑
i=0

nXi
) (3.16)

This indices adjustment ensures that the local, slice-based indices are accurately mapped
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to their global counterparts within the overarching sparse matrix. The object of this process
is the construction of (aB;x)sr, a COO format sparse matrix that embodies the aggregated
integrals, ensuring that the structure and relationships inherent in the local matrix slices
are preserved and represented on a global sparse matrix framework. This index trans-
formation and aggregation strategy are pivotal features for the efficient computation and
storage of the (aB;x)sr integrals, illustrated in Algorithm A.1.4.

In the exchange algorithm, preparation of the short-range integral slice, denoted as
(αx;B)sr, is also required. Here, the indices α and x are combined to form a single row
index, while the index B is extracted as a column index. The Algorithm A.1.5 explains
how the index re-compounds from (αB;x) to (αx;B).

Firstly, it generates a two-dimensional grid of indices for dimensions ′α′ and ′B′, map-
ping each (α,B) pair to a unique linear index. This step uses np.meshgrid to create a
coordinate matrix for these dimensions within the given sizes ′nao′ and ′n′

B. Secondly, for
each non-zero element in the input matrix (αB;x), denoted as Zcoo in the algorithm, it
identifies the corresponding ′α′ and ′B′ values using the linear indices derived from the
matrix’s row indices. The np.divmod function is then applied to these selected linear in-
dices, with nB (the size of dimension ′B′) as the divisor. This operation performs integer
division and modulus simultaneously. The quotient (idxa) represents the ′α′ index, and
the remainder (idxB) represents the ′B′ index for each non-zero element.

Thirdly, the new row indices are re-compounded by combining these ′α′ values with the
column indices of (αB;x), scaled by a factor naux. This operation effectively reorganizes
the data, converting from an (αB;x) to (αx;B) configuration. Finally, a new COO matrix
is constructed using these recalculated row indices and the original ′B′ column indices,
with the same non-zero data elements as the input matrix but with an updated shape to
reflect the new arrangement. This function allows for the reorganization of sparse matrix
representations, accelerating operations and analyses that benefit from the alternative
structure.

At this stage, the necessary preparatory steps for computing the exchange matrix Kαβ

and Coulomb matrix Jαβ are complete. The slice integrals, specifically in the COO format
for (αB;x) and (αx;B), have been efficiently stored on the Hard Disk Drive (HDD).

3.2 JK-Engine: Exchange Matrix Algorithm

The exchange matrix Kαβ plays a pivotal role in quantum chemistry, particularly in the HF
method and post-HF calculations, where it contributes to the electron-electron repulsion
and exchange phenomena. The exchange matrix Kαβ:

Fαβ = Hcore
αβ + 2Jαβ −Kαβ (3.17)

Kαβ =
∑
γ,δ

(αγ|βδ)Dγ,δ (3.18)

where Dγδ is the electron density matrix. To reduce computational complexity, the matrix-
RI approximation with short-range integrals is used for the exchange calculations, given

42



by:

Kαβ =
∑
γ,δ

∑
x,y

(αγ|x)srQxy(βδ|x)srDγ,δ (3.19)

where (αγ|x)sr are the short-range three-center integrals, and Qxy is the metric matrix
with the RI approximation.

The JK-Engine class is designed to offer a complete framework for calculating the ex-
change contribution, ensuring users select the most suitable approach for their specific
requirements. It includes four distinct algorithmic approaches for exchange calculations,
each designed to accommodate different requirements for memory usage and timing costs.
To cater to various computational demands, the class offers four distinct algorithmic ap-
proaches for exchange calculations. Here is an overview of these approaches:

1. Exchange Slice Method: This technique involves slicing atomic orbitals according to
a group of heavy atoms, identified by the parameter nheavy, and having a flexible
number of grouping atoms (ngatm). It utilizes sparse matrix operations to perform
the targeted exchange calculations. This method is the most effective for optimizing
computations in large-scale systems with a number of heavy atoms, allowing for a
more efficient calculation process.

2. Grouped Atom Exchange Slice Method: Similar to the Exchange Slice Method, this
approach slices atomic orbitals by a specific group of atoms. However, it distinguishes
itself by using a fixed number of atoms in each group (ngatm), combined with sparse
matrix operations.

3. Sparse Exchange Method: This method adopts a general sparse matrix framework of
the whole molecular system, balancing between efficiency and computational demand.

4. Dense Exchange Method: Applies a dense matrix methodology, this method is best
suited for systems where the advantages of sparse matrix representations are minimal,
such as in smaller molecular systems. This method ensures that calculations are
straightforward, highly accurate, but they are also computationally expensive.

This flexibility ensures that users can select an approach that matches their computational
resources, whether speed, accuracy, or memory usage, thereby enhancing the efficiency of
their HF calculations. Algorithms 2-4 were developed in the course of this work, but the
ultimate exchange slice method stands out as the most efficient strategy, combining the
use of sparse matrix formats with flexible memory-efficient operations. Hence, this method
will be employed to compute exchange matrices throughout our research project. We will
explain in more detail how to calculate exchange contributions.

Initially, it is essential to segment the LMOs Cβ,µ along both the AO, β dimension and
the LMO µ dimension. The way to segment the LMOs in Algorithm A.2.1 prepares
for the exchange algorithm, which iterates through all the slice blocks (αx;B) spanning
the β dimension, focusing on a selected subset of LMOs for the entire molecular ensemble.
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Figure 3.9: Sketch of Localized Molecular Orbital Grouping Strategy. This figure displays
the method of segregating LMOs according to the β index of the most significant value in
each LMO column.

Specifically, we construct two dictionaries, where they have the same key as the block index
(BlockIdx), and the different values. One value, denoted as BlockB, holds the boundaries
for AO along the β direction for each block, while the other value, BlockV , records the
corresponding LMOs indices associated with each block. For each group of slice block
(αx;B), it calculates the starting (b0) and ending (b1) AO’s indices for the molecular slice
associated with the first and last atom in the group, respectively. These AO indices are
used to define the boundaries of a block (BlockB) and to associate LMOs’ indices with the
block (BlockV ), shown in Figure 3.9. The association is based on whether the row (AO)
index of the maximum value for a LMO falls within the AO boundary of the block. This
Algorithm A.2.1, by identifying block boundaries and corresponding LMOs indices, plays
the groundwork for focused computational analysis on specific target molecular regions.

44



Figure 3.10: Pseudo Algorithm of Exchange Matrix Kαβ by slicing heavy atoms (same as
Algorithm A.2.2 ).
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The primary algorithm for exchange, as illustrated in Figure 3.10, involves several
steps. It begins by identifying the LMO through the application of a pivoted Cholesky de-
composition to the density matrix (DM), represented by the equation Dαβ = ∑

µ LαµLβµ.
As the intermediate integral I(αx;µ) is too large to fit in RAM, the algorithm segments
the computation into block processing. According to the previous setup described in Al-
gorithm A.2.1, we can get two dictionaries: one outlining the AO boundaries, denoted
as BlockB, and another associated LMO indices with every block, denoted as BlockV .

The corresponding intermediate integrals I(αx;V ) can be evaluated by:

I(αx;V ) =
∑
B

(αx;B)srLBV (3.20)

It can be seen that for each block V , one needs to read in all relevant 3-index integrals.
For this reason we want to minimize the number of blocks. However, the intermediate
I(αx;V ) needs to fit completely in RAM, and this sets a limit on the block size of each
V . By grouping the LMOs in groups that are localized on particular atom blocks B, we
can skip certain blockB and this increases computational efficiency. Below we discuss the
process in more detail.

For each block V , the algorithm computes the subset of the LMO. Then, it aims
to load the converted sliced three-centered integrals from HDD, represented as (αx;B)sr

and compute intermediate integrals using the corresponding LMO slice. To optimize the
CPU time, the algorithm incorporates a selection mechanism for loading these short-range
integrals. This process involves slicing the LMO along the AO β dimension, denoted as
LBV , and evaluating the largest absolute value within the LMO segment. If this maximum
absolute value is larger than a predefined threshold, threshZ, the algorithm proceeds with
loading the respective short-range integrals for further computation. Conversely, if the
value falls below the threshold, it skips the calculation for that particular block, only
focusing on significant contributions.

The final computation of Kαβ uses the intermediate integrals I(αx;V ) for each LMO
column, represented as I(αx; ). This array is then transformed into a two-dimensional
sparse matrix, I(α;x), which is convenient for further matrix operations.

Kαβ+ =
∑
xy

I(αx)QxyI(αy)T

+ =
∑
xy

I(αx)Q̃xyI(αy)T (3.21)

Q̃xy = Z ⊙Qxy ⊙ ZT (3.22)

To optimize the computation of matrix Kαβ, we employ a strategy of calculating sparsity
mask in Algorithm A.2.3. This contains the construction of an array Z that will facilitate
the conversion of a dense matrix Qxy into a sparse matrix Q̃xy. This array Z is composed
solely of elements 1 and 0, where the value 1 in the array indicates the presence of non-
zero columns in an intermediate matrix I(α;x). This approach is particularly beneficial
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because it allows for the selective processing of only those elements that contribute to the
final matrix, thereby reducing computational overhead.

All thresholds used in JK-Engine Default Value
Short-range Integral Setting (α) 0.6
Identify Atom Groups (threshG) 3.0
Zero Elimination (threshZ) 1× 10−5

pivoted Cholesky (threshZ) 1× 10−5

sparsity Mask (threshZ) 1× 10−5

Matrix Inversion Threshold (threshP ) 1× 10−6

Table 3.2: List of all thresholds in JK-Engine. These thresholds are integral to the op-
eration of the JK-Engine, ensuring the balance between computational efficiency and the
accuracy of Coulomb and Exchange matrix calculations.

3.3 JK-Engine: Coulomb Matrix Algorithm

The Coulomb matrix in the context of the HF method is another important component of
the Fock matrix.

Jαβ =
∑
γ,δ

(αβ|δγ)Dγ,δ (3.23)

Similarly to RI-exchange Kαβ, the RI-Coulomb calculations can be encapsulated by
short-range integrals (αβ|x)sr:

Jαβ =
∑
γ,δ

∑
x,y

(αβ|x)srQxy(y|γδ)srDγ,δ (3.24)

Our algorithm for Jαβ efficiently operates by utilizing short-range integrals (αβ|x)sr

and focuses on partitioning the computation into manageable slices corresponding to the
number of heavy atoms.

The Coulomb Algorithm A.3 firstly prepares by obtaining segments of the input
molecular system and initializing an empty array for the total Coulomb matrix. It then
iterates over all slices and determines the AO boundaries in every molecular slice. Also, the
density matrix Dαβ reshapes to the appropriate vector format for each DM slice, denoted as
DαB;. Next, sparse matrices of three-centered integrals (αB|x)sr are loaded from a specified
folder in the HDD. These preliminary steps are crucial for the intermediate matrix I2(x; )
through matrix manipulations, transforming the loaded integrals into a format that can
be directly used in the Coulomb matrix

I1(y; )+ =
∑

x

[ ∑
αB

(αB|y)TDαB;
]

(3.25)
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Figure 3.11: Pseudo Algorithm of Coulomb Matrix Jαβ by slicing heavy atoms (same as
Algorithm A.3).

Next, multiply with metric matrix Qxy outside of the iterations:

I2(x) =
∑

y

Qxy · I1(y; ) (3.26)

Then, we start the second loop for each slice of molecular segments, computing Jαβ

by multiplying the corresponding sliced integral (αB;x) with the previously calculated
intermediate integrals I(x; ). This operation is performed for each atomic slice to generate
a portion of the Coulomb matrix.

JαB; = (αB;x)srI(x; ) (3.27)

Finally, all computed slices JαB; are converted to matrix format and concatenated along the
β axis to form the complete Coulomb matrix Jαβ. This procedure aggregates the partial
Coulomb matrix into the final matrix, which is a key output of the computation.

Jαβ = ∪nslice
j=1 JαBj

(3.28)

In the next chapter, we will investigate the computational efficiency and memory re-
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quirements of JK-Engine.
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Chapter 4

Linear-Scaling Exchange Matrix

To evaluate the computational performance of our algorithm, we will focus on three main
features: accuracy, CPU process time, and memory consumption. Given that high-rank
integral calculations are conducted by fragments across all dimensions, our ‘int-class’ and
‘JK-Engine’ classes are designed to be free from memory leaks. Thus, these algorithms
are universally applicable to any molecular system of any size. In this chapter, we will
concentrate on evaluating the performance of these algorithms using examples of weakly
interacting polywater models, alkane chains, and cis-transoid polyacetylene chains, empha-
sizing how they scale with increasing molecular sizes.

The evaluation process begins with the completion of SCF procedures using conven-
tional algorithms in PySCF, followed by obtaining the converged density matrix. Next, we
perform a single calculation of the Coulomb and exchange matrices, as well as the energies,
utilizing the JK-Engine. These results are then benchmarked against those obtained from
PySCF.

4.1 Molecular System Setup

This section outlines the key components involved in Hartree-Fock (HF) calculations used
for benchmarking, involving basis set, input molecular system, and important contributions
for evaluating:

Basis set: cc-pVTZ or cc-pVDZ, with a particular focus on the cc-pVTZ basis set for
its importance in accurately modeling these molecular systems.

Auxiliary basis set: cc-pvtz-jkfit
Systems for Benchmarking: To ensure efficiency, selected simulation systems must

be large enough that some of the short-range integrals of (αβ|x)sr with a long distance
between the center of an (α, β) pair and the center of the auxiliary basis function x approach
zero. The following systems have been identified for benchmark analysis:

• (Weakly Interacting) Polywater Systems: This system provides a benchmark for un-
derstanding behavior in ideal molecular configurations, focusing on polywater models
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where there is minimal or no interaction between the water molecules. In particu-
lar, the exchange matrix and exchange energy could be calculated in principle one
monomer at a time. The critical test is to see if this scaling behaviour is reflected in
the current general algorithm. The water dimer system acts as an exemplary model
for testing our algorithm, by increasing the distance between the two oxygen atoms,
dO1−O2 = 20Å. This method allows the short-range part of the potential to be ef-
fectively reduced to zero (below our threshold), making these extended molecular
systems ideal for highlighting the capabilities and limitations of the algorithm.

• Alkane Chain (saturated carbon chain): Alkane chain examples (CnH2n+2) are hydro-
carbons containing only single bonds between carbon atoms and are saturated with
hydrogen atoms. Alkane chains in our tests are linear sequences of carbon atoms,
connected without any branches and exclusively by single bonds, making them fully
saturated. These models vary from a simple ethane (C2H6) structure to more com-
plex chains extending up to C30H62, allowing for a comprehensive exploration of
alkanes. The LMO’s in linear alkanes are anticipated to be quite localized, which is
important for the efficiency of the exchange algorithm.

• Cis-transoid Polyacetylene (unsaturated carbon chain): Cis-transoid polyacetylene
examples (CnHn+2) represent a series of linear unsaturated hydrocarbons of increas-
ing length, each featuring a special arrangement of carbon atoms linked by both
single and double bonds. These models, ranging from a simple ethene (C2H4) struc-
ture to more complex chains extending up to C30H32, are designed for algorithmic
testing to elucidate the impact of chain length in the conjugated system and algo-
rithm computational expense. The LMO’s in linear polyacetylenes are expected to
be less localized than in alkanes, and we wish to see the effect on the efficiency of
the exchange algorithm.

Figure 4.1: One example of water systems: water dimer molecular system and the distance
between two oxygen atoms is 20Å
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Figure 4.2: One example of alkane chains: C6H14

Figure 4.3: One example of cis-transoid polyacetylene chains: C6H8

52



Important Contributions for Benchmarking:

• Calculation of the K-matrix (Exchange matrix, Kαβ).

• Calculation of the J-matrix (Coulomb matrix, Jαβ).

• Reference benchmarking is conducted using PySCf with the density fitting (DF)
approach, a method chosen for its effective error cancellation capabilities inherent in
the resolution of identity (RI) approach. This involves the instantiation of a density-
fitting object (′dfobj = df.DF (Mol).build()′).

• There are three critical stages in the computation of Exchange matrix using the
JK-Engine. Each stage involves a series of detailed steps, which are disccussed in
Algorithm A.2.2. To highlight the linear scaling property effectively, it is essential
to analyze computational resources step by step. In the subsequent sections, we will
discuss specific contributions in detail, shown in Table 4.1.

Initial Stage
Descriptions Equation
Short-Range Integral Slice (αB;x)sr

Recompound Procedure (αx;B)sr ← (αB;x)sr

Total Initial Stage (αβ;x)sr&(αx; β)sr

Intermediate Stage
Sparse Dot Multiplication for I1 Slice I(αx;V ) + = ∑

B(αx;B)srLBV

Excluding Zeros of I1 Slice EliminateZeros(I(αx;V ), threshZ)
Total Intermediate Integral (I1) I(αx;µ)

Build-K Stage
Sparsity Mask Calculations for I1 per LMO Z = CalculateSparsityMaskI(α;x)
Transformed Q̃xy per LMO Q̃xy = Z ∗Qxy ∗ ZT

Excluding Zeros of Q̃xy per LMO EliminateZeros(Q̃xy, threshZ)
Exchange (Kµ(αβ)) per LMO Kαβ + = I(α;x)Q̃xyI(α; y)T

Total Exchange Slice Stage (Kαβ) Kαβ

Table 4.1: Summary of Contributions to the Analysis of Timing and Memory Usage in the
JK-Engine
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Illustrative example for benchmarking of parameter α

The optimal value of the α parameter for setting the reach of short-range regions
depends on the task at hand, as detailed in Chapter 2. The timing for using the density
fitting object from PySCF remains consistent across different α values. However, the
time taken by the exchange and Coulomb operations in the JK-Engine decreases as the
α parameter increases, as illustrated in Figure 4.4 for the C20H42 molecular system. As
seen the JK-engine can outperform The current DF algorithm implemented in PySCF.
Conversely, the error in the exchange and Coulomb matrices between the JK-Engine and
the DF Object within PySCF grows with an increase in the α parameter, as shown in
Figure 4.5. The choice of α parameter for the short-range, three-centered integral is
dictated by the specific type of simulations being conducted. Particularly, simulations
that demand high accuracy benefit from a smaller α value, while simulations that can
tolerate approximation tend to use larger α values to enhance efficiency. This chapter will
explore various α parameters, such as α = 1.0, α = 5.0, and α = 10.0, as examples to
clarify their impact on accuracy, timing and memory usage.

Figure 4.4: Comparative Analysis of CPU
Time Usage Between JK-Engine Algorithm
with the metric matrix Mαβ and Density Fit-
ting Object from PySCF for C20H42 under
various α values in cc-pVDZ basis set and
cc-pvtz-jkfit auxiliary basis set.

Figure 4.5: Comparative Analysis of Error
Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting
Object from PySCF for C20H42 under var-
ious α values in cc-pVDZ basis set and cc-
pvtz-jkfit auxiliary basis set.

4.2 Linear-Scaling Property in Hartree-Fock Calcula-
tions

The performance of the JK-Engine algorithm is evaluated in terms of both time efficiency
and memory consumption. Our analysis encompasses three molecular models: (weakly
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interacting) polywater models, alkane chains, and cis-transoid polyacetylene chains, allow-
ing us to thoroughly investigate the algorithm’s linear scaling property in time and space
complexity across these varied systems. Key contributions to the algorithm’s performance
are detailed in Table 4.1.

4.2.1 Timing Consumption in Exchange Algorithm

The timing consumption is the most straightforward analysis of computational resources.
We will profile CPU time not just for the total J and K matrices but also for each step
across the three main stages, as detailed in Table 4.1. We consider the weakly interacting
polywater models system in great detail.

Polywater Models

The weakly interacting polywater models molecular system is the simplest and the most
ideal case for analysis. This system is designed such that the calculation of the exchange
matrix can be implemented in a linear scaling fashion, by just considering one water
monomer at a time. The key question is to what extent we can achieve linear scaling
using the JK-Engine that is applicable to general molecules. We assessed both CPU time
and memory consumption for polywater systems ranging from a single water monomer up
to sixteen monomers. To ensure consistency and eliminate outliers, each polywater model
configuration was tested four times.

Figure 4.6: Preliminary Comparative CPU
Time for J and K Calculations using PySCF
DF Object, and JK-Engine for Polywater
Models (H2O)n in cc-pVTZ basis set and cc-
pvtz-jkfit auxiliary basis set at α Parameters
of 1.0.

Figure 4.7: Preliminary Comparative CPU
Time Analysis for J and K Calculations in
Polywater Models (H2O)n Using the JK-
Engine with cc-pVTZ Basis Set and cc-
pVTZ-jkfit Auxiliary Basis Set at α Param-
eters of 1.0.

We initially conducted a preliminary comparison of the performance between the JK-
Engine and the PySCF DF approach. Figure 4.6 and Figure 4.7 present a comparison
of CPU time required for J and K matrix calculations using both the JK-Engine and the
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PySCF DF Object across a range of water monomer system sizes, from a single monomer up
to sixteen. In the Figure 4.6, the CPU time for the J/K calculation using the PySCF DF
object shows a significant quadratic increase as the number of water monomers increases,
particularly noticeable beyond ten monomers. In contrast, the CPU time for calculations
using our JK-Engine remains relatively flat for both J and K in green solid and green
dash-dot lines, with a slight uptick in the case of K after five monomers. Figure 4.7 offers
a closer view of the CPU time for the polywater systems under α = 1.0 value. For the
JK-Engine, the time for J scales linearly with the size of the system, as anticipate, whereas
the time for K is not quite linear. The time for K remains significantly lower than the
PySCF DF object even for small polywater systems .

In summary, time consumption in Figure 4.6 and Figure 4.7 roughly summarizes
the performance advantages of the JK-Engine over the PySCF DF object in terms of CPU
time, particularly as the number of monomers increases. However, the JK-Engine does not
show a consistent linear scaling in computational time for K, especially for larger water
systems sizes. This is surprising and we will continue to more deeply analyze the operations
within the JK-Engine. Let us explore the three stages within the JK-Engine, as outlined
in Table 4.1.

At the initial stage, we generated slices of the short-range three-centered integrals
(αB|x)sr along the β dimension and saved these integrals on the hard disk. Figure 4.8
depicts the linear timing relationship for calculating each (αB|x)sr slice, a constant re-
lationship for re-compound from (αB|x)sr to (αx|B)sr, and a quadratic relationship for
the total number of (αB|x)sr slices. The quadratic relationship arises because the integral
slice (αB|x)sr iterates over all slices (AB|X)sr across both α and x dimensions without
employing any screening techniques. Consequently, some integral blocks are computed and
subsequently will be filtered in the next step. This initial process presents an opportunity
for optimization through the exclusion of calculating zero blocks in future work. For the
scope of this project, we will not delve further into this initial stage but will instead utilize
pre-computed short-range integrals stored on the hard disk.

In detailed exchange matrix calculations (Algorithm A.2.2), we focus on two primary
stages: calculating the intermediate contribution I1(αx|V ) for each B block, and computing
the exchange contribution for each localized molecular orbital Kαβ;µ. This latter step we
refer to as the build-K step, as in Equation 4.2. The time consumption associated with
these two steps is illustrated in Figure 4.9 and Figure 4.10, respectively. As is seen
the calculation of the intermediate I1 shows a linear scaling behavior. To our surprise,
the subsequent build-K step shows a non-linear behavior. There are a number of small
subroutines into these two steps, and further analysis is needed to identify which step(s)
cause a problem.

I(αx;V ) =
∑
B

(αx;B)srLBV (4.1)

Kαβ+ =
∑
xy

I(αx)Q̃xyI(αy)T (4.2)

56



Figure 4.8: Average and Total CPU Time for
Calculating Short-Range Integrals (αx|B)sr

at the Initial Stage in Polywater Systems
(H2O)n using the cc-pVTZ Basis Set and cc-
pvtz-jkfit Auxiliary Basis Set (α = 1.0)

Figure 4.9: Average and Total CPU Time
for Intermediate Integral (αx|V ) Calcula-
tions in polywater Systems (H2O)n using the
cc-pVTZ Basis Set and cc-pvtz-jkfit Auxil-
iary Basis Set (α = 1.0)

Figure 4.10: Average and Total CPU Time
for each LMO Analysis for K-built in poly-
water Systems (H2O)n using the cc-pVTZ
Basis Set and cc-pvtz-jkfit Auxiliary Basis
Set (α = 1.0)
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Figure 4.11: Comparative CPU Time Analysis for Intermediate Calculations in polywater
Systems (H2O)n. The graph illustrates the average and total CPU times per LMO block
(LBV ) for the calculations of intermediate integral I1(αx|V ) and elimination of zero el-
ements process of I1, as the number of water molecule count increases from one to ten
(noted as (H2O)1 to (H2O)16) using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0).

To delve into the details of intermediate calculations, Figure 4.11 illustrates the time
consumed during sparse matrix dot product operations as outlined in Equation 4.1, and
the process of removing zero elements from the sparse intermediate I(αx;V ). These two
steps are carried out after importing the three-centered integral (αB|x) and identifying its
corresponding non-zero block in LBV slice.

Moreover, from the Figure 4.11, it is clear that while the total CPU time for both
processes increases with the number of water monomers, the average CPU time per slice
remains relatively stable. This suggests that the computational effort for each individual
slice does not significantly increase with system size for these steps. The linear increase il-
lustrated by the solid red line from a single water molecule to system of 16 water molecules
reflects a significant escalation in the total CPU time required for sparse matrix multi-
plication for I1. Additionally, the stability of the average time per slice, depicted by the
dotted lines, shows the algorithm’s consistent efficiency on a per-slice basis, even as the
overall system grows. This observation suggests that while the total computational load
increases with system size, the per-unit processing efficiency of the sparse matrix multipli-
cation algorithm and zero-entries elimination algorithm remains unaffected, highlighting
its potential benefits for larger systems.
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Figure 4.12: Comparative CPU Time Analysis for Calculations Polywater Systems (H2O)n.
The graph illustrates the average and total CPU times per LMO for a variety of compu-
tational processes, including sparse mask algorithm, transformed Q̃xy calculations, ex-
change contribution Kαβ;µ calculations, and elimination of zero elements process of Q̃xy,
as the number of water molecule count increases from one to ten (noted as (H2O)1 to
(H2O)16)using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0).
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Figure 4.13: Average and Total CPU
Time for the Per LMO Sparse Mask Pro-
cess Calculations in Polywater Systems
(H2O)n using the cc-pVTZ Basis Set and
cc-pvtz-jkfit Auxiliary Basis Set (α =
1.0).

Figure 4.14: Average and Total CPU
Time for the Per LMO Transformed
Q̃xy Calculations in Polywater Systems
(H2O)n using the cc-pVTZ Basis Set and
cc-pvtz-jkfit Auxiliary Basis Set (α =
1.0).

Figure 4.15: Average and Total CPU
Time for Excluding Zeros in Q̃xy Per
LMO Slice in Polywater Systems (H2O)n

using the cc-pVTZ Basis Set and cc-pvtz-
jkfit Auxiliary Basis Set (α = 1.0).

Figure 4.16: Average and Total CPU
Time for the Exchange Contribution
Kαβ;µ Calculations Per LMO Slice in
Polywater Systems (H2O)n using the cc-
pVTZ Basis Set and cc-pvtz-jkfit Auxil-
iary Basis Set (α = 1.0)
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In another primary stage for evaluating the K-build, Figure 4.12 aggregates the CPU
time for key computational processes. This dataset spans multiple steps, with each step’s
details further illustrated in Figure 4.13, Figure 4.14, Figure 4.15, and Figure 4.16.
These figures correspond to the calculation of the sparse mask, the transformation of
Q̃xy, the elimination of zeros in Q̃xy, and the computation of the exchange contributions
Kαβ;µ, respectively. Specifically, the sparsity mask algorithm in Algorithm A.2.3 refers
to constructing a mask array Z to identify the non-zero columns in I(α;x). This mask is
used to convert the dense Qxy matrix into a sparse Q̃xy via a Hadamard product:

Q̃xy = Z ⊙Qxy ⊙ ZT = (Z · ZT )⊙Qxy (4.3)

Following the removal of zero elements in Q̃xy, the exchange contribution for each LMO as
follows:

Kαβ+ = I(αx)Q̃xyI(αy)T (4.4)

We noticed the linear scaling behavior of each step as the system expands from a single
water molecule to a system of sixteen in K-build procedures, except the non-linear scaling
in transformed Q̃ from Figure 4.14. This step is attributed to the sparse Hadamard
product performed between the dense matrix Qxy and the sparse mask matrix (Z · ZT ),
resulting in a more complex interaction that deviates from linearity, leading to a quadratic
relationship. This step looks like a small innocent step in the algorithm, but it is the reason
that we do not see linear scaling in the calculation of the exchange matrix for water systems.
It can be improved using the following simple algorithm, given the binary matrix Z ·ZT to
identify the row and column indices of non-zero elements. This involves the construction
of new COO sparse matrix Q̃, using data from the dense Q matrix along with the indices
derived from the binary Z · ZT matrix. Figure 4.17, and Figure 4.18 illustrates how
the manually optimized Hardmard multiplication affect the efficiency of the transformed
Q̃ matrix and K-built per LMO procedures. The optimization of the Hadamard product
results in evident linear scaling in both cases.

To sum up, after the fix of the transformed Q̃ matrix, these detailed examinations of
JK-Engine’s stages from Figure 4.19, and Figure 4.20 reveal a linear relationship in the
exchange matrices computations, involving the initial calculation of short-range integrals,
implementation of intermediate integrals, and evaluations of K-build per LMO. Figure
4.20 illustrates the HF J and K components under different values of α, which overlap
between each other.This overlapping is attributed to the activation of short-range integrals
at short distances, indicating that the NNZ in short-range RI integrals remain relatively
the same across different α parameters in non-interacting long-distance polywater systems.
Additionally, there exists a single step that presents some challenges, but it is optimized
by computing Hadamard product manually in non-interacting water systems. It should
be noted that for other molecular models, the sparse Hadamard product implementation
from the SciPy package was retained, as the problem was only removed at a very late stage
of writing of this thesis. The analysis of an ideal polywater system lays a foundation for
further analysis of alkane chains and cis-transoid polyacetylene chains.
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Figure 4.17: Average and Total CPU
Time for the Optimized Transformed
Q̃xy Calculations Per LMO in Polywater
Systems (H2O)n using the cc-pVTZ Ba-
sis Set and cc-pvtz-jkfit Auxiliary Basis
Set (α = 1.0).

Figure 4.18: Average and Total CPU
Time for Optimized K-built for each
LMO in Polywater Systems (H2O)n us-
ing the cc-pVTZ Basis Set and cc-pvtz-
jkfit Auxiliary Basis Set (α = 1.0)

Figure 4.19: Comparative CPU Time Analysis for J and K Calculations
in Polywater Systems (H2O)n Using the JK-Engine with cc-pVTZ Basis
Set and cc-pVTZ-jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0,
and 10.0
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Figure 4.20: Comparative CPU Time Analysis for J and K Calculations in Polywater
Systems (H2O)n Using the JK-Engine with cc-pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary
Basis Set at α Parameters of 1.0, 5.0, and 10.0

Linear Alkane Chains

Figure 4.21 and Figure 4.22 present a comparison of the total CPU time for computing
J and K matrices, illustrated with green, blue, and orange lines, against the time taken
using the PySCF DF method, depicted in red, across various values of α. It is evident that
our JK-Engine significantly outperforms the PySCF DF approach, even in computationally
demanding scenarios where α = 1.0. The linear relationship of the JK-engine exchange
algorithm becomes significantly clearer beyond 18 carbon atoms in green solid line of
Figure 4.22.

Figure 4.23 to Figure 4.25 represent the CPU timing required for initial, interme-
diate, and exchange slices stages respectively. Despite the timing for short-range integral
slices increasing quadratically, this step is pre-computed and stored in a hard disk, and
will not affect calculations of exchange matrices. The other two stages in Figure 4.24
Figure 4.25 demonstrate a linear relationship when the carbon chains are sufficiently long
resulting in a well-sparse matrix format. The intermediate stage begins to show a linear
correlation with the system size starting at approximately 18 carbon atoms, while the
build-K stage demonstrates this linear behavior from an earlier point, around 10 carbon
atoms. We will discuss this later, supported by data on memory usage.
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Figure 4.21: Comparative CPU Time for J and K Calculations using
PySCF Accurate, PySCF DF Object, and JK-Engine for Alkane
Chain CnH2n+2 with cc-pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary
Basis Setat α Parameters of 1.0, 5.0, and 10.0.

Figure 4.22: Comparative CPU Time for J and K Calculations us-
ing PySCF DF Object, and JK-Engine for Alkane Chain CnH2n+2
with cc-pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary Basis Set at α
Parameters of 1.0, 5.0, and 10.0.
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Figure 4.23: Average and Total CPU Time
for Short-Range Integral (αx|B)sr Calcula-
tions in Alkane Chain CnH2n+2 using the cc-
pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0).

Figure 4.24: Average and Total CPU Time
for Intermediate Integral (αx|V ) Calcula-
tions in Alkane Chain CnH2n+2 using the cc-
pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0).

Figure 4.25: Average and Total CPU Time
for each LMO Analysis for K Algorithm in
Alkane Chain CnH2n+2 using the cc-pVTZ
Basis Set and cc-pvtz-jkfit Auxiliary Basis
Set (α = 1.0).
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Cis-transoid Polyacetylene

Similarly, Figure 4.26 and Figure 4.27 show a comparison of the total CPU time for
computing J and K matrices for cis-transoid polyacetylene chains, depicted with green,
blue, and orange lines, against the time taken using the PySCF DF method, illustrated
in red, across a range of α values. Interestingly, a clear linear relationship was not ob-
served in the intermediate stage from Figure 4.29. This deviation can be attributed to
the selection procedures in the intermediate stage not being effective, as we loaded all
integrals associated with LBV for the cis-transoid polyacetylene chain, which impacted the
expected performance. Despite the inherent challenges associated with cis-transoid poly-
acetylene chains, which generally do not perform as well as alkane chains in computational
efficiency, the build-K stage has a good shape in a linear relationship after around ten
carbon atoms, shown in Figure 4.30. This aspect will be also explored in a later mem-
ory analysis. Overall, our JK-Engine of cis-transoid polyacetylene analysis demonstrates a
clear advantage over the PySCF DF method.

Figure 4.26: Comparative CPU Time for J and K Calculations using PySCF Accurate,
PySCF DF Object, and JK-Engine for Cis-transoid Polyacetylene Chain CnHn+2 with cc-
pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary Basis Set under α Parameters of 1.0, 5.0, and
10.0.
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Figure 4.27: Comparative CPU Time for J and K Calculations using PySCF DF Object,
and JK-Engine for Cis-transoid Polyacetylene Chain CnHn+2 with cc-pVTZ Basis Set and
cc-pVTZ-jkfit Auxiliary Basis Set at α Parameters of 1.0, 5.0, and 10.0.
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Figure 4.28: Average and Total CPU Time
for Short-Range Integral (αx|B)sr Calcula-
tions for Cis-transoid Polyacetylene Chain
CnHn+2 with cc-pVTZ Basis Set and cc-
pVTZ-jkfit Auxiliary Basis Set under α Pa-
rameters of 1.0.

Figure 4.29: Average and Total CPU Time
for Intermediate Integral (αx|V ) Calcula-
tions for Polyacetylene Chain CnHn+2 with
cc-pVTZ Basis Set and cc-pVTZ-jkfit Aux-
iliary Basis Set under α Parameters of 1.0.

Figure 4.30: Average and Total CPU Time for each LMO Analysis for K Algorithm for
Polyacetylene Chain CnHn+2 with cc-pVTZ Basis Set and cc-pVTZ-jkfit Auxiliary Basis
Set under α Parameters of 1.0.

68



4.2.2 Memory Consumption in Exchange Algorithm

In light of the requirements for RAM and hard disk space, the strategies implemented
allow for the efficient execution of large-scale calculations without encountering OOM
issues. In particular, it’s important to note that certain operations generate a substantial
volume of intermediate results. Initially, these operations require high RAM usage due
to the size of the data being processed. To mitigate this, the approach of processing
three-index calculations in slices, particularly for heavy atoms, significantly benefits the
management of peak RAM usage, as discussed in Chapter 3. These considerations and
optimizations collectively facilitate the implementation of extensive computations, ensuring
that the system is well-equipped to handle the demands of such tasks without compromising
performance.

Furthermore, the application of several filtering techniques enhances efficiency and re-
duces RAM demands. These techniques include the elimination of zero entries in every
sparse matrix, the use of a dense block in LBV to determine the necessity of loading inte-
grals from the hard disk, and the conversion of the dense metric matrix Mxy into a sparse
metric matrix M̃xy.

One option to monitor memory consumption involves the use of profiling tools, such as
Python’s CProfile, to track the memory usage of each function. Given that certain steps
in our methodology are designed to decrease data size, peak memory usage alone may not
sufficiently reflect the efficiency of these optimizations. To provide a more accurate assess-
ment, we consider additional metrics such as the size of the reduced data and the number
of non-zero entries(NNZ). By serving as indicators of data sparsity, these metrics provide
us with a clearer understanding of the impact that our data structures and processing
steps have on memory consumption. In this context, we have conducted analyses on three
molecular systems:

Polywater Systems

Figure 4.31 shows the number of iterations at the intermediate stage and exchange slice
stage in our exchange algorithm. Specifically, the blue line represents the total number
of slices in localized molecular orbitals (LMOs), which also refers to the count of (αx|B)
slices before selecting, the green line indicates the total number of LMOs, and the red line
denotes the count of loaded (αx|B)sr integrals. The maximum absolute element in each
slice in LMOs (LBV ) depends on whether the algorithm loads the corresponding short-
range integral slice (αx|B)sr or not. If there is a zero block in LBV , the algorithm is
designed to automatically omit the calculations involving all zeros. The presented data in
red line describes that with increasing complexity of the molecular system, the frequency
of loaded short-range integrals maintains a linear correlation. The choice of a polywater
model as the test example is optimal due to the considerable separation between two water
monomers, resulting in a matrix for Lβµ that exhibits an exemplary block-sparse structure.
Hence, our algorithm selectively concentrates on processing the dense blocks.

Following the computation of intermediate integrals I(αx;V ), attention shifts towards
the subsequent calculation about each LMO. Moreover, Figure 4.31 also describes a
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Figure 4.31: Correlation between the number of water molecules and quantity of slices.
The graph illustrates the linear increase in both the number of loaded short-range (αx|B)
slices and the quantity of LMOs, as well as the quadratic increase in the total number of
slices within LBV , as the number of water molecule count increases from one to ten (noted
as (H2O)1 to (H2O)16) using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set
(α = 1.0).

linear correlation regarding the number of LMOs, as shown by the green dot line, with
the augmentation of the number of water monomers. This indicates a consistent linear
scaling behavior of both dense-block processing and LMO calculations with system size,
underscoring the efficiency and scalability of our algorithm in handling extensive molecular
systems.

The exploration of space complexity in our short-range integral preparation algorithm
is essential. We initially faced a scenario where the traditional storage requirements for
the three-centered short-range integrals, denoted as (αβ|x), scale with O(n2

ao · nnaux). To
avoid memory leaks, we adopted a cutting procedure along with the sparse representation.
This approach successfully reduced the space complexity to O(1) of each slice, involving
integral slice (αB|x), intermediate slice I1(αx|V ), transformed metric matrix M̃xy, and
intermediate contribution I2(xα) = M̃xy · I(αx)T , making it independent of the size of the
input molecule, illustrated in Figure 4.32. The central strategy of this cutting proce-
dure involves calculating the short-range three-centred integrals for a system of atoms and
subsequently mapping these subsystem integrals to whole molecule integrals. Crucially,
all integrals are stored in a sparse format, ensuring that only non-zero elements in the
short-range integrals are retained.

Let us begin with polywater models to explain. We categorized atom groups within
these systems by identifying each group as having a single heavy atom from Algorithm
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Figure 4.32: Correlation between the number of water molecules and non-zero elements of
intermediate contribution slices. The graph illustrates the linear increase in total number
of NNZ in intermediate I1(αx|µ). In contrast, the average number of NNZ in other contri-
bution slices remains relatively constant, as the number of water molecule count increases
from one to ten (noted as (H2O)1 to (H2O)16) using the cc-pVTZ Basis Set and cc-pvtz-
jkfit Auxiliary Basis Set (α = 1.0).

A.1.2. After this procedure, we determined that the number of atoms in each group,
denoted by ngatm, is 3. This implies that we calculate the integrals for one water molecule
at a time:

W1(αβ|x)sr = (αB1|x)
W2(αβ|x)sr = (αB1|x) + (αB2|x)

=
∑
A,X

(AB1|X) +
∑
A,X

(AB2|X)

= (A1B1|X1) + (A2B2|X2)
W3(αβ|x)sr = (αB1|x) + (αB2|x) + (αB3|x)

=
∑
A,X

(AB1|X) +
∑
A,X

(AB2|X) +
∑
A,X

(AB3|X)

= (A1B1|X1) + (A2B2|X2) + (A3B3|X3)
· · · · · ·

WN(αβ|x)sr = (αB1|x) + (αB2|x) + · · ·+ (αBN |x)
=

∑
A,X

(AB1|X) +
∑
A,X

(AB2|X) + · · ·+
∑
A,X

(ABN |X)

= (A1B1|X1) + (A2B2|X2) + · · ·+ (ANBN |XN) (4.5)
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As Equation 4.5, the preparation procedures store the non-zero data in three-index dense
tensor (ANBN |XN) which contributes the whole molecule integrals with their row and
column indices into the hard disk. According to Figure 4.32, although the three-index
short-range integrals (αβ|x) grow cubically as the molecular system increases, the data
reveals a constant pattern in the total number of non-zero elements for the dense slices of
intermediate integrals I1(αx|µ) (depicted by the red line), meanwhile the average number
of non-zero elements in each slice (αB|x) and slice I1(αx|V ) remains relatively unchanged
(illustrated by the dark blue and green lines).

Besides, the dense metric matrix Mxy also represents a large portion of memory us-
age, scaling with O(n2

aux). The matrix multiplication of sparse matrix and dense matrix
will get the dense intermediate matrix I2(xα) = Mxy · I(αx)T , resulting in expensive
computational cost. To maintain linear memory usage throughout molecule calculations,
Algorithm A.2.3 is implemented to conduct transformed metric matrix M̃xy within the
exchange algorithm, focusing exclusively on the non-zero matrix elements in the molecule.
As illustrated in Figure 4.32, there is a consistent relationship between the NNZ elements
in the transformed metric matrix M̃xy and the number of water molecules, represented by
the purple line. Similarly, this relationship extends to the intermediate slice I2(xα), which
is represented by the shallow blue line.

The polywater simulations serve as ideal models, yielding perfectly block-sparse formats
for contributions to the algorithm. Now, let’s shift our focus to more realistic molecular
systems, specifically alkane and cis-transoid polyacetylene chains.

Alkane Chains

As shown in Figure 4.33, the screening procedure of dense LBV blocks becomes effective
starting from 18 carbon atoms in the red line. This effectiveness is attributed to the locality
of the localized molecular orbitals, in contrast to the unfiltered count shown by the blue
line. Additionally, the significant reduction in the number of loaded three-index integrals
markedly enhances the efficiency of our exchange algorithm, as it eliminates the need to
compute the unselected sparse blocks. This substantial decrease in the number of loaded
integral slices is expected to greatly improve the efficiency of our JK-Engine’s exchange
algorithm for larger molecular systems.

Furthermore, Figure 4.34 illustrates the number of non-zero entries in every slice of
integrals in every step. At first, the average number of NNZ increases as the number
of carbon atoms rises from 1 to 10. Beyond this point, the average number of non-zero
elements plateaus, maintaining a consistent level, which suggests that a well-defined block-
sparse matrix format emerges after the tenth carbon atom. This saturation indicates that
the efficiency of the matrix operations for each slice, especially for K-build, will not diminish
with further increases in the size of the alkane molecule, as the sparsity pattern remains
stable. This explains the linear correlation observed after 10 carbon atoms in the K-build
stage, as depicted in Figure 4.25.
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These different onsets of linear behaviour reveal an interesting feature. We require LMO
coefficients to drop below a small threshold before we can discard computing contributions
to the intermediate I(α, x|ν), and apparently efficiencies only arise at a quite large onset
of 18 carbon atoms for simple alkanes. If we analyse the resulting NNZ elements we see a
much earlier onset of perhaps even as small as 6 carbon atoms. It is not entirely clear if
one can capitalize further on this. The value of the LMO threshold may be increased, or
a more sophisticated screening is needed.

Figure 4.33: Correlation between the number of carbon atoms of alkane chain and quantity
of slices. The graph illustrates the linear increase in both the number of loaded short-range
(αx|B) slices and the quantity of LMOs, as well as the quadratic increase in the total
number of slices within LBV , as the number of carbon atoms count increases from two to
thirty for alkane system CnH2n+2 using the cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary
Basis Set (α = 1.0).
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Figure 4.34: Correlation between the number of carbon atoms of alkane chain and non-zero
elements of intermediate contribution slices. The graph illustrates the linear increase in
total number of NNZ in intermediate I1(αx|µ). In contrast, the average number of NNZ
in other contribution slices remains relatively constant, as the number of carbon atoms
counts increases from two to thirty for alkane system CnH2n+2 using the cc-pVTZ Basis
Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0).

Cis-transoid Polyacetylene Chains

Unlike the alkane case, from the provided data, the cis-transoid polyacetylene chain does
not benefit from a reduction in the number of loaded integral slices as the number of
carbon atoms increases in Figure 4.35. This is because polyacetylene systems exhibit
electron-distribution across both σ and π bonds. Sigma (σ) bonds establish the structural
framework, enabling atomic connections and ensuring molecular stability, while the pi (π)
bonds, formed by sideways overlap of p orbitals, introduce extra electron density above
and below the molecular plane. This configuration not only makes polyacetylenes more
chemically reactive compared to alkanes but also allows for the delocalization of π elec-
trons in conjugated systems. The requirement for loaded integral slices is influenced by
the localized molecular orbitals, and in the case of polyacetylenes, the presence of dense
LBV blocks necessitates the calculation of all associated three-index integrals, reflecting
the high-demand calculations within these molecules. This directly explains the non-linear
relationship observed in CPU timing for polyacetylenes chain systems, as seen in compu-
tational analyses in Figure 4.29.

Moreover, as depicted in Figure 4.36, the average count of non-zero elements within
the contributions at every step stabilizes after reaching 6-8 carbon atoms. This consistent
sparsity within each slice, regardless of the size of the molecular system, ensures that
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the computational expense associated with each slice remains constant. Consequently,
we achieved a linear-scaling property in molecular systems after 8 carbons for the K-
build stage, shown in Figure 4.30. Interestingly this behaviour is more or less consistent
between both alkane and alkene chains. It appears that the tails of the orbitals drop off
more closely for cis-transoid polyacetylene chains, but the generic locality of the orbitals is
not so different and this is reflected in the behaviour of NNZ in the I(αx|ν) intermediates.

Figure 4.35: Correlation between the number of carbon atoms of alkene chain and quantity
of slices. The graph illustrates the linear increase in both the number of loaded short-range
(αx|B) slices and the quantity of LMOs, as well as the quadratic increase in the total
number of slices within LBV , as the number of carbon atoms count increases from two
to thirty for cis-transoid polyacetylene system CnHn+2 using the cc-pVTZ Basis Set and
cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0).

In this chapter, we’ve undertaken a comprehensive evaluation of our JK-Engine algo-
rithm’s computational performance, paying close attention to accuracy, CPU processing
time, and memory consumption. Emphasizing its versatility, we’ve ensured that the algo-
rithm is robust against memory leaks, making it suitable for molecular systems of varying
sizes. Our assessment spans polywater models, alkane chains, and cis-transoid polyacety-
lene chains, demonstrating the algorithm’s scalability with molecular size.

For our polywater benchmarks, we observed a stable and efficient computation as the
number of water molecules increased, thanks to a well-structured block-sparse matrix for-
mat, particularly for extended systems with minimal molecular interaction.

From the exploration of the timings and RAM requirements for the alkane and poly-
acetylene chains, we can reach a noteworthy conclusion. The computation of the inter-
mediate I1(αx|V ) demonstrates that the linear-scaling property may only be feasible at a
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Figure 4.36: Correlation between the number of carbon atoms of alkene chain and non-zero
elements of intermediate contribution slices. The graph illustrates the linear increase in
total number of NNZ in intermediate I1(αx|µ). In contrast, the average number of NNZ
in other contribution slices remains relatively constant, as the number of carbon atoms
count increases from two to thirty for cis-transoid polyacetylene system CnHn+2 using the
cc-pVTZ Basis Set and cc-pvtz-jkfit Auxiliary Basis Set (α = 1.0).

fairly late stage. specifically, the linear correlation starts at 18 carbon atoms for alkanes,
with polyacetylenes yet to show this behavior. The reason for this behaviour depends on
the threshold ThreshS we use to identify non-zero LBV blocks. Despite this, the sparse
nature of the data in I1(αx|V ) allows for linear scaling to be observed as early as 6 carbon
atoms for both alkane and polyacetylene chains, shown in Figure 4.34 and Figure 4.36.
This is an excellent onset for linear scaling, and as a consequence also the timings in the
Build-K part of the calculation scale in a linear fashion with this early onset. This is
illustrated in Figure 4.25 and Figure 4.30.

Overall our JK-engine algorithm shows significant advantages in computational speed
over the PySCF DF method, suggesting its effectiveness across different molecular frame-
works. Further improvements may be possible, given the interesting features we identified
above.
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Chapter 5

Construction of Orbital Domain

The cluster-in-molecule (CiM) approach is developed for calculating localized electron cor-
relation energy using a foundation of orthogonal occupied and virtual localized molecular
orbitals (LMOs).

Ecorr =
∑

i,j,a,b

(ia|jb)τ ij
ab

=
∑

I

∑
i∈I

∑
j,a,b

(ia|jb)τ ij
ab

≡
∑

I

∑
i∈I

Ei (5.1)

where the notations of i, j represent localized occupied orbitals, and the notations of a, b
represent localized virtual orbitals. The quantity (ia|jb) is two-electron integral in terms
of spatial occupied (i,j) and virtual (a,b) orbitals.

Crucially, the core idea of the CiM method is to break down the correlation energy
calculations of large molecular system into smaller subsystems with specific LMOs. Hence,
the CiM method performs linear scalability in computation time through the transformed
two-electron repulsion integrals (ERIs) over LMOs with efficient truncation methods. This
approach emphasizes the crucial step of selecting virtual and occupied orbitals within each
subset of the system for post-Hartree-Fock(HF) calculations. In Nooijen group, our CiM
approach incorporates a scalable and size-independent methodology for the controllable
construction of orbital domain (COD) from transformed exchange matrices under domain
central I, ensuring efficiency across various molecular sizes.

The key idea underlying the construction of orbital domains can be rationalized as
follows. The largest contributions to the correlation energy would come from diagonal
i = j contributions. These integrals are the same integrals that enter the HF exchange
matrix, Kab = ∑

i(ia|ib). If one performs a diagonalization or a Cholesky decomposition
of the matrix Kab, corresponding to the occupied orbitals i in the domain I one performs
an orbital selection of important virtual orbitals in the domain. The use of the exchange
matrix is the key idea underlying the orbital selection scheme. We can use a similar strategy
to select important occupied orbitals, constructing the exchange matrix over occupied
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orbitals: Kkl = ∑
i∈I(ki|li). This approach has been used successfully in the Laplace MP2

approach by Demel and Nooijen to screen important occupied (ij) pairs in exchange MP2x

contributions [44, 7]. While this is the essential idea, additional details need to be worked
out in the non-orthogonal AO basis. We will discuss the algorithm for orbital selection and
provide some elementary examples. The next step would be to use these orbital domains
to perform CCSD cluster in molecule calculations. This is beyond the scope of the thesis
unfortunately.

This chapter will explore in detail the methodology for constructing orbital domains
for both occupied and virtual spaces centered around the specific domain central I. This
orbital selection algorithm is applied in parallel across different central LMOs, effectively
identifying the relevant occupied and virtual orbitals in their vicinity.

The most important aspect of the orbital domain construction shown in this chapter is
that the expensive step in the calculation is always the construction of the exchange matrix
corresponding to some input density matrix, depending on the step of the calculation. The
main contribution in this thesis is an efficient algorithm to construct the exchange matrix.
In this algorithm we prepare a number of short-range integrals, sorted exactly to optimize
the efficiency of the exchange matrix calculation. This algorithm is deployed many times,
once for each central orbital, while reusing these integrals. Likewise the 3-center integrals
can be used in the next step in a CiM calculation that is a major bottleneck in current
implementations: the transformation of integrals.

Below the algorithm to construct orbital domains is described in detail. The develop-
ment of this algorithm was part of a senior Chem494 research project, and the material is
obtained from this source.

5.1 AO-based Construction of Orbital Domain

A fundamental approach to alleviating computational demands in large molecular systems
involves the construction of orbital domains COD. Specifically, the COD algorithm elimi-
nates irrelevant Localized Molecular Orbitals (LMOs) and retains the essential LMOs for
each domain central I. The reduction process in the orbital selection scheme mainly relies
on pivoted Cholesky Decomposition and Löwdin orthonormalization. Additionally, AO-
based construction of domain orbitals provides a general solution, since it transfers any
orbitals from AO-based space to an orthonormal basis set. Another advantage is that the
number of selected orbitals scales in zero-order with respect to the size of the molecular
subsystem.

Notation Description in the pseudo algorithm
α, β, γ, δ atomic orbital functions
a, b, c virtual atomic orbitals or unoccupied orbitals
i, j, k occupied orbitals or holes
p, q, r, s generic orthonormal orbitals
z transformed exchange basis or Cholesky basis
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µ, ν localized molecular occupied orbitals

Table 5.1: List of symbols used in COD calculations

Algorithm A.4.2 outlines detailed steps, with the symbols used detailed in Table 5.1.
The inputs of COD contain localized occupied molecular orbitals, representing the domain
central, alongside overlap matrix Sαβ, projector matrix Pαβ, and adjustable thresholds.
This algorithm was a key component of my 494 project, where a notable enhancement
involved the introduction of adjustable thresholds in the pivoted Cholesky Decomposition
process. The selection of orbitals is finely tuned through these thresholds, allowing flexible
control over their number.

Figure 5.1: Pseudo Algorithm of Construction of Orbital Domain Subroutine (same with
Algorithm A.4.2).

The algorithm begins by constructing a new density matrix, Dnew = CαµC
T
αµ, using the

coefficient matrix of one domain central I, one of the localized occupied orbitals. This step
is essential for identifying the relevant space of the electron density distribution. It then
proceeds with the pivoted Cholesky decomposition of the overlap matrix Sαβ, resulting
in a lower triangular matrix Lαµ. This decomposition is important for transforming the
exchange integral calculations to a more manageable form.

The core computational step involves calculating the transformed exchange integrals,
K̃, within the specified projector space. Each subsystem of LMO constructs its own subset
of occupied space and virtual space associated with efficient exchange integrals, Kαβ. Next,
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Project AO-based Kαβ to the orthonormal orbital space of interest, K̃zz. This transforma-
tion is crucial for localizing the computation within the relevant orbital space.

Kαβ =
∑
i∈P

(αi|βi) (5.2)

K̃zz = (LT
αµPαβ)K(PαβLαµ) (5.3)

A selective pivoted Cholesky decomposition of the transformed exchange matrix, K̃zz,
is performed to identify significant Cholesky vectors, Ỹzk, i.e., those eigenvalues with con-
tributions above an eigenvector significance threshold η. The goal of this threshold η is to
screen out meaningless eigenvectors within a Cholesky matrix based on their contribution,
and this step effectively reduces the computational complexity by focusing on significant
interactions.

K̃zz = ỸzkỸ
T

zk (5.4)

The selected Cholesky vectors are then transformed back to the AO basis using the
inverse of the Cholesky decomposed overlap matrix. This transformation is necessary for
aligning the selected orbitals with the original molecular basis. Lastly, Löwdin orthonor-
malization is applied to these transformed vectors to ensure they form an orthonormal
basis set, essential for further quantum chemistry calculations.

X̃αk =
∑

z

(LT )−1
αz Ỹzk (5.5)

The algorithm outputs a set of selected domain orbitals (X) and the number of these
orbitals (n).

Controllable Thresholds in COD Default Value
Eigenvector significance threshold(η) 1× 10−5

pivoted Cholesky of density matrix (threshZ) 1× 10−5

pivoted Cholesky of overlap matrix 1× 10−8

Primary virtual space (V1) 1× 10−3

Secondary occupied space (O2) 1× 10−3

Secondary virtual space (V2) 1× 10−3

Table 5.2: List of all thresholds in COD Algorithm. The controllable thresholds decide
how many orbitals we select.
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5.2 Overall Construction of Orbital Domain

The Algorithm A.4.1 illustrates a systematic approach for constructing an orbital domain
by utilizing AO representations to get overall virtual and occupied space. This method
focuses on partitioning the orbital space into whole occupied and whole virtual spaces for
each subspace centered around I, corresponding to a set of localized molecular orbitals
(LMOs).

This algorithm starts with defining a projector matrix Pαβ, noted as D̄ for primary
virtual space V1, defined as the difference between the inverse of the overlap matrix S−1

αβ

and the density matrix Dαβ. This matrix will identify which orbitals should be considered
in the construction of a specific domain, effectively dividing the space into occupied and
virtual domains.

Pαβ = D̄αβ = S−1
αβ −Dαβ (5.6)

For each central I within a cluster, which means an iterative loop over all LMOs, each
LMO acts as a focal point for constructing subsets of virtual and occupied spaces. The
primary subset of virtual space, V1, is identified through the previous COD subroutine,
which utilizes the projector D̄αβ aimed at identifying virtual orbitals, Xαa, that have a
close connection with the respective LMO.

Following the orbital selection of V1, the projector matrix is updated to reflect the
subtraction of these orbitals, hence focusing the algorithm on the remaining virtual space,
V2, for further selection. Apply projectors on remaining virtual space ( ¯̄D):

¯̄D = D̄ −
∑
i∈I

XαaXβa (5.7)

Similarly, the projector on occupied space O1, denoted as (D̃) to the AO-based COD
algorithm, excluding the central I orbital.

D̃ = D −
∑
i∈I

CαiCβi (5.8)

To obtain the complete virtual space, a secondary selection process on virtual space,
V2, aims to capture virtual orbitals not identified in the primary round. This is achieved
through employing subroutine COD a projector on the residual virtual space, ¯̄D.

At last, we combine both the primary virtual orbital V1 and the secondary virtual
orbitals V2 together as an entire virtual space V . Likewise, the entire occupied space
encompasses the central I orbital Lαi and occupied space O1.

The Table 5.3 provides an overview of the characteristics of occupied and virtual
orbitals for a C12H26 molecule analyzed within a 3-21G basis set, contextualized within
the framework of the AO-based Construct Orbital Domain algorithm previously described.
The table lists orbitals centered around the first localized molecular orbital (center I),
showing each orbital’s average position (Rµ) and radial extent (σµ).
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Figure 5.2: Pseudo Algorithm of Overall Construction of Domain Orbital, including entire
virtual and occupied space for each center I (same with Algorithm A.4.1).

The center I orbital has an average position of 15.119 with a radial extent of 0.366,
serving as the reference value for the first central I. The occupied orbitals, numbered
from 01 to 05, display average positions ranging from 10.526 to 11.349, with radial extents
varying from 0.500 to 2.324. These occupied orbitals represent the local electron density
regions closely associated with the first center I. Similarly, the virtual orbitals, identified
as 01 to 09, show average positions in a similar range to the occupied orbitals, but with
generally broader radial extents, reaching up to 3.337. This indicates that virtual orbitals
span larger spaces around the center I with a wider range of electron density fluctuations.
These virtual and occupied orbitals significantly contribute to electron correlation for small
pieces of fragments.

Alternatively, Figure 5.3 displays molecular orbital surfaces for a C12H26 molecule in
a 3-21G basis set, focusing on specific center I23 and center I25. It provides visualizations
for two different central orbitals with examples of their respective occupied and virtual
orbitals.

The COD algorithm effectively illustrates the separation and identification process of
useful orbitals for further localized electron correlation energy calculations. This selection
algorithm enables a more efficient computational approach by concentrating on orbitals
that contribute to the subspace, based on their spatial attributes to the central domain, I.
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Orbitals Average Positions Rµ Radial Extent σµ

Center I 15.119 0.366
Occupied Orbital #01 10.853 0.500
Occupied Orbital #02 10.847 2.028
Occupied Orbital #03 10.526 2.110
Occupied Orbital #04 11.349 2.186
Occupied Orbital #05 10.685 2.324
Virtual Orbital #01 10.834 1.947
Virtual Orbital #02 10.861 2.086
Virtual Orbital #04 10.894 1.967
Virtual Orbital #04 10.871 1.949
Virtual Orbital #05 10.714 3.337
Virtual Orbital #06 10.661 2.582
Virtual Orbital #07 11.285 2.568
Virtual Orbital #08 10.767 2.680
Virtual Orbital #09 9.958 3.102

Table 5.3: The example of C12H26 molecule in 3-21G basis set: the characteristics (average
position and radial extent) for the occupied orbitals (upper) and virtual orbitals (lower)
under first localized molecular orbital (center I)
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(a) Central Orbital I23

(b) One of the occupied orbitals under
I23

(c) One of the virtual orbitals under
I23

(d) Central Orbital I25

(e) One of the occupied orbitals under
I25

(f) One of the virtual orbitals under
I25

Figure 5.3: The molecular orbital surface for selected occupied orbitals under different
central I for C12H26 molecule in 3-21G basis sets.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This project successfully developed and analyzed efficient JK-Engine and Construction of
Orbital Domain (COD), as foundational components for the cluster-in-molecule (CiM) ap-
proach. The JK-Engine, leveraging range-separated three-centered integrals complemented
by Gaussian correction, was conducted for the evaluation of two-electron repulsion integrals
critical to the computation of exchange and Coulomb matrices.

The performance and accuracy of the JK-Engine were rigorously benchmarked across
various molecular models, including water clusters, alkene chains, and alkane chains, com-
paring favorably with the density-fitting methods implemented in PySCF. The analysis
proved that the JK-Engine maintains minor computational errors from the resolution of
identity (RI) and high efficiency in both random-access memory (RAM) and central pro-
cessing unit (CPU) time particularly notable in the handling of larger molecular systems.
Additionally, the algorithm displays linear scaling properties in timing and space complexi-
ties, marking a significant advancement in the efficiency of electronic structure calculations
within the CiM framework.

Moreover, the COD method illustrates how to select the occupied and virtual spaces
around a domain center i using the exchange matrix. This approach aims to ensure that the
chosen orbital domains are significantly related to the occupied localized molecular orbitals,
thereby improving the efficiency of ensuing calculations. By emphasizing the efficient seg-
mentation of molecular systems into smaller, controllable subsystems, this method enables
the scalable execution of further CiM calculations across extensive molecular structures.

6.2 Future Work and Recommendations

While empirical tests on the JK-Engine algorithm suggest an O(1) space complexity for
individual slices with varying input data sizes, this approach alone does not conclusively
prove that the algorithm’s additional memory usage remains constant. This limitation
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arises because we applied data pruning techniques, including the elimination of zero ele-
ments, to reduce the data size manually and improve the efficiency for further calculations.
In future stages, it will be essential to develop innovative strategies that inherently reduce
memory demands while preserving computational integrity, without relying on manual
reduction for data management.

Furthermore, there is a need for optimization in the initial phase where short-range
integral slices (αB|x)sr are computed and stored on the hard disk drive (HDD). The fo-
cus should be on effectively screening out dense integrals, aiming to achieve linear time
complexity in these preparing steps, as opposed to the current quadratic time complexity.

Additionally, the integration between the JK-Engine and the Construction of Orbital
Domains algorithm requires further enhancement. This improvement can be achieved by
concentrating on computations for each occupied molecular orbital, using high-performance
computing techniques such as transitioning to C++ and employing multi-threaded calcu-
lations.

All in all, the JK-Engine and the Construction of Orbital Domains stand out as essential
tools in the initial phases of analysis. They are instrumental in efficiently calculating linear-
scaling exchange matrices, and determining the occupied and virtual spaces surrounding
a domain center i, particularly through the use of the exchange matrix for each localized
molecular orbital. Moving forward, the Nooijen group intends to utilize these domains
through a new algorithm in the cluster-in-molecule Coupled Cluster approach, aiming to
enhance the computation of correlation energy while reducing computational costs and
improving accuracy.

This thesis focused on obtaining J and K matrices in the context of calculations at
a single molecular geometry. That is the usual situation when considering CiM calcu-
lations. However, in HF and (hybrid) DFT calculations the focus is often on geometry
optimizations using analytical gradients, or the calculation of analytical Hessians to ob-
tain vibrational frequencies. This requires analytical derivative formulas for the effective
RI one-and two-electron integrals. The procedure that has been developed here is a clean
mathematical procedure and it is relatively straightforward to obtain the relevant integrals,
capitalizing on existing implementations. The additional complexity would arise from ne-
glecting contributions that fall below a threshold, which arise at a number of instances in
the algorithm. All of these issues can presumably be resolved, but it will take time and
effort. The saga continues.
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Appendix A

Pseudo Algorithm

A.1 Two-electron Three-index Integrals

A.1.1 Calculation Distances between Atoms

Algorithm 1 Calculation distances between atoms
1: Function: calc_distances(print_opt = False)
2: coords← self.mol.atom_coords() ▷ Retrieve atom coordinates
3: Compute distance matrix
distance_matrix←

√
((coords[:, None, :]− coords[None, :, :])2).sum(axis = 2)

4: if print_opt then
5: print("distance check:", distance_matrix) ▷ Optional print
6: end if
7: return distance_matrix
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A.1.2 Dynamic Grouping: Identify Atom Groups Based on Dis-
tance

Algorithm 2 Identify groups of atoms within a threshold distance
1: Function: identify_atom_groups(thresholdG = 3.0)
2: distances← self.calc_distances() ▷ Calculate pairwise distances between atoms
3: groups← [ ] ▷ Initialize list to store atom groups
4: heavy_atoms← [i for i, atom in enumerate(mol._atom) if atom! = H]

▷ Identify heavy atoms
5: for start in range(0, len(heavy_atoms), self.n_heavy) do
6: heavy_group← heavy_atoms[start : start+ self.n_heavy]
7: group← heavy_group.copy()
8: for j, atom_j in enumerate(self.mol._atom) do
9: if atom_j[0] == H then ▷ Consider only hydrogens for appending

10: if any(distances[heavy][j] < thresholdG for heavy atoms) then
11: group.append(j) ▷ Add hydrogen close to any heavy atom
12: end if
13: end if
14: end for
15: groups.append(sorted(group)) ▷ Sort and add the group to groups list
16: end for
17: return groups ▷ Return list of atom groups
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A.1.3 Function: Eliminate Small Entries from Sparse Matrices

Algorithm 3 Elimination of Small Entries in Sparse Matrices
1: Function EliminateZeros_COO(sparse, threshold) ▷ Applicable for COO, CSR,

CSC formats
2: Input:
3: sparse - A sparse matrix in COO, CSR, or CSC format.
4: threshold - A threshold value below which elements are considered negligible.
5: Output:
6: A COO format sparse matrix with all elements below the threshold eliminated.
7: Begin
8: Identify elements of sparse.data that are less than threshold in magnitude.
9: Set these elements to 0 to effectively ignore them.

10: Invoke sparse.eliminate_zeros() to remove these zeroed elements from the data.
11: Convert sparse to COO format, if not already, to standardize the output.
12: return The resulting sparse matrix in COO format.
13: End
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A.1.4 Recompound Sparse Matrix from aBX to aXB Format

Algorithm 4 Recompound Sparse Matrix from (aB;x) to (ax;B)Format
1: Function: recompound_aBx_to_axB(Zcoo, nao, nB, naux)
2: Generate a 2D grid of indices for a and B dimensions using np.meshgrid
3: Flatten the grid to create a linear index mapping for (a,B) pairs
4: For each non-zero element in Zcoo, find the corresponding a and B indices
5: Calculate the new row index by combining a index and Zcoo column index with naux
6: Create a new COO matrix Rcoo with the updated indices and the same data as Zcoo

7: return Rcoo
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A.1.5 Computation of the Short-range Integrals (αB|x)

Algorithm 5 Compute (aB|x) integral using sparse matrix format
1: Function: integral_aBx(p0, p1)
2: Initialize data_aBx, rows_aBx, cols_aBx as empty lists
3: Initialize nA_lst with [0] ▷ nao in α dimension
4: for j ← 0 to natm with step ngatm do ▷ slicing by A in α dimension
5: Determine AO slice range and shell slice range for atom block A
6: nX_slice← [0] ▷ nnaux in X dimension
7: for k ← 0 to natm with step ngatm do ▷ slicing by X in x dimension
8: Determine aux AO slice range and shell slice range for atom block X
9: Determine slice integral, (A;B;X)← slice_int2e3c_sr_gtg(slice_range)

10: Determine dimensions of slice integrals: nA, nB, nX
11: Reshape to a 2D matrix: (AB;X)← slice_int.reshape((nA× nB, nX))
12: Convert (AB;X) to COO format: ABX_coo
13: Append data to integral data list:

data_aBx.append(ABX_coo.data)
14: Update row indices:

rows_aBx.append(ABX_coo.row + np.sum(nA_lst)× nB)
15: Update column indices:

cols_aBx.append(ABX_coo.col + np.sum(nX_lst))
16: Update nnaux, nX

17: end for
18: Update nao, nA

19: end for
20: Combine aggregated data, rows, and cols
21: Create new COO matrix for (aB|x) integral

aBx_coo← coo_matrix((combined_data, (combined_row, combined_col)), shape)
22: return aBx_coo
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A.1.6 Processing Atom Groups for Integral Calculations

Algorithm 6 Process Atom Groups and Calculate Integrals
1: groups = identify_atom_groups( )
2: for each group in groups do
3: (p0,_)← mol_slice(group[0]) ▷ Get start basis index for group
4: (_, p1)← mol_slice(group[−1]) ▷ Get end basis index for group
5: (ao0,_)← mol_slice_ao(group[0]) ▷ Get AO start index
6: (_, ao1)← mol_slice_ao(group[−1]) ▷ Get AO end index
7: aBx_coo← integral_aBx(p0, p1) ▷ Calculate (aB|x) integrals
8: aBx_data.append(aBx_coo.nnz) ▷ Store non-zero elements count
9: Save aBx_coo to file in ‘folder/int3c2e_sr/aBx_group[0].npz’

10: axB_coo← recompound_aBx_to_axB(aBx_coo, nao, (ao1 − ao0), naux)
11: Save axB_coo to file in ‘folder/int3c2e_sr/axB_group[0].npz’
12: end for
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A.1.7 Computation and Storage of P and O

Algorithm 7 Construction of P and O Matrices
1: Function: Construction P&O
2: Initialize P matrix: P ← 0
3: Initialize O matrix: O ← 0
4: for i← 0 to natm with step ngatm do
5: Determine shell slice range for block B: b0, b1
6: for j ← 0 to natm with step ngatm do
7: Determine shell slice range for block A: a0, a1
8: Define slice range: (a0, a1, b0, b1,mol.nbas,mol.nbas+ auxmol.nbas)
9: Calculate full-range integrals: FR← slice_int2e3c_fr(slice_range)

10: Calculate long-range integrals: LR← slice_int2e3c_lr(slice_range)
11: Calculate Gaussian correction: GC ← slice_int2e3c_gc(slice_range)
12: Compute short-range integrals: (AB;x)sr ← FR− LR +GC
13: Determine dimensions: nA, nB ← sr.shape
14: Reshape to matrix: (AB;x)sr ← sr.reshape((nA× nB, naux))
15: Convert to CSC format: csc_matrix((AB;x)sr)
16: Reshape full-range integrals: (AB;x)fr ← FR.reshape((nA × nB, naux))
17: Convert to CSC format: csc_matrix((AB;x)fr)
18: Update P matrix: P += (AB;x)T

sr · (AB;x)sr

19: Update O matrix: O += (AB;x)T
fr · (AB;x)sr

20: end for
21: end for
22: return P,O
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A.1.8 Pseudo Inverse of Matrix

Algorithm 8 Pseudo Inverse Calculation
1: Function: pinverse(matrix, threshP = 1e− 6)
2: Compute the eigenvalues and eigenvectors of matrix :

[eigenvalues, eigenvectors]← np.linalg.eig(matrix)
3: Initialize the diagonal matrix for inverse eigenvalues: diagonal_matrix← 0
4: for each eigenvalue λ in eigenvalues do
5: if |λ| < thresh then
6: Treat the eigenvalue as 0: λ← 0
7: else
8: Invert the eigenvalue: λ← 1/λ
9: end if

10: end for
11: Diagonal matrix of modified eigenvalues: diagonal_matrix← np.diag(eigenvalues)
12: Pseudo inverse: matrix_inv← eigenvectors · diagonal_matrix · eigenvectorsT

13: return matrix_inv
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A.2 Algorithm: Exchange Integrals

A.2.1 Algorithm: Association of LMOs with Atom Blocks

Algorithm 9 Determination of Block Boundaries and Associated LMO Indices
1: Function getBlocksBV(lmo)
2: Obtain natm, ngatm from the molecular structure
3: Initialize groups← identify_atom_groups
4: Initialize BlockB ← {}, BlockV ← {} ▷ Dictionaries for block B and block V
5: Compute max_ind← argmax(|lmo|) ▷ Index with max absolute value in each LMO
6: for each group in groups do
7: b0,_← MolSliceAO(group[0])
8: _, b1← MolSliceAO(group[−1])
9: BlockB[BlockIdx]← (b0, b1) ▷ Store AO boundaries for the current block

10: BlockV [BlockIdx] ← [j for j in range(len(max_ind)) if b0 ≤ max_ind[j] < b1]
▷ LMO-index associated with the block

11: end for
12: return BlockB,BlockV
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A.2.2 Algorithm: Exchange Integrals by Slicing

Algorithm 10 Calculation of Exchange Integrals K by slicing
1: Function getExchangeSlice(int3cFolder, Qxy, dm, threshZ)
2: Initialize variables: thresh_Z ← 1e− 5, L← Localize Orbitals
3: Obtain dimensions nao, naux, natm, ngatm, and convert Qxy to sparse matrix
4: Initialize Kαβ as a sparse matrix of shape (nao, nao)
5: Get AO boundaries and associated LMO indices using getBlocksBV (L)
6: for each block V index in blockV do
7: LMOV ← BlockV [IdxV ] ▷ Assciated LMO index in each block V
8: LβV ← L[:, LMOV ]
9: I(αx;V )← CSC(nao ∗ naux, len(LV [0]))

10: for each atom block boundary index (β0, β1) in blockB do
11: LBV ← CSC(Lβv[β0 : β1, :]) & EliminateZeros(LBV , threshZ)
12: if max(abs(LBV )) > threshZ then
13: (αx,B)← LoadSparseMatrix(int3cFolder, B)
14: I(αx, V ) += CSC(αx,B) · LBV & EliminateZeros(I(αx, V ), threshZ)
15: end if
16: end for
17: for ν ← 0 to range(len(LV [0]) do
18: I(αx; )← I[:, ν]
19: I(α;x)← Reshape(I(αx; ), nao, naux)
20: Z ← CalculateSparsityMask(I(α;x), threshZ)
21: Q̃ = Z ∗Qxy ∗ ZT = (Z · ZT ) ∗Qxy ▷ Hadamard Product
22: I2 = Q̃ · I(α;x)T

23: Kαβ += I(α;x) · I2
24: end for
25: end for
26: return Kαβ
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A.2.3 Calculate Sparsity Mask

Algorithm 11 Calculate Sparsity Mask
1: Procedure CalculateSparsityMask(I(α;X), naux, threshZ)
2: mask ← CreateEmptyArray(Size : naux)
3: for i← 0 to naux do
4: if max(|e|α,i) < threshZ then
5: mask[i]← 0 ▷ Mark element as sparse
6: else
7: mask[i]← 1 ▷ Mark element as significant
8: end if
9: end for

10: return mask
11: EndProcedure
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A.3 Algorithm: Coulomb Integrals

Algorithm 12 Calculation of Coulomb Matrix J in a Slice
1: Function getCoulombSlice(int3cFolder, Qxy, dm)
2: Obtain nao, naux, natm, ngatm
3: Initialize groups← identify_atom_groups
4: Jαβ ← EmptyArray(nao, 0) ▷ Initialize total Coulomb matrix
5: for each group in groups do
6: (p0,_)← mol_slice(group[0]) ▷ Get start basis index for group
7: (_, p1)← mol_slice(group[−1]) ▷ Get end basis index for group
8: DαB; ← ReshapeAsVector(dm[:, p0 : p1])
9: (aB;x)← LoadSparseMatrix(int3c_folder, i)

10: I1(x; ) += ·(aB;x)T ·DαB; ▷ Update intermediate matrix
11: end for
12: I2(x) = Qxy · I1(y; )
13: for each group in groups do
14: (p0,_)← mol_slice(group[0])
15: (_, p1)← mol_slice(group[−1])
16: nB ← p1 − p0
17: (aB;x)← LoadSparseMatrix(int3cFolder, i)
18: Jslice ← (aB;x) · I2(x; )
19: Ja;B ← Reshape(nao, nB)
20: Jαβ ← Concatenate(Jαβ, Ja;B) ▷ Concatenate along columns
21: end for
22: return Jαβ
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A.4 Algorithm: Construction of Orbital Domain

A.4.1 AO-based Construct Orbital Domain

Algorithm 13 AO-based Construct Orbital Domain
1: Pαβ ← S−1

αβ −Dαβ

2: for i← 0 to nv do ▷ nv: number of LMO, Lαµ

3: V1, na ← CDO(Lαi, Pαβ, Sαβ, thresh) ▷ V1: Virtual1, na: number of virturals
4: ¯̄D = Pαβ − V1V

T
1

5: O1, nj ← CDO(Lαi, D̃, Sαβ, thresh) ▷ O1: Occupied1, nj: number of occupieds
6: D̃ = Dαβ − LαiL

T
αi

7: V2, nb ← CDO(Lαi,
¯̄D,Sαβ, thresh) ▷ V2: Virtual2, nb: number of virtuals

8: O = Lαi +O1
9: V = V1 + V2

10: end for
11: return O, V ▷ O: occupied space, V : virtual space
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A.4.2 Construct Orbital Domain

Algorithm 14 Construct Orbital Domain
1: L← Sαβ = LαµL

T
αµ ▷ Cholesky decomposition of Sαβ

2: Procedure CDO(Cαµ, Pαβ, Lαµ, η, thresh)
3: Dnew ← CαµC

T
αµ

4: K ← getExchangeSlice(int3cFolder,Qxy, Dnew, threshZ)
5: K̃zz ← (LTP )K(PL)
6: Ỹzk ← K̃zz = ỸzkỸ

T
zk ▷ Cholesky decomposition of K̃zz

7: max_per_column← max(Ỹ , along axis = 0)
8: if max_per_column > η then
9: Identify corresponding eigenvector in Ỹzk

10: Keep this eigenvector Ỹzk[:,max_per_column]
11: end if
12: X̃αk ← X̃αk = ∑

z(LT )−1
αz Ỹzk ▷ Transform to AO basis

13: M ←M = X̃TSX̃
14: X ← X = X̃M−1/2 ▷ Löwdin Orthonormalization
15: return X,n ▷ X: selected orbitals, n: number of selected orbitals
16: EndProcedure
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Appendix B

Additional Data

B.1 Variations on Alpha Values
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α KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
0.1 3.68× 10−6 4.81× 10−5 4.36× 10−8 9.49× 10−7

0.2 6.57× 10−5 1.01× 10−3 9.21× 10−7 3.23× 10−5

0.3 2.53× 10−4 4.13× 10−3 2.25× 10−6 2.09× 10−4

0.4 4.62× 10−4 8.17× 10−3 2.03× 10−5 5.70× 10−4

0.5 5.87× 10−4 1.13× 10−2 6.47× 10−5 1.01× 10−3

0.6 6.47× 10−4 1.34× 10−2 1.37× 10−4 1.43× 10−3

0.7 7.05× 10−4 1.50× 10−2 2.21× 10−4 1.78× 10−3

0.8 7.97× 10−4 1.65× 10−2 2.92× 10−4 2.05× 10−3

0.9 9.22× 10−4 1.81× 10−2 3.44× 10−4 2.27× 10−3

1.0 1.06× 10−3 1.97× 10−2 3.77× 10−4 2.47× 10−3

1.1 1.20× 10−3 2.13× 10−2 3.99× 10−4 2.67× 10−3

1.2 1.31× 10−3 2.28× 10−2 4.18× 10−4 2.86× 10−3

1.3 1.42× 10−3 2.43× 10−2 4.38× 10−4 3.06× 10−3

1.4 1.53× 10−3 2.58× 10−2 4.57× 10−4 3.26× 10−3

1.5 1.64× 10−3 2.73× 10−2 4.77× 10−4 3.46× 10−3

1.6 1.75× 10−3 2.88× 10−2 4.96× 10−4 3.65× 10−3

1.7 1.86× 10−3 3.03× 10−2 5.16× 10−4 3.85× 10−3

1.8 1.97× 10−3 3.18× 10−2 5.36× 10−4 4.05× 10−3

1.9 2.08× 10−3 3.33× 10−2 5.55× 10−4 4.24× 10−3

2.0 2.19× 10−3 3.48× 10−2 5.75× 10−4 4.44× 10−3

Table B.1: Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for Water Monomer H2O
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis set: This
table presents the differences in calculated values for exchange integrals (KM − Kpyscf),
Coulomb integrals (JM − Jpyscf), exchange energies (Eex, M − Eex, pyscf), and electronic en-
ergies (Eelec, M − Eelec, pyscf) utilizing different α parameters.
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α KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
0.1 2.96× 10−5 9.61× 10−4 4.50× 10−6 4.99× 10−5

0.2 6.57× 10−5 2.15× 10−3 1.73× 10−6 2.77× 10−4

0.3 2.53× 10−4 5.57× 10−3 4.62× 10−6 6.91× 10−4

0.4 4.62× 10−4 9.90× 10−3 4.06× 10−5 1.47× 10−3

0.5 5.87× 10−4 1.33× 10−2 1.30× 10−4 2.39× 10−3

0.6 6.47× 10−4 1.56× 10−2 2.75× 10−4 3.30× 10−3

0.7 7.05× 10−4 1.74× 10−2 4.41× 10−4 4.07× 10−3

0.8 7.97× 10−4 1.92× 10−2 5.85× 10−4 4.67× 10−3

0.9 9.22× 10−4 2.10× 10−2 6.88× 10−4 5.16× 10−3

1.0 1.06× 10−3 2.28× 10−2 7.53× 10−4 5.62× 10−3

1.1 1.20× 10−3 2.46× 10−2 7.99× 10−4 6.06× 10−3

1.2 1.31× 10−3 2.63× 10−2 8.36× 10−4 6.50× 10−3

1.3 1.42× 10−3 2.79× 10−2 8.75× 10−4 6.94× 10−3

1.4 1.53× 10−3 2.95× 10−2 9.14× 10−4 7.38× 10−3

1.5 1.64× 10−3 3.11× 10−2 9.53× 10−4 7.82× 10−3

1.6 1.75× 10−3 3.27× 10−2 9.92× 10−4 8.26× 10−3

1.7 1.86× 10−3 3.43× 10−2 1.03× 10−3 8.70× 10−3

1.8 1.97× 10−3 3.59× 10−2 1.07× 10−3 9.14× 10−3

1.9 2.08× 10−3 3.75× 10−2 1.11× 10−3 9.58× 10−3

2.0 2.19× 10−3 3.91× 10−2 1.15× 10−3 1.00× 10−2

Table B.2: Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mxy and Density Fitting Object from PySCF for Water Dimer (H2O)2
under various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis set: This
table presents the differences in calculated values for exchange integrals (KM − Kpyscf),
Coulomb integrals (JM − Jpyscf), exchange energies (Eex, M − Eex, pyscf), and electronic en-
ergies (Eelec, M − Eelec, pyscf) utilizing different α parameters.
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α KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
0.1 2.01× 10−5 1.34× 10−4 2.77× 10−6 1.76× 10−5

0.2 4.56× 10−5 2.07× 10−3 3.20× 10−6 3.20× 10−4

0.3 1.57× 10−4 5.95× 10−3 8.17× 10−6 1.01× 10−3

0.4 2.86× 10−4 9.35× 10−3 8.42× 10−5 1.73× 10−3

0.5 4.09× 10−4 1.19× 10−2 1.79× 10−4 2.30× 10−3

0.6 5.27× 10−4 1.41× 10−2 2.69× 10−4 2.70× 10−3

0.7 6.44× 10−4 1.61× 10−2 3.17× 10−4 3.02× 10−3

0.8 7.58× 10−4 1.82× 10−2 3.35× 10−4 3.36× 10−3

0.9 8.68× 10−4 2.02× 10−2 3.44× 10−4 3.73× 10−3

1.0 9.68× 10−4 2.24× 10−2 3.58× 10−4 4.13× 10−3

1.1 1.06× 10−3 2.45× 10−2 3.79× 10−4 4.54× 10−3

1.2 1.15× 10−3 2.66× 10−2 4.11× 10−4 4.88× 10−3

1.3 1.24× 10−3 2.86× 10−2 4.40× 10−4 5.14× 10−3

1.4 1.34× 10−3 3.05× 10−2 5.02× 10−4 5.49× 10−3

1.5 1.44× 10−3 3.29× 10−2 5.52× 10−4 5.76× 10−3

1.6 1.55× 10−3 3.55× 10−2 6.03× 10−4 5.97× 10−3

1.7 1.67× 10−3 3.82× 10−2 6.59× 10−4 6.49× 10−3

1.8 1.80× 10−3 4.10× 10−2 7.03× 10−4 6.87× 10−3

1.9 1.95× 10−3 4.39× 10−2 7.33× 10−4 7.30× 10−3

2.0 2.08× 10−3 4.69× 10−2 7.79× 10−4 7.75× 10−3

Table B.3: Comparative Analysis of Error Metrics Between JK-Engine Algorithm with the
metric matrix Mαβ and Density Fitting Object from PySCF for Ethane C2H6 under various
α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis set: This table presents the
differences in calculated values for exchange integrals (KM − Kpyscf), Coulomb integrals
(JM − Jpyscf), exchange energies (Eex, M − Eex, pyscf), and electronic energies (Eelec, M −
Eelec, pyscf) utilizing different α parameters.
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α KM −Kpyscf JM − Jpyscf Eex, M − Eex, pyscf Eelec, M − Eelec, pyscf
0.1 1.88× 10−5 1.33× 10−4 7.65× 10−7 1.93× 10−5

0.2 1.15× 10−4 2.42× 10−3 5.40× 10−6 3.39× 10−4

0.3 4.01× 10−4 8.34× 10−3 3.23× 10−5 1.13× 10−3

0.4 6.90× 10−4 1.44× 10−2 1.03× 10−4 2.01× 10−3

0.5 8.86× 10−4 1.88× 10−2 2.18× 10−4 2.78× 10−3

0.6 1.01× 10−3 2.21× 10−2 3.25× 10−4 3.40× 10−3

0.7 1.12× 10−3 2.52× 10−2 3.96× 10−4 3.90× 10−3

0.8 1.22× 10−3 2.80× 10−2 4.38× 10−4 4.31× 10−3

0.9 1.31× 10−3 3.05× 10−2 4.61× 10−4 4.63× 10−3

1.0 1.41× 10−3 3.28× 10−2 4.86× 10−4 4.94× 10−3

1.1 1.50× 10−3 3.49× 10−2 5.07× 10−4 5.17× 10−3

1.2 1.58× 10−3 3.67× 10−2 5.22× 10−4 5.36× 10−3

1.3 1.66× 10−3 3.83× 10−2 5.35× 10−4 5.52× 10−3

1.4 1.74× 10−3 3.97× 10−2 5.45× 10−4 5.65× 10−3

1.5 1.81× 10−3 4.09× 10−2 5.54× 10−4 5.75× 10−3

1.6 1.88× 10−3 4.20× 10−2 5.61× 10−4 5.83× 10−3

1.7 1.95× 10−3 4.29× 10−2 5.66× 10−4 5.89× 10−3

1.8 2.01× 10−3 4.36× 10−2 5.71× 10−4 5.94× 10−3

1.9 2.07× 10−3 4.42× 10−2 5.74× 10−4 5.98× 10−3

2.0 2.13× 10−3 4.47× 10−2 5.77× 10−4 6.01× 10−3

Table B.4: Comparative Analysis of Error Metrics Between JK-Engine Algorithm with
the metric matrix Mαβ and Density Fitting Object from PySCF for Ethylene C2H4 un-
der various α values in cc-pVTZ basis set and cc-pvtz-jkfit auxiliary basis set: This
table presents the differences in calculated values for exchange integrals (KM − Kpyscf),
Coulomb integrals (JM − Jpyscf), exchange energies (Eex, M − Eex, pyscf), and electronic en-
ergies (Eelec, M − Eelec, pyscf) utilizing different α parameters.
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B.2 Variations on threshP

threshP (R1)max (R2)max KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
10−1 43.8 1.20× 10−1 6.35× 10−4 1.01× 10−2 4.16× 10−5 7.93× 10−4

10−2 43.8 7.41× 10−2 3.89× 10−4 8.42× 10−3 1.43× 10−4 8.25× 10−4

10−3 43.8 1.42× 10−2 4.01× 10−4 6.25× 10−3 1.32× 10−4 9.77× 10−4

10−4 43.8 4.34× 10−3 6.95× 10−4 5.66× 10−3 5.24× 10−4 4.57× 10−3

10−5 43.8 4.43× 10−3 4.01× 10−4 6.19× 10−3 9.67× 10−5 7.56× 10−4

10−6 43.8 1.22× 10−2 3.22× 10−4 6.57× 10−3 1.82× 10−4 1.30× 10−3

10−7 43.8 8.78× 10−2 2.98× 10−4 6.63× 10−3 1.53× 10−04 1.40× 10−3

10−8 43.8 6.71× 10−2 2.99× 10−4 6.71× 10−3 2.49× 10−5 8.35× 10−4

Table B.5: Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Threshold in the inversion of Pxy Matrix, threshP
for Water Monomer (H2O): This table indicates the differences in computed values for
exchange and Coulomb integrals, exchange energies, and electronic energies between the
JK-Engine algorithm, and the Density Fitting approach in PySCF. These calculations were
performed under the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit
auxiliary basis set.

threshP (R1)max (R2)max KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
10−1 43.8 3.02 7.56× 10−04 1.21× 10−02 9.25× 10−6 9.57× 10−03

10−2 43.8 3.02 8.85× 10−04 1.21× 10−02 3.93× 10−4 1.06× 10−02

10−3 43.8 3.02 7.66× 10−04 1.18× 10−02 1.63× 10−4 5.69× 10−03

10−4 43.8 3.02 1.07× 10−03 1.11× 10−02 9.58× 10−04 3.81× 10−03

10−5 43.8 3.02 9.14× 10−04 9.50× 10−03 8.56× 10−05 6.34× 10−03

10−6 43.8 3.07 1.11× 10−03 1.02× 10−02 5.41× 10−04 1.90× 10−02

10−7 43.8 3.08 1.12× 10−03 1.02× 10−02 4.75× 10−04 1.92× 10−02

10−8 43.8 3.03 1.11× 10−03 1.03× 10−02 2.57× 10−04 1.78× 10−02

Table B.6: Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Threshold in the inversion of Pxy Matrix threshP for
Water Dimer (H2O)2: This table indicates the differences in computed values for exchange
and Coulomb integrals, exchange energies, and electronic energies between the JK-Engine
algorithm, and the Density Fitting approach in PySCF. These calculations were performed
under the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set.
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threshP (R1)max (R2)max KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
10−1 65.4 3.53× 10−1 4.53× 10−4 1.85× 10−2 4.08× 10−4 5.15× 10−3

10−2 65.4 5.98× 10−2 4.60× 10−4 1.59× 10−2 6.58× 10−4 1.05× 10−2

10−3 65.4 2.99× 10−2 4.26× 10−4 1.44× 10−2 5.28× 10−5 1.42× 10−3

10−4 65.4 2.16× 10−2 3.96× 10−4 1.55× 10−2 5.70× 10−4 7.79× 10−3

10−5 65.4 2.73× 10−2 3.73× 10−4 2.12× 10−2 1.09× 10−4 1.72× 10−3

10−6 65.4 4.12× 10−1 8.13× 10−4 2.08× 10−2 5.42× 10−4 7.37× 10−3

10−7 65.4 2.89× 100 7.75× 10−4 2.08× 10−2 5.04× 10−4 7.13× 10−3

10−8 65.4 7.68× 100 3.97× 10−4 1.95× 10−2 9.59× 10−6 2.46× 10−3

Table B.7: Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Threshold in the inversion of Pxy Matrix threshP
for Ethylene (C2H4): This table indicates the differences in computed values for exchange
and Coulomb integrals, exchange energies, and electronic energies between the JK-Engine
algorithm, and the Density Fitting approach in PySCF. These calculations were performed
under the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set.

threshP (R1)max (R2)max KQ −Kpyscf JQ − Jpyscf Eex, Q − Eex Eelec, Q − Eelec
10−1 147 3.63× 10−1 4.73× 10−4 1.60× 10−2 5.63× 10−4 6.76× 10−3

10−2 147 6.38× 10−2 2.58× 10−4 1.22× 10−2 2.42× 10−4 2.76× 10−3

10−3 147 1.97× 10−2 2.39× 10−4 1.30× 10−2 9.93× 10−5 2.70× 10−3

10−4 147 1.19× 10−2 3.73× 10−4 1.33× 10−2 4.56× 10−4 6.00× 10−3

10−5 147 1.65× 10−2 5.76× 10−4 1.57× 10−2 5.48× 10−4 7.45× 10−3

10−6 147 2.91× 10−1 6.50× 10−4 1.77× 10−2 5.21× 10−4 3.30× 10−3

10−7 147 6.73× 100 1.10× 10−3 1.58× 10−2 7.42× 10−4 1.10× 10−2

10−8 147 2.64× 101 1.09× 10−3 1.47× 10−2 7.62× 10−4 1.02× 10−2

Table B.8: Error Analysis Between JK-Engine with the metric matrix Qxy and Density
Fitting Object in PySCF for Various Threshold in the inversion of Pxy Matrix threshP
for Ethane (C2H6): This table indicates the differences in computed values for exchange
and Coulomb integrals, exchange energies, and electronic energies between the JK-Engine
algorithm, and the Density Fitting approach in PySCF. These calculations were performed
under the setting of α = 0.6 with the cc-pVTZ basis set and the cc-pvtz-jkfit auxiliary
basis set.
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