
Resource Constrained Linear Estimation in
Sensor Scheduling and Informative Path

Planning

by

Shamak Dutta

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2024

c© Shamak Dutta 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Professor M. Ani Hsieh
Dept. of Mechanical Engineering and Applied Mechanics
University of Pennsylvania

Supervisor: Professor Stephen L. Smith
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal Members: Professor Christopher Nielsen
Dept. of Electrical and Computer Engineering
University of Waterloo

Professor Mark Crowley
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal-External Member: Professor Jun Liu
Dept. of Applied Mathematics
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis studies problems in resource constrained linear estimation with a focus on
sensor scheduling and informative path planning. Sensor scheduling concerns itself with
the selection of the best subsets of sensors to activate in order to accurately monitor a lin-
ear dynamical system over a fixed time horizon. We consider two problems in this setting.
First, we study the general version of sensor scheduling subject to resource constraints
modeled as linear inequalities. This general form captures a variety of well-studied prob-
lems including sensor placement and linear quadratic control (LQG) control and sensing
co-design. Second, we study a special case of sensor placement where only k measure-
ments can be taken in a spatial field which finds applications in precision agriculture and
environmental monitoring.

In informative path planning, an unknown target phenomena, modeled as a stochastic
process, is estimated using a subset of measurements in a spatial field. We study two
problems in this setting. First, we consider constraints on robot operation such as tour
length or number of measurements with the goal of producing accurate estimates of the
target phenomena. Second, we consider the dual version where robots must minimize
resources used while ensuring the resulting estimates have low uncertainty or expected
squared estimation error.

Our solution approaches exploit the problem structure at hand to give either exact
formulations as integer programs, approximation algorithms, or well-designed heuristics
that yield high quality solutions in practice. We develop algorithms that combine ideas
from combinatorial optimization, stochastic processes, and estimation.

iv

Acknowledgements

I would like to thank Stephen L. Smith for being a fantastic academic advisor. I consider
myself extremely fortunate to have had the opportunity to work alongside him the past
four years. One of his many great qualities that I particularly admire is his attention to
detail. He never overlooked any minor detail and constantly encouraged me to think more
clearly about the problem at hand. I am also extremely thankful for his generosity with
time and advice. He always entertained conversations on any topic including research,
careers, and more often than not, chess.

I am grateful to the doctoral defence committee: Chris Nielsen, Mark Crowley, Jun
Liu, and Ani Hsieh, for providing valuable feedback on this thesis.

I have been quite lucky to have taken several courses taught by exceptional professors.
I would like to thank Jim Geelen for teaching introduction to optimization in my first
semester. Jim taught with extreme clarity and enforced a strict level of technical rigour
that I strive to achieve in my work to this day. I would like to thank Stephen Smith for
introducing me to stochastic control and estimation. His enthusiasm for teaching and re-
search is infectious, so much so that a large part of this thesis is based on concepts taught in
that course. I would also like to thank Levent Tuncel for teaching continuous optimization
and Giang Tran for introducing me to functional analysis. While I initially took both these
courses for fun, they ended up having a profound impact on my mathematical writing in
more ways than one.

Football has been integral to my graduate student life. I would like to thank Mary and
Kahtan for organizing our weekly games at Waterloo park. I was often so excited I would
not sleep the previous night in anticipation of the fun we would have while kicking a piece
of leather around. Thank you Imad, Soufy, Hussein, Isabel, Mehdi, Pranav, Rayan, and
Paul for sharing the same excitement. Going further back, I would also like to thank Ryan
for inviting me to play in the intramural tournaments with the ECE folks in the first two
semesters. We never won any tournaments but scored some great goals together. Thank
you Adam, Keegan, Aaron, Orlando, and Madeleine for the memories.

Next, I would like to thank the members of the Autonomous Systems Lab (ASL). It
has been extremely rewarding to have Nils as a collaborator on all of my papers. I admire
his ability to see the big picture so easily, when working on a research project. I hope we
can continue to collaborate in the future. I have also made some of my closest friends by
being part of the ASL, also known as the hen pack: Rod, Jack, and Megnath. Some of my
fondest memories include our weekly grad-house beer and nachos, jam sessions, go-karting,
playing board games together (incomplete without the witty banter), and extremely spicy
Bangladeshi food.

v

I am also thankful to the folks from ‘KW Hangouts’. One of the defining features of
this group is that they are always willing to help you out no matter what. I must thank
Shankha and Harshita for hosting me for nearly a month while apartment hunting. I
learnt a great deal about the ‘correct’ bowling action from Shankha during my time at
his place. I am also thankful to Harshita for her friendship and the invitations to the
impromptu dinners often involving her infamous pani puri. I will always cherish the board
game marathons, cryptic crossword attempts, and solving NYT connections with Hemant,
Shankha, Shuchita, and Priya. I would be remiss if I did not mention the two best flatmates
an individual could ask for: Shuchita and Hopper. Shuchita1 has been subject to many
of my insufferable qualities as a roommate and yet, she has been incredibly supportive
and more importantly, a pleasure to be around. Hopper has always provided significant
respite from research and never failed to bring a smile to my face. She has taught me the
importance of trust and compassion. I know she will never read or understand this but
nevertheless, thank you.

I am quite lucky to have been born into a family that has emphasized the importance of
a good education. Thank you Mom, Dad, Riteja, and Satya for your love and support. To
Mom and Dad, thank you for all the sacrifices you made to ensure Riteja and I had a good
upbringing. It is presumptuous to assume a feeble thank you will suffice for everything
you have done. I dedicate this thesis to you as a token of my gratitude and hope that it
brings you pride.

Finally, I am deeply indebted to Sneha. Among her many great attributes, I am struck
by her innate ability to see and hear people deeply, something I am fortunate to have
experienced first hand. You have always had my back, thank you. We have grown a
tremendous amount together and I am excited to see what the future holds for us.

1It is befitting to dedicate a footnote to Cafe Lucero in Kitchener which offers the best third wave
coffee in the region. It is safe to say Shuchita and I have spent significant monetary resources enjoying
their delicious beverages.

vi

Table of Contents

List of Figures x

1 Introduction 1

1.1 Literature Synopsis . 3

1.2 Thesis Contributions . 6

2 Preliminaries 9

2.1 Minimum Mean Squared Error (MMSE) Estimation 9

2.2 Gaussian Process Regression . 11

2.3 Covering & Packing . 13

2.4 Traveling Salesman Problems . 14

3 Sensor Scheduling for Optimal Kalman Filtering 15

3.1 Introduction . 15

3.1.1 Contributions . 16

3.2 Problem Formulation . 17

3.3 Mixed Integer Program for Sensor Scheduling 19

3.3.1 Binary Convex Reformulation . 19

3.3.2 Covariance Matrices . 22

3.4 Numerical Results . 24

3.4.1 Sensor Selection with Budget Constraints 24

vii

3.4.2 Sensor Scheduling with Budget Constraints 27

3.5 Summary . 28

4 Informative Path Planning for Active Regression in Gaussian Processes 30

4.1 Introduction . 30

4.1.1 Contributions . 31

4.2 Problem Formulation . 31

4.3 Mixed Integer Convex Formulation . 34

4.3.1 Quadratic Formulation . 35

4.3.2 Network Flow Formulation . 40

4.3.3 Efficient Warm Starts for Budgeted Paths 42

4.4 Numerical Results . 43

4.4.1 Illustrative Example: Elevation Mapping on Mt. St. Helens 44

4.4.2 Analysis of Random Instances . 47

4.5 Summary . 50

5 Approximation Algorithms for Robot Tours in Gaussian Processes 51

5.1 Introduction . 51

5.2 Problem Formulation . 54

5.3 Solution Approach . 56

5.3.1 Sufficient Conditions . 56

5.3.2 Convex Environments, Constant Thresholds 57

5.3.3 Finite Test Sets, Arbitrary Thresholds 65

5.4 Numerical Results . 75

5.4.1 Convex Environments, Constant Thresholds 76

5.4.2 Finite Test Sets, Arbitrary Thresholds 78

5.5 Summary . 80

viii

6 Subset Selection in Random Fields via Maximal Cliques 81

6.1 Introduction . 81

6.1.1 Contributions . 82

6.2 Problem Formulation . 83

6.3 Problem Structure . 85

6.4 Algorithms . 89

6.4.1 Grid-Greedy . 90

6.4.2 Centroid-Greedy . 91

6.4.3 Implementation of the Greedy Algorithm 93

6.5 Numerical Results . 95

6.5.1 Solution Quality . 96

6.5.2 Run Time . 97

6.6 Summary . 98

7 Conclusions 99

7.1 Summary . 99

7.2 Future Work . 101

References 102

ix

List of Figures

1.1 An example of a multi-robot active regression problem. 2

3.1 Sensor Selection: Runtime comparison of our MIQP, [94], and the greedy
algorithm. The parameters are T = 3 with m = 10 sensors and a budget
of p = 5. The x−axis indicates the state dimension while the y−axis is the
running time measured in seconds. 25

3.2 Sensor Selection: Solution quality comparison of our MIQP (timed out
after 10 seconds) and the greedy algorithm. The x and y coordinate denote
the solution costs of the MIQP (timed out) and the greedy approach re-
spectively. The points above the black line indicate MIQP obtaining better
solutions than greedy. The greedy solution of points above the red line are
at least 10% worse than the MIQP solution. 26

3.3 Sensor Scheduling: Runtime comparison of different algorithms on vary-
ing system sizes. The system parameters are T = 3, m = 10, and budget
p = 5. The runtime is measured in seconds indicated on the y-axis. 28

3.4 Sensor Scheduling: Comparison of solutions the MIQP (timed out after
10 seconds) and the greedy algorithm. The points above the black line
indicate MIQP obtaining better solutions than greedy. The solution cost of
the greedy approach of points above the red line are at least 10% worse than
that of the MIQP solution cost. 29

4.1 Elevation mapping on Mount St. Helens. The robots plan budgeted paths
from start (red square) to target (blue diamond) on the graph vertices (blue
circles) with the goal of minimizing the expected estimation error on the
test points (green circles). 45

x

4.2 The analysis of MIP solution quality and runtime over different batch set-
tings for two kernels: squared exponential and Matern. We run each al-
gorithm on 50 different instances per batch setting and record the solution
and the runtime. (a) and (c) show the relative improvement in MIP solution
quality over the greedy approach. (b) and (d) show the MIP runtime (log
scale) across different batch settings. 46

4.3 The relative performance of the MIP on large graphs with varying budgets
(low, moderate, large). Each plot shows the statistics of the relative im-
provement in solution quality over greedy as a function of the MIP timeout
(in seconds). 50

5.1 A visualization of the solution approaches presented in this chapter for Sam-
ple Placement and Shortest Tour in two settings. The vertex set
(filled white disks) of the tour (black edges) guarantee low variance in the
shaded regions (yellow hexagons/white disks). The radius of the hexagons
and disks are selected to ensure high prediction accuracy. a) Tours based
on hexagonal covers in convex environments. b) Tours based on minimum
set covers for finite test sets. 52

5.2 Visual depiction of the counterexample. Left: Lemma 1 in [122], constructs
a lower bound by placing samples at the red circle. Right: The set of four
measurement locations obtains a lower posterior variance. 59

5.3 An example of a SetCover-D instance. The objective is to place the mini-
mum number of samples such that each disk contains at least one sample.
The size of the optimal solution for this instance is 3. 66

5.4 Comparing solution size for Sample Placement in convex environments
versus environment area. DiskCover uses roughly 6 times as many mea-
surements as HexCover. 75

5.5 Tour lengths for Shortest Tour in convex environments versus environ-
ment area. HexCoverTour plans tours of length that are roughly half
that of DiskCoverTour. 77

5.6 Comparing solution size for Sample Placement for finite test sets versus
environment area. GridCover uses roughly 1.25 times as many measure-
ments as IntersectCover in the moderate and dense test point regimes. 78

xi

5.7 Tour lengths for Shortest Tour for finite test sets versus environment
area. GridCoverTour plans tours of length that are longer than Inter-
sectTour across all regimes with the largest difference seen in the dense
regime. 79

6.1 An example of the pH variability in an agricultural field. The circles are
the prediction locations where accurate estimates are desired. Agricultural
fields can be large and one can only take a fixed number of soil samples to
best estimate the pH variability at the prediction locations. 82

6.2 Left: An example of the objective function defined on the interval [0, 1].
The test locations are located at y1 = 0.0, y2 = 0.9 and L = 1√

2
. In this

setting, the midpoint achieves the global maximum. Right: An example of
the objective function defined on the interval [0, 1.1]. The test locations are
located at y1 = 0.0, y2 = 1.1 and L = 1√

2
. In this setting, the midpoint is a

local minima. 86

6.3 A plot of the objective f(S) in Problem 1 when the random variables are
associated with a two-dimensional space and the budget is one i.e. t = 1.
The function is non-concave and has many local maxima. 90

6.4 The objective function f(S) when the budget k = 1 for a given set of pre-
diction locations in two dimensions. Two prediction locations are connected
by an edge if the distance between them is less than or equal to

√
2L. . . . 93

6.5 Comparison of the solution quality while keeping the run time approxi-
mately the same. Centroid-Greedy obtains equal or better solutions
Grid-Greedy in all environment types and regime of prediction points. . 96

6.6 Comparison of the run time while keeping the solution quality approxi-
mately the same. Grid-Greedy practically takes at least as much time as
Centroid-Greedy to find solutions of similar quality. 97

xii

Chapter 1

Introduction

Linear estimation is a fundamental tool in controls, spatial statistics, and machine learning.
For example, it is the bedrock of Kalman filtering : the algorithm that revolutionized the
field of control theory and was used for navigation in the Apollo project [55]. In spatial
statistics, the theoretical underpinnings of kriging are rooted in linear estimation and it is
used in the prediction of partially observed geological phenomena [33]. Linear estimation
also manifests itself in Gaussian Processes (GPs), a framework widely used for regression in
machine learning [109]. With data proliferation, linear estimation becomes an increasingly
important element in the algorithmic toolkit of a scientist.

However, data collection for estimation can be expensive. This is typically the case
when hardware components are involved. For example, consider the London Air Quality
Network: a collection of air quality monitoring stations spread out in London and South
East England [74]. This network comprises of reference grade sensors that are accurate but
are expensive to buy and maintain. As a result, it is important to prolong the battery life
of these expensive sensors by minimizing the amount of time they are actively collecting
data. Data collection can also be hazardous for autonomous systems. In post-disaster en-
vironments, there is a need to autonomously map the radiation levels as quickly as possible
[26]. The underlying challenge is to efficiently determine which subset of data measure-
ments are critical to the resulting estimates in terms of their expected squared error. In
the absence of any constraints, the answer is to use all the data. The presence of resource
constraints that show up in practice make this a challenging combinatorial optimization
problem. Unfortunately, it is known that the general version of this problem is NP-hard
[36] which rules out the existence of polynomial-time algorithms for this problem. In this
thesis, we will study this problem and attempt to give algorithms (optimal, approximation,
and heuristic) in a variety of special settings.

1

Figure 1.1: The target phenomena to be estimated is the soil nutrient at the red circles in
the large spatial field. The red circles are typically given by experts where additional in-
formation about the field is desired. The robots plan paths of budgeted length to minimize
the expected error at these red circles by collecting data along the black edges. Due to
battery constraints, the robots cannot visit all locations and must decide which locations
are most useful in minimizing the error.

2

Broadly speaking, resource constrained linear estimation is concerned with the following
problem: given a target phenomena to estimate and resource constraints on data collection,
select the subset of data measurements that yield the lowest expected estimation error of the
phenomena. For example, in precision agriculture, an important phenomena to estimate
is nutrient quality over a large spatial field. A multi-robot team is tasked with collecting
soil measurements which are used to map the nutrient quality. However, the robots have
finite battery life (resource constraints). Where should the robot team collect data and
what paths should they take? We visualize an instance of this problem in Figure 1.1.

We will see that the challenge of resource constrained linear estimation is ubiquitous and
shows up in multiple settings including spatial sampling, informative path planning, and
sensor scheduling. In the following section, we give a literature review of the approaches
taken to solve this challenge and also outline the contributions of this thesis.

1.1 Literature Synopsis

The work in this thesis is related to a large body of work in generalized orienteering,
informative path planning, sensor placement/scheduling, and sparse regression. We give a
brief literature review here and give an in-depth summary of the most relevant work in the
pertaining chapters.

Generalized Orienteering The goal in generalized orienteering is to plan a path of
budgeted length that maximizes a set function of the visited vertices. The orienteering
problem is a special case when the objective is a modular function of the visited vertices
and is known to be NP-hard [54]. When the objective is submodular, a recursive greedy
algorithm [24] provides a sub-optimality guarantee but runs in quasi-polynomial time i.e.,
it scales as nlogn where n is the number of graph vertices. The algorithm has been used in
several robotics problems where the objective is submodular [115, 10, 11, 90]. A generalized
cost-benefit greedy algorithm was proposed for submodular maximization [142] as well as
for the orienteering problem [52]. The popular objective functions used in active regression
for GPs are mutual information, which is submodular [78], and the trace of the posterior
variance, which is not [36]. Also, the work in [12] proposed a branch and bound algorithm
that prunes branches in the search tree using the monotonicity of the posterior variance but
is limited to grid graphs with a few vertices. There also exist integer linear programs (ILP)
for orienteering [56] and for other related spatial prediction problems (not GP regression)
such as correlated orienteering [140].

3

Informative Path Planning The work in informative path planning in robotics is vast
and covers different environment models, error metrics, and robot constraints. We focus
our literature review to the GP setting which will be relevant to the work in this thesis.
The difficulty in obtaining fast algorithms with optimality or even sub-optimality guar-
antees for minimizing the posterior variance in GPs has motivated the use of heuristics
in the case of planning budgeted paths. One popular heuristic is the greedy algorithm:
sequentially select the vertex that yields the maximum marginal increase in utility to the
path, normalized by the increase in cost to the path. This has also been applied to provide
initial feasible solutions when planning in continuous domains [107, 89, 106, 105]. The
choice of the greedy algorithm has been motivated by its application in sensor placement
for submodular objectives [78] where it provides sub-optimality guarantees and is compu-
tationally efficient. However, it is known that the greedy algorithm can perform arbitrarily
poorly when planning paths [115, Section 4]. Finally, the common approach to planning
paths for multiple robots is to proceed sequentially i.e., apply the single robot heuristic k
times (for k robots) [13]. This yields approximation guarantees for submodular orienteer-
ing [115] using the recursive greedy algorithm [24] for each robot. This is also referred to as
Sequential Greedy Assignment [3] which was later improved using a distributed algorithm
[28] with sub-optimality guarantees using Monte-Carlo Tree Search for each robot. The
multi-robot version of orienteering is known as the Team Orienteering Problem [22]. and
can be modeled as a mixed integer linear program [56]. Finally, the dual version where
the path length is minimized subject to a constraint ensuring the error is below a certain
threshold has also been considered [122, 124] which focus on the isotropic kernel setting.

Sensor Placement The sensor placement problem considers the placement of sensors
to minimize estimation error subject to a cardinality constraint which is in contrast to
path constraints in IPP. The seminal work in sensor placement for GPs showed that the
mutual information metric in GPs is submodular [78] thereby motivating the choice of the
greedy algorithm which has tight approximation guarantees. Similar greedy approaches
have also been used for placement in linear dynamical systems [128, 20] with approximation
guarantees and strong empirical performance, although not directly applicable to the GP
setting.

Sensor Scheduling Optimizing the subset of output variables to measure in order to
best perform state estimation in linear dynamical systems is commonly known as the sensor
scheduling problem. It has been studied in various forms in the literature. The difference
in formulations generally boils down to the choice of objective function, defined in terms

4

of the Kalman filter error covariance. The work in [69] characterizes the submodularity of
commonly used functions such as the trace, maximum eigenvalue, and log determinant.

The trace is not a submodular function and does not benefit from the constant factor
approximation guarantees provided by the greedy algorithm. The typical way to address
this is to use surrogate objectives such as the log determinant, which is submodular and
can be efficiently approximately maximized. However, [20, Remark 1] notes that it is
a poor proxy for minimizing the trace. There is a large body of work tackling the log
determinant/maximum eigenvalue objective [112, 69, 126, 128, 17, 71, 95] and various
other controllability metrics [114, 132, 40]. However, these algorithms do not optimally
solve trace minimization over a finite horizon.

The trace minimization of the steady state error covariance has been considered [59,
144, 143, 139]. It was established to be NP-hard in [143], which also demonstrated that
greedy algorithms perform well in practice but without guarantees. In fact, there is no
polynomial time constant factor approximation algorithm for this problem unless P = NP
[139].

On a finite horizon, greedy algorithms are a popular tool for minimizing the trace of
the error covariance due to its computational efficiency and empirical success. Recent work
has analyzed their performance through the lens of approximate submodularity [20], weak
submodularity [63, 75], and identified strict conditions for submodularity [116]. However,
[20, Section VI] notes that the performance bounds tend to be quite loose in practice and
greedy algorithms perform near-optimally on small scale instances.

There has been limited work in computing the optimal solution to the sensor schedul-
ing problem. Convex relaxations have provided useful insights [84, 134, 132, 19, 40] for
approximate solutions. The work in [131] characterizes certain properties of the optimal
solution and uses it to construct a suboptimal solution via tree pruning. The work in [94]
formulates a quadratic program with `0 constraints. The authors solve a relaxed version
of the problem and construct an approximate solution through iterative reweighting.

Sparse Regression In sparse regression, one selects a subset of features to minimize the
expected error in linear regression. In fact, the exact formulations in this thesis are inspired
by the proof of hardness of subset selection for linear regression [36], which performs a
reduction from the NP-hard sparse approximation problem [99]. The work in [36] studies
a variety of interesting problem instances where sparse regression can either be solved or
approximated in polynomial time. Finally, optimally solving the sparse regression problem
has been tackled using branch-and-bound [98, 118] and MIPs that can be implemented in
modern solvers [5, 8, 7] or using custom branch and bound algorithms [65].

5

1.2 Thesis Contributions

In this thesis, we study linear estimation in several constrained settings. Since the general
version of linear estimation under resource constraints is NP-Hard, we cannot simultane-
ously have algorithms that a) compute optimal solutions b) in polynomial time c) for any
problem instance. The main contributions of this thesis can be summarized as follows:

• We give exact formulations of resource constrained linear estimation in the discrete
setting as a mixed integer program. This finds applications in sensor scheduling
for linear dynamical systems in Chapter 3 and informative path planning on graphs
using GP regression in Chapter 4. We show that by dropping the requirement of
polynomial time solvability, optimal solutions can be computed in several interesting
settings in seconds.

• We give approximation algorithms in the case when the random variables are indexed
by convex sets in Chapter 5. Here, the objective is to minimize the resources used
(samples or robot tour lengths) while ensuring the errors resulting from the linear
estimators are controlled. The defining features of the algorithms are efficiency, ease
of implementation, along with strong theoretical and simulation results.

• Finally, we also give a heuristic in Chapter 6 for the cardinality constrained version
of linear estimation where the samples can be taken anywhere in a convex set. While
we do not give worst-case performance guarantees, the algorithm performs well in
simulation both in terms of solution quality and runtime.

We now review the contributions of each chapter in detail.

Chapter 2: In this chapter, we review the concepts of linear estimation, Gaussian Process
regression, variants of the traveling salesman problem, and notions of covering and packing.
These will be useful in the design and analysis of the proposed algorithms.

Chapter 3: In this chapter, we consider a general form of the sensor scheduling problem
for state estimation of linear dynamical systems, which involves selecting sensors that
minimize the trace of the Kalman filter error covariance (weighted by a positive semidefinite
matrix) subject to polyhedral constraints. This general form captures several well-studied
problems including sensor placement, sensor scheduling with budget constraints, and Linear
Quadratic Gaussian (LQG) control and sensing co-design. We present a mixed integer

6

optimization approach that is derived by exploiting the optimality of the Kalman filter.
While existing work has focused on approximate methods to specific problem variants, our
work provides a unified approach to computing optimal solutions to the general version of
sensor scheduling. In simulation, we show this approach finds optimal solutions for systems
with 30 to 50 states in seconds.

Chapter 4: In this chapter, we study informative path planning for active regression in
Gaussian Processes (GP). Here, a resource constrained robot team collects measurements
of an unknown function, assumed to be a sample from a GP, with the goal of minimizing the
expected squared estimation error resulting from the GP posterior mean. While greedy
heuristics are a popular solution in the case of length constrained paths, there are no
known approaches that compute optimal solutions in the discrete setting subject to routing
constraints. We show that this challenge is surprisingly easy to circumvent. Using the
optimality of the posterior mean for a class of functions of the squared loss yields an exact
formulation as a mixed integer program (MIP). We demonstrate that this approach can
find optimal solutions in a variety of settings in seconds and when terminated early, it finds
sub-optimal solutions of higher quality than existing heuristics.

Chapter 5: In this chapter, we consider the sample placement and shortest tour problem
for robots tasked with mapping environmental phenomena modeled as Gaussian Processes
with isotropic kernels. The goal is to minimize the resources used (data samples or tour
length) while ensuring the resulting uncertainty in the estimates (via the posterior variance)
is within a given threshold at a set of test locations in the environment. We study both
problems in two settings: convex environments with a constant threshold and finite test
sets with non-uniform thresholds. This general formulation also captures minimal resource
problems for chance constrained classification and regression using Gaussian Processes.
We give approximation algorithms in both settings which improve on previous results both
in terms of theoretical guarantees and simulations. In addition, we also disprove existing
lower bounds provided in the literature for the sample placement problem.

Chapter 6: In this chapter, we consider a subset selection problem in a spatial field
where we seek to find a set of k locations whose observations provide the best estimate of
the field value at a finite set of prediction locations. The measurements can be taken at
any location in the continuous field, and the covariance between the field values at different
points is given by the widely used squared exponential covariance function. One approach
for observation selection is to perform a grid discretization of the space and obtain an

7

approximate solution using the greedy algorithm. The solution quality improves with a
finer grid resolution but at the cost of increased computation. We propose a method to
reduce the computational complexity, or conversely to increase solution quality, of the
greedy algorithm by considering a search space consisting only of prediction locations and
centroids of cliques formed by the prediction locations. We demonstrate the effectiveness
of our proposed approach in simulation, both in terms of solution quality and runtime.

Chapter 7: In this chapter, we outline some directions for future research and conclude
the thesis.

8

Chapter 2

Preliminaries

Notation: Let [n] denote the set of positive integers ranging from 1 to n. For a vector
v ∈ Rn, define supp(v) := {i ∈ [n] : vi 6= 0}. Further, for any S ⊆ [n], let vS ∈ R|S|
be the vector with entries vi for i ∈ S. We denote the set of n × n positive semidefinite
matrices by Sn+ and positive definite matrices by Sn++. The n×n identity matrix is denoted
by In. We use vector/matrix builder notation of the form A = (aij)1≤i≤m,1≤j≤n ∈ Rm×n

where aij is the entry in row i and column j of A. For a matrix X ∈ Rm×n, denote

the Frobenius norm by ‖X‖F := (trace(X ′X))1/2. For two random vectors x, y with
dimensions n and m respectively, denote the matrix of covariances between x and y by
Σxy := E[(x − E[x])(y − E[y])′] ∈ Rn×m. We denote a metric space by (X , ρ) where
ρ : X × X → R≥0 is a metric. We denote a closed ball of radius r centered at x ∈ X by
B(x, r) := {y ∈ X : ρ(x, y) ≤ r}. For a set A, we denote its boundary by bd(A).

2.1 Minimum Mean Squared Error (MMSE) Estima-

tion

We begin by introducing estimation in the linear setting. This is the core model used in
the thesis and the optimality properties are especially useful in Chapters 3 and 4.

Let x and y be jointly distributed random vectors (of sizes m and n) with zero mean
and covariance given by [

Σxx Σxy

Σyx Σyy

]
∈ Sm+n

+ . (2.1)

9

The following characterizes the optimal linear estimator.

Theorem 1 (Chapter 5, Theorem 2.1, [2]). The linear least-squares estimator (LLSE) of
x given y is given by

x̂ := K∗y, (2.2)

where the optimal coefficient matrix K∗ ∈ Rm×n is the solution that minimizes the expected
squared error

K∗ := arg min
K

E
[

(x−Ky)′ (x−Ky)
]

= ΣxyΣ
−1
yy . (2.3)

The resulting error covariance matrix is

E
[

(x−Ky) (x−Ky)′
]

= Σxx − ΣxyΣ
−1
yy Σyx. (2.4)

The optimal linear estimator satisfies a stronger property given in the following lemma.
The proof is relatively straightforward and we include it for completeness.

Lemma 1. For every positive semi-definite matrix M = Q′Q ∈ Sn+, the coefficient matrix
K∗ in (2.3) minimizes the M -weighted expected square error:

K∗ = arg min
K

E
[
(x−Ky)′M(x−Ky)

]
. (2.5)

Proof. Let M = QTQ be arbitrary. Consider the trace of scalar term in the minimization,

trace
(
E [(x−Ky)′Q′Q(x−Ky)]

)
=

trace
(
QE [(x−Ky)(x−Ky)′]Q′

)
= trace

(
Q
(

Σxx −KΣyx − ΣxyK
′ +KΣyyK

′
)
Q′
)

= trace

(
Q
(

Σxx − ΣxyΣ
−1
yy Σyx

)
Q′

+Q
(
K − ΣxyΣ

−1
yy

)
Σyy

(
K ′ − Σ−1

yy Σyx

)
Q′

)
.

(2.6)

The first term does not depend on K and the second term is non-negative since it is equal
to ‖Σ1/2

yy (K ′ − Σ−1
yy Σyx)Q

′‖F . The second term can be made zero by setting K = ΣxyΣ
−1
yy

which is the coefficient of the optimal linear estimator.

10

The optimality of the linear estimator satisfies an even stronger property over the cone
of positive semi-definite matrices.

Lemma 2. Let K ∈ Rm×n be the coefficients of any linear estimator of the random vector x
using the random vector y. Then, the optimal coefficients K∗ in (2.3) satisfies the following
inequality over the positive semi-definite cone:

E
[

(x−Ky) (x−Ky)′
]
� E

[
(x−K∗y) (x−K∗y)′

]
. (2.7)

If the vectors are jointly Gaussian, the linear estimator is the optimal estimator which
is a known result in Bayes estimation.

Theorem 2 (Chapter 5, Theorem 2.2, [2]). If the vectors x and y are jointly Gaussian, the
minimum mean-squared estimator E[x|y] coincides with the linear least-squares estimator.

2.2 Gaussian Process Regression

Gaussian Processes (GPs) are a popular tool for regression in machine learning. One of the
defining features is that the predictors are linear functions of the measurements collected
as shown below. We use GPs to model the unknown functions of interest in Chapters 4
and 5.

Definition 1 (Gaussian Process). Let X be a nonempty set, k : X×X → R≥0 be a positive
definite function, and m : X → R be any real-valued function. Then, a random function
f : X → R is said to be a Gaussian process (GP) with mean function m and covariance
kernel k, denoted by GP(m, k), if the following holds: for any set X = {x1, . . . , xn} ⊂ X ,
the random vector

fX := (f(x1), . . . , f(xn))′ ∈ Rn (2.8)

follows the multivariate normal distribution N (mX , kXX) with covariance matrix kXX =
(k(xi, xj))1≤i,j≤n ∈ Sn+ and mean vector mX := (m(x1), . . . ,m(xn))′ ∈ Rn. •

The kernel function k is isotropic if it can be formulated as k(x, y) = h(‖x − y‖) for
some h : R≥0 → R≥0 and for any x, y ∈ Rd. It is common to assume that points that are
sufficiently distant are uncorrelated since the covariance decays quickly with the distance
between points [78, 18, 30]. In spatial statistics, this is called the effective or finite range

11

of the kernel [133]. An isotropic kernel h : R≥0 → R≥0 has finite range/compact support if
there exists rmax such that

h(‖x− y‖) = 0 ∀x, y ∈ Rd s.t. ‖x− y‖ ≥ rmax. (2.9)

In GP regression, we estimate an unknown function f , assumed to be a sample from a
zero-mean GP1

f ∼ GP(0, k), (2.10)

given noisy measurements of the form

yi := f(xi) + ηi, (2.11)

where for i ≥ 1, ηi are independent and identically distributed N (0, σ2) Gaussian random
variables representing measurement noise and xi ∈ X are the training data inputs. Then,
the following well known result shows the conditional predictive distribution of the function
is a GP.

Theorem 3 (Theorem 3.1, [73]). Assume the setup governed by equations (2.10), (2.11)
and let X := (x1, . . . , xn) ∈ X n and Y := (y1, . . . , yn)T ∈ Rn denote the data inputs and
measurements respectively. Then, we have

f |Y ∼ GP(m̄, k̄), (2.12)

where m̄ : X → R and k̄ : X × X → R are given by

m̄(x) := kxX
(
kXX + σ2In

)−1
Y

k̄(x, x′) := k(x, x′)− kxX
(
kXX + σ2In

)−1
kXx′ ,

(2.13)

where kXx = k′xX = (k(xi, x), . . . , k(xn, x))′ ∈ Rn. The functions m̄ and k̄ are known as
the posterior mean function and posterior covariance function respectively. •

For any test inputs T := {t1, . . . , tm} ∈ Xm, the prediction is carried out using the
posterior mean and the uncertainty is quantified using the posterior covariance matrix:

m̄X
T := E[fT |Y] = (m̄(ti))

m
i=1

= kTX
(
kXX + σ2In

)−1
Y ∈ Rm,

k̄XTT := E
[
(fT − m̄X

T)(fT − m̄X
T)′|Y

]
=
(
k̄(ti, tj)

)m
i,j=1

= kTT − kTX
(
kXX + σ2In

)−1
kXT ∈ Sm+ ,

(2.14)

where we make the dependence on the training inputs X and test inputs T explicit by
using the notation m̄X

T and k̄XTT .

1If the mean function is non-zero, the resulting posterior mean would be affine instead of linear.

12

Remark (Evaluation of Posterior Covariance). It is crucial to note the posterior covariance
function is independent of the measurements Y ; it depends only on the inputs X and x
through the matrices kXX and kXx. As a result, the posterior covariance at a test input
x ∈ X can be computed a priori without requiring its associated measurement. •

2.3 Covering & Packing

We introduce covering and packing in continuous and discrete settings. These concepts
will be useful in the analysis of the algorithms presented in Chapter 5. Consider a metric
space (X , ρ) and let A ⊂ X .

Definition 2 (r-packing). The set {x1, . . . , xn} is an r-packing of A if the sets {B(xi, r/2) :
i ∈ [n]} are pairwise disjoint i.e., for any i 6= j, ρ(xi, xj) > r.

Definition 3 (r-covering). The set {x1, . . . , xn} is an r-covering of A if A ⊂
⋃n
i=1B(xi, r)

i.e., ∀x ∈ A,∃i such that ρ(xi, x) ≤ r.

Problem 1 (SetCover). The input to a set cover problem is a pair (U ,D) where U is a
set of of n elements and D = {D1, . . . , Dm} is a collection of m subsets of U such that
∪mi=1Di = U . The goal is then to find the smallest sub-collection J ⊆ [m] whose union
equals U i.e., ∪i∈JDi = U .

We will refer to an instance of set cover with universe U and collection of subsets D
by SetCover(U ,D). The greedy algorithm finds a covering of size at most log n times the
optimal [49]. When the subsets D are generated by geometric regions such as disks, there
exists an algorithm that computes a cover that is at most O(1) times the optimal solution
[1].

We will consider covering problems with disks in the plane. We give a definition that
will be useful for algorithm analysis.

Problem 2 (SetCover-D). Given a set of n disks B = {B(xi, ri) : i ∈ [n]} ⊂ X ⊆ R2

and the Euclidean metric, compute a set S ⊂ X of minimum size that has non-empty
intersection with each disk.

Given a set of disks B, we will denote an instance to set cover with disks in the plane
by SetCover-D(B).

13

2.4 Traveling Salesman Problems

We will consider tour planning in discrete and continuous environments in Chapters 4 and
5. As a result, we require the definitions of the TSP (and its variants) along with the
associated approximation algorithms.

Metric TSP The input to the metric traveling salesman problem (TSP) is a complete
graph G = (V,E), where the vertex set V lies in a metric space (X , ρ). A cycle is a
sequence of distinct vertices 〈v1, . . . , vn, v1〉 and a tour T is a cycle that visits each vertex
in the graph exactly once. The cost of a tour, denoted by length(T), is the sum of the
costs of its associated edge set i.e., length(T) := ρ(vn, v1) +

∑n−1
i=1 ρ(vi, vi+1). The objective

of the TSP is then to find a tour of minimum cost. With slight abuse of notation, we let
T refer to the tour as well the set of vertices visited on the tour.

TSP with Neighbourhoods The input to the TSP with neighbourhoods (TSPN) is a
set of regions in a metric space (X , ρ). The objective is to find the shortest tour that visits
each region at least once. We give a problem definition for disk neighbourhoods which will
be useful in our analysis.

Problem 3 (TSPN-D). Given a set of n disks B = {B(xi, ri) : i ∈ [n]} ⊂ R2 and the
Euclidean metric, compute a minimum length tour that visits each disk at least once.

We will denote an instance of the TSP with disk neighbourhoods for a set of disks B
by TSPN-D(B). There exists an algorithm that computes a tour for TSPN-D with length at
most O(1) times the optimal solution in time that is polynomial in the number of disks
[42].

14

Chapter 3

Sensor Scheduling for Optimal
Kalman Filtering

3.1 Introduction

In many dynamical systems, it is practically infeasible to measure all output variables due
to communication or energy constraints. Thus, practical solutions often have to rely on
only accessing a subset of the data. Optimizing the subset of output variables to measure in
order to best perform state estimation is commonly known as the sensor scheduling problem.
This finds applications in multi-robot environmental monitoring [82, 79, 104], minimal
controllability problems [102, 127, 120], control and sensing co-design [125, 141, 113], among
others.

Sensor scheduling considers a stochastic linear system evolving in discrete time, which
can be partially observed using sensors. Due to resource constraints (e.g., energy con-
straints), at each time step only a subset of sensors can be turned on. By limiting
the number of active sensors, the sensor battery life is prolonged, allowing for long-
term usage. The objective is to determine a sensor schedule, i.e., a subset of sensors
to be activated at each step, that minimizes the trace of the Kalman filter weighted
error covariance while satisfying the resource constraints. The weight is provided by a
positive semidefinite matrix which can encode several objectives including final state er-
ror and average error. When the chosen sensor set is not allowed to change over time,
the problem is known as the sensor selection problem. The sensor scheduling problem
and its variants are challenging; existing approaches have provided approximate solutions
via greedy algorithms [112, 69, 128, 126, 143, 116, 139, 20, 75, 125], convex relaxations

15

[71, 134, 95, 94, 132, 19, 97, 40, 84], and randomized algorithms [114, 63, 17]. However, in
this chapter we strive to compute optimal solutions leveraging advances in mixed integer
optimization.

While approximation algorithms have yielded useful insights into specific variants of
the problem, an approach that computes optimal solutions to the general version has been
elusive. The main difficulty lies in the analysis of the Kalman filter recursive equations in
terms of the selected sensor subsets. However, the combinatorial nature of the problem
suggests encoding the problem as an integer program.

Despite integer programming being NP-complete [39] and generally being considered
intractable beyond specific cases, the mixed integer optimization community has made
tremendous theoretical and practical advances in last few decades with machine-independent
speedup factors of up to 580,000 [5, Section 2.1]. One of the benefits is that modern solvers
are anytime i.e., if terminated early, approximate solutions with suboptimality certificates
are provided to the user. It is relatively straightforward to set up most combinatorial prob-
lems as integer programs by modelling the objects of interest as binary decision variables.
However, the structure of the resulting objective may not be amenable to optimization. It
is well known that the formulation plays an important role in solving integer programs [58,
Section 1.2]. This is because the relaxation is used extensively to provide lower bounds in
the branch and bound procedure in mixed integer optimization. Thus, if the relaxation
has good structure (linearity, convexity) and is tight, one can find optimal solutions rela-
tively quickly by pruning many parts of the search tree. The question we wish to answer
is whether one can leverage the structure of the sensor scheduling problem to formulate
mixed integer programs.

3.1.1 Contributions

Our main contribution is the formulation of the general sensor scheduling problem as a
mixed integer program with a convex quadratic objective and linear constraints (Theo-
rem 4). This enables us to leverage modern solvers such as Gurobi [60] or CPLEX [32].
We accomplish this using the optimality property of the Kalman filter for the trace of
a weighted error covariance. This enables us to optimize over the class of linear filters,
resulting in a convex minimization problem. This circumvents the need to work with the
recursive form of the filter and the associated non-linear algebraic Riccati equations, which
can be difficult to model. In simulations, our approach computes optimal solutions to
sensor selection and scheduling problems on systems with 35 to 50 states in seconds.

16

3.2 Problem Formulation

Our setup closely follows [94] which captures a variety of interesting sensor scheduling
problems.

Dynamical System: Consider the following linear system:

xk+1 = Axk + wk,

yk = Cxk + vk,
(3.1)

where the process noise wk, measurement noise vk, and initial state x1 are zero mean
uncorrelated random variables. For all k ≥ 1, we assume the covariance of wk and vk are
given by W ∈ Sn++ and V ∈ Sm++ respectively and the a priori covariance of the initial state
x1 is given by Σ1|0 ∈ Sn++. Further, we assume the state xk ∈ Rn and the vector resulting
from all m sensor measurements is yk ∈ Rm.

Sensor Schedule: For a given time horizon T , the total number of measurements is mT
since each step yields m sensor readings. For i ∈ [mT], consider binary indicator variables
γi ∈ {0, 1} such that if sensor j ∈ [m] is on at time step k ∈ [T], then γm(k−1)+j = 1. The
binary vector γ = [γ1, . . . , γmT] ∈ {0, 1}mT is called a sensor schedule.

Kalman filter : The Kalman filter (KF) is usually described recursively in terms of the
estimates from the previous time step. However, viewing it directly as a linear estimator
over the set of sensor measurements will be more useful for our purposes. Let γ ∈ {0, 1}mT
be a sensor schedule over a horizon T with Sγ := supp(γ). For each k ∈ [T], define

Yk :=
[
y′1, . . . , y

′
k

]′
∈ Rmk (measurements until time k)

x̂γk|k := Kγ
∗,kYk,γ ∈ Rn (KF estimate using selected measurements)

eγk := xk − x̂γk|k ∈ Rn (KF estimation error)

Σγ
k|k := Σeγke

γ
k
∈ Sn+ (KF posterior error covariance)

(3.2)

Note that Yk,γ ∈ R|Sγ | only uses the measurement variables selected by the sensor schedule
γ. Further, Kγ

∗,k ∈ Rn×|Sγ | contains the optimal Kalman filter coefficients for estimating
the state xk using measurement variables Yk,γ. This is different from the gain matrix used
in the recursive form of the filter. Each row i ∈ [n] of Kγ

∗,k contains the coefficients of the

optimal linear combination of the measurement variables used in estimating the ith entry
of the state xk.

In summary, given the schedule γ, the Kalman filter computes the optimal linear es-
timate x̂γk|k of the state xk and provides the a posteriori error covariance estimate Σγ

k|k.

17

Our goal is to compute the schedule γ that minimizes a function related to Σγ
k|k, subject

to resource constraints on γ.

Problem 4 (Sensor Scheduling). Given a time horizon T > 0, cost matrices Qk ∈ Rn′×n

with Mk := Q′kQk ∈ Sn+, constraint matrix H ∈ Rh×mT , and budget b ∈ Rh, compute the
sensor schedule γ that solves

minimize
γ∈{0,1}mT

T∑
k=1

trace
(
QkΣ

γ
k|kQ

′
k

)
subject to Hγ ≤ b.

(3.3)

The objective and constraints capture several interesting problems. For example, con-
sider the following objectives.

1. Total Error : Qk = θkIn, k ∈ [T], where θk ∈ R≥0.

2. Final State Error : Q1 = . . . = QT−1 = 0, QT = In.

3. LQG Sensing Design: It is known that the optimal strategy for LQG control is to
provide state estimates via Kalman filtering and then perform LQR control using the
state estimate in place of the true state. A similar principle holds in LQG control and
sensing co-design [125, Theorem 1] where one designs a sensor selection policy as well
as the optimal controller. The result states the budgeted sensor selection problem
can be decoupled from the control design where the sensor schedule is computed to
optimize trace(ΘΣγ

k|k), and Θ is computed from the LQG system parameters.

Further, the polyhedral constraints in Hγ ≤ b are general and capture different types of
resource constraints.

1. Sensor Selection: One commits to a sensor subset of size p for all steps:
∑m

i=1 γi = p
and γi = γi+jm, for i ∈ [m], j ∈ [T − 1] effectively using only m variables.

2. Sensor Scheduling : One selects a sensor subset for each time step k ∈ [T] of size p:∑m
i=1 γ(k−1)m+i = p.

3. Energy Constraints : If sensor i incurs an energy cost αi each time it is switched on and
has an energy budget βi, then the constraint can be represented as

∑T
k=1 γ(k−1)m+i ≤

βi/αi.

18

Various problems in the literature are modeled as combinations of these objectives and
constraints. For example, objective 1) and constraint 1) model the sensor selection problem
[134, 19, 69, 128, 116, 20, 75, 63]. Combining the accumulated error in objective 2) and
constraint 2) is sensor scheduling with budget constraints [131, 84].

3.3 Mixed Integer Program for Sensor Scheduling

This section describes our MIQP formulation. As discussed in the introduction, one re-
quires good formulations in mixed integer programming to compute optimal solutions
relatively quickly [58]. For example, if the objective is convex (when the binary variables
are relaxed), one can quickly solve the ensuing convex optimization problem to get a lower
bound on the optimal solution to the mixed integer program. This helps in eliminating
parts of the search tree by comparing lower bounds (by solving the relaxed problem) and
upper bounds given by feasible solutions. In the context of sensor scheduling, it is not
immediately obvious how one would model the objective in (3.3) as a convex function.

The convex MIQP formulation is presented in Section 3.3.1 with Theorem 4 giving the
main result. Note that the results in Section 3.3.1 depend on the covariance matrices be-
tween the states and observations in system (3.1), which are fully specified in Section 3.3.2.

3.3.1 Binary Convex Reformulation

We wish to rewrite the objective in (3.3) purely in terms of continuous variables. By
exploiting the optimality of the Kalman filter, we reformulate the summands in (3.3)
as convex minimization problems where the continuous variables are the coefficients of
linear filters. The key idea is to optimize over the class of linear filters using all sensor
measurement variables with the constraint that a measurement variable i can only be used
if its corresponding entry in the schedule satisfies γi = 1. This is established in Lemma 3.

Lemma 3. Given a schedule γ ∈ {0, 1}mT and a time step k ∈ [T], each summand in (3.3)
can be represented as the following optimization problem

trace
(
QkΣ

γ
k|kQ

′
k

)
= min

{
ck(K) : [K]ij(1− γj) = 0,

i ∈ [n], j ∈ [mk],

K ∈ Rn×mk
}
,

(3.4)

19

where ck : Rn×mk → R≥0 is the expected squared error of a linear filter specified by
coefficients K and is defined as

ck(K) := E
[

(xk −KYk)′Mk (xk −KYk)
]

= trace
(
Mk

(
KΣYkYkK

′ − 2ΣxkYkK
′ + Σxkxk

))
.

(3.5)

Proof. Let Sγ := supp(γ) ∩ [mk]. Consider the RHS in (3.4). The constraint gives the
following equivalence: γj = 0 =⇒ Kj = 0 i.e., the jth column of K is the zero vector. This
implies that when taking a linear combination KYk, the measurements in Yk corresponding
to the zero column vectors in K can be dropped. Specifically, let Kγ ∈ Rn×|Sγ | be the
submatrix of K with the column set Sγ removed and let Yk,γ ∈ R|Sγ | be the measurement
vector constructed by dropping the entries corresponding to Sγ in Yk. Then, we can rewrite
the minimization problem in (3.4) as

min
K∈Rn×|Sγ |

{
E
[
(xk −KγYk,γ)

′Mk(xk −KγYk,γ)
]}

. (3.6)

Now, we can apply Lemma 1 which tells us the solution to the above minimization problem
is the optimal linear estimator of xk given Yk,γ i.e., the Kalman filter with coefficient matrix
Kγ
∗,k ∈ Rn×|Sγ |. Using the definitions in (3.2), the resulting error is obtained by plugging

in Kγ
∗,k and taking the trace of the scalar term in (3.6) yielding

E
[
(xk −Kγ

∗,kYk,γ)
′Q′kQk(xk −Kγ

∗,kYk,γ)
]

= trace
(
QkΣ

γ
k|kQ

′
k

)
,

(3.7)

where we have used the property trace(AB) = trace(BA) for any conformable matrices
A,B.

Note that we delay the definition of the covariance matrices appearing in ck until Sec-
tion 3.3.2 since it is not crucial to understanding the formulated MIQP. The interested
reader can refer directly to Equation (3.14) for the exact definition of the covariance ma-
trices. Next, we show that ck is convex.

Lemma 4 (Convexity). The function ck : Rn×mk → R≥0 defined in Lemma 3 is convex.

20

Proof. To prove convexity, define the following matrix functions g : Sn → R and h :
Rn×mk → Sn,

gk(X) := trace(MkX)

h(K) = KΣYkYkK
′ − ΣxkYkK

′ −KΣYkxk + Σxkxk .
(3.8)

Then, we have ck = gk ◦ h. Using a composition theorem for convexity, ck is convex if g is
convex and non-decreasing and h is convex [14, Section 3.6.2]. Convexity of g follows from
the linearity of the trace operator and since Mk ∈ Sn+, it is non-decreasing [14, Example
3.46]. Since ΣYkYk ∈ Sm+ , h is also convex [14, Example 3.49].

Finally, we establish that the sensor scheduling problem (3.3) can be represented as
a mixed integer convex quadratic program, which can be tackled by solvers like Gurobi
[60].

Theorem 4 (MIQP for Sensor Scheduling). The sensor scheduling problem (3.3) can be
formulated as the following mixed-integer convex optimization problem

min
γ∈{0,1}mT
Kk∈Rn×mk

T∑
k=1

ck(Kk)

subject to Hγ ≤ b,

[Kk]ij (1− γj) = 0, i ∈ [n], j ∈ [mk], k ∈ [T]

(3.9)

where the functions ck(·) are given by Lemma 3.

Proof. Since each state vector xk requires a set of coefficients Kk ∈ Rn×mk, the result
follows from the problem definition (3.3) and Lemma 3. Since convexity is preserved under
addition, the objective in (3.9) is convex by Lemma 4.

The optimization problem (3.9) is a MIQP of the sensor scheduling problem where
the decision variables are the filter coefficients Kk and binary sensor schedule γ. The last
constraint allows a filter coefficient to be used only if the corresponding sensor variable is
turned on. This constraint can be implemented as a SOS Type-1 constraint in Gurobi or
CPLEX. It should be noted that the number of binary variables is mT and the number
of continuous variables is

∑T
k=1 nmk = nmT (T+1)

2
. For high-dimensional systems and long

horizons, this can quickly become intractable. It would be desirable to have a minimal
formulation purely in terms of binary variables γ, which we leave to future work.

21

Remark (Comparison with [94]). At first glance, Theorem 4 seems similar to the quadratic
program in [94]. However, the key difference is the relationship between the continuous
and binary variables. In Theorem 4, there is one indicator constraint for each entry of
the matrix Kk which is easy to implement in modern solvers and also leads to fast solve
times as evidenced in Section 3.4. In [94], the constraint is more involved. It has the form
g(X) ≤ γi, where γi is a binary decision variable and g is the `0 norm of the sum of `1

norms of the columns of the matrix of continuous variables X. This constraint cannot be
directly implemented in modern mixed integer solvers. One has to setup indicator variables
to model the relationship between γi and the `0 norm. Unfortunately, this does not yield
fast solve times as shown in Section 3.4. It should be noted that [94] did not set out to solve
an integer program; it relaxed the formulation to compute approximate solutions using an
iterative weighting technique which yielded good solutions in simulations.

3.3.2 Covariance Matrices

The last piece is to specify the covariance matrices used in the definition of the functions
ck in (3.5). First, we require a representation of state xj in terms of the initial state x1.

Observation 1 (State Representation). For any j ∈ N,

xj = Aj−1x1 +

j−1∑
i=1

Aj−i−1wi, (3.10)

Observation 2 (Zero-mean States). For any j ∈ N, E(xj) = 0. This follows from the
combination of Observation 1 and the fact that the initial state x0 and process noise wt
are zero-mean random variables.

Using these two observations, we will establish the structure of the covariance between
any two states xi and xj.

Observation 3 (Covariance between States). For j ≤ i, the covariance between states xi

22

and xj is given by

Σxixj = E

[(
Ai−1x1 +

i−1∑
t=1

Ai−t−1wt

)
(
Aj−1x1 +

j−1∑
t=1

Aj−t−1wt

)′]
∈ Rn×n

= E
(
Ai−1x1x

′
1A

j−1′ +

j−1∑
t=1

Ai−t−1wtw
′
tA

j−t−1′
)

= Ai−1Σ1|0A
j−1′ +

j−1∑
t=1

Ai−t−1W (Aj−t−1)′.

(3.11)

For j > i, Σxixj = Σ′xjxi .

Since the measurement is a linear combination of the state (3.1), we can determine the
covariance between any state and measurement variable and also between measurement
variables. This is described in the following observations.

Observation 4 (Covariance between State and Measurement). For j ≤ t, the matrix of
covariances between state xt ∈ Rn and all sensor observation yj ∈ Rm is given by

Σxtyj = E
(
xt(Cxj + vj)

′
)

= ΣxtxjC
′ ∈ Rn×m

(3.12)

Observation 5 (Covariance between Measurements). The covariance between measure-
ments yi and yj is given by

Σyiyj = E
(

(Cxi + vi)(Cxj + vj)
′
)

= C ΣxixjC
′ + E(viv

′
j) ∈ Rm×m

(3.13)

If i 6= j then E(viv
′
j) = 0 (Kalman filter assumptions) and is equal to V ∈ Sm++ (noise

covariance) otherwise.

We now establish the form of the matrices in Theorem 4 whose entries are given by the
observations above.

ΣxkYk =
[
Σxky1 . . . Σxk,yk

]
∈ Rn×mk,

ΣYkYk =

Σy1y1 . . . Σy1yk
...

. . .
...

Σyky1 . . . Σykyk

 ∈ Smk++.
(3.14)

23

By substituting (3.14) into (3.5), the MIQP provided in Theorem 4 is now fully specified.
This forms our approach to solving the general sensor scheduling problem.

3.4 Numerical Results

To evaluate our proposed MIQP, we consider two variants involving budget constraints:
sensor selection (Section 3.4.1) and sensor scheduling (Section 3.4.2). For both problems,
we compare against

• Mo et al. [94]: We convert the quadratic program using an `0 constraint to a MIQP
using an indicator constraint (see Section 3.3.1 for a detailed discussion).

• Greedy algorithm: We keep selecting sensors one at a time until the budget constraint
is met. In each step, the sensor yielding the highest reduction in error is chosen. For
more details, see [69, 20].

We now describe the system parameters. The entries of the process matrix A ∈ Rn×n are
drawn from a uniform distribution on [0, 1] and normalized so that the magnitude of the
largest eigenvalue is 0.5 (considering stable systems with long horizons). The entries of
the measurement matrix C ∈ Rm×n are drawn from a uniform distribution on [0, 1]. The
measurement noise matrix is constructed as W = LL′ ∈ Sn+ where L ∈ Rn×n is drawn from
a uniform distribution on [0, 1]. Finally, the noise matrix is V = σ2Im where σ2 = 0.01 and
the initial state covariance is Σ1|0 = In. We run each algorithm on 20 trials with each trial
drawing a new set of system parameters. The experiments are implemented in Gurobi
[60] on an AMD Ryzen 7 2700 8-core processor with 16 GB of RAM.

For both selection and scheduling, the goal is to minimize the final state estimation
error. Thus, the cost matrices Qk ∈ Rn×n are defined as Qk = 0 for k ∈ [T − 1] and
QT = In. The definitions of the constraint matrix and vector are given in Section 3.2. We
now proceed to discuss the results.

3.4.1 Sensor Selection with Budget Constraints

The first question we seek to answer is how the runtime of the MIQP scales as the system
size increases. We set a timeout of 120 seconds for each algorithm. The results of this
experiment are shown in Figure 3.1. We see that the approach of [94] does not scale
favourably and it times out on systems with n > 30. On the other hand, the proposed

24

Figure 3.1: Sensor Selection: Runtime comparison of our MIQP, [94], and the greedy
algorithm. The parameters are T = 3 with m = 10 sensors and a budget of p = 5. The
x−axis indicates the state dimension while the y−axis is the running time measured in
seconds.

25

Figure 3.2: Sensor Selection: Solution quality comparison of our MIQP (timed out after
10 seconds) and the greedy algorithm. The x and y coordinate denote the solution costs of
the MIQP (timed out) and the greedy approach respectively. The points above the black
line indicate MIQP obtaining better solutions than greedy. The greedy solution of points
above the red line are at least 10% worse than the MIQP solution.

MIQP solves these instances in under a second which is on average, roughly 50 times
faster for a system with 25 states. However, the proposed MIQP also shows an increase in
runtime as the system size increases albeit at a much slower rate. In fact, until systems of
size n = 35, the runtime is comparable with greedy. The runtime of greedy is extremely
efficient solving all instances in under a second. Further, the approach of [94] exhibits high
variance in its runtime which is in contrast to the proposed MIQP and the greedy algorithm
which exhibit low runtime variability. In summary, the MIQP has a better runtime when
compared to [94] with timings up to 40 times faster while providing optimal solutions.

We also investigate the quality of the solution returned by the MIQP when given a
time out of 10 seconds. In this situation, it would be apt to compare it to greedy since
both return approximate solutions. The setup for this experiment involves fixing the state

26

dimension n = 10, horizon T = 3, number of sensors m = 25, and budget p = 5. We select
a time out of 10 seconds as it is practical assumption on the runtime for an algorithm.
We draw 50 random instances of the system parameters and run both algorithms to get
their solutions. We observed that the MIQP timed out on all drawn instances. For each
instance i, we plot (xi, yi) where xi is the objective value of the solution returned by the
MIQP and yi is the objective value of the greedy solution on instance i. We plot these
points in Figure 3.2. We see that all points lie above the black line y = x indicating
that even in this challenging setting, the MIQP outperforms greedy on all instances even
though it times out. The red line is the function y = 1.1x and thus points that lie above
it are instances where the greedy obtains solutions that are at least 10% worse than the
MIQP solution. We recorded the mean error difference to be 13%. To summarize, these
results suggest the 10 second timed out MIQP returns solutions of quality better or equal
to that of the greedy algorithm. The added benefit is that the MIQP gives a certificate of
suboptimality even though it times out whereas the greedy algorithm, in general, cannot.

3.4.2 Sensor Scheduling with Budget Constraints

We now study the runtime of each approach for sensor scheduling problems. The results
are shown in Figure 3.3. Note that sensor scheduling is a more challenging problem than
sensor selection as one has to select a sensor subset for each time step. We see the approach
of [94] can only tackle systems of size up to n = 14 before timing out (set to 100 seconds).
In contrast, our MIQP solves the same instances in under a second giving improvements
of up to 40 to 60 times. The greedy remains extremely efficient and provides solutions in
under a second for all instances. The summary here is that our MIQP can tackle systems
of size up to n = 35 while providing optimal solutions before starting to display an increase
in runtime, demonstrating its effectiveness.

Our final experiment compares the solution quality of the MIQP, with a 10 second time
out, to the greedy algorithm. This follows the same setup used in the second experiment
for sensor selection (Section 3.4.1) which generates 50 random instances. In this setting,
the MIQP was observed to time out on all drawn instances. The results are shown in
Figure 3.4. The observations are similar to that in sensor selection. We note the MIQP
always returns solutions whose quality is better or equal to that of the greedy algorithm. In
addition, the points above the red line are the instances where the greedy solution is at least
10% worse. When compared to the results in sensor selection (Figure 3.2), the number of
points above the red line is greater in Figure 3.4. This indicates the performance difference
between greedy and the MIQP is larger in sensor scheduling which is also evidenced by the
average error difference recorded to be 19%.

27

Figure 3.3: Sensor Scheduling: Runtime comparison of different algorithms on varying
system sizes. The system parameters are T = 3, m = 10, and budget p = 5. The runtime
is measured in seconds indicated on the y-axis.

3.5 Summary

We studied the general version of sensor scheduling in linear dynamical systems. We
proposed a mixed integer optimization problem that computed optimal solutions. In sim-
ulations, we showed the effectiveness of the approach over prior work in exact formulations
and greedy algorithms.

28

Figure 3.4: Sensor Scheduling: Comparison of solutions the MIQP (timed out after
10 seconds) and the greedy algorithm. The points above the black line indicate MIQP
obtaining better solutions than greedy. The solution cost of the greedy approach of points
above the red line are at least 10% worse than that of the MIQP solution cost.

29

Chapter 4

Informative Path Planning for Active
Regression in Gaussian Processes

4.1 Introduction

The informative path planning (IPP) problem for active regression is a compelling challenge
in robotics. Here, robots with limited resources collect measurements of an unknown
function to produce an estimate with minimum expected estimation error. This is crucial
in scenarios where data collection is expensive or hazardous. For instance, consider a team
of autonomous underwater vehicles exploring the ocean to map temperature variations, a
crucial task for marine ecosystem monitoring. The robots are equipped with temperature
sensors and they aim to create an accurate temperature map. However, this operation
is expensive in terms of energy and potentially risky for the robots. Apart from ocean
monitoring [117, 38, 67, 83, 88, 119], this challenge also arises in other applications including
mapping spatial fields [140, 122, 47], state estimation in linear dynamical systems [79, 111,
16], and sensor selection and scheduling [128, 20, 46].

The IPP problem considered in this chapter is known to be NP-hard since it contains
the orienteering problem [54] as a special case. As a result, current approaches rely on
heuristics to find sub-optimal solutions. However, we are interested in algorithms that
compute optimal solutions: an avenue that has been largely unexplored for IPP. While
these algorithms will have an exponential running time in the worst case, with the right
design, could be very efficient on instances that arise in practice. The challenge lies in
exploiting a suitable structure of the objective in active regression that would allow an
algorithm to discard sub-optimal solutions quickly.

30

We model the target phenomena as a sample from a Gaussian Process (GP). This
framework is widely used in IPP primarily due to three reasons. First, GPs provide an
efficient way to compute a distribution over predictions with the mean serving as the point
estimate and the variance quantifying the uncertainty. Second, the posterior variance at
a test input depends only on the training and test data inputs and not the measurements
(Remark 2.2). Hence, minimizing the variance, a typical goal in IPP, results in determin-
istic optimization problems. Third and crucial to our approach, the distribution mean is
linear and optimal in the mean-squared sense and the distribution variance is equal to the
expected squared estimation error, a result well-known in Bayesian estimation that has not
been exploited in IPP. This property enables the formulation of IPP for active regression
as a mixed integer program (MIP) which is the proposed approach in this chapter.

4.1.1 Contributions

First, we give the first exact formulation of IPP for active regression in GPs as a MIP.
These MIPs are simple to implement in modern solvers and find provably optimal solutions.
This approach has a desirable property that if the algorithm is terminated early, a solution
is returned along with a sub-optimality certificate. Further, an additional benefit is typical
routing constraints can be easily incorporated into the problem since our approach uses
standard network flow techniques to model the paths. Second, we report computational
results in simulation that demonstrate our approach can find optimal solutions in a variety
of settings (large test sets, high connectivity graphs, multiple robots, large path budgets)
and high quality sub-optimal solutions on large graphs across two popular kernels.

4.2 Problem Formulation

Given an environment X ⊂ Rd, the target phenomena to be estimated is modeled as an
unknown function f : X → R. We work in the Bayesian setting where f is a sample from
a Gaussian Process with a zero mean function and covariance kernel k : X × X → R≥0,
i.e., f ∼ GP(0, k).

Our goal is to plan paths of maximum utility for a multi-robot team on a graph defined
on X ⊂ Rd. To this end, we consider the pool-based active learning setting where we
have access to input data V := {v1, . . . , vn} ∈ X n which forms the vertices of a directed
weighted graph G := (V , E , `) with `(u, v) denoting the cost of edge (u, v). Note that we
do not require ` to be a metric. Given a source vertex s and target vertex t, not necessarily

31

distinct, an s-t path (open or closed) is a sequence of vertices 〈u1, . . . , uk〉 with u1 = s,
uk = t, and (ui, ui+1) ∈ E for i = 1, . . . , k − 1. For each vertex ui on the path, the robot
receives a measurement of the form

yi = f(ui) + ηi, (4.1)

where ηi ∼ N (0, σ2) are zero-mean independently and identically distributed random vari-
ables.

We represent a path by a subset of edges P ⊆ E whose characteristic vector is the
vector χP ∈ {0, 1}|E| such that for any edge e ∈ E ,

χPe =

{
1, if e ∈ P
0, otherwise.

(4.2)

The set of all s-t paths in the graph is denoted by

Pst := {χP ∈ {0, 1}|E| : P is an s-t path in G}. (4.3)

With slight abuse of notation, we use P to refer to the path as well as the set of vertices
visited on the path.

The objective we are interested in minimizing is the posterior variance evaluated on a
given test set. For any weight matrix M � 0 and a finite test set T := {t1, . . . , tm} ∈ Xm,
define PostVarTM : 2V → R≥0 to be the M -weighted trace of the posterior variance evaluated
on T ∈ Xm i.e.,

PostVarTM(P) := trace
(
Mk̄PTT

)
, (4.4)

where the posterior variance is given by (2.14):

k̄PTT =
(
kTT − kTP

(
kPP + σ2I|P |

)−1
kPT

)
∈ S|T |+ (4.5)

and for any vertex subset P = {u1, . . . , uk} ⊆ V , we use

kTT = (k(ti, tj))1≤i,j≤m ∈ Sm+
kTP = k′PT = (k(ti, uj))1≤i≤m,1≤j≤k ∈ Rm×n

kPP = (k(ui, uj))1≤i,j≤k ∈ Sk+.
(4.6)

We are now ready to state the problem tackled in this chapter.

32

Problem 5 (IPP in GPs). An instance of the IPP problem is the tuple (G, k, T, r, A, b,
s1, . . . , sr, t1, . . . , tr) whereG = (V , E , `) is a directed graph with vertex set V = {v1, . . . , vn},
k is the kernel of the underlying GP, T := {t1, . . . , tm} is the test set, r ∈ N is the number
of robots, A ∈ Ra×r|E| and b ∈ Ra are the constraint matrix and vector, and finally, si and
ti are the start and target vertices for each i ∈ [r]. The goal is to compute paths P1, . . . , Pr
to

minimize PostVarTM (∪ri=1Pi)

subject to A

χ
P1

...
χPr

 ≤ b,

χPi ∈ Psiti , i ∈ [r].

(4.7)

•

To summarize, we are looking for a collection of paths in a directed graph whose vertex
locations minimize the posterior variance of the underlying GP on a finite set of test
locations. We now discuss a few problem properties.

Remark (Polyhedral Constraints). Representing the path as a characteristic vector allows
for typical routing constraints for path planning to be captured by the linear inequality in
(4.7). We give a few examples relevant to IPP below.

• Path Length: The well studied problem of a single robot with a path length constraint
is modeled using a positive scalar budget b and a row vector A ∈ R|E| where for each
e = (u, v) ∈ E , Ae = `(u, v). The extension to multiple robots with path budgets
follows in a similar manner.

• Sampling Costs : Certain applications involve a sampling cost cv ∈ R>0 for each
vertex v ∈ V . This is modeled by adding half the sampling cost of a vertex to all its
incoming edges and outgoing edges. Specifically, the set of new edge costs is defined
to be ¯̀(u, v) := `(u, v) + 1

2
cu + 1

2
cv (ignoring sampling costs at the start and end

since those vertices will always be visited). Since any vertex on a path has exactly
one incoming and one outgoing edge, this converts it into an equivalent path length
constraint.

• Expert Constraints : In environmental monitoring, experts typically provide robot
operating constraints. For example, robots may be allowed to collect at most a fixed
number of data points in dangerous regions. Specifically, for any subset V ⊆ V
representing a region of interest, one can enforce the sum of the number of outgoing
edges for all vertices v ∈ V to be at most a budget of N > 0.

33

Remark (Weighted Trace Objective). The weighted trace (by a positive semidefinite ma-
trix) is a generalization of the objectives typically considered in IPP. For example, it
contains the well studied version of M = Im which equally weighs the error at all points
in the test set. However, one can also target the cross covariances using the off-diagonal
elements of M . In many situations, one may be interested in minimizing log det(k̄PTT).
Unfortunately, it is concave in k̄PTT [14, Section 3.1.5] making the minimization difficult.
However, one can find a local minimum via a series of weighted trace minimizations [48].
Let C represent the constraint set in (4.7). Using the idea in [48] yields the following
iterative method:

Pk+1 = min
P∈C

trace
(
Mkk̄

P
TT

)
Mk =

(
k̄PkTT + δIm

)−1

.
(4.8)

Thus, minimizing the weighted trace can be used to find a locally optimal solution to the
problem of minimizing log det.

4.3 Mixed Integer Convex Formulation

The challenge in optimally solving the IPP problem lies in identifying an appropriate
structure of the set function (4.4) for optimization. While the decision variables for the
edges have been set up in Problem 5, representing the objective in terms of these variables
is not obvious. The main contribution of this chapter is the formulation of Problem 5 as a
mixed integer program (MIP). We first present the key result that gives the MIP: viewing
the weighted trace as a convex minimization problem for a given set of vertices. This is
formalized below.

Theorem 5 (Objective Reformulation). Define c : Rm×n → R≥0 to be the function that
maps the coefficients K ∈ Rm×n of any linear estimator of f ∼ GP(0, k) on the set T ⊂ X
using the measurements Y ∈ Rn obtained at inputs V ⊂ X :

c(K) := E
[
(fT −KY)′M(fT −KY)

]
. (4.9)

Further, given a path P , let yP ∈ {0, 1}|V| denote the characteristic vector of its visited
vertices. Then, the objective in (4.4) can be written as the minimum of the following
convex optimization problem:

PostVarTM(P) = min
{
c(K) : Ktv(1− yPv) = 0,

t ∈ T, v ∈ V
}
.

(4.10)

34

Theorem 5 is the key result that enables an exact formulation for Problem 5. It pro-
vides a convex formulation of the objective in terms of the characteristic vectors of the
visited vertices making it amenable to mixed integer optimization. The proof is deferred
to Section 4.3.1 since it requires intermediate results. The proof idea is to exploit the op-
timality of the posterior mean in Gaussian Process regression for functions of the squared
loss (Section 4.3.1). The last remaining piece is to connect the edge characteristic vectors
in Problem 5 to the vertex characteristic vectors which is accomplished using standard
network flow techniques (Section 4.3.2).

4.3.1 Quadratic Formulation

Our roadmap to the quadratic formulation is as follows. First, we view the GP posterior
mean as the linear least squares estimator (LLSE) and show that the posterior variance is
equal to the mean squared estimation error. While this is known in Bayesian estimation
[34, Chapter 3], it has not been exploited for IPP. Next, we show that the LLSE is optimal
for a class of functions of the mean squared error including the weighted trace in Problem 5
finally leading to the proof of Theorem 5.

GP Regression and MMSE We begin with an alternative perspective on the Gaussian
Process predictive equations (2.14). Typically, the equations are derived using Gaussian
conditioning identities [73, Theorem 3.1]. However, the view through the lens of minimum
mean squared error estimation (MMSE) allows us to formulate the IPP problem for active
regression exactly. The following result is also known as the best linear unbiased predictor
property of the posterior mean. The proof is relatively straightforward and we include it
for completeness.

Theorem 6 (GP Regression Optimality). Assume the setup governed by equations (2.10)
and (2.11). Let X ∈ X n and Y ∈ Rn denote a set of inputs and measurements respectively.
In addition, let T ∈ Xm denote the test set. Then, the posterior mean m̄X

T := E[fT |Y] ∈ Rm

in (2.14) is the linear least squares estimator of fT given measurements Y i.e.,

m̄X
T = K∗Y, (4.11)

where K∗ ∈ Rm×n is computed by minimizing the expected squared error over the class of
linear estimators i.e.,

K∗ := arg min
K

E
[
(fT −KY)′ (fT −KY)

]
= kTX

(
kXX + σ2In

)−1
.

(4.12)

35

Further, the posterior covariance k̄XTT ∈ Sm+ is equal to the error covariance resulting from
the posterior mean i.e.,

k̄XTT = E
[(
fT − m̄X

T

) (
fT − m̄X

T

)′]
= E

[
(fT −K∗Y) (fT −KY)′

]
.

(4.13)

Proof. The proof follows from an application of Theorems 1 and 2. The measurements
Y ∈ Rn and GP function values fT ∈ Rm are jointly Gaussian random vectors such that[

fT
Y

]
∼ N

(
0,

[
kTT kTX
kXT kXX + σ2In

])
. (4.14)

By the application of Theorem 2 with x = fT and y = Y , the MMSE estimator i.e., the
posterior mean E [fT |Y], is linear in Y . In the notation of Theorem 1, this corresponds
to Σxy = kTX , Σxx = kTT , and Σyy = kXX + σ2In. Now, the application of Theorem 1
gives (4.11) and (4.12). Finally, the posterior covariance k̄XTT is not a random variable
(Remark 2.2) and using the definition of the posterior variance in (2.14),

k̄XTT = E
[
k̄XTT

]
= E

[
E
[
(fT − m̄X

T)(fT − m̄X
T)′|Y

]]
,

= E
[
(fT − m̄X

T)(fT − m̄X
T)′
]
.

(4.15)

The significance of Theorem 6 is that the GP posterior mean is the MMSE estimator
and is linear. In the following section, we will focus on the optimality properties of linear
estimators for a class of objective functions including the weighted trace.

LLSE Optimality The coefficients of the optimal linear estimator minimizes the ex-
pected squared error as shown in Theorem 1. We will show that these coefficients are also
the minimizers of the class of matrix non-decreasing functions of the posterior variance
(equivalently, the error covariance by Theorem 6). First, we define a matrix non-decreasing
function.

Definition 4 (Matrix Non-Decreasing Function). A function g : Sn → R is called matrix
non-decreasing if it is monotone with respect to the positive semidefinite cone i.e.,

x � y =⇒ g(x) ≥ g(y). (4.16)

36

Lemma 5 (Optimality for Matrix Non-Decreasing Functions). Let x and y be jointly
distributed random vectors (of sizes m and n) with zero mean and covariance given by[

Σxx Σxy

Σyx Σyy

]
∈ Sm+n

+ . (4.17)

Denote h : Rm×n → Sm+ to be the function that maps the coefficients K ∈ Rm×n of any
linear estimator of x given y, to its associated error covariance i.e.,

h(K) := E [(x−Ky)(x−Ky)′] . (4.18)

Let g : Sm+ → R≥0 be any non-negative matrix non-decreasing function and define c :
Rm×n → R≥0 to be the composition

c = g ◦ h. (4.19)

Then, the LLSE coefficients K∗ = ΣxyΣ
−1
yy ∈ Rm×n satisfy

K∗ ∈ arg min
K∈Rm×n

c(K). (4.20)

Proof. We will show that for any coefficients K ∈ Rm×n,

c(K) ≥ c(K∗). (4.21)

This follows from a combination of Lemma 2 and Definition 4. Lemma 2 states that for
any K ∈ Rm×n,

h(K) � h(K∗). (4.22)

Then, using the fact that g is matrix non-decreasing gives

g(h(K)) ≥ g(h(K∗))

=⇒ c(K) ≥ c(K∗).
(4.23)

The key takeaway of Lemma 5 is we can recover the LLSE coefficients by optimizing over
the class of functions that are compositions of matrix non-decreasing functions of the error
covariance matrix i.e., the functions given by c in (4.19) over the set of linear estimators
described by the coefficients K. This is a critical property that will help represent the
objective as a convex minimization problem. This result is important because several
objectives of interest for IPP are matrix non-decreasing functions [14, Example 3.46] on
Sm+ :

37

• Weighted Matrix Trace: g(X) = trace(MX).

• Log Determinant : g(X) = log det(X).

Mixed Integer Formulation We now have the required results to prove Theorem 5.
Recall for a path P , yP ∈ {0, 1}|V| is the characteristic vector of the vertices visited on the
path i.e., for any vertex v ∈ V ,

yPv =

{
1, if v ∈ P
0, otherwise.

(4.24)

The idea of the proof is to optimize over the class of linear estimators K ∈ Rm×n using
measurements at all n vertices with the constraint that the coefficient corresponding to
a vertex can be used only if the vertex is visited on the path. We now present the proof
which will make this idea precise.

Proof of Theorem 5. Consider the constraint Ktv(1−yPv) = 0. It gives the following equiv-
alence: yPv = 0 =⇒ Ktv = 0 for all t ∈ T i.e., the measurement at vertex v cannot be
used in the estimator since it was not visited on the path P or equivalently, the column
in K corresponding to the vertex v is zero. Thus, when taking a linear combination KY ,
the measurements in Y corresponding to the zero columns can be dropped. If we denote
YP ∈ R|P | as the subset of measurements corresponding to the visited vertices P , then we
can rewrite the minimization as

min
{
c(K) : Ktv(1− yPv) = 0, t ∈ T, v ∈ V

}
,

= min
K∈Rm×|P |

E
[
(fT −KYP)′M(fT −KYP)

]
,

= min
K∈Rm×|P |

trace
(
ME

[
(fT −KYP)(fT −KYP)′

])
,

(4.25)

where the last line follows from the linearity of the trace and expectation and the fact that
trace(AB) = trace(BA) for any conformable matrices A,B. The last step in the proof is
an appropriate application of Lemma 2. Let x = fT ∈ Rm, y = YP ∈ R|P |. Then, the
function h : Rm×|P | → Sm+ in Lemma 5 is given by

h(K) = E [(fT −KYP)(fT −KYP)′]

= K(kPP + σ2I|P |)K
′ − kTPK ′ −KkPT + kTT .

(4.26)

38

Now, let g : Sm+ → R≥0 be the weighted matrix trace

g(X) := trace(MX). (4.27)

Then, applying Lemma 5 gives the optimal solution to (4.25) as K∗ = ΣxyΣ
−1
yy = kTP (kPP +

σ2I|P |)
−1 with value

min
K∈Rm×|P |

trace
(
ME

[
(fT −KYP)(fT −KYP)′

])
= trace

(
ME

[
(fT −K∗YP)(fT −K∗YP)′

])
= trace(Mk̄PTT) = PostVarTM(P),

(4.28)

where the last equality follows from an application of Theorem 6 with X = P and Y = YP .

Finally, we will show the minimization problem in the RHS of (4.10) is convex by
showing c is convex and the equality constraints are affine. It is clear that for any fixed
path P , the constraint Ktv(1−yPv) = 0 is affine in K. Notice that c = g◦h is a composition
of g and h. Using a composition theorem for convexity [14, Section 3.6.2], we have that c is
convex since g is matrix non-decreasing (since M � 0) [14, Example 3.46] and h is convex
[14, Example 3.49].

39

4.3.2 Network Flow Formulation

The IPP problem for active regression in Gaussian Processes (4.7) is formulated as the
following mixed integer program:

minimize tr
(
M
(
K(kVV + σ2In)K ′ − 2kTVK

′ + kTT
))

subject to∑
e∈E inv

χie =
∑
e∈Eoutv

χie ≤ 1, i ∈ [r], v ∈ V \ {si, ti}, (4.29)

∑
e∈E inti

χie =
∑
e∈Eoutsi

χie = 1, i ∈ [r], (4.30)

∑
e∈E insi

χie =
∑
e∈Eoutti

χie = 0, i ∈ [r], (4.31)

∑
e=(u,v)∈E:
u,v∈S

χie ≤ |S| − 1, i ∈ [r], S ⊂ V \ {si, ti}, (4.32)

yv ≥
∑
e∈E inv

χie, i ∈ [r], v ∈ V \ ∪ri=1{si, ti}, (4.33)

yv ≤
r∑
i=1

∑
e∈E inv

χie, v ∈ V \ ∪ri=1{si, ti} (4.34)

Ktv (1− yv) = 0, t ∈ T, v ∈ V \ ∪ri=1{si, ti}, (4.35)

A

χ
1

...
χr

 ≤ b, i ∈ [r], (4.36)

χi ∈ {0, 1}|E|, i ∈ [r], (4.37)

y ∈ {0, 1}|V|, (4.38)

K ∈ Rm×n, (4.39)

where the covariance matrices across the test set T = {t1, . . . , tm} and vertices V =
{v1, . . . , vn} are given by the kernel of the underlying Gaussian Process f ∼ GP(0, k)
i.e.,

kTT = (k(ti, tj))1≤i,j≤m ∈ Sm+
kTV = (k(ti, vj))1≤i≤m,1≤j≤n ∈ Rm×n

kVV = (k(vi, vj))1≤i,j≤n ∈ Sn+.
(4.40)

40

We start by introducing the decision variables χi ∈ {0, 1}|E| which represent the path
of robot i in the graph where χie = 1 if edge e is traversed by robot i and 0 otherwise.
The sets E in

v := {(u, v) ∈ E} and Eout
v := {(v, u) ∈ E} represent the set of incoming and

outgoing edges from vertex v. The constraints (4.29), (4.30), (4.31), (4.32) enforce the
s-t path constraint for all robots using network flow techniques. Specifically, constraints
(4.29) ensure that all vertices (except the start and target) have the in-degree equal to
the out-degree which can be at most equal to 1 (if the vertex is visited). Then, (4.30)
and (4.31) enforce the in-degree and out-degree constraints for the start and end nodes.
The constraints in (4.32) prevent ensure no subtours are allowed i.e., on any subset of
vertices of size k, the number of edges with both endpoints in that subset must be less
than or equal to k−1 (otherwise it would contain a cycle). We then introduce the decision
variables y ∈ {0, 1}|V| to represent whether vertex v is visited (by at least one robot).
Constraints (4.33) and (4.34) connect the edge decision variables to the vertex decision
variables. Specifically, (4.33) ensures for every vertex v, if a robot i visits it i.e., there is an
incoming edge to v, then yv must be set to 1. Next, (4.34) ensures that if no robots visit
a vertex v, yv must be set to 0. Finally, the objective and constraint (4.35) follow from an
application of Theorem 5.

The number of decision variables is r|E|+ |V|+mn which is O(rn2 +mn) where m is
the number of test points and n is the number of graph vertices. The constraint (4.35) can
be implemented as an SOS Type 1 constraint [9]. However, the constraint set described
by (4.32), which we refer to as the subtour constraints, is exponential in the number of
vertices preventing its enumeration at the beginning. There are two standard techniques
to deal with this issue: the Miller-Tucker-Zemlin (MTZ) formulation [93] or a lazy callback
approach [91]. We evaluate both techniques in simulation.

MTZ Formulation This introduces extra variables to eliminate subtours and replaces
(4.32) with new constraints. Specifically, for each i ∈ [r] and each vertex v ∈ V , we
introduce the variables aiv ∈ R and the constraints

aisi = 1, i ∈ [r]

2 ≤ aiv ≤ n, v ∈ V \ {si}, i ∈ [r]

aiu − aiv + 1 ≤ (n− 1)(1− χie), e = (u, v) ∈ E , i ∈ [r].

(4.41)

This is a well-known method for eliminating subtours and the reader is referred to [93] or
[103] for more details.

41

Lazy Callback The alternative to the MTZ formulation is a lazy approach that follows
the algorithm introduced in [91]. First, the MIP is solved without the subtour constraints
(4.32). When an integer solution is found, it is tested for feasibility i.e., does the solution
contain any subtours? If the solution is feasible, it is optimal and the algorithm terminates.
If not, the violated subtours of the form (4.32) are added to the constraint set and the
resulting MIP is solved again. Note that at each iteration, finding subtours in the current
solution is easy: it is sufficient to find a connected component in the subgraph given by
the edges of the solution which does not include the start and end nodes s, t ∈ V . In the
worst case, the algorithm would enumerate all the subtour inequality constraints described
by (4.32), suggesting that this approach is impractical. Further, one needs to solve a MIP
at each iteration, which in the worst case, requires an exponential number of leaves to
explore in the branch and bound algorithm. However, in practice (Section 4.4), one only
requires a few inequalities to be added before arriving at an optimal solution. Note that
this approach solves a sequence of MIPs, each differing only by a few linear inequalities
(the violated subtour constraints). A naive implementation would involve the creation of
a new branch and bound tree (to solve the MIP) each time a new set of inequalities are
added, which is computationally inefficient. We implement a single tree solution using
dynamic constraint generation, known in the optimization literature as a lazy constraint
or a column generation method. Lazy constraints add constraints whenever an integer
solution is found [4], saving the trouble of recreating the search tree each time the MIP
needs to be resolved. This is straightforward to implement in modern solvers including
Gurobi [60] and CPLEX [32].

4.3.3 Efficient Warm Starts for Budgeted Paths

In this section, we provide the details of the greedy algorithm used to warm start our MIP
in the setting of path length constraints. This improves the computational speed in practice
and in general, it is better to start the search with a high quality feasible solution yielding
a good upper bound which helps prune large parts of the search tree. The greedy algorithm
has strong empirical results when minimizing the trace (without the path constraints) and
is a natural choice.

The greedy algorithm for the point-to-point IPP problem differs from its rooted coun-
terpart. In the rooted version, the next point that maximizes the marginal gain (normalized
by the cost of the edge) is selected until the robot runs out of budget. However, this idea
does not work in the point-to-point version since the robot must end up at the target node.
We adapt the idea from [52] for the single robot case (Algorithm 1). Here, the algorithm
finds an initial feasible path (Line 1) from start to target (for example, the shortest path)

42

and greedily adds vertices to the tour that maximize the error reduction (Line 8). To
minimize the resulting path lengths, we use the 2-OPT heuristic (Line 7). The extension
to the multi-robot case follows the idea proposed in [13], where one plans multiple paths
sequentially using the single robot greedy algorithm as a subroutine. Specifically, at iter-
ation i, the path for robot i is planned using the single robot greedy algorithm where the
vertices visited by robots 1, . . . , i− 1 are added to the collected measurement set for robot
i (so that there is no benefit for robot i to visit a previously visited vertex).

Algorithm 1: SingleRobotGreedy

Input: Graph G = (V , E , `), budget B, start node s, target node t, visited
locations S ⊂ V

Output: s-t path P
1 P ∗ ← InitialFeasiblePath(s, t)
2 do
3 P ← P ∗

4 best ← 0
5 P ∗ ← null
6 for v ∈ V do
7 P ′ ← 2-OPT(P ∪ S ∪ {v})
8 margin ← PostVarTM (P∪S)−PostVarTM (P ′∪S)

Cost(P ′)−Cost(P)

9 if margin > best and Cost(P’) ≤ B then
10 best ← margin
11 P ∗ ← P ′

12 while P ∗ 6= null
13 return P

4.4 Numerical Results

We demonstrate the effectiveness of our approach on several numerical experiments. First,
we discuss how our approach can be used in real world settings using an illustrative ex-
ample (Section 4.4.1). Second, we present an analysis on randomly generated instances
to benchmark the MIP against the commonly used greedy algorithm (Section 4.4.2). All
experiments are run using Gurobi 11.0 (free for academic use) on a computer with 16GB
RAM and an AMD Ryzen 7 processor.

43

4.4.1 Illustrative Example: Elevation Mapping on Mt. St. He-
lens

We begin with a qualitative example on an elevation mapping dataset for Mount St. Helens
in Washington, USA. Robot terrain mapping using GPs have been considered before [130]
and the preprocessed data is publicly available 1 [25].

The input data consists of 2D coordinates and the corresponding measurements are
the elevation values. We select a subset of the data to perform GP model selection.
Specifically, we consider the squared exponential kernel and estimate its hyperparameters
by maximizing the marginal likelihood of the data (see [135, Chapter 5] for details). The
graph vertices and test set are selected to be a subset of the training input data and test
input data respectively. Each vertex is connected to its four nearest neighbours with the
edge weights given by the Euclidean distance. Figure 4.1a shows the graph (blue vertices,
black edges) and the test set (green circles). The robot plans a path from start (red square)
to target (blue diamond) to minimize the expected estimation error on the test set.

The plot in Figure 4.1a shows the estimated elevation map as well as the empirical root
mean squared error (RMSE) at the test locations if the robot had collected measurements
at all the vertices. The RMSE is the average squared error computed using the actual
dataset measurements versus the expected squared error in the objective function for IPP.
Under the specified GP model, this estimate (contour plot in Figure 4.1a), with an RMSE
of 242 feet, is the best any feasible solution to the IPP problem can hope to achieve. A
typical solution to IPP will not visit all graph vertices due to resource constraints resulting
in higher RMSE as we will see below.

Figure 4.1b shows the optimal planned path for a single robot under a path length
constraint. The plot shows the estimated elevation map resulting from the measurements
collected on the path vertices, which achieves an RMSE of 685 feet. Due to the budget
constraint, the RMSE is nearly 2.8 times worse than if the robot visited all locations. Note
that visiting the top-right region in Figure 4.1b would yield a significant reduction in error
due to the presence of multiple test points (green circles). However, the robot is unable to
visit that region and yet, the estimated map in that region seems visually accurate when
compared to Figure 4.1a. This is because the variables in this GP are highly correlated.
Thus, measurements give reasonable information about points that are further away and
since the robot takes measurements that are somewhat close to test points in this region,
the estimates are moderately accurate. On the other hand, if the closest measurement to
a test location is very far away, then there is no hope for a good estimate. This is seen

1github.com/Weizhe-Chen/attentive kernels

44

https://github.com/Weizhe-Chen/attentive_kernels/tree/main

(a) The plot shows the RMSE
and estimated map using mea-
surements at all vertices. This
is the best any IPP feasible solu-
tion can achieve.

(b) The optimal single robot
path. The robot cannot visit
all vertices due to budget con-
straints and the resulting map
estimate is inaccurate.

(c) The planned paths for two
budget constrained robots. The
addition of another robot im-
proves the estimation quality sig-
nificantly.

Figure 4.1: Elevation mapping on Mount St. Helens. The robots plan budgeted paths
from start (red square) to target (blue diamond) on the graph vertices (blue circles) with
the goal of minimizing the expected estimation error on the test points (green circles).

in the lower half region of the plot in Figure 4.1b which is unexplored by the robot. As a
result, the robot predicts the elevation values to be close to the maximum value whereas
the best estimates are closer to the minimum as seen in Figure 4.1a.

Our approach also handles multiple robots planning budgeted paths with distinct start
and target vertices as shown in Figure 4.1c. The addition of a second robot allows for
higher exploration resulting in a more accurate map when compared to the single robot
setting in Figure 4.1b as evidenced by the RMSE of 351 feet. By visiting less than half
the number of graph vertices, the multi-robot achieves an error 1.45 times worse than if it
had collected all the data as in Figure 4.1a. Here, we see that the paths are significantly
different from the single robot case. Thus, even if one has a near-optimal single robot
planner, it may not be sufficient to generate near-optimal plans in the multi-robot setting,
motivating the need to plan jointly for multiple robots such as the formulated MIP.

45

(a) MIP Performance - Squared Exponential Ker-
nel

(b) MIP Runtime - Squared Exponential Kernel

(c) MIP Performance - Matern Kernel (d) MIP Runtime - Matern Kernel

Figure 4.2: The analysis of MIP solution quality and runtime over different batch settings
for two kernels: squared exponential and Matern. We run each algorithm on 50 different
instances per batch setting and record the solution and the runtime. (a) and (c) show the
relative improvement in MIP solution quality over the greedy approach. (b) and (d) show
the MIP runtime (log scale) across different batch settings.

46

4.4.2 Analysis of Random Instances

In this section, we provide numerical results showing that i) optimally solving the proposed
MIP yields significant improvements in solution quality over a greedy baseline, and ii) we
can achieve a practical runtime for moderate problem instances. To this end, we present a
statistical analysis of algorithm performance on the well-studied problem of planning bud-
geted paths. The baseline algorithm we compare against is the greedy approach described
in Section 4.3.3, which is popular in orienteering and IPP. As discussed in Section 4.3.2,
there are two ways to implement the subtour constraints: the MTZ formulation and the
lazy callbacks. Further, we also investigate the role of warm starting the MIP using the
greedy solutions. Thus, we evaluate the performance of the following four approaches:
Lazy - Warm, Lazy - No Warm, MTZ - Warm, and MTZ - No Warm. As the names suggest,
these implement the lazy callbacks and MTZ methods for subtour elimination with and
without the greedy warm starts. We will see that MTZ - Warm is the preferred approach,
both in terms of solution quality and runtime, on larger instances whereas Lazy - Warm

finds optimal solutions on smaller instances more quickly. We measure the performance
of each algorithm by the expected estimation error and the cost of an algorithm by its
runtime in seconds. We set a timeout of 120 seconds and return the best solution found in
that time frame.

Instance Setup: The instances for the budgeted path problem are constructed as follows.
The environment we consider is a 50 × 50 square. We sample m points uniformly at
random in the square to generate the test set T . We construct a probabilistic roadmap
with n vertices, connection factor k, and weights given by the Euclidean distance. The
robots must traverse this graph with path length budget B. We first solve 50 instances
on a nominal set of parameters: number of graph vertices n = 40, number of test points
m = 20, connection factor k = 3, budget B = 100, and number of robots r = 1. Then,
we solve five other batches of problems where in each batch, a different set of parameters
is increased by a factor of 3. Note that we run 50 instances for each batch setting. These
batches are large graphs (n from 40 to 120), high connectivity (k from 3 to 9), large budgets
(B from 100 to 300), large test sets (m from 20 to 60), and multiple robots (r from 1 to
3).

We run our simulations using two widely used kernels in GP regression [135]: the
squared exponential with lengthscale L = 5, signal standard deviation σ0 = 100 and the
Matern 3/2 kernel with lengthscale L = 5. Further, we assume the measurements are
corrupted with zero mean noise and standard deviation σ = 0.1. Note that the parameter
L roughly measures how quickly the function changes as the distance increases i.e., as L
increases, the function values at points further apart are correlated. To give some intuition

47

for these parameters choices, one would have to sample at a distance of 4.13 units from
a test point to reduce the associated expected squared estimation error by ≈ 50% when
using the squared exponential kernel in the environment described above. Note that if the
length scale parameter L is close to zero, measurements would yield very little information
about the function values at the test points which is not an interesting setup. On the other
hand, if L is very large, most feasible paths yield good solutions since a few measurements
will suffice to give good estimation quality. As a result, we select an approximate middle
ground where L is neither too high nor too low. Finally, the parameter σ2

0 is a scaling
factor and the measurement noise variance σ2 impacts the reliability of each measurement:
higher variance implies a noisier measurement which in turn implies lower reduction in
expected estimation error.

We plot the relative performance with respect to the greedy algorithm as well as the
absolute runtimes for both kernels in Figure 4.2. We discuss the following observations.

Improved Solution Quality over Greedy In Figure 4.2a, we observe significant im-
provements in solution quality using the MIP over the greedy algorithm for the squared
exponential kernel. Specifically, the best performing MIP exhibits the following approx-
imate median improvements: 12% for nominal (Lazy - Warm), 11.1% (Lazy - Warm) for
large test sets, 14.6% (MTZ - Warm) for high connectivity, 16.3% (MTZ - Warm) for large
graphs, 28.2% (Lazy - Warm) for multiple robots, and 50.8% (Lazy - Warm) for large bud-
gets. In the case of the Matern kernel (Figure 4.2c), the median improvements are: 8.7%
for nominal (Lazy - Warm), 7.2% for large test sets (MTZ - Warm), 9% for high connectiv-
ity (MTZ - Warm), 12.8% for large graphs (MTZ - Warm), 17.2% for multiple robots (MTZ
- Warm), and 36% for large budgets (MTZ - Warm). The sub-optimality of the greedy al-
gorithm for single and multi-robot planning is apparent in the batches of multiple robots
and large budgets. The drastic performance improvement in large budgets is interesting.
When the budget is low B = 100, the optimal path is not very different from the shortest
path between the start and target nodes (which is used to provide an initial feasible solu-
tion to greedy). This is the reason for the minor improvements in the batches apart from
large budgets. However, for larger budgets, the optimal paths are quite different from the
shortest path, leading to much lower expected estimation errors. Of course, one could use
different initial feasible solutions for greedy but it is not clear which scheme would yield
the best performance. Finally, MTZ - Warm is preferred slightly over Lazy - Warm due to
the gap in solution quality on large graphs for Matern kernels (Figure 4.2c) and similar
performance elsewhere.

48

Importance of Warm Starts We find that warm starts are crucial to finding high
quality solutions, especially in the large graph and multiple robot setting. In Figures 4.2a
and 4.2c, we see multiple instances of negative relative improvement: Lazy - No Warm

on high connectivity, large graphs, and multiple robots in Figure 4.2a, MTZ - No Warm on
nominal and large test sets (in addition to high connectivity, large graphs, and multiple
robots) in Figure 4.2c. On these instances, a negative relative improvement implies the best
returned solutions were of worse quality than greedy. In contrast, warm starting enables
the solver to find better quality solutions as evidenced by the improvement on large graphs
in Figure 4.2a and on multiple robots in both Figures 4.2a and 4.2c.

Efficient Runtimes We have established that computing solutions with the MIP leads
to a substantial improvement in solution quality over the greedy algorithm. This naturally
leads to the question: how long does it take to find these optimal/sub-optimal solutions?
Note that the greedy algorithm computes solutions in under a second making it extremely
efficient. In Figure 4.2b, we observe that the median runtimes (in seconds) of Lazy - Warm

are as follows: 1.8 (nominal), 12.2 (large test sets), 120 (high connectivity, large graphs),
13.6 (multiple robots), and 2.8 (large budgets). For the Matern kernel (Figure 4.2d), the
median runtimes are: 1.9 (nominal), 15.7 (large test sets), 108 (high connectivity), 120
(large graphs), 13.6 (multiple robots), and 2.7 (large budgets). These results are encour-
aging since the majority of the instances are solved to optimality (recall the timeout is 120
seconds). Further, Lazy - Warm has faster runtimes compared to MTZ - Warm especially
in the case of multiple robots and large budget. The challenging instances are on high con-
nectivity and large graphs where the median runtimes are 120 seconds indicating time outs.
This does not come as a surprise as the number of MIP decision variables scales linearly
with the number of edges as well as the number of vertices increasing the time required to
find optimal solutions. In any case, we dig deeper and investigate the relationship between
solution quality and runtime below on large graphs below.

Solution Quality vs Runtime We study the quality of returned MIP solutions (in
terms of relative improvement over greedy) as a function of its runtime on large graphs.
This setting was particularly challenging for the MIP when the timeouts were set to 120
seconds in the analysis above. We aim to understand if increasing the timeout will yield
significantly higher quality solutions over the greedy algorithm. On each generated problem
instance, the MIPs are progressively timed out at 60 second intervals and the returned
solutions at each interval are recorded. We consider three budget settings: low (B = 100),
moderate (B = 150), and high (B = 200). We generate 50 instances for each budget
with the other parameters matching the large graph batch setting (as described at the

49

(a) Low Budget (b) Moderate Budget (c) Large Budget

Figure 4.3: The relative performance of the MIP on large graphs with varying budgets (low,
moderate, large). Each plot shows the statistics of the relative improvement in solution
quality over greedy as a function of the MIP timeout (in seconds).

beginning of this section) and report the results in Figure 4.3. We observe the following.
First, we verify that increasing the timeout does indeed return higher quality solutions.
The median improvement in performance goes up from 10.7% to 17.4% (Lazy - Warm) and
20.2% to 20.8% (MTZ - Warm) on low budgets, 3.5% to 40.6% (Lazy - Warm) and 40.3%
to 43.9% (MTZ - Warm) on moderate budgets, and 0% to 55% (Lazy - Warm) and 53.4%
to 58.2% (MTZ - Warm) on large budgets. Second, MTZ - Warm obtains better solutions
than Lazy - Warm suggesting that on large instances, the MTZ formulation is preferred.
The interesting fact here is that most of the performance increase is accomplished within
the first 60 seconds for MTZ - Warm. Thus, the MIP would be useful in situations where
the robot can afford to spend additional computational resources to obtain higher quality
solutions (anytime property of MIPs).

4.5 Summary

In this chapter, we proposed the first exact formulation for IPP in GPs as a MIP. Our
approach exploited the optimality of the posterior mean to give the resulting MIP. We
showed that the approach is capable of optimally solving IPP in a variety of settings.

50

Chapter 5

Approximation Algorithms for Robot
Tours in Gaussian Processes

5.1 Introduction

We are often faced with the challenge of minimizing the amount of data collected in order to
build models with good predictive uncertainty. This is especially important in informative
path planning where robots must collect data in hazardous conditions where operation is
expensive or risky. For example, mapping the spatial distribution of radioactivity in post-
disaster environments by unmanned aerial vehicles is critical to designing measures to
protect humans from radiation exposure [26]. In most cases, we can harness the structure
of the phenomena to produce reliable maps with little data. This raises the question: how
do we minimize resource usage while reliably mapping these environmental phenomena?
In this chapter, we design approximation algorithms which produce a set of data sample
locations and tours that robots can follow to ensure the resulting model predictions have
low uncertainty.

We focus on the setting where the phenomena is modeled as a isotropic Gaussian
Process (GP) which allows the predictive uncertainty to be measured by the posterior
variance. Specifically, we consider two problems: Sample Placement and Shortest
Tour. Both problems deal with the same constraint: ensure the posterior variance at
each location in a given test set is within a given threshold. In Sample Placement, we
seek to find a candidate location set of minimum size. In a similar vein, Shortest Tour
aims to find the tour of minimum length whose vertex set satisfies this constraint.

51

(a) Convex Environments

(b) Finite Test Sets

Figure 5.1: A visualization of the solution approaches presented in this chapter for Sample
Placement and Shortest Tour in two settings. The vertex set (filled white disks) of
the tour (black edges) guarantee low variance in the shaded regions (yellow hexagons/white
disks). The radius of the hexagons and disks are selected to ensure high prediction accuracy.
a) Tours based on hexagonal covers in convex environments. b) Tours based on minimum
set covers for finite test sets.

52

Since the general version of Sample Placement and Shortest Tour are NP-hard,
we identify two cases relevant to robotics which are amenable to efficient approximation
algorithms: convex environments with constant threshold variances and finite test sets
with arbitrary threshold variances. Convex environments with constant thresholds are the
simplest setting where one desires accurate predictions everywhere in the environment.
However, in certain situations, we desire low predictive uncertainty only in a select few
locations. For example, in precision agriculture, these locations could be regions suspected
of nutrient deficiencies or pest outbreaks and the objective is to predict the quantities with
high confidence.

Contributions We give four approximation algorithms as well as a heuristic for Sample
Placement and Shortest Tour in two settings: convex environments and finite test
sets.

• We develop HexCover and HexCoverTour for convex environments based on
hexagonal covers. These improve previously known results, both in terms of the
approximation factor as well as simulation results.

• We give the first approximation algorithms IntersectCover and TSPNTour for
finite test sets.

• While TSPNTour is primarily a theoretical result, we give a simple heuristic
IntersectTour which yields good solutions in practice.

The defining features of our algorithms are efficiency, ease of implementation, worst-case
performance guarantees and use minimal assumptions when compared to prior work. Fur-
ther, we also disprove a claim in the literature [122] on a necessary condition for Sample
Placement in convex environments.

Related Work The sample placement and shortest tour problem for GPs with isotropic
kernels have been considered previously [122, 121, 124]. The case of convex environments
with constant thresholds was tackled in [122]. The authors propose a two-phase strategy
for sample placement: pack the environment with large disks and then cover them with
smaller disks of specific radii. Unfortunately, this two-step approach uses an excessive
number of samples. In contrast, our algorithm uses fewer samples resulting from a simple
covering algorithm and also improves the worst-case performance guarantees. Further, the
authors claim that a packing of the larger disks provides a lower bound for the sample

53

placement problem. However, we disprove this claim by finding a counterexample that
invalidates the lower bound in Section 5.3.2.

The work in [124] solve a relaxed version of the shortest tour problem with finite test
sets. The problem is, for a given set of disks, to obtain at least one measurement in every
disk, termed SamplingTSPN, closely related to the traveling salesman problem with
neighbourhoods [41]. The approach computes a sample set through dense grid sampling
around an approximate solution to a constructed set cover problem. Further, the resulting
approximation guarantee holds only for the relaxed problem and not sample placement or
shortest tour. In this chapter, we provide a covering algorithm which follows in a similar
spirit but has a stronger theoretical guarantee and also uses less samples in practice.

Minimizing robot resource usage to satisfy chance constraints for GP regression have
also been tackled [121]. Here, the constraint is ensure the posterior distribution is concen-
trated around its mean with high probability. The authors in [121] give an approximation
algorithm that is similar to the algorithm proposed in [122]. However, in Section 4.2, we
show that this chance constraint is equivalent to the posterior variance constraint consid-
ered in this chapter. As a result, our proposed algorithms are also applicable for the chance
constrained problem. Further, our algorithms also use minimal assumptions in comparison
to [121]. Specifically, we do not require Lipschitz continuity on the underlying unknown
function nor do we require an a priori upper bound on the solution to the sample placement
problem.

5.2 Problem Formulation

We consider a metric space (X , ρ), where X ⊂ R2 is a convex set representing the envi-
ronment and ρ : X × X → R≥0 is a metric on X . The phenomena to be estimated is
modeled as an unknown function f : X → R. We work in the Bayesian setting where f is
a sample from a Gaussian Process with a zero mean function and an isotropic finite range
covariance kernel k : R≥0 → R≥0 with finite range rmax > 0.

A robot collects measurements of the function f at a subset of locations in the envi-
ronment X = {x1, . . . , xn} ⊂ X . For each xi ∈ X, the robot receives a measurement of
the form

yi = f(xi) + ηi, (5.1)

where ηi ∼ N (0, σ2) are zero-mean independently and identically distributed random vari-
ables. The goal is to control the posterior variance at a set of environment test locations.
For any point p ∈ X , define gp : 2X → R≥0 to be the posterior variance at the test point p

54

given a subset of measurement locations in the environment X . This is given by evaluating
the posterior covariance function (2.13) at the test point p i.e.,

gp(X) := k̄(p, p)

= k(p, p)− kpX(kXX + σ2In)−1kXp.
(5.2)

We consider two problems closely related to each other. The input to both is the tuple
(X , ρ, P, k, w, rmax) where (X , ρ) is a metric space, P ⊆ X is the set of test locations, k
is the kernel of the underlying zero mean GP, and w : P → R≥0 returns the threshold
variance for any test point.

Problem 6 (Sample Placement). Find the minimum cardinality measurement subset
that satisfies the posterior variance constraint i.e.,

minimize
S⊂X

|S|

subject to gp(S) ≤ w(p), p ∈ P.
(5.3)

Problem 7 (Shortest Tour). Let T be the set of all tours in the environment X .
Then, we seek the minimum length tour whose vertex set satisfies the posterior variance
constraint i.e.,

minimize
T⊂T

length(T)

subject to gp(T) ≤ w(p), p ∈ P.
(5.4)

•

Generality of Formulation Chance constrained regression (CCR) in GPs can be refor-
mulated into the posterior variance constraint considered in the problems above. As a re-
sult, the algorithms proposed in this chapter can be used for CCR as well. In CCR with GPs
[121, 124], the goal is to ensure the posterior distribution is concentrated around its mean
with high probability. More formally, given ε, δ > 0 and a test set P ⊂ X , for any sample
locations X = {x1, . . . , xn} ∈ X n and the associated measurements Y = {y1, . . . , yn} ∈ Rn

given by (5.1), the constraint at a given test point p ∈ P is

P
[∣∣f(p)− E[f(p)|Y]

∣∣ ≤ ε
∣∣∣Y] ≥ δ. (5.5)

Using Theorem 3, we have that f(p)|Y ∼ N (m̄(p), k̄(p, p)) i.e., f(p)|Y is a Gaussian
random variable with mean E[f(p)|Y] = m̄(p) and variance Var(f(p)|Y) = k̄(p, p). To
reformulate the constraint in terms of the posterior variance, we require the following
lemma.

55

Lemma 6. Let X ∼ N (µ, σ2). Then, for any ε, δ > 0,

P
[
|X − µ| ≤ ε

]
≥ δ ⇐⇒ Var(X) ≤

(ε

φ−1(δ
2
)

)2

, (5.6)

where φ is the CDF for the standard normal.

Now, applying Lemma 6 with X = f(p)|Y, µ = m̄(p), and σ2 = k̄(p, p) allows the
reformulation of (5.5) as

k̄(p, p) ≤
(ε

φ−1(δ
2
)

)2

. (5.7)

Using the definition of gp(X) in (5.2) and setting w(p) =
(
ε/φ−1(δ/2)

)2

, for all p ∈ P , we

recover the posterior variance constraint considered in this chapter.

5.3 Solution Approach

The general version of Sample Placement and Shortest Tour are NP-hard. As a
result, we identify two cases which are amenable to approximation algorithms: convex
environments with constant threshold variances (Section 5.3.2) and finite test sets with
arbitrary thresholds (Section 5.3.3). Both algorithms rely on a sufficient condition on a
distance outlined in Section 5.3.1.

5.3.1 Sufficient Conditions

The central idea in both algorithms is to approximately compute minimum size covers of
the points in the test set P ⊆ X and subsequently plan tours on these sampled points.
Specifically, each test point p ∈ P will have a sample x ∈ X in the environment within a
specified distance rpmin. With an appropriate selection of rpmin, this will ensure the posterior
variance constraint is satisfied thereby yielding feasible solutions to Sample Placement
and Shortest Tour.

The distance rpmin will depend on the choice of the kernel function. For most kernel
functions, one can find a closed-form expression for the distance. For example, the following
result gives the expression for the distance when using the squared exponential (SE) kernel

k(d) = σ2
0e
− d2

2L2 .

56

Lemma 7 (Sufficient Condition for SE Kernel). Let L > 0, σ0 > 0 be the parameters of
the squared exponential kernel. Next, for each test point p ∈ P , define the distance

rpmin := L

√
− log

(
(σ2

0 − w(p))
σ2

0 + σ2

σ4
0

)
. (5.8)

Then, a set S ⊂ X is feasible for Sample Placement if for each p ∈ P , there exists
x ∈ S such that ρ(x, p) ≤ rpmin.

Proof. We will show that for each test point p ∈ P , the posterior variance gp(S) ≤ w(p).
We are given that there exists a point x ∈ S such that ρ(x, p) ≤ rpmin. In addition, since
gp(S) is a monotonically decreasing set function [77], it suffices to show gp({x}) ≤ w(p).
Then,

ρ(x, p) ≤ rpmin =⇒ e−
ρ(x,p)2

L2 ≥ (σ2
0 − w(p))

σ2
0 + σ2

σ4
0

=⇒ gp({x}) ≤ w(p).

One can use similar ideas to find the required distances for other isotropic kernels [133].
If a certain kernel prevents one from computing a closed-form expression for rpmin, we can
execute binary search1 on the interval [0, rmax]. Specifically, place a point x ∈ X at a
distance r = rmax/2 from a test point p and check if gp({x}) ≤ ∆(p). If satisfied, then
rpmin ∈ [r, rmax] else rpmin ∈ [0, r]. Now that rpmin has been fully specified for each test
point p ∈ P , we proceed to discuss how to generate these covers in the continuous (convex
environments) and discrete setting (finite test sets).

5.3.2 Convex Environments, Constant Thresholds

The setting considered in this section is P = X with the threshold variance for each point
being constant i.e., w(p) = ∆2. The three contributions in this section are: a) disproving
a claimed lower bound in [122] on the optimal solution for Sample Placement, b)
HexCover for Sample Placement, and c) HexCoverTour for Shortest Tour.
We will denote the optimal solutions to Sample Placement and Shortest Tour by
S∗ and T ∗ respectively.

1This works only if the kernel is monotonically decreasing as a function of the distance which is the
case for most kernels.

2Our results also work when P is a convex subset of the environment X .

57

Disproving a Necessary Condition The approach for Sample Placement proposed
in [122] is called DiskCover and uses two steps. First, it covers the environment with
large circles of a certain radius rmax. Second, it then covers these circles with smaller circles
to obtain a feasible solution which yields an approximation algorithm. The analysis does
not use rmax, the finite range assumption on the kernel of the GP. Instead, it involves a
claim on a necessary condition for the problem. We provide a counterexample to disprove
this claim.

Without the finite range assumption, it would be useful to obtain a distance R such that
if a test location does not have a sample within R, then the posterior variance constraint
cannot be satisfied. Then, a packing of circles of radius R is a lower bound on the optimal
value to Sample Placement . This is the idea behind the necessary condition [122]. We
state the lemma below.

Lemma 8 (Lemma 1, [122]). For any test location x, if the nearest measurement location
is at a distance R away, and

R > L

√
− log

(
1− ∆

σ2
0

)
, (5.9)

then it is not possible to bring down the posterior variance below ∆ at x.

The proof constructs a bound for the posterior variance by placing all samples at the
nearest location to the test location x. This is shown in the left plot in Figure 5.2. While
this seems intuitive, this does not give a valid lower bound on the variance. We construct
a measurement set, as shown in the right plot in Figure 5.2, that obtains a lower variance.

Example 1. Consider the following environment setup: σ = 1, σ0 = 1, L = 1, x =
(0, 0),∆ = 0.5. Then, the RHS of (5.9) is 0.83255461. Let R = 0.93255461 and con-
sider the following measurement set:

S := {(R, 0), (−R, 0), (0, R), (0,−R)} . (5.10)

The posterior variance at x using measurement set S is

fx(S) = 0.443771 < ∆, (5.11)

which shows the contradiction. •

58

Figure 5.2: Visual depiction of the counterexample. Left: Lemma 1 in [122], constructs
a lower bound by placing samples at the red circle. Right: The set of four measurement
locations obtains a lower posterior variance.

The counterexample uses four points to invalidate the lower bound on R. However,
by placing a large number of samples outside R, the variance can be much lower, thereby
underestimating the lower bound on R by a large margin. By using the finite range
assumption on the kernel of the GP, which is a common practical assumption in geostatistics
[133], the approximation ratios in [122] still hold (though Lemmas 1 and 3 in [122] do not
hold). Since the proposed algorithm [122] covers the environments with circles of radius
R (which can be large), and then covers it with many smaller circles, it uses an excessive
number of samples. This motivates us to develop an alternative approach that uses less
samples.

HexCover Our approach to solving Sample Placement in this setting is to produce
a rmin-covering of the environment X with circles of a specific radius. Since we are dealing
with a constant threshold ∆, we drop the dependence of rpmin on the test point p and use
rmin for the remainder of this section. We have already seen that the selection of rmin

(Section 5.3.1) guarantees feasibility.

The last step is to generate the rmin-covering. Since the objective is to minimize the
number of samples, one idea is to compute the minimum rmin-covering. Unfortunately, this
is an NP-hard problem [51]. Instead, we compute a cover from a hexagonal tiling, which
is the densest way to pack circles in the Euclidean plane [50, 21]. The steps are described
in Algorithm 2. The main step is HexagonalTiling (Line 2), which returns the set of

59

centers in the hexagonal tiling of edge length rmin. The centers are arranged in staggered
columns where the vertical distance between two samples is

√
3rmin and the horizontal

spacing between the columns is 1.5rmin. An example of a hexagonal tiling is shown in
Figure 5.1a. By construction, the circles centered at these points will circumscribe the
hexagon, thereby covering the environment.

Algorithm 2: HexCover

Input: Environment X ⊂ R2, Variance Threshold: ∆
Output: Measurement Set: S ⊂ X

1 Compute rmin according to Section 5.3.1.
2 SHC = HexagonalTiling(X , rmin)
3 return SHC

Assumption 1 (Boundary Conditions). For some environments, there exist regions close
to the boundary that are not covered by the hexagonal tiling. This is solved by taking a few
more measurements to ensure feasibility. However, for the purposes of algorithm analysis,
we will assume that the hexagonal tiling (Line 2) covers the environment completely.

Analysis : To analyse the performance of this approach, the first step is to compute an
upper bound on the solution |SHC| returned by HexCover. To do this, we require the
definition of a Minkowksi sum and a lemma bounding the maximum area of the Minkowski
sum of a convex set and a unit circle. Our proof of this result is based on the lecture
notes [136] and is included here for completeness.

Let B := {(x, y) : x2 + y2 ≤ 1} be the unit circle and for any convex set Θ and c > 0,
define cΘ := {cx : x ∈ Θ}.

Definition 5 (Minkowski Sum). For any two sets A,B, the Minkowski sum is A + B :=
{x+ y : x ∈ A, y ∈ B}.

Lemma 9. Given a convex set Θ ⊂ R2, the unit circle B, and r > 0 with rB ⊂ Θ, then

area
(

Θ +
r

2
B
)
≤ 9

4
area (Θ) .

Proof. Take any a ∈ Θ+ r
2
B. Then, it can be expressed as a = x+y, where x ∈ Θ, y ∈ r

2
B.

Since rB ⊂ Θ, then r
2
B ⊂ 1

2
Θ. Thus, a ∈ Θ + 1

2
Θ. Now, a can be expressed as a = s+ t

2
,

where s, t ∈ Θ. Then, 2
3
a = 2

3
s + t

3
. Since Θ is convex, we have 2

3
a ∈ Θ which implies

a ∈ 3
2
Θ. Thus, Θ + r

2
B ⊂ 3

2
Θ from which the final result follows.

60

Based on Lemma 9 we now establish an upper bound on the number of measurements
|SHC|.

Lemma 10 (Upper Bound). Let δ > 0 be arbitrarily small and let (
√

3 − δ)rminB ⊂ X ,
where B is the unit circle. Then, for every εδ > 0,

|SHC| ≤ (3 + εδ)
area(X)

πr2
min

.

Proof. Denote the solution SHC := {x1, . . . , xk}. Then, under Assumption 1, SHC is a (
√

3−
δ)rmin-packing for the environment X . This is because the minimum distance between any
two points in the hexagonal cover is

√
3rmin i.e., mini 6=j ρ(xi, xj) =

√
3rmin > (

√
3− δ)rmin,

which ensures it is a (
√

3 − δ)rmin-packing. Since the circles in the packing are disjoint,

we have
⋃k
i B(xi,

(
√

3−δ)
2

rmin) ⊂ X + (
√

3−δ)
2

rminB. Then, letting c =
√

3− δ and taking the
area on both sides gives

area

|SHC|⋃
i

B(xi, crmin/2)

 = |SHC|
πc2r2

min

4

≤ area
(
X +

crmin

2
B
)
≤ 9

4
area(X)

=⇒ |SHC| ≤
(

3

c

)2
area(X)

πr2
min

= (3 + εδ)
area(X)

πr2
min

,

(5.12)

where the second inequality follows from Lemma 9 and

εδ =

(
3√

3− δ

)2

− 3

is arbitrarily small.

To obtain an approximation factor for Algorithm 2, we characterize an optimal solution
S∗. First, we establish a property on any feasible solution which we will then use to get a
lower bound on |S∗|.

Lemma 11 (Feasible Sample Placement). Any feasible solution S for Sample Place-
ment is a rmax-covering of X .

61

Proof. Suppose not. Then, there exists x ∈ X such that for all y ∈ S, ρ(x, y) > rmax. Using
the finite range rmax, the posterior variance at x using S is fx(S) = σ2

0 > ∆, contradicting
feasibility of S for Sample Placement.

Lemma 12 (Lower Bound). A lower bound on the optimal value |S∗| for Sample Place-
ment is

|S∗| ≥ area(X)

πr2
max

.

Proof. Using Lemma 11, S∗ is a rmax-covering of the environment X i.e.,
⋃
x∈S∗ B(x, rmax) ⊃

X . Taking area on both sides gives

area(X) ≤ area

(⋃
x∈S∗

B(x, rmax)

)
≤
∑
x∈S∗

area (B(x, rmax)) = |S∗|πr2
max,

where the second inequality follows from the fact that area is a sub-additive function.

Theorem 7. For any ∆ > 0, if w(p) = ∆ for each p ∈ X and X is convex, then for every
ε > 0, HexCover is an α-approximation algorithm for Sample Placement where

α := 3
r2

max

r2
min

+ ε.

Proof. Using Lemmas 10 and 12, for some arbitrarily small εδ > 0, |SHC| ≤ (3+εδ)
area(X)

πr2min
≤

(3 + εδ)
r2max

r2min
|S∗| = (3 r

2
max

r2min
+ ε)|S∗|, where ε = εδ

r2max

r2min
is arbitrarily small.

Theorem 7 improves the previous approximation ratio of 18 r
2
max

r2min
[122]. Our approxima-

tion factor is independent of the environment X but does depend on the variance threshold
∆ through rmin. As we seek more accurate predictions (decreasing ∆), the radius of accu-
rate estimation rmin reduces, and the number of measurements required will increase.

HexCoverTour Our approach to solving the shortest tour problem builds on Hex-
Cover. This is because the constraints are the same in both problems. Since we have
already identified a feasible vertex set via HexCover, we will use an approximation al-
gorithm for the metric TSP, Christofides’ algorithm, which finds a tour of length no more
than 3/2 times the optimal [76]. The steps are outlined in Algorithm 3.

62

Algorithm 3: HexCoverTour

Input: Environment X ⊂ R2, Variance Threshold: ∆
Output: Tour T with T ⊂ X .

1 SHC = HexCover(X ,∆)
2 THC = ChrisotofidesTour(SHC)
3 return THC

We will now bound the worst-case performance of this algorithm. We begin by charac-
terizing an upper bound on the length of the tour THC produced by HexCoverTour.

Lemma 13 (Upper Bound). Let X be a convex set. For every ε > 0,

len(THC) ≤ 15.6
area(X)

πrmin

+ ε.

Proof. Denote the vertex set of the tour by VHC := {x1, . . . , xk} and let Tk denote the
optimal TSP tour on the k vertices of the tour THC. Note that in the hexagonal covering, the
minimum distance between two points is

√
3rmin. Now, we can bound Tk by constructing a

sub-optimal tour as follows. Take any two points xi, xj ∈ VHC such that ρ(xi, xj) ≤
√

3rmin

and find the shortest tour in VHC \ xi. Then, we can create a tour by adding the edge to
connect xj to xi and back. This gives an upper bound:

len(Tk) ≤ len(Tk−1) + 2
√

3rmin.

Using the fact that len(T1) = 0 and Lemma 10, for any εδ, we get

len(Tk) ≤ 2
√

3rmin|VHC| ≤ 2
√

3(3 + εδ)
area(X)

πrmin

.

Since we are using Christofides’ algorithm, we have

len(THC) ≤ 1.5len(Tk) ≤ 3
√

3(3 + εδ)
area(X)

πrmin

= 15.6
area(X)

πrmin

+ ε,

where ε = 3
√

3area(X)
πrmin

εδ is arbitrary.

63

In the following lemma, we compute a lower bound on the length of the optimal tour
T ∗. First, we need a property of a maximal packing of a rmax-covering.

Lemma 14. Let S := {x1, . . . , xn} be a rmax-covering of the environment X . Then, any
maximal 2rmax-packing P ⊂ S of S is a 3rmax-covering of X .

Proof. Using the triangle inequality and the fact that S is a rmax-covering of X , it suffices
to show that for any xi ∈ S, there exists a point in the packing y ∈ P such that ρ(xi, y) ≤
2rmax. Suppose not. Then, there exists xi ∈ S such that for all y ∈ P , ρ(xi, y) > 2rmax.
But, we could add xi to P and increase its size, contradicting the fact it is maximal.

Lemma 15 (Lower Bound). A lower bound on the length of the optimal tour is

len(T ∗) ≥ 2

9

area(X)

πrmax

.

Proof. We compute a maximal disjoint set T ′ ⊂ T ∗ from the set of circles of radius rmax

centered at points in the optimal tour T ∗. By the triangle inequality, the optimal TSP
tour through T ′ gives us a bound on the length of the optimal tour:

len(T ∗) ≥ len(T ′). (5.13)

Since T ′ is a 2rmax-packing, the minimum distance between any two vertices in T ′ is
2rmax. Thus,

len(T ′) ≥ 2rmax|T ′|. (5.14)

Since T ∗ is a rmax-covering of X (Lemma 11), T ′ is a 3rmax-covering (Lemma 14). Then,⋃
x∈T ′ B(x, 3rmax) ⊃ X which implies

area

(⋃
x∈T ′

B(x, 3rmax)

)
≥ area(X)

=⇒
∑
x∈T ′

area (B(x, 3rmax)) ≥ area(X)

=⇒ |T ′| ≥ area(X)

9πr2
max

.

(5.15)

Combining Equations (5.13), (5.14), and (5.15) gives us the result.

The guarantee is a consequence of Lemmas 13 and 15.

64

Theorem 8. Given ∆ > 0, if w(p) = ∆ for each p ∈ X and X is convex, then HexCover-
Tour is an α-approximation algorithm for Shortest Tour where for an arbitrarily small
ε > 0,

α := 70.2
rmax

rmin

+ ε.

This improves the previous approximation ratio of 9.33 + O(r
2
max

r2min
) [122]. Note that

in practice, one will either use an optimal TSP solver (if the instance is small enough) or
heuristics such as the Lin-Kernighan Heuristic [76, 66] which are known to be near-optimal.
This would roughly improve the performance guarantee by 1.5 times leading to 46.8 rmax

rmin
+ε

but no longer have guarantees on running time.

5.3.3 Finite Test Sets, Arbitrary Thresholds

In this section, we study the case of a finite test set. We denote it by P := {p1, . . . , pn}
of size n with variance thresholds w(p1), . . . , w(pn). We develop approximation algorithms
IntersectCover and TSPNTour for Sample Placement and Shortest Tour
respectively. TSPNTour uses the algorithm in [42] which is an involved procedure and
has a large time complexity. In light of this, we develop a heuristic IntersectTour
that is fast and produces good results in simulation but does not have an approximation
guarantee.

Recall that we computed rpmin for each p ∈ P in Section 5.3.1. We denote the maximum
and minimum radii by

r
[n]
min := max{rpmin : p ∈ P},
r

[1]
min := min{rpmin : p ∈ P}.

(5.16)

IntersectCover First, we study how we can place samples to address finite test sets.
The high level idea is to ensure each test point has a sample sufficiently close to it. We
will accomplish this by converting the problem into an instance of SetCover-D.

In Figure 5.3, we visualize an instance of SetCover-D(B) for some set of disks B. Each
disk denotes a test point pi ∈ P (in orange) and an associated radius ri. We denote the
regions of the arrangement by Ri. For example, R2 is the intersection of disks centered at
p1, p3, p4 and R1 is the intersection of the disks at p1 and p4 but without region R2 i.e.,
R2 = B(p1, r

p1
min)∩B(p3, r

p3
min)∩B(p4, r

p4
min) and R1 = B(p1, r

p1
min)∩B(p4, r

p4
min)\R2. We want

65

Figure 5.3: An example of a SetCover-D instance. The objective is to place the minimum
number of samples such that each disk contains at least one sample. The size of the optimal
solution for this instance is 3.

to find the minimum number of samples that cover each test point i.e., a sample in each
disk. It is easy to see the optimal solution has size 3 (for example, sample in R2, R7, R9).

The goal is to solve SetCover-D on the set of disks centered at P with radii rpimin.
However, finding a minimum size cover for disks on a subset of R2 is not obvious. Instead
of solving SetCover-D directly, we will reduce the search space to a finite set of candidate
locations without losing optimality of the resulting solution i.e., we will solve SetCover

on appropriately constructed sets. Recall that a set cover instance is described by a tuple
(U ,D). The universe of elements is set to the test set U = P . We outline the steps to
generate the collection of subsets D in Algorithm 4. The idea is to only consider points
that are i) the intersection of the boundaries of two disk, or ii) the center of isolated disks,
i.e., disks that do not intersect other disks (Lines 2-8). Then, for each resulting point, we
compute the subset of test points it covers (Lines 9-16). Specifically, for each disk, we find
the intersecting points with all other disks (Line 5). The number of intersecting points
can be zero (no intersection), one (circles are tangent to each other), or two (intersect
at distinct points). For example, the intersections points in Figure 5.3 are shown in red.
Then, for each collected point and for each test point, we check whether it is covered (Line
14). If so, we add it to the subset corresponding to that sample. Finally, we return the
collection of subsets as well as the corresponding samples (Line 17).

By solving SetCover(P,D), we obtain a solution to SetCover-D. The approach is out-

66

Algorithm 4: GenSubset

Input: Instance of Sample Placement I = (X , ρ, P, k, w, rmax)
Output: Subset collection of P : D = {D1, . . . , Dm}, candidate sample locations:

samples

1 samples = empty

2 for i = 1, . . . , n do
3 pts = empty

4 for j = i+ 1, . . . , n do
5 compute rpimin, r

pj
min according to Section 5.3.1

6 add intersecting points of disks B(pi, r
pi
min), B(pj, r

pj
min) to pts

7 if pts is empty then
8 pts = pi

9 add pts to samples

10 D = empty

11 m = |samples|
12 for i = 1, . . . , m do
13 Di = empty

14 for j = 1, . . . , n do
15 if ρ(samples[i], pj) ≤ r

pj
min then

16 add pj to Di

17 add Di to D
18 return D, samples

67

lined in Algorithm 5. First, we compute the candidate samples and associated subsets
(Line 1). Then, we approximately solve SetCover(P,D) (Line 2) using an approximation
algorithm ([49] or [1]). Finally, we get the samples associated with the selected subsets
(Lines 3-5) and return the solution. We now characterize the runtime. Define γ to be the
maximum number of disks any one disk can intersect with in the set {B(pi, r

pi
min) : i ∈ [n]}.

Then, GenSubset runs in time O(γn2) and IntersectCover runs in time O(γn2+g(n))
where g(n) is the time complexity of an approximation algorithm for SetCover. For ex-
ample, the greedy algorithm [49] has a runtime of O(nm) where the number of subsets
m = O(γn). This results in a runtime of O(γn2) for IntersectCover.

Algorithm 5: IntersectCover

Input: Instance of Sample Placement I = (X , ρ, P, k, w, rmax)
Output: Measurement Set S ⊂ X

1 D, samples = GenSubset(I)
2 I = ApproximateCover(P,D)
3 S = samples[I]
4 return S

We first present the approximation guarantee of IntersectCover and give the proof
later in this section.

Theorem 9. Define ω := rmax

r
[1]
min

. For a finite test set P , IntersectCover is an O(ω2)-

approximation for Sample Placement.

Remark (Comparison with [124]). We note that the work in [124] developed algorithms
to solve SetCover-D and TSPN-D and not Sample Placement or Shortest Tour.
Given a β-approximation algorithm for SetCover, [124] provides a 25β-approximation
algorithm for SetCover-D. In contrast, using Lemma 17 below, we get a β-approximation
for SetCover-D improving the previous factor by 25.

For the analysis, we will require definitions of a few key quantities. For any problem
instance I = (X , ρ, P, k, w, rmax) where P = {p1, . . . , pn} is finite, define the following sets

BIrmin
:= {B(pi, r

pi
min) : i ∈ [n]},

BIrmax
:= {B(pi, rmax) : i ∈ [n]},

(5.17)

where the radii rpimin are computed using the sufficient condition in Section 5.3.1.

68

Let DI be the subsets generated by GenSubset(I) with m = |DI |. We denote the
optimal solutions to a few selected problems operating on instance I below.

S∗rmax
(I) = OPT

(
SetCover-D(BIrmax

)
)
⊂ X ,

S∗rmin
(I) = OPT

(
SetCover-D(BIrmin

)
)
⊂ X ,

J∗(I) = OPT
(
SetCover(P,DI)

)
⊆ [m].

(5.18)

We need to establish that for any instance I, GenSubset generates the relevant subsets
DI for SetCover. In the following result, we show that for any point x in the environment,
there exists a subset in DI that covers at least as many test points as x.

Lemma 16. Let I = (X , ρ, P, k, w, rmax) be a problem instance where P = {p1, . . . , pn} is
finite. Further, let DI be the subset generated by GenSubset(I). For any x ∈ X , denote
Dx := {p ∈ P : x ∈ B(p, rpmin)} ⊆ P as the subset of test points whose associated disks
contain x. Then, for any x ∈ X with |Dx| ≥ 1, there exists yx ∈ X such that Dyx ∈ DI
and Dx ⊆ Dyx .

Proof. We will prove this by induction on the size |Dx|. Let P (m) be the statement that
for any x ∈ X with |Dx| = m and m ≥ 1, there exists y ∈ X such that Dyx ∈ DI and
Dx ⊆ Dyx .

To prove the condition Dyx ∈ DI , it is sufficient to show the existence of yx ∈ X such
that either yx ∈ P is a test point whose associated disk boundary bd(B(yx, r

yx
min) does not

intersect the boundary of any other disk in BIrmin
or that it is an intersection point between

the boundaries of two disks i.e., ∃i 6= j ∈ [n], y ∈ X such that y ∈ bd(B(pi, r
pi
min)) ∩

bd(B(pj, r
pj
min)). This follows from how the subsets in DI are computed in GenSubset.

Base case (m = 1): |Dx| = 1. Let Dx = {pi}.

• If bd(B(pi, r
pi
min)) does not intersect the boundary of any other disk in BIrmin

, set
yx = pi. Then, Dx = Dyx .

• If bd(B(pi, r
pi
min)) intersects with at least one other disk boundary i.e., ∃j ∈ [n] such

that Aij = bd(B(pi, r
pi
min)) ∩ bd(B(pj, r

pj
min)) 6= ∅, then set yx to be any element of

Aij. Then, Dx ⊂ Dyx .

We assume the statement P (k) is true for some positive integer k. We will show
P (k + 1) is true. We are given x ∈ X with |Dx| = k + 1 i.e., x lies in the intersection

69

of k + 1 disks. Consider any subset I ⊂ Dx ⊂ P of size |I| = k and let p′ = Dx \ I.
Define RI := ∩p∈IB(p, rpmin). Note that RI is the region of intersection of k disks and

RDx := RI ∩B(p′, rp
′

min) is the intersection of all k + 1 disks. We consider two cases.

• RDx = RI : Since x ∈ RI and |I| = k, using the induction hypothesis, there exists

yx such that I ⊆ Dyx and Dy ∈ DI . Since RDx = RI , yx also intersects B(p′, rp
′

min).
Then, Dyx = I ∪ {p′} = Dx. Thus, P (k + 1) is true in this case.

• RDx ⊂ RI : If bd(B(p′, rp
′

min)) does not intersect with bd(RI), set yx = p′. Since
yx ∈ RI , we get Dyx = I ∪ {p′} = Dx. Thus, P (k + 1) is true in this case.

Otherwise, bd(B(p′, rp
′

min)) intersects bd(RI) at the boundary of some disk whose

center is in I i.e., ∃p ∈ I such that yx = bd(B(p′, rp
′

min)) ∩ bd(B(p, rpmin)) ∈ RDx .

Since yx intersects RI and B(p′, rp
′

min), Dy = Dx. Thus, P (k + 1) is true in this case.

The following result shows that the sizes of the optimal solutions to SetCover-D and
SetCover are equal. This property enables an improved approximation factor over [124].

Lemma 17. For any instance I = (X , ρ, P, k, w, rmax) of Sample Placement where
P = {p1, . . . , pn} is finite, we have |J∗(I)| = |S∗rmin

(I)|.

Proof. We have that |J∗(I)| ≥ |S∗rmin
(I)| since the feasible solutions resulting from SetCover

are a subset of the feasible solutions for SetCover-D. For the sake of contradiction, suppose
|J∗(I)| > |S∗rmin

(I)|. We will construct a feasible solution for SetCover(P,D(I)) with size
strictly smaller than |J∗(I)|. Consider the optimal solution S∗rmin

(I). For each x ∈ S∗rmin
(I),

let Dx := {p ∈ P : x ∈ B(p, rpmin)}. Then, by Lemma 16, there exists Dyx ∈ D(I)
such that Dx ⊆ Dyx . Since S∗rmin

(I) is feasible for SetCover-D(Brmin
), ∪x∈S∗rmin

(I)Dx = P

which implies the collection {Dyx : x ∈ S∗rmin
(I)} is feasible for SetCover(P,D) with size

|S∗rmin
(I)| < |J∗(I)| contradicting optimality of J∗(I).

We now characterize the worst-case instances that will ultimately help obtain the ap-
proximation factor.

Lemma 18 (Worst Case Covers). For any instance I = (X , ρ, P, k, w, rmax) of Sample
Placement where P = {p1, . . . , pn} is finite,

|S∗rmin
(I)|

|S∗rmax
(I)|
≤ n (5.19)

with equality achieved iff the instance I satisfies the following:

70

C1 All points in P lie in some disk of radius 2rmax i.e., ∃x ∈ R2 such that ∀i ∈ [n],
pi ∈ B(x, 2rmax).

C2 The disks in the set Brmin
(I) are disjoint i.e., for any i 6= j ∈ [n], B(pi, r

pi
min) ∩

B(pj, r
pj
min) = ∅.

Moreover, if an instance I satisfies C1 and C2, then

|S∗rmin
(I)|

|S∗rmax
(I)|
≤

(
r

[n]
min + rmax

r
[1]
min

)2

. (5.20)

Proof. Since the optimal solution to SetCover-D must use at least one disk and at most n
disks, we obtain |S∗rmin

(I)| ≤ n and |S∗rmax
(I)| ≥ 1 implying (5.19). Furthermore, equality is

achieved when |S∗rmin
(I)| = n and |S∗rmax

(I)| = 1. We will first prove the forward direction
i.e., if equality is achieved, conditions C1 and C2 are satisfied.

⇒ Suppose C1 is not satisfied. Then, there exists a pair of disks whose centers are
separated by a distance strictly greater than 2rmax. The optimal solution will then require
at least two measurements which contradicts |S∗rmax

(I)| = 1.

Suppose C2 is not satisfied. Then, there exists a point that belongs to at least two
disks (out of n) in Brmin

(I). Then, the optimal solution will have size strictly less than n
which contradicts |S∗rmin

(I)| = n.

⇐ If C1 is satisfied, the set {x} ∈ X is an optimal solution to SetCover-D(Brmax) (since
it is within rmax of each point in P). If C2 is satisfied, the size of the optimal solution is
at least the number of disjoint disks which is n i.e., |S∗rmin

| = n.

To show (5.20), consider any instance I that satisfies conditions C1 and C2. The test
points P of the instance lie within a disk of radius 2rmax and the disks Brmin

(I) are disjoint.

Using areas of the smallest disk of radius r
[1]
min and the enclosing disk of radius rmax + r

[n]
min,

we get

|S∗rmin
(I)| π

(
r

[1]
min

)2

≤ |S∗rmax
(I)| π

(
rmax + r

[n]
min

)2

, (5.21)

which gives the final result.

We are now ready to give the proof of the approximation factor for IntersectCover.

71

Proof of Theorem 9. Given an instance I, let S(I) be the solution produced by Inter-
sectCover and S∗(I) be the optimal solution to Sample Placement. First, using a
β-approximation algorithm for SetCover and Lemma 17 gives

|S(I)| ≤ β|J∗(I)| = β|S∗rmin
(I)|. (5.22)

Next, using Lemma 18, we have

|S∗rmin
(I)| ≤

(
rmax + r

[n]
min

r
[1]
min

)2

|S∗rmax
(I)| (5.23)

Since S∗(I) is a rmax-cover of P (Lemma 11 with X = P),

|S∗rmax
(I)| ≤ |S∗(I)|. (5.24)

Combining (5.22), (5.23), (5.24) and rmax > r
[n]
min gives the result.

Algorithm 6: TSPNTour

Input: Instance of Sample Placement I = (X , ρ, P, k, w, rmax)
Output: Tour T ⊂ X

1 For i ∈ [n], compute rpimin according to Section 5.3.1
2 B = {B(pi, r

pi
min) : i ∈ [n]}

3 Compute a tour T for TSPN-D(B) using [42]
4 return T

TSPNTour We give an approximation algorithm in Algorithm 6 for Shortest Tour
that uses the algorithm in [42]. The idea is simple: find a tour of minimum length that
visits the disks centered at P with radii given by the sufficient condition in Section 5.3.1.
This ensures feasibility and also yields a worst-case guarantee.

Theorem 10. Define ω := rmax

r
[1]
min

. For a finite test set P , TSPNTour is an O(ω)-

approximation for Shortest Tour.

Remark (Comparison with [124]). The work in [124] gives an O(
r
[n]
min

r
[1]
min

)-approximation for

TSPN-D. In contrast, we give the first O(rmax

r
[1]
min

)-approximation for Shortest Tour.

72

First, we give a lemma on covering a set of maximally independent disks.

Lemma 19. Let P = {p1, . . . , pn} ∈ R2 be a finite set and let M ⊆ P be a maximal

2rmax-packing of P . For each point p ∈M , let Sp ⊂ R2 be an r
[1]
min-covering of B(p, 2rmax).

Then, ∪p∈MSp is a r
[1]
min-covering of P .

Proof. Since M is a maximal 2rmax-packing of P , M is also a 2rmax-covering of P . Thus,
for each p ∈ P , there exists p′ ∈ M such that p ∈ B(p′, 2rmax). Since for each p′ ∈ M , Sp′

is a r
[1]
min-covering of B(p′, 2rmax), we get the final result.

We present the proof of the approximation factor for TSPNTour.

Proof of Theorem 10. First, we will denote a few key quantities. Let T be the tour pro-
duced by TSPNTour and T ∗ denote the optimal solution of Shortest Tour. Let
M ⊂ P be a maximal 2rmax-packing of P and define BM := {B(p, rmax) : p ∈ M}. Recall
that Brmin

(I) := {B(pi, r
pi
min) : i ∈ [n]}. Let T ∗M and T ∗r denote the optimal solution of

TSPN-D(BM) and TSPN-D(Brmin
) respectively.

Since T ∗ is a rmax-covering of P , T ∗ is a feasible tour for TSPN-D(BM). Then,

length(T ∗M) ≤ length(T ∗) (5.25)

Note that we take |T ∗M | = |M |. If |T ∗M | > |M |, then there exists a vertex v ∈ T ∗M
such that either v does not visit any disk in BM or v visits a disk that has already been
visited on the tour T ∗M (pigeonhole principle). In either case, by removing the vertex v and
using the triangle inequality, we obtain a feasible tour of length equal to or shorter than
length(T ∗M).

We now construct a feasible tour for TSPN-D(Brmin
) from T ∗M . For each p ∈M , consider

the disk B(p, 2rmax). A hexagonal tour THC of length O(r
2
max

rmin
) exists whose vertex set is

a r
[1]
min-covering of B(p, 2rmax) (Lemma 13 with X = B(p, 2rmax) and rmin = r

[1]
min). Then,

for each vertex v ∈ T ∗M , a detour of length 2r
[1]
min + length(THC) guarantees feasibility for

Shortest Tour (Lemma 19). The length of this tour is atleast the length of the optimal
tour T ∗r i.e.,

length(T ∗r) ≤ length(T ∗M) + |M |

(
2r

[1]
min +O

(
r2

max

r
[1]
min

))
. (5.26)

73

Now, the length of any tour of |M | disjoint disks of radius rmax is at least 0.239|M |rmax

[123, Theorem 1] i.e.,

|M | ≤ 4.2

rmax

length(T ∗M). (5.27)

Combining (5.25), (5.26), (5.27) and using r
[1]
min < rmax gives

length(T ∗r)

length(T ∗)
= O

(
rmax

r
[1]
min

)
. (5.28)

Since the algorithm [42] is an O(1)-approximation i.e., length(T) ≤ c length(T ∗r) for some
constant c > 1, we obtain the final result.

The major pitfall with TSPNTour is that the algorithm in [42] has a large running
time of at least Ω(n4) (see [42] for a precise characterization). As a result, we provide a
natural heuristic that is easy to implement in the next section.

IntersectTour We describe a natural heuristic for Shortest Tour. Since we already
have a feasible solution using IntersectCover, we plan an approximate tour on this set.
The steps are outlined in Algorithm 7. If we use Christofides’ algorithm, the running time
of IntersectTour is O(n3). In practice, one will either use optimal solvers or heuristics
[66]. While we have not provided a performance guarantee, this heuristic is simple to
implement and yields good results in practice.

Algorithm 7: IntersectTour

Input: Instance of Sample Placement I = (X , ρ, P, k, w, rmax)
Output: Tour T ⊂ X

1 S = IntersectCover(I)
2 T = ApproximateTour(S)
3 return T

Remark (Comparison with [124]). The work in [124] proposes a heuristic, which we refer to
by GridCoverTour, that discretizes the environment into a grid, computes a minimum
set cover, and plans a tour on the selected points. The key difference between GridCover-
Tour and IntersectTour is how the subsets for SetCover are generated: grids versus
intersection points. The grid discretization in R2 is determined by a resolution parameter

74

Figure 5.4: Comparing solution size for Sample Placement in convex environments
versus environment area. DiskCover uses roughly 6 times as many measurements as
HexCover.

θ ≥ 1 resulting in O(θ2) subsets compared to O(γn) subsets for IntersectTour. Fur-
ther, there is no guarantee that a grid discretization preserves optimality for SetCover-D

unlike our approach (Lemma 17).

5.4 Numerical Results

This section covers simulation results comparing our proposed algorithms against prior
work [122, 124]. We begin by describing the experimental setup. The experiments are run
on an AMD Ryzen 7 2700 processor with 16GB of RAM.

Experimental Setup

We follow the setup in [122] where a Gaussian Process was fit to a real world dataset
of organic matter measurements in an agricultural field. The authors computed L =

75

8.33 meters, σ0 = 12.87, and σ2 = 0.0361. Since the covariance function is isotropic,
only the relative distances between points matter. This enables us to consider different
environment sizes similar to the setup in [44]. We consider rectangular environments whose
area ranges from 400 to 40000 square metres. Further, for convex environments, we consider
three regimes of desired accuracy: ∆/σ2

0 = 0.3, 0.2, 0.1. These correspond to keeping the
posterior variance under 30%, 20%, and 10% of the initial value σ2

0, respectively. For finite
test sets, we consider three regimes: sparse (30 test points), moderate (50 test points), and
dense (100 test points). We sample the threshold variances uniformly at random in the
range [0.1×σ2

0, 0.5×σ2
0]. For each configuration (test point regime and threshold variances),

we generate 10 random samples and report the results. To compute approximate covers,
we use the greedy algorithm [49].

5.4.1 Convex Environments, Constant Thresholds

In this section, we demonstrate the effectiveness of HexCover, HexCoverTour over
DiskCover, DiskCoverTour [122] across environments of different sizes.

Remark. The DiskCover and DiskCoverTour algorithms end up placing samples
outside the environment, which is not practically possible. In the simulations considered,
we remove these samples and the redundant measurement locations that arise (as men-
tioned in the paper [122]). In addition, for DiskCoverTour, we use approximation
algorithms for the TSP instead of the proposed lawn-mower tours. This change leads to
shorter tour lengths in practice.

The results for Sample Placement are shown in Figure 5.4. In each subplot, the
number of measurements is plotted against the environment size. The difference across
the subplots is the error tolerance. As the variance threshold decreases, the number of
measurements required will increase for any algorithm. In each subplot, we observe that
DiskCover uses more measurements than HexCover (ours). In small environments, the
difference is negligible as it does not take many measurements to get a feasible solution.
However, as the environment size increases, DiskCover uses roughly 6 times as many
measurements as HexCover. Further, the number of measurements used by HexCover
increases roughly linearly with the environment size. This is not the case for DiskCover
whose measurement set size grows much faster.

The results for Shortest Tour are shown in Figure 5.5. In each subplot, the tour
length is plotted against the environment size. As before, the difference across the sub-
plots is the variance threshold. As the threshold decreases, the number of samples required

76

Figure 5.5: Tour lengths for Shortest Tour in convex environments versus environment
area. HexCoverTour plans tours of length that are roughly half that of DiskCover-
Tour.

77

(a) (b) (c)

Figure 5.6: Comparing solution size for Sample Placement for finite test sets versus
environment area. GridCover uses roughly 1.25 times as many measurements as Inter-
sectCover in the moderate and dense test point regimes.

will increase, which subsequently increases the tour length. In each subplot, we see that
DiskCoverTour produces tours of length larger than HexCoverTour (ours). For
small environments, the difference in tour length is negligible. However, for larger en-
vironments, HexCoverTour produces tours that are roughly half the length of tours
produced by DiskCoverTour. Further, in the second and third plots, one may notice
missing data points for DiskCoverTour. This is because the number of vertices become
too large (≥ 7500) to run Christofides’ algorithm in a reasonable amount of time and
memory. In contrast, HexCoverTour scales better with the environment size.

5.4.2 Finite Test Sets, Arbitrary Thresholds

In this section, we demonstrate the effectiveness of IntersectCover, IntersectTour
over GridCover, GridCoverTour [124] across environments of different sizes.

Remark. Since the authors in [124] do not mention a specific grid resolution to ensure good
quality solutions, we choose a resolution that ensures the computation times are comparable
to our proposed algorithms. We accomplish this by setting the number of grid points equal
to ceil(m) where m are the total number of subsets computed by GenSubset. Then, the
greedy algorithm for set cover will have roughly the same runtime for both algorithms.

The results for Sample Placement are shown in Figure 5.6. Across all test point

78

(a) (b) (c)

Figure 5.7: Tour lengths for Shortest Tour for finite test sets versus environment area.
GridCoverTour plans tours of length that are longer than IntersectTour across all
regimes with the largest difference seen in the dense regime.

regimes, IntersectCover uses fewer measurements than GridCover. Specifically,
GridCover uses roughly 1.25 times the number of measurements used by Intersect-
Cover in the moderate and dense regimes. An interesting observation here is that as the
environment area increases, GridCover requires as many measurements as the number
of test points (30 in sparse, 50 in moderate, 100 in dense). In contrast, IntersectCover
uses fewer measurements (26 in sparse, 40 in moderate, 80 in dense). Thus, by using the
intersections of the disks, IntersectCover uses fewer measurements compared to a grid
discretization which is oblivious to the spatial distribution of test points.

The results for Shortest Tour are shown in Figure 5.7. Across all regimes, Inter-
sectTour computes shorter tours compared to GridCoverTour. The performance
difference is greatest in the dense regime where GridCoverTour produces tours that
are roughly 1.15 times the tour lengths given by IntersectTour. In the sparse and
moderate regime, the performance difference is negligible since any tour would have to
visit at least as many test points leading to similar results. Unless a tour can visit sig-
nificantly fewer locations than the number of test points, we should expect similar tour
lengths across both algorithms. We expect significantly shorter tour lengths for larger
environments. For example, agricultural fields in practice are a magnitude larger than the
environments considered in these experiments [129].

79

5.5 Summary

In this chapter, we studied the following version of informative path planning: minimize
resources used (samples or tour length) subject to constraints on the posterior variance.
We gave approximation algorithms for convex environments and finite test sets. We also
gave a natural heuristic that yielded good solutions in practice. Our approach was rooted
in finding minimum size covers of the test points.

80

Chapter 6

Subset Selection in Random Fields
via Maximal Cliques

6.1 Introduction

An important problem in engineering applications is deciding the subset of measurements
that are the most useful in the estimation of an unknown quantity of interest. For example,
in agriculture, it is important to estimate the nutrient quality of a field using soil samples.
This helps guide fertilizer usage to replenish lost nutrients, which subsequently maximizes
crop yield. However, it is impractical to sample the soil at each location in large agricultural
fields. The goal is to determine where to sample the soil, such that the nutrient quality at
a large set of prediction locations can be estimated accurately. An example of the soil pH
variability in a field with a set of prediction locations is shown in Figure 6.1. This type of
subset selection problem shows up in domains such as sensor placement/active sampling
in spatial statistics [78, 108, 82, 85, 137], feature selection in machine learning [92, 61],
informative path planning in robotics [12, 10, 11, 122], among others. The challenge is
similar: choose the subset of attributes that best estimates the quantity of interest.

The Bayesian approach is to model the quantities as random variables. The estimates
of prediction variables are obtained by linear estimators and the quality of the chosen
subset is measured by the resulting mean squared estimation error. The benefits of this
approach are twofold. First, prior statistical knowledge of the quantities can be incorpo-
rated into the estimation procedure. Second, the mean squared error resulting from a linear
estimator is independent of the observations. Thus, deciding the subset that minimizes
the mean squared error can be done a priori. With a finite observation set, a popular

81

Figure 6.1: An example of the pH variability in an agricultural field. The circles are the
prediction locations where accurate estimates are desired. Agricultural fields can be large
and one can only take a fixed number of soil samples to best estimate the pH variability
at the prediction locations.

approach is to use the greedy algorithm [92, 64]. Each step, the variable maximizing the
marginal gain is selected. Continuous observation sets, such as agricultural fields, can be
made finite by a grid discretization, which can be used by the greedy algorithm, which
we refer to as Grid-Greedy. The solution quality improves with a finer grid but at
an increased computational cost. The objective of the work in this chapter is to remove
the dependence on the grid discretization while obtaining good solution quality. Our pro-
posed method, Centroid-Greedy, restricts the search to the set of prediction locations
and the centroids of the cliques formed by the prediction locations. This is motivated
by our analysis of the problem in one dimension where we identify a critical distance be-
tween points that characterize the optimal measurement location. In our experiments, we
show Centroid-Greedy achieves better solutions when given the same computational
resources as Grid-Greedy and finds solutions of similar quality more efficiently.

6.1.1 Contributions

The contributions of this chapter are twofold. First, we formulate a problem of budget
constrained observation selection from an infinite set to best estimate a finite set of pre-
diction variables. Second, we propose Centroid-Greedy, a greedy algorithm that uses

82

a ground set consisting of the prediction locations and the centroids of cliques formed by
the prediction locations. This reduces the dependence of Grid-Greedy on the grid dis-
cretization of the continuous field. In simulations, we demonstrate the improved solution
quality and run time of Centroid-Greedy in comparison to Grid-Greedy.

6.2 Problem Formulation

Let D ⊂ Rd represent the environment and let σ0 ∈ R>0 be a positive real number. For
any location x ∈ D, let Z(x) be a random variable with zero mean and variance σ2

0.
We consider a convex set of measurement locations Θ ⊂ D and a finite set of prediction
locations Ω ⊂ Θ. Given a positive integer k ∈ Z+, our goal is to minimize the mean-
squared error of the linear estimation of the prediction variables {Z(x) : x ∈ Ω} using only
k measurement variables.

Remark. Note that when |Ω| < k, measurements at all prediction locations will yield low
estimation error. The problem is only interesting when |Ω| > k.

We define φSE : R≥0 → R>0 to be the squared exponential covariance function with
known parameters σ0 and L ∈ R>0:

φSE(x) = σ2
0e
− x2

2L2 , (6.1)

The parameters can be learned from a pilot deployment or expert knowledge and is a
standard assumption in sensor placement algorithms [78].

For any x, y ∈ D, we assume the covariance of the random variables Z(x), Z(y) is given
by

Cov(Z(x), Z(y)) = E[Z(x)Z(y)] = φSE(‖x− y‖). (6.2)

Let i be a positive integer. For any x ∈ D, let Yi(x) be the ith noisy measurement of
Z(x) and let the associated noise be εi(x). The noise is assumed to be a zero mean
random variable with variance σ2 > 0. In addition, the noise is uncorrelated across mea-
surements and locations i.e. for any x, y ∈ D and for any positive integers m,n ∈ Z+,
Cov(εm(x), εn(y)) = 0. The measurement is

Yi(x) = Z(x) + εi(x). (6.3)

In order to reduce notational clutter, for any x ∈ D, we drop the subscript i from
the measurement variable Yi(x) and the associated noise εi(x). We proceed with the

83

understanding that if there are multiple measurements at the same location, the associated
noise terms are uncorrelated. In addition, any measurement at the same location x ∈ D
(even if there are multiple) will be denoted by Y (x). Now, the measurement equation is

Y (x) = Z(x) + ε(x). (6.4)

We wish to minimize the total mean-squared error, which gives us the following con-
strained optimization problem:

min
S⊂Θ,|S|≤k

∑
x∈Ω

E
[(
Z(x)− Ẑ(x, S)

)2
]
, (6.5)

where Ẑ(x, S) is the linear estimator of Z(x) given the variables in S. We will now rewrite
the problem using the definition of the mean squared error. Denote the elements of a set
S by {x1, . . . , xk}. The linear estimator Ẑ(x, S) is given by Theorem 1:

Ẑ(x, S) := bx(S)TC(S)−1Y S (6.6)

where

bx(S) := [φSE(‖x− x1‖), . . . , φSE(‖x− xk‖)] ∈ Rk

Y S := [Y (x1), . . . , Y (xk)] ∈ Rk

C(S) := E
[
ZSZ

T
S

]
+ σ2Ik ∈ Rk×k

=

 φSE(0) . . . φSE(‖x1 − xk‖)
...

. . .
...

φSE(‖xk − x1‖) . . . φSE(0)

+ σ2Ik.

(6.7)

Expanding (6.5), we get

min
S⊂Θ,|S|≤k

∑
x∈Ω

φSE(0)− bx(S)TC(S)−1bx(S). (6.8)

Since φSE(0) = σ2
0 is a constant, we can consider the maximization version of the

problem. Define

fx(S) := bx(S)TC(S)−1bx(S)

f(S) :=
∑
x∈Ω

fx(S), (6.9)

84

where bx(S) and C(S) are defined in (6.7). The function fx(S) is also known as the squared
multiple correlation [92, 36] or the variance reduction [77].

In this chapter, we wish to find the measurement set that maximizes the total variance
reduction. This is formulated as the following optimization problem.

Problem 8. Given measurement locations Θ, prediction locations Ω, and a budget k > 0,
find a measurement set S ⊂ Θ of size k that maximizes the total variance reduction:

max
S⊂Θ,|S|≤k

f(S). (6.10)

6.3 Problem Structure

In this section we provide preliminary results that guide the design of our algorithm,
presented in the next section.

Non-submodularity Problem 1 resembles a sensor placement problem where one is
interested in a subset of locations to deploy sensors to maximize the information gained
about the environment. Metrics related to the information gained such as coverage and
mutual information are known to be submodular functions which can be approximately
solved efficiently with a guarantee. However, for Problem 1, we provide an example to
show the variance reduction objective is not submodular.

Example 2. Consider the following environment setup where the points lie on an interval
on the real line.

D ⊂ R,Ω = {0},Θ = [0, 2], σ = 1, σ0 = 1, L = 1,

A = {0.6784}, B = {0.6784, 1.4869}, x = 0.6892.
(6.11)

Now, f(A ∪ {x}) − f(A) = 0.1021 and f(B ∪ {x}) − f(B) = 0.1025, which shows the
violation.

Two Prediction Locations with One Sample We discuss properties of the problem in
1-D, i.e., the random variables are associated with locations on the real line. This restriction
provides valuable insight into the problem and motivates our proposed algorithm.

85

0.0 0.2 0.4 0.6 0.8
location

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

va
ria

nc
e

re
du

ct
io

n

midpoint
prediction points

0.0 0.2 0.4 0.6 0.8 1.0
location

0.540

0.545

0.550

0.555

0.560

0.565

0.570

va
ria

nc
e

re
du

ct
io

n

midpoint
prediction points

Figure 6.2: Left: An example of the objective function defined on the interval [0, 1]. The
test locations are located at y1 = 0.0, y2 = 0.9 and L = 1√

2
. In this setting, the midpoint

achieves the global maximum. Right: An example of the objective function defined on the
interval [0, 1.1]. The test locations are located at y1 = 0.0, y2 = 1.1 and L = 1√

2
. In this

setting, the midpoint is a local minima.

Suppose the set of prediction locations contains two points i.e. Ω = {y1, y2} ⊂ [a, b],
with y1 < y2. After some simplification, the optimization problem in (6.10) is

max
x∈[a,b]

1

σ2
0 + σ2

(
φ2

SE(‖x− y1‖) + φ2
SE(‖x− y2‖)

)
= max
x∈[a,b]

σ4
0

σ2
0 + σ2

(
e−

1
L2 ‖x−y1‖2 + e−

1
L2 ‖x−y2‖2

)
.

(6.12)

The solution depends on the relationship between the distance between the two prediction
locations and L, the parameter of the squared exponential covariance function defined in
(6.1). This is formalized in the following proposition.

Proposition 1. Let D ⊂ R, Ω = {y1, y2} ⊂ D,Θ = D, t = 1, and the midpoint x∗ = y1+y2
2

.
Denote the optimal solution to (6.12) by OPT. Then,

OPT = x∗ ⇐⇒ ‖y2 − y1‖ ≤
√

2L. (6.13)

Proof. Define d1 := ‖x− y1‖, d2 := ‖x− y2‖. In this setting, the objective function is

f(x) =
σ4

0

σ2
0 + σ2

(
e−

d21
L2 + e−

d22
L2

)
. (6.14)

86

The derivative of f(x) is:

f ′(x) =
−2

L2

σ4
0

σ2
0 + σ2

(
(x− y1)e−

d21
L2 + (x− y2)e−

d22
L

)
. (6.15)

In general, it is difficult to solve for the critical points using the derivative of the form
in (6.15) since it is a transcendental equation. One could resort to numerical methods to
solve it. However, in this case, we identify the midpoint x∗ = y1+y2

2
as a critical point for

the function i.e. f ′(x∗) = 0.

The second derivative is given by:

f ′′(x) =
−2

L2

σ4
0

σ2
0 + σ2

(
e−

d21
L2
(
1− 2

L2
(x− y1)2

)
+e−

d22
L2
(
1− 2

L2
(x− y2)2

)) (6.16)

Evaluating the second derivative at the critical point x∗ = y1+y2
2

gives

f ′′(x∗) =
−4

L2

σ4
0

σ2
0 + σ2

e−
1

4L2 (y2−y1)2(
1− 1

2L2
(y2 − y1)2

) (6.17)

⇒We will prove the forward direction by proving the contrapositive. When (y2−y1)2 >
2L2, f ′′(x∗) > 0 and x∗ is a local minima and is not optimal.

⇐ Since (y2 − y1)2 < 2L2, we have that f ′′(x∗) < 0, and thus x∗ is a local maxima. To
show x∗ is a global maximum, we show f ′(x) > 0 on the interval [y1, x

∗] and f ′(x) < 0 on
the interval [x∗, y2].

On the interval [y1, x
∗], it is sufficient to show the following:

x− y1

y2 − x
≤ e−

d22
L2

e−
d21
L2

, (6.18)

since this ensures f ′(x) > 0. Consider the RHS in (6.18),

e−
d22
L2

e−
d21
L2

= e−
1
L2 ((x−y2)2−(x−y1)2)

= e−
1
L2 (y1−y2)(2x−y2−y1) = e−

2
L2 (y2−y1)(

y1+y2
2
−x).

(6.19)

87

Since (y2−y1)2 < 2L2, it holds that − 2
L2 (y2−y1) > − 4

(y2−y1)
. Continuing from (6.19) gives

e−
2
L2 (y2−y1)(

y1+y2
2
−x) > e

− 4
y2−y1

(
y1+y2

2
−x)
. (6.20)

Now, we need to show that the LHS in (6.18) is less than the lower bound in (6.20). Define
A := y1+y2

2
, B := y2−y1

2
, and for any x ∈ [y1, x

∗], define Z := x−A. Starting with the LHS
gives

x− y1

y2 − x
=
x− y1 + A− A
y2 − x+ A− A

=
x+B − A
−x+ A+B

=
Z +B

−Z +B
=

Z
B

+ 1

−Z
B

+ 1
.

(6.21)

Consider the function g(y) := e2y 1−y
1+y

. The derivative is g′(y) = − 2y2e2y

(1+y)2
which shows the

function is non-increasing for all y 6= −1. Then, since g(0) = 1, g(y) ≥ 1 on the interval
(−1, 0]. Then, we have for y ∈ (−1, 0],

y + 1

−y + 1
≤ e2y. (6.22)

Note that since y2 − y1 ≤
√

2L, for any x ∈ [y1, x
∗], −1 ≤ Z

B
≤ 0. Setting y = Z

B
in (6.22)

gives
Z
B

+ 1

−Z
B

+ 1
≤ e2Z

B = e
− 4
y2−y1

(
y1+y2

2
−x)
, (6.23)

which shows that the LHS in (6.18) is less than the lower bound in (6.20). Thus, f ′(x) > 0
and f(x) is increasing on the interval [y1, x

∗]. Using similar arguments, one can show f(x)
is decreasing on the interval [x∗, y2]. Combining this with the fact x∗ is a critical point and
f ′′(x∗) < 0 implies x∗ is the global maximum.

When the points are separated by a distance greater than
√

2L, Proposition 1 guar-
antees the suboptimality of the midpoint (see Figure 6.2). In this case, the prediction
locations are reasonable solutions whose performance guarantee is given by the following
proposition.

Proposition 2. Given D ⊂ R, Ω = {y1, y2} ⊂ D,Θ = D, and k = 1, when ‖y2 − y1‖ >√
2L, the point x = y1 is an approximate maximizer to (6.12) with a guarantee

f({y1})
f({x∗})

≥ 0.62, (6.24)

where x∗ is the optimal measurement location.

88

Proof. Define d1 := ‖x− y1‖, d2 := ‖x− y2‖. In this setting, the objective function is

f(x) =
σ4

0

σ2
0 + σ2

(
e−

d21
L2 + e−

d22
L2

)
. (6.25)

The derivative of f(x) is:

f ′(x) =
−2

L2

σ4
0

σ2
0 + σ2

(
(x− y1)e−

d21
L2 + (x− y2)e−

d22
L

)
. (6.26)

For x < y1, f ′(x) is positive and for x > y2, f ′(x) is negative. Thus, the optimal solution
x∗ must lie within the interval [y1, y2]. Since ‖y1 − y2‖ >

√
2L, x = y1+y2

2
is a local

minima (Proposition 1). The function is symmetric around the midpoint, so we restrict our
discussion to the interval [y1,

y1+y2
2

]. A lower bound for the solution x = y1 is constructed by

assuming e−
‖y1−y2‖

2

L2 = 0. Thus, f(y1) ≥ σ2
0

σ2
0+σ2 . Since the optimal solution x∗ ∈ [y1,

y1+y2
2

]

and ‖y1 − y2‖ ≥
√

2L, an upper bound can be constructed: f(x∗) <
σ2
0(1+e−0.5)

σ2
0+σ2 . Thus,

f(y1)

f(x∗)
≥ 1

1 + e−0.5
≈ 0.62. (6.27)

Propositions 1 and 2 motivate our algorithm design. For two prediction points and one
sample in 1D, either the midpoint is optimal or either prediction point is an approximate
solution. This suggests the following idea: restrict the search of the greedy algorithm to
the prediction locations and the centroids of the cliques formed by the prediction locations.

6.4 Algorithms

In this section, we discuss Grid-Greedy and its limitations, our proposed algorithm
Centroid-Greedy based on computing centroids of maximal cliques, and provide a
reformulation of computing the marginal gains that speeds up the implementation of both
greedy algorithms in practice.

89

prediction locations

Figure 6.3: A plot of the objective f(S) in Problem 1 when the random variables are
associated with a two-dimensional space and the budget is one i.e. t = 1. The function is
non-concave and has many local maxima.

6.4.1 Grid-Greedy

The greedy algorithm is popular for subset selection in regression where it is also known
as Forward Selection [36, 92, 64]. In this section, we discuss how the greedy algorithm can
be used for infinite observation sets. For Problem 1, starting with S0 = ∅, the first step of
the algorithm computes the maximizer to

S1 = arg max
x∈Θ

f({x})

= arg max
x∈Θ

1

σ2 + σ2
0

∑
y∈Ω

φ2
SE(‖x− y‖)

= arg max
x∈Θ

σ4
0

σ2 + σ2
0

∑
y∈Ω

e−
1
L2 ‖x−y‖2 .

(6.28)

90

This function is non-concave and in general, it is difficult to find the global maximum. A
plot of this objective when the set of observation locations is a subset of the two dimensional
Euclidean space i.e. Θ ⊂ R2 is shown in Figure 6.3.

To tackle this non-concave maximization problem, the set of measurement locations Θ
can be uniformly discretized to form a finite set of points Θ̄ ⊂ Θ. The point x ∈ Θ̄ with
the maximum function value is returned as an approximate solution. This is known as
the Uniform Grid method [101]. Each step of the greedy algorithm can be approximately
solved using this method. The grid discretization is determined by a positive integer
parameter ρ ≥ 1 which tiles each dimension with ρ points to form Θ̄ of size ρd. We refer
to this method as Grid-Greedy. The time complexity of Grid-Greedy is given in the
following proposition.

Proposition 3. Given a positive integer ρ ≥ 1 and a grid discretization of size ρd,
Grid-Greedy finds a solution to Problem 1 in time O(ρdk3 max{k, |Ω|}).

Proof. Grid-Greedy runs for k iterations with ρd function evaluations per iteration. For
a set S of size k, the evaluation of f(S) requires the inversion of a k × k matrix and |Ω|
matrix multiplications, with each multiplication taking time O(k2). Thus, the overall time
complexity for the evaluation of f(S) is O(max{k3, |Ω|k2}). Then, Grid-Greedy runs in
time O(ρdkmax{k3, |Ω|k2}) = O(ρdk3 max{k, |Ω|}).

The dependence of the runtime on ρd is concerning. To get good quality solutions using
the greedy algorithm, ρ needs to be sufficiently large to achieve a good grid resolution. In
this chapter, we aim to find good quality solutions using the greedy algorithm in time
independent of the grid discretization.

6.4.2 Centroid-Greedy

In this section, we present our algorithm Centroid-Greedy which involves two parts.
First, we find the centroids of maximal cliques in a graph with nodes as prediction locations.
Second, we use the set of centroids and prediction locations as a ground set for the greedy
algorithm for maximizing set functions to solve Problem 1.

Finding Clique Centroids

The steps to compute clique centroids is given in Algorithm 8. The first step (Line 1,
constructGraph) constructs a graph G = (V,E) with vertices as prediction locations.

91

Algorithm 8: MaximalCliqueCentroids

Input: Prediction locations Ω
Output: Clique Centroids X ⊂ Θ

1 G = (V,E)← constructGraph(Ω)
2 C ← maximalCliques(G)
3 Initialize X = ∅
4 for each clique M∈ C do
5 X ← X ∪ {centroid(M)}
6 return X

Two vertices are connected with an edge if the corresponding prediction locations are
within a distance

√
2L. An example of a constructed graph for a two dimensional problem

is shown in Figure 6.4. The next step is to compute the clique centroids. Ideally, we would
like to find maximum cliques in the graph. Unfortunately, finding maximum cliques is
NP-Hard [29]. We limit ourselves to finding maximal cliques from each vertex in the graph
since this can be done efficiently with a greedy algorithm: for each vertex v ∈ V in the
graph, grow the clique one vertex at a time by looping through the remaining vertices,
add it to the clique if it is adjacent to every vertex in the clique and discard it otherwise
(Line 2, maximalCliques). Note, this method does not yield all maximal cliques like
the Bron-Kerbosch algorithm [15], which has an exponential time complexity in the worst
case. Once we have the set of maximal cliques, the final step is to loop through the cliques
and compute the centroid of the prediction locations associated with the clique (Line 5).

Centroid-Greedy

Proposition 3 ensures that the prediction locations are reasonable approximate solutions
when the prediction locations are separated by a distance greater than

√
2L. Instead of

Grid-Greedy which has a runtime of O(ρdk3 max{k, |Ω|}) for Problem 1 (see Proposition
3), we remove the dependence on ρd i.e. the grid discretization, by limiting the search to the
set of centroids (computed in Algorithm 8) and the set of prediction locations: X ∪Ω. The
set of centroids is a feasible set for Problem 1 since Ω ⊂ Θ and Θ is a convex set i.e. the set of
measurement locations Θ contains the centroids of any subset of prediction locations. Since
the number of maximal cliques computed by Algorithm 8 is bounded above by the number
of prediction locations, the runtime of Centroid-Greedy is O(|Ω|k3 max{k, |Ω|}). This
is an improvement over the runtime O(ρdk3 max{k, |Ω|}) of Grid-Greedy, as long as
|X ∪ Ω| < ρd, which we will show in Section 6.5, is required for Grid-Greedy to obtain

92

prediction locations

Figure 6.4: The objective function f(S) when the budget k = 1 for a given set of prediction
locations in two dimensions. Two prediction locations are connected by an edge if the
distance between them is less than or equal to

√
2L.

good solutions for large fields. The steps for Centroid-Greedy are given in Algorithm 9.

Algorithm 9: Centroid-Greedy

Input: Continuous Field: Θ, Prediction Locations: Ω, budget k > 0
Output: Measurement Set: S ⊂ Θ, |S| = k

1 V = MaximalCliqueCentroids(Ω)
2 Initialize S0 = ∅
3 for i = 1 to k do
4 Si = Si−1 ∪ {arg max

x∈V
f(Si−1 ∪ {x})− f(Si−1)}

5 return Sk

6.4.3 Implementation of the Greedy Algorithm

Each step of the greedy algorithm requires computing the maximizer of the marginal gain
f(Si ∪ {x}) − f(Si) over all feasible x. Computing f(S) in the form in (6.9) is time
consuming and is not amenable to vectorization in NumPy [62] directly. Using Proposition

93

4, the marginal can be rewritten in a form that can be vectorized, and in practice is much
faster to compute. For example, computing the solution for 500 prediction points, ground
set size of 400, and a budget of 25 takes ≈ 0.5 seconds with vectorization and ≈ 14 seconds
with the non-vectorized version.

Proposition 4. The marginal improvement of f(S) when adding an element x to a set A
is given by:

f(A ∪ {x})− f(A) = Tx
∑
y∈Ω

(
Rx,y (A)− φ2

SE(x− y)
)2
, (6.29)

where Tx =
(
σ2

0 + σ2 − bTx (A)C (A)−1 bx (A)
)−1

and Rx,y (A) = bx(A)TC (A)−1 by (A).

Proof. We can partition the covariance matrix C(A ∪ {x}) as follows:

C(A ∪ {x}) =

[
C(A) bx(A)
bx(A)T σ2

0 + σ2

]
(6.30)

Define Tx := σ2
0 + σ2 − bx(A)TC(A)−1bx(A). Using block matrix inversion,

C(A ∪ {x}) =[
C(A)−1+C(A)−1bx(A)Txbx(A)TC(A)−1 −C(A)−1bx(A)Tx

−Txbx(A)TC(A)−1 Tx

] (6.31)

Consider the objective

f(A ∪ {x}) =
∑
y∈Ω

by(A ∪ {x})C(A ∪ {x})−1by(A ∪ {x}). (6.32)

We can partition by(A ∪ {x}) as follows:

by(A ∪ {x}) =

[
by(A)

φSE(x− y)

]
(6.33)

Define Rx,y (A) = bx(A)TC (A)−1 by (A). Then, plugging in the required quantities in
the objective and performing the vector-matrix multiplications results in

f(A ∪ {x}) = f(A) +
∑
y∈Ω

(
TxRx,y(A)TRx,y(A)

− 2φSE(x− y)TxRx,y(A)T

+ φ2
SE(x− y)Tx

)
f(A ∪ {x})− f(A) = Tx

∑
y∈Ω

(Rx,y(A)− φSE(x− y))2 .

(6.34)

94

6.5 Numerical Results

We provide evidence of two advantages of Centroid-Greedy over Grid-Greedy. First,
Centroid-Greedy obtains higher quality solutions on problem instances where the run
time of both algorithms is comparable. Second, on instances where the solution quality
is comparable, Centroid-Greedy finds the solution faster than Grid-Greedy. The
solution quality is measured by the mean squared error (Equation 6.5) and the run time
is measured in seconds.

Experimental Setup

We follow the setup in [122] where a Gaussian Process was fit to a real world dataset of
organic matter measurements in an agricultural field [96]. Note that we do not require
the actual data, only the parameters of the squared exponential covariance function and
the variance of the measurement noise. Specifically, the authors [122] computed L = 8.33
meters, σ0 = 12.87, and σ2 = 0.0361. The interpretation of L is the distance one has to
travel before the underlying function value changes [109]. Since the covariance function is
a squared exponential, only the relative distances between points matter, not the absolute
positions. This enables us to consider different environment sizes:

1. Dsmall := {(x, y) ∈ R2 : 0 ≤ x ≤ 40, 0 ≤ y ≤ 40}, Area = 1600 square meters.

2. Dmed := {(x, y) ∈ R2 : 0 ≤ x ≤ 120, 0 ≤ y ≤ 120}, Area = 14, 400 square meters.

3. Dlarge := {(x, y) ∈ R2 : 0 ≤ x ≤ 600, 0 ≤ y ≤ 600}, Area = 360, 000 square meters.

We also consider three regimes for the number of prediction points: sparse (20 points,
budget 8), moderate (300 points, budget 75), and dense (1000 points, budget 200). The
results in the following sections are based on 10 randomly generated problem instances for
each combination of environment type (small, medium, large) and prediction point regime
(sparse, moderate, dense). The experiments are implemented using NumPy [62] on an
AMD Ryzen 7 2700 processor.

95

small medium large
environment type

0

500

1000

1500

2000

2500

3000

m
ea

n
sq

ua
re

d
er

ro
r

sparse regime

small medium large
environment type

0

5000

10000

15000

20000

25000

30000

35000

40000

m
ea

n
sq

ua
re

d
er

ro
r

moderate regime

small medium large
environment type

0

20000

40000

60000

80000

100000

m
ea

n
sq

ua
re

d
er

ro
r

dense regime
greedy improved greedy

Figure 6.5: Comparison of the solution quality while keeping the run time approximately
the same. Centroid-Greedy obtains equal or better solutions Grid-Greedy in all
environment types and regime of prediction points.

6.5.1 Solution Quality

In the first set of experiments, we aim to answer the following question: given the same
computational resources, which algorithm provides a better solution? To ensure equal

computational resources, for a N × N grid discretization, we set N =
⌈√

2|Ω|
⌉
. Since

the number of maximal cliques computed in Algorithm 8 is at most |Ω|, this ensures the
runtimes are comparable. The grids selected are: 7× 7 (sparse regime), 25× 25 (moderate
regime), 45× 45 (dense regime).

The results are shown in Figure 6.5. In the sparse regime (left plot) Centroid-Greedy
outperforms Grid-Greedy on average in all environment types. The difference in per-
formance is the highest in large environments since the grid resolution is not sufficient
to cover the space. In the moderate regime (center plot) and dense regime (right plot),
the solution quality of both algorithms is similar in small and medium sized environments.
However, for large environments, Centroid-Greedy obtains better solutions. The differ-
ence in performance reduces as we move from the sparse to dense regime. This is because
the high density of prediction points increases the chance of close proximity with grid
points, even in the case of low resolution grids. In summary, using a similar amount of
computational resources, Centroid-Greedy obtains solutions of equal or higher quality
than Grid-Greedy across all environment sizes and regimes on the number of prediction
points.

96

small medium large
environment type

0.000

0.001

0.002

0.003

0.004

0.005
ru

n
tim

e
(s

ec
on

ds
)

sparse regime

small medium large
environment type

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ru
n

tim
e

(s
ec

on
ds

)

moderate regime

small medium large
environment type

0

20

40

60

80

100

ru
n

tim
e

(s
ec

on
ds

)

dense regime
greedy improved greedy

Figure 6.6: Comparison of the run time while keeping the solution quality approximately
the same. Grid-Greedy practically takes at least as much time as Centroid-Greedy
to find solutions of similar quality.

6.5.2 Run Time

In the second set of experiments, we aim to answer the following question: how much longer
does it take for Grid-Greedy to achieve similar solution quality as Centroid-Greedy?
For each problem instance, if Centroid-Greedy obtains a higher objective value than
Grid-Greedy we repeatedly increase the grid resolution until Grid-Greedy attains the
a similar objective value. We compare the time taken by Grid-Greedy on the final grid
resolution to the time taken by Centroid-Greedy.

The results are shown in Figure 6.6. In the sparse regime (left plot) and moderate
regime (center plot), the run times are practically the same. In the moderate regime, the
number of prediction points is a bit higher than the number of grid points which is the rea-
son for the slightly higher runtime of Centroid-Greedy. However, in the dense regime,
Grid-Greedy takes approximately 2.5 times (small environments), 4 times (medium size
environments), and 5 times (large environments) as long as Centroid-Greedy to at-
tain a similar objective value. The runtime of Grid-Greedy increases with the size of
the environment, while the runtime of Centroid-Greedy remains fairly constant. Note,
while the run times in our experiments seem feasible in practice, the fields considered in
these experiments are small compared to average farm sizes. For example, in 2019, the
average farm size in USA was 444 acres [129] which is 5 times the size of the largest en-
vironment considered here. We expect larger reductions in run time for these agricultural

97

fields in practice. In summary, Centroid-Greedy finds solutions of similar quality to
Grid-Greedy more efficiently i.e. using less or equal amounts of time, across all environ-
ments and regimes on the number of prediction points.

6.6 Summary

We studied the problem of selecting the k-best measurements to estimate a spatial field at
a finite set of locations. We proposed an algorithm based on computing maximal cliques
that outperformed a grid discretization of the field, both in terms of solution quality and
runtime.

98

Chapter 7

Conclusions

Linear estimation under resource constraints is a recurring challenge in many domains.
In this thesis, we proposed algorithms to solve it under a variety of interesting settings
including sensor scheduling, informative path planning, and spatial sampling. Since the
general problem is NP-hard, one does not expect an algorithm to simultaneously a) com-
pute optimal solutions b) in polynomial time c) for any instance. In Chapters 3 and 4,
we relax the requirement of polynomial-time solvability and developed mixed integer pro-
grams to compute optimal solutions to sensor scheduling and informative path planning.
In Chapters 5 and 6, we relax the requirement of finding optimal solutions and develop
approximation algorithms for minimum resource sampling and tour planning.

7.1 Summary

In Chapter 3, we studied the generalized version of the sensor scheduling problem capturing
problems such as sensor placement, scheduling, and LQG sensing design. Our approach was
rooted in mixed integer optimization. We formulated a mixed integer quadratic program by
exploiting the optimality of the Kalman filter. In simulations, we showed the effectiveness
of the approach in computing optimal solutions to systems with 30 to 50 states. In addition,
the solver also returned better quality solutions over the popular greedy algorithm when
constrained to time out within a few seconds. Looking forward, it would be interesting
to devise a more compact formulation as the number of decision variables in the proposed
approach grows quadratically with the time horizon. This leads to large running times for
problems with long horizons.

99

In Chapter 4, we proposed the first computationally tractable MIP for IPP in GPs.
Our approach was rooted in exploiting the optimality of the GP posterior mean for matrix
non-decreasing functions of the expected squared estimation error which enabled the for-
mulation of the resulting MIP. Using standard network flow techniques, our approach was
also able to handle typical routing constraints that arise in IPP. While the runtimes of MIP
are generally concerning, we showed in simulation that the proposed MIPs can be solved
to optimality in several settings (high connectivity, large test sets, multiple robots, large
budgets) and when terminated early, return solutions of significantly higher quality than
the commonly used greedy algorithm. Our work is a first step towards exact algorithms, an
unexplored avenue in IPP. Looking forward, the major question is how to use this optimal
offline planner in the case when the model is not well-specified. The typical approach is to
plan in a receding horizon fashion while collecting data, updating the model, and using the
offline planner to generate feasible paths. It would be interesting to study the empirical
performance of the optimal offline planner in this setting.

In Chapter 5, we considered the problem of finding the subset of sample locations
and the shortest tour in a spatial field that guarantees a desired level of uncertainty via
the posterior variance in a Gaussian Process. We provided approximation algorithms for
both problems in two settings: convex environments and finite test sets. The central
idea for all algorithms was to compute minimize size covers of the test set in a way that
guarantees feasibility for the problems at hand. In convex environments, the algorithms
computed hexagonal covers while for finite test sets, the algorithms relied on approximately
solving the set cover problem. We also provided a counterexample to disprove a claim on
a lower bound for Sample Placement. Looking forward, it would be interesting to
characterize the sub-optimality of the proposed algorithms when the model is misspecified,
an assumption that is often violated in practice.

In Chapter 6, we discussed the problem of selecting a k-subset that yields the best linear
estimate at a set of prediction locations in a continuous spatial field. One approach is to
solve the problem using a grid discretization of the field and greedily select k measurement
locations. However, this can be computationally expensive for large fields. Instead, we
restricted the search of the greedy algorithm to the set of prediction locations and the
centroids of their cliques. This was motivated by identifying a critical distance between
two prediction points which characterized the optimal solution in 1D. In simulations, we
showed the effectiveness of the proposed approach in terms of solution quality and runtime.

100

7.2 Future Work

While our work has answered a few questions on the front of linear estimation with resource
constraints, we believe there are many challenges yet to be solved. The two critical ones
we highlight for future work are model uncertainty and stronger exact formulations.

Model Uncertainty One of the limitations of our work is that we have assumed the
models are fully specified. For example, in Chapter 3 we assumed full knowledge of the
system dynamics and measurement model. In Chapters 4 and 5, we assumed perfect
knowledge of the GP kernel hyperparameters. This is a strong assumption that may be
violated in practice since the model is learnt from the collected data. While one can
use offline planners in-the-loop (plan samples/paths, execute partial solution, collect data,
update model, and replan), the guarantees of optimality on the error are now lost. One
alternative is an adaptive algorithm where the decisions depends on the data collected thus
far. One direction that would be interesting is to characterize the benefit of adaptivity over
the optimal offline algorithm.

Exact Formulations The strength of MIPs is highly dependent on their formulation. In
Chapter 4, we used the SOS Type-1 constraint to model the relationship between a visited
vertex and its associated coefficient in the linear estimator. These are frequently recast as
big-M constraints which are known to yield weak formulations leading to long solve times
in practice. There are other ways to model this relationship, most notably the perspective
reformulation [57] which has been exploited for high dimensional sparse regression [65].
Given the close connection of IPP and sensor scheduling to sparse regression, we believe this
would be an interesting direction to pursue which could potentially yield faster runtimes.
Further, the relaxations of the MIPs could be used to generate approximate solutions
quickly via convex optimization. For the case of sensor scheduling, we believe a minimal
formulation that solely contains integer variables would be desirable. This is because the
number of continuous variables in the proposed MIQP scales quadratically with the time
horizon whereas the number of integer variables only depends on the number of sensors.

101

References

[1] Pankaj K Agarwal and Jiangwei Pan. Near-Linear Algorithms for Geometric Hitting
Sets and Set Covers. In Proceedings of the Annual Symposium on Computational
Geometry, 2014.

[2] Brian DO Anderson and John B Moore. Optimal Filtering. Courier Corporation,
2012.

[3] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J Pappas. Decen-
tralized Active Information Acquisition: Theory and Application to Multi-Robot
SLAM. In International Conference on Robotics and Automation (ICRA), 2015.

[4] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column Generation for Solving Huge Inte-
ger Programs. Operations Research, 1998.

[5] D. Bertsimas, A. King, and R. Mazumder. Best Subset Selection via a Modern
Optimization Lens. The Annals of Statistics, 2016.

[6] Dimitris Bertsimas and Bart Van Parys. Sparse High-Dimensional Regression: Exact
Scalable Algorithms and Phase Transitions. The Annals of Statistics, 48(1):300 – 323,
2020.

[7] Dimitris Bertsimas, Jean Pauphilet, and Bart Van Parys. Sparse regression: Scalable
algorithms and empirical performance. Statistical Science, 2020.

[8] Dimitris Bertsimas and Bart Van Parys. Sparse High-Dimensional Regression: Exact
Scalable Algorithms and Phase Transitions. The Annals of Statistics, 2020.

[9] Dimitris Bertsimas and Robert Weismantel. Optimization Over Integers. Dynamic
Ideas Belmont, 2005.

102

[10] Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Informative Path
Planning for an Autonomous Underwater Vehicle. In International Conference on
Robotics and Automation (ICRA), 2010.

[11] Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Optimizing Waypoints
for Monitoring Spatiotemporal Phenomena. The International Journal of Robotics
Research, 2013.

[12] Jonathan Binney and Gaurav S Sukhatme. Branch and Bound for Informative Path
Planning. In Int. Conf. on Robotics and Automation (ICRA), 2012.

[13] Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and
Maria Minkoff. Approximation Algorithms for Orienteering and Discounted-Reward
TSP. SIAM Journal on Computing, 2007.

[14] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[15] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

[16] Xiaoyi Cai, Brent Schlotfeldt, Kasra Khosoussi, Nikolay Atanasov, George J Pap-
pas, and Jonathan P How. Energy-Aware, Collision-Free Information Gathering for
Heterogeneous Robot Teams. IEEE Transactions on Robotics, 2023.

[17] Christopher I Calle and Shaunak D Bopardikar. Probabilistic Performance Bounds
for Randomized Sensor Selection in Kalman Filtering. In American Control Confer-
ence (ACC), pages 4395–4400. IEEE, 2021.

[18] Nannan Cao, Kian Hsiang Low, and John M Dolan. Multi-Robot Informative Path
Planning for Active Sensing of Environmental Phenomena: a Tale of Two Algorithms.
In Proceedings of the 2013 International Conference on Autonomous Agents and
Multi-Agent Systems, pages 7–14, 2013.

[19] Avishy Carmi and Pini Gurfil. Sensor Selection via Compressed Sensing. Automatica,
49(11):3304–3314, 2013.

[20] Luiz FO Chamon, George J Pappas, and Alejandro Ribeiro. Approximate Super-
modularity of Kalman Filter Sensor Selection. IEEE Transactions on Automatic
Control, 2020.

103

[21] Hai-Chau Chang and Lih-Chung Wang. A Simple Proof of Thue’s Theorem on Circle
Packing. arXiv preprint arXiv:1009.4322, 2010.

[22] I-Ming Chao, Bruce L Golden, and Edward A Wasil. The Team Orienteering Prob-
lem. European Journal of Operational Research, 1996.

[23] Chandra Chekuri, Nitish Korula, and Martin Pál. Improved Algorithms for Orien-
teering and Related Problems. Transactions on Algorithms (TALG), 2012.

[24] Chandra Chekuri and Martin Pal. A Recursive Greedy Algorithm for Walks in
Directed Graphs. In Symp. on Found. of Comp. Sci. (FOCS), 2005.

[25] Weizhe Chen, Roni Khardon, and Lantao Liu. Adaptive Robotic Information Gather-
ing via Non-Stationary Gaussian Processes. arXiv preprint arXiv:2306.01263, 2023.

[26] Dean T Connor et al. Radiological Mapping of Post-Disaster Nuclear Environments
using Fixed-Wing Unmanned Aerial Systems: a Study from Chornobyl. Frontiers in
Robotics and AI, 2020.

[27] William J Cook, William H Cunningham, William R Pulleyblank, and Alexander
Schrijver. Combinatorial Optimisation. Springer, 1998.

[28] Micah Corah and Nathan Michael. Distributed Matroid-Constrained Submodular
Maximization for Multi-Robot Exploration: Theory and Practice. Autonomous
Robots, 2019.

[29] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[30] Jorge Cortes. Distributed Kriged Kalman Filter for Spatial Estimation. IEEE Trans-
actions on Automatic Control, 2009.

[31] Jorge Cortés. Distributed kriged kalman filter for spatial estimation. IEEE Trans.
on Automatic Control, 54:2816–2827, 2009.

[32] IBM ILOG Cplex. V12. 1: User’s Manual for CPLEX. International Business
Machines Corporation, 2009.

[33] Noel Cressie. The origins of kriging. Mathematical geology, 22:239–252, 1990.

[34] Noel Cressie. Statistics for Spatial Data. John Wiley & Sons, 2015.

104

[35] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a Large-Scale
Traveling-Salesman Problem. Journal of the Operations Research Society of America,
1954.

[36] Abhimanyu Das and David Kempe. Algorithms for Subset Selection in Linear Re-
gression. In ACM Symposium on Theory of Computing, 2008.

[37] Abhimanyu Das and David Kempe. Approximate Submodularity and its Applica-
tions: Subset Selection, Sparse Approximation and Dictionary Selection. The Journal
of Machine Learning Research, 2018.

[38] Jnaneshwar Das, Frédéric Py, Julio BJ Harvey, John P Ryan, Alyssa Gellene, Rishi
Graham, David A Caron, Kanna Rajan, and Gaurav S Sukhatme. Data-driven
Robotic Sampling for Marine Ecosystem Monitoring. The International Journal of
Robotics Research, 2015.

[39] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. Algo-
rithms. McGraw-Hill Higher Education New York, 2008.

[40] Neil K Dhingra, Mihailo R Jovanović, and Zhi-Quan Luo. An ADMM Algorithm
for Optimal Sensor and Actuator Selection. In Conference on Decision and Control,
pages 4039–4044. IEEE, 2014.

[41] Adrian Dumitrescu and Joseph SB Mitchell. Approximation Algorithms for TSP
with Neighborhoods in the Plane. Journal of Algorithms, 2003.

[42] Adrian Dumitrescu and Csaba D Tóth. Constant-Factor Approximation for TSP
with Disks. A Journey Through Discrete Mathematics: A Tribute to Jiř́ı Matoušek,
2017.

[43] Marco A Duran and Ignacio E Grossmann. An Outer-Approximation Algorithm for
a Class of Mixed-Integer Nonlinear Programs. Mathematical Programming, 36:307–
339, 1986.

[44] Shamak Dutta, Nils Wilde, and Stephen L. Smith. An Improved Greedy Algorithm
for Subset Selection in Linear Estimation. In 2022 European Control Conference
(ECC), pages 1067–1072, 2022.

[45] Shamak Dutta, Nils Wilde, and Stephen L Smith. Informative Path Planning in
Random Fields via Mixed Integer Programming. In 61st Conference on Decision
and Control (CDC), 2022.

105

[46] Shamak Dutta, Nils Wilde, and Stephen L Smith. A Unified Approach to Opti-
mally Solving Sensor Scheduling and Sensor Selection Problems in Kalman Filtering.
Conference on Decision and Control (CDC), 2023. To appear.

[47] Shamak Dutta, Nils Wilde, Pratap Tokekar, and Stephen L. Smith. Approximation
Algorithms for Robot Tours in Random Fields with Guaranteed Estimation Accu-
racy. In Int. Conf. on Robotics and Automation (ICRA), 2023.

[48] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. Log-det Heuristic for Matrix
Rank Minimization with Applications to Hankel and Euclidean Distance Matrices.
In American Control Conference, 2003.

[49] Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM
(JACM), 1998.

[50] L Fejes. Über die dichteste kugellagerung. Mathematische Zeitschrift, 48(1):676–684,
1942.

[51] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal Packing and
Covering in the Plane are NP-complete. Information processing letters, 1981.

[52] Zachary Friggstad, Sreenivas Gollapudi, Kostas Kollias, Tamas Sarlos, Chaitanya
Swamy, and Andrew Tomkins. Orienteering Algorithms for Generating Travel
Itineraries. In International Conference on Web Search and Data Mining, 2018.

[53] Zachary Friggstad and Chaitanya Swamy. Compact, Provably-Good LPs for Orien-
teering and Regret-Bounded Vehicle Routing. In International Conference on Integer
Programming and Combinatorial Optimization. Springer, 2017.

[54] Bruce L Golden, Larry Levy, and Rakesh Vohra. The Orienteering Problem. Naval
Research Logistics, 1987.

[55] Mohinder S Grewal and Angus P Andrews. Applications of kalman filtering in
aerospace 1960 to the present [historical perspectives]. IEEE Control Systems Mag-
azine, 30(3):69–78, 2010.

[56] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orienteering Prob-
lem: A Survey of Recent Variants, Solution Approaches and Applications. European
Journal of Operational Research, 2016.

[57] Oktay Günlük and Jeff Linderoth. Perspective Reformulations of Mixed Integer
Nonlinear Programs with Indicator Variables. Mathematical Programming, 2010.

106

[58] Oktay Günlük and Jeff Linderoth. Perspective Reformulation and Applications. In
Mixed Integer Nonlinear Programming, pages 61–89. Springer, 2011.

[59] Vijay Gupta, Timothy H Chung, Babak Hassibi, and Richard M Murray. On a
Stochastic Sensor Selection Algorithm with Applications in Sensor Scheduling and
Sensor Coverage. Automatica, 42(2):251–260, 2006.

[60] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[61] Isabelle Guyon et al. An Introduction to Variable and Feature Selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

[62] Charles R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–
362, September 2020.

[63] Abolfazl Hashemi, Mahsa Ghasemi, Haris Vikalo, and Ufuk Topcu. Randomized
Greedy Sensor Selection: Leveraging Weak Submodularity. IEEE Transactions on
Automatic Control, 66(1):199–212, 2020.

[64] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer New York Inc., 2001.

[65] Hussein Hazimeh, Rahul Mazumder, and Ali Saab. Sparse Regression at Scale:
Branch-and-Bound Rooted in First-Order Optimization. Mathematical Programming,
2022.

[66] Keld Helsgaun. An Effective Implementation of the Lin–Kernighan Traveling Sales-
man Heuristic. European Journal of Operational Research, 2000.

[67] Gregory Hitz, Enric Galceran, Marie-Ève Garneau, François Pomerleau, and Roland
Siegwart. Adaptive Continuous-Space Informative Path Planning for Online Envi-
ronmental Monitoring. Journal of Field Robotics, 2017.

[68] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based Robotic Information
Gathering Algorithms. The International Journal of Robotics Research, 2014.

[69] Syed Talha Jawaid and Stephen L Smith. Submodularity and Greedy Algorithms in
Sensor Scheduling for Linear Dynamical Systems. Automatica, 61:282–288, 2015.

[70] Donald B Johnson. Finding all the Elementary Circuits of a Directed Graph. SIAM
Journal on Computing, 1975.

107

[71] Siddharth Joshi and Stephen Boyd. Sensor Selection via Convex Optimization. IEEE
Transactions on Signal Processing, 57(2):451–462, 2008.

[72] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear Estimation. Prentice Hall,
2000.

[73] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperum-
budur. Gaussian Processes and Kernel Methods: A Review on Connections and
Equivalences. arXiv preprint arXiv:1807.02582, 2018.

[74] Frank J Kelly and Julia Kelly. London air quality: A real world experiment in
progress. Biomarkers, 14:5–11, 2009.

[75] Akira Kohara, Kunihisa Okano, Kentaro Hirata, and Yukinori Nakamura. Sensor
Placement Minimizing the State Estimation Mean Square Error: Performance Guar-
antees of Greedy Solutions. In Conference on Decision and Control, pages 1706–1711.
IEEE, 2020.

[76] Bernhard H Korte and Jens Vygen. Combinatorial Optimization. Springer, 2011.

[77] Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Ro-
bust Submodular Observation Selection. Journal of Machine Learning Research,
9(12), 2008.

[78] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-Optimal Sensor Placements
in Gaussian Processes: Theory, Efficient algorithms and Empirical Studies. Journal
of Machine Learning Research, 2008.

[79] Xiaodong Lan and Mac Schwager. Rapidly Exploring Random Cycles: Persistent Es-
timation of Spatiotemporal Fields with Multiple Sensing Robots. IEEE Transactions
on Robotics, 2016.

[80] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Computing Higher Order
Derivatives of Matrix and Tensor Expressions. In Advances in Neural Information
Processing Systems (NeurIPS). 2018.

[81] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. A Simple and Efficient
Tensor Calculus. In AAAI Conference on Artificial Intelligence, (AAAI). 2020.

[82] Jerome Le Ny and George J Pappas. On Trajectory Optimization for Active Sensing
in Gaussian Process Models. In Conference on Decision and Control (CDC), pages
6286–6292. IEEE, 2009.

108

[83] Kai-Chieh Ma, Lantao Liu, Hordur K Heidarsson, and Gaurav S Sukhatme. Data-
driven Learning and Planning for Environmental Sampling. Journal of Field Robotics,
2018.

[84] Dipankar Maity, David Hartman, and John S Baras. Sensor Scheduling for Linear
Systems: A Covariance Tracking Approach. Automatica, 136:110078, 2022.

[85] Roman Marchant and Fabio Ramos. Bayesian Optimisation for Intelligent Environ-
mental Monitoring. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012.

[86] Tobia Marcucci, Jack Umenberger, Pablo A Parrilo, and Russ Tedrake. Shortest
Paths in Graphs of Convex Sets. arXiv preprint arXiv:2101.11565, 2021.

[87] Seth McCammon and Geoffrey A Hollinger. Topological Hotspot Identification for
Informative Path Planning with a Marine Robot. In International Conference on
Robotics and Automation (ICRA), 2018.

[88] Seth McCammon, Gilberto Marcon dos Santos, Matthew Frantz, Timothy P Welch,
Graeme Best, R Kipp Shearman, Jonathan D Nash, John A Barth, Julie A Adams,
and Geoffrey A Hollinger. Ocean Front Detection and Tracking using a Team of
Heterogeneous Marine Vehicles. Journal of Field Robotics, 2021.

[89] Ajith Anil Meera, Marija Popović, Alexander Millane, and Roland Siegwart.
Obstacle-aware Adaptive Informative Path Planning for Uav-based Target Search.
In International Conference on Robotics and Automation (ICRA), 2019.

[90] Alexandra Meliou, Andreas Krause, Carlos Guestrin, and Joseph M Hellerstein. Non-
myopic Informative Path Planning in Spatio-temporal Models. In AAAI, 2007.

[91] P Miliotis. Using Cutting Planes to Solve the Symmetric Travelling Salesman Prob-
lem. Mathematical Programming, 1978.

[92] Alan Miller. Subset Selection in Regression. CRC Press, 2002.

[93] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer Programming
Formulation of Traveling Salesman Problems. Journal of the ACM (JACM), 1960.

[94] Yilin Mo, Roberto Ambrosino, and Bruno Sinopoli. Sensor Selection Strategies for
State Estimation in Energy Constrained Wireless Sensor Networks. Automatica,
47(7):1330–1338, 2011.

109

[95] Nima Moshtagh, Lingji Chen, and Raman Mehra. Optimal Measurement Selection
for Any-Time Kalman Filtering with Processing Constraints. In Conference on De-
cision and Control, pages 5074–5079. IEEE, 2009.

[96] DJ Mulla, AC Sekely, and M Beatty. Evaluation of remote sensing and targeted soil
sampling for variable rate application of nitrogen. In International Conference on
Precision Agriculture, pages 1–15, Bloomington, MN, USA, July 2000.

[97] Ulrich Münz, Maximilian Pfister, and Philipp Wolfrum. Sensor and Actuator Place-
ment for Linear Systems Based on H2 and H∞ Optimization. IEEE Transactions on
Automatic Control, pages 2984–2989, 2014.

[98] Patrenahalli M. Narendra and Keinosuke Fukunaga. A Branch and Bound Algorithm
for Feature Subset Selection. IEEE Transactions on computers, 26(09):917–922, 1977.

[99] Balas Kausik Natarajan. Sparse Approximate Solutions to Linear Systems. SIAM
Journal on Computing, 1995.

[100] George L Nemhauser et al. An Analysis of Approximations for Maximizing Submod-
ular Set Functions—I. Mathematical programming, 1978.

[101] Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018.

[102] Alex Olshevsky. Minimal Controllability Problems. IEEE Transactions on Control
of Network Systems, 1(3):249–258, 2014.

[103] Gábor Pataki. Teaching Integer Programming Formulations using the Traveling
Salesman Problem. SIAM review, 2003.

[104] Julio A Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim Indelman,
Luca Carlone, and José A Castellanos. A Survey on Active Simultaneous Localization
and Mapping: State of the Art and New Frontiers. IEEE Transactions on Robotics,
2023.

[105] Marija Popović, Teresa Vidal-Calleja, Jen Jen Chung, Juan Nieto, and Roland Sieg-
wart. Informative Path Planning for Active Field Mapping under Localization Un-
certainty. In IEEE International Conference on Robotics and Automation (ICRA),
2020.

[106] Marija Popović, Teresa Vidal-Calleja, Gregory Hitz, Jen Jen Chung, Inkyu Sa,
Roland Siegwart, and Juan Nieto. An Informative Path Planning Framework for
UAV-based Terrain Monitoring. Autonomous Robots, 2020.

110

[107] Marija Popović, Teresa Vidal-Calleja, Gregory Hitz, Inkyu Sa, Roland Siegwart,
and Juan Nieto. Multiresolution Mapping and Informative path Planning for Uav-
based Terrain Monitoring. In 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2017.

[108] Naren Ramakrishnan et al. Gaussian Processes for Active Data Mining of Spatial
Aggregates. In SIAM International Conference on Data Mining, 2005.

[109] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[110] Julius Rückin, Liren Jin, and Marija Popović. Adaptive Informative Path Planning
using Deep Reinforcement Learning for UAV-based Active Sensing. In International
Conference on Robotics and Automation (ICRA), 2022.

[111] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J
Pappas. Anytime Planning for Decentralized Multirobot Active Information Gath-
ering. IEEE Robotics and Automation Letters, 2018.

[112] Shamaiah, Manohar and Banerjee, Siddhartha and Vikalo, Haris. Greedy Sensor Se-
lection: Leveraging Submodularity. In Conference on Decision and Control (CDC),
pages 2572–2577. IEEE, 2010.

[113] Milad Siami and Ali Jadbabaie. A Separation Theorem for Joint Sensor and Actuator
Scheduling with Guaranteed Performance Bounds. Automatica, 119:109054, 2020.

[114] Milad Siami, Alexander Olshevsky, and Ali Jadbabaie. Deterministic and Random-
ized Actuator Scheduling with Guaranteed Performance Bounds. IEEE Transactions
on Automatic Control, 66(4):1686–1701, 2020.

[115] Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J Kaiser. Efficient
Informative Sensing using Multiple Robots. Journal of Artificial Intelligence Re-
search, 2009.

[116] Prince Singh, Min Chen, Luca Carlone, Sertac Karaman, Emilio Frazzoli, and David
Hsu. Supermodular Mean Squared Error Minimization for Sensor Scheduling in
Optimal Kalman Filtering. In American Control Conference (ACC), pages 5787–
5794. IEEE, 2017.

[117] Ryan N Smith, Mac Schwager, Stephen L Smith, Burton H Jones, Daniela Rus,
and Gaurav S Sukhatme. Persistent Ocean Monitoring with Underwater Gliders:
Adapting Sampling Resolution. Journal of Field Robotics, 2011.

111

[118] Petr Somol, Pavel Pudil, and Josef Kittler. Fast branch & bound algorithms for
optimal feature selection. IEEE Transactions on pattern analysis and machine intel-
ligence, 26(7):900–912, 2004.

[119] Paul Stankiewicz, Yew T Tan, and Marin Kobilarov. Adaptive Sampling with an
Autonomous Underwater Vehicle in Static Marine Environments. Journal of Field
Robotics, 2021.

[120] Tyler H Summers, Fabrizio L Cortesi, and John Lygeros. On Submodularity and
Controllability in Complex Dynamical Networks. IEEE Transactions on Control of
Network Systems, 3(1):91–101, 2015.

[121] Varun Suryan and Pratap Tokekar. Learning a Spatial Field with Gaussian Pro-
cess Regression in Minimum Time. In International Workshop on the Algorithmic
Foundations of Robotics, pages 301–317. Springer, 2018.

[122] Varun Suryan and Pratap Tokekar. Learning a Spatial Field in Minimum Time with
a Team of Robots. IEEE Transactions on Robotics, 2020.

[123] Onur Tekdas, Deepak Bhadauria, and Volkan Isler. Efficient Data Collection from
Wireless Nodes under the Two-ring Communication Model. The International Jour-
nal of Robotics Research, 31(6):774–784, 2012.

[124] Pratap Tokekar, Joshua Vander Hook, David Mulla, and Volkan Isler. Sensor Plan-
ning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Trans-
actions on Robotics, 2016.

[125] Vasileios Tzoumas, Luca Carlone, George J Pappas, and Ali Jadbabaie. LQG Control
and Sensing Co-Design. IEEE Transactions on Automatic Control, 66(4):1468–1483,
2020.

[126] Vasileios Tzoumas, Ali Jadbabaie, and George J Pappas. Near-optimal Sensor
Scheduling for Batch State Estimation: Complexity, Algorithms, and Limits. In
Conference on Decision and Control (CDC), pages 2695–2702. IEEE, 2016.

[127] Vasileios Tzoumas, Mohammad Amin Rahimian, George J Pappas, and Ali Jad-
babaie. Minimal Actuator Placement with Bounds on Control Effort. IEEE Trans-
actions on Control of Network Systems, pages 67–78, 2015.

[128] Tzoumas, Vasileios and Jadbabaie, Ali and Pappas, George J. Sensor Placement for
Optimal Kalman Filtering: Fundamental Limits, Submodularity, and Algorithms. In
American Control Conference (ACC), 2016.

112

[129] USDA, National Agricultural Statistics Service. Farms and land in farms, 2019
summary, February 2020.

[130] Shrihari Vasudevan, Fabio Ramos, Eric Nettleton, and Hugh Durrant-Whyte. Gaus-
sian Process Modeling of Large-Scale Terrain. Journal of Field Robotics, 2009.

[131] Michael P Vitus, Wei Zhang, Alessandro Abate, Jianghai Hu, and Claire J Tom-
lin. On Efficient Sensor Scheduling for Linear Dynamical Systems. Automatica,
48(10):2482–2493, 2012.

[132] Yin Wang, Mario Sznaier, and Fabrizio Dabbene. A Convex Optimization Approach
to Worst-Case Optimal Sensor Selection. In Conference on Decision and Control,
pages 6353–6358. IEEE, 2013.

[133] Richard Webster and Margaret A Oliver. Geostatistics for environmental scientists.
John Wiley & Sons, 2007.

[134] James E Weimer, Bruno Sinopoli, and Bruce H Krogh. A Relaxation Approach
to Dynamic Sensor Selection in Large-Scale Wireless Networks. In International
Conference on Distributed Computing Systems Workshops, pages 501–506. IEEE,
2008.

[135] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Ma-
chine Learning. MIT Press Cambridge, MA, 2006.

[136] Yihong Wu. Lecture Notes on ECE 598: Information-theoretic Methods in High-
Dimensional Statistics. http://www.stat.yale.edu/~yw562/teaching/it-stats.
pdf, 2016.

[137] Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. Real-time
optimal path planning and wind estimation using gaussian process regression for
precision airdrop. In American Control Conference (ACC), pages 2582–2587, 2017.

[138] Lintao Ye, Sandip Roy, and Shreyas Sundaram. On the Complexity and Approxima-
bility of Optimal Sensor Selection for Kalman Filtering. In 2018 Annual American
Control Conference (ACC), pages 5049–5054. IEEE, 2018.

[139] Lintao Ye, Nathaniel Woodford, Sandip Roy, and Shreyas Sundaram. On the Com-
plexity and Approximability of Optimal Sensor Selection and Attack for Kalman
Filtering. IEEE Transactions on Automatic Control, 66(5):2146–2161, 2020.

113

http://www.stat.yale.edu/~yw562/teaching/it-stats.pdf
http://www.stat.yale.edu/~yw562/teaching/it-stats.pdf

[140] Jingjin Yu, Mac Schwager, and Daniela Rus. Correlated Orienteering Problem and its
Application to Persistent Monitoring Tasks. IEEE Transactions on Robotics, 2016.

[141] Gioele Zardini, Andrea Censi, and Emilio Frazzoli. Co-design of Autonomous Sys-
tems: From Hardware Selection to Control synthesis. In European Control Conference
(ECC), pages 682–689. IEEE, 2021.

[142] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular Optimization with Routing
Constraints. In AAAI Conference on Artificial Intelligence, 2016.

[143] Haotian Zhang, Raid Ayoub, and Shreyas Sundaram. Sensor Selection for Kalman
Filtering of Linear Dynamical Systems: Complexity, Limitations and Greedy Algo-
rithms. Automatica, 78:202–210, 2017.

[144] Lin Zhao, Wei Zhang, Jianghai Hu, Alessandro Abate, and Claire J Tomlin. On the
Optimal Solutions of the Infinite-Horizon Linear Sensor Scheduling Problem. IEEE
Transactions on Automatic Control, 59(10):2825–2830, 2014.

[145] Hai Zhu, Jen Jen Chung, Nicholas RJ Lawrance, Roland Siegwart, and Javier Alonso-
Mora. Online Informative Path Planning for Active Information Gathering of a 3d
Surface. In International Conference on Robotics and Automation (ICRA), 2021.

114

	List of Figures
	Introduction
	Literature Synopsis
	Thesis Contributions

	Preliminaries
	Minimum Mean Squared Error (MMSE) Estimation
	Gaussian Process Regression
	Covering & Packing
	Traveling Salesman Problems

	Sensor Scheduling for Optimal Kalman Filtering
	Introduction
	Contributions

	Problem Formulation
	Mixed Integer Program for Sensor Scheduling
	Binary Convex Reformulation
	Covariance Matrices

	Numerical Results
	Sensor Selection with Budget Constraints
	Sensor Scheduling with Budget Constraints

	Summary

	Informative Path Planning for Active Regression in Gaussian Processes
	Introduction
	Contributions

	Problem Formulation
	Mixed Integer Convex Formulation
	Quadratic Formulation
	Network Flow Formulation
	Efficient Warm Starts for Budgeted Paths

	Numerical Results
	Illustrative Example: Elevation Mapping on Mt. St. Helens
	Analysis of Random Instances

	Summary

	Approximation Algorithms for Robot Tours in Gaussian Processes
	Introduction
	Problem Formulation
	Solution Approach
	Sufficient Conditions
	Convex Environments, Constant Thresholds
	Finite Test Sets, Arbitrary Thresholds

	Numerical Results
	Convex Environments, Constant Thresholds
	Finite Test Sets, Arbitrary Thresholds

	Summary

	Subset Selection in Random Fields via Maximal Cliques
	Introduction
	Contributions

	Problem Formulation
	Problem Structure
	Algorithms
	Grid-Greedy
	Centroid-Greedy
	Implementation of the Greedy Algorithm

	Numerical Results
	Solution Quality
	Run Time

	Summary

	Conclusions
	Summary
	Future Work

	References

