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ABSTFIACT 

To improve our understanding of the relationship between the northern treeline 

region and climate change, a Canadian-Russian research project (Paleoecological 

Analysis of Circumpolar Treeiine) was established in 1993. Research strategies 

primarily include analysis of lake sediment cores using a wide variety of 

sedimentological, biological and geochemical techniques. Oxygen and carbon isotope 

analysis on fine-grained lake sediment cellulose comprises an integral part of these 

multidisciplinary investigations, and have provided novel insight into Holocene 

paieohydrology and watershed carbon cycling in arctic Canada and Russia. 

Separation of oxygen isotope effects caused by changes in lake water balance 

from the oxygen isotope composition of precipitation (6180,) in the lake sediment 

cellulose 6180 records indicates that periods of treeline advance and climate warrning 

in central Canada (= 5000 - 3000 I4C years BP) and central and eastern Russia (= 

8000 - 4000 14C years BP) were characterized by distinct changes in moisture 

conditions. During these intervals, summer relative hurnidity increased by about 10 

to 15 % in centrai Canada; central Russia also became wetter whereas a drier ctimate 

is associated wiai treeline advance in eastern Russia. Reconstruction of 6'80, in 

central Canada displays a straightforward relationship with expected temperature 

change durÎng the mid- to late Holocene. However, high 6180, values during the early 

Holocene. when mean annual temperature was probably similar to present, may 

instead refIect a small reduction in distillation of moisture in Pacific air masses 

traversing the Cordillera, perhaps associated with a higher summer:winter precipitation 

ratio. 

Carbon isotope records in lake sediment cellulose suggest that lake carbon 

reservoirs at boreal treeline were strongly regulated by catchment hydrology as well 

as soi1 and vegetation development. During the moist periods of forest expansion in 

central Canada and Russia, terrestrial input of dissolved inorganic carbon to 

downstream aquatic ecosystems was an important process, supplying phytoplankton 

with non-limiting quantities of carbon. Exploratory investigations suggested that the 



nitrogen isotope composition of lacustrine bulk organic matter may also be useful for 

reconstructing nutrient dynamics in these watersheds. 

Overall, these results confirm that lake sediment organic isotope tracers are 

sensitive to changing hydrologic conditions and are an effective approach for 

paleoenvironmental reconstruction. Notably, new information acquired from these 

studies conceming the response of watershed hydrology and carbon balance to 

natural clirnate variation provides a fundamental baseline for evaluating the impact of 

future climate change in northem regions. 
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CHAPTER 1 : INTRODUCTION 

The Northern Boreal Treeline and Climate Change 

Generai circulation model (GCM) scenarios suggest that high northern latitudes 

may be particularly sensitive to anthropogenically driven climate change ( M w e l l  

1992; Houghton et al. 1996). Scenarios generated by four different GCMs estimate 

that doubling present atrnospheric CO, will likely result in an average temperature 

increase between 3 and 9 O C ,  whereas precipitation may be elevated by about 15-25 

% in the North Arnerican arctic (Maxwell 1992). Winter surface warming may be 

especially pronounced as estimated values are 2-2.4 times greater than the predicted 

global annual average. In addition to significant climate change, the average rate of 

warming will likely be greater than any dunng the past 10,000 years (Houghton et al. 

1 996). 

Although computer modelling is a powerful approach to predicting the climatic 

effects of atmospheric CO, loading, paleoenvironmental reconstruction of past warm 

climate episodes preserved in the geological record provide a rich source of 

information that is fundamental to this research. Paleoclimate data is critical for (1) 

testing climate models (e.g. Wright et al. 1 993). (2) providing a foundation upon which 

hypotheses regarding the causes of climate change may be tested, and (3) 

understanding the natural variability of climate in the absence of anthropogenic 

influences (Bradley 1985; Crowley 1991). "Systematic collection of long-term 

instrumental and proxy observations of climate system variables" has been targetted 

as a priority research topic by the lntergovernmental Panel on Climate Change 

(Houghton et al. 1996: 7). 

The arctic treeline zone is especially important to examine in the context of 

Mure climate change because of potential climate feedbacks that may arise as a 

result of changes in the distribution of forest and tundra vegetation. For example, 

important positive feedbacks may be generated by a decrease in snow-covered land 

surface aibedo (Bonan et al. 1992; Foley et ai. 1994; Otto-Bliesner & Upchurch 1997), 

and an increase in greenhouse gas release due to rapid decomposition of soi1 organic 



matter and peatlands (BOREAS Science Steering Committee 1990) and increased 

occurrence of forest fires (Wein 1990). In northern Alaska, there already appears to 

be evidence for tundra soils becoming a source of CO, to the atmosphere during the 

waming of the past century (Oechel et al. 1993). Over longer time-scales (centuries 

to millennia) however, northern ecosysterns rnay act as a small carbon sink in a 

wamer climate (Marion & Oechel 1993) as a result of elevated rates of productivity, 

development of new plant communities, and increased carbon storage in plant 

biomass (Oechel & Billings 1992). The capacity for both positive and negative 

responses highlights the importance of understanding interactions between the treeline 

region and the clirnate system. 

ldentifying the response of northern ecosystems to past changes in climate rnay 

help to evaluate the potential importance of these various feedback mechaniçms. Key 

issues that need to be addressed include the extent to which terrestrial, peatland, and 

aquatic species have been able to adapt to past episodes of climate arnelioration. Or, 

is there evidence to suggest that rates of climate change have outpaced the response 

of biota? The latter is a genuine concern given the expected brisk pace of future 

global waning (Svoboda & Henry 1987; Davis 1989). 

A collaborative team of Canadian and Russian scientists has been formed to 

address these and related issues in a 5-year international research project called the 

Paleoecological Analysis of Circumpolar Treeline (PACT) . Terrestriai, peat, and 

lacustrine paleoecology, as well as paleolimnology and paleohydrology along the 

northern Canadian and Russian treeline are major themes currently being studied by 

PACT researchers. The past 10,000 years is the temporal framework for this project, 

which includes the Mid-Holocene Climatic Optimum or Hypsithemal - a distinct and 

widespread interval of climate warming. To examine the Holocene record of 

paieoenvironmental change. PACT researchers employ a multi-proxy approach to the 

analysis of lake sediments (grain size. elemental geochemistry, loss-on-ignition , pollen, 

stomates, diatoms, chrysophyte cysts, chironomids, stable isotopes), peat deposits 

(loss-on-ignition, pollen, macrofossils, chrysophyte cysts, stable isotopes) and fossil 

wood (dendroclimatology, stable isotopes) obtained near treeline. The geographic 



scope of this project represents a significant contribution to international global change 

research. 

This thesis is a contribution to the PACT project and focuses primarily on the 

Holocene reconstruction of treeline paieohydrology based on the study of several lake 

sediment cores obtained frorn central Canada and central and eastern Russia (Figure 

1-1). The main tools that are used for this investigation include evafuation of 6180 

(footnotel) in sediment cellulose (6180dJ, 613C in bulk organic sediment (613C,rJ, and 

613C in sediment cellulose (613Cd. These data are supplemented by determinations 

of carbonhitrogen (CIN) ratios in bulk organic sediment. 

Research Objectives 

The modem hydrologic regime in the arctic is characterized by strongly differing 

processes occurring during distinct periods: winter, snowmelt, and summer (Kane et 

al. 1992). Important processes during the winter include snowfall and accumulation, 

redistribution of snow by wind, and freezing of the active layer. The short snowmelt 

interval is dominated by runoff. During the summer. large rainfall events can also 

generate significant amounts of runoff, although loss of water via evapotranspiration 

is a major flux. How these factors may have varied in the past on both local and 

regional scales, however, has not been investigated systematicaily. The lack of 

detailed paleohydrological studies in the arctic and the need for this information was 

recently highlighted by Kane et al. (1992: 36): 

Quantifying the magnitude of hydrologic change due directly to climate 
change in the Arctic is going to be difficult because of the limited 
existing data base. From a quick examination of arctic hydrologic 
literature, one finds that most studies are of limited duration; many field 
studies start after the snowmelt; most studies concentrate only on one 
or two hydrologic processes; and the quality of some of the data is 
compromised because of harsh environmentai conditions. Many of the 

l &values represent deviation in per mil (%) from the international V-SMOW standard (for b2H and 
bl'O) and PDB standard (for 6 % )  such that b = ((R,w,JR,&l)lOOO. where R is the Z H ~  H. leO/leO, 
or 13Cr2C ratio. 



Figure 1-1. Circumpolar map with treeline. Location of lakes discussed in thesis. 
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publications are in the gray literature, and because of the short duration 
of record, the stochastic variability of the hydrologic data is unknown. 
How are we going to sepatate changes in the hydrology induced by 
climatic change from naturd variation? 

Stratigraphie oxygen isotope analysis of fine-grained cellulose in lake sediment 

cores provides a tool for assessment of the natural amplitude, variability, and rate of 

past hydrologic change (see Research Approach). The primary research questions 

that this thesis addresses inchde: 

1. How has the water balance of treeline lakes varied during the Holocene, 

particularly during periods of terrestrial ecologic change, and are there regional 

similarities or differences between northern Canada and northern Russia? 

Have changes been abrupt or lagged behind other changes in the 

environment? What does the interpreted hydrologic record suggest about 

moisture conditions during p s t  episodes of climate warming? 

2. What do changes in moisture conditions (in association with thermal and 

vegetation reconstructions) suggest about potentially important climate forcing 

mechanisrns that may have operated in the past? 

As previously discussed in the introductory section, "uncertain effects of global 

change on arctic and boreal forest carbon balance make the study of northern 

ecosystem response a key to understanding and predicting Mure global atmospheric 

CO, patterns" (Oechel8t Billings 1992: 140). The carbon isotope composition of bulk 

organic lake sediment and cellulose, which often cornplement cellulose-derived oxygen 

isotope profiles (see Research Approach), were periormed to address the following 

secondary inquiries: 

3. How has treeline watershed carbon cycling varied during periods of 

terrestrial ecologic change? Have changes been abrupt or lagged behind other 



changes in the environment? 

4. What is the relationship between past hydrologic change and the carbon 

cycle in treeline lakes of northern Canada and Russia? 

Answers to these questions, integrated with information gathered from other 

proxy records, will provide important baseline data for pararneterization and validation 

of GCMs and ecological models. 

Research Approach 

Stratigraphie oxygen and carbon stable isotope analysis of organic lake 

sedirnents can provide a quantitative record of former paleohydrologic conditions and 

a qualitative guide to the carbon balance history at the site of investigation. These 

paieoenvironmental data are frequently a direct reflection of the prevailing climatic and 

ecologic setting. Isotope-based reconstructions may be sufficiently robust to stand 

alone and can often place constraints on the interpretation of other proxy data. Below 

are concise reviews of the fundamental processes and factors that influence the 

oxygen and carbon isotope composition of lacustrine organic matter, commonly held 

assumptions, and examples of isotope paieolimnology studies that, together, outline 

the research approach used in this investigation. 

Oxygen Isotopes in Lacustrine Organic Matter 

Widespread occurrence of organic matter in treeline lake sediments provides 

an alternative substrate to the limited distribution of lacustrine biogenic and inorganic 

carbonates in this region. the more traditional archives of isotope-derived hydrologic 

information in temperate and tropical environments. The organic-isotope approach to 

paleohydrologic reconstruction is primarily based on stratigraphic analysis of 8180,,,,, 

first utilized by Edwards & McAndrews (1 989), which frequently serves as a proxy for 

the oxygen isotope history of lake water (6180J. Direct inference of 6'80, from 

6l80,,, is strongly supported by independent evidence showing that the isotopic 



separation between cellulose and water is relatively constant (E,,,, = 28 %), 

unaffected by changes in temperature or plant species (see reviews by Sternberg 

1989 and Yakir 1992). 

Aquatic cellulose is found in the cell walls of many algae, forming about 10 % 

by weight (De Leeuw & Largeau 1993). and is likely preserved in lake sediments 

within zooplankton fecai pellets (Edwards 1993). Incorporation of terrestriai cellulose 

in fine-grained offshore lake sediment often appears to be minimal in bore4 treeline 

lakes (see manuscripts in this document) as well as in rnany other hydrologic and 

ecologic settings (Edwards & McAndrews 1989; Duthie et al. 1 996; Padden 1996; 

Buhay & Betcher in press). In some arctic lakes where primary productivity is very 

low, however, bulk sediment cellulose may be predorninantly terrestrial in origin and 

cellulose extracted from aquatic mosses may provide a better record of b180, (Sauer 

et al. 1 997). 

Source interpretation of bl*O,, is best constrained, however, when coupled with 

bulk organic C/N ratio analyses as well as 813C,, and 813C,, deteninations (see 

following section for further discussion of carbon isotopes in lakes). These data can 

yield ancillary information on the origin of the organic matter. For instance, low C/N 

ratios ( 4  0) are commonly indicative of aquatic organic matter (Meyers 1994; Meyers 

& lshiwatari 1995). Even in organic-rich sediments with slightly higher values (1 0-1 5) 

however, oxygen isotope analyses of the cellulose fraction appear to predominantly 

reflect lake water 6180 (Duthie et al. 1996; MacDonald et al. in prep.), perhaps due to 

preferential preservation of aquatic cellulose (Edwards 1993). Parailel time-series 

trends between 6l3CO, and ô13Ccell indicate CO, uptake from the same carbon source 

and can provide further support for the aquatic ongin of cellulose especially when 

combined with low C/N ratios. Conversely, stratigraphic variation in the isotopic 

difference between 6l3CO, and 6'3C,, may signal increased terrestrial contamination 

in bulk organic rnatter (Wolfe et al. 1996) and also cellulose if the organic content is 

extremely low (MacDonald et al. in prep.). Changes in bulk organic rnatter sensitivity 

to fluctuations in dissolved inorganic carbon (DIC) 613C (Edwards 1993) and bulk 

organic matter preservation, however, can complicate these empirical relationships. 



For records in which an aquatic origin for sediment cellulose can be inferred, 

interpretation of reconstructed 6180, histories usually requires identifying isotopic 

effects caused by shifis in the oxygen isotope composition of source water (Le. 

precipitation and inflow) versus those related to hydrological processes. In its sirnplest 

form, this essentially involves separating changes in ~''0, that occur along a local 

meteonc water line from those occuning dong a local evaporation line (Figure 1-2). 

In hydrologically-open lake basins that experience little evaporation and receive water 

directly from precipitation, 6180, histories inferred from sediment cellulose (as well as 

those more commonly obtained from lacustrine carbonate records) rnay trace the 

mean annual oxygen isotope composition of precipitation (6180,). This parameter has 

frequently been used as a temperature proxy (e.g. Eicher & Siegenthaler 1976; Lister 

1988; von Grafenstein et al. 1992, 1996; Ahlberg et al. 1996; Duthie et al. 1996) or 

less often as evidence for past changes in moisture sources, seasonal distribution of 

precipitation, and other aspects of air mass circulation (e.g. Ruifen et al. 1994; Talbot 

1994; Edwardç et al. 1996; Hammarlund & Edwards 1997). In other lakes. the 6180, 

imprint on 6180, may be modified by secondary isotopic effectç, including evaporative 

enrichment as is generally the case in hydrologically-closed basins, thus providing a 

record of water balance and moisture conditions (e.g. Edwards & Fritz 1988; Lister et 

al. 1991 ; Hodell et al. 1995; Benson et al. 1996; Wolfe et al. 1996). 

Carbon Isotopes in Lacustrine Organic Matter 

In contrast to lake water 6180, which is largely controlled by physical 

mechanisms. the 6l3C of lake water DIC may be strongly mediated by in-lake 

biological processes as well as exchange with atmospheric CO, (McKenzie 1985; 

Quay et al. 1986; Herczeg 1987; Herczeg & Fairbanks 1987; Lee et al. 1987). During 

photosynthesis, phytoplankton preferentially consume 13C-depleted CO,, leaving the 

remaining CO,,, reiatively enriched in the heavy carbon isotope. Fractionation 

between total dissolved inorganic carbon and particulate organic matter is typically 

about -20 (Meyers et al. 1993), but can be substantially less due to low levels of 

CO,, (Deuser et al. 1968; Calder & Parker 1973; Herczeg & Fairbanks 1987; 



Figure 1-2. a) The oxygen and hydrogen isotope composition of precipitation and 
surface waters typically define two linear trends in d H  and 8180 space. Precipitation 
plots on a rneteorïc water line (MWL) having a slope of near 8 (Craig 1961). 
Distribution along the MWL rnainly reflects variation in temperature-dependent 
fractionation during condensation of atmospheric vapour and rain-out effects related 
to the air mass history (Dansgaard 1964; Rozanski et al. 1993). Decreasing 
temperature at the site of condensation, and increasing latitude, altitude, and distance 
from the moisture source (continentality) will generally result in progressively 
decreasing b2H and bl'O values in precipitation. Lakes that have undergone 
evaporation display enrichment in h2H and 6180 and plot on local evaporation lines 
(LEL) having slopes usually between 4 and 6 (Craig & Gordon 1965; Gonfiantini 
1986). Displacernent along a LEL varies between lakes in response to varying water 
balance. Increasing evaporation relative to inflow normally corresponds to increasingly 
positive values of b2H and b180 along a LEL trajectory. In regions characterized by 
a comrnon moisture source, intersection of the LEL and MWL can provide an estimate 
of the mean annual isotopic composition of precipitation (6,). 

b) Stratigraphie interpretation of cellulose-inferred lake water 6180 (6' '03 generally 
involves separating isotopic shifts related to changes in source water isotopic 
composition, reflected by displacement dong a MWL, from shifts in water balance 
reflected by displacement along a LEL. 



Hollander & McKenzie 1991) and HCO; assimilation (Hollander & McKenzie 1991 ; 

Talbot & Johannessen 1992; Aravena et al. 1992). Diffusive influx of atmospheric 

CO,, however, may replenish CO,, withdrawn by phytoplankton. This process 

usually provides a relatively 13C-enriched source to the DIC pool although recent work 

suggests that lakes are generaily sources rather than sinks of atmospheric CO, (Cole 

et al. 1994). Decaying plant material that sinks below the photic zone. in turn, 

releases 13C-depleted CO, (with a negligible fractionation effect). Thus, lakes typically 

display 13C-enriched DIC values in the epilimnion and 13C-depleted DIC values in the 

hypolimnion during summer stratification. Hypolimnion DIC rnay be reincorporated by 

phytoplankton u pon circulation and mixing of lake waters. 

In lakes where the carbon isotope effects of photosynthesis and respiration may 

not be as pronounced. river and groundwater input of DIC may exert a greater 

influence on lake water b13C,, (Rau 1978). Catchment-derived 613C,,, may potentially 

span a wide range of values (= -30 to O reflecüng influx of dissolved CO, from the 

decomposition of 13C-depleted soi1 organic matter (in areas devoid of carbonate) and 

the chernical weathering of 13C-enriched carbonate terrane (Boutton 1991). 

Since the pioneering work of Oana & Deevey (1960), carbon isotopes in 

organic lake sediments have frequently been used to acquire paleolimnologic 

information (see reviews by Stuiver 1975, Hakansson 1985, and McKenzie 1985). As 

in studies of modem lake water 613C,,c, the balance between photosynthesis and 

respiration often appears to be the dominant signal recorded in bl3CO, profiles with 

positive excursions frequently interpreted as increased lake p r o d ~ ~ v i t y  (Schelske & 

Hodell 1991, 1995; Meyers et al. 1993; Dean & Stuiver 1993; Duthie et al. 1996). 

These intemal lake processes may, however, be overprinted by changes in hydrology 

and influx of 13C-depleted CO,, produced in soils (Wolfe et al. 1996, in review; 

Hamrnariund 1993). Other studies suggest that 6l3COrg may also record changes in 

atrnospheric pCO, (Meyers & Hone 1993), early diagenetic processes in lake 

sediments (Nissenbaum 1984; Herczeg 1988), deposition of organic matter derived 

from different plant cornmunities (Talbot & Livingstone 1 989), and paleotemperature 

(Ariztegui & McKenzie 1 995). 



Many of these investigations have exclusively focused on the usage of 613C in 

bulk organic matter, which rnay be hampered for several reasons. Clearly, many 

different processes can invoke similar shifts in the I3C/l2C ratio. For example, 

increased lake productivity, reduced contribution of respired CO,,,, from bottom 

waters or sediment to the DIC pool, lake water CO,,, equilibration with the 

atmosphere, and decreased supply of DIC from non-carbonate bedrock catchments 

can al1 result in 13C-enrichment trends in profiles of bulk organic lake sediment. 

Second, delivery of both aquatic and terrestrial material to lake sediment can 

complicate the 813C0, record. Consequently, additional analyses such as isotopic 

measurement of macrofossils of known origin and C/N ratios are often required to 

ascertain the importance of autochthonous and allochthonous contributions (e.g. 

Aravena et al. 1992; Meyers 1990). Third, major components of plant matter have 

varying carbon isotope composition (Deines 1980) and a change in the relative 

proportion of these constituents preserved in lake sediments (e.g. as a result of 

selective degradation of labile fractions) may cause a shift in 6'3C,, that is unrelated 

to any climate-induced isotopic effect (Epstein et ai. 1976; Spiker & Hatcher 1984). 

Some of these potential difficulties in interpreting 6'3C0, profiles can, however, 

be resolved by additional carbon isotope analysis of the fine-grained cellulose since 

this component frequently appears to be aquatic in origin and is resistant to 

degradation. Although interpretation remains qualitative and often speculative, 

incorporation within a multi-proxy approach (C/N ratios, 6180,,, diatorns, pollen, etc.) 

can effectively constrain the number of possible interpretations (Wolfe et al. 1996, in 

prep.; MacDonald et al. in prep.). 

Thesis Organization 

The remainder of this dissertation is composed of four main chapters each 

comprising one or more self-contained manuscripts followed by a concluding chapter 

and appendices. Manuscripts that have been previously published (or are in press) 

have been subject to varying degrees of modification for inclusion into the thesis. 

Methodolog ies are described in the individual manuscripts. Revised techn ical 



procedures used in the Environmental Isotope Laboratory, University of Waterloo are 

provided in APPEND~X 1. Chapters logically progress from a modern isotopic 

assessment of lake surface sediment calibrations to individual lake paleohydrologic 

reconstructions to regional compilations. Each manuscript is prefaced by a synopsis 

which contains supplementary information and highlights important contributions. The 

following chapter briefs are provided to assist the reader in locating specific 

investigations. 

CHAPTER 2: INTEGRATING MECHANISTIC AND TRANSFER FUNCTION APPROACHES TO 
PALEOLIMNOLOGY 

Woife BB & TWD Edwards, 1997. Hydrologie control on the oxygen-isotope relation 
between sedirnent ceilulose and lake water, western Taimyr Peninsula, Russia: 
Implications for the use of surface-sediment calibrations in paleolirnnology. Journal of 
Paleolimnology (in press). 

This chapter compares mechanistic and transfer function approaches to the 

interpretation of paired oxygen isotope composition of surface sediment cellulose and 

lake water for a suite of lakes near treeline in central Russia. Variable deviation from 

the expected cellulose-water fractionation is used to provide a source of lake-specific 

hydrologic information and constrain interpretations based on microfossil surface- 

sedirnent cali brations. 

CHAPTER 3: PALEOHYDROLOGY AT THE NORTHERN BOREN TREELINE: CENTRAL CANADA 

Wolfe BB, TWD Edwards, R Aravena & GM MacDonald, 1996. Rapid Holocene 
hydrologic change dong boreal treeline revealed by 613C and 6180 in organic lake 
sedirnents, Northwest Territmies, Canada. Journal of Paleolimnology 1 5 : 1 71 -1 81 . 
This chapter presents carbon and oxygen isotope results from a tundra lake 

sediment core in central Canada and complements an earlier pilot study from a nearby 

site (MacDonald et al. 1993). Discussion focuses on the relationship between forest 

expansion and changes in the lake water and carbon balance, as well as the effect 

of a hydrologically complex catchment on the isotopic records. 



CHAPTER 4: PALEOHYDROLOGY AT THE NORTHERN BOREAL TREELINE: TAIMYR PENINSULA 
AND LENA RIVER, RUSSIA 

Velichko AA, OK 8orisova, CV Krernenetski, AA Andreev, KE Duff, TE Laing, BB 
Wotfe, R Aravena, LC Cwynar, TWD Edwards, JP Smol, RT Riding, GM MacDonald 
& D Porinchu, in prep. Holocene environmentai change at treeline on the westem 
Taimyr Peninsula of Sibena. For submission to Quatemary Research. 

Wolfe 66, MID Edwards & R Aravena, in prep. Changes in carbon and nitrogen 
cycling during treeline retreat recorded in the isotopic content of lacustrine organic 
matter, western Tairnyr Peninsula, Russia. For submission to The Holocene. 

Contribution to MacDonald GM, AA Velichko, LC Cwynar, M Pisaric, D Porinchu, TE 
Laing, 68 Woife, AA Andreev, OK Borisova, TWD Edwards & JP Smol, in prep. A 
continuous record of Late Quaternary climatic and environmental change from Arctic 
Siberia. For submission to Science. 

In Velichko et al. (in prep.), a draft manuscript is presented that integrates 

multi-proxy data cullected at a site in north-central Russia. Paleolimnologic and 

paleohydrologic responses associated with terrestrial vegetation changes are 

described. This paper is presented in its entirety to clearly illustrate the contribution 

of stable isotope analysis within the overall multidisciplinary framework of the PACT 

project. In Wolfe et al. (in prep.), additional isotopic and elernental data from this site 

are reported, including exploratory investigations using nitrogen isotope analysis on 

organic lake sediments. Also included in this chapter is an excerpt from a manuscript 

in preparation that describes isotope results from a tundra site on the Lena River 

delta. 

Edwards TWD, 88 Wolfe & GM MacDonald, 1996. Influence of changing atrnosphenc 
circulation on precipitation 6"O-temperature relations in Canada during the Holocene. 
Quaternary Research 46: 21 1-21 8. 

Wotfe BB, TWD Edwards & R Aravena, 1997. Paleohydrology at treeline, northem 
Russia: A rnutti-faceted isotope approach. Proceedings, International Symposium on 
Isotope Techniques in the Study of Past and Curent Environmental Changes in the 
Hydrosphere and the Atmosphere. International Atomic Energy Agency, Vienna, IAEA- 
SM-349/9. 

This chapter contains two manuscripts that integrate lake sediment core 6180,, 

data from northem Canada and northern Russia and provide regional reconstructions 



of Holocene paleohydrology. Possible clirnate fwcing mechanisms are discussed. 

CHAPTER 6: SUMMARY AND RECOMMENOATIONS 

This chapter summarizes important conclusions presented in chapters 2-5 and 

provides recommendations for future research. 

Note on Contributions to MultiAuthored Manuscripts 

Due to the strong emphasis on utilizing a multidisciplinary and collaborative 

research approach, the manuscripts in this dissertation are multi-authored. In the four 

manuscripts in which I am the lead author, I am largely responsible for the scientific 

and literary contributions. In Velichko et al. (in prep.; see CHAPTER 4), 1 am 

responsible for the section entitled "Oxygen Isotope Analysis" and contributed to 

roughly 50 % of the "Discussion". In Edwards et a/. (1996; see CHAPTER 5), 1 

collaborated in equal partnership with Edwards on the scientific development and 

literary presentation. 



CHAPTER 2: INTEGRATING MECHANISTIC AND TRANSFER FUNCTION 
APPROACHES TO PALEOUMNOLOGY 

Woife BB & M D  Edwards, 1997. Hydrologic control on the oxygen-isotope relation 
between sediment cellulose and lake water, western Taimyr Peninsula, Russia: 
Implications for the use of surface-sediment calibrations in paleolirnnology. Journal of 
Paleolimnology (in press). 

Synopsis 

Perhaps the most significant recent advancernent in the science of 

paleolimnology is the improvement of techniques for quantitatively inferring specific 

lake properties from biologicai remains in lake sediments (Charles et al. 1994). 

Transfer functions, based on empirically-defined relations between biological 

distributions in surface sediment and lake water characteristicç. have successfully 

been developed for lake water pH, salinity, trophic variables, and climatic parameters 

in widely differing environments (see Smol 1995 and references cited within). 

Although statisticai robustness and ecologic reality of the inference method has been 

ngorously evaluated (Charles et ai. 1994; Smol 1995), among the potential sources 

of variability that rnay introduce error relates to "the quality, appropriateness, and 

frequency of measurements of limnological characteristics" (Charles et al. 1994: 268- 

269). Temporal variability in lake water properties may be incorporated into the 

calibration mode1 by measuring chernical and environmental parameters on several 

water samples obtained throughout a year from the same lake or from several years 

in ideal situations (Charles & Smol 1994). 

In our field sites in remote northem Canada and Russia, however, multi-episode 

sampling was not feasible and consequently only one water sarnple from each lake 

was obtained in order to develop diatom, chrysophyte, and chironomid-based surface 

sediment calibrations. Although most paleolimnologists recognize that seasonal 

variations in water chemistiy, for example, must be considered in the development of 

surface-sample training sets, this uncertainty is often poorly quantified although some 

attempts have recently been made (e.g. Xia et al. 1997). Strong seasonal, climatic 

variability in the arctic yet strengthens the likelihood that single-episode lake water 

sarnples rnay not reflect those conditions present when the surface sediments were 



deposited. 

In contrat to statistically-based transfer functions, which may Vary from region 

to region, interpretation of oxygen isotope data from cellulose in lake sediments is 

based on observations that the fractionation between cellulose and water is constant 

(Sternberg 1988; Yakir 1992); thus the 6180 of the lake water can often be directiy 

inferred from the 6"0  of the cellulose. This fundamental difference in the quantitative 

interpretation of proxy data suggested that the isotopic method provided a tool for 

assessing the potential hydrologic discrepancy between the time of sampling and the 

average conditions represented by the surface sediments. 

We tested this hypothesis by comparing the oxygen isotope composition in 

paired lake water and surface sediment cellulose samples from 20 lakes near treeline 

on the western Taimyr Peninsula, Russia Our results confirmed that the hydrologic 

conditions inferred from the surface sediments were. indeed, systematically different 

from those prevailing at the time of sampling at many lakes. The limitations of single- 

visit collections in characterizing seasonally averaged lake water isotope composition 

are clearly illustrated by this data set and reinforce the appropriateness of a 

mechanistic approach to the interpretation of lake sediment cellulose 8"O. We ako 

stress that seasonal variability in arctic hydrology and its influence on lake water 

chemistry may lead to inaccurate develapment of microfossil-based transfer funcüons 

based on single-episode sampling, although we emphasize that integrating the 

mechanistic isotope approach may help to constrain transfer function interpretations. 



Abstract 

Systematic variability occurs between the oxygen isotope composition of lake 

water sampled in mid-summer 1993 and cellulose extracted from surficial sediments 

of a suite of lakes spanning the forest-tundra transition near Noril'sk, Russia. Some 

tundra and al1 forest-tundra lakes show greater deviation from expected cellulose- 

water isotopic separation than forest lakes, apparently because of greater sensitivity 

to 180-depleted snowmelt contributions. Cellulose derived from aquatic plants 

naturally integrates growing season fluctuations in lake water 8'80, providing a signal 

that is inherently more representative of average thaw season lake water 6180 than 

the measure of instantaneous 6180 obtained from an individual sample of lake water. 

Thus, indiscriminate use of empirical cellulose-water relations derived from 

"calibration" samples could lead to erroneous assessrnent of paieohydrology from the 

oxygen-isotope stratigraphy of sediment cores from arctic lakes. However, deviation 

from the expected cellulose-water ftactionation is a source of lake-specific hydrologic 

information useful for qualifying paieoenvironmental interpretations and possibly 

constraining non-isotopic methods that rely on surface-sediment calibrations. 

Introduction 

Oxygen-isotope analysis of finely disserninated cellulose in lacustrine organic 

matter (6180,,3 has developed into an effective method for reconstructing past 

hydrologic conditions in lake watersheds (e.g. Edwards & McAndrews 1989; 

MacDonald et al. 1993; Duthie et al. 1996; Wolfe et al. 1996). In these previous 

investigations, interpretation has explicitly assumed that the oxygen isotope history of 

lake water (â'803, a function of the source composition provided by local precipitation 

and subsequent hydrologic processes, can be directly inferred from stratigraphie 

analysis of 6180,,,. This mechanistic approach is strongly supported by independent 

evidence showing that the isotopic separation between cellulose and water is 

constant, unaffected by changes in temperature or plant species (Epstein et al. 19n; 

DeNiro & Epstein 1981 ; Stemberg & DeNiro 1983; Stemberg et al. 1984; Sternberg 

et al. 1986; Yakir & DeNiro 1990; also see reviews by Sternberg 1989 and Yakir 1992). 



Microfossil-based paleolimnologic reconstructions. in contrast, commonly 

depend on empirical relations between taxonomie variables in surface sediment and 

selected parameters measured in the overlying lake water at the time of sediment 

sampling. Remarkably robust transfer functions can be generated from statistical 

analysis of microfossil species distributions from a training set of lakes that spans a 

broad range in the environmental parameter of interest (see recent review by Charles 

& Smol 1994). Exarnples include relations between diatoms and salinity (Fritz 1 %IO), 

chironornids and water temperature (Walker et al. 1991), and chrysophytes and pH 

(Cumming & Sm01 1993). Transfer functions based on single-episode sarnpling, 

however, may be subject to errors arising from the temporal inconsistency between 

a surface-sediment sample, which integrates conditions during an extended time 

interval (potentially years to decades or centuries, depending on rates of 

sedimentation and the sampling resolution) and a sample of overlying lake water, 

which provides a rneasure of parameters that may have taken only days or weeks to 

develop. This inherent uncertainty is well-recognized, though often poorly quantified, 

and is normally mitigated by expert judgement in the selection of calibration lakes and 

subsequent data analysis and interpretation. 

Here we present data obtained from isotopic investigations of a small calibration 

set of paired surface-sediment and single-episode lake-water samples collected as 

part of paleoecological studies at the forest-tundra transition near Noril'sk in north- 

central Russia. Employment of the mechanistic isotope "transfer function" linking the 

6180 values of sediment cellulose and water, however, reveals systematic 

discrepancies between "integrated" and "instantaneous" lake water 6'80 in this data 

set. Aithough we focus on the hydrologie implications of these apparent isotopic 

differences, such data may also provide a means of independently assessing biases 

or uncertainties in microfossil-based transfer functions. 

Study Area and Methods 

Samples of surface water and short-cores of surface sediment were collected 

from 20 small lakes at five sites in the tundra (seven lakes), forest-tundra (eight 



lakes). and forest (five lakes) near Noril'sk (Figure 2-1). Vegetâtion zones are defined 

by Davidova & Rakovskya (1 990) and described by Clayden et al. (1 996). The lakes 

were chosen to provide caiibration sets for the establishment of transfer functions 

between fossil indicators (diatoms, chironomids, chrysophytes) and lake-water 

temperature and chemistry for application to paleoenvironmental reconstruction from 

several long lake-sediment cores (Duff et aï. in prep.; Laing et al. in review; Velichko 

et al. in prep.). Water samples for isotopic analysis were also collected frorn 

additional lakes of various sizes (n = 12), streams (n = 6), residual snowbanks (n = 

5), rain (n = 1). groundwater (n = 7). and ground-ice (n =1). Ail samples were 

collected between July 28 and August 5, 1993. 

The 20 calibration lakes range in area up to about 10 ha and in maximum 

depth from 2.2 to 11.5 m. The lakes occupy a variety of basin types. formed as 

kettles in ice-contact or outwash deposits (tundra lakes TS 13;  forest lakes TS 17 and 

18), kettles and thermokarst depressions in mixed glacial drift and organic terrain 

(tundra lakes TS 20-23, forest-tundra lakes TS 4-1 1, and forest lakes TS 15 and 16). 

and a bedrock basin in terrain heavily mantled by organic deposits (forest lake TS 13). 

Water levels were high but probably declining at the time of sampling. judging by 

evidence of recent submersion of shoreline vegetation and active surface outflow of 

most lakes, and the srnaIl amount of precipitation received during the 10-day field visit. 

The lirnnologicaî characteristics of the lakes. including aspects of the water chemistry 

are discussed in detail by Duif et al. (in prep.). Diatom assemblages from the surface- 

sediment samples are described by Laing et al. (in review); stomate and pollen 

distributions were reported by Clayden et al. (1996). 

Water samples from lakes, streams, and rain were collected directly in 30-ml 

high-density polyethylene (HDPE) bottles. Snow and ground-ice were sealed initially 

in polyethylene bags, permitted ta melt completely, and then transferred into HDPE 

bottles. Shallow groundwater was obtained by collecting water-saturated soi1 from 

near the base of the active layer. Soil samples were sealed triple-wrapped in heavy- 

gauge polyethylene bags to prevent vapour loss during transport to the laboratory for 

subsequent azeotropic distillation of porewater (Revesz & Woods 1990). 
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Figure 2-1. Study area including lake sites in tundra (TS 1-3, TS 20-23), forest-tundra 
(TS 4-1 1 ), and forest vegetation zones (TS 13, TS 15-1 8). 
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Surface sedirnents from the 20 calibration lakes were obtained from the 

upperrnost portions of short cores collected using a manually operated drop-corer 

(Glew 1991) and sectioned in the field immediately upon retrieval. Sufficient material 

was obtained from the 0-1 cm interval in most of the cores, aside from TS 4, TS 13, 

and TS 16 (0-2 cm), and TS 17 (0-3 cm). Sediment samples were freeze-dried in the 

laboratory and sieved to eliminate macroscopic plant detritus (> 500 pm). Cellulose 

was isolated by washing at 70°C in 10% hydrochloric acid solution to remove 

carbonates, followed by solvent extraction, bleaching, and alkaline hydrolysis to 

remove non-cellulose organic components (Edwards & McAndrews 1989; Wolfe et al. 

1 996). 

Isotopic analyses were carried out in the Environmental lsotope Laboratory, 

University of Waterloo using standard methods. Analyses of 180/160 and 'H/'H ratios 

in water were undertaken on CO, and H, gases prepared by COiequilibration 

(Epstein & Mayeda 1953) and Zn-reduction (Coleman et al. 1982), respectively. 

180/'60 ratio in cellulose was measured on CO, gas produced by Ni-pyrolysis 

(Edwards et al. 1994). Results are reported as 6 values, representing deviation in per 

mil ('A) from the international Vienna-SMOW standard such that 6 = [(R,,,&R,,,,)- 

111 000, where R is the '80/160 or 'HIIH ratio in the sample and standard. Analytical 

uncertainties are t 0.2 % and t 2 %. for 6180 and b2H values of water, respectively. 

Cellulose b180 values are considered accurate within + 1 based on repeated 

analyses of natural samples. 

Results and Discussion 

lsotope Hydrology 

Snow, rain, groundwater, and ground-ice, which should be unaffected by 

secondary isotopic alteration due to evaporation, define a local meteoric water line 

(LMWL) defined by: 



This equation is nearly identical to the global meteoric water line of Craig (1961). 

Distribution of data points along the LMWL (Figure 2-2a) mainly reflects seasonal 

variation in temperature-dependent fractionation during condensation of atmospheric 

vapour, and other aspects of air rnass history (Dansgaard 1964; Rozanski et al. 1993). 

As a result, our single sarnple of summer rain is strongly enriched in "0 and 2H 

relative to the snow samples which represent several precipitation events dunng the 

previous winter or spring. The range of snow 8180 values compares well with data 

repotted by Nikolayev & Mikhalev (1995) from the Sevemaya Zemlya archipelago to 

the north of the Taimyr Peninsula (-24.2 to -14.4 and in the Yenisey River valley 

near the study area (-26.4 to -1 8.2 Groundwater and ground-ice data plot along 

the LMWL in a tight cluster intemediate between the snow and rain data, consistent 

with recharge by varying mixtures of snowmelt and rain. 

Shallow groundwaters cornrnonly provide a reasonable guide to the weighted 

mean isotopic composition of local annual precipitation (e.g., see Fritz et al. 1987). 

By this measure, recent rnean annual precipitation in the study area appears to be 

somewhat depleted in 180 and relative to that recorded in the early 1980s at 

Amderma. Russia. the nearest station in the I A W M O  network (Rozanski et al. 

1993; aiso plotted on Figure 2-2a). More depleted values in our study area may 

reflect greater rain-out of contributing atmospheric vapour originating over the north 

Atlantic, the main source of rnoisture for this region (Lydolph 1977; Rogers & Mosley- 

Thornpson 1995), compared to that reaching Amderma which lies about 1000 km to 

the west on the coast of the Arctic Ocean (Figure 2-1). The isotopic composition of 

precipitation at Amderma may ais0 be influenced by local vapour derived from the 

Barents Sea. 

Samples obtained from lakes and streams in the study area (Figure 2-2b) also 

generally lie close to, though statistically different from. the LMWL, and can be 

described by: 



Figure 2-2. a) iS2H versus b t 8 0  for non-evaporated waters. Local Meteoric Water Line 
(LMWL) is defined by 6'H = 8.0b'80+9.4. Mean annual isotopic composition of 
precipitation (6,) for Amderma, Russia is also shown (Figure 2-1; Rozanski et al. 
1 993). Ellipticai fields group isotopic compositions for snow, groundwater and ground- 
ice, and rain. Note that field for rain is estimated on the basis of groundwater and 
ground-ice isotopic compositions which likely represent mixtures of snowmelt and rain. 

b) 6'H versus bl'O for surface waters. Ellipticai fields as in a). Most lakes and nvers 
plot near the LMWL in the field for snow displaying minimal evaporative enrichment. 



The systematic offset of many points to the right of the LMWL reflects kinetic isotope 

effects during open-water evaporation (Craig & Gordon 1965; Gonfiantini 1986); 

however, the scatter of the data points and high slope of this regression line suggest 

that it does not define a distinct local evaporation line. More likely, points are offset 

along a number of short, more shallowly sloping evaporation trajectories having initial 

compositions distributed along the LMWL, reflecting varying catchment-specific 

balances of seasonal precipitation and inflow. Limited evaporative enrichment is 

expected given the relatively early time of sarnpling and high thaw-season relative 

humidity in the area (ca. 70-80 % during July; Lydolph 1977). As discussed in more 

detail below, the marked clustering of points within the field of rneasured snow isotopic 

compositions highlights the importance of snowmelt as a component of many 

individual water budgets in the study area at the time of sarnpling, while it is also clear 

that snowmelt plays a much smaller role in the budgets of some lakes and streams. 

6"Od - &''Ow Relations 

The relation between measured 6"0,,, and 61B0, for cellulose and water 

samples frorn the 20 calibration lakes is shown graphically in Figure 2-3a. 6180,,, 

values range widely, from +6.5 to +22.1 whereas 6180, values are less variable, 

spanning -20.8 to -1 5.6 %o. The most extreme deviation from the expected separation 

of about 28 O A  (Edwards & McAndrews 1989) is 12 'A (TS 8), while the mean 

deviation is about 4 Î 6 L, suggesting that waters from which the cellulose formed 

ranged from being slightly more depleted in 1 8 0  compared to the water grab-sampled 

at the time of cofing to being substantially enriched. Figure 2-3b shows the relation 

between 6180, inferred from cellulose assuming a fixed water-cellulose 

fractionation of 1.028, and measured 8180,, grouped according to vegetation zone. 

Closer examination of our results reveals two distinct groupings on Figure 23a. 

Data points for al1 five forest lakes and the three most isotopicaily-enriched tundra 

lakes plot within about t 2 %. of the anticipated cellulose-water isotopic separation, 

whereas the other four tundra lakes and al1 eight from the forest-tundra are offset in 

excess of 2 L. A variety of factors could account for the apparent inconsistency of 
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Figure 2-3. a) 6180, and inferred PO, calculated using the expected cellulose-water 
isotopic separation, E ~ ~ . ~ ~ ~  - - 28 %O (from Edwards & McAndrews 1989), versus 
measured 8"0, for tundra, forest-tundra, and forest lakes. Error bars reflect 
analytical uncertainty (k 1 %). Three tundra lakes, each identified by a solid square 
symbol, and ail five forest lakes lie close to the line defined by r,,-,, indicating 
cellulose formed from lake water with similar oxygen isotope composition as measured 
lake water. The remaining tundra lakes, represented by open squares. and al1 forest- 
tundra lakes, however, plot to the right of the expected relationship suggesting 
higher inferred 6180,. 

b) Ecotone distribution of measured and cellulose-inferred 6180,. Error bars for 
inferred 6180, incorporate uncertainties in both analysis and cellulose-water isotopic 
separation (k 2 %). Values are in reasonable agreement for forest and some tundra 
lakes, whereas measured &'Wh is several per mil more depleted than inferred bl'O, 
at forest-tundra and most tundra sites. See Figure 2-1 for lake locations. 



6180,11 and 6180, values in the latter group of lakes. Admixture of "0-enriched 

cellulose frorn terrestrial plants is an obvious candidate, yet previous studies of 

sediment cellulose from lakes in various setüngs have commonly failed to detect 

evidence for significant terrestrial "contamination" within the fine sedirnent fraction 

(e.g.. Edwards & McAndrews 1989; MacDonald et al. 1993; Wolfe et al. 1996), even 

where clear evidence for increased allochthonous input of bulk organic matter existed 

(Duthie et al. 1996). Although this mechanism cannot be ruled out unequivocally, 

arguing against it is the fact that the five lakes in forested terrain, where there may be 

greater potential for delivery of terrestrial organic matter, are among those in Our data 

set showing better agreement between 6180,, and 6180, than the lakes in less 

densely vegetated forest-tundra or tundra. 

Aiternatively, and perhaps more likely, are systematic differences between 

measured 6180, and cellulose-inferred 6180, that arise simply because of the 

unavoidable mismatch in time between fossil indicators deposited gradually in 

sediments and parameters measured instantaneously in the overlying lake water. 

Strong changes in a lake's isotopic composition can occur during the thaw season, 

when phytoplankton that produce the cellulose are active, because of seasonal 

variations in the isotopic composition of infiow (runoff and precipitation) and secondary 

evaporative enrichment. Some lakes in northem Canada, for example, have been 

observed to Vary seasonally by more than 5 %, under comparable climatic conditions 

(Gibson et al. 1993, 1996), with a180, typically declining drarnatically during ice 

breakup because of law-6180 snowmelt input, followed by more graduai enrichment 

through influx of relatively high-PO thaw-season rain and groundwater, and 

evaporation. Cellulose in surface sediment naturally averages such seasonal shifts 

in lake-water isotopic composition. As a result, the magnitude and variability of a 

lake's seasonal fluctuations in relation to the timing of sampling strongly affect the 

likelihood of obtaining a good match between cellulose-inferred and measured 8180, 

(shown schernatically in Figure 2-4). 

Based on field observations, ouf visit coincided with the latter part of the 

"spring" freshet in most catchments. This is supported by isotopic evidence for 
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Figure 24. a) Average annual variation in 6"0, for a typical small and well-mixed, 
arctic lake characterized by significant influx of "O-depleted runoff during snowmelt 
followed by evaporative 180-enrichment and contribution from 180-enriched summer 
precipitation du ring the thaw season. Cellulose incorporates naturai fluctuations in the 
8180, cycle and thus is a good proxy for average thaw season 8180,. Measured 
8180,, however, is variably more negative than cellulose-inferred 6180, for most 
tundra and al1 forest-tundra lakes because Our lake water samples were obtained 
during the depleted segment of the 6180, cycle at these sites. Snowmelt may also 
have been unusually late in 1993, given that our results are from samples collected 
at the end of Julytbeginning of August, illustrating that temporal variability in the 6180, 
cycle may also lead to differences between cellulose-inferred and instantaneously 
measured 6180,. 
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b) Forest and some tundra lake 6180, cycles in Our data set are less isotopically 
variable because terrain surrounding these basins appear to attenuate seasonal 
variations in the isotopic composition of source water. Thus, there is less potential for 
significant discrepancies tu develop between cellulose-inferred 6l80, and measured 
6180, as a result of single-episode sampling. 

(b) 



predominant snowmelt influence, as noted above and, indeed, snowmelt was flowing 

directly into some lakes at tundra site TS 1-3 at the time of sarnpling. This also 

accounts for the systematic offset between inferred and measured 6'80, in Figure 2- 

3b, reflecting the probability that we commonly captured lake water that was 

appreciably depleted in 180 compared fo the average lake water value later in the 

thaw season. Moreover, the varying magnitude of the discrepancy between different 

lakes also appears to offer meaningful lake-specific hydrologie information. For 

exarnple, the extreme difference (ca. 12 %) bebetwn inferred and measured 6180, in 

TS 8, a shallow, headwater lake in the forest-tundra zone (Figure 2-5). can be 

plausibly ascribed to strong evaporative drawdown and non-steady-state isotopic 

enrichment equivalent to that documented by Gibson et ai. (1993) in some similar 

high-boreal lakes in northern Canada. Supporting evidence for strong evaporative 

enrichment in this lake is provided by the displacement of TS 8 to the right of the 

LMWL in Figure 2-6, indicating that some evaporative enrichment had aiready 

occurred in 1993 and (or) part of the signal of evaporative enrichment from the 

previous year was preserved in spite of 1993 snowmelt contributions. Predictably, the 

much smaller difference between inferred and measured 6180, (ca. 3 *A) for TS 7, a 

deeper, through-flow lake downstream in the same catchment (Figure 2-5), is 

associated with a more depleted oxygen- and hydrogen-isotope composition, lying on 

the LMWL (Figure 2-6). 

Field observations are also consistent with the possibility that subdued seasonal 

isotopic variabilîty is characteristic of the eight lakes exhibiting relatively srnall 

discrepancies between inferred and measured 6'80,. The tenain immediately 

surrounding these lakes is mantled predominantly by organic deposits (TS 13, 15, 16, 

20, 22, and 23) or combinations of organic deposits and permeable coarse-grained 

ice-contact debris (TS 17 and 18) that limit the possibility of direct surface runoff from 

the surrounding catchments. Snowmelt and rain likely mix with melting ground-ice 

during the thaw season and flow into these lakes as shallow groundwater, naturally 

attenuating seasonal variations in the isotopic composition of the precipitation. 

Judging by the systematic offset from the LMWL, the three tundra lakes (TS 20. 22, 



Figure 2-5. Sketch of forest-tundra lakes (TS 4-1 1). Solid arrows represent surface 
drainage; dashed arrow represents subsurface drainage. Values indicate maximum 
depth in metres. Not to scale. 
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Figure 2-6. 6 ' ~  versus ôt80 for lakes plotted in Figure 2-3 and selected snow 
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and 23) and four of the five forest lakes (TS 13, 15. 16. and 17) do undergo 

detectable evaporative enrichment, although it is clear that the forest lakes generally 

derive a larger proportion of their water budgets from winter precipitation (Figure 2-6). 

Site-specific differences in the seasonal distribution of precipitation and topographically 

controlled differences in the ratio of contributing area to lake surface area. perhaps 

enhanced by greater interception losses of thaw-season rains within the forest canopy, 

probably account for the gross deviations in the water budgets between the forest and 

tundra lakes. 

Interestingly, the buffering influence of shallow groundwater inflow on seasonal 

fluctuations in 6180, may aiso help to explain the relatively modest discrepancy (ca. 

3 %) between inferred and measured bl8O, for TS 10, one of the headwater lakes in 

the forest-tundra zone (Figures 2-3b, 2-5). This lake and its close neighbour TS 8 

(characterized by the maximum discrepancy in Our data set. as discussed above) 

apparently receive similar overall mixtures of seasonai precipitation. whereas TS 10 

showed no signature of evaporative enrichment at the time of sampling (Figure 2-6). 

Outfiow from TS 10 occurs via subsurface seepage through organic deposits on the 

downgradient shore. and the possibility exists for significant groundwater inflow 

through similar peat deposits located on the upgradient side of the lake, perhaps 

darnpening seasonal fluctuations in 6180, compared to the strong variations that 

apparently occur in TS 8 and other headwater lakes nearby (e.g., TS 5, 9, and 11; 

Figures 2-3b, 2-5). 

Concluding Comments 

lsotopic studies at several forest-tundra and tundra lakes near Noril'sk, Russia 

indicate that single-episode water sampling has captured instantaneous mid-summer 

5180, that is variabty more negative compared to inferred 6180, from surface-sedirnent 

cellulose. Supported by field observations on local hydrologic settings, these data 

suggest that the isotopic mass balance in these lakes is sensitive to 180-depleted 

snowmelt contributions and that Our grab samples of lake water had appreciable 

snowmelt content. At forest lakes and some tundra lakes, in contrast, good 



agreement occurs between measured and inferred bl'O, values. These lakes are 

bordered by organic substrates and/or permeable coarse-grained ice-contact debris 

that apparently attenuate seasonal variations in the isotopic composition of source 

water. 

Marked seasonai variability in hydrology evident at most of the sites 

demonstrates that average thaw season lake water oxygen isotopic composition is 

diffÏcult to obtain from a single water sample and development of an empirical 

cellulose - lake water 8180 transfer function would be inappropriate from the available 

data. These results have, however, yielded a source of lake-specific hydrologic 

information useful in the interpretation of long-core, mechanisticaily-inferred 8180, from 

sediment cellulose. For example, frequent excursions to relatively negative values 

between 4000 and 2500 14C years before present at the TS 1 site may reflect short- 

lived, increased contribution of '80-depleted snowmelt (Velichko et al. in prep.). On 

the other hand, we speculate that the inferred al'O, record from forest site TS 13 may 

be relatively insensitive to abrupt fluctuations in the seasonal distribution of 

precipitation (Wolfe et al. work in progress). 

Several studies from northem Canada and Alaska show that seasonal variabil ity 

in arctic hydrology may also strongly influence iake water chemistry. which has 

important implications for microfossil-based transfer functions. For exampie at Colour 

Lake on Axel Heiberg Island. timing of snowmelt generation and lake-ice breakup 

strongly influence lake retention of phosphorus-rich meltwater (Adams & Ailan 1987). 

Lakes near Saqvaqjuac, Northwest Territorieq Canada are subject to widely varying 

amounts of soil-derived elements, including Ca and Si, depending on the seasonal 

pattern of runoff (Welch & Legault 1986). Two to three-fold increases in nutrient 

loading at Toolik Lake, Alaska, were found to be closely related to the timing of spring 

rnelt (Whalen & Cornwell 1985). On a somewhat longer tirnescaie but perhaps also 

relevant seasonally, the isotopic composition of dissolved inorganic carbon and 

I 
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possibly dissolved CO, concentration in 

Canada was found to be strongly tied to 

In remote regions such as the 

a small lake near boreal treeline in central 

the hydrologic balance (Wolfe et al. 1996). 

arctic, logistical constraints may limit the 



frequency of measurements of limnological characteristics This has been recognized 

as an important potential source of error in the surface-sediment calibration method 

(Charles et al. 1994). Cleariy, single-episode water sampling at any of the locations 

mentioned above may reflect water chemistries significantly different from what 

prevailed during deposition of surface-sediment. In our suite of lakes in northern 

Russia, it is interesting to note that conductivity. Ca, Na. Sr, SO,, and DIC show 

distinctly lower values in tundra and forest-tundra lakes compared to the forest sites 

(Duff et al. in prep.). Although different ion sources rnay account for the chemical 

distinction (Duff et al. in prep.), our isotopic studies suggest that influence of 

chemically dilute snowmelt in the tundra and forest-tundra lakes may also be 

important. If sol these measured parameters in the tundra and forest-tundra lakes 

may represent near-minimum values in relation to the range of chemical compositions 

present when the surface sediments were deposited. 



CHAPTER 3: PALEOHYDROLOGY AT THE NORTHERN BOREAL TREEUNE: 
CENTRAL CANADA 

Wolfe BB, TWD Edwards, R Aravena 8 GM MacDonald, 1996. Rapid Holocene 
hydrologic change dong boreai treeline reveaied by a'% and 6"0 in organic lake 
sediments, Northwest Territories, Canada. Journal of Paleolimnology 15: 171 -1 81. 

Synopsis 

Examination of multi-proxy sediment records (pollen, diatoms. elemental 

geochemistry, stable isotopes) from "Queen's Lake' (unofficial name) near treeline in 

central Canada showed that forest-tundra replaced tundra vegetation within 150 years 

between 5000 and 4000 14C-years BP and coincided with increased lake productivity 

and a positive lake water balance (MacDonald et al. 1993). Terrestrial vegetation 

changed rapidly suggesting, as had previous studies (Bryson & Wendland 1967; 

Nichols 1967; Ritchie & Hare 1971), that climate was the controlling factor for treeline 

advance in central and northwestern Canada. Changes in edaphic conditions and soi1 

development, in contrast, would likely have led to a more gradua1 terrestrial vegetation 

response (Moser & MacDonald 1990). Pollen records from other nearby lake sites 

corroborated the terrestrial vegetation reconstruction from Queen's Lake and provided 

further supporting evidence for regional warming during the mid-Holocene (MacDonald 

et al. 1993). 

In addition to contributing new insights regarding the expedient response of 

treeline vegetation to climate change, the Queen's Lake study also indicated that 

multidisciplinary analysis was an effective approach for paleoenvironmental 

reconstruction at the northem treeline, thus providing the framework for developing a 

more comprehensive research strategy (see PACT - CHAPTER 1, page 2). Our first 

priority within the PACT project was to analyze and interpret previously collected lake 

sediment cores to answer outstanding questions. For example, although regional 

climate warming in central Canada during the mid-Holocene appeared to be well- 

supported, it remained uncertain as to whether the changes in water balance at 

Queen's Lake reflected local hydrologic effects or were representative of a widespread 

increase in moisture conditions. Studies had long suggested that treeline in northern 



Canada was largely controlled by summer temperature (Halliday & Brown 1943; 

Hopkins 1959; Bryson 1966), although more men t  work showed that the northern 

limit of Picea is, in part, correlated with annual precipitation (Anderson et al. 1991). 

To better define the role of moisture in past treeline changes in central Canada, high 

temporal resolution stable isotope anaiysis was perforrned on sediments from ''Toronto 

Lake" (unofficial narne), one of the supplemental pollen sites published by MacDonald 

et al. (1 993). 

Highlighted below are important conclusions from this study: 

1.  Similar tu the Queen's Lake record, the cellulose oxy-gen isotope (oT80,J results 

from Toronto Lake indicated tha t an increase in the int7o w:evapora tion ratio occurred 

during treeline advance in central Canada. Although hydrologic effects, such as 

reduced wind shear and evaporation with forest cover could be responsible for the 

change in water balance (see Craig & Gordon 1 965). consistent changes in cellulose- 

inferred lake water 8180 at Queen's Lake and Toronto Lake as well as modern studies 

of Anderson et a/. (1991) rendered support for a regional increase in moisture 

associated with climate warming during the mid-Holocene. 

2. Substantial oscillations in the Toronto Lake 6 "0, record, compared to the less 

variable 6 "O,, profile at Queen 'ç Lake, emphasized the importance of understanding 

the local hydrologic setting in the interpretation of lake sediment records (also see 

Fritz 1996). Queen's Lake drains a small catchment and thus contains a b180,,, 

record that is highly dependent on the hydrologic sensitivity of this single lake. In 

contrast, Toronto Lake is downstream of a complex drainage basin containing two 

subcatchments with rnarkedly different hydrologic budgets. Abrupt changes in the size 

of the contributing drainage basin area, in response to changes in moisture conditions. 

may have led to large differences in residence time at Toronto Lake. 

3. A thorough understanding of the hydrologic history at Toronto Lake was also 

important in the reconstruction of the lake water carbon balance from the bulk organic 



and cellulose carbon isotope records. For example, productivity-driven 13C-enrichment 

of dissolved inorganic carbon during periods of hydrologic closure was apparently 

"flushed out" by increased through-flow under more open hydrologic conditions. 

These data clearly illustrated that the carbon cycling was not restricted to interna1 lake 

processes, such as photosynthesis and respiration, but also intricately linked to 

changes in hydrology and moisture conditions. 



Abstract 
13 Analysis of 6180 ,,,,,, 8 Co,,,,,,, and 6% ,,,, at about 100 year intervals 

from organic matter deposited in Toronto Lake, Northwest Territories, Canada, 

revealed an 8000-year history of rapid, post-glacial hydrologic change at the treeline 

zone. Several mid-Holocene phases of I3Genriched bulk organic matter and 

cellulose, caused by elevated lake productivity, declining [CO,,q], and closed basin 

conditions, were abruptly terminated by intervais of open hydrology recorded by 

sharply "0-depleted cellulose. Two positive excursions of &13C, at 5000 and 4500 BPI 

are correlated with increased total organic content and Picea mariana pollen 

concentration, which indicate that high levels of productivity were also accom panied 

by northern treeline advances. A third treeline advance at about 2500 BP is also 

marked by an apparent outfiow event from Toronto Lake, but this was not associated 

with bulk organic or cellulose 13C-enrichrnent in the sediment record because rapid 

and substantial lake water renewal probably offset productivity-driven enrichment of 

the dissolved inorganic carbon and replenished the CO,,, supply to thriving 

phytoplankton. However, high sediment organic content du ring this period suggests 

increased productivity. Increases in the inf1ow:evaporation ratio at about 6500 and 

3500 BP were also sufficient to cause Toronto Lake to overflow but the prevailing 

climate during these periods apparently did not favour appreciable northward treeline 

advance or changes in lake productivity. 

Introduction 

Global warming may have its greatest impact on the northern boreal forest, 

treeline region, and tundra (Schlesinger & Mitchell 1987). Projected 5-1 0°C increases 

in mean annual temperature (Schlesinger & Mitchell 1987; Houghton et al. 1990; 

MacCraken et al. 1990) and, more importantly, a rate of increase of more than 

1 "C/l Oyr by AD 21 00, may have severe effects on treeline ecological communities 

(Svoboda & Henry 1987; Davis 1989). In addition, northward treeline migration may 

enhance global warming through various CO, generating mechanisrns (BOREAS 

Science Steering Cornmittee 1990; Wein 1990) and by the decrease in snow-covered 



land surface albedo (Bonan et al. 1 992; Foley et al. 1994). Accurate predictions of 

changes in global climate and management of their impact on the environment are 

aided by examination of past climate episodes, such as the mid-Holocene climatic 

optimum. To address these concerns, a joint Canadian-Russian multidisciplinary 

research programme (PACT - Paleoecological Analysis of Circumpolar Treeline) was 

initiated in 1993 and is directed at increasing our understanding of Holocene climate 

variation at the northern treeline and past ecological and hydrological response 

through the analysis of lake sediments and peat. 

The sensitivity of paleoecological and paleohydroiogical proxy indicators in lake 

deposits to past climate change in the central Canadian treeline zone was examined 

during an exploratory study conducted at Queen's Lake (unofficial name; 64"07'N. 

1 10°34'W; Figure 3-l), located 25 km north of the mapped extent of forest-tundra 

(MacDonald et al. 1993). Pollen data from a sediment core at this site suggested an 

episode of climate warming at about 5000 BP and açsociated conversion of the local 

tundra landscape to forest-tundra. There were contemporaneous changes in lake 

water pH represented in fossil diatom records. However, the geochemical and 

hydrological regime in the lake detemined from major and minor element 

geochemistry and 6180,,,, and total lake productivity inferred from diatom valve 

concentration, los-on-ignition (LOI) and 6'3C,ll, appeared to be 150-300 years slower 

in their response to the climate change. 

Despite the apparent lag in isotopic response, the 8180 record in Queen's Lake 

sediments suggested that strong hydrologic changes accompanied the treeline 

advance. Specifically, the tundra to forest-tundra transition was marked by "0- 

depletion in sediment cellulose, a proxy for lake water oxygen isotopic composition, 

and was attributed to progressively rising inflow:evaporation ratio. This interpretation 

was consistent with diatom and elemental geochemistry evidence for increasing water 

depth. 

Although LOI measured from Queen's Lake sediments suggested increased 

productivity at the time of treeline advance, relatively low average values (-1 0%) and 

the diatom and 813C data indicated that rather oligotrophic conditions prevailed 



Figure 3-1. Queen's Lake (64"07'N, 1 1 0°34'W) and Toronto Lake (63"43'N, 
1 0g021 'W) located near Yellowknife north of treeline (dashed line) in central Canada. 
Also shown are meteorological stations at Fort Smith, Fort Reliance, and Contwoyto 
Lake in addition to the Arctic-Subarctic (northem dash-dotted line) and Subarctic- 
Boreal (southern dash-dotted line) ecoclimatic provincial boundaries (from Ecoregions 
Working Group 1989). 



throughout the lake's history. The 6% trend displayed a general decline over the 

Holocene that was interpreted as the result of increased re-utilization of respired 13C- 

depleted carbon, and only a rnuted and seemingly delayed response to increased 

productivity was visible in the isotope record during the period of treeline advance. 

Pollen data for Picea mariana, a widely distributed and important treeline 

species (Black & Bliss 1980), and LOI profiles from other dated lake cores in the area. 

including Toronto Lake (unofficial name; 63"43'N, lO9O2I  'W; Figure S I ) ,  

demonstrated that the warm intervai at 5000 BP intepreted from the Queen's Lake 

record was regional (MacDonald et al. 1993). However, the presence of several Picea 

mariana pollen peaks in the Toronto Lake core suggested a more complex vegetation- 

climate history. Here we reexamine the Toronto Lake pollen record with the isotope 

history investigated at a higher temporal resolution than at Queen's Lake. Buoyed by 

the recent development of a simplified oxygen isotope analysis technique (Edwards 

et al. 1 994), bt80,,, 613c,, and 613C,, were measured from Holocene sediments 

deposited at Toronto Lake at stratigraphie intervals corresponding to approximately 

every 100 years. Specific questions posed at the outset of this study included: 

1. What are the isotopic signatures in the sediments of Toronto Lake, 

particularly at intervals associated with apparently multiple treeline advances 

recorded at this site. and are they similar to the Queen's Lake record? 

2. Does the apparent lag in isotopic response interpreted from the Queen's 

Lake study represent a generalized delay in the rate of northern hydrologie 

change during periods of treeline advance or is the delayed response perhaps 

an arüfact of a coarse isotopic sampling interval? 

In addition, absence of detailed paleohydrologic studies in the central Canadian 

treeline zone warranted further investigation of isotopic responses to changing water 

and carbon balances. 



Site Description 

A 650 km south-north transect across Toronto Lake from Fort Smith to Fort 

Reliance to Contwoyto Lake spans three of the major ecoclimatic provinces (Boreal, 

Subarctic, Arctic) recognized by the Ecoregions Working Group (1 989), and crosses 

the steep climatic gradients that characterize the treeline region (Figure 3-1). Sharp 

declines in mean annual precipitation (350 to 270 to 250 mm) and temperature (-3.0 

to -6.8 to -1 1.8 OC) exhibited at these stations (Environment Canada 1993) are due 

to large differences in climate that prevail to the south and north of the median 

summer position of the Arctic Front (Bryson 1966) and changes in albedo from the 

forest to the tundra (Hare & Ritchie 1972). 

Toronto Lake (414  m above sea level) is underlain by biotite granodiorite and 

biotite-hornblende granodiorite of the Proterozoic Great Slave Group (Department of 

Mines and Technical Surveys, Geological Survey of Canada 1952). The lake is small 

(10 ha in area) but relatively deep (6.75 m) and the high depth to area ratio is 

favourable for continuous and minirnally disturbed sedimentation (Larsen & MacDonald 

1993). Toronto Lake is hydrologically open and drains an extensive headwater 

catchment (ca. 2900 ha) that is part of the Lockhart River Basin, which is a tributary 

to the Mackenzie River via Great Slave Lake. Aside from direct precipitation, Toronto 

Lake receives essentially all of its infiow from a large, shallow lake fed by two main 

subcatchments (Figure 3-2). The subcatchments have markedly different hydrological 

budgets under present climatic conditions. The northeast subcatchment (ca. 21 00 ha) 

yields continuous outfiow during the thaw season. in part because of the storage 

capacity provided by a large lake. whereas the southwest subcatchment (ca. 650 ha) 

apparently discharges only intermittently following spring freshet. Reconnaissance 

water samples taken in late August 1994 after a particularly dry summer show that the 

isotopic signature of Toronto Lake is strongly influenced by hydrologic processes 

upstrearn (Table 3-1 , Figure 3-2). Cumulative effects of evaporation are reflected in 

the progressive enrichment of lake water from the most upstrearn sample site (number 

1) to Toronto Lake. 

A few krumrnholtz Picea mariana currently exist near Toronto Lake, as is typical 



Figure 34. Generalized surficial drainage in the Toronto Lake area. Dashed line 
denotes Toronto Lake catchment. Numbered sites indicate lake water sampled for 
6180 and a2H. See Table 3-1. 



Table 3-1. lsotopic data from water sarnples in the Toronto Lake catchment obtained 
in late August 1994. See Figure 3-2 for locations. Analytical uncertainties are 0.05 
% for 6180 and 1.0 %. for 6'H based on sample repeats. 

Site 

1 
2 
3 
4 
5 
6 
7 (Toronto Lake) 

6180 (% SMOW) b2H (%a SMOW) 

Table 3-2. Radiocarbon dates from Toronto Lake (MacDonald et al. 1993). 

Depth Mate rial 
(cm) 

35-40 Organic sediment 1760 i 90 BewI9705 
80-85 Organic sediment and moss 4200 1 80 -1 29 
1 25- 1 30 Organic sediment and moss 5460 1 90 M l 3 0  
155-1 60 Organic sediment 7040 1 120 Bek-49708 



of many localities beyond the mapped limits of the forest-tundra (Moser & MacDonald 

IWO). Some well-developed Picea glauca individuals are also present in a sheltered 

location along an esker east of the lake. 

Methodology 

A 170 cm-long sediment core consisting of clayey gyttja. taken from Toronto 

Lake in winter 1987, was sampled for carbon and oxygen isotopic analysis at mostly 

2.5 cm intervals. Samples were heated in a 10% hydrochloric acid solution to remove 

inorganic carbon, rinsed with deionized water, and dried. Some samples required 

removal of coarse organic fragments. likely of terrestrial origin, by passing the 

sediment through a 500 pm screen. A three part extraction process that used (1) 

benzene, ethanol, and acetone to rernove lipids, resins, and tannin. (2) acetic acid and 

sodium chlorite to remove lignin, and (3) sodium hydroxide to remove xylan, mannan, 

and other polysaccharides isolated the cellulose fraction, similar to the wood cellulose 

purification procedure of Green (1 963). 

Carbon dioxide was generated from the bulk organic material and cellulose 

component using a standard combustion method (Boutton et al. 1983), purified 

cryogenicaily, and analyzed for 13C/12C. A nickel-tube pyrolysis technique (Edwards 

et al. 1994) was used to produce CO, from the cellulose fraction for 180/160 assay. 

Ail isotopic ratios were determined on a VG Prism II mass spectrometer at the 

Environmental Isotope Laboratory. University of Waterloo. and results are expressed 

in &notation (6 = [(R,,,J&J - 11 x 1000, where R = 180/160 or 13C/12c) with respect 

to the international standards for 6% (Peedee belemnite (PDB)) and 6180 (Vienna- 

standard mean ocean water (s~ow)). Repeated samples are norrnally within 0.5% 

and 1 .O% for 6% and 6180, respectively. 

LOI analysis followed Dean (1 974). Pollen analysis followed standard practices 

(Faegri & Iversen 1975). Picea mariana and Picea glauca were differentiated using 

the criteria proposed by Hansen & Engstrom (1 985). 

Radiocarbon dating provides chronological control for the core (Table 3-2). 

Samples of organic lake sediment were dated. The region has no calcareous or 



fossiliferous rocks that would promote "old carbon' effects. Bulk organic dates from 

nearby lakes have corresponded well with accelerator mass spectrometry '4C dates 

from terrestrial plant macrofossils (Moser & MacDonald 1990). 

Results and Discussion 

The Toronto Lake lsotopic Record 

The bI80 record rneasured from the cellulose fraction varies greatly in the 

bottom two-thirds of the core (Figure 3-3). Values range from +18.4%0 at the base to 

+4.7%0 at 50 cm depth. Near the top of the core values tend to be relatively constant 

around +1 "0-depleted spikes are present at about 145, 140, 1 15, 95, 70, and 

near 50 cm depth. 

6'3C0, varies t om -30.0% at the base of the core to a maximum -24.4%0, which 

occurs at 120 cm depth (Figure 3-3). The b'3C, l  profile is correlated with that 

determined from the bulk organic material (FI2 = O.538), but displays more sharply I3C- 

enriched peaks at 155, 120, 100, and 80 cm depth. 6'3C,l is more positive than 

b'3C0, by 0.5 to 5%0 with maximum separation at the 13C-enriched intervals. Minimal 

difference in the 6I3C profiles occurs near 65 cm depth where the trends nearly 

overlap 

bT80,,: Paleohydrology and Relationship to Past Changes in Treeline 

Previous studies of several Canadian lakes have shown that the fine-grained 

cellulose fraction deposited offshore is dominantly aquatic in origin (Edwards & 

McAndrews 1989; MacDonald et al. 1993), perhaps due to rapid deposition and burial 

of phytoplankton in fecal pellets with little chance for oxidation (Edwards 1993). Other 

work indicates that the oxygen isotope composition of aquatic cellulose is consistently 

enriched by about 27 to 28%. relative to its source water, independent of the 

temperature, the 6180 composition of CO,,, and the plant species (Epstein et al. 

1977; DeNiro & Epstein 1981; Sternberg & DeNiro 1983; Sternberg et al. 1984; 

Sternberg et al. 1986). As a result, lake water 6180 histories can be directly inferred 

from core records of 6t80,,,,. Paleohydrologic interpretation of 6180 in lacustrine 



TORONTO LAKE, NORTHWEST TERRITORIES, CANADA 

6°C (Xo PDB) SqaOd, fi SIUOw) LOI (%) Alcea mrfana (%) 

Figure 3-3. High temporal resolution isotope stratigraphy from Toronto Lake. Loss- 
on-ignition (LOI) and Picea mariana profiles reproduced from MacDonald et al. (1 993). 
I4C age scale determined by linear extrapolation between dated intervals. 



aquatic cellulose is therefore reduced to distinguishing the degree of infiuence of (1) 

the isotopic composition of input waters determined by inflow from upstrearn lakes, 

catchment runoff, and precipitation falling directly on the lake and (2), evaporative 

isotopic enrichment caused by preferential evaporation of water containing the lighter 

isotope, 160. Hydrologie setting plays a critical role in determining the relative 

importance of these two factors, ultimately recorded by 6180,, (Figure 3-4). 

In northern regions, studies of modern hydrology indicate that changes in lake 

water isotope composition in basins with low inflow:evaporation ratio are mainly 

related to changes in water balance (Bursey et ai. 1991; Gibson et al. 1993; Taal 

1994). Therefore, marked fluctuations in 6180, at Toronto Lake are likely due to 

shifts between closed basin, strongly evaporative conditions (e.g. 180-enriched periods 

at 165, 77.5 and 66 cm depth - approximately 7400, 3900 and 3300 BP) and intervals 

of open basin hydrology when the inflow:evaporation ratio was high (e.g. 180-depleted 

spikes at 147.5, 110 and 95 cm depth - approximately 6500, 5000, and 4500 BP). 

The most recent period of apparently minimal evaporative enrichment and short 

residence time conditions occurred at 50 cm depth (2400 BP) and 6"0,,,, at this 

horizon (+4.7YW) corresponds to a lake water 8180 value of -21.7 to -22.7%, using a 

fractionation (a) of 1 .O27 to 1 .O28 where ad ,-w,,, = (b,,, + 1000) / (6 ,,,, +1000) 

(Sternberg 1989; Edwards & McAndrews 1989). This range is comparable to the 

modern mean annual precipitation value of -22OA that persists across the continental 

Northwest Territories which, in part, may be due to stable Arctic Frontal air mass 

activity (Gibson et al. 1994). Close correspondence between inferred lake water 

isotopic composition which underwent minimal isotopic evolution and modern 

precipitation isotopic data provides additional support for the aquatic nature of 

offshore, fine-grained cellulose. 

Similar to the Queen's Lake 8180 record, periods of open hydrological 

conditions are correlated with increased productivity, suggested by high LOI, and with 

maxima of Picea mariana pollen percentage associated with treeline advances (Figure 

3-3). However, trends toward 180-depleted cellulose begin synchronously to changes 

in the LOI and Picea mariana profiles suggesting that hydroiogic adjustment was as 



1 OPEN-BASIN 4 B CLOSED-BASIN 

Figure 34. End-member hydrologie scenarios showing the effect of water balance on 
6"0 of lake water recorded by aquatic cellulose. During intervals of open-basin 
conditions, lake water 8180 closely resembles the isotopic composition of precipitation 
and input waters. Closed-basin conditions produces lake water that is enriched 
relative to precipitation and input 6180 due to evaporation efiects. 



rapid as terrestrial vegetation and lake productivity in response to the climate change. 

Rapid hydrologic change is in contrast to results from Queen's Lake where it 

appeared to lag behind the aquatic and terrestrial fiora records. Although the more 

highly resolved sampling interval for Toronto Lake may partialiy account for this 

discrepancy, the hydrologic settings of these two M e s  and their potential differences 

in response to climate change rnay also be responsible. Queen's Lake, which drains 

a considerably smaller catchment (ca. 200 ha) than Toronto Lake (ca. 2900 ha), 

contains a &''O record that is largely dependent on the hydrologic sensitivity of this 

one lake. As a result, it is rather subdued owing to the relatively narrow range of 

hydrologic conditions that occurred at this site. In contrast, modern data suggest that 

hydrologic factors such as residence time and evaporation upstrearn from Toronto 

Lake strongly control its isotopic composition (Table 3-1, Figure 3-2). and it is probable 

that these conditions were also infiuential in the past. Thus, the Toronto Lake oxygen 

isotope record is capturing hydrological changes over a large area and abrupt 

changes in the size of the drainage basin likely produced the rapid, several 8180 per 

mil oscillations. These changes in watershed hydrology may have hinged on the 

degree of flow generated by the southwestern part of the catchment where. presently. 

it is limited. Specifically, the '*O-depleted intervals in Figure 3-3 probably represent 

periods when this portion of the drainage basin became more open and substantially 

increased throughfiow reduced the residence time of Toronto Lake. Conversely, 

relatively drier conditions at times in the past may have decreased flow from both the 

southwestern and northeastern subcatchments, thus lengthening the residence time 

of lakes downstream. resulting in evaporatively 180-enriched periods. 

Despite the differences in response time to hydrologic change, the bl'O,,, 

results from this study provide additional support for the interpretation that increased 

moisture, in addition to increased temperature, was also associated with treeline 

advance. These results are aiso in concert with modern studies that indicate the 

northern lirnit of Picea distribution correlates in part with annual precipitation 

(Anderson et al. 1991). Other oufflow events distinguished by less dramatic "0- 

depletion at Toronto Lake, for example at 147.5 and 70 cm (6500 and 3500 BP), also 



represent periods of increased inflow:evaporation but treeline position was not 

significantly altered perhaps due to low temperatures. 

s ' ~ C ~ ~ ,  Ô ' ~ C ~ ~ :  Paleoproductivity and Carbon Cycling 

Analysis of carbon isotopes in bulk organic lake sediments has frequently been 

used to acquire paleolimnologic information, despite early studies which emphasized 

that interpretation is complex because many different factors can invoke sirnilar shifts 

in the 13C/1ZC ratio (Stuiver 1975; Hakansson 1985). Supply of both aquatic and 

terrestrial organic matter to the bulk sediment can be a major complicating variable 

(e-g. Aravena et al. 1992), although evaluation of 6% strictly from the fine-grained 

cellulose fraction does appear to restrict the concem for organic input from the 

catchment (e.g. Edwards & McAndrews 1989; MacDonald et al. 1993). In addition, 

undifferentiated organic matter may mask subtle variations in 613C compared to that 

measured solely from cellulose (Edwards & McAndrews 1989; Edwards 1993). 

Therefore, analysis of 8'3C,, generafly provides a better isotope record of the 

dissolved inorganic carbon (DIC), the carbon source for particulate aquatic organic 

carbon. 

In contrast to studies by Edwards & McAndrews (1 989) and Edwards (1 993), 

the ~500 pm whole organic and cellulose carbon isotope records at Toronto Lake are 

dominantly parallel and exhibit similarly distinct fluctuations (Figure 3-3) supporting the 

contention that both are largely aquatic in origin and represent carbon from the same 

source (viz. DE). Variations in the offset between the two carbon isotope curves 

could be due to slight changes in preseivation of labile components of the bulk 

organic matter or contribution of terrestrial matenal to the whole organic fraction. 

Although several factors can influence the 613C value of lake water DIC, which is 

incorporated by algae and may be reflected in the sediment record, photosynthesis 

and respiration are often most important (McKenzie 1 985). For example, increased 

photosynthesis at Queen's Lake during the tundra to forest-tundra transition was 

refiected by '3C-enrichment in cellulose due to productivity-driven enrichment in DIC 

(MacDonald et al. 1993). However, most of the carbon isotope profile at Queen's 



Lake was influenced by increasing contribution of respired 12C-rich CO,, resulting in 

a dominantly negative-trending 613C,, profile. Thus, carbon isotope records in 

preserved aquatic organic matter often reflect the prevailing end-member of the 

photosynthesis-respiration pathway. 

In the more highly resolved record at Toronto Lake, many of the sharp 13C- 

enriched peaks also suggest high levels of productivity, such as those at 11 7.5 and 

97.5 cm depth (5200 and 4600 BP) which immediately precede increases in LOI and 

Picea mariana maxima associated with treeline advances (Figure 3-3). However, 

productivity-driven 13C-enrichment of the DIC pool may only partially account for these 

excursions. Decreased fractionation between the DIC and algae. caused by low 

concentration of dissolved CO, ([CO,(aa]) may also be responsible (Deuser et al. 1968; 

Calder & Parker 1973; Herczeg & Fairbanks 1987; Hollander & McKenzie 1991). 

Although productivity and li kely [CO,*] have largely influenced the resultant 

carbon isotope record preserved in the whole organic and cellulose fraction, high 

temporal resolution at Toronto Lake indicate that rapid changes in the hydrologic 

status of the catchment from relatively closed to open-basin conditions have also been 

critical. "O-depleted cellulose correlate with the termination of 13C-enrichment trends, 

including at 147.5, 140, 1 15, 95, and 70 cm depth (6500, 6100, 51 00. 4500, and 3500 

BP; Figure 33), indicating that short residence time conditions not only restricted 

evaporative 180-enrichrnent. but also increased throughflow "flushed out" 13C-enriched 

DIC with 13C-depleted DIC and, likely, replenished the CO,, supply to thriving 

phytoplankton. Regardless of the mechanism and in spite of continued high levels of 

productivity, as suggested by high LOI at these strata, aquatic organic matter becarne 

depleted in 13C because of the hydrologic opening of the catchment and Toronto Lake 

and is particularly evident during the two early periods of treeline advance. This 

interpretation also explains the complacent 613C profile corresponding to the increase 

in LOI at about 55 cm depth (2700 BP; Figure 3-3), as the strong negative trend in the 

6180,, record at this horizon suggests rapid lake water renewal must have offset 

13C,,,-enrichment and [CO,,,]-de plet ion. 
This most recent interval of increased moisture may also be responsible for the 



nearly overlapping carbon isotope trends at 65 cm depth (3300 BP; Figure 3-3). 

Elevated levels of runoff and erosion may have washed terrestrial litter into the lake, 

which was likely available after earlier establishment of forest-tundra vegetation in the 

catchment, resulting in an increase in the allochthonous component in the fine-grained 

bulk organic matter at this horizon. 

Conclusion 

Coupled bl'O and b13C analyses in organic sediment demonstrate the 

predominant influence that catchment-lake basin hydrology has had on both water and 

carbon balance of Toronto Lake (Figure 3-5). and emphasizes that carbon cycling has 

not been restricted to intemal lake processes such as photosynthesis and respiration. 

Toronto Lake experienced several periods of hydrological closure that resulted in 

evaporative ''O-enrichment of lake water as recorded by 6180,,,. 6% ais0 becarne 

more positive in the bulk organic matter and cellulose due to photosynthetic effects 

on the 6'3C,l, and, possibly, reduction in the fractionation between the DIC and 

organic matter/cellulose due to declining [COaa4]. At times of open hydrological 

conditions, the b180 of the lake water became more dependent on the 180-depleted 

signal provided by input waters. Interestingly, the trend of "O-depleted spikes from 

more enriched in the early Holocene to more depleted in the late Holocene (Figure 3- 

3), which is similar to the general 6180 trend at Queen's Lake (MacDonald et al. 1 993), 

suggests that input water b180 composition may have undergone a profound shift of 

as much as -6OA over the past 8000 years. Concurrent with these intervals of short 

residence time, rapid lake water renewal diluted productivity-driven 13C-enrichrnent of 

lake water DIC. lncreased supply from the drainage basin may also have elevated 

the [COma], contributing to the relatively 13C-depleted signals in the carbon isotope 

composition of bulk organic matter and cellulose. These relationships, supported by 

the LOI record and correlated with the Picea mariana profile, provide strong evidence 

for increases in temperature and moisture that caused changes from tundra to forest- 

tundra at sites near the central Canadian treeline during the mid and late Holocene. 

Thus, 613C,,, 813C,lli and 6180,1, were not only instrumental in reconstructing the 
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paleohydrology of Toronto Lake but aiso in monitoring the relationship between 

terrestrial and aquatic realms as environmental change occurred. 

Multiple episodes of forest development and decline and associated changes 

in limnic conditions interpreted at this site portray a more complex history of Holocene 

climate change in this region than previously known (MacDonald et al. 1993). Finer 

temporal resolution achieved at Toronto Lake revealed three distinct episodes of a 

wetter and warmer climate at around 5000, 4500, and 2500 BP, compared to the 

evidence for a single amelioration at Queen's Lake between 5C00 and 4000 BP. 

Analysis of Toronto Lake clearly indicates that a fine sampling approach is warranted 

for small Arctic lakes. In particular, future sampling sites in complex drainage 

networks, where catchment area modification and watershed hydrology response may 

be recorded in lakes downstrearn, could possibly provide the best sensitivity to 

regional hydrologie change. 



CHAPTER 4: PALEOHYDROLOGY AT THE NORTHERN BOREAL TREEUNE: 
TAIMYR PENINSULA AND LENA RIVER, RUSSIA 
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Woife, R Aravena, LC Cwynar, TWD Edwards, JP Smol, RT Riding, GM MacDonald 
& D Porinchu, in prep. Holocene environmental change at treeline on the western 
Taimyr Peninsula of Siberia. For submission to Quatemary Research. 

Synopsis 

Lake TL1 on the western Taimyr Peninsula (informally named Middendorf Lake 

after an early explorer to the region) was the site for PACT's initial attempt to integrate 

results from multidisciplinary analyses on lake sediments from northern Russia. 

Based on radiocarbon dating of macrofossil wood found north of treeline, the forest 

(or forest-tundra) was roughly 50-100 km north of its present position between 8400 

and 3100 BP. Pollen studies on the Lake Middendorf sediments were compatible with 

the macrofossil data, clearly displaying a decline in Larix and Picea trees at about 

4000 BP. Unfortunately, the sediment record begins immediately before this event, 

perhaps due to thennokarst processes during the warm mid-Holocene, and does not 

capture the advance of treeline into the region. 

Paleolimnological data were consistent in their assessment of trophic conditions 

in the forest and subsequent tundra periods with the former being clearly more 

productive. However, there were discrepancies amongst the various proxy data 

concerning the moisture regirne. Sedimentary, isotopic and geochemical evidence 

indicated that a higher precipitationfevaporation ratio existed during the forest period 

and that drier conditions rapidly developed as treeline retreated. The abundance of 

benthic diatoms and chrysophytes, on the other hand, suggested that the lake rnay 

have been relatively shaliow during the forest interval compared to the present. 

Benthic species may have responded more strongly to increased nutrients during this 

period, or alternatively, major changes in water level may not have been required in 

order to significantly alter the water balance, given that the lake is presently 

seasonally-closed (with seepage through a meadow) and that only a small increase 



in the precipitation/evaporation ratio would be required to establish open-basin 

conditions during the thaw season. Following 2600 BP (and in particular between 

1600 and 400 BP), both the diatom and isotopic data suggest rapidly ductuating 

hydrologic conditions that, interestingly. are not associated with any known changes 

in terrestrial vegetation. 

(Note that in this multi-authored manuscript, 1 am responsible for the section entitled 

"Oxygen Isotope Analysis" and 50 % of the "Discussion ". Contributions made by other 

authors are duly noted in the figure captions). 



Abstract 

Holocene changes in treeline vegetation and lacustrine environments are 

reconstructed for the western Taimyr Peninsula of Siberia. Radiocarbon-dated stumps 

indicate Larix and Picea dominated forest or forest-tundra was located at least as far 

north as 70°22'N between 8400 and 31 00 BP. This represents a northward extension 

of forested vegetation of 50-100 km from its present location. The sediments of a 

small lake located at 70°22'N, 87'33'E were analyzed for sedimentology, pollen, 

conifer stomates, diatoms. chrysophytes, loss-on-ignition, elemental geochemistry, and 

oxygen isotopes. Radiocarbon dates indicate that the sediment record extends back 

to 4400 BP. The fossil pollen and stomate records indicate that the study area 

supported Larix and Picea trees during the mid-Holocene. The paleolimnological 

record suggests that during the forest period the lake waters were warmer, less acidic 

and more productive. The stable isotope and sedimentological records suggest that 

the ratio of precipitationlevaporation was higher during the forest period and lake 

waters overfiowed the present closed basin. As the forest vegetation declined 

between 4400 and 4000 BP, there is evidence of increased soi1 erosion into the lake. 

The lake became cooler, more acidic and less productive. Following 2600 BPI there 

were a series of marked oscillations in the diatom and isotope records that suggests 

rapid fluctuations in lake levels. These fluctuations are not apparent in the 

chrysophyte record. Neither is there any evidence from the pollen and stomate record 

of changes in terrestrial vegetation during these limnological events. The rnost recent 

sediments of the lake contain diatorn and chrysophyte flora that have no anaiog in the 

fossil record. These unique Bora likely represent the impact of atmospheric pollutants 

from distant sources and from the smelting center at Noriltsk, some 115 km to the SE. 

Introduction 

The tundra and taiga of northern Eurasia could be impacted by climatic 

changes due to increased levels of atmospheric greenhouse gasses (Kojima 1995; 

Plochl & Cramer 1995; Velichko et a/. 1995). In the Russian Federation, the 

climatologically sensitive boundary between taiga and tundra occurs at roughly 68" - 



70" N and it is possible that greenhouse warming will lead to northward shifts in the 

taiga (Plochl & Cramer 1995)' although such shifts may occur gradually (Velichko et 

al. 1995). The continental tundra zone in much of Eurasia forms a relatively narrow 

strip along the Arctic coast The eventual result of pronounced warming could be 

fragmentation or complete eradication of low elevation tundra. Even if these shifts 

occur slowly, managing such changes to preserve habitat. species. and genetic 

diversity could be difficult. The extension of forest northwards could change surface 

albedo, roughness and heat flux sufficiently enough to enhance the rate and 

magnitude of global w m i n g  (Foley et al. 1994; Pielke & Vidale 1995). It is thus 

important to know what types of change terrestrial and aquatic ecosystems might 

experience due to climatic warming. One line of evidence for examining potential 

impacts of climatic warming in Siberia is the paleoenvironmental record of past 

episodes of climate change (Velichko et al. 1993). 

Climate models indicate that the Taimyr Peninsula of Siberia would have 

experienced marked warming during the early to mid-Holocene maximum in summer 

insolation (Kutzbach et al. 1993). Sub-fossil tree remains on the Taimyr Peninsula 

were first reported by A.F. Middendorf in the 1860's (Ukrainsteva 1993) and 

demonstrate that treeless regions once supported Larix forests. Russian scientists 

have obtained a number of radiocarbon dates on such sturnps. These dates range 

from approxirnately 10,500 to 5000 BP (radiocarbon years before AD 1950) (e.g. 

Nikolskaya 1 982; Khotinskiy 1 984; Ukraintseva 1 990, 1 993) indicating that parts of the 

Taimyr were forested during the Holocene and good paleoenvironmental records of 

the response of high latitude terrestrial and aquatic environments to climatic warming 

should be available from the region. Examination of these records can provide 

insights into possible future environmentai conditions on the peninsula and help to 

deduce how the present landscapes and environments developed during the late 

Holocene. 

In this study we use a rnultidisciplinary approach to the analysis of sediments 

from a tundra lake on the western Taimyr Peninsula to reconstruct Holocene climate 

changes and the response of limnic and terrestrial ecosysterns to those changes. The 



analytic techniques include sedimentology. geochemistry, and analysis of pollen. 

stomates, diatoms, chrysophytes, and oxygen isotopes. The analysis of lake 

sediments is coupled with the collection and dating of sub-fossil wood from the tundra 

surrounding the lake. The key questions we address are: (1) Was the study area 

forested earlier in the Holocene and, if sol what was the nature of the terrestrial and 

limnic environments that existed during the forest phase, and (2) What were the 

patterns and rates of change that terrestrial and aquatic ecosystems experienced 

during the establishment of modern tundra? This is the first account from a number 

of key treeline sites being studied in the Russian Federation and Canada by the 

Paleoecological Analysiç of Circumpola r Treeline (P ACT) p roj ect. P ACT is a five- y ear 

program (1993-1997) led by Andre Velichko in Russia, Les Cwynar in Canada, and 

Glen MacDonald in the United States. 

Study Area 

The study area and lake, unofficially named Middendorf Lake, is situated 

approximately 115 km NNW of the city of Noril'sk at 70°22'N, 87'33'E at an elevation 

of 200 rn a.s.1. (Figure 4-1). The lake is round and about 100 m (NE-SW) by 90 m 

(NW-SE). The maximum depth is approximately 11.5 m. The lake is currently 

alkaline (pH= 9.2), oligotrophic (total phosphorus = 12 g/L, Secchi depth = 2.1 m), and 

freshwater (specific conductivity = 91 pS). The littoral zone is rocky with no visible 

macrophyte growth. The lake appears to be a hydrologically-closed basin with the 

only outlet being a moist meadow at the southwestern shore. 

To the west of the lake lies the valley of the Yenisey River. From the river, the 

land rises gradually eastward over a distance of 30-50 km and gives way to the 

Noril'sk Plateau (650 m as. 1.). Tectonically, the Taimyr-Yenisey region belongs to an 

ancient rift zone; its geological history is marked by repeated extrusions of basalts up 

to early Triassic time. West of the lake, the surface is subdivided into two levels: the 

lower level, adjacent to the Yenisey valley, mostly below 120-1 15 m a.s.1.. and the 

higher one lying above 120 m a.s.1. The lower level is marked by a typical cryogenic 

topography, featuring numerous thermokarst lakes and polygonal microrelief. The 
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Figure 4-1. Location of Middendorf Lake and regional physiographic and vegetational 
setting. 



higher surface is typified by hilly and irregular topography. Investigations carried out 

by the Noril'sk Geological Expedition (L.I.Trofirnova & V.A. Fedoren ko, personal 

communication) identified these landfoms as glacial in origin, belonging to the narrow 

(50 to 70 km wide) marginal zone of a glacier which flowed down from the Noril'sk 

Plateau and Kharaelakh Plateau at the end of the Late Pleistocene (the Nyapan 

Stage). The glacial landfoms include moraines, drumlins, and eskers. The entire 

area is underlain by continuous permafrost. 

Middendorf Lake lies within the limits of the glacial landfoms and is on the 

proximal side of a large arcuate morainic ridge. The lake depression is closed from 

the north, east, and south by the ridge, with a narrow opening westward. Local relief 

around the lake ranges from 10 to 30 m. The ridge slopes and crest bear large 

blocks of rock showing characteristic traces of glacial abrasion. The southern part of 

the ridge joins a small druinlin. about 8 m high and 50 to 80 m wide. Boulders and 

pebbles are mostly represented by fine-grained igneous rocks from the Noril'sk and 

Kharaelakh plateaus. 

The western Taimyr region has cold winters with average January temperatures 

ranging from -20 to -30 OC. Summers are short and cool with average July 

temperatures in the region ranging from 8 to 16 OC. Annual precipitation is light, 

ranging from 100 to 300 mm. 

The site is in the Siberian shrub tundra zone (Figure 4-1) and the vegetation 

around the lake is tundra dominated by Betula nana (shrub birch), with shrub Salix 

(willow) and Alnaster fruticosa (alder = Alnus crispa in non-Russian fioras) around 

lakes and on favorable sites. Eriophorum wet-meadows dorninate poorly drained 

topographic depressions. Rocky ridge tops support grasses, arctic willow, eracoids 

and a nurnber of herbs. The lake lies approximately 50-75 km north and West of the 

mapped northem limits of Larix sibirica (western Siberian larch) forest-tundra. 

Extrernely scattered Larix sibirica trees were observed approxirnately 25 km SE of the 

site and one krummholz individual of that species was found in the vicinity of 

Middendorf Lake. The nearest observed occurrences of the common northern taiga 

trees, Picea obovata (spruce = Picea abies in some non-Russian floras), Betula 



pubescens and Betula verrucosa (tree birch) were in the vicinity of Noril'sk, 

approximately 100 km to the SE. 

Sub-fossil Wood Collection and Analysis 

Radial transects were made outward from Middendorf Lake in order to recover 

subfossil wood from the tundra surface. A total of 15 samples were identified to 

genus and radiocarbon dated (Table 4-1). Identification waç based on optical analysis 

of hand sections, maceration and microscopic analysis. Thin-sections were also 

examined in the case of problematic specimens. To compare results frorn Russian 

and Canadian radiocarbon labs, samples of wood were split and dated in both 

countries. Wood was dated by radiocarbon at the lnstitute of Geography, Russian 

Academy of Science (IGAN) and at the University of Waterloo (WAT). The two sets 

of dates are closely similar (Table 4-1). 

Many of the stumps were found in situ with roots still present. Most of the 

wood appears to have been from upright trunks and the longest trunk was alrnost 2 

rn in length. The largest trunks found were about 40 cm in diameter near their base. 

The nearest finds were within the drainage basin of Middendorf Lake. Stumps were 

found on both uplands and valley bottoms. 

Stumps of both Larix and Picea were found, although the former was the most 

common (Table 4-1). Judging from the dates, larch grew in the region continuously 

from 8300 to 3100 BP, while Picea was definitely present around 6500 BP. The size 

of the Larix stumps and the presence of Picea suggests forested conditions, rather 

than sparse forest-tundra or krummholz. The occurrence of stumps both on uplands 

and in valleys indicates that tree cover was extensive on the landscape and not 

restricted to protected sites. The dates for the northward extension of Larix dominated 

forest correlate well with the published findings of fossil and sub-fossil wood in the 

southern part of the modem tundra zone on other parts of the Taimyr (eg. Nikolskaya 

1982; Khotinskiy 1984; Ukraintseva 1990, 1993). The infinite age of one sample 

indicates that Larix grew at the site during a previous inter-stadial or inter-glacial. 

It is notable that the majority of dates from the wood fall between 8500 and 



Table 4-1. Identifications and radiocarbon dates of conifer stumps found in the vicinity 
of Middendorf Lake. All dates are 13C corrected (GM MacDonald, CV Kremenetsky 
& RT Riding, analysts). 

Sample Genus 14C Age BP 

Larix 

Larix - 
Larix - 
Lar ix - 

Larix - 
Lar ix - 

Larix - 
Larix 

Picea 

Picea 

Larix 

Larix 

Larix - 
Larix 

Larix 

infinite 

8430 2 80 

8260 -c 70 

8260 80 
8320 I 129 

8240 I 90 

7880 I 80 
771 2 62 

7680 2 80 

7050 -e 70 
6923 I 60 

6520 70 
6499 -.. 47 

6230 +- 70 

6100 a 80 

6030 I 80 

4610 .- 70 

3750 +. 70 
3701 I 43 

3530 $r 70 
3191 I 42 

Lab No. 

WAT-27 1 5 

WAT-2726 

WAT-27 1 6 

WAT-2727 
IGAN-1488 

WAT-2718 

WAT-2723 
IGAN-1484 

WAT-2719 

WAT-2725 
IGAN-1481 

WAT-2728 
IGAN-1479 

WAT-2717 

WAT-2720 

WAT-2729 

WAT-2722 

WAT-272 1 
IGAN-1486 

WAT-2724 
IGAN-1487 



6000 BP. The probability that a stump will decay or be destroyed should increase 

with the length of time the stump is exposed. Thus, stumps from trees that died 4000 

years ago should be more likely to be present today than stumps from trees that died 

8000 years ago. The large quantity of wood from the period 8500 to 6000 BPI 

therefore, suggests that the forest may have been denser at that time than during the 

period 6000 to 3500 BP. 

Lake Coring and Sediment Stratigraphy 

Three duplicate cores were taken during the summer of 1993 using a 

Livingstone piston corer from a raft. The three core holes are located about 30-40 cm 

apart in the central pari of the lake which is 8.15 m deep. The cores penetrated the 

lake sediments to a depth of approximately 250 cm. The sediment stratigraphies of 

the three cores are practically identical (Figure 4-2). Samples collected tom cores 

denoted TL-1 - 1 and TL-1 -2 were analyzed in Russian and Canadian laboratories. 

Core TL-1 -3 has been archived as a reserve. Samples from TL-1 -1 were used for 

radiocarbon dating, pollen, stomate, diatom, chrysophyte and oxygen isotope analysis. 

Sediment stratigraphy and geochemical characteristics were determined using the TL- 

1-2 samples. 

The compact gray-bluish sandy diamicton that lies below 21 7 cm in TL-1-1 and 

below 193 cm in TL-1-2 contain a considerable amount of sand, and also small gravel 

in abundance. Scattered terrestrial plant remains were found in the sands. Some of 

the gravel is well rounded. In TL-1-1, the sand content is so high that it was 

described as a separate layer (depth 223 to 217 cm). The sandy diamicton is overlain 

by organic rnuds with abundant plant detritus (up to 195 cm in TL-1 -1, and 178 cm in 

TL-1-2). A Larix cone was recovered at a depth of 195.5 cm from TL-1-1. Above 

these organic-rich sediments, the stratigraphy is dominated by gray-bluish clays with 

only scattered organic rnacro-remains. The top 50 cm of sediment in both cores are 

exbemely watery, uncompacted lake sediments with few plant remains. 



- Unit # 

Figure 4-2. Sedimentary sequences from cores TL-1 -1, TL-1 -2, and TL-1 -3, and 
radiocarbon dates from core TL-1-1 Middendorf Lake. Unit 1 is unconsolidated 
organic and clayey lake sediment; Unit 2 is fine dark gray-blue lake sediment with rare 
organic particles (1 -2 mm); Unit 3 is gray-brown clay with organic inclusions (including 
wood) 2 4  cm in diameter; Unit 4 is bluish sandy diamicton; Unit 5 is compact gray 
diarnicton with dark bluish spots and slightly rounded fragments of dark gray to black 
shale 0.8 cm in diameter (AA Veiichko, analyst). All radiocarbon dates are 13C 
corrected. 

Table 4-2. Radiocarbon data obtained by accelerator mass spectrometry for 
Middendorf Lake sediments. All dates are 13C corrected. lnsufîicent CO, was 
available for I3C analysk for the sarnple at 80 cm depth. 

Depth (cm) Materiai 14C Age BP 6 ' ' ~  (% PDB) Lab No. 

80 aquatic moss 2500 + 80 TO-4750 
135 aquatic moss 3390 * 80 -27.35 TO-475 1 
1 96 wood fragments 4420 80 -23.79 TO-4749 
21 8 wood fragments 4370 I 60 -29.12 TO-4348 



Radiocarbon Dating of Lake Sediments 

Accelerator mass-spectrometry was used to date plant macrofossils from the 

core (Figure 4-2; Table 4-2). The dates indicate that the organic deposits in the lake 

are more than 4400 years old. Sedimentation rates have been estimated from the 

dates without regard for sediment compaction in the lower layers. It appears that the 

sedimentation rate in the lower sedirnents amounted to 0.75 mm per year, which is 

almost twice the rate for the upper portion of the core. Coarser composition of the 

lower portion of the core and two dates which are 25 cm apart stratigraphically, but 

statistically indistinguishable (4420 t 80 and 4370 t 60) at the base of the core 

indicate rapid accumulation at the start of lacustrine deposition with the likelihood of 

some sediment reworking. 

Lithochemical Charactetistics 

The stratigraphy established when describing the sedimentary sequence in the 

cores is corroborated by lithogeochemical analysis of samples from TL-1-2. 

Granulometric composition of Unit 2, from 50-75 cm (Figures 4-2 and 4-3) differs 

markedly from that of the lower ones. In the upper layer clay fractions (0.01 to 0.005. 

0.005 to 0.001 and less than 0.001 mm) comprise 50 to 70 %. In contrast, Units 4 

and 5 are dominated by sand, with coarse sand (1.0-0.25 mm) percentages being up 

to 16-18 % and fine sand up to 20-32 %. 

The changes in granulometric composition reflect differences in sedimentation 

regime. Units 4 and 5 were likely deposited under conditions of active erosion within 

the catchment, possibly due to high precipitation. The sediments in the upper portion 

reflect a lower energy regime; predominantly fine clayey material accumulated at a 

slower rate. This could be attributed to a reduction of precipitation and to a lack of 

pronounced peak discharges or heavy rainfall in summer. Such climatic conditions 

corresponded in al1 probability to those of the relatively dry tundra around the site 

today, while the first stage featured quite different climates, more similar to the 

modem taiga. 

The chemical composition of the units are very much alike (Figure 4-3). with 



Figure 4-3. Lithochemical characteristics of lake sediments from core TL-1-2, 
Middendorf Lake (AA Velichko, analyst). 



the exception of somewhat higher values of Si/Fe and Si/AI ratios in the lower layers. 

This difference rnay be accounted for by the presence of quartz sands. Unit 3 differs 

from both underlying and overlying layers in its chemical composition. It shows a peak 

in humus preceeded by peaks in carbon and calcium. The rise in these components 

may be due to calcium, organic carbon and humus that had accurnulated in forest soi1 

profiles and was subsequentiy redeposited in the lake by soi1 erosion during the period 

of deforestation behveen 4400 to 4000 BP. 

Pollen Analysis 

One ml sub-samples of sediment from TL-1-1 were processed for pollen and 

stomate analysis using standard methods (Faegri & lversen 1 975). Su b-samples were 

taken at 5 cm intervals along core TL-1 -1. The presence or absence of stomates from 

conifers such as Larix and Picea are excellent indicators of the presence or absence 

of these trees in the immediate vicinity of lakes (Clayden et al. 1996; Hansen et al. 

1 996). Pre-treated tablets of Lvcopodium spores were added to facilitate estimation 

of fossil pollen and stomate concentrations and accumulation rates. Pollen grains and 

stomates were identified using reference collections of the Laboratory of Evolutionary 

Geography in Moscow and the University of New Brunswick. A minimum of 300 

pollen grains from terrestrial taxa were counted for each sarnple. Stomates 

encountered during the pollen counts were identified to genus and tabulated. 

The pollen percentage diagram from Middendorf Lake (Figure 4-4) shows two 

distinct zones: Zone 1 (Alnaster, Betula, Larix; 218.5 to 185 cm; 4400-4000 BP) and 

Zone 2 (Betula, Cyperaceae; upper 185 cm; 4000 BP - Present). In Zone 1, shrub 

and arboreal pollen content comprises up to 90 % of the total pollen and spore 

arnount. Alnaster and Betula pollen are dominant. Larix reaches maximum 

abundance (1 %). There is a maximum of Picea pollen at the base of Zone 1. Herb 

pollen is mostly represented by Cyperaceae and various Lvcopodium species prevail 

among spores. Zone 2 spectra are also dominated by birch pollen (30 to 40 %), 

pnmarily of shrub varieties. Alnaster pollen declines to 10-15 %. Larix pollen is 

present sporadically, and only a few grains of Picea, while Pinus content is somewhat 



Figure 44. Pollen 
Borisova, analyst) . 

percentage diagram from core TL1 -1, Middendorf Lake (OK 



Figure 4-5. Pollen concentration diagram from core TL-1-1, Middendorf lake (OK 
Borisova, analyst) . 



Per ml 

Figure 4-6. Stomata concentration diagram from core TL-1 -1, Middendorf Lake (OK 
Borisova, analyst) . 



increased as compared with the lower layer. Gyperaceae pollen shows increases 

towards the top of the core. 

Alnaster and Betula pollen concentration in Zone 1 is much higher than that in 

Zone 2, and Picea concentration is 6-7 times higher. Larix pollen concentration 

ranges up to 2500 grains per ml (Figure 45). Ericales dwarf shnibs also have 

maximum concentrations in Zone 1. In contrat, Salix, Artemisia, Gramineae. 

Cyperaceae and Lvcopodium concentrations rernain stable or increase in Zone 2. 

Larix stomate abundance is up to 12,000 per ml in Zone 1 (Figure 4-6). Larch, - 
undoubtedly existed near the lake until around 4000 BP. The date coincides closely 

with the time of Larix disappearance from the site deduced from the youngest 

radiocarbon dates from sub-fossil larch wood. Picea stomates are found in relatively 

small amounts (not more than 1500 per ml) in the same samples. Both the scarcity 

of spruce stumps and the low stomate concentrations suggest that spruce was not as 

common as larch in the vegetation around Middendorf Lake. 

The site supported Larix and Picea from prior to 4400 BP to approximately 

4000 BP. There is no evidence that Pinus was present at the site. Subsequent 

cooling probably resulted in the elimination of coniferous trees from the local 

vegetation. Around 4000 BPI the pollen and stomate record show that the forest was 

replaced by shrub tundra dominated by dwarf birch. However, the evidence from the 

radiocarbon dated stumps indicates that some trees were able to persist until 31 00 

BP. In the course of subsequent cooling, typical tundra communities became 

widespread as indicated by the presence of Drvas pollen (characteristic of dry tundra 

with polygonal microrelief), Leguminosae (including Hedisarum), Pedicularis, 

Polvaonum typ viviparum, Saxifragaceae, as well as abundant sedge pollen in the 

upper layer of Zone 2. 

Diatom and Chrysophyte Analysis 

Subsarnples of one ml of sediment from TL-1-1 were processed for siliceous 

rnicrofossil analyses using a standard acid digestion technique (Battarbee 1986). 

Slides were prepared as strewn rnounts, in which a small subsarnple of each prepared 



sluny was diluted with distilled water. then transfened by pipette to g las  cover slips. 

The cover slips were left to evaporate on a slide warmer at low heat. Once dry, the 

cover slips were mounted onto glass slides using Hyrax. a permanent mounting 

medium with a high refractive index (RA.= 1 . i l ) .  The same slides were used for both 

diatom and chrysophyte cyst analysis. 

A minimum of 300 diatom valves (from 97 levels) and 100 chrysophyte cysts 

(from 40 levels) per slide were identified and enumerated using 1000X magnification 

with oil immersion and differential interference contrast optics. The microfossil counts 

are expressed as relative percentages of total diatom valves, relative percentages of 

total cysts, and the ratio (as a percentage) of diatom frustules to chrysophyte cysts 

(DC; Smol 1985). Reference texts used for diatom taxonomy included Krammer & 

Lange-Bertalot (1 986-1 991). Lange-Bertalot (1 993), Foged (1 981), Cambum et al. 

(1 984-1 986). and Hustedt (1 930-1 966), as well as other sources. Cyst taxonomy 

followed Duff et al. (1995); cysts which have not yet been described using scanning 

electron microscopy (SEM) were given provisional letter codes (e.g. TS-AQ). Gysts 

that could be distinguished using SEM but not with LM were counted together (e-g. 

cysts 53/152/234). 

The percentage diagram of the 21 most abundant diatorn taxa was divided into 

zones using stratigraphically constrained cluster analysis (Grimm 1987), with the 

Edwards and Cavalli-Sforza chord distance as the dissimilarity coefficient. Similarfy, 

the most common cyst types (with a relative percentage of 221 % in at least one level; 

n-77) were divided stratigraphically using constrained cluster analysis with Euclidean 

distance as the dissimilarity coefficient (Grimm 1987). Only those cysts that showed 

distinct changes throughout the core (n=42) were plotted. 

The diatom and cyst record was dominated by alkaliphilous taxa (Figures 4-7 

and 4-8), indicating that the lake has remained alkaline throughout its history. 

Fraailariapinnata, a cosmopolitan benthic taxon, and cyst 42, an indicator of shallow, 

alkaline water (Duff et al. in press), dominate the siliceous microfossil record for most 

of the core suggesting that few major limnological changes occurred overall. 

Nonetheless. minor changes in the aquatic environment took place, as indicated by 



(W) uldaa 
I 

Figure 4-7. Percentage diagrarn of common diatom taxafrom core TL-1 -1, Middendorf 
Lake (TE Laing & JP Smol, anaiysts). 



Figure 4-8. Percentage diagram of common chrysophyte cysts from core TL-1-1, 
Middendorf Lake. The ratio of diatom frustules ta cysts (D:C) and stratigraphically 
constrained cluster analysis (Grimm 1987) are also shown (KE Duff, analyst). 



shifts in the abundances of other taxa. 

Independent cluster analyses of the diatom and cyst records identified five main 

zones. Interestingly, the zone boundaries occurred at nearly the same stratigraphic 

levels, although the degree of dissimilarity between the zones varied somewhat. Each 

zone is discussed in more detail below. 

Zone 7 (796.5-2 15 cm - 24400 BP) 

Benthic Fraailaria taxa. such as . pinnata var. acuminata and E. construens 

var. venter, were abundant in this zone. Quite often these taxa dorninate the initial 

post-glacial stage in lakes (Haworth 1975; Smol 1988). and it is possible that this 

assemblage may represent an early successional stage in Middendorf Lake. The cyst 

assemblage was composed mainly of large unomamented cysts (e.g. cysts 155, 197, 

42, and 150) that are most common in shallow, meso-eutrophic lakes (Duff et al. 

1995; Duff et al. in press). Although benthic diatom taxa and shallow water cysts are 

common, a small population of Aulacoseira distans var. humilis was present. This 

indicates that water depths were suficient to support at least a small planktonic 

diatom community. 

Zone 2 (1 75 195 cm - 44004000 BP) 

This zone brackets the retreat of treeline from the region, as inferred by pollen. 

stomate and macrofossil evidence. The siliceous microfossils reflect climatic and 

limnological changes that would likely accompany a loss of trees in the catchment. 

For example, this zone is characterized by higher percentages of Fraailaria pinnata 

var intercedens and Fraciilaria lapponica. In their work on treeline diatom 

assemblages in the Western Ganadian Arctic. Pienitz et al. (1 995) indicated that these 

taxa have lower temperature optima compared with the taxa in zone 1. 

Fraailaria fasciculata, a taxon commonly found in waters of high conductivity 

(Patrick & Reimer 1966; Krammer & Lange-Bertalot 1986-1 991) , also increased 

coincidental with the boundary between pollen zones 1 and 2 at circa 185 cm. 

Although somewhat speculative, it is possible that weathering and catchment erosion 



may have increased during this period as a result of a decline in catchment 

vegetation. The observed lithogeochemical changes during this period (Figures 4-2 

and 4-3) provide additional evidence to support this hypothesis. 

The cyst assemblages in these samples showed high levels of dissimilarity and 

the boundary between Zones 2 and 3 was identified as the most dramatic split in the 

cyst cluster andysis. The cyst fiora is characteristic of alkaline, shallowl fairly 

productive water (Duff et al. 1995; Duff et al. in press) but was characterized by a 

decline in larger cysts and an increase in smaller cysts, likely reflecting a shift in the 

chiysophycean flora from netplankon to nannoplankton. At this point, the reasons for 

such a shift are unclear. However, the continued presence of a small population of 

Aulacoseira distans var. humilis indicates that at least some planktonic diatoms 

persisted during this period. 

Zone 3 (92.5- 172.5 cm - 4000-2600 BP) 

Zone 3 is marked by increases in diatom species typically found in tundra 

lakes, such as Fraailaria brevistriata var. paoillosa (Pienitz 1 993). Taxa characterized 

by lower temperature optima, for example Stauroneis smithii var. minima and 

Fraçiilaria pseudoconstruens (Pienitz et al. 1995), also became more prominent. Cysts 

that are produced by cold-water taxa (e.g. cyst cf. 180, probably Spiniferomonas 

bourrellvi, and cyst 58/118, probably Mallomonas akrokomos) increased in 

abundance, as did cysts that are common in alpine and arctic lake sediments (cysts 

113, 83, cf. 83, 33/222, 5 and 94/239; Duff et al. 1995; Duff et al. in press). These 

data indicate that temperatures were cooler during this zone. 

Other stratigraphic changes that characterize zone 3 are the consistently high 

(~80%) D:C values and the near disappearance of the planktonic Aulacoseira distans 

var. humilis. With colder conditions, it is possible that lake ice cover was more 

persistent, and this may have hindered the development of planktonic diatom taxa 

(Smol 1988). 

Other limnological changes also occurred during this time. For example. the 

diatorn taxa were mostly oligohalobous species (Patrick & Reimer 1 966; Foged 1 981). 



indicating that lake conductivity may have decreased slightly. Similarly, there was an 

increase in cyst morphotypes that are typical of oligotrophic, circumneutral and less 

alkaline lakes (e.g. cysts 5 and 94/239; Duff et al. in press), suggesting slight declines 

in lake pH and productivity. 

Zone 4 (4-90 cm - 2600- 100 BP) 

Zone 4 was possibly a period of slight climatic warming and possibly reduced 

ice cover, as indicated by declines in the abundances of cold-water diatoms and cysts 

and a modest decline in the D:C ratio. The presence of Aulacoseira populations in 

zone 4, as in zones 1 and 2, may reflect a decrease in the extent of ice cover 

compared with zone 3. The high abundances of Aulacoseira in zone 4 compared with 

zones 1 and 2 suggests that lake turbulence was greater during this period. Most 

Aulacoseira species form heavy resting cells during their life cycle that require 

resuspension from the sediments into the water column to establish planktonic 

populations (Round et al. 1990). In addition, the vegetative cells themselves often 

require strong turbulence to maintain their position in the photic zone. As trees were 

no longer in the drainage basin during zone 4, more wind mixing would be likely, 

possibly explaining the high abundances of Aulacoseira in the lake during this time. 

Zone 4 was also characterized by the most striking successional changes 

recorded in the diatom record. These changes are marked by a series of oscillations 

between the two dominant diatom taxa: Fraoilariapinnata, a small benthic diatom, and 

Aulacoseira distans var. humilis, a heavily silicified tychoplanktonic species. At least 

two possible hypotheses may explain this phenornenon. First, E. pinnata is generally 

most abundant in shallow lakes (Rawlence & Senior 1988). while Aulacoseira species, 

being planktonic, tend to be more representative of deep water lakes (Pienitz 1993). 

One possibility is that the oscillations may represent fluctuations in lake water levels. 

Aternatively, the cycles of Aulacoseira relative abundances rnay indicate changes in 

the mixing regime within the lake as a result of altered wind patterns and lake 

stratification (Smol et ai. 1984; Smol 1988). The D:C ratio, while fluctuating, showed 

no clear correspondence with the Fra~ilaria/Aulacoseira oscillations. 



The diatom record clearly indicates that lirnnological conditions were relatively 

u nstable throughout Zone 4. I nterestingly, though, the limnological changes 

apparently affected the chrysophytes to a much lesser degree. Chrysophytes, 

however, are flagellated, and are not as dependent on wind-induced turbulence. 

Thus, the aquatic algai populations differed in their responses to environmental shifts 

during this period. Moreover, the pollen record does not display coincident changes, 

suggesting that the diatoms were responding to extemal factors not apparent as 

changes in the terrestrial ecosystem during this time. 

Zone 5 (0-3 cm - Recent) 

Recent diatom assemblages in the lake are characterized by a shift to species 

previously rare in the diatom record, for example Pinnularia balfouriana and 

Achnanthes minutissirna. Similar changes have been observed in other arctic regions, 

such as eastern Ellesmere Island (Douglas et al. 1994). Similarly, the chrysophyte 

assemblage in the most surficial sample was unique, with the lowest recorded 

abundances of cyst 42, and increases in previously rare cysts such as cysts 

50/52/11 Olsrnall 51, 223, 189, 1 and 130. These changes are probably the result of 

post-industrial anthropogenic disturbances altering the lake from its natural state. The 

nearby city of Noril'sk is a major center for nickel smelting and appreciable damage 

to forest vegetation is clearly observable near the city. In addition, the Taimyr 

Peninsula is located dong a major route for the transport of atmospheric pollutants 

into the Arctic, and consequently receives significant amounts of pollutants through 

atmospheric deposition (Barrie et a/. 1 992; Krasovskaya 1 987). 

In summary, the diatom and chrysophyte record for Middendorf Lake indicate 

the following limnological changes. First, a pioneering benthic diatom assemblage 

dominated during the period in which the catchment of the lake was forested. The 

cyst data suggest a relatively warm, productive and possibly shallow lake at this time. 

Between 4400 and 4000 BP, a slight decline in lake temperatures and a modest 

increase in lake conductivity coincided with a decline in catchment forest vegetation. 

Following the departure of forest from the area (4000 BP), temperatures became 



cooler, persistent ice cover may have increased and lake conductivity, pH and 

productivity decreased slightly. A period of Iimnoiogical instability occurred between 

circa 2600 to 400 BP, charactenzed by enhanced mixing or fluctuating lake levels. 

Finally, anthropogenic factors appear to have influenced the composition of recent 

aquatic communities. 

Oxygen Isotope Analysis 

Samples taken at mostly 5 cm intervals from core TL-1-1 were pre-treated in 

a 10% hydrochloric acid solution at 70 OC for two hours to dissolve any trace amounts 

of shell or mineral carbonate. Additional sample preparation on the ~500 pm acid- 

washed residue involving solvent extraction, bleaching, and alkaline hydrolysis 

removed non-cellulose organic components (Edwards & McAndrews 1989). The 

cellulose fraction was subject to oxygen isotope (180/160) deteminations using nickel- 

tube pyrolysis (Edwards et al. 1 994). Cellulose '80/160 was also measured on surface 

sediment from an additional short core. Bulk organic and cellulose stable carbon 

isotope ratios, bulk organic nitrogen isotope ratios, bulk organic carbon content, and 

bulk organic nitrogen content are reported elsewhere (Wolfe et a/. in prep.). 

Oxygen isotope ratios were measured on a VG Prism II mass spectrometer at 

the Environmental Isotope Laboratory, University of Waterloo, and results are reported 

in &notation (8 = [(R,,JRStJ - 11 x 1000, where R = '80/160) with respect to Vienna- 

standard mean ocean water (SMOW). Repeated samples are normally within 1 .O Y i  

reflecting both method uncertainty and the naturai heterogeneity of the samples. 

Results from the cellulose bl'O (6'80,1J analysis Vary significantly, spanning 

over 10 %. from +7.7 to +18.9 Y- (Figure 4-9). In the bottom 15 cm of the core, 

8180,1, values are low. ranging from +8 to +11 %. From 196.5 to 1 90 cm, the 6180,,1, 

profile rapidly becomes several per mil more positive to about +18 %. The 6180,, 

record is relatively invariant to 48.5 cm oscillating between +16 and +19 except for 

brief negative excursions to less positive values between +12 and +15 %, at 187.5, 

1 72.5, 1 57.5, 1 07.5, 92.5, and 82.5 cm. At 48.5 cm 818~,1, values rapidly return to a 

level sirnilar to the bottom of the core, roughly +IO until 14.5 cm except for two 



Figure 4-9. Oxygen isotope stratigraphy for core TL-1 -1, Middendorf Lake (BB Wolfe, 
TWD Edwards & R Aravena, analysts). 6180,,, from a short core is plotted separately. 
lnferred 6180, calculated assuming cellulose is dominantly aquatic in origin (Wolfe et 
al. in prep.) and using a of 1.028 (Edwards & McAndrews 1989). Mean annual 
isotopic composition of precipitation (6,) is estimated from a range of shallow 
groundwater and ground-ice samples collected in the region (Wolfe & Edwards in 
press). Steady state isotopic composition (6d is based on theoretical relationships 
for a closed basin and modern climate/isotope data (see text). 



positive peaks centred at 40.5 and 18.5 cm. At 12.5 cm 6180,,, values rapidly 

increase and stabilize at about +16 *A, similar to the intemal between 190 and 48.5 

cm. b180,, data obtained from surface sediment of the short core compares well with 

the uppermost sample from the long core. 

lnterpretation of inferred lake water 6180 (6%3 histories derived from 8180,,, 

requires differentiation of source signais, reflecting the integrated isotopic composition 

of surface and subsurface infiow and precipitation, from hydrologic factors that may 

modify the isotopic content of the lake water (e-g. Edwards & McAndrews 1989; 

Edwards 1 993; MacDonald et al. 1 993; Duthie et al. 1996; Edwards et a/. 1 996; Wolfe 

et al. 1996). Middendorf Lake receives most of its water via precipitation falling 

directly on the lake, supplemented by limited mnoff from its small catchment and 

perhaps minor fiow from active layer groundwater. For headwater lakes the oxygen 

isotope composition of input waters can be approximated by the mean annual oxygen 

isotope composition of precipitation (6180,), with the long-term average often reflected 

in shallow groundwaters (Gat 1981). Based on a small number of shallow 

groundwater and ground-ice samples collected in the region, which show no isotopic 

evidence of selective recharge or evaporative enrichment, â180, is estimated to be 

roughly -1 7 %, (Wolfe & Edwards in press). 

In seasonally closed basins such as Middendorf Lake, however, evaporation 

should also play a role in the isotopic composition of the lake water. This process 

results in 180-enrichment of lake water due to preferential removal of water containing 

160. Under stable hydrologic and climatic conditions, 6180, becomes increasingly 

positive until isotopic steady state is reached (i.e. 6180,, = 6180i,,,,; Craig et a/. 1963; 

Gat & Levy 1978) with the rate dependent on the residence time of the basin (Lister 

et al. 1991). The theoretical, closed basin steady state isotopic composition for 

Middendorf Lake can be estimated using clirnatic data from Dudinka, Russia (Lydolph 

1977) and the following expression (Craig & Gordon 1965; Lister et al. 1991) : 



E incorporates both the equilibrium fractionation factor, E*, and the kinetic fractionation 

factor, EK, h = relative humidity, 61a0, = isotopic composition of atmospheric vapour, 

and 6180,, = average isotopic composition of input waters. Assuming isotopic 

equilibrium between 61a0, and 6180, (i.e. bl'O, = 6180, - E'), 6180np, = 6180, = -17 

&. = +10.7 (using equation (1) in Table 3-1 of Gonfiantini (1 986) and an average 

ice-free air temperature of 7 OC), and E~ = l4.2(1 -h) (Gonfiantini 1 986), yields 6180, 

= -12 to -9.5 % for h = 0.7 to 0.8. This is in good agreement with modern average 

8180, for Middendorf Lake, estimated at about -1 2 % (Figure 4-9) on the basis of the 

surface sediment sample 61%d,, (+15.7 and a fractionation (a) of 1.028, where 

ace,,-, = (6180,,, + 1000) / (b180, +1000) (Edwards & McAndrews 1989). These 

calculations suggest that Middendorf Lake is currently at isotopic steady state and that 

the = 5 *A difference between ~ ' ~ 0 ,  and 61a0, is attributable to lake water evaporative 

isotopic enfichment (Figure 4-9). 

If 8180, can be assumed to have varied little over the past 4400 years, then in 

contrast to the modern relationship, 6180,. infened from 6180,,, and 6"0, merge at 

two stratigraphie intervals (4400 to 41 00 BPI 21 5 to 199.5 cm and 1500 to 400 BP, 

48.5 to 14.5 cm; Figure 4-9). An increase in the inflow/evaporation (I/E) ratio during 

these periods, including when forest dominated the terrestrial vegetation, likely 

accounts for the negative shifts in 6180, and implies that Middendorf Lake has 

previously been hydrologically open with rapid flushing rates. Wetter conditions were 

also interpreted hrn 61801, records during rnid-Holocene intervals of forest 

development near treeline in central Canada (MacDonald et al. 1993; Wolfe et al. 

1 996). 

A - 9 Y- increase in 6180, from 41 00 to 4000 BP (1 96.5 to 190 cm) is 

interpreted to reflect conditions which rapidly became drier during the transition from 

forest to tundra, resulting in lake water evaporative isotopic enrichrnent. The 8180, 

record abruptly stabilizes in the range estimated for isotopic steady state based on 

modem data (Figure 4-9), suggesting that the lake became hydrologically closed and 

moisture levels similar to modem conditions may have prevailed by 4000 BP. 

Occasional, but brief excursions to more negative 6t80, at 4000, 3800, 3700, 2900. 



2700, and 2500 BP (1 87.5. 172.5, 157.5, 107.5. 92.5, and 82.5 cm depth) may reflect 

increased contribution of 180-depleted snowmelt (Wolfe & Edwards in press) or flood 

events in which the lake overfiowed, lushing out evaporatively j80-enriched lake water 

with the more negative signature of 6l8Op. 

The hydrologic regime rapidly changed again at 1500 BP (48.5 cm). High I/E 

ratios minimized the difference between 6l8OP and 6180, as moisture conditions rnay 

have become similar to the forest period. This more recent increase in moisture, 

however, is apparently not accom panied by any change in the terrestrial vegetation. 

At least two brief intervals in which moisture conditions were more favourable for 

evaporation are suggested by the positive 6180, trends at 1300 and 600 BP (40.5 and 

18.5 cm). probably caused by temporary drawdown of lake level. Modern, closed 

basin hydrologic conditions were established at 400 BP (1 2.5 cm depth) with a rapid 

increase to more positive 6180, values. 

Discussion 

The radiocarbon dated stumps, fossil Lanx cone. and the fossil pollen and 

stomate records al1 confirm the presence of trees in this portion of the western Taimyr 

Peninsuia during the early and mid Holocene. The stumps indicate that Larix was 

present shortly after 9000 BP and persisted until 3100 BP. The stumps. pollen and 

stomate records al1 indicate that Picea was aiso present. but at far lower densities 

than Larix. The presence of stumps on both uplands and valleys indicates widespread 

occurence of trees. The likely modem equivalent to the paleoforest occurs at the 

northern edges of continuous forest and southern edges of forest-tundra some 100 

to 50 km south and east of the site. 

Aithough Picea obovata was sparse at the study site, the range lirnits of the 

species was undoubtedly to the north of Middendorf Lake. Judging by pollen evidence 

from other sites (Nikolskaya 1982), spruce in Central Siberia reached as far as 72" 

N during the mid-Holocene. Spruce needles have been found in a Holocene peat 

deposits north of Khatanga (È-10 section, 72"I2'N, 1 O2"32'E, Nikolskaya 1982); 

unfortunately, no radiocarbon dates of the peat are available. Additional evidence is 



available which shows that forest shrub species such as raspberry (Rubus idaeus L.) 

and cranberry (Oxvcoccus p al us tris Pers) also had ranges north of their present lirnits 

in the Yenisey-Tairnyr region during the early to mid-Holocene (Firsov et al. 1974; 

Badinova et al. 1 976). 

The tundra vegetation of the study site is a late Holocene phenomenon. 

Progress towards the development of tundra likely had already begun by the time the 

Middendorf Lake record commenced. By 4500 BP, the summer insolation maximum 

and associated summer warming had already decreased markedly from the early to 

mid-Holocene maximum (Kutzbach et al. 1993). The lower number of stumps 

recovered for the period 5000 to 3000 BP in cornparison with the number recovered 

for 9000 to 6000 BP suggests that forest cover had begun to thin by 4400 BP. All 

lines of evidence show that between 4400 and 3000 BP trees disappeared almost 

completely and the present tundra was established. The decline in Larix and Picea 

pollen and stomates is sharp between 4400 and 4000 BP. During this phase of 

deforestation there was significant erosion of forest soils. However, the radiocarbon 

dated stumps show that scattered trees persisted until 3100 BP. Indeed, the single 

krummholz Larix sibirica found near the site may be a last relict of the early to mid- 

Holocene forest phase. 

The evidence presented here clearly indicates that forest was able to persist 

on the Taimyr during the Holocene and the region supported Larix during at least one 

previous inter-stadial or inter-glacial. The extension of forest in the past indicates that 

the tundra zone in this region has likely experienced geographic compression along 

the arctic coast and fragmentation in mountainous areas earlier in the Holocene. 

Under conditions of climatic warrning, forest could eventually return to the study site. 

Scattered krummholz, such as the one found near Middendorf Lake, may serve as 

invasion foci, helping to promote reforestation during climatic warming (MacDonald et 

al. 1 993). 

Changes in the limnic environment during the transition from forest to tundra 

are striking. Conclusive evidence from diatom, chrysophyte, sedimentary, and 

geochemical profiles indicates that the lake was clearly more productive during the 



forest interval than dunng the later tundra period. Furthemore, the decline in trophic 

conditions appears to have occurred rapidly over a few centuries. 

lnterpretation of hydrologie changes is less straightforward amongst aie various 

records during the forest to tundra transition. Oxygen isotope data suggest the area 

became drier as the forest retreated, although a flush of clastics, organics, and 

nutrients into the lake implies that relatively moist conditions conducive to intense 

erosion persisted at least until final deforestation. Chrysophyte cyst data, however, 

indicate that Middendorf Lake was shallow during the forest period and no significant 

change in water depth occurred as the landscape became dominated by tundra 

vegetation. The rapid decrease in grain size apparent from the sedirnentological 

analysis may be consistent with the 6'80 interpretation, reflecting reduced precipitation 

and influx of coarse detrital sediment, or may alternatively indicate an increase in 

water depth and lower energy conditions at the coring site. 

A key assumption in the oxygen isotope interpretation is that 6180, has 

remained relatively constant over the past 4400 years. Support for the hydrologic 

end-mernber interpretation comes from several lines of evidence. Of primary note are 

the large (6 - 9 and rapid 6180, shifts at 4100, 1500, and 400 BP which cannot 

easily be explained by factors that commonly influence bl8OP. At 41 00 BPI the trend 

in b'BO, towards more positive values is opposite in direction to that expected if 

principally due to mean annual temperature (MAT) effects on 8'80p, assuming modern 

bl'O,-MAT relations (Dansgaard 1964; Rozanski et al. 1993) and that MAT decreased 

with treeline retreat. Changes in the seasonal distribution of precipitation are also 

probably not responsible for "0-enrichment at this horizon based on modern data in 

which '80-depleted winter precipitation represents a greater proportion of annual 

precipitation in the tundra compared to the boreal forest (Lydolph 1977). Lack of 

modem i5'80, data east of the Urals (Rozanski et al. 1 993) precludes speculation on 

the possible role of a shift in rnoisture sources or air mass dynamics, although the rate 

and magnitude of the &180, shift makes these explanations seem unlikely. A rapid 

change to drier conditions, however, is consistent with changes in the carbon and 

nitrogen cycling regimes (Wolfe et al. in prep.), modern meteorological records in the 



forest and tundra regions (Lydolph 1977), and large-scale paleobotanical 

reconstructions of Eurasian climate during the mid-Holocene (Velichko et al. 1995). 

At 1500 and 400 BP, there are no major changes in the pollen or stomate records that 

might signal large shifts in MAT, but hydrologic change at these strata is in strong 

agreement with the diatorn record. Finally. basal porewater from a peat section 

obtained near treeline in the study area show similar 6180 values as modem estimated 

8'80,, suggesting the isotopic composition of source water to Middendorf Lake during 

the mid-Holocene rnay have been similar to present ('Wolfe et al. 1997). 

Observations at Middendorf Lake suggest that major changes in water level 

may not be required to significantly alter the water balance. Seepage occurs through 

a meadow along the southwestem edge of the lake and we speculate that a small rise 

in lake level coufd lead to a substantial increase in the rate of outfiow. Thus, a 

moderate increase in the precipitation/evaporation ratio could potentially decrease the 

residence time of the basin significantly (leading to more negative ti'80,J, while the 

water depth rnay only change marginally. An increase in the proportion of the lake 

area defined by the littoral zone dufing the forest interval rnay account for the 

presence of shallow water chrysophyte cysts (and benthic diatorns) presewed in the 

sedirnent record. Altematively, these taxa rnay have responded more strongly to 

increased nutrients during this time. 

Increased rnoisture at the close of the early to mid Holocene forest period rnay 

also be responsible for the establishment of the lake and explain why lacustrine 

deposition did not commence until 4400 BP. Although the lake basin lies in an area 

of glacial deposits and continuous permafrost. the lake cannot be purely the result of 

water filling a glacial depression as sedimentation should have began with 

deglaciation. Aiternatively, the basin rnay have originated through thermokarst 

processes and the timing of its inception does not strongly reflect climate variation. 

Thermokarst subsidence would explain why the basal organic sediments are relatively 

young and why the lake rnay have been initially shallow despite high precipitation. 

The transition in the terestrial and limnic environments following 4400 BP 

certainly reflects climatic cooling at the close of the eariy to mid Holocene insolation 



and thermal maximum. Evidence for treeline retreat during the late Holocene is 

widespread from pollen records from Fennoscandia and the Russian Federation (e.g. 

Hyvarinen 1976; Khotinskiy 1 984; Seppa 1996). During the period of roughly 8000 

to 4000 BP, the vegetation around Middendorf Lake was Iikely similar to that found 

in the region south of Dudinka in the Yenisey valley. Using the modern summer 

climate of Dudinka as a conservative analog, this would imply a mean July 

temperature of around 12 to 14 OC at Middendorf Lake during the early and mid- 

Holocene. This is consistent with the conclusion of Velichko et ai. (1995) that July 

temperatures in this region were 3 to 4 OC wamer than present during the mid- 

Holocene. 

The late Holocene record from Middendorf Lake contains two important 

additional pieces of information pertaining to late Holocene tundra ecosystems on the 

Taimyr. First, there is evidence from the diatorn and isotope records that the lake has 

witnessed a series of rapid changes in hydrologie conditions in the late Holocene, 

particularly after 1600 BP. The causes of these changes, and what, if any 

coincidental changes occurred in the terrestrial environment remains unknown. 

Second, in the very recent past the lake has undergone a shift in its diatom and 

chrysophyte flora to assemblages that have not previously been evident at the site. 

The impact of airbone pollutants is a possible explanation for this latest change. 



Wolfe BB, TWD Edwards & R Aravena, in prep. Changes in carbon and nitrogen 
cycling during treeline retreat recorded in the isotopic content of lacustrine organic 
matter, western Tairnyr Peninsula, Russia. For submission to The Holocene. 

Synopsis 

Multidisciplinary investigations of Velich ko et al. (in prep.) indicated that marked 

changes in the limnic environment of Lake Middendorf, western Taimyr Peninsula, 

Russia, occurred during the transition from forest to tundra ca. 4000 14C years BP. 

Evidence from diatom, chrysophyte cyst, sedimentary, and geochemical profiles 

suggested that the lake was clearly more productive during the forest interval than 

during the followhg tundra period. Oxygen isotope data from fine-grained cellulose 

indicated that relatively moist conditions prevailed during the forest period and that a 

dner climate ensued as the boreal forest retreated. The decline in trophic conditions 

and shift in hydroiogic regime occurred rapidly, perhaps over a few centuries. 

Our understanding of the terrestrial vegetation, lake trophic, and hydrologic 

history at Lake Middendorf made this an ideal site to explore the utility of nitrogen 

isotopes in lacustrine organic matter (bi5N,d. 8"Norg has rarely been used in 

paleolirnnology studies perhaps because of the lack of nitrogen isotope data in 

modem lake settings and also the formerly-less-than routine method of anaiyzing the 

"N/'~N ratio in organic material. However, recent development of continuous-flow 

isotope ratio mass spectrometry with coupled elemental analyzers has made analysis 

of 615N,, along with C (Oh), N (%), and 613C,,, readily attainable on the same 

rnilligram-sized sample. 

Results from this pilot study of Lake Middendorf sediments show that a shift in 

6'*Norg (as well as C (Oh), N ( O h ) ,  613C,,, and 6I3C,3 occurs during the transition from 

forest to tundra suggesting that this proxy may be a sensitive recorder of nitrogen 

cycle response to climate change. lnterpretation of theçe data are necessariiy 

speculative given Our lack of modem nitrogen isotope information (e.g. 6 ' = ~  in forest 

and tundra soi1 nitrate, 8I5N in atmospheric-derived nitrate, blSN in forest and tundra 

soii organic matter, etc.). However, multidisciplinary analysis has enabled the 



proposal of a tentative unified model that strongly links the elemental and isotopic 

trends to changes in soi1 development processes and the hydrologie regime, and is 

consistent with previous isotopic studies near treeline in central Canada (Wolfe et al. 

1996; see CHAPTER 3). These promising results suggest that further study of nitrogen 

isotope systematics in both the modem and paleolimnological context near treeline 

sites is warranted. 



Abstract 

Bulk organic and cellulose stable carbon isotope and bulk organic nitrogen 

isotope profiles from a small tundra lake on the western Taimyr Peninsula, Russia, 

show changes that are correlated with climate cooling and treeline retreat during the 

mid to late Holocene. lncreased soi1 organic matter decomposition, combined with a 

moist climate, likely provided a 13C-depleted source of CO,, to lake phytoplankton 

thriving under favourable conditions dunng the forest period. Bulk organic and 

cellulose carbon are more enriched in 13C after the boreal forest retreated probably 

because CO, from the atmosphere became the dominant source of carbon to the lake 

as soi1 organic decomposition rates declined and the climate became drier. 

lnterpretation of the 815N,, record is considerably more speculative but similar factors 

that appear to have controlled the carbon cycling in the lake. including soi1 

development and the hydrologie regime, may also have strongly influenced the lake 

water nitrogen balance. These results suggest that lake sediment organic matter 6I3C, 

815N, and cellulose bI3C may be useful indicators of past nutrient dynamics in boreal 

treeline watersheds. 

Introduction 

The response of arctic treeline nutrient cycles to elevated atmospheric CO, and 

temperature has the potential to significantly influence climatic and ecologic change. 

For example, enhanced greenhouse gas release due to rapid decomposition of soi1 

organic matter and peatlands (BOREAS Science Steering Cornmittee 1990) and CO, 

loading of the atmosphere as a result of increased forest fires (Wein 1990) rnay 

provide important positive clirnate feedbacks. In northern Alaska. there already 

appears to be evidence for tundra soils becoming a source of CO, to the atmosphere 

during the waning of the past century (Oechel et al. 1993). Over longer time scales 

(centuries to millennia) however, northern ecosystems may act as a small carbon sink 

in a wane r  climate (Marion & Oechel 1993) as a result of elevated rates of 

productivity, development of new plant cornmunities. and increased carbon storage 

in plant biomass (Oechel & Billings 1992). The capacity for both positive and negative 



responses highlights the importance of understanding interactions amongst the 

northern treeline reg ion, carbon balance, and dimate change. 

A key factor that will contribute to determining the importance of many of these 

feedback scenarios is the fate of mineralized nitrogen. often the lirniting nutrient in 

arctic ecosystems (Chapin & Bledsoe 1992) and which is expected to increase with 

soi1 organic matter decomposition under a warmer climate (Nadelhoffer et al. 1992; 

Hobbie & Chapin 1996). If retained within the terrestrial environment, greater nutrient 

availability could provide the stimulus for increased productivity and withdrawal of 

additional CO, from the atmosphere. However, recent studies in Alaskan tussock 

tundra suggest that nitrogen is primarily released during spring thaw when it is 

predominantly unavailable to plants or soi1 microbes due to low soi1 temperatures and 

may instead be transported to aquatic ecosystems via snowmelt (Hobbie & Chapin 

1996). Increased nitrogen mineralization, in concert with higher soi1 temperatures and 

oxygen levels, may also lead to greater production of nitrate which is more readily 

leached downslope than ammonium. If re-utilized, however, plant community structure 

may alter because of species-dependent nitrate-uptake potential and assimilation 

efficiencies (Nadelhoffer et al. 1992). Greater understanding of factors controlling the 

seasonal timing of nitrogen release, and the response of soi1 microclimate. microbial 

activity, and hydrology under a warmer clirnate are required for accurate predictions 

of nitrogen cycling and availability. 

Dynamics of arctic watershed carbon and nitrogen cycling in the context of 

climate change have previously been assessed primarily through the use of carefully 

orchestrated field programs (e.g. Hobbie & Chapin 1996), via laboratory expenments 

(Marion & Black 1986; Nadelhoffer et al. 1991), and by process-based mode1 

simulations (McKane et al. 1997). Although these research strategies can often 

determine the likely direction of change in the event of climate warming, evaluation 

of the rate of change on relevant timescales is more uncertain. A paleoclimate 

approach using records preserved in soils (e.g. Marion & Oechel 1993) or lake 

sediments (e.g. Wolfe et al. 1996) on the other hand, can provide an indication of rate 

of nutrient cycle change and also insight to long-term variability. Here we examine 



the response of carbon and nitrogen nutrient dynarnics, inferred from elemental and 

stable isotope records in lacustrine organic matter, during a period of climate cooling 

at the end of the mid-Holocene Climatic Optimum in north-central Russia ca. 4000 I4C 

years before present (4000 BP). 

Paleoecologic and Paleoclimatic Setting 

The western Taimyr Peninsula, Russia represents one of several northern 

sectors that has been targeted by the Paleoecological Analysis of Circumpolar 

Treeline research project to examine the relationship between treeline ecosystems and 

climate change during the Holocene. In this region, Larix and Picea stumps 

radiocarbon-dated between 8400 and 3100 BP have been found as far north as 70" 

22' N representing northward extension of taiga of at least 100 km (Velichko et al. in 

prep.). Sediments from a small tundra lake 70 km northwest of treeline (Middendorf 

Lake, unofficial narne; 70" 22' NI 87" 33' E; Figure 4-10) contain a 4400-year fossil 

pollen and stomate record that captures the end of the forest period, treeline retreat, 

and establishment of tundra vegetation consistent with the macrofossil radiocarbon 

data (Velichko et al. in prep.). The forest to tundra transition recorded at this site is 

rapid, perhaps taking place over a few centuries ca. 4000 BP. 

In addition to terrestrial ecosystem-focused studies, Velichko et al. (in prep.) 

also examined the paleolimnology of Middendorf Lake using a multidisciplinary 

stratigraphic approach. Analyses using physical (grain size), chemical (element 

geochemistry, oxygen isotopes in cellulose) and biological (diatoms, chrysophyte 

cysts) techniques revealed significant changes in the trophic and hydrologic regimes. 

particularly during the forest to tundra transition. Lake water was more productive and 

warrner, while the precipitation/evaporation ratio (Figure 4-1 1) was higher during the 

forest period. Drier and less productive conditions developed rapidly and 

contemporaneous with changes in landscape vegetation as the climate deteriorated 

ca. 4000 BP. Between 1600 and 400 BPI oxygen isotope (Figure 4-1 1) and diatom 

data suggest that short-lived fluctuations in lake level may have occurred although 

these hydrologic changes are not associated with any known alterations in terrestrial 
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Figure 4-10. Lake Middendorf is located about 1 15 km N N W  of Noril'sk on the tundra, 
approxirnately 50-75 km north and west of the mapped northern Iimits of Larix sibirica 
(western Sibenan larch) forest-tundra. The lake is a seasonally-closed headwater 
basin, circular (roughly 100 x 90 rn), and oligotrophic. Maximum depth is about 11.5 
m. Coring depth was 8.15 m. Detailed local geomorphic and vegetation descriptions 
can be found in Velichko et al. (in prep.). 
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Figure 4-11. lnferred lake water 6180 from oxygen isotope analysis of sediment 
cellulose. Data is considered to largely reflect changes in water balance arising from 
changes in moisture conditions (see Velichko et al. in prep.). Dotted line defines 
approximate transition between forest (lower) and tundra (upper) vegetation. 



vegetation. 

Methods 

Sediment samples from Middendorf Lake were pre-treated in a 10% 

hydrochloric acid solution at 70 OC for two hours to dissolve trace amounts of shell 

and mineral carbonate. Stable carbon and nitrogen isotope ratios (13C/12C, 1 5 ~ / 1 4 ~ ) .  

carbon content (C %). and nitrogen content (N %) were measured on the ~500 pm 

acid-washed residue. Additional sample preparation involving solvent extraction, 

bleaching, and alkaline hydrolysis removed non-cellulose organic components 

(Edwards & McAndrews 1989). The cellulose fraction was subject to 13C/12C anaiysis. 

All analyses were conducted at 2.0 to 2.5 cm depth intervals except "N/'~N which 

were analyzed at 4.0 to 5.0 cm depth intervals. 

Carbon isotope analysis was perfomed using a standard combustion method 

(Boutton et al. 1983) and isolated CO, was analyzed on a VG P h m  II mass 

spectrometer. Samples for nitrogen isotope determination were loaded in tin cups and 

measured on a continuous flow Isochrom mass spectrometer. Ail isotopic ratios were 

measured at the Environmental Isotope Laboratory, University of Waterloo, and results 

are reported in 6-notation (6 = [(Rmp,JRs,,,) - 11 x 1000, where R = 13C/12C or "N/'~N) 

with respect to the international standards for b13C (PDB) and 615N (AIR). Repeated 

samples are normally within 0.5 for 6I3C and 615N, respectively, reflecting both 

method uncertainty and the natural heterogeneity of the samples. 

Carbon and nitrogen content were measured on a Car10 Erba EA1108 

elemental analyzer. Repeated sarnples are normally within 0.4 % for C and 0.04 % 

for N. The carbonlnitrogen ratio (CIN) is expressed as a weight ratio. 

Results 

The most striking stratigraphic change in the C and N elemental and stable 

isotope data is during the transition from forest to tundra ca. 4000 BP, although the 

rates of change differ amongst the profiles (Figure 4-1 2). Carbon and N are markedly 

high during the forest zone (- 25 % and 1.5 %, respectively) and then rapidly decline 
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Figure 412. Carbon and nitrogen elemental and isotope stratigraphy for Lake 
Middendorf. See Table 4-3 for radiocarbon data. Dotted line defines approximate 
transition between forest (lower) and tundra (upper) vegetation. 

Table 4-3. Radiocarbon data obtained by accelerator mass spectrometry for 
Middendorf Lake sediments (Velichko et al. in prep.). Ail dates are 13C corrected. 
lnsufficent CO, was available for 13C analysis for the sample at 80 cm depth. 

Depth (cm) Materiai 14C Age BP S1"C (% PDB) Lab No. 

80 aquatic moss 2500 2 80 TO-4750 
135 aquatic moss 3390 80 -27.35 TO-475 1 
196 wood fragments 4420 t 80 -23.79 TO-4749 
218 wood fragments 4370 I 60 -29.12 TO-4348 



with treeline retreat (- 2 % and 0.2 %). C/N displays a similar pattern (- 18 in the 

forest interval; - 10 in the tundra). 613C,,, and à13C, both increase by about 4 %O (-31 

to -27 %), although not until slightly after the main period of transition. d'3Cc,l displays 

a more gradua1 trend than bt3COrg. Finally, b'SN,, shows the most gentle change 

decreasing for several hundred 14C years from - +4 during the forest interval to - 
+2.5 OA in the tundra zone. Data are relatively cornplacent within both the forest and 

tundra intervals except for oscillations in 613C,, in the upper part of the profile and 

small increases in C and N % (with corresponding decline in CIN) at the top of the 

core. 

Discussion 

Origin of Organic Matter 

Fundamental to the interpretation of 6% and 8"N in the organic fraction of lake 

sedirnents is knowledge of the origin of the organic matter. In the forest interval, 

relatively high C/N ratios measured on the ~500 pm bulk organic fraction are 

consistent with abundant macrofossils of terrestriai origin found in these strata 

(Velichko et al. in prep.), although high levels of aquatic productivity suggest that both 

allochthonous and autochthonous sources are responsible for the rich organic content 

(Figure 4-1 2). The carbon isotope data, however, indicates that the 400 pm organic 

fraction may be dominantly aquatic in origin. 613C values obtained from bulk organic 

matter, which range between -32 and -30 %, are several per mil more negative than 

the 613C average of two wood samples from these sediments analyzed for 14C-dating 

(-26.5 %O; see Table 4-3). The 6l3COrg and 6'3C,l, values are also more negative than 

generaily found in soi1 organic matter (Deines 1980; Boutton 1991) and high-latitude 

forest soils (-27.3 + 0.7 L; Bird et al. 1996). Based on these 6% values for wood 

and soil, it appears that terrestrial organic matter input to Lake Middendorf during the 

forest period has, at most, reduced the magnitude of the I3C-enrichment trend across 

the forest to tundra transition. 

C/N ratios gradually decrease in the tundra zone to values more typical for 

aquatic organic matter (Figure 4-1 2; Meyers & lshiwatari 1993a; Meyers 1994). 



Similar 6% values for bulk organic matier, cellulose, and 14C-dated aquatic moss (see 

Table 4-3) provides additional support for an autochthonous origin for the organic 

fraction of these sediments. 

Carbon Cycling Regime 

The carbon-isotope composition of fine-grained cellulose (613c,3 contained 

within the organic fraction of lake sediments has proven to be an effective tracer of 

biogeochemical processes in freshwater lakes (0.g. MacDonald et al. 1993; Duthie et 

al. 1996; Wolfe et al. 1996; Wolfe et al. in review). Although 6% in bulk organic 

matter has also been used for paleolimnologic investigations (e.g. Oana & Deevey 

1960; Schelske & Hodell 1991, 1995; Meyers & Horie 1993), mixing of terrestrial and 

aquatic source material and changes in the relative proportion of organic constituents 

having differing isotopic compositions can complicate interpretation (e.g. Aravena et 

al. 1992; Spiker & Hatcher 1984). In contrast. cellulose deposited in offshore lake 

sediments is frequently aquatic in origin and is well-preserved, perhaps due to rapid 

deposition and burial of phytoplankton in fecal pellets with little chance for oxidation 

(Edwards 1 993). 

The carbon isotope composition of aquatic cellulose is primarily determined by 

the 613C of lake water dissolved inorganic carbon (DIC). which is controlled by a 

dynamic balance of processes including isotopic exchange with atmospheric CO,, 

input of DIC from the catchment, '3C-enrichment deriving from preferentiai uptake of 

l2C by phytoplankton during photosynthesis, and recycling of 13C-depleted carbon from 

the decay of organic matter in the water column and bottom sediments. The balance 

between photosynthesis and respiration commonly provides the dominant signal 

preserved in the 613C of organic matter in sediment cores with positive excursions 

frequently interpreted as increased lake productivity (McKenzie 1985; Schelske & 

Hodell 1991, 1995; Meyers et al. 1993; Dean & Stuiver 1993; Duthie et al. 1996). 

In the forest interval of the Lake Middendorf sediment record, however, b13C,, 

and 613C,, are relatively negative compared to the less organic-rich tundra sedirnents 

suggesting that processes other than lake productivity have played a significant role 



in controlling the carbon balance of the lake (Figure 4-12). Based on Our 

understanding of the hydrologic and ecologic conditions (see Figure 4-1 A ) ,  the most 

likely explanation for the relatively negative b13C values is influx of 13C-depleted 

dissolved CO, (CO,,,) generated by soi1 development processes when forest 

vegetation occupied the catchment. Rapid hydrologic flushing of the lake (with 13C- 

depleted CO,,) may have counteracted the carbon isotope effects of lake productivity 

on the DIC. Similar hydrologic scenarios have been presented by Aravena et al. 

(1992) and Wolfe et a/. (1996) to explain negative 613C trends in organic lake 

sediments associated with past periods of increased lake productivity and forest cover 

in western and central Canada. In lacustrine sediments of southern Sweden, 

increased soi1 CO,, production at the Pleistocene-Holocene transition may also have 

been responsible for widespread bulk organic 13C-depletion in spite of increased 

organic matter deposition (Hammarlund 1993). 

The forest to tundra transition is marked by significant shifts in the carbon 

isotope and elemental records. Changes in the carbon balance of the lake are clearly 

indicated by the trend to more 13C-enriched values observed in the carbon isotope 

profiles. Drier conditions and increased lake water residence time may have led to 

an increase in the role of lake water DIC exchange with atmospheric CO,, a 13C- 

enriched source of carbon to the lake (cf. Turner et al. 1 983), as influx of 13C-depleted 

CO,, from the catchment was reduced. The gradua1 change in the carbon isotope 

profiles at the forest to tundra transition may be related to the lake water residence 

time of CO,, or declining rates of soi1 organic matter decomposition and CO,,, 

production. The carbon isotope composition of the DIC stabilized by about 3900 BP 

(1 80 cm). Rapid decline in organic matter content is probably due to decreased lake 

productivity. 

The carbon isotope trends are generally cornplacent for the remainder of the 

record suggesting relatively stable levels of lake water DIC - atmospheric CO, 

exchange, lake productivity, and CO,,, supply from the catchment. Exceptions 

include negative oscillations in the 613C,, profile at 31 00 and 1400 BP (1 17.5 and 44.5 

cm) and between 1000 and 400 BP (30 and 12.5 cm). Most of these occur during a 



recent wet phase (Figure 4-1 1) and may be attributed to suMle changes in the 613C 

of the DIC caused by variable infiux of soi1 generated, 13C-depleted CO,,. 

Roughly two-fold increases in C (%) and N (%) and corresponding decline in 

C/N ratios in the near surface sediment occur probably because recently deposited 

organic matter has had less exposure to oxidation. The 6I3C profiles, in contrast, 

show no diagenetic effects at the top of the core. Lakes with low organic carbon 

concentrations frequently exhibit no diagenetic carbon isotope effect (Meyers & 

Ishiwatari 1 993 b) . 

Nitrogen Cycling Regime 

In contrast to 8'3C1 analysis and interpretation of 615N in organic lake sediments 

has received limited attention. This is perhaps due to the complexity of the nitrogen 

cycle and lack of modem process studies that have traced nitrogen isotope 

transformations in the catchment and water column to organic matter deposition in 

lacustrine environrnents. Few lake sediment data sets exist. yet it appears that 6'5N,, 

can exhibit a wide range of values depending on the nitrogen sources, nitrogen 

cycling. and nitrogen metabolism of the dominant taxa (see Table 4-4). 

Table 4-4. 615~ in organic lake sediments. 

Location 615N,, AIR) Range Reference 

Lake Supenor +5 Pang & Nriagu 1977 
Green River Formation +10.8 to +20.7 Collister & Hayes 1991 
Lake Bosurnhvi +1.2 to +18.0 Talbot & Johannessen 1992 
Lake 18, N W  +2.3 to +4.7 Rarnlaal et al. 1994 
Devil's Lake +8.5 to +28.0 Lent et al. 1995 
Florida lakes -2 to +8 Gu et al. 1996 

Dissolved inorganic nitrogen (DIN - principally nitrate and ammonium) and 

atmospheric nitrogen are the primary reservoirs utilized by phytoplankton valbot & 



Johannessen 1 992). Nitrate and ammonium mainly originate in aerobic and anaerobic 

environments. respectively. through the recycling of organically-fixed N. Strong kinetic 

isotope effects can occur during nitrate and ammonium assimilation although where 

combined nitrogen is lirniting, isotopic fracüonation may not be significant (Fogel & 

Cifuentes 1993). 815~,, values produced by nitrate assimilation can be variable while 

large equilibrium fractionation effectç can occur as a result of ammonia volatization, 

leaving a DIN pool enriched in 15N; assimilation of this N results in high values 

(Collister & Hayes 1991). In contrast, negligible fradionation occurs during fixation 

of atmospheric N (Heaton 1986). b15~, values generated in this manner (e.g. by 

cyanobacteria in N-limited eutrophic lakes) are typically near O Y=. 

Aithough our understanding of modern nitrogen isotope systematics may be 

limited, studies do suggest that paieo-nutrient cycling information rnay be stored in this 

archive. For example, Talbot & Johannessen (1992) found that high 615N, values (a 

+15 ta +20 O b )  in Lake Bosumtwi sediments were likely related to enhanced ammonia 

loss by volatization whereas low 6l5NO, values (- O to +5 9Q) refiected a major change 

from a DIN-utilizing algal community to a system dominated by nitrogen-fixers. 

lnterpretation of past nitrogen cycling within the water column were directly related to 

changes in lake water circulation and prevailing climatic conditions. Very high b"~,, 

values in sediments (- +8 to +28 %) from Devil's Lake. North Dakota were considered 

to be a result of sufficiently available and non-limiting quantities of DIN (Lent et al. 

1995). Low lake level and decreased primary productivity appeared to be associated 

with the more extreme positive values within this range. In their study of the Tertiary 

Green River Formation in the western United States, Collister & Hayes (1991) 

proposed complex nitrogen cycle models to explain high 6l5NOrg values. Stratigraphie 

intervals with values of = +IO OA were attributed to a mixture of assirnilated 

isotopically-heavy ammonium and fixated light atmospheric N,. These occurred during 

dry periods which led to decreased nutrient supply from the catchment. Conversely, 

zones with higher b15N,, values (= +20 %) were thought to refiect uptake of 15N- 

enriched ammonium and nitrate. DIN was readily available during these wet periods 

and thus &-fixation was not an important process. 



At Lake Middendorf, the 8"~, profile appears to record a change in the 

nitrogen cycling regime gradually occurring over several hundred 14C years during the 

transition from forest to tundra vegetation (Figure 4-1 2). Several possible factors and 

processes may be responsible for this trend towards more lSN-depleted values. On 

the basis of the studies mentioned above that have outiined major controls on the 8 ' ' ~  

in bulk organic matter, we suggest that the most likely candidates include 1) a 

decrease in allochthonous organic matter influx. 2) a decline in lake productivity, 3) 

a change in algal community structure resulting in an increase in N,-fixation relative 

to nitrate assimilation, and 4) a decrease in the b15N of the nitrogen source. 

As discussed above, the C/N ratio data suggest that some of the 400 Pm 

organic matter fraction in the forest sediments may be terrestriai in crigin. 815N values 

in peat from the northem boreal forest of the Lena River to the east Vary between +1 

and +6 'L (Aravena unpublished data), similar to the narrow span of 6 1 5 ~  values 

measured in this part of the Lake Middendorf sediment core. We note, however, that 

the trend to lower C/N values occurs more rapidly than the decline in 6I5N values 

suggesting that an additional explanation is also likely. 

In a survey of surface-sediment from several Florida lakes, Gu et ai. (1996) 

found that the 61SN of phytoplankton increased from oligotrophic to eutrophic Mes, 

(although complications did anse in hypereutrophic lakes because of increasing 

importance of N,-fixers). This relationship is consistent with the 6IsN trend at our 

study site, although the gradua1 trend to more 15N-depleted values contrasts with the 

rapid change to oligotrophic conditions suggested by the carbon and nitrogen 

elernentai data (Figure 4-12) and fossil diatom and chrysophyte evidence (Velichko 

et al. in prep.) as the landscape altered to tundra conditions. 

Although a change in algal cornmunity structure resulting in an increase in N,- 

fixation relative to nitrate assimilation could theoretically account for the 615~,, trend, 

this explanation is perhaps least likely, given that this would demand sufficient supply 

of other nutrients, particularly phosphorus, yet diatom and chrysophyte evidence 

indicates that the lake was oligotrophic during the tundra period (Velichko et ai. in 

prep-). 



Finally, a decrease in the bl% of the nitrogen source may provide the most 

favourable explanation. In soils, bulk organic matter 615N values generally increase 

with organic matter age, depth, and extent of decomposition (Nadelhoffer & Fry 1988). 

Nitrate leached from soi1 generally has a 8I5N value reflecting these factors so with 

increased decomposition, nitrate also becomes increasingly enriched in 15N 

(Nadelhoffer & Fry 1994). We propose that high rates of soi1 organic matter 

decomposition during the forest period generated lSN-enriched nitrate that was 

leached and utilized by phytoplankton in Lake Middendorf. This hypothesis is directly 

compatible with the interpretation of '3C-depleted values observed in the bulk organic 

and cellulose records (Figure 4-12) as well as moist conditions inferred from the 

oxygen isotope data (Figure 4-1 1). The decline in 6l5NO, may then refiect decreased 

soil organic matter decornposition (and leaching of nitrate) and a relative increase in 

the importance of atmospheric-derived nitrate as a source of nitrogen, which generally 

has a more "N-depleted composition compared to soil-derived nitrate (Létolle 1980; 

Nadelhoffer & Fry 1994). If this hypothesis is correct, then the gradua1 decline in 

6l5NOrg values suggests that rates of soi1 organic matter decomposition may be 

relatively slow to respond to climate cooling compared to changes in lake productivity, 

water balance, and terrestrial vegetation. 

Summary and Concluding Comments 

Knowledge of trophic state and water balance changes associated with treeline 

retreat and ciimate cooling at Lake Middendorf (Veiichko et a/. in prep.) provided a 

strong foundation to examine the response of nutrient cycling dynamics using carbon 

and nitrogen isotopes in lacustrine organic matter. Similar to our previous 

investigations near treeline in northern Canada (MacDonald et al. 1993; Wolfe et al. 

1996). we found that the lake water carbon balance was strongly regulated by 

catchment hydrology in addition to terrestrial soil and vegetation development (Figure 

4-13). In this study, similar factors also appear to have played a significant role in 

determining the lake water nitrogen balance history (Figure 4-1 3). 

During the forest interval (>4400 - 4000 BP), elevated carbon and nitrogen 
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probable sources of elemental and isotope trends observed in the lake sediment 
profiles. Note that between 1600 and 400 BP, wetter conditions resulted in lake 
outflow and possibly minor influx of soil-derived 13C-depleted CO,,. 



concentrations corroborate fossil diatom and chrysophyte evidence and are indicative 

of a relatively productive lake. The bulk organic and cellulose profiles do not display 

strong enrichment in 13C, typical of so many other studies however, probably because 

influx of 13C-depleted soi1 CO,, and rapid hydrologic flushing of the lake counteracted 

the carbon isotope effects of primary productivity on lake water DIC. 13C-enrichment 

in the bulk organic matter and cellulose profiles during the transition from forest to 

tundra is likely a reflection of atmospheric GO, becoming the primary source of carbon 

to the fake as lake water residence time increased and soi1 organic matter 

decomposition rates declined. Influx of 13C-depleted soi1 CO,, likely played a minor 

role in modifying the 613c of the DIC during the more recent wet interval (1600 - 400 

BP) . 
Relatively "N-enriched values during the forest interval may aiso be related to 

soi1 developrnent processes and prevailing hydrologie conditions. Enhanced soi1 

organic matter decomposition rates and production and leaching of "N-enriched 

nitrate rnay have provided an important source of nitrogen to phytoplankton in Lake 

Middendorf. Other contnbuting factors may indude allochthonous input of terrestrial 

organic matter and high rates of aquatic productivity. However, the gradua1 deciine 

in 615N values across the forest-tundra transition, which is in contrast to more rapid 

changes in the C/N ratio and proxy data (diatom, chrysophyte cysts) for lake 

productivity seems to suggest that these latter two mechanisms may be less 

important. Lower 615N, values in the tundra zone may primarily reflect decreased soi1 

organic matter decomposition as conditions became colder and a corresponding, 

relative increase in the importance of lSN-depleted atmospheric nitrate as a source of 

nitrogen to the lake. 

These results suggest that the dynarnics of treeline carbon and nitrogen cycles 

have been quite sensitive to climate change and that the fate of these nutrients 

appear to have been intricately linked to changes in the hydrologic regime. 

Quantitative assessrnent of the fate of nitrogen during past periods of climate change 

is currently beyond our capabilities due to the lack of modern process-oriented 

studies. Nevertheless, exploratory investigations using b 1 5 ~  in bulk organic matter 



indicate that this rnay be a useful proxy for identifying past changes in nitrogen cycling 

in this ecotone, particularly when coupled with other isotopic and biological proxy data. 

We further suggest that incorporation of fossil pigment analysis, to assess past algal 

community structure and nitrogen-source uptake preferences (e-g. Leavitt & Findlay 

1994), may be an especially valuable additional technique to consider in future 

studies. 



Contribution to MacDonald GM, AA Velichko, LC Cwynar, M Pisaric, D Porinchu, TE 
Laing, BB Woife, AA Andreev, OK Borisova, TWD Edwards & JP Srnol, in prep. A 
continuous record of Late Quaternary climatic and environmental change from Arctic 
Siberia. For submission to Science. 

Synopsis 

Radiocarbon daüng of terrestrial macrofossils found on the Lena River delta 

indicated that treeline extended north of its present limits between 8000 and 4000 BP, 

ternporally consistent with results from the Taimyr Peninsula to the west. Successful 

recovery of a 386 cm core from lake LS9 on the Lena River delta, a hydrologically- 

open lake 14C-dated at 12,310 years BP at 300 cm core depth, provided the 

opportunity to investigate environmentai changes associated with Holocene treeline 

fluctuations as well as the Younger Dryas in this region. 

Palynological studies on the lake sediment core also revealed significant 

changes in terrestrial vegetation (Pisaric 1996; Pisaric et ai. 1 997). The early part of 

the record indicates that the region supported a shrub birch, herb, grass and sedge 

tundra that became increasingly productive and dominated by birch to roughly 11,500 

BP. A sharp reversion to sparser vegetation cover dominated by herbs, grasses and 

sedges at this time provides the first clear evidence of the classical Younger Dryas 

in eastern Siberia. Between 8500 and 3500 BPI the sediments record increases in 

Picea and Larix pollen, similar to the macrofossil radiocarbon data. After 3500 BP, 

the modern vegetation consisting of herb and shrub tundra became established. 

The most significant result from oxygen isotope analysis of cellulose in the LS9 

lake sediment core is substantial increase (a 7 %) during the early phase of northward 

treeline migration (9000 to 6500 BP). These data are considered to reflect dry 

conditions (and subsequent evaporative isotopic enrichment of lake water) that 

accompanied warming in this region, in contrast to earlier studies on the western 

Taimyr Peninsula and in central Canada. This prelirninary interpretation is supported 

by radiocarbon dating of bottom sediments from a nearby small, hydrologically-closed 

lake which indicate that lacustrine deposition did not begin until = 6800 BP (Aravena 



unpublished data), perhaps because the climate was too dry. 

Carbon isotope analysis revealed considerably less striking changes although 

a rapid 4 decrease at 10,600 BP may be associated with cooler conditions during 

the Younder Dryas and modest 13C-enrichment in the bulk organic matter during the 

warm, early Holocene may reflect an increase in lake productivity. 

We are currently in the process of compiling and interpreting data from 

multidisciplinary analyses at this site. A manuscript is in preparation describing these 

findings; below is an excerpt that describes the isotopic and elemental results. 



Methods 

Sediment samples for elemental and stable isotope analysis were taken at 

mostly 5-7 cm intervals from core LS9-3. Sarnples were pre-treated in a 10 % 

hydrochloric acid solution at 70 OC for two hours to dissolve trace amounts of sheli or 

mineral carbonate. Bul k carbonlnitrogen weight ratios and bu1 k organic 13C/12C ratios 

on the c500 Fm acid-washed residue were determined on a Carlo Erba elemental 

analyzer interfaceci with a continuous fiow lsochrom mass spectrometer at the 

Environmental Isotope Laboratory (El L) , University of Waterloo. Additional sam pie 

preparation on the fine-grained acid-washed residue involving solvent extraction, 

bleaching, and alkaline hydrolysis rernoved non-cellulose organic components 

(Edwards & McAndrews 1989). Breakseal combustion (Boutton 1 991) and nickel-tu be 

pyrolysis (Edwards et al. 1994) were used to produce CO, from the cellulose fraction 

for 13C/12C and '80/'60 determination, respectively, on a Prism mass spectrometer at 

the Ell. Stable isotope results are reported as 8 values, representing deviation in per 

mil &) from the international Vienna-SMOW and Vienna-PD6 standards such that b 

= [(R,,,JR&i]*I 000, where R is the 13C/12C or 180/160 ratio in sample and standard. 

Analytical uncertainties are t 0.5 O& for 813C and I 1.0 for b180 reflecting both 

method uncertainty and the natural heterogeneity of the samples. 

Interpretation 

Wide variation in carbonhitrogen (C/N) weight ratios (1 0-20) and correlation 

with bulk organic 613C (613C,d, cellulose 613C (613C,,3, and cellulose 8180 (6180,,,3 

prior to 12,000 14C years BP (below 300 cm depth; Figure 4-1 4) suggests fluctuating 

deposition of terrestrial and aquatic organic matter. Between 12,000 and 1500 BP 

(300 to 50 cm depth), low CIN ratios (1 0-15) indicate that the lacustrine organic matter 

is primarily of autochthonous origin. 

After 12.000 BP, 6180,  appears to provide a good proxy for lake water 6180 

(Figure 4-1 4; see Edwards & McAndrews 1989; Edwards 1993; Wolfe et al. 1996). 

Fluctuations in 6180,, during this part of the record are most likely a reflection of 

changes in lake water balance, based on preliminary evidence from peat porewaters 
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and modern meteoric waters that suggest no significant variation in b180 of mean 

annual precipitation has occurred since, perhaps, the early Holocene (Wolfe et al. 

1997). "O-enriched values between 9000 and 6500 8P (also irnmediately prior to and 

briefly at the end of the Younger Dryas) are therefore likely due to dner conditions and 

evaporative isotopic enrichment that accompanied climate warming. Oscillating 

decline in 6"O,, between 7000 and 4000 BP may be due to an overall increase in 

inflow relative to evaporation caused by a wetter and cooler climate. High-frequency 

and large fluctuations in 6180,, during the past 1500 14C years are strikingly similar 

to a180,,, records near treeline on the western Taimyr Peninsula, northern Russia 

(Wolfe et al. 1997). suggesting that highly variable hydrologic conditions have recently 

characterized a broad region of the Siberian tundra. 

The most significant change in the 613C,, and 6l3CCe,, records following 12,000 

BP is an abrupt 4 %o negative shift at about 10,600 BP (Figure 4-14), perhaps 

refiecting a decline in productivity-driven I3C enrichment of dissolved inorganic carbon 

(DIC), less demand on dissolved CO, leading to increased fractionation between DIC 

and phytoplankton, or a change in plant community in response to cooler conditions. 

Slight I3C-enrichment in bulk organic matter (about 2 during the early Holocene 

w a n  interval (10,000 to 7000 BP) relative to the mid-Holocene (7000 to 4000 BP) 

may conversely be caused by increased lake productivity or carbon cycle isotope 

effects related to hydrologic closure (inferred from the 61a0,,, data) such as increased 

residence tirne of DIC or increased atmospheric CO, exchange. The small difference 

in b ' 3 ~ , ,  values recorded during the early and mid-Holocene, however, is not 

observed in the &13Cc,,, profile. Since 1500 BPI positive shifts in C/N afid 813C,, values 

likely represent increased flux of terrestrial bulk organic matter input to the lake arising 

from fluctuations in hydrologic conditions and erosion of organic deposits along the 

shore of the lake. 



Edwards TWD, BB Woife & GM MacDonald, 1996. lnfiuence of changing atmosphenc 
circulation on precipitation 6l80-temperature relations in Canada dunng the Holocene. 
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Synopsis 

Oxygen isotope analysis of sedirnent cellulose (6180,,3 from Queen's Lake and 

Toronto Lake indicated that rapid shifts to increasingly negative values were 

associated with intervals of northward treeline advance in central Canada du ring the 

mid-Holocene (MacDonald et a/. 1993; Wolfe et al. 1996; see CHAPTER 3). These 

isotopic trends were interpreted to reflect increases in the inflow:evaporation ratio due 

to more humid conditions that accompanied dimate waming. Cornparison of the 

Queen's Lake and Toronto Lake oxygen isotope records, however. also revealed 

another similarity: a smoothed curve fitted to both profiles displayed a commun 

millennial-scale negative shift of severai per mil over the past 8000 '%-years. Was 

this trend representative of the more long-term water balance, as originally proposed 

by MacDonald et al. (1 993), or was it a proxy for the regional isotopic composition of 

precipitation which may also contain useful paleotemperature or paleohydrologic 

information (see CHAPTER l ) ?  

To distinguish between these two possible interpretations, we analyzed the 

6180,, in archived sediment from a third site, "Whatever Lake" (unofficial name; see 

Figure 1-l), located 125 km north of treeline and 200 km south of Baker Lake, 

Northwest Territones. Whatever Lake was ideally suited to assist deconvolution of 

water balance and source water isotopic signals in the previously studied lakes for 

several reasons. Most importantly. isotope analysis of modern meteoric and lake 

water from the catchment suggested that Whatever Lake is isotopically insensitive to 

changes in hydrology, in contrast to Queen's Lake and Toronto Lake, because of the 

large volume-to-surface area ratio (Bursey et al. 1991; Figure 5-1). Since no major 

environmental or hydrological changes had occurred following the termination of 



Figure 5-1. Drainage basin maps for Queen's Lake. Toronto Lake and Whatever 
Lake. Maximum depth (3.5, 6.8 and 32 m, respectively), size (50, 10, 3400 ha), and 
catchment area (200, 2900, 85000 ha) Vary considerably as does the position of the 
lakes within their respective drainage basins. Note different scale for Whatever Lake 
map. 



marine influence at about 6500 BP (see 813c data in APPENDIX 2; also Edwards 1 980). 

we anticipated that the b ' 8 0 , ,  in Whatever Lake sediments should contain a long-term 

record that largely reflects the oxygen isotope composition of precipitation (6180,). ln 

addition, combining stable isotope data from Whatever Lake with the records from 

Queen's Lake and Toronto Lake, which are located several hundred kilometres to the 

West. created the opportunity to generate a truly regionai perspective on isotope 

paieohydrology at the central Canadian treeline. 

Results from the 6"0,, analysis of Whatever Lake sediments did, in fact. show 

a similar long-terni trend as Queen's Lake and Toronto Lake which provided support 

for a regionally consistent but changing record of b'80,. Reconstruction of 6180, is 

utilized to estimate changes in summer relative humidity by using an isotope-mass 

balance approach. The model. where 

(Gat & Levy 1 978) 

and I = inflow, 

E = vapour O U ~ O W ,  

h = relative humidity, 

6' = limiting isotopic enrichment. 

6 ,  = lake water isotopic composition, 

6,  = precipitation isotopic composition, 

assumes long-term hydrologic steady state (i.e. IIE = 1 ; for theoretical development. 

see Gibson et al. 1993). Residual changes in the Queen's Lake 6180, record, 

independent of changes in 6180,, is primarily used for model 6, input because 

Queen's Lake is considered to have behaved essentially as a closed basin and its 

record is not complicated by changes in the contributing drainage basin area (i.e. 

Toronto Lake. see CHAPTER 3). These calculations suggest that the central Canadian 

treeline may have experienced a 10-1 5 % rise in summer relative humidity during the 

wann mid-Holocene. 



Perhaps the most significant outcorne of the 8"0, reconstruction, however, is 

that the early part of the record (8000 to 5500 BP) departs from the expected 

relationshi p with mean annual temperature, the dimatic parameter traditionally cited 

as controlling temporal records of 6180, (e.g. ice cores). In this manuscript, we 

propose that "0-enriched precipitation in central Canada during the eariy Holocene 

may have primarily resulted from a smail increase in long-distance moisture transport 

efficiency (leading to a decrease in rain-out effects), which is consistent with the high 

zonai index that is thought to have existed at this time. A higher summer:winter 

precipitation ratio could also have been a factor as low snow accumulation may have, 

in part, delayed northward treeline advance. 

Note that we have also presented data from southern Ontario in this manuscript 

in an effort to compile our current state of knowledge of Late Glacial/Holocene 6'80, 

history for mainland Canada. This represents the first, preliminary step towards the 

long-term goal of preparing paleo-8'80, maps for North Arnerica. These maps will 

help to gain a greater understanding of past climate dynamics and provide quantitative 

data for testing general circulation models that incorporate isotopic tracers. 

(Note that in this multi-authored manuscript, i collaborated in equal partnership with 

Edwards on the scientMc development and literary presentation). 



Absttact 

Postglacial precipitation b180 history has been reconstructed for two regions of 

Canada. Long-term shifts in the oxygen-isotope composition of annual precipitation 

(6l8OP) in southern Ontario appear to have occurred with a consistent isotope- 

temperature relation throughout the past 11.500 '% years. The modern isotope- 

temperature relation in central Canada near present boreal treeline evidentiy became 

established between 5000 and 4000 years ago, although the relation during the last 

glacial maximum and deglaciation may also have been similar to present. In the early 

Holocene, however. unusually high 6180, apparently persisted. in spite of low 

temperatures locally, probably associated with high zonal index. A rudimentary 

sensitivity analysis suggests that a small reduction in distillation of moisture in Pacific 

air masses traversing the western Cordillera. perhaps accompanied by higher 

summer:winter precipitation ratio, could have been responsible for the observed effect. 

Equivaient isotope-temperature "anomalies" apparently occurred elsewhere in western 

North Arnenca in response to changing early-Holocene atmospheric circulation 

patterns, suggesting that a time-slice map of 6180, for North Arnerica during this 

period might provide a useful target for testing and validation of atmospheric general 

circulation model simulations using isotopic water tracers. 

Introduction 

The isotopic composition of past precipitation is commonly considered a proxy 

for paleotemperature at mid- to high latitudes, because of systematic linear relations 

observed between mean annual air temperature (MAT) and weighted mean oxygen- 

or hydrogen-isotope composition of annual precipitation (6l8Op or b2H,)' (Dansgaard 

1964; Rozanski et al. 1992. 1993). Applicability of bl8OP or b2H, as a 

paieotemperature proxy is well-supported by various evidence. including direct 

archives of past precipitation such as ice cores (e.g. Jouzel et al. 1993; Grootes et al. 

'al'O and a2kI values represent deviations in par mil (y from the V-SMOW standard. such that 6 
= ((R~mP~RVSMOW)*l)lOOO~ where R is the ''0/'60 or 2 ~ r ~  ratio. 



1993) and old groundwaters (e.g. Rozanski 1985), simulations based on atmospheric 

general circulation model (AGCM) experirnents (e.g. Jouzel et al. 1994). and data from 

various indirect archives such as lake sediments, cave deposits. and tree rings. On 

the other hand, changing moisture sources and recycling, conditions at the site of 

evaporation, air mass history, seasonality and amount of precipitation, and other 

factors can also influence the isotopic composition of local precipitation (e.g. 

Dansgaard 1964; Lawrence & White 1991; Plummer 1993; Charles et al. 1994). 

These factors can perhaps confound attempts to reconstruct paleotemperature. but 

can potentially yield other climatically relevant information. 

Reconstructions of weighted mean 6180 of annual precipitation (8180,) for two 

regions in Canada spanning the postglacial provide contrasting views of the isotopic 

signals of changing climate. As we discuss below, the 8'B0, record for southern 

Ontario seems to be a good indicator of MAT throughout the past 11.500 14C yr, 

suggesting a consistent linear isotope-temperature relation. In contrast. a shorter 

6180, chronology (ca. 8000 yr) from central Canada offers evidence that a single 

isotope-temperature relation did not persist, apparently as a consequence of changing 

atrnospheric circulation. Although these results emphasize the uncertainties involved 

in teasing paleoclimate information out of isotopic archives, they also highlight the 

value of primary isotopic signals independent of their usefulness as proxies for 

parameters such as paleotemperature. 

Modern Clrinate of Soufhern Ontario and Central Canada 

The modem climatic settings of the study areas can be readily characterized 

in ternis of seasonally shifüng air mass influence (Bryson 1966; Bryson & Hare 1974). 

The cool temperate climate of southern Ontario reflects the varying seasonal influence 

of three distinct air masses: (1) cold, very dry Arctic air arising in northern Canada, 

(2) warm, moist Maritime-Tropical air from the south, which originates in the sub-tropic 

North Atlantic and Gulf of Mexico and traverses northward up the Mississippi and 

Missouri valleys before being deflected eastward across the Great Lakes basin, and 

(3) seasonally wam, relatively dry air from the west, which originates over the North 



Pacific, but subsequently loses much of its rnoisture during passage across the 

western Cordillera. Summers in southern Ontario are typically warm and humid, 

reflecting the dominance of Maritime-Tropical air, punctuated by short incursions of 

dry Pacific air. Southward shifting of frontal zones in winter leads to cold and 

relatively dry conditions due to strong Arctic air influence. Precipitation, which is 

mainly derived from Maritime-Tropical air masses, is well-distributed throughout the 

year. 

The arid subarctic to low-arctic climate of central Canada is strongly influenced 

by Arctic air masses in al1 seasons. Summer conditions are moderated by Pacific air 

that also brings most of the limited moisture to the region, but winters are long and 

severe owing to persistent Arctic air dominance. 

Precipitation 6"0 History 

Southern Ontario 

Precipitation 6180 history in southern Ontario is based on isotopic studies of 

terrestrial plant matter, and organic and inorganic lake sedirnents. The initial 6180, 

chronology was developed from oxygen and hydrogen isotopes in fossil wood 

cellulose, using a semi-empirical model to separate humidity-dependent isotopic 

enrichment of leaf water during evapotranspiration from the primary isotopic signature 

of water taken up by the trees (Edwards & Fritz 1986). Calibration of the model using 

modem trees permitted quantitative reconstruction of both the isotopic composition of 

local precipitation (6180,) and gmvth season relative humidity (RH). These 

preliminary paleo-isotope and paleo-humidity records were supported and 

supplemented by independent evidence from the oxygen isotope stratigraphy of 

aquatic cellulose and carbonate in sediment cores from several lakes in the region, 

using analogous reasoning to separate Me-specific isotopic responses to changing 

RH from the common signal imposed by the changing isotopic composition of 

catchment source waters, controlled by b'80, (Edwards 1987; Edwards & Fritz 1988; 

Edwards & McAndrews 1989). The basis for this approach was addressed in detail 

by Edwards & McAndrews (1989) and revisited by Edwards (1993). New oxygen 



isotope data from aquatic cellulose in sediments underlying Hamilton Harbour, a bay 

at the western end of Lake Ontario, have recently verified and further supplemented 

the later part of the 8180p record, from about 8000 yr B.P. to present (Duthie et a/. 

1996). The resulting composite 6180, and RH records derived from these studies are 

shown in Figure 5-2. 

The 6180p history of southern Ontario is characterized by low values during late- 

glacial and early-Holocene times, rising to a maximum by about 5000 yr B.P., before 

declining to values approaching those of the past few decades sometime after 4000 

yr B.P. Summer RH was evidently closely coupled to changing 6'80p, also rising from 

a late-glacial minimum to a maximum in the mid-Holocene, though with a lag centred 

on about 7000 yr B.P. as 6'80, converged on and subsequently exceeded the modern 

value. 

Edwards & Fritz (1986) noted that the systematic shifts in past 6180, (if 

interpreted as annual temperature) and surnmer RH are strongly consistent with 

changing air mass influence in eastern North America inferred from other evidence 

(e.g. Bryson & Wendland 1967; Bartlein et al. 1984; Dean et al. 1996). Thus the long- 

term coupling between temperature and humidity is in good agreement with 

progressive postglacial warming and moistening to a mid-Holocene "climatic optimum", 

as the influence of Arctic air diminished and Atlantic air increased, followed by slight 

climatic deterioration as the modern intermediate balance becarne establish ed. 

Superimposed on this meridionai fluctuation in atmospheric circulation is a shorter- 

term episode of enhanced zona1 index in the early Holocene, that accounts for a lag 

between rising temperature and humidity between about 7500 and 6000 yr B.P., 

caused by increased incursion of warrn, dry Pacific air into the region during the 

summer months. This general sequence of events is readily visualized through the 

division of the postglacial climate history of southern Ontario into four climatic 

intervals, based on qualitative differences between past and present annual 

temperature and summer humidity (Edwards & Fritz 1986): (1) a postglacial period 

of colder and drier conditions culminating around 7400 yr B.P., (2) a warmer and drier 

"early hypsithermal", ending about 6000 yr B.P., (3) a warmer and moister "main 
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Figure 5-2. Reconstnicted &''O, and ARH for southem Ontario, expressed as 500- 
year averages, based on oxygen and hydrogen isotopes in cellulose and inorganic 
carbonate from lake sediments and fossil wood cellulose (see Edwards 1 987; Edwards 
& Fritz 1986, 1988; Edwards & McAndrews 1989; Duthie et al. 1996). ARH is scaled 
to represent difference from present average summer relative humidity. Estimated 
uncertainties in the reconstructed values are on the order of I 1 "A and I 5 %. 



hypsithermal", leading to (4) the cool, temperate climate of today sometime within the 

last two millennia. 

As observed by Edwards & Fritz (1 986), the 6l8OP history can be translated 

quantitatively into a plausible MAT record by assum ing a constant linear 6I80,-M~T 

relation having a slope of about 0.65W°C, approxirnating the modem spatial isotope- 

temperature relation in the Great Lakes region. This yields a paleotemperature curve 

that is remarkably consistent with the regional time-series reconstruction for 

southeastern Canada reported by Kutzbach (1 987, Figure 13). based on atmospheric 

generai circulation model simulations. Notably, strong qualitative agreement is also 

evident between inferred RH and modelled precipitation frorn the same simulations. 

providing support for both the successful deconvolution of the raw isotopic records and 

the general validity of the 6180p record as a proxy for paleotemperature. The 6'80, 

curve is also broadly comparable to previous quantitative reconstructions based on 

pollen data (McAndrews 1981; Bartlein et al. 1984) and the limited information 

available frorn fossil insects and relict permafrost for the earlier part of the record 

(Edwards et al. 1985). General agreement is evident with mapped representations 

of inferred changes in temperature and precipitation from the COHMAP project, based 

on pollen response surfaces (Webb et al. 1993). although direct comparison is 

harnpered by the coarse COHMAP spatial resolution. Lake-level information for 

southern Ontario in the COHMAP data base is too limited to support an adequate 

comparison with inferred effective moisture. 

Central Canada 

Postglacial bl'O, and summer RH chronologies for an area in central Canada 

have been developed from the oxygen-isotope stratigraphies of celiulose in lake 

sediments (Figure 5-3), as part of multiple-proxy investigations of circumpolar treeline 

fluctuations (MacDonald et al. 1993; Wolfe et al. 1996). Environmental change in this 

region following local deglaciation around 9000 yr B.P. (Dyke & Prest 1987') was 

characterized by the advance and subsequent retreat of boreal treeline, accompanied 

by profound limnologie and hydrologie changes, in response to shifts in the mean 



~"0, (inf.) ARH (inf.) 

per mil per cent 

-20-18-16-14-12 -20 -18 -16 -14 -24 -20 -16 -12 CENTRAL CANADA 

6"0, par mil 

Figure 5-3. Reconstruction of 8l6OP and ARH for central Canada, expressed as 500- 
year averages, based en oxygen isotopes in lacustrine cellulose from three lakes. 
Chronologic control for each lake record is provided by 14C-dated samples represented 
by diamonds (see Table 5-1). 8180, and RH were derived by deconvolution of the 
inferred lake water bl'O histones (b180,J for informally-named Queen's Lake (64'07'N; 
1 1 0°34'W), Toronto Lake (63O43'N; 1 0g021 'W), and Whatever Lake (64'41 'N; 
97O03'W) reported previously by MacDonald et al. (1 993) and Wolfe et al. (1995, 
1996). The b'80p history is strongly constrained by the low-frequency 8180, trend 
from Whatever Lake, which is hydrologically insensitive (see Bursey et al. 1991) and 
thus expected to shift in parallel to long-terni changes in 8180,, while the ARH history 
is mainly constrained by the residual changes in 6180, independent of changes in 
6180, in Queen's Lake. which is believed to have behaved essentially as a closed 
basin. The long-term evaporative-enrichment response of Toronto Lake is consistent 
with that of Queen's Lake, but is overprinted by "noise" inherited from its hydrologically 
complex catchment (see Wolfe et al. 1996). The tundra and forest-tundra zonation 
is based on pollen and loss-on-ignition data from Queen's Lake, which lies about 25 
km north of the mapped limit of forest-tundra (MacDonald et al. 1993). In order to 
permit cornparison with the southern Ontario reconstruction (Figure 5-2), ARH has 
been scaled to approximate deviation from present average summer relative humidity, 
assuming evaporative enrichment under conditions of long-term hydrologie steady 
state. Uncertainties in the reconstructed values are somewhat higher than for 
southern Ontario, on the order of 2 1.2 O A  and I 6 %. 



Table 5-1. Radiocarbon dates from lake sedirnent cores. 

Depth (cm) Material Age (l4C yr B.P.) Laboratory # 

Whatever Lake 
20-22 Organic sediment 1410 I 110 
89.0-91.5 Organic sediment 3650 I 130 
172.5-1 75 Organic sediment 6080 I 80 

Queen's Lake 
15-20 Organic sediment 3820 I 60 
45-50 Organic sediment 5600 A 60 
60-65 Organic sediment 6150 + 60 
100-1 05 Organic sediment 7150 = 70 
1 05 Twig 7470 2 80 

Toronto Lake 
35-40 Organic sediment 1760 I 90 
80-85 Organic sed. & moss 4200 2 80 
125-130 Organic sed. & moss 5460 2 90 
155-1 60 Organic sediment 7040 120 

WAT-1770 
WAT- 1 771 
WAT-1772 
WAT-1773 
TO-827 



summer position of the Arctic frontal zone. Terrestrial vegetation abruptly shifted from 

dwarf shrub tundra to Picea mariana forest-tundra around 5000 yr B.P., as the frontal 

zone moved northward. Minor local fluctuations in treeline position or forest density 

occurred during the subsequent 2000 years, followed by return to the modem dwarf 

shnib tundra vegetation after 3000 yr B.P. 

6180, was apparently higher than present when organic lake-sedirnent 

accumulation began shortly before 8000 yr B.P., and decreased progressively to about 

4500 yr B.P. Values subsequently increased slightly to a localized maximum around 

4000 yr B.P. before declining to near modem values by about 1500 yr B.P., followed 

by a small rise to the modern level. which has persisted for the past 1000 years. 

Summer RH during this 8000-year period shows a simpler pattern of change. 

oscillating between low values prior to and following a pronounced maximum during 

the forest-tundra event. Correspondence between RH and forest expansion even 

occurred on the scale of centuries, as shown by high-resolution sampling of one core 

(see Wolfe et al. 1996). 

The post-5000 yr B.P. part of the b180, record reveals evidence of a 

straightfoward isotope-climate linkage. with higher values than present corresponding 

to maximum forest-tundra development between 5000 and 3000 yr B.P.. followed by 

a decline as treeline receded. This is consistent with the expected temperature shift 

as the strong Pacific air mass influence in summer that triggered the treeline advance 

was reduced by southward movement of the Arctic frontal zone. However, 

reconstnicted 6180, values of about 4 %, higher than present during the earlier tundra 

period, when temperatures must have been at least as cold as present, are clearly not 

in harmony with the isotope-temperature relation that became established after 5000 

yr B.P. 

Discussion 

Isotope- Temperature Relations in Precipita tion 

Calibration of isotope-temperature relations using modem data is inherently 

limited by the short temporal range of observational records at individual sites. As a 



result, calibrations of paleotemperature are commonly based on empirical bT8OP-MAT 

or g2H,-MAT relations derived using data from several scattered sites within a region. 

This approach has been applied extensively to interpret isotopic records from various 

archives. 

The G~~O,-MAT relation used by Edwards 8 Fritz (1 986), baçed on a survey of 

limited modern data available from sites in the Great Lakes region, is described by: 

which has essentially the same slope, but more negative intercept than the "global" 

empirical 6l8OP-MAT relation for sites having MAT less than 15°C (Jouzel et al. 1994) 

given by: 

Although the modem spatial and temporal b180,-MAT relations in the study area in 

central Canada are less well-defined than in eastem Ontario, local b"0, and MAT (ca. 

-22%0 and -10°C) are also in good agreement with (1). The occurrence of more 

depleted modern 6180, values for a given temperature in both areas cornpared to t he  

"global" relation probably reflects continental effects due to rain-out from long-distance 

transport of moisture, perhaps reinforced in the Great Lakes region by recycling of 

isotopically depleted vapour from the lakes (Gat et al. 1994). 

As expected. (1) yields highly reasonable MAT values for t h e  past 5000 years 

from the central Canada 6"0, history, suggesting cooling of about 3 OC since t h e  time 

of maximum treeline advance. However, isotope-inferred MAT values of 6 OC or more 

above present for the older part of the record are clearly incompatible with pollen and 

diatom evidence that MAT was no higher than present during this time (Moser & 

MacDonald 1990; MacDonald et al. 1993; MacDonald 1995; Pienitz R & JP Smol, 

personal communication 1995). This discrepancy is shown schematically on a plot of 

MAT versus 6l8OP (Figure 5-4). The entire southern Ontario record and the later part 
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Rgure 5-4. Schematic diagram showing apparent 8'80p-MAT relations for central 
Canada and southern Ontario. Isotope-temperature relations in both areas seem to 
lie close to the "continental" line defined by (1). except for the earlier part of the 
central Canada record, which plots above the "global" line defined by (2) (Jouzel et 
al. 1994). 6lBOP-MAT in the area of the Laurentide Ice Sheet during deglaciation of 
southwestern and central Canada probably also lay near the continental line. 



of the central Canada record apparently lie near the continental line defined by (l), 

whereas the earlier part of the central Canada record is distinctly offset. plotting above 

the global line defined by (2). AGCM simulations (Jouzel et al. 1994) and the isotopic 

composition of late-glacial groundwater (Remenda et ai. 1994) suggest that (1) also 

approximates isotope-temperature relations in central and south-central Canada during 

the last glacial maximum and the early stages of deglaciation. Thus the "anomalous" 

isotope-temperature relation in central Canada appears to have been lirnited to a 

discrete time interval during the eariy Holocene. beginning sometime after 11,000 yr 

B.P. and culminating shortly after 5000 yr B.P. 

Possible Origin of "AnornaIous" 6 ' 8 0 p - ~ ~  T Relation in Central Canada 

Two likely mechanisms can be invoked to explain elevated 6'80, in central 

Canada during the early Holocene, both linked to the high zona1 index that is believed 

to have persisted at this time (Bryson & Wendland 1967; Bryson et al. 1970; Bartlein 

et al. 1984; Vance et al. 1995; Dean et al. 1996). Abundant evidence supports the 

existence of elevated alpine treeline in the western Cordillera from prior to 9000 until 

at least 6000 yr B.P.. accompanied by pronounced dryness at lower altitudes (see 

Clague et al. 1992 and references cited therein) and drought in western Canada (e.g. 

MacDonald 1989; Schweger & Hickman 1989; Vance et al. 1995). As noted by 

Clague et al. (1 992). higher cloud base enhanced the efficiency of moisture transport 

through the mountains. This should have led to decreased rain-out effects on the 

isotopic composiüon of residual vapour (and ultimately precipitation derÎved from it), 

which can be simulated assuming a simple Rayleigh distillation process, described by 

the equation 

where R is the ''0/l60 ratio in residual (Vr) and initial (Vo) vapour, f is the fraction of 

residual vapour remaining at any time, and a is the liquid-vapour equilibrium isotopic 

fractionation occurring during condensation (= R JR,,). Manipulation of (3) using a 



plausible value of -15 O A  for the 6180 of original vapour and a of 1.01 0 suggests that 

the present 6"0, of -22 % represents an f of about 0.18. Assurning al1 else 

remained constant, a relatively moderate increase in moisture transport efhciency 

(from an f of 0.18 to 0.28) would be sufficient to generate the observed 4 % increase 

in 6180,. 

Moreover, any isotopic enrichment generated in this way is likely to have been 

reinforced by an increase in the summer:winter precipitation ratio, because the effect 

of higher cloud base would be more pronounced in summer. Sensitivity to this effect 

can also be readily simulated. Based on isotope hydrology studies in the region 

(Gibson et al. 1993, 1994) and meteorological records (Environment Canada 1982). 

the modern 6180, value of -22 represents roughly a 55:45 mixture of summer rain 

and winter snow (water equivalent) having average 8180 values of about -17 and -28 

%, respectively. Mass balance considerations show that a rnodest shift to a 6535 

mixture in the annual budget would cause an increase in b180, of over 1 %, in the 

absence of changes in other factors. 

These simple calculations demonstrate that the magnitude of the early- 

Holocene 6180, "anornaly" in central Canada can be reasonably explained by small 

changes in rain-out effects and seasonality of precipitation, independent of change in 

MAT. Although there are certainly other factors that might influence spatial and 

temporal isotope-temperature relations, such as changing sea-surface conditions 

where vapour originates or changing moisture sources, we speculate that the above 

mechanisms may be the major ones operating at the coarse resolution of our existing 

iST80, time-series. Most importantly, this provides the basis for a unified model that 

reconciles infened climate and isotope-climate histones readily within the established 

framework of shifting postglacial atmospheric circulation (shown schematically in 

Figure 5-5). 

"AnornaIous " 8 "O,-MA T Relations Else where in North America 

Several examples of unusually high 6180, (or i S 2 ~ , )  in relation to MAT have 

been identified previously in North America. These include pre-Holocene episodes 
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Figure 5-5. Schematic representation of mean summer frontal zone positions at 
selected times during the Holocene in relation to southem Ontario and central Canada 
(cf. Bryson & Wendland 1967). (A = Arctic; MT = Maritime-Tropical; P = Pacific; Pz 
= high-zonal Pacific). 

a) Earliest Holocene (ca. 10,000 yr B.P.): central Canada ice-covered; southern 
Ontario strongly influenced by Arcüc air interacting with Maritime-Tropical air. 
b) High Zonal Index (ca. 7000 yr B.P.): central Canada strongly influenced by Arctic 
air interacting with high-zonal Pacific air; southern Ontario strongly influenced by 
Maritime-Tropical air with subsidiary high-zonal Pacific air influence. 
c) "Climatic Optimum" (ca. 4000 yr B.P.): central Canada strongly influenced by Pacific 
air; southern Ontario strongly influenced by Maritime-Tropical air. 
d) Modern: central Canada strongly influenced by Arctic air with subsidiary Pacific air 
influence; southem Ontario strongly influenced by Maritime-Tropical air. 



revealed by isotope study of fossil wood cellulose at several U.S. sites (Yapp & 

Epstein 1 977). groundwater along the southeast Atlantic coastal plain (Plummer 1993). 

and soi1 carbonate in Wyoming (Amundson et al. 1 996). Possible early-Holocene 

examples that may correspond in time with high 8180, in central Canada have been 

inferred from isotopes in tree-ring cellulose from the White Mountains of California 

(Feng & Epstein 1994) and the San Juan Mountains of Colorado (Friedman et al. 

l988), lake sedirnent kerogen from western Michigan (Krishnamurthy et al. 1995). and 

fossil hackbeny endocarp carbonate in the midwest U.S. (Jahren et al. 1995). 

Although detailed anaiysis would be required to verify teleconnection to events in 

central Canada. it is likely that these episodes are also a manifestation of the same 

atrnospheric circulation changes outlined in Figure 5-5 and that "anomalous" ô180,- 

MAT relations along the Arctic frontal zone in the north rnay have been rnirrored by 

analogous effectç along the Pacific frontal zone in the south. 

Concluding Comments 

Our results are strongly consistent with the notion that "the 8180 values of 

precipitation in North Arnerica are controlled by a complex array of processes that 

occasionally shows a strong dependence on MAT" (Amundson et al. 1996: 26). 

Further investigation and analysis of isotopic data from precipitation, both past and 

present. are clearly needed to better document isotope-climate relations. We view our 

compilation and interpretation of 6180, histories for two areas in Canada as a 

preliminary step towards preparation of continental-scale paleo-isotope maps that can 

be used to gain deeper understanding of climate dynamics through synoptic- 

climatological analysis. As well, such time-slice maps will have obvious value for 

validation of AGCM simulations incorporating isotopic tracen and may indeed provide 

isotopic boundary conditions necessary for futuregeneration AGCMs to explore other 

aspects of global paleoclimate. Growing evidence for "anomalous" isotopic distribution 

in parts of North Arnerica during the early Holocene, in concert with differing 

circulation than present, suggests that a mapped time-slice within this interval rnight 

be a particularly fruitful target for a climate rnodelling experirnent. 
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Synopsis 

In central Canada. multiple records of cellulose-inferred &'*O,, combined with 

several years of field investigations (Bursey et al. 1991; Gibson et al. 1993. 1994), 

were used to disentangle hydrologic effects (primarily evaporative enrichment) from 

the changing oxygen isotope composition of precipitation (MacDonald et al. 1993; 

Wolfe et al. 1996; Edwards et al. 1996). Successful deconvolution of the 6''0, 

records was facilitated largely due to the varying hydrologic sensitivity of the study 

lakes owing to their strongly contrasting setangs. 

In northern Russia, however, we have used a slightly different research 

approach beacuse we do not have the benefit of extensive field-based studies of 

modem isotope hydrology nor, at present, the fortunate occurrence of a regional suite 

of sediment cores from lakes in very different hydrologic environments. Based on the 

the recent work by Vardy et ai. (1997'), which showed that peat porewater b180 can 

be a useful tracer of past hydrologic change, we re-examined the 6%, profiles from 

TL1 (Lake Middendorf: Velichko et al. in prep., see CHAPTER 4) and LS9 (MacDonald 

et al. in prep., see CHAPTER 4) as well as an additional site on the western Taimyr 

Peninsula (TL5) in light of new data provided by isotopic analysis of peat porewater. 

lntegration of these data allows us to tentatively separate evaporative enrichment 

effects from the isotopic composition of precipitation in the b180, records. Results 

from the two main study areas, the western Taimyr Peninsula and lower Lena River 

delta, are compared and speculative regional interpretations of Holocene moisture 

conditions are made. 

Our studies suggest that a strong moiçture gradient may have developed 

between these two regions during the early Holocene when the boreal forest 

expanded to the Arctic coast The initial advance of the forest closely corresponds 



to deglaciation of Scandinavia, enhanced themohaline circulation and northward 

movement of the north Atlantic polar front (Koc et al. 1993; Bjorck et al. 1996; Jones 

1994; Macdonald et al. in review). These factors likely led to increased flow of warm 

Atlantic water into the Arctic Ocean, expansion of the lcelandic Low, and enhanced 

transport of warm and moist air into arctic Siberia (Khotinskiy 1984; Koc et al. 1993; 

Rogers & Moseley-Thompson 1995; Macdonald et al. in review). At the Lena River 

delta, however, more continental conditions were promoted because the arctic 

coastline may have been located as much as 150 km north of its modern location 

between 9000 and 6000 BP (Macdonald et al. in review). Since 3500 14C-years BP, 

bath the Taimyr Peninsula and Lena River delta appear to have experienced highly 

variable but comparable moisture conditions. 

We view these preliminary interpretations as a working model that can be used 

to develop more comprehensive paleohydrologic reconstruction in northern Russia 

following several planned additional studies. These include a more thorough isotopic 

investigation of the peat records (completion of porewater a2H analysis, porewater 

tritium analysis and peat cellulose 8180 analysis) to better evaluate the significance of 

evaporation, porewater mixing, and modem water infiltration. Additional lake sediment 

cores in the Lena River, Pechora, and Kola Peninsula regions are in various stages 

of sample preparation and analysis. Results from these sites will increase spatial 

coverage and help to constrain our paleohydrologic reconstructions. As well, 

paleoceanographic work in the Barents Sea and Arctic Ocean currently being 

conducted by Steve Fonan (University of Illinois) will contribute greater understanding 

of important climate forcing mechanisms in northern Russia during the Holocene. 



Abstract 

Reconstruction of lake-water oxygen isotope histories, based on stratigraphic 

analysis of finely disseminated sediment cellulose, provide insight to Holocene 

paleohydrologic changes on the remote and largely unstudied tundra landscape of 

northern Russia. Oxygen and hydrogen isotope evaluation of local meteoric water and 

frozen porewater from nearby peatlands has enabled speculative deconvolution of the 

isotopic composition of precipitation from evaporative isotopic enrichment in the lake- 

water records. These collective data suggest that the western Taimyr Peninsula may 

have been relatively humid cornpared to more arid conditions on the Lena River delta 

during the early to mid-Holocene when the boreal forest expanded to the Arctic Coast. 

Enhanced transport of moisture to the western Taimyr Peninsula from wann North 

Atlantic water penetrating the Barents Sea and increased continentaiity at the Lena 

River delta due to large tracts of exposed shelf may provide the forcing rnechanisms 

for these different moisture records. Since the establishment of modern tundra 

vegetation at Ca. 3500 BPI these two regions have apparently experienced highly 

variable yet regionaliy similar changes in moisture conditions. 

Introduction 

The Paleoecological Analyçs of Circumpolar Treeline (PACT) project is an 

international research effort designed to increase our knowledge of treeline ecosystem 

response to climate change. Our primary method of investigation is to examine 

paleoenvironrnental records contained in lake sediments and peat deposits using a 

multi-proxy approach (e.g. MacDonald et al. 1993; Vardy et al. 1997). Paleohydrologic 

reconstruction, based on inferred lake-water oxygen isotope profiles from analysis of 

lacustrine cellulose, is an important component of these studies. 

l nterpretation of lake-water oxygen isotope records requires separating isotopic 

effects caused by hydrological processes, which can provide information regarding 

p s t  moisture conditions, from shifts in the isotopic composition of source water 

supplied to the lake, which in turn rnay reflect changes in temperature, vapour 

sources, seasonal distribution of precipitation, or other aspects of air mass circulation. 



Near the boreal treeline in northern Canada, we have previously utilized records of 

inferred lake-water oxygen isotope composition from a series of lakes in different 

hydrologie settings, combined with several years of field investigations (Gibson et al. 

1993, 1994). to disentangle evaporative enrichment effects from the changing isotopic 

composition of precipitation (MacDonald et al. 1993; Wolfe et al. 1996; Edwards et al. 

1 996). 

Here we use a different approach to interpret cellulose-inferred lake-water 

oxygen isotope records frorn near treeline on the western Taimyr Peninsula (TL1, TL5) 

and the Lena River delta (LS9) in northern Russia (Figure 5-6). Single-season 

samples of modem meteoric water, including precipitation, groundwater, and ground- 

ice provide a temporally limited, yet important modern database in the absence of 

IAEA/WMO network stations and years of field studies. We also investigate the 

archival potential of peat porewater, extracted from sites in permafrost terrain near the 

study lakes (Figure 5-6), to provide an independent record of the mean annual oxygen 

isotope composition of precipitation. 

Field and Laboratory Methods 

Samples of rain were collected in 30-ml high-density polyethylene (HDPE) 

bottles. Snow and ground-ice were sealed initially in polyeth ylene bags, permitted to 

melt completely, and then transferred into HDPE bottles. Shallow groundwater was 

obtained from springs at the site of discharge or by collecting water-saturated soi1 from 

near the base of the active layer. Soil samples were sealed triple-wrapped in heavy- 

gauge polyethylene bags to prevent vapour loss during transport to the laboratory for 

subsequent azeotropic distillation of porewater (Revesz & Woods 1 990). Samples 

from the western Taimyr Peninsula were collected between 28/07/93 and 05/08/93 

and from the lower Lena River basin between 23/07/94 and 07/08/94. 

A 3.5 m thick section of peat (68'1 O'N, 8i0O9'E), located on the western Taimyr 

Peninsula, was sampled from 2.15 m below the surface to the bottom of the section 

in 5 cm-thick slices at 10 cm intervals for porewater isotope analysis. Insufficient 

water was present in the upper part of the exposure. In the Lena River study region, 



Figure 5-6. Locations of lakes TL1, TL5, LS9 and peat sites. Approximate position 
of tfeeline is represented by the dashed line. Lakes TL1 and LS9 are both headwater 
basins in small permafrost catchments. Lake TL5 is fed by several lakes and 
streams. Coring depth for lake TL1 was 8.15 m. Lake TL1 is a seasonaily-closed 
basin. Coring depth for lake TL5 was 4.50 m. Lake TL5 is a through-flow lake. 
Coring depth for lake LS9 was 4.50 m. At the time of sampling, outflow was observed 
from lake LS9. 



a 3.9 m peat core (69O23'NI I25OO8'E) was obtained. Below 50 cm depth, 2-3 cm 

sections at 10-20 cm intervals were obtained for porewater isotope analysis. Water 

thawed from frozen peat samples was extracted using a centrifuge and transferred to 

HDPE bottles. Peat characteristics (bulk density. organic and inorganic content), 

pollen, and plant macrofossil stratigraphy are reported elsewhere (Andreev et al. in 

prep.; Jasinski et al. 1997). 

Sediment cores from Mes TL1 (70°22'N, 87*33'E), TL5 (69'1 4'N, 86°34'E), 

and LS9 ( i l  OWN. 127O04'E) spanning 2.7 m, 4.2 ml and 3.5 m, respectively, were 

obtained using a Livingstone piston corer for multidisciplinary analysis (Le. grain size, 

elemental geochernistry, los-on-ignition, pollen, stomates, diatoms, chrysophyte cysts, 

chironomids, stable isotopes). Sediment samples for oxygen isotope analysis were 

taken at mostly 5 cm intervals from core TL1 , 10 cm from core TL5, and 7 cm frorn 

core LS9. Samples were pre-treated in a 10 % hydrochloric acid solution at 70 OC for 

two hours to dissolve trace amounts of shell or mineral carbonate. Additional sample 

preparation on the ~ 5 0 0  Fm acid-washed residue involving solvent extraction, 

bleaching, and alkaline hydrolysis removed non-cellulose organic components 

(Edwards & McAndrews 1989). Nickel-tube pyrolysis (Edwards et al. 1994) was used 

to produce CO, from the cellulose fraction for 180/160 detemination. 

Analyses of 180/160 and 2H/1H ratios in water samples were performed at the 

Environmental Isotope Laboratory (El L), University of Waterloo using COiequilibration 

(Epstein & Mayeda 1953) and Zn-reduction (Coleman et al. 1 982), respectively. 

Results are reported as 6 values, representing deviation in per mil ('?A) from the 

international Vienna-SMOW standard such that 6 = [(R,p,JR,,w)-l]*l 000, where R 

is the '80/'60 or 'H/lH ratio in sample and standard. Analytical uncertainties are I 0.2 

% for 6"O and t 2 %. b2H. Oxygen isotope ratios from cellulose-derived CO, are also 

reported in &notation with respect to Vienna-SMOW. Repeated cellulose analyses 

are normally within 1.0 %, reflecting both method uncertainty and the natural 

heterogeneity of the sarnples. 



Results and Discussion 

Meteoh Water 

Non-evaporated water sampled on the western Taimyr Peninsula and lower 

Lena River basin define local meteoric water lines (Figure 5-7). Summer rain is 

predictably enriched in ''0 and 'H relative to snow, whereas groundwater and ground- 

ice data are intermediate due to recharge by varying mixtures of snowmelt and rain. 

Estimated oxygen isotope composition of mean annual precipitation (6180,) from 

groundwater and ground-ice data is more negative in our study regions. cornpared to 

IAEA/WMO network stations at Moscow (-1 0.8 %), Pechora (-1 4.7 %) . and Arndemia 

(-1 5.8 Y=) consistent with greater rain-out of atmospheric vapour largely originating 

over the North Atlantic as well as the southwest (Le. Meditenanean Sea, Black Sea. 

Cas pian Sea) . 

Peat Pore water 

Peat porewater 6180 profiles from the Taimyr Peninsula and Lena River sites 

are largely cornplacent (Figure 5-8a). Analyses of 6'H are currently in progress but 

preliminary results suggest that porewater at the Lena River site have not been 

subjected to evaporative isotopic enrichment (Figure 5-8b), including samples 

displaying the 1-2 increase at the top of the core. Overall, these peat porewater 

profiles appear to integrate seasonal variations in the isotopic composition of 

precipitation and close correspondence to the modem inferred 6"0, values suggests 

little variation has occurred in this parameter since perhaps the mid-Holocene. 

Lake Sediment Celiuiose 

Reconstruction of lake-water 6180 (8'80,J, based on analysis of cellulose 

extracted from sediment cores at lakes TLI, TL5, and LS9, show similar variations 

during the modern tundra interval but contrasting behaviour during the early to mid- 

Holocene when the b o r d  forest advanced to the present-day coastline (Figure 5-9). 

The source water for these lakes is primarily derived from local precipitation 

(potentially modified by upstream evaporation in the case of lake TL5). whose average 
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Figure 5-7. Non-evaporated rneteoric water samples from the western Taimyr 
Peninsula and the lower Lena River basin, northern Russia. Equation 1) defines local 
meteon'c water lines in respective regions by linear regression. Equation 2) defines 
estirnated mean annual oxygen isotope composition of precipitation (ti'80,) from 
average of groundwater and ground-ice data. 
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Figure 5-8a). Peat porewater 6180 profiles and estimated mean annual oxygen isotope 
composition of precipitation (6l80& from average of groundwater and ground-ice data 
(see Figure 5-7). Arrows identify sarnples for which 6 ' ~  values are available (see 
Figure 5-8b). The 14C-dates were obtained on peat. 
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Figure 5-9. Cellulose-inferred lake-water &I8O (&180~  a,,-,, = 1.028, Edwards & 
McAndrews 1989) and peat porewater 8180 stratigraphy. Modem mean annual 
oxygen isotope composition of precipitation (6180,) is from data in Figure 5-7. The 
interval of boreal forest expansion (8000-4000 I4C-years BP) is inferred from 
palynology of lake sediment cores and l4C-dated macrofossil Betula, Lanx, and Picea 
found on the present-day tundra landscape. Peat porewater chronology is based on 
14 C-dating of peat and therefore represents maximum ages. Lake-water b180 
chronologies are based on accelerator m a s  spectrometry of terrestrial and aquatic 
macrofossils sampled from the sediment cores. 



oxygen isotope value appears to have remained relatively constant (Figure 5-8). This 

suggests that 8180, at these sites has responded predominantly to changes in 

humidity and subsequent hydrologic effects on lake-water balance. 

During the forest interval at Ca. 7000 BP, high b180, values at lake LS9 relative 

to 6180, (inferred from the Lena River peat porewater 8l80) are suggestive of dry 

conditions and considerable evaporative enrichment. Preliminary calculations based 

on a steady state model suggest that mean summer relative humidity at lake LS9 may 

have been about 10 % lower at ca. 7000 BP compared to the present. In contrast, 

inferred 6180, values at lake TL5 at this time may only be marginally enriched relative 

to the local b180,. reflecting rnoist conditions and rapid lake-water through-flow. 

During the past 3500 14C-years. al1 three lakes have responded similarly to hurnidity 

and water balance changes. 

These inferred 6180, records rnay be responding to large-scale changes in 

North Atlantic circulation and Arctic coastline configuration (Forman, personal 

communication 1997). During the early to mid-Holocene. greater penetration of North 

Atlantic water into the Barents Sea, due to rising sea level and isostatically-depressed 

oceanic crust, may have provided increased warrnth and moisture to the western 

Taimyr Peninsula. Further to the east at the Lena River delta. however, subsequent 

rain-out of air masses derived from the North Atlantic combined with a still emergent 

coastline may have resulted in a more continental climate compared to the present- 

day, relatively maritime conditions. Reduced atmospheric influence of North Atlantic 

water and establishment of the modern coastline position has perhaps led to similar, 

yet highly variable hydrologic conditions in both regions during the late Holocene. 

Concluding Comments 

The combination of results from isotope analysis of modern meteoric water, 

peat porewater, and lake sediment cellulose has yielded a provisional working model 

for Holocene paleohydrologic reconstruction in northern Russia. Preliminary data from 

peat porewater analyses are especially promising in providing an independent record 

of the mean annual oxygen isotope composition of precipitation. Completion of 



porewater b2H analysis and 6180 evaluation of the cellulose fraction of the peat will 

supply additional information concerning the possible role of evaporation and 

porewater mixing in these profiles. 

lnterpretation of peat porewater 8180 results suggests that cellulose-inferred 

8180, variations at lakes TL1, TL5, and LS9 primarily reflect changes in water balance 

in response to altering moisture conditions. During the early and mid-Holocene, 

development of a strong moisture gradient between the western Taimyr Peninsula and 

the Lena River delta may have resulted from changes in North Atlantic circulation and 

global sea level. These forcing mechanisms may have also contributed to the 

northward migration of the boreal forest. During the last 3500 14C-years, similar bl'O, 

records at al1 three sites suggest a weakened rnoisture gradient and a common, 

regional hydrologie history. 



CHAPTER 6: SUMMARY AND RECOMMENDA~ONS 
Sumrnary of Significant Results 

This dissertation is a series of independent manuscripts that focus on 

investigations of Holocene paleohydrology near treeline in central Canada and central 

and eastern Russia based on stable isotope analysis of lake sediment cores. Results 

and interpretations are a contribution to the multidisciplinary Paleoecological Analysis 

of Circumpolar Treeline (PACT) project led by Canadian and Russian researchers. 

Oxygen isotope analysis of lake sediment cellulose has been used to reconstruct lake 

water &'*O records for several lakes from which interpretations regarding water 

balance and source water isotopic composition history have been made. Carbon 

isotope analysis of bulk organic and cellulose fractions have provided a record of 

watershed carbon balance as well as supplementary information on paleohydrologic 

conditions. 

Results indicate that (often rapid) changes in moisture conditions have occuned 

during mid-Holocene intervais of northern boreal treeline advance (Figure 6-1). These 

warmer intervals appear to have been associated with higher summer relative humidity 

in central Canada and Russia, and a drier climate in eastem Russia. Although the 

latitudinal position of the forest-tundra ecotone has been traditionaily viewed as being 

largely contro!led by thermal factors, these data suggest that northern forest 

development may also be strongly linked to the moisture regime. 

The carbon isotope records indicate that past changes in carbon balance in 

srnall boreal treeline lakes have been strongly influenced by prevailing hydrologic 

conditions. Increased lake productivity (inferred primarily from diatom records) is 

associated with warmer conditions and treeline advance at al1 of our study sites. 

However, the carbon isotope records frequently show excursions to 13C-depleted 

values (or only rnuted enrichment) during these intervals in contrast to the strong 

relationship between increased lake productivity and '=C-enrichment in bulk organic 

and cellulose fractions reported in many other locations (e.9. Schelske & Hodell 1991, 

1995; Meyers et al. 1993; Dean & Stuiver 1993; Duthie et al. 1996). Increased 
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Figure 6-1. a) Holocene record of mean annual paleotemperature and summer 
paleohumidity change for central Canada based on lake sediment cellulose 6180 from 
three lakes. Paleotemperature is derived from reconstructed ~"0, values and the 
relation. 8l80, = 0.65 MAT - 15.5. Note that the older part of the record is constrained 
by pollen and diatom data. Uncertainties in reconstructed values are on the order of 
2 2 OC and I 6 % (see Edwards et al. 1996, also CHAPTER 5). b) Qualitative 
paleomoisture trends for the western Taimyr Peninsula and Lena River, northern 
Russia based on lake sediment cellulose 6180 from three lakes (see Wolfe et al. 1997, 
also CHAPTER 5). Uncertainty in 8180, record hinders quantitative reconstruction of 
paleohumidity in these regions. Note that hatched zones represent intervals of forest 
expansion. 



production of 13C-depleted soi1 CO,,, by root respiration and oxidation of organic 

matter combined with elevated surface ninoff and rapid hydrologic flushing of lake 

water (particulariy at the central Canadian and Russian sites) may be responsible for 

these isotopic signatures. 

The Holocene record of northern treeline expansion, summer relative humidity 

and the oxygen isotope composition of precipitation (6180,) in centrai Canada can 

uniformly be ascribed to shifting patterns of atmospheric circulation (Figure 6-2). 

Enhanced zonal circulation of dry Pacific air during the early Holocene led to arid 

conditions and likely contributed to "0-enriched precipitation (= -1 8 %). By 5500 BP, 

zonal circulation weakened and treeline repeatedly advanced and retreated in 

association with latitudinal shifts of the Arctic Front. Forest development was. in part. 

aided by wetter conditions probably due to increased snow cover. Enhanced rain-out 

effects with the deceleration of Pacific vapour transport and decrease in the 

summer:winter precipitation ratio were likely important factors leading to a decline in 

8180,. An estimated value of -20 % for 6'80, at ca. 4000 BP corresponds to the 

period of maximum treeline advance and may reflect a - 3 OC increase in mean 

annual temperature with respect to the present (see Figure 6-1). The modem tundra 

vegetation and regional 6 ' 8 ~ ,  of -22 % were established by 2000 BP as the Arctic 

Front migrated to a more southerly position and the region became dominated by dry, 

Arctic air. 

Treeline in northern Russia is much doser to the coast than in central Canada 

and therefore advance and retreat are likely more directly linked with changes in 

oceanic circulation and subsequent effects on thermal and moisture regimes. 

lnterpretation of Holocene paleohydrology in northern Russia associated with changes 

in treeline is, however, somewhat more speculative than in central Canada due to 

greater uncertainties in our reconstruction of regional ôl*O, and aiso the lack of 

modem isotope hydrology studies. Nevertheless, our records appear to show that a 

strong moisture gradient may have developed between the western Taimyr Peninsula 

and the Lena River delta during the early to mid-Holocene when the boreal forest 

expanded to the Arctic coastline. Enhanced transport of moisture to the western 
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Figure 6-2. Reconstruction of summer position of Arctic Front and related treeline 
fluctuations in northern Canada during the a) early (8000-5500 BP); note treeline 
advance in northwestern Canada (Ritchie etal. 1983), b) mid- (5500-2000). and c) late 
(2000-0 BP) Holocene. Values in central Canada refer to estimated 8'80, (see 
Edwards et al. 1 996. also CHAPTER 5). 



Taimyr Peninsula from warm North Atlantic water penetrating the Barents Sea (as a 

resuft of isostatically-depressed ocean floor) and increased continentality at the Lena 

River delta due to large tracts of exposed shelf (because of low global sea level) may 

have been important climate forcing mechanisms during this time (Figure 6-3). Since 

the establishment of modem tundra vegetation at ca. 3500 BP. these two regions 

have apparently experienced highly variable yet regionaily similar changes in moisture 

conditions. 

Recommendations for Future Research 

Circumpolar Treeline Paleohydrology 

Reconstrucüon of Holocene paleohydrology in northem Russia is largely 

dependent on the first-order approximation of the isotopic composition of precipitation 

record, which is based on a small num ber of peat porewater 6180 results. The first 

priority for further research should clearly be to complete porewater 6*H 

determinations and to initiate porewater tritium and peat cellulose 6180 analyses to 

evaluate the role of evaporation, porewater mixing and modern water infiltration in 

these profiles. Stable isotope analysis of other lake sediment cores collected in 1994 

from the Lena River region will help to place constraints on preliminary interpretations 

based on the LS9 lake sediment record (Figure 6-4). Lake sediment cores collected 

in the Pechora region during the 1995 PACT field season and on the Kola Peninsula, 

as part of a new project led by Glen MacDonald (UCLA). will increase spatial 

coverage in northern Russia (Figure 6-4) and help to establish linkage with similar 

investigations in Scandinavia (e.g. Hammarlund & Edwards 1997). Preliminary 

analyses by Forman (1997) suggests that increased study of paleoceanographic 

conditions in the North Atlantic and Arctic Oceans will also be critical for reconciling 

the Russian terrestrial paleohydrologic records. 

Holocene reconstruction of arctic treeline hydrology is in its infancy and clearly 

much work rernains. Although vegetation histones have been studied in many other 

circumpolar regions (e-g. Ritchie et al. 1983; Payette et al. 1989; Peterson 1993; 

Anderson & Brubaker 1993; Cwynar 8 Spear 1995), these reconstructions have 
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Figure 6-3. Possible climate forcing mechanismç in northern Russia during the early 
to mid-Holocene (see text; Forman 1997). 



Figure 64. Available lake sediment cores in northern Russia for isotope analysis with 
basal estimated (Pechora site, LS21) or radiocarbon (al1 other sites) dates in brackets. 



generally been related to changes in summer temperature. Associated hydrologic 

change is considerably less well known and frequently restricted to qualitative 

interpretations (Le. moister, drier). These regions require intensive study in order to 

develop a unified quantitative Holocene record of circumpolar paleohydrology that, 

together with the thermal record, can be confidently linked with changes in 

atrnospheric and oceanic circulation. Our studies in central Canada and central and 

eastern Russia indicate that oxygen and carbon isotope analysis of organic lake 

sediments (in association with peat isotopic records) combine to forrn a powerful 

approach to paleohydrologic reconstruction and may be a useful tool in these poorly 

studied regions as well. Even at this early stage, however, there appears to be 

evidence for similar large-scale processes influencing past hydrologic change in 

different regions and that hemispheric teleconnection rnay indeed exist. For instance. 

Hammarlund & Edwards (1 997) suggested that 180-enriched fine-grained calcite in a 

small treeline lake in the Scandes Mountains of northern Sweden may be related to 

a high zonal index and reduced rain-out effects during the early Holocene, similar to 

the explanation for '80-enriched precipitation in central Canada at this time. 

Research Design 

lnterpretation of reconstructed lake water â180 records would certainly benefit 

from coupled estimation of lake water bZH (see Figure 1-2). Unsuccessful attempts 

to relate b2H in cellulose to water in which it fonned arising from species-dependent 

'H/'H fractionation (see references in Edwards 1993) has recently spurred efforts to 

examine the &*H composition in other organic substrates as a possible tracer of lake 

water 6'H. Studies on the hydrogen isotope composition of kerogen (Krishnamurthy 

et al. 1995) and lipids (Buhay 1997), in particular, are especially promising new 

research directions. Perhaps one of the remaining surface sediment transects 

obtained during PACT field seasons 1995-97 (Lena, Pechora, Northwest Territories) 

could provide an appropriate testing ground for these potential 6'H archives where 

results could readily be combined with lake water 6 2 ~  and 6180 and cellulose 6180 

data. Alternatively, a series of lakes near Lupin, Northwest Territories where several 



years of lake water g2H and 6180 data have been collected (Gibson 1996), may also 

prove to be a useful site for sediment organic - lake water b2H "calibrationtl studies. 

Development of the continuous-fiow isotope ratio m a s  spectrorneter with option 

to couple with an elemental anaiyzer has made 815N data readily attainable on the 

organic component of lake sediments. The usefulness of this proxy for recording past 

nutrient balance was explored on a well-studied site in which there was a good 

understanding of past hydrology, carbon balance and ecology. Althoug h promising 

results were obtained. ouf ability to interpret these data are limited by the lack of 

detailed process studies that trace I5N sources through the complex lacustrine 

nitrogen cycle to final organic matter deposition, as well as the paltry number of 

published lake sediment 615N profiles. Because 15N fractionation is species-specific, 

Mure paleo-615N studies may be most useful if combined with pigment analysis (e.g. 

Leavitt & Findlay 1994), in addition to elemental and carbon and oxygen isotope 

assessment, to evaluate algal community structure history. 
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ENVIRONMENTAL ISOTOPE WBORATORY 
DEPARTMENT OF EAMH SCIENCES 

UNIVERSITY OF WATERLOO 
WATERLOO, ONTARIO, CANADA 

Technical Procedure 28.0 

T.W.D. Edwards R.J. Elgood B.B. Wolfe 

Cellulose was first extracted from lake sedirnents for isotopic analysis by Edwards (1 987) in the course 
of paleohydrologic studies in southern Ontario. The technique was used to reconstnict postglacial lake 
water 6180 history of a lake from cores containing gyftl*a and organic siit. These studies also 
demonstrated the sensitivity of sediment cellulose 6°C as an aiternative to bulk organic 6°C as a tool 
for paleolimnologic investigations (Edwards & McAndrews 1989). 

1.1 Precautions 

The precautions Iisted below are guidelines on@. Refer to the relevant Material Safety Data Sheets 
(MSDS) which are kept in the EIL office and in an MSDS binder in each lab. Retain waste for 
processing in the Hazardous Waste Handling Facility in ECS 150. 

1. Carbon Dioxide (COJ is a clear, colourless, odouriess gas at roorn temperature. In solid form (Le. 
"dry ice"; sublimation temperature -78 OC), it can cause severe frostbite and continuously releases gas 
which displaces air and can result in asphyxiation. Use in a well ventilated area wearing thermal 
gloves and safety glasses. 

2. Methanol (CH,OH) is a clear, colourless, flarnmable and poisonous liquid. Acute effects of exposure 
by ingestion, inhalation or percutaneous absorption include headache, fatigue, nausea, visual 
impairnent or cornplete blindness (may be permanent), acidosis, convulsions, rnydriasis, circulatory 
collapse, respiratory failure or death. 

3. Nitrogen (NJ is a colourless, odourless gas at roorn temperature. In liquid form (condensation 
temperature -1 96 OC), it can produce severe frostbite. Wear safety glasses and thermal, impervious 
gloves to prevent frostbite. It is a simple asphyxiant; use under well ventilated conditions. 



4. Acetic acid (CH,COOH) is a colourless liquid and has a vinegary odour. Inhalation of the corrosive 
gas or fumes may be irnmediatety dangerous to life or heafth. It may cause severe bums on contact. 
lt reacts exotherrnically with water to produce toxic and corrosive fumes. Wear gloves and dust mask 
and handle with care in the fumehood. 

5. Sodium chlorite (NaCIOJ is an off-white crystal, odouriess, oxidizable material. It irritates skin, eyes, 
and in contact with wet skin can cause bums. Wear gloves, dust mask and safety glasses in the 
furnehood. 

6. Benzene (C,HJ is a clex and colourless liquid with an aromatic odour. It is volatile, flammable and 
toxic. Acute effects of exposure by ingestion and inhalation absorption are flushing, headaches, 
shortness of breath, respiratory collapse, coma and death. It irritates skin and eyes. Wear gloves, dust 
mask and safety glasses in the furnehood. 

7. Acetone (CH3COCHJ is a colourless, volatile, Rammable, poisonous and mobile liquid. Boiling point 
is 56 OC. Avoid al1 sources of ignition. Use gloves and safety glasses in the fumehood. 

8. Ethanol (C,H,OH) is a clear, colourless, fiamrnable, volatile Iiquid. Boiling point is 79°C. Use gloves 
and safety glasses in the fumehood. 

2.0 PREPARATION PROCEDURE 

Preparation of sediment cellulose from organic lake sediments follows the technique of Green (1 963) 
and Sternberg (1989) for extracting cellulose from wood powder (see T.P. 10.0), with modifications to 
accomodate the much finer grain size typical of sediments. Following removal of carbonate (see T.P. 
22.0) and freeze-drying, lake sediment sarnples are sieved to < 500 prn (if necessary) to eliminate 
macrofossil plant debns (which is commonly of terrestriai origin). Scattered fragments may be removed 
with tweezers. 

Cellulose preparation is a three-part process involving sequential extraction of non-cellulose organic 
components. AH extractions are performed in the fumehood. Batches of 10 or more may be run 
simuftaneously, depending on the size of the botües and space restrictions in the fumehood and water 
bath. 

Part 1. Solvent Extraction (removes lipids, resins, tannin) 

1. Extract 2-5 g of freeze-dried sediment in a covered 125 ml glass wide-mouth, screw-top bottle with 
about 100 ml of 2:1 benzene:ethanol, swirling the solution occasionally. DecanVaspirate the solution 
after 48 hours. If the liquid is deeply coloured (i.e. darker than weak tea), repeat the extraction with 
fresh solvent for an additionai 24 to 48 hours. 

2. Add about 100 ml of acetone and replace cover. After 24 hours, decant/aspirate and allow samples 
to air-dry in the fumehood. 

Part 2. Bleaching (removes lignin) 

1. Add about 75 ml of deionized water to the air-dried sample and place in a water bath at 70 O C .  Add 
0.5 ml of glacial acetic acid, followed by 0.5 g of sodium chlorite, stir, and cover. 

2. Af'ter one hour, add fresh aliquots of acetic acid and sodium chlorite (always adding the acetic acid 
first), and stir. Repeat 5 times or until sediment residue is a pale grey to yellowish-grey coiour. 



3. Allow sediment residue to settle, decantfaspirate supernatant liquid, and re-fiil with deionized water. 
Repeat 5-1 0 times, or until odour of the bleach solution fades, to completely displace bleach solution. 
Do not test the odour until the solution is thoroughly dfluted. 

4. After the final dilution, decantfaspirate to within about 1 cm of the residue. 

Part 3. Alkaline hydrolysis (removes xylan, maman, other polysaccharides) 

1. Add about 100 ml of 17 % sodium hydroxide solution to the wet sample. Let stand for 45 minutes, 
decant/aspirate, and fiIl with deionized water. Rinse with deionized water 3 4  times or untif solution is 
near neutral. 

2. Dilute once with 10 % acetic acid and allow to stand for 15 minutes. Thoroughly wash the residue 
by repeated rinsing with deionized water until the odour of acetic acid fades. (Test the pH with 
indicator paper to confirm that it matches that of the deionized water). 

3. After the final dilution, decant the water to within about 1 cm of the grey cellulose residue (see Note 
(3) below if the residue is reddish or orange-brown, indicating oxyhydroxide contamination). Cover the 
bottle with aluminum foi1 and freeze the rernaining water and cellulose residue. Puncture foi1 with 
several pinholes and place bottles in freeze-drier. 

4. Aiter the sample is thoroughly dry, transfer to clean, dry, labelled via1 for subsequent isotopic 
analysis by pyrolysis for 180/'60 (see T.P. 29.0) or combustion for 13Cr2C (see T.P. 22.0). 

3.0 NOTES 

1. Label bottles carefully, keeping in mind that solvents used in the initial steps will dissolve almost any 
in k. 

2. Carbon dioxide yields during pyrolysis and combustion suggest that refractory (non-cellulose) 
material (mostly fine-grained mineral matter) may be present in some sarnples, akhough this has no 
apparent effect on the isotopic results. 

3. Oxygen isotope results may be severely affected (and the pyrolysis chamber contaminated) if iron 
or manganese oxyhydroxides are present (indicated by distinctive reddish or orange-brown colour of 
the final cellulose concentrate). If present, oxyhydroxides must be removed using the following leach 
solution: 

Dissoive in 1 L of water: 
35.1 6 g sodium dithionfie 
52.14 g ammonium citrate 
14.33 g hydroxylamine hydrochloride 

Extract oxyhydroxide-contaminated cellulose concentrate with about 75 ml of leach solution at 
roorn temperature for 24 hours. If oxide colour remains, repeat with fresh dose of leach 
solution. Wash by repeated dilution and decanting/aspirating with deionized water, and freeze- 
dry 
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EIL Technicd Procedures: 

Technical Procedure 10.0. "O Analysis in Cellulose by Pyroiysis. 

Technical Procedure 22 .O. Breakseal Corn bustion Method. 

Technical Procedure 29.0. &''O in Organic Matter and Water by Nickel-Tube Pyrolysis. 
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6160 IN ORGANIC MATTER AND WATER BY NICKEL-TUBE PYROLYSIS 

1 .O INTRODUCTION 

Prior to 1992, the Environmentai Isotope Laboratory (EIL) at the University of Waterloo used the 
Thompson & Gray (1977') rnethod for the determination of 8'e0 in organic material. In this technique 
(T.P. 10.0), the sample is pyrolysed in an evacuated nickel vessel. Hydrogen released during pyrolysis 
diffuses through the walls of the nickel chamber, while carbon and oxygen combine to fomi carbon 
dioxide, on which 180rs0 ratio measurernents are made by mass spectrornetry. 

The nickel-tube pyrofysis method of Brenninkmeijer & Mook (1981) perrnits more rapid analysis of 
oxygen isotope ratios in organic matter or water than the original nickel-pyrolysis technique; however 
it is complicated by the need to cut and weld the tubes prior to each sample analysis. Furthermore, 
the technique requires the use of a nickel powder catalyst and a spark chamber to ensure quantitative 
recovery of oxygen. 

The Brenninkmeijer technique has been further modfied at the E1L where resealable nickel vessels 
have replaced the need to cut and weld tubes. This technique perrnits greatiy increased service life 
of individual tubes and has led to considerable simplification of the procedure. 

The precautions listed below are guidelines only. Refer to the relevant Material Safety Data Sheets 
(MSDS) which are kept in the €11 office and in an MSOS binder in each lab. 

1. Carbon Dioxide (COJ is a clear, colourless, odourless gas at room temperature. In solid form (Le. 
"dry ice"; sublimation temperature -78 OC), it can cause severe frostbite and continuously releases gas 
which displaces air and can result in asphyxiation. Use in a well ventilated area wearing thermal 
gloves and safety glasses. 



2. Ethanol (C,H,OH) is a clear, colouriess, flammable, volatile liquid. Boiling point is 79°C. Use gloves 
and goggles in the furnehood. 

3. Nitrogen (NJ is a colourless, odourless gas at room temperature. In liquid f o n  (condensation 
temperature -196 O C ) ,  it can produce severe frostbite. Wear safety glasses and thermal, impervious 
gloves to prevent frostbite. It is a simple asphyxiant; use under well ventilated conditions. 

4. Argon (Ar) is a cnlourless gas at roorn temperature. It can cause rapid suffocation and exposure 
can cause nausea, headache, and vomiting. At high concentrations argon functions as a simple 
asphyxiant by displacing air. 

Pyrolysis vessels are machined from nickel rod, which is left sealed at one end, welded to stainless 
steel VCR metal gasket face seai fitting with raised circular seats. A resealable frtting consists of a 
stainless steel nut and rnodified VCR plug used to compress a nickel gasket between raised circular 
seats. The puncturing device consists of iwo components machined from b r a s  (see Edwards et al. 
1994). Vertical movernent of the needle is achieved by a threaded handle on the puncturing hilt. 
Three O-rings provide a vacuum-tight seal within the unit, and a machined stainless steel Rotulex-type 
fitting allows connection to a vacuum extraction line. 

3.0 PROCEDURE 

The following is a detailed description of the procedure used by the EIL to prepare CO, for l80 
anaiysis. Following sarnple pretreatrnent (T.P. 10.0 for wood cellulose; T.P 28.0 for sediment 
cellulose), the sample is pyroiysed in a nickel vessel at 1050 O C .  Diffusion of H, through the nickel 
tubing at high temperature drives the reaction to completion, producing CO,, CO, and C plus minor 
traces of non-condensible gases arising from trace contaminants. Tests indicate that capture of CO 
(and conversion to COJ is unnecessary (Aravena 1982; Edwards et al. 1994). The CO, is purified 
cryogenically and collected for oxygen isotope anaiysis by mass spectrometry (see T.P. 15.0124.0). 

3.1 Preparatlon of Sample Vessels Prior to Combustion 
3.1.1 Bomb Conditioning 

New pyrolysis vessels require conditioning before analysis. Standards should be loaded, pyrolysed and 
the resutting gas released for at least two runs before CO, is collected. Repeated runs with a water 
standard should then be undertaken until consistent reproducibility is obtained. After extended periods 
of non-use, standards should be run in each vessel to re-establish the catalytic activity of the nickel. 

3.1.2 Bomb Cfeaning 

Pdor to use, pyrolysis vessels must be carefully deaned to remove ail debris remaining from the 
previous sarnple. 

1. Clean the interior of vessel using a stainless steel brush (114' diameter). Gently tap out 
debris. 
Note: Care rnust be taken not to score the raised circular seats at the opening of the vessel 
as this will result in a poor seal and l o s  of gas during pyrolysis. 

2. Flush interior of vessel with acetone and allow to air-dry. 



3. Place clean vessels in oven at 60 OC or keep in a desiccator under vacuum. 
Note: Dunng periods of prolonged non-use, the pyrolysis vessels should be kept in a desiccator 
to rninirnize oxidation of nickel surfaces. 

4. Vessels should frequently be deaned by irnmersing in Extran solution in an ultrasonic bath 
for several hours followed by thomugh rinsing with deionized water and acetone. 

3.1.3 Loading Sample Vessels and Pytolysls 
3.1.3.1 Water Samples 

1. Clean and dry vessels as described in section 3.1.2. 

2. Load prebaked carbon (T.P. 31 .O) (1 mg / 1 PI H,O) into vessels and place in desiccator. 
5 pl of H,O typicalIy produces = 1 .S cc of CO,. 
Note: Gloves should be wom to prevent contamination of sealing surfaces. 

3. Attach desiccator to freeze dryer or extraction line and evacuate. Leave vessels under 
vacuum for a penod of at l e s t  12 hours. 

4. Close desiccator and remove from freeze dryer/extraction line. Place desiccator in glovebox. 

5. Flood glovebox with argon. Check that glovebox has been fully fIushed by detemining the 
flow from the upper vent. 
Note: Argon should be passed through a rnoisture trap to ensure that no moisture is passed 
into the charnber during loading. 

6. Attach desiccator to argon tank and flood with argon. 

7. Place nut in holder and transfer vessel from desiccator to holding rack in glovebox. 
Note: Gloves should be wom to prevent contamination of sealing surfaces. 

8. Draw sarnple into syringe. 

9. Flush vessel with thin stream of argon to further ensure that al1 atmosphere is displaced. 

10. Lower needle as far as possible into the vessel and inject sarnple. 

11. Quickiy place nickel gasket and plug on vessel and tighten. 

12. Rinse seaîed vessel in acetone and allow to air-dry. 

13. lnsert sealed vessel into quartz envelope and evacuate on vacuum extraction line (Figure 
3) 

14. Bake sealed vessel in evacuated quartz envelope at 1050 OC for 50 minutes and then 500 
O C  for 30 minutes. After baking, allow quartz envelope and vessel to cool to room temperature 
(30 minutes). 
Note: Reaction aven requires approximately 2 hours to stabilize at 1050 O C  (variac setting of 
about 91 %, 120 v). 



3.1 3.2 Organic Matter 

Although samples are vacuum dried during the process of cellulose extraction (T.P. 1 O.O/28.O), it has 
been demonstrated that moisture is readily absorbed from the air (Edwards et al. 1994). Furihemore, 
due to the small sample size any moisture will have a significant effect on the final anaiysis. lt is 
therefore extremeiy important to adhere to the following procedure. 

1. Place samples in desiccator and attach to freeze dryer or extraction line. Desiccate samples 
for 12-24 hours. 

2. Load samples (see Table 1) into the pyrolysis vessels, place in desiccator chamber and 
attach to freeze dryerlextraction line. Keep under vacuum for a period of at le& twefve hours. 
Note: Gloves should be wom to prevent contamination of sealing surfaces. 

Table 1. Suggested sarnple sizes. 

Material Organic content Samplesize C0,Yield 

lake sedirnent 5 %  
lake sediment 10 % 
lake sediment 30 % 
cellulose 100 % 

Notes: 
1) Suggested lake sediment sample sizes are based on organic content prior to ceIIulose extraction. 
2) For lake sediment samples with very low organic content, it is important not to overload vessels as 
the pyrolysis reaction will not go to completion. 

3. Close desiccator and remove from freeze dryerlextraction line. Place desiccator in glovebox. 

4. Flood glovebox with argon. 

5. Attach desiccator to argon tank and fiood with argon. 

6. Place nut in holder and transfer vessel from desiccator to holding rack in glovebox. 
Note: Gloves should be worn to prevent contamination of sealing surfaces. 

7. Flush vessel with thin strearn of argon to further ensure that al1 atmosphere is displaced. 
Note: Pure cellulose is easily blown out of vessel! 

8. Quickly place nickel gasket and plug on vessei and tighten. 

9. Rinse seaied vessel in acetone and allow to air-dry. 

1 0. lnsert seaied vessel into quartz envelope and evacuate on vacuum extraction line. 

11. Bake sealed vessel In evacuated quartz envelope at 1050 O C  for 50 minutes and then 500 



O C  for 30 minutes. After baking, allow quartz envdope and vessel to cool to room temperature 
(30 minutes). 
Note: Reaction oven requires approximately 2 hours to stabilize at 1050 OC (variac setting of 
about 91 %, 120 v). 

32 Collection of CO, 

1. Preheat extraction line oven to 350 OC at least one hour in advance to permit thermal 
stabilization (Figure 1). 

2. Establish a vacuum downstream of valve #1 (Le. open valves #2, #3, #4, and 445). 

3. Remove the head unit from the puncturing deviœ and place a cooled pyroiysis vessel inside 
the sample shaft. Check that the puncturing needle is withdrawn to the correct height and that 
O-rings are clean. Replace headunit and screw head tightly to the sarnple shaft. 

4. Attach the puncturing device to the vacuum line; open vahre #1 to evacuate the puncturing 
device. Pump on the entire Iine for severai minutes unül vacuum is obtained. Zero the 
pressure gauge. 

5. Place liquid nitrogen dewar on bottom of trap A Close valve #l. Carefuliy screw down the 
puncturing hiit (resistance will indicate that cap has been pierced). Slowfy raise the hilt to 
remove the needle frorn the cap and allow the contained gases into the heated portion of the 
line. 

6. Allow the gases to remain in the heated portion of the line for 2 minutes. Close vaive #2. 
Slowly open valve #1 and allow the CO, gas to condense in trap A. 

7. Record change in pressure frorn the presence of non-condensible gases (rnainly argon and 
CO). 

8. Raise Iiquid nitrogen dewar haifway up trap A, wait several minutes and then raise to about 
3 cm from top of trap. 

9. Bleed off non-condensible gas by opening valve #2 slowiy. Pump on the trapped CO, to 
remove non-condensible gases and to ensure complete transfer from punctured sample vessel. 
When the initial (full vacuum) reading on the pressure gauge is restored, close vaives #1 and 
#2. 

10. Replace liquid nitrogen dewar with ethanoudry ice dewar on trap A to vaporize the CO,. 
Record the new reading on the pressure gauge. 

II. Place a liquid nitrogen dewar on the bottom of sample breakseal and close vake #4 to 
isolate the line frorn the vacuum pump. Slowly open valve #2 and allow the CO, to condense 
in the sample breakseal. Raise liquid nitrogen dewar over condensed CO,. 

12. After a few minutes, during which the pressure gauge should have retumed to near its 
full-vacuum reading, raise liquid nitrogen dewar. Open valve #4 to pump off any residual CO 
that might have remained in the solid CO,. 

13. Flame off sample breakseal. Ensure that the sarnple vessel is correctly labelled and 
remove it for anaiysis by mass spectrometry (T.P. l5.O/Z4.O). 



Figure 1. Vacuum extraction line. 



14. Close vaives #1 and 552. Heat for 2 3  minutes and check for an increase in pressure. A 
change rnay indicate the presence of water vapour suggesting that the pyrolysis reaction was 
incomplete. Open valve #2 to check vacuum recovery. A substantiai fd l  in the vacuum also 
suggests residuai water. Replace sarnple breakseai, pyrolysis vessel in puncturing device, and 
evacuate line. 

4.0 VALUE REPORTING AND ERROR IDENTIFICATION 

A water or cellulose standard should be routineiy run with each sample batch, rotating the vessel in 
which the standard is loaded to monitor vessel performance. Repeats on water, lake sediment and 
pure cellulose are typically within 1 .O %O. 

Note that PDB values from the PRlSM mass spectrometer are converted to SMOW by an empirical 
caîibration (SMOW = 1.264 x PD6 + 50.277) developed through analysis of known water and cellulose 
standards, ranging from -15 to +30 %O (SMOW). Good results have been obtained, however, for 
water samples as negative as -25 %O (SMOW) (Buhay & Wolfe unpublished data). 

4.1 TroubleShooting Guide 

If water standards are too enriched: 

1. incomplete pyrolysis reaction? 
- check for water in trap following transfer 
- ensure pyrolysis oven temperature 
- ensure pyrolysis tirne 

2. atrnospheric CO,, 0, contamination? 
- ensure vessets are completely flushed with argon prior to sealing (1 minute of steady 
flow is normally sufficient) 
- run cellulose standards; if contamination is approximateiy equal in volume, less 
enrichment should be seen with a more enriched standard 

If water standards are too depleted: 

1. residual debris in vessels? 
- clean vessels in ultrasonic bath with Extran solution for several hours; rinse 
thoroughiy with deionized water and acetone 

2. leakage during pyroiysis? 
- check initial evacuation in quartz envelope; slow recovery may indicate poor seal or 
a leak has developed at weld between nickel rod and stainless steel 
- pyrolyse standard for different lengths of tirne to ensure smooth evolution to stable 
value 

3. incomplete Iine transfer'? 
- following check for water, open valve #l; if vacuum collapses, enriched CO, may still 
be in line; ensuring cornplete vacuum recovery when rernoving non-condensible gases 
prior to closing valves #1 and #2 and maintaining a clean nickel trap should alleviate 
this problem 



4. atmospheric vapour contamination? 
- rebake carbon 
- check argon moisture trap 
- ensure vessels are dry prior to carbon loading 
- run cellulose standards; if contamination is approximately equal in volume, more 
depletion should be seen with a more enriched standard 
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EIL Technical Procedures: 

Technical Procedure 10.0. "0 Analysis in Cellulose by Pyroiysis. 

Technical Procedure 15.0. CO, Mass Spectrometer (903). 

Technical Procedure 24.0. Prism. 

Technical Procedure 28.0. Cellulose Extraction from Lake Sediments for '80/'60 and l3CP2C Analysis. 

Technical Procedure 31 .O. Sulphate 'eO By Combustion in Metallic Foil. 





T omnto Lake Watershed Water Data (sampled Auqust 22, 1994) 

Sam ple Lake* 6"0 

BW-TLC-1 1 
BW-TLG2 2 - inflow 
BW-TLG3 2 
B W-TLC-4 3 
BW-TLG5 4 
BW-TLG6 5 
BW-TLG7 6 
BW-TL- 7- Toronto Lake 

See Figure 2 of Wolfe BB, TWD Edwards, R Araverta & GM MacDonald, 1996. Rapid 
Holocene hydrologie change along boreal treeline revealed by 6'3~ and 6180 in organic lake 
sedirnents, Northwst Tenitones, Canada. Journal of Paleo/imndogy 15: 171 -1 81. Aiso 
Chapter 3, Figure 3-2 in this document. 



Taimvr Peninsula Water Data (sampled Julv 28 - Auciust 5, 1993) 

Sample 
Rain: 

TE-93032 

Ground-l ce: 
TE-93039 

Tundra Lakes: 
TE-93001 
TE-93002 
TE-93004 
TE-93006 
TE-9301 2 
TE-93051 
TE-93052 
TE-93053 
TE-93054 
TE-93007 
TE-9301 0 

Forest-Tundra La kes: 
TE-9301 5 
TE-93016 
TE-9301 7 
TE-93021 
TE-93022 
TE-93024 
TE-93025 
TE-93026 

Lake* 

TS-1 

TS-2 
TS-3 

TS-20 
TS-21 
TS-22 
TS-23 

(stream) 
(-ml 

TS-6 
TS-7 
TS-8 
TS-4 
TS-5 
TS-9 

TS-10 



Forest Lakes: 
TE-93034 
TE-93035 
TE-93036 
TE-93040 
TE-93041 
TE-93042 
TE-93043 
TE-93044 
TE-93046 
TE-93047 
TE-93048 
TE-93049 
TE-93050 
TE-93033 

Ts-11 
Weam) 
(stream) 
(stream) 

TS-13 
TS-13 

TS-12 
TS-14 
TS-15 
TS-16 

TS-17 

TS-18 

(Stream) 

See Figure 1 in Wolfe BB & TWD Edwards, 1997. Hydrologie control on the oxygen isotope 
relation between sediment cellulose and lake water, western Taimyr Peninsula, Russia: 
Implications for the use of surfacesediment calibrations in paleolimnology. Journal of 
PaleoIimndogy (in press). Also Chapter 2, Figure 2-1 in this document. Note that Lakes 
TS-12 and TS-14 are locafed near TS-13. 



Lena River Water Data (sampled Julv 23 - Aunust 7,1994) 

Sample 
Rain: 

BW-1-18 
BW-2-1 O 
BW-52 
BW-5-8 

Tundra Lakes: 
BW-1-1 
BW-1 -2 
BW-1-3 
BW-14 
6 W-1-6 
BW-1-7 
BW-1-8 
BW-1-9 
BW-1-1 O 
BW-1-11 
BW-1-16 
BW-1-17 
BW-1-19 
BW-1-20 
BW-1-21 
BW-1-22 
B W-2-1 
B W-2-2 
BW-2-3 
BW-24 
B W-2-5 
BW-2-6 

Lake* 

LS-2 
1% 

LS-1 
LS-3 

LS-5 
LS-6 
CS-7 
LS-8 
LS-9 
LS-1 O 
LS-11 
LS-12 
CS-13 
CS-14 



Forest-Tundra Lakes: 
BW-5-3 
B W-5-4 
BW-5-5 

Forest Lakes: 
BW-3-1 
BW-3-2 
BW-3-3 
BW-34 
BW-3-5 
BW-3-6 
BW-3-8 
BW41 
BW42 
B W-3-7 

' See Figure 1 in Duff KE, TE Laing, JP Smol & DRS Lean, in prep. Limnological 
chatacteristics of Sibenan lakes spanning the northem treeline. For submission to 
Hydrobidogia. 



Taimvr Surface Sediment Data 

Lake* 

Forest-Tundra: 
TS-4 
TS-5 
TS-6 
TS-7 
TS-8 
TS-9 

TS-1 O 
TS-11 

Forest: 
TS-13 
TS-15 
TS-16 
TS-17 
TS-18 

See Figure 1 in Wolfe BB 8 TWD Edwards, 1997. Hydrologie control on the oxygen isotope 
relation between sediment cellulose and lake water, western Taimyr Peninsula. Russia: 
Implications for the u s e  of surface-aiment calibrations in paleolimnology. Journal of 
Paledimndogy (in press). Also Chapter 2. Figure 2-1 in this document. 



Toronto Lake Sediment Core Data 





Whatever Lake Sediment Core Data 



T L 4 4  Sediment Core Data 

TL-1-1-0-1 
TL-7 -1 -2-3 
TL-1-145 
TL-1-1-6-7 
TL-1-1-8-9 
TL-1-1-10-1 1 
TL-1-1-1 2-1 3 
TL-1-1-14-15 
TL-1-1-16-17 
TL-1-1-18-1 9 
TL-1-1-20-21 

A 
TL-1-1-22-23 
TL-1 -1 -24-25 
TL-1-1 -26-27 
TL-1 -1 -28-29 
TL-1 -1 -30-31 
TL-7-7 -32-33 
TL- 1 - 1 44-35 
TL-1 -1 -36-37 
TL-1 -1-38-39 
TL-1-1 -40-41 
TL-1-1 -42-43 
TL-1-1 -44-45 
TL-1 -1 -4647 
TL-1-1-4849 
TL-? -1 -50-52 
TL-1-1-55 
TL-1-1-57.5 
TL-1-1-60 
TL-1-1-62.5 







TL-5-1 Sediment Core Data 



0,29 11.7 
IO,? 
10.8 
11.5 
71.4 

0.38 11.6 
11.6 
12.9 
13.2 
13.0 

0.42 13.6 
13.1 
13.8 
13.0 
11.9 

0.53 I i . 6  
11.7 
11.9 
11.5 
11.6 

0.46 11.5 
12.1 
11.6 
11.3 
12.5 
11.3 
9.0 
9.3 

11.8 
10.5 

O. 14 10.5 
11.2 
12.2 
10.0 
10.5 

0.14 10.8 





LS-93 Sedtment Core Data 

Dept h 
(cm) 

0.5 
5.5 

10.5 
15.5 
20.5 
25.5 
30.5 
35.5 
42.5 
49.5 
56.5 

61 
68 
75 
82 
89 
96 

103 
110 
117 
124 
131 
138 
145 
152 
159 
166 
173 
180 
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