
LSTM Based Remaining Useful Life
Prediction for Lithium-Ion EV

Batteries

by

Sapna Pandey

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2024

© Sapna Pandey 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Lithium-ion batteries are commonly used in electric vehicles (EVs) because of their high
energy density, ability to provide good efficiency, and being lightweight. Predicting the
Remaining Useful Life (RUL) is critical in lithium-ion batteries as it helps optimize effi-
ciency and timely replacement of these batteries. To optimize the battery performance, it
is critical to predict RUL and lithium-ion batteries’ End of Life (EOL). There are several
approaches for RUL estimation in lithium-ion batteries, such as model-based, data-driven,
and hybrid approaches. Out of all the approaches, data-driven approaches, such as, Re-
current Neural Networks (RNN), Support Vector Machines (SVM), and Long Short-Term
Memory (LSTM) have gained popularity due to their less complexity and adaptability. In
this study, we have investigated the LSTM networks for RUL estimation in lithium-ion
batteries.

The first part of the study shows the effect of different parameter changes, such as hid-
den nodes and window size, in LSTM networks. The investigation reveals that increasing
the number of hidden nodes before encountering overfitting improves prediction accuracy
and lowers the Root Mean Square Error (RMSE) from 0.2 to 0.03. The experiments to
find the ideal window size for the LSTM model used in this study illustrate that the model
shows improvement with a higher window size up to a maximum of 14. Moreover, in the
second part of this study, we propose an incremental LSTM model for time series fore-
casting that incorporates the newly available data at each time step and updates itself
to make better predictions of future capacity values. The proposed incremental LSTM
model improves the RMSE by 17.6% compared to the baseline LSTM model. For further
analysis of real-time RUL estimation where there is limited data, and the user wants to
predict the RUL at any moment, another LSTM model that considers these assumptions
is proposed. The models are trained and tested with the help of two publicly available
datasets: The lithium-ion battery aging dataset by NASA Ames Prognostics Center of
Excellence (PCoE) and the battery dataset by the Center for Advanced Life Cycle En-
gineering (CALCE). This research proposes LSTM models that are useful for accurately
estimating RUL in lithium-ion batteries, which is critical for Electric Vehicles (EVs).

iii

Acknowledgements

I extend my heartfelt appreciation and thanks to my thesis advisor, Dr. Sagar Naik,
whose unwavering guidance, expertise, and steadfast support have been instrumental through-
out this research journey.

My deepest gratitude goes to my family for their enduring love, encouragement, and
unwavering support. Their guidance and sacrifices have motivated me to succeed. I want
to especially thank my sister for motivating me throughout the duration of my thesis and
for believing and pushing me to do the best I can.

Finally, I sincerely thank the University of Waterloo faculty members. Your contribu-
tions have made a meaningful impact, and I am truly thankful for your involvement.

iv

Dedication

This thesis is dedicated to the infinite possibilities in the advancement of technology.
It celebrates the innovative spirit that drives progress and the limitless potential that
technology offers to reshape to make this world a better place to live.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xi

1 Introduction 1

2 Literature review 4

2.1 Lithium-ion battery terminologies . 4

2.2 Lithium-ion cell operation . 8

3 Battery capacity estimation approaches 11

3.1 Types of models for capacity estimation 11

3.2 LSTM cell architecture . 15

3.3 LSTM for time series data . 17

3.4 Key LSTM model parameters and metrics 19

vi

4 Datasets for capacity prediction 22

4.1 NASA dataset . 22

4.1.1 Effect of ageing on the NASA battery data 25

4.1.2 Data Patterns and Variability in the NASA Dataset 29

4.2 CALCE dataset . 30

5 Proposed LSTM models for RUL prediction 32

5.1 Baseline LSTM model: LSTM 1 . 32

5.2 Proposed LSTM models: LSTM-2 and LSTM-3 34

5.2.1 LSTM-2 model . 34

5.2.2 LSTM-3 model : . 36

5.3 PICE-LSTM . 37

5.4 Pseudo code for proposed LSTM models 38

5.5 Training process for LSTM networks . 46

6 Experiment for comparing LSTM models and their parameters 50

6.1 Effect of changing hidden nodes . 50

6.2 Effect of changing window size . 51

6.3 Experimental configurations for LSTM models 52

6.3.1 Experiment with LSTM-1: . 52

6.3.2 Experiment with LSTM-2 and LSTM-3: 53

6.3.3 Experiment with PICE-LSTM: . 54

6.4 Parameter selection for RUL estimation . 54

6.5 Transfer learning across similar cells in NASA battery dataset 55

6.6 Cross-dataset validation: assessing LSTM models on CALCE dataset . . . 55

vii

7 Experimental results 56

7.1 Effect of parameter tuning . 56

7.2 Comparision of LSTM-1, LSTM-2 and LSTM-3 58

7.2.1 Results with CALCE dataset . 59

7.3 Results for transfer learning . 60

7.4 Results for PICE-LSTM . 60

8 Conclusions 64

9 Future Work 66

References 67

viii

List of Figures

2.1 NASA Battery Dataset: Capacity Vs Cycle Number 7

2.2 lithium-ion Battery in EVs and Practical use of a battery pack. 9

3.1 The LSTM Cell Structure . 15

3.2 LSTM for timesteps . 18

3.3 LSTM: Input and Output using window [42] 19

3.4 Sliding Window Concept in LSTM . 21

4.1 Battery 5 Discharging field visualization 23

4.2 Current and voltage for Charging Cycles 24

4.3 Current Vs. time for Discharging Cycles 24

4.4 Capacity vs Cycles . 25

4.5 Current Vs. time for Charging Cycles . 26

4.6 Voltage Vs. time for Charging Cycles . 27

4.7 Temperature Vs. time for Charging Cycles 27

4.8 Current Vs. time for Discharging Cycles 28

4.9 Voltage Vs. time for Discharging Cycles 28

4.10 Temperature Vs. time for Discharging Cycles 29

4.11 CALCE dataset . 30

4.12 CALCE dataset: CS235 cell . 31

5.1 LSTM-1 flow diagram . 33

ix

5.2 LSTM-2 flow diagram . 35

5.3 PICE-LSTM flow diagram . 38

5.5 LSTM-2 Pseudo Code . 47

5.6 Pseudo Code for PICE-LSTM . 48

5.4 Pseudo Code for LSTM-1 . 49

7.1 Comparing Lithium-Ion Battery Capacity Prediction with Varied Hidden
Nodes . 57

7.2 RMSE vs Window Size . 57

7.3 Comparision of LSTM-1, LSTM-2 and LSTM-3 with NASA dataset 59

7.4 Comparision of LSTM-1, LSTM-2 and LSTM-3 with CALCE dataset . . . 60

7.5 Transfer learning result on cell 6 . 61

7.6 Transfer learning result on cell 6 . 61

7.7 Transfer learning result on cell 6 . 62

7.8 PICE-LSTM Experiment 1 . 63

7.9 PICE-LSTM Experiment 2 . 63

x

List of Tables

5.1 Variables and Their Meanings in Proposed Model 39

6.1 Experiment Parameters for LSTM Model 55

7.1 RMSE and Runtime for Different Parameters 56

7.2 Results of LSTM models with NASA dataset 58

7.3 Results for LSTM models with CALCE dataset 59

xi

Chapter 1

Introduction

The demand for electric vehicles (EVs) and, by extension, EV batteries is rising as the
trend toward electric transportation continues to gain attention. Due to the many advan-
tages of using lithium-ion batteries, like their ability to supply high voltage, high energy
density, and less self-discharge, they are suitable for various applications. However, it is
crucial to guarantee the security and dependability of lithium-ion batteries because any
flaw can lead to decreased performance, equipment malfunctions, and potentially dan-
gerous circumstances such as fires or explosions. It is also important to maintain these
batteries in a timely manner to ensure they last a long time.

The battery goes through continuous charging and discharging. A battery has com-
pleted a cycle when it has gone through a full charge and discharge cycle and has reached
its initial state. In simple terms, the battery is fully charged at the start, and then as it
is used to power a device or application, it gets discharged and recharged again to its full
capacity. The RUL for charge-discharge cycles is the number of full charge/discharge cycles
a battery will go through before it reaches its end of life (EOL). The EOL can be described
as the moment or the precise number of charge-discharge cycles at which the battery’s
characteristic properties have reached a critical level needing replacement [48]. The (RUL)
spans from the present to the end of life when the battery has used more than 70 to 80
percent of its capacity [36]. To properly assess the condition of batteries and maintain their
health, the RUL must be accurately predicted. We need continuous tracking of RUL to
ensure that the battery is operating correctly without any anomalous behaviour and that
the battery management system (BMS) is working properly. The term system’s prognostic
and health management (PHM) refers to this evaluation. This technique provides us with
all the data that can be used for predicting if the battery health is all right and will alert
the users to ensure that the battery is replaced before it reaches its end of life (EOL) [17].

1

There are several approaches to predict the RUL, such as model-based, data-driven,
and hybrid. In the model-based approach, mathematical models are constructed to calcu-
late the RUl. These models are complex, have limited adaptability, and require domain
knowledge for construction. On the other hand, data-driven methods rely on past or
historical data without requiring specialized domain knowledge or model configuration.
The data-driven approach has recently received a lot of attention in the field of lithium-
ion battery RUL prediction. These models can forecast the state of charge (SOC), state
of health (SOH), and RUL of the batteries using advanced machine-learning techniques,
which make them less complex to understand, and they generalize well to different data
and applications [52] [26].

Neural networks are one type of machine learning model that can be used to predict such
parameters. To predict the RUL of lithium-ion batteries, it is important to estimate the
capacity of these batteries over charge-discharge cycles. Models using feed-forward neural
networks, convolutional neural networks (CNN), and long short-term memory networks
(LSTM)are gaining popularity for such predictions [32]. Long Short-Term Memory (LSTM)
neural network is a type of deep learning network commonly used for applications involving
precise estimation of battery capacity and Remaining Useful Life (RUL) based on observed
battery aging data. The main benefit of LSTM networks is their effective information
retention and updating over long periods without encountering the vanishing gradient
problem. This study will use the LSTM technique for our analysis and model development
[53] [56].

Parameter estimation is crucial in model building and accurately predicting the RUL.
The parameters, namely, number of hidden nodes, window size, hidden layers, optimizer,
and activation function, can greatly affect the accuracy of LSTM models. In the first
part of this study, we investigated the effect of parameter changes in the LSTM model by
varying the number of hidden nodes and window size [5].

This study analyzes existing LSTM models and gives a variant for improved time series
forecasting. This study presents an incremental LSTM method that dynamically adds new
input to the model to improve its forecasting performance in real-time circumstances. In
the first stage of our study, a conventional LSTM model is built. Through thorough ex-
perimentation and analysis, we seek to determine the best-performing LSTM configuration
with the lowest Root Mean Squared Error (RMSE) value. We use this improved LSTM
model called LSTM-1 as our starting point for all subsequent comparisons. In the sec-
ond phase, we provide an incremental LSTM method incorporating fresh data in real-time
forecasting called the LTSM-2 model. We also give a variant of LSTM-2, which we call
LSTM-3, showcasing a better runtime value than the LSTM-2. Later in this report, we
explore the scenario where there is less availability of data because of which we use the

2

trained model and the predicted value for forecasting the RUL, and we call this model
PICE-LSTM, which is LSTM model that uses Predictive Iterative Capacity Estimation.

We look at four different model types:

1. LSTM-1: The LSTM model without retraining is the first model that uses new
incoming data to forecast cycle capacity. This model is trained once with the training
data, and for prediction on test data, it takes capacity values from the test set to make
future predictions of capacity values.

2. LSTM-2: Incremental LSTM model with retraining is the second model, which
retrains the LSTM model to estimate capacity by including the new data into its training
set. After completing the training, it takes the new capacity values and adds them to its
training set for future predictions. The most current data point is used for this retraining,
which is done after each cycle.

3. LSTM-3: The incremental LSTM model with retraining updates itself after an
interval of cycles. It uses a wait-and-retrain approach, gathering data over the following Z
cycles before upgrading the LSTM model, where Z can be noted as an update interval.

4. PICE-LSTM: Predictive Iterative Capacity Estimation LSTM model is trained on
some defined train data, which are the capacity values of the battery recorded using charge
and discharge cycles. In the inference phase, the model uses predicted values to forecast the
RUL and does not use the test or the actual data. The benefit of this model is that when
there is less availability of future data, and the user wants to know the RUL at a point in
time, this model can give the forecasted RUL. This model adopts a pragmatic approach by
using a focused training set and selecting a smaller batch of data preceding the prediction
initiation point. This selective utilization of recent data streamlines training, overcoming
data volume challenges, and enhances relevance and effectiveness.

We investigate the forecasting performance of the incremental LSTM models with
the conventional LSTM. Our findings demonstrate the possibility of adaptive forecasting
through an incremental approach in practical settings. This report uses the NASA dataset
from the Prognostics Centre of Excellence (PCoE) to conduct our analysis in this paper.
This dataset has been extensively used to examine lithium-ion battery aging properties [23].
To check the generalization of the model development methods, the same experiments are
repeated with another publicly available dataset, the CALCE dataset. Our verification
process involved comparing three crucial performance metrics: RMSE values, runtimes,
and predicted RUL values.

3

Chapter 2

Literature review

This section presents an extensive study of the lithium-ion battery literature. The first
half contains information about important battery terminologies such as battery capacity,
C-rate, State of Health (SOH), etc. The second half describes the difference between cells,
modules, and packs of lithium-ion batteries and offers detailed insights into a lithium-ion
cell’s internal components.

2.1 Lithium-ion battery terminologies

This section introduces key battery terms, providing a clear understanding of fundamental
concepts in lithium-ion technology. Each terminology provides important insights about
the battery characteristics, condition, and lifespan, laying the groundwork for predicting
their behaviour and performance.

• Battery capacity: Battery capacity refers to the overall electric charge a battery
can deliver before it is completely discharged, typically measured in ampere-hours
(Ah). For instance, a battery with a capacity of 30 Ah can supply a current of 30
A for one hour or 1 A for 30 hours. Temperature and the discharge current affect
the initial discharge capacity of a new battery. The initial discharge capacity is the
amount of power the battery can deliver before any deterioration in the capacity is
visible. The discharge capacity depends on the discharge current inside the battery.
The Peukert equation in Equation 2.1 gives the relation between discharge capacity
Cd and discharge current I.

4

Cd = K ∗ I1−n (2.1)

The equation has empirical constants K and n. The design characteristics of the
electrodes impact the coefficient n’s value. The coefficient n tends to become closer
to a value near 1 in the case of lithium-ion batteries, where the electrodes have
incredibly thin plates [31].

• C-rate: C-rate refers to a battery’s charging or discharging rate in relation to its
nominal capacity. It measures how quickly a battery can be charged or discharged.
A ′n′ C-rate battery will discharge in 1/n hours. For instance, a fully charged battery
with a 1 C-rate (1C) will take 1 hour to discharge completely. The units for C-rate
are h−1. The capacity can be categorized into two:

a) Initial Maximum Capacity (Ci): The maximum electrical energy that a new bat-
tery can store and is completely charged to power a system is the initial maximum
capacity. This capacity is in kilowatt-hours (kWh) for electric vehicles. It is the
battery’s theoretical maximum capacity. Ci is also known as the rated capacity of a
battery.
b) Current Maximum Capacity (Cc): The maximum electrical energy a battery can
currently store and supply, taking into account its age, usage, and deterioration over
time, is referred to as its current maximum capacity. The current maximum capacity
of a battery indicates the steady reduction in capacity that occurs as a result of aging
and repeated cycles of charge and discharge.

• State of Charge (SOC): State of Charge (SOC) refers to the proportion of available
charge in a battery compared to its maximum capacity. SOC is typically represented
as a percentage. The quantity describing how much charge is currently stored in a
battery is denoted by Qa. The total amount of charge that a battery is intended to
store and provide under typical operating conditions is Qr, also known as the rated
or maximum charge capacity. The manufacturer specifies a set value for it, and it is
frequently written in units like kilowatt-hours (kWh). It is the battery’s theoretical
maximum capacity. The equation for SOC based on these two terms is provided in
equation 2.2:

SOC(%) =
Qa

Qr

(2.2)

5

• Depth of Discharge (DOD): Depth of Discharge (DOD) refers to the extent of
charge depletion in a battery during a single charge-discharge cycle, measured as the
difference between the highest and the lowest State of Charge (SOC) levels. DOD is
commonly expressed as a percentage, and the expression is provided in equation 2.3.

DOD(%) = SOChigh − SOClow (2.3)

• State of Health (SOH): State of Health (SOH) is a metric that indicates a battery’s
current condition or health by comparing its current maximum capacity to its initial
maximum capacity. It is expressed as a percentage of Initial Maximum capacity
and Current Maximum capacity, given in equation 3. A battery with an SOH of
80% would have a maximum capacity of 80 Ah compared to its original maximum
capacity of 100 Ah. SOH provides insight into the degradation and performance of
the battery over time.

SOH(%) =
CInitial

CCurrent

(2.4)

• Nominal Voltage (V): Nominal Voltage (V) refers to a battery’s reported volt-
age. It is a standardized value that represents the average voltage of the battery
during normal operation. The nominal voltage provides a common reference point
for understanding the battery’s voltage characteristics.

• Cut-off Voltage: Cut-off Voltage refers to the minimum allowable voltage of a
battery, typically indicating its empty state. It serves as a threshold value that
determines when the battery is considered to be fully discharged or depleted. Setting
a cut-off voltage helps protect the battery from over-discharge, potentially damaging
its cells and affecting its overall performance.

• Cycle Life: To a specific Depth of Discharge (DOD), cycle life refers to the number of
discharge-charge cycles a battery can undergo while still meeting specific performance
standards. It represents the durability and longevity of the battery, indicating how
many times it can be discharged and recharged before its performance starts to
decline. Generally, batteries with higher DOD tend to have a lower cycle life, as the
deeper discharge levels can stress the battery’s chemistry and components more.

• End of Life (EOL): EOL denotes the stage of a lithium-ion battery’s life when
the battery is unable to continue operating at the desired level or meet functional
requirements. Generally, the EOL of lithium-ion batteries is described as when the

6

capacity drops below 70 to 80 % of its rated capacity. This stage marks the end of
a lithium-ion battery’s life when it can no longer sustain operations at the desired
level. In this study, NEOL signifies the cycle number at which the battery’s capacity
degrades to its failure threshold, denoted as EOL. The battery becomes unusable
when its capacity drops below a critical percentage, represented as θ, of its rated
capacity. To calculate the EOL, we utilize the initial capacity Ci and the critical
percentage θ in Equation (2.5). The formula for NEOL is expressed in Equation
(2.6) [8] [54] [41].

EOL = θ × Ci (2.5)

NEOL = min{N | Capacity at cycle N ≤ EOL} (2.6)

Here, N represents the cycle number, and the expression denotes the minimum cycle
number at which the battery capacity falls below or equals the calculated EOL.

Figure 2.1 provides insight into estimating EOL and NEOL for the NASA battery
dataset. In Figure 2.1, the EOL is denoted as a red horizontal dashed line. The point
at which the battery capacity reaches EOL is the point of failure of the battery. The
cycle number associated with this capacity is denoted with a blue dotted point as
NEOL. The precise calculations and the values of θ, Ci, and NEOL are discussed in
detail in the later sections.

Figure 2.1: NASA Battery Dataset: Capacity Vs Cycle Number

7

• Remaining Useful Life (RUL): It refers to the battery’s remaining operational lifes-
pan, indicating how much more usage it can sustain before its capacity degrades to
the EOL threshold. The Remaining Useful Life (RUL) of a lithium-ion battery is
calculated using the Equation (2.7).

RUL(tc) = NEOL −NECL(tc) (2.7)

The RUL(tc) represents the remaining lifespan of the battery in terms of cycle num-
ber, which represents total charge-discharge cycles calculated at time tc. NEOL de-
notes the cycle number at which the battery capacity degrades to its EOL level,
which can be calculated using Equation (2.6). NECL(tc) is the prediction starting
cycle number at time tc, which can be interpreted as the cycle number marking the
commencement of the prediction or inference phase [41]. The Figure 2.1 shows NECL

as a black point on the x-axis. It shows the cycle number at which we start predict-
ing at any given time tc. Refer to Section 6.4 for insights into RUL’s conceptual and
actual estimation.

2.2 Lithium-ion cell operation

EVs aren’t powered by one big battery but rather thousands of smaller cells. Each cell
has four key components that comprise a battery: an anode, a cathode, a separator, and
an electrolyte. To power a device like a car, charged atoms or molecules, called ions,
move from the anode to the cathode through the electrolyte, releasing their extra electrons
along the way and producing electricity. The opposite happens when charging a battery:
electrons flow into the battery, and the ions flow back from the cathode to the anode,
creating potential energy that the battery can later discharge.

Cells, Modules and Packs:
In the realm of battery technology, there are three key components: cells, modules,
and packs.

• A cell is the fundamental building block of a battery. It is characterized by its
compact size and high capacity per unit volume, enabling optimal performance within
limited space.

• Modules are formed by connecting multiple cells in series or parallel configurations.
This clustering of cells provides added protection against external factors such as
heat and vibration.

8

• Battery packs are created by connecting clusters of modules in series or parallel.
A battery pack includes modules, a battery management system (BMS), and other
devices that are responsible for controlling aspects such as cooling, temperature,
voltage, and current.

Figure 2.2: lithium-ion Battery in EVs and Practical use of a battery pack.

Components of Lithium-ion battery: Various important parts make up a lithium-
ion battery, and each one is essential to the battery’s operation. Among these elements
are:

Cathode and Anode:
The cathode acts as the positive electrode and is usually made of lithium oxide coated on
an aluminum current collector, whereas the anode functions as the negative electrode and
is often composed of carbon coated on a copper current collector. Commercial lithium-ion
batteries have traditionally used graphite anodes because of their steady performance at
most of the voltage values [25]. The cathode’s chemical processes and the current passing
through the circuit are made possible by an active substance in the anode. A separator
between these electrodes permits the interchange of lithium ions while blocking the flow of
electrons [9].

Electrolytes:
They significantly impact the overall performance and safety of lithium-ion batteries, mak-
ing them an essential component in their development. Due to their high conductivity

9

and durability, traditional liquid electrolytes are made of lithium salts mixed in organic
solvents. Solid electrolytes are a promising development that provides increased energy
density, dendrite prevention, and safety. The selection of electrolyte type is an important
factor in attaining the intended performance and safety attributes of lithium-ion batteries
(LIBs) [37].

Separator:
The main function of the separator in a lithium-ion battery is to keep enough space between
the anode and cathode to avoid any possible short circuits. It acts as a thin, porous mem-
brane that allows ions to move during the charging and discharging stages. Lithium-ion
battery performance is highly dependent on the behaviour and structure of the separator,
which affects important factors, including cycle life, energy density, battery safety, power
density, and more [24].

10

Chapter 3

Battery capacity estimation
approaches

This chapter extensively covers various models employed for time series forecasting. The
first half focuses on detailed insights into different model types, including physical, equiv-
alent circuit, empirical, and data-driven models. The latter part delves into data-driven
approaches, centring on applying Long Short-Term Memory (LSTM) networks for battery
capacity estimation for our research application. The discussion delves into the internal
mechanics of an LSTM cell, presenting equations for its gates crucial in real-time predic-
tions. Additionally, it explores how LSTM handles time-series data and introduces the
concept of windows, laying the foundation for subsequent studies. The concluding section
emphasizes the significance of parameter estimation for optimal LSTM model performance.

3.1 Types of models for capacity estimation

This section explores different forecasting models using time series data. We cover a range
of approaches, including physical models, equivalent circuit models, empirical models, and
data-driven models.

Physical Model-based approaches: These models are based on multi-physics and
multi-scale material systems and are rooted in the intricate electrochemical processes
within batteries [58]. A novel lithium-ion battery capacity prediction model utilizing
the Transformer-Adversarial Discriminative Domain Adaptation (T-ADDA) architecture
is presented by Liu et al. The model considers the charging voltage, charging current,

11

and charging temperature as input variables. They extract time series features from these
inputs using a Transformer network as part of their methodology [22].

Equivalent Circuit Models (ECMs): These models use electrical circuit com-
ponents like resistors and capacitors to simplify battery behaviour. ECMs are compu-
tationally efficient because they represent battery dynamics and degradation with fewer
parameters. They are popular because of their less complex circuitry and low computa-
tional load requirements. One drawback of these models is the requirement of laboratory
testing like electrochemical impedance spectroscopy (EIS) when it is required to update
the model parameters [58] [6]. Internal resistance and resistor-capacitor (RC) pairs are
among the parameters. These parameters, which are affected by temperature and state-of-
charge (SOC), are frequently determined via hybrid pulse power characterization (HPPC)
studies [45].

Empirical and Semi-Empirical Models: Empirical models fit a large amount of
experimental data to create aging models. On the other hand, Semi-Empirical Models
partially represent the aging mechanism by forecasting capacity using empirical data and
mathematics. These models are developed for lithium-ion batteries to estimate the loss
in battery cell life. These models provide information on the gradual reduction of battery
capacity, an essential factor in studying battery performance. For instance, a battery is
commonly thought to have reached its end of life stage when it reaches 70 to 80 percent of
its initially rated maximum capacity. Chu et al. (2018) and Laresgoiti et al. have drawn
attention to the semi-empirical lithium-ion battery degradation models proposed in recent
years to evaluate battery cell life loss.

Battery life (L), a parameter introduced by the model, indicates how much of the
battery’s capacity has been lost. Several variables, including discharge time (t), discharge
cycle depth (δ), average cycle state of charge (σ), and cell temperature (Tc), influence the
per-cycle degradation rate (fd). This rate varies throughout the battery’s life and is not
constant. An additional expression for the per-cycle degradation rate (fd) is as follows:

fd = (1− L) · fd(t, δ, σ, T c, 1) (3.1)

The idea that the deterioration rate and current battery life are related is introduced
here (L). The deterioration rate (fd) drops as the battery ages (L rises). The battery life
(L) is calculated by integrating the equation about L, considering the variations in capacity
over cycles. To get L, the deterioration rate is integrated into every cycle. The battery life
(L) is then expressed in terms of the initial battery life (L’) by rearranging the equation,
giving us:

12

L = 1− (1− L′) · e−fd (3.2)

In this context, L signifies the battery’s lifetime, L′ represents its initial lifetime, and fd
represents a linearized degradation rate per unit of time and cycle. This rate of degradation
is influenced by factors such as discharge time (t), discharge cycle depth (δ), average cycle
state of charge (σ), and cell temperature Tc. The equation captures the degradation process
in a simplified mathematical manner.

We will replace the variable L (battery lifetime) with C (battery capacity) to modify
the equation for practical use. Equation 3.2 then has the following form:

C = C0 · e−fd. (3.3)

In this case, C stands for the battery’s capacity, and C0 stands for initial capacity. The
following is a close approximation to the expression fd:

fd = k ·
(
i · Tc
ti

)
. (3.4)

In this equation, i stands for the charge-discharge cycle, Tc stands for the cell temper-
ature observed during the cycle, ti stands for the length of time for discharging, and k is
an empirical constant with a value of 0.13 [51] [19].

Data-Driven Approaches: While comparing the approaches for prediction, model-
based approaches are challenging to execute practically because they call for a thorough
understanding of physical chemistry and battery reaction processes. On the other hand,
data-driven models like neural networks are less complex to understand and show good effi-
ciency when models that predict battery degradation are created [44]. Data-driven models
for battery capacity estimation use real-time data to calculate the battery’s remaining
capacity [18]. Many methods are used for capacity estimation, including:

1. Neural Network: In neural network-based models, interconnected neurons learn from
the training data to estimate the battery capacity. Deep learning was used by Wang et
al. [47] to develop a transferrable data-driven capacity prediction framework for lithium-ion
batteries. Their framework uses a modular 2D network for increased efficiency and deep
neural networks (DNNs) on massive datasets collected in laboratories. Zhang et al. [55]
combine artificial neural networks, or ANN, with signal processing techniques. The method
uses advanced filtering to create smooth, incremental capacity (IC) curves that maintain
important feature values associated with battery aging. Following their extraction from

13

particular IC curve sections, these features are analyzed to see whether there is any asso-
ciation with battery capacity. The outputs of the ANN models are SOH and RUL, while
the input is the essential features collected from the data. Machine learning algorithms
are used more frequently to estimate lithium-ion batteries’ Remaining Useful Life (RUL).
These models use historical lifecycle data to forecast when a battery’s performance de-
clines significantly. Support Vector Machine (SVM), Gaussian Process Regression (GPR),
Extreme Learning Machine (ELM), Deep Neural Network (DNN), and Recurrent Neural
Network (RNN) versions like Long Short-Term Memory (LSTM) are some of the machine
learning methods used for this purpose.

2. Support vector machines (SVMs): The flexibility of SVMs to capture complicated
relations, overfitting protection, and adaptability to deal with different patterns and data
formats make them an invaluable tool for capacity estimation in Li-ion batteries. A tech-
nique for simultaneously calculating the capacity and state of charge (SOC) of lithium-ion
batteries is presented by Wang et al. They improve real-time and accurate battery state
and health assessments by combining SVMs and recurrent neural networks (RNN) [21]. In
the study presented by Patil et al., the authors introduce a methodology to predict the
RUL of lithium-ion batteries by using SVMs and Support Vector Regression (SVR) [30].

3. LSTM networks: The LSTM recurrent neural network was first proposed in 1997
by Sepp Hochreiter and Jurgen Schmidhuber. This network model is frequently used in
speech recognition, audio analysis, and time series prediction applications. Over the years,
the LSTM network structure has been improved with several additions, including stacked
LSTM, bidirectional LSTM, and CNN-LSTM. The LSTM model is built on the RNN and
contains a three-logic gate LSTM cell structure. These gates determine which information
must be preserved and which must be erased. Time-series data and complicated systems
are ideally suited for DNN and LSTM/RNN models, with LSTM addressing long-term
dependencies [15]. Choi et al. gave the capacity estimate framework using FNN, CNN,
and LSTM multi-channel machine learning methods, where the most effective learning
approach was LSTM, which FNN and followed in that order. If the computing power and
accessible datasets can manage its complexity, LSTM is preferred and can be used as the
base model for estimating the battery RUL [7]. Using estimated State of Health (SOH)
parameters as inputs, LSTM models are frequently used to predict lithium-ion batteries’
Remaining Useful Life (RUL). This enables precise degradation prognosis and lifetime
estimation [34].

14

3.2 LSTM cell architecture

In this section, we explain the inner workings of an LSTM network. A cell is a fundamental
element of an LSTM network. A cell is characterized by a set of inputs and some input
processing to produce a set of outputs, as illustrated in Figure 3.1. Let xk and yk denote
the input and output of the network at the current time step k. The upper horizontal line
in Figure 3.1 denotes the cell state abbreviated as sk for the current time step k, and sk−1

denotes the cell state at the previous time step k-1. The cell state selectively updates,
discards, or keeps information based on the information included in the input data and the
context from earlier time steps. The lower horizontal line in the Figure shows the hidden
layer’s output, denoted as hk at the current time step k and hk−1 at the previous time step
k-1. It decides which data should be kept and which should be discarded at each time step.

𝛔 Tanh𝛔 𝛔

Tanh

sk-1 sk

hk-1
hk

xk

fk ik gk ok

yk

Input

Output

Figure 3.1: The LSTM Cell Structure

An LSTM cell mainly has three gates: the input, output, and forget gate. Equation 3.5
shows the input gate ik operation, which chooses what new information should be added
to the cell state. In the input gate equation, the weight for the gate is denoted as Wxi.
The value bi represents a bias value for the respective gate. The Equation 3.6 shows the
operation of the output gate. It regulates the information flow from the current cell state
to produce the final output at timestep k. The weight for the output gate is denoted as
Wxo, and bo represents a bias value for the output gate. For both the input and the output

15

equations, xk is the input at time step k and hk−1 is the output from the hidden layer at
time step k − 1 in the past [7].

ik = σ(Wxixk + Whihk−1 + bi). (3.5)

ok = σ(Wxoxk + Whohk−1 + bo). (3.6)

The Equation 3.7 shows the forget gate operation, abbreviated as fk and is part of the
LSTM cell unit. It determines how much of the present information should be remembered
or forgotten using a sigmoid activation function denoted as σ, which assigns a value between
0 (forgetfulness) and 1 (recollection) [16]. In anticipation of the ensuing update of the cell
state, a brand-new candidate value gk is temporarily stored, given in Equation 3.8. The
tanh is the hyperbolic tangent function.

fk = σ(Wxfxk + Whfhk−1 + bf). (3.7)

gk = tanh(Wxgxk + Whghk−1 + bg). (3.8)

The forget gate fk is combined with the previous cell state sk−1 via element-wise product
represented by ⊙ in Equation 3.9. The input gate ik is combined via element-wise product
with the new candidate value gk. The sum of these two products determines the updated
cell state sk. The updated hidden state hk is shown in Equation 3.10 [28].

sk = fk ⊙ sk−1 + ik ⊙ gk. (3.9)

hk = ok ⊙ tanh(sk). (3.10)

The final hidden state is obtained through Equation 3.10. The final equation and
the values for the weights (Wy and bias by in the LSTM network are obtained through a
training process discussed in Section 5.5 through which we receive the final weights and
bias. Finally, the output yk is computed by Equation 3.11.

yk = σ(Wyhk + by). (3.11)

16

3.3 LSTM for time series data

This section explains how the LSTM model works for time series forecasting. To process
time series data to perform predictions, a sequence of LSTM cells is used, as illustrated in
Figure 3.2. At any time in step k, the input to the LSTM cell is given as xk, and after
processing, the output is given as yk. The first block represents an LSTM cell at step 1
with input and output as x1 and y1. The input and the previous hidden state are given
to the input and output gate inside the LSTM cell to generate some values, which are
further used to calculate the cell state and hidden state for the next step. The input to
the first LSTM cell is commonly initialized to zero, but random initialization can also be
used for the first timestep. The gating mechanisms that control the flow of information
into and out of the cell are discussed in the remainder of this section. Each LSTM cell
contains hidden nodes or units, which are the number of neurons in the hidden layer of
the LSTM cell. They determine the size of the weight matrices and bias vectors used in
the forget gate operations. These hidden units contribute to the capacity of the LSTM
to capture and represent information from the input sequence. In Figure 3.2, the hidden
nodes are depicted as circles inside each LSTM cell and are an essential component of the
LSTM architecture. The later LSTM block at time step k receives xk as input and uses
sk−1 (previous cell state) and hk−1 (previous hidden state) at timestep k to produce hk

(current hidden state) and sk (current cell state) and the output yk. The sk and hk repre-
sent the input for the next LSTM block at time step k+1. Our focus is on univariate time
series data for battery capacity and RUL estimation, where the objective is to create a
model that can use previous observations to forecast the following number in the sequence
precisely. Here, we describe a sophisticated Long Short-Term Memory (LSTM) model for
predicting univariate time series. We recommend that you refer to Figure 3.2 for a vi-
sual illustration of the mechanism underpinning this model’s functioning with time series
data to comprehend it fully. It shows the connectivity of LSTM cells during model training.

The LSTM blocks represent the LSTM cells, and we will have the training data as
instances of these LSTM cells in the case of forecasting battery capacity using the dataset,
with each instance representing a separate battery cycle. For each cycle, the internal mech-
anisms of the LSTM cells, such as the forget gate, input gate, output gate, and cell state
update, will be applied sequentially. The initial LSTM block receives three items as input:
s0 (cell state), h0 (hidden state), and x1 (current input at timestep 1), which are supplied
into the system. The first block analyses the data and produces two outputs: h1 (hidden
state output) and s1(updated cell state). The first LSTM block’s outputs, s1 and h1 are
used as inputs for the second LSTM block as training progresses. The next LSTM block in

17

the series receives these outputs after that. The cell state at time step k+2 (s2) undergoes
an update process that considers the impact of the prior cell state at time step k+1 (s1),
the output of the LSTM from the previous time step (h1), and the current input (x2). This
iterative process drives the information flow through the LSTM blocks for each training
cycle. Until the end of the training cycle, outputs are sequentially relayed across the LSTM
blocks. The last LSTM cell is the terminal block at the end of the training, denoted as
the nth timestep. The training process is completed by this terminal LSTM cell, which
analyses the inputs using precise information from the last cycle and generates the correct
outputs. As a result, the LSTM network can efficiently forecast battery capacity across
the series of cycles in our training data and capture temporal dependencies [57].

LSTM LSTM LSTM LSTM

hk-2 hk-1 hk
x1 xk-1 xk xk+1

hk+1

sk-2
sk-1 sk sk+1

y1 yk-1 yk yk+1

Figure 3.2: LSTM for timesteps

The training process involves iteratively feeding data which is processed and is divided
into chunks of window into the LSTM model, allowing the network to learn patterns with
the help of gates present in the internal LSTM cell architecture. The temporal dynamics
captured by the LSTM’s ability to retain and update information over these sequences
facilitate the modelling and helps in learning patterns in the battery capacity time series.
The window size influence the model’s capacity to generalize to future capacity estimates.
Windowing technique optimize the LSTM’s performance for accurate and robust capacity
predictions.

Our methodology adopts a systematic approach to input sequence construction for bat-
tery capacity estimation inspired by time series data windowing. An example is illustrated
in Figure 3.3, where input configuration involves utilizing six previous values to predict
the subsequent value in the sequence, denoting an input width of six and a target variable
width of one. In the temporal context of time series data, the input spans from time zero

18

Figure 3.3: LSTM: Input and Output using window [42]

to time 5, culminating in predicting the target variable at time 6. This windowing strat-
egy is foundational in our capacity estimation framework for batteries. The fixed window
length is sequentially fed into the LSTM model for each iteration, with the window sliding
incrementally by 1. In the example, during the initial iteration, the input comprises values
from time zero to time 5, and this window shifts progressively for subsequent iterations.
The output for each iteration corresponds to the sequence value at times 6, 7, 8, and so
forth. This meticulous input-output configuration optimally leverages the LSTM model’s
ability to discern temporal patterns, contributing to the accurate and dynamic battery
capacity estimation over sequential time points.

3.4 Key LSTM model parameters and metrics

For understanding and optimizing LSTM models in the context of battery capacity es-
timation, this section describes the critical parameters for this model. This exploration
encompasses hidden nodes, a pivotal aspect in processing sequential data, and the window
size parameter influencing the temporal context considered by the LSTM network. More-
over, we illustrate the sliding window concept in LSTM. This section also discusses the
significance of Root Mean Square Error (RMSE) as a widely used metric for evaluating
the accuracy of numerical predictions in capacity forecasting.

Hidden nodes: The hidden nodes are also called hidden units and are essential for
processing the information as it moves across the LSTM network. Hidden nodes capture

19

sequential data from earlier time steps and are also responsible for storing this information.

A memory cell that can retain and store data over several time steps is present in every
hidden node. One of the main characteristics of LSTMs is their capacity to remember
historical data, which is crucial for identifying long-term dependencies. The information
carried over from the previous steps and the information from the current input is processed
by hidden nodes. They update and mix this data using various mathematical operations,
allowing the network to choose what to output, forget, or recall at each given time step [38].

An LSTM layer’s hidden node is a hyperparameter that can be varied in an LSTM
model architecture. Expanding the number of hidden nodes improves the network’s ability
to identify complex patterns. In improper regularisation of these hidden nodes, the model
may be overfitted [12].

Window size: The window size refers to the number of input elements or prior time
steps the network considers before predicting the next time step. It controls the amount of
previous data the LSTM network considers as a sequence length to predict the next value
in the sequence.

The LSTM sliding window technique splits historical data into overlapping windows of a
predetermined size. Each window creates a series of previous data points utilized as input to
forecast the following value. In Long Short-Term Memory (LSTM) networks, window size
refers to the number of successive time steps or input items treated as a single unit. A bigger
window size allows the model to consider a broader temporal context, which improves
its capacity to identify complex patterns in the data. The window incrementally moves
through the data over time, recording fresh input sequences and updating the predicted
target output. Using this method, the model may learn temporal patterns and correlations,
making it helpful in predicting the capacity of batteries over time and detecting anomalies
based on previous trends [3].

The basic idea is shown in Figure 3.4, where we use the sliding window methodology
to anticipate future capacity values using historical capacity values. This method uses the
neural network’s recent temporal steps as input to forecast the next step. Combining input
and output data can be called a sliding window. This methodology’s flexibility comes from
the adjustable parameters: the length of the input sequence and the length of the output
sequence. This is flexible for time series forecasting since it enables the window size to be
dynamically adjusted.

The figure shows the sliding window’s width as the red block, allowing us to concentrate
on the value right before the expected capacity, or the (k - 1)th term, to forecast the kth
term. The window size is adjustable and represents the number of earlier observations to
project future values. The picture also illustrates how we repeatedly use previous values to

20

anticipate upcoming ones during each subsequent iteration. To predict the 99th value, we
first use the values inside the window. Next, we forecast the 100th value using the window
size plus the 99th value, and we repeat this iterative procedure until we have predicted
future capacity values for all cycles. This method ensures that all temporal dependencies
are fully captured for precise capacity forecasts across cycles [3].

X2 X3 X98 X99 XkX1 X100

X2 X3 X98 X99 XkX1 X100

X2 X3 X98 X99 XkX1 X100

Window size Label

X Input

Figure 3.4: Sliding Window Concept in LSTM

Root mean square error: The square root of the mean of the squared errors is a
commonly used metric for evaluating the general accuracy of numerical predictions. The
formula for RMSE is as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Oi)2 (3.12)

In this case, n is the total number of observations used in the analysis, Oi denotes the
observed values, and Si denotes the predicted values for a particular variable.

Since RMSE is a good measure of precision, it is beneficial for comparing and predicting
mistakes between different models or configurations related to a specific variable. It’s
important to remember, though, that the magnitude of the variables affects how effective
RMSE is, therefore it shouldn’t be used to compare errors between various variables [40].

21

Chapter 4

Datasets for capacity prediction

Lithium-ion (Li-ion) battery testing is necessary yet expensive and time-consuming. Open
battery datasets are an excellent source for investigation and study. Some research groups
have made their Lithium-ion battery data available for the public to compare different
algorithms and techniques. This section discussed these critical datasets.

4.1 NASA dataset

The NASA Ames Prognostics Centre of Excellence (PCoE) is home to the battery prog-
nostics testbed that provided the information used in this study. Commercially available
lithium-ion 18650-sized rechargeable batteries were put through carefully planned trials
with a variety of tools as part of the testbed gathering, which submits the batteries to
three different operational profiles, including charging, discharging, and electrochemical
impedance spectroscopy (EIS) at varying temperatures.

Voltage and Current Dynamics During Charging and Discharging:

The two operational profiles involving charging and discharging at room temperature were
applied to four cells, designated 5, 6, 7, and 18. In this study, we used the data from cell 5.
A constant current (CC) mode operating at 1.5A was used during the charging phase until
the cell voltage reached 4.2V; at this point, a constant voltage (CV) mode was switched on
until the charge current was lowered to 20 mA. After that, the cell voltage had to decrease
to a certain level of 2.7V for cell five before the discharge phase could begin.

22

The dataset excerpt shown in Figure 4.1 provides a detailed overview of battery dis-
charge operations by condensing a sample of discharge data. The figures’ columns include
crucial elements necessary to characterize the discharge process. The charging dataset
contains the same columns as the discharging set except for the capacity values.

Each critical column in the battery’s discharge dataset provides a unique perspective
on how the battery behaves throughout discharge cycles. As the discharge process moves
forward, the column that displays the measured voltage helps to know about the battery’s
terminal voltage. While the temperature variation study offers a critical perspective on
the battery’s thermal dynamics. It helps to study the effect of temperature change on the
performance and safety of batteries. The measured current clarifies the charge flow rate,
giving light to the battery’s energy supply capacity. The current charge and voltage charge
values explore how the battery and load interact, explaining how the battery’s energy
satisfies the load’s requirements. Time is a chronological reference point that provides
context for observing changes throughout discharge cycles. The battery’s capacity to store
energy is given as capacity, including its ability to supply charge up to 2.7 Volts.

Figure 4.1: Battery 5 Discharging field visualization

The testbench includes equipment like voltmeters, ammeters, and a thermocouple sen-
sor suite to monitor various parameters, as well as a programmable 4-channel DC electronic
load and a 4-channel DC power supply for managing discharge operations. The battery
impedance behaviour was investigated using specialized electrochemical impedance spec-
troscopy (EIS) gear. A comprehensive dataset was produced due to the imposition of
various operational circumstances in an environmental chamber. A PXI chassis-based
data acquisition (DAQ) system managed the complete experimental setup, ensuring ac-
curate control and data collecting. This collection of tools made it possible to cycle the
batteries systematically under various conditions, allowing for the analysis of capacity fade
and degrading effects.

Voltage and Current Dynamics During Charging: To understand how voltage and
current dynamics change throughout the charging cycle, see Figure 4.2. The illustration

23

shows a pattern in which the current holds steadily until the voltage increases to 4.2 Volts.
The voltage then stabilizes at 4.2 Volts while the current decreases gradually and eventually
reaches 1.4 Amperes. This visualization clearly represents the complex interaction between
voltage and current parameters throughout the charging cycle, revealing notable transitions
and variations compellingly.

Figure 4.2: Current and voltage for Charging Cycles

Figure 4.3: Current Vs. time for Discharging Cycles

Voltage and Current Dynamics During Discharging: An illustration of the voltage and
current dynamics within the discharge cycle is shown in Figure 4.3. Notably, the graphic
reveals a characteristic pattern where the voltage gradually drops until it approaches a

24

threshold of 2.7 Volts. Interestingly, this voltage decline co-occurs with a constant current
reading of 2 Amperes, indicating a continued discharge rate. This illustration explains
how voltage and current fluctuations interact throughout the discharge cycle. The figure
accurately depicts the critical phases of the cycle, displaying the synchronized changes in
voltage and current and illuminating the battery’s operation during this time.

4.1.1 Effect of ageing on the NASA battery data

Over time, a natural consequence is the gradual degradation of battery capacity. Figure
4.4 shows the battery capacity degradation of cell 5 with the increase in the number of
charging and discharging cycles. Lithium-ion batteries were subjected to discharges at
different current load levels until their voltage fell to predetermined thresholds as part
of the testbed dataset collection. Some thresholds were purposefully placed below the
manufacturer-recommended value of 2.7 V to cause deep discharge aging effects. The
battery’s increased aging was caused by this charging and discharging cycle. The trials
were declared complete when the batteries achieved the end-of-life (EOL) requirement,
defined as a 30 percent decline in rated capacity, particularly going from 2 Ah to 1.4
Ah. By carefully cycling the batteries under controlled circumstances, they were able to
record the effects of various discharge currents and deep discharge situations on battery
deterioration and capacity decline.

Figure 4.4: Capacity vs Cycles

Effect of aging on Charging: To observe the aging on charging, we’ll examine the
peculiarities of the changing current, voltage, and temperature charging parameters over

25

time.

With the help of this study, it is possible to spot trends, outliers, and differences
between fresh and aged batteries and learn important details about battery performance,
deterioration, and potential failure processes. Through these changing parameters, we will
observe the capacity degradation as time passes for the batteries. We will plot the charging
cycle’s current, voltage, and temperature parameters.

Figure 4.5, 4.6, and 4.7 the graph of changing charging parameters: Current, Voltage,
and Temperature concerning time. It shows the voltage, current, and temperature charging
profiles for different remaining capacities, including cycles 1, 50, 100, and 150. Notably,
the old battery begins to lose current from the constant current phase sooner than the
fresh battery and achieves a value of 4.2 V earlier than the fresh battery. In addition,
compared to a fresh battery, the older batteries reach a higher maximum temperature
faster. These findings suggest that battery aging causes changes in charging behaviour,
including earlier voltage peaks, quicker current drop-offs, and faster temperature increases
as batteries go through cycles. These findings point to the impacts of battery degradation.
The observed variations in charging characteristics, such as the earlier voltage peak, earlier
current fall, and quicker temperature rise in old batteries, serve as crystal-clear indicators
of the degradation process occurring over time. [29].

Figure 4.5: Current Vs. time for Charging Cycles

Effect of Ageing on Discharging: The dynamic variations in discharging parameters over
time are shown in Figures 4.8, 4.9, and 4.10. Notably, the discharge current and voltage
of the battery that is used enough and is almost at the end of its cycle (150th discharge
cycle) fall more quickly than those of the battery when it was fresh (1st discharge cycle).

26

Figure 4.6: Voltage Vs. time for Charging Cycles

Figure 4.7: Temperature Vs. time for Charging Cycles

27

Figure 4.8: Current Vs. time for Discharging Cycles

Figure 4.9: Voltage Vs. time for Discharging Cycles

28

Figure 4.10: Temperature Vs. time for Discharging Cycles

In addition, the older battery shows a quicker temperature rise than the newer battery.
These patterns show how battery deterioration manifests over time through accelerated
changes in thermal behaviour and discharge performance.

The constant charging and draining process accelerates battery aging. The batteries
were evaluated in the experiments until they reached the end-of-life (EOL) standards. This
paper’s primary objective is to offer accurate estimates of the Remaining Useful Life (RUL)
for these batteries, which is essential for comprehending their operation and making the
most of their use.

4.1.2 Data Patterns and Variability in the NASA Dataset

Randomness in a dataset describes the existence of abnormalities or some observed varia-
tions in the data. This can be because of measurement errors, variability or environmental
factors. Within the NASA dataset, randomness can be seen if data points diverge from
anticipated trends. Good quality instruments, reproducible experimental configurations,
and careful data gathering all work together to reduce the amount of randomness in the
NASA dataset. Therefore randomness is given minimal weight in the modelling process in
this study with the majority of the attention given to systematic trends and degradation
mechanisms found in the dataset.

From Figure 4.4 one can observe some spikes in capacity measurements. This is because
when successive cycles are started, the battery can experience a partial recovery of capacity.

29

This is called relaxation effect in lithium ion batteries. This process is explained by the
internal strains in the battery relaxing and the components rearranging themselves during
the rest period, which allows the battery to partially restore its lost capacity.

4.2 CALCE dataset

Research on lithium-ion batteries can benefit significantly from the battery dataset pro-
vided by the CALCE (Centre for Advanced Life Cycle Engineering). Research groups
worldwide are welcome to collaborate on this dataset. It contains experimental test data
on lithium-ion batteries, covering battery degradation and performance data. This dataset
is helpful for battery state estimation, end-of-life and remaining usable life prediction,
accelerated battery degradation modelling, and battery capacity estimation [46].

Figure 4.11: CALCE dataset

The CALCE battery dataset’s characteristics are:

1. Different types of batteries included: Dataset includes a variety of battery form
factors, such as prismatic, pouch, and cylindrical.

2. Diverse range of Chemistry: Includes Nickel Manganese Cobalt Oxide (NMC),
Lithium Iron Phosphate (LFP), and Lithium Cobalt Oxide (LCO), which enables re-
searchers to investigate the behaviour of distinct lithium-ion batteries.

30

3. Testing data profile: A wide range of test data, such as continuous full and par-
tial cycling, storage, dynamic driving profiles, measurements of open circuit voltage, and
measurements of impedance, are provided by the dataset.

5. Reliability Testing: Data from ongoing reliability testing and qualification testing
are included in the dataset to evaluate how samples from various production lots perform
in comparison.

The CS2 batteries are one of the types included in the CALCE dataset. These batteries
went through constant current and constant voltage charging. There was a continuous
current till the voltage reached 4.2 V. The cutoff voltage for these batteries is 2.7 V.
The dataset contains details about the features of charging and discharging, cycling at
various current rates, and other particular testing scenarios. Visualization of the capacity
degradation data of CS2 cells from the CALCE dataset is given in figure 4.11. Its capacity
degrades as the battery goes through continuous charge and discharge cycles. The figure
contains the capacity values of four cells. One cell named CS235 is chosen for training and
testing in this study. This cell’s total number of charge and discharge cycles is 882. The
maximum initial capacity for this cell is observed to be 1.1263, which gives the EOL value
as 0.784 by keeping the critical percentage θ as 70 in Equation (2.5). Figure 4.12 shows
the capacity degradation for CS235 with charge and discharge cycles, along with the EOL
line.

Figure 4.12: CALCE dataset: CS235 cell

31

Chapter 5

Proposed LSTM models for RUL
prediction

This section introduces three models and provides information on the LSTM architecture.
This section explains the inputs and outputs that each LSTM model requires for its training
and operation, along with the training process. It also discusses the algorithm and pseudo
code for each model. It discusses the input, output, and preprocessing steps and the
training process used by LSTM networks and briefly explains the basic and proposed
LSTM model using algorithms and pseudo codes.

5.1 Baseline LSTM model: LSTM 1

This section provides a detailed exploration of the basic LSTM model, LSTM-1. The
discussion thoroughly explains each model’s intricacies, complemented by an in-depth ex-
amination of the corresponding algorithms and pseudo code. The LSTM 1 model makes
precise time series predictions using LSTM networks. This model takes the input data and
the historical capacity values and feeds these values to the LSTM network. In Figure 5.1,
if we have N, samples of the dataset are taken in the first layer. The data are then pre-
processed and normalized to ensure that the model receives consistent input. The network
gets the data and organizes it into sequences with a particular window size. Then, the
network learns to forecast future values based on prior observations using the structured
sequences as input. As a result, the model can comprehend the underlying dependencies
and patterns in the time series data. These forecasted capacity values are then stored and

32

used to calculate the RMSE. The model is trained to reduce the discrepancy between its
predictions and the actual data, as shown in Figure 5.1. The Root Mean Squared Error
(RMSE) quantifies the accuracy of the model’s predictions versus the actual data and
evaluates the model’s performance.

Collect N
samples

Preprocessing
data

Restructuring
data with

window size

LSTM
modelForecastStore RMSE

Repeat Experiments X
times

Figure 5.1: LSTM-1 flow diagram

LSTM 1 Model Implementation:

1. Preprocessing and Loading Data: The code loads a dataset first. In this instance,
battery capacity data—typically gathered from lithium-ion batteries—is loaded using the
‘load data‘ function. The data is preprocessed and normalized to guarantee that the model
receives consistent input.

2. Data Splitting: - Training and testing sets are created from the dataset. Forty
percent of the data is used for testing, and sixty percent is used for training.

3. Transformation of Data: The method to create a dataset in the code is responsible for
transforming the dataset into a format appropriate for time series prediction. It generates
pairs of input-output, where the output is the upcoming capacity value to be predicted,
and the input is a series of past capacity values.

4. Model Architecture: TensorFlow’s Keras API generates an LSTM model. The model
comprises units called neurons, which are present in the LSTM layer. There is a single
unit-dense layer. The Adam optimizer and the mean squared error loss function compile
the model. With this configuration, the model is ready for training.

5. Training the Model: The parameter number of epochs refers to how many times a
machine learning model goes through the whole training dataset in one iteration. The pa-
rameter batch size controls how many training instances are processed in a single iteration,
which impacts training speed and memory usage. The model is trained on the training
data, and during training, the model weights are updated using the loss function.

33

6. Creating Predictions: After it has been trained, the model is used to create predic-
tions on training and testing data. The model generates predicted capacity values using a
predict function observed from the pseudo codes.

7. Inverse Transformation: Using the Min-Max scaling earlier in the code, the pre-
dicted values are inversely transformed to their original scale. This step ensures that the
projections and the original data have the same units.

5.2 Proposed LSTM models: LSTM-2 and LSTM-3

In this section, the inputs and outputs that each LSTM model requires for its training and
operation are explained along with the training process. This section also discusses the
algorithm and the pseudo code for each model.

5.2.1 LSTM-2 model

LSTM-2 uses a dynamic retraining approach that entails adding every predicted test pat-
tern to the training dataset and then improving the model for two additional training
epochs before the subsequent forecast. Through this iterative process, the LSTM model is
guaranteed to catch initial patterns and adapt to changing trends, improving its accuracy
and propensity for prediction. Figure 5.2 shows the flow diagram of this approach. The
unique aspect of this method is its retraining mechanism, which allows the LSTM model
to adjust to changing patterns and maintain its accuracy over time. After each cycle, the
most recent data point is added to the training set. The model can wait for more cycles,
too, which is discussed in the next section. For this case, we assume the Z value is 1.
Predictions are made for the test dataset using the trained model, and then these forecasts
are shrunk to the original data range. In the model’s flow diagram, a fundamental block
shows how patient the model is as it waits for a predetermined amount of samples given
as Z before smoothly integrating them into the training set for retraining. This retraining
technique helps the model become more accurate and flexible over time. The root mean
squared error (RMSE), which measures the discrepancy between the predicted and actual
values, is used to evaluate the model’s performance. The entire procedure is repeated for
a predetermined number of cycles, with the performance results being kept and compiled
to ensure resilience. This iterative approach uses the LSTM’s capacity to record temporal
relationships and the continual retraining mechanism to improve capacity estimation accu-
racy in dynamic scenarios, leading to a more in-depth comprehension of system capabilities
in the given context.

34

Collect N
samples

Preprocessing
data

Restructuring data
with window size

LSTM
modelForecastStore RMSE

Repeat Experiments X
times

Wait for Z
Samples

Merge
Data

Figure 5.2: LSTM-2 flow diagram

LSTM-2 Implementation:

By adding each predicted test pattern to the training dataset and dynamically retrain-
ing the LSTM model over two training epochs before the next forecast, LSTM 2 employs an
incremental approach with retraining to increase accuracy over time. The LSTM model’s
accuracy and prediction abilities are improved by this iterative process, which also helps
the model identify early patterns and adjust to shifting trends. The root mean squared
error (RMSE) is used to assess model performance when the procedure is performed a
predefined number of times. The implementation steps are very similar to those of LSTM
1, but the retraining part is extra.

1. Dataset and preprocessing: After loading the dataset, carry out any required data
preprocessing. To build input-output pairs, transform the dataset into a supervised learn-
ing format. Then, the information is stored in test and train sets. We are scaling the data
to a desired range, from -1 to 1.

2. Incremental Training: To evaluate the model’s performance, do an iterative exper-
iment using the original data training set. Then, update the model using the new data
point from the test set for each time step in the test dataset and utilize the LSTM model,
creating a forecast in one step. To get the prediction within the initial data range, reverse
the scaling and differencing procedures. For retraining, append the new data point from
the test set to the training copy. The training copy, a duplicate of the original training
dataset, is appended with the new data point from the test set. The model can now learn
from the latest data thanks to this modification. For the whole test dataset, the procedure
is repeated.

The difference with LSTM-1:

1. The LSTM-2 model employs an incremental technique that adds new data to the
training dataset, continuously enhancing the model’s capacity estimation. In contrast,

35

LSTM 1 trains the model from scratch only once. Each predicted test pattern is added to
the training dataset to retrain the LSTM-2 model. It goes through more training epochs
after adding fresh data before generating the next forecast. As a result, the LSTM model
can adjust to changing trends and patterns in the data.

2. LSTM-2 uses incremental training to seamlessly incorporate fresh data into the
training set so that the model does not suddenly forget previously learned patterns. It
offers a continual learning process, particularly helpful in dynamic situations.

5.2.2 LSTM-3 model :

This experimental model used a unique wait-and-retrain strategy to improve the LSTM
model’s prediction performance for the Remaining Useful Life (RUL) estimate. In this
method, the model’s predictions were based on data gathered from ten additional oper-
ating cycles before the retraining procedure was started. The model obtained enough
operational data to capture recent battery behaviour patterns by purposefully delaying.
The LSTM model underwent retraining utilizing the newly received data from the prior
cycles after the ten-cycle waiting time. The most recent operational insights were easily
incorporated during this retraining phase, enabling the model to adjust to any changing
dynamics in battery performance. The model’s ability to predict outcomes could be im-
proved by including a larger and more recent dataset, considering the shifts and trends
noticed throughout the waiting period. The main goal of the wait-and-retrain strategy
was to balance information assimilation with promptness. While waiting ten cycles would
cause forecasts to be delayed, it made sure that the model was aware of recent operational
changes, perhaps resulting in more precise RUL estimates. In Figure 5.2, we can set the
parameter Z, which is the number of samples that the network waits for is 10. This strategy
attempted to overcome the drawbacks of non-retraining and incremental retraining after
every cycle by allowing the model to wait for more data for retraining. It provides a poten-
tial path for increased predicting accuracy in dynamic battery operational circumstances
and decreases the computational requirements.

LSTM-3 Implementation:

To enhance the model’s prediction performance for Remaining Useful Life (RUL) esti-
mation, LSTM 3 presents a novel ”wait-and-retrain” technique. Here’s a summary of the
main stages involved in implementation:

1. Repeats and Updates: To ensure statistical robustness, the experiment is pro-
grammed to run for a predetermined number of ”repeats,” or periods during which the
entire procedure will be repeated. The’ updates’ parameter determines the number of

36

updates or retraining epochs the model experiences following the waiting time. The pa-
rameter ’update interval’ indicates the number of data points at which the model will be
updated. In this case, it is set to 10.

2. Waiting and Retraining: The wait and retrain approach is used in LSTM-3 model.
The model produces a one-step forecast for each repeat and time step in the test dataset.
The model begins retraining after a set waiting period which is indicated as update interval
in this study. Retraining allows the model to adjust to the latest operational insights using
the current data from the recent historic cycles. For better forecasts, the model must be
able to capture changes and trends noticed throughout the waiting period.

3. Performance Evaluation: The root mean squared error (RMSE), a measure of pre-
diction accuracy, is used to assess the model’s performance following each repetition. To
evaluate the model’s overall performance, the RMSE scores are gathered for every repeat.
The goal of the wait-and-retrain approach is to achieve a balance between promptness
and information absorption. It purposefully postpones retraining by waiting for ten more
operational cycles to record recent battery behaviour trends. This the method may resulis
t in more precise RUL estimations when dynamic battery functioning.

5.3 PICE-LSTM

The PICE-LSTM model distinguishes itself from LSTM-1, LSTM-2, and LSTM-3 through
two fundamental assumptions. Firstly, it acknowledges that accurately estimating the RUL
requires a multi-step prediction approach. Instead of relying on a single-step prediction,
the model employs a method that does not depend on test data during the inference phase.
It iteratively uses the predicted values as input for subsequent predictions, enabling the
forecast of multiple capacity values into the future, ultimately yielding the estimated RUL.

Secondly, the model adopts a pragmatic approach by recognizing that utilizing the
entire historical dataset, from cycle one to the present, may not be necessary. The model
selectively employs a smaller batch of data to streamline training and overcome data volume
challenges. This batch, typically consisting of the data preceding the prediction initiation
point (e.g., 25 points before cycle 100), serves as a more focused training set. This strategic
use of recent data ensures the model remains relevant and practical, mainly when large
historical datasets are impractical or provide diminishing returns.

This model’s efficacy becomes apparent when real-time predictions are essential, and
data availability is limited. By enabling multi-step predictions and optimizing data utiliza-
tion, PICE-LSTM is a practical solution for electric vehicle battery capacity estimation,

37

offering both accuracy and efficiency in dynamic, real-world applications. Figure 5.3 shows
the architecture of this model. The first step involves collecting and processing the data.
The next step consists of defining a window with all the past points that a model will use
each time for a forecast. The defined training data is used to train the LSTM model. After
the training, the trained LSTM model does a one-step forecast. This value is stored in the
window, and this new updated window is used to forecast the next value in sequence. This
process repeats until we notice that the forecasted capacity values are below the threshold,
indicating the battery’s EOL.

Collect N
samples Preprocess data Restructure data with window

Train LSTM
model

Forecast next
value in

sequence

Add forecast to
window

Slide
window
by 1

Store all
forecasts

Calculate
RUL

Repeat till forecasted
value = EOL

Figure 5.3: PICE-LSTM flow diagram

5.4 Pseudo code for proposed LSTM models

In this section, the inputs and outputs that each of the LSTM models requires for its
training and its operation are explained. The variables used in the model are given in
Table 5.1.

Consider an input sequence denoted by X and given as [x1, x2, x3, . . . , xk], where k rep-
resents the number of samples in the dataset. The first step is to normalize the data using
min-max normalization, as shown in Equation (5.1), where X ′ represents the normalized
data for X, X is the original data, min(X) is the minimum value of X, and max(X) is the
maximum value of X.

X ′ =
X −min(X)

max(X)−min(X)
(5.1)

The next step involves dividing the sequence X ′ into equally spaced time series seg-
ments X̂ by using a sliding window of length w. Sliding window methodology is used to

38

Table 5.1: Variables and Their Meanings in Proposed Model
Variable Meaning

X Original time series data

X ′ Min-max normalized time series data

X̂ Sliding window output

d Number of hidden nodes

B Batch size

e Number of epochs

q Train-test split percentage

α Learning rate of optimizer

ϵ Number of updates

Z Update interval

w Window size

b Final Bias term in the algorithm

W Final weight in the algorithm

Y Predicted time series

anticipate future values using historical values. The Figure 3.4 shows the sliding window
width as the red block, allowing us to concentrate on the value right before the expected
output. The window size is adjustable and represents the total number of earlier observa-
tions used to predict future values. It can be seen as slicing data into small lists of sizes
to pass on to the LSTM model at each step [3] [14].

We start with a normalized sequence X ′ = [x′
1, x

′
2, x

′
3, . . . , x

′
k]. This sequence is then

divided into smaller slices, each of length w, with an overlap of 1, forming a vector X̂ =
[x̂1, x̂2, x̂3, . . . , x̂k], where each x̂i is a vector of w elements. The first vector, x̂1 is given as
x̂1 = [x′

1, x
′
2, x

′
3, . . . , x

′
w]. Subsequently, each following vector, like x̂2, is obtained by shifting

the window by one element, including the next element in the sequence (x′
w+1). This process

continues, and in general, the k-th vector x̂k represents a window of w consecutive elements
by shifting the window by one element at each time step: x̂k = [x′

k−w+1, x
′
k−w+2, . . . , x

′
k].

This sliding window approach captures sequential patterns in time series data, enabling
the creation of training examples for a model based on overlapping windows of the original
sequence. Each vector represents a window of consecutive elements and the window shifts
by one element for each subsequent vector. The process can be written as an Equation
represented as Equation (5.2).

39

X̂ =

x̂1

x̂2
...
x̂k

 =

x′
1 x′

2 . . . x′
w

x′
2 x′

3 . . . x′
w+1

...
...

...
...

x′
k−w+1 x′

k−w+2 . . . x′
k

 (5.2)

The next crucial step involves splitting the data into train and test sets. A certain per-
centage of the available data, X, is designated for training the model, while the remaining
portion is set aside for validation or testing. This separation ensures that the model can
learn patterns from the training data.

LSTM-1: The proposed algorithm, LSTM-1, is designed for time series prediction. The
model requires input values presented as a normalized and window-sliced time series for
training. This implies that for prediction made for the time step k, the model looks back
at the series of values from k − w + 1 to k. The input provided to the model will be x̂k,
with the corresponding output denoted as yk. The relationship between input and output
is captured by Equation (5.3) [50].

yk = p(x̂k) (5.3)

At cycle k, w represents the length of the sliding window, and p denotes the nonlinear
prediction function derived from the LSTM model. The inputs to the LSTM model are
given in Algorithm 1 along with the intermediate steps required to generate the output from
the input. The algorithm needs as input a time series dataset X along with parameters
such as time window size w, hidden nodes d, batch size B, epochs e, and learning rate
α. The algorithm comprises two main phases. In the first phase (Training), the input
time series is normalized, and a sliding window is applied to create subsequences (X̂). A
training set (Train data) is formed for each subsequence, and an LSTM model is trained
using specified parameters. The Adam optimizer is employed for optimization. In the
second phase (Inference), the final network parameters obtained from training are used to
predict the output (Y) using the sliding window approach. The goal is to get the expected
time series (yn+1, yn+2, . . . , yk).

In Figure 5.4, we also provide a pseudo-code consisting of three main functions. The
first function, named scale, is for data scaling, consisting of Min-Max scaling of the original
dataset X. Second is LSTM model, which is for building and training the LSTM-1 model.

The third function window is for creating time series segments using a sliding window.
The primary function, including all these three functions, is called Predict, which reads

40

Algorithm 1 LSTM-1: Time Series Prediction

Require: X: Time series data, w: Window size, d: Hidden nodes, B: Batch size, e:
Epochs, α: Learning rate

1: First Phase (Training):
2: Min-Max normalize time series X to get X ′. (Refer to Equation (5.1))
3: for i = 1 to k do
4: Divide sequence X ′ into equally spaced time series segment X̂ using a sliding window

of length w (Refer to Equation (5.2) and Figure Figure 3.3)
5: Train data← q%× X̂ = {x̂1, x̂2, x̂3, . . . , x̂n}
6: Train model ← LSTM model(Train data, d, B, e) {Refer to Equations ??-3.11 for

LSTM cell working}
7: Optimiser ← tf.train.AdamOptimizer(α)
8: end for
9: Second Phase (Inference):
10: Let W and b be the final network parameters (weights and bias) obtained in the first

phase.
11: Output: Y = W ×X + b (Refer to Equation (3.11))
12: Target: Get predicted time series

Y = {yn+1, yn+2, . . . , yk}.

41

a battery dataset, scales it, generates time series segments, trains an LSTM model, and
predicts on test data. The algorithm uses the Min-Max scaling method, constructs an
LSTM model with specified architecture, and utilizes a sliding window approach for time
series segmentation.

LSTM-2: The LSTM-2 model is proposed with an identical training phase as LSTM-
1. The key distinction lies in the inference phase model, which is retrained to predict
future time steps better. The algorithm 2, LSTM-2, is designed for incremental time
series prediction. The first phase (Training) normalizes the time series data, divides it
into segments, and trains the model using a sliding window approach. The second phase
(Inference) involves updating the model for subsequent data points. The final network
parameters are used to predict the time series. The target is to obtain the expected
time series Y with specific indices. The algorithm incorporates critical elements such as
window size, hidden nodes, batch size, epochs, learning rate, updates, and update interval
to optimize the training and updating process.

The presented algorithm is a two-phase process for forecasting time series data using an
LSTM neural network. In the first phase, referred to as the training phase, the processing
is similar to the LSTM-1 model. In the second phase, known as the inference phase, the
trained model is updated (Update model) for k−n cycles with specified update parameters
(ϵ and Z). The final network parameters obtained are used to predict the output Y by
applying them to the sliding window approach. The goal is to obtain the predicted time
series Y = {yn+1, yn+2, . . . , yk} using the obtained weights (W) and bias (b) in the output
calculation.

The pseudo-code in Figure 5.5 represents LSTM-2, tailored for time series prediction
with incremental updates. The Predict update function loads the battery data, scales it,
and prepares the training and test data. It then trains an LSTM model and updates
it incrementally. The scale function normalizes the dataset, the window function cre-
ates time series segments, and the LSTM model function sets up the LSTM model. The
update model function is designed to refine the LSTM model (Train model) during the
inference phase. It iterates through the provided time series data (Test data) and, at spec-
ified intervals (update interval), which is set to 1 for LSTM-1, which gives Z=1, performs
a set number of updates (updates) to the existing model. A new LSTM model is trained
using the augmented training data (Train data) for each update. The predictions (predict)
are then generated based on this updated model. Subsequently, the function extends the
training data by incorporating the current time step of the test data. This iterative pro-
cess enhances the adaptability of the LSTM model, allowing it to evolve and improve its

42

Algorithm 2 LSTM-2: Incremental Time Series Prediction

Require: X: Time series data, w: Window size, d: Hidden nodes, B: Batch size, e:
Epochs, α: Learning rate, ϵ: Updates, Z: Update interval

1: First Phase (Training):
2: Min-Max normalize time series X to get X ′. (Refer to Equation (5.1))
3: for i = 1 to k do
4: Divide sequence X ′ into equally spaced time series segment X̂ using a sliding window

of length w (Refer to Equation (5.2) and Figure 3.3);
5: Train data← q%× X̂ = {x̂1, x̂2, x̂3, . . . , x̂n}
6: Train model ← LSTM model(Train data, d, B, e) {Refer to Equations (??)-(3.9)

for LSTM cell working}
7: Optimiser ← tf.train.AdamOptimizer(α)
8: end for
9: Second Phase (Inference):
10: for i = n + 1 to k do
11: Update model(Train model, ϵ, Z)
12: end for
13: Let W and b be the final network parameters (weights and bias) obtained in the second

phase.
14: Output: Y = W ×X + b (Refer to Equation (3.11))
15: Target: Get predicted time series

Y = {yn+1, yn+2, . . . , yk}

43

predictions in response to changing patterns in the time series data. The final output of
the function is the set of forecasts Y.

LSTM-3: This model addresses computational challenges by adopting a wait-and-
retrain strategy. This approach aims to mitigate the computational load associated with
retraining the model at each time step. The algorithm and code for LSTM-3 with Z=10 re-
main identical to those of LSTM-2, Z=1, with the only distinction being the value assigned
to the update interval. In LSTM-2 at Z=1, we sought to update the model at every time
step, and with LSTM-2, Z=10, the model is updated after every ten samples. Essentially,
this model can be viewed as a variation of LSTM-2, where the Z value is adjusted to 10,
introducing a delay before model updates. This strategy enhances computational efficiency
while maintaining the essence of the LSTM-2 methodology.

PICE-LSTM: The PICE-LSTM model has the same training process as the other mod-
els. However, to make it easier to use in the real world, we are using limited values of
capacity cycle data for training the model, as real-world batteries have extensive lifespans.
To predict the RUL at a point, there is no compulsion to use the complete historical data;
instead, the last previous samples to train the model can be used. For the inference phase,
instead of passing the model with a test set, we construct a custom set that leverages
predicted values to do forecasting; at each time step, the one-step forecast is saved in the
window that was initially created for predicting. The window gets shifted by each point
each time for the next prediction. The program runs till all the forecasts have been done.

The algorithm 3 explains how the model works for calculating the RUL. In the first
training phase, we consider a time series of data that undergoes normalization and then is
divided into space-time series using a window. Some part of this data is used for training
using a percentage q of X̂. In the next inference phase, instead of passing the test set to
the model, the predicted values to perform the forecast are passed on to the model at each
time step. These predicted values are saved in a list, which is shifted by one point after
each step for the next prediction.

Figure 5.6 gives the pseudocode for the PICE-LSTM model. The training phase includes
pre-processing the data and performing window operations. The next step is the training
process using the LSTM networks. In the inference phase, the model does not utilize a
conventional test set but instead uses predicted values for forecasting. Each forecast is
saved in a window that changes with each prediction using a one-step forecasting process.

44

Algorithm 3 PICE-LSTM

Require: X: Time series data, w: Window size, d: Hidden nodes, B: Batch size, e:
Epochs, α: Learning rate, ϵ: Updates, Z: Update interval

1: First Phase (Training):
2: Min-Max normalize time series X to get X ′. (Refer to Equation (5.1))
3: for i = 1 to k do
4: Divide sequence X ′ into equally spaced time series segment X̂ using a sliding window

of length w (Refer to Equation (5.2) and Figure 3.3);
5: Train data← q%× X̂ = {x̂1, x̂2, x̂3, . . . , x̂n}
6: Train model ← LSTM model(Train data, d, B, e) {Refer to Equations (??)-(3.9)

for LSTM cell working}
7: Optimiser ← tf.train.AdamOptimizer(α)
8: end for
9: Second Phase (Inference):
10: Initialize an empty list Forecast Window {To store one-step forecasts}
11: for i = n + 1 to k do
12: Xi← Take W Values(X̂) {Take w values from X̂, named Xi}
13: Forecast← One Step Forecast(Train model,Xi)
14: Append Forecast to Xi
15: Shift Xi by 1 position {Window shifting by 1 for each forecast}
16: end for
17: Let W and b be the final network parameters (weights and bias) obtained in the second

phase.
18: Output: Y = W ×X + b (Refer to Equation (3.11))
19: Target: Get predicted time series

Y = {yn+1, yn+2, . . . , yk}

45

5.5 Training process for LSTM networks

LSTM networks update their weights and biases at every time during training. The updat-
ing of weights and biases is part of the backpropagation through time (BPTT) algorithm,
a variant of the standard backpropagation algorithm used in training recurrent neural net-
works [4]. Here’s a brief overview of how the weight and bias updates occur in an LSTM
during the training process:

• Forward Pass: The LSTM processes each input time step k sequentially during the
forward pass. The input normalized sequence X ′ and the previous hidden state and
cell state are fed into the LSTM cell. The LSTM cell performs computations using
its parameters (weights and biases) discussed in section 3.2 to produce an output and
update the current hidden state and cell state.

• Loss Calculation: The output of LSTM at each time step is compared to the target
value. Loss is calculated by reflecting the difference between predicted and actual
values.

• Backward Pass (Backpropagation) Loss is backpropagated through time using the
BPTT algorithm. At each time step, loss gradients with respect to parameters
(weights and biases) are calculated. Gradients indicate contributions to the error
and are used for parameter updates.

• Weight and Bias Updates Weights and biases are updated using an optimizer. The
optimizer adjusts the parameters in the direction that minimizes the loss. The learn-
ing rate determines the size of the step during each update. The understanding of the
optimizer and learning rate is elucidated through their application in the subsequent
algorithmic section.

• Repeat for Multiple Epochs: X ′ is processed through the LSTM for multiple epochs
e. With each e, LSTM refines parameters to improve accuracy on the X ′ [?].

46

Function Predict update():
1. X = read csv(’NASA battery dataset’) Load battery data

2. X ′ = scale(X)
3. X̂ = window(X ′, w)
4. Train data = length(X̂)× q%
5. Test data = X̂ − Train data
6. Train model = LSTM model(Train data,Hidden nodes,Batch size,Epochs)
7. update model(Train model,Train data,Batch size, updates, update interval)

Function scale(dataset):
1. scaler = MinMaxScaler(feature range = (−1, 1))
2. scaler = scaler.fit(dataset)
3. scaled = scaler.transform(dataset)
4. return scaled

Function window(dataset, w):
1. dataX = empty list
2. for i in range(length(dataset) - w - 1):

1. a = dataset[i : (i + w), 0]
2. append a to dataX

3. return dataX
Function LSTM model(Train data, Hidden nodes, Batch size, Epochs):

1. model = Sequential()
2. model.add(LSTM(neurons,Batch size)) Refer to Equations (3.6)-(3.11) for LSTM

cell working
3. model.add(Dense(1))
4. model.Compile(loss, optimizer, learning rate)
5. model.fit(Train data, epochs,Batch size)
6. return model

Function update model(Train model, updates, update interval):

1. for i in range(len(Test data)):

1. if i > 0 and i mod update interval = Z:
1. for j in range(updates):

1. model = LSTM model(Train data,Hidden nodes,Batch size,Epochs)
2. predict = model.predict(Test data)
3. Train data = concatenate(Train data, Test data[i, :])

2. return predict

Figure 5.5: LSTM-2 Pseudo Code

47

Function Predict():

1. X = read csv(’NASA battery dataset’) # Load battery data

2. X ′ = scale(X)

3. X̂ = window(X ′, w)

4. Train data = length(X̂)× q%

5. model = LSTM model(Train data,Hidden nodes,Batch size,Epochs)

6. pred list = []

7. batch = Train data[−n input :]

8. for i in range(length(Train data)):

1. pred list.append(model.predict(batch)[0])
2. batch = np.append(batch[:, 1:, :], [[pred list[i]]], axis = 1)

9. return pred list

Function scale(dataset):

1. scaler = MinMaxScaler(feature range = (−1, 1))

2. scaler = scaler.fit(dataset)

3. scaled = scaler.transform(dataset)

4. return scaled

Function LSTM model(Train data, Hidden nodes, Batch size, Epochs):

1. model = Sequential()

2. model.add(LSTM(neurons,Batch size)) # Refer to Equations (3.6)-(3.11) for LSTM
cell working

3. model.add(Dense(1))

4. model.compile(loss, optimizer, learning rate))

5. model.fit(Train data, epochs,Batch size)

6. return model

Function window(dataset, w):

1. dataX = empty list

2. for i in range(length(dataset) - w - 1):

1. a = dataset[i : (i + w), 0]
2. append a to dataX

3. return dataX

Figure 5.6: Pseudo Code for PICE-LSTM

48

Function Predict():

1. X = read csv(’NASA battery dataset’) # Load battery data

2. X ′ = scale(X)

3. X̂ = window(X ′, w)

4. Train data = length(X̂)× q%

5. Test data = X̂ − Train data

6. model = LSTM model(Train data,
Hidden nodes,Batch size,Epochs) # Train model

7. predict = model.predict(Test data) # Predict on test data

Function scale(dataset):

1. scaler = MinMaxScaler(feature range = (−1, 1))

2. scaler = scaler.fit(dataset)

3. scaled = scaler.transform(dataset)

4. return scaled

Function LSTM model(Train data, Hidden nodes, Batch size, Epochs):

1. model = Sequential()

2. model.add(LSTM(neurons,Batch size)) # Refer to Equations (3.6)-(3.11) for LSTM
cell working

3. model.add(Dense(1))

4. model.compile(loss, optimizer, learning rate))

5. model.fit(Train data, epochs,Batch size)

6. return model

Function window(dataset, w):

1. dataX = empty list

2. for i in range(length(dataset) - w - 1):

(a) a = dataset[i : (i + w), 0]
(b) append a to dataX

3. return dataX

return predict

Figure 5.4: Pseudo Code for LSTM-1

49

Chapter 6

Experiment for comparing LSTM
models and their parameters

This section will detail the particular experiments conducted, including how altering hid-
den nodes and window sizes affected the performance of the traditional LSTM model. The
traditional LSTM approach will also be covered in this part, along with a detailed explana-
tion of how the model was trained and how root mean squared error (RMSE) was used to
assess its performance. Also, a thorough examination of the incremental LSTM technique,
with a distinction between retraining and non-retraining models and an explanation of
their impact on runtime and RMSE, is discussed.

6.1 Effect of changing hidden nodes

For the first experiment, we will look into the effects of changing the amount of hidden
nodes inside the LSTM architecture to improve model performance. Similar to the neurons
of the LSTM, these nodes control the strength of the network, and more of them provide
the ability to recognize complex patterns and relationships. However, because of the larger
parameter field, additional potency comes at the expense of longer training times. We will
set the hidden node counts at 4, 50, 100, and 150. We aimed to comprehend the interac-
tion between prediction accuracy and computing efficiency by methodically analyzing each
hidden node count’s RMSE values and runtime. The LSTM architecture was investigated
utilizing different numbers of LSTM cells, ranging from 1 to 200. With a batch size of 1,
25 epochs were used to represent the number of times.

50

The value of variable d in the LSTM layer argument can be changed to change the
number of hidden nodes in the model architecture. The LSTM layer can be defined with
any number of nodes. The loop that iterates over various values for the number of concealed
nodes is the critical component of the code. The LSTM design and the precise number of
hidden nodes being studied are specified for every iteration. These variations in the number
of hidden nodes provide a chance to comprehend how this hyperparameter modification
affects the network’s ability to recognize patterns.

The LSTM model is built up, trained, and used to make predictions on the training
and testing datasets throughout each iteration. The important thing is to keep an eye on
how the number of hidden nodes affects the model’s predicted performance. To optimize
the LSTM model for a given job, conducting experiments with the number of hidden nodes
is crucial. Following the training and prediction stages, a plot visually represents the data
and shows how well the LSTM can predict battery capacity. This illustrates how changing
the quantity of hidden nodes might affect the LSTM model’s accuracy and performance.

6.2 Effect of changing window size

Extensive research was done in the study to determine how different window sizes affected
model performance. In the experiment, the window size parameter was gradually changed
from 1 to 20 while the associated error values and runtimes were tracked. The effect
of various window sizes on the functionality of the LSTM model was examined in this
experimental investigation. The window size was gradually increased from 1 to 20. The
dataset was loaded, preprocessed, and normalized for each window size. After that, the
LSTM model was built and trained using the given window size. The root mean squared
error (RMSE) was calculated for the training and test sets, providing information about
the model’s precision. Based on their lowest RMSE values, three of the examined window
widths were chosen, and their runtimes were observed.

Implementation: To observe the impact of changing the window size in LSTM archi-
tecture, we use Python to create the LSTM model. Inside the code, we introduce the term
”look back,” which is the parameter we change to examine how changing the window size
affects time series prediction in the context of LSTM network modelling. This manages
the recollection of past information that the model uses to form predictions. The main
goal is to assess how various ”look back” values affect the model’s forecasting ability.

To guarantee the reproducibility of findings, the code starts by initializing random
TensorFlow and NumPy seeds. This phase is crucial when working on machine learn-
ing projects since it ensures that the same random processes produce consistent results

51

throughout multiple runs. Next, The algorithm loads the NASA dataset and takes the
essential capacity values for the research. After that, it performs data preprocessing, nor-
malizes the data using Min-Max scaling, and transforms the dataset into NumPy arrays.
In machine learning, normalization is a frequent technique to bring data into a predefined
range, usually between 0 and 1, so the model can learn more efficiently.

The model uses 65%(q) of the data for training and 35 % for testing, which makes n1=
107 and n= 166. The model uses B as 1 batch size and e as 25 epochs. This division
ensures that the model is tested on one subset of the data and trained on another, which
aids in determining how well the model generalizes. The RMSE values for every look-
back iteration are recorded in distinct lists for the training and testing predictions. These
RMSE values are helpful measures for evaluating the LSTM model’s performance with
various window size configurations. For the proposed LSTM-2 model, retraining is done
with two epochs using newly available training data. One experiment is done by keeping
Z=1, LSTM-2, Z=1, and the other by keeping Z=10 for model LSTM-3. Each experiment
is repeated ten times to calculate RMSE and runtime values. The Table 6.1 gives the
values assigned for the experiments.

This code allows for a systematic investigation of how past data affects the prediction
accuracy of the LSTM model. It provides insight into the ideal window size value for
the particular forecasting task at hand and highlights how crucial model evaluation and
hyperparameter adjustment are to the machine learning process.

6.3 Experimental configurations for LSTM models

This section presents a comprehensive overview of our experimental methodology. It fo-
cuses on parameter tuning for the LSTM-1 model and provides detailed configurations for
the LSTM-1, LSTM-2, and LSTM-3 models in the context of RUL estimation.

6.3.1 Experiment with LSTM-1:

The algorithm starts by loading battery data and then goes through it to extract the
necessary features. The capacity data is then preprocessed by applying Min-Max scaling
to normalise it between 0 and 1. The sets contain 100 training samples and 66 testing
samples. The architecture of the LSTM model is defined as one LSTM layer with four
units, followed by a dense layer with one output unit. The model’s construction uses the
mean squared error loss function and the Adam optimizer. It is trained using the training

52

data with a batch size of 1 and 25 iterations. The model forecasts battery capacity for both
the training and testing sets after training. The predictions are then inverted using the
scaler to obtain capacity values in their original scale. For both the training and testing
sets of data, the Root Mean Squared Error (RMSE) is generated to assess the model’s
performance. Finally, the cycle number is displayed against the original and forecasted
capacity values to demonstrate graphically how well the model performs capacity estimate.

6.3.2 Experiment with LSTM-2 and LSTM-3:

The incremental approach without retraining was developed using the former. It converted
the dataset into a supervised learning format and split it into training and test sets. The
training set has 100 cycles, and the testing set has 66 cycles. Two epochs of retraining
were carried out in the incremental approach with retraining, utilizing the newly available
data from the training subset following each prediction iteration. The RMSE and runtime
for this model were calculated and compared with the model without retraining and the
original LSTM model.

In the incremental LSTM technique, the update interval is set to 10 cycles. The pre-
diction method included this update period, enabling the LSTM model to be adjusted
frequently. An LSTM model’s initial training with predetermined hyperparameters occurs
before incremental learning begins. The number of training epochs, batch size, and hidden
node count are a few examples of these hyperparameters.

Incremental learning emulates the situation in which fresh data is always coming in.
When fresh data becomes available, the LSTM model in this configuration is updated
gradually. The code uses an experiment function to evaluate the predictive ability of the
LSTM model. The procedure is repeated a number of times, as shown by repetitions. By
differentiating successive data points, the data is first turned into a stationary state. After
that, the information is transformed into a format for supervised learning that can be used
to train and evaluate machine learning models. The data are separated into training and
test sets. A MinMaxScaler is used to scale the training data to a specified range.

Rerunning the Experiment is when the LSTM model is repeatedly trained and assessed
by the code. An entirely new LSTM model is trained for every repetition. The model
forecasts each observation in the test dataset and changes its predictions with each new
piece of information. To facilitate comparisons, the predicted values are reversed to reflect
their original scale. The update mechanism adheres to a structured sequence to do this.
From the incoming data point, it initially extracts the input features and matching target

53

values. After that, these extracted data are modified to meet the model’s input specifica-
tions. The model is updated by fitting the new data for a single epoch and preserving the
model’s state.

6.3.3 Experiment with PICE-LSTM:

For the experiment with the PICE-LSTM model, we use the same data processing and
training methods. The advantage of this model is that the model does not have to use
all the historical data for training but instead can use some portion of historical data for
training the model. This parameter is set as a train window of 50 for this experiment. The
model in the inference phase saves the predicted values in a list as observed in the predict
function in pseudo-code 5.6. These values are used to predict RUL values. The model uses
a window of size 14 and is trained for 25 epochs. We define a test position parameter as
the point at which the RUL is predicted. The values of the test position taken for this
experiment are 60, 80, 100 and 125. Two experiments were conducted to test this model.
The first is to compare the PICE-LSTM results with those obtained for LSTM1-1, LSTM-2
and LSTM-3 models. This experiment was performed with the same testing parameters;
the training was done with the first 107 samples, and the rest were used for testing. The
prediction position is fixed at 107. The second experiment takes 50 data points past the
test position for training the model, and the test position is varied and is taken as 60, 80,
100 and 125.

6.4 Parameter selection for RUL estimation

In this section, we calculated the NASA dataset’s RUL, taking the capacity values as
input, denoted as X. Initially, we determined the EOL threshold using Equation (2.5),
considering θ as 75%. The observed maximum battery capacity (Ci) was 1.856. This led
to an EOL of 1.856 × 0.75 = 1.3923. Identifying the cycle where charging began, with a
capacity of 1.392 Ah, we found the actual EOL (NEOL) to be 128 cycles using Equation
(2.6).

Next, RUL was calculated for the original dataset with NEOL set at 128 cycles. Addi-
tionally, we determined the NECL as n with a value of 107. This yielded a RUL at this
cycle of 21 cycles, calculated using Equation (2.7). The exact process was applied to the
predicted series Y to compute the predicted EOL and RUL. The predicted NEOL and RUL
values are discussed in later Sections.

54

Table 6.1: Experiment Parameters for LSTM Model
Variable Notation Assigned Value

n 107

k 166

Batch Size (B) 1

e (Number of epochs) 25

q (Train-test split) 65%

Z 1 (for LSTM-2, Z = 1)

Z 10 (for LSTM-2, Z = 10)

ϵ (Number of updates) 2

Repeated experiments 10

6.5 Transfer learning across similar cells in NASA

battery dataset

In this study, we explore the viability of transfer learning for battery capacity estimation
by training our model on cell 5 data and subsequently testing its predictive capabilities on
chemically analogous cells (cell 6, 7, and 18) within the NASA battery dataset. Initially
trained on 100 values of capacity from cell 5, the model is challenged to generalize its
knowledge to different cells with identical chemical compositions. By evaluating its perfor-
mance beyond the training cell, this experiment aims to validate the model’s adaptability
and assess its predictive accuracy on unseen but similar battery cells, providing crucial
insights into the efficacy of transfer learning in battery health estimation.

6.6 Cross-dataset validation: assessing LSTM models

on CALCE dataset

In this experiment, the LSTM models are applied to the CALCE dataset to test their
performance. One cell from the CALCE dataset, the CS235 cell, is selected to train and
test the LSTM models. Since the total cycles are 882, the first 200 samples are used for
training for a good amount of exercise and the rest are used for testing. The number of
epochs used for training is 25. The hidden nodes and window size are kept the same to
train the model with the NASA dataset.

55

Chapter 7

Experimental results

In this section, we present the results and discussions from our experimentation with the
LSTM-1 model, focusing on the effects of parameter tuning in Section A. It includes the
impact of varying hidden nodes, d and window size, w on RMSE and runtime. Section B
compares different LSTM models, including LSTM-1, LSTM-2, Z=1, and LSTM-2, Z=10
regarding runtime and RMSE values.

7.1 Effect of parameter tuning

The results of changing the hidden nodes and window size regarding RMSE and runtime
are in table 7.1.

Table 7.1: RMSE and Runtime for Different Parameters
Hidden Nodes Window Size

4, 50, 100, 150 11, 13, 14

RMSE 0.2, 0.07, 0.05, 0.03 0.0137, 0.0116, 0.0126

Runtime (sec) 10.35, 12.38, 16.8, 24.56 12.48, 12.6, 12.87

In Figure 7.1, capacity prediction varies with hidden nodes. RMSE decreases from 0.2
to 0.03 as hidden nodes increase from 4 to 150 before the model gets overfitted. Training
and testing duration increases with more nodes, ranging from 10.35 seconds (4 hidden
nodes) to 24.56 seconds (150 hidden nodes).

56

Figure 7.1: Comparing Lithium-Ion Battery Capacity Prediction with Varied Hidden Nodes

Figure 7.2: RMSE vs Window Size

57

Varying the window size from 1 to 20 revealed a decline in error values, particularly
notable in the range of 10 to 14. The error minima at window sizes 11, 13, and 14
were remarkable, all close to 0.01 (Figure 7.2). The experiment demonstrated improved
performance with more oversized input windows, up to a maximum of 14, providing the
model access to a broader range of input patterns. Smaller window sizes (1 to 7) struggled
to generate meaningful value functions. Notably, a window size 14 resulted in the lowest
RMSE of 0.0126, while 11 yielded the most negligible runtime at 12.48 seconds.

7.2 Comparision of LSTM-1, LSTM-2 and LSTM-3

This section compares the three proposed LSTM models, LSTM-1, LSTM-2, and LSTM-3,
based on the RMSE and runtime values obtained for estimating the RUL.

The results demonstrate that LSTM-2 outperforms the baseline LSTM-1 model. This
can be observed in Figure 7.3. Predictions from LSTM-2 and LSTM-3 align more closely
with the original dataset than those from LSTM-1. Table 7.3 details the RMSE, runtimes
and predicted RUL for each model, with the proposed model exhibiting lower RMSE values
(0.00982 and 0.0104) compared to LSTM-1 (0.01193), indicating improved predictive per-
formance. LSTM-3 achieves efficiency comparable to LSTM-2 but with a shorter runtime
of 6 min 82 s, attributed to fewer retraining rounds. As explained in the experiment sec-
tion, the actual NEOL value stands at 128, coinciding with the point where the discharge
capacity reaches 1.39 Ah (EOL) in cycle 128. It is evident that the proposed LSTM-2
and LSTM-3 models closely approximate the NEOL with predicted values of 129 and 130,
respectively. The RUL is calculated in terms of remaining charge and discharge cycles. As
the actual NEOL stands at 107 cycle number, the predicted RUL by LSTM-2 and LSTM-3
is 22 and 23 charge and discharge cycles. This indicates that the battery has a remaining
life of the calculated cycle numbers and will no longer be useful after these many charge
and discharge cycles.

Table 7.2: Results of LSTM models with NASA dataset
Model Type RMSE Runtime NEOL RUL (cycle num)

LSTM-1 0.01193 2 min 48 s 132 25

LSTM-2 0.00982 11 min 41 s 129 22

LSTM-3 0.0104 6 min 82 s 130 23

58

Figure 7.3: Comparision of LSTM-1, LSTM-2 and LSTM-3 with NASA dataset

7.2.1 Results with CALCE dataset

The LSTM-1, LSTM-2 and LSTM-3 models are also applied to another dataset to validate
the generalizability and robustness of these models across different domains. The results
are shown in Figure 7.4. The actual NEOL value is cycle 630. The predicted values of
NEOL by LSTM-1, LSTM-2 and LSTM-3 are 776, 645 and 647 respectively. Since the
starting point for prediction is cycle 200, the predicted RUL values are given accordingly
in the table in terms of charge and discharge cycles. The table shows the RMSE values as
well that shows that LSTM-2 and LSTM-3 have low error rate and perform better than
LSTM-1.

Table 7.3: Results for LSTM models with CALCE dataset
Model Type RMSE Runtime NEOL RUL(cycle number)

LSTM-1 0.184 3 min 54 s 776 576

LSTM-2 0.0462 19 min 63 s 645 445

LSTM-3 0.0729 11 min 48 s 647 447

59

Figure 7.4: Comparision of LSTM-1, LSTM-2 and LSTM-3 with CALCE dataset

7.3 Results for transfer learning

Following the training of the proposed LSTM-3 model, incorporating retraining at regular
intervals on NASA’s cell 5 data, we conducted an insightful evaluation of cells 6, 7, and
18. The resulting graphs, depicting the model’s predictive performance, reveal a notable
success in extending its capabilities through transfer learning. The model demonstrates
proficiency in predicting RUL values for cells with similar chemical compositions, showcas-
ing the efficacy of the proposed approach. These findings underscore the adaptability and
generalization potential of the LSTM-3 model, affirming its utility in predicting battery
health across diverse but chemically akin cells within the NASA dataset.

The results for transfer learning are shown in Figure 7.5, 7.6, and 7.7, where the initially
trained LSTM-3 model is tested on new data, which is the capacity data of cell 5, 6 and
18. This shows that the LSTM-3 model can be used to predict the RUL of similar cells.

7.4 Results for PICE-LSTM

The LSTM-1, LSTM-2 and LSTMThe PICE-LSTM model is tested with two experiments.
The first experiment had 107 data points for training, and the test position was 107. The
model is well-trained and can learn patterns across the training. In the first experiment,
the model can predict the RUL as shown in Figure 7.8 with the actual EOL being 128 and

60

Figure 7.5: Transfer learning result on cell 6

Figure 7.6: Transfer learning result on cell 6

61

Figure 7.7: Transfer learning result on cell 6

the predicted EOL being 146. The RMSE value obtained after the prediction is 0.1685.
The second experiment takes 50 values past the test position, and the predicted RUL values
can be visualized through Figure 7.9. This experiment deals with various test positions,
the values being 60, 80, 100, and 125. At 60, the historical data from the last 50 points,
from cycles 10 to 60, are taken for training. For 80, the values from cycles 30 to 80 are
taken. The results show that the results improve as we move closer to the prediction test
position, and the model can predict closer to the EOL line.

62

Figure 7.8: PICE-LSTM Experiment 1

Figure 7.9: PICE-LSTM Experiment 2

63

Chapter 8

Conclusions

This section summarizes the results of our study on LSTM models. It sheds light on how
the different proposed LSTM models perform in predicting the RUL, the efficiency the
model provides, and the importance of parameter optimization. This section sheds light
on how transfer learning and the proposed model, PICE-LSTM, help in RUL estimation
in real-life scenarios.

First, we conclude the impact of varying parameters, such as hidden nodes and window
size, on LSTM model performance. Optimal results were achieved with a window size
of 14 and 150 hidden nodes, striking a balance between runtime efficiency and accuracy.
Careful parameter selection is crucial for maximizing model capabilities. It is important
to experiment to find the correct number of hidden nodes for practical training and the
window size that provides the highest efficiency in LSTM models.

The proposed LSTM-2 and LSTM-3 models provide precise estimates of battery capac-
ity and exhibit accuracy in predicting RUL on NASA’s lithium-ion battery dataset. No-
tably, LSTM-2 achieves an RMSE value of 0.00982, while LSTM-3 closely follows with an
RMSE of 0.0104. Both models outshine LSTM-1, which records an RMSE of 0.01193. Fur-
thermore, LSTM-3 showcases a runtime of 6 minutes and 82 seconds, surpassing LSTM-2’s
11 minutes and 41 seconds runtime. This underscores LSTM-3’s effective resource utiliza-
tion, making it a better choice for real-time applications and scenarios with computational
constraints. PICE-LSTM focuses on multi-step prediction where the model assumes that
the user can start predicting at any point of the capacity degradation cycles and have
no data available at every moment. PICE-LSTM achieves an RMSE value of 0.1685 but
effectively predicts the RUL with a small set of training points and requires no real-time
test data for future predictions.

64

The outcomes of our experiments with transfer learning have demonstrated significant
success, suggesting that the models trained in one battery context can be effectively tested
on similar batteries, yielding commendable results.

In conclusion, this study’s findings underline the importance of parameter selection and
focus on accurately predicting the RUL for lithium-ion batteries for different applications
using LSTM networks.

65

Chapter 9

Future Work

Our findings bring up several exciting directions for further investigation. One of the di-
rections to improve the LSTM model prediction accuracy is to take into account external
elements, namely charging and discharging voltage, temperature, and current values, which
may improve the ability of the model to capture a more comprehensive understanding of
the dynamic behaviour of battery capacity degradation. This can help better predict the
RUL in batteries. This concept of multivariate LSTM can be applied to consider these
multiple variables that influence the prediction.
Investigating the combination of LSTM models with other machine learning methods, such
as transformer topologies, may result in hybrid models with even more improved perfor-
mance. Especially for the proposed PICE-LSTM model, the prediction can be improved
by adding a hybrid model consisting of neural networks, linear regression or mathemat-
ical models. The mathematical model discussed in section 3.1 can give the direction of
degradation in capacity, and the LSTM network can help learn the degradation pattern.
Combining these two models can help better predict future capacity values and accurate
RUL.
LSTM models can be trained on massive data containing the life cycle of batteries with
different cell chemistries. These types of models are generalized to many batteries. It leads
to better performance when the model is asked to predict the RUL for unseen batteries
whose previous historical data is not used in the training dataset.

66

References

[1] Khaled Sidahmed Sidahmed Alamin, Yukai Chen, Enrico Macii, Massimo Poncino,
and Sara Vinco. A machine learning-based digital twin for electric vehicle battery
modeling. In 2022 IEEE International Conference on Omni-layer Intelligent Systems
(COINS), pages 1–6. IEEE, 2022.

[2] Sabri Baazouzi, Niklas Feistel, Johannes Wanner, Inga Landwehr, Alexander Fill, and
Kai Peter Birke. Design, properties, and manufacturing of cylindrical li-ion battery
cells—a generic overview. Batteries, 9(6):309, 2023.

[3] Jiahao Bian, Lei Wang, Rafa l Scherer, Marcin Woźniak, Pengchao Zhang, and Wei
Wei. Abnormal detection of electricity consumption of user based on particle swarm
optimization and long short term memory with the attention mechanism. IEEE Access,
9:47252–47265, 2021.

[4] George Bird and Maxim E Polivoda. Backpropagation through time for networks with
long-term dependencies. arXiv preprint arXiv:2103.15589, 2021.

[5] Weifeng Chen, Baojia Wang, and Lorenz T Biegler. Parameter estimation with im-
proved model prediction for over-parametrized nonlinear systems. Computers & Chem-
ical Engineering, 157:107601, 2022.

[6] Hyeonwoo Cho, Changbeom Hong, Daeki Hong, Se-Kyu Oh, and Yeonsoo Kim. Ther-
mal equivalent circuit model and parameter estimation for high-capacity li-ion cell.
Journal of The Electrochemical Society, 170(8):080520, 2023.

[7] Yohwan Choi, Seunghyoung Ryu, Kyungnam Park, and Hongseok Kim. Machine
learning-based lithium-ion battery capacity estimation exploiting multi-channel charg-
ing profiles. Ieee Access, 7:75143–75152, 2019.

67

[8] Yingzhi Cui, Jie Yang, Chunyu Du, Pengjian Zuo, Yunzhi Gao, Xinqun Cheng, Yulin
Ma, and Geping Yin. Prediction model and principle of end-of-life threshold for lithium
ion batteries based on open circuit voltage drifts. Electrochimica Acta, 255:83–91, 2017.

[9] Da Deng. Li-ion batteries: basics, progress, and challenges. Energy Science & Engi-
neering, 3(5):385–418, 2015.

[10] Panagiotis Eleftheriadis, Spyridon Giazitzis, Sonia Leva, and Emanuele Ogliari. Data-
driven methods for the state of charge estimation of lithium-ion batteries: An
overview. Forecasting, 5(3):576–599, 2023.

[11] Carlos Ferreira and Gil Gonçalves. Remaining useful life prediction and challenges: A
literature review on the use of machine learning methods. Journal of Manufacturing
Systems, 63:550–562, 2022.

[12] Jian Gao, Hong Xu, Qiu-jie Li, Xiao-hai Feng, and Sha Li. Optimization of medium
for one-step fermentation of inulin extract from jerusalem artichoke tubers using
paenibacillus polymyxa zj-9 to produce r, r-2, 3-butanediol. Bioresource technology,
101(18):7076–7082, 2010.

[13] Kaidi Gao, Jingyun Xu, Zuxin Li, Zhiduan Cai, Dongming Jiang, and Aigang Zeng. A
novel remaining useful life prediction method for capacity diving lithium-ion batteries.
ACS omega, 7(30):26701–26714, 2022.

[14] Jiaojiao Hu, Xiaofeng Wang, Ying Zhang, Depeng Zhang, Meng Zhang, and Jianru
Xue. Time series prediction method based on variant lstm recurrent neural network.
Neural Processing Letters, 52:1485–1500, 2020.

[15] Siyu Jin, Xin Sui, Xinrong Huang, Shunli Wang, Remus Teodorescu, and Daniel-Ioan
Stroe. Overview of machine learning methods for lithium-ion battery remaining useful
lifetime prediction. Electronics, 10(24):3126, 2021.

[16] Pritam Khan, Priyesh Ranjan, and Sudhir Kumar. Data heterogeneity mitigation in
healthcare robotic systems leveraging the nelder–mead method. In Artificial Intelli-
gence for Future Generation Robotics, pages 71–82. Elsevier, 2021.

[17] Phattara Khumprom and Nita Yodo. A data-driven predictive prognostic model for
lithium-ion batteries based on a deep learning algorithm. Energies, 12(4):660, 2019.

68

[18] Xin Lai, Wei Yi, Yifan Cui, Chao Qin, Xuebing Han, Tao Sun, Long Zhou, and Yuejiu
Zheng. Capacity estimation of lithium-ion cells by combining model-based and data-
driven methods based on a sequential extended kalman filter. Energy, 216:119233,
2021.

[19] Izaro Laresgoiti, Stefan Käbitz, Madeleine Ecker, and Dirk Uwe Sauer. Modeling
mechanical degradation in lithium ion batteries during cycling: Solid electrolyte in-
terphase fracture. Journal of Power Sources, 300:112–122, 2015.

[20] Lyu Li, Yu Peng, Yuchen Song, and Datong Liu. Lithium-ion battery remaining useful
life prognostics using data-driven deep learning algorithm. In 2018 Prognostics and
System Health Management Conference (PHM-Chongqing), pages 1094–1100. IEEE,
2018.

[21] Xiaoyu Li, Zhenpo Wang, and Lei Zhang. Co-estimation of capacity and state-of-
charge for lithium-ion batteries in electric vehicles. Energy, 174:33–44, 2019.

[22] Xin Liu, Changbo Yang, Yanmei Meng, Jihong Zhu, and Yijian Duan. Capacity
estimation of li-ion battery based on transformer-adversarial discriminative domain
adaptation. AIP Advances, 13(7), 2023.

[23] Yiwei Liu, Jing Sun, Yunlong Shang, Xiaodong Zhang, Song Ren, and Diantao Wang.
A novel remaining useful life prediction method for lithium-ion battery based on long
short-term memory network optimized by improved sparrow search algorithm. Journal
of Energy Storage, 61:106645, 2023.

[24] Saifullah Mahmud, Mostafizur Rahman, Md Kamruzzaman, Md Osman Ali, Md Shar-
iful Alam Emon, Hazera Khatun, and Md Ramjan Ali. Recent advances in lithium-ion
battery materials for improved electrochemical performance: A review. Results in En-
gineering, 15:100472, 2022.

[25] Arumugam Manthiram. An outlook on lithium ion battery technology. ACS central
science, 3(10):1063–1069, 2017.

[26] Man-Fai Ng, Jin Zhao, Qingyu Yan, Gareth J Conduit, and Zhi Wei Seh. Predicting
the state of charge and health of batteries using data-driven machine learning. Nature
Machine Intelligence, 2(3):161–170, 2020.

[27] Naoki Nitta, Feixiang Wu, Jung Tae Lee, and Gleb Yushin. Li-ion battery materials:
present and future. Materials today, 18(5):252–264, 2015.

69

[28] Şaban Öztürk. Convolutional Neural Networks for Medical Image Processing Applica-
tions. CRC Press, 2022.

[29] Kyungnam Park, Yohwan Choi, Won Jae Choi, Hee-Yeon Ryu, and Hongseok Kim.
Lstm-based battery remaining useful life prediction with multi-channel charging pro-
files. Ieee Access, 8:20786–20798, 2020.

[30] Meru A Patil, Piyush Tagade, Krishnan S Hariharan, Subramanya M Kolake, Taewon
Song, Taejung Yeo, and Seokgwang Doo. A novel multistage support vector machine
based approach for li ion battery remaining useful life estimation. Applied energy,
159:285–297, 2015.

[31] T PMoseley and J Garche. Electrochemical energy storage for renewable sources and
grid balancing, 2014.

[32] Cheng Qian, Binghui Xu, Liang Chang, Bo Sun, Qiang Feng, Dezhen Yang, Yi Ren,
and Zili Wang. Convolutional neural network based capacity estimation using random
segments of the charging curves for lithium-ion batteries. Energy, 227:120333, 2021.

[33] M Siva Ramkumar, C Reddy, Agenya Ramakrishnan, K Raja, S Pushpa, S Jose,
Mani Jayakumar, et al. Review on li-ion battery with battery management system in
electrical vehicle. Advances in Materials Science and Engineering, 2022, 2022.

[34] Huzaifa Rauf, Muhammad Khalid, and Naveed Arshad. Machine learning in state of
health and remaining useful life estimation: Theoretical and technological develop-
ment in battery degradation modelling. Renewable and Sustainable Energy Reviews,
156:111903, 2022.

[35] Lei Ren, Jiabao Dong, Xiaokang Wang, Zihao Meng, Li Zhao, and M Jamal Deen. A
data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful
life. IEEE Transactions on Industrial Informatics, 17(5):3478–3487, 2020.

[36] Lei Ren, Li Zhao, Sheng Hong, Shiqiang Zhao, Hao Wang, and Lin Zhang. Remaining
useful life prediction for lithium-ion battery: A deep learning approach. Ieee Access,
6:50587–50598, 2018.

[37] Maria Kayra Saskia and Evvy Kartini. Current state of lithium ion battery com-
ponents and their development. In IOP Conference Series: Materials Science and
Engineering, volume 553, page 012058. IOP Publishing, 2019.

70

[38] Shipra Saxena. What is lstm? introduction to long short-term memory. Ana-
lytics Vidhya, January 2024. https://www.analyticsvidhya.com/blog/2024/01/

what-is-lstm-introduction-to-long-short-term-memory/.

[39] Khaled Sidahmed Sidahmed Alamin, Yukai Chen, Enrico Macii, Massimo Poncino,
and Sara Vinco. A machine learning-based digital twin for electric vehicle battery
modeling. arXiv e-prints, pages arXiv–2206, 2022.

[40] Xiangbao Song, Fangfang Yang, Dong Wang, and Kwok-Leung Tsui. Combined
cnn-lstm network for state-of-charge estimation of lithium-ion batteries. Ieee Access,
7:88894–88902, 2019.

[41] Muhammad Osama Tarar, Ijaz Haider Naqvi, Zubair Khalid, and Michal Pecht. Ac-
curate prediction of remaining useful life for lithium-ion battery using deep neural
networks with memory features. Frontiers in Energy Research, 11:1059701, 2023.

[42] TensorFlow. Time series forecasting with tensorflow - a comprehensive tutorial.
https://www.tensorflow.org/tutorials/structured_data/time_series.

[43] Ye Tian, Chen Lu, Zili Wang, Laifa Tao, et al. Artificial fish swarm algorithm-based
particle filter for li-ion battery life prediction. Mathematical Problems in Engineering,
2014, 2014.

[44] Yukai Tian, Jie Wen, Yanru Yang, Yuanhao Shi, and Jianchao Zeng. State-of-health
prediction of lithium-ion batteries based on cnn-bilstm-am. Batteries, 8(10):155, 2022.

[45] Manh-Kien Tran, Manoj Mathew, Stefan Janhunen, Satyam Panchal, Kaamran Raa-
hemifar, Roydon Fraser, and Michael Fowler. A comprehensive equivalent circuit
model for lithium-ion batteries, incorporating the effects of state of health, state of
charge, and temperature on model parameters. Journal of Energy Storage, 43:103252,
2021.

[46] University of Maryland, A. James Clark School of Engineering, CALCE. Calce battery
dataset. https://calce.umd.edu/battery-data, 2024.

[47] Qiao Wang, Min Ye, Xue Cai, Dirk Uwe Sauer, and Weihan Li. Transferable data-
driven capacity estimation for lithium-ion batteries with deep learning: A case study
from laboratory to field applications. Applied Energy, 350:121747, 2023.

[48] Shunli Wang, Siyu Jin, Dan Deng, and Carlos Fernandez. A critical review of on-
line battery remaining useful lifetime prediction methods. Frontiers in Mechanical
Engineering, 7:719718, 2021.

71

https://www.analyticsvidhya.com/blog/2024/01/what-is-lstm-introduction-to-long-short-term-memory/
https://www.analyticsvidhya.com/blog/2024/01/what-is-lstm-introduction-to-long-short-term-memory/
https://www.tensorflow.org/tutorials/structured_data/time_series
https://calce.umd.edu/battery-data

[49] Zhuqing Wang, Ning Liu, Chilian Chen, and Yangming Guo. Adaptive self-attention
lstm for rul prediction of lithium-ion batteries. Information Sciences, 635:398–413,
2023.

[50] Zhuqing Wang, Ning Liu, and Yangming Guo. Adaptive sliding window lstm nn
based rul prediction for lithium-ion batteries integrating ltsa feature reconstruction.
Neurocomputing, 466:178–189, 2021.

[51] Bolun Xu, Alexandre Oudalov, Andreas Ulbig, Göran Andersson, and Daniel S
Kirschen. Modeling of lithium-ion battery degradation for cell life assessment. IEEE
Transactions on Smart Grid, 9(2):1131–1140, 2016.

[52] Asri Rizki Yuliani, Ade Ramdan, Vicky Zilvan, Ahmad Afif Supianto, Dikdik Kris-
nandi, Raden Sandra Yuwana, Dicky Prajitno, and Hilman Pardede. Remaining useful
life prediction of lithium-ion battery based on lstm and gru. In Proceedings of the 2021
International Conference on Computer, Control, Informatics and Its Applications,
pages 21–25, 2021.

[53] Lijun Zhang, Tuo Ji, Shihao Yu, and Guanchen Liu. Accurate prediction approach of
soh for lithium-ion batteries based on lstm method. Batteries, 9(3):177, 2023.

[54] Shuxin Zhang, Zhitao Liu, and Hongye Su. State of health estimation for lithium-ion
batteries on few-shot learning. Energy, 268:126726, 2023.

[55] Shuzhi Zhang, Baoyu Zhai, Xu Guo, Kaike Wang, Nian Peng, and Xiongwen Zhang.
Synchronous estimation of state of health and remaining useful lifetime for lithium-
ion battery using the incremental capacity and artificial neural networks. Journal of
Energy Storage, 26:100951, 2019.

[56] Shaishai Zhao, Chaolong Zhang, and Yuanzhi Wang. Lithium-ion battery capacity
and remaining useful life prediction using board learning system and long short-term
memory neural network. Journal of Energy Storage, 52:104901, 2022.

[57] Hangxia Zhou, Yujin Zhang, Lingfan Yang, Qian Liu, Ke Yan, and Yang Du. Short-
term photovoltaic power forecasting based on long short term memory neural network
and attention mechanism. Ieee Access, 7:78063–78074, 2019.

[58] Xingyu Zhou, Xuebing Han, Yanan Wang, Languang Lu, and Minggao Ouyang. A
data-driven lifepo4 battery capacity estimation method based on cloud charging data
from electric vehicles. Batteries, 9(3):181, 2023.

72

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Literature review
	Lithium-ion battery terminologies
	Lithium-ion cell operation

	Battery capacity estimation approaches
	Types of models for capacity estimation
	LSTM cell architecture
	LSTM for time series data
	Key LSTM model parameters and metrics

	 Datasets for capacity prediction
	 NASA dataset
	 Effect of ageing on the NASA battery data
	Data Patterns and Variability in the NASA Dataset

	 CALCE dataset

	Proposed LSTM models for RUL prediction
	Baseline LSTM model: LSTM 1
	Proposed LSTM models: LSTM-2 and LSTM-3
	LSTM-2 model
	LSTM-3 model :

	PICE-LSTM
	Pseudo code for proposed LSTM models
	Training process for LSTM networks

	 Experiment for comparing LSTM models and their parameters
	Effect of changing hidden nodes
	Effect of changing window size
	Experimental configurations for LSTM models
	Experiment with LSTM-1:
	Experiment with LSTM-2 and LSTM-3:
	Experiment with PICE-LSTM:

	Parameter selection for RUL estimation
	Transfer learning across similar cells in NASA battery dataset
	Cross-dataset validation: assessing LSTM models on CALCE dataset

	 Experimental results
	Effect of parameter tuning
	 Comparision of LSTM-1, LSTM-2 and LSTM-3
	Results with CALCE dataset

	Results for transfer learning
	Results for PICE-LSTM

	Conclusions
	Future Work
	References

