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Abstract

This is the first paper in a series whose goal is to give a polynomial-time algorithm for the 4-COLORING
PROBLEM and the 4-PRECOLORING EXTENSION problem restricted to the class of graphs with no induced
six-vertex path, thus proving a conjecture of Huang. Combined with previously known results this
completes the classification of the complexity of the 4-coloring problem for graphs with a connected
forbidden induced subgraph.

In this paper we give a polynomial-time algorithm that determines if a special kind of precoloring of
a Ps-free graph has a precoloring extension, and constructs such an extension if one exists. Combined
with the main result of the second paper of the series, this gives a complete solution to the problem.

1 Introduction

All graphs in this paper are finite and simple. We use [k] to denote the set {1,...,k}. Let G be a graph. A
k-coloring of G is a function f : V(G) — [k]. A k-coloring is proper if for every edge uv € E(G), f(u) # f(v),
and G is k-colorable if G has a proper k-coloring. The k-COLORING PROBLEM is the problem of deciding,
given a graph G, if G is k-colorable. This problem is well-known to be N P-hard for all k£ > 3.

A function L : V(G) — 2% that assigns a subset of [k] to each vertex of a graph G is a k-list assignment
for G. For a k-list assignment L, a function f : V(G) — [k] is an L-coloring if f is a k-coloring of G and
f(v) € L(v) for all v € V(G). A graph G is L-colorable if G has a proper L-coloring. We denote by X°(L)
the set of all vertices v of G with |L(v)| = 1. The k-LIST COLORING PROBLEM is the problem of deciding,
given a graph G and a k-list assignment L, if G is L-colorable. Since this generalizes the k-coloring problem,
it is also N P-hard for all £ > 3.

Let G be a graph. For X C V(G) we denote by G|X the subgraph induced by G on X, and by G \ X
the graph G|(V(G) \ X). If X = {z}, we write G \ « to mean G\ {z}. A k-precoloring (G, X, f) of a graph
G is a function f : X — [k] for a set X C V(G) such that f is a proper k-coloring of G|X. Equivalently, a
k-precoloring is a k-list assignment L in which |L(v)| € {1, k} for all v € V(G). A k-precoloring extension for
(G, X, f) is a proper k-coloring g of G such that g|x = f|x, and the k-PRECOLORING EXTENSION PROBLEM
is the problem of deciding, given a graph G and a k-precoloring (G, X, f), if (G, X, f) has a k-precoloring
extension.
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We denote by P; the path with ¢ vertices. Given a path P, its interior is the set of vertices that have

degree two in P. We denote the interior of P by P*. A P; in a graph G is a sequence vy —...— v; of pairwise
distinct vertices where for ¢, j € [t], v; is adjacent to v; if and only if |i — j| = 1. We denote by V(P) the set
{v1,...,u}, and if a,b € V(P), say a = v; and b = v; and i < j, then a— P —b is the path v; —v;41 —...—v;.

A graph is P;-free if there is no P, in G. Throughout the paper by “polynomial time” or “polynomial size”
we mean that there exists a polynomial p such that the running time, or size, is bounded by p(|V(G)|).

Since the k-COLORING PROBLEM and the k-PRECOLORING EXTENSION PROBLEM are N P-hard for k > 3,
their restrictions to graphs with a forbidden induced subgraph have been extensively studied; see [2] [7] for
a survey of known results. In particular, the following is known (given a graph H, we say that a graph G is
H-free if no induced subgraph of G is isomorphic to H):

Theorem 1 ([7]). Let H be a (fixred) graph, and let k > 2. If the k-COLORING PROBLEM can be solved in

polynomial time when restricted to the class of H-free graphs, then every connected component of H is a path
(assuming P # NP).

Thus if we assume that H is connected, then the question of determining the complexity of k-coloring
H-free graph is reduced to studying the complexity of coloring graphs with certain induced paths excluded,
and a significant body of work has been produced on this topic. Below we list a few such results.

Theorem 2 ([I]). The 3-COLORING PROBLEM can be solved in polynomial time for the class of P;-free
graphs.

Theorem 3 ([5]). The k-COLORING PROBLEM can be solved in polynomial time for the class of Ps-free
graphs.

Theorem 4 ([6]). The 4-COLORING PROBLEM is N P-complete for the class of Pr-free graphs.
Theorem 5 ([6]). For all k > 5, the k-COLORING PROBLEM is N P-complete for the class of Ps-free graphs.

The only cases for which the complexity of k-coloring P;-free graphs is not known are k = 4, t = 6, and
k =3, t > 8. This is the first paper in a series of two. The main result of the series is the following;:

Theorem 6. The 4-PRECOLORING EXTENSION PROBLEM can be solved in polynomial time for the class of
Ps-free graphs.

In contrast, the 4-LIST COLORING PROBLEM restricted to Ps-free graphs is IV P-hard as proved by Golo-
vach, Paulusma, and Song [7]. As an immediate corollary of Theorem @, we obtain that the 4-COLORING
PROBLEM for Ps-free graphs is also solvable in polynomial time. This proves a conjecture of Huang [6], thus
resolving the former open case above, and completes the classification of the complexity of the 4-COLORING
PROBLEM for graphs with a connected forbidden induced subgraph.

Let G be a graph. For disjoint subsets A, B C V(G) we say that A is complete to B if every vertex of
A is adjacent to every vertex of B, and that A is anticomplete to B if every vertex of A is non-adjacent to
every vertex of B. If A = {a} we write a is complete (or anticomplete) to B to mean {a} that is complete
(or anticomplete) to B. If a ¢ B is not complete and not anticomplete to B, we say that a is mized on B.
Finally, if H is an induced subgraph of G and a € V(G) \ V(H), we say that a is complete to, anticomplete
to, or mized on H if a is complete to, anticomplete to, or mixed on V(H), respectively. For v € V(G) we
write Ng(v) (or N(v) when there is no danger of confusion) to mean the set of vertices of G that are adjacent
to v. Observe that since G is simple, v  N(v). For A C V(G), an attachment of A is a vertex of V(G) \ 4
complete to A. For B C V(G) \ A we denote by B(A) the set of attachments of A in B. If F = G|A, we
sometimes write B(F') to mean B(V (F)).

Given a list assignment L for G, we say that the pair (G, L) is colorable if G is L-colorable. For
X C V(G), we write (G|X, L) to mean the list coloring problem where we restrict the domain of the list
assignment L to X. Let X C V(G) be such that |L(x)| = 1 for every € X, and let Y C V(G). We say
that a list assignment M is obtained from L by updating Y from X if M(v) = L(v) for every v ¢ Y, and
M(v) = L(v)\U,en)nx L(z) for every v € Y. If Y = V(G), we say that M is obtained from L by updating
from X. If M is obtained from L by updating from X°(L), we say that M is obtained from L by updating.
Let L = Lo, and for ¢ > 1 let L; be obtained from L;_; by updating. If L; = L; 1, we say that L; is obtained



from L by updating exhaustively. Since 0 < 3° v ) |L; (V)] < 2,cy gy [Li—1(v)] < 4|[V(G)| for all j < i, it
follows that ¢ < 4|V(G)| and thus L; can be computed from L in polynomial time.
An excellent starred precoloring of a graph G is a six-tuple P = (G, S, Xo, X, Y™, f) such that

(A) f:SUXy— {1,2,3,4} is a proper coloring of G|(S U Xp);
B) V(G)=SUXoUXUY*

)

B)

(C) G|S is connected and no vertex in V(G) \ S is complete to S;

(D) every vertex in X has neighbors of at least two different colors (with respect to f) in S;
)

(E) no vertex in X is mixed on a component of G|Y™*; and

(F) for every component of G|Y™*, there is a vertex in S U Xy U X complete to it.

We call S the seed of P. We define two list assignments associated with P. First, define Lp(v) = {f(v)}
for every v € SU Xy, and let Lp(v) = {1,2,3,4} \ (f(N(v) N S)) for v € SU Xy. Second, Mp is the list
assignment obtained as follows. First, define M; to be the list assignment for G|(X U Xy) obtained from
Lp|(X UXy) by updating exhaustively; let X7 = {x € XUXy : |[Mi(z1)| = 1}. Now define Mp(v) = Lp(v)
if v & X U Xy, and Mp(v) = Mi(v) if v € X U Xy. Let X°(P) = X°(Mp). Then SU X, C XO(P). A
precoloring extension of P is a proper 4-coloring ¢ of G such that ¢(v) = f(v) for every v € SU Xj; it follows
that Mp(v) = {c(v)} for every v € X°(P). It will often be convenient to assume that Xy, = X°(P)\ S,
and this assumption can be made without loss of generality. Note that in this case, Mp(v) = Lp(v) for all
v e X.

For an excellent starred precoloring P and a collection excellent starred £ of precolorings, we say that £
is an equivalent collection for P (or that P is equivalent to L) if P has a precoloring extension if and only
if at least one of the precolorings in £ has a precoloring extension, and a precoloring extension of P can be
constructed from a precoloring extension of a member of £ in polynomial time.

We break the proof of Theorem [f] into two independent parts, each handled in a separate paper of
the series. In the first part, we reduce the 4-PRECOLORING EXTENSION PROBLEM for Pg-free graphs to
determining if an excellent starred precolorings of a Ps-free graph has a precoloring extension, and finding
one if it exists. In fact, we restrict the problem further, by ensuring that there is a universal bound (that
works for all 4-precolorings of all Ps-free graphs) on the size of the seed of the excellent starred precolorings
that we need to consider. More precisely, we prove:

Theorem 7. There exists an integer C' > 0 and a polynomial-time algorithm with the following specifications.
Input: A 4-precoloring (G, Xy, f) of a Ps-free graph G.

Output: A collection L of excellent starred precolorings of G such that

1. If for every P’ € L we can in polynomial time either find a precoloring extension of P', or determine
that none exists, then we can construct a 4-precoloring extension of (G, Xo, f) in polynomial time, or
determine that none exists;

2. L] < |V(@)|C; and
3. for every (G', S, X{, X', Y*, f'Ye L,
o |5 <Cy
L] XO - S'uU Xé,
e (' is an induced subgraph of G; and
[ ] f/|X0 = f|X0
The proof of Theorem m is hard and technical, and we postpone it to the second paper of the series [3].
The second part of the proof of Theorem [f] is an algorithm that tests in polynomial time if an excellent

starred precoloring (where the size of the seed is fixed) has a precoloring extension. The goal of the present
paper is to solve this problem. We prove:



Theorem 8. For every positive integer C' there exists a polynomial-time algorithm with the following speci-
fications:

Input: An excellent starred precoloring P = (G, S, Xo, X, Y™, ) of a Ps-free graph G with |S| < C.

Output: A precoloring extension of P or a statement that none exists.

Clearly, Theorem[7]and Theorem [§|together imply Theorem [6] The proof of Theorem [§]consists of several
steps. At each step we replace the problem that we are trying to solve by a polynomially sized collection
of simpler problems, and the problems created in the last step can be encoded via 2-SAT (and therefore
can be solved in polynomial time). Here is an outline of the proof. First we show that an excellent starred
precoloring P of a Ps-free graph G can be replaced by a polynomially sized collection £ of excellent starred
precolorings of G that have an additional property (to which we refer as “being orthogonal”) and P has a
precoloring extension if and only if some member of £ does. Thus in order to prove Theorem [§], it is enough
to be able to test if an orthogonal excellent starred precoloring of a Ps-free graph has a precoloring extension.
Our next step is an algorithm whose input is an orthogonal excellent starred precoloring P of a Ps-free graph
G, and whose output is a “companion triple” for P. A companion triple consists of a graph H that may not
be Pgs-free, but certain important parts of it are, a list assignment L for H, and a correspondence function h
that establishes the connection between H and P. Moreover, in order to test if P has a precoloring extension,
it is enough to test if (H, L) is colorable.

The next step of the algorithm is replacing (H, L) by a polynomially sized collection M of list assignments
for H, such that (H, L) is colorable if and only if there exists L’ € £ such that (H, L') is colorable, and in
addition for every L' € L the pair (H, L) is “insulated”. Being insulated means that H is the union of four
induced subgraphs Hy, ..., Hy, and in order to test if (H, L') is colorable, it is enough to test if (H;, L') is
colorable for each ¢ € {1,2,3,4}. The final step of the algorithm is converting the problem of coloring each
(H;, L") into a 2-SAT problem, and solving it in polynomial time. Moreover, at each step of the proof, if a
coloring exists, then we can find it, and convert in polynomial time into a precoloring extension of P.

This paper is organized as follows. In Section [2] we produce a collection £ of orthogonal excellent starred
precolorings. In Section [3| we construct a companion triple for an orthogonal precoloring. In Section [ we
start with a precoloring and its companion triple, and construct a collection M of lists L’ such that every
pair (H,L’) is insulated. Finally, in Section [5| we describe the reduction to 2-SAT. Section |§| contains the
proof of Theorem [§] and of Theorem [6]

2  From Excellent to Orthogonal

Let P = (G, S, X0, X, Y™, f) be an excellent starred precoloring. For v € X UY™, the type of v is the set
N(v) N S. Thus the number of possible types for a given precoloring is at most 2I51. In this section we
will prove several lemmas that allow us to replace a given precoloring by an equivalent polynomially sized
collection of “nicer” precolorings, with the additional property that the size of the seed of each of the new
precolorings is bounded by a function of the size of the seed of the precoloring we started with. Keeping the
size of the seed bounded allows us to maintain the property that the number of different types of vertices of
X UY™ is bounded, and therefore, from the point of view of running time, we can always consider each type
separately.

For T' C S we denote by Lp(T') the set {1,2,3,4} \ U,cr{f(v)}. Thus if v is of type T', then Lp(v) =
Lp(T). For T C Sand U C X UY™ we denote by U(T) the set of vertices of U of type T

A subset Q of X is orthogonal if there exist a # b € {1,2,3,4} such that for every ¢ € @ either
Mp(q) = {a,b} or Mp(q) = {1,2,3,4} \ {a,b}. We say that P is orthogonal if N(y) N X is orthogonal for
every y € Y*.

The goal of this section is to prove that for every excellent starred precoloring P of a Ps-free graph G, we
can construct in polynomial time an equivalent collection £(P) of orthogonal excellent starred precolorings
of G, where |£(P)| is polynomial.

We start with a few technical lemmas.

Lemma 1. Let P = (G, S, Xo, X, Y™, f) be an excellent starred precoloring of a Ps-free graph G. Let i #
j€{1,2,3,4} and k € {1,2,3,4}\ {i,7}. Let T;,T; be types such that Lp(T;) = {i,k} and Lp(T;) = {4, k},



and let z;,x; € X(T;) and xj, 2% € X(Ty). Suppose that y;,y; € Y™ are such that i,j € Mp(y;) N Mp(y;),
where possibly y; = y;. Suppose further that the only possible edge among xl,xl,xj,x; is xixj, and y; 18
adjacent to x} and not to x;, and y; is adjacent to a:; and not to x;. Then there does not exist y € Y* with

i,j € Mp(y) and such that y is complete to {x;,x;} and anticomplete to {z},z’}.

Proof. Suppose such y exists. Since no vertex of X is mixed on a component of G|Y*, it follows that y
is anticomplete to {y;,y;}. Since z;,z; € X and i,k € Lp(T;), it follows that there exists s; € T; with
Lp(sj) ={j}. Similarly, there exists s; € T; with Lp(sl) = {i}. Since i € Lp(T;) and j € Lp(T}), it follows
that s; is anticomplete to {x;, ¥}} and s; is anticomplete to {z;,2}.

Since i,j € Mp(yi) N Mp(y;) N Mp(y) it follows that {s;,s;} is anticomplete to {y;,y;,y}. Since z —
Sj— T —Y—xj— 8 — T, (possibly shortcutting through z;z,) is not a Ps in G, it follows that s; is adjacent
to s;. If y; is non- adJacent to Jc , and y; is non-adjacent to xj, then y; # y;, and since P is excellent, y; is
non-adjacent to y;, and so y; — :17 — sj Si z —y; is a Fs, a contradiction, so we may assume that y; is
adjacent to x . But now m —y; —a, —sj —x; —y is a Pg, a contradiction. This proves Lemma O

Lemma 2. Let P = (G,S, X0, X,Y*, f) be an excellent starred precoloring of a Ps-free graph G. Let
{i,5,k,1} = {1,2,3,4}. Let T;,T; be types such that Lp(T;) = {i,k} and Lp(T;) = {j, k}, and let z;, ] €
X(T;) and J;J,xj € X(Ty). Let yj,ys € Y* with i,l € Mp(y;) N Mp(y}), and let yf,yj e Y* with j,l €
Mp(yi) N Mp(yj), where possibly y¢ = y} and yf = yg Assume that

o some component C; of G|Y™* contains both yf,yf ;
e some component C; of G|Y™* contains both y}yj,

for every t € {i,j} there is a path M in Cy from y to y! with | € Mp(u) for every u € V(M);
t ¢

the only possible edge among x;, x}, x;, ) is v;x;;
° yf,yf are adjacent to =, and not to x;;
° y;,yg are adjacent to x; and not to x;.
Then there do not exist y*,y’ € Y* with i,1 € Mp(y'), j,| € Mp(y?) and such that
e some component C of G|Y* contains both y* and y?, and
e | € Mp(u) for every u € V(C), and

o {y',y} is complete to {x;,x;} and anticomplete to {x}, x;

Proof. Suppose such 4%, 37 exist. Since P is an excellent starred precoloring, no vertex of X is mixed on a
component of G|Y*, and therefore V' (C') is anticomplete to V(C;)UV (C}). Since z;,2; € X and i,k € Lp(T}),
it follows that there exists s; € T; with Lp(s;) = {j}. Similarly, there exists s; € T; with Lp(sl) = {i}.
Since ¢ € Lp(T;) and j € Lp(T;), it follows that s; is anticomplete to {z;,z;} and s; is anticomplete to
{z;,2’}. Since i € Mp (yl) OMp(yf) N Mp(y;), it follows that s; is anticomplete to {y*,y;,y;}, and similarly
s is anticomplete to {y,y/,yj}.

First we prove that s; is adjacent to s;. Suppose not. Since x; —8; —T; —Tj— 8 — xg is nqt a Pg in G,
it follows that z; is non-adjacent to z;. But now 2} —s; —z; — ¢! —x; —s; or @, —s; —x; —y) — s, — acz is
a Ps in G, a contradiction. This proves that s; is adjacent to s;.

If y] is adjacent to x;, then x, —y] —x} —s; —w; —y7 is a Pg, a contradiction. Therefore ', is non-adjacent
to y/, and therefore x; is anticomplete to C;. Similarly, 2} is anticomplete to Cj. In particular it follows
that C; # C;.

Since Lp( i) = {j,k} there exists s; € S with Lp(s;) = {I} such that s; is complete to X(T}). Since
l € Mp(y) for every y € {yz,yl,yj,yj,y y7}, it follows that s; is anticomplete to {yl,yl,yj,y],y Y.
Recall that x;, 2; € X(T}), and so no vertex of S is mixed on {z;, z;}. Slmllarly no vertex of S is mixed on
{zj, 2} 1 s is antlcomplete to {x;, z}}, then one of y] — '} — s; — s, — ) —yj, L — s~ — vy —x;— s,
Ty —s; —x; —xj; — 8 — ¥ is a Pg, so s; is complete to {x“x 1.



Since y! — ) — 85— 8; — x; - yj is not a Fs, it follows that either s; is adjacent to yi, or s; is adjacent
to yj We may assume that s; is adjacent to y.

Let M be a path in C; from yf to y! with I € Mp(u) for every u € V/(M). Since s; is adjacent to y! and
not to y/, there is exist adjacent a,b € V(M) such that s; is adjacent to a and not to b. Since | € Mp(u)
for every u € V(M), it follows that s; is anticomplete to {a,b}. But now if s; is non-adjacent to s;, then
b—a—s; —x; — s fa:;- is a Ps, and if s; is adjacent to s;, then b —a — s; — 55 fm; fy;: is a Pg; in both
cases a contradiction. This proves Lemma [2] O

Let P = (G, S, X0, X,Y™*, f) be an excellent starred precoloring of a Ps-free graph G. Let S” C X, and
let X CXUY* Let f/: SUXoUS"UX{ — {1,2,3,4} be such that f'|(S U Xy) = f|(SU Xp) and
(G, SUXoUS"U X[, f") is a 4-precoloring of G. Let X" be the set of vertices z of X \ X{/ such that x has
a neighbor z € S” with f'(z) € Mp(z). Let

§'=Sus”
X=X UX"UX{
X'=X\(X"US"uUXy)
Y =Y*\ Xy

We say that P’ = (G, S", X}, X', Y*'| f') is obtained from P by moving S” to the seed with colors f'(S"),
and moving X{ to Xo with colors f'(X{/). Sometimes we say that “we move S” to S with colors f/(S”),
and X[ to X with colors f/(X{)”.

In the next lemma we show that this operation creates another excellent starred precoloring.

Lemma 3. Let P = (G, S, Xo, X, Y™, f) be an excellent starred precoloring of a Ps-free graph G. Let S” C X
and X§ C X UY*, and let 8", X}, X', Y*'| f' be as above. Then P' = (G,S', X}, X", Y*' ') is an excellent
starred precoloring.

Proof. We need to check the following conditions:
1. f/: 8" U X} — {1,2,3,4} is a proper coloring of G|(S" U X{);
2. V(G)=S"uXjux'uy+*;

G|S’ is connected and no vertex in V(G) \ S’ is complete to S’;

- W

every vertex in X’ has neighbors of at least two different colors (with respect to f) in S’;
5. no vertex in X’ is mixed on a component of G|Y*’; and

6. for every component of G|Y*', there is a vertex in S’ U X}, U X’ complete to it.

Next we check the conditions.

1. holds by the definition of P’.

2. holds since S’ UXJUX' UY* =SUXoUXUY™.

3. G|S’ is connected since G|S is connected, and every z € S” has a neighbor in S. Moreover, since no
vertex of V(G) \ S is complete to S, it follows that no vertex of V/(G) \ S’ is complete to S’.

4. follows from the fact that X’ C X.
5. follows from the fact that Y*' C Y* and X’ C X.

6. follows from the fact that Y*' C Y* and SU X C S" U X{.



Let P = (G, S, X0, X,Y", f) be an excellent starred precoloring. Let i # j € {1,2,3,4}. Write X;; =
{z € X such that Mp(z) = {i,j}}. For y € Y* let Cp(y) (or C(y) when there is no danger of confusion)
denote the vertex set of the component of G|Y* that contains y.

Let P = (G, S, X0, X, Y™, f) be an excellent starred precoloring, and let {7, j, k,1} = {1,2,3,4}. We say
that P is kl-clean if there does not exist y € Y* with the following properties:

e i,j€ Mp(y), and
e there is u € C(y) with k € Mp(u), and
e y has both a neighbor in X;; and a neighbor in Xjy.

We say that P is clean if it is kl-clean for every k #1 € {1,2,3,4}.
We say that P is kl-tidy if there do not exist vertices y;,y; € Y* such that

e ic Mp(y:), j € Mp(y;), and

e C(y:) = C(y;), and

e there is a path M from y; to y; in C such that [ € Mp(u) for every u € V(M), and
e there is u € V(C) with k € Mp(u), and

e y; has a neighbor in Xj; and a neighbor in Xj; (recall that since P is excellent y; and y; have the
same neighbors in X).

Observe that since no vertex of X is mixed on an a component of G|Y™*, it follows that N(y;) N Xy; is
precisely the set of vertices of Xj; that are complete to C(y;), and an analogous statement holds for Xj;.
We say that P is tidy if it is kl-tidy for every k # 1 € {1,2,3,4}.

We say that P is kl-orderly if for every y in Y* with {4, j} € Mp(y), N(y)NX,x is complete to N (y)NX .
We say that P is orderly if it is kl-orderly for every k #1 € {1,2,3,4}

Finally, we say that P is kl-spotless if no vertex y in Y* with {i,j} € Mp(y) has both a neighbor in X
and a neighbor in X ;. We say that P is spotless if it is ki-spotless for every k # [ € {1,2, 3,4}

Our goal is to replace an excellent starred precoloring by an equivalent collection of spotless precolorings.
First we prove a lemma that allows us to replace an excellent starred precoloring with an equivalent collection
of clean precolorings.

Lemma 4. There is a function ¢ : N — N such that the following holds. Let G be a Pgs-free graph, and let
P = (G, S, X0, X,Y*, f) be an excellent starred precoloring of G. Then there is an algorithm with running
time O(|V(G)[2USD) that outputs a collection L of excellent starred precolorings of G such that:

o L] < |V(G)|1D;

o |8 < q(|S|) for every P’ € L;

o cvery P’ € L is ki-clean for every (k,l) for which P is kl-clean;
o cvery P’ € L is 14-clean;

e L is an equivalent collection for P.

Proof. Without loss of generality we may assume that Xo = X°(P)\ S. Thus Lp(x) = Mp(z) for every
x € X. We may assume that P is not 14-clean for otherwise we may set £ = {P}. Let Y be the set of
vertices of Y* with 2,3 € Mp(y) and such that some u € C(y) has 1 € Mp(u). Let T4, ..., T, be the subsets
of S with Lp(T,) = {1,2} and Tp41, ..., Ty, the subsets of S with Lp(T) = {1,3}. Let Q be the collection
of all m-tuples

((517 Ql), (527 Q2)7 R (Sma Qm))

where for every r € {1,...,m}

e S. C X(T,) and |S,| € {0,1},



o if S, =0, then Q, =0
o if S, ={z,} then Q, = {y} where y € Y N N(z,).
For @@ € Q construct a precoloring Py as follows. Let r € {1,...,m}. We may assume that r < p.

e Assume first that S, = {z,}. Then @, = {y,}. Move {z,} to the seed with color 1, and for every
y € Y such that N(y) N X(T,) € N(y,) N X(T}) \ {z,}, move N(y) N X(T;) to Xy with the unique
color of Lp(T;) \ {1}.

e Next assume that S, = 0. Now for every y € Y move N(y) N X (7,) to Xy with the unique color of

In the notation of Lemma |3} if the precoloring of G|(X{j U S’) thus obtained is not proper, remove @ from
Q. Therefore we may assume that the precoloring is proper. Repeatedly applying Lemma [3] we deduce that
Py is an excellent starred precoloring. Observe that Y*' = Y*. Since X’ C X and Y*' = Y™*, it follows that
if P is kl-clean, then so is Pg.

Now we show that Pg is 14-clean. Let Y’ be the set of vertices y of Y* such that 2,3 € Mp,(y) and
some vertex u € C(y) has 1 € Mp, (u). Observe that Y" C Y. It is enough to check that no vertex of Y’ has
both a neighbor in X7, and a neighbor in X{5. Suppose this is false, and suppose that y € Y’ has a neighbor
x2 € X5 and a neighbor z3 € X{;. Then z2 € X2 and x5 € X;13. We may assume that o € X(T3) and
z3 € X(Tpt1). Since xa, 25 ¢ X°(Pg), it follows that both Sy # 0 and Spi1 # 0, and therefore Q1 # 0
and Qp+1 # 0. Write S1 = {24}, Q1 = {y2}, Sp+1 = {z4} and Qp+1 = {ys}. Since some u € C(y) has
1 € Mp,(u), and since x5, x5 are not mixed on C(y), it follows that y is anticomplete to {x5,z3}. Again
since zo & X°(Pg), it follows that N(y) N X(T1) € N(y2) N X (T1), and so we may assume that o & N (yz).
Similarly, we may assume that x3 ¢ N(y3). But now the vertices za, 4, 3, 5, y2,ys3, y contradict Lemma
This proves that Pg is 14-clean.

Since S = SUU", S;, and since m < 29/ it follows that |S’| < |S|+m < |S| + 2/5].

Let £L ={Pg : Q € Q}. Then |L| < |[V(G)]*™ < \V(G)|2‘SH1. We show that £ is an equivalent
collection for P. Since every P’ € L is obtained from P by precoloring some vertices and updating, it is
clear that if ¢ is a precoloring extension of a member of £, then c is a precoloring extension of P. To see the
converse, let ¢ be a precoloring extension of P. For every ¢ € {1,...,m} define (S;, S}, Q;, Q;) as follows. If
no vertex of Y has a neighbor x € X (T;) with ¢(z) = 1, set S; = Q; = 0. If some vertex of Y has neighbor
x € X(T;) with ¢(x) = 1, let y be a vertex with this property and in addition with N(y) N X (7;) minimal;
let x € X(T;) N N(y) with ¢(x) = 1; and set Q; = {y} and S; = {z}. Let Q = ((S1,Q1),..-,(Sm, Qm))-
We claim that ¢ is a precoloring extension of Pgy. Write Py = (G, 5", X{, X', Y, f'). We need to show that
c(v) = f'(v) for every v € S"UX{. Since ¢ is a precoloring extension of P, it follows that c(v) = f(v) = f'(v)
for every v € SU X,. Since S’ \ S =, Ss and c¢(v) = f'(v) =1 for every v € I~ S5, we deduce that
c(v) = f'(v) for every v € S’. Finally let v € X} \ Xo. It follows that v € X, f/(v) is the unique color of
Mp(v) \ {1}, and there are three possibilities.

1. 1 € Mp(v) and v has a neighbor in (J]-, Ss, or

2. thereis i € {1,...,m} with S; = {z;} and Q; = {y;}, and there is y € Y* such that N(y) N X (T;) C
(N(yi) N X(T5)) \ {:}, and v € N(y) N X(T3), or

3. thereis i € {1,...,m} with S; = Q; = 0, and there is y € Y* such that v € N(y) N X(T;).
We show that in all these cases c(v) = f'(v).
1. Let 2 € Ul Ss. Then ¢(z) =1, and so ¢(v) # 1, and thus c(v) = f'(v).

2. By the choice of y; and since N (y) N X (T;) C (N (y;) N X (T;)) \ {z:}, it follows that c¢(u) # 1 for every
u € N(y) N X(T;), and therefore c(v) = f'(v).

3. Since S; = 0, it follows that for every ' € Y* and for every u € N(y') N X(T;) we have that c(u) # 1,
and again c(v) = f'(v).

This proves that c is a precoloring extension of Py, and completes the proof of Lemma @ O



Repeatedly applying Lemma [4] and using symmetry, we deduce the following:

Lemma 5. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G, S, Xo,X,Y*, f) be an excellent starred precoloring of G. Then there is an algorithm with running
time O(|V (G)|2U5D) that outputs a collection L of excellent starred precolorings of G such that:

o [£] <V (G)|115D;

o |5 < q(|S]) for every P' € L;

e cvery P’ € L is clean;

e L is an equivalent collection for P.

Next we show that a clean precoloring can be replaced with an equivalent collection of precolorings that
are both clean and tidy.

Lemma 6. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G,S, X0, X, Y*, f) be a clean excellent starred precoloring of G. Then there is an algorithm with
running time O(|V (G)|2U5D) that outputs a collection L of excellent starred precolorings of G such that:

o L] < |V(G)|15D;

|S’] < q(|S]) for every P' € L;

o cvery P’ € L is clean;

e cvery P’ € L is ki-tidy for every k,l for which P is kl-tidy;
o cvery P’ € L is 14-tidy;

e L is an equivalent collection for P.

Proof. Without loss of generality we may assume that Xo = X°(P)\ S, and thus Lp(z) = Mp(x) for every
x € X. We may assume that P is not 14-tidy for otherwise we may set £ = {P}. Let Y be the set of all
pairs (y2,y3) with yo,y3 € Y* such that

e 2¢ Mp(y2), 3 € Mp(ys3),

e yo,y3 are in the same component C of G|Y*,

e there is a path M from y, to y3 in C such that 4 € Mp(u) for every u € V(M), and
e for some u € V(C), 1 € Mp(u),

Let T4,...,T, be the subsets of S with Lp(Ts) = {1,2} and let T}, 11,...,T), be the subsets of S with
Lp(Ts) ={1,3}. Let Q be the collection of all m-tuples

(81, Q1) (52,Q2), -, (Sm, @m))
where for r € {1,...,m}
e 5. C X(T,) and |S,| € {0,1},
e if S, =0, then Q, =0
o S, ={z,} then Q, = {(v3,vy5)} where (v5,v5) € Y and x, is complete to {y5,y5}.

For @ € Q construct a precoloring Pg as follows. For r = 1,...,m, we proceed as follows.

e Assume first that S, = {z,}. Then Q, = {(y5,y5)}. Move z, to the seed with color 1, and for every
(y2,y3) € Y such that N(y2) N X(T}.) € N(y5) N (X(T) \ {z}), move N(y2) N X(T}) to Xy with the
unique color of Lp(T,) \ {1}.



e Next assume that S, = (). Now for every y € Y move N(y) N X (7,) to Xo with the unique color of

Lp(T)\ {1}

In the notation of Lemma |3 if the precoloring of G|(X{j U S’) thus obtained is not proper, remove @ form
Q. Therefore we may assume that the precoloring is proper. Repeatedly applying Lemma [3] we deduce that
Pg is an excellent starred precoloring. Observe that Y*' = Y*, Mp,(y) C Mp(y) for every y € Y*', and
Mp, (z) = Mp(z) for every z € X'\ X°(Pg). It follows that Py is clean, and that if P is ki-tidy, then so is
Pgy.
Now we show that Pg is 14-tidy. Suppose that there exist yo,ys € Y@ that violate the definition of
being 14-tidy. Let xo € X1, and z3 € X|5 be adjacent to yo, say, and therefore complete to {y2,ys}. We
may assume that zo € X(71) and x3 € X(T,11). Since z2, 25 € X°(Pg), it follows that both S; # 0 and
Spy1 # 0, and therefore Q1 # 0 and Qpy1 # 0. Write Sy = {z5}, Q1 = {(¥3,43)}, Spt1 = {3} and
Qp+1 = {93,953}

Since there is a vertex w in the component of G|(Y™*)" containing y»,ys with 1 € Mp,(u), and since
no vertex of X is mixed on a component of Y*, it follows that {y2,y3} is anticomplete to {z}, z5}. Since
zy & XY(Pg), it follows that N (y2)NX (T1) € N(y3)N(X (T1)\{x4}), and so we may assume that zo & N(y3).
Similarly, we may assume that x3 & N(y3). But now, since no vertex of X is mixed on a component of Y*,
we deduce that the vertices ma, 25, T3, 2%, Y3, Vs, Y2, U3, y2, y3 contradict Lemma This proves that Pg is
14-tidy.

Since S = SUU", S;, and since m < 291, it follows that |S’| < |S|+m < |S| + 2I5].

Let £ ={Py : Q € Q}). Then |£] < |[V(G)]P™ < [V(G)[P**'. We show that £ is an equivalent
collection for P. Since every P’ € L is obtained from P by precoloring some vertices and updating, it is
clear that every precoloring extension of a member of L is a precoloring extension of P. To see the converse,
suppose that P has a precoloring extension c. For every i € {1,...,m} define S; and Q; as follows. If
there does not exist (y3,y3) € Y such that some z € X (T;) with c¢(z) = 1 is complete to {y3,y3}, set
S; = Q; = . If such a pair exists, let (y3,y3) be a pair with this property and subject to that with the set
N(y3) N X(T;) minimal; let € X (T;) be complete to {y3,v3} and with c¢(x) = 1; and set Q; = {(v3,v3)}
and S; = {z}. Let Q = ((S1,Q1),-..,(Sm,®@m)). We claim that c is a precoloring extension of Pgy. Write
Py = (G,5, Xy, X",Y', f'). We need to show that c¢(v) = f'(v) for every v € S’ U X(. Since ¢ is a
precoloring extension of P, it follows that c(v) = f(v) = f'(v) for every v € S U Xj. Since S\ S =JI", Ss
and c(v) = f'(v) = 1 for every v € [J,-, Ss, we deduce that c¢(v) = f’(v) for every v € S’. Finally let
v € X\ \ Xo. Then v € X, f/'(v) is the unique color of Mp(v) \ {1}, and there are three possibilities.

!/

1. 1 € Mp(v) and v has a neighbor in [J]-, Ss, or

2. there is i € {1,...,m} with S; = {x;} and Q; = {(v?,y})}, and there exists (y2,93) € Y such
N(y2) N X(T;) € X(T3) N (N (y7) \ {4}), or

3. thereis i € {1,...,m} with S; = Q; = 0, and there exists (y2,y3) € Y such that v € X(T;) N N(y2).
We show that in all these cases c¢(v) = f/(v).
1. Let z € U, Ss. Then c¢(z) =1, and so ¢(v) # 1, and thus c(v) = f'(v).

2. By the choice of 42, y3 and since N (y2) N X (T;) C (N(y?) N X (T;)) \ {z:}), it follows that c(u) # 1 for
every u € N(y2) N X (T;), and therefore c¢(v) = f'(v).

3. Since S; = 0, it follows that for every (y2,y3) € Y and for every u € N(y2) N X (T;) we have c(u) # 1,
and again c(v) = f(v).

This proves that c is an extension of Py, and completes the proof of Lemma @ O
Repeatedly applying Lemma [f] and using symmetry, we deduce the following:

Lemma 7. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G,S, X0, X, Y*, f) be a clean excellent starred precoloring of G. Then there is an algorithm with
running time O(|V(G)|905D) that outputs a collection L of excellent starred precolorings of G such that:
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L] < V(&) “15D;

|S7] < ¢(|S]) for every P' € L;

every P’ € L is clean and tidy;
e L is an equivalent collection for P.

Our next goal is to show that a clean and tidy precoloring can be replaced with an equivalent collection
of orderly precolorings.

Lemma 8. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P =(G,S, Xy, X, Y™, f) be a clean, tidy starred precoloring of G. Then there is an algorithm with running
time O(|V(G)[2USD)Y that outputs a collection L of excellent starred precolorings of G such that:

o L] < |V(G)|15D;

|S7| < q(|S]) for every P' € L;

o cvery P’ € L is clean and tidy;

o cvery P’ € L is kl-orderly for every (k,l) for which P is kl-orderly;
o cvery P’ € L is 14-orderly;

e P is equivalent to L.

Proof. Without loss of generality we may assume that X = X°(P), and so Lp(x) = Mp(z) for every
xz € X. We may assume that P is not 14-orderly for otherwise we may set £ = {P}. Let Y = {y €
Y* such that {2,3} C Mp(y)}. Let T1,...,T), be the types with L(T) = {1,2} and Tp41, ..., T the types
with L(Ts) = {1,3}. Let Q be the collection of all p(m — p)-tuples of quadruples (S;,S;,Q;,Q";) with
ie{l,...,p}and j €{p+1,...,m}, where

. 5,5,Q;,Q, CY;

19il, 1531, 1Q;11Q5] € {0, 1};

S! 40 only if S; # 0 and Q; = 0

@, # 0 only if Q; # 0 and S; = 0
if N(S;) N X(T;) = 0, then S; = 0

o if N QJ) X(T]) = (Z), then Qj = @;

Q)N
o if N(S)) N (X(T;) \ N(S,)) = 0, then S} = 0;
QN

o if N(Q)) N (X(T))\ N(@Q)) = 0, then @ = 0.

Please note that quadruples for distinct pairs (73, T;) are selected independently. For @ € Q construct a
precoloring Pg as follows. Let i € {1,...,p} and j € {p+1,...,m}.

e Assume first that S; = {y;} and Q; = {y;}. If there is an edge between N (y;)NX (T;) and N (y; )N X (Tj),
remove @ from Q. Now suppose that N(y;) N X (T;) is anticomplete to N(y;) N X(T;). Move T =
(N(y;) N X(T3)) U(N(y;) N X(T})) into X with color 1. For every y € Y complete to T' and both with
a neighbor in X (T;) \ T and a neighbor in X (Tj) \ T, proceed as follows: if 4 € Mp(y), move y into
Xo with color 4; if 4 ¢ Mp(y), remove @ from Q.

e Next assume that exactly one of S;,Q; is non-empty. By symmetry we may assume that S; = {y;}
and Q; = 0. Move T'= N(y;) N X (T;) into X, with color 1. For every y € Y complete to 7" and both
with a neighbor in X (7;) \ 7" and a neighbor in X (7}), proceed as follows: if 4 € Mp(y), move y into
X with color 4; if 4 € Mp(y), remove @ from Q.
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— Suppose S # 0, write S} = {y/}. Let TV = N(y}) N (X(T;) \ T). If there is an edge between T
and 7", remove ) from Q. Now we may assume that 7" is anticomplete to T. Move T" into X
with color 1. For every y € Y complete to 77 and both with a neighbor in X (7;) \ (TUT’) and a
neighbor in X (7)), proceed as follows: if 4 € Mp(y), move y into Xy with color 4; if 4 & Mp(y),
remove @ from Q.

— Next suppose that S; = (). For every y € Y with a neighbor in X (7;)\ T and a neighbor in X (7}),
proceed as follows: if 4 € Mp(y), move y into X, with color 4; if 4 ¢ Mp(y), remove Q from Q.

e Finally assume that S; = Q; = (). For every y € Y with both a neighbor in X (7;) and a neighbor in
X (T;), proceed as follows: if 4 € Mp(y), move y to Xy with color 4; if 4 € Mp(y), remove @ from Q.

Let Q € Q, and let Py = (G, S, X(, X', Y*' f'). Since X’ C X, Y' C Y* and Mp,(v) C Mp(v) for every
v, it follows that Py is excellent, clean, tidy, and that for k # [ € {1,2,3,4}, if P is kl-orderly, then Py is
kl-orderly.

Next we show that Py is 14-orderly. Suppose that some y € Y has a neighbor in z; € X{, and a
neighbor in x5 € X|5 such that x5 is non-adjacent to z3. Then x5 € X153 and z3 € X13. We may assume
that zo € X(T) and z3 € X (T}+1). Since z2, 25 ¢ X°(Pg), it follows that at least one of S1,Qpi1 # 0.

Suppose first that both S; # 0 and Q11 # 0. Let S1 = {y2} and Q,+1 = {ys3}. Since xq, 23 &€ X°(Pp),
it follows that yo is non-adjacent to x2, and y3 is non-adjacent to x3. Since y & X°(Pg), we may assume by
symmetry that there is 24 € N(y2) N X(T%) such that y is non-adjacent to z45. Let a% € N(ys) N X (Tp41).
Since wa, 23,y & X°(Pg), it follows that {x}, 24} is anticomplete to {z2, z3}. By the construction of Py, ) is
non-adjacent to #5. By Lemmall] y is adjacent to 4. Since Lp(T1) = {1,2}, there is s3 € S with f(s3) =3
complete to X (71). Since 3 € Mp, (y) N Lp(y2) N Lp(y3) N Lp(x3)NLp(x3), it follows that s3 is anticomplete
to {y,y2, y3, x3, x5 }. Similarly, since Lp(Tp41) = {1, 3}, there is so € S with f(s2) = 2 complete to X (Tp41).
Since 2 € Mp, (y)NLp(y2)NLp(y3)NLp(x2)NLp(zy), it follows that s; is anticomplete to {y, y2, y3, T2, 25}
Since ya — @ — 83 — g —y — t is not a Py for t € {xg, x4}, it follows that ys is complete to {x3,x5}. Since
Y3 — Th — Yy — Ta — S3 — xh is not a P, it follows that y3 is adjacent to at least one of x9,x}. Since the path
X — Y — T3 — Yo — TH cannot be extended to a Ps via ys3, it follows that ys is complete to {x2,z5}. But now
S9 — @3 — Yy — Ty — Y3 — xh is a Pg, a contradiction.

Next suppose that exactly one of Si, Qp41 is non-empty. By symmetry we may assume that S1 = {y2}
and Qpt1 = 0. Since zo, 23 & X°(Pgp), it follows that y, is non-adjacent to z2. Since y & X°(Pgp), it follows
that S; # 0. Write S! = {y}}; now x5 is non-adjacent to y5. Since y & X°(Pg), we may assume that there is
xh € N(y2) N X(T1) such that y is non-adjacent to x5, and af € N(y5) N (X (T1)\ N(y2)) such that y is non-
adjacent to x4. Since z2, x5 & X°(Pg), it follows that {z}, x4} is anticomplete to {z2,z3}. Since Lp(T}) =
{1,2}, there is s3 € S with f(s3) = 3 complete to X (171). Since 3 € Mp, (y) N Lp(y2) N Lp(ys) N Lp(xs), it
follows that s3 is anticomplete to {y, ya, 5, x3}. Since yo — x4 — s3 — w9 — y — x3, is not a Pg, it follows that
x3 is adjacent to ya. But now y — xg — yo — xh — s3 — 4 is a Pg, a contradiction. This proves that Py is
14-orderly.

Observe that S = S, and so |S’| = |S|. Observe also that p(m —p) < (%)2, and since m < 251, it follows
that p(m —p) < 22151-2. Let £ = {Py : Q € Q}. Now |L| < [V(G)|*(m=P) < |V(G)[Z"".

We show that £ is an equivalent collection for P. Since every P’ € L is obtained from P by precoloring
some vertices and updating, it is clear that if ¢ is a precoloring extension of a member of £, then c is a
precoloring extension of P. To see the converse, suppose that P has a precoloring extension c¢. For every
i€{l,...,p}and j € {p+1,...,m} define S;, 5, @; and Q) as follows. If every vertex of ¥ has a neighbor
z € X(T;) with ¢(z) # 1, set S; = ), and if every vertex of ¥ has a neighbor z € X (T}) with ¢(z) # 1,
set @Q; = 0. If some vertex of Y has no neighbor z € X (7;) with c¢(z) # 1, let y; be a vertex with this
property and in addition with N(y;) N X (T;) maximal; set S; = {y;}. If some vertex of ¥ has no neighbor
x € X(T;) with ¢(z) # 1, let y; be a vertex with this property and in addition with N(y;) N X (T;) maximal;
set Q; = {y;}. If |Si| = |Qy, set S} = Q; = 0. Next assume that |S;| # |Q;[; by symmetry we may assume
that S; = {y;} and Q; = 0. If every vertex of Y has a neighbor x € X (T;) \ N(y;) with ¢(z) # 1, set S/ = 0.
If some vertex of Y has no neighbor z € X(T;) \ N(y;) with ¢(z) # 1, let y. be a vertex with this property
and in addition with N(y;) N (X (T;) \ N(y;)) maximal; set S! = {y}}.

We claim that ¢ is a precoloring extension of Pg. Write Py = (G, 5, X{, X", Y, f'). We need to show
that c(v) = f'(v) for every v € S" U X|. Since c is a precoloring extension of P, and since S = 5’, it follows
that c(v) = f(v) = f'(v) for every v € 8" U Xy. Let v € X{j \ Xo. It follows that either
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8.

- Si={yi}, Qj ={y;},and v € X and v € (N(y;) N X(T;)) U (N(y;) N X(T})) and f'(v) =1, or
- Si={yi}, Q; ={y;}, v €Y, vis complete to (N (y;) N X(T;))U(N(y;)NX(T})), v has both a neighbor

in X(7;) \ N(y;) and a neighbor in X (7;) \ N(y;), and f'(v) =4, or

(possibly with the roles of ¢ and j exchanged) S; = {y;}, Q; =0, and v € X and v € N(y;) N X(T;),
and f'(v) =1, or

(possibly with the roles of ¢ and j exchanged) S; = {y;}, Q; =0, v € Y, v is complete to N (y;)N X (T3),
v has both a neighbor in X (T;) \ N(y;) and a neighbor in X(T}), and f'(v) =4, or

(possibly with the roles of i and j exchanged) S; = {y;}, S/ = {y.}, and v € X and v € N(y;) N
(X(T0) \ N(3:)), and f'(v) = 1, or

(possibly with the roles of ¢ and j exchanged) S; = {v;}, S! = {y;}, v € Y, v is complete to N(y}) N

(X(T3) \ N(v:)), v has both a neighbor in X (7;) \ (N(y;) U N(y;)) and a neighbor in X (T}), and
J'w) =4, or

(possibly with the roles of ¢ and j exchanged) S; = {y;}, Q; = S, =0, v € Y, v has both a neighbor
in X(7;) \ (N(y;) UN(y;)) and a neighbor in X (Tj), and f'(v) =4, or

Si=Q; =0, v €Y, v has both a neighbor in X (7;) and a neighbor in X (Tj), and f'(v) =

We show that in all these cases c(v) = f'(v).

1. By the choice of y;,y;, c(u) =1 for every v € (N(y;) N X(T;)) U (N(y;) N X(T})), and so ¢(v) = 1.

2. It follows from the maximality of y;,y; that v has both a neighbor x5 € X (T;) with ¢(z2) = 2 and
a neighbor z3 € X (Tj) with c¢(z3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and therefore
c(v) =4.

3. By the choice of y;, ¢(u) = 1 for every u € N(y;) N X(T;), and so c(v) = f'(v).

4. Tt follows from the maximality of y; that v has a neighbor x5 € X (7;) with ¢(z2) = 2. Since Q; =0, v
has a neighbor 3 € X (7}) with ¢(z3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and so c(v) = 4.

5. By the choice of y}, c(u) =1 for every u € N(y}) N (X(T;) \ N(y:)), and so ¢(v) = 1.

6. It follows from the maximality of y, that v has a neighbor x5 € X (T;) with ¢(z2) = 2. Since Q; =0, v
has a neighbor 3 € X (7}) with ¢(z3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and so c(v) = 4.

7. Since S} = (), it follows that for every y € Y with a neighbor in X (7;) \ N(y;), y has a neighbor u in

X(Ty) \N(yl) with ¢(u) = 2. Since Q; = (), v has a neighbor z3 € X(T;) with ¢(xz3) = 3. Since P is
clean, it follows that 1 & Mp(v), and so c(v) = 4.

8. Since S; = Q; = 0, it follows that v has both a neighbor z, € X (T;) with ¢(z2) = 2, and a neighbor
xg € X(T;) with c(x3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and so c¢(v) = 4.

This proves that c is an extension of Py, and completes the proof of Lemma O

Repeatedly applying Lemma |8 and using symmetry, we deduce the following:

Lemma 9. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G, S, X0, X,Y*, f) be a clean and tidy excellent starred precoloring of G. Then there is an algorithm
with running time O(|V(G)|2U5D) that outputs a collection L of excellent starred precolorings of G such that:

o L] < |V(G)|15D;

o |5 < q(|S|) for every P’ € L;

e cvery P’ € L is clean, tidy and orderly;
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e P is equivalent to L.

Next we show that a clear, tidy and orderly excellent starred precoloring can be replaced by an equivalent
collection of spotless precolorings.

Lemma 10. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G,S8, X0, X, Y*, f) be a clean, tidy and orderly excellent starred precoloring of G. Then there is an

algorithm with running time O(|V (G)|9USD) that outputs a collection L of excellent starred precolorings of
G such that:

o L] < |V(G)|15D;

|S7] < q(|S]) for every P' € L;

e cvery P’ € L is clean, tidy and orderly;

o cvery P’ € L is kl-spotless for every (k,l) for which P is kl-spotless;
e cvery P’ € L is 14-spotless;

e P is equivalent to L.

Proof. The proof is similar to the proof of Lemma [8] Without loss of generality we may assume that
Xo = X9(P), and so Lp(z) = Mp(x) for every z € X. We may assume that P is not 14-spotless for
otherwise we may set £ = {P}. Let Y be the set of vertices y € Y* such that {2,3} C Mp(y) and y has both
a neighbor in X5 and a neighbor in Xi3. Let 17, ..., T, be the types with L(T) = {1,2} and Tpy1,...,Tm
the types with L(T,) = {1, 3}. Let Q be the collection of all p(m — p)-tuples (S;,Q;) with i € {1,...,p} and
J € {p—|— 1,... ,m}, where S;,@Q; CY and ‘SZ|, |Q1‘ S {O, 1}

For @@ € Q construct a precoloring Py as follows. Let i € {1,...,p} and j € {p+1,...,m}.

e Assume first that S; = {y;} Q; = {y;}. If there is an edge between N(y;) N X (T;) and N(y;) N X (T}),
remove ) from Q. Now suppose that N(y;) N X(T;) is anticomplete to N(y;) N X (T;). Move T =
(N(y:) N X(T;)) U (N (y;) N X (Tj)) into X with color 1. For every y € Y complete to T" and both with
a neighbor in X(7;) \ T and a neighbor in X (T;) \ T, proceed as follows: if 4 € Mp(y), move y to Xo
with color 4; if 4 & Mp(y), remove @ from Q.

e Next assume that exactly one of S;,@; is non-empty. By symmetry we may assume that S; = {y;}
and Q; = 0. Move T'= N(y;) N X(T;) into X, with color 1. For every y € Y complete to T" and both
with a neighbor in X (T;) \ T and a neighbor in X (T}), proceed as follows. If 4 € Mp(y), move y to
Xo with color 4; if 4 € Mp(y), remove @ from Q.

e Finally assume that S; = S; = (). For every y € Y with both a neighbor in X(7;) and a neighbor in
X (Tj;), proceed as follows: if 4 € Mp(y), move y to Xy with color 4; if 4 € Mp(y), remove Q from Q.

Let Q € Q, and let Py = (G, S, X}, X', Y*', f'). If f is not a proper coloring of G|(S’" U X)), remove Q
from Q. Since X' C X, Y’ C Y* and Mp,(v) € Mp(v) for every v, it follows that Pg is excellent, clean,
tidy and orderly, and that for k # [ € {1,2, 3,4}, if P is ki-spotless, then Py is ki-spotless.

Next we show that Py is 14-spotless. Suppose that some y € ¥ has a neighbor in 25 € X}, and a neighbor
in 23 € X{3. Then z2 € X152 and 23 € X13. We may assume that 2o € X(77) and 23 € X(Tp41). Since
T2, 23 ¢ X°(Pg), we may assume that Sy # 0); let S; = {y2}. Since P is orderly, N(y2)NX(T,+1) is complete
to N(y2) N X(T1), and consequently Mp, (x) = 3 for every & € N(y2) N X (Tp41). Since xz,x3 € X°(Py),
it follows that yo is anticomplete to {z2,x3}. Since y ¢ X°(Pg), we may assume (using symmetry if
Qp+1 # 0) that there is a5 € N(y2) N X(T1) such that y is non-adjacent to z. Since Lp(Ty) = {1,2},
there is s3 € S with f(s3) = 3 complete to X (71). Since 3 € Mp,(y) N Lp(y2) N Lp(xs), it follows that
sg is anticomplete to {y, y2,z3}. Similarly there exists so € S with f(s2) = 2 complete to X (T,p4+1). Since
2 € Mp,(y) N Lp(y2) N Lp(xz), it follows that sy is anticomplete to {y,y2,z2}. If 55 is non-adjacent to s3,
then yo —xh —s3— w9 —x3—$2 is a Pg, a contradiction. Thus ss is adjacent to s3. Now ya —ah —$3— 82 —x3—y
is a Ps, again a contradiction. This proves that Pg is 14-spotless.
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Observe that S = S, and so |S| = |S’|. Observe also that also that p(m —p) < (%)2, and since m < 2151,
it follows that p(m — p) < 2251-2. Let £ = {Pg : Q € Q}. Now |£| < [V(G)[2Pm—p) < |V(G)[2*"' .

Next we show that £ is an equivalent collection for P. Since every P’ € L is obtained from P by
precoloring some vertices and updating, it is clear that if ¢ is a precoloring extension of a member of £, then
P is a precoloring extension of P. To see the converse, suppose that P has a precoloring extension c. For
every i € {1,...,p} and j € {p+1,...,m} define (S;,Q;) as follows. If every vertex of Y has a neighbor
xz € X(T;) with ¢(z) # 1, set S; = 0, and if every vertex of Y has a neighbor x € X (T;) with ¢(z) # 1,
set @Q; = 0. If some vertex of Y has no neighbor z € X(T;) with c¢(z) # 1, let y; be a vertex with this
property and in addition with N(y;) N X (T;) maximal; set S; = {y;}. If some vertex of ¥ has no neighbor
x € X(T;) with c¢(z) # 1, let y; be a vertex with this property and in addition with N (y;) N X (T;) maximal;
set @Q; = {y;}. We claim that ¢ is a precoloring extension of Py. Write Py = (G, S, X{, X", Y', f). We
need to show that c¢(v) = f’(v) for every v € S’ U X{,. Since ¢ is a precoloring extension of P, and since
S =9, it follows that c(v) = f(v) = f'(v) for every v € S’ U Xp. Let v € X{j \ Xo. It follows that either

1. 8= {yih Q5 = {y;}, and v € X and v € (N(y:) N X (T3)) U (N(y;) N X(T))) and f'(v) = 1, or

2. Si={yi}, Q; ={y;}, v €Y, vis complete to (N(y;) N X(T3))U(N(y;) N X(Tj)), v has both a neighbor
in X(T;) \ N(y;) and a neighbor in X(T}) \ N(y;), and f'(v) =4, or

3. (possibly with the roles of ¢ and j exchanged) S; = {y;}, Q; =0, and v € X and v € N(y;) N X(T;),
and f'(v) =1, or

4. (possibly with the roles of i and j exchanged) S; = {y;}, Q; =0, v € Y, v is complete to N (y;) N X (T}),
v has both a neighbor in X (7;) \ N(y;) and a neighbor in X (Tj), and f'(v) =4, or

5. 8;=Q; =0, v €Y, v has both a neighbor in X (7;) and a neighbor in X(7}), and f'(v) = 4.
We show that in all these cases c(v) = f'(v).
1. By the choice of y;, y;, c(u) = 1 for every u € (N(y;) N X(T;)) U (N (y;) N X (T})), and so c(v) = f'(v).

2. Tt follows from the maximality of y;,y; that v has both a neighbor zo € X(T;) with ¢(z2) = 2 and
a neighbor xz3 € X(T;) with ¢(xz3) = 3. Since P is clean it follows that 1 ¢ Mp(v), and therefore
c(v) =4.

3. By the choice of y;, ¢(u) =1 for every u € N(y;) N X (T;), and so c¢(v) = f'(v).

4. Tt follows from the maximality of y; that v has a neighbor x5 € X (T;) with ¢(x2) = 2. Since Q; =0, v
has a neighbor x5 € X (7}) with ¢(z3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and so c(v) = 4.

5. Since S; = Q; = 0, it follows that v has both a neighbor x5 € X(T;) with ¢(z2) = 2, and a neighbor
x3 € X (T;) with c¢(x3) = 3. Since P is clean, it follows that 1 ¢ Mp(v), and so c(v) = 4.

This proves that Py has a precoloring extension, and completes the proof of Lemma @ O

Observe that if an excellent starred precoloring is spotless, then it is clean and orderly. Repeatedly
applying Lemma [10| and using symmetry, we deduce the following:

Lemma 11. There is a function q : N — N such that the following holds. Let G be a Pgs-free graph. Let
P = (G,S8 X0, X, Y* f) be a clean, tidy and orderly excellent starred precoloring of G. Then there is an

algorithm with running time O(|V (G)|9USD) that outputs a collection L of excellent starred precolorings of
G such that:

o [£] < |V(G)[aU5D;
o |8 < q(|S|) for every P’ € L;
o cvery P’ € L is tidy and spotless;

e P is equivalent to L.
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We now summarize what we have proved so far. Let P = (G, S, X, X,Y™, f) be an excellent starred
precoloring of a Ps-free graph G. We say that y € Y™* is wholesome if |Mp(y)| > 3. A component of G|Y*
is wholesome if it contains a wholesome vertex. We say that P is mear-orthogonal if for every wholesome
y € Y* either

e N(y)N X is orthogonal, or
e there exist {4, j, k,1} = {1,2,3,4} such that

— N(y) NX C Xy, Uij, and
— For every u € C(y), |[Mp(u)N{i,j}| <1, and

— if there is v; € C(y) with i € Mp(v;) and v; € C(y) with j € Mp(v;), then for some u € C(y),

Lemma 12. There is a function q¢ : N — N such that the following holds. Let P = (G, S, X0, X, Y™, f)
be an excellent starred precoloring of a Pg-free graph G. Then there is an algorithm with running time
O(|V(@)|2U5D) that outputs a collection L of excellent starred precolorings of G such that:

o L] < |V(G)|5D;

o |8 < q(|S|) for every P’ € L;

e cvery P’ € L is near-orthogonal;
e P is equivalent to L.

Proof. Let L4 be the collection of precolorings obtained by applying Lemma [f] to P. Let £ be the union of
the collections of precolorings obtained by applying Lemma [7] to each member of £1. Let £3 be the union
of the collections of precolorings obtained by applying Lemma [J] to each member of L. Let £ be the union
of the collections of precolorings obtained by applying Lemma [11] to each member of £3. Then L satisfies
the first, second and fourth bullet in the statement of Lemma and every P’ € L is tidy and spotless. Let
P’ e L, write P' = (8, X}, X", Y, f'). Suppose that P’ is not near-orthogonal. Let y € Y’ be wholesome,
and assume that the neighbors of y are not orthogonal. We show that y satisfies the conditions in the
definition of near-orthogonal. We may assume that y has a neighbor in X{, and a neighbor in X{5. Since P’
is spotless, it follows that for every u € C'(y), |Mp(u) N {2,3}| < 1. Since y is wholesome, we may assume
that Mp(y) = {1,2,4}. Since P’ is spotless, it follows that N(y) N X’ C X{, U X{5. Since P’ is tidy and
1 € Mp(y), it follows that if there is vy € C(y) with 2 € Mp(vs) and vz € C(y) with 3 € Mp(v3), then for
some u € C(y) 4 ¢ Mp(u). This proves that y satisfies the conditions in the definition of near orthogonal,
and completes the proof of Lemma O

Let P = (G, S, X0, X,Y*, f) be an excellent starred precoloring. Let {i, 7, k,1} = {1,2,3,4}, let T* be a
type of X with Lp(T?) = {i,k} and let 77 be a type of X with Lp(T7) = {j,k}. A type A extension with
respect to (T, T7) is a precoloring extension ¢ of P such that there exists y € Y* with k,i € Mp(y) and such
that y has a neighbor z; € X (T") and a neighbor z; € X (1Y) with c(z;) = c(z;) = k.

Let T(P) be the set of all pairs (T T7) of types of X with |Lp(77) N Lp(T7)] = 1. A precoloring
extension of P is good if it is not of type A for any T € T (P). We say that P is smooth if P has a good
precoloring extension.

We say that an excellent starred precoloring P’ = (G, S, X}, X', Y*'| f') is a refinement of P if for every
type T' of X', there is a type T of X such that X'(T") C X(T).

Lemma 13. There is a function ¢ : N — N such that the following holds. Let P = (G, S, X0, X,Y™*, f) be a
near-orthogonal excellent starred precoloring of a Ps-free graph G. There is an algorithm with running time
O(IV(G)|2USD) that outputs a collection L of near-orthogonal excellent starred precolorings of G such that:

o L] < |V(G)aUSD;
o |8 < q(|S|) for every P’ € L;

e a precoloring extension of a member of L is also a precoloring extension of P;
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e if P has a precoloring extension, then some P’ € L is smooth.

Proof. Let T(P) = {(T1,T7), ..., (T}, T{)}. Let Q be the collection of t-tuples of triples Qr, v = (Yr, 1/, A1, 1/, BT, 17)
such that

o \Yr, /| = [A7, /| = |Br, 77| < 1.

Agr € X(T).

By, C X(T)).

o Yy, CY* and if Yr, v = {y}, then Lp(7;) C Mp(y).
e Y7, 1/ is complete to ATi,T{ U Br, 1.

e Ar, 1/ is anticomplete to Br, /.

For Q = (Qr, T/)(T“T yeT(P) € Q, we construct a precoloring Py by moving A7, .11 U Br, 17 to the seed with
the unique color of Lp(T}) N Lp(T}) for all (T;,T!) € T(P). Let Py = (G, 5’ XO7X’ Y’  f). Since X' C X
and Y’ CY*, and Mp:(v) C Mp(v) for every v € V(G), it follows that Py is excellent, near-orthogonal and
for every type T” of X', there is a type T of X such that X'(T") C X(T).

Let £L={P}U{Py : Q € Q}. Observe that there are at most 2/°| types, and therefore ¢ < 225!, Now
S| < IS+ 2t < |S|+ 2281+ and |£] < [V(G)]* < [V(G)P*2

Since every member of L is obtained from P by precoloring some vertices and updating, it follows that
every precoloring extension of a member of L is also a precoloring extension of P.

Now we prove the last assertion of Lemma Suppose that P has a precoloring extension. We need
to show that some P’ € £ is smooth. Let ¢ be a precoloring extension of P. For every (T;,7}) € T(P)
such that ¢ is of type A with respect to (T3, T}), proceed as follows. We may assume that Lp(T;) = {1,2}
and Lp(T!) = {1,3}. Let y € Y* with 1,2 € Mp(y), 2 € X(T;) and x5 € X(T}) such that y is adjacent
to zg,x3 and c(ze) = c(x3) = 1, and subject to the existence of such xs,x3, choose y with the set {x €
N(y) N X(T7) such that ¢(x) = 1} minimal. Let Qr, v = ({y}, {22}, {z3}). For every (T3, T}) € T(P) such
that c is not of type A with respect to (T3, T}), set Qr, 7 = (0,0,0). Let Q = (Qr, 17) (1, 17)ep; then P € L.

We claim that ¢ is a precoloring extension of Py that is not of type A for any (Tl,TZ) € T(Pg).
Write Py = (G,S", X, X", Y', f'). Let {i,5,k, 1} = {1,2,3,4}. Suppose that T* is a type of X’ with
Lp,(T") = {i,k} and TV is a type of X' with Lp,(T7) = {j,k}, and such that (T%,77) € T(Pg), and
Y €Y' with i,k € Mp,(y') has neighbor z} € X'(T%) and z; € X'(T7) with ¢(a}) = c(z}) = k. Let
(Ti,Ti) € T(P) be such that X'(T%) C X(T%) and X'(T7) C X(T7). Since i,k € Mp(y), it follows that c
is of type A for (T%,77), and therefore |V, 5| = [Ap 5| = |Bp | = 1. Let Yy, 5 = {y} Agi 5y = {wi}
and By, 7, = {x;}. Since k € Mp,(y') it follows that y' is antlcomplete to {zz,zj}. By the choice of

y, it follows that y’ has a neighbor 2’ € X(7Y)\ N(y) with c(z’') = k, and so we may assume that z
is non-adjacent to y. Since Lp(T}) = {j, k} there exists s; € S with f( ;) = i such that s; is complete
to {z;,2}}. Since i € Lp(z;) N Lp( YN Lp(y )7 it follows that s; is anticomplete to {z;,y',y}. Since
c(x;) = c(x}) = c(x;) = c(a}), it follows that {x;, ¥}, x;,z} is a stable set. But now z; —y —z; —s; — 2 —y/
is a Ps in G, a contradiction. This proves that c is a good precoloring extension of Pg, and completes the
proof of Lemma O

We are finally ready to construct orthogonal precolorings.

Lemma 14. There is a function ¢ : N — N such that the following holds. Let P = (G, S, X0, X, Y™, f) be a
near-orthogonal excellent precoloring of a Pg-free graph G. There exist an induced subgraph G’ of G and an
orthogonal excellent starred precoloring P' = (G',S’, X, X', Y', f') of G', such that

e S5=9,
e if P is smooth, then P’ has a precoloring extension, and

e if c is a precoloring extension of P’, then a precoloring extension of P can be constructed from c in
polynomial time.
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Moreover, P' can be constructed in time O(|V (G)[2USD),

Proof. We may assume that P is not orthogonal. We say that a component C of G|Y™* is troublesome if C
is wholesome, and the set of attachments of C' in X are not orthogonal. Let W be the union of the vertex
sets of the components of G|Y™* that are not wholesome.

We construct a set Z, starting with Z = (). For every troublesome component C, proceed as follows. We
may assume that C' has attachments in X;5 and in X;3. Since P is near-orthogonal, and C' is wholesome,
we may assume that C' contains a vertex z with Mp(z) = {1,2,4}.

o If there is y € V(C) with Mp(y) = {1, 3}, move N(y) N X12 to X with color 2.

e Suppose that there is no y as in the first bullet. If [V(C)| > 2, or V(C) = {z} and z has a neighbor v
in Xo with f(v) = {4}, move N(z) N X135 to Xy with color 3.

e If none of the first two conditions hold, add V(C') to Z. Observe that in this case V(C) = {y}, y has no
neighbors in Z \ {y}. Moreover, since P is near-orthogonal, V' (C) is anticomplete to X \ (X12 U X13),
and so for every u € N(y), 4 € Lp(u). In this case we call 4 the free color of y.

Let P = (G,S', X}, X", Y", f') be the precoloring we obtained after we applied the procedure above to all
troublesome components. Let G’ = G\ Z, and let P’ = (G', 5", X{), X", Y', f) where Y/ =YY"\ (WU Z) and
X' = X" UW. Since no vertex of W is wholesome, It follows from the definition of Mp that every vertex of
W has neighbors of at least two different colors in S’ (with respect to f’). Since W is anticomplete to Y,
X'\W C X, and Y/ CY*, we deduce that P’ is excellent and orthogonal. It follows from the construction
of Z that every precoloring extension of P’ can be extended to a precoloring extension of P by giving each
member of Z its free color.

It remains to show that if P is smooth, then P’ has a precoloring extension. Suppose that P is smooth,
and let ¢ be a good precoloring extension of P. We claim that ¢|V(G’) is a precoloring extension of P’. We
need to show that c¢(v) = f/(v) for every v € S’ U X{. Since S = 5’, and f(v) = f/(v) for every v € Xy, it is
enough to show that c(v) = f/(v) for every v € X[\ Xo. Thus we may assume that there is a troublesome
component C of G|Y™* that has an attachment in X;2 and an attachment in X;3, and v € X(C). Since P
is near-orthogonal, we may assume that C' contains a vertex z with Mp(z) = {1,2,4}, and v € X35 U Xy3.
There are two possibilities.

1. There is y € V(C) with Mp(y) = {1,3}, v € N(y) N X12 and f'(v) = 2, but ¢(v) = 1. We show that
this is impossible. Since ¢ is a good coloring, it follows that ¢(u) = 3 for every u € N(y)N X3, contrary
to the fact that c is a coloring of G.

2. There is no y as in the first case, and either |V(C)| > 2, or V(C) = {z} and z has a neighbor u in X
with f(u) =4, and v € X33 N N(z), f'(v) = 3 but ¢(v) = 1. We show that this too is impossible. Tt
follows that there is a vertex y' € V(C) with ¢(y’) # 4. Choose such y' with 4 ¢ Mp(y') if possible.
Since P is excellent, y’ is adjacent to v. Since ¢ is a good coloring, it follows that c¢(w) = 2 for
every w € X712 N N(y'). This implies that ¢(y’) = 3. Since P is near-orthogonal and 3 € Mp(y'), it
follows that 2 & Mp(y'). Since Mp(y') # {1, 3}, it follows that 4 € Mp(y'). Since 1,4 € Mp(y’) and
3 € Mp(y'), and since P is near-orthogonal, it follows that there is ¢t € V(C') such that 4 € Mp(t).
Since ¢(v) = 1 and ¢(w) = 2 for every attachment w of V(C) in X, it follows that ¢(t) = 3, contrary
to the choice of y'.

Thus ¢(v) = f'(v) for every v € S"U X{), and so ¢|V(G’) is a precoloring extension of P’. This completes the
proof of Lemma O

We can now prove the main result of this section.

Theorem 9. There is a function q : N — N such that the following holds. Let P = (G, S, Xo, X, Y™, f) be an
excellent starred precoloring of a Ps-free graph G with |S| < C. Then there is an algorithm with running time

O(|V(G)|2USDY that outputs a collection L of orthogonal excellent starred precolorings of induced subgraphs
of G such that:

o 2] < |V(G)ash;
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o |51 <q(|S]) for every P’ € L, and
e P has a precoloring extension, if and only if some P’ € L has a precoloring extension;

e given a precoloring extension of a member of L, a precoloring extension of P can be constructed in
polynomial time.

Proof. By Lemma there exist a function ¢; : N — N and a polynomial-time algorithm that outputs a
collection £ of excellent starred precolorings of G such that:

o [L1] < [V(G)|U5D;

o |5 < q1(]S]) for every P’ € Ly;

e every P’ € L7 is near-orthogonal; and
e P is equivalent to L.

Let P’ € £1. Write P’ = (G, S(P"), Xo(P"),X(P"),Y*(P'), fp'). By Lemma [13| there exist a function
g2 : N = N and a polynomial-time algorithm that outputs a collection L£(P’) of near-orthogonal excellent
starred precolorings of G such that:

o [£(P)] < [V(G)=USED;

o |S”| < g2(|S(P)]) for every P" € L(P');

e if P’ has a precoloring extension, then some P” € L(P’) is smooth; and

e a precoloring extension of a member of L(P’) is also a precoloring extension of P’.

Let EQ - UP/€£1 ;C(P/)
Clearly L5 has the following properties:

o Lo < |V(@)|ar(azSD),
o |5 < q1(q2(]S(P)])) for every P’ € Lo;
e if P has a precoloring extension, then some P” € L(P’) is smooth; and

e given a precoloring extension of a member of L5, one can construct in polynomial time a precoloring
extension of P.

Let P” € Lo. Write P’ = (G, S(P"), Xo(P"), X' (P"),Y*(P"), fpr). By Lemma there exists an
induced subgraph G’ of G and an orthogonal excellent starred precoloring Orth(P") = (G',8’, X}, X", Y, )
of G’, such that

e S(P")=25;
e if P” is smooth, then Orth(P") has a precoloring extension; and

e if ¢ is a precoloring extension of Orth(P"), then a precoloring extension of P”, and therefore of P, can
be constructed from ¢ in polynomial time.

Moreover, Orth(P") can be constructed in polynomial time.
Let £ = {Orth(P") : P"” € L5}. Now L has the following properties.

o L] <|V(G)|arle2(ISD;
o |5 < q1(q2(]S])) for every P’ € L; and

e if ¢ is a precoloring extension of P’ € L, then a precoloring extension of P can be constructed from c
in polynomial time.
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e every P’ € L is orthogonal.

To complete the proof of the Theorem [J] we need to show that if P has a precoloring extension, then some
P’ € L has a precoloring extension. So assume that P has a precoloring extension. Since L7 is equivalent
to P, it follows that some P; € £4 has a precoloring extension. This implies that some P, € L(Py) C Lo
is smooth. But now Orth(P,) has a precoloring extension, and Orth(P;) € £. This completes the proof of
Theorem [ O

3 Companion triples

In view of Theorem [9] we now focus on testing for the existence of a precoloring extension for an orthogonal
excellent starred precoloring.

Let G be a Ps-free graph, and let P = (G, S, X0, X, Y™, f) be an orthogonal excellent starred precoloring
of G. We may assume that Xo = X°(P). Let C(P) be the set of components of G|Y*, and let C € C(P). It
follows that X\ X (C) is anticomplete to V(C), and we may assume (using symmetry) that X (C) C X15UX3y4.
We now define the precoloring obtained from P by contracting the 12-neighbors of C', or, in short, by neighbor
contraction. Suppose that X5 N X (C) # 0, and let 215 € X12 N X(C). Let G be the graph define as follows:

V(é) =G \ (Xlg n X(C)) U {l‘12}
G\ {12} = G\ (X12N X(C))

Ne(zi) = |J  Nel@)nVv(G).
z€X12NX(C)

Moreover, let ~
X=X \ (X12 N X(C)) ] {.1312}.

Then P = (é, X0, X, Y™, f) is an orthogonal excellent starred precoloring of G. We say that P is obtained
from P by contracting the 12-neighbors of C, or, in short, obtained from P by neighbor contraction. We call
212 the image of X715 N X (C), and define x12(C) = x12. Observe that 215 € X (this fact simplifies notation
later), and that Mp(v) = Mz (v) for every v € V(G). For every i # j € {1,2,3,4} we define the precoloring
obtained from P by contracting the ij-neighbors of C similarly.

Fori# j € {1,2,3,4} and t € XoU S let Gy;(t) = G|(X;; UY™* U {t}). We remind the reader that given
a path P, its interior is the set of vertices that have degree two in P. We denote the interior of P by P*.
While graph G may not be Ps-free, the following weaker statement holds:

Lemma 15. Let P be an excellent orthogonal precoloring of a Ps-free graph G. Let C € C(P) and assume
that X (C)N X1z is non-empty. Let P = (G, Xo, X, Y™, f) be obtained from P by contracting the 12-neighbors
of C. Then G;(t) is Ps-free for every i # j € {1,2,3,4} and t € S U Xj.

Proof. If {i,j} # {1,2}, then C;’ij(t) is an induced subgraph of G, and therefore it is Pg-free. So we may
assume that {i,j} = {1,2}. Suppose that Q = q; — ... — s is a Ps in Gy;(t). Since Gyj(t) \ 212 is an
induced subgraph of G, it follows that z15 € V(Q). If the neighbors of z12 in @ have a common neighbor
n € X(C) N X1z, then GI((V(Q) \ {z12}) U{n}) is a Ps in G, a contradiction. It follows that z12 has two
neighbors in @, say a, b, each of a, b has a neighbor in X1, N X (C), and no vertex of X(C)N X145 is complete
to {a,b}. Since V(C) is complete to X (C), it follows that a,b & V(C), and so a,b € (X12 \ X(C)) U (Y*\
V(C)) U {t}. Since x> has exactly two neighbors in Q, it follows that V(Q) N V(C) = @. Consequently,
V(@) \{t,r12} C (X12\ X(C)) U (Y*\ V(C)). Since X2\ {z12} is anticomplete to V(C), and since C is
a component of G|Y™*, we deduce that V(Q) \ {t,z12} is anticomplete to V(C). Let Q' be a shortest path
from a to b with Q" C X(C)U V(C). Since V(Q) \ {z12,t} is anticomplete to V(C), and V(Q) \ {a,b} is
anticomplete to X (C) N X9, it follows that V(Q’) is anticomplete to V(Q) \ ({12} U {a,b,t}). Moreover,
if t # a,b and t € V(Q), then t is anticomplete to Q" \ V(C). If follows that if t ¢ V(Q) \ {a, b, z12} or t
is anticomplete to V(Q") NV (C) then ¢1 — Q —a — Q' — b — Q — g is a path of length at least six in G, a
contradiction; so t € V(Q) \ {a,b, 212}, and ¢ has a neighbor in V(Q") N V(C). Since V(C) is complete to
X(0), it follows that |[V(C)NV(Q")| =1, and |Q""| = 3. Let V(Q') NV (C) = {¢'}. We may assume that
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b has a neighbor ¢ € V(Q) \ {212}, and if a = ¢; and b = g;, then i < j. Since a — Q" — b — c is not a Ps in
G, it follows that t = c. But now ¢ —a — Q' — ¢ —t — @Q — gs is a Ps in G, a contradiction. This proves
Lemma [T5] O

Let P = (G, S, X0, X, Y™, f) be an orthogonal excellent starred precoloring. Let H be a graph, and let L
be a 4-list assignment for H. Recall that XY(L) is the set of vertices of H with |L(zo)] = 1. Let M be the
list assignment obtained from Mp by updating Y* from Xo. We say that (H, L, h) is a near-companion triple
for P with correspondence h if there is an orthogonal excellent starred precoloring P = (G S, Xo, X, Y* )
obtained from P by a sequence of neighbor contractions, and the following hold:

e V(H)=XUZ,

o h:Z — C(P);

o for every z € Z, N(z2) = X(V(h(z))),
o H|(ZUX,;) is Ps-free for all i, j;

e 7 is a stable set;

e for every z € X, L(z) C Mp(x

M (z);

)=
e for every z € Z such that L(z) # 0, if ¢ € {1,2,3,4} and ¢ € L(z), then some vertex V(h(z)) has a
neighbor u € SU XU X°(L) with f(u) = ¢; and

e for every z € Z and every q € L(z), there is v € V(h(z)) with ¢ € M (v), and no vertex u € S U X,
with f(u) = ¢ is complete to V(h(z2)).

For z € Z, we call h(z) the image of z.
If (H, L, h) is a near-companion triple for P, and in addition

e P has a precoloring extension if and only if (H, L) is colorable, and a coloring of (H, L) can be converted
to a precoloring extension of P in polynomial time.

we say that (H, L,h) is a companion triple for P.

For ¢ # j € {1,2,3,4} and t € SU X, let H;;(t) be the graph obtained from H|(Xw U Z) by adding
the vertex ¢ and making ¢ adjacent to the vertices of Ng(t) N Xij. The following is a key property of
near-companion triples.

Lemma 16. Let G be a Ps-free graph, let P = (G, S,Xo, X, Y™, f) be an orthogonal excellent starred
precoloring of G, and let (H, L, h) be a near-companion triple for P. Let M be the list assignment obtained
from Mp by updating Y* from Xo. Assume that L(v) # 0 for every v € V(H). Let i,j € {1,2,3,4} and
t € XoUS, and let Q be a Ps in H;;(t). Then t € V(Q), and there exists ¢ € V(Q) \ N(t) such that
f(t) & M(q).

Proof. Since H|(X;; U Z) is Ps-free, it follows that ¢t € V(Q). Suppose that for every ¢ € V(Q) \ N(2),
f(t) € L(q). Let z € V(Q) N Z. Since t is anticomplete to Z, it follows that f(t) € L(z). By the definition
of a near-companion triple, there is a vertex ¢(z) € V(h(z)) such that f(¢) € M(q(z)). Since M is obtained
from Mp by updating Y* from Xj, it follows that ¢ is non-adjacent to ¢(z). Now replacing z with ¢(z) for
every z € V(Q) N Z, we get a Ps in Gy;(t) that contradicts Lemma This proves Lemma O

The following is the main result of this section.

Theorem 10. Let G be a Ps-free graph and let P = (G, S, Xo, X, Y™, f) be an orthogonal excellent starred
precoloring of G. Then there is a polynomial-time algorithm that outputs a companion triple for P.

Proof. We may assume that Xy = X°(P). Let M be the list assignment obtained from Mp by updating Y *
from Xy. Write C = C(P). For Q C {1,2,3,4} and C € C, we say that a coloring ¢ of (C, M) is a Q-coloring
if ¢(v) € Q for every v € V(C). Given Q C {1,2,3,4}, we say that Q is good for C if (C, M') admits a proper
Q-coloring, and bad for C otherwise. By Theorem [2| for every @ with |Q| < 3, we can test in polynomial
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time if @ is good for C. Let Q(C) be the set of all inclusion-wise maximal bad subsets of {1,2,3,4}. Observe
that if @ is bad, then all its subsets are bad.
Here is another useful property of Q(C).

(1) Let Q € Q(C), and let i € Q be such that no u € SU Xy with f(u) = i has a neighbor in
V(C). Then for every j € {1,2,3,4} \ Q, the set (Q\ {i}) U {j} is bad.

Suppose not. Let Q" = Q \ {i} U {j}. Let ¢ be a proper @'-coloring of (C,M). It follows from the
definition of M that ¢ € M(y) for every y € V(C). Recolor every vertex u € V(C) with ¢(u) = j with color
1. This gives a proper @-coloring of (C, M), a contradiction. This proves .

First we describe a sequence of neighbor contractions to produce P as in the definition of a companion
triple. Let C € C with |V(C)| > 1. We may assume (without loss of generality) that X (C) C X35 U X34. If
X (C) meets both X;2 and X34, contract the 1, 2-neighbors of C, and the 3,4-neighbors of C; observe that
in this case X (C) = {212(C), 234(C)}. If X(C) meets exactly one of X1a, X34, say X (C) C X0, and {3,4}
is bad for C, contract the 12-neighbors of C. Repeat this for every @ € Q(C); let P= (G’, S, X, X,Y*, )
be the resulting precoloring. Observe that X CX.

2 P has a precoloring extension if and only if P has a precoloring extension, and a precoloring
extension of P can be converted into a precoloring extension of P in polynomial time.

Since |C(P)| < |V(G)|, it is enough to show that the property of having a precoloring extension, and the
algorithmic property, do not change when we perform one step of the construction above.

Let us say that we start with P = (G1, 5, Xo, X1, Y™, f) and finish with P, = (Ga, S, Xo, X2, Y™, f).
We claim that in all cases, each of the sets that is being contracted (that is, replaced by its image) is
monochromatic in every precoloring extension of P.

Let C € C(Py) with |[V(C)| > 1, such that P» is obtained from P; by contracting neighbors of C. Let
{i,5,k,1} ={1,2,3,4} and let X;(C) C X;; UXy. If X;(C) meets both X;; and Xy, then since |[V(C)| > 1,
each of the sets X7 (C)NX;;, X1(C)N Xy is monochromatic in every precoloring extension of P, as required.
So we may assume that X;(C) C X;;. Now X;(C) is monochromatic in every precoloring extension of P;
because the set {k,[} is bad for C. This proves the claim.

Now suppose that a set A was contracted to produce its image a. If P; has a precoloring extension, we
can give a the unique color that appears in A, thus constructing an extension of P,. On the other hand, if
P; has a precoloring extension, then every vertex of A can be colored with the color of a. This proves .

Next we define L : X — 214, Start with L(z) = M(x) for every z € X. Againlet C' € C with [V (C)] > 1,
let {i,5,k,1} = {1,2,3,4}, and let X(C) C X,; U Xp;. For every Q € Q(C) such that Q = {1,2,3,4} \ {m},
update L by removing m from L(z) for every = € X;; N X(C).

Next assume that X (C) meets both X;;, Xy , the sets {4, k}, {4, (} are good for C, and the sets {7, k}, {j,{}
are bad for C. Update L by removing ¢ from L(z;;(C)).

Finally, assume that X (C) meets both X;;, Xy , the set {4, k} is good for C, and the sets {3,}, {j, k}, {J, 1}
are bad for C. Update L by removing ¢ from L(z;;(C)) and by removing k from L(zg(C)).

Now the following holds.

Let {1,2,3,4} = {1, 4, k,1} and let C € C such that X(C) C X;; U Xpy.
1. If{1,2,3,4} \ {i} € Q(C), then i ¢ U, c 5 (o) L(2)-

3) 2. If X(C) meets both Xi; and Xy and {i,k},{i,1} are both good for C, and {j,k},{j, !}
are both bad for C, then i & L(x;;(C)) U Lz (C)).

3. If X(C) meets both Xi; and Xy and {i,k} is good for C, and {i,1},{j,k},{j,1} are
bad for C, then i,k & L(z;;(C)) U L(zk(C)).

Next we show that:

(4)  If ¢ is a precoloring extension of P, then c(x) € L(x) for every xz € X.
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This is clear for & such that L(z) = M(z), so let # € X be such that L(x) # M(x). Then there exists
C € C with |V(C)| > 1, and {4, j, k,1} = {1,2,3,4} with X(C) C X;j U Xpy, such that z € X(C’) Suppose
that c(x) € M(z) \ L(z). Observe that ¢|V(C) is a coloring of (C, M). There are three possible situations
in which ¢(z) could have been removed from M (z) to produce L(x).

e {1,2,3,4}\{i} is bad for C, and = € X,;, and c¢(z) = i. In this case, since (C, M) is not {1,2,3,4}\{i}-
colorable, it follows that some v € V(C) has ¢(v) = 4, but V(C) is complete to X (C'), a contradiction.

e X(C) meets both X;; and Xy, the sets {i,k}, {i,1} are good for O, the sets {j, k},{,1} are bad for
C, = 2;5(C), and c(z) = i. Since X(C) N Xy # 0, it follows that c(u) € {k,1} for some u € X(C).
Since the sets {7, k}, {j,1} are bad for C and |V (C)| > 1, it follows that c(v) = i for some v € V(C),
but z;;(C) is complete to V(C'), a contradiction.

e X(C) meets both Xi; and Xy, the set {3, k} is good for C, the sets {i,1},{j, k},{4,(} are bad for C,
and either 2 = z;(C) and ¢(z) =i, or & = 21,(C) and ¢(z) = k. Since X(C) meets both X;; and Xy,
and |V(C)| > 1, it follows that |c¢(V(C)) N {i,j}| = 1, and |¢(V(C)) N {k,I}| = 1. Since {j,k},{J,!}
are bad for C, it follows that for some v € V(C) has v(c) = 4, and so c(z;;(C)) # ¢. Since {i,1} is bad
for C, it follows that ¢(V(C)) = {i,k}, and so ¢(z) # k, in both cases a contradiction.

This proves (4).

Finally, for every C' € C, we construct the set h=!(C) and define L(v) for every v € h=1(C).

If [V(C)| =1, say C = {y}, let h=1(C) = {y}, and let L(y) = M(y).

Now assume |V (C)| > 1. We may assume that X(C) C X195 U Xa4.

If all subsets of {1,2,3,4} of size three are bad, let zc be a new vertex, and set h=!(C) = {2¢} and
L(z¢) = 0. From now on we assume that there is a good subset for C' of size at most three.

If X(C) C X1 or X(C) C X34, set b= 1(C) = 0.

So we may assume that X (C) meets both X15 and Xs4. If all sets of size two, except possibly {1,2} and
{3,4}, are bad for C, let zc be a new vertex, and set h=1(C) = {2¢} and L(z¢) = 0. Next let Q € Q(C)
with |Q| = 2; write {4,7,k,1} = {1,2,3,4}, and say Q = {i,5}. We say that @ is friendly if there exist
u;, u; € S'U Xp, both with neighbors in C, and with f(u;) =i and f(u;) = j. For every friendly set Q, let
v(C, Q) be a new vertex, and let h=1(C) consist of all such vertices v(C, Q). Set L(v(C,Q)) = {1,2,3,4}\ Q.

Let Z = Ugee h™'(C). Finally, define the correspondence function h by setting h(z) = C for every
zeh™1(C) and C € C.

Now we define H. We set V(H) = X U Z, and pq € E(H) if and only if either
e p,q€ X and pq € E(G), or

e there exists C' € C such that p € h~1(C) and ¢ € X(C).

The triple (H, L, h) that we have constructed satisfies the following.

o X CV(H); write Z=V(H)\ X.

e N(z) = X(V(h(z))) for every z € Z.

e 7 is a stable set.

For every z € X, L(z) C Mp(z) = M(z).

h:Z—C(P).

o If 2 € Z with L(z) # 0, and ¢ € {1,2,3,4}\ L(z), then some vertex V (h(z)) has a neighbor v € SU X
with f(u) = ¢. (This is in fact stronger than what is required in the definition of a companion triple;
we will relax this condition later.)

To complete the proof of Theorem [I0] it remains to show the following
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1. For every z € Z and every q € L(z), there is v € V(h(z)) with ¢ € M(v), and no vertex u € S U X
with f(u) = ¢ is complete to V(h(z)).

2. for every i # j € {1,2,3,4}, H|(X,;; U Z) is Ps-free.

3. P has a precoloring extension if and only if (H, L) is colorable, and a proper coloring of (H, L) can be
converted to a precoloring extension of P in polynomial time.

We prove the first statement first. Let z € Z and ¢ € L(z), and suppose that for every v € V(h(z))
q & M(v), or some vertex u € S U Xy with f(u) = ¢ is complete to V(h(z)). It follows that |V (h(z))| > 1.
Since z € Z, it follows that there exists a set {i,j} € Q(h(z)) and L(z) = {1,2,3,4} \ {i,7}. But now it
follows that {q, %, j} is also bad for h(z), contrary to the maximality of {i,j}. This proves the first statement.

Next we prove the second statement. By Lemma G|(Xi; UY™) is Ps-free for every i # j € {1,2,3,4}.
Suppose Q is a Ps in H. Let C € C(P). Since no vertex of V(H) \ h=(C) is mixed on h=1(C), it follows
that [V (Q) N h~(C)| < 1. Moreover, X;;(h~'(C)) = X;;(C). Let G’ be obtained from G by replacing each
C € C by a single vertex of C, choosing this vertex to be in V' (Q) if possible. Then G’ is an induced subgraph
of G, and Q is a Ps in G’, a contradiction. This proves the second statement.

Finally we prove the last statement. Let C; = {C' € C : [V(C)| = 1}, and let Y = [Jsce, V(C). Then
Y CZ.

Suppose first that P has a precoloring extension. It is easy to see that L(z) # 0 for all z € Z. By ,
there exists a precoloring extension of P; denote it by ¢. By , /(X UY) is a coloring of (H|(X UY), L).
It remains to show that ¢ can be extended to Z\'Y. Let z € Z, and let h(z) = C. Then there is a friendly
set {4,j} € Q such that z = v(C, Q). Since Z is a stable set, in order to show that ¢ can be extended to
Z\'Y, it is enough to show that }

L(z) £ e(X(C)).

Since L(v(C,Q)) = {1,2,3,4} \ Q, it is enough to show that
{1,2,3,4}\ ¢(X(C) £ Q.
But the latter statement is true because
c(V(C) € {1,2,3,4} \ ¢(X(0))

and ¢(V(C)) is a good set, and therefore ¢(V(C)) € Q. This proves that if P has a precoloring extension,
then (H, L) is colorable.

Now let ¢ be a proper coloring of (H, L). By it is enough to show that P has a precoloring extension.
We define a precoloring extension & of P. Set &(v) = f(v) for every v € S U Xy, and &) = ¢(z) for every
x € XUY. It follows from the definition of L that ¢ is a precoloring extension of (G'\ (Y*\Y), S, X, X,Y).

Let C € C with |V(C)| > 2. We extend ¢ to C. We will show that for every Q@ € Q(C), {1,2,3,4} \
¢(X(C)) € Q. Consequently T = Uyevie) Mp(y) \ ¢(X(C)) is good for C. Since some vertex of SU XoU X
is complete to V(C), it follows that |T'| < 3. Therefore we can define ¢ : V(C) — {1,2,3,4} to be a proper
T-coloring of (C, M), which can be done in polynomial time by Theorem

So suppose that there is Q € Q(C) such that {1,2,3,4}\ ¢(X(C)) € Q. Then {1,2,3,4}\ Q C ¢(X(C)).
By (3}1), |Q] < 3. - B

We may assume that X(C') C X5 U X34. Suppose first that X (C) meets both X5 and X34, and so
X(C) = {z12(C), 234(C)}. Then |¢(X(C))| =2, and so |Q| # 1 (since {1,2,3,4} \ ¢(X(C)) C Q). Therefore
we may assume that |Q| = 2. If Q is friendly, then c¢(v(C,Q)) ¢ Q, and so {1,2,3,4} \ Q  ¢(X(C)), so we
may assume that @ is not friendly. By symmetry, we may assume that Q € {{1,2},{1,3}}. If @ = {1, 2},
then since L(z12(C)) C {1,2}, it follows that {1,2,3,4} \ Q € ¢(X(C)), so we may assume that Q = {1, 3}.

Suppose first that for every i € @, there is no vertex u € S U Xy with ¢(u) = ¢ and such that u has a
neighbor in V(C'). Now implies that every set of size two is bad for C. Therefore h=1(C) = {z} and
L(z) = 0, contrary to the fact that c is a proper coloring of (H, L).

We may assume from symmetry that

e there is a vertex v € S U X with ¢(u) = 1 and such that u has a neighbor in V(C).
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e there is no vertex u € S U Xy with ¢(u) = 3 and such that u has a neighbor in V(C).

Now by all the sets sets {1,2},{1,3},{1,4} are bad. If the only good set is {3,4}, then L(z) = 0,
contrary to the fact that c is a coloring of (H, L). Therefore, at least one of {2,3},{2,4} is good, and (3]2)
and (3[3) imply that 2 ¢ L(u) for every u € X(C), contrary to the fact that 2 € {1,2,3,4}\ Q C ¢(X). This
proves that not both X (C) N X5 and X (C) N X34 are non-empty.

We may assume that X(C) € X;5. Then ¢(X(C)) C {1,2}, and so 3,4 € Q. Since |Q| < 3, we have
Q = {3,4}. Tt follows from the construction of G that | X (C)| < 1, contrary to the fact that {1,2,3,4}\ Q C

Uwex(oy{c(w)}. This completes the proof of the second statement, and Theorem [10| follows. O

4 Insulating cutsets

Our next goal is to transform companion triples further, restricting them in such a way that we can test
colorability.

Let H be a graph and let L be a 4-list assignment for H. We say that D C V(H) is a chromatic cutset
in Hif V(H) = AUBUD (where A, B and D are pairwise disjoint), A # (), and a € A is adjacent to b € B
only if L(a) N L(b) = 0. For i # j € {1,2,3,4} let D;; ={d € D : L(d) C {4,5}}. The set A is called the
far side of the chromatic cutset. We say that a chromatic cutset D is 12-insulating if D = D15 U D34 and
for every {p,q} € {{1,2},{3,4}} and every component D of H|D,, the following conditions hold.

e D is bipartite; let (Dy, Dy) be the bipartition.
e |L(d)| = |L(d")| for every d,d" € Dy U Ds.
e There exists a € A with a neighbor in D and with L(a) N {p, ¢} # 0.

e Suppose that |L(d)| = 2 for every d € V(D). Write {i,j} = {p,q} and let {s,t} = {1,2}. If a € A has
a neighbor in d € D, and i € L(a), and b € B has a neighbor in D, then

— if b has a neighbor in Dy, then j ¢ L(b), and
— if b has a neighbor in Dy, then i & L(b).

Insulating cutsets are useful for the following reason. We say that a component D of H |Dpy is complex if

|L(d)| = 2 for every d € V(D).

Theorem 11. Let D be a 12-insulating chromatic cutset in (H,L), and let A, B be as in the definition
of an insulating cutset. Let D' be the union of the vertex sets of complex components of H|D12 and of
H|D34, and let D" = D\ D'. If (H|(BUD"),L) and (H\ B, L) are both colorable, then (H, L) is colorable.
Moreover, given proper colorings of (H|(BUD"), L) and (H\ B, L), a proper coloring of (H,L) can be found
in polynomial time.

Proof. Let ¢1 be a proper coloring of (H|(B U D"), L) and let ¢z be a proper coloring of (H \ B, L).

A conflict in ¢1, ¢ is a pair of adjacent vertices u, v such that ¢1(u) = c2(v). Since c1, ¢ are both proper
colorings and D is a chromatic cutset, and |L(d)| = 1 for every d € D", we deduce that every conflict involves
one vertex of D’ and one vertex of B. Below we describe a polynomial-time procedure that modifies ¢y to
reduce the number of conflicts (with ¢y fixed).

Let u € D" and v € B be a conflict. Then uv € E(H) and ¢;(u) = ¢2(v). Let D be the component of G|D
containing u. Then V(D) € D’ and D is bipartite; let (Dy, Dy) be the bipartition of D. We may assume
that u € D;. We may also assume that L(d) = {1,2} for every d € V(D), and that ¢, (u) = cz(v) = 1. Since
L(d) = {1,2} for every d € V (D), it follows that for every i € {1,2} and d € D;, we have c5(d) = i. Let c3
be obtained from ¢y by setting ¢3(d) = 1 for every d € Dy; ¢3(d) = 2 for every d € Dy; and c3(d) = ca(d) for
every w € (AU D)\ (D U D3). (This modification can be done in linear time).

First we show that cz is a proper coloring of (H \ B,L). Since L(d) = {1,2} for every d € V(D),
c3(v) € L(v) for every v € AU D. Suppose there exist adjacent xy € D U A such that c3(z) = ¢3(y). Since
D is a component of H|D, we may assume that € D1 U Dy and y € A. Suppose first that @ € D;. Then
es(y) = es(x) = 2, and so 2 € L(y) and y has a neighbor in D;. But v € B has a neighbor in D; and
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1 € L(v), which is a contradiction. Thus we may assume that € Ds. Then c3(y) = c3(xz) = 1, and so
1 € L(y) and y has a neighbor in Dy. But v € B has a neighbor in D;, and 1 € L(b), again a contradiction.
This proves that c3 is a proper coloring of (H \ B, L).

Clearly u,v is not a conflict in ¢;, c3. We show that no new conflict was created. Suppose that there is a
new conflict, namely there exist adjacent v’ € D’ and v’ € B such that ¢;1(v') = e3(u’), but ¢1(v') # ea(u’).
Then v’ € V(D). If ' € Dy, then both v and v' have neighbors in Dy, and 1 € L(v), and 2 € L(v'); if
u’ € Dy, then v has a neighbor in D; and v’ has a neighbor in Ds, and 1 € L(v") N L(v); and in both cases
we get a contradiction to the condition in the last bullet of the definition of a 12-insulating chromatic cutset.
Thus the number of conflicts in ¢;, c3 was reduced.

Now applying this procedure at most |V (G)|? times we obtained a proper coloring ¢} of (H|(BUD"), L)
and a proper coloring ¢, of (H \ B, L) such that there is no conflict in ¢},c,. Now define c¢(v) = ¢} (v)
if v e BUD” and c(v) = c4(v) if v € V(H) \ B; then ¢ is a proper coloring of (H,L). This proves
Theorem [l O

Let G be a Ps-free graph, let P = (G, S, Xo, X, Y™, f) be an orthogonal excellent starred precoloring of G,
and let (H, L, h) be a companion triple for P. Let {7, j, k,1} = {1,2,3,4}. Let Z¥9 ={z € Z : N(z)NX C
Xi;UXy}. It follows from the definition of a companion triple that 74 = ZK and that Z = Ui7je{1727374} AR
Next we prove a lemma that will allow us to replace a companion triple for P with a polynomially sized
collection of near-companion triples for P, each of which has a useful insulating cutset. We will apply this
lemma several times, and so we need to be able to apply it to near-companion triples for P, as well as to
companion triples.

Lemma 17. There is function ¢ : N — N such that the following holds. Let G be a Pgs-free graph, let
P = (G, S, X, X, Y*, f) be an orthogonal excellent starred precoloring of G, and let (H,L,h) be a near-
companion triple for P. Then there is an algorithm with running time O(|V (G)|2USD) that outputs a collection
L of 4-list assignments for H such that

o 2] < V(G))5D;
e if L' € L and c is a proper coloring of (H,L'), then ¢ is a proper coloring of (H,L); and
e if (H,L) is colorable, then there exists L' € L such that (H,L') is colorable.
Moreover, for every L' € L,
o L'(v) C L(v) for every v € V(H);
e (H,L' h) is a near companion triple for P;

o if for some i # j € {1,2,3,4} (H,L) has an ij-insulating cutset D' with far side Z, then D’ is an
ij-insulating cutset with far side Z% in (H, L', h); and

o (H,L') has a 12-insulating cutset D C X with far side Z'2.

Proof. Let P = (é, S, Xo, X, Y™, f) be as in the definition of a near-companion triple. Assume that Z'2 # ().
If one of the graphs G’|Xu and G|X34 is not bipartite, set £ = (). From now on we assume that G|X12 and
G\X34 are bipartite. We may assume that X, = Xo(p). Let Ty, ..., T, be types of X with |Lp(T;)| = 2
and such that |Lp(T;) N {1,2}| = 1. Tt follows that |Lp(T;) N {3,4}] = 1. Let Q be the set of all 2m-tuples
Q=(Q1,...,Qm,P1,...,Pp) such that

e |Qil <1,Q; € X(Ty), and if Q; = {q}, then L(q) N {1,2} # 0.
e |P| <1, P, C X(T}), and if P; = {p}, then L(p) N {3,4} # 0.

For z € X \ (X12U X34) and z € Z'2 we say that z is a 12-grandchild of x if there is a component C
of X15 such that both z and z have neighbors in V(C); a 34-grandchild is defined similarly. (Recall that
Z12 = 734)) Let Gia(z) be the set of 12-grandchildren of x; define G4 (x) similarly.

We define a 4-list assignment Lg, for H. Start with L, = L. For every i € {1,...,m}, proceed as follows.

If |Qi| = 1, say Q; = {gi}, set L(gi) to be the unique element of L(g;) N {1,2}. For every x € X(T;) such
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that Gi2(g;) C Giza() and Gi2(2) \ Gi2(g;) # 0, update Ly (x) by removing from it the unique element of
L(x) N {1,2}. Next assume that Q; = §. In this case, for every = € X (T}) such that = has a 12-grandchild,
update Lg(z) by removing from it the unique element of L(x) N {1,2}.

If |P;| = 1, say P; = {p:}, set Li(p:) to be the unique element of L(p;) N {3,4}. For every = € X(T;) such
that Gza(pi) € Gza(w) and Gza(z) \ Gaa(pi) # 0, update Lg(z) by removing from it the unique element of
L(z) N {3,4}. Next assume that P; = (). In this case, for every x € X (7;) such that = has a 34-grandchild,
update Lg(z) by removing from it the unique element of L(x) N {3,4}.

If some vertex z € X \ X;5 has neighbors on both sides of the bipartition of a component of H |(X12),
set L(z) = L(z) \ {1,2}. If some vertex z € X \ X34 has neighbors on both sides of the bipartition of a
component of H|(Xs4), set Lp(z) = L(z) \ {3,4}. Finally, set Lg(v) = L(v) for every other v € V/(H) not
yet specified. Now let L be obtained from Lg, by updating exhaustively from UL (P U Q).

We need to check the following statements.

—_

. Lg(v) C L(v) for every v € V(H).

[\

. (H,Lg, h) is a near-companion triple of P.

3. If for some i # j € {1,2,3,4} (H, L) has an ij-insulating cutset D’ with far side Z%, then D’ is an
ij-insulating cutset with far side Z% in (H, Lq).

4. (H,Lg) has a 12-insulating cutset with far side Z'2.

Clearly Lo (v) C L(v) for every v € V(H), and consequently it is routine to check that the third statement
holds, and that in order to prove the second statement it is sufficient to prove the following:

Set f(z) = Lg(xz) for every x € X°(Lg). Then for every z € Z with L(z) # 0 and
(5) q € {1,2,3,4} such that ¢ ¢ Lg(z), there is a vertex in h(z) that has a neighbor u €
SUXoUX%Lg) with f(u) =q.

We now prove this statement. Let z € Z and ¢ € {1,2,3,4} such that ¢ & Lo(z). We need to show
that there is a vertex in h(z) that has a neighbor u € S U Xo U X°(L') with f(u) = ¢q. If ¢ ¢ L(2), the
claim follows from the fact that (H, L, h) is a near-companion triple for P, so we may assume that ¢ € L(2),
and therefore z has a neighbor v in X°(Lg) with f(u) = ¢. Since Z is stable, it follows that u € X, and
therefore, by the definition of a companion triple, u is complete to V' (h(z)). This proves .

Finally, we prove that (H,Lg) has a 12-insulating cutset with far side Z12. Let D',...,D! be the
components of H|X15 that contain a vertex = such that 2 has a neighbor z in Z'? with Lg(z) N Lg(z) # 0.
Let F',..., F* be defined similarly for X3,4. Let D = X°(Lg)U U§=1 V(D;) UU;”:1 V(Fj). We claim that D
is the required cutset. Clearly D is a chromatic cutset, setting the far side to be Z'? and B = V(H)\ (AUD),
and the first two bullets of the definition of an insulating cutset are satisfied. Let D € {Dy,..., Dy} (the
argument is symmetric for F,..., Fy). We need to check the following properties.

e D is bipartite. s ~ ~
This follows from the fact that G|X;; = H|X,; is bipartite. Let (D1, D2) be the bipartition of D.

e |L(d)| = |L(d")| for every d,d" € Dy U Ds.
Since L(d) C {1,2} for every d € V(D), and since we have updated exhaustively, it follows that if
V(D) meets X°(Lg), then V(D) C X°(Lg).

e There exists a € A with a neighbor in D and with L(a) N {1,2} # 0.
This follows immediately from the definition of D.

e Suppose that |L(d)| = 2 for every d € V(D). We need to check that for {i,j} = {1,2}, ifa € A has a
neighbor in d € D1 and i € Lg(a), and b € B has a neighbor in D, then

— if b has a neighbor in D1, then j & Lg(b), and
— if b has a neighbor in Dy, then i ¢ Lg(b).
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We now check the condition of the last bullet. Let a € A have a neighbor d € Dy and 1 € Lg(a). Suppose
b € B has a neighbor in D; U Dy, and violates the conditions above. It follows from the definition of Z!2
and B that b € X and |Lg(b)| = 2. We may assume that b € T7(X). Since |Lq(b)| = 2, we deduce that
Lg(b) = L(b) = Mp(b) = Lp(T}). Since b exists, Q1 # 0. Since |L(d)| = 2 for every d € V(D), it follows
that ¢; is anticomplete to D1 U Dy. Since b ¢ XO(LQ), there is a component D of H|X12 such that ¢; has
a neighbor dy € V(Dy) and b is anticomplete to V(D). Let {i} = Lo(b) N{1,2}, and let {1,2}\ {i} = {5}
Then j & Lo(b) = Mp(b), and so j & Lp(T1). Consequently, there is s € S with f(s) = j, such that s is
complete to X (T}). Since V(D) UV (Dy) C X1, it follows that s is anticomplete to V(D) UV (Dy).

Suppose first that V(D) # {d}. Since b is not complete to D; U Dy (because Lg(b) N {1,2} # 0), there
is an edge dyds of ﬁ, such that b is adjacent to ds and not to d;. Now dy —dys —b—s—q —dgy is a Ps in
élg(s), contrary to Lemma

This proves that V(D) = {d}, and so b is adjacent to d, i = 2 and j = 1. Therefore Lp(T1)N{1,2} = {2},
and so Lg(q1) = c(q1) = 2. Since dy € X1, it follows that Lg(dg) = 1. Since 1 € Lg(a) and L is obtained
by exhaustive updating, we deduce that a is non-adjacent to dy. But now since 1 € Lg(a) and f(s) =1, we
deduce that a —d — b — s — go — dp is a path in Hia(s) contradicting Lemma This proves that (H, Lg)
has a 12-insulating cutset with far side Z'2.

Let £L = {Lg; Q € Q}. Then |£| < |V(G)>". Since m < 29I it follows that |£| < \V(G)|2‘S‘. Since
Lg(v) C L(v) for every v € V(H), it follows that every coloring of (H,L’) is a coloring of (H,L).

Now suppose that (H, L) is colorable, and let ¢ be a coloring. We show that some L’ € L is colorable.
Let i € {1,...,m}. For a vertex u € X(T}) define val(u) = |Gy2(u)|. If some vertex u of X (T;) with a
12-grandchild has ¢(u) € L(u) N {1,2}, let ¢; be such a vertex with val(g;) maximum and set Q; = {¢;}. If
no such u exists, let Q; = 0.

Define Py, ..., P,, similarly replacing X 12 with X34. Let

Q:(Qla"'vQTn7P15"'aP7n)~

We show that c(v) € Lg(v) for every v € V(H), and so (H, Lq) is colorable. Since L, is obtained from Lg,
by updating, it is enough to prove that c(v) € Li(v). Suppose not. There are two possibilities (possibly
replacing 12 with 34).

1. v € X(T;), Qi # 0, G12(qi) is a proper subset of G12(v), and ¢(v) € {1,2};
2. ve X(T), Q; =0, Gia(v) # 0, and c(v) € {1,2}.
We show that in both cases we get a contradiction.
1. In this case val(v) > val(g;), contrary to the choice of g;.
2. The existence of v contradicts the fact that Q; = 0.
This proves that (H, Lg) is colorable and completes the proof of Theorem O

Let P = (G, S, X0, X, Y™, f) be an orthogonal excellent starred precoloring of a Ps-free graph G. We
say that a near-companion triple (H, L, h) is insulated if for every i € {2,3,4} such that Z'* is non-empty,
(H, L) has a li-insulating cutset D C X with far side Z'*. We can now prove the main result of this section.

Theorem 12. There is function q : N — N such that the following holds. Let G be a Pg-free graph, let
P = (G,S, X, X, Y*, ) be an orthogonal excellent starred precoloring of G, and let (H,L,h) be a near-
companion triple for P. There is an algorithm with running time O(|V (G)|9U5D) that outputs a collection L
of 4-list assignments for H such that

o L] < |V(@)[aUSh.
o If L' € L and c is a proper coloring of (H,L"), then ¢ is a proper coloring of (H,L).
e If(H,L) is colorable, there exists L' € L such that (H,L") is colorable.

Moreover, for every L' € L.
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o L'(v) C L(v) for everyv € V(H).
e (H,L' h) is insulated.

Proof. Let Lo be as in Lemma By symmetry, we can apply Lemmawith 12 replaced by 13 to (H, L', h)
for every L' € Lo; let L3 be the union of all the collections of lists thus obtained. Again by symmetry, we
can apply Lemma [17| with 12 replaced by 14 to (H, L', h) for every L' € L3; let £4 be the union of all the
collections of lists thus obtained. Now L4 is the required collection of lists. O

5 Divide and Conquer

The main result of this section is the last piece of machinery that we need to solve the 4-precoloring-extension
problem.
We need the following two facts.

Theorem 13. [J] There is a polynomial-time algorithm that tests, for graph H and a list assignment L
with |L(v)| <2 for every v € V(H), if (H,L) is colorable, and finds a proper coloring if one exists.

Theorem 14. [§/ The 2-SAT problem can be solved in polynomial time.
We prove:

Lemma 18. Let G be a Ps-free graph and let P = (G, S, Xo, X, Y™, f) be an orthogonal excellent starred
precoloring of G. Let (H,L',h) be a companion triple for P, where V(H) = X U Z, as in the definition of
a companion triple. Assume that D C X is a 12-insulating chromatic cutset in (H,L') with far side Z'2.
There is a polynomial-time algorithm that test if (H|(Z'2 U D), L") is colorable, and finds a proper coloring
if one exists.

Proof. We may assume that Xo = X9(P). Let P = (G, S, Xy, X, Y*, f) be as in the definition of a companion
triple, where V(H) = X U Z. By Theorem we can test in polynomial time if H|(D N X9, L') and
H|(D N X34, L) is colorable. If one of these pairs is not colorable, stop and output that (H|(Z'? U D), L)
is not colorable. So we may assume both the pairs are colorable, and in particular every component of
H|(Dn Xlg) and H|(D N )~(34) is bipartite.

We modify L’ without changing the colorability property. First, let L” be obtained from L’ by updating
exhaustively from X°(L'). Next if v € V(H) \ X2 has a neighbor on both sides of the bipartition of a
component of H|X’127 we remove both 1 and 2 from L”(v), and the same for X34; call the resulting list
assignment L. (We have already done a similar modification while constructing list assignments L¢ in the
proof of Lemma but there we only modified lists of vertices in X, so this step is not redundant.) Set
f(u) = L(u) for every u € X°(L). Clearly:

(6) IfveV(H) is adjacent to x € X°(L), then L(v) N L(z) = 0.

Next we prove:

Let {p,q} € {{1,2},{3,4}} and let = € Z1% with |L(z) N {p,q}| = 1. Let L(z) N {p,q} = {i}
(7)  and {p,q} \ L(z) = {j}. Then there exists y € V(h(z)) and u € S U Xo U X°(L) such that
f(u) =3 and uy € E(G).

To prove (7)) let z € Z with L(z)N{1,2} = {1} (the other cases are symmetric). Since 1 € L(z), it follows
that z does not have neighbors on both sides of the bipartition of a component of H |)~(127 and therefore
L(z) = L"(z). If 2 ¢ L'(z), then such u exists from the definition of a near-companion triple, so we may
assume 2 € L'(z). This implies that there is u € XY(L) such that u is adjacent to z, and f(u) = 2. Since Z
is stable, it follows that u € X U Xy U S, and so u is complete to V' (h(2)), and @) follows.

We define an instance I of the 2-SAT problem. The variables are the vertices of Z'2, and the clauses are
as follows:
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1. For every z1,2z € Z'2,if L(z;) N{1,2} = {i} for i = 1,2 and 21, 2, have neighbors on the same side of
the bipartition of some component of H|(D N X12), add the clause (—z; V —12z9).

2. For every z1,25 € Z'2, if L(z1) N {1,2} = L(z2) N{1,2} € {{1},{2}} for i = 1,2 and z;, 2, have
neighbors on opposite sides of the bipartition of some component of H|(D N Xi2), add the clause
(_‘Zl vV _|ZQ).

3. For every 21,20 € Z 12 if 21, 25 have neighbors on the same side of the bipartition of some component
of H|(D N Xi2), and also 21, z2 have neighbors on opposite sides of the bipartition of some component
of H|(D N Xi2), add the clause (—z; V —22).

4. For every z3, 24 € Z'2,if L(z;) N{3,4} = {i} for i = 3,4 and 23, z4 have neighbors on the same side of
the bipartition of some component of H|(D N X34), add the clause (z3 V z4).

5. For every z3,24 € Z'2, if L(z3) N {3,4} = L(z4) N {3,4} € {{3},{4}} for i = 3,4 and z3, 24 have
neighbors on opposite sides of the bipartition of some component of H|(D N X34), add the clause
(2’3 \Y 2’4).

6. For every z3,z4 € Z'?, if 23,z have neighbors on the same side of the bipartition of some component
of H|(D N X34), and also 23, z4 have neighbors on opposite sides of the bipartition of some component
of H|(D N X34), add the clause (z3 V z4).

7. If z € Z'? and L(z) C {1,2}, add the clause (2 V z2).
8. If z € Z and L(z) C {3,4}, add the clause (—z V —z2).

By Theorem [14] we can test in polynomial time if I is satisfiable.

We claim that I is satisfiable if and only if (H|(Z'2 U D), L) is colorable, and a proper coloring of
(H|(Z'2 U D), L) can be constructed in polynomial time from a satisfying assignment for I.

Suppose first that (H|(Z2UD), L) is colorable, and let ¢ be a proper coloring. For z € Z12 set z = TRUE
if ¢(z) € {1,2} and z = FALSE if ¢(z) € {3,4}. It is easy to check that every clause is satisfied.

Now suppose that I is satisfiable, and let ¢ be a satisfying assignment. Let A’ be the set of vertices z € Z'2
with g(z) = TRUE, and let B’ = Z'2\ A". Let A= A'U(DN Xy2) and B = B'U (D N X34). For v € A let
La(v)=L'(v)N{1,2}, and for v € B let Lg(v) = L'(v) N {3,4}. In order to show that (H|(Z'?U D), L) is
colorable and find a proper coloring, it is enough to prove that (H|A, L4) and (H|B, Lp) are colorable, and
find their proper colorings. We show that (H|A, L4) is colorable; the argument for (H|B, Lg) is symmetric.

Since for every z € Z'? with L(z) C {3,4} (-2 V —z2) is a clause (of type 6) in I, it follows that
L(z)n{1,2} # D forevery z € A. Let Ay ={ve A : La(v) ={1}}, Ao ={ve A : La(v)={2}), and
As = A\ (A1 UAy) Let F be a graph defined as follows. V(F') = (A3U{a1, az}), where F'\ {a1, a2} = H|As,
ajas € E(F), and for i = 1,2 v € A3 is adjacent to a; if and only if v has a neighbor in A; in H.

We claim that (H|A, L,) is colorable if and only if F is bipartite; and if F' is bipartite, then a proper
coloring of (H|A, L4) can be constructed in polynomial time. Suppose F' is bipartite and let (F7, F5) be the
bipartition. We may assume a; € F;. Let i € {1,2}. For every v € (F; U A;) \ {a;}, we have that i € La(v),
and so we can set ¢(v) = i. This proves that (H|A, L) is colorable, and constructs a proper coloring. Next
assume that (H|A, L4) is colorable. For i = 1,2, let F/ be the set of vertices of A colored i. Then A; C F),
and setting F; = (F/ \ A;) U{a;}, we get that (Fy, F») is a bipartition of F. This proves the claim.

Finally we show that F is bipartite. Recall that the pair (H|(D N X12), L) is colorable, and therefore
H|(D N X15) is bipartite. Since La(v) C L(v) for every v € As, and La(v) N {1,2} # 0 for every v € A, it
follows that no vertex of A N Z'2? has a neighbor on two opposite sides of a bipartition of a component of
H|(D N X,5). First we show that H|A is bipartite. Suppose that there is an odd induced cycle C' in H|A.
Since by the fourth bullet in the defintion of a near-companion triple the graph H|A is Ps-free, it follows
that |[V(C)| = 5. Since Z!? is stable, we deduce that |C' N Z'2| = 2. But then some clause of type 3 or 6 is
not satisfied, a contradiction. This proves that H|A is bipartite.

Suppose that F' is not bipartite. Then there is an odd cycle C in F, and so V(C) N{ay,as} # 0. In H
this implies that there is a path T'=t; — ... — ¢} with {¢o,...,tx_1} C As, such that either

e k is even, and for some i € {1,2} ¢1,t; € A;, or
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e kisodd, t; € Ay, and t; € As.

Since T is a path in H|(Z U Xlg)7 it follows that k < 5. If t; € X1 N D, then t; € XO(L), and so by @,
ty € Ay U Ay, a contradiction. This proves that ¢; € Z'2, and similarly t;, € Z12.

Suppose first that k is even. Since Z'2 is stable, it follows that k # 2, and so k = 4. Since t,t4 € Z'?
and since Z'2 is stable, it follows that tg,t3 € X15. But now (—t; V —t4) is a clause (of type 2) in I, and yet
g(t1) = g(ta) = TRUE, a contradiction.

This proves that k is odd. If k = 3 then, since Z'2 is stable, t5 € X12, and so (—ty V —t3) is a clause (of
type 1) in I, and yet g(t1) = g(t3) = TRUE, a contradiction. This proves that k = 5. Since Z'? is stable,
it follows that to,t4 € Xq9. If t3 € X1o, then (—ty V —ts) is a clause (of type 1) in I, contrary to the fact
that both g(t1) = g(t5) = TRUE, a contradiction. Therefore t3 € Z'2. We may assume that t; € A;. By

there exist u € S U XoU X°(L) and y; € V(h(t;)) such that f(u) = 2 and uy; € E(G). Since t, € X, it
follows that to is complete to V (h(t1)), and in particular ¢, is adjacent to y;. Since Xo = X°(P), it follows
that u is anticomplete to {to,t4}. Let ¢ € {3,5}. By the definition of a companion triple, since 2 € L(¢;),
there exists y; € V(h(t;)) such that u is non-adjacent to y; in G. Now since no vertex of X is mixed on a
component to G|Y*, it follows that w —y; — t — y3 — t4 — y5 is a Ps in G12(u), contrary to Lemma This
proves Lemma [T8] O

6 The complete algorithm

First we prove Theorem [§ which we restate.

Theorem 8. For every positive integer C' there exists a polynomial-time algorithm with the following speci-
fications:

Input: An excellent starred precoloring P = (G, S, X, X,Y™*, f) of a Ps-free graph G with |S| < C.

Output: A precoloring extension of P or a statement that none exists.

Proof. By Theorem [0] we can construct in polynomial time a collection £ of orthogonal excellent starred
precolorings of G, such that in order to determine if P has a precoloring extension (and find one if it exists),
it is enough to check if each element of £ has a precoloring extension, and find one if it exists. Thus let
P, € £. By Theorem [10| we can construct in polynomial time a companion triple (H, L, h) for P;, and it is
enough to check if (H, L, h) is colorable.

Now proceed as follows. If L(v) = 0 for some v € V(H), stop and output “no precoloring extension”. So
we may assume L(v) # () for every v € V(H). Let £ be a collection of lists as in Theorem [I2] If £ = 0, stop
and output “no precoloring extension”, so we may assume that £ # (. Let L’ € £; then (H, L', h) is insulated.
For every i let D' be and insulating li-cutset with far side Z', and let D = {d € D; : |L'(d)| = 2}. Let
H; = H|(D'U Z'), and let H, = H \ J;_,(D? U Z'%). Observe that V(H;) C X. By Lemma we can
check if each of the pairs (H;, L') with i € {2, 3,4} is colorable, and by Theorem |13} we can check if (Hy, L)
is colorable and find a proper coloring if one exists. If one of these pairs is not colorable, stop and output “no
precoloring extension”. So we may assume that (H;, L’) is colorable for every i € {1,...,4}. Observe that
D? is an insulating 12-cutset in (H|(V (H1) UV (Hz)), L) with far side Z'2, D? is an insulating 13-cutset in
(H|(V(Hy)UV (Hy)UV (Hs)), L') with far side Z'3, and D* is an insulating 14-cutset in (H, L’) with far side
Z'4. Now three applications of Theorem show that (H, L) is colorable, and produce a proper coloring.
This proves [§ O

We can now prove the main result of the series, the following.

Theorem 15. There ezists a polynomial-time algorithm with the following specifications.
Input: A 4-precoloring (G, Xy, f) of a Ps-free graph G.

Output: A precoloring extension of (G, Xo, f) or a statement that none exists.
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Proof. Let L be as in Theorem Then £ can be constructed in polynomial time, and it is enough to
check if each element of £ has a precoloring extension, and find one if it exists. Now apply the algorithm of
Theorem [§] to every element of L. O

7
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