
Mitigating the Uncertainty and
Imprecision of Log-Based Code
Coverage Without Requiring

Additional Logging Statements

by

Xiaoyan Xu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Xiaoyan Xu 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Understanding code coverage is an important precursor to software maintenance activ-
ities (e.g., better testing). Although modern code coverage tools provide key insights, they
typically rely on code instrumentation, resulting in significant performance overhead. An
alternative approach to code instrumentation is to process an application’s source code and
the associated log traces in tandem. This so-called “log-based code coverage” approach
does not impose the same performance overhead as code instrumentation. Previous work
has introduced LogCoCo — a tool that implements log-based code coverage for Java.
While LogCoCo breaks important new ground, it has fundamental limitations, namely:
uncertainty due to the lack of logging statements in conditional branches, and imprecision
caused by dependency injection. In this thesis, we propose Log2Cov, a tool that generates
log-based code coverage for programs written in Python and addresses uncertainty and
imprecision issues. We evaluate Log2Cov on three large and active open-source systems.
More specifically, we compare the performance of Log2Cov to that of Coverage.py, an
instrumentation-based coverage tool for Python. Our results indicate that 1) Log2Cov
achieves high precision, recall, and F1 score without introducing runtime overhead; and
2) uncertainty and imprecision can be reduced by up to 11% by statically analyzing the
program’s source code and execution logs, without requiring additional logging instru-
mentation from developers. While our enhancements make substantial improvements, we
find that future work is needed to handle conditional statements and exception handling
blocks to achieve parity with instrumentation-based approaches. We conclude the thesis
by drawing attention to these promising directions for future work.

iii

Acknowledgements

First, I would like to thank my supervisor, Professor Shane McIntosh, for his guid-
ance, support, and mentorship. His dedication to excellence has profoundly influenced my
approach to research, and has been pivotal in my academic and personal development.

My sincere appreciation also goes to Doctor Filipe Cogo, for his time, ideas, and feed-
back. His expertise and collaboration not only enhanced my research skills but also pro-
vided me with broader perspectives that have supported my master’s journey.

I would like to thank my thesis readers, Professor Chengnian Sun and Professor Weiyi
Shang for taking the time to review this work and provide constructive feedback.

Furthermore, I would like to thank all of the members of the REBELs and SWAG labs.
Your unwavering support has created such an uplifting environment.

Finally, I want to thank my parents, who have always been there to support me. I also
extend my heartfelt thanks to my wife, Tina, for her companionship, understanding, and
love. I could not have been in this position without any of you.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Publications x

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 3

1.3 Thesis Contributions . 4

1.3.1 Empirical Contribution . 4

1.3.2 Technical Contribution . 5

1.4 Thesis Organization . 5

2 Background And Related Work 6

2.1 Software Logging . 6

2.2 Code Coverage and Instrumentation-Induced Overhead 8

2.3 Log-Based Code Coverage . 9

v

3 Log2Cov: Log-based Code Coverage For Python 10

3.1 System Design . 10

3.1.1 Phase 1 – Program Analysis . 10

3.1.2 Phase 2 – Log Analysis . 12

3.1.3 Phase 3 - Path Analysis . 13

3.1.4 Phase 4 – Coverage Estimation . 13

3.2 Exploratory Evaluation of Log2Cov (Design) 14

3.2.1 Studied Systems . 14

3.2.2 Execution Scenarios . 16

3.2.3 Benchmarking Results . 16

3.2.4 Overhead Measurement . 17

3.3 Exploratory Evaluation of Log2Cov (Results) 17

3.3.1 Precision, Recall, and F1 Score . 18

3.3.2 Overhead . 20

3.4 Limitations of Log-Based Coverage Measurement 22

3.4.1 Uncertainty . 22

3.4.2 Imprecision . 23

4 Mitigating the Uncertainty of Log-Based Code Coverage 26

4.1 Approach . 28

4.2 Results . 31

4.3 Discussion . 31

5 Mitigating the Imprecision of Log-based Code Coverage 33

5.1 Approach . 33

5.2 Results . 35

5.3 Discussion . 35

vi

6 Threats to Validity 36

6.1 Construct Validity . 36

6.2 Internal Validity . 36

6.3 External Validity . 37

7 Conclusions and Implication 38

References 39

vii

List of Figures

1.1 An overview of the scope of this thesis. 4

3.1 Overview of the design of Log2Cov. 11

3.2 Overview of system selection. 14

3.3 Online overhead of Coverage.py and Log2Cov. 21

3.4 Offline overhead of Coverage.py and Log2Cov. 22

4.1 Resolve May-Coverage Phase. 27

viii

List of Tables

3.1 Overview of the candidate systems. 15

3.2 Exploratory Evaluation Result: Precision, Recall, and F1 Score 18

3.3 Exploratory Evaluation Result: Precision, Recall, and F1 Score (May-Coverage
as Positive) . 20

4.1 Performance of Resolve May-Coverage. 30

5.1 Performance of Log2Cov w&wo resolving dependency injection. 35

ix

List of Publications

This thesis builds upon previous work submitted to the Journal of IEEE Transactions on
Software Engineering (TSE) and has undergone a major revision.

• Xiaoyan Xu, Filipe R. Cogo, Shane McIntosh. Mitigating the Uncertainty and Im-
precision of Log-Based Code Coverage Without Requiring Additional Logging State-
ments. Submitted to IEEE Transactions on Software Engineering (TSE).

x

Chapter 1

Introduction

Developers strive to understand the behavior of large and complex software systems. To
gain insights into a system’s behaviour, developers rely on software analysis tools [20],
which may suffer from shortcomings. For example, instrumentation-based software analysis
tools can generate considerable performance overhead during the execution of the analyzed
program [11, 25, 32, 45]. In systems that are performance sensitive and need intensive
monitoring, such as high-traffic web services and real-time applications, instrumentation-
based methods may interfere with critical performance requirements that are essential
for the system’s functionality, and meeting implicit or explicit Quality of Service (QoS)
expectations [4, 22, 40, 41]. Adapting instrumentation-based tools across systems is also
challenging because such tools are often language specific [12]. Moreover, the deployment
of instrumentation-based tools is non-trivial. In distributed systems, for instance, the
deployment of instrumentation tools presents challenges due to the need for pervasive
system modifications, which crosscut nearly every component of the system [29].

To address the aforementioned limitations in code coverage measurement, Chen et
al. [10] proposed LogCoCo—a tool to measure the code coverage of Java-based sys-
tems by exploiting broadly available system execution logs. Unlike instrumentation-based
coverage tools, LogCoCo does not add overhead that affects the overall system’s per-
formance because it relies on execution logs that systems are often already generating to,
e.g., monitor system health, debug runtime issues, and comply with legal requirements in
regulated industries. Despite code coverage being traditionally applied in the context of
testing, the application context of LogCoCo is broader, as it can produce code coverage
measurements based on any set of execution logs and under any execution scenario. This
indicates that any software that uses logging can potentially benefit from this approach,

1

particularly in scenarios where traditional instrumentation-based methods are intrusive or
infeasible.

1.1 Problem Statement

While LogCoCo makes an important contribution, it is not without limitations. First,
LogCoCo’s nature of inferring coverage by execution logs limits its performance to mea-
suring the coverage of log-sparse areas of the source code, for which imprecision and un-
certainty can occur. Imprecision refers to the mislabelling of a statement coverage status,
and uncertainty refers to the code region that cannot be determined as covered or not
covered based on the execution logs. Second, the development paradigm of dependency
injection can cause imprecision in LogCoCo’s coverage measurement, since dependency
injection dynamically modifies system execution flows during runtime. For example, a
common practice of dependency injection in unit testing is mocking and patching, where a
function can be replaced by a mocked object and is not invoked during system execution,
even though static analysis indicates that it is. Without an understanding of dependency
injection, LogCoCo can yield inaccurate coverage measurements.

Although the author of LogCoCo stated that additional log statement can improve
the performance of LogCoCo [10], artificially injecting logging statements is not always
applicable and prefered. For instance, logging extensively can lead to unacceptable perfor-
mance overhead and inflation of execution logs, complicating tasks such as log retention,
problem diagnosis, and automated log analysis. Furthermore, such modifications may not
be permissible due to development and maintenance practices that are designed to preserve
the original logging strategy. Additionally, in situations where the software must adhere to
regulatory compliance or undergo code integrity checks, any form of modification, including
the introduction of new logging statements, could be highly problematic.

Thesis Statement: By leveraging static analysis, the uncertainty and imprecision
of log-based coverage measurement can be mitigated without introducing additional
logging statements.

In this thesis, we set out to study the following research questions:

(RQ1) To what extent can we reduce the uncertainty of log-based code cover-
age?

2

Motivation: Log statements are not inserted everywhere. Log-sparse regions of a
system can lead to uncertainty in log-based coverage measurement. While prior
work [10] suggests inserting additional logging statements as a solution, we aim to
relax this constraint on users by mitigating uncertainty without requiring changes
to the system under scrutiny.

(RQ2) To what extent can we reduce the imprecision of log-based code cover-
age?
Motivation: An inaccurate coverage tool is not of practical value. The practice of
dependency injection can cause imprecision in log-based coverage measurements
since it dynamically modifies the system execution flow during runtime. To im-
prove the practical value of log-based coverage estimation, we set out to mitigate
the impact of dependency injection on the precision of measurements.

1.2 Thesis Overview

In Figure 1.1, we provide a brief overview of the scope of this thesis.

Chapter 2: Background And Related Work.

This chapter situates the thesis with background and prior research on software logging
and code coverage measurement.

Chapter 3: Log2Cov: Log-based Code Coverage For Python

In this chapter, we introduce Log2Cov, which expands the reach of log-based coverage
concept to a new programming language. Through an exploratory evaluation using three
large open-source projects, we benchmark our performance measurements (precision, re-
call, F1 score, and performance overhead) in comparison with Coverage.py, the de
facto standard coverage tool for Python.

Chapter 4: Mitigating the Uncertainty of Log-Based Code Coverage

In this chapter, we propose a technique that incorporates program slicing [44] and data
flow analysis [1] to mitigate the uncertainty in log-based coverage measurement.

Chapter 5: Mitigating the Imprecision of Log-based Code Coverage

In this chapter, we propose an approach that mitigates log-based coverage imprecision by
addressing the usage of dependency injection in unit testing.

3

Topic

Background Studies

Outcome

Technical Empirical

Enchance Log-Based Code Coverage Without Requiring Additional Logging Statements

Log-Based Code
Coverage For Python

Mitigating
Uncertainty

Log2Cov Prevalence of Limitations in
Log-Based Coverage

Benchmark of
Enhancement

Chapter 3 Chapter 4

Background and
Related work

Chapter 2

Mitigating
Imprecision

Chapter 5

Benchmark of
Log-Based Coverage for

Python

Figure 1.1: An overview of the scope of this thesis.

1.3 Thesis Contributions

This thesis demonstrates both empirical and technical contributions:

1.3.1 Empirical Contribution

1. Log-based coverage for Python achieves high precision, recall, and F1 score with
minimal performance overhead (Chapter 3).

2. Uncertainty in log-based code coverage can be reduced by up to 11% by statically
analyzing the program source code and execution logs (Chapter 4).

4

3. Imprecision in log-based code coverage can be reduced by up to 4 percentage points
when dependency injection is being used, and there is no negative impact on the
performance of Log2Cov when dependency injection is not being used (Chapter 5).

1.3.2 Technical Contribution

This thesis introduces Log2Cov—a log-based coverage approach that aims to address the
limitations of uncertainty and imprecision. We contribute a prototype implementation of
Log2Cov for Python, which expands the reach of the log-based coverage concept to a
new programming language (Chapter 3). We further implement the features that mitigate
uncertainty (Chapter 4) and imprecision (Chapter 5).

1.4 Thesis Organization

Chapter 2 shows the background and previous studies in software logging and code coverage
measurement. Chapter 3 introduces Log2Cov, a tool for log-based code coverage in
Python. The subsequent Chapters 4 and 5 delve into enhancing log-based coverage using
static analysis, whereas Chapter 4 focuses on reducing uncertainty and Chapter 5 tackles
the imprecision. Then, Chapter 6 examines potential threats to the validity of the thesis.
Finally, Chapter 7 concludes the thesis, reflecting on the implications, and suggesting paths
to future research.

5

Chapter 2

Background And Related Work

In this Chapter, we situate our work with respect to the literature on software logging and
code coverage.

2.1 Software Logging

Software logging is a popular approach to recording events that occur while a program
executes [47]. A log trace is the text output of such a recorded event, and it is generated
by executing the log statement that is inserted into the source code by developers [17].
During the system execution, the collected log traces are saved in log files. A logging
statement typically contains four types of components: a logging object, a verbosity level,
static texts, and dynamic contents [9]. During the system execution, the verbosity level
(e.g. INFO, DEBUG, ERROR) determines whether a log trace should be outputted, the
dynamic contents represent the state of the system while it is running, whereas static texts
provide a human-readable description of the logging context (e.g., type of event).

Because of the runtime information that the log files contain, software logging is heavily
and widely used in large enterprise applications for monitoring and debugging [21]. For
example, anomaly identification [39], system monitoring [38], failure analysis [23, 34, 35,
48], and test analysis [42] all rely on analyzing logs emitted in the execution of large-scale
software systems.

Previous work has studied developers’ logging practices. Chen et al. [8] studied five
server-side projects and five client-side projects from the Apache Software Foundation to

6

assess whether the logging practices of client-side projects are similar to those of the server-
based projects. They analyzed log density, which is defined as the ratio between total lines
of source code and total lines of logging code, across those projects. They found that the
pervasiveness of logging varies from project to project. Alves and Paula [2] explored the
logging practices of 1,166 open-source Python projects that use containers. They found
that over 99% of the studied projects use the built-in Python logging library, and that the
logging verbosity levels DEBUG and INFO are used almost twice as much as WARNING
and ERROR.

Yet, empirical investigations demonstrate that no well-established logging standard
exists for proprietary [14] and open source systems [8, 47]. Researchers have made efforts
to fill this gap by suggesting where to log (i.e., specifying where logging statements should
be placed) and what to log (i.e., specifying the information that log statements should
record). Yuan et al. [46] studied 250 randomly sampled reported failures across five large
and widely used software systems and found that missing logging statements increase the
time to resolve failures up to 2.2 times compared to the average resolving time. The authors
proposed Errlog, a static checking tool that automatically instruments log statements
to record the error locations and error context while searching the codebase for these
kinds of exception blocks. Zhu et. al [51] proposed LogAdvisor, which utilizes existing
logging statements to automatically learn logging practices for where to log and uses that
information to provide developers with recommendations. He et al. [17] carried out the first
empirical study in the context of logging statements, concentrating on the natural language
descriptions of those statements. They summarized three categories of logging descriptions
in logging statements, including the description of program operation, the description of
error conditions, and the description of high-level code semantics (i.e., variable description,
function description, and branch description).

Software logging offers a wide range of benefits, covering the dimensions of diagnos-
ing system failures, tracking execution status, understanding system behavior, and
recording important transactions or operations in system executions. Yet there is
no universal standard of logging. Inadequate logging can pose negative impacts on
log analysis.

7

2.2 Code Coverage and Instrumentation-Induced Over-

head

Code coverage is a technique to determine which code locations (e.g., branches or state-
ments) are executed when a system runs under determined conditions. Code coverage is
mainly used to assess and enhance the quality of tests [50], such as unit tests and integration
tests [3, 5, 24, 30, 33].

While both open-source and proprietary tools that measure code coverage are popular
and broadly available (e.g., JaCoCo1, Semantic Designs tools2, Cobertura3), they typ-
ically use the same instrumentation technique, which consists of inserting probes (either
at the source code [6] or the binary/bytecode level [28]) to capture the runtime system
behaviour [45]. For example, Yang et al. [45] compared 17 coverage-based testing tools
that support different languages (e.g., Java, C, and C++) and found that they are all
based on instrumentation. However, instrumentation causes performance overhead, mak-
ing the overall system execution slower [16, 43]. Instrumentation-induced overhead can
be categorized as either offline, caused by the process of inserting the probes, or online,
caused by the execution of the probes to record the execution traces [45].

Prior research studied the performance overhead caused by instrumentation-based code
coverage tools. Such overhead is often measured by comparing the performance of execut-
ing tests with/without turning the coverage tool on. Chen et al. [10] measured the overhead
of JaCoCo, a commonly used Java coverage tool [10], and observed that negative perfor-
mance impact varies between workloads. Nonetheless, they found that JaCoCo brought a
noticeable performance overhead (greater than 8% on average) on the System Under Test
(SUT) across all benchmark tests. Holmes et al. [18] measured the performance overhead
introduced by the state-of-the-art Python coverage tool Coverage.py.4 The authors
measured the performance overhead in terms of the number of test actions (e.g., method
calls) performed in a 60-second time range. As a benchmark, the authors selected a set
of Python libraries as the SUT and the generated tests by TSTL [18], a domain-specific
language for creating test harnesses. They observed that turning off code coverage tools
can lead to executing at least 10% more test actions (on average), and up to 50 times
as many test actions. The median improvement in SUTs was 2.03 times, with a mean
improvement of 6.12 times as many test actions.

1http://www.eclemma.org/jacoco/
2http://www.semdesigns.com/Products/TestCoverage/
3http://cobertura.github.io/cobertura/
4https://coverage.readthedocs.io/en/6.4.1/

8

The state-of-the-practice code coverage tools rely on instrumentation, which results
in non-negligible performance overhead for large-scale software systems.

2.3 Log-Based Code Coverage

To address the performance overhead problem in code coverage measurement, Chen et
al. [10] proposed LogCoCo, a tool to measure code coverage using execution log traces of
Java-based systems. LogCoCo measures three kinds of code coverage: Must-Coverage,
Must-Not-Coverage, and May-Coverage. Must- and Must-Not-Coverage refer to statements
that are either necessarily covered or not covered by an execution flow. May-Coverage
refers to the statements inside conditional branches at which there is no logging statement
indicating its reachability. Unlike instrumentation-based coverage tools, LogCoCo does
not add extra overhead that affects the overall performance of program execution because
it avoids the usage of probes (see Section 2.2) by relying on readily available execution
log traces to determine coverage. Evaluation results indicate that LogCoCo achieves
high precision in measuring code coverage [10]. As stated by Chen et al., the coverage
information computed by LogCoCo highly depends on the number of logging statements
in the source code [10]. This implies that the performance of LogCoCo may be limited
by the subject systems because the amount of logging statements varies from system to
system.

Log-based code coverage measurement is currently limited to Java. Exception han-
dling and conditional branches lead to different program execution flows, and missing
logging statements on such critical points poses negative impacts on the identifica-
tion of causally related program execution flows and failures.

9

Chapter 3

Log2Cov: Log-based Code Coverage
For Python

In this chapter, we present our solution to relax the constraint that LogCoCo only works
for Java programs. First, we describe the implementation of Log2Cov, which begins as a
direct implementation of LogCoCo for Python programs (Section 3.1). We then present
the design (Section 3.2) and results (Section 3.3) of an evaluation regarding precision, recall,
F1 score and performance overhead of this initial version of Log2Cov. The limitations
that we identified during this initial evaluation inspire the key improvements that we
propose for Log2Cov (Section 3.4).

3.1 System Design

The design of Log2Cov is similar to that of LogCoCo [10] and contains four phases:
(1) Program Analysis, (2) Log Analysis, (3) Path Analysis, and (4) Coverage Estimation.
The Log2Cov design is illustrated in Figure 3.1.

3.1.1 Phase 1 – Program Analysis

The Program Analysis phase takes the program’s source code as input to derive a mapping
between LogREs and their corresponding coverage information. A LogRE is a (sequence
of) regular expression(s) composed during the analysis of the program. It denotes the
occurrence of execution flows of the program and is used to match against log traces to

10

Legend

Log
Files

Link
ASTs

Group
Log

Lines

Traverse
Linked
ASTs

Coverage
Database

Generate
AST

Generate
Call

Graph

Match
LogREs

Form
Log

Sequence

Program Analysis

Log Analysis

Estimate
Coverage

Path Analysis Coverage
Estimation

Coverage
Result

Log
Groups

Log
Sequences

 Source
Code Files

Method
ASTs

Call
Graph

Linked
Method ASTs

Coverage
& LogRE

Pairs

Process

Data

Database

Figure 3.1: Overview of the design of Log2Cov.

reveal the code coverage [10]. For example, the LogRE (module@3module@2)+ matches the
location component of the log trace module@3module@2module@3module@2, where module
refers to a source file name, and the numerals refer to the lines where the log statements
that generate this given log trace appear.

We follow the same procedure as proposed by Chen et al. [10] to analyze the source
code of the program. We first obtain the Abstract Syntax Tree (AST) of each method
of the program using Python’s AST library. The obtained ASTs are stored as files on
disk, strictly following the project level hierarchy. We then obtain a static call graph of
the program using PyCG, which has been shown to outperform other tools for the same
task [37]. The resulting call graph is represented as a map in which the key is the caller
and the value is a list of callees. Both the caller and the callee are denoted as the relative
path to the method in dot notation. The call graph shows the relative path of each method
to the system root directory, which enables us to chain together ASTs associated with each
method. Such a procedure involves traversing the AST body of each method, identifying
function calls, and replacing the callee’s name with the location of the callee’s AST. Finally,
we perform an AST traversal for all methods’ ASTs to find all possible execution flows
of the program and generate the respective LogREs. During the AST traversal, once we
encounter a logging statement, we record its module name and line number to compose
the LogRE. Similar to LogCoCo, we label each statement as Must-Covered, Must-Not-
Covered, or May-Covered during the construction of LogREs.

For example in Listing 1, suppose the module name of the code snippet is foo, then
the LogREs that will be generated after AST traversal of this code snippet are foo@2 and
foo@2foo@4. Notice that the two distinct LogREs represent the two potential execution

11

flows.

1 def validate(a):

2 LOG.info("Validating")

3 if a >= 0:

4 LOG.info("Valid")

Listing 1: Example of LogRE generation.

{

"salt.states.file.line": [

"salt.states.file._error",

"salt.states.file._check_file",

"salt.states.file.managed"

],

"salt.states.file.replace": [

"salt.states.file._error",

"salt.states.file._check_file"

]

}

Listing 2: Call graph example.

3.1.2 Phase 2 – Log Analysis

In this phase, we analyze the log files and form a string of concatenated log sequences. A
log sequence is composed of multiple patterns of module@lineno, where each pattern is
extracted from a log trace.

We analyze log files by leveraging the log format, which includes the timestamp, thread
id, and location of each log trace. We describe how we use each item below.

Timestamp is used to sort log traces. Since multiple log files can be generated during
testing (e.g., a log file of passed tests and a log file of failed tests), we merge log traces
from multiple log files into one log file and then sort log traces by their timestamp.

Thread ID is used to form log groups. A log group is a group of log traces generated by
a single thread of execution. Because tasks can execute concurrently, their generated log

12

traces may be interleaved in the log file [10]. To form log sequences that indicate correct
program execution flows, we group log traces by their thread ID to construct log groups.

Location is the module name and line number of the log statement from which the log trace
is generated. We extract the location of the log trace to form the pattern of module@lineno.
Thus, for each log group, we build a log sequence (a concentration of such patterns) with
respect to the timestamp.

After obtaining log sequences, we chain together them to build a string that can be
used to match against LogREs.

Note that execution log files may contain the log traces generated by external libraries.
Since the scope of coverage measurements is typically limited to the subject system’s
codebase, we exclude the log traces from libraries outside the subject system’s codebase.

3.1.3 Phase 3 - Path Analysis

In this phase, we perform regular expression matching for all LogREs within the log se-
quences, creating a coverage database that contains mappings between a code statement
and its code coverage (Must-, May-, or Must-Not-Coverage). A statement can have differ-
ent code coverage labels in different LogREs. As suggested by Chen et al. [10], a statement
is considered in Must-Coverage if it is labelled as Must-Covered by at least one LogRE.
A statement is considered in May-Coverage if it is not labelled as Must-Covered by any
LogRE but as May-Covered by at least one LogRE. A statement is considered in Must-Not-
Coverage if it is not labelled as Must-Covered or May-Covered, but as Must-Not-Covered
by any of the LogREs.

3.1.4 Phase 4 – Coverage Estimation

In this phase, we estimate the proportion of the covered code statements in the subject
system. We use the coverage database resulting from Phase 3 (Section 3.1.3). Since there
are code regions that are labelled as May-Covered, we estimate the lower and upper bound
of the coverage of the entire system. The lower bound of coverage excludes May-Covered
statements and it is calculated as:

of Must labels

Total # of labels

13

On the other hand, the upper bound of coverage includes May-Covered statements and it
is calculated as:

of Must labels +# of May labels

Total # of labels

3.2 Exploratory Evaluation of Log2Cov (Design)

We conduct an exploratory study to evaluate Log2Cov and assess its limitations. We
compute its precision, recall, F1 score, as well as the overhead that it incurs. We select
Coverage.py as our baseline for comparison because it is the most popular coverage tool
for Python [19]. More specifically, we use the coverage report of Coverage.py as our
ground truth and compare the coverage status of every statement in our coverage database
against the coverage report of Coverage.py.

LegendSystem Selection

Process

Subject
Systems

Select
Python
Systems

Rank
Systems
based on
Size and
Activity

Select
Candidate
Systems

Select Subject
Systems by
Log-Density

DataGitHub
Dataset

Figure 3.2: Overview of system selection.

3.2.1 Studied Systems

We perform our evaluation of Log2Cov over a set of systems written in Python that can
benefit from Log2Cov. More specifically, we begin with candidate Python systems that
are large and active. We select large systems in terms of the total number of files because
we believe that small systems have little to gain from a log-based coverage tool. We also set
activity (total number of commits) as a criterion because the total number of commits is
closely related to activity density (commits per month and maximum consecutive months
with commits) and high-profile repositories tend to have a greater density of activity [36].

14

Table 3.1: Overview of the candidate systems.

System #Commits #Files LOC #Logs Log Density Log Rank

saltstack/salt 113,265 6,207 711,159 8,511 1.20× 10−2 1
home-assistant/core 43,494 21,517 1,012,962 7,026 6.94× 10−3 2
openstack/nova 59,487 4,340 377,843 2,510 6.64× 10−3 3
edx/edx-platform 60,737 9,246 377,613 1,764 4.67× 10−3 4
cloudera/hue 34,120 8,050 1,611,784 3,894 2.42× 10−3 5
zulip/zulip 40,693 6,112 181,406 200 1.10× 10−3 6
dimagi/commcare-hq 158,124 7,516 393,528 311 7.90× 10−4 7
demisto/content 31,266 30,948 679,235 55 8.10× 10−5 8
ansible/ansible 46,249 5,583 143,326 3 2.09× 10−5 9
frappe/erpnext 20,186 29,716 151,811 2 1.32× 10−5 10

We curated our collection of candidate Python systems from systems that are hosted
onGitHub. We started by querying the publicGitHub dataset onGoogle BigQuery,1

and filtering systems by their source code language. In total, we obtain 341,097 Python
systems. Next, we sort these systems by their number of commits and files. The rationale
is to obtain an activity rank based on the number of commits and a size rank based on the
number of files. The overall rank for each system is determined by summing its activity
and size ranks, and then sorting the systems in descending order by that sum. We then
selected ten candidate systems for measuring log density. We measured log density because
the log-based code coverage approach is only suitable for systems that have a considerable
density of logging statements. A system is selected as a candidate if the repository is not
a fork and has over 80 stars (a common heuristic used to fetch mature projects [7]). We
started with the top-ranked systems until we had selected 10 systems. The log density was
calculated according to Equation 3.1:

Log Density =
Log Generating Lines of Code

Source Lines of Code
(3.1)

Finally, among the ten candidate systems, we selected the top three systems based on
the log density to be our subject systems. As shown in Table 3.1, Saltstack Salt, Home
Assistant Core, andOpenstack Nova stand out among other candidates. For brevity,
we henceforth refer to these systems as Salt, Home Assistant, and Nova, respectively.

1https://cloud.google.com/bigquery/public-data

15

3.2.2 Execution Scenarios

We select testing as the execution scenario for its ubiquity across our subject systems. Since
LogCoCo was evaluated using testing scenarios [10], our choice ensures the consistency
in comparative evaluation of the performance of Log2Cov. We selected available test
suites from their GitHub repositories: unit and integration for Salt, unit for Home
Assistant, and unit and functional for Nova. It is worth mentioning that we did not
choose the number of tests or type of tests as the criteria in the system selection stage
because any quantity (or type) of tests is enough to compare the results of Coverage.py
with Log2Cov.

For test simulation, we used a consistent format string of

1 "%(asctime)s %(created)f %(levelname)s %(thread)d [%(name)s@%(lineno)d]

%(message)s"↪→

for the log format across all the subject systems, in which the %(created)f and %(thread)d
stand for the timestamp and thread id respectively. To ensure that the log traces can
be combined and analyzed properly, it is necessary to have a consistent logging format
containing the log message attributes of created and thread. This is because we need to
ensure that: (1) the thread id is contained in the resulting log traces to group log traces
(see Section 3.1.2); and (2) the timestamp is precise enough to sort the log traces combined
from multiple log files (note that asctime is in the precision of millisecond, while created
is the Unix time in the precision of microsecond).

Meanwhile, each test suite was executed with DEBUG-level logging and Coverage.py
to collect the execution logs and coverage reports. Since we intend to evaluate Log2Cov
with different log densities, we filtered the DEBUG logs to simulate INFO-level verbosity.
We avoided re-running tests at INFO verbosity to ensure consistency in the execution logs
for our comparative analysis of Log2Cov’s efficiency under varying log verbosity levels.
Compared to INFO verbosity, DEBUG verbosity leads to an increase in both the density
of log statements within the source code, with increases ranging from 52% to 91%, and the
volume (lines of log traces) of generated execution logs, with increases ranging from 130%
to 719%.

3.2.3 Benchmarking Results

As Log2Cov operates at line level, we use the line level results of Coverage.py as
our ground truth to compute performance scores for both Must-Coverage and Must-Not-
Coverage of Log2Cov. Since May-Coverage occurs, we perform analyses that (a) exclude

16

May-Coverage and (b) consider May-Coverage as positive in the calculation. Considering
May-Coverage as positive means equating it to Must-Coverage for Must-Coverage assess-
ments and to Must-Not-Coverage for Must-Not-Coverage assessments.

3.2.4 Overhead Measurement

We aim to assess the overhead incurred by Log2Cov and compare it with that of Cover-
age.py. We focus on both online and offline overhead of execution time. Our experiments
were conducted on a server equipped with an Intel(R) Xeon(R) CPU E5-1620 @ 3.60GHz
and 64GB of RAM. We ran the selected execution scenarios (see 3.2.2). Each execution
scenario was executed five times for both Coverage.py and Log2Cov overhead mea-
surements.

Online Overhead is measured by quantifying the percentage increase in program execu-
tion time with Coverage.py and logging enabled. We define Log2Cov’s online overhead
as logging overhead because execution logs are the only runtime requirement. To establish
an upper bound for Log2Cov’s online overhead, we measured the overhead associated
with DEBUG-level logging, as it is the most verbose logging level in the standard Python
logging parlance and thus represents the most resource-intensive scenario. For the base-
line of logging overhead, we configured the log level to be 1000 as it is larger than the
numeric value of any standard logging level, practically silencing all logging messages and
representing the minimal logging overhead scenario.

Offline Overhead, not directly affecting the system operations, is measured by the time
Coverage.py and Log2Cov take to generate coverage results. Specifically, Cover-
age.py’s time to produce an XML report based on collected data and Log2Cov’s time
for completing the phases of Program, Log, and Path Analysis (As shown in Section 3.1).
We exclude Log2Cov’s Coverage Estimation phase because it contributes minimally to
the overall processing time due to its low complexity, and does not align with Log2Cov’s
core functionality of producing a coverage database.

3.3 Exploratory Evaluation of Log2Cov (Results)

Below, we present the results of our exploratory study.

17

Table 3.2: Exploratory Evaluation Result: Precision, Recall, and F1 Score

Test Log Level Precision (%) Recall (%) F1 Score (%)

Must Must-Not Must Must-Not Must Must-Not

w w/o w w/o w w/o w w/o w w/o w w/o

S U DEBUG 94 55 85 36 91 85 90 79 92 66 87 49
S U INFO 94 51 80 38 85 75 92 85 89 60 86 53
S I DEBUG 84 57 86 56 92 89 72 63 88 70 79 60
S I INFO 86 67 76 45 91 89 66 53 88 76 71 49
H U DEBUG 100 53 69 3 93 87 98 72 96 66 81 6
H U INFO 100 55 42 3 95 91 92 44 97 69 57 6
N U DEBUG 99 76 45 19 94 92 80 62 96 83 58 29
N U INFO 98 75 39 10 90 87 82 55 94 80 53 17
N F DEBUG 95 69 75 46 93 90 83 74 94 78 78 57
N F INFO 97 78 74 46 87 84 94 90 92 81 83 61

3.3.1 Precision, Recall, and F1 Score

Our analysis reveals that some lines were not reported as covered or uncovered by Cov-
erage.py. Specifically, we observed that these excluded lines were the lines broken up by
the practice of line continuation,2 as well as the first line of doc-strings (i.e., """). Since it
is impractical to manually inspect all such lines, we report two kinds of metrics for Must-
and Mut-Not-Coverage. One metric considers the excluded lines to be true positive (cor-
rectly labelled by Log2Cov), while the other considers them as false positive (incorrectly
labelled). For example, under the precision part in Table 3.2, the left column of Must-
Coverage shows the precision for which we consider lines excluded by Coverage.py are
correctly labelled, while the right column shows the precision for which we consider lines
excluded by Coverage.py are incorrectly labelled.

Table 3.2 shows the result of precision, recall and F1 score when not considering May-
Coverage. Log2Cov achieved high precision for Must-Coverage measurement, ranging
from 84% to 100%. These precision measurements are on par with those of Chen et al. [10],
who observed Must-Coverage precision values of 83%-100% when comparing LogCoCo
to JaCoCo (a popular instrumentation-based coverage tool for Java) in 6 Java systems.
The precision of Must-Not-Coverage for the systems Home Assistant and Nova are

2https://peps.python.org/pep-0008/

18

lower than that of Salt, note that the log density of Salt is greater than that of Home
Assistant and Nova. When comparing within the same testing scenario, the precision
of Must-Not-Coverage is lower than the precision of the Must-Coverage in most cases. Our
observation of Must-Not-Coverage precision does not align with that of Chen et al. [10],
who observed Must-Not-Coverage precision to be 100% in all studied systems. However, we
conclude that log-based coverage measurement performs better for Must-Coverage than for
Must-Not-Coverage in terms of precision. This is because the lack of log statements inside
conditional branches negatively affects the precision of Must-Not-Coverage, particularly
when conditional branches are partially logged. For example, if there are log statements
only in the if branch but not in the else branch, log-based coverage measurement infers
that the else branch does not get executed, even though it may have been executed in
certain system execution flows.

Table 3.2 also indicates how the precision, recall, and F1 score are influenced by the
change in log density. We observed that the precision for Must-Coverage and recall for both
Must- and Must-Not-Coverage remains largely consistent when reducing the log density
(from DEBUG to INFO verbosity). This suggests that Log2Cov’s performance, in terms
of recall for both Must- and Must-Not-Coverage and precision for Must-Coverage, is largely
unaffected by additional log density beyond the INFO level of logging. The precision for
Must-Not-Coverage decreased by up to 27 percentage points with the reduction of log
density. This trend aligns with our finding that Must-Not-Coverage precision relies more
heavily on the density of logging statements. Fewer logging statements, as is the case with
INFO verbosity, result in reduced precision in identifying unexecuted code. Meanwhile, an
increase in uncertainty was also observed when the log verbosity was decreased. Indeed,
the decrease in verbosity results in a transfer of Must- and Must-Not-Coverage to May-
Coverage. Specifically, under the five testing scenarios across the three subject systems, we
observed that the magnitude of the transfer reached up to 3% when the verbosity decreased
from the DEBUG to the INFO level. This increase in uncertainty is expected, given that
fewer logging statements being recorded equates to less information being available for
analysis. Our observation aligns with the implication drawn in the LogCoCo’s paper, i.e.,
that additional instrumentation of logging can reduce the amount of May-Coverage [10].
Based on these findings, we conclude that systems with denser logging (e.g., using DEBUG
verbosity) allow execution to generate more logs. The increase in data points enhances
the accuracy and certainty of log-based coverage measurement, particularly regarding the
precision of Must-Not-Coverage and a reduction of uncertainty.

When considering May-Coverage as positive, we observed that the precision of Must-
Coverage dropped while the precision of Must-Not-Coverage increased (See Table 3.3).
For example, in the context of considering LOCs that are not in the ground truth as true

19

Table 3.3: Exploratory Evaluation Result: Precision, Recall, and F1 Score (May-Coverage
as Positive)

Test Log Level Precision (%) Recall (%) F1 Score (%)

Must Must-Not Must Must-Not Must Must-Not

w w/o w w/o w w/o w w/o w w/o w w/o

S U DEBUG 76 29 82 31 97 92 98 94 85 44 89 47
S U INFO 76 28 81 32 94 86 98 95 84 43 88 48
S I DEBUG 59 27 86 49 97 93 94 90 74 41 90 64
S I INFO 66 29 83 40 97 93 95 91 79 45 89 56
H U DEBUG 99 49 73 2 95 91 100 87 97 63 84 4
H U INFO 100 55 85 1 95 91 99 51 97 69 92 1
N U DEBUG 96 73 60 11 95 93 96 82 95 82 74 20
N U INFO 98 76 54 6 91 88 95 64 94 82 69 10
N F DEBUG 77 53 72 39 95 93 95 92 85 68 82 55
N F INFO 75 56 71 46 91 88 97 96 82 68 82 62

positive, the precision of Must-Coverage dropped by 13 percentage points and the precision
of Must-Not-Coverage increased by eight percentage points on average when May-Coverage
is considered Must-covered. Whether the May-Coverage is covered or not depends on the
execution scenarios. In our study, the changes in precision imply that May-covered lines are
more likely to be not covered. We also observed that the recall for both Must- and Must-
Not-Coverage increases when we consider May-Coverage as positive. This observation
aligns with our intuition that recall tends to increase when May-Coverage is considered.

3.3.2 Overhead

Figure 3.3 shows the online overhead of Coverage.py and Log2Cov for the five test
scenarios. Within each test scenario, the figure shows the average (mean) performance
overhead (in percentage) as well as the confidence intervals across five repeated runs.
The results indicate that the average overhead for Coverage.py across different test suites
ranges from 28% to 75%. This level of overhead shows the large performance cost that
instrumentation-based techniques incur. In contrast, we observed that logging overhead
is minimal (<3% on average) across all scenarios. This demonstrates that, in practice,
even the most verbose logging setting (DEBUG level) imposes considerably less overhead

20

Figure 3.3: Online overhead of Coverage.py and Log2Cov.

than Coverage.py in all scenarios. Meanwhile, we performed the Mann-Whitney U
test for comparing the overhead distributions of Coverage.py and Log2Cov across the
five execution scenarios, with each scenario treated as an independent test. By applying
Holm-Bonferroni correction, we adjusted the significance level to 0.01 (0.05 divided by
5). The result shows that Coverage.py introduced a significantly larger overhead than
Log2Cov in every execution scenario. Considering that online overhead is a critical factor
for a running system, we argue that log-based coverage measurement, as implemented in
Log2Cov, can directly address the problem of the large performance cost that is incurred
by instrumentation-based coverage measurement techniques.

Figure 3.4 shows the offline overhead. The offline overhead for Log2Cov and Cov-
erage.py vary across execution scenarios. For example, Coverage.py has the highest
offline overhead on Homeassistant unit testing, and Log2Cov has the highest offline
overhead on Salt unit testing. Within each subject system, Coverage.py performance
is consistent, yet Log2Cov takes longer to process for the Unit test. The variations in
Log2Cov’s processing time within the same subject system are due to the variations of

21

Figure 3.4: Offline overhead of Coverage.py and Log2Cov.

the overhead in matching LogREs (Path Analysis phase), as Program Analysis and Log
Analysis phases are identical in the context of processing the same subject system.

3.4 Limitations of Log-Based Coverage Measurement

Although Log2Cov achieved high precision, recall, and F1 score in measuring statements
labelled as Must-Coverage and Must-Not-Coverage, we noticed two areas in which there is
plenty of room for improvement.

3.4.1 Uncertainty

Our exploratory evaluation reveals that, across all execution scenarios, the proportion of
lines labeled as May-Covered reached up to 69%. This level of uncertainty is likely beyond

22

what users would tolerate. Chen et al. [10] stated that it is the developer’s responsibility to
add logging statements to reduce such uncertainty. In theory, uncertainty can be addressed
by logging in a complete way (i.e., logging entry into every conditional branch and exception
handling block). However, such an approach is impractical in real-world applications.
Logging extensively across the system can lead to unacceptable performance overhead and
inflation of execution logs, which poses challenges for log retention, problem diagnosis and
automated log analysis.

Although there are studies suggesting logging strategies [13, 26, 27, 46, 49, 51] and ana-
lyzing developers’ logging practices [8, 14, 47], logging is often incomplete and inconsistent
across systems. Thus, we propose an approach to reduce uncertainty without requiring ad-
ditional logging. Our approach not only circumvents the practical challenges of extensive
logging but also makes log-based coverage measurement more adaptable across systems
and environments. The intuition behind our approach is that branching expressions typi-
cally test variable values (e.g., if (a > 10), where a is a variable), and that the runtime
values of these variables may be inferred by the prior log messages. Hence, to infer variable
settings (and heuristically evaluate the branching expression), we propose an application
of program slicing and data flow analysis.

3.4.2 Imprecision

For mislabelled lines, we randomly selected a set of them for manual root cause inspection.
For example, if a line foo@10 was mislabelled as Must-Covered, we used the execution log
file of Log2Cov (not from the SUT) to retrieve the LogRE of which the Must-Coverage
contains this line. We also identified the corresponding method that was the entry point for
Log2Cov to produce such a LogRE. We then manually inspected the program execution
flows starting from that method to reason about the cause of mislabelling. After inspecting
200 examples, we observed the following repetitive root causes of mislabelling: 1) the
practice of dependency injection and 2) the lack of logging statements in conditional blocks.

Although we did not identify causes of imprecision that are related to syntax and
specifications of Python, we recognize that they may impact the precision of log-based
coverage measurement. This is because log-based coverage measurement relies on call
graphs to simulate program execution flow, and the process of call graph generation can
be inherently sensitive to syntax variations. Imprecision in call graph generation can
result in inaccurate function call invocations, thereby impacting the precision of coverage
measurement. In the case of Python, which is known for its dynamic features, creating an
accurate call graph is particularly challenging. To address this issue, we used PyCG (see

23

Section 3.1.1). PyCG is adept at handling Python’s dynamic characteristics, including
modules, generators, function closures, and multiple inheritance. It has reported a precision
of 99.2% and a recall of 69.9%. This high precision of PyCG may help to explain why we
did not detect cases where inaccurate function call invocation leads to imprecision.

Without requiring additional logging statements, improvements can be made to resolve
the imprecision caused by dependency injection. In unit testing, the practice of mocking
and patching techniques (a type of dependency injection) can cause imprecision of the mea-
surement for both Must- and Must-Not-Covered labels. Mocking is a common approach
in object-oriented software development to simulate software dependencies, speed up the
testing process, and confine the scope of testing to the component under test [31]. Accord-
ing to Python documentation,3 patching is used for replacing methods and attributes
of existing objects with mocks. An internal method in the codebase can be replaced by
a mocked object using the patching technique, and this diverts away from the statically
defined flows.

In Listings 3 and 4, we show examples of how mocking and patching lead to mislabelling
in Must-Not-Coverage and Must-Coverage, respectively. On lines 22-24 of Listing 3, we
show the application of the patching technique. The call to function query on line 25 is
replaced with an artificial return value, and thus the logging statement on line 32 is never
executed. However, given only the log trace from line on line 2, Log2Cov will interpret
the statements from line 4-8 as not executed, because there should be log traces of line
32 otherwise. Similarly in Listing 4, given the log trace generated from line 2, Log2Cov
infers that line 16 gets executed and thus the code statements inside function query are
marked as Must-Covered. However, at runtime, they never get executed due to the usage
of patching.

3https://docs.python.org/3/library/unittest.mock.html

24

https://docs.python.org/3/library/unittest.mock.html

1 def _reconfigure(vm_, vmid):

2 log.info(...)

...

13 if ... :

14 query(...)

...

21 def test__reconfigure(self):

22 with patch.object(

23 proxmox, "query", return_value={}

24) as query:

25 proxmox._reconfigure(self.vm_, 0)

...

31 def query(conn_type, option, post_data=None):

32 log.debug(...)

...

Listing 3: Example of patching affects Must-Not-Coverage.

1 def _reconfigure(vm_, vmid):

2 log.info(...)

...

16 query(...)

...

21 def test__reconfigure(self):

22 with patch.object(

23 proxmox, "query", return_value={}

24) as query:

25 proxmox._reconfigure(self.vm_, 0)

...

31 def query(conn_type, option, post_data=None):

...

35 return

Listing 4: Example of patching affects Must-Coverage.

25

Chapter 4

Mitigating the Uncertainty of
Log-Based Code Coverage

Users have come to expect coverage measurements to be precise about the status of program
elements, i.e., statements are either covered or not covered; however, the log-based coverage
approach may report that the status of a block of program elements is uncertain (i.e., May-
Coverage). This uncertainty tends to arise when log statements are absent from conditional
blocks and exception handling blocks. While log statements in such blocks provide hints
about the execution of statements within them, they are not the only method that an
observer can use to determine whether the statements inside such blocks are actually
executed during runtime. For example, practitioners may combine hints from log messages
with a careful inspection of the codebase to reason about the settings of variables that are
referenced in conditional expressions, which may ultimately identify the path of execution.
Inspired by this intuition about how practitioners analyze logs and code, we propose an
approach to mitigate the uncertainty of log-based coverage by resolving May-Coverage
caused by if-else conditional blocks. We call our approach “Resolve May-Coverage”.

To evaluate our approach, we apply “Resolve May-Coverage” to the coverage database
of DEBUG-level scenarios obtained in our exploratory evaluation (see Section 3.3). We
compare each line in the resolved coverage to the report generated by Coverage.py.
Meanwhile, we measure the amount of May-Coverage that resides in conditional branches
of which the conditional statement is Must-Covered, and we refer to this as “Resolvable
Coverage”. Additionally, we measure the execution time of “Resolve May-Coverage” phase,
repeating five times for each execution scenario. Subsequently, we use Log2Cov’s execu-
tion time (reported in Section 3.3.2) to assess the offline overhead attributed to this phase.
The details of our approach are explained below.

26

Legend

Module
AST

Call
Graph

Coverage
Database

 Source
Code
Files

Locate
Targeting

Statements

Trace
DEFs

Compute Condition
&

Label LOC

Module
AST

Module
AST

Targeting
Statement

Targeting
Statement

Log
Files

Resolved
Coverage

For Each AST

For Each Statement

Process

Data

Database
Generate Module

ASTs

Figure 4.1: Resolve May-Coverage Phase.

27

4.1 Approach

To resolve May-Coverage statements, we append the “Resolve May-Coverage” phase to the
“Path Analysis” phase of Section 3.1.3. This phase takes as input the system’s source code,
call graph, execution logs, and the coverage database generated by the “Path Analysis”
phase to produce a mapping of resolved May-Covered statements to their coverage status.
Figure 4.1 provides an overview of the “Resolve May-Coverage” phase, which we describe
below.

(1) Locate targeting statements : We locate the conditional statements of interest by ana-
lyzing the system’s codebase and traversing the module’s AST to identify if-else state-
ments. We query the coverage database to determine if the conditional statement is Must-
Covered and the associated code region, i.e., the statements within conditional blocks, is
May-Covered. We refer to such an if-else statement as the targeting statement, and the
variable within the targeting statement as the targeting variable.

(2) Trace the definition of variables in the targeting statement : We perform backward
slicing [15] and data-flow analysis based on the module’s AST and the module level def-use
chains. The def-use chains are computed using Beniget.1 Each def-use chain links an
identifier’s USE to its DEF [44].

For each targeting variable, we trace its DEF, starting from the conditional statement
and proceeding backward through the module’s AST and the module level def-use chains.
As illustrated in Algorithm 1, we begin by finding the closest DEF or USE of the targeting
variable, where the USE needs to be a log statement that logs the targeting variable (line
3). If a USE is found, we construct a DEF using the value extracted from the log trace. A
targeting variable can have multiple DEFs identified because there can be multiple defini-
tions coexisting under different conditions. These definitions do not reassign the variable
but rather establish different initial values for it depending on the execution flow. In cases
where other variables are involved in the collected DEF, we add those variables as targeting
variables and recursively apply backward slicing to trace their DEF/USE (lines 6-9). If we
cannot identify the DEF/USE based on the module-level def-use chain, we check if the
targeting variable is a function parameter (line 15). If so, we use the call graph (as ob-
tained in phase 3.1.1) to locate the caller functions of the function in which the targeting
variable resides (line 16). Note that we collect the caller function only if the statement of
that function call is labelled as Must-Covered in the original coverage database. For each
collected caller function, we trace the function call to obtain the value of the targeting
variable, which is provided as an argument, and then construct its DEF (lines 17-26).

1https://github.com/serge-sans-paille/beniget

28

Algorithm 1: Trace definition of a targeting variable

Input: var, def-use chains, call graph
Output: resultMap

1 Function Slicing(var):
2 Initialize an empty map resultMap
3 defList ← GetDEFs(var, def-use chains)
4 if defList is not empty then
5 foreach DEF in defList do
6 if DEF contains other variables then
7 foreach otherVar in DEF do
8 varMap ← Slicing(otherVar)
9 Merge varMap into resultMap

10 else
11 if var not in resultMap then
12 resultMap[var] ← empty list
13 Append DEF to resultMap[var]

14 else
15 if var is a function parameter then
16 callerFuncs ← GetCallers(var, call graph)
17 foreach callerFunc in callerFuncs do
18 arg ← GetArg(var, callerFunc)
19 Initialize an empty map varMap
20 if arg contains variables then
21 foreach otherVar in arg do
22 varMap ← Slicing(otherVar)

23 DEF ← BuildDef(arg, varMap)
24 if var not in resultMap then
25 resultMap[var] ← empty list
26 Append DEF to resultMap[var]

27 return resultMap

29

After tracing the DEF of each variable in the targeting statement, we obtain a mapping
that links each variable to its corresponding DEFs, preserving the dependency order.

(3) Compute the condition for the targeting statement and label LOCs : We apply the
Cartesian product to generate all possible combinations of values for the variables in the
targeting statement. For each combination, we construct and evaluate the code snippet
representing the conditional expression of the targeting statement. The overall condition
result is determined by evaluating the conditional expression with different variable inputs,
leading to three possible outcomes: True, False, or both. When the outcome is either True
or False, it indicates that all input combinations result in the same conditional value.
When the outcome is both True and False, it means that the expression evaluates to True
for some input combinations and False for others.

After obtaining the branch selection result of an if-else condition, we label the state-
ments in the branches accordingly. For example, if the branch selection result is computed
as True, we label the statements in the if-branch as Must-Covered; and if there are any
elif branches or an else branch, then the statements in those branches are labelled
as Must-Not-Covered. In addition, we label the statements of the callee function in the
conditional branches if they are initially labelled as May-Covered. Similar to the Path
Analysis phase, a statement is considered as Must-Coverage if it is labelled as Must-
Covered by at least one analysis of the targeting statement, and a statement is considered
as Must-Not-Coverage if no analysis of the targeting statement labels it as Must-Covered.

Table 4.1: Performance of Resolve May-Coverage.

Test Resolvable Resolved Accuracy Overhead

S U 401 44 (11%) 100% 2%
S I 83 2 (2%) 100% 1%
N U 559 13 (2%) 100% 12%
N F 92 2 (2%) 100% 4%
H U 581 5 (1%) 100% 7%

30

4.2 Results

Table 4.1 provides an overview of the performance. The column “Resolvable” indicates
the quantity of May-Coverage that is identified as being able to resolve, and the column
“Resolved” shows the quantity of May-Coverage resolved to Must-Coverage or Must-Not-
Coverage by our approach. In Salt, Nova, and Home Assistant, our approach achieved
100% accuracy in resolving May-Coverage compared with the report of Coverage.py.
Meanwhile, we found that Coverage.py excluded some lines. Since we manually in-
spected all such cases, there is no need to consider the excluded lines as incorrectly labelled.
Furthermore, we observed that the “Resolve May-Coverage” phase imposes a minimal of-
fline overhead, with mean values ranging from 1% to 12% across the execution scenarios.

4.3 Discussion

After conducting an evaluation on our approach of “Resolve May-Coverage” with five
testing scenarios across the three subject systems, our approach has demonstrated its
effectiveness in resolving May-Coverage. The accuracy of 100% suggests that our approach
is capable of accurately resolving May-Coverage in different contexts, making our approach
reliable for practitioners seeking to improve log-based code coverage without requiring
additional logging statements in log-sparse conditional blocks.

While the quantity of resolvable May-Coverage resolved by our approach was up to
11%, this still represents a considerable reduction in the uncertainty of log-based code
coverage. Additionally, we observed that the number of May-Covered lines resolved tended
to be consistent across the three subject systems, with a difference of only 10 percentage
points. One important factor to note is that our approach skips evaluating conditions if
the targeting variables are dependent on function calls, except for log statements, during
the backward slicing process. This ensures that the performance of our approach is not
hindered by dependencies that are outside of the control of the SUT. As seen in Table 4.1,
the quantities of resolved May-Coverage suggest that the involvement of function calls in
the data flow of the targeting variable is large and similar across the subject systems.

In addition, our approach does not resolve May-Coverage incorrectly. This means
that practitioners can confidently use our approach without fear of negatively affecting
the performance of Log2Cov. However, if practitioners wish to expand the resolvable
uncertainty and the resolved quantity of such uncertainty, future work can be done on
handling conditional statements and exception-handling blocks by the data flow analysis

31

that involves external dependencies. This could potentially improve the performance of
our approach in resolving the uncertainty in log-based code coverage measurement.

32

Chapter 5

Mitigating the Imprecision of
Log-based Code Coverage

Imprecision is hardly accepted in an analysis where outcomes must be assertive. Without
requiring developers to add logging statements to the source code, we explore the extent
to which imprecision can be improved by addressing dependency injection, in particular
by identifying methods that are replaced by mock objects during unit testing.

5.1 Approach

We modify the Program Analysis phase of Log2Cov by adding a new step namely “Re-
move Dependency”. This step takes the linked ASTs (see Section 3.1.1) as input and
removes the ASTs of the methods that are identified as being replaced by mock objects
with the patching technique (see Section 3.4.2). We explain the details of the “Remove
Dependency” step below.

(1) Dependency Identification: In this step, we identify the path to targeting methods
(methods that are replaced by mock objects) by analyzing all the test modules of each
subject system. For each test module, we traverse its AST to identify the use of patching.
In Python, such a usage pattern invokes either the patch() or the patch.object()

function of the Python’s mock library.3 The difference between these two functions is
how they resolve the naming hierarchy of the targeting method. The patch.object()

function requires the module/class containing the targeting method to be imported before
patching, and patch() takes a string of a path and resolves it to a method. To collect the

33

full relative path to a targeting method, we build a mapping between the module/class
name and its relative path by analyzing the import-related nodes in the AST of the test
module. The results of this step from the example in Listing 5 are shown in Listing 6.

1 from nova.virt import block_device as driver_block_device

...

10 @mock.patch('nova.compute.utils.notify_about_volume_attach_detach')

11 def test_attach_volume_raises(self, mock_notify, mock_elevate, mock_event):

12 with test.nested(

13 mock.patch.object(driver_block_device.DriverVolumeBlockDevice, 'attach')

14 as ...

...

Listing 5: Example of patching.

Alias Map:

{"driver_block_device" : "nova.virt.block_device"}

Collected Paths:

["nova.compute.utils.notify_about_volume_attach_detach",

"nova.virt.block_device.DriverVolumeBlockDevice.attach"]

Listing 6: Example of dependency identification results.

(2) Dependency Removal : In this step, we remove the AST files of the targeting methods,
guided by the collected relative paths. This step ensures the Program Analysis phase does
not traverse to them, which causes imprecision.

We evaluate Log2Cov on the same subject systems with the updated Program Anal-
ysis phase. Specifically, we re-execute the Program Analysis and Path Analysis phases of
Log2Cov to obtain the new coverage database for DEBUG-level scenarios. We then com-
pare the precision of Must- and Must-Not-Coverage with our prior results (Section 3.2),
respectively. In addition, we measure the execution time of the Program Analysis and Path
Analysis phases, both with and without “Remove Dependency”, to understand its impact
on offline overhead.

34

Table 5.1: Performance of Log2Cov w&wo resolving dependency injection.

System
Resolve

Dependency
Precision

Must Must-Not

Salt
No 94% 55% 85% 36%
Yes 95% 56% 87% 38%

Home
Assistant

No 100% 53% 69% 3%
Yes 100% 54% 69% 3%

Nova
No 99% 76% 45% 19%
Yes 99% 76% 49% 20%

5.2 Results

Table 5.1 demonstrates the results of our approach. There is a 1 percentage point increase
in the precision of Must-Coverage, and a 2 percentage point increase in Must-Not-Coverage
precision in Salt. In Nova, there is an improvement of up to 4 percentage points. Re-
garding Home Assistant, there is a 1 percentage point increase in the precision of Must-
Coverage when we consider the lines excluded by Coverage.py are incorrectly labelled.
Moreover, the mean execution time for Program Analysis and Path Analysis, when apply-
ing the “Remove Dependency” step, is consistently shorter compared to scenarios excluding
this step. This indicates that our approach introduces no additional offline overhead.

5.3 Discussion

We observed that Salt benefited the most from our approach. Since the amount of
dependency injection can vary in different systems, it is reasonable that the improvements
of our approach vary. Although improvements are not guaranteed, our approach does not
harm the performance of Log2Cov in any subject systems, suggesting it is at the very
least safe to be consistently enabled.

35

Chapter 6

Threats to Validity

6.1 Construct Validity

In this thesis, we use Coverage.py to obtain the “ground-truth” of coverage status.
Coverage.py may not reflect the exact coverage, since it may contain bugs itself. How-
ever, Coverage.py is quite mature and stable, and is the de facto standard coverage tool
recommended by the official Python documentation.1

6.2 Internal Validity

We evaluate Log2Cov using the Salt, Home Assistant, and Nova systems, which
have the greatest log density, and are among the largest and most active Python systems
on GitHub. Our study results may only reflect the performance of our approach to
systems that have a sufficient amount of logging statements. However, the very nature of
the log-based coverage measurement is to leverage log traces. Hence, log-based coverage
measurement is not applicable to every system. Indeed, while this thesis sets out to improve
the imprecision and uncertainty of log-based coverage measurements when entering log-
sparse areas of code, we still rely upon log traces to minimize the scope in which our static
analyses will be performed.

1https://docs.python.org/3/library/trace.html

36

6.3 External Validity

We adapt the log-based coverage measurement to Python. Our results may not generalize
to systems written in other languages (e.g. JavaScript). However, the primary technical
requirements of porting log-based coverage to another language are AST parsers and static
call graphs, which are generally available for many programming languages. While the
amount of effort required is not small, it is not an insurmountable challenge.

We propose a solution to the imprecision problem by addressing the challenge of patch-
ing in unit testing. Since patching is a subset of dependency injection, our approach may
be limited to measuring coverage in a unit testing scenario. However, the core of our ap-
proach is to make Log2Cov infer the system execution flow as expected in the execution
scenarios. In the unit testing scenario, we identify the methods replaced by mock objects,
and remove the identified methods from both the call graph and the linked ASTs so that
Log2Cov does not have the knowledge that those methods are involved in the system
execution flow. For other dependency injection scenarios, we only need to identify the
injection pattern and identify the methods being injected, then modify the call graph ac-
cordingly. For example, we can add the dependency as a callee of the method that is being
injected. However, the idea of manipulating the call graph and correcting the execution
flow in the analysis remains the same. Therefore, we believe our approach is applicable to
any dependency injection technique.

37

Chapter 7

Conclusions and Implication

Code coverage is a common measurement that practitioners rely upon. While modern code
coverage tools provide valuable insights, they impose a performance overhead due to code
instrumentation. In this study, we have demonstrated that log-based code coverage tools
offer a promising alternative to traditional code instrumentation approaches for Python
systems. By developing and evaluating Log2Cov, we have shown that analyzing the
program and its execution logs can be an effective way to measure coverage for Python
systems, and improvements of log-based coverage measurement can be made without re-
quiring additional logging instrumentation from developers. To the best of our knowledge,
our approach is the first work that directly addresses the shortcomings of imprecision and
uncertainty of log-based coverage measurement.

Future Work. While our enhancements make substantial improvements to mitigate such
shortcomings, future work is still needed to achieve parity with instrumentation-based cov-
erage approaches. For example, we are actively exploring using a similar approach as we
resolve uncertainty to evaluate the if-else condition that results in false negative (misla-
belled Must-Not-Coverage) to further reduce imprecision and leveraging the development
environment of the SUT, which contains required dependencies, to further reduce uncer-
tainty. Moreover, our natural next step is to combine the log-based approach and the
instrumentation-based approach—using Log2Cov in general and instrumentation-based
approach (Coverage.py) in log-free code block to complement the log-based result.

38

References

[1] Frances E. Allen and John Cocke. A program data flow analysis procedure. Commu-
nications of the ACM, 19, 1976.

[2] Marco Alves and Hugo Paula. Identifying logging practices in open source python
containerized application projects. In Proceedings of the XXXV Brazilian Symposium
on Software Engineering, 2021.

[3] Paul Ammann and Jeff Offutt. Introduction to software testing edition 2, 2017.

[4] Pansy Arafa, Guy Martin Tchamgoue, Hany Kashif, and Sebastian Fischmeister.
Qdime: Qos-aware dynamic binary instrumentation. In 2017 IEEE 25th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2017.

[5] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE transactions on software engi-
neering, 41, 2014.

[6] Ira Baxter. Branch coverage for arbitrary languages made easy, 2002.

[7] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. Boa meets python:
A boa dataset of data science software in python language. In IEEE/ACM Interna-
tional Conference on Mining Software Repositories (MSR), 2019.

[8] Boyuan Chen et al. Characterizing logging practices in java-based open source soft-
ware projects–a replication study in apache software foundation. Empirical Software
Engineering, 22, 2017.

[9] Boyuan Chen and Zhen Ming Jiang. Extracting and studying the logging-code-issue-
introducing changes in java-based large-scale open source software systems. Empirical
Software Engineering, 24, 2019.

39

[10] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jack Jiang. An
automated approach to estimating code coverage measures via execution logs. In
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2018.

[11] Kalyan-Ram Chilakamarri and Sebastian Elbaum. Reducing coverage collection over-
head with disposable instrumentation. In 15th International Symposium on Software
Reliability Engineering, 2004.

[12] Pavan Kumar Chittimalli and Vipul Shah. Gems: a generic model based source code
instrumentation framework. In 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, 2012.

[13] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang Fu,
Dongmei Zhang, and Tao Xie. Log2: A {Cost-Aware} logging mechanism for perfor-
mance diagnosis. In 2015 USENIX annual technical conference (USENIX ATC 15),
pages 139–150, 2015.

[14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dong-
mei Zhang, and Tao Xie. Where do developers log? an empirical study on logging
practices in industry. In Companion Proceedings of the 36th International Conference
on Software Engineering, 2014.

[15] Mark Harman and Robert Hierons. An overview of program slicing. software focus,
2, 2001.

[16] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Deriving code cov-
erage information from profiling data recorded for a trace-based just-in-time compiler.
2013.

[17] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu. Characterizing the natural
language descriptions in software logging statements. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018.

[18] Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mittal, Pooria Azimi, Kevin Kellar,
and James O’Brien. Tstl: the template scripting testing language. International
Journal on Software Tools for Technology Transfer, 20, 2018.

[19] Andre Hora. What code is deliberately excluded from test coverage and why? In
IEEE/ACM International Conference on Mining Software Repositories (MSR), 2021.

40

[20] Daniel Jackson and Martin Rinard. Software analysis: A roadmap. In Proceedings of
the Conference on the Future of Software Engineering, 2000.

[21] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora. Auto-
matic identification of load testing problems. In 2008 IEEE International Conference
on Software Maintenance, 2008.

[22] Antti Juvonen, Tuomo Sipola, and Timo Hämäläinen. Online anomaly detection
using dimensionality reduction techniques for http log analysis. Computer Networks,
91, 2015.

[23] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure data analysis of a lan of
windows nt based computers. In Proceedings of the 18th IEEE Symposium on Reliable
Distributed Systems, 1999.

[24] Pavneet Singh Kochhar, Ferdian Thung, David Lo, and Julia Lawall. An empirical
study on the adequacy of testing in open source projects. In Asia-Pacific Software
Engineering Conference, 2014.

[25] Naveen Kumar, Bruce R Childers, and Mary Lou Soffa. Low overhead program mon-
itoring and profiling. ACM SIGSOFT Software Engineering Notes, 31, 2005.

[26] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. Towards just-in-time sug-
gestions for log changes. Empirical Software Engineering, 22, 2017.

[27] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where shall we log? studying and
suggesting logging locations in code blocks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020.

[28] Raghu Lingampally, Atul Gupta, and Pankaj Jalote. A multipurpose code coverage
tool for java. In Hawaii International Conference on System Sciences (HICSS), 2007.

[29] Jonathan Mace and Rodrigo Fonseca. Universal context propagation for distributed
system instrumentation. In Proceedings of the thirteenth EuroSys conference, 2018.

[30] Leonardo Mariani, Dan Hao, Rajesh Subramanyan, and Hong Zhu. The central role
of test automation in software quality assurance. Software Quality Journal, 25, 2017.

[31] Shaikh Mostafa and Xiaoyin Wang. An empirical study on the usage of mocking
frameworks in software testing. In International Conference on Quality Software,
2014.

41

[32] Jan Mußler, Daniel Lorenz, and Felix Wolf. Reducing the overhead of direct applica-
tion instrumentation using prior static analysis. In European Conference on Parallel
Processing, 2011.

[33] Hoan Anh Nguyen, Tung Thanh Nguyen, Tien N Nguyen, and Hung Viet Nguyen.
Interaction-based tracking of program entities for test case evolution. In IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), 2017.

[34] Adam Oliner and Jon Stearley. What supercomputers say: A study of five system logs.
In IEEE/IFIP international conference on dependable systems and networks (DSN),
2007.

[35] Antonio Pecchia, Domenico Cotroneo, Zbigniew Kalbarczyk, and Ravishankar K Iyer.
Improving log-based field failure data analysis of multi-node computing systems. In
IEEE/IFIP International Conference on Dependable Systems & Networks (DSN),
2011.

[36] Pamela H Russell, Rachel L Johnson, Shreyas Ananthan, Benjamin Harnke, and Nic-
hole E Carlson. A large-scale analysis of bioinformatics code on github. PloS one, 13,
2018.

[37] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dim-
itris Mitropoulos. Pycg: Practical call graph generation in python. In IEEE/ACM
International Conference on Software Engineering (ICSE), 2021.

[38] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Michael W Godfrey,
Mohamed Nasser, and Parminder Flora. An exploratory study of the evolution of
communicated information about the execution of large software systems. Journal of
Software: Evolution and Process, 26, 2014.

[39] Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Brain Adams, Ahmed E Hassan, and
Patrick Martin. Assisting developers of big data analytics applications when deploying
on hadoop clouds. In IEEE International Conference on Software Engineering (ICSE),
2013.

[40] Benjamin H. Sigelman, Luiz André Barroso, Michael Burrows, Patrick Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Kumar Shanbhag. Dapper,
a large-scale distributed systems tracing infrastructure. 2010.

42

[41] Enqiang Sun and David Kaeli. A binary instrumentation tool for the blackfin pro-
cessor. In Proceedings of the Workshop on Binary Instrumentation and Applications,
2009.

[42] Mark D Syer, Weiyi Shang, Zhen Ming Jiang, and Ahmed E Hassan. Continuous
validation of performance test workloads. Automated Software Engineering, 24, 2017.

[43] Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient instrumentation for code
coverage testing. ACM SIGSOFT Software Engineering Notes, 27, 2002.

[44] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, 1984.

[45] Qian Yang, J Jenny Li, and David M Weiss. A survey of coverage-based testing tools.
The Computer Journal, 52, 2009.

[46] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming Tang,
Yuanyuan Zhou, and Stefan Savage. Be conservative: Enhancing failure diagnosis
with proactive logging. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2012.

[47] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in
open-source software. In IEEE International Conference on Software Engineering
(ICSE), 2012.

[48] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving
software diagnosability via log enhancement. ACM Transactions on Computer Systems
(TOCS), 30, 2012.

[49] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou.
The game of twenty questions: Do you know where to log? In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, 2017.

[50] Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and
adequacy. Acm computing surveys (csur), 29, 1997.

[51] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dongmei
Zhang. Learning to log: Helping developers make informed logging decisions. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,
pages 415–425. IEEE, 2015.

43

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Problem Statement
	Thesis Overview
	Thesis Contributions
	Empirical Contribution
	Technical Contribution

	Thesis Organization

	Background And Related Work
	Software Logging
	Code Coverage and Instrumentation-Induced Overhead
	Log-Based Code Coverage

	Log2Cov: Log-based Code Coverage For Python
	System Design
	Phase 1 – Program Analysis
	Phase 2 – Log Analysis
	Phase 3 - Path Analysis
	Phase 4 – Coverage Estimation

	Exploratory Evaluation of Log2Cov (Design)
	Studied Systems
	Execution Scenarios
	Benchmarking Results
	Overhead Measurement

	Exploratory Evaluation of Log2Cov (Results)
	Precision, Recall, and F1 Score
	Overhead

	Limitations of Log-Based Coverage Measurement
	Uncertainty
	Imprecision

	Mitigating the Uncertainty of Log-Based Code Coverage
	Approach
	Results
	Discussion

	Mitigating the Imprecision of Log-based Code Coverage
	Approach
	Results
	Discussion

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions and Implication
	References

