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Abstract

As unmanned aerial vehicle (UAV) technology becomes more robust and widespread,

more and more retail companies are seeing UAVs as a suitable alternative to ground-

based transportation to deliver their packages. As a result, there has been an abundance

of OR research focused on UAV utilization for last-mile delivery. Due to the size and

mobility of UAVs, most of this research considers UAV movement within a shortest path or

Euclidean shortest path context. While this may be plausible if drone usage remains sparse,

this framework will not be possible as drone utilization ramps up to the levels required

to satisfy the levels of package demand expected in the coming decades. Furthermore,

none of this prior research (to our knowledge) suggests using risk inherent with UAV

travel to influence their proposals from a logistical and/or modelling perspective. As a

solution to this problem, our industry partner AirMatrix proposes that UAV travel be

restricted to transportation networks situated above the streets of population centres. We

propose a bi-objective network selection model for drone delivery which minimizes risk

while maximizing the amount of satisfied demand subject to budgetary constraints. We

discuss the factors that affect UAV risk and what metrics can be used to effectively reduce

those factors from a modelling perspective. We propose a two-stage stochastic variant of the

model and additional problem requirements to reflect practical operational requirements

and design goals. Using sample average approximation, we show that a deterministic

solution is effectively as good as an associated stochastic solution. We conduct testing on

a region of suburban Miami to evaluate how different risk objectives perform with respect

to network, path, arc, and performance metrics.
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Chapter 1

Introduction

With the rise in popularity and research into commercial drone technology over the course

of the last decade, different companies have been considering the use of commercial drones

to suit their supply chain needs [16] [39]. Drones or unmanned aerial vehicles (UAVs)

offer a number of benefits in package transportation that most ground-based vehicles do

not share. Drones are unmanned, can fly autonomously, and have a smaller impact on

the environment when compared to the average ground-based delivery vehicle [13]. As a

result of these benefits, UAVs are seen as a viable addition and potential alternative to

ground-based delivery vehicles in last-mile delivery.

While the inclusion of UAVs may have a significant impact on modern day package

delivery, a number of obstacles still stand in the way of widespread usage. For one, given

that the level of demand in door-to-door package delivery is expected to increase dramat-

ically over the coming decades, appropriate UAV legislation is necessary to facilitate the

seamless fulfillment of large demand volumes [27]. Furthermore, there needs to be some

entity (or entities) responsible for regulating and overseeing UAV traffic. The literature
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has already coined the term UAV Traffic Management (or UTM) to define any and all

systems that manage UAV traffic. While initially it may be intuitive to apply already

existing Air Traffic Management (ATM) rules and regulations to drones, there are many

key differences that make managing UAV traffic more difficult than managing the aerial

vehicles that the ATM currently deals with (airplanes, helicopters, etc.) [10]. These differ-

ences include operating in a space that has greater proximity to buildings and people on

the ground [1], a considerable increase in the number of arrival and departure points [20],

a higher traffic density [35], and vehicles acting autonomously or being controlled by an

operator not physically present in the UAV. These differences, among many others, lead

to a lot of debate regarding what rules should be set to regulate UAV traffic.

A key question that arises in the deployment of UAVs for package delivery is how to

properly structure the airspace to facilitate UAV traffic [5]. Some have suggested little to

no restrictions in how the airspace is structured. In this vein, a UAV operator can fly a

drone to a sufficient minimum altitude and then utilize whatever path they would like to

reach their destination. Avoiding any ground infrastructure (buildings, telephone wires,

etc.) as well as other aviation (planes, helicopters, other drones, etc.) would become the

responsibility of the operators and their drones. Given that detect-and-avoid technology

is still in its infancy [5] and that most origin-destination flight paths will contain sections

where the operator cannot see the drone (known as beyond visual line of sight or BVLOS),

the likelihood and frequency of collisions in this type of airspace would be high (at least

for the foreseeable future). Furthermore, air traffic is already heavily regulated and while

the current regulations for drone utilization may be relaxed to some extent, it is unlikely

that drones will face less regulation than current widely used aviation.

A second suggestion would be to allow for UAV operators to choose their preferred

flight path and send their proposed path to an appropriate UTM manager for review. The
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manager must ensure the path follows the rules and regulations of the airspace and then

they can either approve, deny, or alter the path based on those regulations. While this is

a step in the right direction with regards to improving safety, the responsibility of finding

a path with a sufficiently low amount of risk is still put on the operators. Many of these

operators will not have the access to 3D maps nor the risk assessment ability necessary

to determine an optimal path in this regard. Also, as the number of flights increases, this

approval process will be difficult to scale up from the perspective of the UTM manager(s).

As a solution to this problem, our industry partner AirMatrix proposes the existence

of a transportation network that UAVs will be regulated to travel on. In this scenario, an

operator provides their origin, their destination and any other relevant information (type

of drone, speed, weight of package, etc.) to their associated UTM manager and an optimal

round trip (either in terms of minimal risk and/or minimal battery consumption) is found

on this network [32]. This gives the UTM manager(s) more control of the traffic in the

airspace that they oversee. The UAV operators are no longer responsible for determining

proper paths for their drones and the approval process will become easier and quicker.

AirMatrix further proposes that this network for a given population centre be confined

to the street network. That is to say, the horizontal layout of this network is a subnetwork

of the already existing street network for a given population centre. The benefits associated

with drones utilizing this network include a reduced risk of contacting ground infrastruc-

ture, a reduced risk associated with flying directly over people, a reduced probability of

flying over private property [11], and an easier palatability of drone transportation from

a public standpoint. While capacity becomes a large issue as we scale up the number of

UAVs on this network, this issue can be mitigated by incorporating multiple layers of the

same 2D network on top of one another. In this vein, a drone would initially depart from

its origin by flying vertically to a given layer. It would utilize the horizontal network asso-
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ciated with this layer on its way to its destination, potentially changing layers if necessary.

Once it has arrived at its destination, it would descend vertically to drop off the package

or release the package via a rope down to the ground. Once the package has successfully

been delivered, the drone would return to its origin, potentially utilizing the same path

back. While the details as to how this routing will take place are important, these details

will not be fleshed out in this thesis.

Under the assumption that we are confining all UAV traffic to a given city’s street

network, the main question from a network configuration standpoint becomes determining

which roads and intersections should be included in this UAV subnetwork. While having

access to the complete road network would clearly be preferable to any proper subnetwork,

this is likely to be impractical, unnecessary, and costly. Many roads are unable to be utilized

as they exist on private property or in controlled airspace. A lot of roads would see little

to no utilization either as a result of demand or more optimal roads being available. There

will also likely be some preliminary costs and ongoing costs associated with including any

given road on this UAV network. In particular, the costs associated with obtaining and

updating 3-dimensional maps of the streets chosen to be in the UAV network is the primary

concern of AirMatrix. If a road is deemed unavailable for use or is determined to go unused,

it can easily be removed from consideration. What makes this problem nontrivial is the

existence of a limit on how much can be spent in the construction of a UAV network. We

refer to this limit as the budget. Given a specific budget, we can optimize for which road

segments and intersections will be included in the UAV network relative to factors such as

risk incurred, distance travelled, and the amount of satisfied demand.

In this thesis, we propose a variant of the network design problem that finds an optimal

subnetwork of a given street network for the purpose of UAV traffic utilization. This model

considers several factors such as arc risk, arc length, expected demand and budgetary
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constraints. We consider a range of risk measures, objectives, and associated constraints

to account for different preferences in setting the service network. A comparative study

between various risk measures is also included.

The rest of this thesis is organized as follows. Chapter 2 provides some of the relevant

OR and non-OR literature on UAV research and relevant problems to the one discussed in

this thesis. Chapter 3 presents the problem definition and model. Chapter 4 discusses the

key factors that contribute to UAV risk and gives measures for how we can quantify the

risk inherent in a given network. Chapter 5 presents the stochastic variant of the problem

and how it can be simplified to a deterministic one in certain settings. Chapter 6 gives

a range of additional requirements that a UTM manager may be inclined to add in the

design of their UAV network along with the necessary alterations to the model to ensure

those requirements are met. Chapter 7 gives testing results from both a deterministic and

stochastic framework on a sample network based on suburban Miami. Chapter 8 offers a

summary of what has been done in this thesis and some suggestions for future research

directions.
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Chapter 2

Literature Review

In Chapter 1, we proposed the necessity for the existence of an entity (or entities) respon-

sible for overseeing and regulating UAV traffic. The term UAV Traffic Management (or

UTM) was used to define one of these entities. Papers [20] and [10] make thorough cases

for the need of a dedicated UTM. For the purposes of this thesis, a UTM would be respon-

sible for constructing and maintaining the UAV network infrastructure, approving flight

requests, ensuring flight requests respect the rules and regulations set by the appropri-

ate government body, and supplying optimal routes aided by routing algorithms to pilots.

There are a number of important questions regarding what other responsibilities UTMs

should have and how they would work in practice. Most of these questions lie outside the

scope of this thesis. We encourage those interested in learning about UTMs in more detail

to read the surveys presented in [20] and [33]; both of which describe key UTM concepts,

terminology, and information.

Various initiatives and proposals for UAV traffic management and airspace design are

surveyed in [24] and [5]. The authors of [5] define the physical structure of urban airspace
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to refer to the position and size of airspace elements such as flying trajectories, tubes,

corridors, and layers, as well as their associated rules of operation. In this context, our

industry partner AirMatrix is proposing structuring the urban airspace as a horizontal

2-dimensional network in which each arc must be above an already existing road within

the urban area. Furthermore, a drone flying in this urban area must fly at some approved

altitude above the roads in this constructed network. The rules set for which altitudes spe-

cific drones would fly at and the decision-making process for why drones would potentially

change altitudes mid-flight are more an issue of legislation and routing. Therefore, these

discussions are omitted from the remainder of this thesis.

The qualifications for what technological requirements drones must have to fly in urban

airspace is also an important question that will not be fleshed out in this thesis. Some

of these key qualifications are discussed in [38]. We do however assume that all drones

utilizing this constructed network have sufficient vertical take-off/landing (VTOL) and

hovering capabilities. This is so the drones can change altitudes easily, deliver packages

easily, stop in the event of a potential collision, and take-off/land without the need of

substantial ground infrastructure. At the interest of the reader, important terminology,

UAV classifications, and design requirements are detailed in [16].

The flying above roads assumption appears in the literature about airspace design in

a few notable places. One of the concepts given by NASA [19] proposes dividing urban

airspace into multiple layers with each layer consisting of a particular airspace structure

situated above the streets of said urban area. The study tested three different airspace

structures, each with a different level of UAV freedom: sky-lanes, sky-tubes, and sky-

corridors. Sky-lanes hold the closest resemblance to the structure being proposed in this

thesis. They found that while sky-lanes offer the safest and least complex environment,

they also led to higher delays and less capacity. These are problems that we hope will be
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mitigated with the utilization of a sufficient number of layers and more efficient routing

models.

The authors of [11] also focus on flying above roads, observing it provides separation,

reduces privacy concerns, and enables ground vehicle coordination. However, they point

out that conflicts may be triggered by limited flexibility and large volumes of disparate

drones. To evaluate the airspace design, they develop one-way and two-way airspace con-

figurations with altitude levels segmented by turning/through traffic and heading direction.

They simulate air traffic over all the streets of Manhattan and measure intrusions (separa-

tion violations) and conflicts (predicted separation violations). The goals in [11] are more

Operations Research oriented and implementation focused. Costs, regulatory restrictions

for flight approvals, UTM involvement, and 3-dimensional maps illustrating the necessary

geospatial features of urban areas must also be incorporated to ensure the networks chosen

are viable today and in the future.

The authors of [36] developed a network selection model for the purposes of UAV traffic

subject to budgetary constraints. Since this work also originated through working with

AirMatrix, their problem has a similar foundation to the one proposed in this thesis. The

goal of their model however is to reduce the congestion caused by UAV traffic and does

not formally consider UAV associated risk.

Operations Research literature focused on drone-specific applications is abundant. Sur-

veys are provided in [31], [28], [25] and [29]. Many routing-based applications have been

studied including routing delivery drones, coordinating drone and truck deliveries, routing

drones for inspecting physical infrastructure, and routing drones for surveillance purposes.

Many routing-based applications assume drones fly directly point-to-point (via shortest

path or Euclidean shortest path), and few consider the need for flight-approval or flight

delay caused by waiting for other traffic. For more information, see the surveys in [7]

8



and [21]. Other problems specialized to drones include the location of facilities such as

delivery depots or drone charging infrastructure (see [8], [30] and [17]), and assigning tasks

to drones based on capabilities. Although these works are not directly related to the

problem at hand, they provide insights into how conventional models can be modified to

accommodate the unique capabilities and requirements for drones.

In this thesis, the problem at hand is that of network design. Considering Operations

Research literature dedicated to the design of networks for drone traffic, there are a few

papers of note. The authors of [4] investigate strategic network design for drone parcel

delivery from the point of view of an e-retailer accounting for technological limitations,

government regulation, and customer behaviour. The authors of [18] design a drone traffic

network accounting for lane capacity and charging needs and use distributionally robust

modeling to deal with demand uncertainty. However, the optimization objectives are cov-

erage focused and the model does not account for flight risk directly. Although research

specific to drone networks is limited, designing drone traffic networks shares many similar-

ities with the well-studied problems of designing traffic networks for other transportation

modes such as cars, planes, and trains. For an early review of network design in the context

of transportation planning, see [26]. A more recent survey is provided in [12] while [37]

focuses on uncertainty. [9] is a comprehensive recent book on the topic.

An existing problem in operations research literature that most closely resembles the

problem at hand is the network design with service requirements (NDSR) problem orig-

inally formulated in [2]. A generalization of the fixed-charge multicommodity network

design problem, the NDSR problem seeks to minimize the costs associated with selecting

arcs and routing. Furthermore, the arcs are selected in such a way that every commodity k

utilizes an origin-destination path that satisfies all service metrics relative to the parame-

ters set for commodity k. Also referred to as the network design with routing requirements
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(NDRR) problem, further work on this problem is detailed in [3]. The problem discussed

in this thesis serves as a variant of the NDSR problem with key differences that are deemed

important when constructing a UAV network. Firstly, if a given arc is selected, the oppo-

site arc must also be selected, and a fixed cost is associated with selecting both arcs. We

are assuming that if a given street segment is chosen to be part of the subnetwork, UAV

traffic can flow on said street segment in both directions and there is no extra costs associ-

ated with making said street segment bidirectional as opposed to just one-way. Secondly,

the NDSR problem assumes that all demand must be satisfied whereas the model in this

thesis does not make the same assumption. We instead opt to maximize the amount of

satisfied demand as an objective. Lastly, the notion of arc routing costs will be omitted as

it is assumed that the UAV operators will be taking on these costs and not the UTM. In

addition to these key adjustments, extra requirements and their associated constraints are

suggested and described in Chapter 6.

10



Chapter 3

Problem Definition and Modelling

In this Chapter, we propose a bi-objective model for the purpose of finding a subnetwork

of a street network for UAV traffic subject to budgetary constraints. This model aims to

minimize some desired risk metric (the different metrics are given in Section 4.2) while

maximizing the amount of satisfied demand. The problem is formally defined, associated

notation is given, and all the relevant assumptions are listed.

3.1 Problem Definition

Let G = (N,A) be a symmetric directed graph. The graph G is assumed to represent

an already existing road network of a city or section of a city that is being considered for

drone delivery use. The set of nodes N consists of intersections and drone departure/arrival

points. The set of arcs A consists of the streets and street segments that connect these

nodes. We require that G be symmetric since a selected street segment can be used by a

drone in both directions; even when it is one-way for ground-based traffic.

11



We defineK to be the set of set of commodities on the network G. Each commodity k ∈

K has an origin Ok, destination Dk and a non-negative demand dk which is a quantitative

indication of the traffic between Ok and Dk. For the UAV setting, dk denotes the expected

number of drones moving between Ok and Dk over the course of a given period of time.

Without loss of generality, we assume that for all k ∈ K, the index associated with node

Ok is less than the index associated with node Dk. Since all roads on the subnetwork are

bidirectional, a directed feasible path from Ok to Dk exists if and only if a directed feasible

path from Dk to Ok exists. For the remainder of this thesis, the terms pairs and node pairs

will be used interchangeably with the term commodities.

An arc (i, j) has an associated length lij which measures the distance a drone would

have to travel to traverse arc (i, j) and this value is symmetric (lij = lji). There is a cost

cij associated with undirected arc (i, j) which is incurred if either directed arc (i, j) or

(j, i) is in the UAV subnetwork. Parameter ρijk is a quantitative indication of the risk a

drone associated with pair k incurs when present on arc (i, j) and this value is symmetric

(ρijk = ρjik). Note that parameter ρijk is intended to be used as a measure of how risky

traversing arc (i, j) is per unit length. Therefore, the risk a drone associated with pair k

incurs when traversing the entirety of arc (i, j) is ρijk× lij. An arc with different risk values

at different points along its length should be segmented in such a way that each new arc

has approximately the same risk value at each point along its length.

The goal is to find a symmetric directed network G∗ = (N∗, A∗) (where N∗ ⊆ N and

A∗ ⊆ A) such that the total cost of the network does not exceed budget B. To balance

the trade-offs between demand fulfillment and risk, we develop a bi-objective model that

minimizes risk measure R(x) while maximizing the amount of satisfied demand. We say

that the demand for a given pair (Ok, Dk) can be considered satisfied only if there exists a

feasible path from Ok to Dk on the chosen subnetwork G∗. An Ok −Dk path is considered
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feasible if the distance a drone travels when going from Ok to Dk is at most δk×SPk where

SPk is the length of a shortest path from Ok to Dk and δk ≥ 1 is a scalar that signifies the

maximum allowable deviation in length from a shortest path for pair k.

Any pair with satisfied demand will be referred to as a satisfied pair. Given UAV

usage is still in its infancy, the presence of any sort of arc or node capacities is difficult

to justify. For this reason, there will be no capacity constraints in the model, though

suitable model alterations are discussed in Section 6.5. Without capacities on the arcs or

nodes, no commodity associated with a satisfied pair has any incentive to utilize multiple

origin-destination paths nor do they have any incentive to ship a partial amount of their

demand. Therefore, we require that all demand for a given pair must be routed along the

same path, i.e., there is no splitting of flows among multiple paths. We also require that

no pair will have their demand partially satisfied. Either a pair will have all their demand

satisfied or none of their demand satisfied.

3.2 Model

In this section, we describe a mathematical model that solves the problem described in the

previous section. The sets, parameters, and decision variables in Table 3.1 will be used in

the model.
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Table 3.1: Notation Summary

Sets and Parameters

G A symmetric directed network ρijk The risk all drones associated with pair k incur
when present on arc (i, j)

N The set of nodes in G lij The length of arc (i, j)

A The set of directed arcs in G cij The cost associated with including the undi-
rected arc (i, j) in the UAV subnetwork

K The set of commodities/node
pairs {(Ok, Dk) : Ok < Dk}

B The budget; the maximum allowable total cost
of undirected arcs in the UAV subnetwork

Ok The origin associated with node
pair k

SPk The sum of the lengths of the arcs in a shortest
Ok −Dk path

Dk The destination associated with
node pair k

δk The maximum percentage of SPk in distance
that a drone associated with pair k can travel

dk The demand of pair k

Decision Variables

xijk A binary variable which indi-
cates if drones associated with
pair k traverse arc (i, j)

zij A binary variable which indicates if undirected
arc (i, j) is included in the UAV subnetwork
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Based on this notation, the bi-objective model is defined as follows.

minimize R(x) (3.1)

maximize
∑
k∈K

∑
{j: (Ok,j)∈A}

dkxOkjk (3.2)

subject to∑
{j: (i,j)∈A, j ̸=Ok}

xijk =
∑

{j: (j,i)∈A, j ̸=Dk}

xjik ∀k ∈ K, ∀i ∈ N \ {Ok, Dk} (3.3)

∑
{j: (Ok,j)∈A}

xOkjk ≤ 1 ∀k ∈ K (3.4)

xijk ≤ zij ∀k ∈ K, ∀(i, j) ∈ A : i < j (3.5)

xjik ≤ zij ∀k ∈ K, ∀(i, j) ∈ A : i < j (3.6)∑
(i,j)∈A: i<j

cijzij ≤ B (3.7)

∑
(i,j)∈A

lijxijk ≤ δkSPk ∀k ∈ K (3.8)

xijk ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (3.9)

zij ∈ {0, 1} ∀(i, j) ∈ A : i < j (3.10)

The first objective (3.1) minimizes the selected risk metric. The second objective (3.2)

maximizes the amount of satisfied demand. Constraints (3.3) ensure that flow conservation

is enforced at each node for each pair and that if a drone leaves its origin node, it must

reach its destination node. Constraints (3.4) ensure that a drone leaving its origin can only

utilize a single arc incident to its origin. Constraints (3.4) are necessary to ensure that the

demand associated with a satisfied node pair is only contributing to the amount of satisfied

demand in objective (3.2) once. Otherwise, if multiple feasible arc-disjoint Ok −Dk paths
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are present on the subnetwork, the demand associated with pair k could be counted more

than once. Constraints (3.5) and (3.6) ensure that if an undirected arc (i, j) is traversed

by a drone (either from node i to node j or vice versa), then arcs (i, j) and (j, i) must be

included in A∗. Constraint (3.7) ensures that the sum of the costs of the arcs in the chosen

subnetwork does not exceed the chosen budget. Constraints (3.8) ensure that for every

pair k ∈ K, the distance travelled by a drone associated with pair k when going from Ok

to Dk is at most δk × SPk. Constraints in (3.9) and (3.10) ensure that xijk and zij are

binary. Note that as a result of constraints (3.5) and (3.6), each zij is bounded below by

0 and must be at least 1 if undirected arc (i, j) is included in the subnetwork. It follows

that the constraints (3.10) may be dropped if preferred.

Given how difficult the problem can be to solve as the number of nodes, arcs and

commodities increase, any steps taken to reduce the number of decision variables and

constraints prior to model execution is key. Any arcs deemed ineligible, too risky and/or

unlikely to be used should be removed during the network selection stage. Furthermore,

since drones can only travel so far on a single charge, any node pair whose associated nodes

are too far away from each other should be omitted from the model. For example, suppose

Lk is the maximum distance a drone associated with pair k can travel on a single charge.

If SPk > Lk/2, then pair k should be omitted from the model since drones associated with

pair k will not be able to make an Ok − Dk round trip without running out of battery.

Furthermore, δk should be chosen in such a way that δk ≤ Lk/(2×SPk) so that the distance

of a round trip selected for a given pair k is not so long that a drone associated with pair

k runs out of battery mid-flight.
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Chapter 4

UAV Traffic Risk Assessment and

Metrics

The key metric that we will be using when determining a UAV subnetwork and the paths

that UAVs will utilize is risk. For the purposes of the problem defined in Section 3.1,

risk is treated as a quantitative indication of both the likelihood that a given drone will

contact another object (whether that be ground infrastructure, people on the ground, other

aircrafts, etc.) and the measure of damage that will be created if a collision were to occur

(damage to the drone, damage to public infrastructure, bodily harm, etc.). To work with

risk from a modelling perspective, one must ask what risk factors have any effect on UAV

travel and how we can effectively quantify them to use in the model.
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4.1 Risk Assessment

To get a better idea of what factors are most important when considering UAV risk, we

can refer to the legislative body in charge of setting the rules and regulations for UAV

travel. In Canada, that body is known as the Remotely Piloted Aircraft Systems Task

Force of Canada. This body defines a process for obtaining a Special Flight Operations

Certificate (SFOC) which is required for the vast majority of UAV operations performed on

Canadian soil. While we will not be going into the process of application and approval for

a SFOC in this thesis (those interested can refer to [15]), we will briefly describe how risk is

measured in the Joint Authorities for Rulemaking of Unmanned Systems (JARUS) Specific

Operational Risk Assessment (SORA) process as it is integral to obtaining approval for

a SFOC and because it will play a key role in UAV network configuration from a UTM

manager’s perspective (please refer to [14] for more information).

The Operational Risk Assessment (ORA) of any operation is signified by a number

indicating the overall risk as a score from 1 to 6 (as a Roman numeral). This score is

referred to as the Specific Assurance and Integrity Level (SAIL). The SAIL of a given

operation is calculated as a function of the operation’s Ground Risk Class (GRC) and

Air Risk Class (ARC). We note that the SAIL of a multi-section operation is obtained by

finding the maximum SAIL amongst all its sections. For urban travel constrained to the

street network, the SAIL of a given origin-destination path is the maximum SAIL amongst

all of its arcs. The ground risk class is primarily a function of the size of the UAV and the

population density of the area situated below the UAV. The air risk class is primarily a

function of the class of the airspace, its altitude, and its proximity to controlled airspace.

While the SAIL for an arc is a simplification of the total risk that a drone traversing it

incurs, it is a necessary metric for obtaining a SFOC for an operation that contains said
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arc in its flight path.

A more detailed value of the risk that a given UAV incurs partially reflects what is in

the SORA process but includes other key factors as well. Some of these factors include

proximity to ground infrastructure, signal strength, electromagnetic radiation from nearby

buildings, and the weather. Some of these factors are unique to the UAV executing the

operation. For example, its ability to withstand harsh weather, its ability to withstand

electromagnetic radiation, its ability to detect and avoid collisions, its size, its speed, and

the size/weight/contents of its delivered package all affect risk to some degree. This is why

we have defined the risk parameter ρ to be not just a function of the arc’s parameters,

but of the drone’s parameters as well. We also steer away from the notion of having the

risk of a path simply be the level of risk associated with the riskiest segment of the path.

We instead treat risk as a value that a drone incurs as it travels from its origin to its

destination.

4.2 Risk Metrics

Since there are many suitable ways to measure the risk that exists in a given UAV network,

we list six risk metrics below that may be of particular interest to a UTM manager.

4.2.1 Total Risk

Total risk is the total amount of risk incurred by all drones travelling from their respective

origins to their respective destinations. It is the most trivial risk metric but also the

easiest to utilize and interpret. A UTM manager can minimize the total risk incurred by
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minimizing summation (4.1) given by

R(x) =
∑
k∈K

∑
(i,j)∈A

dkρijklijxijk. (4.1)

4.2.2 Total Risk Deviation

While total risk may be a valuable metric because of its simplicity, total risk does not

necessarily give a complete picture as to how risky a given network is. For example,

suppose we have a chosen subnetwork G∗ ⊂ G and two node pairs k1 and k2 where each

pair has a single unit of demand (dk1 = dk2 = 1) and we would like to satisfy the demand

for one of these pairs. The smallest risk path for pair k1 on G has three units of risk and

this path exists on G∗. The smallest risk path for pair k2 on G has a single unit of risk

but this path does not exist on G∗ whereas a feasible Ok2-Dk2 path with two units of risk

does. If the objective is to minimize total risk, we will prioritize satisfying the demand of

pair k2, which contributes two units of risk, over satisfying the demand of pair k1, which

contributes three units of risk. Therefore, we are opting to satisfy the demand of a pair

that must utilize a path that is twice as risky as what is possible over the demand of a

different pair which can utilize its smallest risk path.

When we opt to minimize total risk, the model does not consider the minimum amount

of risk necessary to satisfy the selected pairs and how much the total risk deviates from

that value. To obtain a more complete picture, it may be more valuable to use a metric

that does not just prioritize satisfying the pairs that contribute the least amount of risk,

but also prioritizes satisfying pairs that can utilize their smallest risk paths or can utilize

paths that have close to the same amount of risk as their smallest risk paths. Therefore, we

introduce a risk metric that we are calling the deviation from minimum total risk relative
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to the set of satisfied pairs or the total risk deviation for short. We define the total risk

deviation to be the ratio of total risk incurred amongst all satisfied pairs to the total risk

incurred if said satisfied pairs were to utilize their smallest risk paths. In this vein, if the

total risk deviation is 1 or 100%, that means that every satisfied pair on the network is

utilizing their associated smallest risk path. If the total risk deviation is 1.2 or 120%,

that means that there is a 20% increase in total risk on the network in comparison with a

network where all satisfied pairs utilize their respective smallest risk paths.

We define SRk as the total risk incurred by a drone associated with pair k when

traversing a smallest risk Ok −Dk path. Total risk deviation is calculated by finding the

total risk and dividing that value by the sum of all dk × SRk values over all satisfied

pairs k ∈ K. A UTM manager can minimize the total risk deviation, denoted by σ, by

minimizing (4.2), and adding constraint (4.3) given by

R(x) = σ, (4.2)

∑
k∈K

∑
(i,j)∈A

dkρijklijxijk ≤ σ

∑
k∈K

dkSRk

 ∑
{j: (Ok,j)∈A}

xOkjk

 . (4.3)

4.2.3 Maximum Arc and Segment Risk

While the previous metrics aim to reduce risk from a path-based outlook, it may be within

a UTM manager’s interest to reduce risk by focusing on the arcs of the network instead.

For example, a UTM manager may want to minimize the maximum amount of risk flowing

on any undirected arc in the network. A UTM manager can minimize the maximum arc
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risk, denoted by γ, by minimizing (4.4) and adding constraints (4.5) given by

R(x) = γ, (4.4)∑
k∈K

dkρijklij(xijk + xjik) ≤ γ, ∀(i, j) ∈ A : i < j. (4.5)

Recall that the risk a drone incurs when traversing an arc is a function of its length.

That is to say that the longer an arc is, the more risk that a drone incurs when traversing it.

With the above approach, we could end up with demand flowing across shorter riskier arcs

being prioritized over demand flowing across longer less risky arcs. With this in mind, it

may be interesting to minimize the maximum amount of risk flowing on any arc segment in

the network instead. A UTM manager can minimize the maximum segment risk, denoted

by Γ, by minimizing (4.6) and adding constraints (4.7) given by

R(x) = Γ, (4.6)∑
k∈K

dkρijk(xijk + xjik) ≤ Γ, ∀(i, j) ∈ A : i < j. (4.7)

Note that this approach ultimately amounts to minimizing the maximum amount of risk

per unit length flowing across any undirected arc in the network and so we only need to

remove the lij parameters from constraints (4.5) to obtain constraints (4.7).

4.2.4 Arc and Segment Risk Variance

It may be within a UTM manager’s interest to not simply minimize the maximum amount

of risk flowing on each undirected arc but minimize how much the risk flowing on each

undirected arc varies from the average. A UTM manager can minimize the sum of the arc
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risk variance values by minimizing summation (4.8) given by

R(x) =
∑

{(i,j)∈A: i<j}

(∑
k∈K

dkρijklij(xijk + xjik)−
∑

k∈K
∑

(a,b)∈A dkρabklabxabk∑
(a,b)∈A: a<b 1

)2

. (4.8)

By a similar argument made for the previous risk metric, it may be of interest to minimize

how much the risk flowing on each arc segment varies from the average. A UTM manager

can minimize the sum of the segment risk variance values by minimizing summation (4.9)

given by

R(x) =
∑

{(i,j)∈A: i<j}

lij

(∑
k∈K

dkρijk(xijk + xjik)−
∑

k∈K
∑

(a,b)∈A dkρabklabxabk∑
(a,b)∈A: a<b lab

)2

. (4.9)

It may be more applicable to minimize the risk variance amongst only the arcs or

segments that exist in the optimal subnetwork as opposed to all arcs or segments in the

entire network. Associated summations (4.10) and (4.11) given by

R(x) =
∑

{(i,j)∈A: i<j}

zij

(∑
k∈K

dkρijklij(xijk + xjik)−
∑

k∈K
∑

(a,b)∈A dkρabklabxabk∑
(a,b)∈A: a<b zab

)2

, (4.10)

R(x) =
∑

{(i,j)∈A: i<j}

lijzij

(∑
k∈K

dkρijk(xijk + xjik)−
∑

k∈K
∑

(a,b)∈A dkρabklabxabk∑
(a,b)∈A: a<b labzab

)2

, (4.11)

can be minimized instead. Due to the added complexity involved when we use the summa-

tions associated with the chosen subnetwork (the zab variable in the denominators make the

functions inside the brackets nonlinear), we will opt to use the summations associated with

the whole network when minimizing the sum of the arc or segment risk variance values.
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Chapter 5

Stochastic Demand

Up until this point, we have been treating demand as a deterministic quantity. That is to

say, for any pair of nodes (Ok, Dk) in the network, we know the exact amount of demand,

in the form of parameter dk, from one node Ok to the other node Dk. This approach

is certainly practical in some cases. For example, a likely customer may give a UTM

exact figures for how many packages it is expecting to deliver to each delivery node in a

given network for a given month or year. A UTM could also obtain past shipping data

to get a good idea of how many deliveries will take place between all node pairs in the

future. With that being said, a deterministic framework does have its limits. Seeing as how

no deliveries will be requested until the subnetwork is chosen and the appropriate UAV

network infrastructure is built, the demand values for each node pair at the model execution

stage will always have at least some level of uncertainty. Therefore, a UTM manager may

prefer to use a model that takes a stochastic approach with respect to demand.
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5.1 Stochastic Model

Before we introduce the stochastic variant of the model, we need some new notation. We

define S to be the set of possible demand scenarios. Each scenario s ∈ S has an associated

probability of occurrence ps. We define a new demand parameter dsk which is the demand

of node pair k under scenario s. We also define a new flow variable xs
ijk which is a binary

variable which indicates if drones associated with pair k traverse arc (i, j) under scenario

s. Based on this notation, the stochastic variant of the bi-objective model is defined as

follows.

minimize RS(x) (5.1)

maximize
∑
s∈S

∑
k∈K

∑
{j: (Ok,j)∈A}

psdskx
s
Okjk

(5.2)

subject to∑
{j: (i,j)∈A, j ̸=Ok}

xs
ijk =

∑
{j: (j,i)∈A, j ̸=Dk}

xs
jik ∀s ∈ S, ∀k ∈ K, ∀i ∈ N \ {Ok, Dk} (5.3)

∑
{j: (Ok,j)∈A}

xs
Okjk

≤ 1 ∀s ∈ S, ∀k ∈ K (5.4)

xs
ijk ≤ zij ∀s ∈ S, ∀k ∈ K, ∀(i, j) ∈ A : i < j (5.5)

xs
jik ≤ zij ∀s ∈ S, ∀k ∈ K, ∀(i, j) ∈ A : i < j (5.6)∑

(i,j)∈A: i<j

cijzij ≤ B (5.7)

∑
(i,j)∈A

lijx
s
ijk ≤ δkSPk ∀s ∈ S, ∀k ∈ K (5.8)

xs
ijk ∈ {0, 1} ∀s ∈ S, ∀k ∈ K, ∀(i, j) ∈ A (5.9)

zij ∈ {0, 1} ∀(i, j) ∈ A : i < j (5.10)
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A UTM manager may minimize expected total risk by minimizing summation (5.11)

given by

RS(x) =
∑
s∈S

∑
k∈K

∑
(i,j)∈A

psdskρijklijx
s
ijk, (5.11)

and may minimize expected total risk deviation by minimizing summation (5.12) and

adding constraints (5.13) given by

RS(x) =
∑
s∈S

psσs, (5.12)

∑
k∈K

∑
(i,j)∈A

dskρijklijx
s
ijk ≤ σs

∑
k∈K

dskSRk

 ∑
{j: (Ok,j)∈A}

xs
Okjk

 , ∀s ∈ S. (5.13)

A UTM manager may minimize expected maximum arc risk by minimizing summation

(5.14) and adding constraints (5.15) given by

RS(x) =
∑
s∈S

psγs, (5.14)

∑
k∈K

dskρijklij(x
s
ijk + xs

jik) ≤ γs, ∀s ∈ S, ∀(i, j) ∈ A : i < j, (5.15)

and may minimize expected maximum segment risk by minimizing summation (5.16) and

adding constraints (5.17) given by

RS(x) =
∑
s∈S

psΓs, (5.16)

∑
k∈K

dskρijk(x
s
ijk + xs

jik) ≤ Γs, ∀s ∈ S, ∀(i, j) ∈ A : i < j. (5.17)
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Lastly, a UTM manager may minimize the expected sum of the arc risk variance values by

minimizing summation (5.18) given by

RS(x) =
∑
s∈S

∑
{(i,j)∈A: i<j}

ps

(∑
k∈K

dskρijklij(x
s
ijk + xs

jik)−
∑

k∈K
∑

(a,b)∈A dskρabklabx
s
abk∑

(a,b)∈A: a<b 1

)2

,

(5.18)

and may minimize the expected sum of the segment risk variance values by minimizing

summation (5.19) given by

RS(x) =
∑
s∈S

∑
{(i,j)∈A: i<j}

pslij

(∑
k∈K

dskρijk(x
s
ijk + xs

jik)−
∑

k∈K
∑

(a,b)∈A dskρabklabx
s
abk∑

(a,b)∈A: a<b lab

)2

.

(5.19)

5.2 Sample Average Approximation

Considering the domain of the underlying discrete demand distributions can be vary large,

enumerating all possible realizations will result in an excessively large model. For this

reason, we opt to apply sample average approximation (SAA) to obtain a viable solution

as well as lower and upper bounds on the optimal cost. Sample average approximation is

a method for approximating a two-stage stochastic programming model using a discrete

set of scenarios [23]. These scenarios are generated by sampling from the probability

distributions governing the uncertain parameters. The uncertain parameters in this case is

the demand values of the node pairs. As the sample size increases, the result is shown to

asymptotically converge to the true optimal solution [22]. Large sample sizes however can

become too difficult to solve in a reasonable amount of time. For this reason, smaller sample

sizes that can be solved efficiently are used. With these samples, statistical estimates of
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the lower and upper bounds of the objective function value can be obtained.

To compute the upper bounds on the objective for a given instance of the problem,

the stochastic model is solved M times, each time using N independent demand scenarios

[34]. From this we obtain M candidate solutions, z1, z2, . . . ,zM , where zi is an optimal

subnetwork obtained for sample i ∈ {1, 2, . . . ,M}, with associated objective function values

η1, η2, . . . , ηM . To obtain the upper bound on the objective function, we initially calculate

the mean (η) and the variance (σ2
N,M) of the objective function values η1, η2, . . . , ηM and

use those values to calculate the upper bound UB. The means, variances and upper bound

are calculated as

η =
1

M

M∑
m=1

ηm, (5.20)

σ2
N,M =

1

M − 1

M∑
m=1

(ηm − η)2, (5.21)

UB = η + tα,M−1
σN,M√
M

. (5.22)

Note that tα,M−1 is the α-critical value of the t-distribution with M−1 degrees of freedom.

For example, if M = 10 and a 95% confidence level is desired, t5,9 = 1.833.

The lower bound on the true objective function value of a given candidate solution zi

is obtained by running the stochastic model with N ′ scenarios (N ′ is assumed to represent

the true probability distribution) in such a way that the subnetwork is fixed as zi. While

N ′ may be large, we can decompose the overall problem into N ′ subproblems. Note that

optimizing for any objective in the model subject to a fixed subnetwork can be done very

quickly. We denote the objective function value of a given subproblem s as ϕs(z
m, s). The

estimate of the true objective value of the second stage problem, denoted as ϕ(zm), is
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computed as

ϕ(zm) =
1

N ′

N ′∑
s=1

ϕs(z
m, s).

The value of the true objective function ηm of candidate solution zm, its variance σ2(zm),

and lower bound ηmU are calculated as

ηm =
∑

(i,j)∈A:i<j

cijz
m
ij + ϕ(zm), (5.23)

σ2
N ′(xm) =

1

N ′ − 1

N ′∑
s=1

[
ϕs(z

s, s)− ϕ(zs)
]2
, (5.24)

ηmU = ηm + zα
σN ′(zm)√

N ′
, (5.25)

where zα is the α-critical value of the standard normal distribution. We then use the

best lower bound among the candidate solutions to be the lower bound generated by the

SAA algorithm. In other words, the lower bound generated by the SAA algorithm LB is

calculated as

LB = max
m∈{1,...,M}

ηmU . (5.26)

5.3 Total Risk Reduction Method

We give a useful theorem below that reduces the stochastic variant of the model into a

deterministic one when minimizing total risk. Suppose we have a set of demand scenarios S

where each scenario has an associated probability of occurrence ps. Consider the following

stochastic version of the model (which we will call STO) with the objective of minimizing
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a weighted sum of expected total risk and expected satisfied demand (α, β ≥ 0).

[STO]: minimize α

∑
s∈S

∑
k∈K

∑
(i,j)∈A

psdskρijklijx
s
ijk

− β

∑
s∈S

∑
k∈K

∑
{j: (Ok,j)∈A}

psdskx
s
Okjk


(5.27)

subject to (5.3), (5.4), (5.5), (5.6), (5.7), (5.8), (5.9), (5.10)

We first propose a useful Lemma.

Lemma 5.3.1. There exists an optimal solution x∗ to STO such that for all k ∈ K and

all (i, j) ∈ A, xs
ijk

∗ = 1 ∀s ∈ S or xs
ijk

∗ = 0 ∀s ∈ S.

Proof. Clearly STO is feasible since 0 is a feasible solution. Let x′ be an optimal solution

of STO and let A′ be the set of directed arcs in the subnetwork associated with the optimal

solution x′. Suppose we restrict STO by fixing the zij variables so that zij = 1 if and only

if (i, j) ∈ A′ for all (i, j) ∈ A such that i < j. The objective cost of any optimal solution

of this restricted model is necessarily the same as the objective cost of solution x′ in STO.

Since the subnetwork is fixed, constraints (5.5), (5.6), (5.7), and (5.10) can be removed and

the model decomposes into |S| × |K| identical subproblems SP(s, k), one for each s ∈ S
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and k ∈ K, in the following manner.

[SP(s, k)]: minimize
∑

(i,j)∈A′

αρijklijx
s
ijk −

∑
{j: (Ok,j)∈A′}

βxs
Okjk

subject to
∑

{j: (i,j)∈A′, j ̸=Ok}

xs
ijk =

∑
{j: (j,i)∈A′, j ̸=Dk}

xs
jik ∀i ∈ N \ {Ok, Dk}

∑
{j: (Ok,j)∈A′}

xs
Okjk

≤ 1

∑
(i,j)∈A′

lijx
s
ijk ≤ δkSPk

xs
ijk ∈ {0, 1} ∀(i, j) ∈ A′

It can be seen that the optimal solution(s) of subproblem SP(s, k) is independent of

the scenario s ∈ S. In particular, the optimal solution of SP(s, k) is the vector associated

with the smallest risk Ok−Dk path on A′ if the product of α and the total risk of said path

is less than β and the optimal solution is 0 if the product is greater than β. Both solutions

are optimal if the product is equal to β. It follows that we can construct a feasible solution

x∗ to STO that consists of all the optimal solutions of the SP(s, k)’s and A′ in such a way

that cost(x∗) = cost(x′) and for all k ∈ K and all (i, j) ∈ A, either xs
ijk

∗ = 1 ∀s ∈ S or

xs
ijk

∗ = 0 ∀s ∈ S.

We now introduce a deterministic model DET which serves as a simplification of model
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STO and will be used in Theorem 5.3.5.

[DET]: Minimize α

∑
k∈K

∑
(i,j)∈A

(∑
s∈S

psdsk

)
ρijklijxijk

− β

∑
k∈K

∑
{j: (Ok,j)∈A}

(∑
s∈S

psdsk

)
xOkjk


(5.28)

subject to (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10)

We also introduce the following definition.

Definition 5.3.2. Suppose x∗ is a solution to DET and x′ is a solution to STO. We say

x∗ and x′ are associated if xijk
∗ = xs

ijk
′ for all s ∈ S, k ∈ K, (i, j) ∈ A, and zij

∗ = zij
′ for

all (i, j) ∈ A such that i < j.

Remarks 5.3.3 and 5.3.4 follow directly from Definition 5.3.2 and the respective objective

functions of DET and STO.

Remark 5.3.3. Every solution in DET has an associated solution in STO and every

solution in STO of the form described in Lemma 5.3.1 has an associated solution in DET.

Remark 5.3.4. The objective cost of two associated solutions is the same.

Theorem 5.3.5. Suppose x∗ is a solution to DET, x′ is a solution to STO, and x∗ and

x′ are associated solutions. Then x∗ is an optimal solution to DET if and only if x′ is an

optimal solution to STO.

Proof. (⇒): Suppose x∗ is an optimal solution to DET. The feasibility of x′ in STO follows

trivially from the feasibility of x∗ in DET. Suppose for the sake of contradiction that y′

is the optimal solution of STO and the objective cost of y′ is less than x′. Furthermore,

suppose solution y′ is of the form described in Lemma 5.3.1 which we know exists as a
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result of said lemma. By Remark 5.3.3, y′ has an associated solution y∗ in DET. Therefore,

as a result of Remark 5.3.4, cost(y∗)=cost(y′)<cost(x′)=cost(x∗) which contradicts the

optimality of x∗ in DET. It follows that x′ is an optimal solution to STO.

(⇐): The proof is nearly identical to the proof for the other direction.

Therefore, any stochastic model of the form STO may be simplified to a deterministic

model where the demand dk for each node pair k is the weighted sum of the node pair’s

demands across all demand scenarios
∑

s∈S p
sdsk. We will be referring to this single scenario

constructed from all scenarios in S as the aggregated scenario for the remainder of this

thesis. It can be verified that the model STO can be generalized to include any and all

of the additional requirements and modifications listed in Chapter 6 (except capacities on

the arcs or nodes detailed in Section 6.5) and the previous theorem would still apply. Note

that if required demand is included in the model (see Section 6.1), each demand scenario

would have to have the same required and unrequired pairs for the Theorem 5.3.5 to still

apply. That is to say that no node pair can be required in a given demand scenario and

unrequired in another.
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Chapter 6

Additional Requirements

Given the wide variety of additional requirements that a UTM manager may opt to include

when constructing a UAV network, we list some in this Chapter that may be of particular

interest. Some of these requirements are found in most multi-commodity network flow

research such as ensuring the demand of some subset of all commodities is satisfied (Section

6.1), and that capacities attributed to arcs and/or nodes are not violated (Section 6.5).

Some requirements are slight variations or additions to requirements already present in

the problem such as path risk deviation constraints (Section 6.3), optimizing for distance

focused objectives (Section 6.2), and costs associated with including nodes in the chosen

subnetwork (Section 6.5). Some requirements are considered within the context of ground-

based traffic such as one-way streets (Section 6.6), and the energy used and/or risk incurred

by a vehicle when turning as opposed to moving in a straight line (Section 6.8). Lastly, the

addition of one-way streets and/or capacity constraints may not allow drones to fly back

to their origin via their departing path ensuring the need for return paths to be considered

(Section 6.7).
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6.1 Required Demand

In the model, the existence of a feasible path on the subnetwork for any node pair is

optional. It is worth noting however, that there exist scenarios in which some (or potentially

all) of the node pairs listed have demand that we are required to satisfy. For example,

some origin-destination pairs may be associated with a retail company that a UTM has

an existing business relationship with. As a business exchange with this company, the

UTM manager would ensure that some subset of the customers associated with this retail

company are reachable on the subnetwork. In this vein, all pairs that must be satisfied

(which we denote as required pairs) could be associated with existing customers of the UTM

whereas the pairs that are not required to be satisfied (which we denote as unrequired pairs)

are opportunities for potential growth.

With the inclusion of required demand, set K would be redefined as a disjoint union

of two sets Kr and Ku where Kr is the set of node pairs that must have their demand

satisfied and Ku is the set of node pairs that have some demand that we could potentially

satisfy, but are not required to do so. If a UTM manager opts to include required demand

in the model, constraints (3.4) would be replaced with constraints (6.1) and (6.2) given by

∑
{j: (Ok,j)∈A}

xOkjk = 1, ∀k ∈ Kr, (6.1)

∑
{j: (Ok,j)∈A}

xOkjk ≤ 1, ∀k ∈ Ku. (6.2)

Constraints (6.1) ensure that every drone associated with a pair in Kr leaves its origin

whereas constraints (6.2) accomplish the same task as constraints (3.4) for all unrequired

pairs. Since all required demand must be satisfied, the second objective (3.2) can be

simplified by replacing the set K under the first summation with the set Ku so that the
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objective now maximizes the demand satisfied amongst only the unrequired pairs.

6.2 Total Distance Travelled and its Variations

It is worth mentioning that total distance travelled (and its variations) is a viable metric

and a UTM manager may be inclined to minimize this value as an objective or set an upper

bound on this value as a constraint. We have opted to leave this value and its variations

out of the model, with the exception of setting an upper bound on the length of each

given origin-destination path, for three key reasons. Firstly, we feel that evaluating risk,

both in the construction of a subnetwork and in the determination of the origin-destination

paths, is more important for UAV traffic given how inherently risky it is relative to other

pre-established modes of transportation. Secondly, given that the risk incurred by a drone

traversing an arc is a function of the arc’s length, it is often the case that enforcing drones

to utilize less risky paths leads to them utilizing shorter paths as well. Thirdly, when

determining the effect that minimizing total distance as an objective has on the model,

the results would be similar in terms of significance and analysis to that of the effect that

minimizing total risk has on the model.

If a UTM manager would prefer to minimize total distance travelled, summation (6.3)

given by

∑
k∈K

∑
(i,j)∈A

dklijxijk, (6.3)

would be minimized. If a UTM manager would prefer to minimize total distance deviation,
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denoted by τ , then variable τ would be minimized and constraint (6.4) given by

∑
k∈K

∑
(i,j)∈A

dklijxijk ≤ τ

∑
k∈K

dkSPk

 ∑
{j: (Ok,j)∈A}

xOkjk

 , (6.4)

would be added. There are no suitable alternatives for adjusting the maximum risk and

risk variance objectives to a distance travelled context.

6.3 Path Risk Deviations

Constraints (3.8) in the model are there to ensure that no origin-destination path on the

chosen subnetwork is too long. The main purpose of these constraints is for the benefit of

the UAV operators. If a given operator is told that they must utilize a path that is say

twice or three times as long as the shortest path to their destination simply because that

is the shortest path that exists on the chosen subnetwork, that operator will likely abstain

from utilizing the UTM’s subnetwork. One could also make a similar argument for path

risk. If an operator must fly their drone down a path that is significantly riskier than their

preferred path, they may also abstain from utilizing the UTM’s subnetwork. Therefore, it

may be within a UTM’s interest to not only consider the feasibility of an origin-destination

path as a function of its length, but also a function of its total risk.

We define ∆k to be the maximum percentage of SRk in risk that a drone associated

with pair k can incur. If a UTM manager opts to include path risk deviation constraints

in the model, then constraints (6.5) given by

∑
(i,j)∈A

ρijklijxijk ≤ ∆kSRk, ∀k ∈ K, (6.5)
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would be added. Constraints (6.5) ensure that for every pair k ∈ K, the risk incurred by

a drone associated with pair k is at most ∆k × SRk.

6.4 Node Costs

Many of the same costs that are associated with including arcs in a UAV subnetwork

could also apply to including nodes in said subnetwork. For example, the costs associated

with obtaining 3D maps and the overseeing of traffic in the context of intersections could

be comparable to that of roads. Furthermore, there may be extra costs associated with

including a particular arrival/departure point in the subnetwork with regards to building

appropriate take-off/landing infrastructure, and establishing potential contracts with the

customer associated with said arrival/departure point.

We define νi to be the cost associated with including node i in the subnetwork and ni

to be the binary decision variable which indicates if node i is in the subnetwork. If a UTM

manager opts to include node costs in the model, constraint (3.7) would be replaced with

constraints (6.6), (6.7), and (6.8) given by

∑
(i,j)∈A: i<j

cijzij +
∑
i∈N

νini ≤ B, (6.6)

2zij ≤ ni + nj, ∀(i, j) ∈ A : i < j, (6.7)

ni ∈ {0, 1}, ∀i ∈ N. (6.8)

Constraint (6.6) ensures that the sum of the costs of the undirected arcs and nodes in the

chosen subnetwork does not exceed the chosen budget. Constraints (6.7) ensure that any

node incident to an arc included in the subnetwork is also included in the subnetwork.
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Constraints (6.8) ensure that all the ni’s are binary. Like constraints (3.10), constraints

(6.8) can be dropped if preferred.

6.5 Arc and Node Capacities

As is typical in multi-commodity network flow problems, arcs will have finite capacity and

capacity constraints should be incorporated into any associated model. Given the physical

size and the broader range of mobility of UAVs, arc capacity is much less of an issue for

UAV traffic when compared to other pre-established modes of transportation. Nonetheless,

as separation standards become more relaxed and UAV traffic scales up, incorporating arc

capacity constraints could become necessary.

If a UTM manager opts to include arc capacities in the model, we would define Cij

to be the maximum amount of demand allowed to utilize undirected arc (i, j) ∈ A and

constraints (6.9) given by

∑
k∈K

dk(xijk + xjik) ≤ Cij, ∀(i, j) ∈ A : i < j, (6.9)

would be added. Constraints (6.9) ensures that the amount of demand on each given

undirected arc does not exceed its capacity. A UTMmanager may alternatively opt to place

an upper bound on the number of origin-destination pairs utilizing a given undirected arc

simply by replacing each dk with a 1 in constraints (6.9) and defining each Cij accordingly.

A UTM manager can also set capacity constraints for the amount of demand allowed

to flow through nodes in the network. Let Di be the maximum amount of demand allowed

to flow through node i ∈ N . If a UTM manager opts to include node capacities in the
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model, we would add constraints (6.10) given by

∑
{k∈K: i ̸=Ok}

∑
{j: (i,j)∈A}

dkxijk ≤ Di, ∀i ∈ N, (6.10)

to the model. Constraints (6.10) ensures that the amount of demand flowing through

each given node does not exceed its capacity. A UTM manager may alternatively opt

to place an upper bound on the number of origin-destination pairs utilizing a given node

as a transshipment node simply by replacing each dk with a 1 in constraints (6.10) and

defining each Di accordingly. Note that constraints (6.10) limit the amount of demand

flowing through each node and do not limit how much demand departs from or arrives at

any given node.

6.6 One-Way Streets

One-way streets are often used to help regulate the flow of ground-based traffic. As drone

traffic scales up, it is possible that allowing drones to move only one direction down a

given set of streets can help regulate the flow of UAV traffic as well. For example, when

conducting tests with both a one-way and two-way street design, the authors of [11] found

that safety, which was determined by the amount of times different drones would have to

avoid conflict with each other, increased operating under a one-way system when compared

to operating under a two-way system.

We define sij as 2 if undirected arc (i, j) ∈ A can facilitate two-way traffic and 1 if it

can only facilitate one-way traffic. We also define ζij to be the binary decision variable

that indicates if there exist any drones utilizing directed arc (i, j) ∈ A. If a UTM manager

opts to include one-way streets in the model, then constraints (6.11), (6.12), and (6.13)
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given by

xijk ≤ ζij, ∀k ∈ K, ∀(i, j) ∈ A, (6.11)

ζij + ζji ≤ sijzij, ∀(i, j) ∈ A : i < j, (6.12)

ζij ∈ {0, 1}, ∀(i, j) ∈ A, (6.13)

would replace constraints (3.5) and (3.6) in the model. Constraints (6.11), (6.12), and

(6.13) together accomplish the same task as constraints (3.5) and (3.6) while also ensuring

that undirected arcs that must have traffic flowing in only one direction are required to

do so (constraints (6.13) can be dropped if preferred). Note that if constraints (6.12) are

added to the model, constraints (3.10) can no longer be dropped from the model. We

would need to ensure the zij’s are binary because otherwise, only half the cost of a selected

undirected arc (i, j) could contribute to the budget if sij = 2 and only one of ζij or ζji is

equal to 1.

Suppose the direction of traffic for a given undirected arc is predetermined. For example,

traffic flowing from node i to node j is permitted but not the other way around for a

particular undirected arc (i, j) ∈ A. By setting the associated ζ variable (in this case,

ζji) to 0, any and all traffic flow on the arc will be required to go in the predetermined

direction.

6.7 Return Paths

Based on how the problem is defined in Section 3.1, the existence of a feasible path in one

direction for a given pair ensures the existence of a feasible path in the opposite direction.

For this reason, finding return paths is unnecessary since any drone can utilize the exact
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same path following package delivery to arrive back at its origin. If arc capacities, node

capacities and/or one-way streets are incorporated into the model, this no longer becomes

a valid assumption.

If a UTM manager opts to include return paths in the model, then for every commodity

k ∈ K, we must introduce a commodity k that is associated with the return trip. That is

to say that for every commodity k ∈ K with origin Ok and destination Dk, there exists an

associated commodity k ∈ K with origin Dk and destination Ok. To ensure that a satisfied

commodity k has a feasible return path on the chosen subnetwork, we require that the

demand of k be satisfied. In other words, the demand of commodity k is satisfied if and

only if the demand of commodity k is satisfied. Constraints (6.14) given by

∑
{j: (Ok,j)∈A}

xOkjk =
∑

{j: (Dk,j)∈A}

xDkjk
, ∀k ∈ K, (6.14)

would then be added to the model. Constraints (6.14) ensures that a drone can leave its

origin and arrive at its destination if and only if it can leave its destination and arrive back

at its origin. For the sake of consistency, the demand dk for each k ∈ K should be halved

to account for the fact that half of the demand is associated with the trip from Ok to Dk

(commodity k) while the other half is associated with the trip from Dk to Ok (commodity

k).

6.8 Arc-to-Arc Risk and Distance

The model considers the distance travelled (which goes hand in hand with battery usage)

and the risk incurred by a given drone only with respect to particular quantities held by

the arcs that it traverses. It is worth considering the effect that turning from a given arc
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to another has on risk incurred and distance travelled. When approaching a turn, a drone

would need to slow down, execute the turn safely and then accelerate to its original speed.

It is logical to assume that a path consisting of multiple turns (particularly sharp turns)

utilizes more energy for a drone than a path that is a straight line. Furthermore, turning

seems inherently riskier for a drone as it is a more difficult maneuver and the chance of

failure from an execution standpoint seems greater in comparison to just flying directly

forward. Also logistically speaking, similar to how left turns are more dangerous then right

turns in a ground-based vehicle context (in the regions where vehicles drive on the right

side of the road) due to potential collisions with oncoming traffic, certain turns might be

more dangerous than others in the presence of other UAV traffic.

If a UTM manager opts to include arc-to-arc risk and/or distance into account, we

would define λijmk to be the battery usage by a drone associated with pair k going from

arc (i, j) to arc (j,m) and Λijmk to be the risk incurred by a drone associated with pair

k going from arc (i, j) to arc (j,m). We would also define yijmk to be the binary decision

variable which indicates if a drone associated with pair k traverses arc (i, j) followed by

arc (j,m). Constraints (3.8) would be replaced with constraints (6.15), (6.16), and (6.17)

given by

∑
(i,j)∈A

lijxijk +
∑

(i,j)∈A

∑
{m: (j,m)∈A}

λijmkyijmk ≤ δkSPk, ∀k ∈ K, (6.15)

yijmk ≥ xijk + xjmk − 1, ∀k ∈ K, ∀(i, j), (j,m) ∈ A,

(6.16)

yijmk ∈ {0, 1}, ∀k ∈ K, ∀(i, j), (j,m) ∈ A.

(6.17)

Constraints (6.15) ensure that path length deviation constraints are satisfied in this new
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arc-to-arc context. Note that the calculation of SPk must now be modified to take arc-to-

arc distance into account. Constraints (6.16) ensure that if a drone associated with pair

k traverses a given arc (i, j) followed by arc (j,m), then its associated yijmk variable is 1.

Constraints (6.17) ensure that all the yijmk’s are binary.

Total risk objective (4.1) and the LHS of total risk deviation constraint (4.3) would

have to be replaced with summation (6.18) given by

∑
k∈K

∑
(i,j)∈A

dkρijklijxijk +
∑
k∈K

∑
(i,j)∈A

∑
{m: (j,m)∈A}

dkΛijmkyijmk. (6.18)

The maximum risk and risk variance objectives would not change under this new approach.

Path risk deviation constraints (Section 6.3) can be added by including constraints (6.19)

given by

∑
(i,j)∈A

ρijklijxijk +
∑

(i,j)∈A

∑
{m: (j,m)∈A}

Λijmkyijmk ≤ ∆kSRk, ∀k ∈ K, (6.19)

in the model. Like the SPk values in constraints (6.15), the SRk values in constraints

(6.19) and the RHS of total risk deviation constraint (4.3) would have to be recalculated

to take arc-to-arc risk into account.
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Chapter 7

Testing and Results

In this Chapter, we aim to understand how the stochastic and deterministic variants of the

model perform in a given real world setting. The street network associated with a region

of suburban Miami was chosen for this setting and 1000 demand scenarios were randomly

generated using the neighbourhood Walmart as a shared origin node. The dataset and

demand scenarios are further explained in Section 7.1. We discuss an important prob-

lem reduction technique for both the deterministic and stochastic variants of the model

in Section 7.2. To better understand how the stochastic variant compares with the deter-

ministic variant, we use SAA to find lower bounds on the objective function using both

variants. This process is explained, and the corresponding results are given in Section 7.3.

We also aim to understand how the different risk objectives compare to each other with

respect to some of the key metrics of UAV network construction and path routing. The

results of executing the model with each objective under nine different testing instances is

displayed and analyzed in Section 7.4. Lastly, we offer graphs of the Pareto fronts of the

model with total risk and total risk deviation objectives subject to three different budgets
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to understand how these risk objectives behave when the amount of satisfied demand is

increased.

7.1 Underlying Network and Demand Scenarios

All testing for the model was conducted using the road network from part of suburban

Miami, Florida. All of the nodes, arcs and arc lengths were obtained from OpenStreetMap

via OSMNX. By downloading all the roads in the selected regions that have a “motorway,”

“trunk,” “primary,” “secondary,” or “tertiary” tag, we obtain the road network illustrated

in Figure 7.1. After cleaning the data by removing unnecessary nodes with degree two

and merging nearby arcs with identical endpoints into single arcs, we obtain the network

consisting of 262 nodes, 399 undirected arcs, and approximately 229 km of road length

illustrated in Figure 7.2. Note that curved roads are straightened in this cleaned network

purely for visual purposes and the original arc lengths are maintained. We also note that

if a node separating two arcs is removed and the associated arcs are merged into one, the

length of the new resulting arc is the sum of the lengths of the two merged arcs.

The cost value cij associated with an undirected arc (i, j) is chosen to be the same value

as its length lij. Each risk parameter ρijk was obtained using population density data.

The road network used exists primarily within the seven census designated places (CDPs)

depicted in Figure 7.3. These seven CDPs are Kendall West, Kendale Lakes, Tamiami,

Westchester (University Park CDP has been merged into Westchester CDP), Westwood

Lakes, Sunset, and Kendall (the CDP in the south-east corner of the map). The risk

value ρijk associated with arc (i, j) for all node pairs k ∈ K is the population density of

the CDP that arc (i, j) exists in (in 1000’s of people per square km) multiplied by some

random integer from {1, ..., 10} to account for the variance in other risk factors amongst
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different arcs. The population density associated with all the arcs west of Kendall West

and Tamiami is considered to be the population density of Kendall West and Tamiami,

respectively. Furthermore, the population density associated with an arc that exists on

the border of two CDPs or an arc that goes from one CDP into another, is set to be

the average of the population densities of the two associated CDPs. Thus, the population

densities of The Crossings CDP (which borders Kendale Lakes CDP to the south), Olympia

Heights CDP (which borders Westwood Lakes CDP to the east) and Sweetwater CDP

(which borders Westchester CDP to the north) are also incorporated for the few arcs in

the network sitting on the boundaries of one of these CDPs. The population densities for

all the CDPs were obtained from [6].

A total of 1000 demand scenarios were created for testing, each having the exact same

80 origin-destination pairs. The neighbourhood Walmart (identified by a green star in

Figure 7.4) was chosen to be the origin for all pairs and 80 nodes were chosen at random

(identified by red triangles in Figure 7.4) to be the destinations. Each of the 80 chosen

origin-destination pairs in each demand scenario was given a random integer from {1, ..., 10}

for its demand. The testing instances were chosen to signify a business partnership between

a customer (in this case, the neighbourhood Walmart) and an associated UTM. In this vein,

the UTM aims to find an optimal UAV subnetwork that minimizes some chosen risk metric

as much as possible while fulfilling as much demand as possible to the 80 destinations that

represent the regions of Walmart’s customers. Different demand scenarios with varying

demand values are created to signify the uncertainty in how many Walmart packages will

be delivered to any given destination over the course of a certain period of time.
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Figure 7.1: The road network for suburban
Miami using data from OpenStreetMap

Figure 7.2: The network obtained from
OpenStreetMap after cleaning the data

Figure 7.3: A picture of the seven primary
CDPs that contain the underlying road net-
work

Figure 7.4: The network with origin (green
star) and destinations (red triangles) high-
lighted
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7.2 Preprocessing and Graph Reduction

Whether implementing the deterministic or stochastic variant of the model, there is a

problem reduction technique detailed in [3] that we have found to be significantly effective

at reducing the runtimes of the model. Suppose SPa,b is the length of a shortest path

between nodes a and b on graph G and let Ak = {(i, j) ∈ A : SPOk,i+lij+SPj,Dk
≤ δkSPk}.

As a result of constraints (3.8) in the deterministic variant of the model, an arc (i, j) exists

in some feasible path for a pair k ∈ K if and only if (i, j) ∈ Ak. It follows that if (i, j) /∈ Ak,

the associated variable xijk is necessarily 0 for all feasible solutions to the model and

therefore, every instance of variable xijk can be omitted from the model. The constraint

in (3.5) or (3.6) associated with variable xijk can also be removed. Furthermore, if a given

node i is not incident to any arc in Ak for some k ∈ K, then the constraint associated with

node i and pair k in (3.3) can also be omitted. Lastly, if for a given undirected arc (i, j),

neither (i, j) nor (j, i) is in ∪k∈KAk, then the variable zij is necessarily 0 for all feasible

solutions and every instance of zij can be omitted. A similar process can be applied using

constraints (5.8) to remove associated variables and constraints in the stochastic variant

of the model. Unless δk values are unusually large or omitted completely, this technique

can remove a considerable number of variables and constraints from the model with little

preprocessing computation.

Consider the origin-destination pair k highlighted in Figures 7.5, 7.6, 7.7, and 7.8. Each

arc in each Figure is an indication that one or both flow variables associated with the given

undirected arc needs to be created for the given pair k and path length deviation δk. When

δk = 100%, only the 12 flow variables associated with arcs on the shortest Ok −Dk path

need to be created. When we increase δk to 120% and 150%, we see an increase to 117 and

341 flow variables, respectively. Even when we set a fairly loose path length deviation of
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200% for pair k, we still only need to create 562 flow variables out of the 798 that would

have to created otherwise.

Figure 7.5: δk = 100%, 12 flow variables Figure 7.6: δk = 120%, 117 flow variables

Figure 7.7: δk = 150%, 341 flow variables Figure 7.8: δk = 200%, 562 flow variables

To implement this method, the lengths of the shortest paths from the origin node and

destination node of every pair k ∈ K to every other node must be computed. All testing

in this Chapter has been run with this implementation in place.
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7.3 Stochastic Model Results

Before we look at results using the deterministic variant of the model, we first consider

the stochastic variant. As a result of Theorem 5.3.5, we know that if the risk objective is

total risk, then the |S| demand scenarios can be replaced with a single aggregated demand

scenario and in turn, we can reduce the stochastic problem into a deterministic one. While

this theorem does not necessarily hold for any of the other risk objectives, it is worth

exploring if the optimal subnetwork obtained via running the deterministic model with

this aggregated scenario gives us effectively the same results for the stochastic problem as

the optimal subnetwork obtained via stochastic modelling.

To see if that is the case, we use a model that maximizes demand and sets an upper

bound on total risk deviation via the ϵ-constraint method. We are applying SAA using 10

samples of 10 demand scenarios (in particular, the first 100 of the 1000 randomly generated

scenarios) giving us 10 optimal subnetworks associated with the 10 samples. We are also

finding an optimal subnetwork associated with the aggregated scenario. We use all of the

subnetworks (the 10 generated from the 10 samples along with the one generated from the

aggregated scenario) and all of the 1000 scenarios to obtain lower bounds on the objective

function of the stochastic model (this process is explained in more detail in Section 5.2).

We note that we are using an α-critical value of 1.645, the value of the standard normal

distribution with a 95% confidence level. We run these tests for 12 instances illustrated

in Table 7.1. Each instance is determined by its budget in km (denoted by B), its path

length deviation percentages for all pairs (denoted by PLD) and its maximum allowable

total risk deviation percentage (denoted by MRD). For each testing instance, we give the

best lower bound generated via SAA (denoted by SAA-LB), the lower bound generated

via the aggregated scenario (AGG-LB), the difference between the two bounds (denoted
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by Diff) and the percentage gap between the two bounds (denoted by %Gap).

Table 7.1: SAA Results

B PLD MRD SAA-LB AGG-LB Diff %Gap

60 150 120 409.098 409.098 0 0

60 150 105 393.600 391.674 1.927 0.492

60 120 120 399.611 399.611 0 0

60 120 105 388.222 385.947 2.275 0.589

50 150 120 360.971 357.614 3.358 0.939

50 150 105 344.424 342.023 2.401 0.702

50 120 120 355.583 354.841 0.742 0.209

50 120 105 339.140 335.870 3.270 0.974

40 150 120 301.060 301.075 -0.014 0.005

40 150 105 289.588 288.122 1.465 0.509

40 120 120 299.485 298.841 0.645 0.216

40 120 105 284.442 280.912 3.530 1.257

We can see in Table 7.1 that the lower bounds produced via the aggregated scenario

are only slightly worse than the ones produced via SAA. At worst, there is a 1.257% gap

between the two bounds for the last instance. For one testing instance, the subnetwork

associated with the aggregated scenario performs slightly better then the best subnet-

work generated through SAA. While this does not necessarily imply that the subnetwork

obtained via this aggregated scenario will be the exact same as the optimal subnetwork

obtained via stochastic modelling, we can make the assessment that the subnetwork gives

a solution that is close enough to optimality that we can reduce any stochastic model with

many demand scenarios into a deterministic one with the associated aggregated scenario.

We also note that the bounds obtained via SAA perform this well only under the most
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generous of circumstances. Whenever demand scenarios differed in node pairs even slightly,

the lower bounds obtained via the aggregated scenario consistently outperformed SAA.

7.4 Deterministic Model Results

Using the previously mentioned 1000 demand scenarios, the aggregated scenario described

in Section 5.3 was used for all tests with the deterministic variant. For each metric detailed

below, a table illustrating the results of the model using each of the six objectives for each

of the nine testing instances will be displayed. Each testing instance is defined by its

budget in km (denoted by B) and the minimum amount of demand that must be satisfied

as a percentage of the total demand (denoted by MSDP). All testing instances use a path

length deviation of 120% for all node pairs.

The results can be broken into four sections; results focused on the subnetwork as a

whole, results focused on the origin-destination paths, results focused on the undirected

arcs and segments, and results focused on the performance of the model. For simplicity, all

results (except for the performance results) will be displayed as a ratio to the result for the

total risk objective. For example, if the result for a given metric, objective, and instance is

1.5, that means that the associated result is 50% larger than the result for the same metric

when applying the total risk objective to the same testing instance. To save space in the

tables and in analysis, the six objectives previously defined in Section 4.2 are denoted by

TR (total risk), TRD (total risk deviation), MAR (maximum arc risk), MSR (maximum

segment risk), ARV (arc risk variance) and SRV (segment risk variance). We define K∗ to

be the set of pairs in K which have their demand satisfied. A maximum runtime of one

hour was given for each objective and testing instance, and the best solution obtained via

branch and bound was used for the results below. Due to the difficulty of obtaining initial
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solutions for the ARV and SRV objectives, the optimal solution for objective TR was used

as an incumbent solution for each testing instance with these two objectives.

We first analyze the subnetwork results in Table 7.3 with the associated metrics defined

in Table 7.2.

Table 7.2: Subnetwork Results Notation

Acronym Definition Equation

TR/SD The total risk incurred divided by the
amount of satisfied demand

∑
k∈K∗

∑
(i,j)∈A dkρijklijxijk∑

k∈K∗ dk

TD/SD The total distance flown divided by the
amount of satisfied demand

∑
k∈K∗

∑
(i,j)∈A dklijxijk∑
k∈K∗ dk

TRpUD The total risk incurred per unit distance
travelled

∑
k∈K∗

∑
(i,j)∈A dkρijklijxijk∑

k∈K∗
∑

(i,j)∈Ak
dklijxijk

TRD The total risk deviation

∑
k∈K∗

∑
(i,j)∈A dkρijklijxijk∑
k∈K∗ dkSRk

C The sum of the costs of all the undirected
arcs in the chosen subnetwork

∑
(i,j)∈A∗

cij

Objective TR performs the best overall. TR performs best in TR/SD (best in every

instance), best in TD/SD (best in 7 out of 9 instances), second best in TRpUL (second in

6 out of 9 instances and first in the other 3) and second best in TRD (consistently second

only to objective TRD). Objective TRD performs best in TRD (best in all instances) and

best in TRpUD (best in 7 out of 9 instances). While objective TR prioritizes selecting

pairs based on how much risk they contribute to the subnetwork as a whole, objective

TRD is far more selective in the pairs that it chooses to satisfy leading to paths that are

less risky relative to their length as well as their associated pair’s smallest risk path.

Both MAR and MSR objectives perform the worst in every metric with little to no

separation between the two for any of the chosen metrics. It seems that by prioritizing

the risk on the arc carrying the most risk, certain pairs must utilize riskier paths from
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their respective origins to their respective destinations to avoid utilizing said arc. The

metrics TR/SD, TD/SD, TRpUD and TRD all increase for objectives MAR and MSR as

a byproduct of this behavior. This is a pattern we will be seeing consistently throughout

the results of this section.

Both objectives ARV and SRV perform better than TRD in TR/SD (better in 6 out

of 9 instances) and TD/SD (better in 8 out of 9 instances) but perform worse than both

TRD and TR in TRpUD (worse in 8 out of 9 instances) and TRD (worse in all instances).

Since objectives ARV and SRV contain the summation for total risk in their respective

objective functions, it is expected that these objectives perform decently well in TR/SD

and TD/SD. Also, much like how objectives MAR and MSR make certain pairs utilize

riskier paths to avoid utilizing the arc with the most risk, it seems that objectives ARV

and SRV do that to some extent as well to avoid overloading some arcs with a lot of risk.

While the cost of the subnetwork is not necessarily an important metric since it is set

as a constraint (the cost of the subnetwork can be made as large or as small as a UTM

manager chooses), there is a relationship worth highlighting in the results. Objective TR

consistently needs a less costly subnetwork to obtain optimality than the other objectives,

particularly as MSDP is smaller relative to a fixed budget B. Objectives MAR and MSR

on the other hand consistently produce an optimal subnetwork near the budget regardless

of the value of MSDP. These objectives will spread out the demand across as much of the

network as possible to reduce the amount of risk present on the arc or segment with the

most risk.

Next, we will analyze the path results in Table 7.5 with the associated metrics defined

in Table 7.4. Objective TR performs the best or close to best in all the path associated

metrics. Objective TR consistently produces networks whose satisfied paths are shorter

(best in MLP and ALP in 6 out of 9 instances) and less risky (best in MRP and ARP in
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Table 7.4: Path Results Notation

Acronym Definition Equation

MLP The length of the longest satisfied O-D
path

max
k∈K∗

∑
(i,j)∈A

lijxijk

ALP The average length among all satisfied O-
D paths

avg
k∈K∗

∑
(i,j)∈A

lijxijk

MRP The risk incurred by a drone traversing the
riskiest satisfied O-D path

max
k∈K∗

∑
(i,j)∈A

ρijklijxijk

ARP The average risk incurred by a drone
traversing a satisfied O-D path

avg
k∈K∗

∑
(i,j)∈A

ρijklijxijk

ARpULP The average risk incurred per unit length
by a drone traversing a satisfied O-D path

avg
k∈K∗

∑
(i,j)∈A ρijklijxijk∑

(i,j)∈A lijxijk

MRDP The maximum deviation in risk among all
satisfied O-D paths

max
k∈K∗

∑
(i,j)∈A ρijklijxijk

SRk

ARDP The average deviation in risk among all
satisfied O-D paths

avg
k∈K∗

∑
(i,j)∈A ρijklijxijk

SRk
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all 9 instances) in comparison with the other objectives. Furthermore, objective TR only

performs worse than TRD with respect to ARpULP (best for a single instance and second

best in all other instances), MRDP (second best in all instances) and ARDP (second best

in all instances). We see again that TRD performs the best in the risk deviation and risk

per unit length associated metrics (best in ARpULP, MRDP and ARDP for all but one

instance) but not as great for the total risk and total distance related metrics (MLP, ALP,

MRP and ARP).

Once again, objectives MAR and MSR perform the worst across all path-based metrics

for almost all testing instances. In fact, we see 100% and even 200% increases in metrics

MLP, ALP, MRP and ARP relative to objective TR for some testing instances. The ARV

and SRV objectives perform similarly with respect to the path-based metrics as what we

have seen for the metrics in Table 7.3. They typically perform second to TR in the total

distance and total risk associated metrics (MLP, ALP, MRP and ARP) and worse than

both TR and TRD (and occasionally worse than objectives MAR and MSR) in the risk

deviation and risk per unit length associated metrics (ARpULP, MRDP and ARDP).

Next, we will analyze the arc and segment results in Tables 7.7 and 7.8 with the

associated metrics defined in Table 7.6. As expected, objective MAR performs best for

every testing instance of MAR with MSR performing second best (second best in 6 out

of 9 instances) and SRV performing third best. Objective SRV performs more or less on

par with objective ARV with respect to metric MAR but surprisingly performs slightly

better. We see objective MSR perform best for every testing instance of MSR, but MAR

performs behind both ARV and SRV. Objective ARV surprisingly performs better than

SRV in MSR in all but two instances. Objective TR performs second worst while TRD

performs worst in both MAR and MSR.

Note that the calculation for average amount of risk present among all undirected arcs
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Table 7.6: Arc and Segment Results Notation

Acronym Definition Equation

MAR The maximum amount of risk present among
all undirected arcs in the subnetwork

max
(i,j)∈A∗: i<j

∑
k∈K∗

dkρijklij(xijk + xjik)

AARA The average amount of risk present among all
undirected arcs

avg
(i,j)∈A: i<j

∑
k∈K∗

dkρijklij(xijk + xjik)

AARS The average amount of risk present among all
undirected arcs in the subnetwork

avg
(i,j)∈A∗: i<j

∑
k∈K∗

dkρijklij(xijk + xjik)

ARVA The sum of the arc risk variance values among
all undirected arcs

(4.8)

ARVS The sum of the arc risk variance values among
all undirected arcs in the subnetwork

(4.10)

MSR The maximum amount of risk present among
all arc segments in the subnetwork

max
(i,j)∈A∗: i<j

∑
k∈K∗

dkρijk(xijk + xjik)

ASRA The average amount of risk present among all
arc segments

avg
(i,j)∈A: i<j

∑
k∈K∗

dkρijk(xijk + xjik)

ASRS The average amount of risk present among all
arc segments in the subnetwork

avg
(i,j)∈A∗: i<j

∑
k∈K∗

dkρijk(xijk + xjik)

SRVA The sum of the segment risk variance values
among all arc segments

(4.9)

SRVS The sum of the segment risk variance values
among all arc segments in the subnetwork

(4.11)
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(AARA) is identical to the calculation of total risk divided by |A|. This means the ratio-

based results for metric AARA are almost identical to the ratio-based results for metric

TR/SD. Therefore, objective TR performs best in all instances, the risk variance objectives

perform second best, followed by objective TRD, and the maximum risk objectives perform

worst. We see similar results with metric ASRA with objective TR performing best (best

in 8 out of 9 instances), objectives SRV and ARV performing second best (SRV performed

noticeably better than ARV in 8 out of 9 instances) followed by objective TRD, and then

objectives MAR and MSR perform the worst (MSR performed better than MAR in all

instances). We see a slightly different dynamic when only subnetwork arcs and segments

are considered. The separation between how the results for objective TR compares with

the other objectives is much smaller. For example, objective TR performs worse than ARV

and/or SRV in 6 out of 9 instances for AARS and worse in 5 out of 9 instances for ASRS.

This is not necessarily surprising since the risk variance objectives prioritize the risk on

subnetwork arcs and segments more heavily than objective TR does.

With respect to the risk variance metrics for all arcs and segments (ARVA and SRVA),

we see that ARV and SRV perform the best while TR performs next best. With respect

to the risk variance metrics for only subnetwork arcs or segments (ARVS and SRVS), we

see that ARV and SRV perform the best for their respective metrics (other than the first

instance where both MAR and MSR outperform ARV and SRV). This is a good sign if

the goal is to minimize the sum of the arc or segment risk variance values over only the

subnetwork arcs or segments because we can use the risk variance objectives for all arcs

or segments which is much easier to solve from a modelling perspective. We see objectives

MAR and MSR perform much better with respect to the risk variance metrics for only the

used arcs and segments than they did with respect to the risk variance metrics for the whole

network. Objective MSR especially performs well consistently performing second best in
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SRVS. We note that SRV performs better than ARV in metric ARVA when the budget is

60 km and the MSDP is 80% and 60%. As we will see below, the risk variance objectives

do not run to optimality within the time limit, and it seems that (at least for these two

instances) that the best solution found for objective SRV is much closer to optimality than

the best solution found for objective ARV.

Lastly, we analyze the performance results in Table 7.9. Note that the MIP Gap is

obtained from Gurobi and is calculated as |ObjValue−ObjBound|/ObjValue. Objectives

TR and TRD are the only objectives that run to optimality in every testing instance.

Objective TR never takes longer than 8 seconds while objective TRD never takes longer

than 7 minutes. Objectives MAR and MSR run to optimality roughly half the time. In

particular, these objectives reach optimality (or near optimality) in 6 out of 9 instances.

We only see relatively large MIP gaps for these objectives when the MSDP values are at

their highest relative to each budget (upwards of 15.18% and 24.41% respectively when the

budget is 40 km and the MSDP is 60%). Neither of the risk variance objectives reached

optimality for any of the testing instances. The MIP Gaps ranged between 15% and 35%,

and the time limit of one hour was reached for every instance with these two objectives.

As previously mentioned when analyzing the arc and segment results, this lead to the SRV

objective performing better than objective ARV in the ARVA metric when the budget was

60km, and the MSDP was 80 and 60. Note that the MIP gap for ARV is 5% and 2% higher

than the MIP gap for SRV at these two instances, respectively.

To conclude, objectives TR and TRD outperform the other objectives with respect to

the subnetwork results, path-based results, and performance results. We see that by min-

imizing total risk, we can obtain a subnetwork that prioritizes risk and distance reduction

across all arcs in the network and across all origin-destination paths. By minimizing total

risk deviation, we are prioritizing node pairs that can utilize less risky paths relative to
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their respective smallest risk paths.

The maximum risk and risk variance objectives only perform best in the arc and segment

results and even then, they only really perform individually well in the metrics that they

are defined to minimize. The maximum risk objectives minimize the maximum arc or

segment risk in the network in such a way that encourages origin-destination pairs to

utilize much longer and riskier paths than what is necessary. While the risk variance

objectives performed better than the maximum risk objectives across most metrics, they

are much more difficult to solve and still do not perform as well as objectives TR and TRD

in several key metrics.

If a UTM manager wants to ensure the level of demand and/or risk present on any part

of their network is below some value, it would likely be more productive to use capacity

constraints (given in Section 6.5) with a TR or TRD objective rather than using any of

the maximum risk or risk variance objectives. If a UTM manager is still inclined to use

one of these objectives, it is worth noting that we saw better results with the segment

associated variants than the arc associated variants. The segment associated variants not

only performed noticeably better in the segment associated metrics, but only performed

slightly behind or in some cases, better than the arc associated variants with respect to

the arc associated metrics. In conclusion, objectives TR and TRD produce subnetworks

that are the most beneficial from the UTM manager and customer perspective and should

be prioritized over the other risk objectives listed in this thesis.

To obtain insight into how the total risk and total risk deviation of a subnetwork

increases as the amount of satisfied demand increases, we give two graphs which illustrate

the Pareto fronts of the model with total risk and total risk deviation objectives subject

to three different budgets. In each graph, the Pareto fronts associated with budgets of 40

km, 60 km, and 80 km are given for the selected objective. The path length deviations are
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set at 120% for all node pairs.

First, we analyze the Pareto fronts for objective TR relative to satisfied demand in

Figure 7.9. The fronts associated with 40km, 60km, and 80km consist of 1200, 2050, and

2527 non-dominated solutions, respectively. As expected, the total risk incurred gradually

Figure 7.9: Pareto Fronts for the Model using Total Risk as an Objective

increases as the amount of satisfied demand increases. Each noticeable horizontal gap

between points (usually) signifies the number of satisfied destinations increasing by one.

The cluster of points between these gaps signifies the model satisfying a certain destination

(which has slightly more demand but also incurs slightly more risk) in favour of a previously

satisfied destination. Note that the slope of the graph increases as the satisfied demand

increases. Early on, the destinations that incur the least amount of risk are satisfied.

Typically, these are the destinations nearest to the shared origin. As more destinations

are reachable on the subnetwork, the destinations that are left incur more risk to include

67



than the ones before. This becomes evident at the end of each line where the risk increases

significantly with each solution. In particular, the total risk associated with the 40km and

60km models trend upwards significantly when looking at their last few non-dominated

solutions.

Next, we analyze the Pareto front for TRD relative to satisfied demand in Figure 7.10.

The fronts associated with 40km, 60km, and 80km consist of 41, 111, and 91 non-dominated

solutions, respectively. The graph is noticeably less dense than the previous graph. This

Figure 7.10: Pareto Fronts for the Model using Total Risk Deviation as an Objective

is partially because roughly 57.5%, 77.4%, and 87.5% of the demand is associated with

pairs that can utilize their respective smallest risk paths for budgets 40km, 60km, and

80km, respectively. Only when the amount of satisfied demand exceeds these values, do

we get some amount of positive risk deviation. The gaps and clusters of points have the
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same significance as they do for the Pareto fronts associated with objective TR. We do

see a much sharper increase in the slope as the satisfied demand increases in comparison

with TR. Initially, we can satisfy an extra 5 − 10% demand with less than a 1% increase

in risk deviation for the three models. It is the last 4% of satisfied demand that we see

a drastic increase in TRD from around 103% to around 137% for the model associated

with a budget of 40km. We see a similar jump in the model associated with a budget

of 60km from around 105% to around 125% with only about a 3% increase in satisfied

demand. At these respective maximums, the subnetworks are configured in such a way

that they satisfy as much demand as possible while forcing a substantial number of pairs

to utilize significantly riskier paths as a result. A budget of 80km is large enough to satisfy

all demand with only a roughly 1.5% increase in TRD so we do not see the same jump in

TRD that we do for the other budgets.

If a UTM manager would like to maximize as much satisfied demand as possible while

ensuring that the TRD is exactly 100%, using path risk deviations (see Section 6.3) of

100% for all node pairs is more efficient than using TRD as an objective. If the level of

satisfied demand that they seek is above this threshold (for this dataset, these thresholds

sit at approximately 57.5%, 77.4%, and 88.5%, respectively), then minimizing TRD as an

objective becomes a better way to ensure that the network is as risk adverse as it could

be.
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Chapter 8

Conclusion and Future Research

As drone usage continues to increase, more time and resources need to be allotted to

establishing the proper infrastructure necessary to meet the large-scale demand expected

in the coming decades. While there are numerous questions to be answered from a logistical

perspective, the question that remains central to large-scale UAV transportation is how to

properly structure the airspace. One such solution to this problem is to have a network

situated above city streets that drones will be required to fly on.

Within this framework, we present a network selection model that minimizes some

chosen risk metric while maximizing satisfied demand subject to a given budget. Risk

is discussed within the context of UAV travel and six risk metrics are given. Additional

requirements are also given for a UTM manager to tailor the UAV network to their liking.

A two-stage stochastic model is presented, and a method is given to reduce said stochastic

model to a deterministic problem for certain instances.

Numerical testing was conducted on both the deterministic and stochastic variants of

the model. Sample average approximation was used to show that solving a deterministic
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variant of the model with a single aggregated demand scenario performs effectively as

well as solving a stochastic variant with many demand scenarios. Several model instances

were run using each risk objective and it was shown that the total risk and total risk

deviation metrics vastly outperform the other metrics from both a UTM and UAV operator

perspective.

Future research can be devoted to expanding the 2-dimensional framework of the net-

work to one that is 3-dimensional where different altitudes are taken into consideration.

As data is accumulated and becomes more readily available, quantitative values for other

risk factors mentioned in Chapter 4 can be incorporated into the model. As detect-and-

avoid technology improves, a variant of the problem can be studied where UAVs must fly

within a network structure in certain regions of a city (densely populated regions with tall

buildings) and can fly within a shortest path or Euclidean shortest path context in other

regions of a city (less densely populated regions with more wide-open space).
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