
STUDIA MATHEMATICA 273 (2) (2023)

Quasidiagonal weighted shifts on directed trees

by

Laurent W. Marcoux (Waterloo, Ont.) and Artur Płaneta (Kraków)

Abstract. We investigate quasidiagonality of weighted shifts on directed trees. We
concentrate mainly on a subclass of weighted shifts operators called adjacency operators.
In particular, we provide equivalent conditions for quasidiagonality of adjacency operators
in terms of the structure of directed trees.

1. Introduction

1.1. Let H be a complex, separable Hilbert space, and denote by B(H )
the set of bounded linear operators acting on H . Let κ := dimH ∈ N∪{ℵ0}
denote the dimension of H . An operator D ∈ B(H ) is said to be diago-
nal relative to an orthonormal basis {en}n for H if there exists a bounded
sequence (dn)n of complex numbers such that Den = dnen for all n. In par-
ticular, each en is an eigenvector of D. We say that D is diagonalisable if
there exists an orthonormal basis for H relative to which D is diagonal.
Equivalently, having fixed the orthonormal basis {en}n for H , D ∈ B(H )
is diagonalisable if there exists a unitary operator U ∈ B(H ) such that
U∗DU is diagonal relative to {en}n. A standard result from linear algebra –
the spectral theorem for normal matrices – asserts that every normal oper-
ator acting on a finite-dimensional, complex Hilbert space is diagonalisable.
When H is infinite-dimensional, this no longer holds, as normal operators
may not have any eigenvalues. For example, if µ denotes Lebesgue mea-
sure on the interval [0, 1], then the multiplication operator Mx acting on
H = L2([0, 1], dµ) via [(Mx)f ](x) = xf(x) a.e.-µ is self-adjoint but has
no eigenvalues. The infinite-dimensional version of the spectral theorem for
normal operators guarantees that any normal operator is the norm-limit of
diagonalisable normal operators, but as we shall soon see, one can do better.
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Recall that two operators A,B ∈ B(H ) are said to be unitarily equiva-
lent if there exists a unitary operator U ∈ B(H ) such that B = U∗AU , and
that they are similar if there exists an invertible operator R ∈ B(H ) such
that B = R−1AR. Both unitary equivalence and similarity define equiv-
alence relations on B(H ). Let us denote by K(H ) ⊆ B(H ) the closed,
two-sided ideal of compact operators. The Calkin algebra is the C∗-algebra
B(H )/K(H ), and we denote by π the canonical quotient map from B(H )
to B(H )/K(H ).

An operator B ∈ B(H ) is said to be block-diagonal if there exists a
sequence (Bn)n of operators acting on finite-dimensional complex Hilbert
spaces Hn, n ≥ 1, such that B is unitarily equivalent to the direct sum⊕

nBn acting on H =
⊕

n Hn. Clearly every diagonalisable operator
D ∈ B(H ) is block-diagonal. Letting Pn denote the orthogonal projection of
H onto

⊕n
k=1 Hk, we see that if B is block-diagonal, then PnB −BPn = 0

for all n ≥ 1.
Block-diagonal operators are specific examples of quasidiagonal operators

defined as follows.

Definition 1.1. An operator T ∈ B(H ) acting on an infinite-dimen-
sional, separable Hilbert space H is said to be quasidiagonal if there exists
an increasing sequence (Pn)n of finite-rank projections converging strongly
to the identity operator I such that

lim
n

∥PnT − TPn∥ = 0.

The notion of quasidiagonality was first introduced by Halmos [11] in
connection with the (then open) problem of deciding whether or not every
normal operator can be expressed as a compact perturbation of a diago-
nalisable operator. This question admits an affirmative answer. Indeed, the
Weyl–von Neumann–Berg/Sikonia Theorem [5] (see [9, Corollary II.4.2]) as-
serts that if N ∈ B(H ) is normal and ε > 0, then there exists a compact
operator K of norm less than ε such that N − K is diagonalisable. (That
hermitian operators acting on a separable Hilbert space are compact pertur-
bations of diagonalisable operators was first shown by Weyl [21].)

Halmos showed that the set QD of quasidiagonal operators is closed in
norm (and therefore contains all normal operators), and that QD coincides
with the set of compact perturbations of block-diagonal operators. In fact,
given a quasidiagonal operator T and ε > 0, one can find a compact opera-
tor K with ∥K∥ < ε and a block-diagonal operator B such that T = B+K.
As such, the set QD of all quasidiagonal operators is the norm-closure of the
set BD of block-diagonal operators.

The concept of quasidiagonality was later extended to sets of opera-
tors (see e.g. [19]). A set S ⊆ B(H ) is said to be quasidiagonal if for
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every ε > 0 and for all finite subsets F ⊆ S and X ⊆ H , there exists
a finite-rank orthogonal projection P such that ∥PT − TP∥ < ε for all
T ∈ F, and ∥(I − P )x∥ < ε for all x ∈ X . Note that T ∈ QD if and only
if {T} is quasidiagonal as a set. Furthermore, the quasidiagonality of a set
S ⊆ B(H ) is equivalent to that of the C∗-algebra C∗(S) generated by that
set.

The set QD of quasidiagonal operators is stable under compact perturba-
tions, Hilbert space adjoints, unitary equivalence and direct sums. Moreover,
by a result of Luecke [14, Theorem 4], an operator Q is quasidiagonal if and
only if Q⊕ 0 ∈ B(H ⊕H ) is quasidiagonal. Quasidiagonality, however, be-
haves very poorly under similarity. Indeed, if Q ∈ B(H ) and S−1QS ∈ QD
for every invertible operator S, then Q has the property that its image π(Q)
in the Calkin algebra B(H )/K(H ) satisfies a polynomial equation of degree
at most 2 [12]. In recent years, the notion of quasidiagonality for C∗-algebras
has also been shown to occupy a central role in the classification program
for simple, nuclear C∗-algebras (we draw the reader’s attention to the sur-
vey [22]), although a full accounting of the developments there would take
us rather far afield.

Quasidiagonality is a special case of a more general notion of biquasitri-
angularity. More specifically, an operator T ∈ B(H ) is said to be quasitrian-
gular if there exists an increasing sequence (Pn)n of finite-rank projections
tending strongly to the identity operator such that limn ∥(I −Pn)TPn∥ = 0.
We say that T is biquasitriangular if both T and T ∗ are quasitriangular. It
is not hard to see that every quasidiagonal operator Q is biquasitriangular,
and in fact, when Q is quasidiagonal, the sequence (Pn)n of finite-rank pro-
jections implementing the quasitriangularity of Q can be chosen to coincide
with the sequence (Rn)n of finite-rank projections implementing the quasi-
triangularity of Q∗. Herrero [12] – extending a result of Luecke [14] – has
nevertheless shown that the set of quasidiagonal operators is nowhere dense
in the set of biquasitriangular operators.

There are a large number of equivalent formulations of biquasitriangu-
larity for Hilbert space operators; Theorem 6.15 of [13] lists no fewer than
eighteen equivalent such formulations. One of the most useful of these is
a deep result of Apostol, Foiaş and Voiculescu [3]. Before describing that
result, we recall some definitions. An operator T ∈ B(H ) is said to be semi-
Fredholm if ranT is closed, and at least one of dimkerT and dimkerT ∗ is
finite. When this is the case, we define the semi-Fredholm index of T to be

indT := dimkerT − dimkerT ∗ ∈ Z ∪ {−∞,∞},
where it is understood that ∞ − n := ∞ while n − ∞ := −∞ whenever
n ∈ Z. If T is semi-Fredholm and indT ∈ Z, we say that T is Fredholm. It is
well-known that T is semi-Fredholm if and only if its image π(T ) in the Calkin
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algebra is either left-invertible (corresponding to the case where dimkerT
< ∞) or right-invertible (corresponding to the case where dimkerT ∗ < ∞),
while T is Fredholm if and only if its image in the Calkin algebra is invertible.
The semi-Fredholm domain ϱsF(T ) of T is the set of all α ∈ C for which
T − αI is semi-Fredholm. Clearly ϱsF(T ) = ϱsF(T

∗).
The result of Apostol, Foiaş and Voiculescu referred to above states that

an operator T is quasitriangular if and only if ind(T − αI) ≥ 0 for all
α ∈ ϱsF(T ). If T is biquasitriangular, then both T and T ∗ are quasitriangular,
and hence ind(T − αI) ≥ 0 and ind(T − αI)∗ = − ind(T − αI) ≥ 0 for all
α ∈ ϱsF(T ). That is, ind(T − αI) = 0 for all α ∈ ϱsF(T ). In particular,
if Q is quasidiagonal, then ind(Q − αI) = 0 for all α ∈ ϱsF(Q). Since Q
is quasidiagonal if and only if C∗(Q) ⊆ QD, we see that in order to prove
that Q is not quasidiagonal, it suffices to find an operator T ∈ C∗(Q) and
α ∈ ϱsF(T ) such that ind(T −αI) ̸= 0. That (non-zero) semi-Fredholm index
should serve as an obstruction to being quasidiagonal was observed by a
number of authors, including Apostol, Foiaş, Voiculescu and Zsidó [4, 1, 2, 3].

A specific example of a non-quasidiagonal operator which will be of
paramount interest to us is the following. Let {en}∞n=1 be an orthonormal
basis for our Hilbert space H . The unique operator S ∈ B(H ) satisfying
Sen = en+1 for all n ≥ 1 is referred to as the unilateral shift operator (with
respect to {en}n). It is readily verified that S is an isometry, and hence its
range is closed and its kernel is trivial. Furthermore, its range has codimen-
sion 1 in H , and thus indS = 0−1 = −1. By the Apostol–Foiaş–Voiculescu
Theorem, S ̸∈ QD. Combining this with the result of Luecke mentioned
above, 0⊕S ̸∈ QD. Hence, if T ∈ B(H ) and if there exists X ∈ C∗(T ) such
that X is unitarily equivalent to 0 ⊕ S, then X – and consequently T – is
not quasidiagonal.

1.2. In this paper we seek to characterise those directed trees whose asso-
ciated so-called adjacency operators are quasidiagonal. Our work may be seen
as an extension of the work of Smucker [18], who provided a characterisation
of those bilateral weighted shifts acting on ℓ2(N) which are quasidiagonal,
and of Narayan [17], who extended the result of Smucker by determining
necessary and sufficient conditions for the quasidiagonality of a finite direct
sum of bilateral weighted shifts.

Recall that W ∈ B(H ) is called a bilateral weighted shift if there exists an
orthonormal basis {en}∈Z for H and a bounded sequence (wn)n∈Z of scalars
(called weights) such that Wen = wnen+1 for all n. We say that V ∈ B(H )
is a unilateral forward weighted shift if there exists an orthonormal basis
{fn}∞n=1 for H and a bounded sequence (vn)

∞
n=1 such that V fn = vnfn+1,

and that V is a unilateral backward weighted shift if V ∗ is a unilateral forward
weighted shift. In each case, up to unitary equivalence, we may assume that
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all of the weights are non-negative real numbers. Smucker [18] defined a
bilateral weighted shift W to be block-balanced if, given ε > 0 and n ∈ N,
there exist integers p and q such that p+ n < 0 < q and

∥(wp, wp+1, . . . , wp+n)− (wq, wq+1, . . . , wq+n)∥ < ε.

His classification of quasidiagonal weighted shifts then reads as follows:

Theorem 1.2 (Smucker). Let W ∈ B(H ) be a bilateral weighted shift
with weights (wn)n∈Z. Then W is quasidiagonal if and only if one of the
following two conditions holds: either

(i) lim infn≥0 |wn| = lim infn≤0 |wn| = 0, or
(ii) W is block-balanced.

1.3. The bilateral weighted shift operator V obtained from W by chang-
ing the weight w0 to 0 – a perturbation of rank at most 1 of W – is easily
seen to be the direct sum of a backward unilateral weighted shift V1 and a
forward unilateral weighted shift V2. Since QD is invariant under compact
perturbations, W ∈ QD if and only if V ∈ QD, and in this case, condi-
tion (i) above is easily seen to be the condition that both V1 and V2 are
quasidiagonal.

Modern proofs of the sufficiency of the conditions in Smucker’s result rely
on an approximation technique due to Berg [6], subsequently referred to as
Berg’s technique. The fact that the above conditions (i) and (ii) are necessary
for W to belong to QD is typically demonstrated as follows: one supposes that
neither condition (i) nor (ii) above is met, and then one exhibits an element
Z ∈ C∗(W ) and α ∈ ϱsF(Z) for which Z − αI has non-zero semi-Fredholm
index. As we have previously noted, this would imply that W would not be
in QD.

Our goal is to examine the analogue of Smucker’s theorem for a gener-
alisation of weighted shifts known as weighted shifts on directed trees. More
specifically, we shall focus on a particular subclass of weighted shifts on di-
rected trees referred to as adjacency operators (see, e.g., [16, 15]). The basic
strategy we shall employ to determine whether a given adjacency operator
is quasidiagonal will be modelled along the lines of that described in the
above paragraph, but – in the case of the proof of the sufficiency of our con-
ditions – will rely on a generalisation of Berg’s technique due to Berg and
Davidson [7].

1.4. Let H be a complex Hilbert space. If f, g ∈ H , then f ⊗ g de-
notes the rank 1 operator defined by (f ⊗ g)h = ⟨h, g⟩f , h ∈ H . For a
non-empty set V , we denote by ℓ2(V ) the complex Hilbert space of all func-
tions f : V → C such that

∑
v∈V |f(v)|2 < ∞ with the inner product given
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by ⟨f, g⟩ =
∑

v∈V f(v)g(v). The set {eu : u ∈ V } is an orthonormal basis
of ℓ2(V ), where

eu(v) =

{
1 if u = v,

0 if u ̸= v.

Let T = (V,E) be a directed tree (V and E stand for the sets of vertices
and directed edges of T , respectively). Set Chi(u) = {v ∈ V : (u, v) ∈ E}
for u ∈ V . We refer to these as the children of u. If u ∈ V is such that there
exists a unique vertex v ∈ V such that (v, u) ∈ E, we refer to v as the parent
of u and we denote v by par(u). This induces a relation in V , denoted by par,
which assigns to a vertex u ∈ V (which admits a parent) its parent par(u).
For k ∈ N, park denotes the k-fold composition of the relation par; par0

denotes the identity map on V . Following [15], we write park(u) only if u is
in the domain of park. Given u ∈ V and n ∈ N0, we set Chi⟨n⟩(u) = {v ∈ V :
parn(v) = u}, Desn(u) = ⋃n

j=0 Chi
⟨j⟩(u), and Des(u) =

⋃∞
j=0 Chi

⟨j⟩(u). Thus
Des(u) describes all descendants of u. A vertex u ∈ V is called a root of T
if u has no parent. A root is unique (provided it exists); we denote it by
root. The directed tree T is rooted if the root exists. The height of T is
defined as sup {n ∈ N0 : ∃u∈V Chi⟨n⟩(u) ̸= ∅} ∈ N0 ∪ {∞}. In turn, T is
M -ary, where M ∈ N0, if M = sup{#Chi(v) : v ∈ V }. We will call the set
Vvan = {v ∈ V : Chi⟨N⟩(v) = ∅ for some N ∈ N} the vanishing subset of T .
Finally, the tree T is vanishing if V = Vvan.

Suppose T is rooted. We set V ◦ = V \ {root}. If v ∈ V , then |v| denotes
the unique k ∈ N0 such that park(v) = root. A subgraph S of T which
is a directed tree itself is called a subtree of T . A path in T is a directed
subtree P = (VP , EP) of T which satisfies the following two conditions:
(i) root ∈ P, (ii) for every v ∈ VP , card(Chi(v) ∩ VP) = 1.

Weighted shifts on directed trees are defined as follows. Let T = (V,E)
be a directed tree and let λ = {λv}v∈V ◦ ⊆ C be such that

sup
u∈V

∑
v∈Chi(u)

|λv|2 < ∞.

Then the formula

(Sλf)(v) =

{
λv · f(par(v)) if v ∈ V ◦,

0 if v = root,
f ∈ ℓ2(V ),

defines a bounded operator Sλ on ℓ2(V ) (see [15, Proposition 3.1.8]), which
is called the weighted shift on T with weights λ. It is not hard to see that
T := (N, {(n, n+1): n ∈ N}) is an example of a rooted directed tree (in fact
it is a path), and that the above notion of a weighted shift on the directed
tree T coincides with the usual notion of a weighted shift on ℓ2(N). The
reader is referred to [15] for the foundations of the theory of weighted shifts
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on directed trees. In case λv = 1 for all v ∈ V ◦, we use the symbol SV

instead of Sλ. In particular, SV is a bounded operator on ℓ2(V ) if and only
if supu∈V #Chi(u) < ∞. Moreover,

(1) SV eu =
∑

v∈Chi(u)

ev for every u ∈ V.

Let N ∈ N0. Let GN be a set such that GN ∩ [G] contains exactly one
element for every finite directed tree G of height N , where [G] denotes the
class of all finite directed trees G′ ∼= G, where ∼= denotes the fact that
two trees are isomorphic. (In other words, GN is a set of representatives,
one from each equivalence class of finite directed trees of height N .) Let
GN =

⋃N
j=0 Gj . Let T = (V,E) be a directed graph. From now on, we

shall adopt the following convention. Whenever V ′ ⊆ V , where V ′ ̸= ∅, is
supposed to be a directed tree, we consider the induced (directed) subgraph
T [V ′] = (V ′, (V ′ × V ′) ∩ E). For W ⊆ V , define

GN (W ) = {G ∈ GN : G ∼= DesN (v) for some v ∈ W}
and

GN
ess(W ) =

⋂
W ′⊆W,#(W\W ′)<∞

GN (W ′).

If W ⊂ GN , then

Ver(W) := {v ∈ V : ∃G∈W DesN (v) ∼= G}.
In particular, if G ∈ GN , then we write Ver(G) for Ver({G}). In turn, PW and
PG will denote the projections from ℓ2(V ) onto ℓ2(Ver(W)) and ℓ2(Ver(G)),
respectively. The next proposition describing properties of GN (W ) and
GN
ess(W ) will be used later to prove our main results.

Proposition 1.3. Let M ∈ N, N ∈ N0 and let T = (V,E) be an M -ary
directed tree. If W ⊆ V , then

(i) for every G ∈ GN , G ∈ GN (W ) if and only if Ver(G) ∩W ̸= ∅,
(ii) for every G ∈ GN , G ∈ GN

ess(W ) if and only if Ver(G) ∩W is infinite,
(iii) GN (W ) is finite,
(iv) W ∩ Ver(GN \ GN

ess(W )) is finite,
(v) for every n ∈ N, GN

ess(W1 ∪ · · · ∪ Wn) = GN
ess(W1) ∪ · · · ∪ GN

ess(Wn),
W1, . . . ,Wn ⊆ V .

Proof. (i) and (ii) follow easily from the definitions.
(iii) is a consequence of the fact that there are only finitely many k-ary

directed trees in GN , where 0 ≤ k ≤ M , and (iii) combined with (ii) and
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the equality

W ∩ Ver(GN \ GN
ess(W ))

=
⋃

{Ver(G) ∩W : G ∈ GN (V ) and #(Ver(G) ∩W ) < ∞}
gives (iv).

Finally, (v) is a consequence of (ii).

We close this section with a simple example illustrating our notation.

Example 1.4. Let T = (V,E) be a directed tree, where

V = {(n,m) ∈ Z× N0 : m ≤ |n|}
...

(−4, 0) (−4, 1) (−4, 2) (−4, 3) (−4, 4)

(−3, 0) (−3, 1) (−3, 2) (−3, 3)

(−2, 0) (−2, 1) (−2, 2)

(−1, 0) (−1, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

...

(1, 1)

(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3)

(4, 1) (4, 2) (4, 3) (4, 4)

0 1 0 1

G1

2

G2

Figure 1. A directed rooted tree and its subtrees of height 1.Fig. 1. A directed rooted tree and its subtrees of height 1
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and ((n,m), (k, l)) ∈ E if and only if

• k − n = 1 and m = l = 0, or
• n = k and l −m = 1.

Note that G0 = {G′
0} and G1 = {G′

n : n ∈ N}, where G′
n
∼= Gn = (Vn, En),

Vn = {0, . . . , n}, and

En =

{
∅ if n = 0,

{0} × {1, . . . , n} if n ∈ N.

Then Ver(G′
0) = V , Ver(G′

1) = {(0, 0)}∪{(n,m) ∈ Z×N : 1 ≤ m ≤ |n|−1},
Ver(G′

2) = (Z \ {0})× {0}, and Ver(G′
n) = ∅ for n ≥ 3. Hence

G1(Z× {0}) = {G′
1, G

′
2} and G1

ess(Z× {0}) = {G′
2}.

2. Quasidiagonality

2.1. In this section, we establish a minor variant of the Berg–Davidson
technique for tridiagonal operators. We then demonstrate that the adjacency
operators of interest below admit the required tridiagonal form, allowing us
to apply the technique to prove the sufficiency of the conditions we use to
characterise their quasidiagonality.

The definition of quasidiagonality of an operator T ∈ B(H ) requires
finding an increasing sequence (Pn)n of finite-rank projections converging
strongly to the identity operator such that limn ∥PnT − TPn∥ = 0.

Lemma 2.1 below allows us to reduce proving that a given operator is qua-
sidiagonal to producing a single finite-rank projection satisfying two specific
conditions. This will be employed throughout the remainder of the paper.
The description of the spaces Ln, n ≥ 1, required in the statement of the
lemma will depend upon whether the tree in question is rooted, rootless and
vanishing, or a direct sum of a rooted and rootless tree. We shall address each
of these cases separately. The idea, however, will always be that described
by Lemma 2.1.

Lemma 2.1. Let H be a Hilbert space and T ∈ B(H ). Let (Ln)n be
an increasing sequence of finite-dimensional subspaces of H whose union is
dense in H . Let µ > 0 be a constant.

Suppose that for all N ∈ N, there exist κ ≥ N and a finite-rank projection
P ∈ B(H ) satisfying

(i) LN ⊆ ranP ⊆ Lκ,
(ii) ∥PT − TP∥ ≤ µ/N .

Then T ∈ QD.

Proof. Let P1 = 0 and κ1 = 1. By hypothesis, we may choose κ2 > κ1
and a projection P2 such that Lκ1 ⊆ ranP2 ⊆ Lκ2 and ∥P2T−TP2∥ < µ/κ1.
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More generally, having chosen κ1 < · · · < κm and projections P1, . . . , Pm

such that Lκj−1 ⊆ ranPj ⊆ Lκj , and ∥PjT − TPj∥ < µ/κj−1, 2 ≤ j ≤ m,
we may use the hypotheses to find an integer κm+1 > κm and a projection
Pm+1 such that Lκm ⊆ ranPm+1 ⊆ Lκm+1 and ∥Pm+1T −TPm+1∥ < µ/κm.

Clearly ranPm ⊆ Lκm ⊆ ranPm+1 implies that the sequence (Pm)m is
increasing, and that each Pm is of finite rank. Combining this range inclusion
with the fact that

⋃
m Lm is dense in H implies that the sequence (Pm)m

converges strongly to the identity operator.
Finally, since µ is fixed and limm κm = ∞, we see that limm ∥PmT −

TPm∥ = 0, and thus T ∈ QD.

In any study of quasidiagonality of single operators, a technique origi-
nally developed by I. D. Berg (and known as Berg’s technique) for weighted
shifts [6], and later generalised by I. D. Berg and K. R. Davidson [7, Lem-
ma 3.2], is indispensable. We shall need a minor modification of the latter
result, which originally applied to the direct sum of two tridiagonal opera-
tors.

Proposition 2.2 (The Berg–Davidson technique revisited). Suppose
that N ≥ 1 is an integer and that T = [Ti,j ] is tridiagonal with respect
to the subspace decomposition H :=

⊕2N+2
k=0 Lk. Suppose furthermore that

Lk ≃ Lk+N+1 for all 1 ≤ k ≤ N , and that Ti,j = Ti+N+1,j+N+1 for all
2 ≤ i+ j ≤ 2N . Let

• Q0 be the orthogonal projection on L0;
• Q2N+2 be the orthgonal projection onto L2N+2;
• Qk denote the orthogonal projection which acts on Lk ⊕ Lk+N+1 via the

operator matrix

Qk =

[
c2kI ckskI

ckskI s2kI

]
,

where ck = cos
(
kπ
2N

)
and sk = sin

(
kπ
2N

)
for each 1 ≤ k ≤ N .

If Q = Q0 ⊕ (
⊕N

k=1Qk)⊕Q2N+2, then ∥QT − TQ∥ ≤ π∥T∥/N.

Proof. Since T = [Ti,j ] is tridiagonal with respect to the decomposition
H =

⊕2N+2
k=0 Lk, we have Ti,j = 0 if |i− j| ≥ 2.

If N = 1, then direct calculations show that

QT − TQ =


0 T0,1 0 0 0

−T1,0 0 0 0 0

0 0 0 T2,3 0

0 0 −T3,2 0 0

0 0 0 0 0


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with respect to the decomposition H = L0 ⊕ L1 ⊕ L2 ⊕ L3 ⊕ L4. Hence,

∥QT − TQ∥ ≤ ∥T∥

since every column has at most one non-zero term.
Now, let N ≥ 2. Writing T relative to the decomposition

H = (L0 ⊕ LN+1 ⊕ L2N+2)⊕
N⊕
k=1

(Lk ⊕ Lk+N+1),

we obtain

T =



X0,0 X0,1 0 · · · X0,N

X1,0 X1,1 X1,2 0 0

X2,1 X2,2 X2,3 0

0 X3,2 X3,3 X3,4 · · · 0
...

. . .
...

0 XN−1,N−2 XN−1,N−1 XN−1,N

XN,0 0 XN,N−1 XN,N


,

where

• X0,0 = T0,0 ⊕ TN+1,N+1 ⊕ T2N+2,2N+2;

• X0,1 =

T0,1 0

0 TN+1,N+2

0 0

;

• X0,N =

 0 0

TN+1,N 0

0 T2N+2,2N+1

;

• X1,0 =

[
T1,0 0 0

0 TN+2,N+1 0

]
;

• XN,0 =

[
0 TN,N+1 0

0 0 T2N+1,2N+2

]
;

• Xi,j =

[
Ti,j 0

0 Ti+N+1,j+N+1

]
=

[
Ti,j 0

0 Ti,j

]
if |i− j| ≤ 1;

• Xi,j = 0 for all other i, j.
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It follows that if (i, j) ̸∈ {(0, 0), (0, 1), (0, N), (1, 0), (N, 0)}, then QkXi,j =
Xi,jQk for all 1 ≤ k ≤ N .

Relative to this decomposition of H , and defining Q◦ := Q0⊕0⊕Q2N+2,
we may write

Q = Q◦ ⊕Q1 ⊕ · · · ⊕QN .

We compute the entries of [Q,T ]:

(i) The (0, 0) entry of [Q,T ] is Q◦X0,0 −X0,0Q
◦ = 0.

(ii) The (0, 1) entry of [Q,T ] is

Q◦X0,1 −X0,1Q1 =

T0,1 0

0 TN+1,N+2

0 0

([I 0

0 0

]
−Q1

)
.

Since
∥∥[ I 0

0 0

]
−Q1

∥∥ < π
2N , the norm of this entry is at most π∥T∥

2N .
(iii) The (0, N) entry of [Q,T ] is

Q◦X0,N −X0,NQN = 0.

(iv) The (1, 0) entry of [Q,T ] is

Q1X1,0 −X1,0Q
◦ =

(
Q1 −

[
I 0

0 0

])
X1,0.

Since
∥∥[ I 0

0 0

]
−Q1

∥∥ < π
2N , the norm of this entry is at most π∥T∥

2N .
(v) The (N, 0) entry of [Q,T ] is

QNXN,0 −XN,0Q
◦ = 0.

(vi) If 2 ≤ i+ j ≤ 2N and |i− j| ≤ 1, then the (i, j) entry of [Q,T ] is

QiXi,j −Xi,jQj = (Qi − Q̃j)Xi,j ,

where Q̃j is the orthogonal projection which acts on Li ⊕ Li+N+1 via
the operator matrix

Q̃j =

[
c2jI cjsjI

cjsjI s2jI

]
.

Since |i − j| ≤ 1, we have ∥Qi − Q̃j∥ ≤ π
2N . Hence, the norm of this

entry is at most π∥T∥
2N .

(vii) All other entries of [Q,T ] are zero.
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In other words, [Q,T ] is of the form

0 Y0,1 0 · · · 0

Y1,0 0 Y1,2 0 0

0 Y2,1 0 Y2,3 0

0 Y3,2 0 Y3,4 · · · 0
...

. . . . . . . . .
...

0 0 YN−1,N−2 0 YN−1,N

0 0 0 YN,N−1 0


,

where each entry has norm at most π∥T∥
2N .

A simple estimate shows that

∥[Q,T ]∥ ≤ π∥T∥
N

.

Indeed, in general, if a Hilbert space M is a direct sum
⊕m

i=1 Mi of closed
subspaces and if, relative to this decomposition, the operator matrix Z=[Zij ]
of an operator Z ∈ B(M ) has the property that there exists at most one
non-zero entry in each row and in each column, then it is readily verified
that the norm of Z is max(∥Zij∥ : 1 ≤ i, j ≤ n). In our case, [Q,T ] may be
expressed as the sum of two such operators (one whose non-zero entries live
only on the first subdiagonal, and one whose non-zero entries live only on
the first superdiagonal). Hence,

∥[Q,T ]∥ ≤ max(∥Yi,i−1∥ : 1 ≤ i ≤ N) + max(∥Yi−1,i∥ : 1 ≤ i ≤ N)

≤ π∥T∥
2N

+
π∥T∥
2N

=
π∥T∥
N

.

Remark 2.3. Keep in mind that the projection Q is at least as big as Q0

(and hence ranQ ⊇ L0), and if dimLk < ∞ for all k except for k = N + 1,
then the rank of Q is finite.

2.2. A canonical (tridiagonal) form for shifts on directed trees.
Here we outline a common strategy to determine sufficient conditions which
guarantee that a directed tree gives rise to a quasidiagonal (unweighted)
shift SV . For each tree we shall consider, we shall identify an increasing
sequence of finite-dimensional subspaces whose union is dense in ℓ2(V ) (this
sequence will depend upon the structure of the tree), and we shall then
apply the above generalisation of the Berg–Davidson technique to produce
a finite-rank projection satisfying the conditions of Lemma 2.1.

In order to be able to do so, we require our operator SV to admit a
tridiagonal form. We now provide a general tridiagonal form which will apply
to each case (i.e. the rooted case, the rootless, vanishing case and the double-
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ray case) studied below. We shall refer to these as our “canonical form” for
the given shifts.

Note that depending upon the nature of the tree, the dimensions of these
spaces will differ. We shall describe that in greater detail in each individual
case. With the description below, the proofs in each case will reduce to
identifying the spaces Hj , 0 ≤ j ≤ N , K , and Kj , 0 ≤ j ≤ N + 1, that
we shall need, and showing that our choices in each instance result in the
tridiagonal form described below.

(i) Let u ∈ V and N ∈ N be arbitrary. Define H−1 := ℓ2(V )⊖ℓ2(Des(u))
= ℓ2(V \ Des(u)). For 0 ≤ j ≤ N , set Hj := ℓ2(Chi⟨j⟩(u)). Finally, set
K := ℓ2(V )⊖⊕N

j=−1 Hj = ℓ2(
⋃∞

j=N+1 Chi
⟨j⟩(u)).

Relative to the decomposition ℓ2(V ) = H−1 ⊕H0 ⊕ · · · ⊕HN ⊕K , the
operator matrix for SV has the form

A−1,−1

A0,−1 0

A1,0 0
. . . . . .

AN,N−1 0

AN+1,N AN+1,N+1


.

Indeed, take w ∈ V . If w ∈ V \Des(u), then Chi(w) ⊆ (V \Des(u))∪{u}.
Then, by (1), SV (H−1) ⊆ H−1 ⊕ H0. In turn, if w ∈ Chi⟨j⟩(u) for some
0 ≤ j ≤ N − 1, then Chi(w) ⊆ Chi⟨j+1⟩(u) and SV (Hj) ⊆ Hj+1. Finally, for
w ∈ ⋃∞

j=N Chi⟨j⟩(u), Chi(w) ⊆ ⋃∞
j=N+1 Chi

⟨j⟩(u). Thus SV (HN ⊕K ) ⊆ K .

(ii) Next, suppose that v ∈ Des(u) \ DesN+1(u), so that ℓ2(v) ⊆ K .
Applying the same analysis as above, we define K−1 := K ⊖ ℓ2(Des(v)),
and for 0 ≤ j ≤ N , we set Kj := ℓ2(Chi⟨j⟩(v)). Finally, we set KN+1 :=

K ⊖⊕N
j=−1 Kj .

Relative to the decomposition K = K−1⊕K0⊕· · ·⊕KN+1, the operator
matrix for AN+1,N+1 has the form

B−1,−1

B0,−1 0

B1,0 0
. . . . . .

BN,N−1 0

BN+1,N BN+1,N+1


.
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Observe that SV (HN ) ⊆ ℓ2(Chi⟨N+1⟩(u)) ⊆ K−1. From this it follows
that the operator matrix [Ti,j ] for SV relative to the decomposition ℓ2(V ) =
H−1 ⊕ H0 ⊕ · · · ⊕ HN ⊕ K−1 ⊕ K0 ⊕ K1 ⊕ · · · ⊕ KN+1 is tridiagonal, and
the only non-zero entries appear either

• on the first subdiagonal, or
• at the A−1,−1, B−1,−1 and BN+1,N+1 entries.

(iii) If DesN (u) ∼= DesN (v), we may further assume that (possibly after
a unitary conjugation) Ai,j = Bi,j for all 1 ≤ i + j ≤ 2N − 1. If V is an
M -ary directed tree, then ∥SV ∥ ≤ M and thus ∥Ai,j∥ ≤ M for all entries.

We can then apply our modified Berg–Davidson technique to produce a
projection P satisfying

• H−1 ⊕ KN+1 ⊆ ranP ⊆ (
⊕N

j=−1 Hj)⊕ (
⊕N+1

j=0 Kj);
• ∥PSV − SV P∥ ≤ πM

N+1 .

Of course, Q := I − P is also an orthogonal projection with ∥QSV − SV Q∥
≤ πM

N+1 , and we note that

K−1 ⊆ ranQ ⊆
( N⊕
j=0

Hj

)
⊕
( N⊕
j=−1

Kj

)
.

In particular, the range of Q contains K−1 and is orthogonal to H−1⊕KN+1.
Depending upon the structure of the tree we are considering, we shall

sometimes need the projection P , and sometimes Q.

(iv) Note that if v ∈ Vvan and T is M -ary, then dimKN+1 < ∞.

3. Rooted trees

3.1. We begin our study of quasidiagonality of (unweighted) shifts with
rooted directed trees containing only one path. Let M ∈ N and let T =
(V,E) be an M -ary directed tree. In [20, Lemma 4.4], it was proven that PG,
where G is a finite directed tree, belongs to the von Neumann algebra gener-
ated by SV . In fact, it can be shown that PG belongs to the C∗-algebra
generated by SV . This fact will be used in all cases considered in this
paper.

Lemma 3.1. Let M ∈ N and let T = (V,E) be an M -ary directed tree.
If W ⊂ GN for some N ∈ N0, then PW ∈ C∗(SV ).

Proof. Without loss of generality, we can assume that W = {G}, where
G ∈ GN . Indeed, by Proposition 1.3(iii), PW is a finite sum of projections
PG, where G ∈ W ∩ GN (V ).

The proof for G is by induction on N . If N = 0, then PG = I ∈ C∗(SV ).
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Now, take G ∈ GN , where N ≥ 1. Without loss of generality, we can
assume that G is k-ary for some 1 ≤ k ≤ M . Otherwise, Ver(G) = ∅ and
PG = 0 ∈ C∗(SV ) since T is M -ary. Denote by GN−1,M the set of all
directed trees H ∈ GN−1 such that H is k-ary for some 0 ≤ k ≤ M . For
every H ∈ GN−1,M , let nG(H) stand for the number of all vertices v of G
such that v is a child of the root of G and DesN−1(v) ∼= H. Let

(2) P̃G =
∑

H∈GN−1,M

(S∗
V P

HSV − nG(H)I)2.

By (1) and [15, Proposition 3.4.1],

S∗
V P

HSV ev = S∗
V P

H
( ∑
u∈Chi(v)

eu

)
= S∗

V

( ∑
u∈Chi(v),DesN−1(u)∼=H

eu

)
= nDesN (v)(H)ev.

Then

(3) P̃Gev =
( ∑
H∈GN−1,M

(nDesN (v)(H)− nG(H))2
)
ev, v ∈ V.

Note that nG(H), nDesN (v)(H) ∈ {0, . . . ,M} for every H ∈ GN−1,M and
v ∈ V . Moreover, GN−1,M is finite. Thus P̃G is a diagonal operator with
finite spectrum σ(P̃G) ⊆ N0. Fix a complex polynomial q such that q(0) = 1
and q(σ(P̃G) \ {0}) = {0}. Then, by (2) and the induction hypothesis, P =
q(P̃G) ∈ C∗(SV ). By (3),

Pev =

{
ev if DesN (v) ∼= G,

0 otherwise.

Thus PG = P ∈ C∗(SV ).

Lemma 3.2. Let M ∈ N and let T = (V,E) be an M -ary rooted directed
tree. Assume T contains exactly one path P, and for every N ∈ N,

GN (VP) ∩ GN (V \ VP) ̸= ∅.

Then, for every N ∈ N,

GN
ess(VP) ∩ GN

ess(V \ VP) ̸= ∅.

Proof. Suppose that

(4) GN
ess(VP) ∩ GN

ess(V \ VP) = ∅ for some N ∈ N.
By Proposition 1.3(iii) and the definition of GN

ess(W ), there exists ũ ∈ VP

such that

GN (Des(ũ) ∩ VP) = GN
ess(VP),(5)

GN (Des(ũ) ∩ (V \ VP)) = GN
ess(V \ VP).(6)
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Let N0 := max {|w| : w ∈ V \ Des(ũ)} + 1 ∈ N. By the assumption, there
exist u ∈ VP and v ∈ V \ VP such that

(7) DesN+N0(u) ∼= DesN+N0(v).

Since P is a path, we can find a unique u′ ∈ Chi⟨N0⟩(u) ∩ VP . Denote by v′

the corresponding vertex in DesN+N0(v) via the graph isomorphism in (7).
Then DesN (u′) ∼= DesN (v′) ∼= G for some G ∈ GN . Note that v′ ∈ V \VP , for
otherwise v ∈ VP . Moreover, u′, v′ ∈ Des(ũ) since |u′| ≥ N0 and |v′| ≥ N0.
Hence, by (5) and (6),

G ∈ GN (Des(ũ) ∩ VP) ∩ GN
(
Des(ũ) ∩ (V \ VP)

)
= GN

ess(VP) ∩ GN
ess(V \ VP),

which is a contradiction. This completes the proof.

3.2. Let M ∈ N and let T = (V,E) be an M -ary rooted directed tree
admitting a unique path P. Denote VP = {u0 := root, u1, u2, . . .}. For
n ≥ 1, we define the spaces Ln := ℓ2(V )⊖ ℓ2(Des(un)). It is not hard to see
that (Ln)n is a strictly increasing sequence of finite-dimensional subspaces
and – since

⋂
n ℓ

2(Des(un)) = {0} – the union
⋃

n Ln is dense in H . We
adopt this notation in the proof below.

Proposition 3.3. Let M ∈ N and let T = (V,E) be an M -ary rooted
directed tree. Suppose that T contains exactly one path P = (VP , EP). Let
N ≥ 1 and suppose that

GN
ess(VP) ∩ GN

ess(V \ VP) ̸= ∅.

Then SV ∈ QD.

Proof. Let u0 := root and denote VP = {u0, u1, . . .}. Define the spaces
Ln, n ≥ 1, as in the paragraph preceding the statement of the theorem.

Let G ∈ GN
ess(VP) ∩ GN

ess(V \ VP). It follows that there exist κ1 ≥ N ,
κ2 ≥ κ1 + 3N and v ∈ Des(uκ2−1) \ (Des(uκ2) ∪ VP) such that

DesN (uκ1)
∼= G ∼= DesN (v).

Let

• H−1 := ℓ2(V )⊖ ℓ2(Des(uκ1)),
• Hj := ℓ2(Chi⟨j⟩(uκ1)), 0 ≤ j ≤ N ,
• K := ℓ2(V )⊖⊕N

j=−1 Hj .

Note that each Hj , 0 ≤ j ≤ N , is finite-dimensional, as also is H−1.
Observe that v ∈ Des(uκ2−1) implies that ℓ2(Des(v)) ⊆ K . In particular,

if we set

• K−1 := K ⊖ ℓ2(Des(v)),
• Kj = ℓ2(Chi⟨j⟩(v)), 0 ≤ j ≤ N ,
• KN+1 := K ⊖⊕N

j=−1 Kj ,
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then each Kj , 0 ≤ j ≤ N , is finite-dimensional, and furthermore KN+1 ⊆
ℓ2(Des(v)). But v ∈ V \VP , implying thatDes(v) is finite, and thus ℓ2(Des(v))
is finite-dimensional. A fortiori, KN+1 is also finite-dimensional.

Moreover, SV (H−1)⊆H−1⊕H0 and SV (HN )⊆ℓ2(ChiN+1(uκ1)) ⊆ K−1,
so that SV is tridiagonal relative to ℓ2(V ) = (

⊕N
j=−1 Hj)⊕ (

⊕N+1
k=−1 Kk).

As described in Section 2.2, we can then apply our modified Berg–
Davidson technique (Proposition 2.2) to produce a projection P satisfying

• H−1 ⊕ KN+1 ⊆ ranP ,
• K−1 is orthogonal to ranP ,
• ∥PSV − SV P∥ ≤ πM

N+1 .

Now we have

(i) LN ⊆ Lκ1 ⊆ H−1, so that LN ⊆ ranP ;
(ii) ranP ⊆ H−1 ⊕ (

⊕N
j=0(Hj ⊕Kj))⊕KN+1 ⊆ Lκ2 , so that P is of finite

rank.

By Lemma 2.1, we conclude that SV is quasidiagonal.

Theorem 3.4. Let M ∈ N and let T = (V,E) be an M -ary rooted
directed tree that contains exactly one path P. Then the following conditions
are equivalent:

(i) SV ∈ QD,
(ii) for every N ∈ N,

GN (VP) ∩ GN (V \ VP) ̸= ∅,

(iii) for every N ∈ N,
GN
ess(VP) ∩ GN

ess(V \ VP) ̸= ∅.

Proof. (i)⇒(ii). Suppose that GN (VP) ∩ GN (V \ VP) = ∅ for some
N ∈ N. Let P = PW , where W = GN (VP). By Lemma 3.1 and [18, Theo-
rem 3], PSV ∈ C∗(SV ) is quasidiagonal. Since PSV = SVP

⊕ 0 with respect
to the decomposition ℓ2(V ) = ℓ2(VP)⊕ℓ2(V \VP), SVP

is quasidiagonal. On
the other hand, SVP

is unitarily equivalent to a unilateral shift, which is not
quasidiagonal. Hence SV is not quasidiagonal, which completes the proof.

(ii)⇒(iii) follows from Lemma 3.2, and (iii)⇒(i) is Proposition 3.3.

3.3. The authors would like to thank the anonymous referee for the
following observation. Suppose that T = (V,E) is a rooted directed tree.
We do not need to assume that T is M -ary. We say that T is locally finite if
every vertex in V has finitely many children. We let V≺ denote the set of all
vertices in T having at least two children. We say that T has finite branching
index if sup {|u| : u ∈ V≺} is finite. The results of Chavan and Trivedi [8,
Theorem 5.1(v) and Proposition 2.1] show that a left-invertible weighted
shift Sλ on a locally finite, rooted directed tree T with finite branching index
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satisfies ker S∗
λ < ∞ and indSλ = −dimker S∗

λ < 0 (as the characteristic
function of root lies in the kernel of S∗

λ). Thus Sλ fails to be biquasitriangular,
and so fails to be quasidiagonal.

4. Rootless trees

4.1. Vanishing, rootless trees. In this section, we turn our attention
to vanishing, rootless trees. For v ∈ V , let T (v) denote the subtree of T such
that VT (v) = {park(v) : k ∈ N} ∪Des(v). We begin by proving a counterpart
of Lemma 3.2 for vanishing trees.

Lemma 4.1. Let M ∈ N and let T = (V,E) be an M -ary vanishing
directed tree. Assume that V1 and V2 are subsets of V such that

GN (V1) ∩ GN (V2) ̸= ∅ for every N ∈ N.
Then

GN
ess(V1) ∩ GN

ess(V2) ̸= ∅ for every N ∈ N.
Proof. By the assumption, there are sequences {ũn}∞n=1 ⊆V1 and {ṽn}∞n=1

⊆ V2 such that Chi⟨n⟩(ũn) ̸= ∅ and

Desn(ũn) ∼= Desn(ṽn) for every n ∈ N.
Since T is vanishing, the sets {ũn : n ∈ N} and {ṽn : n ∈ N} are infinite.
After choosing an appropriate subsequence, we may also assume that there is
G ∈ GN (V ) such that {ũn : n ∈ N}∪{ṽn : n ∈ N} ⊂ Ver(G) since GN (V ) is a
finite set. Hence G ∈ GN

ess(V1)∩GN
ess(V2) by Proposition 1.3, which completes

the proof.

4.2. Let M ∈ N and let T = (V,E) be an M -ary vanishing rootless
directed tree. We choose (and fix) an arbitrary vertex u0 ∈ V , and set
un := parn(u0), n ≥ 1. We then define Ln := ℓ2(Des(un)), n ≥ 1, observing
that Ln is finite-dimensional for all n ≥ 1, and that

⋃
n Ln is dense in ℓ2(V )

since T is vanishing and rootless.

Lemma 4.2. Let M,N ∈ N and let T = (V,E) be an M -ary vanishing
rootless directed tree. Suppose that

GN
ess(VT (u)) ∩ GN

ess(V \ VT (u)) ̸= ∅ for all u ∈ V.

Then there exist v ∈ V \ VT (uN ) and κ ≥ 4N such that

v ∈ Des(uκ−2N ) and DesN (uκ) ≃ DesN (v).

Proof. Let G ∈ GN
ess(VT (uN )) ∩ GN

ess(V \ VT (uN )). By the definition of
GN
ess(V \ VT (uN )), there exists v ∈ V \ VT (uN ) such that DesN (v) ∼= G.

By [15, Proposition 2.1.4.], v, u0 ∈ Des(um) for some m ≥ 2N . Note that
Des(um+2N ) is finite. Thus, by Proposition 1.3(ii), we can find κ ≥ m+ 2N
such that DesN (uκ) ∼= G and v ∈ Des(um) ⊆ Des(uκ−2N ).
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Proposition 4.3. Let M ∈ N and let T = (V,E) be an M -ary vanishing
rootless directed tree. Suppose that

GN
ess(VT (u)) ∩ GN

ess(V \ VT (u)) ̸= ∅ for all N ∈ N and u ∈ V.

Then SV ∈ QD.

Proof. Let N ≥ 1. Take v and κ as in Lemma 4.2. The condition that
v /∈ VT (uN ) guarantees that no vertex in Des(v) lies in Des(uN ). Similarly,
the condition that v ∈ Des(uκ−2N ) ensures that no vertex in DesN (uκ) lies
in DesN (v) ∪ Des(uN ).

Set H−1 = ℓ2(V ) ⊖ ℓ2(Des(uκ)), and for 0 ≤ j ≤ N , define Hj :=

ℓ2(Chi⟨j⟩(uκ)). Let K := ℓ2(V )⊖⊕N
j=−1 Hj .

In particular, K contains ℓ2(Des(uκ−N−1)), and in particular ℓ2(Des(v))
is a finite-dimensional subspace of K . We next set K−1 = K ⊖ ℓ2(Des(v)),
Kj := ℓ2(Chi⟨j⟩(v)) for 0 ≤ j ≤ N , and KN+1 := K ⊖⊕N

j=−1 Kj .
Observe that SV (HN ) = SV (ℓ

2(Chi⟨N⟩(uκ))) ⊆ ℓ2(Chi⟨N+1⟩(uκ)) ⊆ K−1,
so that SV is tridiagonal relative to ℓ2(V ) = (

⊕N
j=−1 Hj)⊕ (

⊕N+1
k=−1 Kk).

Appealing once again to the method of Section 2.2, we can apply our
generalised Berg–Davidson technique (Proposition 2.2) to produce a projec-
tion P satisfying

• H−1 ⊕ KN+1 ⊆ ranP ,
• K−1 is orthogonal to ranP ,
• ∥PSV − SV P∥ ≤ πM

N+1 .

Consider Q := I − P . Then Q is a projection with
K−1 ⊆ ranQ ⊆ (H−1 ⊕ KN+1)

⊥,

and
∥QSV − SV Q∥ ≤ πM

N + 1
.

Note that H ⊥
−1 = ℓ2(Des(uκ)) is finite-dimensional, and thus Q has finite

rank. Furthermore, v ∈ V \ VT (uN ) implies that LN = ℓ2(Des(uN )) ⊆ K−1.
Hence

LN ⊆ ranQ ⊆ (H−1 ⊕ KN+1)
⊥ ⊆ Lκ.

We may therefore apply Lemma 2.1 (with Q instead of P ) to conclude that
SV is quasidiagonal.

Theorem 4.4. Let M ∈ N and let T = (V,E) be an M -ary vanishing
rootless directed tree. Then the following conditions are equivalent:

(i) SV is quasidiagonal,
(ii) GN (VT (u)) ∩ GN (V \ VT (u)) ̸= ∅ for all N ∈ N and u ∈ V,
(iii) there exists u ∈ V such that

GN (VT (u)) ∩ GN (V \ VT (u)) ̸= ∅ for all N ∈ N,
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(iv) there exists u ∈ V such that

GN
ess(VT (u)) ∩ GN

ess(V \ VT (u)) ̸= ∅ for all N ∈ N,

(v) GN
ess(VT (u)) ∩ GN

ess(V \ VT (u)) ̸= ∅ for all N ∈ N and u ∈ V.

Proof. (i)⇒(ii). Suppose we can choose N ∈ N and u ∈ V such that

GN (VT (u)) ∩ GN (V \ VT (u)) = ∅.

Let P = PW , where W = GN (VT (u)). By Lemma 3.1, PSV ∈ C∗(SV ), and
since SV is quasidiagonal by hypothesis, so is every operator in C∗(SV ). In
particular, PSV is quasidiagonal. Set Ω = Des(parN (u))∩VT (u). Then, with
respect to the decomposition ℓ2(V ) = ℓ2(Ω)⊕ ℓ2(VT (u) \Ω)⊕ ℓ2(V \VT (u)),
we may write

PSV =

[
PSΩ R

0 SVT (u)\Ω

]
⊕ 0,

where R = eparN (u) ⊗ eparN+1(u). Note that PSΩ and R are finite-rank oper-
ators.

It follows that
[
0 0
0 SVT (u)\Ω

]
⊕ 0 ≃ SVT (u)\Ω ⊕ 0 is a finite-rank pertur-

bation of PSV . Since the set of quasidiagonal operators is invariant under
compact (and hence under finite-rank) perturbations [13, Theorem 6.12], we
find that SVT (u)\Ω ⊕ 0 is quasidiagonal. By [14, Theorem 4], SVT (u)\Ω is
quasidiagonal. Since V is rootless, SVT (u)\Ω is unitarily equivalent to the
adjoint of the unilateral shift, which is not quasidiagonal (see Section 1.1).
To see this, observe that there is a bijection φ : N → VT (u) \ Ω given by
φ(k) := parN+k(u), and that SVT (u)\Ω(eφ(k)) = eφ(k−1) for all k ≥ 1, while
SVT (u)\Ω(eφ(1)) = 0. This corresponds precisely to the action of S∗ on the
orthonormal basis {en}n with respect to which the unilateral forward shift
satisfies Sen = en+1 for all n ≥ 1. This contradiction completes the proof.

The implication (ii)⇒(iii) is obvious, and (iii)⇒(iv) follows from Lem-
ma 4.1.

(iv)⇒(v). Let v ∈ V . Since u, v ∈ Des(w) for some w ∈ V , the symmetric
difference VT (u) △ VT (v) is finite. Then, by Proposition 1.3,

GN
ess(VT (u)) = GN

ess(VT (v)) and GN
ess(V \ VT (u)) = GN

ess(V \ VT (v)).

This combined with our assumption gives (v).
Finally, (v)⇒(i) is the content of Proposition 4.3.

5. Trees with one double ray

5.1. The case of an unweighted shift acting on a rooted tree containing
only one path may be viewed as a generalisation of the case of the usual
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unilateral forward shift S acting on ℓ2(N) (with standard orthonormal ba-
sis {en}∞n=1) via Sen = en+1. Indeed, T = (N, {(n, n + 1): n ∈ N}) is a
rooted tree with only one path, and so it is interesting to see that while S is
definitely not quasidiagonal (due to index considerations – see Section 1.1),
nevertheless, we may find examples of rooted trees T = (V,E) where the
corresponding shift operator SV is quasidiagonal. In this analogy, the shift
operators acting on the vanishing trees of the previous section correspond to
generalisations of the backward shift. The last case considered in this paper
is of shifts on directed trees with one double ray (1). These may be thought
of as generalisations of bilateral shifts. Smucker [18] obtained a character-
isation of those weighted shifts on ℓ2(Z) which are quasidiagonal. After a
rank-one perturbation, such a shift – say W – is a direct sum of a unilateral
backward weighted shift and a unilateral forward weighted shift. Smucker’s
result asserts that either both summands are themselves quasidiagonal, or
they are block-balanced, in the sense of Theorem 1.2. Theorem 5.9 may be
thought of as a generalisation of Smucker’s result.

5.2. A double (directed) ray is an infinite graph R = (VR , ER) of the
form VR = {xn : n ∈ Z} and ER = {(xn, xn+1) : n ∈ Z}, where the xn are
assumed to be distinct and Z is the set of all integers.

Lemma 5.1. Let T = (V,E) be a directed tree. Then the following con-
ditions are equivalent:
(i) T contains exactly one double ray,
(ii) V \ Vvan is a double ray.

Proof. (i)⇒(ii). Let W1 ⊆ V be a double ray. Then W1 ⊆ V \ Vvan.
Suppose that u ∈ V \ (W1 ∪ Vvan). By [15, Proposition 2.1.4], we can find
v ∈ W1 such that u ∈ Des(v). In particular, parn(u) is well-defined for every
n ∈ N. Then, applying König’s Infinity Lemma (see [10, Lemma 8.1.2]), we
obtain a set W2 = {un ∈ V : n ∈ Z} such that u0 = u and par(un) = un−1

for every n ∈ Z. This means that W2 is a double ray different from W1,
which is a contradiction. Thus V \ Vvan = W1 and V \ Vvan is a double ray.

(ii)⇒(i). Assume that W1,W2 ⊆ V are different double rays. Then
W1 ∪W2 ⊆ V \ Vvan. Hence, V \ Vvan is not a double ray, a contradiction.

Assume that T = (V,E) is an M -ary directed tree with one double ray
V ′ ⊆ V . By Lemma 5.1, V \ V ′ is the vanishing subset of V . Let V ′ =
{un : n ∈ Z}. Define

V ′
1 := {un : n ≥ 0} and V ′

2 := {un : n < 0}.
According to Proposition 1.3(i)–(iii), GN

ess(V
′
j ) ̸= ∅ for every N ∈ N0 and

j = 1, 2. What is more, the sets GN
ess(V

′
j ), j = 1, 2, do not depend on the

(1) We adopt the term double ray from [10].
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choice of a division of V ′ into two infinite subtrees V ′
1 and V ′

2 . That is,
for any m ∈ Z, we could just as well have defined Z ′

1 := {un : n ≥ m}
and Z ′

2 := {un : n < m}, and we would find that GN
ess(Z

′
1) = GN

ess(V
′
1) and

GN
ess(Z

′
2) = GN

ess(V
′
2).

We also define V1 := Des(u0) and V2 = V \ V1.
Let us formulate the following lemma which will be used several times in

this section.

Lemma 5.2. Let T = (V,E) be an M -ary directed tree containing exactly
one double ray, and suppose that for some N ∈ N and j ∈ {1, 2},

GN
ess(V

′
j ) ∩ GN

ess(V3−j \ V ′
3−j) ̸= ∅.

Then, for every κ ≥ 1, there exist κ1, κ2 ≥ κ and v ∈ V3−j \ V ′
3−j with

v ∈ Des(um−1) \ Des(um) such that

DesN (un) ∼= DesN (v),

where n = (−1)j+1κj and m = (−1)jκ3−j.

Proof. Since T is M -ary and V \ V ′ is the vanishing subset of T , W =
Des(u−κ+1)\Des(uκ) is finite. Let G ∈ GN

ess(V
′
j )∩GN

ess(V3−j \V ′
3−j). Then, by

Proposition 1.3(ii), we may find n ∈ Z and v ∈ V3−j \ (V ′
3−j ∪W ) such that

(8) un ∈ V ′
j \W and DesN (un) ∼= DesN (v) ∼= G.

Applying [15, Proposition 2.1.4.] for {u0, v}, there exists k ∈ Z such that
v ∈ Des(uk). Then m = 1 + max {l ∈ Z : v ∈ Des(ul)} is well-defined.
Finally, define κj = |n| and κ3−j = |m|. By (8), n = (−1)j+1κj and κj ≥ κ.
The fact that v ∈ V3−j \ (V ′

3−j ∪ W ) and v ∈ Des(um−1) \ Des(um) imply
that |m| ≥ κ and m = (−1)jκ3−j .

For each n ≥ 1, we define the spaces

L +
n := ℓ2(Des(u0))⊖ ℓ2(Des(un)),

L −
n := ℓ2(Des(u−n))⊖ ℓ2(Des(u0)),

Ln := L +
n ⊕ L −

n .

Clearly L +
n is orthogonal to L −

m for all m,n ≥ 1. Observe that (L +
n )n and

(L −
n )n are increasing sequences of finite-dimensional subspaces, and

⋃
n Ln

is dense in ℓ2(V ).
We shall divide the proof of the main result of this section into several

steps. The next result is an analogue of the case where the two summands
of a weighted shift are block-balanced. In our case, there are no weights,
but we may think of the “main diagonals” of the components V ′

1 and V ′
2 of

our shift operator acting on our tree as having finite subgraphs of arbitrary
height which are “block-balanced”, in the sense that we can find κ1, κ2 both
arbitrarily large and positive such that DesN (u−κ2)

∼= DesN (uκ1). Hence, the
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next proposition generalises Smucker’s theorem in the case of the unweighted
bilateral shift B, that is, the case where H admits an orthonormal basis
{en}n∈Z relative to which Ben = en+1 for all n ∈ Z.

Proposition 5.3. Let T = (V,E) be an M -ary directed tree containing
exactly one double ray, and suppose that for all N ≥ 1,

GN
ess(V

′
1) ∩ GN

ess(V
′
2) ̸= ∅.

Then SV is quasidiagonal.

Proof. Fix N ≥ 1. The assumption that GN
ess(V

′
1) ∩ GN

ess(V
′
2) ̸= ∅ implies

that we can find κ1, κ2 ≥ 3N such that

DesN (u−κ2)
∼= DesN (uκ1).

Let H−1 = ℓ2(V ) ⊖ ℓ2(Des(u−κ2)), and for 0 ≤ j ≤ N , set Hj :=

ℓ2(Chi⟨j⟩(uκ2)). Let K := ℓ2(V )⊖⊕N
j=−1 Hj and observe that ℓ2(DesN (uκ1))

⊆ K . Define K−1 = K ⊖ ℓ2(Des(uκ1)), and for 0 ≤ j ≤ N , we set Kj :=

ℓ2(Chi⟨j⟩(uκ1)). Finally, let KN+1 = K ⊖⊕N
j=−1 Kj , and note that KN+1

contains ℓ2(Des(uκ1+N+1)).
Note that L −

N ,L +
N ⊆ K−1.

Relative to ℓ2(V ) := (
⊕N

j=−1 Hj)⊕ (
⊕N+1

j=−1 Kj), we find that the oper-
ator matrix for SV is of the canonical form described in Section 2.2.

As in Section 2.2, we note that we may apply the Berg–Davidson tech-
nique (Proposition 2.2) to produce a projection Q satisfying

• K−1 ⊆ ranQ ⊆ (H−1 ⊕ KN+1)
⊥,

• ∥QSV − SV Q∥ ≤ πM
N+1 .

The fact that ranQ ⊆ (H−1 ⊕KN+1)
⊥ implies that Q is of finite rank. But

from the above,
LN := L −

N ⊕ L +
N ⊆ K−1 ⊆ ranQ.

Applying Lemma 2.1, we see that SV is quasidiagonal.

Continuing our analogy with Smucker’s result for weighted shift opera-
tors, the next two results are needed for the case where SV1 is quasidiagonal
and SV2 is not.

Lemma 5.4. Let T = (V,E) be an M -ary directed tree containing exactly
one double ray, and suppose that for all N ≥ 1,

GN
ess(V

′
2) ∩ GN

ess(V1 \ V ′
1) ̸= ∅.

Then for all κ0 ≥ 0, there exist κ1, κ2 ≥ max(κ0, 3N) and a projection R
such that
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(i) ℓ2(Des(uκ1)) ⊆ ranR ⊆ ℓ2(Des(u−κ2)),
(ii) LN ⊆ ranR,
(iii) ∥RSV − SV R∥ ≤ πM

N+1 .

Proof. Let N ≥ 1 be fixed and κ0 ≥ 1. By Lemma 5.2, we may find
κ1, κ2 ≥ max(κ0, 3N) and v ∈ V1 \ V ′

1 with v ∈ Des(uκ1−1) \ Des(uκ1) such
that DesN (u−κ2)

∼= DesN (v).
Let

• H−1 := ℓ2(V )⊖ ℓ2(Des(u−κ2)),
• Hj := ℓ2(Chi⟨j⟩(u−κ2)), 0 ≤ j ≤ N ,
• K := ℓ2(V )⊖⊕N

j=−1 Hj .

Noting that ℓ2(Des(v)) ⊆ K , we set

• K−1 := K ⊖ ℓ2(Des(v)),
• Kj := ℓ2(Chi⟨j⟩(v)), 0 ≤ j ≤ N ,
• KN+1 := K ⊖⊕N

j=−1 Kj .

Applying the Berg–Davidson technique as in Section 2.2, we can find a
projection R such that

• K−1 ⊆ ranR ⊆ (
⊕N

j=0 Hj)⊕ (
⊕N

j=−1 Kj),
• ∥RSV − SV R∥ ≤ πM

N+1 .

Note that H−1 = (ℓ2(Des(u−κ2)))
⊥, while ℓ2(Des(uκ1)) ⊕ ℓ2(Des(u−N ) \

Des(uN )) ⊆ K−1, so that

ℓ2(Des(uκ1))⊕ LN ⊆ ranR ⊆ ℓ2(Des(u−κ2)),

completing the proof.

Proposition 5.5. Let T = (V,E) be an M -ary directed tree containing
exactly one double ray, and suppose that for all N ≥ 1,

GN
ess(V

′
2) ∩ GN

ess(V1 \ V ′
1) ̸= ∅.

If SV1 is quasidiagonal, then so is SV .

Proof. Fix N ≥ 1 and κ0 ≥ 3N . By Lemma 5.4, there exists a projection
R1 such that

(i) ℓ2(Des(uκ1))⊕ LN ⊆ ranR1 ⊆ ℓ2(Des(u−κ2)),
(ii) ∥R1SV − SV R1∥ ≤ πM

N+1 .

The statement that SV1 is quasidiagonal implies that

GN
ess(V

′
1) ∩ GN

ess(V1 \ V ′
1) ̸= ∅.

Thus, we can find κ4 ≥ κ3 + 2N ≥ max(κ1, κ2) + 4N and v ∈ Des(uκ4−1) \
Des(uκ4) such that

DesN (uκ3)
∼= DesN (v).
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Applying our canonical form with

• H−1 := ℓ2(V )⊖ ℓ2(Des(uκ3)),
• Hj := ℓ2(Chi⟨j⟩(uκ3)), 0 ≤ j ≤ N ,
• K := ℓ2(V )⊖⊕N

j=−1 Hj ,

and

• K−1 := K ⊖ ℓ2(Des(v)),
• Kj := ℓ2(Chi⟨j⟩(v)), 0 ≤ j ≤ N ,
• KN+1 := K ⊖⊕N

j=−1 Kj ,

we can find a projection R2 satisfying

• H−1 ⊕ KN+1 ⊆ ranR2 ⊆ (
⊕N

j=−1 Hj)⊕ (
⊕N+1

j=0 Kj),
• ∥R2SV − SV R2∥ ≤ πM

N+1 .

In particular,

H−1 = (ℓ2(Des(uκ3)))
⊥ ⊆ ranR2, ℓ2(Des(uκ4)) ⊆ K−1 ⊥ ranR2,

so that

ℓ2(Des(uκ1)) ⊆ ranR1 ⊆ ℓ2(Des(u−κ2)),

ℓ2(Des(uκ3))
⊥ ⊆ ranR2 ⊆ ℓ2(Des(uκ4))

⊥.

Since κ3 ≥ κ1 + 2N , it follows that

(a) P := R2R1 = R1R2 is a projection,
(b) ranP = ranR2∩ ranR1 ⊆ ℓ2(Des(u−κ2))⊖ ℓ2(Des(uκ4)), which is finite-

dimensional,
(c) ranP = ranR2 ∩ ranR1 ⊇ ℓ2(Des(uκ3))

⊥ ∩ LN = LN .

Moreover,

∥PSV − SV P∥ = ∥R2R1SV − SV R2R1∥
= ∥R2(R1SV − SV R1)− (R2SV − SV R2)R1∥
≤ ∥R2∥ ∥R1SV − SV R1∥+ ∥R2SV − SV R2∥ ∥R1∥

<
2πM

N + 1
.

It now follows from Lemma 2.1 that SV is quasidiagonal.

Our final analogue of the bilateral weighted shift case is the case where
SV2 is quasidiagonal and SV1 is not. We simplify the proof of the quasidi-
agonality of SV by first proving that S◦

V is quasidiagonal, where S◦
V is a

finite-rank perturbation of SV .

Lemma 5.6. Let T = (V,E) be an M -ary directed tree containing exactly
one double ray, and suppose that for all N ≥ 1,

GN
ess(V

′
1) ∩ GN

ess(V2 \ V ′
2) ̸= ∅.
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Let S◦
V = SV − eu0 ⊗ eu−1. Then for all κ0 ≥ 0, there exist κ1, κ2 ≥

max(κ0, 2N) and a finite-rank projection R such that

(i) L +
κ1

⊆ ranR,
(ii) L −

κ2
is orthogonal to ranR,

(iii) ranR ⊆ Lκ, where κ = max(κ1 +N,κ2 + 1),
(iv) ∥RS◦

V − S◦
V R∥ ≤ πM

N+1 .

Proof. Recall that V1 = Des(u0) and V2 = V \ V1. We now have S◦
V ≃

S◦
V1

⊕ S◦
V2

, where S◦
V1

is a shift acting on a rooted tree with vertices V1

and root = u0, and S◦
V2

is a shift acting on a vanishing, rootless tree with
vertices V2.

Let N ≥ 1 be fixed and κ0 ≥ 1. By Lemma 5.2, we may find κ1, κ2 ≥
max(κ0, 2N) and v ∈ V2 \ V ′

2 with v ∈ Des(u−κ2−1) \ Des(u−κ2) such that
DesN (uκ1)

∼= DesN (v).
Let

• H−1 := ℓ2(V1)⊖ ℓ2(Des(uκ1)),
• Hj := ℓ2(Chi⟨j⟩(uκ1)), 0 ≤ j ≤ N ,
• HN+1 := ℓ2(V1)⊖

⊕N
j=−1 Hj ,

and

• K−1 := ℓ2(V2)⊖ ℓ2(Des(v)),
• Kj := ℓ2(Chi⟨j⟩(v)), 0 ≤ j ≤ N ,
• KN+1 := ℓ2(V2)⊖

⊕N
j=−1 Kj .

This time, we may apply the generalised Berg–Davidson technique (Pro-
position 2.2) (although in this instance the original version of that result
from [7] will suffice) to S◦

V = S◦
V1

⊕ S◦
V2

to find a projection R such that

• H−1 ⊕ KN+1 ⊆ ranR ⊆ (⊕N
j=−1Hj)⊕ (⊕N+1

j=0 Kj);
• ∥RS◦

V − S◦
V R∥ ≤ πM

N+1 .

Now L +
κ1

= H−1 ⊆ ranR. Since L −
κ2

⊆ K−1, we also have ranR ⊆ (L −
κ2
)⊥.

Finally, note that Hj ⊆ L +
κ1+N for all −1 ≤ j ≤ N , while Kj ⊆

ℓ2(Des(v))) ⊆ L −
κ2+1, 0 ≤ j ≤ N + 1, implying that

ranR ⊆ Lκ,

where κ = max(κ1 +N,κ2 + 1). In particular, R has finite rank.
This completes the proof.

Proposition 5.7. Let T = (V,E) be an M -ary directed tree containing
exactly one double ray, and suppose that for all N ≥ 1,

GN
ess(V

′
1) ∩ GN

ess(V2 \ V ′
2) ̸= ∅.
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Let S◦
V = SV −eu0 ⊗eu−1 so that S◦

V ≃ S◦
V1

⊕S◦
V2

, where S◦
V1

is a shift acting
on a rooted tree with vertices V1 and root = u0, and S◦

V2
is a shift acting on

a vanishing, rootless tree with vertices V2.
If S◦

V2
is quasidiagonal, then so is SV .

Proof. By Theorem 4.4, the fact that S◦
V2

is quasidiagonal implies that
for all N ≥ 1 and u ∈ V2,

GN
ess(V2 ∩ VT (u)) ∩ GN

ess(V2 \ VT (u)) ̸= ∅.

By Proposition 4.3 and its proof, we see that given N ≥ 1, there exists a
finite-rank projection R2 (acting on ℓ2(V2)) and an integer κ0 ≥ N such that

L −
N ⊆ ranR2 ⊆ L −

κ0
and ∥R2S

◦
V2

− S◦
V2
R2∥ <

πM

N + 1
.

We extend the domain of R2 to all of ℓ2(V ) by setting R2|(ℓ2(V2))⊥ = 0.
By Lemma 5.6, there exist κ1, κ2 ≥ max(κ0, 2N) and a finite-rank pro-

jection R1 such that

• L +
κ1

⊆ ranR1 ⊆ Lκ, where κ = max(κ1 +N,κ2 + 1),
• L +

κ1
⊆ ranR1 ⊆ (L −

κ2
)⊥,

• ∥R1S
◦
V − S◦

V R1∥ < πM
N+1 .

Since κ2 ≥ κ0, it follows that the range of R1 is orthogonal to that of R2, so
that R := R1 +R2 is a finite-rank projection. Moreover,

LN = L +
N ⊕ L −

N ⊆ L +
κ1

⊕ L −
N ⊆ ranR1 ⊕ ran R2 = ranR.

Finally, a routine calculation shows that

∥RS◦
V − S◦

V R∥ ≤ ∥R1S
◦
V − S◦

V R1∥+ ∥R2S
◦
V − S◦

V R2∥ ≤ 2πM

N + 1
.

By Lemma 2.1, S◦
V is quasidiagonal. But S◦

V is a finite-rank perturbation
of SV , and thus SV is also quasidiagonal.

The proof of the next result is, unfortunately, significantly different from
that of the previous results, as it involves first applying our standard technique
to SV , and then applying it once again to the result of the first application.

Proposition 5.8. Let T = (V,E) be an M -ary directed tree which con-
tains exactly one double ray V ′ ⊆ V . Suppose that for every N ∈ N and
j = 1, 2,

GN
ess(V

′
j ) ∩ GN

ess(V3−j \ V ′
3−j) ̸= ∅.

Then SV is quasidiagonal.

Proof. Let N ≥ 1 be fixed.
First applying Lemma 5.2 for j = 2, we can find κ1, κ2 ≥ 4N and v1 ∈

Des(uκ1−1) \ (Des(uκ1) ∪ V ′
1) such that

DesN (u−κ2)
∼= DesN (v1).
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Let

• H−1 := ℓ2(V )⊖ ℓ2(Des(u−κ2)),
• Hj := ℓ2(Chi⟨j⟩(u−κ2)), 0 ≤ j ≤ N ,
• K := ℓ2(V )⊖⊕N

j=−1 Hj .

Note that ℓ2(Des(v1)) ⊆ K . Define

• K−1 := K ⊖ ℓ2(Des(v1)),
• Kj := ℓ2(Chi⟨j⟩(v1)), 0 ≤ j ≤ N ,
• KN+1 := K ⊖⊕N

j=−1 Kj .

Note that SV (HN ) ⊆ ℓ2(Chi⟨N+1⟩(u−κ2)) ⊆ K−1, so that SV is tridiagonal
with respect to the decomposition ℓ2(V ) = (

⊕N
j=−1 Hj)⊕ (

⊕N+1
j=−1 Kj), and

it falls into the paradigm of Section 2.2.
As argued there, there exists a projection Q1 satisfying

(i) K−1 ⊆ ranQ1 ⊆ (
⊕N

j=0 Hj)⊕ (
⊕N

j=−1 Kj);
(ii) ∥Q1SV − SV Q1∥ < πM

N+1 .

Applying Lemma 5.2 for j = 1 we may find κ3, κ4 ≥ max(κ1, κ2) + 4N
and v2 ∈ Des(u−κ4−1) \ (Des(u−κ4) ∪ V ′

2) such that

DesN (v2) ∼= DesN (uκ3).

Observe that

• LN ⊆ K−1,
• ℓ2(Des(v2)) ⊆ ranQ⊥

1 ,
• ℓ2(Des(uκ3)) ⊆ ranQ1.

Let W := Q⊥
1 SV Q

⊥
1 ⊕Q1SV Q1, so that ∥W − SV ∥ < πM

N+1 by (ii) above.
We define

• M−1 := ranQ⊥
1 ⊖ ℓ2(Des(v2)),

• Mj := ℓ2(Chi⟨j⟩(v2)), 0 ≤ j ≤ N ,
• MN+1 := ranQ⊥

1 ⊖⊕N
j=−1 Mj .

Relative to ranQ⊥
1 =

⊕N+1
j=−1 Mj , we find that Q⊥

1 SV Q
⊥
1 is of the form

A−1,−1

A0,−1 0

A1,0 0
. . . . . .

AN,N−1 0

AN+1,N AN+1,N+1


.
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Next, we define

• N−1 := ranQ1 ⊖ ℓ2(Des(uκ3)),
• Nj := ℓ2(Chi⟨j⟩(uκ3)), 0 ≤ j ≤ N ,
• NN+1 := ranQ1 ⊖

⊕N
j=−1 Nj .

Note that LN ⊆ N−1, and N−1 is finite-dimensional. Relative to ranQ1 =⊕N+1
j=−1 Nj , we find that Q1SV Q1 is of the form

B−1,−1

B0,−1 0

B1,0 0
. . . . . .

BN,N−1 0

BN+1,N BN+1,N+1


.

As always, the fact that DesN (v2) ∼= DesN (uκ3) implies that we may assume
without loss of generality that Ai,j = Bi,j for all 1 ≤ i + j ≤ 2N + 1.
Using our generalised Berg–Davidson technique (Proposition 2.2), we obtain
a projection P such that

LN ⊆ N−1 ⊆ ranP ⊆
( N⊕
j=0

Mj

)
⊕
( N⊕
j=−1

Nj

)
,

and
∥PW −WP∥ ≤ πM

N + 1
.

Now dim Mj = dim Nj < ∞ for all 0 ≤ j ≤ N , while dim N−1 < ∞ as
noted above, so that P has finite rank.

Also,

∥PSV − SV P∥ ≤ ∥P (SV −W )∥+ ∥(SV −W )P∥+ ∥PW −WP∥

≤ 2∥SV −W∥+ πM

N + 1
<

3πM

N + 1
.

We finally apply Lemma 2.1 to conclude that SV is quasidiagonal.

The next result is our main theorem for shifts acting on M -ary directed
trees containing exactly one double ray.

Theorem 5.9. Assume that an M -ary directed tree T = (V,E) contains
exactly one double ray V ′ ⊆ V . Then the following conditions are equivalent:

(i) SV is quasidiagonal,
(ii) for every N ∈ N and j = 1, 2,

GN
ess(V

′
j ) ∩ GN

ess(V \ V ′
j ) ̸= ∅,
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(iii) one of the following holds:

(a) SVj is quasidiagonal for j = 1, 2,
(b) for some j ∈ {1, 2}, SVj is quasidiagonal and for all N ∈ N,

GN
ess(V

′
3−j) ∩ GN

ess(Vj \ V ′
j ) ̸= ∅,

(c) for every N ∈ N and j = 1, 2,

GN
ess(V

′
3−j) ∩ GN

ess(Vj \ V ′
j ) ̸= ∅,

(d) for every N ∈ N,
GN
ess(V

′
1) ∩ GN

ess(V
′
2) ̸= ∅.

Proof. (i)⇒(ii). Suppose we can choose N ∈ N and j ∈ {1, 2} such that

GN
ess(V

′
j ) ∩ GN

ess(V \ V ′
j ) = ∅.

In particular,

(9) GN
ess(V

′
j ) ∩ GN

ess(Vj \ V ′
j ) = ∅ and GN

ess(V
′
j ) ∩ GN

ess(V3−j) = ∅.

By Proposition 1.3(iv), we can choose a vertex u ∈ V ′
1 such that

(10) Des(u) ∩ Ver(GN \ GN
ess(V )) = ∅.

Moreover, applying [15, Proposition 2.1.4.], we can find k ∈ N such that

Ver(GN \ GN
ess(V )) ∪ {u0} ⊂ Des(park(u)).

Define

Ω = Des(park(u)) \ Des(u), Ω1 = Des(u), Ω2 = V \ Des(park(u)).
Let Pj = PWj , where Wj = GN

ess(V
′
j ). Then, with respect to the decom-

position ℓ2(V ) = ℓ2(Ω1)⊕ ℓ2(Ω)⊕ ℓ2(Ω2), we may write

PjSV =

PjSΩ1 R1 0

0 PjSΩ R2

0 0 PjSΩ2

,
where R1 = (Pjeu) ⊗ epar(u) and R2 = (Pjepark(u)) ⊗ epark+1(u). Taking into
account (9) and (10), we get

PjSV =

δ1jSΩ1∩V ′
1

R1 0

0 PjSΩ R2

0 0 δ2jSΩ2∩V ′
2

.
By Lemma 3.1 and [18, Theorem 3], PjSV ∈ C∗(SV ) is quasidiagonal.

Since V \ V ′ = Vvan, Ω is finite. Hence, by [14, Theorem 4], SΩj∩V ′
j

is also
quasidiagonal. However, depending on j, SΩj∩V ′

j
is unitarily equivalent to

the unilateral shift or to the adjoint of the unilateral shift, which is a con-
tradiction.
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(ii)⇒(iii). By Proposition 1.3, for every j = 1, 2,
(11) GN

ess(V
′
j ) ∩ GN

ess(Vj \ V ′
j ) ̸= ∅ for every N ∈ N,

or
(12) GN

ess(V
′
j ) ∩ GN

ess(V3−j \ V ′
3−j) ̸= ∅ for every N ∈ N,

or
(13) GN

ess(V
′
j ) ∩ GN

ess(V
′
3−j) ̸= ∅ for every N ∈ N.

Condition (13) gives us (d). In turn, combining (11), (12), Theorem 3.4, and
Theorem 4.4, we obtain (a), (b), or (c).

(iii)⇒(i). Indeed,

• (a)⇒(i): the fact that the direct sum of two quasidiagonal operators is
quasidiagonal is standard (see [11, p. 902]);

• (b)⇒(i) follows from Propositions 5.5 and 5.7;
• (c)⇒(i) is the content of Proposition 5.8;
• (d)⇒(i) follows from Proposition 5.3.

6. Examples

6.1. In this section we shall present two examples of quasidiagonal (un-
weighted) shifts on directed trees corresponding to (a) the rooted case, and
(b) the double ray case. Before doing so, we describe an example of a qua-
sidiagonal weighted shift acting on a rooted directed tree whose subgraphs
of height N fail to satisfy the conditions of Theorem 3.4; more explicitly

GN
ess(VP) ∩ GN

ess(V \ VP) = ∅ for every N ∈ N.
Indeed, by that theorem, the unweighted shift corresponding to the same
tree would not be quasidiagonal.

Example 6.1. Let T = (V,E) be a rooted directed tree, where

V = {(n,m) ∈ N× N0 : m ≤ n}
and ((n,m), (k, l)) ∈ E if and only if

• k − n = 1 and m = l = 0, or
• n = k and l −m = 1.

For every n ∈ N, let un denote the vertex (n, 0). It is obvious that u1 is
the root of T and that T admits only one path P = (VP , EP), where
VP = {un : n ∈ N}. Moreover,

GN
ess(VP) ∩ GN

ess(V \ VP) = ∅ for every N ∈ N.
Define λ = {λv}v∈V ◦ by

λ(n,m) =

{
1/
√
2 if m ≤ 1 and (n,m) ̸= (1, 0),

1 if m > 1.
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(i) Let N ∈ N be arbitrary. Define H−1 := ℓ2(V ) ⊖ ℓ2(Des(uN )). For
0 ≤ j ≤ N , set Hj := CSj

λeuN . Finally, set K := ℓ2(V )⊖⊕N
j=−1 Hj .

Relative to the decomposition ℓ2(V ) = H−1 ⊕H0 ⊕ · · · ⊕HN ⊕K , the
operator matrix for Sλ has the form

A−1,−1

A0,−1 0

A1,0 0
. . . . . .

AN,N−1 0

AN+1,N AN+1,N+1


.

(ii) Next, let vN = (2N + 1, 1), so that ℓ2(vN ) ⊆ K . We define K−1 :=
K ⊖ ℓ2(Des(vN )), and for 0 ≤ j ≤ N , we set Kj := ℓ2(Chi⟨j⟩(vN )). Finally,
we set KN+1 := K ⊖⊕N

j=−1 Kj .
Relative to the decomposition K = K−1⊕K0⊕· · ·⊕KN+1, the operator

matrix for AN+1,N+1 has the form

B−1,−1

B0,−1 0

B1,0 0
. . . . . .

BN,N−1 0

BN+1,N BN+1,N+1


.

Observe that Sλ(HN ) ⊆ ℓ2(Chi⟨N+1⟩(uN )) ⊆ K−1. From this it follows
that the operator matrix [Ti,j ] for Sλ relative to the decomposition ℓ2(V ) =
H−1 ⊕ H0 ⊕ · · · ⊕ HN ⊕ K−1 ⊕ K0 ⊕ K1 ⊕ · · · ⊕ KN+1 is tridiagonal, and
the only non-zero entries appear either

• on the first subdiagonal, or
• at the A−1,−1, B−1,−1 and BN+1,N+1 entries.

Moreover, Hj and Kj are one-dimensional Hilbert spaces for every 0 ≤ j ≤ N .
(iii) Let 1 ≤ j ≤ N . Then, by [15, Lemma 6.1.1],

∥Sj
λeuN ∥2 =

∑
v∈Chi⟨j⟩(uN )

∣∣∣j−1∏
i=0

λpari(v)

∣∣∣2

=

j∑
k=0

∣∣∣j−1∏
i=0

λpari((N+k,j−k))

∣∣∣2 = j−1∑
k=0

1

2k+1
+

1

2j
= 1.
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Hence, since Hj , Hj−1, Kj , and Kj−1 are one-dimensional, we may fur-
ther assume (after possibly applying a unitary conjugation) that Aj,j−1 =
Bj,j−1 = 1, where 1 ≤ j ≤ N .

Now, we can apply the Berg–Davidson technique (Proposition 2.2) to
obtain a projection P satisfying

• H−1 ⊕ KN+1 ⊆ ranP ⊆ (
⊕N

j=−1 Hj)⊕ (
⊕N+1

j=0 Kj),
• ∥PSλ − SλP∥ ≤ π

N+1 .

Hence,

(i) LN = H−1 ⊆ ranP ,
(ii) ranP ⊆ (

⊕N
j=−1 Hj)⊕ (

⊕N+1
j=0 Kj) ⊆ L2N+2.

Applying Lemma 2.1 we conclude that Sλ ∈ QD.

Example 6.2. Consider the directed tree T described in Figure 2.
(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

...

(1, 1)

(2, 1) (2, 1)

(2, 3)

(3, 1) (3, 1)

(3, 3) (3, 4) (3, 5)

(3, 6) (3, 7)

(4, 1) (4, 2)

(4, 3) (4, 4) (4, 5)

(4, 6)

(4, 7) (4, 8) (4, 1)

(4, 10) (4, 11) (4, 12)

(4, 13) (4, 14)

(4, 15)

· · ·

Figure 2. A directed rooted tree.. Fig. 2. A directed rooted tree
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The construction of this tree is as follows: we define inductively finite
directed trees Tn for every n ∈ N and take the union

⋃
n∈N Tn. Let T1 =

(V1, E1), where V1 = {(1, 0)} and E1 = ∅. Assume that Tn is defined for
some n ∈ N. Denote by V ′

n the set {(n, ℓ) : 1 ≤ ℓ ≤ #Vn}. Then

Vn+1 = Vn ∪ {(n+ 1, 0)} ∪ V ′
n.

To define En+1 one puts an edge between (n, 0) and (n+ 1, 0) and an edge
between (n, 0) and (n, 1). One also “attaches” to the vertex (n, 1) a copy of Tn

defined on V ′
n, which means that Tn

∼= T ′
n = (V ′

n, E
′
n) for some E′

n ⊂ V ′
n×V ′

n

and (n, 1) is the root of T ′
n. Hence,

En+1 = En ∪ {((n, 0), (n+ 1, 0)) , ((n, 0), (n, 1))} ∪ E′
n.

Set Tn+1 = (Vn+1, En+1). Thus we get a sequence of finite trees.
Define

T = (V,E) =
(⋃
n∈N

Vn,
⋃
n∈N

En

)
.

Note that T is a directed tree. Its root is (1, 0), and the unique path is
P = {(n, 0) : n ∈ N} with edges {((n, 0), (n+ 1, 0)) : n ∈ N}.

It is relatively easy to see from the nature of our construction that for
any N ∈ N, the finite subtree DesN (u0) lies in

GN (VP) ∩ GN (V \ VP) ̸= ∅.

As an immediate consequence of Theorem 3.4, the unweighted shift SV acting
on this tree is quasidiagonal.

Example 6.3. Consider the directed tree T described in Figure 3.
This tree is constructed in the following way: Let T0 = (V0, E0), where

V0 = (N0 × {0}) ∪ {(n,m) ∈ Z× N0 : n < 0 and 0 ≤ m ≤ −n}
and ((n,m), (k, l)) ∈ E0 if and only if either

• k − n = 1 and m = l = 0, or
• n = k and l −m = 1.

Define also Wk = {(n,m) ∈ Z × N0 : −k ≤ n < 0 and 0 ≤ m ≤ −n} for
k ∈ N. The sets Wn, n ∈ N, will be considered as induced subtrees of T0.
Denote by W ′

n the set {(n2, ℓ) : ℓ ∈ N, 1 ≤ ℓ ≤ 1
2(n

2 + 3n)} for n ∈ N.
Then

V = V0 ∪
⋃
n∈N

W ′
n.

To define E one puts an edge between (n2, 0) and (n2, 1) and “attaches” to
the vertex (n2, 1) a copy of Wn defined on W ′

n for every n ∈ N. This means
that Wn

∼= T ′
n = (W ′

n, E
′
n) for some E′

n ⊂ W ′
n × W ′

n and (n2, 1) is the
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...

(−3, 0) (−3, 1) (−3, 2) (−3, 3)

(−2, 0) (−2, 1) (−2, 2)

(−1, 0) (−1, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

...

(1, 1) (1, 2)

(4, 1) (4, 2) (4, 3)

(4, 4) (4, 5)

(9, 1) (9, 2) (9, 3) (9, 4)

(9, 5) (9, 6) (9, 7)

(9, 8) (9, 9)

Figure 3. A directed tree with one double ray.Fig. 3. A directed tree with one double ray

root of T ′
n. Hence,

E = E0 ∪
⋃
n∈N

(
{((n2, 0), (n2, 1))} ∪ E′

n

)
.

Consider the infinite tree T = (V,E).

Letting un = (n, 0) for n ∈ Z, we see that T admits a unique double
ray {un : n ∈ Z}. In this case, GN

ess(V
′
1) contains arbitrarily long subtrees
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of the form {(m + 1, 0), . . . , (m +N, 0)} with edges between (m + i, 0) and
(m+ i+ 1, 0) for 1 ≤ i ≤ N − 1.

Such subtrees clearly appear as subtrees in GN
ess(V2 \ V ′

2), corresponding
to the vertices (−r, 1), (−r, 2), . . . , (−r,N) for all r ≥ N . Thus

GN
ess(V

′
1) ∩ GN

ess(V2 \ V ′
2) ̸= ∅.

Meanwhile, by construction, for each N ≥ 1, we have placed a copy
of the subtree of V2 corresponding to the vertices {(−m, ℓ) : 1 ≤ m ≤ N,
0 ≤ ℓ ≤ m} starting at vertices (N2, 1), from which we deduce that

GN
ess(V

′
2) ∩ GN

ess(V1 \ V ′
1) ̸= ∅.

By Theorem 5.9, the corresponding unweighted shift SV acting on this
tree is quasidiagonal.

It is worth noting that if V1 = Des(u0), then the corresponding shift SV1

(as defined in Proposition 5.7) is quasidiagonal by Proposition 3.3, since for
each N ≥ 1,

GN
ess(V

′
1) ∩ GN

ess(V1 \ V ′
1) ̸= ∅.

(Indeed, there exist arbitrarily long subtrees of the form {(m + 1, 0), . . . ,
(m+N, 0)} with edges between (m+i, 0) and (m+i+1, 0) for 1 ≤ i ≤ N−1
which lie in the intersection of these two sets.)
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