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Abstract

Since the discovery of the accelerated expansion of the universe in the late 90s, the flat
ΛCDM model has reigned as the best explanation for the cosmological phenomena we have
observed. In spite of over two decades of study, the identities and properties of both cold
dark matter (CDM) and dark energy (Λ) remain a mystery. The goal of modern precision
cosmology is to measure cosmological parameters using a multitude of probes in the pursuit
of deviations from the ΛCDM framework or insights into the properties of dark matter and
dark energy. If the probe being considered is the matter power spectrum measured from a
galaxy redshift survey, then the precision of the derived parameters is determined by the
power spectrum covariance matrix. The analytic form of the covariance matrix is difficult
to estimate, so common practice is to run many simulations of the survey volume to get a
brute-force estimate.

Next-generation cosmological surveys are set to collect higher resolution data within a
larger survey volume than ever before. The complexity and number of simulations that will
be required to estimate the covariance matrix of these surveys is threatening to become too
computationally expensive for even the most advanced computer clusters. Thus, there is
an urgent need to develop novel techniques for reducing the computation time required to
achieve such precise covariance estimates. While many proposed methods seek to reduce
the number of simulations required, it is also possible to leverage the volume scaling of the
covariance matrix, allowing one to reduce the size of the simulations required.

Super-sample covariance (SSC) is a contribution to the covariance matrix made by
modes of the power spectrum that are larger than the volume of a survey or simulation.
If this volume scaling of the covariance is to be taken advantage of, then the SSC within
the simulations must be accurately modeled. To this end, I review methods of running
separate universe (SU) simulations to account for the effects of SSC. While these methods
have all been shown to recover the SSC with reasonable accuracy, they have been largely
developed and tested in isolation from one another. I present my work in directly comparing
the accuracy of these methods in recovering the SSC effect using ensembles of N-body
simulations.

Even with SSC accurately modeled, the volume scaling of the covariance does not hold
for arbitrarily small volume simulations; at some point, the analytic behaviour of the co-
variance is expected to break down. I push the volume scaling to its limit by running many
thousands of simulations at different volumes and scaling the covariance to match that of
a larger volume survey. The SSC term has a nontrivial relation to the simulation volume,
preventing it from scaling in the same way as the other components of the covariance. In
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light of this, I present a way to include SSC such that the scaled covariance could still
be recovered with good accuracy. I find the scaled covariance matches the large volume
covariance to within ∼ 4% or better on most scales, with higher k bins being biased low
due to missing a small component of the SSC. The scaled covariance at very low k for very
small simulations is substantially lower than the large mock covariance at those scales due
to very few modes of that scale being present in the small volume simulations. This creates
a skewness in the distribution of power at those scales. By computing the number of modes
required to avoid this skewed distribution of power, I derive a way to estimate the mini-
mum simulation volume that could be used to accurately model the covariance at a given
scale. The accurate modeling of SSC and optimal leveraging of the volume scaling of the
covariance matrix are powerful complementary tools with the potential to substantially
reduce the computational cost of covariance matrix estimation for future galaxy survey
data.
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to Marie-Joëlle Gingras for the never-ending supply of bubble gum.

Thank you to Adrian Bayer and Prof. Wayne Hu for useful discussions regarding super-
sample covariance in simulations. Your insightful advice helped me get past the last great
hurdle of this project.

Thank you to my family and friends, whose emotional support carried me through
any hardships I found myself in. I truly appreciate your interest in my project and your
patience as I tried to describe what a covariance matrix was using as little math as possible.
An extra special thank you goes to my smarter half Chelsea Frank. You are my rock, and
every day you challenge me to be the best version of myself I can be.

Finally, thank you to Raithin, Odin, Rukat, and Darva, who have waited so patiently
for their dungeon master to return.

v



Dedication

To my dad. It means the world to know you’re proud of me.

vi



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Standard model of cosmology . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The ΛCDM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Growth of structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Linear evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Nonlinear growth and spherical collapse . . . . . . . . . . . . . . . 5

1.3 Quantifying matter clustering . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 2-point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

vii



1.3.2 Beyond the 2-point functions . . . . . . . . . . . . . . . . . . . . . 7

1.4 Observations of ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 The distance-redshift relation . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Defining distances in cosmology . . . . . . . . . . . . . . . . . . . . 9

1.4.3 The distance ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.4 The cosmic microwave background . . . . . . . . . . . . . . . . . . 10

1.4.5 Spectroscopic galaxy surveys . . . . . . . . . . . . . . . . . . . . . . 11

1.4.6 Galaxy lensing surveys . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.7 The power spectrum covariance matrix . . . . . . . . . . . . . . . . 14

1.5 Tensions in the ΛCDM model . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 H0 tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2 S8 tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 N-body simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.2 COLA method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.3 Using L-PICOLA simulation code . . . . . . . . . . . . . . . . . . . 23

1.6.4 Processing pipeline: From particle catalog to power spectrum . . . 24

1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Super-Sample Covariance 27

2.1 Power spectrum response to larger-than-box modes . . . . . . . . . . . . . 28

2.2 Mode coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 SSC in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Calculating the variance of the background density . . . . . . . . . . . . . 31

2.5 Running separate universe simulations . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Perturbed parameter approach . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Spherical collapse approach . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Calculating the SSC effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



2.6.1 Ensemble method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Addition method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Comparing apples to apples . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Error on the covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9.1 Comparison of parameter choices . . . . . . . . . . . . . . . . . . . 39

2.9.2 Comparison of addition and ensemble method implementation . . . 46

2.9.3 Comparison to previous results . . . . . . . . . . . . . . . . . . . . 46

3 Volume Scaling of the Covariance Matrix 52

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Ensembles run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Volume scaling of covariance without SSC . . . . . . . . . . . . . . . . . . 57

3.4 Volume scaling SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Volume scaling before SSC correction . . . . . . . . . . . . . . . . . . . . . 63

3.6 A prescription for avoiding skewness . . . . . . . . . . . . . . . . . . . . . 65

3.7 How to optimally use the volume scaling technique . . . . . . . . . . . . . 66

4 Conclusions 68

References 72

ix



List of Figures

1.1 Linear-theory matter power spectrum at z = 0 inferred from different cos-
mological probes. The solid black line shows the predicted linear power
spectrum from the ΛCDM model, while the dotted line shows the nonlinear
power spectrum. The ΛCDM model is remarkable in its ability to explain
results from such a wide variety of independent probes. Figure sourced from
[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 68% constraints on H0 measurements from different cosmological probes.
The measurements are divided into direct probes of H0 via the expansion
rate and indirect probes that assume a particular cosmological model. The
purple band shows constraints from Planck 2018 [4], and the orange band
shows constraints from SH0ES [59]. Figure sourced from [27]. . . . . . . . . 17

1.3 68% constraints on S8 measurements from different cosmological probes.
The measurements are divided into early and late universe probes. The
purple band shows constraints from Planck 2018 [4]. Figure sourced from [27]. 19

1.4 Evolution of the overdensity field within an N-body simulation at z = 10
(top left), z = 1 (top right), z = 0.5 (bottom left), and z = 0 (bottom right).
The overdensity field is computed on a (256)3 grid and projected onto the
x− y plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Present-day power spectrum within a L = 625 h−1Mpc cube as predicted by
linear theory and measured from an N-body simulation. The contribution
to the power from non-linear modes becomes dominant for k > 0.3 hMpc−1 21

x



1.6 Effects of antialiasing on the power spectrum. The ”true“ power spectrum
was computed using a much higher resolution mesh grid, effectively increas-
ing the Nyquist limit. The “NEAREST” resampler assigns particles to the
nearest grid cell, and the “pcs” resampler convolves the particle position
with equation 1.51 using p = 4. The combination of the PCS resampler
and interlacing technique allows the power spectrum to be recovered almost
perfectly up to the Nyquist limit. . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 A demonstration of the peak-background split in the presence of a long
wavelength mode. Shaded areas represent regions with sufficient overdensity
to undergo collapse. In absence of a long wavelength mode (left panel), the
overdensity crosses the critical density for collapse (dashed line) in fewer
places than it would if such a mode were present (right panel). . . . . . . . 29

2.2 Ratio of diagonal elements of ∆C as estimated by the Wishart distribution
and bootstrap resampling methods. . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Comparison of Sirko (red x) and SC (black plus) method variance over small
box variance. The blue curve and shaded region show the subbox variance
and the 2σ confidence interval. The left and right panels show the variance
relative to the global and local mean density, respectively. . . . . . . . . . 42

2.4 Accuracy of the Sirko and SC method variances in recovering the subbox
variance. The left and right panels show the global and local mean results,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Comparison of select off-diagonal elements of the correlation matrices. Blue
dots represent sub boxes, black pluses represent SC addition boxes, and red
xs represent Sirko addition boxes. The left and right panel show the global
and local mean results, respectively. . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Difference in correlation coefficients Cred−Cred,small for sub boxes (top row),
Sirko addition method (middle row), and SC addition method (bottom row).
Left and right columns show global and local mean results, respectively. . . 45

2.7 Comparison of SC addition (red x) and ensemble (black plus) variance over
small mock variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Comparison of select off-diagonal elements of the correlation matrices. Blue
dots represent sub boxes, black pluses represent SC ensemble method boxes,
and red xs represent SC addition method boxes. The left and right panel
show the global and local mean results, respectively. . . . . . . . . . . . . . 47

xi



2.9 Difference in correlation coefficients Cred−Cred,small for SC ensemble method
boxes. Left and right panels show global and local mean results, respectively. 48

2.10 Variance over the Gaussian expectation of subbox (solid lines) and SU
(pluses) simulations from [44] (blue), [10] (black), and this work (red). The
left and right panels show global and local mean results respectively. . . . . 51

3.1 Measured power spectrum derivative relative to the global mean for different
sized mocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Ratio of volume scaled small box covariance and large box covariance with
no SSC correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Ratio of select off-diagonal elements of the scaled small mock and large
mock covariances. The blue dots correspond to the scaled covariance of
the L = 625 h−1Mpc boxes, and the black pluses correspond to the scaled
covariance of the L = 312.5 h−1Mpc boxes. . . . . . . . . . . . . . . . . . . 59

3.4 Histograms of power spectrum amplitudes in the k = 0.04 hMpc−1 bin. The
left panel shows the power spectrum amplitudes in the L = 1250 h−1Mpc en-
semble, and the right panel shows the amplitudes in the L = 312.5 h−1Mpc
ensemble. The black dashed line shows the average power, and the solid
black curve shows a Gaussian distribution with mean and variance match-
ing those computed from the power spectra. In the L = 312.5 h−1Mpc
ensemble, there is a noticeable skewness in the distribution compared to a
Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Ratio of volume scaled small box covariance and large box covariance with
SSC correction. The small mock covariance had its SSC term added before
being scaled by the volume ratio. The left and right panels show covariance
ratios relative to global and local mean densities, respectively. The error
bars represent the 1σ confidence interval as estimated from the Wishart
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Ratio of select off-diagonal elements of the scaled small mock and large
mock covariances with the small mock SSC correction as described in equa-
tion 3.12. The blue dots correspond to the scaled covariance of the L =
625 h−1Mpc boxes, and the black pluses correspond to the scaled covari-
ance of the L = 312.5 h−1Mpc boxes. The left and right panels show the
covariance ratios relative to global and local mean densities, respectively. . 62

xii



3.7 Ratio of volume scaled small box covariance and large box covariance with
SSC correction. The SSC term was added to the scaled small mock covari-
ance after volume scaling. The left and right panels show covariance ratios
relative to global and local mean densities, respectively. The error bars rep-
resent the 1σ confidence interval as estimated from the Wishart distribution. 63

3.8 Ratio of select off-diagonal elements of the scaled small mock and large
mock covariances with the large mock SSC correction as described in equa-
tion 3.13. The blue dots correspond to the scaled covariance of the L =
625 h−1Mpc boxes, and the black pluses correspond to the scaled covari-
ance of the L = 312.5 h−1Mpc boxes. The left and right panels show the
covariance ratios relative to global and local mean densities,respectively. . . 64

xiii



List of Tables

2.1 Flat ΛCDM parameters chosen for the background universe. . . . . . . . . 41

2.2 Flat ΛCDM parameters used by [44]. . . . . . . . . . . . . . . . . . . . . . 48

2.3 Flat ΛCDM parameters used by [10]. . . . . . . . . . . . . . . . . . . . . . 49

xiv



List of Abbreviations

ΛCDM Λ Cold Dark Matter 3, 8, 12, 16, 17, 25, 41, 48, 49, 68

2LPT second-order Lagrangian Perturbation Theory 23

2PCF 2-Point Correlation Function 6, 7, 70

BAO Baryon Acoustic Oscillation 10, 11, 13

BC Beat Coupling 43

CDM Cold Dark Matter 4

CIC Clouds-in-Cells 48, 49, 66

CMB Cosmic Microwave Background 11, 13, 16, 17, 22

COLA COmoving Lagrangian Acceleration 22–24, 50

DESI Dark Energy Spectroscopic Instrument 69

FFT Fast Fourier Transform 22, 24, 25, 49

FLRW Friedmann-Lemaitre-Robertson-Walker 1, 2, 35, 68

HSV Halo Sample Variance 43

L-PICOLA Lightcone-enabled Parallel Implementation of COmoving Lagrangian Accel-
eration 23, 24, 35, 39, 54

LD Linear Dilation 43

xv



LPT Lagrangian Perturbation Theory 23

PBCs Periodic Boundary Conditions 31, 32

PM Particle Mesh 22–24, 30, 48–50, 66

SC Spherical Collapse 27, 36, 39, 41–48, 68

SSC Super-Sample Covariance 27, 29–32, 35, 36, 39, 41–43, 47–50, 52, 54, 55, 57, 58, 60,
61, 63, 65, 66, 68–71

SU Separate Universe 32, 33, 36, 37, 48, 51

xvi



Chapter 1

Introduction

1.1 Standard model of cosmology

The current model of cosmology is dependent on the cosmological principle and Einstein’s
theory of general relativity. The cosmological principle states that, on sufficiently large
scales (> 100 Mpc), the universe is homogeneous and isotropic. The homogeneity of the
universe implies that any given (large) patch of the universe contains about the same
amount of stuff and obeys the same laws of physics as any other patch. The isotropy of
the universe implies that, on large scales, the universe looks the same in all directions.
General relativity describes the geometry of the universe as a 4-dimensional spacetime.
The presence of matter or energy causes this spacetime to curve, resulting in the force of
gravity. This relationship is given by Einstein’s field equation [25]

Gµν + Λgµν =
8πG

c4
Tµν , (1.1)

where Gµν is the Einstein tensor describing the curvature of spacetime, gµν is the metric
tensor, Λ is the cosmological constant, G is the gravitational constant, c is the speed of light,
and Tµν is the stress-energy tensor describing the density and flux of energy and momentum.
Einstein’s field equation and the cosmological principle can be combined to derive the
general metric of spacetime, known as the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric [31, 43, 60, 78]. The FLRW metric can be written in polar coordinates as

ds2 = −c2dt2 + a(t)2
[
dr2 + Sκ(r)

2dΩ2
]
, (1.2)

where
dΩ2 ≡ dθ2 + sin2θdϕ2 (1.3)
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and

Sκ(r) =


Rsin(r/R) κ = +1
r κ = 0
Rsinh(r/R) κ = −1

(1.4)

Here, a(t) is the scale factor of the universe. The scale factor describes how distances in the
universe change with time as space expands and is normalized to a(t) = 1 at present day.
In equation 1.4, R is the radius of curvature of the universe, and the value of κ represents
the direction of the curvature: κ = 1 represents closed spherical geometry, κ = 0 represents
flat geometry, and κ = −1 represents open hyperbolic geometry.

Using the FLRW metric and Einstein’s field equations, equations describing the rela-
tionship between the energy content of the universe, its curvature, and its scale factor can
be derived. The first of these equations is the Friedmann equation(

ȧ

a

)2

=
3πG

3c2
ε(t)− κc2

R2
0

1

a(t)2
, (1.5)

where ε(t) is the total energy density of the universe, and R0 is the radius of curvature of the
universe measured at present day. The Friedmann equation tells us how fast the universe
is expanding given its energy content. The expansion rate is often written in terms of the
Hubble parameter H ≡ ȧ/a. The second equation of interest is the acceleration equation,
which describes how the expansion rate changes over time. It is given by

ä

a
= −4πG

3c2
(ε+ 3P ), (1.6)

where P is the pressure within the universe. It is derived by combining the Friedmann
equation with the fluid equation which describes how the energy density of the universe
changes over time

ε̇+ 3
ȧ

a
(ε+ P ) = 0. (1.7)

To solve these equations, the relationship between energy density and pressure must be
known for the different components of the universe. This relation is known as the equation
of state, and for substances relevant in a cosmological context it takes the general form

P = wε, (1.8)

where w is the equation of state parameter for the substance being considered. The equa-
tion of state parameters for common components of the universe are

w = 0 for nonrelativistic matter
w = 1/3 for radiation
w = −1 for a cosmological constant.

. (1.9)
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These can be plugged into the fluid equation to relate the energy density of each component
to the scale factor. Nonrelativistic matter scales as εm ∝ a−3 since the density of matter
dilutes as the volume of the universe increases. The number density of photons scales
as a−3, but the energy of each photon also scales as a−1 as its wavelength is stretched
out by the expansion of the universe, resulting in the photon energy density scaling as
εr ∝ a−4. The cosmological constant is gets its name from the fact that its energy density
remains constant as the universe increases. For a universe with these three components,
its expansion history can be split into the radiation-dominated, matter-dominated, and
dark-energy-dominated eras, defined by the component that accounted for the majority of
the energy density at that time.

When working with the Friedmann equation, it is useful to define the critical density
εc(t)

εc(t) ≡
3c2

8πG
H(t)2 (1.10)

at which the curvature of the universe is exactly zero. From this, the energy density of the
universe can be expressed using a dimensionless density parameter

Ω(t) ≡ ε(t)

εc(t)
. (1.11)

The dimensionless density parameter Ω can be split into different components correspond-
ing to matter Ωm, radiation Ωr, and the cosmological constant ΩΛ. The Friedmann equation
can be rewritten in terms of these density parameters

H2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

]
, (1.12)

where Ωk = κc2/R2
0 and subscript 0 denotes values at present day.

1.1.1 The ΛCDM model

The ΛCDMmodel, also known as the concordence model, is the current model of cosmology
that best fits the observed properties of the universe. This model is spatially flat and has
its present day energy density made up of three main components: baryonic matter, Cold
Dark Matter (CDM), and dark energy in the form of a cosmological constant. Baryonic
matter consists of protons, neutrons, electrons, and other similar massive particles. It
makes up only a small fraction of the universe’s energy budget. Dark matter is a currently
unidentified type of matter that interacts via gravity [82, 53, 24, 61], but has not been
detected to interact via any other mechanisms. As such, all measurements of the position
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and abundance of dark matter are made indirectly by observing its gravitational effects on
photons and baryonic matter. Indirect observations of dark matter have revealed that the
overwhelming majority of it is moving at nonrelativistic speeds (v << c), so it is referred
to as Cold Dark Matter (CDM). The tightest constraints on the amounts of matter and
dark energy in the universe come from the Planck collaboration [4], finding values of
Ωm = 0.315± 0.007 and ΩΛ = 0.685± 0.007.

1.2 Growth of structure

While the universe on large scales obeys the cosmological principle, the matter within is
not distributed perfectly evenly. Initial small perturbations in the density field ρ(x) grow
due to the uneven force of gravity acting on nearby matter, causing overdense regions to
become denser as time passes and underdense regions to become emptier. When working
with the density field of the universe, it is useful to define the overdensity field

δ(x, t) =
ρ(x, t)− ρ

ρ
, (1.13)

where ρ is the mean density of the universe, such that δ > 0 corresponds to regions of space
with higher than average density and δ < 0 corresponds to lower than average density. It
is also useful to define its Fourier transform

δ̃(k) =
1√
V

∫
δ(x, t)e−ik·xd3x, (1.14)

where V is the volume being integrated. It is useful to work with δ̃ because, if δ̃ is a
Gaussian random field (as is true in the early universe), the different k modes will each
evolve independently of one another. It should be noted that high k modes correspond to
small wavelength perturbations and thus small-scale structure, and low kmodes correspond
to large scales.

1.2.1 Linear evolution

Under the assumption that these density perturbations are small (δ ≪ 1), an equation
can be derived for how these perturbations change over time. Combining The continuity,
Euler, and Poisson equations and assuming constant entropy across the entire field gives

d2δ̃

dt2
+ 2

ȧ

a

dδ̃

dt
= δ̃

(
4πGρ− c2sk

2

a2

)
, (1.15)
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where cs is the speed of sound. There is a characteristic length known as the Jeans length

λJ = cs

√
π

Gρ
, (1.16)

below which the pressure within a fluid is able to effectively oppose gravity and above
which the perturbations are free to grow. During the radiation-dominated era, the speed
of sound in the universe was cs = c/

√
3. This caused the Jeans length during that era

to be quite large, suppressing the growth of structure. Once the matter-dominated era
began and especially after recombination occurred, cs decreased substantially and matter
perturbations were able to grow in earnest. Considering the density field in the matter-
dominated era and on scales larger than λJ , equation 1.15 simplifies to

d2δ̃

dt2
+ 2

ȧ

a

dδ̃

dt
− 4πGρδ̃ = 0, (1.17)

which can be solved numerically for a given cosmology.

All density perturbations satisfying these assumptions will evolve identically to one
another. In this case, one can define the linear growth factor,

D(a) = D(1)
δ(a)

δ(1)
, (1.18)

characterizing how much the amplitudes of these perturbations have grown from scale factor
a to present day. The linear growth factor can be calculated for any given cosmology as

D(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
, (1.19)

where the form of H(a) is determined by the Friedmann equation. Here, the growth factor
is normalized such that, during the matter-dominated era, D(a) = a. Using equation
1.18, the linear evolution of δ can be calculated for any scale factor of interest. The linear
evolution of the power spectrum can also be calculated as

P (k, a) =

(
D(a)

D(1)

)2

P (k, 1). (1.20)

1.2.2 Nonlinear growth and spherical collapse

While linear theory serves well for small density perturbations, the approximations used to
build it break down once the perturbations grow to δ ∼ 1. The simplest nonlinear extension
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to linear theory is the spherical top-hat collapse model [34, 56]. The method considers
the density perturbation to be a homogeneous sphere that begins with slightly higher
overdensity than the background universe. As space expands, the radius of the sphere
grows to a maximum value, after which point the gravity of the region is strong enough
to overcome the Hubble flow and the region begins collapsing. Under this approximation,
this collapse would theoretically continue until the radius of the region was zero, but in
reality this spherical region instead becomes a virialized structure called a halo. From
this formalism, a critical density for collapse δc = 1.686 can be defined. This critical
density corresponds to the linearly extrapolated present day density of a region required
for the region to finish collapsing by today. This δc is useful in identifying the scales at
which linear theory is expected to hold well and which scales undergo nonlinear evolution.
Length scales greater than 40 h−1Mpc (k ≲ 0.15hMpc−1) are considered linear, scales
between 40 and 20 h−1Mpc (0.15 < k < 0.3hMpc−1) are quasilinear, and scales below 20
h−1Mpc (k > 0.3 hMpc−1) are considered nonlinear.

1.3 Quantifying matter clustering

The large scale structure of the universe is commonly studied through the lens of clustering
statistics. In Sec. 1.3.1, I describe the most common 2-point statistics used to quantify
matter clustering. In Sec. 1.3.2, I briefly cover higher order functions used to fully describe
a non-Gaussian matter distribution. Sec. 1.4.7 introduces the power spectrum covariance
matrix and its significance in evaluating the likelihood of a cosmological model.

1.3.1 2-point statistics

The most straightforward way to quantify the clustering of matter is using the 2-Point
Correlation Function (2PCF) of the tracers of the overdensity field

ξ(x′) = ⟨δ(x+ x′)δ(x)⟩ . (1.21)

The 2PCF captures how likely one is to find a tracer at position x+x′ given there is one at
position x compared to the expectation from a Poisson distribution. In the case of galaxy
surveys, this is usually calculated by pair counting where the separation of each pair of
tracers is counted and binned in terms of separation distance.
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The same clustering information captured in the 2PCF can also be quantified by its
Fourier transform, the matter power spectrum

P (k) =
〈
δ̃(k)δ̃∗(k)

〉
. (1.22)

Working with the power spectrum has the advantage of the understanding of large-scale
modes that follow linear evolution. These large-scale modes will evolve independently of
one another, and their behaviour can be well predicted analytically.

The information in the power spectrum is often convenient to compress in terms of
multipole moments

Pl(k) = (2l + 1)

∫ 1

0

P (k, µ)Ll(µ)dµ, (1.23)

where Ll are the Legendre polynomials and µ is the cosine of the angle to the line of sight.
In the case of a homogeneous and isotropic universe, all moments beyond the monopole
(l = 0) are expected to be zero. In real galaxy surveys, redshift space distortions can cause
anisotropies along the line of sight, making the higher order multipoles useful for detecting
them. The data used in this work are from simulations without redshift space distortions
and so will focus on the monopole moment of the power spectrum P (k).

1.3.2 Beyond the 2-point functions

In the case of a Gaussian random field, the field can be completely described by its 2-point
statistic, and all higher order statistics are able to be derived from the 2-point function.
The density field is approximately Gaussian at early times before significant gravitational
evolution has occurred. It is also Gaussian on large scales where linear theory holds, even
at late times. Nonlinear evolution of small scale structure at late times, however, induces
non-Gaussianity in the field. In this case, higher order clustering statistics can no longer be
calculated directly from the 2-point statistics and must be measured. The most common
of these higher order statistics are the 3-point and 4-point correlation functions, whose
Fourier transforms are the matter Bispectrum

B(k1,k2,k3) =
〈
δ̃(k1)δ̃(k2)δ̃(k3)

〉
(1.24)

and Trispectrum

T (k1,k2,k3,k4) =
〈
δ̃(k1)δ̃(k2)δ̃(k3)δ̃(k4)

〉
, (1.25)

respectively. In principle the n-point correlation function can be calculated for arbitrary
n, but increasing computational cost and vanishing statistical significance as n increases
makes doing so unnecessary for most cosmological applications.
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1.4 Observations of ΛCDM

The ΛCDM model is remarkable in its ability to match a multitude of independent obser-
vational probes with a small number of parameters. Probes such as the distance ladder, the
cosmic microwave background, redshift space distortions, baryon acoustic oscillations, and
the shape of the power spectrum all provide unique constraints on the model parameters.
In this section I summarize some of the key measurements and observations that lead to
the ΛCDM model becoming the most favoured.

1.4.1 The distance-redshift relation

A photon emitted by a galaxy that is moving radially relative to an observer will have its
wavelength shifted via the Doppler effect

λobs =
c+ vr

c
λemit, (1.26)

where vr is the galaxy’s radial velocity relative to the observer and λemit is the wavelength
of the photon when it was emitted. This shifting of wavelengths is commonly expressed as
a redshift z, where

1 + z =
λobs

λemit

. (1.27)

The radial velocity vr in equation 1.26 can be split into two components: the Hubble flow
caused by the expansion of the universe, and the peculiar velocity which is the galaxy’s
deviation from the Hubble flow. Since the velocity from the Hubble flow is linearly related
to the distance to the galaxy, vr can be rewritten as

vr = H0r + vpec,r, (1.28)

where r is the line of sight distance from the observer to the galaxy. Assuming the peculiar
velocity is negligible compared to the Hubble flow, the redshift z of the photon can be
related to the scale factor at the time of emission by

a =
1

1 + z
(1.29)

as well as the recession velocity and by extension the distance to the source

r =
zc

H0

. (1.30)

Typical peculiar velocities are on the order of hundreds of km/s, so givenH0 ∼ 70 kms−1Mpc−1,
the approximation of negligible peculiar velocity holds for objects more distant than tens
of Mpc.
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1.4.2 Defining distances in cosmology

It is common in cosmology to use comoving coordinates for distance measurements, which
are a coordinate system that expands along with the Hubble flow. Two points in space
will remain the same comoving distance apart as the scale factor increases with time. The
comoving distance between two points dc is related to the proper distance

dp = a · dc, (1.31)

where dp is the proper distance, which is the distance between the two points as would be
measured by a ruler. The comoving distance between two points depends on the expansion
history of the universe, introducing a factor of H0 into its calculation. While multiple
probes have determined the value of H0 at high precision, there is significant disagreement
between the values of H0 measured by these different probes (see sec. 1.5). The choice
of H0 would then greatly affect the comoving distance calculated. To avoid this, it is
common to report distances in units of h−1Mpc, where h = H0/(100 kms−1Mpc−1). This
way, distances can be reported with no assumed value of h, allowing the distance in Mpc
to be calculated for any desired H0. In this thesis, distances will typically be reported in
comoving h−1Mpc units, and any departure from this will be explicitly stated.

When measuring distance to an object at redshift z along the line of sight, determining
the comoving distance requires an integration over the expansion history between the time
of emission and observation

dc ≡ dH

∫ z

0

dz′

E(z′)
, (1.32)

where dH = c/H0 is the Hubble distance, and E(z) = H(z)/H0 is the dimensionless Hubble
parameter. The distance between two objects at the same redshift but separated by some
angle on the sky dθ is dMdθ, where dM is the transverse comoving distance

dM =


dH

a√
Ωk

sinh
[√

Ωk
dc
dH

]
Ωk > 0

dc Ωk = 0

dH
1√
|Ωk|

sin
[√

|Ωk| dcdH

]
Ωk < 0

(1.33)

This can then be used to find the angular diameter distance da of the object, which is the
ratio between its transverse size to its angular size

da =
dM
1 + z

. (1.34)
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The angular diameter distance is of particular interest for observing standard rulers such
as the Baryon Acoustic Oscillation (BAO) scale (see sec. 1.4).

The final distance of interest is the luminosity distance

dL =

√
L

2πS
= (1 + z)dM , (1.35)

where L is the intrinsic luminosity of an object and S is the bolometric flux of that object
measured by an observer. This distance measure is useful when determining distances to
objects of known luminosity such as type Ia supernovae.

1.4.3 The distance ladder

Making use of the distance-redshift relation requires calibration by an accurate measure-
ment of H0. This can be done by using a distance ladder. A distance ladder works by first
establishing a distance-luminosity relation to some nearby astrophysical objects through
geometric means, then using that relation to determine the distance-luminosity relation of
more luminous objects that are farther away. The first rung of the ladder is commonly
established by using parallax to measure the distance to nearby Cepheid variable stars.
The total luminosity of a Cepheid is related to the period at which its luminosity pulsates,
so the distance to such stars can be calculated from a measurement of the photon flux
observed from them. This is used to measure the distance to more distant Cepheids that
are too far to have their distances measured using parallax. The final rung of the ladder
is type Ia supernovae, caused when white dwarf stars accrete enough matter from a com-
panion star to overcome the electron degeneracy pressure keeping them from collapsing.
These supernovae are extraordinarily bright and have relatively similar luminosities to one
another, making them ideal for measuring the distance-redshift relation out to redshift
z ∼ 1. Measurements of type Ia supernovae provided the first evidence for the accelerated
expansion of the universe, which is now believed to be driven by dark energy [58, 57].
Currently, the most precise measurement of H0 using the distance ladder comes from the
SH0ES collaboration, who report a value of H0 = 73.04± 1.04 kms−1Mpc−1 [59].

1.4.4 The cosmic microwave background

While the distance ladder can provide tight constraints on the expansion history of the
universe, precise measurements of cosmological parameters can also be made from the
cosmic microwave background in the early universe. When the universe was only a few
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hundred thousand years old, it consisted of a hot, densely-packed sea of charged particles
and photons. The photons in this hot ionized plasma were coupled strongly to the charged
particles, meaning the average photon did not travel far between interactions with matter.
These constant photon interactions also exerted a pressure on the plasma that opposed
gravity, preventing the growth of structure. The universe was effectively opaque until it
expanded and cooled enough for the charged particles to combine together into neutral el-
ements during an epoch known as reionization. The photons interacted much less strongly
with the neutral matter particles and began free-streaming. These photons are still observ-
able today as the Cosmic Microwave Background (CMB) being emitted from all directions.
These photons follow a blackbody spectrum with temperature TCMB = 2.72548±0.00057K
[30].

The CMB provides a snapshot of the distribution of matter in the universe at the
time of recombination, meaning plenty of cosmological information can be inferred from
its measurements. The CMB on large scales is homogeneous and isotropic, providing a test
of the cosmological principle [4]. There are small anisotropies in the CMB caused by small
perturbations in the density field at the time of recombination. These tiny perturbations
(called primary anisotropies) became the seeds of large scale structures such as clusters and
voids. The CMB photons also interact with post-recombination matter via gravitational
lensing [12], the Sachs-Wolfe effect [62], and the Sunyaev-Zel’dovich effect [70, 68, 69].

Since the primary CMB anisotropies are correlated with the early matter anisotropies,
the CMB temperature power spectrum could be used to measure the matter power spec-
trum at recombination (see fig. 1.1). These initial perturbations are driven by Baryon
Acoustic Oscillation (BAO)s. Before recombination, the balance between gravity and ra-
diation pressure created acoustic standing waves in the density field. At the moment of
recombination, these BAOs were frozen in place and the existing anisotropies were able to
grow in the absence of the photon pressure. The size of the largest BAOs is determined by
how far the acoustic oscillations were able to travel over the lifetime of the universe before
recombination. These large scale BAOs create a distinctive peak in the correlation func-
tions of both the CMB and the late-time density field. The position of this BAO peak and
successive smaller BAO peaks can be used to provide strong constraints on cosmological
parameters at different points during the universe’s expansion history.

1.4.5 Spectroscopic galaxy surveys

Spectroscopic galaxy surveys provide information from the universe somewhere in between
the late and early times covered by the distance ladder and CMB, respectively. These
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Figure 1.1: Linear-theory matter power spectrum at z = 0 inferred from different cos-
mological probes. The solid black line shows the predicted linear power spectrum from
the ΛCDM model, while the dotted line shows the nonlinear power spectrum. The ΛCDM
model is remarkable in its ability to explain results from such a wide variety of independent
probes. Figure sourced from [3].
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surveys record the angular positions and emission spectra of a large number of galaxies.
By observing the redshift of certain emission lines from the galaxies, the distance-redshift
relation can be used to construct a 3D map of the patch of the universe covered by the sur-
vey. From this map, features in the clustering statistics can be used to extract information
about cosmological parameters.

One such feature is the BAO scale. Just as the BAO leaves an imprint on the temper-
ature of the CMB, it also leaves that same imprint on the clustering of galaxies [26]. The
scale of the BAO (also known as the sound horizon) acts as a standard ruler with a known
length, determined as

rs =

∫ ∞

z

dt

H(z)
cs(t), (1.36)

where cs is the speed of sound in the photon-baryon fluid before recombination. The
BAO peak allows one to extract information about the expansion history independent
of the distance ladder and the CMB, providing complementary constraints for various
cosmological parameters.

Galaxy surveys also contain information about the growth of structure encoded within
their peculiar velocities. When converting measured galaxy redshifts to radial distances
assuming the Hubble flow is the sole cause of the recession velocity, the peculiar velocities
of these galaxies cause their apparent positions to be shifted along the line of sight relative
to their true positions. These shifts are known as redshift space distortions. The peculiar
velocities of galaxies depends on the gravitational effect from their local surroundings, so
measuring the degree to which galaxy positions are distorted reveals information about the
matter present in the surrounding area.

Further information can be gleamed from the shape of the matter power spectrum.
The initial post-inflation power spectrum was a power law of the form P (k) ∝ kns . When
the universe was dominated by radiation, modes of the power spectrum did not grow.
However, modes larger than the horizon scale (the largest distance at which two points in
the universe could be in causal contact with one another) were able to grow similarly to
how they would during the matter dominated era. This suppressed the small-scale power
spectrum, with smaller scales being suppressed more due to entering the horizon earlier.
Once the universe became matter dominated, all modes of the power spectrum became
free to grow at the same rate, effectively freezing the shape of the power spectrum. The
turnover scale of the power spectrum can then be used to constrain the ratio of matter to
radiation.
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1.4.6 Galaxy lensing surveys

Another type of survey that can provide complementary cosmological information is a
galaxy lensing survey. In accordance with General Relativity, matter distorts spacetime
around it. Any light passing through this distorted spacetime will have its path bent
analogous to how light refracts when passing through a lens. In the case of light from a
distant galaxy being lensed by a mass between it and the observer, this causes the galaxy
to appear magnified and distorted compared to its true shape. When the galaxy’s light
passes in close proximity to a very massive lens, its shape is significantly distorted, often
forming an arc or a ring shape around the lens. This phenomenon is known as strong
gravitational lensing. If the source galaxy and the lens are not closely aligned, then the
distortion is much more subtle and a statistical analysis of many background galaxies is
required to infer the properties of the lens. This is known as weak gravitational lensing.

The basis for weak gravitational lensing analysis is the assumption that there is no
preferred orientation for galaxies in the universe. Lensing surveys measure the position and
alignment (also called shear) of distant galaxies in the sky. Any detection of a preferred
orientation in some region would be caused by the presence of a foreground lens, allowing
the matter distribution within the foreground to be inferred. There are three two-point
statistics commonly used in lensing analyses: the galaxy-galaxy correlation, capturing the
correlation between distant galaxy positions; the shear-shear correlation, capturing the
correlation between the galaxy distortions; and the galaxy-shear cross-correlation, relating
the positions of the observed galaxies to how much they are distorted.

The results are primarily sensitive to the cosmological parameters Ωm and σ8. While
Ωm parameterizes the total amount of matter in the universe, σ8 is a measure of how tightly
clustered that matter is; if one was to measure the overdensity of the universe within a
sphere of radius 8 h−1Mpc, one would expect to measure a value of 0± σ8. Weak lensing
provides a degenerate measurement of these two parameters which is commonly reported
as a new parameter S8:

S8 ≡ σ8

√
Ωm

0.3
. (1.37)

The current best constraints on S8 come from the Dark Energy Survey year 3 results, which
reports a value of S8 = 0.776± 0.017 [1].

1.4.7 The power spectrum covariance matrix

When testing a cosmological model against survey data, it is necessary to compute a
covariance matrix to test the likelihood of that model describing the data. The likelihood
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of measuring an observed matter power spectrum Pmeasured given some predicted matter
power spectrum from a model Pmodel is given by

L = (Pmeasured(k)− Pmodel(k))C
−1 (Pmeasured(k)− Pmodel(k)) , (1.38)

where C−1 is the inverse of the covariance matrix of the matter power spectrum

C(ki, kj) = ⟨P (ki)P (kj)⟩ − ⟨P (ki)⟩ ⟨P (kj)⟩ . (1.39)

The covariance matrix is a 4-point clustering statistic. In the case of δ being a Gaussian
random field, this means that the covariance matrix can be calculated directly from the
power spectrum

CGauss(ki, kj) ≡
1

V

(2π)3

Vki

2P (ki)
2δKij , (1.40)

where V is the survey volume, Vki is the volume of the ith spherical shell in k space, and
δKij is the Kronecker delta function. In this case the covariance CGauss would be diagonal,
reflecting the fact that the modes of a Gaussian random field are independent of each
other. Once nonlinear evolution has occurred and modes of the power spectrum become
correlated, the off diagonal terms of the covariance become nonzero. In this case, it has been
established that the covariance matrix picks up a contribution from the matter trispectrum
[28, 49, 64, 71]

C(ki, kj) = CGauss(ki, kj) +
1

V
T (ki, kj), (1.41)

were T is the bin-averaged trispectrum

T (ki, kj) =

∫
|k|∈ki

d3k

Vki

∫
|k′|∈kj

d3k′

Vkj

T (k,−k,k′,−k′). (1.42)

When analyzing a galaxy survey, one wants to minimize the covariance matrix in order
to get the tightest constraints possible on the cosmological parameters. This entails trying
to minimize the contributions of both cosmic variance and shot noise. Cosmic variance
comes from the fact that only a finite number of modes can be measured from a survey,
with larger volume surveys having a higher number of modes. If there are too few modes
at a scale of interest, their sampling will be noisy and not accurately represent the variance
of those modes in the universe as a whole. The shot noise component arises from the fact
that the sample of observed galaxies are Poisson sampled from the underlying density field,
adding a Pshotnoise =

1
n
term to the power, where n is the number density of galaxies. For

a finite number of galaxies in a survey, increasing the survey volume will decrease cosmic

15



variance and increase the shot noise. One can minimize the variance arising from these
two sources by minimizing

σP

P
=

nP + 1

nP
, (1.43)

where P is the estimated magnitude of the power spectrum at a scale of interest for the
survey [28]. Equation 1.43 can be minimized by assigning weights to the galaxies in the
survey that depends on the number density in its neighbourhood. These weights, denoted
as wFKP , are

wFKP =
1

1 + n(z)P
, (1.44)

where n(z) is allowed to take on different values depending on the redshift distribution of
the data.

1.5 Tensions in the ΛCDM model

While the ΛCDM model performs extraordinarily well in matching current observations,
there are tensions in the measured values of some of the cosmological parameters measured
by different probes.

1.5.1 H0 tension

The most significant tension in the ΛCDM model is between the value of H0 determined
by early universe measurements (e.g. CMB) and late time measurements of expansion rate
(e.g. type Ia supernovae). The most recent measurements of the CMB from the Planck
collaboration find a value of H0 = 67.27 ± 0.60 km s−1Mpc−1 [4], while measurements
from type Ia supernovae by the SH0ES collaboration prefer a higher value of H0 = 73.04±
1.04 km s−1Mpc−1 [59]. These values are in ∼ 5σ tension with one another, with other
early and late time probes of H0 tending to agree with Planck or SH0ES, respectively
(figure 1.2). Extensive searches for unknown systematic errors have been conducted but
have so far been unable to relieve the tension. The tension could possibly be relieved
by adding new physics to the ΛCDM model, such as modified gravity, early dark energy,
or violation of the cosmological principle. A detailed review of proposed modifications
that would alleviate the H0 tension are provided in [23], though none of the proposals are
currently favoured over ΛCDM for current observations.
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Figure 1.2: 68% constraints on H0 measurements from different cosmological probes. The
measurements are divided into direct probes of H0 via the expansion rate and indirect
probes that assume a particular cosmological model. The purple band shows constraints
from Planck 2018 [4], and the orange band shows constraints from SH0ES [59]. Figure
sourced from [27].
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1.5.2 S8 tension

There also exists a tension in the value of S8 ≡ σ8

√
Ωm/0.3 which captures information

about matter clustering. This value can be obtained from early universe measurements
using the CMB or late universe measurements using probes like weak lensing surveys
(figure 1.3). While the S8 tension measured from these two probes is only at the ∼ 2− 3σ
significance level, it is troublesome because many of the proposed solutions to either the
H0 tension or S8 tension exacerbates the other.

1.6 N-body simulations

A cosmological N-body simulation is a simulation of a system of particles within a patch of
the universe that interact via gravity. The proper volume of the simulation also expands (or
contracts) with time in accordance with the Friedmann equation. In simulations designed
to study large scale structure, each particle within the simulation typically represents a
clump of dark matter. Since most of the matter in the universe is cold dark matter,
tracking how the dark matter density evolves models the formation and evolution of large
scale structure.

1.6.1 Basics

Each N-body simulation begins at some initial time that corresponds to an initial redshift
zinit. The conditions of the simulation at this time are provided by the user in the form
of an initial linear power spectrum and a random seed that sets the phases of the power
spectrum modes in the simulation. These are used to generate an initial catalog of particle
positions corresponding to the power spectrum amplitudes and phases provided. The
evolution of the N-body simulations can then be broken up into discrete time steps. Given
the particle masses and position at time t, the acceleration of each particle due to the net
force of gravity acting on it can be calculated. The accelerations are then used to update
the particles’ velocities at the next time step t+∆t, and these velocities are in turn used
to update the particles’ positions. This process is repeated for a number of time steps until
some desired output time (or, equivalently, and output redshift) is reached. Figure 1.4
shows the overdensity field from a simulation at different output redshifts. As time passes,
regions that began as small overdensities evolve into haloes as they accumulate surrounding
matter, and regions that began underdense empty out as their matter is drawn to denser
regions of the simulation. The power spectrum from an N-body simulation contains the
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Figure 1.3: 68% constraints on S8 measurements from different cosmological probes. The
measurements are divided into early and late universe probes. The purple band shows
constraints from Planck 2018 [4]. Figure sourced from [27].
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effects of nonlinear growth of structure, resulting in an increase in power over the prediction
from linear theory at scales of k > 0.3 hMpc−1 (see figure 1.5).

Figure 1.4: Evolution of the overdensity field within an N-body simulation at z = 10 (top
left), z = 1 (top right), z = 0.5 (bottom left), and z = 0 (bottom right). The overdensity
field is computed on a (256)3 grid and projected onto the x− y plane.

The problem with directly computing the exact force acting on each particle is that
it is extremely computationally expensive. With the computational complexity scaling as
O(N2), simulations containing N ∼ 107 particles are already bordering on prohibitively
time-consuming on modern hardware [76]. Thus, it is useful to introduce approximations
that can vastly decrease the computational time in exchange for slight decreases in overall
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Figure 1.5: Present-day power spectrum within a L = 625 h−1Mpc cube as predicted by
linear theory and measured from an N-body simulation. The contribution to the power
from non-linear modes becomes dominant for k > 0.3 hMpc−1

.
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accuracy of the simulation. One such approximation is the Particle Mesh (PM) method.

In the PM method, rather than computing the force due to gravity for each pair of
particles, the gravitational potential of the entire simulation is computed on a 3d grid.
This is done by first computing the overdensity field on the grid and then solving the
Poisson equation using a Fast Fourier Transform (FFT). This gravitational potential mesh
can then be used to compute the force acting on each particle. Short range interactions
between particles in this method are effectively softened since two particles within the
same cell as each other don’t contribute to each other’s net force. The complexity of
a PM simulation scales as O(Nmeshlog(Nmesh)), where Nmesh is the number of cells in
the mesh grid. However, this mesh grid treatment of the gravitational potential is a
poor approximation on scales of up to several grid spacings, resulting in reduced accuracy
compared to full N-body methods [76].

Another possible approximation is the tree method, where the simulation volume is
divided into cubic cells. The forces caused by particles within each cell are computed
exactly, while the forces from particles in distant cells are treated as a single large particle
located at that cell’s centre of mass. The cells in denser regions of the simulation are made
smaller to better capture the small-scale clustering. For optimal cell sizes, the complexity
of tree method simulations scales as O(N log(N)).

1.6.2 COLA method

The COmoving Lagrangian Acceleration (COLA) method is an N-body integration scheme
that can significantly reduce the accuracy trade-off incurred by using the PM force scheme
[74]. Consider the equation of motion for CMB particles in an expanding universe written
in a Lagrangian coordinate system [37]

d2Ψ

dτ 2
+H(τ)

dΨ

dτ
+∇Φ = 0, (1.45)

where Φ is the gravitational potential, τ is the conformal time, and H ≡ dlna
dτ

is the
conformal Hubble parameter. In a Lagrangian frame of reference, the coordinate system
moves along with each of the particles in the system, meaning a particle’s Lagrangian
position q does not change with time. The particle’s kinematics are instead captured
in the displacement vector Ψ which captures how the Lagrangian frame of reference is
evolving with time

x(τ) = q+Ψ(q, τ). (1.46)
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Thus, solving for Ψ yields the time evolution of the particle positions. Lagrangian Pertur-
bation Theory (LPT) seeks to find a perturbative solution for Ψ [14]

Ψ(q, τ) = Ψ(1)(q, τ) +Ψ(2)(q, τ) +Ψ(3)(q, τ) + · · · . (1.47)

It is mathematically convenient to define Lagrangian potentials ∇qϕ
(i) = Ψ(i). The second

order solution of equation 1.46 then takes the form

x(τ) = q+D1(τ)∇qϕ
(1) +D2(τ)∇qϕ

(2), (1.48)

where D1(τ) and D2(τ) are the linear and second order growth factors, respectively. This
second-order Lagrangian Perturbation Theory (2LPT) solution performs well in solving for
large scale structure evolution in N-body simulations, but its accuracy falls off significantly
outside of the linear regime. Since at early times (a ≲ 0.1) the overdensity fluctuations
in the universe are very small, 2LPT is well suited to determining the early evolution of
particles in an N-body simulation. Once initial particle positions are generated at high
redshift (typically z ≃ 1000), 2LPT is used to evolve them to an initial redshift zinit
(typically zinit ∼ 9), after which the N-body time-stepping code takes over to compute the
non-linear evolution.

The COLA method takes advantage of the fact that the 2LPT solution is exactly known
and uses PM methods to estimate the higher order terms of equation 1.46. In the COLA
method, the observer is considered to be in a frame of reference comoving with 2LPT
coordinates. Equation 1.45 can then be rewritten as

d2Ψres

dτ 2
+H(τ)

dΨres

dτ
+∇Φ + [2LPT solution] = 0, (1.49)

where the [2LPT solution] term is calculated using 2LPT. Since this frame of reference
is accelerating, the 2LPT solution term can be interpreted as a fictitious force acting on
the particles. This term is solved analytically, leaving the N-body code to calculate an
estimate of the 3rd order and higher in overdensity.

1.6.3 Using L-PICOLA simulation code

In this thesis, the N-body simulations used were generated using the Lightcone-enabled
Parallel Implementation of COmoving Lagrangian Acceleration (L-PICOLA) simulation
code [37]. L-PICOLA is a parallelized implementation of the COLA method. When
running the simulation in parallel across multiple CPUs, the simulation volume is divided
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up into slabs along its x axis. Each CPU is assigned one slab for which it evolves its
particles using the PM method. At the end of each timestep, particles that have moved
outside of their CPU’s slab are moved to the correct slab before the next timestep begins.
Due to this parallelization, L-PICOLA can run simulations with large numbers of particles
quickly while still accurately modeling nonlinear clustering.

To run a simulation, L-PICOLA requires three input files from the user: the run pa-
rameters, the linear power spectrum, and the output redshifts. The run parameters file
contains the values of the cosmological parameters to be used, as well as the seed for the
initial density perturbations, information on the number of CPUs being used, the memory
allocated to each slab, and the file names of the input and output files. The linear power
spectrum file contains values of the redshift 0 linear power spectrum Plin(k) for a wide
range of k. At the start of the simulation, L-PICOLA scales this Plin back to the initial
redshift using the growth factor (equation 2.13) and generates initial particle positions that
match this power spectrum. The output redshifts file contains a list of desired redshifts
at which the simulation is to save an output, as well as the number of timesteps to take
between each output. At each output redshift, each CPU saves a catalog containing the
x, y, and z components of its slab’s particle positions and velocities, with position being
given in comoving h−1Mpc units and velocity given in km/s.

1.6.4 Processing pipeline: From particle catalog to power spec-
trum

Computing the power spectrum from an output simulation catalog was done using the
nbodykit toolkit [36]. The basic processing pipeline I used is as follows:

1. Load the simulation output files into a single catalog.

2. Paint the catalog onto a 3d mesh grid with resolution equal to the PM resolution
used by L-PICOLA.

3. Compute the 1d power spectrum from the FFT of the density field.

The output from this process is an object containing the power in each k bin, the central
k value of each bin, and the number of modes in each bin. For all the power spectra
computed in this work, the k bins were linearly spaced with width ∆k = 10π/625 hMpc−1

in proper distance units.
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When computing P (k) from a mesh like this, one runs into significant aliasing issues
on scales approaching the Nyquist frequency of the grid

knyq = πNmesh/Lbox, (1.50)

where Nmesh is the number of mesh grid cells per side and Lbox is the side length of the
simulation. Aliasing is caused by small scale modes with k > knyq that cannot be resolved
by the mesh being mistakenly identified as modes with k < knyq, contributing to spurious
measurement of the power spectrum in k bins near the Nyquist limit. This effect can be
counteracted by using interlacing and interpolation methods [65, 40]. Interlacing involves
computing the FFT on a second mesh grid shifted π/Lbox relative to the first one. While
this doubles the required computing time, the additional information results in a significant
reduction in the aliasing of the power spectrum. The different interpolation methods change
how the particles are assigned to a mesh grid; instead of each particle being assigned solely
to the nearest grid cell, the particle is convolved with a resampler function that spreads the
particle’s contribution to nearby cells in a way that better captures the particle’s position
relative to the neighboring cells. These resamplers have the form

W (k) =

[
sin(πkx/2kNyq) sin(πky/2kNyq) sin(πkz/2kNyq)

(πkx/2kNyq)(πky/2kNyq)(πkz/2kNyq)

]p
, (1.51)

where kx, ky, kz are the x, y, and z components of the k vector, and p is a positive integer
determining the order of the resampler. The resampler must later be deconvolved from
the power spectrum, but the result is also a marked decrease in aliasing for the cost of a
fractionally higher computation time. Figure 1.6 demonstrates the effectiveness of these
techniques in counteracting the effect of aliasing.

1.7 Thesis outline

This chapter has introduced the flat ΛCDM concordance model, its key observables, the
relevant clustering statistics for this work, and the process by which N-body simulations
can be used to study the growth of large-scale structure. Chapter 2 introduces the effect
of super-sample modes on the covariance matrix estimator and provides a comparison of
different methods of including this effect in N-body simulations. Chapter 3 evaluates the
method of estimating the covariance matrix of a large volume survey using an ensemble of
small volume simulations. Finally, Chapter 4 summarizes these results and discusses their
potential use for analysis of next-generation surveys.
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Figure 1.6: Effects of antialiasing on the power spectrum. The ”true“ power spectrum
was computed using a much higher resolution mesh grid, effectively increasing the Nyquist
limit. The “NEAREST” resampler assigns particles to the nearest grid cell, and the “pcs”
resampler convolves the particle position with equation 1.51 using p = 4. The combination
of the PCS resampler and interlacing technique allows the power spectrum to be recovered
almost perfectly up to the Nyquist limit.
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Chapter 2

Super-Sample Covariance

This chapter covers the effect of Super-Sample Covariance (SSC) on the covariance matrix
estimator, and my investigation into how to best capture the super-sample effect in N-
body simulations. In section 2.1, I discuss how modes of the power spectrum longer than
the width of a survey or simulation volume modulates the density field within. Section 2.2
describes how these long-wavelength modes couple to modes within the simulation volume,
contributing an additional term to the covariance matrix known as SSC. In section 2.3 I
describe how SSC can be included in an ensemble of simulations by either splitting a large
simulation into smaller sub-volumes or by running simulations in the presence of a non-zero
background overdensity. In section 2.4, I demonstrate how the variance of the background
mode of these simulations can be computed. In section 2.5, I present two methods for
running separate universe simulations with non-zero average overdensity: the perturbed
parameter approach introduced in [66], and the Spherical Collapse approach presented in
[81]. In section 2.6, I show how separate universe simulations can be used to recover the
effects of SSC either by using the addition or ensemble method [44]. In section 2.7, I
discuss a number of subtleties involved in correctly running separate universe simulations
and computing their power spectra. In section 2.9, I present my work in comparing the
how well the different methods of running separate universe simulations and computing
the SSC effect perform in recovering the correct covariance matrix. I also contextualize
the results of each individual method’s covariance calculation by comparing them to the
results of previous studies.
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2.1 Power spectrum response to larger-than-box modes

A galaxy survey constitutes a mapping of the matter density field (or more precisely,
tracers of the field) within the survey volume V . The overdensity field within the survey
can then be computed with ρ being the average density within the survey. However, since
galaxy surveys can only cover a finite volume, the ρ estimated from the survey will be
different from the average density of the entire universe. This introduces a question of
whether to normalize δ (and thus, P (k)) relative to the mean density of the survey (the
“local” mean), or relative to the mean density of the universe (the “global” mean). The
overdensity normalized to the global and local mean density can be related by

δ̃global = δ̃local(1 + δb), (2.1)

where δb =
ρlocal−ρglobal

ρglobal
is the average overdensity of the survey relative to the entire uni-

verse, also called the background overdensity. It is useful to then define Plocal(k) and
Pglobal(k) that correspond to whether the local or global mean densities are used in the
normalization. These different normalizations are related by

Pglobal(k) = Plocal(k)(1 + δb)
2. (2.2)

If one is interested in the global P (k) as is common in large-scale structure surveys, the
variance in the background density contributes greatly to the covariance matrix and thus
must be accounted for. This results in a distinction between Clocal and Cglobal depending
on whether the local or global power spectrum is being considered.

2.2 Mode coupling

The normalization of the power spectrum is not the only way the variance of the background
density affects the covariance of the power spectrum. In quasilinear and nonlinear regimes,
non-linear gravitational evolution of large scale structure causes the Fourier modes of the
power spectrum to become correlated with one another [64, 39, 19]. Any mode of the
power spectrum corresponding to length scales undergoing nonlinear evolution are thus
correlated with the other modes of the power spectrum, including very large modes that
are themselves still within the linear regime. This can be readily visualized via the peak-
background split [41, 18]. In figure 2.1, the presence of a long wavelength mode modulates
the amplitude of the overdensity field enough to change the number of regions with density
high enough to collapse under their own self-gravity. Since growth of structure in these
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Figure 2.1: A demonstration of the peak-background split in the presence of a long wave-
length mode. Shaded areas represent regions with sufficient overdensity to undergo col-
lapse. In absence of a long wavelength mode (left panel), the overdensity crosses the critical
density for collapse (dashed line) in fewer places than it would if such a mode were present
(right panel).

regions is nonlinear and occurs on small scales, it is evident that large-scale modes are
correlated to small scale modes.

In the case of a galaxy survey, the survey volume will contain parts of power spectrum
modes with wavelengths greater than the width of the survey (called super-sample modes).
While the super-sample modes themselves cannot be measured from the survey, they corre-
late nontrivially with modes that are present within the survey volume, thus contributing
to the power spectrum covariance. This contribution is called Super-Sample Covariance
(SSC). A theoretical model for the effects of SSC can be derived using either perturbation
theory [21] or halo modeling [71, 44], yielding

Clocal(ki, kj) = CGauss(ki, kj) +
1

V
T (ki, kj) +

676

(21)2
P (ki)P (kj)σ

2
b (2.3)

and

Cglobal(ki, kj) = CGauss(ki, kj) +
1

V
T (ki, kj) + 16

(
17

21

)2

P (ki)P (kj)σ
2
b , (2.4)

where σ2
b is the variance of the background density within the survey volume (see sec. 2.4).
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2.3 SSC in simulations

Computing the covariance matrix analytically in the nonlinear regime has so far proven
extraordinarily challenging beyond low-order perturbations. A simpler solution is to in-
stead estimate the covariance matrix using a large number of N-body simulations whose
geometry and cosmology match that of the survey whose covariance is desired. An ensem-
ble consisting of Ns of these simulations provides Ns samples of the power spectrum within
the survey volume. These power spectrum samples can be used to compute a brute-force
estimate of the covariance matrix

C(ki, kj) =
1

Ns − 1

Ns∑
m=1

[
Pm(ki)− P (ki)

] [
Pm(kj)− P (kj)

]
, (2.5)

where Pm(ki) is the ith bin of the mth power spectrum sample, and P (ki) is the average
power among all Ns samples in the ith bin.

To get an accurate estimate of a covariance matrix from simulations, they need to
include the effects of SSC. The simplest way to do this is by running a simulation with a
very large volume and dividing it into subsamples. Each of these sub-volumes will have
evolved in the presence of modes too large to fit within the sub-volume but still smaller
than the large volume. While this technique has the advantage of being straightforward
to implement, it comes with some major drawbacks. Suppose one wants to run a large
volume mock to be split into 8 smaller sub-volumes with a desired average number density
of particles n. The large volume mock must then contain 8 times as many particles as
would be contained in a sub-volume with number density n. Since the computation time
of N-body simulations scales as O(N2) (or O(NlogN) for PM codes), it will take more
time to run the one large mock than it would to run the eight smaller mocks. Another
issue is that the SSC effect within these sub-volumes will be underestimated compared to
what would be seen in surveys. No matter how large of a simulation the sub-volumes are
drawn from, there still exist modes of the power spectrum even larger than the width of
the box whose effects are missing. This requires the box volume to be sufficiently large
such that the SSC effect from the missing modes is negligible compared to the effect from
the modes within the box.

Alternatively, the SSC effect of a background mode larger than a simulation or survey
volume can be well approximated by the presence of a non-zero background overdensity
δb corresponding to a “DC mode” (analogous to a direct current applied to an electrical
circuit). This means we can run an ensemble of simulations with non-zero δb to capture
the SSC effect. When running N-body simulations, it is typical to use a cubic simulation
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volume and employ Periodic Boundary Conditions (PBCs) to handle cases when particles
would leave the boundaries of the simulation. If a particle would pass the boundary
of the simulation, its position is shifted by the side length of the box such that it is
within the simulation box again. Unfortunately, employing PBCs implicitly sets the power
in all modes larger than the simulation box to zero, meaning the covariance calculated
from these simulation will be missing the SSC effect. Due to the strength of the SSC
effect at quasilinear and nonlinear scales, it must be reintroduced into the simulations if a
satisfactory estimate of the covariance in these regimes is to be obtained.

2.4 Calculating the variance of the background den-

sity

If the background mode is within the linear regime, its amplitude is Gaussian distributed
with zero mean and has variance σ2

b that can be computed by integrating the linear power
spectrum Plin(k):

σ2
b ≡ 1

2π2

∫
|W̃ 2(kx)|PLin(k)k

2dk, (2.6)

where W̃ 2(kx) is the window function of the survey or simulation. Running an ensemble
of simulations in a manner that can account for variance in the background overdensity
would then reintroduce the effects of SSC.

For a cubic N-body simulation, the window function in equation 2.6 would be the
Fourier transform of the cubic window representative of the simulation volume. However,
this calculation can be simplified by instead using a window corresponding to the Fourier
transform of a spherical top-hat function

W̃ (kR) =
3 [sin(kR)− (kR) cos(kR)]

(kR)3
, (2.7)

where R is the radius of the sphere in real space. If R is chosen such that the sphere has
the same volume as the simulation (i.e. 4

3
πR3 = L3, where L is the side length of the

simulation box), then the calculated σ2
b will closely match that calculated from a cubic

window. The validity of this claim is shown at the end of sec. 2.9.1.

Realistic galaxy redshift surveys do not have a simple cubic geometry. When using
simulations to estimate the covariance of such surveys, it is convenient to run simulations
with a cubic window function and then apply the survey window function to the resulting
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overdensity field afterwards. The modes of the power spectrum within the survey window
evolved in the presence of modes that are larger than the survey window but smaller than
the cubic simulation window, meaning the covariance estimated from these simulations
will already have part of the SSC contribution. To recover the covariance matrix with the
correct SSC contribution, one only needs to add the SSC term arising from modes larger
than the simulation volume. Thus, regardless of the form of the survey window, calculation
of σ2

b should be done using the simulation window.

2.5 Running separate universe simulations

The problem to solve is now this: how can an N-body simulation be run with both PBCs
and nonzero δb? This problem has been an active field of study for many years, even before
being contextualized by its application in calculating SSC [35, 22, 66, 48, 33, 46, 32, 7, 71,
44, 77, 20, 75, 17, 81]. While there exist multiple methods to run a simulation with nonzero
δb, the fundamental principle is the same in each: the change in the average density of the
simulation can be interpreted as though the simulation was a Separate Universe (SU) with
different cosmological parameters compared to the parameters of a fiducial background
universe with zero background density. This work focuses on the methods presented in
[66, 71, 44] and [81] for computing the SU parameters.

2.5.1 Perturbed parameter approach

The perturbed parameter approach follows the derivations used in [66, 71, 44]. In this
approach, the derivation begins by considering δb to be a perturbation in the mean matter
density ρ(t) of the simulation:

ρuni(t)(1 + δb(t)) = ρbox(t), (2.8)

where the subscripts uni and box refer to the parameters of the background universe and
the SU parameters, respectively. From here, the mass density parameters of the background
universe and the SU can be related by

Ωm,0,uniH
2
0,uni

a3uni(t)
(1 + δb(t)) =

Ωm,0,boxH
2
0,box

a3box(t)
. (2.9)

At early times, the physical content of each SU should be the same. This means limt→0 auni =
abox, which allows equation 2.9 at early times to simplify to

Ωm,0,uniH
2
0,uni = Ωm,0,boxH

2
0,box, (2.10)
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which in turn implies

abox(t) =
auni

(1 + δb(t))1/3
≈ auni(t)

(
1− δb(t)

3

)
. (2.11)

Using the definition H ≡ ȧ/a, one can take the time derivative of equation 2.11 and divide
both sides by abox(t) to yield

Hbox = Huni −

(
δ̇b/3

1− δb/3

)
. (2.12)

If δb is drawn from a large enough mode to evolve under linear growth, then δb =
D(a)
D(1)

δb,0

and δ̇b =
Ḋ(a)
D(1)

δb,0, where D(a) is the linear growth factor

D(a) =
5Ωm,0H

2
0

2

ȧ

a

∫ a

0

da′

ȧ′
3 (2.13)

normalized such that lima→0D(a) = a. Substituting equation 1.12 into 2.13 and taking
the time derivative gives

Ḋ(a) =
Ωm,0H

2
0

2ȧa

[
5− 3D

a
− 2Ωk,0D

Ωm,0

]
. (2.14)

Using equations 2.9, 2.11, 2.12, 2.14 and 1.12, it can be shown that the box cosmological
parameters are of the form

H0,box = H0,uni(1 + ϕ)−1 (2.15)

Ωm,box = Ωm,uni(1 + ϕ)2 (2.16)

ΩΛ,box = ΩΛ,uni(1 + ϕ)2 (2.17)

Ωk,box = 1− Ωm,box − ΩΛ,box, (2.18)

where

ϕ =
5

6

Ωm

D(1)
δb. (2.19)

2.5.2 Spherical collapse approach

Another way to interpret the presence of a background mode in the SU simulations is
to consider how the change in background density perturbs the curvature of space. This
approach follows the methodology and derivations presented in [55, 81].
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Consider the cosmology of two large spherical regions containing equal amounts of mass:
one following the background cosmology with δb = 0 and scale factor auni, and another
with δb ̸= 0 and scale factor abox as given in equation 2.11. Assuming the dark energy
component of each region is negligible at early times, their early time Friedmann equations
can be written in the form (

1

H0,uni

daX
dt

)2

=
Ωm,uni

aX
+ ϵX , (2.20)

where the subscript X is a placeholder for the uni or box subscripts and labels which
parameters vary between the two spheres, and the curvature term ϵX is equal to Ωk,uni for
the background sphere and can take any real value for the perturbed sphere. In the limit
t → 0, the solution to equation 2.20 has the form

aX =

(
9Ωm,uni

4

)1/3

(H0,unit)
2/3 +

3ϵX
20

(
12

Ωm,uni

)1/3

(H0,unit)
4/3. (2.21)

Combining equations 2.11 and 2.21, δb in the limit of t → 0 gives

δb(t) =
3

5

(
3

2Ωm,0,uni

)2/3

(Ωk,uni − ϵbox)(H0,unit)
2/3. (2.22)

This early time density can be linked to the present day density δb,0 by linear growth

δb,0 =
3D(1)

5Ωm,0,uni

(Ωk,uni − ϵbox). (2.23)

For any given ϵbox, a matching value of δb can be matched to it

ϵbox = Ωk,uni −
5Ωm,uniδb

3D0

= Ωk,uni − 2ϕ, (2.24)

where ϕ is as defined in equation 2.19. The cosmological parameters of the patch can be
computed by solving the Friedmann equation(

1

H0,uni

dabox
dt

)2

=
Ωm,uni

abox
+ ϵbox + ΩΛ,unia

2
box (2.25)

It is important to remember that here ϵbox ̸= 1−Ωm,uni −ΩΛ,uni. A useful renormalization
of equation 2.25 comes from dividing both sides by 1 − 2ϕ and defining a new set of
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renormalized cosmological parameters

H0,box = H0,uni

√
1− 2ϕ (2.26a)

Ωm,box =
Ωm,uni

1− 2ϕ
(2.26b)

Ωk,box =
ϵbox

1− 2ϕ
(2.26c)

ΩΛ,box =
ΩΛ,uni

1− 2ϕ
. (2.26d)

Under this renormalization, the Friedmann equation becomes(
1

H0,box

dabox
dt

)2

=
Ωm,box

abox
+ Ωk,box + ΩΛ,boxa

2
box. (2.27)

Under this new renormalization, Ωk,box = 1 − Ωm,box − ΩΛ,box. Defining the cosmological
parameters in this way is useful for use with N-body codes that infer the value of Ωk from
the input values of Ωm and ΩΛ as L-PICOLA does.

It is worthy of note that the parameter perturbations from the SC method are identical
to the results of the derivations presented in [7] and [77]. This is due to the root of each
method being the same: perturbing the FLRW metric (i.e. the curvature of space) within
the simulation volume in the presence of a long wavelength background mode that is well
approximated by a nonzero background overdensity.

2.6 Calculating the SSC effect

Once a method of translating from δb to cosmological parameters is chosen, the next step
is to introduce the effects of SSC. In this section, I will describe the ensemble method and
addition method of computing the SSC effect.

2.6.1 Ensemble method

One method of including the effects of SSC in the covariance of an ensemble of simulations
is to draw the background overdensity of each simulation from a normal distribution with
zero mean and variance given by equation 2.6. This background overdensity corresponds to
a perturbation in the cosmological parameters of each simulation as prescribed by either the
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perturbed parameter approach (see section 2.5.1) or the SC approach (see section 2.5.2).
This variation in the background overdensity allows the effect of SSC to be effectively
baked in to the ensemble. The covariance with the SSC effect can then be calculated as
normal using equation 2.5.

2.6.2 Addition method

Another way to include the effects of SSC is to consider that, to first order, the covariance
matrix with the SSC effect included can be approximated as

CSSC(ki, kj) = CnoSSC(ki, kj) + σ2
b

∂P (ki)

∂δb

∂P (kj)

∂δb
, (2.28)

where CnoSSC is the covariance matrix without any SSC correction. The partial derivative
term can be computed using finite differences of simulations with nonzero background
overdensity. In principle, only two simulations are required to compute this derivative: one
with positive δb, one with negative δb. In practice, the initial conditions of the simulations
affects the response to δb, so it is useful to run several pairs of simulations with different
initial conditions and compute the finite difference of the average power spectrum at each
δb.

Since equation 2.28 is a first order approximation of the ensemble method, the addition
method expected to have reduced accuracy. Also, if CnoSSC is being computed from an en-
semble of simulations, the addition method requires a slightly higher number of simulations
than the ensemble method to recover the full covariance to the same accuracy. However,
the addition method has the advantage of splitting the covariance into a no-SSC and SSC
term, allowing for clear visualization of how significant the SSC effect is at different scales.

2.7 Comparing apples to apples

When running SU simulations, there are a number of subtleties that must be accounted
for to ensure that the resulting power spectra are accurate. Care needs to be taken with
handling the input linear power spectrum Plin(k), the units of h−1Mpc when referring to
distances within a SU simulation, and the binning of the power spectrum. When N-body
code generates the initial particle positions in a simulation, they are distributed such that
the initial power spectrum matches a user-specified linear power spectrum Plin(k). The

36



linear power spectrum given by the user is defined at a = 1, so the N-body code scales the
linear power back to an early time (typically a = 0.001) using the linear growth factor

Plin(k, a = 0.001) =

(
D(a = 0.001)

D(a = 1)

)2

Plin(k, a = 1). (2.29)

A SU simulation with nonzero δb will have different cosmological parameters and a different
expansion history abox(t) than the background universe, and thus have different values for
the growth factor Dbox(abox). In order for the SU simulation to have the same initial
conditions as the background, it must be given a Plin,box(k, abox = 1) that, when scaled
back to early redshift using Dbox(abox), matches the results of equation 2.29. To achieve
this, the input linear power spectrum for the SU simulations must be

Plin,box(k, abox = 1) =

(
Dbox(abox = 1)

Dbox(abox = 0.001)

)2(
D(a = 0.001)

D(a = 1)

)2

Plin(k, a = 1). (2.30)

Attention must also be paid to the units on Plin,box. Typically, N-body code works in
units of h−1Mpc, which means that any conversion from huni−1Mpc to h−1

boxMpc carries a
factor of hbox/huni. The input Plin,box(k) and the range of k values at which it is defined
must be converted into h−1

boxMpc units

Plin,box(k)

[(
Mpc

hbox

)3
]
= Plin,box(k)

[(
Mpc

huni

)3
]
∗
(
hbox

huni

)3

(2.31)

k

[
hbox

Mpc

]
= k

[
huni

Mpc

]
∗
(
huni

hbox

)
. (2.32)

Finally, the choice of abox given in equation 2.11 ensures that the SU simulations are
output at the same cosmological time. However, when it comes time to compute the power
spectra and covariance matrix of the simulations, care must be taken to ensure that modes
of the same physical size are being compared to one another. One way to ensure this is
to choose the comoving size in h−1

boxMpc of each simulation such that their proper sizes in
Mpc are equal at the desired output epoch

Luni

huni

auni =
Lbox

hbox

abox. (2.33)

Under this convention (called the “total derivative method” in [44]), the proper size of
each simulation is equal at the cosmological time corresponding to scale factor abox. Then,
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the coordinates of all of the particles in the box can be converted from comoving Mpc to
physical Mpc, and the power spectrum can be directly computed from there. This method
has the advantage of being intuitive and simple to implement, but the physical scale these
simulations will only be equal at one scale factor abox; if you want to use this method to
evaluate multiple different epochs, you will need to run a new set of simulations for each
epoch.

Another method is to set the comoving box size in Mpc of each simulation to be the
same

Luni

huni

=
Lbox

hbox

. (2.34)

Under this convention (the “growth-dilation method” in [44]), the comoving sizes of the
simulations are the same at the output epoch, but their proper sizes are all different. Just
as in the total derivative method, the particle positions can be converted to proper units
and the power spectrum can be computed from there.

2.8 Error on the covariance

The error on the covariance matrix ∆C would be an 8-point function, which is far be-
yond what is practical to compute analytically. Instead, an estimate of the error on the
covariance matrix can be calculated by resampling the ensemble power spectra. In the
bootstrap resampling technique, the resamples are generated by randomly sampling the
power spectra with replacement. A covariance matrix estimate can be computed from each
of these resamples, forming a distribution of covariances. The variance of this distribution
then represents the estimate of the error on the covariance.

Another way to estimate error on the covariance is using the Wishart distribution [79].
The Wishart distribution represents the distribution of sample covariance matrices from
a multivariate normal distribution. Thus, the variance of the Wishart distribution of a
covariance matrix is equal to the variance of the covariance matrix itself. The variance of
the Wishart distribution is given by

V ar(Wp) =
1

n
(C2

i,j + Ci,iCj,j), (2.35)

where n is the degrees of freedom (n = 1 for the covariance of the power spectrum). The
error of the covariance matrix can then be calculated as

∆C =

√
V ar(Wp)

Ns

, (2.36)
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where Ns is the number of power spectrum samples. To test whether the bootstrap and
Wishart distribution give the same error on the covariance, I applied both methods to the
ensemble of small boxes described in sec. 2.9.1. The error on the covariance calculated from
the Wishart distribution and bootstrap resampling methods match to within 5 percent or
better for all k bins of the power spectrum (fig. 2.2). Since the Wishart distribution is much
less computationally expensive than bootstrap resampling, I will be using it to compute
all errors on covariance in this work.

2.9 Comparison of methods

The different methods of computing the effects of SSC presented thus far have been verified
in previous works to recover the SSC correction with reasonable accuracy [44, 10, 77, 38].
However, these methods have yet to be directly compared to one another with the goal
of determining which yields the most accurate results. In section 2.9.1, I compare the
effectiveness of the Sirko and SC parameter choices in matching the covariance estimated
from an ensemble of subsampled boxes. In section 2.9.2, I similarly compare the addition
and ensemble methods of computing the SSC contribution. Section 2.9.3 demonstrates
that the individual covariance matrices I calculated for these comparisons are consistent
with the results of previous works.

2.9.1 Comparison of parameter choices

To demonstrate the significance of SSC and compare the effectiveness of the Sirko and
SC parameter choices in recovering the SSC effect, I ran ensembles with the following
parameters using L-PICOLA:

• Small boxes : 9728 L = 625 h−1Mpc, N = 2563 simulations with identical cosmologi-
cal parameters, used to compute the covariance matrix without any SSC correction.

• Sub boxes : 8 L = 5000 h−1Mpc, N = 20483 simulations with identical cosmo-
logical parameters. Each simulation was subdivided into 512 sub boxes with L =
625 h−1Mpc, resulting in a total of 4096 sub boxes. These simulations innately in-
clude the effect of SSC and will serve as the benchmark that the other ensembles will
try to match the covariance of.

• Sirko addition method : 128 L = 625 h−1Mpc, N = 2563 simulations, where the first
set of 64 simulations has been generated with cosmological parameters corresponding
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Figure 2.2: Ratio of diagonal elements of ∆C as estimated by the Wishart distribution
and bootstrap resampling methods.
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Cosmological parameter Value
h 0.6736

Ωbh
2 0.02237

Ωcdmh
2 0.12

ns 0.9649
σ8 0.8111

Table 2.1: Flat ΛCDM parameters chosen for the background universe.

to δb = −0.01, and the remaining 64 generated with δb = 0.01. The two sets of
simulations are run with the same set of 64 initial seeds. These simulations are used
to compute the power spectrum derivative needed for the SSC term in equation 2.28.
The no-SSC term is computed using the “Small boxes” ensemble covariance.

• SC addition method : 128L = 625 h−1Mpc, N = 2563 simulations identical in setup
to the “Sirko addition method” simulations except using the SC method parameters
from equation 2.26d.

Each ensemble has fiducial background cosmological parameters given by table 2.1 and
each mock run to an output redshift corresponding to auni = 1. The power spectrum
estimator for each simulation was calculated using the processing pipeline described in
section 1.6.4. For the addition method simulations with nonzero δb, the output particle
positions were first converted from comoving h−1

boxMpc units to proper h−1
uniMpc units before

computing Pglobal(k) using equation 2.28. In the case of the sub boxes, Plocal was calculated
first. The background overdensity in each sub box was computed as

δsubb =
nsub

nsub

, (2.37)

where nsub is the number density of particles in the box and nsub = (256
625

hMpc−1)3 is the
average number density of particles in all of the sub boxes. These background overdensities
were then used to calculate Pglobal using equation 2.2.

To ensure that the use of a spherical window in equation 2.6 does not bias the calculation
of σ2

b , I compared the variance on the background densities of the sub boxes
〈
|δsubb |2

〉
to

the value of σ2
b computed for a sphere matching the volume of the sub boxes. I found

the sub box background variance to be
〈
|δsubb |2

〉
= 6.53× 10−5 compared to the calculated

σ2
b = 6.49× 10−5. These values agree within 0.6% of one another, indicating that using a

spherical window for determining σ2
b has not significantly biased the SSC calculation.
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Figure 2.3: Comparison of Sirko (red x) and SC (black plus) method variance over small
box variance. The blue curve and shaded region show the subbox variance and the 2σ
confidence interval. The left and right panels show the variance relative to the global and
local mean density, respectively.

Figure 2.3 shows the results of the comparison between the Sirko and SC method. The
SSC effect on the variance relative to the global mean is to increase it by over 100% for
modes of k ∼ 0.1 hMpc−1 or greater compared to simulations without SSC. The effect
grows larger as k increases, reaching a maximum of almost 500% at k = 1.28 hMpc−1.
This increase in variance is primarily driven by the normalization of the power spectrum
with different δb. In the addition method, the global and local power spectrum derivatives
can be related by taking the derivative of equation 2.2

dPlocal(k)

dδb
=

dPglobal(k)

dδb
− 2P (k), (2.38)

where P (k) is the average small box power spectrum. This increase in the power spec-
trum derivative drives the increase in the effect of SSC. In the local mean case, the SSC
contribution is still significant, reaching almost 80% at k = 1.28 hMpc−1.

Both the Sirko and the SC methods perform well in modeling the SSC effect and were
able to recover the same variance as the subboxes to within 10% or better for most bins
in both the local and global cases (figure 2.4). The two methods were consistent with one
another, with the SC method only marginally outperforming the Sirko method in some of
the bins. The variance from both methods was biased low compared to the subboxes, and
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Figure 2.4: Accuracy of the Sirko and SC method variances in recovering the subbox
variance. The left and right panels show the global and local mean results, respectively.

most bins fell outside of the 95 percent confidence interval of the subbox variance. This
bias could be a product of using the addition method, which itself is only a first order
approximation of the ensemble method.

The shape of the covariance ratio plots in figure 2.3 can be attributed to the fact that
the SSC contribution to the total covariance arises from three different sources: the Beat
Coupling (BC) effect, the Linear Dilation (LD) effect, and the Halo Sample Variance (HSV)
effect [35, 21, 71, 44]. The BC effect arises from the fact that short wavelength modes grow
faster in the presence of a background overdensity due to coupling with super-sample
modes in the trispectrum. This enhances the covariance on quasi-linear scales where linear
theory breaks down and the contribution of the trispectrum to the total covariance becomes
significant. The LD effect occurs due to the nonzero background overdensity changing the
Hubble parameter of the survey or simulation volume, adjusting the expansion rate and
modifying the physical sizes of modes within the volume. This has a dampening effect
on the covariance, partially cancelling out the BC contribution. The HSV effect is what
is captured in the peak-background split discussed in sec. 2.2; the presence of a long
wavelength mode pushes more of the initial density perturbations over the threshold for
collapse, causing more halos to form. This effect substantially increases the covariance in
the deeply nonlinear regime.

Figures 2.5 and 2.6 show the results of the SSC correction on the off-diagonal terms of
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Figure 2.5: Comparison of select off-diagonal elements of the correlation matrices. Blue
dots represent sub boxes, black pluses represent SC addition boxes, and red xs represent
Sirko addition boxes. The left and right panel show the global and local mean results,
respectively.
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Figure 2.6: Difference in correlation coefficients Cred − Cred,small for sub boxes (top row),
Sirko addition method (middle row), and SC addition method (bottom row). Left and
right columns show global and local mean results, respectively.
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the covariance matrix. Here, the elements are plotted in terms of the correlation matrix

Cred(ki, kj) =
C(ki, kj)√

C(ki, ki)C(kj, kj)
. (2.39)

The nonlinear gravitational evolution of the N-body simulations can be readily seen in
the extremely high off-diagonal correlation for k > 0.1 hMpc−1. Both the Sirko and
SC methods are able to successfully recover the correct off-diagonal covariance. The two
methods are highly consistent with one another, with neither one showing a significant
improvement over the other.

2.9.2 Comparison of addition and ensemble method implemen-
tation

It is also worth comparing the performance of the addition and ensemble implementa-
tions of the cosmological parameters. To test this, I ran a new ensemble of simulations
called “Ensemble SC”, containing 4096 simulations of L = 625 h−1Mpc with background
overdensities drawn from a Gaussian distribution with zero mean and variance given by
equation 2.6. The cosmological parameters for each simulation were computed using the
SC method using the same fiducial background cosmology given in table 2.1.

For both the global and local normalizations of the power spectra, figure 2.7 shows
that the addition and ensemble methods are consistent with one another. The ensemble
method estimates the covariance a few percent higher than the addition method in most
k bins, causing it to match more closely to the subbox covariance. This is due to the fact
that the addition method is a first order approximation of the ensemble method. While
this first order approximation is good enough to recover the majority of the SSC effect,
the higher order terms make a few percent improvement to the overall accuracy.

Figures 2.8 and 2.9 show the off-diagonal terms of the correlation matrices using the
addition and ensemble methods. Once again, both methods are able to accurately recover
the off-diagonal covariance. As with the variance, the ensemble method slightly outper-
forms the addition method in matching the sub box covariances, with the difference being
most noticeable in the low k bins (top panels of figure 2.8).

2.9.3 Comparison to previous results

This level of agreement between the subbox covariance and the different SSC methods
is comparable to previous studies [21, 39, 44, 73, 10, 35]. To compare my results to
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Figure 2.7: Comparison of SC addition (red x) and ensemble (black plus) variance over
small mock variance.

Figure 2.8: Comparison of select off-diagonal elements of the correlation matrices. Blue
dots represent sub boxes, black pluses represent SC ensemble method boxes, and red xs
represent SC addition method boxes. The left and right panel show the global and local
mean results, respectively.
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Figure 2.9: Difference in correlation coefficients Cred − Cred,small for SC ensemble method
boxes. Left and right panels show global and local mean results, respectively.

Cosmological parameter Value
h 0.7
Ωb 0.047
Ωm 0.286
ns 0.96
σ8 0.82

Table 2.2: Flat ΛCDM parameters used by [44].

these studies, I computed the variance over the Gaussian expectation CGauss for my power
spectra and the data from [10] to match the format of [44]. The results of this are shown
in figure 2.10. The SC ensemble method I used was able to capture the effect of SSC with
a comparable level of success to the results from [44] and [10], both of which also found
agreement between subbox and SU variance to within 10 percent or better.

It should be noted that the covariances measured by each study are different from one
another. This is likely driven by differences in the methods used to set up and run the
simulations. In [44], the simulations were run with cosmology given in table 2.2 using L-
Gadget2 with a (Tree)-PM grid [67]. The (Tree)-PMmethod of running N-body simulations
has the advantage of performing full N-body calculations for motion of particles on small
scales while using a PM grid to handle large scale evolution, effectively enhancing accuracy
at small scales at the cost of higher computing time. The subboxes were drawn from 7
large-volume mocks with L = 4 h−1Gpc, 20483 particles and a 30723 grid. To compute the
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Cosmological parameter Value
h 0.6774
Ωm 0.3089
Ωb 0.0486
ns 0.9667
σ8 0.8159

Table 2.3: Flat ΛCDM parameters used by [10].

subbox power spectra, they assigned the particles using a Clouds-in-Cells (CIC) window
to a (8 × 1920)3 mesh grid, subdivided each large volume mock into 512 subboxes with
L = 500 h−1Mpc, computed the subbox power spectra via FFT, and deconvolved the CIC
window. Their small box simulations without SSC were run with L = 500 h−1Mpc, 2563

particles, a 5123 (Tree)-PM grid, and their power spectra were computed on a 19203 mesh
grid. They noticed a bias between the average power spectra of the subbox and small box
simulations at low k due to the convolution of the subbox power with the window function.
To correct for this, they rescale each of the subbox power spectra

Psub →
P small

P sub

Psub, (2.40)

where P sub and P small represent the mean power spectra of the subboxes and small boxes,
respectively. For calculating the SSC effect, they perturbed the cosmological parameters
in a manner similar to the method of Sirko

abox = auni

(
1− δb

3

)
(2.41)

H0,box = H0,uni(1− ϕ) (2.42)

Ωm,box = Ωm,uni(1 + 2ϕ) (2.43)

ΩΛ,box = ΩΛ,uni(1 + 2ϕ) (2.44)

Ωk,box = 1− Ωm,box − ΩΛ,box (2.45)

(2.46)

and used the addition method implementation of these parameters.

The authors of [44] also account for possible correlations between sub boxes drawn from
the same large box. They do this by creating s = 1, ..., Ns/NL independent estimates of
the sub box covariance Cs, where Ns is the total number of sub boxes drawn from the NL
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large boxes

Cs(ki, kj) =
NL

NL − 1

[∑NL

a=1 Psa(ki)Psa(kj)

NL

−
∑NL

a=1 Psa(ki)
∑NL

b=1 Psb(kj)

N2
L

]
. (2.47)

Each Cs calculated using equation 2.47 is an estimate of the covariance between one sub box
and all of the sub boxes drawn from the other large boxes. These independent, uncorrelated
Cs values can then be averaged to get an unbiased sub box covariance estimate at the
expense of slightly increased ∆C.

In [10], the simulations were run using the cosmology listed in table 2.3 using the
FastPM Particle Mesh code [29]. They created their ensemble of 512 sub boxes by subdi-
viding a single L = 5000 h−1Mpc box containing 20483 particles. Their small box ensemble
consisted of 512 simulations with L = 625 h−1Mpc each containing 2563 particles. To
compute the SSC correction to be applied to their small box ensemble, they use Sirko’s
parameter perturbation (equation 2.15) and the addition method implementation. Their
power spectra were computed similarly to the method used by [44], but using a 2563 grid
to assign particles.

The discrepancy between the covariance measured at high k by these different studies
is likely primarily driven by the different choice of simulation code. The PM codes used by
[10] and this work are expected to have reduced accuracy in modeling small-scale interac-
tions between particles compared to full N-body code or the (tree)-PM code used by [44].
On scales of k ∼ 1 hMpc−1, PM simulations using the COLA method has been shown to
underestimate the power spectrum and bispectrum by ∼ 10% and ∼ 15%, respectively,
when compared to results from full N-body simulations [37]. It is likely that the trispec-
trum is also underestimated relative to full N-body simulations, though this remains to
be studied. Due to the strong dependence of the covariance matrix at high k on these
higher-order statistics, the covariance would then be underestimated on these scales when
using PM simulation codes.
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Figure 2.10: Variance over the Gaussian expectation of subbox (solid lines) and SU (pluses)
simulations from [44] (blue), [10] (black), and this work (red). The left and right panels
show global and local mean results respectively.
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Chapter 3

Volume Scaling of the Covariance
Matrix

In this chapter, I detail the method by which the covariance of an arbitrary survey volume
can be estimated using an ensemble of simulations smaller than the survey volume. Section
3.1 provides the theoretical basis for this technique in the volume scaling of the covariance
matrix as presented in [38]. In section 3.2, I provide a description of the ensembles I
ran to test how well the volume scaling of the covariance matrix holds. In section 3.3, I
demonstrate how well the volume scaling of the covariance matrix holds in the absence
of any SSC corrections and discuss some observed departures from the expected analytic
behaviour. In section 3.4, I show that the SSC term of the covariance does not scale with
volume. In section 3.5, I show how to include the effects of SSC such that an accurate
estimate of the full covariance matrix can be recovered after volume scaling. In section
3.6 I derive a way to estimate the smallest volume simulation that can be used and still
accurately recover the covariance matrix at scales of interest. I summarize the results from
this chapter in section 3.7 by providing a step-by-step description of how to optimally use
the volume scaling technique when estimating the covariance matrix.

3.1 Background

The power spectrum covariance matrix Ci,j is defined as

Ci,j = ⟨P (ki)P (kj)⟩ − ⟨P (ki)⟩⟨P (kj)⟩. (3.1)
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Considering bins of the covariance matrix corresponding to modes much smaller than the
size of the simulation box (k << 1/L), the covariance in the absence of super-sample
modes can be written as [71, 64, 49]

Ci,j ≃ CG
i,j + CT0

i,j , (3.2)

where the Gaussian expectation of the covariance CG
i,j is given by equation 1.40 and the

non-Gaussian piece CT0
i,j that captures the coupling of modes within the box is

CT0
i,j =

1

V

∫
Vki

d3k

Vki

∫
Vkj

d3k′

Vkj

T (k,−k,k′,−k′). (3.3)

Here, T (k1, k2, k3, k4) is the matter trispectrum

⟨δ(k1)δ(k2)δ(k3)δ(k4)⟩ = δD(k1 + k2 + k3 + k4)T (k1,k2,k3,k4). (3.4)

It is crucial to note here that both CG
i,j and CT0

i,j scale inversely with the volume of the
survey or simulation. In principle, one could estimate the covariance of a large volume VL

by running an ensemble of simulations with smaller volume VS, computing the covariance
matrix, and scaling it by a factor of VS

VL
.

Now consider the error on the estimated covariance matrix ∆C. It has been shown in
[73, 72] that the error on covariance estimated from an ensemble of simulations scales with
the inverse of the square root of the number of simulations run N :

∆C ∝ 1√
N
. (3.5)

The error on covariance is also proportional to the covariance matrix, which itself scales
with the inverse of the volume of the simulations. Equation 3.5 can be modified to include
this volume dependence

∆C ∝ 1√
N

1

V
. (3.6)

Given this relation and the volume scaling of the covariance matrix, it can be shown that
running smaller simulations and applying the volume scaling results in a reduced error on
the covariance matrix given the same amount of computing time. To demonstrate this,
suppose one wants to estimate the covariance matrix of a survey with volume VL. If one
runs an ensemble of NL simulations with volume VL, the error on the resulting covariance
matrix estimate will be proportional to

∆CL ∝ 1√
NL

1

VL

. (3.7)
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In the same amount of time it takes to run these large volume simulations, a second
ensemble consisting of a larger number NS of simulations with volume VS < VL can be run.
This ensemble would have error on its covariance given by

∆CS ∝ 1√
NS

1

VS

. (3.8)

Since VS is less than the survey volume, the covariance CS estimated from the small mocks
will be larger than the true covariance of the survey. ∆C also scales more strongly with
volume than number of mocks run, ∆CS will be larger than ∆CL. However, the volume
scaling can be applied to CS to create a scaled covariance CS,scaled that matches the survey
covariance. Since the error on the covariance is directly proportional to the covariance
itself, this volume scaling also applies to ∆C

∆CS,scaled ∝
1√
NS

1

VS

VS

VL

∝ 1√
NS

1

VL

∝
√

NL

NS

∆CL. (3.9)

Thus, the scaled covariance measured from the small simulations has reduced error com-
pared to the covariance from the large mocks for the same computational cost.

In practice, there are some complicating factors preventing one from being able to scale
the covariance from arbitrarily small simulations. To estimate covariance on large scales,
the simulations must be large enough that enough modes are present to measure the power
spectrum on these scales. Not only must the simulations be large enough to accommodate
the larges mode of interest, there must be enough of these modes present in each simulation
for the power spectrum to obey the central limit theorem. If not enough large-scale modes
are present, the power on these scales will be skewed rather than Gaussian distributed,
rendering the measured covariance inaccurate [6]. A problem also arises on non-linear
scales due to the behaviour of SSC. The SSC term contributes substantially to the total
covariance even on weakly nonlinear scales, but it does not scale as 1/V (see section 3.4).
It is then necessary to include the SSC term in such a way that it matches the survey SSC
after volume scaling (see section 3.5).

3.2 Ensembles run

It is worth investigating how well the theoretical volume scaling of the covariance matrix
holds for simulations of different volumes. To this end, I have the following ensembles with
different box side lengths using L-PICOLA:
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• L = 1250 h−1Mpc boxes : 9728 N = 5123 simulations with identical cosmological
parameters. These simulations are used to calculate the large volume covariance that
the re-scaled smaller volume covariances will be compared to. Values with subscript
L refer to this ensemble.

• L = 625 h−1Mpc boxes : 9728 N = 2563 simulations with identical cosmological
parameters. These simulations have volume VS = VL

8
, but are otherwise identical to

the L = 1250 h−1Mpc mocks.

• L = 312.5 h−1Mpc boxes : 9728 N = 1283 simulations with identical cosmological
parameters. These simulations have volume VS = VL

64
, but are otherwise the same as

the L = 1250 h−1Mpc mocks.

• L = 1250 h−1Mpc addition method boxes : 128 N = 5123 simulations used for com-
puting the power spectrum derivative for the addition method SSC. 64 of the sim-
ulations were generated with δb = 0.01, and the remaining 64 were generated with
δb = −0.01.

• L = 625 h−1Mpc addition method boxes : 128 N = 2563 simulations used for com-
puting the power spectrum derivative.

• L = 312.5 h−1Mpc addition method boxes : 128 N = 1283 simulations using for
computing the power spectrum derivative.

Each ensemble has fiducial cosmological parameters given in table 2.1. Each mock
has the same number density of particles n = (256

625
h Mpc−1)3. The power spectra for

each mock was computed using the processing pipeline described in section 1.6.4 and
identical mesh grid resolutions. In principle, the power spectrum derivative should be
independent of simulation volume, meaning it can be calculated from just one of the
“addition method” ensembles. I found the L = 1250 h−1Mpc and the L = 625 h−1Mpc
power spectrum derivatives to be equal to within less than 1% in all k bins (see fig. 3.1). For
the L = 312.5 h−1Mpc, the first k bin of the power spectrum derivative was underestimated
compared to the larger ensembles. This is caused by skewness of the distribution of power
in this bin for the L = 312.5 h−1Mpc simulations (see section 3.3). Due to this, I chose to
use the L = 625 h−1Mpc power spectrum derivative to compute the SSC term of all three
ensembles.

I used each ensemble to estimate the covariance within a (1250 h−1Mpc)3 volume survey.
The L = 1250 h−1Mpc ensemble served as the baseline to compare the other ensembles to.
The covariances of the L = 625 h−1Mpc and L = 312.5 h−1Mpc ensembles were re-scaled
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Figure 3.1: Measured power spectrum derivative relative to the global mean for different
sized mocks.
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by a factor of 1/8 and 1/64, respectively, to match the ratio of their volume to the large
mock volume. For both of the smaller ensembles, I computed the ratio of the scaled small
box variance CS,scaled and the large box variance CL. In any k bin where volume scaling
holds, the ratio CS,scaled/CL is expected to equal 1. The error on CL and CS,scaled can be
calculated using the Wishart distribution (see equation 2.35 in section 2.8). The error on
CS,scaled/CL can be found by propagating the uncertainty

∆

(
CS,scaled

CL

)
=

CS,scaled

CL

√(
∆CS,scaled

CS,scaled

)2

+

(
∆CL

CL

)2

. (3.10)

For the ensembles I ran, ∆
(

CS,scaled

CL

)
was on the order of a few percent. To reduce the

uncertainty, I further binned the variance into four coarse k bins; these k bins spanned
the ranges [0.04,0.23], [0.28,0.48], [0.53,0.73], and [0.78,0.98] hMpc−1. Each coarse bin
contained 5 fine k bins, resulting in ∼ 1% error on the CS,scaled/CL.

3.3 Volume scaling of covariance without SSC

To test the volume scaling of the covariance without any SSC correction, the scaled covari-
ance of the smaller mocks was calculated as

CS,scaled =
VS

VL

CS, (3.11)

where VS = L3
S is the volume of the smaller mocks, VL = (1250 h−1Mpc)3 is the volume

of the large mocks, and CS is the covariance of the smaller mocks before volume scaling is
applied. Figure 3.2 shows the ratio of the scaled small mock variance to the large mock
variance. The general trend is that the scaled small mock variance slightly underestimates
the large mock variance, with the underestimation becoming more significant in higher k
bins and for lower small mock volume. The L = 625 h−1Mpc mocks recover the correct
large mock variance for k < 0.28 hMpc−1 while underestimating the variance by ∼ 2% for
k ≥ 0.28 hMpc−1. The difference becomes more drastic for the L = 312.5 h−1Mpc mocks,
underestimating the variance by ∼ 6% in the highest k bin. The underestimation of the
variance here is to be expected because the small simulations are missing the contribution
to the covariance from modes that are small enough to fit in the L = 1250 h−1Mpc mocks,
but too large to be present in the L ≤ 625 h−1Mpc mocks. Figure 3.3 shows the covariance
ratio for the off-diagonal elements without the coarse binning described in sec. 3.2. While
the scaled L = 625 h−1Mpc mock covariance is able to recover the correct large mock
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covariance on all scales within a few percent, the L = 312.5 h−1Mpc mock covariance
is significantly underestimated at small k and slightly underestimated at high k. The
underestimation at high k is consistent with the explanation given for the on-diagonal
terms due to the covariance on these scales being dominated by the underestimated SSC.

With the general trend for the scaled small mock variance to better estimate the large
mock variance in lower k bins, it is noteworthy then that the low k bin of the L =
312.5 h−1Mpc mocks underestimates the variance more than the other k bins for those
simulations. This is caused by the fact that each simulation at this size contains very few
modes in the low k bins. Since so few of these low k modes are present in each simulation,
the power in these bins is skewed rather than Gaussian distributed (figure 3.4). This
skewness results in a decreased variance compared to what the volume scaling predicts.

Figure 3.2: Ratio of volume scaled small box covariance and large box covariance with no
SSC correction.
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Figure 3.3: Ratio of select off-diagonal elements of the scaled small mock and large mock
covariances. The blue dots correspond to the scaled covariance of the L = 625 h−1Mpc
boxes, and the black pluses correspond to the scaled covariance of the L = 312.5 h−1Mpc
boxes.
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Figure 3.4: Histograms of power spectrum amplitudes in the k = 0.04 hMpc−1 bin. The
left panel shows the power spectrum amplitudes in the L = 1250 h−1Mpc ensemble, and the
right panel shows the amplitudes in the L = 312.5 h−1Mpc ensemble. The black dashed line
shows the average power, and the solid black curve shows a Gaussian distribution with mean
and variance matching those computed from the power spectra. In the L = 312.5 h−1Mpc
ensemble, there is a noticeable skewness in the distribution compared to a Gaussian.

3.4 Volume scaling SSC

For practical applications of the volume scaled covariance, the SSC contribution must be
included. Naively, one might attempt to include the SSC term in the small mock covariance
before applying the volume scaling. When using the addition method, the scaled covariance
would then be

CS,scaled(ki, kj) =
VS

VL

[
CS(ki, kj) + σ2

b

(
dP (ki)

dδb

)(
dP (Kj

dδb

)]
, (3.12)

where the window function used to calculate σ2
b corresponds to the volume of the small

mocks. However, the SSC term does not scale with volume in the same manner as the
rest of the covariance. The power spectrum derivative dP (ki)

dδb
remains constant with respect

to volume and σ2
b has a nontrivial dependence on volume from the window function in

equation 2.7. This can be seen in figures 3.5 and 3.6 where, for both the global and local
normalizations of the power, the covariance is greatly overestimated on all scales. Since the
SSC term is most significant at high k, this overestimation becomes greater as k increases.

The failure of the volume scaling of SSC can be linked to ergodicity. In the context of
cosmology, a field is considered ergodic if the volume average of that field within a survey
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Figure 3.5: Ratio of volume scaled small box covariance and large box covariance with
SSC correction. The small mock covariance had its SSC term added before being scaled
by the volume ratio. The left and right panels show covariance ratios relative to global
and local mean densities, respectively. The error bars represent the 1σ confidence interval
as estimated from the Wishart distribution.

or simulation is equal to the ensemble average of that field. Within a sufficiently large
box, small patches within it that are sufficiently far apart are causally disconected and
thus uncorrelated. These patches can be considered separate universes, and the modes of
the power spectrum within each patch will be independent of other patches. The volume
average of these modes within the large box would be effectively the same as the average of
many small, independent separate universes. This is what gives rise to the volume scaling
of the power spectrum covariance for modes smaller than the box width; the number of
modes Nmodes within a simulation is proportional to the volume, and the covariance scales
as 1/Nmodes (see equation 2.5). The SSC, conversely, is not ergodic. The ensemble average
of δb is not equal to the volume average of δb; the ensemble average of δb is zero, and each
simulation only has one value of δb from which to draw a “volume average”. Increasing the
volume of a simulation does not increase the number of background modes present, so the
SSC term does not scale as 1/V .
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Figure 3.6: Ratio of select off-diagonal elements of the scaled small mock and large mock
covariances with the small mock SSC correction as described in equation 3.12. The blue
dots correspond to the scaled covariance of the L = 625 h−1Mpc boxes, and the black pluses
correspond to the scaled covariance of the L = 312.5 h−1Mpc boxes. The left and right
panels show the covariance ratios relative to global and local mean densities, respectively.
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3.5 Volume scaling before SSC correction

So far we have seen that the non SSC term scales as 1
V
, but the SSC term scales as a

highly nontrivial function of V . To take advantage of the volume scaling when computing
the large volume covariance, we can calculate the non SSC term from the small mocks and
then add the SSC term appropriate for the large volume. For the addition method, the
covariance would be

CS,scaled(ki, kj) =
VS

VL

CS(ki, kj) + σ2
b

(
dP (ki)

dδb

)(
dP (kj)

dδb

)
, (3.13)

where σ2
b is being calculated for the large volume (unlike in equation 3.12). When using

the ensemble method, this corresponds to drawing the δb from a Gaussian distribution with
variance VL

VS
σ2
b [38]. This ensures that the SSC term that gets baked into this ensemble will

match that of the large volume after the covariance is re-scaled.

Figure 3.7: Ratio of volume scaled small box covariance and large box covariance with SSC
correction. The SSC term was added to the scaled small mock covariance after volume
scaling. The left and right panels show covariance ratios relative to global and local mean
densities, respectively. The error bars represent the 1σ confidence interval as estimated
from the Wishart distribution.

The covariance ratio
CS,scaled

CL
using equation 3.13 is shown in figures 3.7 and 3.8. With

the exception of the low k bin of the L = 312.5 h−1Mpc ensemble, the scaled covariance
is able to recover the large volume covariance to within 2% or better in the global mean
case and within 4% or better for the local mean. There is an improvement in how well the
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Figure 3.8: Ratio of select off-diagonal elements of the scaled small mock and large mock
covariances with the large mock SSC correction as described in equation 3.13. The blue
dots correspond to the scaled covariance of the L = 625 h−1Mpc boxes, and the black pluses
correspond to the scaled covariance of the L = 312.5 h−1Mpc boxes. The left and right
panels show the covariance ratios relative to global and local mean densities,respectively.
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volume scaling holds here over the no SSC case seen in figure 3.2, especially in the high
k bins. This improvement comes from the fact that the SSC terms being added to both
CS,scaled and CL are identical, bringing the ratio

CS,scaled

CL
closer to 1, especially in higher

k bins where the SSC term is a larger fraction of the total covariance. Despite this, the
trend for CS,scaled is to be slightly lower than CL, especially for higher k and lower VS.
This can again be explained by the missing contribution to the covariance by modes small
enough to fit in the large mocks but too large to fit in the small mocks. These modes
would contribute to the SSC term of CS,scaled.

3.6 A prescription for avoiding skewness

As observed in section 3.3, the minimum effective simulation volume that can be used in the
volume scaling technique is limited by there being too few large-scale modes in the small
volume simulations for them to obey the central limit theorem. For the volume scaling to
be applied in a realistic scenario, the simulation volume must be chosen carefully to ensure
scales of interest are well populated with modes.

Consider the power spectrum of a cubic survey or simulation volume with side length
L. The volume in k-space of a bin of the spherically averaged power spectrum is given by

Vki =
4

3
π
[
(ki +∆k)3 − (ki −∆k)3

]
, (3.14)

where ki is the central k value of the bin and ∆k is the bin width. The k-space volume of
a single mode of the power spectrum is k3

F , where

kF = 2π/L (3.15)

is the fundamental mode of the box. The number of modes one would expect to find in a
given k bin is thus

Nki =
4π [(ki +∆k)3 − (ki −∆k)3]

3k3
F

. (3.16)

When actually counting the number of modes in a given k bin, the discrete nature of
the Fast Fourier Transform adds a shotnoise component to equation 3.16. However, the
estimated number of modes recovers the correct order of magnitude when Nki ∼ 100, and
the shotnoise becomes negligible for Nki ≳ 1000. Substituting equation 3.15 into equation
3.16 and expanding the cubed terms yields

Nki =
L3k2

i∆k

2π2
+

L3∆k3

24π2
. (3.17)
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The number of modes in a k bin intuitively depends on the volume of the mocks in con-
figuration space, the central value of the k bin, and the width of the k bin.

This equation can be used to estimate the number of modes present in bins of the covari-
ance matrix that show skewness. The ki = 0.037 hMpc−1 bins of the L = 312.5 h−1Mpc
mock power spectra are expected to contain ∼ 140 modes. It is clear then that 140 modes is
too few for the power spectrum at this scale to obey the central limit theorem. Examining
the off-diagonal elements of the scaled covariance as presented in figure 3.3 shows that, for
ki ≥ 0.13 hMpc−1, the bias induced by skewness has vanished for the L = 312.5 h−1Mpc
mocks and the volume scaled covariance recovers the large mock covariance to within a few
percent. The ki = 0.13 hMpc−1 bin of the power spectra in these simulations is expected
to have Nki = 1300. This indicates that having Nki ≳ 1300 is enough for the central limit
theorem to hold, allowing the volume scaling of the covariance to hold well at scales of ki.
The minimum simulation volume at which the volume scaling of the covariance holds can
then be estimated by plugging the lowest ki scale of interest, the desired k-bin width ∆k,
and Nki = 1300 into equation 3.17 and solving for L.

3.7 How to optimally use the volume scaling tech-

nique

I will now present a summary of the most effective way to leverage the volume scaling of the
covariance to optimize the computation of survey covariance. First, the minimum ki scale
of interest and desired power spectrum binning scheme ∆k must be identified and used
to calculate the smallest viable simulation volume. Note that there may be advantages
to choosing a larger volume. For example, when using PM simulation code, matching the
survey resolution using the minimum simulation volume may require a simulation mesh
grid with a number of grid cells not equal to some power of 2. Using such a mesh grid
introduces inefficiency in computing the fast Fourier transform of the mesh, so increasing
the simulation size may be preferable to avoid this inconvenience. Once a simulation
volume is chosen, run an ensemble of simulations using the desired fiducial cosmological
parameters and compute their power spectra. If you are interested in the behaviour of
high k modes, use a CIC or higher-order resampler when painting the overdensity field to
a mesh and use the interlacing technique to reduce the effects of aliasing. Compute the
covariance matrix of these power spectra and multiply it by a factor of Vsmall/Vlarge. The
appropriate SSC correction for the survey volume can be computed as described in section
2.6.2 and added to the scaled covariance to get the final result. This methodology for
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computing the covariance matrix extracts the greatest boost in computational efficiency
that the volume scaling can provide.
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Chapter 4

Conclusions

This chapter is a summary of the work presented in this thesis. It will review the key
findings of each chapter and present future directions for research on the subject of SSC
and the volume scaling of the covariance matrix.

Chapter 1 introduced the framework for modern cosmology, including the FLRWmetric
and the ΛCDM model. I presented the observables and statistics relevant for discerning
between different cosmological models and quantifying clustering of matter in the universe.
The covariance matrix was introduced as a powerful tool for evaluating the likelihood of a
cosmological model given a set of observations. Finally, I described the process for running
N-body simulations and their role in accurately estimating the covariance matrix at scales
where analytic treatment becomes difficult.

Chapter 2 investigated the problem of including Super-Sample Covariance in N-body
simulations. The theoretical basis of how a mode of the power spectrum with wavelength
longer than the width of a survey or simulation can couple nontrivially to modes within
the survey, substantially increasing the covariance especially in the nonlinear regime. The
separate universe approach is presented as a way to model the effects of these super-sample
modes in simulations that otherwise would explicitly set the amplitude of these modes to
zero. In particular, the derivations of the perturbed parameter approach taken by Sirko
in [66] and the Spherical Collapse approach presented in [81] are given. I then describe
the addition and ensemble methods of using a set of perturbed parameters to model the
effect of SSC. By running ensembles of simulations using the Sirko and SC approaches
to perturbing the cosmological parameters, I showed a side-by-side comparison of these
different methods to determine which performed the best in modeling SSC. I found that
both the Sirko and SC approaches were able to model the SSC effect to within 10% or

68



better, with neither model significantly outperforming the other. I ran further N-body
simulations to perform a similar comparison of the addition and ensemble methods. While
both methods were able to model the SSC to within 10% or better, the ensemble method
outperformed the addition method by a few percent on most scales while requiring less
computation time to run the required simulations. After determining which methods most
accurately capture the effect of SSC, I compared the covariance matrices measured from
my ensembles with the results of other independent studies of these methods in isolation.

Chapter 3 investigated the capability of the volume scaling technique presented in [38]
to ease the cost of computing the covariance for large-volume surveys. Taking advantage of
the fact that all but the SSC term of the covariance matrix scales as the inverse of volume,
it is possible to use a larger number of small volume simulations to compute the covariance
of a large volume survey with the same degree of accuracy using less computation time. I
generated ensembles of simulations at different volumes to evaluate how well the theoretical
volume scaling of the covariance holds. As long as the SSC is correctly accounted for, I
found that the large-volume covariance can be estimated from the small-volume simulations
to within 4% accuracy or better. Still, the volume-scaled covariance was consistently biased
low compared to the large mock covariance, with the bias generally becoming greater as
simulation volume decreased and the wavenumber k of the covariance increased. The only
exception to this was for the large-scale covariance estimated from the smallest volume
simulations, where the extremely limited number of modes of that scale in the volume
caused the power in that bin to become skewed, substantially decreasing the estimated
covariance in those bins. This skewness demonstrates where and how the volume scaling
of the covariance matrix breaks down, effectively setting a minimum simulation volume
required to obtain accurate results in the lowest k bins. By estimating the number of
modes required to eliminate the skewness problem, I derived a prescription for determining
the minimum simulation volume that can be used with the volume scaling technique and
still recover an accurate estimate of the covariance on all scales of interest. I concluded
the chapter with a prescription for how to optimally use the volume scaling technique and
SSC correction to estimate the covariance in a survey volume as efficiently as possible.

The methods presented in this work show great promise for reducing the cost of com-
puting the covariance matrix without incurring a heavy trade-off in accuracy. N-body sim-
ulations are notoriously computationally expensive to run owing to the fact that, at best,
their runtime scales as O(NlogN). Next generation survey data from instruments such
as the Dark Energy Spectroscopic Instrument (DESI) [2] and the Euclid space telescope
[42] will require O(1000) of simulations run with large volume and high mass resolution to
get sufficiently accurate estimates of their covariance matrices. Simulation suites such as
AbacusSummit [45] designed to meet DESI requirements require thousands of node-hours
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per simulation to run. Running an ensemble of separate universe simulations would elim-
inate the need for the simulations to be substantially larger than the survey volume to
accurately capture the SSC effect, substantially reducing the computational cost. Use of
the volume scaling technique presents a further reduction in cost; conservatively assuming
one were to run simulations that are 1/8th the volume of the survey, the error on the esti-
mated covariance will be reduced by a factor of ∼

√
8 for the same number of node-hours

used. Alternatively, this could represent a factor of ∼
√
8 reduction in node-hours needed

to get a similar precision on the covariance matrix using large-volume mocks. The volume
scaling can potentially be pushed even further at the cost of losing information about the
large-scale covariance. If this large-scale information is still within the linear regime, it
can potentially be recovered accurately by theoretical methods of computing covariance
[52, 50, 16, 11, 9, 8, 51]. A key advantage to using the volume scaling technique is that
it can be applied alongside any other techniques used to reduce computational cost. Any
future improvements to N-body code efficiency, theoretical modeling of the covariance ma-
trix, or treatment of super-sample modes can be applied to volume-scaled simulations to
reduce computational time even further.

Redshift space distortions pose a challenge to the use of volume scaling technique in
estimating covariance in realistically-shaped surveys. While a prescription for dealing with
a non-trivial survey window function is provided in [38], they find that this prescription
breaks down once a line-of-sight dependence is introduced to the power spectrum. A more
thorough treatment of the survey window in the presence of redshift space distortions is
needed for practical applications.

The volume-scaled covariance from small mocks tends to be biased low relative to the
covariance from full-sized mocks. This is likely due to there being a missing contribution
to the SSC of the small mocks by modes small enough to fit in the full-sized mocks but
too large to fit in the small mocks. Inclusion of these modes in the calculation of the SSC
could potentially remove this bias. With the wavelength of these modes being similar to the
width of the simulation, they may not be well approximated solely by a correction to how
σ2
b is calculated. Proper treatment of these modes may require accounting for super-survey

tidal fields [63, 47, 5].

While the volume scaling has proven successful in recovering the matter power spec-
trum covariance, it is worth verifying that the covariance of other statistics of interest are
recovered with similar accuracy. The covariance of the 2PCF is expected to scale with
volume similarly to the power spectrum covariance and receive a similar improvement in
accuracy when using the volume scaling technique. While the SSC correction has been
found to accurately model the behaviour of the halo mass function, void size function, and
matter bispectrum covariance in [10], the volume scaling of these statistics, as well as the
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higher-order mutipoles of the 2-point statistics, should be investigated.

Continued improvements in the volume and resolution of cosmological surveys necessi-
tates a race to keep the computational time of covariance calculations feasible. This thesis
constitutes a step forward in that race by evaluating the accuracy of different methods of
including SSC in simulations and by demonstrating at high precision the effectiveness of
the volume scaling technique. If the potential of this technique can be fully realized, the
ambitions of next generation surveys will become much closer to our grasp.
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