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Abstract

The development of high-definition (HD) digital twin models for underground parking
lots presents significant challenges due to the absence of signals from satellite navigation
systems, fluctuating lighting conditions, and obstruction-rich environments. These com-
plexities hinder applications that rely on accurate spatial awareness, such as emergency
rescue, navigation assistance, and autonomous parking. This thesis presents an elaborate
methodology for generating an HD digital model of an indoor parking lot. A LiDAR-based
Simultaneous Localization and Mapping (SLAM) system was used for point cloud acquisi-
tion and colorization. The methodology encompasses the application of leading-edge algo-
rithms, including line feature extraction, semantic segmentation, and surface reconstruc-
tion. The effectiveness of the proposed methodology is underscored by parallel comparisons
of ground truth with visual output (e.g., line segmentation, and reconstructed models). No-
tably, segmentation via DCTNet achieves high-performance metrics in the average class
IoU of the model (90.74%) and average F1 score (98.65%). Overall, these demonstrate
the efficiency of the proposed methodology in developing a detailed indoor parking garage
model using advanced LiDAR-based SLAM technology, addressing challenges in GPS and
lighting, and providing crucial insights for future advancements in 3D indoor modelling
through comprehensive accuracy assessments and semantic enhancements.
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Chapter 1

Introduction

1.1 Motivation

The advent of digital twin technology has opened new horizons for modelling and man-
aging complex infrastructures (Lehtola et al., 2022). In the modern landscape of urban
infrastructure management, navigation, and navigational assistance, the development of
high-definition (HD) maps and digital twin models, especially for indoor environments, is
becoming increasingly significant, as a comprehensive 3D model of the surrounding envi-
ronment is crucial for navigation purposes (Elghazaly et al., 2023). Recently, laser scanning
technology has been commonly used for indoor mapping (Cui et al., 2019). However, the
reliability and application of laser scanning techniques are often undermined by the inher-
ent limitations in indoor scenes. These can be fluctuating lighting conditions, obstructions
occlusions in limited spaces, etc (Yurtsever et al., 2020)., which would reflect a series of
issues in data quality like poor cloud density, inconsistencies, spatial discreteness, and in-
completeness Döllner (2020). The deficiencies will further exacerbate the negative effects
on the overall model leading to poor spatial accuracy and unsatisfactory segmentation
output, such setbacks can significantly undermine the feasibility and dependability of 3D
modeling. Consequently, there is an increasing demand to refine and standardize these
techniques (Laoudias et al., 2018), given that the sophistication of indoor models does not
yet match that of their outdoor counterparts, and there were very few previous studies
that attempted to develop and evaluate point cloud model performances within indoor
underground scenes (Wróblewski et al., 2022).

This thesis addresses these challenges accordingly, introducing a comprehensive method-
ology that delivers precise reconstructed models of underground parking facilities. The
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process starts with the acquisition of raw point cloud data, which are then colorized us-
ing a LiDAR-based Simultaneous Localization and Mapping (SLAM) system in GeoSLAM
(Sammartano and Spanò, 2018). This system can be specifically refined to tackle the com-
plexities of indoor infrastructure mapping, ensuring robustness and reliability in the model
reconstruction (Fathi et al., 2015).

The growing demand for efficient use of urban space is pushing the development of
underground parking lots (Broere, 2016). However, the navigation within these environ-
ments is often fraught with inaccuracies due to the aforementioned challenges. There is an
urgent need to improve the spatial accuracy and semantic understanding of these scenes
to support the development of autonomous assistance systems like a last-kilometre au-
tonomous parking assistance solution (Mounce and Nelson, 2019). This study is dedicated
to addressing these needs by developing a highly accurate underground parking lot model
that can be fundamental for the deployment of navigation assistance systems, providing
them with the critical environmental data necessary for successful operation.

1.2 Research Gaps

1.2.1 Benchmark Establishment

2D geospatial information nowadays is developed very well with complete structures for
both proprietary GIS and most authorized open-source GIS (Orengo, 2015), but the situ-
ation for 3D point cloud data is different. Especially for an indoor scene, existing indoor
mobile laser scanning (iMLS) point clouds and labelled datasets are not rich enough to
stimulate large-scale public participation in geographic information system (PPGIS) collab-
orations like 2D geospatial information (Sieber, 2006). There is only a handful of globally
recognized open-access indoor point cloud datasets available for the community to test and
validate 3D geospatial information model performances (Guo et al., 2020).

1.2.2 Data Acquisition

Unlike 2D geospatial information, 3D geospatial information incorporates a third coordi-
nate into each data entry, which means we shall consider not only the X and Y coordinates
but also the Z axis (Orengo, 2015) which is perpendicular to the horizontal X-Y plane (Lee,
2004). This introduces another challenge and complexity during data collection. As shown
in Figure 1.1, the presence of obstacles (e.g. a car) can impede the line of sight between
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the laser scanner and the target structure (e.g. a wall on the façade line) (Balado Fŕıas
et al., 2020). This results in significant information loss due to occlusions, where the areas
behind obstacles are not scanned and thus remain undetected during the data collection
phase (Balado Fŕıas et al., 2020).

Figure 1.1: Information loss due to occlusions (Source: Balado et al., 2020)

1.2.3 Data Quality Control

The intrinsic characteristics of 3D point cloud data include high density, irregular distri-
bution, and varying scales, which can intensify data quality issues (Kodors, 2017). For
example, these features may contribute to occlusions, incomplete data capture, inconsis-
tent point densities, and spatial discontinuities, all of which could hinder and complicate
the production and utilization of 3D point clouds. In this case, there is another gap steering
our future contributions toward addressing low-level taskings, such as point cloud correc-
tion and completion (Fei et al., 2022). The enhancement of point cloud quality is urgently
needed.

1.3 Objectives of the Study

The objectives of this study are three-fold:

• To develop a high-quality point cloud dataset using a LiDAR-based SLAM system.
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• To construct an annotated indoor parking lot model achieved by semantic segmen-
tation, line extraction, and surface reconstruction, respectively.

• To assess and validate the model’s accuracy and utility using globally recognized
metrics. The outcomes will then be compared to derive insights for subsequent
enhancements.

1.4 Structure of the Thesis

This thesis is organized into five chapters:

Chapter 1 introduces the motivations, research gaps, and objectives of the study with
challenges in generating 3D models in an underground environment.

Chapter 2 presents the related works in indoor mapping and semantic modelling using
laser scanning point clouds.

Chapter 3 describes the proposed methodology and overall workflow. Three tasks (se-
mantic segmentation, surface reconstruction, and line segment extraction and optimization)
are detailed.

Chapter 4 presents the experimental results with the model performance evaluation
and visualization. It also reiterates the contribution made to the field of indoor mapping
and discusses the limitations and impact of this thesis.

Chapter 5 proposes directions for future work to advance the capabilities of semantic
modelling of indoor environments.
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Chapter 2

Related Works

Over the years, indoor modelling and environmental reconstruction have made substantial
progress, rooted in continuous research that has enhanced our methods for analyzing,
visualizing, and reconstructing spaces (Berger et al., 2014). Contemporary algorithms
have significantly broadened and refined methodologies for performing a variety of tasks,
whether applied to sets of 2D images or directly onto 3D point clouds (Xu et al., 2021),
marking a significant evolution in the field. Processing 3D data has now become a popular
research domain that enables users to extract and analyze spatial information, recognize
patterns, and understand the complex interrelationships between global structures and
local features within the voxels of a specific scene in different environments (Ioannidou
et al., 2017). Work related to line detection (Section 2.1), line optimization (Section 2.2),
surface reconstruction (Section 2.3) and semantic segmentation (Section 2.4) have been
reviewed, respectively.

2.1 Line Detection

Lin et al. (2015) deviated from conventional methods by emphasizing the direct extraction
of line segments from unstructured 3D point clouds in real-world environments. This ap-
proach combines earlier research that prioritized 2D line detection (Von Gioi et al., 2008)
and 3D reconstruction from multiple images (Jain et al., 2010). In their study, Lin et al.
transformed point clouds into rendered images from various viewpoints and then applied
the Line Segment Detector (LSD) algorithm (Von Gioi et al., 2008). to identify 2D line
support regions. Subsequently, these regions were re-projected into 3D space. To improve
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accuracy, these regions were represented using a Line-Segment-Half-Planes (LSHP) struc-
ture. The result is a structured final output, which applies a space partitioning algorithm
similar to the work of Babacan et al. (2016) in Section 2.3, which utilized the Binary Space
Partitioning (BSP) for feature extraction.

Lu et al. (2019) proposed an efficient framework for rapid line detection and segmen-
tation within point cloud data . The process begins with the segmentation of input point
clouds into distinct 3D planes using a combination of techniques for region growing and
merging, as depicted in Figure 2.1.

Figure 2.1: A comparison of outputs from KNNs algorithm for region growing and merging
(Source: Lu et al., 2019)

The algorithm K-Nearest Neighbours (KNN) is used to identify neighbouring points,
and the normal of each plane is estimated through the Principal Component Analysis
(PCA). The equation of the covariance matrix for PCA can be expressed as follows:
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=

1

k

k∑
i=1

(Pi − P̄ )(Pi − P̄ )
T

(2.1)

where Pi is a neighbouring point, and P̄ is the mean vector of the KNNs. The region
growing and merging approach is applied to identify planes within a point cloud by grouping
points on the same surface.

Subsequently, for each identified plane, the corresponding points are orthogonally pro-
jected onto it, creating a 2D representation. These 2D line segments are then reprojected
back onto their respective 3D planes to reconstruct the original 3D segments. A post-
processing step is implemented to remove outliers and merge 3D line segments that are
close to each other. The final output, which should resemble the illustration in Figure 2.2,
comprises cleanly defined 3D edges boundaries and surfaces.

Figure 2.2: 3D line segment extraction result (Source: Lu et al., 2019)

Hu et al. (2022) developed an approach that combines a geometric feature-enhanced
line extraction technique with a hierarchical topological optimization process. Initially, line
segments are extracted from 2D edge maps using the Markov Chain Marginal Line Segment
Detector (MCMLSD) algorithm and then re-projected into 3D to form initial candidates.
Subsequently, these candidates are optimized for topological accuracy through merging and
refinement operations. The process begins with plane extraction via region growing and
merging. Segmented regions are then mapped onto 2D grids through a geometric feature-
enhanced 3D-to-2D projection, followed by the extraction of 3D line segments through
the integration of multiscale edge features. Finally, line segments undergo a two-stage
refinement by first merging perceptually similar line segments to form precise line sets
and then applying hierarchical optimization to these merged line segments to enhance the
topology and accuracy of the overall line set.
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This method outperformed current leading algorithms, achieving an average of 86%
completeness and correctness in line extraction and running at a speed of 25,000 points
per second when tested on the Semantic 3D and the Wuhan University (WHU)-Terrestrial
Laser Scanning (TLS) datasets.

2.2 Line Framework Optimization

The output of line segment extraction often contains many occlusions and elements from
cluttered backgrounds. Wang et al. (2018) categorized these occlusions into three main
types: 1) a parallel or orthogonal relationship between some adjacent edges or lines, as
shown in Figure 2.3 (a), 2) incomplete structures and disconnected line segments or edges,
illustrated in Figure 2.3 (b), and 3) extrusions of line segments or edges, as depicted in
Figure 2.3 (c).

(a) (b) (c)

Figure 2.3: Examples of imperfect line structure extraction (Source: Wang et al., 2018)

To optimize the generation of imperfect semantic lines, Wang et al. (2018) proposed
an optimization model based on a conditional Generative Adversarial Network (cGAN)
framework, which begins by fitting the line structures onto their corresponding 2D planes.
To transform the points in the new coordinate system, the z coordinate of each point is
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set to zero. Two orthogonal unit vectors ux = (ux1, ux2, ux3) and uy = (uy1, uy2, uy3) are
selected as the new x and y axes, and a new z axis will be denoted as uz = (uz1, uz2, uz3).

A new coordinate for each point will be shown as follows:

(x′, y′, z′, 1) = (x, y, z, 1) · T · R (2.2)

where the translation matrix (T) and the rotation matrix (R) are represented as follows:

T =


1 0 0 0
0 1 0 0
0

−x0

0
−y0

1
−z0

0
1

 (2.3)

R =


ux1 ux2 ux3 0
uy1 uy2 uy3 0
uz1

0
uz2

0
uz3

0
0
1

 (2.4)

The x and y coordinates are mapped to rows and columns in a 2D image, which is then
subdivided into 256 × 256 sub-images. These sub-images are processed by a convolutional
neural network (specifically, the VGG16 CNN architecture) to extract features. Three fully
connected layers are then employed to classify these features. Once the 2D line segments
have been optimized using the cGAN models, they are reconstituted into 3D point repre-
sentations using Equation 2.2.

2.3 Surface Reconstruction

Reconstructing floor plans typically involves connecting fragmented or missing lines to
create a surface that is geometrically and topologically accurate. Babacan et al. (2016)
introduced a space-partitioning approach to extract geometric details in three steps: 1)
selecting the optimal horizontal slice based on volume, 2) applying 3D plane fitting to
points chosen by Random Sample Consensus (RANSAC), and 3) regularizing by converting
3D data into 2D and performing line quantization. Additionally, doors and other structural
building elements were identified as semantic data to refine the geometric details further.
Using the developed framework, the model can be extensively segmented with the BSP
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method, which is informed by these refined primitives. The BSP process generates a
tree (known as a BSP tree), where each node contains a partitioning element (a line in
2D or a plane in 3D). Each leaf node represents a convex subspace of the original area.
Mathematically, a plane used in the BSP and defined by the general plane equation can
be expressed as follows:

Ax+By + Cz +D = 0 (2.5)

where A,B,C are the normal vectors to the plane (denoted as n⃗ or N = (A,B,C));
x, y, z are the 3D coordinates; D is the distance from the origin to the plane along the
normal direction. For any point P (x, y, z): if Ax+By + Cz +D > 0, P is in front of the
plane (front-half); if Ax + By + Cz + D < 0, P is behind the plane (back-half); and if
Ax+By + Cz +D = 0, P is on the plane.

The BSP process in 3D employs the plane equation (Eq. 2.5) to determine the position
of a point relative to the partitioning plane, effectively organizing the space into distinct
regions. To complete the floor plan, adjacent sections from the BSP tree that share common
attributes are merged using the Minimum Description Length (MDL) principle (Babacan
et al., 2016). In essence, the MDL principle seeks to identify the model that offers the most
concise representation of the data, considering both the complexity of the model and the
data it encodes. While the MDL principle can be applied to a variety of statistical models
and comes in several forms, the underlying concept can be mathematically represented by:

DL = λ(L (D) + (1− λ) (L (H) (2.6)

L (D) =
Ω

2ln2
(2.7)

L (H) = L′
plog2Lp (2.8)

where H is the hypothesis or model, D is the data, and λ is the weighting value. In
(Eq. 2.7), Ω is the sum of the squared residuals between the data D and a model H:
[D −H]T × [D −H]. In (Eq. 2.8), L (D | H) is the cost to the data D given the model
H (the goodness of fit), L (H) is the length or cost that describes the model H, Lp is the
Description Length (DL) or complexity of the initial model, and L′

p refers to the DL or
complexity of a hypothesis (a potential new model).
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The optimal model is a model that has a minimum DL value. With Babacan’s method,
fragmented floating 3D data can be transformed into a coherent surface representation
illustrated in Figure 2.4.

Figure 2.4: Space Partitioning & Reconstructed Floor Plan (Source: Babacan et al., 2016)

The significance of detecting wall planes is highlighted due to their status as some
of the most prominent structures found indoors. Fang et al. (2021) proposed a space
partitioning method designed to produce surfaces with a focus on identifying walls as
key boundaries within an indoor environment. The method relies on a region-growing
approach to detect planes while retaining the edges and facets formed by the critical inliers
that correspond to these planes (see Figure 2.5). To isolate floor and ceiling planes, the
algorithm identifies planes which normally are parallel to the z-axis (in an upward direction)
and are situated near the top and bottom of the 3D bounding box that encapsulates the
scene. The remaining planes are classified as walls (vertical planes), delineating the space
boundary.

U (x) = (1− λ)Ufidelity (x) + λ Ucomplexity (x) (2.9)

where Ufidelity (x) is the degree of agreement between a state configuration x and the
input data, and Ucomplexity (x) indicates the complexity of the output boundary.

Ufidelity (x) = β Upoints (x) + (1− β)Uwalls (x) (2.10)
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(a) (b)

Figure 2.5: Floor plan Reconstruction with (a) indicates raw point clouds, and (b) refers
reconstructed floor plan of the indoor scene (Source: Fang et al., 2021)

The first term Upoints (x) quantifies the proportion of input points that are enclosed by
the boundary edges, which can be expressed mathematically as follows:

Upoints(x) =
n∑

i=0

−|P
(
f 1

i

)
− P (f 2

i)| ·
|ei|
Ê

· xi (2.11)

The term Upoints (x) is measured to calculate the extent to which boundary edges enclose
the input data. It operates on the premise that each edge (ei) is shared by two facets
(denoted as f 1

i and f 2
i). The length of each edge is represented by |ei|, and Ê signifies

the cumulative length of all edges under consideration (Fang et al., 2021). The function
P () in Equation 2.11 is used to measure the probability that a given facet lies within the
confines of the boundary edge. Consequently, Upoints (x) is designed to preferentially select
edges in which incident facets exhibit a varied proportion of internal cells (contains input
points), ensuring that a precise boundary accurately reflects the spatial distribution of the
input point clouds (Fang et al., 2021).

A second term Uwalls (x) is designed to mitigate the influence of such noisy edges that
might become erroneously active during the edge detection process, whose mathematical
equation is represented as follows:
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Uwalls (x) =
n∑

i=1

(
1− |ẽi|

|ei|

)
· |ei|
Ê

· xi (2.12)

where |ẽi| is the length of the overlapping segment between the edge and the corre-
sponding wall plane. Essentially, Uwalls (x) imposes a penalty on the edges based on how
little they overlap with the relevant wall structures.

Figure 2.6: Segments ẽi, ẽj on Candidate Edges ei, ej (Source: Fang et al., 2021)

In addition, the RANSAC algorithm, originally introduced by Fischler and Bolles
(1981), is widely used in model fitting, particularly renowned for its robustness in handling
data with outliers. Over the years, its utility has expanded, making it especially effective
for plane fitting within sets of 3D points (Mariga, 2022). The core idea of RANSAC is to
iteratively select a random subset of the original data, fit a model to this subset, and then
determine how many of the other data points fit this model. This process repeats multiple
times, and the best-fitting model is chosen as the final model.

PyRANSAC-3D (see Figure 2.7) is a novel implementation of the RANSAC algorithm
designed by Mariga (2022) specifically tailored for 3D point cloud data. It is capable of
fitting primitive 3D shapes such as planes, cuboids, and cylinders. This makes it particu-
larly valuable in tasks that involve the identification and extraction of these shapes from a
3D point cloud, such as 3D SLAM, 3D reconstruction, object tracking, and many others,
including but are not limited to plane, line, and point fitting.
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Figure 2.7: pyRANSAC-3D plane fitting (Source: Leonardo, 2022)

2.4 Semantic Segmentation

Nowadays deep learning strategies primarily aim to establish a comprehensive global em-
bedding by conducting initial point-wise embedding, which are subsequently integrated
through a sophisticated aggregation mechanism. The following summary reviews several
prevailing literature on semantic segmentation techniques for point clouds, which provides
valuable perspectives on how neural network architectures in semantic segmentation can
function as benchmarks for evaluation and quality assurance during the generation of in-
door 3D models. Semantic segmentation is a complex task that involves assigning each
2D pixel or 3D voxel to a category from a predefined set of classes. While it has been
a subject of extensive research in the context of 2D imagery over the past decades, this
research pivots towards the semantic segmentation of 3D point clouds. Accordingly, the
discussion that follows will predominantly address recent advancements and methodologies
contributed to the high-level tasking of 3D point cloud data.

PointNet (Qi et al., 2017a) was designed to process dispersed point-wise information and
aggregate global features, utilizing shared multilayer perceptron (Multilayer Perceptrons
(MLP)s) and symmetric pooling operations to ensure effective feature learning. The full
network of PointNet is shown in Figure 2.8.

The key highlights in PointNet for semantic segmentation include 1) a symmetric func-
tion to make the network invariant to the order of the points (PointNet uses a maximum-
pooling layer to aggregate the features of all points), 2) Shared MLP that combines local
and global information to learn the spatial encoding of each point, and 3) Segmentation
Network designed as an extension of the original classification network by adding local and
global feature aggregation to assign a class to each point.
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Figure 2.8: Architecture of PointNet network (Source: Qi et al., 2017a)

Figure 2.9: Architecture of PointNet++ network (Source: Qi et al., 2017b)
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PointNet is one of the pioneering deep learning algorithms in directly processing point
clouds. While there were previous attempts to apply deep learning to 3D data, Point-
Net was the first ever to operate directly on unstructured point clouds without requiring
conversion to 3D voxel grids or multi-view images (Qi et al., 2017a). This represented a
significant advancement in this field that allowed the processing and analyzing of raw point
clouds while preserving the fine-grained spatial locality of the data, which may be lost in
other representations such as voxel grids and some 3D-2D approaches such as Multi-view
Convolutional Neural Networks (MVCNN) (Jiang et al., 2019) and SnapNet (Boulch et al.,
2018).

PointNet++ (Qi et al., 2017b) is proposed as an advancement of PointNet (Qi et al.,
2017a) later in the same year and addresses one of its main limitations: detecting local
details within point clouds. It employs a hierarchical neural network that applies PointNet
recursively on nested subsets of point clouds to capture local geometric patterns based on
neighbouring feature pooling, a general workflow is illustrated in Figure 2.9.

Lu et al. (2023) introduce Dynamic Clustering Transformer-based Network (DCTNet),
a transformer-based network specifically engineered for semantic segmentation tasks. The
model’s architecture (see Figure 2.10) is specifically tailored to address the inherent chal-
lenges in semantic segmentation, emphasizing the enhancement of local semantic homo-
geneity.

Figure 2.10: Architecture of encoder-to-decoder structure in DCTNet (Source: Lu et al.,
2023)
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In DCTNet, each encoder stage comprises two pivotal blocks: a dynamic clustering-
based Local Feature Aggregating (LFA) and a transformer-based Global Feature Learning
(GFL) Blocks. The LFA block is instrumental in ensuring discriminative local feature
extraction, while the GFL block, with its dual attention mechanism, is well designed to
capture long-range contextual relationships within the data. Similar to the encoder, the
decoder follows a U-Net design (Ronneberger et al., 2015) and includes stages with a
semantic feature-guided upsampling block and a transformer-based GFL block, paralleling
those in the encoder. This symmetric design is crucial for reconstructing detailed semantic
information from compressed feature representations. The output of this process is the
generation of a final point prediction through a MLP head layer, which consists of two
linear layers enhanced with batch normalization and Rectified Linear Unit (ReLU). This
layer not only provides the final output but also ensures the preservation of critical semantic
details.

The integration of the LFA and the GFL blocks within DCTNet represents a significant
advancement in addressing the demands in semantic segmentation by effectively harmo-
nizing local and global feature representations (Lu et al., 2023).

The model employs Semantic feature-based Dynamic Sampling Semantic Feature-based
Dynamic Sampling (SDS), a process involving local density computation, distance indicator
calculation, and an innovative scoring and sampling technique. This method involves
calculating the local density di for each point pi based on its KNN (Φi) in the feature
space. With given an input point set P :

P = {pi}Ni=1 ∈ R N×D (2.13)

where D is the dimension of the input. The local density di can be calculated as:

di = exp

(
−1

k

∑
pj∈Φi

∥pi − pj∥2
)

(2.14)

Next, a distance indicator δi for each pi can be computed and defined as:{
mindj∈Ωi

∥pi − pj∥2, if Ωi = ∅
maxdj∈R ∥pi − pj∥2, otherwise

(2.15)

where Ωi = {di ∈ Γ | ∀dj > di}. δi represents the minimal feature distance between a
point pi and any other points with higher local density, facilitating the scoring of each
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point by combining di and δi. This scoring system prioritizes points with higher scores for
sampling, dynamically updating this selection based on semantic features.

DCTNet’s local feature aggregation addresses the limitations of conventional averaging
methods by implementing a set of learnable attention scores A = {ai}Ni=1. This set allows
for the calculation of the significance of each point within a cluster, enhancing the repre-
sentation of individual points’ importance and mitigating information loss. Specifically, for
a point cluster C = {Csi}Si=1, the significance of each point si can be calculated as follows:

si =

∑
j∈Csi

exp (aj)Csij∑
j∈Csi

exp (aj)
(2.16)

where aj is the learnable attention score for Csij within the cluster. Meanwhile, the
relationship between the sampling points and cluster points in the previous step is also
stored for the point cloud upsampling in the decoder. Furthermore, the model integrates
a cross-attention Transformer to enhance the features of sampling points and reduce infor-
mation loss during aggregation. This is achieved through the generation of Qquery, Kkey,
and Vvalue with learnable weight matrices WQ, WK , and WV :

Qquery = SWQ (2.17)

Kkey = PWK (2.18)

Vvalue = PWV (2.19)

An attention map M is then calculated (see Eq. 2.20), integrating feature similarities
and point importance, to produce an enhanced set of sampling points.

M = softmax

(
QKT

√
D

+ A

)
(2.20)

Additionally, DCTNet includes a Semantic Feature-guided Upsampling Block , which
effectively upscales point clouds by transferring semantic features from sampling points to
corresponding cluster points (Lu et al., 2023).
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Chapter 3

Data Collection

The data collection in the research can be summarized into Stage 1 of the general workflow
illustrated in Figure 3.1 below. Overall, Stage 1 covers Sections 3.1 to 3.3, introduces
the study area, outlines the data collection process, and describes the preprocessing steps
required to convert raw data into labelled point clouds. This phase is foundational for the
subsequent analysis and findings presented in later chapters of the thesis.

Figure 3.1: General workflow

3.1 Study Area

The study area encompasses an indoor parking garage located near Toronto Premium
Outlets, located at 13850 Steeles Avenue, Halton Hills, ON L7G 0J1, Ontario, Canada.
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The Outlet located near a key junction of major highways (Hwy 401), on the outskirts
of the Great Toronto Area (GTA), provides easy access while escaping from downtown
congestion, making it an attractive spot for consumers in search of a stress-free shopping
experience. This parking facility spans four levels: L1, L2, L3, and L4. L4 has been
designated as the targeted area for data collection. The location of the parking garage and
its aerial perspective are illustrated in Figure 3.2.

Figure 3.2: Location of the study area (Source: Google OpenStreetMap)
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3.2 Data Collection

The raw 3D Light Detection and Ranging (LiDAR) point clouds were collected using
GeoSLAM ZEB Horizon laser scanner (with datalogger) installed with the ZEB Vision
camera (to generate corresponding RGB-D images).

3.2.1 Hand-held Laser Scanner

The GeoSLAM ZEB Horizon is known for its portability and versatility in capturing 3D
spatial data. The details about hardware and accessories are demonstrated in Tables 3.1,
3.2, and 3.3.

Table 3.1: GeoSLAM ZEB Horizon technical specification
Parameter Specification
Range 100 m
Laser Class 1 eye-safe / λ 903 nm
Field of view (FOV) 360°× 270°
Processing Post
Datalogger carrier Backpack / Shoulder strap
Scanner weight 1.45 kg
Datalogger weight 1.4 kg
Colourised point cloud ✓
Real-time processing ✓
Data collection speed 300,000 points per second
Number of sensors 16
Vertical angular resolution 2°
Horizontal angular 0.2 °
Relative accuracy up to 6 mm (1-3 mm)
Raw data file size 25-50 MB/ minute
Battery life Up to 2 hours of continuous scanning

The scanner reaches up to 100 meters and it is capable of operating under varying
lighting conditions. The datalogger utilizes the SLAM algorithm in GeoSLAM for real-
time data processing and point cloud generation; however, this feature is only for the
ZEB Horizon RT, which is an advanced version of the standard ZEB Horizon. For the
ZEB Horizon, post-processing is often performed with GeoSLAM-related software such as

21



Table 3.2: GeoSLAM ZEB Horizon configuration
Scanner Datalogger

(Source: GeoSLAM)

Table 3.3: GeoSLAM ZEB Vison camera accessory
Resolution 4K Panoramic

Capture Rate 2FPS
Colour RGB

ZEB Vision Camera (Source: GeoSLAM)

GeoSLAM Hub, Connect, Draw, etc., which efficiently processes the SLAM algorithm to
produce detailed 3D data and maps.

Post-processing aims to transform raw, unstructured points into valuable, precise, and
meaningful information. The processed data can be outputted in common point cloud
formats, ensuring compatibility with a range of third-party post-processing tools such as
CloudCompare, MeshLab, etc. The ZEB Horizon operates independently of the Global
Positioning System (GPS), enabling the mapping of multi-level structures and seamless
indoor-to-outdoor transitions with multi-scans. It is specifically designed for complex in-
dustrial settings and can navigate challenging terrains with ease. The battery life lasts up
to 2 hours of continuous scanning, with an alternative option for field-swappable batteries.

The GeoSLAM ZEB Horizon uses LiDAR sensors to measure distances by illuminating
a target with laser light and measuring the reflection with a sensor. The time it takes
for the laser to reflect to the sensor is used to calculate the distance, and thus, create a
3D representation of the scanned environment. The LiDAR technology enables the ZEB
Horizon to quickly capture numerous amounts of spatial data by emitting thousands of
laser pulses every second. The data collected is then processed using SLAM technology,
which allows the ZEB Horizon to produce 3D maps of indoor, underground, and difficult-
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to-navigate spaces in real-time, without the need for the GPS.

Figure 3.3: Overview of the raw point clouds of the parking garage (filtered.laz)

Density =
Mass

V olume
(3.1)

Table 3.4: Parameter of the indoor parking garage scene
Parameter Specification
Sensor GeoSLAM ZEB Horizon Laser Scanner (LiDAR)
Area 10,155.03 m2

Volume 433,702.84 cubic units
Density 223.6 mass units/cubic volume
Size 1.0 GB
Collected Date April.29th, 2023

The point clouds we collected at outlet level 4 are illustrated as a bird view image in
Figure 3.4. Based on Equation 3.1, the calculated volume is approximately 433,703 cubic
units. Subsequently, using the given mass, the density is determined to be roughly 223.60
mass units per cubic volume unit. These values are recorded in Table 3.4.
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Figure 3.4: Bird view of the raw data at level 4 in outlet parking garage
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3.2.2 Setup and Trajectory

(a) (b)

Figure 3.5: Devices setup (a): ZEB Horizon and hollow-out cross; (b): Control point
alignment testing

The start and stop controls for the scanning operation are managed via the button
located on the scanner head, as depicted in Figure 3.5. Additionally, the scanner head
features a rectangular Light-emitting diode (LED) light, synchronized with the processor
light, which collectively serves as operating indicators. These lights show different statuses:
a red sequential light signifies that the processor is ready for operation; a flashing yellow
light indicates that the scanner is still in the initiation phase; and a solid green light denotes
active data collection.

To initiate data collection, after assembling and connecting the ZEB Vision camera,
laser scanner, and datalogger as demonstrated in Figure 3.5, activate the set of scanners by
pressing the button on either the scanner head or the datalogger. Wait for about 40 seconds
until the red sequential light on the scanner head switches to a flashing yellow light (or the
blue light on the datalogger processor changes to a red flashing light), indicating that the
scanner head is in the preparation stage for scanning. Both lights will flash approximately
11 times before the scanner head’s LED remains continuously lit. During this interval, the
scanner must be kept stationary, as any detected movements by the Inertial Measurement
Unit (IMU) will prevent the initiation of the scanning operation. Data collection can begin
once the laser light LED turns green and starts to rotate.
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During the scanning procedure, upon encountering a control point, the operator should
gradually squat and precisely align the center of the hollowed-out cross on top of the control
point. This position should be maintained stationary for 5 seconds to ensure successful
capture of the control point., In terms of movement, it is essential to turn or rotate with
caution, avoiding rapid adjustments in the scanning direction. Where feasible, scanning
should be performed in a closed loop, as depicted in Figure 3.6, with the same start
and end point connected by a circular trajectory for enhancing the IMU accuracy. It is
recommended to limit the duration of each scanning session to around 25 minutes. During
scanning, the movement should be consistent and at a slower pace akin to a leisurely walk.

Upon completion of data collection, the operator must remain immobile for 5 seconds
before activating the termination process. This involves pressing the button located on
the laser head or the corresponding button on the processor. The button should be held
down until the laser head stops rotating. At this time, the processor’s data indicator will
illuminate yellow, signalling the initiation of data storage. Once the light goes off, the
data storage is completed. Only after the indicator light turns off can the laser head be
restarted to collect data for the next operation stage.

Figure 3.6: Trajectory and moving direction (star: start and endpoint; arrow: direction)
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3.3 Data Preprocessing

Subsequently, the colourized and refined point clouds will be segmented into distinct classes
based on the pre-defined labels, such as walls, floors, pillars, etc.

3.3.1 “.GeoSLAM” to “ filter colored.laz”

Figure 3.7: Workflow of “Process SLAM” on GeoSLAM Connect

Upon completion of the data collection phase, the raw point clouds are imported into
software for preprocessing. During this stage, the raw data will be filtered, colourized with
panoramic RGB images, and exported as a .laz file, which is compatible with many third-
party processing tools, including CloudCompare. Figure 3.7 illustrates a clear and detailed
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workflow for the process preceding colorization. Initially, the “Outlet l4.GeoSLAM” must
undergo filtering and calibration. During this stage, the ’Point Resolution’ option was
maintained at its default setting, and the ’Smooth and Clean Data’ option was checked.
This procedure results in the generation of three distinct files: a standard LAZ file, a
’gs− traj’ file (which outputs a trajectory similar to the one shown in Figure 3.6), and a
filtered LAZ file.

Figure 3.8: Image capture by ZEB Vision camera: (a) BS image at Spot ∂ (BS∂); (b) FS
image at Spot ∂ (FS∂)

Before moving to the colorization stage, there is a stitching process that aligns Backsight
(BS) and Foresight (FS) images for each site. This alignment is achieved by pairing BS and
FS images of the same site, as demonstrated in Figure 3.8, to create panoramic sets. The
process involves inputting the corresponding GeoSLAM dataset, trajectory file (gs-traj),
timing file (imageTiming.json), and calibration file (camera cal.json). Subsequently, an
image pose file was generated, as shown in Figure 3.9. Each point in Figure 3.9 represents
a site which contains a set of BS + FS to form an individual panoramic. For each BS+FS
site (FS∂ + BS∂), a panoramic view can be accessed by clicking on the designated point
located on top.

The next step is to utilize the ’colourize cloud using the ZEB Vision tool. This requires
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the input of the filtered. laz file, the image pose file, and the camera calibration file. The
operator has the option to mask certain areas of the image, depending on the scanning
method used, hand-held or backpacked. This masking aims to exclude irrelevant informa-
tion, such as the operator’s face, and the person’s outline or silhouette demonstrated in
Figure 3.8. In our study, since the scanner was handheld during data collection, the ’hand-
held’ option will be selected for this phase. In addition, the method of cloud colorization
is chosen between timing and distance options. The timing option typically processes at
a faster pace, whereas the distance option, though slower, yields better results. For low-
resolution mode, checking the box accelerates the process, whereas leaving it unchecked
enhances the quality of the result. Furthermore, another option is provided to remove
uncolored points, resulting in cleaner data output. However, it is important to note that
this may also lead to the loss of crucial data, leaving the box unchecked can preserve more
detail in the point clouds. For data quality preservation, we selected the “by distance”
method, unchecked low-resolution mode during the pre-processing stage.

Figure 3.9: Example of an Image Position file
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Chapter 4

Semantic Segmentation and Surface
Regularization

Figure 4.1: Stage 2 of the overall workflow
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This chapter comprises Sections 4.1 to 4.4, which delves into analytical and optimization
techniques for semantic understanding using a transformer-based network called DCTNet
(Lu et al., 2023) for label understanding. Followed by a model reconstruction method
that combines a Hierarchical Density-based Spatial Clustering (HDBSCAN) clustering, a
pyRANSAC-3D plane fitting (Mariga, 2022), a revised RANSAC plane fitting, and a 3D
line detection (Lu et al., 2019) algorithm.

4.1 Data Pre-processing

4.1.1 Semantic Labelling

Seven distinct classes have been delineated, each representing a unique semantic entity
within the dataset. These classes, along with their corresponding labels and detailed
definitions, are as follows:

• Bollard (Class 01): small vertical structures designed for safety and security pur-
poses, serving as physical barriers between pedestrians and vehicles.

• Wall (Class 02): vertical structures enclose spaces, serving as boundaries or edges.

• Pillar (Class 03): vertical and cylindrical structural support element designed to
bear the load of the parking garage’s upper floors.

• Vehicle (Class 04): motorized transportation (e.g. sedans, trucks, SUVs, etc.)

• Ceiling (Class 05): upper horizontal surface engineered for structural support.

• Floor (Class 06): lower horizontal surface marked for vehicular movement/ parking.

• Others/ Unclassified (Class 07): other unclassified object points.

Subsets of each class have been generated in both RGB and scalar field formats, as
presented in Table 4.1. This table also delineates the point count for each label, revealing
a relatively smaller number of points in the bollard (127,625) and pillar (469,885) classes.
The wall class comprises 5,842,108 points, and the vehicle class contains 1,439,990 points.
A higher point count is observed in the floor class (25,252,755), while the ceiling class
possesses the most points within a single category, 35,640,963 in total. The unclassified
category holds 4970 points. In sum, the entire point cloud dataset encompasses 68,778,296
points post-filtering and smoothing, before any segmentation processes.
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Table 4.1: Example sub-sets for each class
Label RGB Scalar Field Points

0 - Bollard 127,625

1 - Wall 5,842,108

2 - Pillar 469,885

3 - Vehicle 1,439,990

4 - Ceiling 35,640,963

5 - Ground 25,252,755
6 - Other \ \ 4,970
Total 68,778,296
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4.1.2 Ceiling Removal

In the context of developing and reconstructing an indoor model, the significance of the ceil-
ing class is diminished due to its lack of interaction with navigable surfaces. Furthermore,
ceiling points can obscure other crucial features when viewed from above. Therefore, seg-
menting and removing ceiling points could enhance the visibility of other important classes,
which visualization and evaluation can be facilitated more easily in subsequent stages. The
differences in before vs. after ceiling removal are presented in Figure 4.2. Following the
successful segmentation of the ceiling class, a similar approach can be applied to remove the
lower horizontal planes and the floor. This technique, detailed in Section 4.3.1 on surface
reconstruction, helps to distinguish the surface of the parking lot from other structures
and objects, further refining the accuracy of the model for autonomous navigation.

(a) (b)

Figure 4.2: Ceiling Removal: (a) before ceiling removal; (b) after ceiling removal

4.1.3 Subsampling

For better performance efficiency and timesaving for data processing and analysis, the en-
tire dataset has been downsampled by specifying a minimum spacing between points in the
resulting subsampled point cloud using the ‘space’ subsample method in CloudCompare.
This minimum spacing parameter is set by the user and determines how densely or sparsely
the point cloud will be sampled. In our study, the minimum space parameter was set to
be 0.05, which is relatively small compared to our large dataset. This can significantly
reduce the overall data size while still retaining essential features of the data. (less data
but remains fidelity to the original point clouds). A comparison between the original point
cloud and sub-sampled point cloud is illustrated in Figure 4.3 and Table 4.2 respectively.
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(a) (b)

Figure 4.3: A comparison between the original and the sub-sampled data: (a) Original
Density; (b) Sub-sampled Density

Table 4.2: Data size before vs. after sub-sampling for each class
Num. Class Before (# of points) After (# of points)
1 Safety Bollard (label 0) 127,625 7,505
2 Wall (label 1) 5,842,108 429,729
3 Pillar (label 2) 469,885 34,128
4 Vehicle (label 3) 1,439,990 141,424
5 Ground (label 4) 25,252,755 1,573,007

Table 4.3: Data size before vs. after sub-sampling for classes in semantic segmentation
Num. Class Before (# of points) After (# of points)
1 Wall (label 0) 5,842,108 429,729
2 Pillar (label 1) 469,885 34,128
3 Vehicle (label 2) 1,439,990 141,424
4 Ground (label 3) 25,252,755 1,573,007

34



The safety Bollard class in Table 4.2 has been removed for the semantic segmentation
task due to the small size of the targets in this class. These targets are significantly smaller
than those of other classes, making it difficult to achieve reliable segmentation results.

4.2 Semantic Segmentation

A DCTNet model was utilized to conduct a semantic segmentation task. A general hierar-
chical structure can refer to Figure 2.10 from Chapter 2. In the initial stage of processing,
the original point cloud is fed into the encoder, where a stem MLP block projects the
input data into a higher-dimensional feature space. Subsequently, these enhanced fea-
tures undergo several stages of refinement, aiming to extract both local and global features
effectively.

Compared with PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b), the in-
corporation of a dual-attention Transformer-based GFL block in DCTNet, utilizing Point-
wise Self-Attention and Channel-wise Self-Attention mechanisms, enables a thorough cap-
ture of global features. This feature significantly improves the modelling of long-range
context dependency and channel interaction analysis (Lu et al., 2023). Besides, this tech-
nique outperforms traditional point cloud interpolation methods, ensuring the preservation
of detailed semantic information in the upsampling process, thereby enhancing the overall
quality and accuracy of the semantic segmentation.

4.2.1 Input: Preparing Train and Test Sets

To prepare the training and testing dataset for the semantic segmentation task, a Pareto
Principle (80-20 rule) has been adapted into the study. 80% of the dataset will be split into
training sets while the remaining 20% will be put into a testing/validation set. Since spatial
data are locational-based and spatial sensitive, meaning features across different regions
of the dataset can vary significantly. Randomizing the splitting of the dataset might not
capture the diversity effectively in both train and test sets. Therefore, for spatial data,
manual sampling can ensure that both the training and testing sets represent the full
variety of the data, which allows us to control for potential biases that a random split
might introduce, especially in a spatial dataset where patterns are typically geographically
clustered. An overview of the manually pre-sliced training and testing sets have been
illustrated in Tables 4.4 and 4.5 below.
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Table 4.4: Training sets

Sliced Set # Point Size Overview

01.txt 455,896

02.txt 526,430

03.txt 314,182

Continued on next page
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Table 4.4 – continued from previous page
Sliced Set # Point Size Overview

04.txt 489,057
All train (01-04.txt) 2,285,565 1,785,565 / 2,278,288 (78.4%)

* Account for about 80% (78.4%) of the entire subsampled dataset.

Table 4.5: Testing sets
Sliced Set # Point Size Overview

00.txt 492,723
All test (00.txt) 492,723 492,723/2,278,288 (21.6%)

* Account for about 20% (21.6%) of the entire subsampled dataset.
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4.2.2 Sample Generation

The sample generation script was tailored for preprocessing point clouds for segmentation tasks,
where processing and reducing the size of point clouds while retaining their structural properties.
‘Coordinate normalize′ utilizes a standard approach to preprocess the point clouds to a nor-
malized scale by calculating the mean and max distances and then normalizing the XYZ of each
point by subtracting the mean and dividing by the max value. Then, a ‘square dist′ function
computes the squared Euclidean distance between two sets of points while a ‘knn point′ function
implements the KNN algorithm to find a specific number (‘nsample′= 4096) of nearest neighbours
from a set of points (‘new xyz′) from a larger set (‘xyz′). In addition, functions ‘idx cut off ′

and ‘farthest pt′ have been used for identifying the farthest point from a given seed point and
cutting off point beyond a certain distance respectively.

Figure 4.4: Examples of raw test sample (size=4096 points) from sample generation

The subsequent Semantic Feature-based Dynamic Clustering (SDC) method provides efficient
and focused sampling output, which is approximately 4 times faster than traditional Farthest
Point Sampling (FPS). Apart from that, the method strategically retains fewer points in flat
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areas while focusing on key areas such as the contours of pillars, vehicles, and other vertical
features; thereby providing more informative data for network learning. Sampled clusters in test
samples utilizing the above method have been demonstrated in Figure 4.4.

4.2.3 Weight

Weights are assigned in the loss function of the model to handle class imbalance. As Figure
4.5 indicates, a self-defined weight for each class will be generated and input into the DCT-
Net model for later training purposes. Based on the calculation, the weights for classes 1 to 4
are 1.2672451707936863 (wall), 15.95675105485232 (pillar), 3.8506335558321076 (vehicle), and
0.34619807794879487 (ground).

Figure 4.5: Calculate class weights

4.2.4 Model Training

To achieve global feature learning, a dual-attention transformer was integrated into the model for
long-range context dependency modelling. The model was trained for 150 epochs with a batch
size of 2. The Stochastic Gradient Descent (SGD) optimizer was used with a learning rate of
0.01, with a decay of 0.01% of every 5 epochs (step sizes).
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4.3 Surface Sampling and Reconstruction

In Section 4.3, a comprehensive approach for 3D surface plane reconstruction has been pre-
sented (illustrated in Figure 4.6). The process begins by clustering the entire point cloud dataset
using the HDBSCAN algorithm. Subsequently, the methodology incorporates the use of the
Ball-Pivoting Algorithm (BPA) for plane mesh reconstruction. This algorithm is chosen for its
effectiveness in generating meshes from 3D point clouds. Following the mesh reconstruction, a
RANSAC-based approach is employed for plane fitting. This method is particularly adept at ac-
curately identifying and fitting planes in the presence of noisy data or outliers. The combination
of the BPA for mesh generation and the RANSAC for plane fitting provides a robust framework
for precise and efficient 3D surface reconstruction. Finally, the generated models would be vi-
sually presented alongside the original, unprocessed point clouds, providing a clear comparison
between the processed and raw point clouds.

Figure 4.6: Detailed workflow of surface sampling and reconstruction

4.3.1 Vertical and Horizontal Plane Extraction

To extract vertical features (vertical planes like walls, pillars, etc.) from the horizontal surfaces
for model reconstruction, a Python script ‘detectHorizon′ has been created using Open3D (a
library for processing 3D point cloud data) to perform plane segmentation on point cloud and
visualize the results. The script is well-structured, with functions to create a mesh from plane
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coefficients, display inliers and outliers, and the main function to load, process, visualize, and
output the point cloud data. In the function ‘create mesh from plane′ (in Appendix A1), the
coefficients of a plane (from the plane segmentation) are extracted to generate a mesh to represent
the plane. The mesh is created using a grid of points in the X and Y dimensions, with the Z
dimension calculated from the plane equation. This helper function can be used for visualizing
the detected plane in the point cloud. The function ‘display inlier outlier′ on the other hand
visualizes the point cloud with inliers and outliers differentiated by colours (inliers as red [1, 0,
0]; outliers as grey [0.8, 0.8, 0.8]). Additionally, it shows the plane detected by the RANSAC as
a green mesh.

To demonstrate the capability of detecting horizontal plane, a RANSAC plane segmentation
has been performed in a small portion of the point clouds. Parameters have been tested and
evaluated in the code chunk below (see Figure 4.7): distance threshold ( distance threshold) =
0.235, number of points randomly sampled in each iteration (ransac n) = 50, and the number
of iterations (n iterations) = 1000. A plane equation is also generated in Figure 3.15a. by
computing the a, b, c, d of the plane model where ax + by + cz + d = 0.

Figure 4.7: RANSAC plane segmentation and plane fitting equation

Figure 4.8: 3D plot of the plane (based on the computed plane fitting equation)

A 3D representation of the plane, derived from the given equation, is successfully visualized in
Figure 4.8. This graphical depiction aids in understanding the spatial orientation and distribution

41



of the plane within a 3D coordinate system. Subsequently, to differentiate inliers and outliers
within a sample data set, the point cloud is loaded and processed using the ‘display inlier outlier’
function. This procedure effectively segregates the inliers and outliers, facilitating a clear extrac-
tion. The outcome of this process is demonstrated in Figure 4.9, showing the distinct categoriza-
tion in the original point cloud.

(a) (b)

Figure 4.9: Horizontal Plane Extraction: (a) Raw point cloud cell; (b) detectHorizon
output: Horizontal plane in red [1, 0, 0] and all the other inlier points (vertical planes) in
light grey [0.8, 0.8, 0.8]

The horizontal and vertical planes, classified as inliers and outliers, respectively, are efficiently
extracted using the ‘o3d.io.write point cloud’ function. This process allows for the specification
of a custom output path to save the extracted planes. Through this method, the two distinct
sets of planes are segregated and stored for subsequent processing.

4.3.2 HDBSCAN Clustering

Before conducting pyRANSAC for plane fitting, the extracted vertical planes from Section 4.3.1
will be sampled and clustered using the HDBSCAN, which is an advanced clustering algorithm
that works well with spatial data and it is capable of identifying clusters of varying densities.
Parameters ‘min cluster size’ and ‘min sample’ are tested and set for the clustering process as
shown in the two-line code fragment below (for more details, see Appendix A2). After clustering,
the script printed out the unique labels(cluster IDs) and the estimated number of clusters of
the input data. Then, it creates an output directory if it does not exist, where the clustered data
will be saved. For each cluster, it saves the points belonging to that cluster in a separate text file
in the output directory, while ignoring the noise points denoted as ‘-1’.
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clusterer = hdbscan.HDBSCAN(min_cluster_size=900, min_samples=30)

labels = clusterer.fit_predict(xyz_points)

4.3.3 BPA

The BPA algorithmn was implemented as one of the solutions for surface reconstruction as the
Point clouds have been converted into mesh models using the Ball Pivoting Algorithm (Bernardini
et al., 1999) provided by Open3D. The script iterates over files in a specified directory, checking
for files that end with a ‘.txt’ extension, indicating the ones that contain a point cloud. For
each file, the script reads the point clouds in a Numerical Python (NumPy) array using the
‘load points’ function. The NumPy array which contains XYZ dimensions is then converted into
an Open3D ‘PointCloud’ object.

distances = pcd.compute_nearest_neighbor_distance()

avg_dist = np.mean(distances)

radii = [avg_dist, avg_dist * 2, avg_dist * 4]

# Ball Pivoting algorithmn

bpa_mesh = o3d.geometry.TriangleMesh.

create_from_point_cloud_ball_pivoting(

pcd, o3d.utility.DoubleVector(radii))

all_meshes.append(bpa_mesh)

The average nearest neighbour distance among points has been computed and used to define
a set of radii for the BPA (See the script chunk above). The radii of the BPA are chosen based
on the average distance, with multiples of this distance to ensure robust meshing across different
scales. Lastly, the generated mesh for each file is added respectively to a list called ‘all meshes’,
which can be saved as ‘.ply’ to a specific directory.

4.3.4 pyRANSAC-3D (RANSAC Multi-Plane Fitting)

Alternatively, another encapsulated open-source tool, pyRANSAC-3D, proposed by Leonardo
(2022) has been utilized for sampling and plane fitting. The pyRANSAC-3D package, a specialized
tool for implementing the RANSAC algorithm (Fischler and Bolles, 1981) in 3D point cloud data,
can be installed using standard Python package managers, either via Conda or pip3.

43



Figure 4.10: pyRANSAC-3D (a) line fitting, (b) plane fitting, and (c) circle fitting example
(Source: Leonardo, 2022)

After loading the points from the given directory (‘path’), a pre-defined class ‘plane’ object
(see the defined class in the script below), which finds the equation of an infinite plane using the
RANSAC algorithm has been applied. The .fit() function then selects three random points from
the point cloud (formatted as a NumPy array ‘pts’ with shape [N,3]), identifies inliers within a
defined threshold (‘thresh’), and iterates up to ‘maxIteration’ times to fit the optimized plane.

Class Plane():

| Plane()

plane1 = pyrsc.Plane()

best_eq, best_inliers = plane1.fit

(pts, thresh=0.05, minPoints=100, maxIteration=1000)

The algorithm returns the parameters of the detected plane in the standard linear equation
form: Ax + By + Cz + D = 0. These parameters are provided as a NumPy array of shape [1,
4], representing the coefficients A, B, C, and D respectively. Besides, the method also identifies
and returns the inliers from the input data, which are the points that are considered to be part
of the plane within the specified threshold distance.

Given the presence of multiple clusters derived from the HDBSCAN clustering method, an
integration approach has been applied by involving a for loop structure. This loop will iterate
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through a designated folder that contains all clusters. The iteration mechanism will allow sys-
tematic processing of each cluster. By applying pyRANSAC-3D (Mariga, 2022) in the loop, each
cluster’s planar features can be individually assessed and extracted, facilitating a comprehensive
analysis of the 3D point cloud data. This structured approach ensures that each cluster is ac-
curately processed, and the planar characteristics inherent within the spatial data are effectively
captured.

4.4 Line Feature Reconstruction

Figure 4.11: Detailed workflow of edge or line segments reconstruction

Section 4.4 elaborates on a methodical approach for reconstructing line segments in 3D point
clouds, as shown in Figure 4.11. The procedure applied a 3D line detection algorithm on the
vertical plane data, which was derived from Section 4.3.1. A region-growing and region-merging
approach will be applied to the 3D line segments directly for plane-based 3D line feature detection.
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Figure 4.12: Sample outputs using LineDection3D (Source: Lu et al., 2019)

4.4.1 3D Line Detection

For 3D line segment detection and generation, a C++ script was utilized. (demonstrated in
Appendix B1). The general workflow was a three-step algorithm proposed as part of Lu et al’s
work in 2019. Firstly, the unorganized point clouds were segmented into 3D planes using region
growing. Then, in the second step, for each segmented plane, the points would be projected
to form a 2D image, which would later be utilized for 2D contour extraction and Least Square
Fitting to get the 2D line segments. Those 2D line segments would then be re-projected onto
the 3D plane to get the corresponding 3D line segments. Lastly, a post-processing procedure is
proposed to eliminate outliers and merge adjacent 3D line segments as the final output. The
generated line segments should be similar to the output in Figure 4.12.

According to Appendix B1, the ‘LineDetection3D’ class is used to detect lines and planes in
the raw point clouds; and the ‘detector.run’ method performs the core operation of extracting
geometric features (lines and planes) from the data. The ‘writeOutP lane’ and ‘writeOutLines’
functions write the detected planes and lines to text files, which includes the coordinates and
coded colours for visualization purpose. To initiate the process, defined functions would be called
in the ‘main’ function including setting file paths, reading data, running the 3D line detection
algorithm, and writing the output.

The script’s execution requires the installation of two essential packages: Open Source Com-
puter Vision Library (OpenCV) (version higher than 2.4x) and Open Multi-processing (OpenMP).
Additionally, CMake version 3.27.7 is employed for constructing the project environment. This
includes the tasks of configuring and generating the solutions necessary for the script’s opera-
tion. For a visual guide on the setup process, refer to Appendix B2, which illustrates the steps
for setting up and configuring the project environment using CMake. Once the environment is
successfully configured, the corresponding files, outlined in Appendix B3 will be generated in the
designated directory. Among these files, the ‘LineFromPointCloud.sln’ would be the CMake
solution specifically designed to handle the 3D line detection task.
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Chapter 5

Results and Discussion

The methods presented in Chapter 3 were tested and accessed on two distinct machines. The
technical specifications for these machines are comprehensively detailed in Table 5.1. Specifically,
Machine A was employed for specific tasks including data pre-processing, semantic segmentation,
and line detection and reconstruction, as elaborated in Sections 3.3, 4.1, and 4.3, respectively. On
the other hand, Machine B was utilized for the processing of surface sampling and reconstruction
(Section 4.2). This strategic allocation of tasks across two machines facilitated a more efficient
and efficient workflow utilizing the methods presented in Chapter 3.

Table 5.1: Machine configuration
Machine A Machine B

CPU AMD Ryzen 7 5800x 8-Core (16 CPUs) Apple M1 Pro
GPU NVIDIA GeForce RTX 3080 Apple M1 Pro
RAM 64 GB 16 GB

5.1 Semantic Segmentation Result

5.1.1 Evaluation Metric

4 evaluation metrics are adopted in the segmentation task: Precision, Recall, Specificity, and
F1 Score. They are interrelated and can provide a relatively balanced view of the model’s ef-
fectiveness. Precision measures the accuracy of the positive prediction. The ratio of correctly
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predicted positive observations (True Positive) to the total predicted positives (True Positive +
False Positive) can be represented as:

Precision =
TP

TP + FP
(5.1)

, where TP refers to the number of positive cases correctly identified as positive; FP refers to the
number of negative cases incorrectly identified as positive. Recall (a.k.a. sensitivity) measures
how many actual positive cases were correctly identified, which can be referred as:

Recall =
TP

TP + FN
(5.2)

, where FN refers to the number of positive cases incorrectly identified as negative.

Specificity measures the proportion of actual negative cases that were correctly identified. It’s
the ratio of correctly identified negatives to the total actual negatives, which can be written as:

Specificity =
TN

TN + FP
(5.3)

, where TN refers to the number of negative cases correctly identified as negative.

The F1 Score is the harmonic mean of Precision and Recall. It is a balance between Precision
and Recall, providing a single metric that accounts for both False Positives and False Negatives:

F1 Score = 2 × Precision×Recall

Precision + Recall
(5.4)

Specifically, precision and recall compensate for each other, which means improving one might
result in a trade-off with the other; F1 score on the other hand combines both metrics (precision
and recall), offering a comprehensive evaluation of the entire model.

5.1.2 Results

Table 5.2: Testing sets breakdown
Class Point Num
Wall (0) 101,143
Pillar (1) 6,057
Vehicle (2) 30,903
Ground (3) 354,620

All test (00.txt) 492,723
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Figure 5.1: Confusion matrix for semantic segmentation task

According to Appendix C1, the overall accuracy and average F1 score of the model are around
98.65% and 94.88%. The average class Intersection Over Union (IoU) of the model is 90.74%,
with the highest IoU (99.4%) in ‘ground’ and the lowest IoU (86.4%) in ‘pillar’. Similar patterns
are also reflected in the Recall percentage, with the highest recall in ‘ground’ (99.4%) and the
lowest recall in ‘pillar’ (80.1%) A confusion matrix illustrated in Figure 5.1 has been generated
along with the evaluation process. The ‘TrueLabels’ on the horizontal axis at the bottom of the
matrix refers to the labels that are true for the test dataset, and each Column’s true label’s sum
should be equal to its corresponding class point size indicated in Table 5.2; The ‘PredictedLabels’
refers to the labels that model predicted are on the vertical axis on the left side of the matrix.
The number within the matrix represents the count of instances for each combination of predicted
and true labels. The diagonal from the top left to the bottom right represents the number of
correct predictions for each class: 99143 correct predictions for ‘wall’; 4852 correct predictions for
‘pillar’; 29521 correct predictions for ‘vehicle’; and 352551 correct predictions for ‘ground’. The
off-diagonal cells represent misclassifications. Take the ‘wall’ true labels in Figure 5.1 as examples
(the first column from the left), the first row [wall, wall] refers to the model correctly predicting
the ‘wall’ 99143 times; Moving downwards, [pillar, wall] means the model incorrectly predicts
the wall into ‘pillar’ 111 times; in [vehicle, wall] and [ground,wall], the model incorrectly predict
the wall into ‘vehicle’ 491 times and ‘ground’ 1398 times. For the ‘wall’ predicted labels (first
low), [wall, pillar] refers to the model incorrectly predicting ‘pillar’ into ‘wall’ 1143 times. In

49



[wall, vehicle] and [wall, ground], the model incorrectly predicts ‘vehicle’ and ‘ground’ into ‘wall’
804 and 1850 times.

In summary, the model exhibits proficient predictive capabilities, notably for the ’ground’
class, while showing areas for improvement in distinguishing between classes with fewer correct
predictions and higher misclassification rates, such as ’pillar’ (which is mainly due to the fact of
insufficient input points).

5.1.3 Visualization of Segmented Results

Figure 5.2: Ground truth (left) vs. segmented results (right) on test dataset

Based on the visual output presented in Figure 5.2, the predictive model generally aligns well
with the ground truth, apart from misclassification where ’pillar’ has been incorrectly segmented
as ’wall’ in the top left of the dataset. This specific error is consistent with the quantitative data
provided in the confusion matrix in Figure 5.1, which suggests that around twenty percent of
instances labelled as ’pillar’ have been predicted as ’wall’. For a more granular examination of
the model output, detailed visual comparisons between the Ground Truth (GT) and the model’s
predictions are illustrated in Tables 5.3, and 5.4 respectively.

50



Table 5.3: GT vs. good prediction example

GT (Raw Input)

Prediction

Table 5.4: GT vs. Unsatisfactory predictions example

GT (Raw Input)

Prediction
Result [vehicle, wall] [wall, pillar]
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5.2 Surface Sampling and Reconstruction Results

5.2.1 HDBSCAN Clustering

By running the script proposed in Section 4.3.2, clusters with designated ‘min cluster size’ and
‘min sample’ are generated shown in Figure 5.3 below. The process results in a total of 17
distinct clusters. Notably, only the ’xyz’ coordinates from the original dataset are retained for
projection, altering the data shape from [N,12] in the original input point clouds to [N,3] in the
output point cloud clusters (refer to appendix D1 for HDBSCAN clustering console).

Figure 5.3: Cluster output with HDBSCAN clustering approach

52



5.2.2 BPA Surface Reconstruction

Adopting the Open3D BPA as demonstrated in Section 4.3.3, a mesh surface has been gener-
ated in Figure 5.4 below. Since the applicability of BPA is heavily dependent on the parameter
tunning (ball radius), an inappropriate radius could lead to poor mesh quality and incomplete
surface reconstruction.

(i)

(ii)

Figure 5.4: BPA mesh visualization

According to the result, it appears that the BPA may not be ideal for addressing holes and
gaps in data. This is evidenced by its tendency to produce unrealistic shapes and leave unfilled
holes in the mesh output.
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Furthermore, while the BPA demonstrates efficiency in computing simple shapes, such as flat
walls and edges (refer to ’FairOutput’ in Table 5.3), its performance diminishes when dealing
with complex geometries. This is particularly noticeable in sharp features with intricate details,
as exemplified in the bottom right output of Table 5.5. In such cases, the BPA is prone to either
missing these features entirely or excessively smoothing them, thereby compromising the accuracy
of the representation.

Table 5.5: BPA Output Comparison
Fair Bad
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5.2.3 pyRANSAC-3D (multi-plane fitting)

By applying pyRANSAC-3D in the for loop demonstrated in Section 4.3.4, each cluster gener-
ated from the HDBSCAN clustering approach would be assessed and extracted for plane fitting
correspondingly, and all the fitted planes would be merged and generated a complete output with
multiple fitted planes illustrated in Figure 5.5 below.

(i)

(ii)

Figure 5.5: pyRANSAC-3D multi-plane fitting visualization
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5.2.4 Random Sample Consensus with multi-plane fitting

Since the result of pyRANSAC-3D is not ideal, a refined RANSAC algorithm has been adopted
in this section. This advancement involves iterating the RANSAC plane-fitting functions (refer
to Figure 5.6) across various clusters as .txt files within a specific directory. By aggregating
results from these clusters, the method evolves into a comprehensive multi-plane fitting RANSAC
approach. This innovation not only preserves the algorithm’s inherent robustness but also extends
its applicability to more complex and segmented 3D datasets, resulting in a more holistic and
accurate plane-fitting output.

In Figure 5.6, the ’ransac planefit’ function is detailed with its key parameters, each serv-
ing a specific role in the plane fitting process using the RANSAC algorithm. The parameter
’points’ denotes the set of 3D points that serve as input for the plane fitting procedure. The
’ransac planefit’ function iteratively seeks the best plane fit for a set of 3D points. Each it-
eration randomly selects ’ransac n’ points to estimate a plane using the ’estimate parameter’
function from the ’plane model’ class (see Table Appendix E1). It calculates the distance of all
points to this plane, identifying inliers within the ’max dst’ threshold. The function updates the
best model parameters and inliers if the current iteration’s inlier ratio exceeds the previous ones.
The algorithm terminates when the inlier ratio surpasses ’stop inliers ratio’ or after reaching
the maximum number of iterations, ’max trials’. The final output will return the best plane
parameters, the inlier points for the plane, and the remaining points (outliers).

Lastly, in the ‘ main ’ function (see ‘Appendix F1 for more detail), the script iterates
through all ‘.txt’ files in a specified directory ‘path’, where each file is expected to contain the 3D
point clouds clustered using HDBSCAN clustering, return multiple fitted surfaces in the scene as
one single output, illustrated in Figures 5.7, 5.8, and 5.9 respectively.
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Figure 5.6: Algorithm for RANSAC Plane Fit
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Figure 5.7: Part A: Revised RANSAC multi-plane fitting clusters 00 - 11

Figure 5.8: Part B: Revised RANSAC multi-plane fitting clusters 12 - 16
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(i)

(ii)

Figure 5.9: Merged RANSAC multi-plane fitting visualization
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5.2.5 Surface Output Comparison

The comparative analysis of three surface visualization outputs reveals that the revised RANSAC
multi-plane fitting method outperforms the others in generating the most accurate output in this
study. This is particularly evident in the characteristics and quality of the original point cloud,
which is characterized by numerous unfilled holes and gaps. These deficiencies lead to a less
effective surface reconstruction through mesh generation.

The output derived from the standard pyRANSAC-3D tool demonstrates certain limitations,
notably in its failure to detect and fit plenty of surfaces accurately. This shortfall can result in
a significant loss in information and data fidelity. In contrast, the output from the enhanced
RANSAC multi-plane fitting approach performs well in retaining intricate details. It detects and
fits most of the general structure of all vertical planes present in the original point clouds, thereby
ensuring a more detailed and accurate representation of the data.

5.3 Line Reconstruction

5.3.1 3D Line Detection

The ’LineDetection3D’ algorithm was employed to identify line segments within the dataset.
Initially, a global parameter of k=20 was set, as detailed in Appendix B1. This parameter choice
facilitated the detection of line segments. The outcomes of this process are shown in Figure 5.10,
which illustrates the line segments as identified by the algorithm.

Figure 5.10: Line segment output using LineDetection3D (k = 20)
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5.3.2 Output Optimization

In the initial implementation, the k parameter value in the ’detector.run()’ function, as outlined
in Appendix B1, was preset to be 20. However, a single global ’k’ value proved inadequate
due to the uneven distribution of points in the dataset, leading to unsatisfactory line segment
output in terms of fidelity and precision. To enhance the quality of the output, a more tailored
approach was adopted. The dataset was segmented into smaller clusters based on point features,
considering variations in point density and size. This method facilitated the tailoring of different
’k’ values to clusters, thereby enhancing the efficacy of the line detection process. For instance,
larger clusters, which typically represent expansive surfaces such as flat walls with long extended
edges, were allocated a higher ’k’ value of 150. Conversely, smaller feature clusters, exemplified
by short edge walls, were assigned a lower ’k’ value of 10. This adaptive strategy in the ’k’ value
assignment supports the precision and dependability of true line detection across disparate cluster
sizes.

Following the segmentation and line detection steps, a subsequent phase involved the metic-
ulous removal of outliers and noise. This refinement was pivotal in producing a cleaner and more
visually appealing output, which is illustrated in Figures 5.11 and 5.12, indicating the enhanced
clarity and improved aesthetic quality of the final dataset.

Figure 5.11: Optimized line segment reconstruction output visualization
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(i)

(ii)

Figure 5.12: Optimized line segment reconstruction output visualization detail views
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5.3.3 Reconstruction Visualization Output

Integrating the results from the preceding phases, a detailed reconstruction of the indoor parking
structure is presented in Figures 5.13 and 5.14. In these visualizations, edges and line segments
are highlighted in lime green, pillars are depicted in navy blue, and walls, representing vertical
planes, are rendered in olive green. This colour-coded scheme facilitates a visual distinction
among the various structural elements within the model.

(a)
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(b)

(c)
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(d)

(e)

Figure 5.13: Optimized line segment reconstruction output visualization detail views
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(a)

(b)

Figure 5.14: Raw point clouds vs. final 3D model
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5.4 Limitations

5.4.1 Human/ Operator Error

Human or operator error during the data collection (see Figure 5.15) phase can result from im-
proper operation or handling of equipment, which can introduce inaccuracies into the dataset.
For instance, if an operator misinterprets the protocol or fails to follow standard operating proce-
dures, the collected data could be compromised. Such errors might include incorrect calibration
of instruments, leading to skewed measurements; inconsistent walking pace during collection or
even incomplete collecting loop, resulting in data contamination or information loss.

Figure 5.15: GeoSLAM laser scanner operation during data collection

5.4.2 Insufficient/missing Data

The dataset might be insufficient in size if it does not include enough data points to capture the
underlying patterns or relationships. In such cases, the model may overfit, learning the noise
and specificities of the small dataset rather than the general trends. This overfitting results in
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poor performance when the model encounters new, unseen data. This issue is evident in the line
detection and reconstruction phase, where missing data in the vertical plane adversely impacts
subsequent stages. As illustrated in Figure 5.16, the insufficient input points on the vertical
surface correlate with the misidentified edges, highlighted in lime green.

Figure 5.16: Insufficient points and miss detected line segments

In addition, during the method design stage for line segment optimization, a cGAN model
was initially employed, as detailed in Appendices G1 to G4, to enhance edge reconstruction. This
process involved converting 3D data into multiple 2D images for input into the discriminator and
creating the self-defined training and testing sets for the generator. However, only 6400 training
and 3200 testing sets were generated, which proved insufficient not only in quantity but also in
structural complexity. The training/testing sets considered only two variables: disconnectivity
and non-orthogonality. This limitation resulted in significant generator (G) and discriminator (D)
losses, indicating that the cGAN model was not optimally utilized for refining the line framework.
Additionally, the subsequent task of interpolating these 2D images back into 3D point clouds
presented its own set of complexities and challenges.

5.4.3 Equipment/ Algorithm Limitation

Laser scanners operate by emitting a laser beam towards a target and recording the time it takes
for the light to reflect to the sensor. This method is highly effective for capturing the geometry
of visible surfaces. However, if a part of the target area is obscured by another object, the laser
beam cannot penetrate through or bend around the obstructing object to reach hidden surfaces.
Consequently, the scanner only records the information on surfaces that are directly visible to it,
missing any details that are behind or obscured by other objects. Referring to Figure 5.17, the
presence of vehicles in the scanning environment serves as an obstruction, blocking the target
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area which includes the wall and ground. This obstruction results in the laser scanner’s inability
to detect and record the target area, leading to information loss.

Figure 5.17: Data Occlusion

Besides, enclosed loops in SLAM algorithms play a pivotal role in ensuring the accuracy,
consistency, and efficiency of the map creation and localization process, which are essential for
the reliable operation of autonomous robots and vehicles in dynamic environments. By completing
a closed scan, people can comprehensively analyze related errors that occur in data resolution
and adjust parameters to resolve these errors. Although the big loop in our data collection
was enclosed, partial loops were not enclosed (refer to Figure 3.6), this may cause a series of
misclosure. To minimize the error caused by IMU drift, optimized routes are proposed in Figures
5.18 and 5.19 as alternatives to walk the trajectory in enclosed loops. The pink start refers to
the start/finish spot, the green arrows indicate the moving direction, and the purple/ blue line
represents the refined trajectory.
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Figure 5.18: Optimized enclosed loop trajectory 01 (vehicle and pillar focused)

Figure 5.19: Optimized enclosed loop trajectory 02 (wall structure focused)
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Chapter 6

Conclusions and Recommendations
for Future Studies

6.1 Conclusions

In this thesis, we have applied a groundbreaking approach to indoor spatial modelling, with a
particular focus on the development of precise digital twin models for indoor parking garages.
The methodology is founded on a LiDAR-based SLAM system, serving as the backbone for the
overall approach, which enables us to capture detailed spatial data for indoor scenes. In addition,
the data model has been enhanced with advanced algorithms dedicated to semantic segmentation,
surface reconstruction, and line feature extraction. These algorithms process the raw data from
the LiDAR-based SLAM systems, transforming it into a meaningful and highly accurate digital
representation of the physical environment.

This work paves the way for applying digital twin technology in complex indoor settings,
highlighting the crucial role of point cloud data in creating precise 3D representations of physical
objects or environments. Overall, this thesis has effectively showcased the generation of highly
precise digital models for indoor parking structures.

6.2 Recommendations for Future Studies

6.2.1 Point Cloud Completion

This approach refines the 3D map, resulting in a more visually coherent and complete output.
As illustrated in Figure 6.1, significant portions of the area in the existing dataset are missing.
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This incompleteness is primarily attributed to two factors: an inconsistent walking pace and
occlusions. These issues cause the collected data to be incomplete, failing to accurately represent
the entire scene. By employing point cloud completion in the pre-processing stage, we can address
these gaps and ensure a more thorough representation of the indoor environment.

(a) (b)

Figure 6.1: Data loss during collection: (a) inconsistent walking speed;(b) occlusions

6.2.2 Object Detection

To ascertain the accuracy and practicality of the model, it can be integrated into a prototype for
an autonomous last 1-km parking system, followed by a thorough evaluation of its performance.
A key aspect of this evaluation is the successful detection of safety bollards, which were previously
omitted in Section 4.1.3. Ensuring that the system can identify and avoid these bollards is crucial
to avoid any potential interference with them. Similarly, the detection of other vehicles is required
for the system’s functionality. To enhance the model’s capability to recognize such obstacles, the
implementation of an object detection algorithm as a subsequent step is recommended.
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Figure 6.2: Vehicle in bounding box

Figure 6.3: Safety bollards clusters by HDBSCAN

Figure 6.4: Safety bollards in bounding box
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APPENDICES

Appendix A

A1. Functions for Plane Extraction [4.3.1]

def create_mesh_from_plane(plane_model, width=1, height=1):

a, b, c, d = plane_model

# Create a mesh grid

x = np.linspace(-width / 2, width / 2, 10)

y = np.linspace(-height / 2, height / 2, 10)

xx, yy = np.meshgrid(x, y)

zz = (-d - a * xx - b * yy) / c

# Create vertices and triangles for the mesh

vertices = np.vstack((xx.flatten(), yy.flatten(), zz.flatten())).T

triangles = []

for i in range(9):

for j in range(9):

idx = i * 10 + j

triangles.append([idx, idx + 1, idx + 10])

triangles.append([idx + 1, idx + 11, idx + 10])

mesh = o3d.geometry.TriangleMesh()

mesh.vertices = o3d.utility.Vector3dVector(vertices)

mesh.triangles = o3d.utility.Vector3iVector(triangles)

mesh.compute_vertex_normals()

return mesh

def display_inlier_outlier(cloud, ind, plane_model):

inlier_cloud = cloud.select_by_index(ind)
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outlier_cloud = cloud.select_by_index(ind, invert=True)

# Create a mesh plane to visualize the detected plane

mesh_plane = create_mesh_from_plane(plane_model, width=10, height=10)

mesh_plane.paint_uniform_color([0.1, 0.9, 0.1]) # Green plane

inlier_cloud.paint_uniform_color([1, 0, 0])

outlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])

o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, mesh_plane])
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A2. HDBSCAN cluster analysis [4.3.2]

def load_points(file_path):

return np.loadtxt(file_path)

points = load_points("/Users/kristiehu/Desktop/thesis/segments.txt")

xyz_points = points[:, :3] # Extracting x, y, z coordinates

print(f"XYZ points shape: {xyz_points.shape}")

# Clustering with HDBSCAN

clusterer = hdbscan.HDBSCAN(min_cluster_size=900, min_samples=30

labels = clusterer.fit_predict(xyz_points)

print("Clustering completed.")

unique_labels = set(labels)

print("Unique labels (clusters):", unique_labels)

n_clusters = len(unique_labels) - (1 if -1 in unique_labels else 0)

print(f"Estimated number of clusters: {n_clusters}")

...

if not os.path.exists(output_directory):

os.makedirs(output_directory)

print(f"Created directory: {output_directory}")

else:

print(f"Directory already exists: {output_directory}")

# Count the number of points in each cluster and save them

for cluster_id in unique_labels:

if cluster_id != -1: # Ignore noise points

cluster_points = xyz_points[labels == cluster_id]

number_of_points = len(cluster_points)

print(f"Cluster {cluster_id} has {number_of_points} points.")

file_path = os.path.join(output_directory, f"cluster_{cluster_id}.txt")

np.savetxt(file_path, cluster_points)

print(f"Saved file: {file_path}")
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Appendix B

B1. 3D Line Detection using C++ [ 4.4.1& 5.3.1]

#include <stdio.h>

#include <fstream>

#include "LineDetection3D.h"

#include "nanoflann.hpp"

#include "utils.h"

#include "Timer.h"

using namespace cv;

using namespace std;

using namespace nanoflann;

void readDataFromFile( std::string filepath, PointCloud<double> &cloud )

{ cloud.pts.reserve(10000000);

cout<<"Reading data ..."<<endl;

// 1. read in point data

std::ifstream ptReader( filepath );

std::vector<cv::Point3d> lidarPoints;

double x = 0, y = 0, z = 0, color = 0;

double nx, ny, nz;

int a = 0, b = 0, c = 0;

int labelIdx = 0;

int count = 0;

int countTotal = 0;

if( ptReader.is_open() )

{ while ( !ptReader.eof() )

{ //ptReader >> x >> y >> z >> a >> b >> c >> labelIdx;

//ptReader >> x >> y >> z >> a >> b >> c >> color;

//ptReader >> x >> y >> z >> color >> a >> b >> c;

//ptReader >> x >> y >> z >> a >> b >> c ;

ptReader >> x >> y >> z;

//ptReader >> x >> y >> z >> color;

//ptReader >> x >> y >> z >> nx >> ny >> nz;

cloud.pts.push_back(PointCloud<double>::PtData(x,y,z));}

ptReader.close();}
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std::cout << "Total num of points: " << cloud.pts.size() << "\n";}

void writeOutPlanes( string filePath, std::vector<PLANE>)

{ // write out bounding polygon result

string fileEdgePoints = filePath + "planes.txt";

FILE *fp2 = fopen( fileEdgePoints.c_str(), "w");

for (int p=0; p<planes.size(); ++p)

{ int R = rand()%255;

int G = rand()%255;

int B = rand()%255;

for (int i=0; i<planes[p].lines3d.size(); ++i)

{ for (int j=0; j<planes[p].lines3d[i].size(); ++j)

{ cv::Point3d dev =

planes[p].lines3d[i][j][1] - planes[p].lines3d[i][j][0];

double L = sqrt(dev.x*dev.x + dev.y*dev.y + dev.z*dev.z);

int k = L/(scale/10);

double x = planes[p].lines3d[i][j][0].x,

y = planes[p].lines3d[i][j][0].y,

z = planes[p].lines3d[i][j][0].z;

double dx = dev.x/k, dy = dev.y/k, dz = dev.z/k;

for ( int j=0; j<k; ++j)

{ x += dx;

y += dy;

z += dz;

fprintf( fp2, "%.6lf %.6lf %.6lf ", x, y, z );

fprintf( fp2, "%d %d %d %d\n", R, G, B, p );}}}}

fclose( fp2 );}

void writeOutLines ( string filePath, std::vector

<std::vector<cv::Point3d> > &lines, double scale )

{ // write out bounding polygon result

string fileEdgePoints = filePath + "lines.txt";

FILE *fp2 = fopen( fileEdgePoints.c_str(), "w");

for (int p=0; p<lines.size(); ++p)

{

int R = rand()%255;

int G = rand()%255;

int B = rand()%255;

cv::Point3d dev = lines[p][1] - lines[p][0];
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double L = sqrt(dev.x*dev.x + dev.y*dev.y + dev.z*dev.z);

int k = L/(scale/10);

double x = lines[p][0].x, y = lines[p][0].y, z = lines[p][0].z;

double dx = dev.x/k, dy = dev.y/k, dz = dev.z/k;

for ( int j=0; j<k; ++j)

{ x += dx;

y += dy;

z += dz;

fprintf( fp2, "%.6lf %.6lf %.6lf ", x, y, z );

fprintf( fp2, "%d %d %d %d\n", R, G, B, p );}}

fclose( fp2 );}

void main()

{ string fileData = "E://khu//wall_sub.txt";

string fileOut = "E://khu//detectedline";

// read in data

PointCloud<double> pointData;

readDataFromFile( fileData, pointData );

int k = 20;

LineDetection3D detector;

std::vector<PLANE> planes;

std::vector<std::vector<cv::Point3d> > lines;

std::vector<double> ts;

detector.run( pointData, k, planes, lines, ts );

cout<<"lines number: "<<lines.size()<<endl;

cout<<"planes number: "<<planes.size()<<endl;

writeOutPlanes( fileOut, planes, detector.scale );

writeOutLines( fileOut, lines, detector.scale );}
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B2. CMake Configuration Console [4.4.1]
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B3. Generated CMake Solution Files (.sln) [4.4.1]
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Appendix C

C1. Metrics in Semantic Segmentation [5.1.2]

(G:\env\pytorch_env)

PS G:\transformer\test_output_4096> python metrics.py

[[9.91430e+04 1.14300e+03 8.04000e+02 1.85000e+03]

[1.11000e+02 4.85200e+03 1.69000e+02 3.90000e+01]

[4.91000e+02 6.00000e+00 2.95210e+04 1.80000e+02]

[1.39800e+03 5.60000e+01 4.09000e+02 3.52551e+05]]

The model overall accuracy is 0.9864913957740962

+---------+-----------+--------+-------------+----------+

| | Precision | Recall | Specificity | F1 Score |

+---------+-----------+--------+-------------+----------+

| wall | 0.963 | 0.98 | 0.99 | 0.971 |

| pillar | 0.938 | 0.801 | 0.999 | 0.864 |

| vehicle | 0.978 | 0.955 | 0.999 | 0.966 |

| ground | 0.995 | 0.994 | 0.987 | 0.994 |

+---------+-----------+--------+-------------+----------+

eval point avg class IoU: 0.907377

eval point accuracy: 0.986491

ave_F1_score: 0.948750
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Appendix D

D1. HDBSCAN Clustering Console [5.2.1]

/Users/kristiehu/opt/anaconda3/envs/pyRANSAC3D/bin/python

/Users/kristiehu/Desktop/Surface/pyRANSAC-3D/slices_HDBSCAN.py

Data loaded successfully.

Data shape: (435480, 10)

XYZ points shape: (435480, 3)

Clustering completed.

Unique labels (clusters):

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

Estimated number of clusters: 17

Created directory: /Users/kristiehu/desktop/surface/12cluster/

Cluster 0 has 42664 points.

Saved file: /Users/kristiehu/desktop/surface/12cluster/cluster_0.txt

Cluster 1 has 43757 points.

...

Cluster 16 has 18057 points.

Saved file: /Users/kristiehu/desktop/surface/12cluster/cluster_16.txt

Saved file: /Users/kristiehu/desktop/surface/12cluster/cluster_16.txt
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Appendix E

E1. Defined Class ‘Plane Model’ [5.2.4]

class plane_model(object):

def __init__(self):

self.parameters = None

def calc_inliers(self, points, dst_threshold):

c = self.parameters[0:3]

n = self.parameters[3:6]

dst = abs(np.dot(points - c, n))

ind = dst < dst_threshold

return ind

def estimate_parameters(self, pts):

num = pts.shape[0]

if num == 3:

c = np.mean(pts, axis=0)

l1 = pts[1] - pts[0]

l2 = pts[2] - pts[0]

n = np.cross(l1, l2)

scale = [n[i] ** 2 for i in range(n.shape[0])]

n = n / np.sqrt(np.sum(scale))

else:

_, _, c, n = SVD(pts)

params = np.hstack((c.reshape(1, -1), n.reshape(1, -1)))[0, :]

self.parameters = params

return params

def set_parameters(self, parameters):

self.parameters = parameters
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Appendix F

F1. Re. RANSAC Multi-Plane Fitting [5.2.4]

if __name__ == "__main__":

path = "/Users/kristiehu/desktop/surface/1206_cluster/"

for filename in os.listdir(path):

if filename.endswith(’.txt’):

file_path = os.path.join(path, filename)

xyz_points = load_points(file_path)[:, :3]

if xyz_points.size == 0:

print(f"No data in file: {filename}")

continue

plane_set, plane_inliers_set, data_remains =

ransac_plane_detection( xyz_points, 3, 5, max_trials=1000,

stop_inliers_ratio=1.0, initial_inliers=None,

out_layer_inliers_threshold=230,

out_layer_remains_threshold=230)

if len(plane_set) == 0:

print(f"No planes detected in file: {filename}")

continue

plane_set = np.array(plane_set)

all_inliers.append(plane_inliers_set)

print("============= Plane Parameters =============")

print(plane_set)

show_3dpoints(plane_inliers_set)

output_path ="/Users/kristiehu/Desktop/line/m_wall.txt"

merge_and_save_planes(all_inliers, output_path)
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Appendix G

G1. cGAN - Generator [5.4.2]

class Generator(nn.Module):

def __init__(self):

super(Generator, self).__init__()

# Encoder

self.enc1 = nn.Conv2d(in_channels=1, out_channels=64,

kernel_size=4, stride=2, padding=1)

self.enc2 = nn.Conv2d(64, 128,

kernel_size=4, stride=2, padding=1)

# Decoder

self.dec1 = nn.ConvTranspose2d(128, 64,

kernel_size=4, stride=2, padding=1)

self.out = nn.ConvTranspose2d(64, 1,

kernel_size=4, stride=2, padding=1)

def forward(self, x):

# Encoder

x = F.leaky_relu(self.enc1(x), 0.2)

x = F.leaky_relu(self.enc2(x), 0.2)

# Decoder

x = F.relu(self.dec1(x))

x = torch.tanh(self.out(x)) # tanh for output

return x
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G2. cGAN - Discriminator [5.4.2]

class Discriminator(nn.Module):

def __init__(self):

super(Discriminator, self).__init__()

self.layer1 = nn.Conv2d(in_channels=2, out_channels=64,

kernel_size=4, stride=2, padding=1)

self.layer2 = nn.Conv2d(64, 128, k

ernel_size=4, stride=2, padding=1)

# Final layer

self.final = nn.Conv2d(128, 1,

kernel_size=4, stride=1, padding=0)

def forward(self, input, target):

x = torch.cat([input, target], dim=1)

x = F.leaky_relu(self.layer1(x), 0.2)

x = F.leaky_relu(self.layer2(x), 0.2)

# Additional layers would be processed here

x = self.final(x)

# Flatten the output and return a single value per image pair

return torch.sigmoid(x.view(-1, 1).squeeze(1))
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G3. cGAN - Class ’LineA’ [5.4.2]

class LineA(Dataset):

def __init__(self, input_dir, target_dir, transform=None):

self.input_dir = input_dir

self.target_dir = target_dir

self.transform = transform

self.filenames = os.listdir(self.input_dir)

def __len__(self):

return len(self.filenames)

def __getitem__(self, idx):

input_img_path = os.path.join(

self.input_dir, self.filenames[idx])

target_img_path = os.path.join(self.target_dir,

self.filenames[idx])

input_img = Image.open(input_img_path).convert(’L’)

target_img = Image.open(target_img_path).convert(’L’)

if self.transform:

input_img = self.transform(input_img)

target_img = self.transform(target_img)

return input_img, target_img
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G4. cGAN - Class ’Real’ [5.4.2]

class Real(VisionDataset):

def __init__(self, root, transform=None):

super(Real, self).__init__(root, transform=transform)

self.directory = ’G://lineA//real//’ # Set the root directory

self.folders = [’1_fixed’,’2_fixed’, ’3_fixed’, ’4_fixed’]

self.filenames = []

for folder in self.folders:

folder_path = os.path.join(self.directory, folder)

for filename in os.listdir(folder_path):

self.filenames.append(os.path.join

(folder_path, filename))

def __len__(self):

return len(self.filenames)

def __getitem__(self, idx):

img_path = self.filenames[idx]

image = Image.open(img_path).convert(’L’)

if self.transform:

image = self.transform(image)

return image
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