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Abstract

This thesis analyzes how individuals’ devaluation of distant impacts of climate change
affects mitigation behaviours and projected climate conditions. To approach this question,
spatial and temporal discounting is applied to a coupled social-climate model. This model
represents a two-way feedback between human decision-making, social norms, and human
behaviour with changes in the climate. This is achieved through coupling an evolutionary
game theoretic model of opinion dynamics and a simple Earth System Model. The results
showed that shifting from current-looking to future-looking behaviours (preferring lower
discounting scenarios) and considering multiple locations and population groups, supports
a higher proportion of the population choosing mitigation strategies. This shift produces
a pathway to reducing temperature anomalies and carbon dioxide emissions. However, the
approach to a better state of the climate is best achieved by targeting both discounting and
social behaviours rather than just one or the other. These results highlight the benefits
of including human behaviour in climate models and the need for a more multifaceted
approach to mitigating the negative effects of climate change.

iii



Acknowledgements

I would first like to thank my supervisors, Dr. Chris Bauch and Dr. Madhur Anand,
for their support in all areas of my academic and personal well-being. I am grateful for
their dedication to promoting a healthy learning environment that fostered a community
within our lab.

I would also like to thank my family for showing nothing but love along the way. And
to my friends, thank you for creating a welcoming space for me. I am forever grateful for
the memories we have made and for everything I have learned from you all.

Finally, I want to thank my math teachers and professors, most of whom were women,
who have taught and guided me along the way. You opened the door for me into this
fascinating world of mathematics and always believed in me. I would not be where I am
today without them and the other resilient women in my life.

iv



Dedication

This is dedicated to my grandma, who always wanted me to pursue an education in
something I loved.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Research Questions and Hypotheses . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Climate Change in the Media . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Barriers to Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Discounting The Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Game Theory in Mathematical Models and Social Dynamics . . . . . . . . 14

2.5 Earth System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Coupled Social-Climate Models . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3 Methods 25

3.1 Human Behaviour Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Spatial Discounting in Behaviour Dynamics . . . . . . . . . . . . . 25

3.1.2 Temperature Projection . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Temporal Discounting in Perceived Costs Associated with Climate
Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Fully Discounted Social - Climate Model . . . . . . . . . . . . . . . . . . . 31

3.3 Earth System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Simulation and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 37

4.1 Spatial and Temporal Discounting . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Parameter Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Time Series: Emissions, Temperature Anomaly, and Proportion of
Mitigators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Discounting and Opinion dynamics . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Parameter Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Time Series: Emissions, Temperature Anomaly, and Proportion of
Mitigators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Discussion 63

5.1 Summary of Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Model Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . 65

5.3 Implications of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 68

vii



List of Figures

2.1 This plot from Calvin and Lamberty [10] demonstrates the coupling of hu-
man and climate systems as they vary in complexity. It is clear that agent-
based models have the most complexity for human systems, but have no
feedbacks on their own. When coupled with ESMs of varying complexity,
the desired two-way feedbacks are achieved. This plot positions IAMs with
other models, showing the level of complexity in IAMs’ human system but
only a one-way feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Contour plots show peak temperature anomaly (a) and the year the peak
temperature anomaly is reached (b) at values of temporal discounting (δt)
and spatial discounting (θ). All other parameters are held at their baseline
values as defined in Tables 3.1 and 3.3. . . . . . . . . . . . . . . . . . . . . 39

4.2 Temperature anomaly is plotted over time for various parameter pairs of
temporal discounting (δt) and spatial discounting (theta) in patch 1 drawn
from Figure 4.1(a). All other parameters are held at their baseline values as
defined in Tables 3.1 and 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Contour plots showing peak temperature anomaly across the range of tem-
poral discounting (δt) values in each patch at specific spatial discounting (θ)
values. All other parameters are held at baseline as defined in Tables 3.1
and 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Contour plot showing peak temperature anomaly for temporal discounting
(δt) and time horizon (tH) values in patch 1. All other parameters are held
at baseline as defined in Tables 3.1 and 3.3. . . . . . . . . . . . . . . . . . 44

viii



4.5 Forward-looking behaviour favours mitigation. Median trajectories (solid
and dashed lines) and 20th and 80th percentiles are plotted to the year
2200 for the proportion of mitigators (a), carbon dioxide emissions (b) and
temperature anomaly (c). With temporal discounting δt,1 = 0.015, δt,2 =
0.01, spatial discounting θ = 0.5, time horizon tH = 50, and proportion of
emissions α = 0.5. Medians and quintiles are computed over 100 simulations,
where all other social system parameters are randomly drawn from their
uniform distributions (Table 3.1). All other parameters are held at baseline
values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Patches may produce an uneven proportion of emissions. Median trajecto-
ries (solid and dashed lines) and 20th and 80th percentiles are plotted to
the year 2200 for the proportion of mitigators (a), carbon dioxide emissions
(b) and temperature anomaly (c). With temporal discounting δt,1 = 0.015,
δt,2 = 0.01, spatial discounting θ = 0.5, time horizon tH = 50, and propor-
tion of emissions α = 0.3. Medians and quintiles are computed over 100
simulations, where all other social system parameters are randomly drawn
from their uniform distributions (Table 3.1). All other parameters are held
at baseline values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Current-looking behaviour favours non-mitigation. Median trajectories (solid
and dashed lines) and 20th and 80th percentiles are plotted to the year 2200
for the proportion of mitigators (a), carbon dioxide emissions (b) and tem-
perature anomaly (c). With temporal discounting δt,1 = 0.03, δt,2 = 0.015,
spatial discounting θ = 1, time horizon tH = 100, and proportion of emis-
sions α = 0.7. Medians and quintiles are computed over 100 simulations,
where all other social system parameters are randomly drawn from their
uniform distributions (Table 3.1). All other parameters are held at baseline
values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



4.8 Emissions under current-looking behaviour increase and eventually saturate
as equation 3.18 formulates. All 100 simulation runs (red) are plotted with
median, 20th, and 80th percentiles (black) for total carbon dioxide emission
(a),(b). Median trajectories (solid and dashed lines) and 20th and 80th
percentiles are plotted to the year 2200 for carbon dioxide emissions (c),(d).
Panels (a) and (c) are under temporal discounting δt,1 = 0.03, δt,2 = 0.015
spatial discounting θ = 0, and proportion of emissions α = 0.3. Panels
(b) and (d) are under temporal discounting δt,1 = 0.05, δt,2 = 0.03, spatial
discounting θ = 1, and proportion of emissions α = 0.7. Both have a
time horizon of tH = 50. Medians and quintiles are computed over 100
simulations, where all other social system parameters are randomly drawn
from their uniform distributions (Table 3.1). All other parameters are held
at baseline values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Contour plot showing peak temperature anomaly for values of the net cost
of mitigation (β) and strength of social norms (δ) in patch 1. All other
parameters are held at baseline as defined in Tables 3.1 and 3.3. . . . . . . 53

4.10 Contour plots showing peak temperature anomaly for temporal discounting
(δt) and social learning rate (κ) (a) and strength of social norm (δ) (b) values
in patch 1. All other parameters are held at baseline as defined in Tables
3.1 and 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Contour plot showing peak temperature anomaly for spatial discounting (θ)
and net cost of mitigation (β) values. All other parameters are held at
baseline as defined in Tables 3.1 and 3.3. . . . . . . . . . . . . . . . . . . . 55

4.12 Current-looking behaviour amplifies the differences in temperature anomaly
between weak and strong opinion dynamics. Median trajectories (solid and
dashed lines) and 20th and 80th percentiles of temperature anomalies are
plotted to the year 2200. The top row of plots shows anomalies for low
yearly temporal discounting (δt = 0.01), and the bottom row high temporal
discounting (δt = 0.03). The columns, from left to right, compare different
parameter values for social learning rate (κ), net cost of mitigation (β), and
strength of social norms (δ). Medians and quintiles are computed over 100
simulations, where all other social system parameters not specified in the
panels are randomly drawn from their uniform distributions (Table 3.1). All
other parameters are held at baseline values (Table 3.3). . . . . . . . . . . 57

x



4.13 Stronger social learning offsets non-mitigation pressure from current-looking
behaviours. Median trajectories (solid and dashed lines) and 20th and 80th
percentiles of temperature anomalies are plotted to the year 2200. Panels
show projections for specific discounting and social parameters. Temporal
discounting (δT ) increases from left to right, and social learning rate (κ)
increases from top to bottom. Medians and quintiles are computed over 100
simulations, where all other social system parameters are randomly drawn
from their uniform distributions (Table 3.1). All other parameters are held
at baseline values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.14 Reduction in discounting and net cost of mitigation promotes mitigation
strategy. Median trajectories (solid and dashed lines) and 20th and 80th
percentiles of temperature anomalies are plotted to the year 2200. Panels
show projections for specific discounting and social parameters. Temporal
discounting (δt) increases from left to right, and the net cost of mitigation (β)
increases from top to bottom. Medians and quintiles are computed over 100
simulations, where all other social system parameters are randomly drawn
from their uniform distributions (Table 3.1). All other parameters are held
at baseline values (Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 Resistance to switching mitigation strategies is amplified with an increase
in yearly discounting. Median trajectories (solid and dashed lines) and 20th
and 80th percentiles of temperature anomalies are plotted to the year 2200.
Panels show projections for specific discounting and social parameters. Tem-
poral discounting (δt) increases from left to right, and the net cost of mitiga-
tion (β) increases from top to bottom. Medians and quintiles are computed
over 100 simulations, where all other social system parameters are randomly
drawn from their uniform distributions (Table 3.1). All other parameters
are held at baseline values (Table 3.3). . . . . . . . . . . . . . . . . . . . . 62

xi



List of Tables

3.1 This table provides a list of social parameters in the model. Parameter
values are presented as triplets to provide lower bounds, baseline values,
and upper bounds, for example: (lower bound, baseline, upper bound). . . 28

3.2 This table provides a list of variables and processes in the model. . . . . . 31

3.3 This table provides a list of climate and model parameters. Values are
presented as constants or triplets to provide lower bounds, baseline values,
and upper bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xii



Chapter 1

Introduction

It is well accepted and observed that the Earth’s climate has been changing, and the
surface of the Earth has been warming [27, 28]. Earth’s climate and radiative balance are
influenced by many factors and their interactions with each other [17, 27, 29]. Some major
drivers of climate change include greenhouse gas emissions, surface albedo, aerosols in the
atmosphere, and land use [27]. These climate forcings are used as parameters in climate
models [27]. The results from these climate models can be used to predict future climates,
determine different effects certain parameters or interactions have on the changing climate,
and influence mitigation and policy-making efforts [27, 28].

The standard practice in climate modelling has primarily focused on the physical pro-
cesses of the climate, implementing predefined pathways of emissions into simple or exten-
sive models, and using model ensembles and physical data (ocean circulation, atmosphere
dynamics, etc.) [27]. Yet, through the standard practice of building and evaluating the
model, a vital component of the changing climate is left out: humans. In an effort not to
complicate the physical modelling further, scientists often choose not to account for hu-
man interactions with the climate beyond anthropogenic emission scenarios [27]. If climate
models aim to represent the planet as best they can, the models will always maintain a gap
in representation if they fail to implement human behaviour, which is the leading driver
of climate change [17, 27]. And the problem is not humans as some abstract other; it is
us: scientists, policymakers, emitters, mitigators, non-mitigators. And even within these
specific groups, there is further diversity. Humans, individually and as groups, differ in ex-
perience and how they feel the effects of climate change economically, physically, mentally,
and culturally, which has implications for climate-related behaviour [7, 11, 13, 19, 33]. This
needs to be accounted for in climate models as much as the diversity in physical climate
conditions across the globe. To gain a better understanding of the climate, its impacts by
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and on humans will need to be considered. As an emerging area of study, it is not yet
possible to model the full complexity of human behaviour in the climate. However, even
at a conceptual level, key drivers and deterrents of decision-making can be implemented
[6, 9, 33]. This includes the impediments common to the majority of individuals and their
differences, like how climate change issues are often considered as out of reach, meaning
individuals are not frequently interacting with climate change issues in their everyday life
[19, 31, 39, 40, 56].

Specifically, the adverse effects of climate change are often portrayed as “there and
later”, thus reducing the motivation to mitigate “here and now.” This is called discounting,
where we take value away from events that happen farther away in time, location, or socially
[19, 46, 53]. When we discount climate change or consider environmental conditions to be
worse off somewhere else, we reduce our motivation to mitigate, which means we do little or
nothing to combat climate change [19]. And by doing so, unsurprisingly, the climate does
not miraculously get better. This leads to the understanding that how climate change is
portrayed and dealt with is fundamentally flawed in our everyday lives and climate models.

The aims of the research presented in this thesis focus on gaining more understanding
of the relationship between how humans devalue climate change impacts and conditions as
they occur farther away in time and geographic locations and the resulting changes in the
climate. This understanding will help address the need for the dynamic inclusion of humans
in climate models and support areas of improvement in the presentation and perception of
climate change issues. The objectives of this research address the proposed aim through
the development and analysis of an expanded behavioural model in a social-climate model.
The first objective is to develop a coupled system of Ordinary Differential Equations (ODE)
that incorporates spatial and temporal discounting as additional differential equations in a
social-climate model and a time horizon approach, respectively. The second objective is to
identify key changes in the proportion of mitigators and the temperature anomalies that
result from running this coupled human-environment system. This thesis will be broken
into four main chapters to address these aims and objectives.

Chapter 2 will cover the necessary background information and literature review that
support this thesis. Specific problems like the portrayal of climate change in the media
and barriers to mitigating the negative effects of climate change are presented as motiva-
tions for this research. The background of the thesis is rounded out with a short literature
review of game theory in social dynamics and simple Earth System Models to support
the methodology and modelling process, which is presented in Chapter 3. Chapter 3 is
where the bulk of my contribution, the inclusion of spatial and temporal discounting into
a social-climate model, is provided. This Chapter also explores the two-way feedback be-
tween the social system and the simple Earth System Model as established alongside the
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many parameters of the model. Chapter 4 implements the coupled model under various
discounting regimes. This is done to assess the model’s functionality and, most impor-
tantly, to address the fundamental relationships between how humans devalue future and
distant climate impacts and the resulting changes on the climate. An analysis is com-
pleted in this Chapter to consider how the inclusion of additional human behaviour in the
form of discounting into established opinion dynamics amplifies the adverse effects of non-
mitigation on climate conditions. Chapter 5 discusses the implication of the results from
my conceptual model in terms of pathways to increase uptake of mitigation strategies and
decrease temperature anomalies. This Chapter also provides assumptions made during my
modelling process as well as the limitations of the model I develop in Chapter 3. Finally,
Chapter 5 also concludes this thesis and provides areas of potential future research in the
field of social-climate modelling, and specifically on the phenomenon of discounting.

1.1 Research Questions and Hypotheses

In this thesis, the following main questions will be investigated:

1. Will modelling how humans devalue future climate impacts make sufficiently mean-
ingful changes to projected future climate conditions?

2. How does the inclusion of additional human behavioural traits influence opinion
dynamics? And will this more complex system provide greater insight into mitigation
strategies?

Where I hypothesize that:

1. Forward-looking behaviours will act to increase mitigation and maintain moderate
projected climate conditions.

2. Current-looking behaviour will act to reduce motivation to mitigate and result in
extreme projected climate conditions.

3. Including discounting as additional human behaviour will enhance the negative effects
of non-mitigation on the climate.
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Chapter 2

Background

Important background information is presented in this chapter through a literature review.
Topics and problems that motivate my research are presented in Sections 2.1, 2.2, and 2.3.
As well, I provide support and definitions for fundamental aspects of my methodology, like
game theory in mathematical models (Section 2.4), simple Earth System Models (Section
2.5), and social-climate models (Section 2.6).

2.1 Climate Change in the Media

The media plays a crucial role in how people receive, perceive, and share the issue of
climate change. This can be through online or print newspapers, radio, social media, and
even film and art. This media is presented on a range of scales from local to global levels.
The mechanisms behind media that drive engagement with climate change do not operate
to consistently support or promote engagement with environmental issues. In this section,
I discuss how climate change is portrayed in the media (namely news media), the outcome
of this framing, and better ways to approach the presentation of climate change issues.
This discussion of climate change in the media is useful in understanding the motivation
and necessity to incorporate discounting into a social-climate model, which is, at its core,
my research topic.

Media has an important hand in shaping the way climate change is presented on a
global, national, and local level. Climate change is presented in such a way that certain
aspects of the issues are emphasized or made salient while others are pushed to the back
or obscured [39, 40, 59]. This is known as framing and is used to stimulate the interpre-
tation and evaluation of climate change [39, 40]. Issues can be framed in different ways

4



depending on the desired audience, outcome, and even based on geographical origins of
events and reporting [3, 59]. Issue frames are greatly influenced by politics, ideology, and
socioeconomic factors [40, 59], as well as social norms and cultural factors [40, 59]. There
is leverage over framing even at the level of news development. Major news corporations
and their organizational and readership pressures and ideals play major roles in building
the media frames [40]. Framing climate change is clearly a complex process that draws
on factors beyond climate-related events and the environment. As an extension of the
construction of frames, the implementation of frames also creates meaning. When select
frames are used in rotation and others are abandoned, specific narratives and voices are
valued or devalued respectively [39]. O’Neill [39, 40] eloquently defines how all the influ-
ences on framing climate change work together to “shape the possibilities of engagement
with climate change”. This engagement starts at the level of understanding, moves to
awareness, and then moves to action. Yet the frames that news media turn to the most
fail to spark positive, actionable engagement regarding climate change.

Some of the most common frames used when presenting climate change in the media
are ‘distant framing’ and ‘contested’ or ‘politicized framing’ [31, 39, 40, 55, 56]. Dis-
tant framing removes the reader or general public from the climate change issue. This is
achieved through casting geographical, temporal, or social distance in the preparation and
distribution of media [56]. In other words, this framing places climate change as something
psychologically isolated from the consumers’ everyday [39, 40]. Frames can be implemented
in media by showing specific types of images, through geographical scales of publications
versus events, through discussion by specific actors, and more often than not, a combina-
tion of these. For example, this frame can be achieved through the use of particular images
that evoke distance through the feeling of awe [39, 40]. Photos that present environments
with very few to no humans or featureless photos, isolate the climate change threat from
the media consumer. Frequently used photos that capture this feeling of distance are ice-
landscapes on their own or more commonly seen with polar bears [39, 40]. Beyond the
geographical distance photos can emulate, they can also create a physiological detachment
between consumption and production. A famous example of this is through the image of
smokestacks, specifically relating to the everyday use of energy versus the conceptually
distant production of that energy [39, 40]. The distant framing in photos draws a line
between some far away concept or location, and the consumer.

A less direct way to implement the distance frame is through prioritizing certain voices
over others. The media uses only a few of many possible ways of discussing the climate
crises (examples include driving narratives of specific voices and geographic locations)
[39, 56]. This limited selection of reporting then restricts the ideas and issues people know
and care about, fundamentally narrowing potential work on the climate crises. In one
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example of how climate is discussed in the media, it is suggested that when researcher’s
discourse is prioritized, their persistent use of projected global outcomes and events presents
climate change issues as untouchable to the general public [56]. This forms a disconnect
between everyday life and climate change, discouraging the understanding of climate change
as a present problem. Another disconnect arises through the prioritization of scale. Often,
climate change is portrayed on a large national, international and global scale. This scale
is used even in local news media [31]. The large-scale climate issues presented then feel
spatially and temporally distant to the individual, distorting their view of their local climate
problems. The tendency of media to implement the distance frame through repeated
narratives reinforces an understanding of climate change as happening elsewhere and as
inaccessible on an immediate or local basis to the media consumers. This siphons off
possible engagement and motivation to actively mitigate behaviours that result in climate
change. The absence of the general public from images, debate, and local news that they
consume aids in heightening the disconnect between the effects of climate change and the
anthropogenic forces behind these consequences. After all, if climate change is constantly
being portrayed as a problem somewhere else and later on, then individuals will be left
with no sense or motivation to act.

Another highly adopted way to frame climate change issues is through ‘contested fram-
ing,’ which gives space in news media to the voices and faces behind policy, protest, debate,
and skepticism. Images of politicians or protests are the stars of this frame [39, 40]. While
it is good to humanize climate change interventions, restricting media coverage to climate
action by politicians, celebrities, or other elite characters creates a gap between the every-
day person (and their actions) and avenues for real change. Other less frequently employed
frames are ‘outcome,’ ‘impacts or consequences’ (economic or natural), ‘scientific,’ and ‘so-
cial progress framing’ to name a few [3, 31, 35, 39, 40, 55, 56, 59]. Distance and contested
framing are continually the most used in presenting climate change issues, but are not ef-
fective in promoting the shift from individual engagement with an issue into actual action.
That gap remains a significant driver for inaction. Still, if climate change issues are framed
differently, an increase in individual connection to the issue could be approached.

Alternate approaches to framing climate change issues should be dominated by one
shift: making climate change an issue that is personally relevant to individuals’ every-
day lives. This can be done by stepping away from frames that break down individuals’
motivation toward action, like the distancing frame, and moving towards frames that are
empowering to the individual and larger population [55, 56]. This deliberate choice ad-
dresses the gap in previously used frames: there are very low rates of solutions or actions
presented [31, 56]. This absence of potential action emphasizes the necessity to encourage
changes in behaviour. Such encouragement or motivation could be through presenting and
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supporting solutions of individual mitigation or adaptation practices [31, 55, 56]. This
draws climate change solutions and, thus, climate issues closer to the everyday individual.
This flips the narrative: leaving behind the overwhelming use of climate change as some
long-term complex spectacle, and heading towards a “here and now” form of communi-
cation of climate issues [55, 56]. This creates a closeness rather than a distant feeling
which could lead to better engagement and action [55]. It has been suggested to present
climate change and mitigation through a health and public health lens to bring the issues
of climate change one step closer to the individual [40, 55]. This portrays climate change
and its understanding as even more relevant to the individuals’ everyday [55, 56]. In any
of these cases, it is clear that creative and personal ways of framing climate change issues
as relevant and open to the everyday and general public voices are needed to promote a
mix of emotional connections that drive engagement and action.

However, if climate change issues are not covered in the news media, then framing
becomes trivial. The type and magnitude of climate coverage in the media depends on
various factors. Sociopolitical events, extreme weather events, and socioeconomic traits
of geographical locations all contribute to media coverage [3, 31, 35, 39]. Planned IPCC
reports, UN Climate Change Conference of the Parties, and less frequent events like Al
Gore’s “An Inconvenient Truth” and Nobel Peace Prize, capture media attention and
are triggers for increased climate change coverage [3, 31, 35, 39]. In contrast, climate
change issues are often under-covered, if at all, when other prominent regional and global
events (sporting events, elections, etc.) are occurring [35]. While coverage peaks around
environmental events, the coverage around extreme weather fails to emphasize connections
to larger-scale anthropogenic climate contributions [3]. Due to this climate coverage and the
common media frames, individuals are then disconnected from climate change problems.
This disconnect is heightened by the use of reporting styles in carbon-emitting locations
versus regions where the effects of climate change are felt [59]. In richer (higher GDP per
capita) and carbon-emitting countries, coverage of climate change is scientifically framed
and focused in the energy sector [59]. Whereas poorer countries experiencing climate
change effects regularly, have media coverage relying on the ‘natural impact frame’ [59].
Framing and covering climate change in this way highlights a major divide between climate
change causes and impacts. Down to the level of media consumers, the limited framing in
specific geographic locations produces a distance between individuals and consequences of
inaction towards the climate. The intensely varied framing of climate change issues from
location to location reflects a more universal understanding. That much like how climate
change does not affect all people equally, climate change related media does not reach
everyone equally either.

Through media, individuals see climate change issues framed as distant from their
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everyday, as happening somewhere out of reach and if predicted, later in time. They
may see news stories of climate-related events, but rarely climate change solutions like
mitigation practices. This construction of climate change media reinstates barriers to
positive environmental behaviour. They block or make it harder for individuals to feel
motivated and engaged in climate change issues and solutions. Climate change in the
media is just one area that supports the action of discounting climate change through
space and time.

2.2 Barriers to Mitigation

An individual’s willingness to take action, specifically towards the environment, is a be-
haviour that is easily influenced, both positively and negatively. These influences arise in
many forms but ultimately target the mind. In terms of climate change, on the one hand,
positive influences can lead to an increased uptake of mitigative action. On the other hand,
negative influences can reduce the amount of mitigation an individual and a population
take towards the climate. In this section, I discuss a variety of barriers to taking action,
guided by Gifford’s 2011 study [19], and ways to deal with those barriers that can promote
positive action towards the environment. This idea of what inhibits an individual’s moti-
vation to mitigate is important in my thesis because the main problem I aim to address
deals with a barrier to action: judgmental discounting.

By identifying psychological barriers to mitigating climate change, Gifford [19] high-
lights key behavioural aspects that should be included when studying climate change mit-
igation on a phenomenological level. In the context of social-climate models, considering
these barriers in the social subsystem may better address the complex nature of human
decision-making. In their 2011 study, Gifford [19] outlines seven central psychological
barriers to pro-environmental behaviour. The barriers they present are not mutually ex-
clusive, and in fact, the overlapping nature may enhance the lack of positive action toward
the climate [19]. The developed barriers address three broad phases of climate inaction:
ignorance (no action), being aware of the problem (no action), and action that has an
inconsequential difference on the climate [19]. The seven major barriers or “dragons” as
Gifford calls them include: limited cognition about the problem, ideological worldviews,
comparisons with other people, sunk cost and behavioural momentum, discredence towards
experts and authorities, perceived risks, and positive but inadequate behavioural changes
[19]. Examples of these barriers may include actions that may be presented as solutions
to climate change problems but are not substantial enough to have meaningful effects [63].
Thus, an individual’s willingness to take pro-environmental action decreases [63]. I will
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discuss three barriers: place attachment, limited cognition, and judgmental discounting.

Place attachment, or lack thereof, refers to the psychological connection or belonging-
ness to a “place”, such that the place holds meaning to the individual [47]. This definition
of place does not rely on stationary spaces but can refer to various scales, from objects to
environmental and geographical scales. Most attachments form on scales larger than the
human body and vary by demographic [47]. Place attachment operates to provide benefits
to individuals through connection. Scannell and Gifford [47] derived thirteen categories of
benefits from their 2017 survey; the most significant benefits provided by a place included
memories, belonging, and relaxation. That being said, despite benefits gained on individ-
ual levels, too strong or too weak of connections may act counter-intuitively towards the
climate [12, 19].

The two sides of place attachment, which support and discourage mitigation, represent
the complexity of dealing with barriers to action. One example of the benefits of place
attachment pairs with the framing of climate change in the media, as covered in Section 2.1.
When combined with an individual’s level of place attachment, local framing of messages
promotes more engagement with climate change issues [46]. This lends some insight into
the multifaceted approach needed to encourage pro-environmental action. That being said,
place attachment can often act as resistance to mitigation. When the place attachment
- the feeling of belongingness to a place, the emotional and psychological connection - is
weak, it stands as an “obstacle” to pro-environmental behaviour [12, 19]. Moreover, place
attachment can negatively affect the environment if an individual is attached to a place
in such a way that hinders preservation [46]. This implies that there is not one way to
approach the barrier of place attachment, and further, there could be different approaches
to increasing the motivation to take mitigation behaviour.

Not all individuals are experts in the science of climate change. The information re-
ceived about climate change issues does not always cover relevant information and sufficient
action that can be taken [31, 56]. This leads to an incomplete understanding of the prob-
lem, which is another barrier to mitigating climate change impacts. The limited cognition
barrier covers a variety of physiological behaviours and features that are associated with
irrational thinking [19]. These include lack of knowledge about the problem, uncertainty
in climate models, the common inability to be concerned with distant problems, and the
perception that individual actions are insufficient, to name a few [19]. This reinforces the
ideas associated with maintaining climate change as a distant threat and brings to light
the inhibiting effects of skepticism around climate change issues.

Another major barrier to action is called judgmental discounting. Judgmental discount-
ing, much like other definitions of discounting, is seen as taking value away from future
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risks. Yet, Gifford [19] breaks this barrier down into spatial and temporal components
in direct relation to environmental action. They define discounting as acting against an
individual’s willingness to mitigate. Specifically, spatial discounting is defined as an in-
dividual perceiving environmental conditions and problems to be worse somewhere else,
distant from where they are [19]. Along the same lines, temporal discounting focuses on
the idea that environmental conditions will be worse in the distant future [19]. Judgmental
discounting lays out a fundamental problem in climate change science and mitigation. It
considers the fact that climate change poses a major threat in “other” locations in space
and time, but the solutions lie “here and now.”

While judgmental discounting is of utmost importance to this research, it is appar-
ent that coupled human-environment models, through the nature of behavioural human
dynamics, implement some form of these “barriers”. For example, the social system in
Bury et al.’s [9] and Menard et al.’s [33] models that rely on imitation dynamics subtly
introduce the barrier focused on the comparison with others. Breaking their models down
further, the perceived cost of climate change and the cost of mitigation behaviours are
representative of the obtrusion that personal risks and financial risks cause to taking up
mitigative action [19]. As an extension, Menard et al.’s [33] consideration of rich and poor
groups is representative of the causes that inequality has on pro-environmental behaviour.
These are just a few cases where human behaviour is implemented to asses what supports
and what acts against taking mitigation action.

Ultimately, individuals’ experiences in their everyday lives can act as influences that
either push them toward choosing mitigation strategies or non-mitigation strategies towards
the climate. When these influences hinder the willingness to or discourage the uptake of
mitigation action, they are known as barriers [19]. Through these physiological barriers,
a slightly more complete understanding of human behaviour in terms of climate change
conditions and impacts can be gained. As an extension of this understanding, these barriers
can be implemented through mathematical modelling in human-environment systems to
analyze the behaviours dynamically.

2.3 Discounting The Climate

Section 2.2 outlines some barriers to pro-environmental behaviour as physiological be-
haviours that inhibit mitigation. Section 2.1 presents common ways climate change is
presented in the media, which builds upon and into these barriers. In this section, I dis-
cuss discounting as it relates to environmental conditions and break it down into spatial
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and temporal reasoning. This section is particularly important in establishing how dis-
counting is defined and eventually implemented into a coupled social-climate model in my
thesis (Section 3.1).

Discounting in the ecological and environmental context can be understood generally as
some process of devaluing environmental events or services depending on some dimension
of concern [5, 19, 20, 48, 53, 64]. When looking at spatial and temporal dimensions,
discounting can focus on the idea of environmental conditions being worse in other locations
(spatial) and farther in time (temporal) [19]. That being said, discounting can also assess
psychological or social distance, and foresight or the extent of decision making [5, 20, 24, 46,
48, 53]. For example, psychological distance can describe the degree of separation spatially,
socially, and temporally between some object and an individual (and their sense of self)
[53]. Commonly, the dimensions of space and time are used when studying discounting in
environmental systems.

The idea of discounting in an environmental context is malleable enough to support the
understanding of taking value away from environmental events or services while providing
space for application in different research areas. When looking at one dimension, time
discounting, a few researchers rely on the ideals of costs and benefits in terms of time
[5, 20, 48]. Their implementation of temporal discounting follows the general understanding
that future decision outcomes are valued less than short-term outcomes [5, 20, 48]. This is a
reasonably general temporal discounting definition, and yet the context of intergenerational
decision-making [20], time preference (prefer positive outcomes now and negative outcomes
later) [20, 48], temporal perspective (influence of views on past, present, and future) [48],
and time horizons (foresight of decision making) [24] easily guide how discounting is used
to answer the researchers’ questions. Time preference or perspective helps reduce the
generalized definition of time discounting into individual human behaviour.

When considering other dimensions of discounting, similar varieties of definitions arise.
Generally, discounting in a spatial or social sense is defined by value decrease when physical
or physiological distance increases [5, 64]. Frameworks of physical distance (for example,
ecosystem service values) [64], spatial preferences [5], and separation of self and others
[19, 48] extend this baseline idea of discounting in terms of the environment to support an
array of distinct definitions. That said, social and spatial discounting are not as straight-
forward as temporal discounting. Whereas temporal discounting follows linear time with
exponential and hyperbolic smooth decay functions [5], spatial discounting may rely heav-
ily on individual preferences. It is clear from these definitions presented that temporal
and spatial discounting not only depends on physical and psychological distance but also
individual preferences (prefer benefits sooner rather than later and at specific locations)
[5, 20, 48]. Moreover, the application of discounting can be used in the areas of ecology,
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economy, and climate to name a few [5, 20, 24, 46, 48, 52, 53, 64].

More often than not, studies implement multiple dimensions of discounting to asses
their research questions. This process can isolate different discounting measures to analyze
effects individually or consider the possible overlap that the influence of discounting has on
human decisions and the environment. For example, a study considered temporal and social
distance when looking at climate risk perception in farmers, finding that two principal ideals
arose: participants were either historically-oriented or future-orientated [48]. This implies
that individuals make decisions based on prior experiences but vary in their willingness to
acknowledge future generations, conditions, or to add external information to their own
experiences [48]. As a result, future-oriented individuals acted in a more pro-environmental
way than individuals with historically-oriented perspectives [48]. This study helps discover
how the perception of climate-related events can influence an individual’s behaviour in
polarizing ways, one supporting beneficial action for the environment and another acting
against it.

A second study found that when analyzing both spatial and temporal psychological
distance, the two types of discounting were additive in their consequences, often with
negative impacts on policy support [53]. This study from Sparkman et al. [53] considers a
lens of “closeness” in space and time rather than “distance” when concerned with policy
support. They identified that (in their region of interest) policies currently seem to frame
environmental impacts in the distant future and farther away [53]. This leads to future
events losing value through temporal and spatial discounting and then reducing policy
support [53]. Their results reinforce the need to shift the way climate change is framed
away from the distant frame in the media [55, 56], or in this case, climate policy (see
Section 2.1). That being said, similar to the negative consequences of too strong of place
attachment [19, 46], Sparkman et al. [53] acknowledge that closeness can lead to too high
of concern level and become overwhelming. This study addresses two important factors
of discounting. First, the overlapping nature of the dimensions of discounting influence,
often negatively, the choice of pro-environmental behaviour (see Section 2.2) [19]. Secondly,
discounting, even as presented through policies and the media, has a strong influence on
individual decision-making.

When considering one dimension, like space or time, the application of discounting is
distinct in study results. These results then reinforce the definition of discounting and
provide evidence of the impacts of discounting on environmental decision-making. For ex-
ample, one study incorporates spatial discounting into a mathematical model of ecosystem
service distances through spatial welfare to analyze consumption, ecosystem services, and
willingness to pay for services [64]. These drivers of discounting rate account for spatial
preference and population density, which can represent wealth disparity based on location
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[64]. Ultimately concluding that while a low magnitude of services increases ecosystem
service value, an increase in physical distance from the ecosystem service results in a decay
of the service value [64]. Another study implements temporal discounting through fore-
sight in decision-making (time horizons) on forest-grassland mosaics [24]. The discount
time horizons are integral for identifying vegetation cover, such that long time horizons for
conservation boost natural land cover [24]. Subsequently, the discount time horizon for con-
servation has a more significant effect on the dynamics of land cover than the discount time
horizon for the economy [24]. These two studies are important in the way they implement
discounting. Yamaguchi and Shah [64] have a spatial discounting factor that influences
their utility function governing their model, and Henderson et al.’s [24] time horizon fac-
tors for conservation or economic gains are used as foresight in their utility function that
governs human behaviour. These studies highlight the important influences that discount-
ing has on the outcome of environmental decision-making and human behaviour, which can
be discovered by mathematically implementing even just one dimension of discounting.

Discounting the climate and environment does not always follow the clear-cut defini-
tions of discounting as presented thus far. In fact, the idea of value and how it is given to
or taken away from climate change events re-evaluates approaches to discounting [5]. In
an attempt to focus on climate change adaptation instead of mitigation, Baum and East-
erling [5] address the contrast between how individuals value costs and benefits versus how
those costs and benefits should be valued. These values could take the form of intrinsic or
instrumental value [5]. Additionally, discounting has even been applied to factors beyond
distance. An example is through directly discounting carbon prices (taxes, payments) [52].
This form of discounting in Sjølie et al.’s [52] 2013 study takes an economic approach to
assess the value of carbon in relation to forest carbon offsets. In particular, they deter-
mined that even with low discounting rates on carbon, mitigation efforts are still low in the
short-term but increase in the long-term [52]. These studies highlight that the approach,
assessment, and results of studying discounting on the climate are not always straightfor-
ward. Often, a different scientific perspective helps better understand the intricacies of
discounting concerning the environment.

The presented temporal, spatial, and social discounting definitions establish a standard
understanding of discounting in terms of the environment. In this thesis, the definition
of spatial and temporal discounting concerning climate change is as follows: individuals
devalue climate impacts as they occur in more distant locations and times. This follows the
initial form of discounting defined by Gifford [19]. While the way discounting is enforced
in this research differs from other implementations [5, 20, 48, 64], it is essential to consider
overall how the functionality of discounting is applied in an environmental sense.

This brief literature review and dive into other instances of discounting being imple-
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mented in environmental studies highlight the influence that discounting plays on responses
in decision-making and environmental conditions. Specifically, implementing distance in
time and space as a foundation for discounting has major implications in climate science.
It helps illuminate the fundamental issue of expressing and acting on climate change and
climate-related issues as distant problems [31, 39, 40, 56]. Also, accounting for discount-
ing in climate-related research provides evidence and support for policy changes that can
address this type of physiological barrier to mitigation and climate-positive behaviours
[53]. These definitions of discounting and how they are modelled in environmental and
human systems help guide the understanding and implementation of spatial and temporal
discounting as seen in Section 3.1.

2.4 Game Theory in Mathematical Models and Social

Dynamics

Game theory is a valuable tool in modelling and assessing interactions between individuals
and between and within groups of individuals [21, 43]. On a very basic level, game theory
is a way to study the outcome of decisions when individuals consider and interact with
other decision-making individuals [21, 41, 43]. On the level of the individual, or player, in
these models, their main goal is to maximize their payoffs or utilities [43]. Generally, these
payoffs are defined based on a player’s chosen decision or strategy, which can take a couple
of forms. Firstly, payoffs can be provided to a player as a utility after all players have
chosen strategies and the game has ended [43]. Secondly, individuals can receive payoffs
in the form of expected utility that depends on the chosen strategies of all individuals and
themselves [43]. These payoffs represent the fundamental practice in game theory: the
interdependence of other players’ strategies and action choices [21, 43]. While this is a
rudimentary introduction to game theory, it lays the basis for the necessary information
covered in this section. Specifically, I will briefly discuss evolutionary game theory and so-
cial dynamics in a game theoretic context, as well as a few instances of the implementation
of game theory in mathematical models. This discussion is essential in understanding the
methodology of the social system presented in Section 3.1.

Evolutionary game theory focuses on the social dynamics in a group of individuals where
others greatly influence behaviours of choosing strategies. The evolutionary component
operates to weed out behaviours that do not perform well in the population [50]. More
specifically, an individual will imitate another individual’s choosing behaviour if the payoffs
of that strategy are greater than the current or average population strategy [50, 57]. This is
called imitation dynamics, where the rate of changing strategies depends on the difference
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in payoffs, such that the expected success increases when choosing a different strategy
[21, 25, 57]. These dynamics are dependent on replicator equations where individuals
imitate the actions, or strategy choices of others at a “probability proportional to the
expected gain” [25].

Replicator equations are often used in biological applications of game theory [21]. These
are equations mathematically modelling the dynamics of the frequency of strategies occur-
ring or being chosen in a population [21, 25]. Replicator equations rely on the difference
between the payoffs of strategies and the average population [25]. Through these equations,
the success of strategies is reflective of the strategies’ rate of increase in the population [25].
All that said, replicator dynamics represent the imitation process of individuals, which can
be through the exchange of experiences and information [21]. Approaches to implementing
imitation dynamics and replicator equations can follow continuous-time differential equa-
tions and even take on stochastic forms due to their “BOLTZMANN-like” origins [21].
Tilman et al. [57] use this form of evolutionary game theory to create a generalized model
for environmental systems, where both other individuals and the environment influence de-
cisions. Other forms of the application of game theory (not just evolutionary game theory)
are in economics, infectious diseases, and ecology [4, 41, 57].

Game theory is easily applied in the context of economics as payoffs are simplified. That
being said, the strategies and games defined may take various forms. Perman [41] focuses
on the interdependence of countries and pollution reduction in the context of decision-
making and the runoff effects of those decisions. Due to the nature of pollution not abid-
ing by boundaries, the decision of one country to work to reduce pollution may benefit
other nearby countries [41]. To consider this idea, Perman [41] implements a few different
game theoretic approaches and cooperation levels (full or no cooperation): the prisoner’s
dilemma, the chicken game, and the assurance game. Through this analysis, they dis-
covered different stable and unstable solutions, often resulting in the strategy choices of
not abating pollution, or “free-riding” the benefits from the other player’s decision in the
prisoner’s dilemma game [41]. The main environmentally beneficial solution they obtained
was when both countries worked cooperatively to contribute to the public good in the
assurance game [41]. That being said, the outcome of the games they studied in this con-
text relied heavily on defining the payoffs and punishments of choosing different pollution
abatement strategies. This study focused on only two countries in the context of economic
benefits and pollution control. Games can have more than two strategy options. Sethi
and Somanathan [50] focus on a common pool resource game with three strategy types.
These types (enforcer, cooperator, defectors) were defined based on the reliance on norms
or self-governance employed by communities concerning common resources [50]. Their use
of evolutionary game theory is implemented through the standard form of differences in
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payoffs between strategies. A significant result they found through applying evolutionary
game theory was the persistence of behaviours [50]. In other words, a temporary change
in payoffs (and parameters) can result in irreversible changes in behaviour [50]. These two
economically and environmentally-centred studies help to begin to identify the impact of
social dynamics in different systems when multiple strategies or groups are present.

This intuition can be extended into systems and models that capture the feedback
between a decision-making payoff system and a biological system. In an environmental
sense, these are systems where payoffs for individuals rely on strategy choices concerning
the population and the state of the environmental system [9, 33, 57]. To complete the
feedback, the choices of populations also influence the environment [57]. In this way,
Tilman et al. [57] create a general framework for what they call “eco-evolutionary games”
that represent this feedback with arbitrary environmental systems. Immediately, an issue
of timescale arises. Three timescales are present: intrinsic environment dynamics, strategy
impacts on the environment, and the evolution of strategy choices in a population [57]. To
deal with this issue, Tilman et al. [57] undergo linear transformations in their model and
assume an equivalent timescale to compare the rate of environmental dynamics and strategy
dynamics. This general model with a linear payoff structure was applied to a psychological
model with fixed or flexible decisions, an ecological model of grass and legume competition
relative to nitrogen fixation, common-pool resource harvesting in bio-economics, and an
environment governed by tipping points in an eco-evolutionary game [57]. They conclude
that the rate of environmental feedbacks plays an integral part in the dynamics of the
system. Particularly, a complete understanding of the adaptive systems could not be
obtained by considering either environmental or evolutionary game dynamics on their own
[57]. This result highly supports the knowledge gap when these two types of systems are
not dynamically considered together.

The connected influences modelled through evolutionary game theory and arbitrary en-
vironmental systems can also be observed in a biological sense. Bauch and Bhattacharyya
[4] implement social learning guided by imitation dynamics and replicator equations. They
focus on the feedback loop between disease incidence and vaccination behaviour modelled
through coupling the behaviour model with a SIR model [4]. The addition of social learn-
ing provided important insight into risk perception and vaccination coverage. Some results
from their model show that the coupled model fits data in vaccine coverage better than dis-
ease incidence and fit to historical data was overall better with social learning implemented
[4]. Fundamentally, this study represents the strength of game theoretic interactions with
individuals, vaccination responses, and disease incidence when a vaccine scare occurred
in a population [4]. Additionally, this study highlights the beneficial outcomes achieved
by implementing evolutionary game theory through social dynamics to represent better
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and model two-way feedbacks where human opinion dynamics are at the centre. Overall,
evolutionary game theory is highly efficient as a methodological tool in modelling two-way
feedbacks between social dynamics and another biological or ecological system.

2.5 Earth System Models

Earth System Models (ESM) are mathematical models that capture key dynamics of the
Earth’s physical system to produce climate simulations and projections. ESMs are used to
test and gain an understanding of scientific or climate questions and theories, as well as an
understanding of model components, systems, flaws, and areas of improvement. Because of
the expanse of ESMs, these types of models range in complexity. In this section, I discuss
some essential characteristics, variability, and difficulties of ESMs. Understanding the gen-
eral components and functionalities of ESMs helps support the decisions and assumptions
made in my modelling process.

An ESM is comprised of atmosphere, ocean, sea ice, and land surface components
[42]. Each of these contains smaller systems that represent the many physical climate
processes. These can include water processes, greenhouse gasses, ozone, aerosols, biochem-
istry processes, land vegetation, marine chemistry, terrestrial ice sheets, ocean biology, and
biogeology [42]. The inclusion of biogeochemical processes is a key distinction between
ESMs and other models like Atmosphere-Ocean General Circulation Models [27]. ESMs
are coupled such that each component or sub-model exchanges variables with each other,
representing vital feedbacks in the Earth’s climate [42]. The representations of smaller
physical processes are formulated through grid boxes and layers of the model [17, 42]. The
grid boxes and model layers then determine the geological and computational scale.

ESMs sufficiently represent climate processes that occur over multiple geographic and
time scales. Some chemical processes occur on smaller scales than larger atmospheric pro-
cesses. For example, atmospheric cloud cover occurs on a much larger spatial scale and
faster time scale than photosynthesis (uptake and storage of carbon dioxide) [2]. Similarly,
some physical processes like turbulent eddies and mid-latitude weather systems operate on
time scales of seconds to minutes and days to weeks, respectively [16]. ESMs must work
to account for these mismatches in scale in the model subsystems. The resolution of the
common scale mismatch is approached by choosing grid box sizes and then parameterizing
any process that occurs on scales smaller than those boxes [17]. These “smaller” processes
are often called sub-grid processes [42]. In other words, ESMs depend on parametrizations
to help represent the interactions of both grid-scale and sub-grid scale processes on the cli-
mate [17]. As an extension, this process of parameterization not only better represents the
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Earth’s physical systems but also enables ESMs to pay specialized attention to particular
topics and areas of scientific query.

While parametrization is a major point of development and attention for ESMs, it also
comes with challenges. Dealing with processes that occur over multiple scales requires addi-
tional attention [42]. The parameterizations that aim to solve the mismatch problem bring
additional uncertainty into the model and its results. To deal with these uncertainties,
hypothesis testing and calibration are completed [17]. This process is vital to checking
that the historical and observational data correspond with the simulated data from the
parametrizations [17]. This approach addresses model, physical, and result uncertainty
for climate models like ESMs [17, 42]. The multiple stages of model development, from
parameterizations to model refinement, are heavy undertakings. Climate groups are con-
stantly working to better capture and represent the Earth and its physical climate system,
whether it’s through parameterizations, ESMs, or other climate models [27].

While ESMs represent the many physical processes and feedbacks of the Earth’s cli-
mate, they are implemented and used to assess different uncertainties, explore scientific
challenges, and gain a new understanding of the climate system [27]. Two main ways that
ESMs are used are through single-model or multi-model experiments [27]. Single-model
experiments address new questions or theories, whereas multi-model experiments assess the
structural features of the models and results [27]. The multi-model experiments are called
ensembles. The ensemble results are often used in large level projections and uncertainty
and robustness quantification through Model Intercomparison Projects (MIPs) [27, 22].
MIPs and their ensembles can be focused on specific areas or questions. For example,
CMIP compares coupled climate models, AOMIP evaluates arctic ocean climate models,
and PMIP explores the paleoclimate, to name a few [1]. The goal of running MIPs is to
gain more complete interpretable results, which can then be used to guide future work on
ESMs.

Climate models, like ESMs, are evaluated as boundary forcing problems. The results
of the ESM simulations provide a space where existence is based on the boundary con-
ditions and forcings [17]. Emission scenarios are one of the most consistent input data
that drives these models. These have been systematically developed from Representative
Concentration Pathways (RCPs) to Shared Socioeconomic Pathways (SSPs) and funda-
mentally maintain a fixed nature to human behaviour [6, 44]. SSPs are emission scenarios
to represent plausible and implausible global emission levels and storylines [15, 27]. These
storylines focus on policy with or without mitigation and adaptation strategies [18, 44].
Moreover, the implementation of SSPs into climate models, like ESMs, is used to under-
stand potential successes and challenges with global climate action [18, 44]. ESMs require
these forcings, boundary conditions, and mathematical processes to evaluate the model
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and approximate its solutions. The resolution of these models is implemented through
spatial grids and vertical layers. Grids vary in size; the smaller the grids, the more com-
putationally expensive simulations become [42]. Similarly, the larger the grids are, then
the modelled processes become less precise [42]. To evaluate these models over the grids,
methods such as spectral or gridpoint are used to approximate the solutions [42]. Similar
to improving parameterizations, the way ESMs are evaluated is also constantly developed.
One such development is looking at the type of grids used [42]. This approach aims to swap
out the structured grids used in most ESMs with unstructured grids. These unstructured
grids take on different geometries like triangles or hexagons [42]. While the development
of models often takes precedence, the evaluation of ESMs is just as important to ensure
data can be interpretable and achieve computational efficiency.

Efficiency is fundamental in climate models; thus, ESMs must be flexible in their com-
plexity to approach the task at hand. Whether it is to answer specific scientific questions,
gain an understanding of a climate topic, or produce large amounts of climate simulations.
A model hierarchy has been developed to document the types of differences in complexity,
mainly following differences in dimensionality [27]. These model differences fundamentally
separate the complexity through computational time and energy, which is high in exten-
sive models and lower in idealized simpler models [42]. That being said, complexity is not
static in models. It can be increased in models by coupling different systems together or
decreased by breaking apart major subsystems in ESMs [22].

On the one hand, complex models are suitable for simulations that require extensive
details [22]. That gives the impression that complex ESMs must be all global and include
general physical systems, but that is not always the case. The highly complex models
can still narrow down to specific climate topics. For example, FESOM (finite element sea
ice/ocean model) is a model that has the flexibility to be regionally specific to high lati-
tudes or have global ocean domains [42]. On the other hand, simple models are crucial to
enhancing understanding of results and the hypotheses they set out to test [22]. Some sim-
ple ESMs include Energy Balance Models (EBM) that have low dimensionality and focus
on energy transfers (for example of an EBM see [14]) [27, 42]; Box Diffusion Models that
have few layers of interactions [42]; and Radiative-Convection Equilibrium Models that can
be used to interpret results from more complicated models [42, 62]. While comprehensive
models, high in complexity, are the best tools for simulations, simplified idealized ESMs
are fundamental in advancing understanding of the Earth’s climate.
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2.6 Coupled Social-Climate Models

Section 2.5 established that climate models generally do not implement a dynamic nature
to human behaviour and responses to climate change because of the dependence on Shared
Socioeconomic Pathways [6, 44]. Human responses to climate change can be in the form
of altering opinions and beliefs on climate change due to experiencing extreme events,
interactions with other individuals, and even influences from social media [6, 7]. These
changes in behaviour influence mitigation practices, leading to changes in emissions and
subsequently the changes in climate, which humans then experience [9, 33]. This is the
common feedback loop that is idealized in social-climate models. These are useful in policy
making and managing different natural resources and the climate because they help identify
how humans make decisions about specific environmental issues [30]. In this section, I
present social-climate models as a tool to understand the relationship between human
behaviour and the changing climate. This discussion is vital in creating a foundation for
the type of model that I use in this thesis.

In a more general lens, social-climate models are a form of coupled human-environment
systems. These mathematical models capture the two-way feedback loop between hu-
man behaviour and environmental responses. The social and physical systems are coupled
in such a way that the change in the human system will be fed into the environmental
system, and its results will then fundamentally cause changes in the human subsystem
[9, 23, 26, 30, 33, 51]. This concept of human-environment systems has been well applied
to ecological processes through social-ecological models that consider a dynamic human
behavioural component [26]. For instance, one study implements a social-ecological model
to examine how opinions on conservation affect forest-grassland mosaics [26]. Another
study focuses on how forest growth is altered due to decisions based on injunctive so-
cial norms or conservation priorities [51]. A final example of social-ecological modelling
considers drivers of decision-making, like incentives and forest governance [23]. Each of
these studies considered agent-based behavioural models with imitation dynamics and so-
cial norms as major components in their human subsystems. Particularly, these studies
demonstrate that social-ecological systems are complex adaptive systems [30, 49, 57], and
emphasize that real-world features may be missed if important characteristics of the cou-
pled system are overlooked [30]. The social-ecological framework and research outcomes of
human-environment systems can be extended into a social-climate context.

Shifting to the context of climate change, it is noteworthy to remember that these
human-environment feedbacks are not well represented in current climate models. While
Integrated Assessment Models (IAMs) consider both economic and physical processes [7,
61], they do not obtain a complete two-way feedback (see Figure 2.1) [6, 10]. By lacking the
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more complex human behaviour within a larger population size, IAMs lose inter- and intra-
group dynamics that are present in more realistic social systems. This can be in the form
of mitigator and non-mitigator groups and broken down even further through population
heterogeneities [9, 33]. Social-climate models address the challenges present in IAMs and
better incorporate human behaviour into the social system rather than narrowing down on
socioeconomic processes seen with SSPs. Social-climate models idealize two-way feedbacks
by coupling human and physical systems. The coupled models can also range in complexity
as a whole and on the individual system levels [10].

Figure 2.1 from Calvin and Lamberty’s [10] study presents a conceptualization of this
complexity. Figure 2.1 presents the individual complexity of the coupled Earth systems
and the human systems based on the amount of feedbacks present in the models [10]. This
visualization is helpful in understanding the flexibility in both ESMs and their coupled
human system counterparts. Even more so, Figure 2.1 shows that models with two-way
feedbacks can vary from simple to complex in both components, giving insight into the
functionality on the model level and on the level of understanding that two-way feedbacks
provide. Models can pass different variables between the coupled system depending on
the problem, question, or feedback they wish to approach. From the human to physical
system, this may include greenhouse gas emissions, aerosol emissions, a measure of land use
or land cover, carbon dioxide concentration, water demand, or even gross world product
[10]. From the physical to the human system, this could be a measure of ecosystem service,
crop yield, temperature, precipitation, or land and ecosystem productivity [10]. At a very
basic level, evaluation of these coupled models can follow the process of passing data from
subsystem to subsystem until the entire system converges [10]. This reinforces the wide
range of two-way feedbacks that social-climate models can investigate to understand how
social processes and the climate interact [33].

Currently, an array of human behaviour systems are being implemented, much like
the variety of parameterizations of physical processes in ESMs. A few motivating studies
implement agent-based models with imitation dynamics or planned behaviour, highlight-
ing the benefits of using social-climate models to help inform mitigation efforts [6, 9, 33].
In Bury et al.’s [9] coupled model, they have a system of differential equations to ana-
lyze changes in global average temperature due to individuals conforming to mitigative or
non-mitigative behaviours at a specific social learning rate. The social behaviour model
implements social learning rate and social norms through a utility function that considers
drivers of mitigation practices and the probability of individuals switching between being
a mitigator or non-mitigator [9]. Similarly, Menard et al. [33] developed a human system
that implements wealth heterogeneity to model the socioeconomic inequalities in popula-
tions and reflect the asymmetries in climate change. They altered the social-climate model
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Figure 2.1: This plot from Calvin and Lamberty [10] demonstrates the coupling of human
and climate systems as they vary in complexity. It is clear that agent-based models have the
most complexity for human systems, but have no feedbacks on their own. When coupled
with ESMs of varying complexity, the desired two-way feedbacks are achieved. This plot
positions IAMs with other models, showing the level of complexity in IAMs’ human system
but only a one-way feedback.

from Bury et al. [9] to include a dissatisfaction term present among the poor group [33].
This ensures that the group interactions are modelled by imitation dynamics weighted by
dissatisfaction in the poor group and homophily in both groups [33]. Both the Bury et al.
[9] and Menard et al. [33] models consider drivers of switching between being a mitigator
or non-mitigator as costs of taking on mitigation strategies, cost of rising temperature, the
available resources, and the impacts of climate change on those resources [33]. These two
social-climate models focus on representing the feedback between the drivers of mitigation
action and climate conditions represented through a simple ESM.

Another human behaviour theory that has been implemented into social-climate mod-
els is planned behaviour. Beckage et al. [6] implement a planned behaviour social system
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focused on risk where behaviours depend on the frequency of extreme events. Their anal-
ysis considers multiple functional forms of planned behaviour: linear, logistic, and cubic
[6]. Each represents different responses to climate extremes. The climate system that
they couple their social model with is the Climate Rapid Overview and Decision Support
climate model [54]. These three studies implementing social-climate models arrived at the
following conclusions: a decrease in net mitigation cost and an increase in social learning
rate is needed to reach the IPCC global temperature anomaly target of 2◦C [9]; polariza-
tion in action occurred between groups based on separate socioeconomic parameters and
asymmetric climate change impacts [33]; and high sensitivity in perceived risk to climate
extremes, time frame for mitigation responses, and perceived social norms and behavioural
control all impact emissions [6]. Despite each model varying in human behavioural pro-
cesses, these conclusions show that the connection between the social and climate systems
is too meaningful to ignore, even if the results of models are used for insight rather than
robust climate projections.

Social-climate models often include ESMs that do not elaborate beyond the extent of
what is needed to answer their questions. They employ elegant climate systems rather than
fully comprehensive systems [22]. This helps to focus on gaining intuition and understand-
ing rather than validated climate projections [9]. That being said, social-climate models
also have limitations in their construction. One limitation is that through the implementa-
tion of simplified climate systems, there is a potential to miss complex physical processes
unrelated to the subgrid-scale processes challenges. Another challenge includes dealing
with the mismatched timescales. The human behaviour processes occur on a much faster
time scale than the physical processes in the climate [57]. Due to the emergent framework
of social-climate models, they lack the large-scale analysis and inclusion that is available
to ESMs through Model Intercomparison Projects (MIPs) and ensembles. This produces
an increased uncertainty due to the fewer number of models that have been developed
independently.

Approaches to deal with these challenges can be done on singular model levels and
larger ensemble levels. Müller et al. [37] deal with the issue of mismatched scale by imple-
menting a stochastic process approach in part of their analysis of an anticipation-induced
social-climate model. Before they couple the systems, they consider a static physical sys-
tem (letting the time variable go to infinity) and a dynamic social system (that does not
react to the climate system) that evolves at a faster time scale [37]. They then analyze
when both systems occur on similar time scales and how the social system responds to
the climate system [37]. Once the systems are coupled, they observe the changes in the
stability of the systems on these varying timescales [37]. This is one representation of how
stochastic analysis can be a tool to use when a mathematical model incorporates processes
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with dramatically different time scales like in social-climate models. The primary way to
approach the challenge of model uncertainties is through an increase in models and in-
volvement in ensembles [17, 27]. Developing more social-climate models that implement a
variety of human behaviour theories into the social subsystem, like diversity of parameters,
structure, and complexity, helps to address model uncertainties in the social subsystems
better and increase robustness across social-climate models [7, 9, 10, 61].

Overall, recent studies developing and analyzing social-climate models are focused on
understanding and investigating the impacts of the coupling of human behaviour and
the changing climate rather than the climate projections [6, 9, 33, 34]. For that reason,
social-climate models are a good tool for advancing the field of climate science. Not only
do they draw humans and human behaviour directly into the model to better account
for anthropogenic emissions dynamically, but they highlight the fact that climate science
can and should be more interdisciplinary in structure [10, 38]. This multidisciplinary
nature is already observed through the collaboration that is present in the collection,
implementation, and use of proxy data in paleoclimate research. Regarding social-climate
models, interdisciplinary collaboration between social scientists, psychologists, and climate
scientists would help further evolve social-climate models and the field of climate science
altogether.
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Chapter 3

Methods

3.1 Human Behaviour Model

The social-climate model developed in this thesis builds on a coupled human-environment
system model by Bury et al. [9]. Their model captures human behaviour through imi-
tation dynamics based on social norms, social learning, and the costs of mitigation. The
simple Earth System Model (ESM) used in Bury et al.’s [9] original system is a basic
representation of the climate. It captures the carbon cycle and greenhouse gas emissions
per Lenton’s coupled carbon and temperature ESM [29]. These two systems, ESM and
social dynamics model, are coupled through the perceived costs associated with climate
change - a mechanism to represent the emotional, mental, and physical costs associated
with climate change beyond just the monetary costs.

Spatial and temporal discounting are systematically implemented into this model so
that both dynamics can be represented entirely while also maintaining the integrity of
the social dynamics and ESM. The sections in this chapter will step through how both
temporal and spatial forms of discounting are captured.

3.1.1 Spatial Discounting in Behaviour Dynamics

The individuals in the model can be mitigators or non-mitigators, meaning they follow one
of two strategies: a mitigation strategy of reducing carbon emissions or a non-mitigation
strategy of not reducing atmospheric carbon emissions. Individuals conform to these be-
haviours depending on social learning rates [9]. Similar to Menard et al.’s [33] extension
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of Bury et al.’s [9] social system into rich and poor groups, the social system in this model
separates individuals into two arbitrary patches, patch 1 and patch 2. This effectively
creates a two-patch social behaviour model, representing two spatially distinct groups of
individuals.

The benefits for individuals of taking up mitigation or non-mitigation strategies are
defined through utility functions. These utilities consider drivers of mitigation practices
and the probabilities of individuals switching between behaviours. Behaviours depend
on climate change costs associated with either behaviour type, social norms, and spatial
discounting in either patch. The utilities of being a mitigator or non-mitigator for each
patch are as follows:

eM,1 = −α + c(θf1(Tf ) + (1− θ)f2(Tf )) + δx1 (3.1)

eM,2 = −α + c(θf2(Tf ) + (1− θ)f1(Tf )) + δx2 (3.2)

eN,1 = −γ − (θf1(Tf ) + (1− θ)f2(Tf )) + δ(1− x1) (3.3)

eN,2 = −γ − (θf2(Tf ) + (1− θ)f1(Tf )) + δ(1− x2) (3.4)

where, M represents mitigation and N non-mitigation utilities (e) for patch 1 and patch
2. x is the proportion of mitigators and 1 − x is the proportion of non-mitigators. The
impact of the mitigation utility is weighted by the proportionality constant c, and α is
the cost of adopting a mitigation strategy, and γ is the cost of non-mitigative behaviour.
The costs associated with climate change when taking mitigative action include energy-
efficient housing, choosing to drive electric vehicles, or switching to a plant-based diet [28].
Conversely, when conforming to non-mitigation behaviour, costs may arise through carbon
tax [9]. δ is the strength of social norms, and fi(Tf ) is the perceived cost associated with
the projected temperature anomaly (Tf ) for each patch [9]. θ is the spatial discounting
factor, weighting each patch’s perceived costs associated with climate change.

Spatial discounting is implemented into the social system through the spatial discount-
ing factor, which follows the definition of spatial discounting used in this thesis (see section
2.3). Implementing spatial discounting in the model follows the idea of climate conditions
being worse in other locations [19], but functions to determine where the perceived impacts
of climate change are being viewed. The spatial discounting factor, θ, operates such that
when θ = 1 the population only considers itself and when θ = 0 the population only con-
siders the other population. Rather than holding these scopes as a binary of just “there”
or “here,” the populations in each patch can consider, to some fraction, themselves and the
other patch. By incorporating spatial discounting in this manner, evaluating the standard
devaluing of spatially distant environmental conditions and considering multiple spatially
distinct conditions can be completed.
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When θ takes on the value of 1, where population i only considers themselves, then
Equations 3.1 and 3.2 become eM,i = −α+cfi(Tf )+δxi and Equations 3.3 and 3.4 become
eN,i = −γ−fi(Tf )+δ(1−xi). If θ takes on the value of 0, for population i paying attention
to the other population j, then the utilities are eM,i = −α+ cfj(Tf )+ δxi and eN,i = −γ−
fj(Tf )+δ(1−xi). In the same manner, if θ takes on the value of 0.5, where each population
equally considers themselves and the other, then, eM,i = −α + 1

2
c(fi(Tf ) + fj(Tf )) + δxi

and eN,i = −γ − 1
2
(fi(Tf ) + fj(Tf )) + δ(1− xi).

The key forcing in the social system is social learning, which is implemented through
imitation dynamics. These dynamics follow the form such that individuals within each
population group may alter their opinions based on the opinions of other individuals in their
patch. An individual may switch opinions between mitigating or doing nothing towards
climate change at a social learning rate of κ if the payoff of the other opinion is higher.
These payoffs or utility gains follow an evolutionary game theoretic form [4, 9, 33]. The
switching rate between mitigation and non-mitigation strategies (M → N) and vice versa
(N → M) depends on the difference between the utilities of each strategy. For patch 1,
these rates take the form:

rN→M,1 = κx1(1− x1)max{eM,1 − eN,1, 0} (3.5)

rM→N,1 = κx1(1− x1)max{eN,1 − eM,1, 0} (3.6)

Thus, the net rate of change for individuals in the population of patch 1 is:

dx1

dt
= rN→M,1 − rM→N,1

= κx1(1− x1)(max{eM,1 − eN,1, 0} −max{eN,1 − eM,1, 0}) (3.7)

which is the difference between switching from a non-mitigation strategy to a mitigation
strategy (Equation 3.5) and a mitigation to non-mitigation strategy shift (Equation 3.6).

To ensure that the rate of opinion change is capturing the switch to a higher utility,
two cases are considered: first, when eM,1 > eN,1 and second, when eN,1 > eM,1. For the
first case, the rate of change results in κx1(1 − x1)((eM,1 − eN,1) − 0). The second case
similarly reduces to κx1(1− x1)(0− (eN,1 − eM,1)). The net rate of change from Equation
3.7 for the proportion of mitigators in patch 1 is then represented as:

dx1

dt
= κx1(1− x1)(eM,1 − eN,1) (3.8)

Through the same reasoning, the proportion of mitigators for patch 2 is:

dx2

dt
= κx2(1− x2)(eM,2 − eN,2) (3.9)
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These differential equations are also known as replicator equations [21, 25].

The utilities for each strategy and respective patches (Equations 3.1 - 3.4) are substi-
tuted into the replicator equations 3.8 and 3.9 to complete the social system:

dx1

dt
= κx1(1− x1)(γ − α + θf1(Tf )(c+ 1) + (1− θ)f2(Tf )(c+ 1) + δ(2x1 − 1)) (3.10)

dx2

dt
= κx2(1− x2)(γ − α + θf2(Tf )(c+ 1) + (1− θ)f1(Tf )(c+ 1) + δ(2x2 − 1)) (3.11)

To simplify the costs of taking up mitigation or non-mitigation behaviour, α and γ are
combined into a net cost of mitigating climate change term: β = α− γ.

Table 3.1: This table provides a list of social parameters in the model. Parameter values
are presented as triplets to provide lower bounds, baseline values, and upper bounds, for
example: (lower bound, baseline, upper bound).

Parameter Symbol Values
Social learning rate κ (0.02, 0.05, 0.2) yr−1

Net cost of mitigation β (0.5, 1, 1.5)
Strength of social norms δ (0.5, 1, 1.5)
Spatial discounting factor θ (0, 0.5, 1)
Temporal discounting factor δt (0, 0.015, 0.05)
Time horizon tH (1, 50, 100) yr
Proportion of emissions α (0, 0.5, 1)

3.1.2 Temperature Projection

It is understood that individuals’ perceptions of climate change are influenced by climate
forecasts [9, 60]. So, the social system in this thesis assumes that individuals use recent
climate trends and experiences with longer-term extrapolations of future perceived climate
to make decisions [9, 60]. The temperature projections that individuals consider are:

Tf (t) = T (t) +

(
tf
tp

)
(T (t)− T (t− tp)) (3.12)

where T is the current temperature, tf is the number of years projecting forward, and
tp is the parameter governing the number of years projecting back. Therefore, Tf is the
projected future temperature the population uses for decision-making, which relies on both
current and past temperature values.

28



3.1.3 Temporal Discounting in Perceived Costs Associated with
Climate Change

The personal perceived costs of climate change are psychological and physical benefits based
on taking up mitigation behaviour or costs based on non-mitigative behaviour. On one side,
costs arise through psychological processes surrounding perceived risks of climate change
(for example, eco-anxiety, eco-emotions) based on non-mitigation behaviours [33]. On the
other, co-benefits emerge through the synchronous benefits of personal and environmental
health based on mitigative actions [28, 33].

To represent this human behavioural relationship with projected future temperature, a
sigmoidal function is implemented [9]. In the absence of discounting, the perceived costs
associated with climate change are of the form:

f(T (t)) =
fmax

1 + e−ω(T (t)−Tc)
(3.13)

where fmax is the max cost of climate change, this determines the maximum value that
Equation 3.13 can reach. ω is the degree of non-linearity, which can alter the abrupt
changes in the sigmoidal form of Equation 3.13. T is the current temperature, and Tc

is the critical temperature, such that the costs of climate change are most sensitive to
temperature changes [9].

Equation 3.13 represents individuals projecting forward to a single point in time tf .
For temporal discounting, I strive to represent the impacts each year while still projecting
forward. This is accomplished by summing the projected personal costs of climate change
(Equation 3.13) over every year from the current time to some time horizon, tH (normalized
over this time horizon). As time passes, the future impact is discounted by our temporal
discounting factor δt. Altogether, this gives the new forward projections for decision-
making:

f(T (t)) =
1

tH

tH∑
tf=1

fmax(1− δt)
tf

1 + e−ω(T (t)−Tc)
(3.14)

where (1− δt)
tf represents how much value is removed from the climate conditions at the

time tf .

The perceived costs of climate change now operate so that when temporal discounting
increases, as a percentage per year, then 3.14 decreases. Similarly, when the temporal
discounting factor (δt) decreases, then the perceived costs associated with climate change
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increase. In terms of mitigation, Equation 3.14 mathematically represents the understand-
ing that a lower personal cost of climate change does not encourage mitigation behaviour,
whereas a high personal cost of climate change does trigger mitigation behaviour.

By looking at the limits as the temporal discounting factor, δt, approaches its upper
(δt = 1) and lower (δt = 0) bounds, a more complete understanding of temporal discounting
and opinion dynamics can be achieved.

lim
δt→0

f(T (t)) =
1

tH

fmax

1 + e−ω(T (t)−Tc)
lim
δt→1

f(Tf (t)) = 0

The limit as δt → 0 will always be greater than 0. This holds because the limit takes
the form of Equation 3.13, which is a strictly positive sigmoidal function [9], and the time
horizon tH is also positive. The above limits provide the relationship that:

∀ a, b in [0, 1], and fa(T ), fb(T ) representing perceived costs of climate change
at temporal discounting values a and b. If a ≥ b then fb(T ) ≥ fa(T ).

This distinction between different temporal discounting values is important in the model
construction for two patches. Each patch will have a unique function (depending on the
choices of parameters) for the perceived costs of climate change:

f1(T (t)) =
1

tH,1

tH,1∑
tf=1

fmax(1− δt,1)
tf

1 + e−ω(T (t)−Tc)
f2(T (t)) =

1

tH,2

tH,2∑
tf=1

fmax(1− δt,2)
tf

1 + e−ω(T (t)−Tc)

The perceived cost of climate change function (Equation 3.14) is grouped with the
factor of (c+ 1) from Equations 3.10 and 3.11 to simplify the social system:

f̂i(T (t)) =
(c+ 1)

tH,i

tH,i∑
tf=1

fmax(1− δt,i)
tf

1 + e−ω(T (t)−Tc)
(3.15)

Grouping fmax and (c+ 1) together into a new f̂max term gives:

f̂i(Tf (t)) =
1

tH,i

tH,i∑
tf=1

f̂max(1− δt,i)
tf

1 + e−ω(Tf (t)−Tc)
(3.16)

where the patch identification is i = 1, 2. Equation 3.16 represents in the model the per-
ceived costs associated with climate change over the projected future temperature (Equa-
tion 3.12), weighted by temporal discounting per year.
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3.2 Fully Discounted Social - Climate Model

The complete social-climate model with spatial and temporal discounting is as follows:

dx1

dt
= κ1x1(1− x1)(−β1 + θ1f̂1(Tf ) + (1− θ1)f̂2(Tf ) + δ1(2x1 − 1))

dx2

dt
= κ2x2(1− x2)(−β2 + θ2f̂2(Tf ) + (1− θ2)f̂1(Tf ) + δ2(2x2 − 1))

dCat

dt
= ϵ(t)α (1− x1) + ϵ(t)(1− α)(1− x2)− P +Rveg +Rso − Foc

dCoc

dt
= Foc

dCveg

dt
= P −Rveg − L

dCso

dt
= L−Rso

c
dT

dt
= (Fd − σT 4)aE

A comprehensive list of social and climate system variables and proccesses are presented
in Table 3.2. A complete list of parameters can be found in Tables 3.1 and 3.3 (see Section
3.4).

Table 3.2: This table provides a list of variables and processes in the model.

Variables Symbol Units
Proportion of mitigators x1, x2 1
Deviation of CO2 in atmosphere Cat GtC
Deviation of CO2 in ocean Coc GtC
Deviation of CO2 in vegetation Cveg GtC
Deviation of CO2 in soil Cso GtC
Deviation in temperature T K
Processes Symbol Units
CO2 emissions without mitigation ϵ(t) GtC yr−1

Carbon uptake from photosynthesis P GtC yr−1

Respiration from vegetation Rveg GtC yr−1

Respiration from soil Rso GtC yr−1

Flux of CO2 from atmosphere to ocean Foc GtC yr−1
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Table 3.3: This table provides a list of climate and model parameters. Values are pre-
sented as constants or triplets to provide lower bounds, baseline values, and upper bounds.

Parameters Symbol Values

Initial CO2 in atmosphere Cat0 (590, 596, 602) GtC
Initial CO2 in ocean reservoir Coc0 (1.4, 1.5, 1.6)×105 GtC
Initial CO2 in vegetation reservoir Cveg0 (540, 550, 560) GtC
Initial CO2 in soil reservoir Cso0 (1480, 1500, 1520) GtC
Initial average atmospheric temperature T0 (288,288.15,288.3) K
Photosynthesis rate constant kp (0.175, 0.184, 0.193) yr−1

Photosynthesis normalizing constant kMM 1.478
Photosynthesis compensation point kc (26, 29, 32)×10−6

Half-saturation point for photosynthesis KM (108, 120, 132)×10−6

Mole volume of atmosphere ka 1.773×1020 moles
Plant respiration constant kr (0.0828, 0.092, 0.1012) yr−1

Plant respiration normalizing constant kA 8.7039×109

Plant respiration activation energy Ea (54.63, 54.83, 55.03) Jmol−1

Soil respiration rate constant ksr (0.0303, 0.034, 0.037) yr−1

Soil respiration normalizing constant kB 157.072
Turnover rate constant kt (0.0828, 0.092, 0.1012) yr−1

Specific heat capacity of Earth’s surface c (4.22, 4.69, 5.19)×1023 JK−1

Earth’s surface area aE 5.101×1014 m2

Stefan-Boltzman constant σ 5.67×10−8 Wm−2K−4

Latent heat per mole of water L 43655 mol−1

Molar gas constant R 8.314 Jmol−1K−1

Relative humidity H 0.5915
Surface albedo A (0.203, 0.225, 0.248) yr−1

Solar flux S (1231.2, 1368, 1504.8) Wm−2

Methane opacity τ(CH4) (0.0208, 0.0231, 0.0254)
Water vapour saturation constant P0 (1.26, 1.4, 1.54)×1011 Pa
Ocean flux rate constant F0 (2.25, 2.5, 2.75)×10−2 yr−1

Characteristic CO2 solubility χ (0.2, 0.3, 0.4)
Evasion factor ζ (40, 50, 60)
Maximum of warming cost function f(T ) fmax (4, 5, 6)
Non-linearity of warming cost function f(T ) ω (1, 3, 5) K−1

Critical temperature of f(T ) Tc (2.4, 2.5, 2.6) K
# previous years used for temperature projection tp 10 yr
# years ahead for temperature projection tf (0, 25, 50) yr
Half-saturation time for ϵ(t) from 2014 s (30, 50, 70) yr
Maximum change in ϵ(t) from 2014 ϵmax (4.2, 7, 9.8) GtC yr−1

Initial proportion of mitigators x0,1, x0,2 (0.01, 0.05, 0.1)
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3.3 Earth System Model

Section 3.2 presents the complete social-climate model where a simple Earth System Model
(ESM) is coupled to the social system developed in Section 3.1. The ESM used, as previ-
ously developed by Lenton [29], sufficiently represents the carbon cycle and the greenhouse
gas effect (averaged globally) and keeps computational cost low [9, 33]. The model imple-
ments various key carbon cycle components, including biochemical processes [9, 29, 33, 36].
I provide in this section the full ESM, including the physical processes implemented guided
by Lenton, Bury et al., and Menard et al. [9, 29, 33, 36].

Atmospheric Carbon Dioxide

The ESM components presented here are altered to account for the two-way feedback
between human behaviour and the climate and its processes. Specifically, the differential
equation governing deviation in atmospheric CO2 (Cat) is adjusted so that carbon emissions
(ϵ(t)) are weighted by the proportion of non-mitigators in each patch (1 − xi). Such that,

dCat

dt
= ϵ(t)α (1− x1) + ϵ(t)(1− α)(1− x2)− P +Rveg +Rso − Foc (3.17)

where ϵ(t) is the rate of CO2 emissions without mitigation, α is the proportion of emissions
patch 1 releases, 1− α is the proportion of emissions patch 2 releases, P is carbon uptake
rate by photosynthesis, Rveg and Rso are outward carbon flux by plant respiration and soil
respiration, respectively, and Foc is net ocean uptake of carbon.

The functional form for ϵ(t) follows an increasing and saturating function:

ϵ(t) =


linear interpolation of historical emissions t < 2014

ϵ2014 +
(t− 2014)ϵmax

t− 2014 + s
t ≥ 2014

(3.18)

where ϵ2014 are emissions at the year 2014, ϵmax is the maximum change in emissions from
the year 2014, and s is the half-saturation time for ϵ(t) from 2014 [9].

Photosynthesis

Photosynthetic carbon uptake from the atmosphere takes the form:

P (Cat, T ) = kpCveg0kMM

(
pCO2a − kc

KM + pCO2a − kc

)(
(15 + T )2(25− T )

5625

)
(3.19)
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where kp is the photosynthesis rate constant, Cveg0 is the initial carbon dioxide in the
vegetation reservoir, and KM is the half-saturation point for photosynthesis. kMM is the
photosynthesis normalizing constant which normalizes photosynthesis carbon uptake by
initial ratio of CO2 in atmosphere [29]. kc is the photosynthetic compensation point gov-
erning the point carbon absorption through photosynthesis reaches zero [29]. Equation
3.19 follows the relationship that pCO2a ≥ kc and −15 ≤ T ≤ 25, and P = 0 otherwise
[9, 29]. The mixing ratio in the atmosphere of CO2 is pCO2a. It is defined as the ratio
of moles of CO2 in the atmosphere to the total number of moles of molecules, ka, in the
atmosphere:

pCO2a =
fgtm(Cat + Catm0)

ka
(3.20)

The factor fgtm = 8.3259×1013 converts from gTC to moles of carbon, and the initial level
of carbon in the atmosphere is Catm0. The Michaelis-Menton kinetics in pCO2a is satisfied
through photosynthesis [9, 29]. When T = 2, photosynthesis rates are optimized, and rates
decline when temperatures increase past T = 2.

Respiration

Plant respiration occurs in the form:

Rveg(T,Cveg) = krCvegkAe
− Ea

R(T+T0) (3.21)

where kr is the plant respiration constant and kA is the plant respiration normalizing con-
stant which normalizes impacts of temperature [29]. Ea is the plant respiration activation
energy, R is the molar gas constant, and T0 is initial average atmospheric temperature.
Plant respiration increases with the amount of carbon present in vegetation and tempera-
ture [9, 29, 33].

Soil respiration follows similarly:

Rso(T,Cso) = ksrCsokBe
− 308.56

T+T0+227.13 (3.22)

where ksr is the soil respiration rate constant and kB is the soil respiration normalizing
constant which normalizes the impact of temperature [29].

Turnover

A constant fraction of plants is assumed to die over a given unit of time, following:

L(Cveg) = ktCveg (3.23)
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where kt is the turnover rate constant governing the living biomass [29]. The turnover
process L(Cveg) captures the flux of carbon from decaying plants into the soil reservoir
[29].

Ocean Flux

CO2 flux from the atmosphere to the ocean occurs in the form:

Foc(Cat, Coc) = F0χ

(
Cat − ζ

Cat0

Coc0

Coc

)
(3.24)

where F0 is the ocean flux constant, χ is the characteristic solubility of CO2 in water, and
ζ is the evasion factor [36]. Cat0 and Coc0 are initial carbon dioxide in the atmosphere and
ocean reservoir respectively.

Atmospheric Dynamics

Grey-atmosphere approximation from Lenton [29] is used to model atmospheric dynamics.
The global average surface temperature changes are modelled based on changes in albedo
(A), incoming solar flux (S), and the opacity of CO2, H2O(v), and CH4. The net downward
flux of solar radiation that the surface of the planet absorbs is provided by:

Fd =
(1− A)S

4

(
1 +

3

4
τ

)
(3.25)

where τ is the opacity of greenhouse gasses in the atmosphere (CO2, H2O(v), CH4). The
opacity for the various gases is provided as:

τ(CO2) = 1.73(pCO2)
0.263

τ(H2O) = 0.0126(HP0e
− L

RT )0.503

τ(CH4) = 0.0231

and

τ = τ(CO2) + τ(H2O) + τ(CH4) (3.26)

where pCO2 is the mixing ratio of CO2 seen in Equation 3.20, H is relative humidity, P0

is the water vapour saturation constant, L is the latent heat per mole of water, R is the
molar gas constant, and T is temperature [29].
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3.4 Parameters

Three lists of model variables (Table 3.2) and parameters (Tables 3.1 and 3.3) are provided
throughout this Methods Chapter. The parameter tables are split into two components.
Table 3.1 provides all social system parameters and their values, and Table 3.3 provides all
other climate system parameter values. Parameter values are either stated as constants or
as their parameter spaces’ lower, baseline, and upper bounds. The parameter values are
obtained from Bury et al. [9] or are standardly accepted values.

The value for the rate of discounting is varied in the literature and dependent on the
field of interest, for example, economics, ecology, sustainability, and social discounting
[20, 24, 32, 45, 58]. These values range from 0 - 6% discounting per year (sometimes they
reach up to 10% discounting), and no clear consensus has been made [20, 32, 45, 58].
In this thesis, the temporal discounting parameter choice is guided by values found in
ecological studies that implement time discounting and time horizons [24]. The range of
the temporal discounting rate in this thesis is between 0 - 5% with a baseline at 1.5%.
The upper bound is selected following the understanding that when temporal discounting
begins to approach and exceed 5% discounting per year (while all other parameters are
held at baseline), temperature anomaly projections begin to converge. A baseline of 1.5%
was chosen to reflect consistent baseline climate and mitigation projections (similar to the
baselines achieved in past social-climate models [9, 33]).

3.5 Simulation and Data

The social-climate model proposed in this thesis is simulated over the time period from 1800
to 2200. Where the model runs between 1800 and 2014 in the absence of social dynamics,
statically forced by historical anthropogenic emissions [9]. Social dynamics are initiated in
2014, and initial conditions for the climate variables (values defined as deviations from pre-
industrial values) are held at zero before 2014. Each patch’s initial proportion of mitigators
is x0,1 = 0.05 and x0,2 = 0.05.

The historical emissions data used in the model is from the CDIAC data repository
[8]. The full emissions data in the model is comprised of the historical emissions data from
the year 1800 to 2014 and concatenated with a subset of projected future emissions data.
The model was run using the delay differential equations package (dde23) in MATLAB
(R2021a) to approximate the solution to the coupled system of differential equations.
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Chapter 4

Results

To best explore the research questions and hypotheses as outlined in Section 1.1, an under-
standing of the interactions of spatial and temporal discounting behaviour with itself and
on established opinion dynamics is necessary. The model parameter and output analysis
are broken up into two main components. The first is focused on understanding the inter-
actions that spatial and temporal discounting behaviour has on itself (Section 4.1). The
second component deals with the interactions discounting the climate has on established
opinion dynamics (Section 4.2). These results aim to acknowledge the role that discounting
plays in opinion dynamics in a social-climate model, through which a better understanding
of how and why individuals and populations mitigate can be gained.

The results presented often consider two different discounting behaviours: current-
looking and forward-looking. Current-looking behaviour refers to a discounting regime
where individuals devalue future climate impacts at a high rate per year and only consider
their geographic location. Forward-looking behaviour follows a more optimistic discount-
ing regime where individuals maintain value in present and distant climate impacts and
consider multiple geographic locations. These behaviours influence the mitigation strategy
choices of individuals in the model.

4.1 Spatial and Temporal Discounting

In this section, I focus on how the interaction of spatial and temporal discounting together
may influence changes in opinion dynamics and, consequently, climate conditions. Multiple
different sources of obstacles to mitigation have been found to drive environmental inaction
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[12, 19, 53]. While discounting the climate in this thesis is considered as one impediment
to mitigation, it does manifest in two dimensions: space and time. In other words, these
two dimensions of discounting may work together to enhance the lack of motivation to
mitigate. Thus, the potentially additive nature that discounting in time and space has on
willingness to mitigate must be considered. Section 4.1.1 investigates parameter spaces for
the various discounting parameters, and section 4.1.2 provides results based on changes to
how individuals perceive climate conditions in terms of discounting.

4.1.1 Parameter Planes

Varying both dimensions of discounting simultaneously will help to understand how shifting
perceptions of climate change impacts can guide mitigation efforts. Specifically, looking
at parameter planes of peak temperature anomaly and the year the peak temperature
anomaly is reached helps map how temperature responds in a beneficial or consequential
way to discounting while all other opinion dynamics parameters are at their baseline values.
In this section, I show that there is an additive nature in the way individuals take value
away from the future climate, require a long range of time to make decisions, and consider
isolated geographic locations. Together, three main results are obtained. Firstly, high
spatial and temporal discounting produce temperature anomalies that peak higher and
later (Figure 4.1). Secondly, considering multiple geographic locations is as important
as reducing temperature anomalies (Figure 4.3). And thirdly, the longer an individual
discounts at a high rate, the quicker the rise in temperature anomaly occurs (Figure 4.4).
A reduction in the discounting rate (or the shorter time frame for that discounting) or
maintaining a diverse consideration of locations will drop temperature anomalies at a mild
and saturating pace. That being said, reducing both temporal discounting factors and
shifting to a spatial discounting mid-point is ideal.

While a fundamental aspect of our model and research question is spatial discounting,
in Figure 4.1, I look at the parameter plane for just one patch, and the other patch is fixed
at its baseline discounting behaviours. This choice focuses on the interactions of these two
parameters isolated from other variations, even in the second patch. This allows for the
exploration of how discounting in itself may alter the climate. Moreover, adding variations
in the second patch parameter values, as in Figure 4.3, allows the investigation of how two
different populations’ opinion dynamics under varying strengths of discounting influence
the climate. Both analyses are vital in the overall understanding of how removing value
from climate conditions farther away in time and geographically works together to affect
the environment.

38



Figure 4.1: Contour plots show peak temperature anomaly (a) and the year the peak
temperature anomaly is reached (b) at values of temporal discounting (δt) and spatial
discounting (θ). All other parameters are held at their baseline values as defined in Tables
3.1 and 3.3.

Figure 4.1(a) shows the parameter planes for the peak temperature anomaly over spe-
cific spatial discounting (θ) and temporal discounting (δt) values. Although the parameter
space is dominated by mid-range temperature anomalies, the pathway to reducing tem-
perature anomalies is relatively slow, as seen through the large spaces between changing
contour lines (Figure 4.1(a)). This direction of declining temperature anomalies is initially
dominated by a simultaneous reduction in devaluing future environmental conditions and
shifting geographical concern towards a more even share between both populations’ lo-
cations. Eventually, as individuals shift towards forward-looking behaviour (considering
future climate conditions), the population may consider in any proportion themselves and
the other population when perceiving the impacts of the climate when making decisions.
This is representative of the benefits of maintaining value in future climate impacts, as it
acts to reduce temperature anomalies. It is important to note that this is only the case
when one patch’s discounting behaviour is fixed to a baseline 1.5% discounting per year
while the other is varied.

To investigate the relationship between spatial discounting and low temporal discount-
ing, as observed in the left-hand side of Figure 4.1(a), multiple temperature anomaly
projections are presented in Figure 4.2. The temperature anomalies follow a baseline
parameter regime except for the specified spatial and temporal discounting values in the
plot. These pairs of parameter values are drawn from the parameter plane in Figure 4.1(a).
From Figure 4.1(a), the left-hand side of the plane provides the visualization that when
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Figure 4.2: Temperature anomaly is plotted over time for various parameter pairs of
temporal discounting (δt) and spatial discounting (theta) in patch 1 drawn from Figure
4.1(a). All other parameters are held at their baseline values as defined in Tables 3.1 and
3.3.

temporal discounting is less than 0.012 (individuals discounting less than 1.2% each year),
then spatial discounting does not seem to influence the model. That being said, from
Figure 4.2, there is a small relationship occurring between similar temporal discounting
rates (δt = 0.001 and 0.003, δt = 0.005 and 0.008, and δt = 0.01 and 0.011) based on the
understanding that patch 2 follows a baseline temporal discounting rate of 0.015. Con-
sider the pairs of parameters, that I will call Pair 1: {δt = 0.003, θ = 0.78} and Pair 2:
{δt = 0.001, θ = 0.35}. It would be easy to assume that the lower temporal discounting
case in Pair 1 would result in a lower peak temperature anomaly, but that is not the result
observed in Figure 4.2; it is found that Pair 2 produces a slightly lower peak temperature
anomaly. Pair 1 follows the spatial discounting case where patch 1 is basing the majority
of their perceived impacts of climate change on patch 2, which discounts each year at 1.5%.
Meanwhile, Pair 2 follows the spatial discounting case where patch 1 is considering in the
larger part their own perceived impacts, which are forced with a much lower temporal dis-
counting rate than patch 2. This relationship reiterates the mathematical implementation
of spatial discounting through Equations 3.1 - 3.4 and can be observed through other pairs
of temperature anomaly trajectories in Figure 4.2. That being said, while it remains un-
clear from a model perspective why a temporal discounting range of about 1% produces a
small change in peak temperature anomalies (less than half a degree) regardless of changes
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in spatial discounting, this behaviour is interesting (see Figures 4.1 and 4.2).

In addition to acknowledging values that peak temperature anomalies take under spa-
tial and temporal discounting, it is equally interesting to consider the year in which those
peaks are achieved (Figure 4.1(b)). In doing so, I can look for pathways that shift tem-
perature anomalies to peak sooner rather than later. This is beneficial because it implies,
by the definition of a peak or maximum, that temperature anomalies will start to decline
after that year, which is ultimately the goal. Figure 4.1(b) shows the parameter planes for
the year of the peak temperature anomaly for spatial discounting (θ) and temporal dis-
counting (δt) while all other parameters are held at baseline. A peak temperature anomaly
occurring in an earlier year implies an increase in mitigation efforts, resulting in the decline
of temperatures in the years following the peak. Conversely, the farther out temperature
anomalies reach their peak, if they reach a peak at all, narrows possibilities and opportu-
nities for mitigation efforts (within the time frame of our simulations). That said, a peak
temperature anomaly occurring in the year 2200 does not imply that temperatures decrease
after that point. The year 2200 is the end of the simulation time. So when individuals are
current-looking (not considering other locations or future generations’ climate conditions),
temperature anomalies reach their highest temperature in the simulation at the last time
step. This suggests that either the year 2200 is the peak or more likely that temperatures
continue to rise past that point in time.

Insight into how spatial and temporal discounting may augment climate conditions can
be obtained by considering the joint influence of discounting on peak temperature anoma-
lies and the year in which they occur. In a short argument, as discounting behaviours
begin to favour the ideals of climate conditions being worse in another location (individu-
als will only consider themselves) and farther in time, this provides a population with the
perception that climate change will not significantly impact them. Together, this suggests
that temperature anomalies peak later and higher. This connection signifies how disad-
vantageous discounting is to climate conditions and willingness to mitigate. Unfortunately,
as outlined in Section 2.1, conditions being worse somewhere else and later on is the most
common way climate change is portrayed and considered. That being said, if the narrative
and perceptions of climate change impact shift towards more forward-looking behaviour,
then lower peak temperature anomalies can be achieved sooner (Figure 4.1).

Overall, Figure 4.1 represents what can happen due to maintaining how climate change
is portrayed and understood as a far-off problem. Instead, by perceiving the impacts of
climate change to be in a more present time and location, populations opt to switch to
a mitigation strategy. As a beneficial result of this switch, peak temperature anomalies
decrease and occur sooner. This provides more opportunity to decrease rising temperatures
towards the IPCC targets [28]. These are targets that are not achievable under the typical
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portrayal of climate change. To support this finding, an extended analysis to consider how
multiple populations value and devalue the impacts of climate change is completed and
presented in Figure 4.3.

Figure 4.3: Contour plots showing peak temperature anomaly across the range of tem-
poral discounting (δt) values in each patch at specific spatial discounting (θ) values. All
other parameters are held at baseline as defined in Tables 3.1 and 3.3.

To understand the isolated interactions between spatial and temporal discounting on
the climate between both patches in the model, a matrix of parameter spaces is provided

42



in Figure 4.3. A relationship symmetry arises as a result of shifting where individuals
in a population geographically base their perceptions of climate change impacts: when
populations only consider themselves (θ = 1) or only consider the other geographically
distinct population (θ = 0), the peak temperature anomaly has the same outcome. An
incomplete idea of the climate is established when perceived impacts are based entirely
on one location. This occurs because spatial discounting in the model, in these cases,
isolates any influence from other geographic locations. For this reason, the transition
from higher to lower temperature anomalies is slow and non-linear (Figure 4.3: θ = 0,
θ = 1). Comparatively, the shift to lower temperature anomalies is quicker when both
populations start to consider each other more equally and devalue future climate conditions
less. This is observed in Figure 4.3 as the space between contour lines shrinks and becomes
more uniform as spatial discounting approaches its midpoint (θ = 0.5). These beneficial
temperature changes slow (but do not stop) as both populations begin to value future
climate conditions more. This concludes that forward-looking behaviour and considering
a diversity of geographic locations is a pathway leading to lower temperature anomalies.

One consistency and one inconsistency arises through moving the gaze of perception
from one patch to both patches. On the first side, populations acting under the same
temporal discounting behaviour (forward or current-looking) produce a rapid and linear
response in temperature anomaly consistent across which locations they consider. Con-
versely, when populations are fundamentally polarized in their temporal discounting be-
haviour, shifts in geographic considerations are not as consistent. The temperature anoma-
lies in the parameter spaces in these cases become more varied as the populations look to
each other rather than just one or the other. This is visualized through Figure 4.3 panels
for θ = 0.5 and θ = 1 (or 0). When θ = 0.5, and patch 1 is devaluing future climate im-
pacts at a higher rate than the other, then a small increase in temporal discounting in the
second patch can result in peak temperature anomalies changing by about a half degree.
Yet, if a small shift like that is completed when a high proportion of future climate impacts
are based in one location (θ = 0, 0.1, 0.2, 0.8, 0.9, 1), then peak temperature anomalies are
maintained or change very little. Together, this highlights the beneficial effects of main-
taining a broader consideration of different locations and having fairly uniform discounting
behaviour to approach lower temperature anomalies quickly.

Similarly, I carry out parameter analysis to understand the interactions between how
much individuals devalue future climate events and how far into the future they consider
or look when making decisions on taking mitigative or non-mitigative actions. Figure 4.4
provides a parameter space for the two temporal discounting parameters: temporal dis-
counting rate (δt) and time horizon (tH). Taking value away from future climate conditions
and looking farther in time negatively impacts temperature. The pathway to lower peak

43



Figure 4.4: Contour plot showing peak temperature anomaly for temporal discounting
(δt) and time horizon (tH) values in patch 1. All other parameters are held at baseline as
defined in Tables 3.1 and 3.3.

temperature anomalies is achieved the quickest by simultaneously devaluing the future
climate at lower rates and shortening the time frame of decision-making based on future
climate impacts. That being said, forward-looking behaviour provides the freedom to have
an extended range for decision-making, and a reduced time frame for decision-making
allows for a more extensive range in rates of devaluing the future climate. This slight
flexibility between these two parameters can provide insight into discounting behavioural
changes that promote mitigation. However, this span of low temperature anomalies may
be misleading, as an individual with current-looking behaviour may also require a long
period to shift their decision-making [9].

Overall, the best pathways to lower temperature anomalies are achieved when individu-
als take a forward-looking approach while considering multiple locations when determining
their personal impacts of climate change. This discounting behaviour promotes mitigation
the most and reduces temperature anomalies as a shared benefit.

4.1.2 Time Series: Emissions, Temperature Anomaly, and Pro-
portion of Mitigators

The projected results in this section demonstrate the impediment that discounting plays in
mitigation efforts. In this section, I show that forward-looking behaviour, following a lower
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discounting regime, supports a higher proportion of mitigation strategy uptake (Figures
4.5 and 4.6). But as motivation to mitigate decreases through a shift to current-looking
behaviour, climate conditions are significantly worse, marked by about a 3◦C increase in
temperature anomaly (Figures 4.6 and 4.7). Also, through considering spatial discounting,
I find that a more risk-averse and environmentally beneficial behaviour choice is to consider
both population locations equally rather than just one location or the other on their own
(Figure 4.8). Finally, I show that potential benefits from behavioural changes in the social
system are muted by higher rates of temporal discounting (Figure 4.8).

Moderately to severely discounting climate change produces significantly worse climate
conditions in the near and long term. That being said, even low levels of discounting
behaviour produce temperature anomalies around 2.6◦C (4.5(c)). Forward-looking be-
haviour takes the form in the model as 1.5% and 1% discounting per year, and each
patch equally considers the climate conditions in their location and the other location.
The forward-looking behaviour represents the consideration of future generations and the
impact that mitigation efforts have on multiple spatially distinct locations. Further, it
highlights potential changes in the climate as a result of bringing the climate change issue
into an individual’s everyday rather than maintaining it as some distant, abstract process
[31, 55, 56]. Figure 4.5(a) shows explicitly that mitigation behaviour is facilitated under
this forward-looking behaviour, as both patches reach full proportions of mitigators by the
year 2100.

Subsequently, higher proportions of mitigators lead to reduced emissions as the popu-
lation is actively undergoing action to better the environment under the mitigation strat-
egy. Since both patches release equal proportions of emissions in Figure 4.5(b), their pro-
jected carbon dioxide emissions follow similar paths, peaking around the year 2050. These
matching trajectories are a direct consequence of the two-patch model, as each patch is
discounting under similar rates and considering each other’s climate conditions equally.
This relationship between patches and the proportion of total emission they produce is
better observed in Figure 4.6(b). Each patch is under the same discounting scenario as
in Figure 4.5, except now patch 1 produces 30% of total emissions and patch 2 produces
70%. This imbalance of emission production can be representative of the disproportionate
breakdown of total emissions between high- and low-emitting locations. Even as our model
projects one temperature anomaly for all population groups, providing the breakdown of
emissions into both patches remains important. This breakdown better captures the patch
with a more substantial influence on the climate.

Projections under forward-looking behaviour are significant as they visualize the impact
of low discounting, representing the relationship between giving value to environmental
conditions as they occur sooner and later and the changes in the climate. Compara-
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Figure 4.5: Forward-looking behaviour favours mitigation. Median trajectories (solid
and dashed lines) and 20th and 80th percentiles are plotted to the year 2200 for the
proportion of mitigators (a), carbon dioxide emissions (b) and temperature anomaly (c).
With temporal discounting δt,1 = 0.015, δt,2 = 0.01, spatial discounting θ = 0.5, time
horizon tH = 50, and proportion of emissions α = 0.5. Medians and quintiles are computed
over 100 simulations, where all other social system parameters are randomly drawn from
their uniform distributions (Table 3.1). All other parameters are held at baseline values
(Table 3.3).

tively, observing the effect on climate conditions and strategy choices of the transition
from forward-looking to current-looking behaviour provides valuable insight into discount-
ing the climate. As expected, the resulting temperature anomalies drastically increase in
this direction of decreasing motivation to mitigate (for example 4.5(c) and 4.7(c)). It is
important to note that the shorter time horizon and low temporal discount rate dominate
the climate projections, as predicted from the earlier parameter plane (Figure 4.4). These
results still provide an immediate takeaway, such that shifting our perceptions of climate

46



Figure 4.6: Patches may produce an uneven proportion of emissions. Median trajectories
(solid and dashed lines) and 20th and 80th percentiles are plotted to the year 2200 for
the proportion of mitigators (a), carbon dioxide emissions (b) and temperature anomaly
(c). With temporal discounting δt,1 = 0.015, δt,2 = 0.01, spatial discounting θ = 0.5, time
horizon tH = 50, and proportion of emissions α = 0.3. Medians and quintiles are computed
over 100 simulations, where all other social system parameters are randomly drawn from
their uniform distributions (Table 3.1). All other parameters are held at baseline values
(Table 3.3).

change impacts from occurring later to sooner, may help moderate the effects of climate
change.

When individuals operate under current-looking behaviour, they are not motivated by
their enviornmental experiences to mitigate. This occurs because they take enough value
away from distant climate conditions, resulting in the perception that climate change will
not impact them. This leads to populations dominated by non-mitigation behaviour, higher
emissions, and finally, extreme rising temperature anomalies. Figure 4.7 is a representation

47



of current-looking behaviour, where patch 1 discounts future climate impacts at 3% each

Figure 4.7: Current-looking behaviour favours non-mitigation. Median trajectories (solid
and dashed lines) and 20th and 80th percentiles are plotted to the year 2200 for the
proportion of mitigators (a), carbon dioxide emissions (b) and temperature anomaly (c).
With temporal discounting δt,1 = 0.03, δt,2 = 0.015, spatial discounting θ = 1, time horizon
tH = 100, and proportion of emissions α = 0.7. Medians and quintiles are computed over
100 simulations, where all other social system parameters are randomly drawn from their
uniform distributions (Table 3.1). All other parameters are held at baseline values (Table
3.3).

year and produces 70% of total emissions, and patch 2 discounts at 1.5% each year and
produces 30% of emissions. Each population assumes climate conditions are worse in the
other location, and so only consider themselves when deciding which mitigation strategy
is better and implements a time horizon of 100 years.

This current-looking behaviour (stronger in patch 1) supports the conformation to non-
mitigation behaviour. So much so that the proportion of mitigators in patch 1 reaches zero
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almost immediately after social dynamics are initiated in 2014. While patch 2 (Figure
4.7(a,b)) is still valuing future climate impacts, similar to patch 1 from Figures 4.5 and
4.6, their population does not reach full mitigation by the end of the simulation run, nor
do median emissions reach zero. This is a direct consequence of the longer time horizon
implemented under this discounting scenario. From Equation 3.14, the longer the time
horizon then, the longer out individuals are considering climate impacts. Moreover, they
are removing value from future climate conditions for a longer time, and thus, they assume
that climate change will not impact them greatly.

That being said, under these high discounting behaviours, emissions in patch 1 repre-
sent the increasing and saturating nature of the emissions function as defined in Equation
3.18. Since individuals are discounting distant climate impacts at higher rates, this fun-
damentally facilitates the case of emissions under no mitigation. But patch 2 in Figure
4.7(b) slightly moderates the total emissions as the median trajectories of total and patch
2 emissions peak and start to decline near the end of the simulation time. Even though
patch 2 is showing signs of mitigation and reducing carbon dioxide emissions by the end
of the simulations (Figure 4.7(a,b)), they are still only emitting a fraction of what patch 1
is producing. As a result, their mitigation efforts are overpowered by the non-mitigation
strategy that is dominating patch 1, which functions to greatly increase the temperature
anomaly (Figure 4.7(c)).

While a 5.5◦C temperature anomaly seems unrealistically high, this result can be used
to understand the magnitude at which a proportion of the total population (both patches
together), discounting the climate at high rates, influences the overall climate. This result
represents that decisions in one patch affect overall climate conditions and thus impact
the total population through the model’s two-way feedback. Essentially, from this case
of high discounting, it can be understood that a population group’s decision-making, to
mitigate or not mitigate, has influential results on the climate: total carbon emissions and
temperature anomalies.

A closer look at shifting perceptions of climate impacts between current and future-
looking behaviours can show the negative consequences discounting has on the climate.
For an example with temperature anomalies, forward-looking behaviour (Figure 4.6) peaks
about 3◦C lower than current-looking behaviour (Figure 4.7). That being said, the current-
looking behaviour “peaks” at the end of the simulation, implying it will continue to rise
for some period of time after. Similarly, under the high discounting behaviour, peak total
emissions increase by about 3gtC/yr compared to lower discounting. Through comparing
the disproportionate emission production between the two patches in Figure 4.6 and 4.7,
it can be seen that the individual patches vary in emission productions from about 1
(30% emitting patches) to 3gtC/yr (70% emitting patches). Based on these examples, it is
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clear that the climate is negatively affected due to the non-mitigation nature of discounting
distant climate conditions and impacts. This indicates that more considerable and uniform
efforts in mitigation and promoting mitigation behaviour are needed across different groups
and location types to obtain global beneficial climate impacts.

To fully recognize how spatial discounting can alter the perceived impacts of climate
change in the model, I consider discounting scenarios where individuals base their per-
sonal impact of climate change on a different location. Now, their willingness to mitigate
is driven by the perceived impacts of that other location. The shift in the location of
perceived impacts causes issues when a population based on forward-looking behaviour
relies on a second population’s current-looking behaviour when choosing between mitiga-
tion strategies. Because now, they are switching between mitigation and non-mitigation
strategies based on the current-looking behaviour of the higher discounting patch. So,
where their perceived impacts could have been higher, triggering an increase in mitigation
strategy uptake if they considered their own environmental conditions, they are now pro-
ducing more emissions based on the other higher discounting behaviour. Figure 4.8 shows
this type of switching discounting behaviour. In Figure 4.8(c), patch 1 discounts the future
impact of climate change at a higher rate than patch 2, and both patches only look to the
other when deciding which mitigation strategy to choose. That means that even though
patch 2 has a lower discounting scenario, it is only patch 1 emissions that benefit because
patch 1 only considers the perceptions in patch 2, and vice versa. So despite an expected
lower emission production in patch 2, clearly from Figure 4.8(c) patch 2 (blue dashed line)
is producing more emissions in part due to their proportion of emissions being higher and
in part of patch 1’s current-looking behaviour, they are relying on. Indeed, when patch
1 considers patch 2’s perceived impacts of climate change instead of their own, they ben-
efit as an individual patch. However, the climate conditions overall (total emissions and,
subsequently temperature anomaly) do not gain as much benefit.

Spatial and temporal discounting influences model computations and evaluations as
much as the climate projections themselves. Figure 4.8 represents the differences in model
simulations under stronger discounting behaviour. Figure 4.8 (a) and (c) cover the carbon
emissions when patch 1 discounts future climate impacts at 3% a year and produces 30%
of total emissions, and patch 2 discounts at 1.5% per year and produces 70% of total
emissions. Each patch completely considers the other patches’ perceived impacts when
making decisions. So, the lower discounting patch 2 will follow the higher discounting
behaviour as in patch 1 and produce the majority of total emissions. Whereas Figure 4.8
(b) and (d) follow a discounting scenario that results, again, in the majority of emissions
coming from the patch that perceives the personal impacts of climate change to be low
(patch 1 discounting at 5% per year and patch 2 discounting at 3% per year).
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Figure 4.8: Emissions under current-looking behaviour increase and eventually saturate
as equation 3.18 formulates. All 100 simulation runs (red) are plotted with median, 20th,
and 80th percentiles (black) for total carbon dioxide emission (a),(b). Median trajectories
(solid and dashed lines) and 20th and 80th percentiles are plotted to the year 2200 for
carbon dioxide emissions (c),(d). Panels (a) and (c) are under temporal discounting δt,1 =
0.03, δt,2 = 0.015 spatial discounting θ = 0, and proportion of emissions α = 0.3. Panels
(b) and (d) are under temporal discounting δt,1 = 0.05, δt,2 = 0.03, spatial discounting
θ = 1, and proportion of emissions α = 0.7. Both have a time horizon of tH = 50. Medians
and quintiles are computed over 100 simulations, where all other social system parameters
are randomly drawn from their uniform distributions (Table 3.1). All other parameters are
held at baseline values (Table 3.3).

Clearly, in the case where discounting in both patches is high (Figure 4.8 (b, d)),
there is next to no variation from simulation to simulation. Whereas even the inclusion
of devaluing future climate impacts at a lower rate and in smaller proportion still results
in some variations across simulation runs (Figure 4.8 (a)). This highlights the strength of
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high temporal discounting or current-looking behaviour on the model results. Simulation
runs are obtained by holding climate parameters at baseline (Table 3.3) and varying all
social system parameters (Table 3.1). So even the variations of opinion dynamics are muted
when the discounting rate per year rises. This leads to the understanding that temporal
discounting overpowers the model in such a way as to diminish any beneficial changes in the
social system. This implies the importance of focusing on shifting the way climate change
is perceived towards being a problem affecting people here and now. By considering these
two cases and over the 100 simulations, an understanding is gained on a mathematical
level of how the developed model in this thesis, including behavioural discounting, impacts
climate conditions.

In this Section 4.1, I covered results looking at the impacts that both spatial and tem-
poral discounting have on the climate. Firstly, through parameter analysis and climate
projections, I observed that forward-looking behaviour promotes mitigation and, as a re-
sult, provides an extended period for emissions and temperature to regulate. Secondly,
current-looking behaviour supports non-mitigation strategies and thus negatively affects
the climate on individual patch levels and globally. Thirdly, while reducing the rate at
which individuals devalue future climate impacts, it is important to consider where these
values are being deducted spatially. The spatial discounting analysis in this section empha-
sizes the idea that future climate conditions can be moderated better if multiple locations
are considered at once. Altogether, this provides a clear picture of how bringing the issue
of climate change into an individual’s everyday life can promote willingness to mitigate. In
other words, promoting individuals to take up forward-looking behaviour that reduces the
distance between their everyday and climate issues will allow for meaningful environmental
impacts.

4.2 Discounting and Opinion dynamics

In this section, I focus on how the interactions between spatial and temporal discounting
and social behaviour may influence opinion dynamics and projected climate conditions.
These connections help represent the influence that certain policy choices (economic fo-
cused, mitigation focused, etc.) under current or altered perceptions of climate change may
have on climate and mitigation behaviours. Section 4.2.1 investigates parameter spaces for
the various social and discounting parameters, and section 4.2.2 provides results based on
changes to how individuals devalue climate conditions under various social dynamics.
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4.2.1 Parameter Planes

Studies have shown that social learning should be a strong focus for climate interventions
[9, 33]. A similar result is achieved in this thesis. In this section, I show that established
relationships between social parameters (Figure 4.9) are altered by considering temporal
discounting. This leads to the result that pathways to decreasing temperature anomalies
are achieved by increasing the rate of social learning and reducing the strength of social
norms while simultaneously decreasing temporal discounting (Figures 4.10(a) and (b) re-
spectively). I also show that when analyzing discounting and drivers of decision-making,
spatial discounting has a weaker influence on climate conditions than temporal discounting
(Figure 4.11).

I begin by comparing two social dynamics parameters in Figure 4.9: the net cost of
mitigation behaviour, β, and the strength of social norms, δ. The parameter space pro-

Figure 4.9: Contour plot showing peak temperature anomaly for values of the net cost of
mitigation (β) and strength of social norms (δ) in patch 1. All other parameters are held
at baseline as defined in Tables 3.1 and 3.3.

vides us with the understanding that as both costs and social norms are increased, then
temperature anomaly also increases. The symmetric linear relationship observed through
this plot conveys that δ and β tend to share influences on the system. This suggests that,
as the economic burden of mitigative action increases, then the climate benefits only when
social norms are weak (no prevalent majority behaviour in the population). This empha-
sizes the established understanding that social norms can act against mitigative action and
be consequential to the environment, supporting an overwhelming non-mitigation strategy
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in a population [9]. For example, when mitigation action is expensive, a non-mitigation
strategy choice becomes the majority behaviour, making it harder to switch strategies away
from the norm. While these well-understood social dynamics are present in our model, it
is imperative to figure out how they may change depending on the influence of spatial and
temporal discounting.

Figure 4.10: Contour plots showing peak temperature anomaly for temporal discounting
(δt) and social learning rate (κ) (a) and strength of social norm (δ) (b) values in patch 1.
All other parameters are held at baseline as defined in Tables 3.1 and 3.3

It is vital to understand how social learning and temporal discounting interact because
social learning drives the imitation dynamics in the model [4]. As seen in Figure 4.10(a), a
slow but sufficient reduction in temperature anomalies can be achieved by first focusing on
increasing the rate at which individuals learn from each other and then reducing the rate
at which those individuals devalue future climate impacts. Essentially, suppose individuals
interact more with each other in discourse around climate change and climate impacts. In
that case, the rate at which they devalue future climate impacts will not have as strong
of an influence on the climate outcome. However, when individuals learn new behaviour
from others over a long period, on generational timescales, temporal discounting has more
substantial negative impacts on future temperature anomalies. Specifically, in the case
of slow social learning, small increases in the rate at which future climate impacts are
devalued produce a slightly more rapid increase in temperature anomalies. Effectively,
even the simple action of talking about climate change promotes deeper awareness of
the issue. Eventually, other social dynamics, like social norms, can lead to an increased
uptake in mitigation behaviour and, subsequently, better environmental impacts. Temporal
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discounting seems to both strengthen dynamics and be amplified by the drivers of social
dynamics (social learning and social norms).

Discounting can become more intense on the environment, considering that choosing a
discounting behaviour, like current-looking behaviour, may be more enticing when everyone
around an individual also holds that opinion of future climate impacts. This relationship
holds consequences for environmental conditions when the majority of the population starts
to remove value from future climate impacts. Figure 4.10(b) shows a parameter plane be-
tween values of temporal discounting (δt) and social norms (δ). The pathway to reducing
temperature anomalies requires an initial reduction in the strength of social norms; this
implies that it must become easier to switch mitigation strategies away from the majority
behaviour. Peak temperature anomalies are reduced through this gradual shift in social
norms alongside individuals giving value to future climate impacts. This pathway repre-
sents that as forward-looking behaviour and mitigation strategies become well accepted in
a population, future temperature anomalies can be moderated.

Figure 4.11: Contour plot showing peak temperature anomaly for spatial discounting (θ)
and net cost of mitigation (β) values. All other parameters are held at baseline as defined
in Tables 3.1 and 3.3.

Through the development of this conceptual model, both patches of arbitrary popu-
lation groups only begin to differ when social parameters and temporal discounting are
altered. Due to this mechanism of the model, spatial discounting does not have as strong
of interactions with other human system parameters as temporal discounting. This can
be understood through the way in which parameter planes are obtained for this model.
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In the case when all parameters in Equation 3.16 are held at baseline for both patches
during parameter analysis, then the perceived impacts of climate change are equivalent in
each patch: f̂1 = f̂2. So, the spatial discounting factors in the social system (first two
equations in Section 3.2) are eliminated. This reinforces the construction of the model
and the functionality of spatial discounting. An illustration of this relationship can be ob-
served in Figure 4.11. This plot shows the parameter space that the net cost of mitigation
(β) and spatial discounting (θ) share, while all other parameters are held at baseline. Of
course, this process results in the parameter plane where the peak temperature anomalies
are consistent throughout the entire range of the spatial discounting parameter.

4.2.2 Time Series: Emissions, Temperature Anomaly, and Pro-
portion of Mitigators

Projections in this section establish the magnifying effect that discounting, specifically tem-
poral discounting, has on mitigation behaviour and temperature trajectories. In particu-
lar, a shift from forward to current-looking behaviour inflates the uptake of non-mitigation
strategies and consequentially impacts the climate. In this section, four main results are
obtained. First, I show that increasing temporal discounting amplifies the internal rela-
tionship of the social dynamics, often resulting in negative climate consequences (Figure
4.12). Next, I show that high rates of social learning offset some of the obstacles that
devaluing distant climate impacts has on choosing the mitigation strategy (Figure 4.13).
Then, I show how the economic hindrance of mitigation behaviours and temporal dis-
counting work to promote the choice of a non-mitigation strategy (Figure 4.14). Finally, I
show that stronger social norms, even at low temporal discounting values, are not always
beneficial to enabling mitigation behaviour (Figure 4.15).

A glimpse at the impact of temporal discounting on temperature anomalies, carbon
dioxide emissions, and the proportion of mitigators is presented in Figure 4.12. The tem-
poral discounting parameter has been fixed at lower and higher discounting rates in the
first and second rows of subplots, respectively. The model was implemented over the upper
(blue line) and lower (red line) bounds of the social learning rate, cost of mitigation, and
strength of social norms. One relationship between more current and forward-looking be-
haviour remains consistent across all three social dynamics parameters in Figure 4.12: the
magnitude in temperature difference becomes more extreme when a higher (3%) discount-
ing rate per year is implemented. The role of temporal discounting in these interactions is
uncovered by isolating this analysis to one social behaviour parameter at a time.

Changes in temporal discounting do not alter the established dynamics of social learning
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Figure 4.12: Current-looking behaviour amplifies the differences in temperature anomaly
between weak and strong opinion dynamics. Median trajectories (solid and dashed lines)
and 20th and 80th percentiles of temperature anomalies are plotted to the year 2200. The
top row of plots shows anomalies for low yearly temporal discounting (δt = 0.01), and
the bottom row high temporal discounting (δt = 0.03). The columns, from left to right,
compare different parameter values for social learning rate (κ), net cost of mitigation (β),
and strength of social norms (δ). Medians and quintiles are computed over 100 simulations,
where all other social system parameters not specified in the panels are randomly drawn
from their uniform distributions (Table 3.1). All other parameters are held at baseline
values (Table 3.3).

(Figure 4.12 (a) and (d)), where slow social learning leads to higher temperature anomalies.
But when temporal discounting is higher, both slower and faster rates of social learning
result in higher temperature anomalies in general. Of interest, the maximum distance
between the temperature trajectories of different rates of social learning increases by 0.36◦C
and occurs about 16 years later when under current-looking behaviour (Figure 4.12(d)).
Similarly, from Figure 4.12(a) to (d), the peak temperature anomalies are reached at a
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later time step and a higher degree. This connects to the result from Figure 4.1 in Section
4.2.1, where I investigated the implications of temperatures peaking sooner or later. The
peak temperature anomalies occurring sooner and at a lower temperature highlight the
beneficial effects on the climate of maintaining forward-looking behaviour and faster social
learning rates.

Figures 4.12 (b) and (e) have a similar relationship when future climate conditions are
discounted at higher percentages per year. Here, the maximum difference between the
temperature anomalies under low and high cost of mitigation behaviour stretches from
0.90◦C to 1.67◦C and occurs 58 years later. Peak temperature anomalies when moving
from low (4.12(b)) to high (4.12(e)) temporal discounting increase by 1.46◦C for high costs
and 0.93◦C for low costs of mitigation. These significant shifts in temperature anomaly
represent the extreme outcomes of opinion dynamics on the environment, even on a con-
ceptual level. The interactions between the present economic costs of mitigation and the
desire to look at climate change as something happening later in time amplifies the lack of
motivation to mitigate (see also Figure 4.14 (d)) and thus increases temperature anomaly.

Following the same trends as the other human behaviour dynamics parameters, Figure
4.12 (c) and (f) also establish the strong influence temporal discounting has in the social-
climate model. Specifically when looking at the interactions between temporal discounting
and social norms, the maximum difference of the temperature projections between strong
and weak social norms expands by 0.79◦C when higher temporal discounting is imple-
mented. Peak temperature anomalies occur more than four decades later and increase by
0.33◦C under weak social norms and 1.08◦C under strong social norms. When it gets harder
to switch away from the majority mitigation strategy and there is a low perceived impact
of climate change due to high temporal discounting, then the motivation to mitigate is low
(see also Figure 4.15 (d)) and thus temperature anomaly increases drastically.

Together, these three relationships observed in Figure 4.12, identify that temporal
discounting amplifies the relationship between the different rates of social learning, costs
of mitigation, and strengths of social norms. This relationship reveals that if temporal
discounting is not approached, then much greater efforts will need to be employed on
shifting human behaviours to achieve noticable benefits on the envirnment. Overall, this
implies that policies targeting mitigation costs or interventions in social behaviours will
also need to consider the way individuals value future climate impacts.

The opinion dynamics of choosing a mitigation strategy or a non-mitigation strategy
drives the feedback in the model: when there is a lower proportion of mitigators than
non-mitigators, less carbon dioxide emissions will be reduced. As a consequence of higher
anthropogenic emissions fed into the climate system from the social system, the global
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temperature rises. Shifts in up-taking mitigation behaviour are represented in Figures
4.13, 4.14, 4.15. Temporal discounting is held at 1% and 3% discounting per year, and
the social parameters are held at their lower and upper bounds in patch 1. The social
parameters for patch 2 are drawn randomly from their uniform distribution, see Table 3.1.
From Figure 4.13, at a low rate of social learning, an increase in temporal discounting
(Figure 4.13(a) to (b)), even by 2% significantly decreases the number of mitigators in
patch 1. However, a high rate of social learning does not result in such a large shift in
mitigators. In fact, at high social learning and high discounting (Figure 4.13(d)), patch 1
reaches the full proportion of mitigators, which could be a result of the simulation run and
the large error bounds. Across these scenarios, a low rate of discounting and a high rate
of social learning result in a full proportion of mitigators in the shortest amount of time.

A significant driver of pro-environmental behaviour is the costs of taking mitigative
action [19]. This barrier to action is amplified when accounting for temporal discounting.
Figure 4.14 plots the projections of the proportion of mitigators to the year 2200, between
the patch with specified temporal discounting and net cost of mitigation parameter values
(plotted in red) and the patch with a randomly chosen parameter set (plotted in blue). Most
significantly, when the net cost of mitigation is high, then the jump from 1% discounting
(4.14 (c)) to 3% discounting (4.14 (d)) per year results in a shift from a population with
mitigators to a total population of non-mitigators. This interaction is representative of
the value individuals put into current economic choices and the value they take away
from future climate conditions [5, 20, 41]. The relationship between the costs of mitigation
behaviour and temporal discounting as determined in Figure 4.12(b) and (e) is reestablished
with the results from Figure 4.14.

The strength of social norms operates similarly on the proportion of mitigators to the
net cost of mitigation. Figure 4.15 projects the proportion of mitigators for both patches,
where δt and δ are varied in patch 1. In both lower and higher rates of temporal discounting,
the stronger the social norms, then the population switches to mitigation behaviour slower
(4.15(c)) or not at all (4.15(d)). Specifically, at a higher temporal discounting value,
δt = 0.03 (4.15(b)), if it is less socially taxing to switch behaviours, then the population in
patch 1 is able to reach a full proportion of mitigators around the year 2130. Whereas, when
social norms are strengthened (4.15(d)), meaning it is harder to switch to the non-dominant
behaviour, the proportion of mitigators in patch 1 approaches zero. In other words, the
population in patch 1 opts for the non-mitigation strategy. However, when future climate
impacts are devalued, the magnitude of non-mitigators under weak or strong social norms
moderately and drastically increases, respectively. This relationship can be visualized from
Figure 4.15 (a) to (b) and (c) to (d). Fundamentally, the influence of temporal discounting
on willingness to mitigate is linked to social dynamics like social norms, the net cost of
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Figure 4.13: Stronger social learning offsets non-mitigation pressure from current-looking
behaviours. Median trajectories (solid and dashed lines) and 20th and 80th percentiles of
temperature anomalies are plotted to the year 2200. Panels show projections for specific
discounting and social parameters. Temporal discounting (δT ) increases from left to right,
and social learning rate (κ) increases from top to bottom. Medians and quintiles are
computed over 100 simulations, where all other social system parameters are randomly
drawn from their uniform distributions (Table 3.1). All other parameters are held at
baseline values (Table 3.3).

mitigation, and social learning rates.

Overall, implementing discounting in the social system amplifies the underlying social
dynamics and further amplifies the disadvantages felt in the climate by those behavioural
decisions. Current-looking behaviour tends to overpower the system and amplify any
minor differences between various social parameter values. It is essentially promoting, for
the most part, more non-mitigative behaviour under higher discounting regimes. This
also leads to the understanding that if the issue of discounting is targeted, approaching
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Figure 4.14: Reduction in discounting and net cost of mitigation promotes mitigation
strategy. Median trajectories (solid and dashed lines) and 20th and 80th percentiles of
temperature anomalies are plotted to the year 2200. Panels show projections for specific
discounting and social parameters. Temporal discounting (δt) increases from left to right,
and the net cost of mitigation (β) increases from top to bottom. Medians and quintiles
are computed over 100 simulations, where all other social system parameters are randomly
drawn from their uniform distributions (Table 3.1). All other parameters are held at
baseline values (Table 3.3).

a better climate state can be achieved quicker than if any of the other social parameters
were tackled individually. Together, fostering a population that learns from each other
at higher rates, is not economically burdened to take up mitigation practices, and allows
for an ease of changing strategies can quickly lead to better environmental conditions by
reducing temporal discounting. While this suggestion may seem unattainable, these results
provide the understanding that changing how climate impacts are perceived is as crucial
as dealing with other human behaviours related to climate change.
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Figure 4.15: Resistance to switching mitigation strategies is amplified with an increase
in yearly discounting. Median trajectories (solid and dashed lines) and 20th and 80th
percentiles of temperature anomalies are plotted to the year 2200. Panels show projections
for specific discounting and social parameters. Temporal discounting (δt) increases from
left to right, and the net cost of mitigation (β) increases from top to bottom. Medians and
quintiles are computed over 100 simulations, where all other social system parameters are
randomly drawn from their uniform distributions (Table 3.1). All other parameters are
held at baseline values (Table 3.3).
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Chapter 5

Discussion

In this section, I conclude the thesis with a discussion of the key results found in this thesis,
model assumptions and limitations, and the broader implications of this research.

5.1 Summary of Main Findings

This thesis aimed to identify the key interactions between how humans discount distant
climate conditions and impacts and the changes in the climate under those behaviours. This
was achieved through coupling a human decision-making model rooted in social dynamics
with a simple Earth System Model (ESM). Historical emissions data was used throughout
the full social-climate model, while the social dynamics were initiated in simulations in the
year 2014. Imitation dynamics of evolutionary game theory and the flexibility of simple
ESMs guided the modelling process. The main problem I set out to investigate in this
thesis was motivated by the distant framing of climate change issues and impacts in the
media and the psychological barrier to mitigation that discounting distant climate impacts
has on the environment. The motivations and methodology work together to address the
main questions of this thesis. As a result, a thorough line of understanding is raised. In
this section, I summarize the main findings of this thesis as they relate to encouraging the
choice of a mitigation strategy.

Our results clearly show that mitigation efforts are needed across multiple locations
and population groups. When deciding between mitigation or non-mitigation behaviour,
mitigation strategies are best supported when considering a more equal share of distinct
geographic locations and population groups. Whereas, when only one population’s per-
ceived impacts of climate change are considered (either the current or other location),
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there is always a risk of entirely relying on opinion dynamics that are forced with a low
personal impact of climate change. This fundamentally does not promote, nor has any
small fraction of promotion for mitigation efforts. A quicker, more reliable pathway to
temperature reduction is obtained from considering both patches, even if the other patch
has a slightly worse discounting regime, rather than just one or the other (Figure 4.3).
This understanding is essential as it supports the demand for bringing the issue of climate
change to a closer, more local issue. This shift in the distance of climate change may help
to maintain the connection between mitigation action and impacts “here” and “now” as
they will inadvertently affect other locations too (see total emissions late peak and decline
in Figure 4.7(b) and 4.8(c)) [41].

While focusing on a broader target of mitigation action is helpful, focusing on maintain-
ing value in future climate impacts is just as important. Specifically because discounting
climate conditions in space and time are additive in nature as determined through the
model results. The more distant (spatially and temporally) climate change impacts are
perceived to be, then individuals are more inclined to take up current-looking behaviour.
Through this devaluing of personal impacts of climate change, motivation to mitigate is re-
duced, which negatively affects climate conditions as a result (this can be seen through the
parameter planes in Section 4.1). The willingness to mitigate is almost entirely eliminated
when even isolating the impact of temporal discounting on its own. Further, in the model,
emissions are most sensitive to high temporal discounting (Figure 4.8). Together, this
implies a required focus on shifting individuals’ behaviours to value climate impacts even
as they occur farther out in time. This could be established by presenting climate change
as both a current and future issue, not just a problem for future generations to deal with.
This shift in perspective will also need to be supported by presenting pro-environmental
actions [31, 55, 56].

Current-looking behaviour amplifies preexisting relationships between social dynamics
and climate conditions. The differences in temperature anomalies for opinion dynamics
that support mitigation strategies and those that do not are expanded when considering
discounting future climate impacts. So much so that if policies are trying to encourage mit-
igative behaviour, then they will need to consider social dynamics and discounting equally.
As much as current-looking behaviour becomes easy to choose when it’s harder to switch
mitigation strategies, higher rates of social learning can moderate some of those adverse
effects on the climate. A shift to forward-looking behaviour is additionally supported as the
economic burden of mitigation decreases. Together, the understanding of how discounting
interacts with human behaviour and social dynamics provides a clear picture for future
motivation to mitigate. Specifically, challenging the way climate impacts are perceived has
as much of an impact on future climate conditions as approaching a shift in human be-
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haviour. As seen through the results in Section 4.2, the coupled alterations in discounting
and opinion dynamics produce the best outcomes for willingness to mitigate.

5.2 Model Assumptions and Limitations

The results presented in this thesis represent the impact that spatial and temporal dis-
counting have on the future climate and on an individual’s willingness to mitigate. That
said, certain assumptions were made throughout the modelling process that influenced
the results. In this section, I will cover the assumptions and limitations of the model.
These include the decision of a simplified ESM, the simple implementation of the temporal
discounting time horizon, social parameter variations, and non-normalized emissions.

An imperative component of social-climate models is the physical climate model that
is coupled to the social system. In this model, as represented in Section 3.3, a simple
ESM is implemented. The simplified ESM does not elaborate beyond the extent of what is
needed to answer my research questions. Through the atmosphere, ocean, vegetation and
soil, the carbon cycle is represented by biological and chemical processes [9, 29, 36]. The
ESM also captures the greenhouse gas effect and overall temperature response [9, 29, 36].
Employing this elegant climate system rather than a fully comprehensive system, as guided
by Lenton [29], allows for the human behaviour dynamics in the coupled model to drive the
two-way feedback equally. This space given to the social system helps to focus on gaining
intuition and understanding into humans’ dynamic influence on the climate rather than
just validated climate projections [9].

The goal of understanding how the devaluing of distant climate conditions and impacts
influence climate change was also prioritized throughout model realizations. The many
simulations run to obtain the results presented in Chapter 4 maintain the common feature
of only choosing the social system parameters at random. In contrast, the climate system
parameters were held at their baseline values. More simply, there was only variability in
the social system. This follows the focus on understanding how the variations in human
behaviour under the new addition of discounting impacts the climate. This decision has
limitations, as the natural variability in the environment is not accounted for in the model
simulations. This is a significant limitation as the lack of potential physical climate process
variability will increase the uncertainties in our model.

That being said, when climate processes were varied across model realizations through
the random selection from uniform distributions of parameters (see Tables 3.1 and 3.3),
the projections were ambiguous. 20th and 80th percentiles spanned almost the entire set of
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axes. No discernible relationship between spatial and temporal discounting and mitigation
activity or climate conditions could be obtained. Under those variable conditions, the re-
search questions and hypothesis set out to be tested in this thesis could not be approached.
This led back to the focus on understanding interactions rather than just projections of
future climate within the conceptual model. Approaching a more variable social-climate
model through simulation runs could be dealt with in future research. This could be com-
pleted by identifying parameters with the most influence on the model and sorting out
some climate model uncertainty.

Throughout the model development process, a difference arose from the coupling of
the social system to the climate system in this model compared to another similar social-
climate model. Menard et al. [33] implemented normalization of total emissions. This
functions to account for the differences in size and resources between the rich and poor
groups in their model [33]. Normalizing emissions in each population group by the total
impact of non-mitigation across both groups captures the individual group influences on
emissions [33]. The model presented in this thesis does not normalize emissions based on
the initial proportion of non-mitigators. The implication of missing the normalization in
our model fails to capture each patch’s relative impact on emissions. That being said, the
α term forces this impact on a proportional scale (α is the proportion of emissions each
patch produces). While our model is conceptual, the lack of normalization fails to account
for potential differences in patches that may arise when altered to represent more specific
population group types. Future research to address normalization and apply the model to
specific geographic and climate scenarios should be completed.

5.3 Implications of Research

While our model is conceptual, the results presented in Chapter 4 provide an understanding
of human behaviour as it is related to devaluing the impacts of climate change. This pro-
vides a key takeaway: that maintaining value in climate change impacts is fundamental to
any pathway of temperature reduction and encouraging mitigation. This leads to the idea
that climate change must be presented differently if we want to change the perception of
future and farther climate to a problem that is here and now. This shift then subsequently
results in a less extreme climate in the future. In this section, I discuss the implication of
our results in the context of promoting mitigation through shifts in discounting regimes.

Surrounding the main focus of discounting distant climate impacts, I found that shifts
in perception of climate change impacts directly produce shifts in climate conditions. On
the one hand, when individuals perceive climate change issues as out of reach (happening
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somewhere else and later in time), they do not act in ways to mitigate worsening climate
conditions, resulting in negative consequences for the environment. On the other hand,
if individuals’ perspectives change to give value to climate conditions regardless of where
and when they occur, their willingness to mitigate climate change is increased, which pro-
duces beneficial impacts on the environment. While these are simple takeaways, a more
significant impact of these relationships is obtained. Specifically, a pathway to increasing
climate change mitigation is an interdisciplinary effort, not just on the level of one indi-
vidual’s actions. Due to the evolutionary game theoretic approach in this social-climate
model, individuals imitate other individuals’ mitigation strategies. This provides the un-
derstanding that there are influences on decision-making (and perceived impacts of climate
change) from other individuals in the population, environmental conditions, and the me-
dia’s framing of climate change issues. And so, interventions aiming to support the uptake
of mitigation action must approach these multiple interactions. Interventions should ide-
ally consider the benefits of supporting social learning in a population, maintaining value
in climate impacts, and shifting the presentation of climate change issues into the everyday.

The research questions (Section 1.1) have been answered through the results and dis-
cussion presented in this thesis. I am left with the understanding that by including a
common barrier to mitigation behaviour, like spatial and temporal discounting, into a
social-climate model, projections of the future climate capture the dynamic nature of hu-
man behaviour. As an extension, this relationship between discounting, human behaviour
and the climate may better inform policy-making and decisions. And more importantly,
this research addresses and supports the need for a better portrayal of climate change in
the media. One that brings the issue and impacts of climate change into an individual’s
everyday life. As seen in Chapter 2.1, presenting climate in the media as a less distant
problem can help promote engagement with the issue of climate change. If individuals
are more engaged, they may talk about it more, increasing social learning on the topic of
climate change. As seen from the results in Sections 4.2.1 and 4.2.2, the best outcomes
can be obtained when human behaviour dynamics are accounted for alongside a shift from
current to forward-looking behaviour.

Beyond policy-making and guiding perception and behavioural shifts, the model devel-
oped in this thesis could aid in expanding the field of coupled human-environment models.
Through representing social dynamics with an additional behavioural influence, this model
situates itself in the emergent area of social-climate modelling. Further, the results in this
research support the need to increase climate models that include a dynamic human com-
ponent. Finally, future research accounting for climate variability and applying the model
to geographically and demographically specific populations will help increase the model’s
robustness and application of the results.
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