
Disk-based Indexing for NIR-Trees
using Polygon Overlays

by

Fadhil Abubaker

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Fadhil Abubaker 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents the NIR+-Tree, a disk-resident R-Tree variant that eliminates over-
lap among its minimum bounding rectangles (MBRs). The NIR+-Tree is an extension of
the main-memory NIR-Tree [22], adopting techniques for efficient storage and retrieval on
disk. By employing non-intersecting polygons instead of rectangles for data partitioning,
the NIR+-Tree minimizes the number of spurious disk accesses incurred due to MBR over-
lap. To stabilize the height of the NIR+-Tree, the dynamically-sized polygons are stored in
main-memory using an efficient encoding. Experimental results show that the NIR+-Tree
is efficient at point queries and selective range queries, using 2× to 5× fewer disk accesses
than its closest competitors, the R+-Tree and the R*-Tree.

Additionally, this thesis investigates bulk-loading algorithms for the NIR+-Tree. Bulk-
loading can be used to efficiently construct an index from a pre-defined set of data. Bulk-
loading algorithms that generate MBRs with significant overlap create NIR+-Trees with
undesirable, complex polygons. This thesis shows that top-down bulk-loading algorithms
are better suited for the NIR+-Tree than bottom-up algorithms, due to their overlap min-
imizing properties. These techniques enable the NIR+-Tree to be a complete, disk-based
indexing solution for spatial data.

iii

Acknowledgements

I would like to thank my advisor, Prof. Khuzaima Daudjee, for his support and su-
pervision during my master’s. From our multiple conversations in the year before I came
to Waterloo, to the many discussions we had during my time here, I am grateful for his
guidance and mentorship.

I would like to thank Prof. Trevor Brown and Prof. Grant Weddell for serving on my
committee and for their valuable feedback on this thesis.

I owe much thanks to Brad Glasbergen for introducing me to the NIR-Tree project
and for providing the initial code on which this work is based on. I want to express my
gratitude to Shirley Chen, who is an amazing collaborator and proved to me that good
research is often a team effort.

My friends at Waterloo and the Data Systems Group have made the past two years
fun and enjoyable. In particular, I would like to thank Benson Guo and Amine Mhedhbi
for their support and advice, both personal and professional.

Before coming to Waterloo, I was fortunate to have a mentor in Hossam Hammady
during my time at QCRI. Under his watchful eye, I got the opportunity to work on many
technical challenges within Rayyan, which in turn sparked my interest in data systems
research and motivated me to pursue a master’s.

Lastly, I would like to thank to my family for their never-ending support through this
journey. I would like to thank Umma and Uppa for their love and encouragement during
the crucial years of my education, starting from MUWCI, to CMU-Q and now Waterloo.
Tutu has always been a constant source of inspiration and I hope to support her on her
own journey in the years to come. Finally, I would like to thank Nana, whose wonderful
presence has brought so much warmth, joy, colour and beauty into my life...

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5

2.1 R-Tree . 5

2.2 R-Tree Variants . 8

2.2.1 R*-Tree . 8

2.2.2 R+-Tree . 9

2.2.3 NIR-Tree . 10

3 NIR+-Tree Design 12

3.1 Logical Layout . 12

3.2 Physical Layout . 14

3.3 Polygon Overlay . 15

3.3.1 Polygon Encoding . 15

v

4 NIR+-Tree Algorithms 19

4.1 Inserts . 19

4.2 Searches . 23

5 Bulk Loading 26

5.1 Overview . 26

5.2 Bottom-Up Bulk-Loading . 28

5.3 Top-Down Bulk-Loading . 32

6 Experimental Evaluation 35

6.1 Experimental Setup . 35

6.1.1 Datasets . 36

6.1.2 Queries . 37

6.2 NIR+-Tree Experiments . 37

6.2.1 Inserts . 37

6.2.2 Searches . 40

6.2.3 Memory Usage . 41

6.3 Bulk-Loading Experiments . 44

6.3.1 Searches . 44

6.3.2 Memory Usage . 46

6.4 Summary . 49

7 Related Work 50

7.1 Space-partitioning Indexes . 50

7.2 Data-partitioning Indexes . 52

7.3 MBR Augmentations . 53

7.4 Bulk-Loading Algorithms . 54

8 Conclusion 55

References 57

vi

List of Figures

1.1 A range query executed on an R-Tree landing on multiple overlapping regions. 2

1.2 Rectangle layout and branch node structure of an R-Tree and a NIR-Tree. 3

2.1 MBR expansion during the chooseLeaf operation causing overlap. 7

2.2 Overlap introduced by grouping in the splitNode operation. 8

2.3 splitNode in the R+-Tree. The dashed red line is the split line. The split
causes node B to be partitioned into B1 and B2 in the resulting grouping. . 9

2.4 Expansion and fragmentation of an MBR into a polygon in the NIR-Tree. . 10

3.1 NIR-Tree branch node with three branches. Branches contain polygons with
three, one and two rectangles respectively. 13

3.2 NIR+-Tree branch containing a reference rectangle with coordinates (x1, y1)
and (x2, y2) and its page handle. 14

3.3 Example of coordinate sharing between a polygon and its reference rectangle. 16

3.4 Encoding scheme for polygons using reference rectangles. 16

3.5 Serialized byte array for the polygon in Figure 3.4a. 17

5.1 One million uniformly distributed points on a 1×1 grid. 28

5.2 MBRs of an R-Tree bulk-loaded using Sort-Tile-Recursive. 30

5.3 Close-up of the MBRs in Figure 5.2a, along with their constituent points. . 31

5.4 MBRs of an R-Tree bulk-loaded using Top-Down Greedy Splitting. 33

6.1 Total pages accessed for index construction 38

vii

6.2 Total time taken for index construction (seconds) 39

6.3 Total pages accessed for 100,000 point queries (log scale) 40

6.4 Range query results (log-log scale) . 42

6.5 Memory usage of unencoded vs encoded polygons (MB) 44

6.6 Total pages accessed for 100,000 point queries 45

6.7 Range query results (log-log scale) . 47

6.8 Memory usage of unencoded vs encoded polygons for TGS (MB) 48

viii

List of Tables

2.1 Functions used in the insert procedure of R-Trees. 6

2.2 Complexity of chooseLeaf and splitNode methods at a single level of the
tree across R-Tree variants. M is the number of entries in a node. 6

6.1 Tree height for all datasets . 39

6.2 Range search I/O reduction of the NIR+-Tree against other indexes for each
value of k. Nearest competitor is in bold. 43

6.3 Index sizes (MB) . 44

6.4 Bulk-loaded index height for TGS and STR across all datasets 45

6.5 Dataset size and bulk-loaded index sizes for TGS and STR (MB) 48

ix

Chapter 1

Introduction

The use of spatial data has grown at an unprecedented scale over the past decade due to
the increasing popularity of location-based technologies. Applications relying on spatial
data are ubiquitous in daily life, ranging from ride-hailing services to navigation systems.
As a result, there is a need to develop algorithms and data structures for efficient spatial
data processing.

R-Trees [17] are a popular class of data structures for indexing spatial data. R-Trees
group spatial data into rectangles and then further organize these rectangles into a hier-
archy. This results in a tree-like structure, where the larger rectangles at higher levels of
the tree encapsulate the smaller rectangles at lower levels of the tree. Since the rectangles
encompass spatial objects within the smallest extent possible, they are also called mini-
mum bounding rectangles (MBRs). Point or range queries on an R-Tree involve inspecting
MBRs that satisfy the search criteria at each level and then recursively traversing the tree
from top to bottom.

The search performance of an R-Tree depends heavily on the area, perimeter and degree
of overlap between its constituent MBRs [3]. Many variants of R-Trees have been developed
over the years [37, 3, 5], each of which use different strategies to optimize the size and shape
of their MBRs. Numerous augmentations to MBRs themselves have been proposed [9, 38],
which can be adapted for any tree that uses MBRs for spatial data partitioning.

In particular, overlap between rectangles in an R-Tree can significantly affect perfor-
mance, such that the search complexity increases from O(log n) to O(n) in the worst case.
For example, Figure 1.1 shows the geometric layout of an R-Tree on the left and the struc-
ture of its nodes on the right. Consider the range query executed on this R-Tree in the
same figure. Since the query lands on the overlapping region between node A and B, the

1

A

A

.
.

D D

C

CE E
F

F

B

BRange Query Root

Figure 1.1: A range query executed on an R-Tree landing on multiple overlapping regions.

search algorithm has to traverse both nodes to find relevant data. The same effect is seen
in the next level of the tree, where the query lands on the overlapping region between
nodes C and D as well as nodes E and F. This in turn causes the query to descend all four
nodes, potentially traversing branches that do not yield any results. By obfuscating which
node the region belongs to, overlap can cause many spurious searches that degrade query
performance. Consequently, overlap at higher levels of an R-Tree can induce many such
searches, as they force queries to explore a larger portion of the tree to find relevant data.

Recently, Langendoen et al. introduced the NIR-Tree [22], an in-memory R-Tree variant
that completely eliminates overlap. It does so by fragmenting a single overlapping rectangle
into multiple smaller ones and forming them into an axis-aligned polygon that no longer
intersects. Experimental results show that the NIR-Tree is very efficient at point queries
while providing comparable range search performance with other popular R-Tree variants.

However, being an in-memory index, the NIR-Tree is limited to handling small datasets
that can fit entirely in RAM. Furthermore, the price-to-performance ratio of main-memory
continues to be significantly higher than secondary storage [26]. As a result, data systems
popularly use secondary storage to handle large volumes of spatial data that grow beyond
the capacity of main-memory. This is especially true for applications that rely on location-
based technologies, as they often deal with large amounts of spatial data. Therefore, there
is significant motivation to adapt the NIR-Tree for disk-based indexing.

The I/O (Input/Output) cost model is popularly used for analyzing the performance
of secondary storage indexes [12]. Operating systems read and write to disks in fixed-size
pages, with each such disk access counting as one I/O. Therefore, disk-based indexes are
typically decomposed into pages and laid out on the storage medium. Due to the high cost

2

A

A

B

B

D

D

C

C

R-Tree Layout

R-Tree Node

Page 1

A1

A2

A1 A2 B1 B2 C D1 D2

B2

B1 D2

D1

C

NIR-Tree Layout

NIR-Tree Node

Page 1 Page 2

Figure 1.2: Rectangle layout and branch node structure of an R-Tree and a NIR-Tree.

of disk accesses, these indexes must aim to reduce the I/O cost of operations. The key
strategy is to maximize the data stored in a single page, so that a single I/O returns as
much useful information as possible. This is done by setting the fanout — the number of
children in each node — such that a single node occupies an entire disk page. This in turn
reduces the height of the R-tree and minimizes the number of I/Os required to traverse it.

Conventional disk-based layouts pose two challenges for the NIR-Tree in comparison
to other R-Trees. First, each child in a NIR-Tree is associated with a polygon rather than
a rectangle. This introduces increased storage overhead as a single polygon is composed
of multiple rectangles. Second, the number of rectangles that make up the polygons in
a NIR-Tree are unbounded and cannot be predicted ahead of time. Figure 1.2 shows the
branch node and geometric layout of an R-Tree and a NIR-Tree with fanout = 4. Assuming
a page can hold 4 rectangles, the R-Tree can fit its branch node within a page, while the
NIR-Tree has to spill over to a second page. Thus, extensive overlap can produce large
polygons that cause a node to overflow a disk page in a NIR-Tree. As a result, the NIR-
Tree uses more I/Os than other R-Tree variants to execute the same query, making it less
suitable for disk-based indexing.

This thesis proposes the NIR+-Tree, an improved variant of the NIR-Tree that can
efficiently index spatial data on disk. The key insight is that the original rectangles the
NIR+-Tree uses to derive polygons can be kept on disk, while the polygons themselves can
be stored separately in main-memory. This stabilizes the fanout of the NIR+-Tree and
keeps its I/O costs competitive with other R-Trees. During query execution, the polygons
in main-memory can be used to disambiguate overlapping regions, reducing the number of

3

spurious I/Os. The term polygon overlay is used to refer to this design, since the geometric
shape of the rectangles on disk are refined by the polygons in memory.

Additionally, various bulk-loading strategies have been proposed to efficiently construct
indexes from the R-Tree family given a pre-defined set of input data [24, 13, 35]. By
exploiting a global ordering on the input dataset, bulk-loading produces R-Trees with better
layout and space utilization in less time than sequential inserts. While these algorithms
can be adapted for the NIR+-Tree, they do not take into account the polygons generated
by it. This work also investigates optimal bulk-loading algorithms for the NIR+-Tree.
Specifically, an optimal bulk-loading algorithm must start with minimal overlap so that
the NIR+-Tree produces small polygons. This ensures that subsequent insertions do not
quickly generate complex polygon overlays.

The rest of this thesis is organized as follows. Chapter 2 discusses background on R-
Trees and NIR-Trees. Chapter 3 outlines the design of the NIR+-Tree and the concept
of polygon overlays. Chapter 4 explores suitable bulk-loading algorithms for the NIR+-
Tree. Chapter 5 presents experimental evaluations on the NIR+-Tree against other R-Tree
variants. Chapter 6 covers related work on spatial indexing. Chapter 7 concludes this
thesis and proposes future work on the NIR+-Tree.

4

Chapter 2

Background

This chapter introduces the R-Tree data structure, describes its insert and search algo-
rithms and illustrates how R-Trees generate MBRs that can overlap. Two different R-Tree
variants are also presented, the R+-Tree [37] and the R*-Tree [3]. Finally, this chapter
describes the NIR-Tree, an in-memory variant of the R-Tree which fragments overlapping
rectangles into polygons to eliminate overlap.

2.1 R-Tree

R-Trees are the multi-dimensional equivalent of the ubiquitous B-Tree [2], designed for
indexing spatial data in any number of dimensions and optimized for disk accesses. R-
Trees group together spatial data that are close to each other into leaf nodes and represent
them with their minimum bounding rectangles (MBRs). The MBRs of leaf nodes are then
further grouped together into branch nodes, whose MBRs are then recursively grouped into
more branch nodes, and so on, thereby constructing a hierarchial data structure. MBRs
can be seen as an approximation of the spatial extent of the objects they enclose. They
can be used to quickly answer spatial queries by examining only those MBRs that intersect
with the query region.

Table 2.1 summarizes the functions used by the insert algorithm which are common
across all R-Tree variants. Spatial data is inserted into the R-Tree using a two-step process.
In the first step, a leaf node needs to be selected to contain the new data entry. This is
handled by the chooseLeaf function, which traverses the tree starting from the root and
selects the child node with the MBR that requires the least expansion area to enclose the

5

new data entry. It may also be possible that no expansion is needed if the data entry to
be inserted already lies within an existing MBR. The algorithm then expands the chosen
MBR, descends into the selected node and repeats the process of selecting a new child
node. This continues until the algorithm reaches the leaf level, at which point a leaf node
is chosen to contain the new data entry.

In the second step, the adjustTree method is called to split nodes in the tree that
have exceeded the maximum fanout M . Starting from the leaf node chosen to contain
the new data entry, the algorithm traverses the tree upwards, splitting any overfull nodes
and propagating new split nodes upwards. The algorithm terminates when it encounters
a node that does not need to be split. When encountering a node that needs to be split,
the splitNode function is called to decide how to partition the entries in the node into
two new nodes. There are three different variants of the splitNode function for the
original R-Tree, each with varying complexity: the linear split, the quadratic split and
the exponential split. Out of these, the quadratic split is the most commonly used, as it
offers a good balance between performance and partitioning quality. Table 2.2 lists the
computational complexity of the chooseLeaf and splitNode methods at a single level of
the tree for all R-Tree variants.

Function name Description
chooseLeaf Traverses down the tree and expands MBRs of nodes to contain a

new data entry.
adjustTree Traverses up the tree and splits overfull nodes, propagating new split

nodes upwards.
splitNode Called by adjustTree to split an overfull node into two new nodes.

Table 2.1: Functions used in the insert procedure of R-Trees.

chooseLeaf splitNode

R-Tree O(M) O(M2)
R*-Tree O(M2) O(M logM)
R+-Tree O(M) O(M logM)
NIR-Tree O(M) O(M)

Table 2.2: Complexity of chooseLeaf and splitNode methods at a single level of the tree
across R-Tree variants. M is the number of entries in a node.

The following is a brief description of the quadratic split of the R-Tree: The split
algorithm iterates through all possible

(
M+1
2

)
pairs of entries in the overfull node and

6

Figure 2.1: MBR expansion during the chooseLeaf operation causing overlap.

computes the minimum bounding rectangle (MBR) comprised of each pair. Following this,
the algorithm then selects the pair of entries whose MBR has the largest area. These two
entries are then assigned to be the starting entries of the two new nodes. The intuition is
that grouping these two entries together will result in the worst possible MBR with a large
area and hence they must be separated into different nodes. Once the starting entries have
been selected, the algorithm then iterates through the remaining entries and assigns each
entry to the node whose MBR requires the least expansion area to cover the entry. The
algorithm terminates when each entry has been assigned to one of the two new nodes.

Searches in R-Trees are performed by traversing the tree starting from the root node:
each child in the root node is examined to determine if its MBR intersects with the query
point or region. If so, the algorithm descends into the child node and recursively searches
its children. On encountering a leaf node, the algorithm then examines each entry in the
node to determine if it intersects with the query. If so, the entry is added to the result
set. In the case of point searches, the algorithm can immediately terminate once it has
found the first matching entry. Range queries, on the other hand, require the algorithm
to examine all leaf nodes that intersect with the query region to collect data objects that
satisfy the query.

Overlap in the MBRs of R-Trees happen during execution of the chooseLeaf and the
splitNode functions. In the case of chooseLeaf, overlap can occur when the algorithm
selects a node and expands its MBR to contain the new data entry. Even when optimizing
for the smallest expansion area, it is still possible for the expanded MBR to overlap with
other MBRs in the node. Figure 2.1 illustrates this, where expanding the yellow MBR
is optimal with respect to the expansion area but this still causes overlap with its sibling
MBR. For splitNode, overlap can occur due to the partitioning of entries into two new
nodes. In particular, after dividing the entries into two groups, it is possible for the MBRs

7

of the two groups to overlap. For example, Figure 2.2 shows a node with four entries being
split into two new nodes. The splitNode algorithm selects A and B to form the first node
and C and D to form the second node. However, this grouping results in overlap between
the two MBRs produced by the split. As such, it is often not possible to expand MBRs
or partition nodes without introducing overlap. Consequently, queries that intersect with
overlapping regions force searches to examine more nodes (by reading more disk pages)
than necessary.

A

B

C

D

Figure 2.2: Overlap introduced by grouping in the splitNode operation.

2.2 R-Tree Variants

2.2.1 R*-Tree

The R*-Tree [3] is an R-Tree variant with modified versions of the chooseLeaf and
splitNode functions. The distinguishing feature of the R*-Tree is that it performs re-
insertions of the entries in a node to improve the spatial quality of its MBRs. The R*-Tree
is the most popular R-Tree variant and is considered to be state-of-the-art along with its
successor, the revised R*-Tree [5].

The chooseLeaf function of the R*-Tree is mostly the same as the original R-Tree,
except that it uses a different heuristic to select a leaf node to contain the new data entry.
Instead of selecting the MBR that has the least expansion area, the R*-Tree selects the
MBR that produces the least overlap with other MBRs in the node when expanded. This
optimization helps minimize disk I/O for point queries and small range queries [3].

The splitNode function of the R*-Tree differs significantly from the quadratic split
of the R-Tree by incorporating MBR overlap and perimeter in addition to the area into
the splitting heuristic. splitNode first selects a dimension to split by sorting the M + 1
entries in the node along a dimension and then iterating through all possible M splits that
produce two groups each. The algorithm computes the MBRs of the two groups produced

8

A

B

C

D
A

B1 B2

C

D

Figure 2.3: splitNode in the R+-Tree. The dashed red line is the split line. The split
causes node B to be partitioned into B1 and B2 in the resulting grouping.

by each such split and sums up the perimeter values of the MBRs across all M splits; it
then selects the dimension with the least perimeter sum as the split axis. Then, within
the selected split axis, the algorithm selects the split that minimizes the overlap of the two
MBRs. Ties are broken by selecting the split with the least MBR area. Note that R*-Trees
have to maintain a minimum fanout m for each node, and so in practice only M − 2m
splits are considered to accommodate at least m entries in each new node.

The R*-Tree also performs re-insertions of the entries in an overfull node during the
insert operation. When inserting a new data entry causes a node to exceed the maximum
fanout M , instead of splitting the node immediately, the R*-Tree first selects some of the
entries in the node to be re-inserted. For all the M + 1 entries in the node, the algorithm
computes the distance between the entries and the center of the MBR of the node. It then
sorts the entries in descending order of this distance and removes the first p entries. These
p entries are then re-inserted into the tree using the original insert procedure. Intuitively,
this process moves entries that are far away from the center of one node into another node
that is more suited to contain them. Therefore, re-insertions can be considered as a form
of reorganization of the entries in a node given the existing state of the tree. Experimental
results show that re-insertions can significantly improve the quality of MBRs in the tree,
reducing I/O costs by up to 50% [3].

2.2.2 R+-Tree

The R+-Tree [37] is an R-Tree variant that aims to reduce overlap in its constituent MBRs.
In particular, the R+-Tree uses a modified node splitting technique ensuring that the MBRs
produced by splitNode do not overlap.

For each dimension d, the splitNode function of the R+-Tree sorts entries in its node
along that dimension and computes splits using each entry. Each such split determines a

9

A A A1

A2

B B B

Figure 2.4: Expansion and fragmentation of an MBR into a polygon in the NIR-Tree.

partition line that can be used to divide the entries of a node into two groups. For points,
the split is the d-th coordinate of the entry, while for rectangles it is the d-th coordinate
of the lower left corner of the rectangle. While the R+-Tree does not have a minimum
branch factor, it does have a fill factor f that can be configured when splitting a node,
which ensures that one of the two new nodes will have at least f entries. Unlike other
R-Tree variants, the R+-Tree propagates its split downwards, splitting nodes further down
the tree if necessary using the same split. Figure 2.3 shows an example of a split in the R+-
Tree recursively splitting its children. Note that downward propagated splits can partition
nodes that are not overfull, and thus can grow the tree by a few extra nodes for every
such split. However, these splits are useful for ensuring that the MBRs of nodes produced
by splitNode do not overlap, which can make up for the increased tree size during query
execution.

R+-Trees are similar to the K-D-B-Tree [34] introduced by Robinson et al. which is
very efficient at indexing point data. The R+-Tree differs from the K-D-B-Tree by using
MBRs that tightly enclose the points they contain, while the K-D-B-Tree’s nodes simply
partition space without bounding the constituent points — as a result, the MBRs of an
R+-Tree cover the spatial data they index more precisely than a K-D-B-Tree. Moreover,
R+-Trees (like other R-Trees) are capable of indexing rectangle data objects, while K-
D-B-Trees are restricted to point data. Note that the R+-Tree [37] does not modify the
chooseLeaf function, and hence it uses the same area minimization heuristic as the original
R-Tree. Consequently, overlap can still occur when MBRs are expanded in the chooseLeaf
function.

2.2.3 NIR-Tree

The NIR-Tree [22] is an in-memory R-Tree variant based on the R+-Tree that completely
eliminates overlap in its constituent MBRs. It does so by fragmenting overlapping rectan-
gles into polygons that are comprised of smaller, non-overlapping rectangles. As a result,

10

any overlapping region is fully disambiguated, which minimizes the number of spurious
searches. Unlike the other R-Tree variants presented in this chapter, the NIR-Tree sub-
stitutes minimum bounding rectangles with minimum bounding polygons, which provide
a more accurate representation of the data objects they enclose in addition to eliminating
overlap.

Polygons in the NIR-Tree are formed out of the overlapping rectangles produced by
the chooseLeaf function. Once an MBR has been chosen and expanded to include the
new data point, the algorithm checks if the expanded MBR overlaps with any other sibling
MBRs in the node. If so, the fragment method is called to break down the expanded
MBR into smaller rectangles, constituting a bounding polygon that no longer overlaps with
its siblings. Fig 2.4 shows an example MBR that gets expanded and then subsequently
fragmented into a polygon during the chooseLeaf operation. Details on how the fragment
algorithm produces polygons can be found in [22].

The splitNode function of the NIR-Tree uses the same downward split mechanism
as the R+-Tree, ensuring that MBRs produced by splitting overfull nodes do not overlap.
However, the choice of the split is different, as instead of using the entries of a node for
candidate splits, the NIR-Tree computes a d-dimensional average point called the geometric
median and uses it as the split line. For leaf nodes, the geometric median is computed by
averaging all d-th coordinates of the points in the node. For branch nodes, the geometric
median is computed by averaging all the d-th coordinates of the corners of each polygon
in the node. The choice of the dimension d also varies: for leaf nodes, d is chosen to be the
dimension along which the MBR of the node extends the most, while for branch nodes,
d is chosen to be the dimension whose geometric median results in the least number of
downward splits at the current level of the tree.

Thus, the NIR-Tree eliminates overlap produced by the chooseLeaf and splitNode

functions by using non-overlapping polygons and downward splits, respectively. The NIR-
Tree’s polygons offer good search performance for point and highly selective range queries
that are more likely to land on overlapping regions in other R-Tree variants. However,
adapting the NIR-Tree’s polygons to work on disk is challenging since it is difficult to
maintain a static fanout on a disk page with dynamically-sized polygons. Subsequent
chapters propose techniques to convert the NIR-Tree to an efficient disk-based index.

11

Chapter 3

NIR+-Tree Design

This chapter describes the design of the NIR+-Tree augmented with polygon overlays. The
logical definition of the NIR+-Tree on disk is presented, followed by its concrete imple-
mentation. The polygon overlay data structure is then introduced. Finally, this chapter
presents an encoding that exploits the geometric layout of polygons to reduce the memory
usage of the polygon overlay.

3.1 Logical Layout

A brief description of the logical structure of the original NIR-Tree is necessary to outline
the design of the NIR+-Tree in comparison.

The original NIR-Tree consists of branch and leaf nodes organized into a hierarchical
structure. A NIR-Tree is configured with a fanout M , which is the number of branches
or points contained in a branch or leaf node, respectively. A branch in turn contains a
polygon representing the area covered by that branch and a child pointer pointing to the
children of that branch. A branch node contains a pointer to its parent node and M
branches. The polygons belonging to each branch in a branch node are disjoint, preventing
redundant branch traversals during searches. Fig 3.1 illustrates an example branch node
in the NIR-Tree. Similarly, a leaf node contains a pointer to its parent node and M data
points.

The overall structure of the NIR+-Tree remains mostly the same as described above
except for two modifications. These changes are required to efficiently map the NIR+-Tree
to pages on disk.

12

Polygon 1

Branch 1 Branch 2

Polygon 2

Branch 3

...

Polygon 3

Parent
Ptr

Child
Ptr

Child
Ptr

R1 R2 R3 R4
Child
Ptr

R5 R6

Figure 3.1: NIR-Tree branch node with three branches. Branches contain polygons with
three, one and two rectangles respectively.

First, to maximize the data that can be stored in a page, parent pointers are removed
from both branch and leaf nodes. Parent pointers are used in operations that traverse
upwards, such as the adjustTree algorithm. Instead of pointers, the path of branches
taken is tracked using a stack and used for such traversals. Second, instead of storing
polygons, reference rectangles are stored in nodes. Reference rectangles are the smallest
rectangle enclosing all the polygons of a branch node or all the points in a leaf node.
The polygons themselves are moved out of the nodes and stored separately in the polygon
overlay.

These terms are formally defined below:

Definition 1 A branch Bi is a pair (childi, Ri), where childi denotes the pointer to the
child of the branch and Ri denotes the reference rectangle of the branch. A branch Bi is
also associated with a polygon Pi which is used to derive the reference rectangle Ri.

Definition 2 A branch node is a set of branches {B1, · · · , Bn}, where 1 ≤ n ≤M and M
is the configured fanout.

Definition 3 A leaf node is a set of points {p1, · · · , pn}, where each pi ∈ Rd for some
dimension d, 1 ≤ n ≤M and M is the configured fanout.

A unique identifier is also defined for each branch in a NIR+-Tree, which is required by
the polygon overlay data structure.

Definition 4 Let B be the set of all branches in a NIR+-Tree. We define a function
fid : B 7→ N that assigns each branch a unique integer value. Thus, each branch Bi in a
NIR+-Tree has a unique integer id represented by fid(Bi).

Definition 5 A polygon overlay is a set of tuples {(fid(B1), P1) · · · (fid(Bn), Pn)} where n
≤ the total number of branches.

13

x1
8 bytes

Reference rectangle

y1 x2 y2
Page
handle

Figure 3.2: NIR+-Tree branch containing a reference rectangle with coordinates
(x1, y1) and (x2, y2) and its page handle.

3.2 Physical Layout

This section describes the concrete implementation details of the NIR+-Tree. As previously
mentioned, branch and leaf nodes in a NIR+-Tree must have their fanout M configured
such that each node occupies an entire disk page. The internal details of NIR+-Tree nodes
are presented and used to calculate a value for M . The size of a disk page is assumed to
be 4KB in the discussion below.

Since the original NIR-Tree is in-memory, the child pointers in a branch node are virtual
memory addresses. Most disk-backed indexes instead use page handles, which are integers
that uniquely identify the pages stored on disk to refer to other nodes [12]. A lookup table
is maintained that maps page handles to addresses in virtual memory. When a page is
loaded from disk, this lookup table is updated with the address of the page in memory.
Subsequently, the lookup table is consulted to translate the page handle into a memory
address during insert or search operations.

Figure 3.2 illustrates the structure of a NIR+-Tree branch that uses page handles to
refer to child nodes. A 2-dimensional rectangle can be represented using its lower left
and upper right coordinates. Thus, a reference rectangle R consists of 4 double-precision
floating-point values, using 32 bytes in total. Page handles in this implementation use 8
bytes. This results in a branch size of 40 bytes. Additionally, the first 20 bytes of a page
are used to store metadata, giving a usable space of 4076 bytes in a 4KB page.

Thus, the maximum fanout M for a 4KB page is

M =
⌊Usable Space in Page

Branch Size

⌋

M =
⌊4076

40

⌋
=

⌊
101.9

⌋
= 101

14

A leaf node in the NIR+-Tree is simply an array of points, each consuming 16 bytes in
the 2-dimensional case. Note that since leaf nodes store points and not rectangles, it is
possible to increase the fanout of leaf nodes beyond that of branch nodes. For example,
the fanout for a leaf node can be set to ⌊4076/16⌋ = 254. However, in practice both branch
and leaf nodes are configured to have the same fanout to keep implementations simple.

3.3 Polygon Overlay

The polygon overlay is a data structure that stores the polygons associated with each
branch in a NIR+-Tree. When executing a search, it is possible to use the reference rect-
angle in each branch to determine whether the search area overlaps with the branch. This
however can lead to false positives, as the reference rectangle can overlap with the reference
rectangles in other branches. To disambiguate the overlapping region, the polygon associ-
ated with each branch is consulted to determine whether the branch actually contains the
search area or not.

Hash tables are used to concretely implement polygon overlays such that branches are
mapped to their associated polygons. Since each branch has a unique integer in the form of
its page handle, this is used as the key for the hash table. Therefore, for a given branch Bi,
fid(Bi) = the page handle of Bi. This allows the NIR+-Tree to perform an O(1) expected
lookup to fetch the polygon associated with a branch during a search.

3.3.1 Polygon Encoding

In datasets that exhibit high overlap, most branches of the NIR+-Tree can have polygons
stored in the overlay. Furthermore, there is no limit to the number of rectangles that can
make up a polygon, and a high degree of overlap can induce complex polygons. As a result,
the overlay can consume a significant amount of memory.

To address this issue, an encoding for efficiently storing polygons in the overlay is
proposed, similar to the clip points representation in Clipped Bounding Boxes [38]. The
encoding exploits the fact that the coordinates of a polygon and its reference rectangle
can have the same values depending on their geometric layout. For example, consider the
coordinates of polygon P consisting of two rectangles R1 and R2 in Figure 3.3a. R1’s lower
left coordinate is (a, b) while its upper right coordinate is (c, d). Similarly, R2 is represented
by (c, b) and (e, f). Now consider the reference rectangle R in Figure 3.3b. Its lower left
coordinate is (a, b) and its upper right coordinate is (e, d). Since the reference rectangle R

15

(a,b)

R1

R2

(c,b)

(c,d)

(e,f)

(a) Polygon P = {R1, R2}

(a,b)

R

(e,d)

(b) Reference rectangle R

Figure 3.3: Example of coordinate sharing between a polygon and its reference rectangle.

(00,01)

R1

R2

(c,01)

(c,11)

(10,f)

(a) Encoded polygon P

(00,01)

R

(10,11)

(b) 2-bit encoding scheme

Figure 3.4: Encoding scheme for polygons using reference rectangles.

16

0x0002 0xD6 0x00 0x01 0x01 0x02 c c f0x03
2 bytes 1 byte 1 byte 8 bytes

Length Type Encoded Coordinates Unencoded Coordinates

Figure 3.5: Serialized byte array for the polygon in Figure 3.4a.

is stored in the branch node, it is possible to encode the coordinates of the polygon P by
referring to matching coordinates of R. This gives us a more compact representation of P
that can be stored in the overlay.

To represent the four points of a reference rectangle R, only a 2-bit encoding scheme
is required. For example, suppose the lower left coordinates of R are encoded using (00,
01) and the upper right coordinates of R are encoded using (10, 11), as shown in 3.4b.
Matching coordinates in the polygon P can now be replaced using this encoding. In this
implementation, double-precision floating-point values are used to represent coordinates
on a plane. By applying the encoding scheme described above, it is possible to substitute
an 8-byte double with a 2-bit representation. In practice, a full byte is used to store the
2-bit representation to keep implementations simple. Thus, before applying the encoding,
storing the 8 coordinates of P using doubles takes 64 bytes. After applying the encoding,
5 of the coordinates can be represented using the 2-bit scheme, while the remaining 3
coordinates are stored as doubles, as shown in Figure 3.4a. This gives us a representation
that uses only 5 · 1 byte + 3 · 8 bytes = 29 bytes, reducing memory usage by 54%.

Given a polygon P and its reference rectangle R, P is serialized into a byte array
containing metadata along with encoded and unencoded coordinates. To keep track of
how many coordinates are contained in the byte array, a 16-bit integer is prepended,
indicating the number of rectangles in P . This allows the NIR+-Tree to use polygons
containing up to 216 = 65,536 rectangles, which is more than sufficient for most datasets.
Then, to identify which coordinates are encoded and which are not, a bit array is used,
representing type information. For each coordinate, one bit is used to indicate whether
the coordinate is encoded or not. A set bit indicates that the coordinate is encoded, while
an unset bit indicates that the coordinate is unencoded. The type bits first represent the
x and y coordinates of the lower left corner and then the x and y coordinates of the upper
right corner of each rectangle. Thus, for R1 and R2 in Figure 3.4a, the type bits are 1101
0110 (0xD6). Following the type information, the encoded and unencoded coordinates are
appended to the byte array. Fig 3.5 shows the serialized byte array for the polygon in
Figure 3.4a.

Let E and U be the number of encoded and unencoded coordinates in a polygon P

17

respectively; this gives us the number of bits in the serialized byte array as:

= Length Bits + Type Bits + Coordinates

= 16 + (E + U) + (8 · E + 64 · U)

= 16 + 9 · E + 65 · U

For the polygon in Figure 3.4a, E = 5 and U = 3, giving us a total of 16+9 ·5+65 ·3 =
256 bits or 32 bytes as the final size of the byte array.

Interpreting the serialized byte array requires us to first parse the number of rectangles
in P from the first 16 bits. The deserialization then iterates through each bit in the type in-
formation to parse the encoded and unencoded coordinates. Two pointers are maintained,
one to the start of the encoded coordinates and one to the start of the unencoded coordi-
nates. For a set bit in the type information, 1 byte is parsed from the encoded coordinates
and substituted with the appropriate coordinate from the reference rectangle of P . For an
unset bit, 8 bytes are parsed from the unencoded coordinates, using the coordinate as is in
the deserialized representation. This process continues until all the coordinates have been
parsed, reconstructing the original polygon P from the serialized byte array.

18

Chapter 4

NIR+-Tree Algorithms

This chapter describes the algorithms used for inserting and searching data in the NIR+-
Tree. In particular, update and search algorithms must reference NIR+-Tree nodes using
page handles and utilize the overlay for polygon-related operations.

4.1 Inserts

The algorithms used for inserting data into the NIR+-Tree must also include the additional
step of manipulating the polygon overlay. Methods are first presented for retrieving and
updating polygons in the overlay.

The getPolygonFromOverlay (Algorithm 1) method first checks if the branch has a
polygon associated with it in the overlay. If so, it returns the polygon. Otherwise, it
returns the reference rectangle of the branch. The insertPolygonInOverlay (Algorithm 2)
method inserts the polygon associated with a branch only if it constitutes two or more
rectangles. This is because a polygon with only one rectangle is equivalent to the reference
rectangle of the branch, and does not need to be stored in the overlay.

The method getNodeUsingHandle is used to retrieve a node from disk using a page
handle. To generate reference rectangles from polygons, the getReferenceRectangle

method is used as is from the original NIR-Tree [23].

19

Algorithm 1 getPolygonFromOverlay(NIR+-Tree T , Branch B) → Polygon P

1: P ← T.Overlay[B.handle]
2: if P ̸= ∅ then
3: return P
4: else
5: return B.R
6: end if

Algorithm 2 insertPolygonInOverlay(NIR+-Tree T , Branch B, Polygon P)

1: if |P.rectangles| ≥ 2 then
2: T.Overlay[B.handle]← P
3: end if

When the insert function is called on the NIR+-Tree, the first step is to select a leaf
node to store the new point, handled by the chooseLeaf method (Algorithm 3). Starting
from the root node handle, each node to be examined must be retrieved from disk using
getNodeUsingHandle. Subsequently, if the node is a leaf node, the algorithm returns
immediately. Otherwise, each branch in the branch node is checked to see if the point is
contained in the polygon associated with the branch (line 4). The polygons themselves are
retrieved from the overlay using getPolygonFromOverlay (line 4). If the point is contained
in the polygon, the algorithm continues its search on the selected branch node (lines 5-
6). Otherwise, the algorithm selects the branch that has the polygon with the smallest
area increase for the point and expands it. Finally, the algorithm checks if the expanded
polygon overlaps with any other polygon in the branch node. If so, the expanded polygon is
fragmented into non-overlapping rectangles using the original NIR-Tree’s fragmentmethod
(line 14). The new polygon is inserted in the overlay and the branch is updated with a
new reference rectangle (lines 15-16). The algorithm then recurses on the selected branch
node, repeating the process until a leaf node is reached. Furthermore, the path of branches
taken from the root node to the leaf node is stored in a stack S for each level traversed in
the NIR+-Tree.

Once a point has been inserted into the appropriate leaf node, the adjustTree method
(Algorithm 4) is called to ensure that the NIR+-Tree satisfies the maximum fanout M . It
uses the stack S returned by chooseLeaf to traverse upwards, instead of parent pointers
(lines 4). If the fanout of a node exceeds M , the node is split using splitNode to create
two new nodes with branches BL and BR, each of which have fanout < M (line 6). The
new branches are inserted into the parent node and their polygons are inserted into the

20

Algorithm 3 chooseLeaf(NIR+-Tree T , Point p) → Node N , Stack S

1: Node N ← getNodeUsingHandle(T.root.handle)
2: Stack S = {T.root.handle}
3: while N is not a leaf node do
4: if ∃B ∈ N.branches such that p ∈ P ← getPolygonFromOverlay(T,B) then
5: N ← getNodeUsingHandle(B.handle)
6: S.push(B.handle)
7: else
8: Find B such that P ← getPolygonFromOverlay(T,B) has the smallest
9: area increase for p among all of N.branches.
10: Expand P to include p.
11: Retrieve all polygons P ′ from the overlay for each branch B′ ∈ N.branches
12: such that P and P ′ overlap.
13: for ∀P ′ do
14: P = fragment(P ′, P)
15: insertPolygonInOverlay(T , B, P)
16: B.R← getReferenceRectangle(P)
17: end for
18: N ← getNodeUsingHandle(B.handle)
19: S.push(B.handle)
20: end if
21: end while
22: return N,S

21

Algorithm 4 adjustTree(NIR+-Tree T, Stack S)

Require: ∃M a maximum fanout
1: Branch B ← S.pop()
2: while B ̸= ∅ do
3: Node N ← getNodeUsingHandle(B)
4: Branch BP ← S.pop()
5: if |N.branches| > M or |N.points| > M then
6: (BL, PL), (BR, PR)← splitNode(N, partitionNode(N))
7: BL.R← getReferenceRectangle(PL)
8: BR.R← getReferenceRectangle(PR)
9: if BP ̸= ∅ then
10: Node NP ← getNodeUsingHandle(BP)
11: NP .branches← NP .branches \ {B}
12: T.Overlay[B.handle] = ∅
13: NP .branches← NP .branches ∪ {BL, BR}
14: insertPolygonInOverlay(T , BL, PL)
15: insertPolygonInOverlay(T , BR, PR)
16: else
17: Node N ′ ← (BL, BR)
18: T.root← N ′

19: end if
20: end if
21: B ← BP

22: end while

22

overlay (lines 10-15). If the root node was split, a node containing the two new branches
is created and set as the new root of the NIR+-Tree (lines 17-18). The algorithm then
traverses up the tree (line 21) until all nodes in the path with fanout > M have been split.

The splitNode method takes a node N whose fanout exceeds M and splits it into two
new nodes NL and NR, each of which have fanout < M . The line to split the node is
obtained using the partitionNode method, which computes the geometric median of the
points or branches in the node. The splitNode and partitionNode methods are identical
to the original NIR-Tree implementation and can be found in [23]

4.2 Searches

The section presents algorithms used for executing point or range searches in the NIR+-
Tree. The search method is initially called on the root node of the NIR+-Tree and takes
as argument the point or rectangle being queried.

For point searches (Algorithm 5), if the current node being searched is a branch node,
the algorithm iterates over each branch in the node (line 3) and checks if the point is
contained in the polygon associated with the branch (line 5). If so, the algorithm recurses
on the selected branch node (line 7). Since the NIR+-Tree guarantees that the polygons in
a branch node are disjoint, the point being searched is assured to be contained in at most
one polygon. As a result, the algorithm can stop iterating over branches once it finds a
polygon that contains the point being queried (line 8). If the current node being searched
is a leaf node, the algorithm iterates over each point in the node and returns the data
associated with a point if it matches the point being queried (lines 12-19).

Range searches (Algorithm 6) are executed similarly, except that an accumulator is
used to store the points that are contained in the range (line 1). If the current node being
searched is a branch node, the algorithm iterates over each branch in the node (line 3) and
checks if the range intersects with the polygon associated with the branch (line 5). Unlike
point searches, a range search must iterate over all branches in a branch node, since the
range being queried can overlap with multiple polygons, even if they are disjoint. If the
current node being searched is a leaf node, the range is checked against each point in the
node (line 12). Points contained in the range are added to the accumulator (line 14) which
is returned after the search is complete.

23

Algorithm 5 search(NIR+-Tree T , Node N , Point p) → Data D

1: D = ∅
2: if N is a branch node then
3: for B ∈ N.branches do
4: P ← getPolygonFromOverlay(T,B)
5: if p ∈ P then
6: N ← getNodeUsingHandle(B.handle)
7: search(T,N, p)
8: break
9: end if
10: end for
11: end if
12: if N is a leaf node then
13: for p′ ∈ N.points do
14: if p = p′ then
15: D = data associated with p′

16: break
17: end if
18: end for
19: end if
20: return D

24

Algorithm 6 search(NIR+-Tree T , Node N , Rectangle R) → Accumulator A

1: A = ∅
2: if N is a branch node then
3: for B ∈ N.branches do
4: P ← getPolygonFromOverlay(T,B)
5: if R ∩ P ̸= ∅ then
6: N ← getNodeUsingHandle(B.handle)
7: A = A ∪ search(T , N , R)
8: end if
9: end for
10: end if
11: if N is a leaf node then
12: for p ∈ N.points do
13: if p ∈ R then
14: A = A ∪ {p}
15: end if
16: end for
17: end if
18: return A

25

Chapter 5

Bulk Loading

Previous chapters presented the design as well as the search and update algorithms of
the NIR+-Tree. This chapter examines bulk-loading algorithms for the NIR+-Tree. Bulk-
loading algorithms allow the NIR+-Tree to quickly and efficiently index large datasets. An
overview of bulk-loading techniques for R-Trees is first presented. Subsequently, the two
existing classes of bulk-loading algorithms in the literature are described and evaluated on
their suitability for bulk-loading the NIR+-Tree.

5.1 Overview

In most applications involving spatial data, it is common to have a large dataset that is
known a priori. For example, map applications utilize a large database of roads and land-
marks which needs to be indexed for efficient retrieval. Such datasets are typically static
and are infrequently updated. In such cases, it is more efficient to bulk-load the index from
the entire dataset at once rather than inserting each record individually. By leveraging the
knowledge of the entire dataset before construction, bulk-loading can create indexes with
better space utilization and geometric layout than indexes created by sequential inserts.

Bulk-loading algorithms for R-Trees follow a common blueprint: they typically sort the
given dataset using an ordering and then create branch or leaf nodes incrementally at each
level by grouping together entries. Since each level of the tree is fully constructed before
the next level is created, the nodes of a bulk-loaded R-Tree have close to 100% occupancy.

Bulk-loading algorithms for R-Trees differ in the ordering used to sort the dataset as
well as the grouping strategy used to create nodes. Unlike single-dimensional data, multi-

26

dimensional data can be ordered in multiple ways. For example, a dataset of 2D points can
be sorted by their x-coordinate, y-coordinate, or by their distance to another point, such
as the centroid value of the input dataset. Sorting the input dataset using a particular
ordering places entries that are close to each other in the same node. This is useful for
spatial data retrieval, as it is likely that neighboring data entries will need to be accessed
together during range searches.

Grouping strategies for bulk-loading algorithms can be classified into two categories:
bottom-up and top-down.

A bottom-up bulk-loading algorithm constructs an index by gathering the N sorted
input data points and grouping them into leaf nodes containing M points each, where M
is the fanout of the tree. This results in ⌈N/M⌉ leaf nodes created at the first level. It then
recursively gathers the ⌈N/M⌉ leaf nodes and groups them into branch nodes containingM
nodes each, producing ⌈N/M2⌉ branch nodes at that level. This process then recursively
continues upwards until the root node is formed. Let the height of the bulk-loaded tree be
h = ⌈logM N⌉; we then have that the number of children in the root node to be ⌈N/Mh−1⌉.

Top-down algorithms take the opposite approach: They start by partitioning the N
data points into nodes containing Mh−1 points each. These ⌈N/Mh−1⌉ nodes are then
designated to be the children of the root node of the R-Tree. Each of these child nodes
are then recursively split to create nodes containing Mh−2 points each. The recursive split
continues until ⌈N/M⌉ leaf nodes containing M points each are created, at which point
the bulk-loading process is complete.

While bulk-loading is a one-time step used to index a given dataset, it is also not
uncommon to update the index with new data after it has been bulk-loaded. A bulk-loaded
index exhibits good space utilization and geometric layout, however, subsequent insertions
into the index can weaken these properties. Therefore, while bulk-loading algorithms for R-
Trees can be used for constructing NIR+-Trees, they must be modified to take into account
the non-intersecting property of the MBRs in the NIR+-Tree. In particular, a bulk-loading
algorithm suitable for the NIR+-Tree must strive to produce MBRs with reduced overlap,
so that polygons need not be extensively created in the initial bulk-loading step. This is
crucial if the index is to be updated with new data in the future, as insertions can worsen
the overlap between MBRs and cause the polygons to grow large in size.

To find a suitable bulk-loading algorithm for the NIR+-Tree, we discovered that group-
ing strategies can have a significant impact on the degree of MBR overlap. In particular,
top-down approaches avoid overlap among its MBRs better than bottom-up approaches.
In the next sections, bottom-up and top-down bulk-loading algorithms are described in
detail using examples of both. These algorithms are then examined on their effectiveness

27

at producing MBRs with reduced overlap.

5.2 Bottom-Up Bulk-Loading

Figure 5.1: One million uniformly distributed points on a 1×1 grid.

Leutenegger et al. [24] provide a general framework for constructing disk-based R-Trees
using bottom-up bulk-loading algorithms:

1. Sort the input point dataset using a particular ordering, such that the N points are
grouped into ⌈N/M⌉ groups of M points each, where each group of M points is to
be placed into the same leaf node.

2. Place each ⌈N/M⌉ group of points into a page and output the (MBR, page handle)
pair for each group. The page handles will be used as child pointers by the nodes in
the next level of the tree.

3. Recursively process all such MBRs at the leaf level into nodes at the next level.
Continue processing each level until the root node is formed.

Examples of bottom-up bulk-loading algorithms include Nearest-X [35], Hilbert-Sort
[19] and Sort-Tile-Recursive [24]. Each of these algorithms follow the steps described above,
only differing in the ordering used to initially sort the input dataset. When handling point
data, the bulk-loading algorithm must specify how to order points at the leaf level as well

28

as the MBRs at the branch levels. The orderings used in these algorithms are described
below:

• Nearest-X (NX): Data points are sorted by their x-coordinate while MBRs are sorted
by the x-coordinate of their center.

• Hilbert-Sort (HS): Data points are sorted by their Hilbert value while MBRs are
sorted by the Hilbert value of their center. Note that MBRs can be sorted in other
ways, such as mapping the MBR into four dimensional space using its lower left
and upper right corner points and then sorting by the Hilbert value of this four
dimensional point.

• Sort-Tile-Recursive (STR): Data points are initially sorted by their x-coordinate,
then tiled into S = ⌈

√
N/M⌉ vertical slices each. The points in each slice are then

sorted by their y-coordinate and grouped into nodes of M points each. The process
is executed recursively for MBRs of branch nodes using their center point for sorting
and tiling.

STR is the most widely used bulk-loading algorithm, due to its superior performance
over NX and ease-of-implementation over HS. Hence, STR is used as the representative
bottom-up bulk-loading algorithm for experiments. To evaluate the viability of STR for
bulk-loading the NIR+-Tree, a dataset of one million uniformly distributed points is gen-
erated on a 1×1 grid, as shown in Figure 5.1. STR is then used to bulk-load this dataset
and examine the geometric layout of the resulting index. In the experiment, the fanout is
configured to be M = 50, which results in a tree height h = 4. The leaf nodes are denoted
to be at level 3, the branch nodes above to be at level 2, and so on with the root at level 0.

Figure 5.2a shows a subset of the leaf nodes generated by STR when bulk-loading one
million uniformly distributed points. Due to the tiling mechanism of STR, the leaf nodes
are well-packed into square-like MBRs. In general, spatial indexes prefer to structure their
MBRs into square-like shapes due to numerous benefits [3]. Given a fixed area, a square
has the smallest perimeter, and hence is easier to compactly organize into a given space.
Furthermore, most range queries tend to be square-like in shape, and hence square-like
MBRs satisfy a query more naturally than MBRs with irregular shapes. Finally, square-
like MBRs in one level of the tree allow for smaller, square-like MBRs in the level above,
which in turn produces MBRs with minimal dead space across the entire tree.

Observe that the leaf nodes in Figure 5.2a also have no overlap among them. Rous-
sopoulos et al. [35] proved that given a finite set of points N , it is possible to generate

29

(a) Subset of leaf nodes (b) Subset of branch nodes at level 2

(c) All branch nodes at level 1

Figure 5.2: MBRs of an R-Tree bulk-loaded using Sort-Tile-Recursive.

MBRs that group the points such that all MBRs are disjoint from each other. To under-
stand why the leaf node MBRs in the STR-generated tree are disjoint, a brief sketch of this
proof is provided. The proof first demonstrates that it is possible to transform each of the
N points such that they all have unique x-coordinates by rotating the points around the
origin by an angle α. After the rotation, sorting the points by their unique x-coordinate
and grouping them in the same order will always produce disjoint MBRs. This is because
each MBR consists of points that have a smaller x-coordinate than any successively created
MBR, and hence the extent of each MBR cannot overlap with any other MBR.

Applying this proof to the one million uniformly distributed points in Figure 5.1, ob-
serve that these points already have unique x-coordinates, and hence STR automatically
produces disjoint MBRs at the leaf level without the need for rotations.This is illustrated

30

Figure 5.3: Close-up of the MBRs in Figure 5.2a, along with their constituent points.

in Figure 5.3, which shows a zoomed-in view of the leaf node MBRs produced by STR
and the points they contain. Observe that by sorting and grouping points, each MBR
encloses points in a way that prevents overlap with other MBRs. Therefore any bulk-
loading algorithm that sorts the input dataset by the x-coordinate (or y-coordinate) of its
points and groups them will produce leaf node MBRs that are disjoint, assuming that the
points have unique x-coordinates (or y-coordinates). In practice, the number of unique
x-coordinates (or y-coordinates) depends on the dataset itself, and this translates to the
number of disjoint MBRs at the leaf level.

However, Roussopoulos et al. also showed that the zero overlap proof only applies to
point objects and not rectangles [35]. Figure 5.2b shows a subset of the MBRs of branch
nodes formed by grouping the MBRs of the leaf nodes. Observe that the branch node
MBRs retain the square-like shape of their children. However, the MBRs of these branch
nodes overlap with each other (indicated by the shaded region), despite the MBRs of the
leaf nodes being disjoint. Unlike points, rectangles have non-zero area and sometimes
cannot be grouped in a way that prevents overlap. Observe the same effect at the next
level of the tree, as shown in Figure 5.2c.

Thus, while bottom-up algorithms ensure that leaf node MBRs are disjoint, they cannot
guarantee that the MBRs of branch nodes at higher levels will be disjoint. We are able to

31

confirm the same by bulk-loading other datasets using STR and observing the resulting
MBRs. In particular, skewed datasets with points clustered in specific regions can cause
significant overlap in the MBRs of STR-generated trees.

However, the square-like shape of the MBRs generated by STR are highly desirable and
can be useful for range searches. Furthermore, in theory, the overlap between MBRs could
be eliminated by fragmenting the rectangles into polygons. Unfortunately, using STR to
bulk-load the NIR+-Tree results in large polygon sizes and construction times. This is
because STR produces MBRs with too much overlap, which causes the polygon fragmen-
tation algorithm to dominate the execution time of the bulk-loading process. Moreover,
the intricate overlap between MBRs produces complex polygon shapes that are substantial
in size. Therefore, bottom-up algorithms are not suitable for bulk-loading the NIR+-Tree
due to their inability to minimize overlap during index construction.

5.3 Top-Down Bulk-Loading

Top-down bulk-loading algorithms begin index construction starting from the root node
and then recursively create nodes at each level until the leaf nodes are formed. In this
section, we examine the Top-Down Greedy Splitting (TGS) algorithm [13], which is the
most widely used top-down bulk-loading algorithm, and evaluate how well it avoids overlap.

TGS was created with the insight that constructing MBRs bottom-up leads to less
control of the shape of MBRs at higher levels. MBRs at higher levels of the tree tend to
be large and influence the search path of queries more than the lower levels. Therefore,
optimizing the shape of MBRs at higher levels minimizes search cost better than MBRs
at lower levels. Thus, TGS takes a top-down approach to constructing MBRs during
bulk-loading. Furthermore, it uses a greedy strategy to partition data points into MBRs
by evaluating multiple partitions across all dimensions and choosing one with the lowest
cost. This is in contrast to most bulk-loading algorithms such as STR which uses simple
partitioning strategies instead of incorporating cost-based partitioning. Moreover, the cost
function is user-specified, which can be tuned to generate MBRs that optimize for area,
perimeter, overlap or any other metric of choice.

A description of the TGS algorithm is provided below:

1. The algorithm starts by constructing theM children of the root node. First, compute
C, the total number of points that the subtree of each child node will contain.

2. Then, for each dimension d:

32

(a) Subset of leaf nodes (b) Subset of branch nodes at level 2

(c) All branch nodes at level 1

Figure 5.4: MBRs of an R-Tree bulk-loaded using Top-Down Greedy Splitting.

(a) Sort the points by their d-th coordinate.

(b) For i from 1 to M − 1:

i. Consider a cut at C · i that partitions the points into two groups G1 and
G2, where |G1| = C · i and |G2| = C · (M − i).

ii. Group points in G1 and G2 into MBRs B1 and B2 respectively.

iii. Let f be the user-specified cost-function. Compute the cost of the cut
costi = f(B1, B2).

iv. If costi is the lowest cost seen so far, record the cut as the choice of cut for
dimension d.

3. Let c be the cut with the lowest cost across all dimensions. Partition the points into

33

two groups using c. Recursively compute cuts for each of the two groups by repeating
step 2.

4. Proceed to compute cuts that minimizes the cost function until M partitions with C
points are formed. Compute MBRs for each of the M partitions. At this point, the
root node is fully constructed with M children.

5. Recursively partition the C points in each of the M children to construct the next
level of the tree by repeating steps 1 to 4.

6. Continue constructing each level using cuts until the leaf nodes are formed.

TGS is used to bulk-load the same dataset of one million uniformly distributed points
used in the previous section with fanoutM = 50. The cost function is set to be f(B1, B2) =
perimeter(B1)+perimeter(B2), which selects the cut that produces MBRs with the small-
est perimeter.

The MBRs produced by TGS are examined starting from the root of the tree. Figure
5.4c shows the MBRs of the branch nodes at level 1 of the bulk-loaded tree. Observe that
unlike STR, the MBRs of level 1 branch nodes are disjoint. We see the same for the MBRs
at level 2 and the leaf nodes, as shown in Figures 5.4b and 5.4a respectively. Thus, the
top-down approach of TGS is quite effective at producing MBRs that do not overlap.

To understand why, we revisit the zero overlap proof [35] that showed that it is possible
to generate disjoint MBRs by sorting points by their x-coordinate (or y-coordinate) and
grouping them in the same order. Bottom-up algorithms like STR only apply this principle
when constructing MBRs of leaf nodes. Consequently, in STR, the MBRs of branch nodes
are shaped by the MBRs of their children, which offer no guarantee on the degree of overlap
produced. In contrast, TGS always groups points into MBRs at every level of the tree in
a top-down fashion. This allows TGS to leverage the zero overlap technique across the
entire tree, producing MBRs that are disjoint.

Thus, TGS is a good candidate to use for bulk-loading the NIR+-Tree, since it produces
MBRs with reduced overlap. As a result, there is little need for fragmenting overlapping
rectangles into polygons, which can be computationally expensive. Moreover, this reduced
overlap among MBRs translates to small polygon overlays. This is a desirable property
since subsequent insertions into the bulk-loaded NIR+-Tree tree can increase the overlap
between MBRs and produce large polygons. We empirically verify that TGS produces small
polygon overlays by bulk-loading multiple datasets and applying polygon fragmentation
on overlapping MBRs; the results show that very few polygons are needed to keep MBRs
disjoint on average for TGS.

34

Chapter 6

Experimental Evaluation

This chapter evaluates the performance of the NIR+-Tree with the three competing spatial
indexes introduced in Chapter 2: the R-Tree, R+-Tree and R*-tree. The evaluation bench-
marks the insert and search performance of each index on four real-world 2D datasets. The
STR and TGS bulk-loading algorithms mentioned in Chapter 5 are also evaluated on their
search performance and their ability to minimize MBR overlap.

6.1 Experimental Setup

For all indexes, the maximum fanout is configured to be M = 80 and for indexes that
require setting a minimum fanout (R-Tree and R*-Tree), m = 40, as suggested in prior
work [4]. For the R*-Tree, the percentage of entries to be re-inserted is configured to be
s = 30%, which is the optimal setting mentioned in [3]. For the R+-Tree, the fill factor,
which is the number of entries to be retained in a node during a split, is configured to
be 50%. This effectively results in the R+-Tree always splitting on the median point of
either the x-axis or y-axis. As discussed in Section 4.1, the NIR+-Tree uses the R+-Tree’s
downward-propagating split technique, except that it splits on the geometric median of a
node. For each dataset, each R-Tree variant is built by inserting all points sequentially,
after which a series of point or range queries are executed.

The search performance of the STR and TGS bulk-loading algorithms are also evalu-
ated. Each dataset is bulk-loaded using STR and TGS, after which the same point and
range queries are executed. TGS is configured to use the same cost function that opti-
mizes for MBR perimeter mentioned in Section 5.3. Additionally, we examine the polygon
overlay produced by applying polygon fragmentation to the MBRs produced by TGS.

35

Since the experiments in this section evaluate disk-based indexes, page access counts
are used as the primary measure of performance. The number of pages accessed during an
operation is a robust metric for evaluating the performance of disk-based indexes, as it is
independent of buffer pool sizes, data layout, workload patterns and the underlying storage
hardware. In the case of inserts, the total time taken to build the indexes completely in-
memory is also reported, as a way of comparing the overhead of the NIR+-Tree’s polygon
construction algorithms.

6.1.1 Datasets

Four 2D spatial datasets from the UCR Spatio-Temporal Active Repository [15] are used
for the evaluation. A description of each dataset follows:

• TDrive: A dataset containing one-week trajectory samples of 10,357 taxis in Beijing,
China. The combined trajectory data consists of points mostly concentrated in the
city center, with a subset of points scattered around the city outskirts.
· Total number of points: 11,317,142
· Average number of points per 0.12 grid: 2304.92

• Tweets: A collection of geo-tagged tweets across the United States. Points are
concentrated in major urban areas and largely towards the eastern half of the country.
A subset of points are located farther away from the mainland in Alaska and Hawaii.
· Total number of points: 15,598,403
· Average number of points per 0.12 grid: 321.03

• GeoLife: GPS trajectory data collected from 178 users over a period of four years
from the GeoLife social network. Points are largely distributed across 30 cities in
China, with a subset of points lying across a few cities in Europe and the United
States.
· Total number of points: 22,033,507
· Average number of points per 0.12 grid: 2653.68

• NYCTaxi: A dataset representing all yellow cab pickup and drop-off points in New
York City from January to December 2013. Due to the year-long sampling time-
frame and small sampling area, points are heavily concentrated in the city, making
this the largest and densest dataset used in experiments.
· Total number of points: 81,616,580
· Average number of points per 0.12 grid: 9301.03

36

6.1.2 Queries

The search performance of each index is evaluated using both point and range queries.
For point queries, 100,000 random points are sampled from each dataset and then queried
using each index. For range queries, rectangles are generated as described in [4]. First,
1000 random points are chosen from the input dataset and used as the center of a range
query. For each such center point, a k-nearest neighbor query is run to find the k nearest
neighbors to that point. A rectangle is then generated by bounding all the k points, giving
us a range query that returns a fixed number of output. k is set to 10, 100, 1000 and
10000, generating four range query profiles with varying selectivity for evaluation.

6.2 NIR+-Tree Experiments

6.2.1 Inserts

Figure 6.1 shows the total number of pages accessed for building each index. Across all four
datasets, the R*-Tree uses the most I/Os because of its re-insertion technique. Whenever a
node is full, the R*-Tree re-inserts 30% of the entries in the node assuming this will result
in a better reorganization of the entries. This results in the R*-Tree using roughly 2× to
3× as much I/O as its competitors. The R-Tree uses slightly more I/Os for inserts than the
NIR+-Tree and R+-Tree because its splits have to satisfy a minimum fanout. Consequently,
the R-Tree has better node utilization – after a split, each node is guaranteed to have at
least m = 40 entries. However, this comes at the cost of poor insert performance, since it
is likely that its nodes will have to be split again in the future. While the R+-Tree does
not have a minimum fanout, it has a fill factor set to 50%, which creates split nodes with
50% utilization. However, the R+-Tree also propagates its splits downwards, splitting child
nodes that are not full. This produces nodes with lower utilization at lower levels of the
tree, but provides better insertion performance, since new inserts are less likely to cause
splits. The NIR+-Tree and R+-Tree use roughly the same number of I/Os for inserts, since
they use the same split technique, only differing in which point to split.

Figure 6.2 shows the total time taken to build each index in-memory. Similar to the
I/O results, the R*-Tree takes the longest to construct, since it has to re-insert 30% of the
entries in each node. Note that during an insertion, the R*-Tree uses an O(n2) algorithm
for deciding which branch to insert a entry at each level of the tree. This algorithm is
executed for each re-inserted entry, resulting in the R*-Tree taking significantly longer to

37

NIR+ R* R+ R
0

50

100

150

200
N
o.

o
f
P
a
g
e
A
cc
es
se
s

×106

57.2M

143.6M

57.6M

82.8M

(a) TDrive

NIR+ R* R+ R
0

50

100

150

200

×106

83.3M

202.6M

79.4M

117.0M

(b) Tweets

NIR+ R* R+ R
0

100

200

300

N
o.

of
P
ag
e
A
cc
es
se
s

×106

121.0M

297.5M

119.7M

170.1M

(c) GeoLife

NIR+ R* R+ R
0

250

500

750

1000

×106

483.7M

1104.6M

487.2M

656.0M

(d) NYCTaxi

Figure 6.1: Total pages accessed for index construction

build than its competitors. The NIR+-Tree comes in second, since instead of using re-
insertions, it constructs polygons for each overlapping node, which is CPU-intensive by
nature. The R-tree and R+-Tree take the least amount of time to build, since they do not
have to perform any additional computations during insertions.

38

NIR+ R* R+ R
0

500

1000

1500

T
im

e
(s
ec
on

d
s)

758.5

1711.8

41.9
189.8

(a) TDrive

NIR+ R* R+ R
0

500

1000

1500

2000

1161.3

2142.4

70.6
248.6

(b) Tweets

NIR+ R* R+ R
0

1000

2000

3000

T
im

e
(s
ec
on

d
s)

1953.3

3196.8

101.0
344.1

(c) GeoLife

NIR+ R* R+ R
0

2500

5000

7500

10000

8081.6

11033.8

390.6
1378.6

(d) NYCTaxi

Figure 6.2: Total time taken for index construction (seconds)

Dataset NIR+ R* R+ R

TDrive 4 4 4 5
Tweets 5 4 4 5
Geolife 5 5 5 5
NYCTaxi 5 5 5 5

Table 6.1: Tree height for all datasets

39

NIR+ R* R+ R
0

100
101
102
103
104
105
106
107
108
109

N
o
.
of

P
ag
e
A
cc
es
se
s

0.4M

3.7M
1.0M

118.6M

(a) TDrive

NIR+ R* R+ R
0

100
101
102
103
104
105
106
107
108
109

0.5M
1.1M

0.4M

38.3M

(b) Tweets

NIR+ R* R+ R
0

100
101
102
103
104
105
106
107
108
109

N
o.

of
P
ag
e
A
cc
es
se
s

0.5M

5.7M
0.9M

262.9M

(c) GeoLife

NIR+ R* R+ R
0

100
101
102
103
104
105
106
107
108
109

0.5M

8.8M
2.9M

133.5M

(d) NYCTaxi

Figure 6.3: Total pages accessed for 100,000 point queries (log scale)

6.2.2 Searches

Point Searches

Figure 6.3 shows the number of pages accessed for executing 100,000 point queries on each
index. Note that a point query is executed optimally when it does not intersect with any
overlapping region in the tree and therefore uses I/Os exactly equal to the height of the
tree. Table 6.1 shows the height of each tree for each dataset. Across all four datasets,
the NIR+-Tree executed all 100,000 point queries optimally, using exactly 400,000 I/Os
on the TDrive dataset and exactly 500,000 I/Os on Tweets, GeoLife and NYCTaxi. In
all datasets, the NIR+-Tree’s closest competitor was the R+-Tree. The NIR+-Tree uses
roughly 2× less I/O than the R+-Tree on TDrive and GeoLife and roughly 6× less I/O on

40

NYCTaxi. However, on the Tweets dataset, the R+-Tree was able to beat the NIR+-Tree
by a small margin of roughly 65,000 I/Os. This is because the median split of the R+-Tree
works well on the Tweets dataset, resulting in the R+-Tree having a height of 4, while
the NIR+-Tree has a height of 5. Therefore, even though the NIR+-Tree executed each
point query optimally, the geometric median split of the NIR+-Tree resulted in a taller
tree, causing it to use one more I/O per point query. Furthermore, Tweets is the least
dense of all datasets, resulting in not as much overlap between MBRs for each index. As a
result, polygon construction is not as effective on the Tweets dataset as it is on the other
datasets. On the other hand, the NIR+-Tree was most effective on the NYCTaxi dataset
against its competitors, which is the most dense of all four datasets.

Range Searches

Figure 6.4 shows the I/Os used for executing range queries. Across all values of k, the
NIR+-Tree was able to outperform or match the performance of its closest competitor,
either the R+-Tree or the R*-Tree. For range queries with selectivity k = 101, the NIR+-
Tree uses roughly 2.5× less I/O on TDrive and GeoLife and roughly 5× less I/O on
NYCTaxi compared to the R+-Tree. On the Tweets dataset, the NIR+-Tree uses 2× less
I/O than the R*-Tree.

As query selectivity decreases, the NIR+-Tree’s performance advantage declines. This
is because larger range queries are less impacted by overlap, since they are more likely to
anyway intersect with multiple branches in a node. In particular, on the Tweets dataset, the
performance of the NIR+-Tree closely matches that of the R*-Tree for k ≥ 102. However,
on the remaining datasets, the NIR+-Tree continues to outperform the R+-Tree by using 2×
to 5× less I/O. Finally, the NIR+-Tree’s performance advantage plateaus for range queries
with k = 104, where it uses roughly the same number of I/Os as its nearest competitor.
Table 6.2 summarizes the I/O improvements of the NIR+-Tree for range queries across all
values of k.

6.2.3 Memory Usage

In this section, the memory usage of the NIR+-Tree is compared with its competitors.
In particular, this section examines the overhead of the geometric median split of the
NIR+-Tree and the polygon overlay.

Table 6.3 shows the size of each R-Tree variant after inserting all points in the four
datasets. The R*-Tree uses the least amount of memory since it has to satisfy the minimum

41

101 102 103 104

k

103

104

105

106

107

N
o
.
o
f
P
a
ge

A
cc
es
se
s

(a) TDrive

101 102 103 104

k

103

104

105

106

107

NIR+

R*

R+

R

(b) Tweets

101 102 103 104

k

103

104

105

106

107

N
o.

of
P
a
ge

A
cc
es
se
s

(c) GeoLife

101 102 103 104

k

103

104

105

106

107

(d) NYCTaxi

Figure 6.4: Range query results (log-log scale)

fanout m = 40 and it performs re-insertions. Both allow for better organization of entries
across the tree and packs nodes efficiently. The R-Tree comes in second, since it also has to

42

TDrive
k R* R+ R

101 7.89× 2.56× 246.08×
102 4.90× 2.49× 138.24×
103 2.10× 2.21× 40.88×
104 1.10× 1.54× 8.28×

Tweets
k R* R+ R

101 2.15× 3.88× 69.80×
102 1.64× 12.14× 41.45×
103 1.10× 13.18× 12.96×
104 0.88× 7.02× 3.24×

Geolife
k R* R+ R

101 10.05× 2.87× 451.07×
102 6.47× 5.12× 267.72×
103 2.66× 5.55× 78.19×
104 1.22× 3.64× 13.31×

NYCTaxi
k R* R+ R

101 15.72× 5.40× 235.59×
102 9.58× 4.13× 142.82×
103 3.54× 2.42× 47.38×
104 1.39× 1.45× 10.93×

Table 6.2: Range search I/O reduction of the NIR+-Tree against other indexes for each
value of k. Nearest competitor is in bold.

satisfy a minimum fanout but does not perform re-insertions. The NIR+-Tree and R+-Tree
have the largest tree sizes, due to their downward-propagating split technique. However,
the geometric median split of the NIR+-Tree produces smaller tree sizes than the R+-Tree
on all datasets, except for Tweets.

Figure 6.5 shows the memory usage of the polygon overlay with and without the en-
coding technique presented in Section 3.3.1. Across all datasets the size of the encoded
polygon overlay never exceeds more than 3% of the total tree size. Therefore, the polygon
overlay can be kept pinned in memory to refine searches. As the size of the dataset grows,
so does the absolute amount of memory saved by the encoding technique. The encoding is
most effective on the NYCTaxi dataset, where it reduces memory usage by ≈ 30%. For all
other datasets, the encoding shrinks the size of the overlay by ≈ 25%. Observe that the
effectiveness of the encoding decreases as the number of rectangles that make up a polygon
increases. This is because the encoding only removes duplicate points for rectangles that
share a common edge with the reference rectangle of the polygon. As the constituent rect-
angles in a polygon increases, there are fewer rectangles that share such a common edge,
minimizing the benefits of the encoding.

43

Dataset NIR+ R* R+ R

TDrive 302 259 310 288
Tweets 442 357 372 398
Geolife 576 504 601 562
NYCTaxi 2108 1882 2189 2062

Table 6.3: Index sizes (MB)

TDrive Tweets GeoLife NYCTaxi
0

10

20

30

40

P
ol
y
go
n
S
iz
e
(M

B
)

11

17
20

39

8

13
15

28

Unencoded

Encoded

Figure 6.5: Memory usage of unencoded vs encoded polygons (MB)

6.3 Bulk-Loading Experiments

This section evaluates the search performance of the TGS and STR bulk-loading algo-
rithms. We empirically demonstrate that TGS produces indexes with less overlap than
STR, resulting in better search performance for point and selective range queries. Note
that index construction results are omitted, since TGS always takes roughly 4× longer
than STR due to TGS’s greedy split selection compared to the static splits of STR.

6.3.1 Searches

Point Searches

Figure 6.6 shows the I/O cost of executing 100,000 point queries for each bulk-loaded
dataset. Bulk-loading algorithms strive to maximize the number of entries in each node to
produce indexes with the lowest possible height and size. Thus, a bulk-loaded index with
no overlap should execute point queries optimally, requiring I/Os equal to the height of the

44

TGS STR
0.0

0.2

0.4

0.6

0.8

1.0
N
o.

o
f
P
a
g
e
A
cc
es
se
s

×106

0.406M

0.555M

(a) TDrive

TGS STR
0.0

0.2

0.4

0.6

0.8

1.0

N
o.

o
f
P
a
ge

A
cc
es
se
s

×106

0.400M

0.672M

(b) Tweets

TGS STR
0.0

0.2

0.4

0.6

0.8

1.0

N
o.

of
P
ag
e
A
cc
es
se
s

×106

0.402M

0.611M

(c) GeoLife

TGS STR
0.0

0.2

0.4

0.6

0.8

1.0
N
o.

of
P
ag
e
A
cc
es
se
s

×106

0.507M

0.672M

(d) NYCTaxi

Figure 6.6: Total pages accessed for 100,000 point queries

Dataset TGS/STR Height

TDrive 4
Tweets 4
Geolife 4
NYCTaxi 5

Table 6.4: Bulk-loaded index height for TGS and STR across all datasets

index. Table 6.4 shows the height for each bulk-loaded dataset. Across all four datasets,
the TGS algorithm constructs indexes with little to no overlap among its MBRs compared

45

to STR. As a result, TGS executes each point query close to optimal, using 4.06, 4.00, 4.01
and 5.06 I/Os per query on TDrive, Tweets, GeoLife and NYCTaxi respectively. On the
other hand, the STR algorithm does not eliminate overlap as effectively as TGS, and thus
uses 5.55, 6.72, 6.11 and 6.71 I/Os per query on the same datasets.

TGS outperforms STR the most on the sparse Tweets dataset, using 40% less I/O to
perform point queries. On the other hand, its advantage is the least on the TDrive and
NYCTaxi dataset, where it uses 25% less I/O than STR. Recall from Chapter 5 that the
top-down approach of TGS works well to eliminate overlap when the points are not aligned
on the same axis. Sparse datasets like Tweets do not have as many points that share an
axis, and hence TGS produces MBRs with little to no overlap. On the other hand, it is
more likely for points to share the same axis on dense datasets like TDrive and NYCTaxi,
forcing TGS to generate MBRs that overlap each other. Thus, queries on dense datasets
induce more spurious I/O compared to sparser datasets on TGS due to MBR overlap.

Range Searches

Figure 6.7 shows the I/O cost for 1000 range searches for each selectivity value k. TGS
exhibits better range search performance compared to STR across all datasets when the
selectivity is high, which increases the chance that the query lands on an overlapping
region. In the case of STR, which does not eliminate overlap as effectively as TGS, this
results in queries accessing more pages than necessary. Similar to the point query results,
observe that TGS has the largest advantage on the Tweets dataset, using 40% to 10% less
I/O than STR as k increases. The performance gap between TGS and STR is the smallest
on the NYCTaxi and TDrive dataset, where TGS uses 23% to < 1% less I/O compared
to STR with increasing k. STR even outperforms TGS on the TDrive dataset for k = 104

by a margin of 3%. As the selectivity decreases, the number of pages accessed by STR
and TGS converge. This is because range queries with low selectivity are more affected
by the area and margin of MBRs than the degree of overlap. Moreover, beyond a certain
selectivity, the differences between the bulk-loading algorithms become negligible, since it
is likely that most pages in the tree will be accessed anyway.

6.3.2 Memory Usage

Previously, Table 6.3 showed index sizes after inserting each data point individually into
the various R-Tree variants. Due to the differences in how they choose to insert each
individual data point into a leaf node, each R-Tree variant produces indexes of different

46

101 102 103 104

k

104

105

N
o
.
o
f
P
a
ge

A
cc
es
se
s

(a) TDrive

101 102 103 104

k

104

105

N
o
.
of

P
ag
e
A
cc
es
se
s

TGS

STR

(b) Tweets

101 102 103 104

k

104

105

N
o.

of
P
ag
e
A
cc
es
se
s

(c) GeoLife

101 102 103 104

k

104

105

N
o.

of
P
ag
e
A
cc
es
se
s

(d) NYCTaxi

Figure 6.7: Range query results (log-log scale)

sizes across all four datasets. However, bulk-loading algorithms pack their nodes with as
many entries as possible, and so bulk-loaded indexes tend to have the same size irrespective
of the algorithm used. Table 6.5 displays the size of the indexes produced by TGS and

47

Dataset Number of Points TGS/STR Size

TDrive 11,317,142 182
Tweets 15,598,403 251
Geolife 22,033,507 354
NYCTaxi 81,616,580 1314

Table 6.5: Dataset size and bulk-loaded index sizes for TGS and STR (MB)

TDrive Tweets GeoLife NYCTaxi
0

20

40

60

80

P
ol
y
go
n
S
iz
e
(M

B
)

11

0.4

10

81

7
0.2

6

49

Unencoded

Encoded

Figure 6.8: Memory usage of unencoded vs encoded polygons for TGS (MB)

STR. As expected, index sizes increase in a perfectly linear trend with dataset sizes.

To confirm the viability of using TGS as a bulk-loading algorithm for the NIR+-Tree,
the fragment method is applied on overlapping MBRs to convert them into polygons in the
indexes produced by TGS. Figure 6.8 shows the memory overhead of the polygon overlay
across all four datasets indexed by TGS. The size of the polygon overlay can be used as
a proxy for the degree of overlap present in the constructed index. On a sparse dataset
such as Tweets, which has little overlap to begin with, TGS produces a minimal encoded
polygon overlay that is < 0.1% of the tree. Conversely, TGS fragments a significant amount
of MBRs into polygons on NYCTaxi, producing a polygon overlay comprising 3.7% of the
tree. Surprisingly, using TGS results in a bigger polygon overlay compared to using the
NIR+-Tree to index NYCTaxi — 49 MB vs 28 MB respectively. This is explained by the
fact that the nodes in TGS are more packed than the nodes in the NIR+-Tree. This packing
results in more MBRs in the nodes created by TGS compared to the NIR+-Tree, increasing
the likelihood of overlap. We note the same for the TDrive dataset whose polygon overlay
size on TGS is approximately the same as the NIR+-Tree. The opposite trend holds for
Tweets and GeoLife, where TGS has smaller overlays than the NIR+-Tree.

48

6.4 Summary

By employing non-overlapping polygons to refine searches, the NIR+-Tree is quite effective
at reducing the number of I/Os for point searches and selective range searches. As the
selectivity of the range query decreases, minimizing overlap has little impact. The NIR+-
Tree’s closest competitor is the R+-Tree, which the NIR+-Tree outperforms by using 2×
to 5× less I/O on range queries. The NIR+-Tree also outperforms the popular R*-Tree
by as much as 15×. Furthermore, the NIR+-Tree’s polygon overlay has a tenable memory
footprint as it only uses a small percentage of the total tree size on disk. The main weakness
of the NIR+-Tree is its computationally heavy polygon construction algorithms. However,
this is preferred to the R*-Tree’s re-insertion technique, which expends a significant amount
of I/O in an attempt to find a better layout for its MBRs. This makes the NIR+-Tree a
viable alternative to the R*-Tree for applications that execute point and selective range
queries.

When the dataset is known in advance, bulk-loading algorithms can be used to construct
indexes with optimal node utilization and structure. Experimentally, we show that the
top-down TGS algorithm outperforms STR on point and selective range queries due to its
ability to generate MBRs with less overlap. Consequently, the small number of overlapping
MBRs in TGS results in small polygon overlays, making TGS an ideal candidate to use as
a starting point for the NIR+-Tree.

49

Chapter 7

Related Work

This chapter presents a survey of related work in the area of spatial indexes. Spatial
indexes are typically classified into two categories: space-partitioning and data-partitioning
indexes, with R-Trees belonging to the latter. This chapter describes both main-memory
and disk-resident indexes for each category. The various enhancements to MBRs that have
been proposed in the literature are then presented. Finally, the chapter concludes with a
discussion of bulk-loading algorithms for R-Tree variants.

7.1 Space-partitioning Indexes

Space-partitioning indexes recursively partition multi-dimensional space into multiple re-
gions, where each region hosts a collection of data objects. Note that the regions in
space-partitioning indexes are disjoint and do not overlap. Consequently, such indexes are
typically designed only for point data, since volumetric data (such as rectangles) across
multiple regions will need to be replicated in each region. Additionally, the nodes of space-
partitioning indexes can cover regions that do not hold any data and thus can contain
significant dead space.

The Quad-Tree [11], Oct-Tree [28] and KD-Tree [6] are hierarchical space-partitioning
indexes designed for main-memory use. Quad-Trees and Oct-Trees partition 2D and 3D
space into quadrants and octants respectively. Each partition is then further recursively
subdivided into quadrants or octants until the partition holds a single data object. Quad-
Trees and Oct-Trees do not take into account the distribution of data when computing
partitions and hence can have nodes that contain no data. Quad-Trees and Oct-Trees

50

are not balanced trees, since objects that are densely concentrated in a particular area
can cause the tree to construct more nodes in that region. KD-Trees [6] take a different
approach by partitioning space into two along the median of the data objects, alternating
the partitioning dimension at each level of the tree. Consequently, each partition maintains
an equal number of data objects and thus unlike Quad-Trees and Oct-Trees, KD-Trees are
balanced search trees.

The KDB-Tree [34] is the disk-based equivalent of the in-memory KD-Tree. Unlike a
KD-Tree, where each partitioned region is its own node, each KDB-Tree node contains
multiple partitioned regions stored on a single disk page. The subsequent split of a node
that happens after inserting a point into a KDB-Tree can cause downward-propagating
splits, making insertion expensive. To mitigate this issue, hB-Trees [27] were proposed,
which represents the partitioned regions in a node using a KD-Tree. This allows it to
perform splits in more than one dimension, restricting downward splits to a single root-to-
leaf path. This minimizes the number of downward-propagating splits, making insertions
more efficient. BKD-Trees [32] further improve the performance of inserts by maintaining
a structure of multiple KDB-Trees and only applying updates to a subset of them.

The UB-Tree [33] is a multi-dimensional, disk-based index built on top of the B-Tree
[2]. The UB-Tree maps each multi-dimensional data object to a single-dimension using a
space-filling curve such as the Morton order. The key selling point of the UB-Tree is that
it can be easily integrated into existing database systems that already use B-Trees.

The Grid File [30] is a disk-backed, non-hierarchical space-partitioning index. Each
cell in a Grid File contains a handle to a disk page that holds data objects. Selecting the
appropriate granularity of the cell size is critical to the performance of a Grid File. The
granularity at which each dimension is divided into cells is maintained using a linear scale.
Various extensions to the Grid File have been proposed, such as the Twin-Grid File [18]
which attempts to improve the space utilization of the cells in a grid.

Non-hierarchical space-partitioning indexes for main-memory have also been proposed,
such as BLOCK [31], which aims to reduce the CPU cost associated with searching in a
spatial index. BLOCK uses a grid-based approach to partition space into a grid of cells,
where each grid contains a pointer to data objects. Similar to how the NIR-Tree and
NIR+-Tree enhances searches using polygons, BLOCK refines a search using multiple grids
each with different cell sizes.

51

7.2 Data-partitioning Indexes

Data-partitioning indexes group together data objects that are spatially close into a tight
enclosing structure. Since the geometry of the enclosure is derived from the data objects,
data-partitioning indexes are suitable for storing volumetric data without replicating them.
Since these indexes tightly enclose data objects, they exhibit minimal dead space in their
nodes. However, the main drawback of data-partitioning indexes is that their enclosing
structures can overlap, forcing searches to visit multiple nodes.

R-Trees [17] are the most widely used data-partitioning indexes, designed for disk-based
indexing. The R-Tree’s enclosing structure is the Minimum Bounding Rectangle (MBR),
which is the smallest rectangle that can contain a collection of point or volumetric objects.
Improvements to R-Trees involve techniques to improve the spatial quality of its MBRs.
The R*-Tree [3] performs re-insertions of the entries in an overfull node to find better
placements for them. The Revised R*-Tree [5] uses modified heuristics when inserting
data and splitting nodes instead of re-insertions to achieve the same or better performance
as the R*-Tree [3]. To prevent overlap between MBRs when handling volumetric data,
the R+-Tree [37] replicates data objects when they lie across multiple nodes. Similar to
the space-partitioning KDB-Tree [34], the R+-Tree also uses a downward-propagating split
strategy when splitting overfull nodes. Unlike the KDB-Tree, the R+-Tree bounds its data
objects using MBRs, eliminating a significant amount of dead space. The NIR-Tree and
NIR+-Tree extend the R+-Tree by eliminating the overlap that can happen between its
MBRs during the chooseLeaf operation.

CR-Trees [20] are R-Tree variants optimized for main-memory indexing by utilizing
compression for the MBRs in a node. Each MBR is compressed using a relative represen-
tation that stores the difference between a child MBR and a parent MBR. By compressing
MBRs, the CR-Tree packs more MBRs into a single node, increasing the fanout and cache
utilization of the tree. Similarly, the NIR-Tree [22] reduces cache misses by preventing
unnecessary pointer chasing incurred during searches due to overlapping MBRs. The NIR-
Tree achieves this by fragmenting overlapping MBRs into polygons comprised of smaller
rectangles that precisely cover the area owned by the original MBR. This enables the NIR-
Tree to fetch only those nodes that are relevant to the query. The NIR+-Tree adapts this
technique for disk-based indexing by using non-overlapping polygons to prevent spurious
disk accesses during queries.

While R-Trees are suitable for indexing data in low-dimensional spaces such as 2D and
3D, they do not scale well to higher dimensions. The TV-Tree [25] and X-Tree [7] are disk-
based hierarchical indexes designed for efficiently indexing high-dimensional data. The

52

TV-Tree stores data using only the dimensions necessary to distinguish between objects at
each level of the tree. The X-Tree reduces the significant overlap that can happen between
MBRs in high-dimensional spaces by using a split algorithm that minimizes overlap. In
case the X-Tree cannot find a suitable split, it merges together the entries in a node into
supernodes spanning multiple pages.

Waffle [29] is a disk-resident spatial index that combines ideas from both space and
data-partitioning indexes to produce MBRs that are disjoint. Waffle partitions a collection
of points into MBRs using axis-aligned splits and stores splits in the order of their creation
in its branch nodes. This ordering allows Waffle to insert new points into the index without
having to expand MBRs. However, Waffle can only handle point data and is not suitable
for volumetric data since splits can replicate data objects across nodes.

7.3 MBR Augmentations

Minimum Bound Rectangles (MBRs) are the basic building blocks of data-partitioning
indexes. Therefore, techniques that improve the spatial quality of MBRs will also improve
the performance of any index that uses them.

Clipped Bounding Boxes (CBBs) [38] refine MBRs by clipping away dead space from
their corners. CBBs re-use the underlying geometry of the data objects an MBR encloses
to produce clip points that prune away dead space. Clip points are stored in main-memory
and are used to minimize page accesses during searches. Each clip point is associated
with a point inside the MBR and a particular corner of the MBR. Instead of storing the
full coordinates of the corners, CBBs represent the four corners of an MBR using a 2-bit
flag. Unlike CBBs, the NIR+-Tree only uses the lower left and upper right corners of the
MBR for its encoding. Moreover, the NIR+-Tree encodes at the granularity of coordinates
instead of corners, allowing it to substitute the coordinates of a polygon using matching
coordinates of its reference rectangle. Finally, the NIR+-Tree refines searches similar to
CBBs by using polygons, but unlike CBBs, polygons target overlap between MBRs instead
of dead space.

MaMBo [9] aims to eliminate dead space from MBRs by tessellating an MBR into a
uniform grid of cells. Grid cells of an MBR in MaMBo are represented using a bitmap,
with a bit set to 1 if the cell is occupied and 0 if it contains dead space. MaMBo uses
these bitmaps to decide whether a query intersects dead space in an MBR or not, thereby
avoiding disk accesses to MBRs that do not intersect the query.

Raster Intervals [14] augment MBRs using grids in order to accelerate spatial joins.

53

The goal in a spatial join is to find all pairs of intersecting spatial objects from two sets.
MBRs are used as an initial filter to prune away pairs of objects that do not intersect. In
the subsequent refinement step, the remaining pairs are tested for intersection using the
actual geometry of the objects contained in the MBRs. Raster Intervals apply a grid on
each pair of MBRs to quickly determine intersection and avoid a computationally expensive
refinement phase.

Like the techniques presented above, polygons used by the NIR-Tree and NIR+-Tree
can be considered as MBR enhancements since they disambiguate overlapping sections of
MBRs, minimizing spurious searches.

7.4 Bulk-Loading Algorithms

This section discusses bulk-loading algorithms for R-Tree variants. Bulk-loading algorithms
can be used to construct an R-Tree with optimal node utilization from a pre-defined set of
input data. As presented in Chapter 5, bulk-loading algorithms can be classified into two
categories: bottom-up and top-down.

Bottom-up algorithms construct leaf nodes first and then recursively build the branch
nodes of the tree. Nearest-X [35] sorts objects on the x-coordinate and then groups objects
in this order into nodes. Hilbert-Sort [19] uses the space-filling Hilbert curve to sort objects
for grouping. Sort-Tile-Recursive [24] sorts objects on the x-coordinate, groups them into
vertical tiles, sorts objects in each tile on the y-coordinate and then groups them into nodes.
The PR-Tree [1] is a worst-case optimal bulk-loaded R-Tree that provides a theoretical
bound on the number of I/Os incurred during a range query. FLAT [39] is an indexing
scheme that uses STR to generate leaf node pages and then stores pointers to neighboring
leaf node pages. This allows FLAT to perform range queries without having to traverse a
hierarchy of branch nodes.

Top-down algorithms start by partitioning the input data into the highest-level branch
nodes and then recursively build lower-level branch nodes, constructing the leaf nodes
last. Top-Down Greedy Split (TGS) [13] evaluates all binary groupings of objects when
constructing nodes at each level of the tree and selects the best grouping using a cost
metric. Waffle [29] also introduces a top-down bulk-loading algorithm for point data,
where it computes and stores axis-aligned splits to generate non-overlapping partitions.
As demonstrated in Chapter 5, top-down algorithms such as TGS generate MBRs with
little to no overlap, making them suitable for producing bulk-loaded NIR+-Trees.

54

Chapter 8

Conclusion

This thesis presented techniques to convert the main-memory NIR-Tree for disk-based
indexing. By moving complex polygons out of branch and leaf nodes and into a memory-
resident hash table, the fanout of the NIR-Tree is kept steady. Doing so enables efficient
disk-based indexing while retaining the non-intersecting property of the original NIR-Tree.
Furthermore, it is possible to represent polygon coordinates in memory by their relative
position to the MBR on disk. Using this representation, polygons are encoded such that
they use less than 5% of the total index size for storage. The resulting index, the NIR+-
Tree, uses up to 5× fewer disk accesses to execute searches compared to state-of-the-art
R-Tree variants on real-world point datasets.

Additionally, this thesis examines algorithms that can be used to create bulk-loaded
NIR+-Trees. Chapter 5 shows that bottom-up bulk-loading algorithms create MBRs that
overlap significantly, making them a poor choice for bulk-loading the NIR+-Tree. Instead,
top-down bulk-loading algorithms create minimally overlapping MBRs on point datasets by
grouping points into MBRs at each level of the tree. The resulting bulk-loaded NIR+-Tree
needs very few polygons to disambiguate overlapping MBRs, making it a good starting
index for subsequent workloads that insert more data.

The NIR+-Tree can be improved and extended in several ways:

• The techniques and experiments presented so far only allow the NIR+-Tree to index
point data. More work is required to support indexing volumetric data, such as
rectangles. Specifically, the fragment algorithm used to convert overlapping MBRs
into polygons must be extended to work for volumetric data.

55

• The number of rectangles constituting a polygon in the NIR+-Tree are unbounded
and can grow arbitrarily large. This can lead to poor performance when the NIR+-
Tree is entirely in memory, due to an unbounded number of intersection tests. One
approach to taming polygon complexity is to simply discard overly large polygons
from the overlay, thereby reducing the number of intersection tests required as well
as the size of the overlay.

• The concept of converting overlapping rectangles into non-overlapping polygons need
not be limited to the NIR+-Tree. An interesting avenue of future work is to apply
the polygon fragmentation to other R-Tree variants to see how much performance
can be gained.

56

References

[1] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. The priority r-tree: A
practically efficient and worst-case optimal r-tree. ACM Trans. Algorithms, 4(1), mar
2008.

[2] R. Bayer and E. McCreight. Organization and maintenance of large ordered indices.
In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data
Description, Access and Control, SIGFIDET ’70, pages 107–141, New York, NY, USA,
1970. Association for Computing Machinery.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-
tree: An efficient and robust access method for points and rectangles. In Proceedings of
the 1990 ACM SIGMOD International Conference on Management of Data, SIGMOD
’90, pages 322–331, New York, NY, USA, 1990. Association for Computing Machinery.

[4] Norbert Beckmann and Bernhard Seeger. A benchmark for multidimensional index
structures, 2008.

[5] Norbert Beckmann and Bernhard Seeger. A revised r*-tree in comparison with related
index structures. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages 799–812, New York, NY, USA, 2009.
Association for Computing Machinery.

[6] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, sep 1975.

[7] Stefan Berchtold, Daniel Keim, and Peer Kröger. The x-tree: An index structure for
high-dimensional data. 02 1970.

[8] H. Blanken, A. Ijbema, P. Meek, and B. van den Akker. The generalized grid file:
description and performance aspects. pages 380–388, 1990.

57

[9] Giannis Evagorou and Thomas Heinis. Mambo - indexing dead space to accelerate
spatial queries. In Proceedings of the 33rd International Conference on Scientific and
Statistical Database Management, SSDBM ’21, pages 73–84, New York, NY, USA,
2021. Association for Computing Machinery.

[10] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proceedings of
the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’89, pages 247–252, New York, NY, USA, 1989. Association for Com-
puting Machinery.

[11] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta Inf., 4(1):1–9, mar 1974.

[12] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems:
The complete book, page 568. Pearson, 2014.

[13] Yván J. Garćıa R, Mario A. López, and Scott T. Leutenegger. A greedy algorithm
for bulk loading r-trees. In Proceedings of the 6th ACM International Symposium on
Advances in Geographic Information Systems, GIS ’98, pages 163–164, New York, NY,
USA, 1998. Association for Computing Machinery.

[14] Thanasis Georgiadis and Nikos Mamoulis. Raster intervals: An approximation tech-
nique for polygon intersection joins. Proc. ACM Manag. Data, 1(1), may 2023.

[15] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. UCR-STAR:
The UCR Spatio-Temporal Active Repository. SIGSPATIAL Special, 11(2):34–40,
December 2019.

[16] D. Greene. An implementation and performance analysis of spatial data access meth-
ods. pages 606–615, 1989.

[17] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD
Rec., 14(2):47–57, jun 1984.

[18] Andreas Hutflesz, Hans-Werner Six, and Peter Widmayer. Twin grid files: Space
optimizing access schemes. SIGMOD Rec., 17(3):183–190, jun 1988.

[19] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In Proceedings of the
Second International Conference on Information and Knowledge Management, CIKM
’93, pages 490–499, New York, NY, USA, 1993. Association for Computing Machinery.

58

[20] Kihong Kim, Sang K. Cha, and Keunjoo Kwon. Optimizing multidimensional index
trees for main memory access. SIGMOD Rec., 30(2):139–150, may 2001.

[21] Kihong Kim, Sang K. Cha, and Keunjoo Kwon. Optimizing multidimensional index
trees for main memory access. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’01, pages 139–150, New York, NY,
USA, 2001. Association for Computing Machinery.

[22] Kyle Langendoen, Brad Glasbergen, and Khuzaima Daudjee. Nir-tree: A non-
intersecting r-tree. In Proceedings of the 33rd International Conference on Scientific
and Statistical Database Management, SSDBM ’21, pages 157–168, New York, NY,
USA, 2021. Association for Computing Machinery.

[23] Langendoen, Kyle Jacob. A non-intersecting r-tree. Master’s thesis, 2021.

[24] S.T. Leutenegger, M.A. Lopez, and J. Edgington. Str: a simple and efficient algorithm
for r-tree packing, 1997.

[25] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The tv-tree: An index structure
for high-dimensional data. The VLDB Journal, 3:517–542, 1994.

[26] David Lomet. Cost/performance in modern data stores: How data caching systems
succeed. In 2019 IEEE 35th International Conference on Data Engineering Workshops
(ICDEW), pages 140–140, 2019.

[27] David B. Lomet and Betty Salzberg. The hb-tree: A multiattribute indexing method
with good guaranteed performance. ACM Trans. Database Syst., 15(4):625–658, dec
1990.

[28] Donald Meagher. Octree encoding: A new technique for the representation, manipu-
lation and display of arbitrary 3-d objects by computer. 10 1980.

[29] Moin Hussain Moti, Panagiotis Simatis, and Dimitris Papadias. Waffle: A workload-
aware and query-sensitive framework for disk-based spatial indexing. Proc. VLDB
Endow., 16(4):670–683, dec 2022.

[30] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file: An adaptable,
symmetric multikey file structure. ACM Trans. Database Syst., 9(1):38–71, mar 1984.

[31] Matthaios Olma, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. Block:
Efficient execution of spatial range queries in main-memory. In Proceedings of the 29th

59

International Conference on Scientific and Statistical Database Management, SSDBM
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[32] Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter. Bkd-
tree: A dynamic scalable kd-tree. pages 46–65, 2003.

[33] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and Rudolf
Bayer. Integrating the ub-tree into a database system kernel. In Proceedings of the
26th International Conference on Very Large Data Bases, VLDB ’00, pages 263–272,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[34] John T. Robinson. The k-d-b-tree: A search structure for large multidimensional
dynamic indexes. In Proceedings of the 1981 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’81, pages 10–18, New York, NY, USA, 1981.
Association for Computing Machinery.

[35] Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial databases
using packed r-trees. In Proceedings of the 1985 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’85, pages 17–31, New York, NY, USA,
1985. Association for Computing Machinery.

[36] Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial databases
using packed r-trees. SIGMOD Rec., 14(4):17–31, may 1985.

[37] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic
index for multi-dimensional objects. In Proceedings of the 13th International Confer-
ence on Very Large Data Bases, VLDB ’87, pages 507–518, San Francisco, CA, USA,
1987. Morgan Kaufmann Publishers Inc.

[38] Darius Sidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anastasia Ailamaki.
Improving spatial data processing by clipping minimum bounding boxes. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pages 425–436,
2018.

[39] Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Schurmann, Henry
Markram, and Anastasia Ailamaki. Accelerating range queries for brain simulations.
pages 941–952, 2012.

60

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	R-Tree
	R-Tree Variants
	R*-Tree
	R+-Tree
	NIR-Tree

	NIR+-Tree Design
	Logical Layout
	Physical Layout
	Polygon Overlay
	Polygon Encoding

	NIR+-Tree Algorithms
	Inserts
	Searches

	Bulk Loading
	Overview
	Bottom-Up Bulk-Loading
	Top-Down Bulk-Loading

	Experimental Evaluation
	Experimental Setup
	Datasets
	Queries

	NIR+-Tree Experiments
	Inserts
	Searches
	Memory Usage

	Bulk-Loading Experiments
	Searches
	Memory Usage

	Summary

	Related Work
	Space-partitioning Indexes
	Data-partitioning Indexes
	MBR Augmentations
	Bulk-Loading Algorithms

	Conclusion
	References

