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Abstract

In the exploration of data sets with many variables, the search for interesting pairs
is often the first step of analysis. This search builds a road map of the entirety of data
before looking at its details, and can provide indispensable inspiration for deeper inves-
tigation. Challenges are present, however, in adjusting results to address the multiple
testing problem and choosing a measure with sufficient generality to detect many forms of
dependence.

This work proposes the measurement of statistical dependence by recursive binning of
marginal ranks as a flexible measure of dependence. Simulation studies are used to char-
acterize the null distribution and demonstrate the method’s sensitivity to different data
patterns. By splitting bins randomly, the χ2 statistic has a null distribution conservatively
approximated by the χ2 distribution seemingly without a loss of power compared to max-
imized splitting rules, which has an inflated statistic value. The method is demonstrated
on real S&P 500 constituent data.

To adjust for multiple testing, a new framework and coefficient are devised with appro-
priate proofs for analyzing pooled p-values based on their tendency to detect concentrated
or diffuse evidence. This motivates a pooled p-value based on the χ2 quantile function
as a way to adjust for multiple testing while controlling the family-wise error rate and
fine-tuning for the evidence pattern of interest. Simulation studies suggest this method
is similarly powerful to the uniformly most powerful method while being more robust to
mis-specification.

Both the recursive binning measurement of association and the χ2 pooled p-value are
then demonstrated for genetic data after a tutorial introducing the relevant genetic con-
cepts. A method of moments adjustment of the χ2 pooled p-value to account for correlation
between tests is introduced and used with genomic and phenomic data from mice to iden-
tify regions of interest. The use of pooled p-values to combine parameter estimates in
meta-analysis is also explored, establishing the concepts of evidential intervals and demon-
strating their behaviour on simulated data.
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Chapter 1

Introduction

The modern world is awash with data. Ubiquitous data collection throughout society
has rendered data sets comprised of ever more variables and observations which must be
sifted through for insight. This is true, for example, in finance and genetics, where real
time measurement and the advent of complete sequencing have resulted in truly massive
raw data. In finance, the identification of interesting pairwise variable relationships can
motivate strategy or hedge risk, while the comparison of many genetic markers to a physical
trait confers greater understanding of inheritance and the nature of some disease. How
“interestingness” is measured in these and many other applications takes many different
forms, such as the scagnostics of Wilkinson et al. (2005).

Perhaps the most widely used measure of interestingness is statistical dependence. A
broad measure of the interestingness of a relationship between variables, it is defined as the
absence of statistical independence and so includes a wide array of patterns. Consequently,
many different measures devised for specific contexts and patterns of interest have been
developed (e.g. Goodman and Kruskal, 1979; Liebetrau, 1983; Choi et al., 2010) since
the early efforts of Galton and Pearson to characterize it with correlation and the χ2 test
(Stigler, 1989; Hald, 1998).

The rise of computers has changed the nature of these proposals drastically, resulting
in more flexible and computationally complex measures than ever before. Many modern
measures of dependence are products of the computer age, such as algorithmic ones based
on nearest neighbours (Dümcke et al., 2014), prediction (Breiman, 2001), or the maximiza-
tion of a particular data transformation (Breiman and Friedman, 1985; Reshef et al., 2011;
Jiang et al., 2015; Liu et al., 2018).

This change of circumstances has precipitated similar changes in the motivation of these
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measures. Before computers, calculating a measure for a single data pair was a laborious
task, simulation required creative physical devices, and results could only be shared slowly
by modern standards. Distributional approximations were therefore necessary for early
pairwise measures in their attempts to summarize the “true” dependence of one variable
on another (Pearson, 1900; Greenwood and Yule, 1915; Cramér, 1924) as characterizing a
measure in the null case to verify its behaviour was an almost insurmountable challenge.
Indeed, it took two decades for Pearson’s original formulation of the χ2 test to be adjusted
to the correct sample distribution1.

Today, computers can calculate pairwise measures and generate null examples trivially,
allowing us to explore the large volume of data presented to us more completely. This ease
of application allows for a more agnostic view of the results. Rather than the bedrock of
analysis, pairwise measures of dependence are computed across all pairs early in the analysis
of complex data to highlight the most interesting relationships before more complex models
are fit. Extreme values from among the vastly many summarized relationships are taken
as an indication of a pattern to be investigated more fully.

Several problems arise with the use of pairwise measures dependence to search data
in this way. First, it can be difficult to choose from the plethora of specialized measures
available. Most measures perform best on patterns of a particular type, and may miss
other interesting aspects of the data. This is not a trivial choice; choose incorrectly and
the most pertinent aspects of the data may be overlooked. In cases where the relationships
of interest have dependence patterns unknown a priori, this choice is particularly daunting.
To measure dependence in contingency tables alone, Goodman and Kruskal (1979) outline
dozens of measures of dependence to choose from.

This has led to the development of a collection of general measures of dependence.
Computer-age candidates for such a general measure to detect any statistical dependence
either take partitions of the sample space (Reshef et al., 2011; Jiang et al., 2015; Heller et al.,
2016; Reshef et al., 2018) or apply some transformation to the data (Székely and Rizzo,
2009; Liu et al., 2018). Data can be partitioned and transformed somewhat arbitrarily,
however, and so some selection critera is required. Generally, the choice is motivated by

1This chapter of statistical history is quite interesting, and an excellent summary is provided by Hald
(1998). It is also possible to track the development of the χ2 test directly by viewing Pearson (1900),
Greenwood and Yule (1915), Yule (1922), and Fisher (1922). Following the initial χ2 proposal in Pearson
(1900), an inconsistency was noted for the 2 × 2 contingency table by Greenwood and Yule (1915): the
same statistic computed through different intermediate steps implied different null degrees of freedom.
This was resolved theoretically by Fisher (1922) at the same time as an experiment by Yule (1922) lent
empirical credence to Fisher’s correction. Though Pearson did not initially accept these results and used
Biometrika to voice his dissent (Pearson, 1922, 1923), the broader statistical community correctly adopted
Fisher’s assertion that estimating moments restricts the degrees of freedom.
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maximization of a statistic measuring difference between the transformed or partitioned
result and that expected under independence.

Even using a general measure, the issue of incomparability between measures presents
another problem. Data may be continuous or may come in ordinal or nominal categories
and these different variable types, for example, can force the use of different measures.
Even using general measures for each type may make comparisons unclear, as different
conceptual frameworks or completely different scales can be hidden by the report of a
single number commonly between 0 and 1. An example is furnished by Wilkinson and
Wills (2008), who note that each scagnostic has a different distribution over [0, 1] for
uniform data. Absent context or experience, this makes the interpretation of a scagnostic
value of 0.6 highly challenging and its comparison to other measures fraught with difficulty.

The p-value remedies this problem, and so remains an important and powerful tool
to facilitate these comparisons. Not only does it measure the extremity of an observed
value in context, but all p-values exist on the same scale with identical interpretations and
uniform distributions over [0, 1] when the null is true. It provides a value dependent on
our assumptions and statistical theory which can nonetheless be compared to any other.

Finally, these many pairwise comparisons raise the issue of multiple testing. The num-
ber of pairwise comparisons grows rapidly in the number of variables, and values for a
measure which would be exciting on their own become routine even under the null. When
using pairwise p-values to guide analysis, care is required to avoid chasing spurious pat-
terns down dead-end paths. This was recognized well before the modern data deluge,
proposals from as early as Fisher (1932) and Pearson (1933) give simple ways to com-
bine, or pool, independent p-values and assess their overall significance. Though the former
has been widely adopted into practice, the following decades have seen many other pro-
posals (Stouffer et al., 1949; Edgington, 1972; Mudholkar and George, 1977; Heard and
Rubin-Delanchy, 2018; Wilson, 2019; Cinar and Viechtbauer, 2022).

1.1 Outline

The following chapters explore the very broad problem of using pairwise measures of de-
pendence to sort and filter variables. As outlined, this requires consideration of several
statistical problems, each with their own literature and conventions. Consequently, the
literature and previous work will be outlined at the start of the relevant chapter or in a
chapter immediately preceeding. As a highly applied topic, three chapters are fully dedi-
cated to applications. In particular, Chapter 5 develops the motivating example of genomic
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studies. Though more pertinent theoretical work is presented first, this motivating example
could be read before the rest.

Genetics, in particular exploratory genome-wide association studies, are a natural ap-
plication for the pairwise measure of independence to filter variables. There are tens of
thousands of genes that may affect a given trait or condition, and sifting through these for
the most interesting ones is a common problem in, for example, genome-wide association
studies. Chapter 5 clarifies the structure of this data and establishes a simple model of ge-
netics that informs a derivation of genetic correlation. This introduction is accompanied by
a package in R, toyGenomeGen, which allows for experimentation using the genetic model
presented. Real genetic data processed from the Mouse Genome Database (Bult et al.,
2019) is used to compare derived correlation under this simple model to that observed.
Results displayed using a custom plot matrix communicating the observed and theoretical
values of correlation along with their distribution under repeated simulation indicate a
reasonable fit.

Of course, the problem of leveraging pairwise measurements applies widely beyond ge-
netics. A brief survey of measures of interestingness from other contexts is presented at the
beginning of Chapter 2 before focus is placed on dependence due to its universal interest.
This motivates the introduction of functional measures of dependence evaluating depar-
tures of the joint distribution of pairs fX,Y (x, y) from the product of marginal distributions
fX(x)fY (y) and the evaluation of these functional measures by modern bin-based algorith-
mic measures. In these, a global measure of dependence D(X, Y ) is split into measures
applied to each bin d(X, Y ) and then summarized. Several measures are expressed as a
sum over all partitions of a function measuring the departure of each individual partition’s
count from that expected under independence, with a primary difference distinguishing
them the splitting logic or penalty function added to the measure of dependence.

Chapter 3 expands on bin-based measures by introducing a measure of dependence
based on recursive binary partitions of the pairwise sample space modelled on the recursive
binary partitioning of Rahman (2018). By first converting all variables to marginal ranks,
expected counts within each bin can still be determined under this flexible binning method.
This algorithm is sketched, an iterative implementation is detailed, and the corresponding
R package AssocBin is introduced. A proof supports the consideration of splits at points
alone. Extensive simulations are used to obtain true p-values for the χ2 statistic applied
to recursively partitioned bins under different settings. These indicate that random splits
produce a statistic with a null distribution conservatively modelled by the χ2 without a
loss of power against different simulated data patterns compared to maximized splits. In
contrast, maximizing splits produce inflated statistic values relative to the χ2 distribution
and an effective visual summary of the data. The algorithm is finally applied to S&P 500
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constituent stock data and compared to a previous analysis of the pairwise relationships
from Hofert and Oldford (2018).

Chapter 4 discusses pooled p-values as a way to control the family-wise error rate of
M > 1 p-values arising from independent tests. Previous work is summarized after es-
tablishing a series of telescoping hypotheses. These telescoping hypotheses are organized
by the prevalence of non-null p-values (measured by the proportion η of non-null tests in
the collection) and the strength of evidence provided by each non-null test (measured the
Kullback-Leibler divergence of the p-value distribution of the test from uniformity). A
simulation study carried out to investigate the performance of the uniformly most power-
ful (UMP) test from Heard and Rubin-Delanchy (2018) using these telescoping hypotheses
suggests a framework for pooled significance based on the detection of either concentrated
or diffuse evidence. Several proofs develop this concept and culminate in a centrality co-
efficient in [0, 1] which communicates the preference of a pooling function for diffuse or
concentrated evidence. A pooled p-value based on the χ2 quantile function is proposed
to control this coefficient. By changing the degrees of freedom, it is proved that a pooled
p-value with arbitrary centrality coefficient can be obtained for any M . Furthermore,
simulation studies indicate that the χ2 pooled p-value is more robust than the UMP to
mis-specification, and can be leveraged to provide information on the plausible alternative
distributions that generated a collection of p-values. Functionality to compute the central-
ity quotient, UMP, and χ2 pooled p-value are implemented in the R package PoolBal. Note
that Chapter 4 considers only the combination of p-values, and so the resulting method and
insight for multiple testing adjustment is highly general. Any group of methods producing
p-values can make use of these findings.

After the theoretical chapters, the remainder of the work considers particular examples.
Chapter 5, explained earlier, establishes a genetic model which is used immediately in
Chapter 6. Marginal and central rejection from Chapter 4 are shown to correspond neatly
to patterns of oligogenic inheritance for linear traits in genetics. This is demonstrated in
simulation studies before an investigation of real genetic data from the Mouse Genome
Database (Bult et al., 2019). In both the real and simulated data, the χ2 pooling method
is adjusted to account for dependence using the method of moments with a Satterthwaite
approximation and a large simulation study. The resulting adjustment seems to correct
the level of the pooled p-value without impacting its conclusions, suggesting a robustness
of the χ2 pooling function to dependence.

Chapter 7 presents the most exploratory and experimental application of pooling p-
values. Recognizing that the current glut of data implies a similar abundance of analyses,
a short foray into meta-analysis based on the χ2 pooling function of Chapter 4 is under-
taken. A novel method of combining parameter estimates between studies is proposed
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which considers many possible candidate parameters and tests each. This results in a re-
gion of plausible values where we would fail to reject the pooled p-value at threshold α that
simultaneously suggests plausible parameter values and tests whether observed estimates
could have arisen from the same population parameter. Evidential inference of this sort is
outlined and the χ2 pooled p-value is explored for this purpose. Simulation studies indi-
cate that changing the degrees of freedom changes the treatment of outliers by evidential
inference an impacts the coverage probability and probability of rejecting homogeneity.
Power investigations under common settings suggest that this new method of combining
parameter estimates performs similarly to more classical methods.
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Chapter 2

Measuring Interestingness

At the core of this work is the use of pairwise measures to highlight interesting variables
in a data set of many variables, and so it is natural to begin with an overview of these
measures. First, notation is established and terms are defined.

In general, “interestingness” is a subjective term. Conceivably any pattern could be
interesting in the right exploratory context, and so many different measures capturing
many different patterns exist. These are briefly discussed in the following chapter before
statistical dependence is explored in more detail. This focus on statistical dependence is
motivated by the observation that it is almost always interesting in an exploratory context.
When sifting through many variable pairs to select those worthy of further investigation,
a statistical dependency between any two provides information about how they should be
controlled or modelled in any investigation.

The exploration of statistical dependence eventually focuses on the evaluation of func-
tionals that compare the observed joint density to the product of marginal densities, as
these address the problem of dependence directly using its definition.1 In particular, bin-
based methods which partition the pairwise sample space are considered, as these auto-
matically perform non-parametric estimation of the joint and product marginal densities.
To discuss these methods, all are placed in a common notation which decomposes a global
statistic as the sum of local statistics computed on each bin independently.

1This contrasts the organization of Tjøstheim et al. (2022), an up-to-date survey of meaures of de-
pendence. While Tjøstheim et al. (2022) separate measures based on copulas, kernel functions, and
partitioning, these are all cast here as particular instances of functionals comparing the joint and product
marginal densities to emphasize how similar the computation of these conceptually different measures is
in practice.
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2.1 Preliminaries

Let X and Y be a pair of random variables with distribution functions FX(x) and FY (y)
over the domains X and Y both respectively. Denote the joint distribution of the pair
X, Y as FX,Y (x, y), and the conditional distributions FX|Y (x|y) and FY |X(y|x). To remain
fully general, note that both of X and Y may be continuous or discrete. Let fX(x),
fY (y), fX,Y (x, y), fX|Y (x|y), and fY |X(y|x) be the corresponding probability densities or
probability mass functions in the continuous or discrete cases. We say that X and Y are
independent and write X⊥⊥Y if and only if their joint sample space is a Cartesian product
and

fX,Y (x, y) = fX(x)fY (y) (2.1)

or equivalently fX|Y (x|y) = fX(x) and fY |X(y|x) = fY (y).

Define a K-dimensional copula as a distribution function C(u1, u2, . . . , uK) over [0, 1]
k

with uniform marginal distributions for all uk as in Embrechts et al. (2001). By Sklar’s
Theorem, for any K continuous random variables there exists a unique copula C such that

FX1,X2,...,XK
(x1, x2, . . . , xK) = C

(
FX1(x1), FX2(x2), . . . , FXK

(xK)
)
, (2.2)

that is the joint distribution can be summarized by a copula on the marginals transformed
to be uniformly distributed. In other words: the relationship between the variables is
uniquely determined by C and the marginals alone. Define the independence copula

CI(u1, u2, . . . , uK) =
K∏
k=1

uk. (2.3)

In particular, consider the copula of X and Y , C
(
FX(x), FY (y)

)
= C(u, v), and the bivari-

ate independence copula, CI(u, v) = uv.

In practice these theoretical quantities are unknown. Instead, all that is available is a
sample of paired observations (x1, y1), (x2, y2), . . . , (xn, yn) of (X, Y ). Let x = (x1, x2, . . . , xn)

T

and y = (y1, y2, . . . , yn)
T be the observed values of X and Y respectively. For X and Y

which can be ordered, let a subscript (x) indicate a non-decreasing sorting of elements with
respect to x so that x(x) is the vector x in increasing order and y(x) is the vector y sorted
in increasing order of x. Elementwise, follow the convention

x(x) = (x(1), x(2), . . . , x(n))
T
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to denote the elements of x(x) and analogously for y(y). Define the rank function on a
marginal sample x as

r(x;x) =
n∑

i=1

I(−∞,x] (xi) , (2.4)

where

IA(x) =

{
1 if x ∈ A
0 otherwise

is the usual indicator function so that r(xi,x) gives the index of xi in x(x). Note that this
definition assumes xi ̸= xj for all i ̸= j, the case of no ties.

To consider different conventions to address ties, suppose x1 = x2 = · · · = xm = x(1)

for m < n. In this case, r(x1;x) = r(x2;x) = · · · = r(xm;x) = m, that is all are given the
maximum index m. It is not clear this must be the case, as choosing the minimum index 1
seems equally valid for these first m observations. Another option is random tie-breaking,
which randomly assigns the indices 1, 2, . . . ,m to x1, x2, . . . , xm. Random tie breaking is
of particular interest, as it induces a uniform distribution on the ranks for tied regions.
For applications where complete ranks are necessary, this is more desirable than the gaps
introduced by the maximum or minimum indexing.

We can then define the empirical distribution function for these ordered cases as

F̂x(x) =
1

n
r(x;x) =

1

n

n∑
i=1

I(−∞,x] (xi) , (2.5)

with F̂y(y) defined similarly. The empirical copula of X and Y is defined as

Ĉ(u, v) =
1

n

n∑
i=1

I(−∞,u]

(
r(xi;x)

n

)
I(−∞,v]

(
r(yi;y)

n

)
. (2.6)

Finally, define the vector-valued rank function as

r(x) = (r(x1;x), r(x2;x), . . . , r(xn;x))
T. (2.7)

For discrete X without ordered values, take an arbitrary numbering of the possible
values in X and let I = |X |. Otherwise, number such that the assigned values reflect the
ordering. If Y is discrete, number Y similarly with J = |Y|. Then, for x and y, define the
observed marginal and joint counts

oi+ =
J∑

j=1

n∑
k=1

I{(i,j)} ((xk, yk)) =
J∑

j=1

oij (2.8)
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and o+j analogously. These give corresponding probability estimates p̂ij, p̂i+, and p̂+j when
divided by n.

Distinguish three different types of X and Y based on X and Y . The three types are:

continuous some interval or collection of intervals of real numbers;

ordinal categorical discrete possibilities with an ordering (e.g. income brackets);

nominal categorical discrete possiblities without an ordering (e.g. country of birth).

The possible combinations of these lead to six unique pairwise combinations. Following
the convention of Lee and Huh (2003), call comparisons of data of the same type simple
comparisons. Complex comparisons refer to the unique pairings between types: continuous
versus ordinal, continuous versus nominal, and ordinal versus nominal.

Introduce the function
G : X × Y 7→ R

quantifying some pattern of interest between X and Y with a value in R ⊂ R. For
the purpose of this work, any such G is called a measure of interestingness or simply a
measure. The term ‘interestingness’ is used instead of ‘association’ following the tradition
of researchers such as John W. Tukey (Friedman and Stuetzle, 2002) and to avoid the
implications of ‘association,’ typically used to describe statistical dependence as in Equation
(2.1).

Consider, for example, Tukey’s scagnostic measures of structure as reintroduced in
Wilkinson et al. (2005). Two different constructed data sets exemplifying the scagnostics
for “stringiness” and “clumpiness” respectively are shown in Figure 2.1. Both of these
simulated data sets have margins generated independently of each other, and still have
relatively large values for their respective measures compared to the null distributions in
Wilkinson and Wills (2008). While scagnostics have been expressly developed to capture
patterns other than statistical independence, calling them measures of association confuses
the term.2 Another example is λb from Goodman and Kruskal (1979), which is motivated
by prediction and not strictly tied to dependence.

Numerous frameworks have been proposed to evaluate candidates for G. A statistical
framework is given in Rényi (1959), and this framework has been subsequently updated
by Schweizer and Wolff (1981) and Móri and Székely (2019). Reimherr and Nicolae (2013)

2See, for example Liu et al. (2018) utilizing data analogous to Figure 2.1(b) as an example of ‘association’
in a paper motivated by statistical independence.
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Figure 2.1: Data exhibiting certain scagnostic structures despite the independent genera-
tion of x and y.

present a slightly different framework which emphasizes interpretability and delineates
three different motivations for measuring association. Here, the focus is on the ordering
G induces on X × Y , as this can accomplish all of the goals from Reimherr and Nicolae
(2013) and is critical to the search for interesting variables.

The importance of ordering restricts most measures of interestingness to a range on a
finite intervalR = [gmin, gmax] ⊂ R. The upper bound is obtained forX and Y exemplary of
the pattern of interest, while gmin is less consistent. For signed measures, such as Pearson’s
correlation coefficient, gmin may still indicate perfect correspondence to a particular pattern.
In unsigned measures gmin suggests no indication of the pattern3. The X and Y which lead
to these extremes are typically not unique, but rather represent a family of patterns which
the measure does not distinguish.

Commonly, G(X, Y ) is scaled by max {|gmax|, |gmin|} such that R is restricted to [−1, 1]
or [0, 1]. Scaling G by the magnitude of its most extreme value makes the ordering it
imposes explicit. For any pair X and Y , this scaled measure communicates directly how
the pair compares to the perfect example. This scaling can be misleading, however, when

3Any signed measure G can, of course, be made unsigned by taking |G|.
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the analyst is unfamiliar with its distribution along its range.

2.2 Measuring dependence

As noted by Cramér (1924); Fairfield Smith (1957); Goodman and Kruskal (1979) and
likely others, measures are devised to capture specific patterns. This is often desirable for
interpretability, as Reimherr and Nicolae (2013) note, and can lead to descriptive adjectives
which evoke a measure, as in the scagnostics of Wilkinson et al. (2005). Some common
patterns and corresponding measures are:

linearity which is typically measured by Pearson’s product moment correlation;

monotonicity captured by Spearman’s ρ, the rank version of correlation;

concordance measured by Kendall’s τ and Goodman and Kruskal’s γ (Goodman and
Kruskal, 1979);

predictibility measured by Goodman and Kruskal’s λ (Goodman and Kruskal, 1979);

agreement quantified by Cohen’s κ measure of inter-rater reliability (Cohen, 1960);

and others listed in Liu et al. (2018); Liebetrau (1983); Agresti (1981); and Goodman and
Kruskal (1979).

The variety of patterns which one might want to measure and the different types of
X and Y have led to a great proliferation of bivariate measures of interestingness4, each
with its own interpretation. Unfortunately, the division of measures by both type and
pattern makes the search for interesting patterns in complex data far more challenging,
with research such as Khamis (2008) and Lee and Huh (2003) devoted to the task of
guiding practitioners to choose the most comparable measures between types. In practice,
correlation is often applied to all variable pairs regardless of type, despite its well-known
shortcomings (Tjøstheim et al., 2022; Reshef et al., 2011; Anscombe, 1973).

Regardless of motivation or type, however, X and Y satisfying Equation (2.1) are
universally considered uninteresting. As a consequence, many complex measures of inter-
estingness attempt to measure departures from statistical independence. These measures

4The 2×2 contingency table, for example, has an almost overwhelming roster of measures analyzed in
Choi et al. (2010).
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of statistical dependence are functionals of the form

D
(
fX,Y (x, y), fX(x)fY (y)

)
(2.9)

which compare the joint and marginal product distributions of X and Y . Often, they will
attempt to satisfy the desiderata outlined by Rényi (1959) or Schweizer and Wolff (1981),
the latter of which relaxed the axioms of the former after noting they are unnecessarily
restrictive and hard to apply in practice. Some examples for continuous X and Y include

∆(X, Y ) =

∫ ∫{
(x,y):fX,Y (x,y)≥fX(x)fY (y)

} [fX,Y (x, y)− fX(x)fY (y)
]
dxdy (2.10)

from Silvey (1964) and the mutual information defined as

I(X, Y ) = DKL(fX,Y ||fXfY ) =
∫
Y

∫
X
fX,Y (x, y) log

(
fX,Y (x, y)

fX(x)fY (y)

)
dxdy (2.11)

from Shannon (1948), where DKL(F ||G) denotes the Kullback-Leibler divergence of G
from F . For discrete X and Y a classic example is the χ2 statistic for independence from
Pearson (1900),5

D(X, Y ) ∝
∑
x∈X

∑
y∈Y

[fX,Y (x, y)− fX(x)fY (y)]
2

fX(x)fY (y)
. (2.12)

Another possible functional based on cumulative distribution functions is given by Hoeffd-
ing (1948):

DH(X, Y ) =

∫
(F (x, y)− F (x,∞)F (∞, y))2 dF (x, y). (2.13)

Central to all of these measures is the factorization definition of independence from
Equation (2.1). In every case, some comparison is made between fX,Y (x, y) and fX(x)fY (y)
which is zero when the two are equal almost everywhere.

For any function of the form in Equation (2.9), an equivalent measure exists in the cop-
ula space. By Sklar’s Theorem, discussed in Sklar (1996) and summarized in Embrechts
et al. (2001), the dependence between X and Y can be captured by the marginal distri-
bution functions FX and FY and their copula C. Just as in Equation (2.1), X and Y are
independent only if their copula is the independence copula CI(u, v) = uv. Schweizer and

5Note that this formulation of D(X,Y ) is somewhat atypical, as this is a quantity usually defined on
the sample x,y.
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Wolff (1981) therefore show that a transform can be applied to any measure formulated in
FX(x), FY (y), and FX,Y (x, y) to convert it to a functional of the form

D∗
(
C
(
FX(u), FY (v)

)
, uv
)
.

Such transforms are attractive because they remove the marginal distributions of the vari-
ables being compared. This allows for non-parametric estimation of quantities without
presuming any particular distribution. Indeed, there are many measures which utilize
empirical copulas (Ding et al., 2017; Siburg and Stoimenov, 2010; Genest and Rémillard,
2004).

Measures like the distance covariance of Székely and Rizzo (2009) instead apply a
functional of the form in Equation (2.9) to the characteristic functions of X and Y . The
characteristic function of X is defined as

ϕX(t) = E[eitX ], (2.14)

where E is the expectation operator with respect to X. The joint characteristic function,
ϕX,Y (t, s), and characteristic function of Y , ϕY (s), are defined similarly. This is based on
an important result of Equation (2.1), that ϕX,Y (s, t) = ϕX(t)ϕY (s) if and only if X⊥⊥Y .

Equation (2.9) is really just an evaluation of the goodness of fit of fX(x)fY (y) to
fX,Y (x, y), and this creates an obvious analogy to empirical distribution function good-
ness of fit tests as described in Zheng et al. (2021) and Stephens (1974). Many common
measures of functional distance appear in the literature of independence tests, such as
the Kolmogorov-Smirnov test in Heller et al. (2016) and results for any LP distance in
Schweizer and Wolff (1981). These can be made even more general by replacing Euclidean
distances by kernel distances, as in Liu et al. (2018) or the Hilbert-Schmit independence
criterion (HSIC) of Gretton et al. (2007). While Liu et al. (2018) maximize over a pre-
specified set of kernel distances, Lopez-Paz et al. (2013) instead introduce a measure which
randomly transforms X and Y and takes the maximum of the applied random transforms.

More unique applications of goodness of fit principles are found in Dümcke et al. (2014)
and Heller et al. (2013). Dümcke et al. (2014) utilize the exact distribution of nearest
neighbour distances under independence to develop two novel tests. Rather than comparing
the joint distribution to a product of marginals, their tests are based on the deviation
between the exact distribution of nearest neighbours and that observed in a sample. Heller
et al. (2013) make use of local distances about each point in turn to construct a series of
contingency tables and then aggregate the p-values gained.

The generation of numerous tables evokes a relevant class of measures based on the
application of Equation (2.9) to partitions of the outcome space X × Y and aggregation
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of the results. Such partitioning allows for local estimation of fX,Y and fXfY without a
parametric family. Rather, the estimate relies on the choice of partition. Another benefit
of such partitioning is it permits the application of the same test to any data type, as
partitioning continuous data produces ordinal categorical data. As a consequence of this
potential and their popularity in recent literature, this work primarily focuses on these
methods.

2.3 Bin-based measures

Though it has become more popular as it has become computationally feasible, partition-
ing, or binning, has always played a role in measuring association. See, for example, the
early investigations into the χ2 test outlined in Plackett (1983). Rather than using X and
Y directly, a binning function can be applied to their marginal values in order to discretize
them.6 Discussing a measure which induces bins only makes sense when at least one of X
and Y is continuous, though the results can be applied to categorical cases.

A univariate binning on J bins is a function b : B 7→ {1, . . . , J} which partitions its
continuous domain B ⊆ R into J distinct parts, or bins. Any such b has a vector-valued
version b : Bp 7→ {1, . . . , J}p such that b(x) = (b(x1), . . . , b(xn))

T for x ∈ Bp. Consider
applying bX : X 7→ {1, . . . , I} to X and bY : Y 7→ {1, . . . , J} to Y . That is apply a binning
on I bins to X and a binning on J bins to Y . This is equivalent to an I×J grid on X ×Y
so that the bins can be indexed by (i, j) to correspond with

(
bX(X), bY (Y )

)
. Define

ϵij = n

∫{
x:bX(x)=i

} dFX(x)

∫{
y:bY (y)=j

} dFY (y), (2.15)

the expected count of observations of n which fall into bin (i, j) under independence. Note
that in the case of uniform X and Y , this simplifies to n times the area of the (i, j) bin.

In practice the vectors x and y are all that is observed, so define the analogous sample
quantity

eij =
1

n

n∑
k=1

I{i} (bX(xk))
n∑

l=1

I{j} (bY (yl)) . (2.16)

6In the case where one of X and Y is already categorical, this reduces to the K-sample problem.
Some works, such as Heller et al. (2016), switch freely between the K-sample problem and the problem of
measuring association.
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The observed (i, j) bin count is given by

oij =
n∑

k=1

I{(i,j)}
((
bX(xk), bY (yk)

))
, (2.17)

so eij = noi+
n

o+j

n
using the notation of Equation (2.8). Under this binning, X and Y

are converted to the contingency table in Table 2.1. Once so binned, the oij and eij

bY (y) = 1 bY (y) = 2 . . . bY (y) = J
bX(x) = 1 o11 o12 . . . o1J o1+
bX(x) = 2 o21 o22 . . . o2J o2+

...
...

...
. . .

...
...

bX(x) = I oI1 oI2 . . . oIJ oI+
o+1 o+2 . . . o+J n

,

Table 2.1: The contingency table imposed on x and y by the binnings bX(x) applied to x
and bY (y) applied to y.

can be used to in place of the unknown densities in Equations (2.10), (2.11), and (2.12)
nonparametrically. In this way, a grid is simply a particular kind of two-dimensional
histogram.7 For Silvey’s ∆ from Equation (2.10), the analogue on the binned data in
Table 2.1 is

∆(bx,by) =
∑∑

{(i,j):oij≥eij}

oij − eij
n

=
∑∑

{(i,j):oij≥ 1
n
oi+o+j}

noij − oi+o+j

n2
; (2.18)

Shannon’s mutual information from Equation (2.11) becomes the multinomial log-likelihood
ratio

I(bx,by) =
I∑

i=1

J∑
j=1

oij
n

log

(
oij
eij

)
=

I∑
i=1

J∑
j=1

oij
n

log

(
noij

oi+o+j

)
; (2.19)

and Pearson’s χ2 measure from Equation (2.12) becomes

D(bx,by) =
I∑

i=1

J∑
j=1

(oij − eij)
2

eij
=

1

n

I∑
i=1

J∑
j=1

(noij − oi+o+j)
2

oi+o+j

, (2.20)

7There are many other possible tessellations which produce a two-dimensional histogram density esti-
mate, see Carr et al. (1987) and Scott (1988)
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where bx = bX(x) and by = bY (y) are used for brevity. While bX and bY can be
arbitrarily defined, Equations (2.18), (2.19), and (2.20) depend only on the counts in each
cell of Table 2.1. Therefore, only the values of x and y need to be considered as possible
partition boundaries, or bin edges. Considering edges between every point, and not allowing
for identical x and y values, this means are n − 1 possible bin edges to consider in each
of x and y. Noting that the bin edges can either be present or absent, there are therefore
2n−12n−1 = 4n−1 possible contingency tables for a given x and y.

There is often no a priori exploratory reason to choose a particular binning, and so
methods from Reshef et al. (2011); Jiang et al. (2015); Heller et al. (2016); and Reshef
et al. (2018) have the exploration of this large number of grids at their core. Reshef et al.
(2011) and Reshef et al. (2018), in the introduction of the maximal information criterion
(MIC), propose computing Equation (2.19) for all grids such that IJ ≤ n0.6, scaling these
values, and storing them in a matrix M . The maximal value of this matrix is then taken
as the MIC.8 In order to contextualize MIC values, p-values based on simulated null data
sets are computed.

Jiang et al. (2015) propose a penalized version of Equation (2.19) to find a solution. The
particular penalty is outlined in Equation (2.24). Conceptually, this penalized optimization
assumes a Poisson distribution on the number of bins for one of the margins conditioned
on the other and then maximizes the likelihood dynamically. As with the MIC, the null
distribution of this method is determined empirically.

Hoeffding (1948) restricts the exploration only to I = J = 2, and proposes a sum of
Equation (2.13) for all unique possible two-by-two grids, which Thas and Ottoy (2004)
show is asymptotically equivalent to Equation (2.20) evaluated over all two-by-two grids
with a suitable scaling. Heller et al. (2016) extend this by simply restricting the grid to m
divisions on both margins. They investigate both summation and maximization for either
of Equation (2.20) and (2.19) across all possible m ×m grids. In the case of summation,
the values over all possible m × m grids are computed and the sum is returned, while
the maximization case reports only the largest of these values. The distributions of these
statistics is computed empirically just as for the MIC and Jiang et al. (2015). The language
used, where aggregation is compared to the Cramer-von Mises criterion and maximization
to the Kolmogorov-Smirnov test, is evocative of methods for testing empirical distribution
functions (Stephens, 1974).

8It should be noted that even this space is too large to fully explore, and so only a small number
of grids are actually computed in practice. Their concept of equitability has also generated considerable
controversy. See the discussions in Gorfine et al. (2012); Kinney and Atwal (2014a); Reshef et al. (2014);
Kinney and Atwal (2014b); and Simon and Tibshirani (2014).
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To implement these methods, all of Heller et al. (2016); Jiang et al. (2015); and Reshef
et al. (2011) utilize similar recursive algorithms. While Heller et al. (2016) compute their
summation statistic directly, as this reduces to a counting problem, they borrow the proce-
dure of Jiang et al. (2015) with a different penalty for the maximization case. Reshef et al.
(2011) use a similar concept to guide their exploration of the space of grids with IJ ≤ n0.6.

For a more detailed discussion of this recursive algorithm and its applications, introduce
the notation

D(bx,by) =
I∑

i=1

J∑
j=1

d(oij, eij), (2.21)

thereby expressing D over the entire data set as the sum of d applied to each cell. Introduce
the subscript notation

bx[1:k] =
(
bX(x1), bX(x2), . . . , bX(xk)

)T
to denote a binning on I bins applied to the first k elements of x. Consider the value of
Equation (2.21) applied to the first k observations of x and y with a given binning on y,
written

Dk(·|by) : {1, . . . , I}k 7→ R (2.22)

for I ≤ k and a constant binning by on J bins defined for all of y (not just the first k
observations).

Equation (2.22) presents an important modification of Equation (2.21). By viewing
only the first k elements with a pre-specified by, the problem of identifying a binning
which optimizes Dk is much simpler than for D. Rather than selecting among all possible
grids, only a small number at each step need to be considered. Suppose b∗

x[1:k] is the binning
on the first k elements of x which maximizes Dk, define

D∗
k = Dk(b

∗
x[1:k]|by),

as the maximal value of Equation (2.22). It is therefore the maximal value of D applied
to the first k observations of x and y given a known binning on y.

Using this general notation, the recursive estimate D̂∗
k used by Reshef et al. (2011);

Jiang et al. (2015); and Heller et al. (2016) is

D̂∗
k = max

1≤i<k

[
D̂∗

i−1 +
J∑

j=1

d

(
k∑
l=i

I{j} (bY (yl)) ,
k − i

n

n∑
l=1

I{j} (bY (yl))

)]
. (2.23)
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The edges which give these optimal binnings are given by replacing the max with an
argmax. The arguments inside d are the observed counts of each Y bin from i to k and the
expected counts based on the marginal distribution and the relative length of the interval
from i to k, respectively.

For each i ∈ {1, . . . , k − 1}, this estimate considers two parts. The first part, D̂∗
i−1, is

the previously computed maximal measure on the first i − 1 points with the convention
D̂∗

0 = 0. The second part is a sum of d over all J bins of by with observed counts given
by the incidence of each of the J bins from i to k and the expected counts given by the
marginal distribution of by multipled by the length of the interval from i to k.

Therefore, this algorithm chooses to add a bin edge at the i which maximizes Equation
(2.21) conditional on previous bin edges. Additionally, this estimate requires a pre-specified
by, and so it does not give a global optimum over all grids. Indeed, it still requires some
ad hoc choice of binning on y. Jiang et al. (2015) suggests using the slicing methods of
Jiang and Liu (2013) to bin y while Reshef et al. (2011) suggests a simple equipartition
on y. The former chooses bins to optimize the difference between the conditional and
unconditional variances while the latter is computationally easy to implement.

The main difference between the implementations in Jiang et al. (2015), Heller et al.
(2016), and Reshef et al. (2011) is the choice of d. Jiang et al. (2015) takes a penalized
measure

d(oij, eij) =
oij
n

log

(
oij
eij

)
− λ0

J
log n (2.24)

where λ0 is a penalty parameter and by is a binning on J bins. This is equivalent to
a prior distribution of the bin edges giving so that the number of bins follows a Poisson
distribution. Heller et al. (2016) instead take

d(oij, eij) =
oij
n

log

(
oij
eij

)
+

λ0

J
log

(
n− 1

k − 1

)
, (2.25)

where k matches the index D̂∗
k. This modification is equivalent to a uniform distribution

over all possible marginal binnings. Under both versions of the penalized d, splits are then
considered at each xk in turn and the bins which maximize the penalized score are used.
In contrast, Reshef et al. (2011) take the unpenalized

d(oij, eij) =
oij
n

log

(
oij
eij

)
and choose to restrict the search space to avoid creating bins which are too small.
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Attempts to expand these procedures to optimize over both margins have also been
made. Chen et al. (2016) suggest a modified version of the MIC which is guided by the
significance of a χ2 test to choose the optimal bins. Cao et al. (2021) suggests a backwards
merging algorithm on by to relax the perfect equipartition of Reshef et al. (2011). In both
cases, however, an equipartition is the starting point, and so will inevitably impact the
final binning.

Given that a conditional and recursive optimization procedure is already the norm,
it seems natural to use recursive binary splits to generate a binning as in classification
and regression trees and the tree-based binning of Rahman (2018). Recursive binning has
several advantages over marginal binning. For one, recursive binning optimizes the bin edge
choice over both dimensions simultaneously rather than each alone. It also produces more
flexible bin arrangements than marginal methods, which can only produce bins aligned
along both axes. Finally, recursive splits are adaptive to patterns in the data which are
hidden in projections on either axis, suggesting that the method may detect patterns
marginal bins miss.

The main problem recursive binning creates is the estimation of expected counts in a
bin, which can no longer proceed by taking the product of marginal distributions. However,
by first taking the ranks r(x) and r(y), the expected count can be determined by the area
of the bin directly rather than a marginal product. An algorithm which implements this
recursive binary binning is outlined in the following chapter.
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Chapter 3

A Proposed Measure

Using the notation of the previous chapter, this chapter describes an algorithm which
recursively bins the marginal ranks of a pair of variables to measure association. It begins
with a sketch of the algorithm that frames the more detailed discussion of spitting rules and
stop criteria in Sections 3.1.1 and 3.1.2. Following this sketch it is proven that splits only
need to be considered at observed points to maximize convex score functions, in particular
the commonly used ones based on the χ2 statistic and mutual information. A maximized
splitting logic is outlined and stop criteria and splitting logic which put a floor on the
minimal bin size are presented.

An iterative version of the algorithm is then given in pseudo-code in Section 3.2. This
code outlines the three core functions which recursively bin a data set, all of which are
reflected in the implementation of the AssocBin package for R outlined in Section 3.3. An
outline provides the names of the main functions in the package and how they fit together
to create a modular framework for custom splitting logic.

To better understand this algorithm, Section 3.4 first provides a step-by-step demon-
stration of maximized splitting on uniform and perfectly dependent data. In the following
subsection, the null distribution of the χ2 statistic computed on bins split to maximize the
mutual information, χ2 statistic, or at random is explored using a simulation study. A key
finding is that maximized binning of either score leads to inflated statistic values, while
random splits under stop criteria and splits that ensure all bins have expected counts of 5
or more lead to a statistic conservatively approximated by the χ2 distribution.

To evaluate the ability of recursive binning to detect different patterns of dependence,
the measure is applied to several example patterns in Section 3.4.4. No great difference in
the relative statistic values for each pattern compared to the null was observed between
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randomized and χ2 maximizing splits, suggesting both have similar power to detect depen-
dence. Finally, recursive binning to highlight dependence in real data is demonstrated by
ordering the pairs in a real data set of historical stock values for S&P 500 constituents in
Section 3.5.

3.1 Recursive rank binning to measure association

Consider a pair of variables X and Y realized in a sample of n paired observations x and
y, as in Section 2.1. Define the vectors of marginal ranks s = r(x) and t = r(y) with
the convention of random tie-breaking for observations with the same rank to avoid ties.
Converting to the ranks is equivalent to taking empirical CDF transforms of X and Y so
that the joint distribution of s and t is the empirical copula of X and Y with a uniform
joint distribution under independence. Specifically, this means the expected number of
points in a region of {1, . . . , n}2 is equal to the region’s area divided by n under the null
hypothesis of no dependence. This conversion allows much more flexible partitions to be
considered than marginal partitioning. Here, recursive binary splits are proposed on s and
t to take advantage of this flexibility.

To sketch the algorithm, first consider the objects it acts upon. From the perspective
of this algorithm, a bin is a rectangular subspace of {1, . . . , n}2 which may contain some
pairs from the paired vectors s and t. It is defined by its lower and upper bounds in each
dimension, and has implicit features such as its area, its depth, the number of pairs it is
expected to contain under independence, and the number of pairs actually observed within
its bounds. The depth of a bin can be understood as the number of recursive calls required
to produce it from the initial state: a single bin with bounds of 0 and n in both dimensions
that contains every observation.

At each step, the algorithm is presented with bins partitioning {1, . . . , n}2 that result
from the preceding splits made by the algorithm. For each bin, the algorithm must choose
whether it should be split, and if so how it should be split. Under completely unrestricted
splitting, splits could be made through either of the two margins along any horizontal
or vertical line within the bin boundaries. Choosing among the infinite possible splits is
accomplished by finding the split optimizing a score function chosen to reflect the goal
of the binning. Once a split is chosen in every bin to be split, the algorithm proceeds
recursively by considering the resulting bins in the same way. Two choices made by the
analyst therefore dictate the final bins produced by the algorithm: the score used to choose
splits and the stop criteria which determine whether a split is made at all.
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Using the settings of the following section, this algorithm has a runtime proportional
to n log n if bin count or area limits are used as the stop criteria. At each step, it searches
through each point in each bin, meaning all n points are considered. In the worst case,
this will only halve the bin count and area at each step, and so log n splits are required. In
any other case, not all n points will be considered at every depth. If small bins are created
early in the procedure, the points they contain will be ignored thereafter.

3.1.1 Splitting bins

Many heuristics exist to choose splits, see Garcia et al. (2012) and Rahman (2018) for
surveys, but previous bin-based measures of association have focused on the χ2 statistic
against independence and the mutual information (MI) (Reshef et al., 2011; Jiang et al.,
2015; Chen et al., 2016; Heller et al., 2016; Cao et al., 2021). As they are designed to mea-
sure the discrepancy of observed distributions from expected distributions with minimal
assumptions, both are natural choices to measure the dependence present in a sample.

However, these previous works choose only marginal splits on both dimensions, and so
must be adapted to the recursive binning framework of Rahman (2018) by defining local
versions of both, the chi score and mi score, to select the optimal split within a bin. It
will be proven that, for either score, the optimal split occurs at the coordinate of a point
within a bin. To distinguish between the scores and the final statistics, chi and mi will be
used exclusively to refer to the scores computed to determine splitting and χ2 and MI will
be used to refer to the final statistics computed over all bins.

To define these local scores recall Equation (2.21),

D(bx,by) =
I∑

i=1

J∑
j=1

d(oij, eij),

which expresses a functional measuring statistical dependence over X and Y as the sum
of a function evaluated over the expected (eij) and observed (oij) number of points in the
partitions created by marginal binnings bx and bx. By adapting Equation (2.21) for the
χ2 and MI statistics to the recursive binning framework, the chi and mi scores are implied
by the form of d(oij, eij). As the bins produced by recursive binary splits are not defined by
independent marginal binnings bx and by, they do not have obvious i, j indices. Instead,
assume the total number of bins is nbin and (arbitrarily) index the bins by i ∈ {1, . . . , nbin}.
The arguments must also be changed to s and t to reflect the absence of marginal bins.
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Together, this gives the modified expression

D(s, t) =

nbin∑
i=1

d(oi, ei), (3.1)

where oi is the number of observations within the ith bin and ei is the number expected
assuming independence. Letting the area of the ith bin be ai, this is given by ei = ai/n.
The chi score of each bin is then

d(oi, ei) = chi(oi, ei) =
(oi − ei)

2

ei
(3.2)

and the mi score is
d(oi, ei) = mi(oi, ei) =

oi
n
log

oi
ei
. (3.3)

Either of these scores can be maximized in the proposed recursive binning algorithm to
determine the split coordinate.

Maximizing scores

In more detail, denote the oi pairs of ranks in bin i as {(si1, ti1), (si2, ti2), . . . , (sioi , tioi)}
and its s bounds (ls, us] and t bounds (lt, ut]. Bin i can be split either by a vertical line
at cs ∈ (ls, us) or a horizontal line at ct ∈ (lt, ut) resulting in two new bins with two new
chi or mi scores. Denote the observed and expected values for the bin above cs as oi+(cs)
and ei+(cs) respectively (analogously, those above ct as oi+(ct) and oi+(ct)), and use the
subscript i− in the same way to indicate the new bin below the split. A split at c changes
the total score measured by d(·, ·) for the region (ls, us]× (lt, ut] by

δi(c, d) = d
(
oi+(c), ei+(c)

)
+ d
(
oi−(c), ei−(c)

)
− d(oi, ei), (3.4)

and so the maximizing split coordinate along a given dimension is

c∗ = argmax
c

δi(c, d) = argmax
c

[
d
(
oi+(c), ei+(c)

)
+ d
(
oi−(c), ei−(c)

)]
.

Though ei+(c) and ei−(c) vary continuously in the split coordinate c, both of oi+(c) and
oi−(c) change only when c corresponds with the coordinate of a point contained in bin i,
in other words when cs ∈ {si1, si2, . . . , sioi} or ct ∈ {ti1, ti2, . . . , tioi}. This has important
consequences to selecting splits for d convex in the second argument.
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Proposition 1 (The score-maximizing split). If the score function d(x, y) is continuous
and convex in y, that is

d2

dy2
d(x, y) ≥ 0,

then the split coordinate c maximizing

δi(c, d) = d
(
oi+(c), ei+(c)

)
+ d
(
oi−(c), ei−(c)

)
− d(oi, ei)

is the coordinate of one of the points within the bin.

Proof. Without loss of generality, consider a split at cs ∈ (sij, si,j+1) between the j and
j+1 horizontal coordinates in bin i. As the split is made between point coordinates j and
j + 1, the observed number of points above is constant at oi+ = oi − j and the observed
number below is constant at oi− = j by definition. The change in score is

δi(cs, d) = d
(
oi − j, ei+(c)

)
+ d
(
j, ei−(c)

)
− d
(
oi, ei

)
.

But ei+(cs) = (us − cs)(ut − lt)/n and ei−(cs) = (cs − ls)(ut − lt)/n so that

δi(cs, d) = d

(
oi − j,

(us − cs)(ut − lt)

n

)
+ d

(
j,
(cs − ls)(ut − lt)

n

)
− d(oi, ei).

If δi(cs, d) is convex and continuous in cs, then its maximum must occur at one of sij or
si,j+1. An illustration is shown in Figure 3.1.

Figure 3.1: An example of a convex δi(cs, d) within bin i.
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Therefore, we only need to prove the convexity of δi(cs, d) to prove that its maximum
occurs at one of its boundaries. Consider the sign of its second derivative. The first
derivative of δi(cs, d) with respect to cs is

d

dei+
d (oi − j, ei+)

d

dcs

(us − cs)(ut − lt)

n
+

d

dei−
d (j, ei−)

d

dcs

(cs − ls)(ut − lt)

n

= − d

dei+
d (oi − j, ei+)

ut − lt
n

+
d

dei−
d (j, ei−)

ut − lt
n

=
ut − lt

n

[
d

dei−
d (j, ei−)−

d

dei+
d (oi − j, ei+)

]
.

Therefore

d2

dc2s
δi(cs, d) =

ut − lt
n

d

dcs

[
d

dei−
d (j, ei−)−

d

dei+
d (oi − j, ei+)

]

=
(ut − lt)

2

n2

[
d2

de2i−
d (j, ei−) +

d2

de2i+
d (oi − j, ei+)

]
,

which is greater than or equal to zero if d2

dy2
d(x, y) ≥ 0 for all x ∈ {0, 1, . . . , oi}.

In this case, δi(cs, d) is concave up between the horizontal coordinates of the points
within a bin so that any optimum within these bounds must be minimum. As these
are continuous functions, this means maximum must occur at one of the boundaries of
the interval (sij, si,j+1). As the index j was chosen arbitrarily, this same argument holds
for every interval and so the global maximum must occur at one of these boundaries.
These boundaries are defined by the locations of the points contained within the bin, so
the maximal split must occur at the coordinate of a point within the bin. The same
argument holds identically for the vertical coordinates, a fact easily seen by switching the
subscripts.

In particular, note that

d2

dy2
chi(x, y) =

d2

dy2
(x− y)2

y
= 2

x2

y3

and
d2

dy2
mi(x, y) =

d2

dy2
x

n
log

x

y
=

x

ny2

are both greater than or equal to zero for all x ≥ 0 and y ≥ 0. This means that splits only
need to be considered at the points in {(si1, ti1), (si2, ti2), . . . , (sioi , tioi)} to maximize the chi
and mi scores, rather than considering the continuum of potential splits in (ls, us]× (lt, ut].
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Empty bins

If splitting occurs at the coordinates of observed points within bins, the observation at the
split has ambiguous bin membership. Taking the convention that these observations are
counted in the bin below the split, which is consistent with the initial bin bounds [0, n] in
both dimensions, it is impossible for this algorithm to create empty bins below the observed
points. This is despite the potential utility of empty bins when detecting association,
as large regions without any observations in the rank space are a strong indication of
departures from independence.1

To remedy this and allow empty bins to be created, a potential split coordinate be-
low the smallest observations horizontally and vertically is added, denote these pseudo-
observations as si(1) − 1 and ti(1) − 1. Finally, take the convention that a point is included
in the lower bin when a split occurs at one of its coordinates. Along s this gives the
maximizing split coordinate

c∗s = argmax
cs∈{smin−1,si1,...,sioi}

δi(cs, d)

and similarly
c∗t = argmax

ct∈{tmin−1,ti1,...,tioi}
δi(ct, d).

Of these two maximizing splits, that giving the greater δi(c, d) is chosen to split bin i.

Controlling minimum bin size

Though not strictly necessary, one may want to control the minimum bin size produced
by splits. This requires some balance to be struck between selecting the maximal split and
keeping bins at a particular size. This is relevant, for example, if the χ2 statistic is applied
to the final bins. Supposing nbin bins are created by the algorithm, the rank space [0, n]2

with a presumed uniform distribution has been partitioned into nbin mutually exclusive
categories constrained only by the restriction that

nbin∑
i=1

oi = n.

1The ability to create empty bins directly is an advantage of the recursive binning algorithm over
marginal methods, which cannot do so. Empty regions marginally only reflect the marginal distribution
of a variable, and converting to the ranks presents margins without any gaps for both variables.
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This setting is similar to the circumstance originally considered by Pearson in his proposal
of the χ2 test, and so it is natural to assume a χ2

nbin−1 distribution for the χ2 statistic
applied to these bins.

Care must be taken with bin size in order to apply this result, however. The χ2
nbin−1

distribution is only asymptotically valid for the χ2 statistic applied to this data and the
fit is better the larger the expected counts in each bin. Therefore, the χ2 distribution
is typically only applied to the χ2 statistic when the expected number of points in each
partition is greater than or equal to five (Cochran, 1952). This motivates a floor on the
bin size at an expected value of five.

The preceding maximization logic provides no such guarantees, and so restrictions on
the candidate splits must be introduced to control the minimal bin size. Rather than
change the score function, this can be accomplished by changing the δi(c, d) function used
to evaluate splits. Consider the modified function

δ′i(c, chi, z) = I[z,∞)2

(
(ei+(c), ei−(c))

T
)
δi(c, chi) (3.5)

that forces the change of score to be zero if either ei+(c) < z or ei−(c) < z, where IA (x) is
the indicator function of x ∈ A. This change works because δi(c, chi) ≥ 0, as

(oi − ei)
2

ei
=

(
[oi+(c)− ei+(c)] + [oi−(c)− ei−(c)]

)2
ei

≤ [oi+(c)− ei+(c)]
2

ei
+

[oi−(c)− ei−(c)]
2

ei

≤ [oi+(c)− ei+(c)]
2

ei+(c)
+

[oi−(c)− ei−(c)]
2

ei−(c)

by the triangle inequality and because ei+(c) ≤ ei and ei−(c) ≤ ei. Therefore, splits
producing bins that are too small will give scores less than or equal to the scores produced
by all other splits. Taking z = 5 restricts bin splits to follow standard practice.

Controlling the bin size for δi(c,mi) requires a different convention, as

oi
n
log

oi
ei

=
oi
n
log

[
oi+(c)

oi

oi
ei

+
oi−(c)

oi

oi
ei

]
≤ oi

n

[
oi+(c)

oi
log

oi
ei

+
oi−(c)

oi
log

oi
ei

]
≤ oi+(c)

n
log

oi−(c)

ei
+

oi+(c)

n
log

oi+(c)

ei
+

oi−(c)

n
log

oi−(c)

ei
+

oi−(c)

n
log

oi+(c)

ei
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which may be greater than oi+(c)
n

log oi+(c)
ei+(c)

+ oi−(c)
n

log oi−(c)
ei−(c)

. However, noting that mi(oi, ei)

and chi(oi, ei) are both independent of the split line c, maximization of δi(c, chi) and
δi(c, chi) depends only on the post-split scores mi

(
oi+(c), ei+(c)

)
+ mi

(
oi+(c), ei+(c)

)
≥ 0

and chi
(
oi+(c), ei+(c)

)
+ chi

(
oi+(c), ei+(c)

)
≥ 0. Splitting to control the minimum bin size

can therefore proceed with indicators by taking the larger of

c∗s = argmax
cs∈{smin−1,si1,...,sioi}

I[z,∞)2

(
(ei+(cs), ei−(cs))

T
) [

d
(
oi+(cs), ei+(cs)

)
+ d
(
oi+(cs), ei+(cs)

)]
and

c∗t = argmax
ct∈{tmin−1,ti1,...,tioi}

I[z,∞)2

(
(ei+(ct), ei−(ct))

T
) [

d
(
oi+(ct), ei+(ct)

)
+ d
(
oi+(ct), ei+(ct)

)]
when d ∈ {chi,mi}. In the case where all splits are tied on both margins, the bin is halved
on a random margin at

ceiling

(
l + u

2

)
regardless of the distribution of points within the bin.2

3.1.2 Stop criteria

At each recursive step, a bin is split only if it fails to meet a set of stop criteria. These
can include the bin area, number of points in the bin, and the depth of the bin3. If, for
example, the criteria are a depth of 5 or ni < 10, a bin with a depth of 5 or a bin with 10
or fewer points will not be split. Any bin which does not satisfy the stop criteria is split
in two and the splitting algorithm is again called on both of the resulting bins.

If bin size is restricted such that ei ≥ z ∀i ∈ {1, . . . , nbin}, the corresponding stop
criterion to prevent the creation of bins below this minimum size is ei < 2z. When ei < 2z,
any split will produce at least one bin with an expected count smaller than z. Even if
there is no restriction ei ≥ z when splitting, it is advisable to incorporate one in the stop
criteria to limit the creation of very small bins.

In all of the following examples, two stop criteria were held constant. Splitting was
always stopped when ni = 0 or ei ≤ 10. To explore the performance of the algorithm over

2Choosing a random split is another obvious tie-breaking convention, but can force splits which violate
the minimum size restriction.

3Where “depth” is the number of recursive binary splits needed to create the bin from the original data.
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successive splits, the depth criterion was varied from 2 to 10. For smaller sample sizes, the
maximal 1024 bins implied by the depth limit of 10 was never achieved due to the stop
criteria for area and empty bins.

3.2 An iterative version

Though it was conceived recursively, an iterative implementation of the algorithm outlined
in Section 3.1 is detailed here. First, consider the outer wrapper function to oversee
arbitrary splitting and stopping, presented in Algorithm 1. This wrapper acts on a list of
bin objects, each with elements:

bounds: named list of upper and lower bounds on s and t

s: marginal ranks on x of observations in the bin

t: marginal ranks on y of observations in the bin

e: expected number of points in the bin

depth: number of recursive splits required to create the bin.

While any bins in a list fail to satisfy the stop criteria, this wrapper calls the splitting
function on those bins and combines the resulting new bins with those already stopped.
The new bins are then checked against the stop criteria. To initialize, all observations are
placed in a bin with bounds of (0, n] in both dimensions.

Of course, the splitting and stopping logic described in Sections 3.1.1 and 3.1.2 are at
the heart of this algorithm. Algorithm 2 presents pseudo-code for the splitting logic. The
stopping logic is not given a pseudo-code version, as it only involves computing and checking
numerous properties of each bin against a pre-determined set of thresholds. Section 3.3
discusses a particular implementation of this in the R programming language.4

Finally, Algorithm 3 gives the pseudocode for a chi scoring function with limited
minimal bin size. As written, this function would be provided as the score in the
maxScoreSplit function of Algorithm 2. Note that this algorithm has been written for the
chi score but provides a framework for any scoring function. The specifics of line 14 can

4In this implementation, there is the ability to specify a custom initial split function with the argument
init. Choosing init to randomly halve a bin along one margin coincides with the splitting logic described
earlier, as every split produces a score of zero for the initial uniform data.
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Algorithm 1 Iterative binning wrapper

Input
x - vector of observed values in x
y - vector of observed values in y, paired with x
stopper - function which tests a list of bins against the stop criteria

5: splitter - function which performs a binary split on a bin
init - (possibly) different splitting function applied to the initial bin with all ob-

servations

function binner(x, y, stopper, splitter, init)
n ←− length(x) ▷ Compute preliminaries
s ←− rank(x)

10: t ←− rank(y)
iniBin ←− makeBin(s = s, t = t, bounds = list(s = (0, n), t = (0, n)), e = n,

depth = 0) ▷ Construct initial bin
binList ←− init(iniBin) ▷ Initialize bin list
stopStat ←− stopper(binList) ▷ Initial stop check
while any stopStat are FALSE do ▷ Continue as long as bins can be split

15: oldBins ←− binList[stopStat] ▷ Stopped bins
oldStop ←− stopStat[stopStat] ▷ All TRUE
newBins ←− {} ▷ Variable to store splitting results
for bin in binList[!stopStat] do

append splitter(bin) to newBins ▷ Add split results
20: end for

newStop ←− stopper(newBins) ▷ Check stop criteria on new bins
binList ←− append newBins to oldBins

stopStat ←− append newStop to oldStop

end while
25: return binList

end function
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Algorithm 2 Score maximizing splitter

Input
bin - the bin object to be split with elements s, t, bounds, e, and depth

scorer - function accepting a vector of coordinates in increasing order and the
expected number of points in bin and returning a vector of scores corresponding to
splits at each internal coordinate

function maxScoreSplit(bin, scorer)
5: get s, t, s.bounds, t.bounds, e, depth from bin

sort s, t in increasing order to give sSrt, tSrt
cs ←− append ( sSrt[1]-1, sSrt )
ct ←− append ( tSrt[1]-1, tSrt ) ▷ Add a split coordinate below all points
ds ←− scorer( append ( s.bounds[1], cs, s.bounds[2] ), e )

10: dt ←− scorer( append ( t.bounds[1], ct, t.bounds[2] ), e )
sMax, tMax ←− the indices of the maxima of ds, dt

if all ds = ds[sMax] AND all dt = dt[tMax] then
if ds[sMax] > dt[tMax] then

split bin on s at ceiling(mean(s.bounds))
15: else if ds[sMax] < dt[tMax] then

split bin on t at ceiling(mean(t.bounds))
else

split bin randomly on s or t at ceiling(mean(s.bounds)) or
ceiling(mean(t.bounds))

end if
20: else if ds[sMax] ≥ dt[tMax] then ▷ Ties go to s

split bin on s at cs[sMax]
else

split bin on t at ct[tMax]
end if

25: return upper and lower split of bin
end function
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Algorithm 3 Marginal χ2 scores

Input
x - a numeric vector of potential split coordinates in increasing order
e - a numeric value giving the expected number points in a bin
emin - the minimum expected number allowed for a split

5: function chiScoring(x, e, emin)
n←− length(x)
cumulative←− x[2] −x[1] ▷ Initialize cumulative length
density ←− e/(max(x)− x[1]) ▷ Density under uniformity
scores ←− {} ▷ Initialize storage

10: for i = 2 to n− 1 do
ei ←− cumulative ∗ density ▷ Expected count below i
oi ←− i− 2 ▷ Observed count ignores bounds, pseudo-point
if ei ≥ emin AND e− ei ≥ emin then

append (oi−ei)
2

ei
+ (n−3−oi−e+ei)

2

e−ei
to scores ▷ chi score of candidate split

15: else
append 0 to scores

end if
cumulative←− cumulative+ x[i+ 1]− x[i] ▷ Update length

end for
20: return scores

end function
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be replaced with any objective function, for example the mi score of Equation (3.3) with
oi

n−3
log oi

ei
+ n−3−oi

n−3
log n−3−o

e−ei
to maximize the marginal Kullback-Liebler divergence from

uniformity.

This framework also supports random binning. Rather than computing a function that
compares the observed distribution to a uniform one about a split, the scores can be re-
placed with independent and identically distributed U [0, 1] realizations. The coordinate
of the maximum score value will then be uniformly distributed along each potential split
coordinate and each margin, creating a fully random recursive binning procedure. Ad-
ditionally, as these random realizations are greater than or equal to zero, adopting the
indicator multiplication of Equation (3.5) controls the bin size under this form of random
splitting.

3.3 The AssocBin package

Algorithms 1, 2, and 3 are implemented in the R package AssocBin for the mi score, chi
score, and random splitting score. The core functions are:

makeCriteria: a function which captures its arguments and appends them into a single
logical expression

stopper: a function which accepts a list of bins and a logical expression and evaluates the
expression within each bin using R’s lexical scoping

binner: the wrapper function described in Algorithm 1 which accepts integer vectors x

and y; a stopper function which accepts a list of bins and returns a logical vector; a
splitter function which accepts a single bin and returns a pair of bins partitioning
the input bin; an init function which splits the initial bin containing all points; and
(optionally) additional arguments to pass to internal function calls

chiScores, miScores, randScores: functions which implement Algorithm 3 with line 14
replaced by the corresponding score

maxScoreSplit: the splitting function described in Algorithm 2 which accepts bin and
scorer functions in addition to ties and pickMax which allow for custom tie and
maximum choice handling

splitX, splitY: functions which accept a bin to be split, a numeric bd giving the coordi-
nate of the split, and the indices of values above and below bd and return two bins
resulting from a split of bin at bd along the corresponding margin
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halfCutTie: the tie-breaking logic described in Algorithm 2

By writing binner with fully modular components, the score function, splitting logic, stop
criteria, and ties can be modified to suit the preference of a user. As these are all imagined
as single argument functions within binner, certain functions need to be defined in closures
before use. To use stopper, for example, the stop criteria returned by makeCriteria

must be passed as an argument to stopper within another function which returns a single-
argument function. Similarly, maxScoreSplit must have its scoring function and minimum
expected count set in a closure that then accepts a single argument. Though this requires
some extra set up, it limits the arguments of binner and forces the user to consider these
choices intentionally in advance. The demos and vignette included in the package provide
examples.

Additional helper functions visualize and summarize the results. The binChi function
computes the χ2 statistic over a list of bins returned by binner and the plotBinning func-
tion plots a bin list and scatterplot with optional fill. Two additional functions, depthFill
and residualFill, create gradient fills to communicate depth or residual magnitude based
on colour range and residual function arguments. Such visualizations not only give insight
into what region of the data the algorithm deems most important, but also provide a sum-
mary of the data. Rather than a scatterplot with potentially thousands of points, these
visualizations display a handful of coloured regions which can be read at a glance. The full
package can be found on the author’s GitHub and on CRAN (Salahub, 2023a).

3.4 Using the algorithm

Some results gained from the exploration of this algorithm in practice are presented here.
First, a series of visualizations of the algorithm on independent data and strongly associated
data are given to demonstrate how it works step-by-step. Then, as both Heller et al. (2016)
and Reshef et al. (2011) utilize simulated independent X and Y to generate the p-values
of their methods, the null distribution of the recursive binning measure under different
splitting rules is explored. This is followed by the application of the method to simulated
data patterns from Newton (2009) and Liu et al. (2018). Finally, a real data set is examined.

3.4.1 Simple examples

To illustrate the behaviour of the maximum splitting algorithm from Section 3.2, consider
applying it to two extremes: random independent data and data in perfect agreement.
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Scatterplots of both of these simulated data sets with n = 1, 000 are shown in Figure 3.2.

(a) (b)

Figure 3.2: The (a) simulated random data and (b) perfect rank agreement data used to
illustrate the flow of the algorithm.

As the ranks of both data sets have no gaps, the initial step of the algorithm will not
find a marginal maximal split. Indeed, for any split at a point the number of points on
either side will match expectation exactly. Therefore, the algorithm begins by splitting
the initial bin in half by adding a vertical edge at 500 in both. This gives the bins seen in
Figure 3.3.

(a) (b)

Figure 3.3: The (a) simulated random data and (b) perfect rank agreement data with the
first split indicated.

Once so halved, the ranks are no longer necessarily uniform within the bins. Marginal
gaps are introduced in both due to the split. Therefore, the next split is not made at the
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halfway point, but is instead made to optimize the deviation of counts from uniformity as
measured by the score function. While identifying the location of these splits on either
side in the random uniform data is difficult, the expected split in the line data would be
another halving of the bins, as this produces empty corner bins which should each contain
a quarter of the observations. Indeed, this is the result seen in Figure 3.4.

(a) (b)

Figure 3.4: The (a) simulated random data and (b) perfect rank agreement data with the
first two splits indicated, dividing both data sets into four bins.

Such a step-by-step demonstration could be continued, to the tedium of the reader,
but an easier visualization can summarize such stepwise inspection. For each bin, the
implementation described in Section 3.3 keeps track of the bin depth as well as its other
features. More information about the algorithm’s path can be gleaned by simply running
the algorithm and shading the bins according to their depth. Setting a maximum depth
of six and shading in this way produces Figure 3.5.

There are stark differences between the depth patterns for these two data sets, as might
be expected. While the uniform random data continues splitting every bin somewhat hap-
hazardly with the exception of small early splits that meet the stop criteria (the expected
number of observations being 10 or fewer or no observations within the bin), the line data
causes a very particular pattern of depths to emerge. It seems to chase the linear pattern
by introducing many more splits along its length. In this way it assigns a greater density
of bins to the regions with a greater density of points.

By chasing these regions, the algorithm produces a striking pattern in the residuals
of its final bins. This pattern occurs in, for example, the Pearson residuals of bins with
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(a) (b)

Figure 3.5: The (a) simulated random data and (b) perfect rank agreement data split to a
maximum depth of six, with bins shaded darker according to their depth. The algorithm
splits to the maximum depth along the line and not elsewhere while the in the random
data continues splitting in every location.

expected counts ei and observed counts oi,

risign(oi − ei)

√
(oi − ei)2

ei
.

Large positive residuals occur all along the line and large negative ones occur away from
it. Figure 3.6 plots these residuals using hue to convey their sign, with the convention that
blue represents negative values and red represents positive ones, and saturation to convey
their magnitude, with darker saturation indicating a larger magnitude.

While bins in the random data do not display pronounced shading, indicating small
residuals, the line pattern has large positive residuals all along its length and large negative
residuals elsewhere. In particular, note the deep blue shading in upper left and bottom
right quadrants. Even without the points, the structure of the data is easily discerned from
the shading of these bins alone.

In this example, taking a sum of the squared Pearson residuals to get the χ2 statistic
gives values of 87.8 for the random data and 7000 for the line data. Of course, as the bins
produced here do not follow a regular grid pattern and are generated by maximizing a
score analogous to the χ2, the distribution of the statistic warrants an investigation under
independence. As these bins are produced using optimization at each step, it is not clear
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(a) (b)

Figure 3.6: (a) Simulated random data and (b) simulated data with perfect rank agreement
split to a maximum depth of six, with bins shaded according to their Pearson residuals.
Negative residuals are shaded blue while positive residuals are shaded red, with darker
shading indicating a larger residual magnitude. Large positive residuals occur along the
line and large negative ones occur elsewhere.

that nbin bins would have a χ2 distribution with nbin − 1 degrees of freedom as is usually
the case, even with the controlled minimum bin size.

3.4.2 The null distribution

To explore the null distribution of the χ2 statistic under recursive binning, a simulation
study generating many null replicates is undertaken here. Three different splitting rules
are considered: random splits, chi score maximizing splits, and mi score maximizing splits.
All will lead to different final bins when applied to the same data and therefore different
statistic values. To satisfy the rule of thumb for the χ2

nbin−1 distribution a better chance of
fitting, all are restricted so that bins with expected counts less than 5 are not created.

10,000 independent bivariate data sets are generated x,y ∈ R10,000 by randomly and
independently shuffling the vector of ranks {1, 2, . . . , 10000} on each margin. Every one of
these x,y pairs is recursively binned to every maximum depth between two and ten using
random binning, binning maximizing the chi score, and binning maximizing the mi score
at each step. Splitting is stopped when the expected number of observations within a bin
falls below ten or if a bin contains no observations. For each binning, the χ2 statistic is
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computed for the final bins based on the observed and expected counts, and this statistic
is recorded along with the number of final bins.

The impact of depth

To start, consider a plot of the χ2 statistic against the number of bins for these simulated
data when bin splits are selected randomly and uniformly among observed point coordinates
within a parent bin. Figure 3.7 displays this plot with both margins log10 transformed to
make the horizontal width of clusters for small depths as wide as those for large depths. A
dashed line is plotted on top of the points at the 99% critical value of χ2

nbin−1 for reference.

Figure 3.7: The χ2 statistic plotted by the final number of bins for 10,000 simulated
independent data sets for each of 9 depth settings with random splits. The dashed line
displays the 99% critical value of the χ2 distribution with one degree of freedom less than
the number of bins, which is conservative for all depths.
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The expected and minimum count stop criteria together cause the number of bins for a
given maximum depth stop criterion to vary on each realization. If every bin were split at
every step, a maximum depth of d would always produce 2d bins but small bins produced
by chance early in splitting are not further split. Nonetheless, a larger maximum depth will
produce more bins on average than a smaller maximum depth. This produces the clusters
of bin counts at each depth in Figure 3.7.

A more interesting result comes from a comparison between the 0.99 quantile of the
χ2
nbin−1 distribution and statistic values for all depths. Given that 10,000 null cases are

generated for each depth, roughly 100 points are expected above this critical value if the
χ2
nbin−1 distribution is the null distribution. Instead, far fewer points are observed above

the line, suggesting the χ2
nbin−1 99% critical value is conservative for χ2 under random

splitting. That is, choosing quantiles from this distribution to test for dependence at level
0.01 implies a test with a level of at most 0.01 for the true null distribution. Indeed, quantile
regression performed later suggests the χ2

nbin
distribution is a conservative approximation

for the null distribution under random splitting.

The same result is not expected for splits chosen to maximize the chi or mi score. The
χ2 statistic for the simulated data split to optimize the chi score is shown plotted against
the final number of bins in Figure 3.8 and the same plot for splits optimizing the mi score is
shown in 3.9. Points are, again, coloured according to the maximal depth allowed, and the
mean statistic values and number of bins for each of these depth settings are denoted with
corresponding coloured squares. Additionally, the 99% critical value for the χ2 distribution
with nbin − 1 degrees of freedom is plotted against nbin.

Two changes occur in Figure 3.8 compared to random binning. First, the statistic values
tend to be larger than the null case for the same value of nbin. Indeed, the majority of
score-maximizing binned statistics are above the χ2

nbin−1 99% critical line when the maximal
depth is only 4, all are above the line when the depth is 6, and the gap between the critical
value curve and the true distribution grows larger as the number of bins increases.

Second, the number of bins no longer displays distinct clusters by maximal depth.
Whereas Figure 3.7 has clusters along the horizontal margin corresponding to each maximal
depth, the maximum binning bin counts are not strongly grouped. This may be a result of
the maximized method selecting smaller bins on average than random binning, resulting
in fewer bins due to the minimum size and expected count restrictions that stop splitting
of these small bins early. This dynamic ‘smears’ the number of bins for each maximum
depth, leading to large overlap between groups by maximum depth.

Figure 3.9 shows a similar pattern for the mutual information statistic. The χ2 statistic
value rapidly increases in the number of bins, resulting in a distribution which is well above
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Figure 3.8: A comparison of the number of final bins and χ2 statistic for 10,000 simulated
independent data sets split to maximize the chi score over each of 9 depth settings. The
dashed line displays the 99% critical value of the χ2 distribution with one degree of freedom
less than the number of bins. For all depths, many more points lie above this critical value
than would be expected if the data followed a χ2

nbin−1 distribution.

the χ2
nbin−1 0.99 quantile. Indeed, both seem to produce similar null distributions for the

χ2 statistic when applied to the same data.

To better compare the χ2
nbin−1 quantiles to the null distributions across all numbers

of bins, quantile regression of the statistic value on the bin depth was carried out using
simulated data and the quantreg package in R (Koenker, 2023). Specifically, regression of
the 0.95, 0.99, and 0.999 quantiles of the χ2 statistic was carried out for binning under all
three splitting methods. The results are shown in Figure 3.10. Just as indicated by the
earlier plots, maximized splitting with either score leads to inflated statistic values, that is
a statistic which is stochastically greater than a χ2

nbin−1 random variable. Both maximized
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Figure 3.9: A plot of the χ2 statistic by the final number of bins for a binning which
maximized the mi score at each step. The plot looks almost identical to that generated by
splitting the chi score.

methods produce almost identical upper quantiles. In contrast, random splitting produces
a χ2 statistic which is stochastically less than a χ2

nbin−1 random variable, suggesting the
χ2
nbin

distribution could be used to generate conservative p-values (at least in the tails).

These lines not only make the difference in the distributions under the different splitting
methods clear, but also could be used in practice to determine rejection or acceptance of
the null hypothesis of independent data. Of course, the quantiles depend on the number
of observations, so this plot is only demonstrative unless the sample size is 10,000.

In short, both depth and splitting method are highly relevant to the distribution of
statistics computed on the final bins. The naive χ2

nbin−1 distribution on the bins seems
to provide a conservative distributional approximation for random splitting but not when
splitting to maximize a score function. Instead, large simulation studies as performed here
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Figure 3.10: Fit quantile regression lines for several quantiles for all different splitting
methods. Both maximized splitting methods lead to similar larger quantiles that grow
faster with depth and are further apart, though the chi score leads to slightly larger χ2

statistic values.

must be used as a reference to determine critical values and empirical p-values. Results
could be smoothed or interpolated to cover gaps in the data due to certain bin counts
occurring more and less frequently by chance.

3.4.3 Depth and sample size

To investigate other sample sizes, this study is expanded to 10,000 samples of size n = 100
and n = 1,000, all split to a maximum depth of 10. The stop criteria are the same as
the preceding investigation. Plots of the resulting χ2 statistic and number of bins are
compared to the plot for n = 10,000 in Figure 3.11 for the case of random splitting and
in Figure 3.12 for the case of spitting which maximizes the chi score at each step. Splits
maximizing the mi score were not investigated due to the very similar null distribution to
those maximizing the chi score.

In both cases, the primary impact of increasing the sample size is to increase the max-
imum number of bins produced by the algorithm. For smaller sample sizes, the minimum
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(a) (b) (c)

Figure 3.11: χ2 statistic and number of bins for 10,000 samples of simulated random data
split by random binning to a maximum depth of ten with the minimum expected bin count
restricted to 5 for (a) n = 100, (b) n = 1,000, and (c) n = 10,000. As the sample size
increases, the maximum number of bins and separation between the depths increases.

(a) (b) (c)

Figure 3.12: χ2 statistic and number of bins for 10,000 samples of random data split
maximizing the chi score with a minimum expected bin count of 5 to a maximum depth of
ten for (a) n = 100, (b) n = 1,000, and (c) n = 10,000. As before, the sample size limits
the maximum number of bins produced by the algorithm.

bin size stop criteria and bin split restrictions end splitting before many bins are created.
This could have been anticipated. With a sample size of 100, for example, splitting the
data into 10 bins implies an expected count of 10 per bin, at which point the stop criteria
would cease further splitting. Irregular bin shapes complicate this, of course, but the basic

45



idea stands. A smaller sample implies smaller expectations to compare to the constant
stop criteria.

Importantly, this does not seem to impact the conservative approximation of the χ2

statistic under random binning by the χ2
nbin−1 distribution. For all three sample sizes, the

observed statistic values have similar location and spread given the number of bins. As
the sample size increases, the distribution merely spreads along the curve dictated by the
χ2
nbin−1 distribution.

The same is not true for splits maximizing the χ2 score. As the sample size increases,
the whole distribution of the χ2 statistic moves upward for a given number of bins. This is
particularly obvious if the mean points are compared to the line providing the 99% quantile
of the χ2

nbin−1 distribution. In Figure 3.12(a), none of the mean points lie above this line
for nbin > 10 while in Figure 3.12(c) all of them lie well above this line.

These different behaviours are probably a result of the way the maximizing algorithm
chases local patterns, as demonstrated on the perfect line data. Random binning splits
agnostically, but chi maximizing binning searches through all splits for the one leading
to the largest χ2 statistic. Large χ2 values therefore occur by chance for random binning
but are actively sought by maximized binning. With a larger sample, a greater variety of
local patterns will be included which can inflate the χ2 statistic. The maximized algorithm
actively searches for such patterns, stochastically increasing the resulting distribution.

3.4.4 Simulated data patterns

Besides the null distribution, an important aspect of recursive binning to measure associa-
tion is the ability of the algorithm to detect non-null patterns in the data. Newton (2009)
provides supplemental code to generate several interesting data patterns, which have since
been used by Liu et al. (2018) and Heller et al. (2016) to test their methods and also
appear on the Wikipedia article for Pearson’s correlation. This code is adapted and used
here to repeatedly generate observations following each pattern as a test of recursive bin-
ning. Samples of 1,000 observations from each pattern are shown in Figure 3.13, and the
marginal ranks of these samples are shown in Figure 3.14. Both figures have the margins
dropped for brevity.

All but the final pattern contain non-linear dependence between the vertical and hor-
izontal variables, and still display strong patterns when these variables are converted to
ranks. The final sample, in contrast, consists of four clusters of equal size which can be
constructed by the product of independent bimodal marginal densities. Consequently, in
the ranks the sample appears uniform. The final pattern therefore acts as a control to
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Figure 3.13: Point patterns used in Newton (2009) and Liu et al. (2018) to demonstrate
different dependence structures. In the last pattern, the data are independent despite the
obvious two-dimensional structure.

Figure 3.14: The patterns of Figure 3.13 converted to marginal ranks. Refer to these pat-
terns as the wave, rotated square, circle, valley, cross, ring, and uniform noise respectively.

ensure that structure without dependence is not detected by recursive binning applied to
the ranks.

For each pattern, both the maximized binning under the chi score and random binning
algorithms were applied with maximum depths ranging from 1 to 10 and the same stop
criteria as previously (an expected count ≤ 10 or an empty bin). This gives a sequence of
nbin, χ

2 coordinates for each pattern as the depth restriction is increased, just as in Figures
3.7 and 3.8. Rather than visualize these as points, the progression of bins and statistics
with increasing maximum depth can be emphasized by joining the points for sucessive
depth restrictions to give paths for each pattern in the nbin, χ

2 space. The same can be
done for the 10,000 simulated null samples of 1,000 points from Section 3.4.2 to give 10,000
null lines for comparison. Figure 3.15 displays paths coloured by pattern to match Figure
3.14 alongside the null paths coloured in gray. A dashed line at the 0.95 quantile of the
χ2
nbin

distribution is added to simulate a rejection boundary in Figure 3.15(b).

Figure 3.15(a) shows smooth curves of the χ2 statistic increasing the number of bins as
the maximum depth is increased while Figure 3.15(b) shows erratic paths which occasion-
ally decrease in the statistic value as depth increases. Holding this major difference aside
for a moment, all the curves for patterns with dependence lie well above the null paths,
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(a) (b)

Figure 3.15: Paths for every pattern in nbin, χ
2 statistic space across depth restrictions for

(a) maximized chi score splitting and (b) random splitting. While the maximized splitting
is deterministic for a sample, leading to smooth curves, randomized binning leads to rough
and erratic paths. Despite this, both display roughly the same ordering of the patterns by
colour, and all patterns have paths far above any of the 10,000 simulated null cases.

while the uniform pattern sits within the null curves for both splitting methods. This
suggests empirical p-values less than 0.0001 for every pattern when the depth restriction is
greater than 3. Additionally, the order of the curves is similar between the two, with the
wave and the cross giving the largest χ2 statistic values for a given number of bins and the
rotated square and circle giving the smallest statistic values.

Returning to the difference in path smoothness, the erratic nature of the random binning
and smoothness of the maximized binning are natural consequences of the different split
methods. The maximized splitting algorithm chooses the maximum split at each step and
so behaves deterministically for a given sample. In contrast, the random splitting algorithm
proceeds non-deterministically and will generate different bin counts and statistic values
for a given depth restriction every time it is run, even for constant data. To better see the
difference this makes for the separation of the patterns and to evaluate the performance of
both based on more than a single exemplar, 100 samples of 1,000 points from each pattern
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are generated independently and subsequently split either by chi-maximizing or random
binning. The resulting paths are displayed in Figure 3.16, with the median path plotted
using a thicker grey-accented line.

(a) (b)

Figure 3.16: Paths of (a) maximized and (b) random binning applied to 100 independent
realizations of the seven simulated data patterns compared to the null paths with median
paths plotted with thicker lines accented by grey. Both spitting regimes create clear sep-
aration between the null paths and paths of patterns with dependence and both display
the same ordering of patterns. The random splitting, however, creates more erratic and
variable paths.

The clouds of paths show roughly the same ordering under both random binning and
chi-maximized binning. Both place the wave (in dark green) and the cross (in light green)
above the others, followed closely by the valley (in pink) and the ring (in yellow). Halfway
between these these patterns (all with locally linear sections) and the null patterns sit the
rotated square (in orange) and circle (in blue). Though these latter two result in smaller
statistic values than the others, they remain easily distinguished from the null paths in
both Figures 3.16(a) and 3.16(b). Indeed, under random splitting the χ2

nbin−1 0.95 quantile
plotted with a dashed line neatly separates the null paths from these two patterns and
consequently all patterns.
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The close agreement of their ordering suggests that randomized binning is as powerful
as maximized binning at detecting these patterns. The clear separation of the null curves
from the curves of all patterns over all repetitions implies empirical p-values < 0.0001 for
all patterns when the algorithm is allowed to reach its maximal depth using only bin size
stop criteria. Any of these patterns would therefore be regarded as significant by both
regimes for commonly used rejection levels. Moreover, as the order of curves by pattern
is the same for both, the greatest difference between the maximized binning and random
binning seems to be the increased the statistic value alone. If a rejection level is chosen
on the χ2 statistic proportional to the null quantile, we expect that both regimes would
show the same tendency for acceptance or rejection of every pattern. Given that random
binning requires less computation and has a conservative p-value provided by the χ2

nbin−1

distribution, the similar ordering of these curves provides a strong argument for the use of
random recursive binning of the ranks to detect and quantify dependence between variables.

Progression of bins in the maximizing algorithm

The median lines are somewhat more interesting, as they cross each other frequently. This
suggests the ordering of these different patterns, and potentially the power of the algorithm
under each splitting method to detect them, is dependent on the maximum depth. Under
chi-maximized binning, the median line for the rotated square is above all others for very
small numbers of bins, indicating there is a pattern in the data which can be captured
quickly with few splits. In contrast, the median line for the ring pattern starts below most
others for both splitting methods, indicating that a certain number of bins are required
before the pattern is detected. It seems each pattern has a natural resolution: a number
of bins required to identify the dependence.

Directly related are the different slopes of these curves for each pattern. Patterns which
generate large residuals within a few splits will grow rapidly at first, and then may slow
if the following residuals are relatively small. The median path of the valley pattern, for
example, grows quicker than most other patterns in the number of bins for the first few
depths before its rate of growth slows. In contrast, the χ2 statistic of the ring pattern is
unexceptional before a certain depth, at which point the statistic values jump abruptly.
More insight into both the slope of these lines and the resolution of each pattern can be
gleaned by plotting the bins at each depth for each pattern shaded by residual as in Figure
3.17.

As before, the hue of the shading is determined by the sign of the bin’s Pearson residual,
blue for negative and red for positive, and the saturation is determined by its magnitude.
To ensure fair comparison of the residuals, all saturations are determined relative to the
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Figure 3.17: Bins for chi score maximizing splits at increasing depths. By row, depths 2,
4, 6, 8, and 10 are displayed in order. The final bins reflect and summarize the pattern of
points given to the algorithm.

maximum residual observed across all depths. The rapid early growth of the rotated square
can be spied immediately by its shading in the first row. After only two splits, the empty
top left corner and dense top right are detected by the maximized binning algorithm and
contribute large residuals, leading to a large early χ2 statistic. Once these regions of low
and high density around the margins are identified everywhere, however, the algorithm is
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left splitting the nearly uniform interior of the rotated square, and so grows parallel to the
null paths. One interpretation of this “elbow” point is the point at which the recursive
binning has adequately captured the pattern in the data. Additional splits beyond this
point are ineffective at increasing the score because they occur essentially randomly based
on previous splits.5

In contrast, the pattern observed for the ring requires a certain depth to detect. The
radial symmetry of this pattern means that most early splits fail to identify the less dense
regions in the corners and the centre and the more dense region along the circumference of
the ring. It is only as the depth exceeds 6 that strong positive and negative residuals are
found in any bins, before that point the residuals are not as large as for the other patterns.

Comparing the final row of Figure 3.17 to randomized binning at a depth of ten in
Figure 3.18, a clear advantage of the maximized binning is better representation of the
underlying pattern. Especially for the cross, wave, and valley, random binning produces a
larger proportion of thin bins which obscure the pattern of residuals and points. In contrast,
maximized binning tends to chase local patterns, leading to many small rectangular bins
around high density areas that provide a sense of the pattern they summarize. Should a
visual summary of the data be desired, maximized binning will give more consistent and
clear results than random binning.

Figure 3.18: Bins for random splitting at a depth of 10

5Another interpretation of this behaviour is that the algorithm is effectively splitting the noise. Once
large areas of relatively high and low density have been identified, the main aspect of the data determining
whether further splits are productive is the level of noise. So, for example, the perfect line of Figure 3.6(b)
always benefits from further splits, but the noisier pattern of the valley is adequately captured at some
point.
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3.5 A real data example: S&P 500 returns

For a real data example, consider the S&P 500 constituent data from Hofert and Oldford
(2018). The raw data contains a time series of 505 stock prices from the first day of 2007
to the last day of 2009 for stocks included in the S&P 500 index. The goal is to evaluate
the pairwise dependence present within the negative log-returns of the 461 stocks with
complete records over this period using recursive binning over all

(
461
2

)
= 106,030 pairs.

The negative log-return of a stock is the negative logarithm of the ratio in its end-of-day
price over two consecutive days, explicitly

− log
St

St−1

for a stock with value St at time t. As there are 756 days recorded in the data set, there
are 755 log-returns for each stock.

To remove further time dependencies between stock returns day-to-day, the negative
log-returns for each stock are fit with an ARMA(1,1)-GARCH(1,1) model and the residuals
are taken as a new set of independent pseudo-observations, see details in Hofert and Oldford
(2018). The raw data are taken from the qrmdata package (Hofert et al., 2022) and
processed by code adapted from the SP500 demo from the zenplots package (Hofert and
Oldford, 2020) in order to compute the log-returns and generate the pseudo-observations
for recursive binning.

Recursive binning as in Section 3.4.4 is applied to each of the 106,030 pairs of 755
pseudo-observations to evaluate dependence. Specifically, splitting maximizes the chi score
under the constraint that no bins be created with expected counts less than 5 and splitting
is stopped when the expected count in a bin is less than 10, the bin contains no observations,
or the depth of the bin is 6. After binning, the χ2 statistic is computed over the bins to
measure the departure of the observed distribution from that expected under uniformity.
Figure 3.19 displays the resulting statistic values and nbin for every pair compared to the
null quantiles for uniform pairs with 1,000 points from Section 3.4.2 estimated by quantile
regression6. Hues from blue to red encode the empirical p-value of an observed statistic for
an S&P 500 pair at a given number of bins in the null data. Partial transparency (alpha-
blending) is also used in this plot, but the sheer number of points makes it ineffective at

6This choice of null should be somewhat conservative for the case of 755 points. As shown in Figure
3.12, smaller sample sizes lead to fewer bins and smaller χ2 statistic values for the same maximum depth.
Therefore, taking the χ2 statistic over simulated uniform samples of a slightly larger sample size provides
an approximately correct, but slightly conservative, null distribution.
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representing the density, so marginal histograms have been added to give a better sense of
the location where values are most concentrated.

Figure 3.19: The distribution of nbin and χ2 statistics for the 106,030 S&P 500 pairs split
to a maximum depth of 6 compared to some upper quantile estimates of the χ2 statistic
from nbin under the null distribution of independence. Most pairs in the S&P 500 data
appear to be highly significant.

Most striking in this plot is the significance of nearly every pair. Only 334 of the
106,030 pairs (0.3%) have empirical p-values less than 0.95, and the χ2 statistic values are
centred well above the fit null quantiles despite their slightly conservative nature. The
pairs generally lie in a single large cluster in χ2 statistic and nbin values and the marginal
histograms indicate that within this cluster most points are concentrated in a small region
at its center. Only a few dozen pairs lie outside this cluster, including the two very large χ2

statistic values for relatively small values of nbin and the smallest χ2 statistic values with
the smallest values of nbin. This suggests that almost every pair in this data set contains
some level of dependence, inviting further exploration.

First, consider the exceptionally large statistic values. Figure 3.20 displays a matrix of
the 36 pairs with the largest χ2 statistic values in decreasing statistic order from top left
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Figure 3.20: The S&P 500 pairs with the largest χ2 statistic values after recursive bin-
ning under the splitting and stopping logic described earlier. All pairs show strong linear
dependence, especially in the upper and lower tails.

to bottom right. For each pair, a scatterplots of the marginal ranks is augmented by a
plot of the final binnings coloured by the sign of the Pearson residual (red for positive and
blue for negative) and shaded by magnitude. The range of hues is kept constant through
all subplots to support direct comparisons between any two binnings.

Immediately apparent in every plot is a strong positive linear relationship between
the pairs. Bins along the diagonal line from the bottom left to the top right have more
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points than expected, while those in the top left and bottom right corners have fewer.
Most notably, the bins in the top right and bottom left corners tend to have far more
observations than expected. This suggests particularly strong tail dependence in these
pairs, loosely the probability that large or small values of two random variables occur
simultaneously. Precisely, upper tail dependence at p ∈ [0, 1] is defined as

P
(
Z1 > Q1(p) Z2 > Q2(p)

)
and lower tail dependence as

P
(
Z1 ≤ Q1(p) Z2 ≤ Q2(p)

)
for random variables Z1, Z2 with respective quantile functions Q1(·), Q2(·) (Hofert and
Oldford, 2018). As the upper and lower bins approximate these conditional probabilities,
albeit for separate quantile values, the shaded residuals in the tails of these plots commu-
nicate how much larger the conditional tail probabilities are than would be expected under
independence.

Though detecting this tail dependence is not the goal of recursive binning, the most
interesting pairs it identifies overlap considerably with the pairs that have the largest upper
tail dependence. Indeed, 8 of the top 10 pairs ranked by upper tail dependence in Hofert
and Oldford (2018) can be found in Figure 3.20. The top two relationships, in particular,
correspond to different classes of stock in the same company. This explains not only their
strong dependence (especially in the tails), but also their outlying positions in Figure 3.19
with similarly large χ2 statistics for relatively few bins.

At the other end of the spectrum, Figure 3.21 displays the pairs with the smallest χ2

statistic values in decreasing statistic order from top left to bottom right. Residuals are
shaded according to the same hues as Figure 3.20, so a comparison of bins between the
two plots is possible. In contrast to the pairs with strong association, the points, bins,
and residuals show no obvious patterns for any of these pairs. The magnitude of residuals
is generally small and the points show essentially random scatter. It is unsurprising that
these pairs are deemed unexceptional by the recursive binning algorithm.

Finally consider the pairs with moderate statistic values. Figure 3.22 displays the 36
pairs with values closest to the median χ2 statistic across all 106,030 pairs. Again, the
shading is consistent with all previous plots to allow comparisons. These ‘middling’ pairs
show relatively weak positive, linear relationships without the strong tail dependence of
the pairs with the largest χ2 statistic values. Nonetheless, there is a concentration of bins
which are shaded faintly red about the main diagonal and others shaded faintly blue in
the top left and bottom right corners distinctive of a positive linear relationship. This
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Figure 3.21: The S&P 500 pairs with the smallest χ2 statistic values. These pairs look
like realizations of random uniform data, with no strong patterns to the bins, points, or
residuals.

observation, along with clear separation of statistic values for the simulated data patterns
of Section 3.4.4 from the null distribution, supports the conclusion that the large statistic
values across the majority of pairs in the S&P 500 data are not spurious, but instead reflect
the power of recursive binning to detect even weak dependence.
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Figure 3.22: S&P 500 pairs with χ2 statistic values nearest to the median value. Though
the dependence is weak compared to Figure 3.20, there is still a concentration of bins with
more points than expected along the diagonal and bins with fewer points than expected in
the off-diagonal corners, suggesting weak positive linear relationships between these pairs.
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3.6 Conclusions

This investigation of recursive binning as a method to measure association garners several
key observations. First, and perhaps most important, the power of recursive binning
to detect association does not appear to depend greatly on whether chi maximizing or
randomly placed edges are used to split bins. Both the maximizing splits and the random
splits showed pronounced separation of non-null patterns from the null distribution in the
simulation study of Section 3.4.4. Using random splits gives a number of advantages: it
is computationally faster, conceptually simpler, and produces a null distribution which
is conservatively approximated by the χ2

nbin−1 distribution if the spliting logic and stop
criteria maintain the rule of thumb that the expected count of every bin be ≥ 5. If
detecting dependence is the only goal of an investigation, random splits may therefore be
preferred to maximizing ones despite, or perhaps because of, their simplicity.

In contrast, maximized score binning produces bins which serve as a superior visual
summary of a pairwise relationship. Splits which maximize the chi score, for example, will
split off empty sections of a bin and separate regions of particularly high density. The end
result is a collection of bins which represent the underlying pattern of points much better
than the bins which result from random splits. This comes at a cost of inflated statistic
values, requiring modeling or simulation at every application to estimate the significance
of an observed statistic value.

In either case, the pattern present in the data impacts the path of the algorithm. For
simple linear patterns, dependence can be detected with relatively few splits and bins.
More complex patterns may take many splits to detect. For many patterns tested here,
it seems a natural depth or resolution is present. Splits below this natural depth may
increase the χ2 statistic drastically, but after it is reached the statistic grows more slowly
at a rate comparable to the null over successive splits.

Recursive binning is a promising method to measure association. It displays high power
in the detection of non-linear relationships, can be used to generate a summary visualization
of data pairs, and seems to naturally highlight local dependence such as tail dependence in
real data. Though the simulations here are not comprehensive, they are highly suggestive
of a practical and powerful tool for sorting and summarizing pairwise relationships in large
data sets.

59



Chapter 4

Pooling Independent Significance
Tests

Supposing that M pairwise comparisons have already occurred and resulted in M p-values,
a natural question is whether these p-values as a whole constitute evidence against the null
hypothesis that there are no interesting patterns in the data. The multiple testing problem
arises because answering this question requires different analysis than univariate p-values.
A univariate threshold applied to all M p-values, for example, will no longer control the
type I error at the level of the threshold. A common approach that controls the type I
error (which is called the family-wise error rate in this context) is to use a function to
combine the M p-values into a single value which behaves like a univariate p-value. This
chapter presents a new framework to choose among these pooling functions along with a
proposed pooling function designed with this framework in mind.

Specifically, Section 4.1 introduces the notation necessary to discuss this problem be-
fore Section 4.2 introduces some necessary concepts. Means of measuring the prevalence
and strength of evidence in the p-values against the null hypothesis are required to un-
derstand the framework proposed later. Strength quantifies the degree to which a test
favours rejection while prevalence quantifies how commonly tests which do not have the
null distribution (‘non-null’ tests) occur. Prevalence is measured by the proportion of tests
which favour rejection while strength is measured by the Kullback-Leibler divergence. As-
suming that non-null tests come from a restricted beta family, the power of a UMP method
for particular beta distributions is investigated for different values of the prevalence and
strength in Section 4.4. A pattern of high power for either strong evidence in a few tests or
weak evidence in many tests is noticed and developed into a framework for choosing pooled
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p-values in Section 4.5. Following the necessary definitions to develop this framework, in-
cluding the concepts of central and marginal rejection, it is proved that the significance
level required to reject concentrated evidence is always less than that required to reject
diffuse evidence. This supports the definition of a coefficient quantifying the degree to
which a pooled p-value favours either pattern of evidence.

Section 4.6 proposes a pooling function based on the χ2 quantile transformation which
controls this preference through its degrees of freedom. It is proven that large degrees
of freedom give a pooling function which prefers diffuse evidence while small degrees of
freedom prefer concentrated evidence. In a simulation study, this proposal is shown to
nearly match the UMP when correctly specified and is more robust to errors in specification.
These conclusions are extended in Section 4.7 where a sweep of parameter values is used
to identify the the most powerful choice for a given sample and suggest a region of most
plausible alternative hypotheses within the framework in light of it.

4.1 Introduction

Consider a collection of M independent test statistics t = (t1, . . . , tM)T having p-values
p = (p1, . . . , pM)T for the null hypotheses H01, H02, . . . , H0M – for example, χ2 tests for
the association of M individual genes with the presence of a disease where each H0i asserts
no association. Assessing the overall significance of p while controlling the family-wise
error rate (FWER) at the outset of analysis is common practice in meta-analysis and big
data applications (Heard and Rubin-Delanchy, 2018; Wilson, 2019). The FWER is the
probability of rejecting one or more of H01, . . . , H0M when all are true, equivalent to the
type I error of the joint hypothesis

H0 = ∩Mi=1H0i.

To emphasize the null distributions, pi ∼ U = Unif(0, 1) for all i ∈ {1, . . . ,M}, this is
often written

H0 : p1, p2, . . . , pM
iid∼ U.

To test H0, a statistic l(p) : [0, 1]M 7→ R of the p-values with a distribution that is
known or easily simulated under H0 can be computed. If l(p) has cumulative distribution
function (CDF) Fl(l) under H0, then l(p) admits g(p) = 1 − Fl

(
l(p)

)
∼ Unif(0, 1) such

that rejectingH0 when g(p) ≤ α controls the FWER at level α.1 g(p) therefore summarizes

1Note that the use of the CDF in g(p) = 1 − Fl

(
l(p)

)
implies that g(p) is identical for any statistic

that is a monotonic transformation of l(p).
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the evidence against H0 in a statistic which behaves like a univariate p-value: its magnitude
is inversely related to its significance and it is uniform when the null is true.

If we want g(p) to additionally have convex acceptance regions like a univariate p-
values, it should be continuous in each argument and monotonically non-decreasing, i.e.
g(p1, . . . , pM) ≤ g(p∗1, . . . , p

∗
M)↔ p1 ≤ p∗1, . . . , pM ≤ p∗M . Functions failing these can behave

counter-intuitively, as they may accept H0 for small pi only to reject as pi increases for
some margin i. Finally, if there is no reason to favour any margin, g should be symmetric
in p. The term evidential statistic refers to g(p) meeting these criteria generally (Goutis
et al., 1996), and when testing H0 they are called pooled p-values. There is no lack of
pooled p-value proposals, including the statistics of Tippett (1931), Fisher (1932), Pearson
(1933), Stouffer et al. (1949), Mudholkar and George (1977), Heard and Rubin-Delanchy
(2018), and Cinar and Viechtbauer (2022).

As all of these methods have convex acceptance regions and control the FWER at α
under the rule g(p) ≤ α, statistical power against alternative hypotheses is often used
to distinguish them. Ideally, one among them would be uniformly most powerful (UMP)
against a very broad alternative but this is not possible because of the generality of H0.
Indeed, Birnbaum (1954) proves that if all fi are strictly non-increasing so that pi ∼ fi is
biased to small values when H0i is false, then there is no UMP test against the negation
of H0,

H1 = ¬H0 : p1 ∼ f1, p2 ∼ f2, . . . , pM ∼ fM

where fi ̸= U for at least one i ∈ {1, . . . ,M}. As the simulation studies in Westberg (1985),
Loughin (2004), and Kocak (2017) readily demonstrate, the number of false H0i and the
non-null distributions fi together specify the unique most powerful test. For the particular
case of testing H0 against H1 with f1 = f2 = · · · = fM = Beta(a, b) for a ∈ (0, 1] and
b ∈ [1,∞), the Neyman-Pearson lemma proves that the pooled p-value HR (p;w) induced
by the statistic

lHR(p;w) = w

M∑
i=1

ln pi − (1− w)
M∑
i=1

ln(1− pi) (4.1)

with w = (1 − a)/(b − a) ∈ [0, 1] is uniformly most powerful (UMP) (Heard and Rubin-
Delanchy, 2018).

Though HR (p; (1− a)/(b− a)) is UMP against H1 for f1 = · · · = fM = Beta(a, b), it
is rarely assumed that f1 = · · · = fM in the search for interesting variable pairs. Rather,
some of these are assumed to be non-uniform while others are assumed null. A discussion of
this setting therefore requires measures of the prevalence and strength of evidence against
H0, captured by a series of telescoping alternative hypotheses that bridge the gap between
H1 and the setting where HR (p;w) is UMP.

62



4.2 Measuring the strength and prevalence of evi-

dence

When proving that no UMP exists for the general hypothesis H1 = ¬H0, Birnbaum (1954)
provides a couple of two-dimensional examples. Though these are demonstrative, they
are not instructive for the discussion of tests generally. To the same conclusions, each of
Westberg (1985), Loughin (2004), and Kocak (2017) simulate a variety of populations with
differing proportions of p generated under U or some alternative distribution. We begin by
defining a telescoping series of alternative hypotheses which capture the settings explored
in these empirical investigations.

4.2.1 Telescoping alternatives

Starting at H1, assume H0i is false only for i ∈ J ⊂ {1, . . . ,M} and quantify the proportion
of non-null hypotheses by η = |J |/M . This implies an alternative hypothesis

H2 : pi ∼

{
fi ̸= U if i ∈ J,

U if i /∈ J.

As no distinctions between H01, . . . , H0M are made in H0, η captures the prevalence of
evidence against H0 without loss of generality. If it is additionally assumed that all i ∈ J
have the same alternative distribution f ̸= U , this gives the alternative hypothesis

H3 : pi ∼

{
f if i ∈ J,

U if i /∈ J.

Finally, in the particular case where η = 1, |J | = M and

H4 : p1, p2, . . . , pM
iid∼ f ̸= U

is obtained. Though restricted compared to H1, this alternative makes sense for meta-
analysis or repeated experiments, where we could assume all pi are independently and
identically distributed when H0 is false.

H4 was distinguished from H1 as early as Birnbaum (1954) (there called HA and HB

respectively), but no exploration of intermediate possibilities was considered. All of West-
berg (1985), Loughin (2004), and Kocak (2017) explore different combinations of η and f ,
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and so use instances of H3 for their investigations. When testing H4 against H0, Heard
and Rubin-Delanchy (2018) prove HR (p;w) is the UMP pooled p-value if f is from a con-
strained beta family. By stating clearly H1 ⊃ H2 ⊃ H3 ⊃ H4, a framework for alternative
hypotheses is created that contextualizes and relates these previous results. Additionally,
the parameter η under H3 naturally measures the prevalence in p of evidence against H0.

4.2.2 Measuring the strength of evidence

Intuitively, if f has a density highly concentrated near zero then it provides “strong”
evidence against H0. This is because p-values generated by f will tend to be smaller than
those following U and therefore will be rejected more frequently for any α. Any measure
of the strength of evidence in f should therefore increase as the magnitude of f for small
values increases.

This relatively simple criterion is challenging to apply to H2. Every fi for i ∈ J
may be distinct and a single value characterizing their multiple, potentially very different,
departures from U introduces ambiguity. Taking a mean of measures, for example, conflates
different instances of H2. If J = {1, 2}, the mean strength of evidence cannot distinguish
strong evidence in f1 with weak evidence in f2 from moderate evidence in both. This
difficulty is avoided if all fi are equal, i.e. if H3 is chosen as the alternative hypothesis.
Indeed, this choice is common in previous empirical investigations.

Westberg (1985) generates p by testing the difference in means of two simulated normal
samples, and measures the strength of evidence by the true difference in means between the
generative distributions. This is reasonable, but limits us to tests comparing population
parameters and requires assumptions on t (the tests generating p). Considering f directly,

Loughin (2004) takes pi
iid∼ Beta(a, b) for all i ∈ J , restricts a = 1 ≤ b so that f is

non-increasing, and measures the strength of evidence with one minus the median of f :
1 − 0.51/b.2 This measure of strength is limited to Beta(1, b), though it does achieve the
intuitive ordering desired. A more general measure that applies to any f is the Kullback-
Leibler (KL) divergence, given by

D(p, q) =

∫
X
p(x) ln

(
p(x)

q(x)

)
dx

from density q(x) to density p(x) with mutual support on X 3.

2Kocak (2017) also uses pi ∼ Beta(a, b) but takes the broader 0 < a ≤ b and does not attempt to
measure the strength of f ’s departure from U .

3The KL divergence is also known as the relative entropy from q(x) to p(x).
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Widespread application of the KL divergence in information theory and machine learn-
ing aside, one interpretation of this measure suits pooled hypothesis testing nicely. Joyce
(2011) describes the KL divergence as the extra information encoded in q(x) when expect-
ing p(x). The explicit assumption underlying the pooled test of H0 is that fi = U for all
i ∈ {1, . . . ,M}, which gives a natural expected density q(x) = U(x). Furthermore, this
density is, in some sense, minimally informative: no region of [0, 1] is distinguished from
any other by U . Any additional information which discriminates particular regions of [0, 1],
in particular values near 0, will help inform rejection.

4.2.3 Choosing a family for the alternative distribution

The beta family of distributions is appealing as a model for the alternative distribution f
under H3 for two main reasons. First, it has the same support as U without the need for
adjustment. Second, a wide variety of different density shapes can be achieved by changing
its two parameters and it has a non-increasing density whenever a ≤ 1 ≤ b. This latter
quality makes it ideal to model alternative p-value distributions under the assumption that
pi is biased to small values when H0 is false. These features are likely why it is commonly
used in the literature (Loughin, 2004; Kocak, 2017). More significantly, the Neyman-

Pearson lemma proves that HR (p;w) is UMP for p1, . . . , pM
iid∼ Beta

(
a, 1/w+a(1−1/w)

)
when 0 ≤ w, a ≤ 1, and so a best-case benchmark for power exists to compare to other
tests (Heard and Rubin-Delanchy, 2018). Were another distribution chosen, this important
reference point would be absent.

When f = Beta(a, b) the KL divergence also has a relatively simple expression. Letting

u(x) = 1 be the uniform density and f(x) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1−x)b−1 be the beta density with

parameters a and b, D(u, f) is given by

D(u, f) = −
∫ 1

0

ln f(x)dx = a+ b+ ln

(
Γ(a)Γ(b)

Γ(a+ b)

)
− 2.

For the case of the beta densities where HR (p;w) is UMP, i.e. a ≤ 1 ≤ b, we can express
this in terms of a and w = (1− a)/(b− a):

D(u, f) := D(a, w) = 2a+
1− a

w
+ ln

(
Γ(a)Γ

(
1
w
+ a

[
1− 1

w

])
Γ
(
2a+ 1−a

w

) )
− 2. (4.2)

This is a less convenient expression, but provides a direct link between the strength of
evidence D(a, w) and the UMP test against H4 by the shared parameter w. Interestingly,
though the strength depends on both a and w, the UMP test only depends on the latter.
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To visualize the strength of evidence provided by different beta distributions, shaded
inset densities for different choices of w and the KL divergence D(a, w) are displayed in
Figure 4.1 placed at ln(w), lnD(a, w).4 When a = w = 1, f = u so D(a, w) = 0.
Decreasing either of a or w from 1 causes a larger magnitude of f near zero, with the
limiting case a = w = 0 corresponding to a degenerate distribution at zero. This general
trend in shapes is seen in Figure 4.1, decreasing w or increasing D(a, w) increases the
concentration of f near zero.

This suggests a limitation in the KL divergence. Though the ordering of beta densities
by D(a, w) generally conforms to the intuitive rule – larger divergences correspond to inset
densities with greater magnitude near zero – the parameter w is still relevant to the shape.
The KL divergence does not distinguish between departures from uniform near 1 and near
0, despite their relevance for rejection when, for example, rejecting the null hypotheses of
p-values below a threshold. This is particularly obvious in the final row of inset plots in
Figure 4.1. When ln(w) = −6, the density for lnD(a, w) = −5 is mostly flat, with a slight
increase in density near zero and a large decrease near one. When ln(w) = 0, however, a
much larger spike in the density near zero is present.

Nonetheless, the ordering on beta densities imposed by the KL divergence is still very
informative. It classifies, generally, which densities are biased to small values. Therefore,
D(a, w) provides a convenient measure of the strength of evidence contained in f under the
alternative hypothesis, and has computationally convenient form for the case of interest
where f = Beta(a, b).

4.3 Pooled p-values

Having explored the possible alternatives toH0 and some specific instances of these alterna-
tives, we can now focus on the pooled p-values meant to test H0 against these alternatives.
Recall that any pooled p-value g(p) is derived from the null distribution of a corresponding
statistic l(p). The statistics underlying pooled p-values are of two basic kinds, based either
on the kth order statistic p(k) of p (Tippett, 1931; Wilkinson, 1951) or on transformations
of each pi using some quantile function F−1(p) (Fisher, 1932; Pearson, 1933; Stouffer et al.,

4The densities of these inset plots were determined for each w, D(a,w) pair by finding the corresponding
a value numerically using Equation (4.2). This is the cause of the irregular plots in the upper right corner:
when w is large enough the required a to obtain a set D(a,w) is too small to be represented as a floating
point double alongside w ≈ 1. This is inconvenient, but these cases correspond to densities that are
effectively degenerate at zero in any case.
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Figure 4.1: Densities and log KL divergences of Beta
(
a, 1/w + a(1− 1/w)

)
from U by w.

Insets display the densities over [0, 1] horizontally and [0, 2] vertically and are centred at
the ln(w), lnD(a, w) coordinates corresponding to the density. These densities range from
nearly vertical at 0 when D(a, w) ≈ e5 to nearly uniform when D(a, w) ≈ e−5.

1949; Lancaster, 1961; Edgington, 1972; Mudholkar and George, 1977; Heard and Rubin-
Delanchy, 2018; Wilson, 2019; Cinar and Viechtbauer, 2022). The former case takes the
general form

ord (p; k) =
M∑
l=k

(
M

l

)
pl(k)(1− p(k))

M−l, (4.3)

and the latter

g(p) = 1− FM

(
M∑
i=1

ciF
−1(1− pi)

)
(4.4)
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where c1, . . . , cM ∈ R are known constants, typically c1 = . . . cM = 1. Equation (4.3) gives
the pooled p-value based on lord(p; k) = p(k), as with Tip(p) = ord (p; 1) = 1− (1− p(1))

M

(Tippett, 1931), while different choices of F and FM in Equation (4.4) give the pooled
p-value based on l(p) =

∑M
i=1 F

−1(1− pi).

Obvious choices include the normal and gamma families, as these are closed under
addition. For example, letting Φ be the N(0, 1) CDF and choosing F (x) = Φ(x) and
FM(x) = Φ(x/

√
M) gives

Sto(p) = 1− Φ

(
M∑
i=1

Φ−1(1− pi)/
√
M

)
(4.5)

based on lSto(p) =
∑M

i=1 Φ(1 − pi) from Stouffer et al. (1949). Letting Gk,θ(x) be the
CDF of the gamma distribution with shape parameter k and scale parameter θ, taking
F (x) = Gk,θ(x) and FM(x) = GMk,θ(x) gives

gam(p) = 1−GMk,θ

(
M∑
i=1

G−1
k,θ(1− pi)

)
(4.6)

based on lgam(p) =
∑M

i=1G
−1
k,θ(1 − pi). The pooled p-value gam requires the choice of

parameters θ and k; choosing θ = 1 gives the k-parameterized gamma method from Zaykin
et al. (2007) while k = 1 and θ = 2 gives Fisher’s method from Fisher (1932).5

R. A. Fisher’s method deserves some additional consideration alongside an analogous
proposal from Karl Pearson around the same time6. Both of lFis(p) = −2

∑M
i=1 ln pi

(Fisher, 1932) and lPea(p) = −2
∑M

i=1 ln(1 − pi) (Pearson, 1933) were originally proposed

only as computational tricks for the distribution of
∏M

i=1 pi (Wallis, 1942), but are also
quantile transformations based on the χ2

2 distribution. Let

Fχ(x;κ) =

∫ x

0

1

2κ/2Γ(κ/2)
tκ/2−1e−t/2dt, (4.7)

5Should the p-values be weighted, the gamma distribution also allows more stable weighting than the
constants c1, . . . , cM in Equation (4.4) by analogously giving each pi an individual shape parameter ki (or
equivalently χ2 degrees of freedom κi) (Lancaster, 1961).

6Owen (2009) notes that Pearson’s proposal is actually slightly different than has been credited in the

literature following Birnbaum (1954). Though the use of
∑M

i=1 ln(pi) was suggested by Karl Pearson, it

was in the context of comparing the value to
∑M

i=1 ln(1− pi) and taking the minimum of the two. Owen
(2009) develops this idea into a series of pooling functions that perform best for concordant or discordant
effect estimates in a regression setting.
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be the CDF of the χ2
κ distribution, in particular Fχ(x; 2) = 1− e−x/2. Therefore, F−1

χ (1−
p; 2) = −2 ln p and so taking F (x) = Fχ(x; 2) and FM(x) = Fχ(x; 2M) gives

Fis(p) = 1−Fχ

(
lF (p); 2M

)
= 1−Fχ

(
−2

M∑
i=1

ln pi; 2M

)
= 1−Fχ

(
M∑
i=1

F−1
χ (1− pi; 2); 2M

)

consistent with Equation (4.4). In contrast, lPea(p) uses lower tail probabilities by taking
Fχ(pi; 2), and so

Pea(p) = Fχ

(
M∑
i=1

F−1
χ (pi; 2); 2M

)
departs from the general quantile transformation equation.

4.4 Benchmarking the most powerful test

Alone, Fis(p) is preferred to Pea(p), as Birnbaum (1954) found Pea(p) inadmissible for
the alternative hypothesis H1 if the test statistics t1, . . . , tM independently follow particular
distributions in the exponential family. Fis(p), in contrast, was admissible in this setting
and is optimal in some sense for others (Littell and Folks, 1971; Koziol and Perlman,
1978). Together, the statistics for these two pooled p-values are combined in lHR(p;w) =
−w

2
lFis(p)+

1−w
2
lPea(p), the UMP statistic under H4 when f = Beta(a, 1/w+ a(1− 1/w))

(Heard and Rubin-Delanchy, 2018). Intuitively, then, HR (p;w) is a test based on a linear
combination of the lower and upper tail probabilities of p transformed to χ2

2 quantiles.
When w = 1 it considers the upper tail alone and when w = 0 the lower tail alone. Note
that lHR(p;w), the statistic, and HR (p;w), the unique corresponding pooled p-value, will
be used interchangeably thoughout this paper.

Unfortunately, this imbues HR (p;w) with some practical shortcomings. While both
lFis(p) and lPea(p) are χ2

2M distributed under H0, they are not independent and so their
combination in lHR(p;w) does not have a closed-form distribution. Approximation as in
Mudholkar and George (1977) or simulation must be used to determine the α quantiles
or visualize their distribution. This means, for example, the kernel density estimates of
lHR(p;w) by w in Figure 4.2 required the generation of 100,000 independent simulated

samples of the case p1, . . . , p10
iid∼ U . Further, H4 is the least general of the telescoping

alternative hypotheses H1 ⊃ H2 ⊃ H3 ⊃ H4 and is a less natural choice than H3 if only a
subset of tests are thought to be significant. Empirical and theoretical investigations show
the most powerful test depends on η and f under H3, so HR (p;w) may be less exceptional
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under this more general hypothesis. Finally, HR (p;w) is only UMP if w is known, which
is seldom true in practice.

Figure 4.2: Densities of lHR by w when M = 10. Solid lines indicate w = e−6, dashed lines
w = e−3, dotted lines w = 1/2, and dot-dashed lines w = 1. Note how w = 1 and w = e−6

are nearly mirrored distributions skewed away from zero and w = 1/2 is symmetric at zero.

These practical difficulties manifest in two possible errors, assuming H4 when H3 is true
and choosing w when the true parameter is ω, and four cases of mis-specification depending
on which is present. The power of HR (p;w) under all four cases was investigated by a
simulation study at level α = 0.05. For both of H3 and H4 and a range of mis-specified
w, HR (p;w) was applied to factorial combinations of D(a, w), w, and M covering their
respective ranges. D(a, w) was chosen on the log scale ranging from −5 to 5 at 0.5 incre-
ments, w was chosen on the log scale at values −6,−5, . . . , 0, and the values of M were 2,
5, 10, and 20.

For each of the parameter settings, lHR(p;w)’s 0.95 quantiles under H0 given w and

M are simulated by generating 100,000 independent samples pi = pi1, . . . , piM
iid∼ U , com-

puting lHR(pi;w) = lHRi, and taking the 0.95 quantile of the sequence lHR1, . . . , lHR100,000

as the 0.95 quantile of lHR(p;w) under H0. Note that the value of a and the case do not
impact this simulation, and so these quantiles are used across all a values under both H3

and H4.

Next a Monte Carlo estimate of the probability of rejecting H0 using lHR(p;w) (i.e.
the power of lHR(p;w)) is generated for each case. The details of this estimate depend on
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whether H3 or H4 was used to generate the data and whether w was known or not when
choosing lw. To begin, consider the benchmark case when w is known and the data are
generated according to H4.

4.4.1 Case 1: correct hypothesis and w

If the data are generated under H4 and w is chosen correctly, HR (p;w) is UMP and so
provides the greatest power of any test. In this case, the probability of rejection for a
given a, w, and M setting is estimated by generating 10,000 independent samples pi =

pi1, . . . , piM
iid∼ Beta

(
a, 1/w + a(1 − 1/w)

)
. lHR(pi;w) is computed for each sample and

compared to the simulated 0.95 quantile of lHR(p;w) under H0
7. If the value is larger than

the quantile H0 is correctly rejected and if it is smaller the test incorrectly fails to reject
H0. Power is estimated as the proportion of the 10,000 generated samples which correctly
lead to the rejection of H0, giving a worst-case standard error less than 0.005 based on the
binomial distribution.

This procedure is applied to all settings of M , w, and D(a, w) outlined in Section 4.4,
corresponding to the beta densities of Figure 4.1. The beta parameter a was determined for
a given w and D(a, w) = D by finding the root of f(x) = D(x,w)−D, while the parameter
b is given by 1/w + a(1 − 1/w). This results in an imbalance in the settings, as w > e−4

require a less than the typical floating point minimum value to achieve D(a, w) = 5. The
impact on the coverage of D(a, w) for each w choice as a result of this, however, was slight
as shown by the small gap in plots in Figure 4.1.

Figure 4.3(b) shows a scatterplot of the power of HR (p;w) by D(a, w) for every setting
when M = 2 and M = 20, and Figure 4.3(a) shows the power curves of HR (p;w) by
D(a, w) coloured by w. Generally, power increases in both M (the number of p-values)
and D(a, w) (the KL divergence), which is unsurprising. Decreasing D(a, w) for f =
Beta

(
a, 1/w + a(1 − 1/w)

)
necessarily gives a density closer to u which is therefore less

likely to cause rejection, thus reducing the power. At a certain threshold on D(a, w),
f ≈ u and so the power will be approximately α for all D(a, w) less than the threshold.
Similarly, when D(a, w) is large enough, rejection occurs almost certainly and so the power
is constant at one. This suggests that most changes in the power of HR (p;w) occur for
moderate levels of evidence; when the evidence is too weak or too strong, all pooled p-
values will perform equally poorly or well. Regardless of D(a, w), increasing the number
of p-values makes any distributional differences between f and u more easily detectable,

7This corresponds to testing whether HR (pi;w) ≤ 0.05.
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(a) (b)

Figure 4.3: Power of HR (p;w) by the KL divergence coloured by w and scaled by M
displayed using (a) power curves when M = 2 joined by w and (b) lines from M = 2
to M = 20 for w = e−6 and 0. Increasing either M or the KL divergence increases the
power and the greatest rate of change in both occurs when the divergence is in the interval
(e−2, e2).

as the whole sample KL divergence is given by MD(a, w). This is why the impact of M
on the power in Figure 4.3(b) increases in D(a, w).

An interesting feature of Figure 4.3(a) is the ordering of the lines by decreasing w for
essentially every KL divergence. This pattern holds almost everywhere with the exception
of several crossings of the lowest power curves. Referring to Figure 4.1, increasing w for
a given D(a, w) increases the magnitude of the density near zero, thereby increasing the
probability of extremely small p-values. This difference was noted in Section 4.2.2, and
causes the expected increase in the power of the UMP.

4.4.2 Case 2: correct hypothesis with mis-specified w

Of course, the curves of Figure 4.3(a) are not realistic. In practice,D(a, w) is set by the data
generating process and we lack the perfect knowledge of w and f needed to attain them.
Suppose that p is generated under H4 with f = Beta(a, β) and a ∈ [0, 1], β ∈ [1,∞) but
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that HR (p;w) is used instead of the correct HR (p;ω) with ω = (1− a)/(β− a). Though
HR (p;w) is from the same family of tests, it is no longer UMP and so will not match the
power achieved by HR (p;ω).

The reduction of power from using HR (p;w) when the UMP is HR (p;ω) for each a,
w, ω, and M setting from Section 4.4.1 was determined by generating 10,000 independent

samples pi1, . . . , piM
iid∼ Beta

(
a, 1/ω + a(1 − 1/ω)

)
and computing HR (pi;w). The pro-

portion of samples rejected based on the simulated null 0.95 quantiles was recorded as the
power of HR (p;w) when data were truly generated with the parameter ω. This procedure
was repeated for each of w = e−6, e−3, 1/2, and 1 for every parameter setting. Figure 4.4
displays the results when M = 2 for ω = e−6 and 1. As one setting of w matches ω in this
case, the highest curve displays the power of the UMP.

Figure 4.4: Power curves for HR (p;w) against D(a, ω) when M = 2 with colours giving
the value of w and points along the curves giving ω. Mis-specification of ω has less impact
on power than the non-null distribution f , but the greater the difference between w and
ω, the greater the reduction in power.

Two patterns stand out in this plot. First, it is clear that mis-specification impacts the
power less than the distribution of p-values under H4. Despite the incorrect value w in
HR (;w), the mis-specified curves have the same shape in D(a, ω) as the UMP HR (;ω).
In most cases, mis-specification results in only a slight decrease in power.

73



Second, larger mis-specifications lead to larger decreases in power. The curves for every
w are ordered by their distance from ω for both ω = 1 and e−6. When ω = 1, for example,
the lines are ordered so w = 1 has the greatest power followed closely by w = 1/2 and
more distantly by e−3 and e−6. This pattern is reversed when ω = e−6. In both cases, mis-
specification has the greatest impact on power for moderate D(a, ω) while mis-specification
has scarcely any impact for large or small values of D(a, w) where all powers converge to 1
or α, respectively. It seems prudent, therefore, to choose a middling value such as w = 1/2
if ω is not known but H4 is suspected to avoid the worst impacts of mis-specification when
using HR (p;w)

4.4.3 Case 3: incorrect hypothesis, correctly specified w

Assuming all pi are non-null is not always appropriate, however. The investigations of the
previous sections are a useful benchmark and exploration of the impact of mis-specification,
but do not address the natural case of H3 when a handful of significant variables are as-
sumed to exist in a host of insignificant ones. We therefore repeat the benchmark ex-
periment of Section 4.4.1 under H3 by generating 10,000 independent samples pi of size
M = 10 with the first Mη distributed according to f = Beta

(
a, 1/w + a(1 − 1/w)

)
and

the latter M(1 − η) distributed according to U for η ∈ {0, 0.1, . . . , 1} under each of the
settings explored previously. As HR (p;w) is symmetric in all of its arguments, this gives
no loss of generality. Figure 4.5 displays contours of the power surface, the proportion of
correct rejections of H0, as a function of η and D(a, w) facetted by ln(w).

Figure 4.5 places the measure of strength of evidence horizontally and the measure of
prevalence vertically. Including η = 0 captures the behaviour of HR (p;w) under H0 along
the bottom edge of the power surface and including η = 1 captures its behaviour under
H4 along the top edge for a range of KL divergences. In particular, this means the top
left part of each subplot corresponds to a generative process for p with relatively weak
evidence in all p-values of p and the bottom right part corresponds to a generative process
with strong evidence concentrated in a small number of p-values. Figures 4.3 and 4.4 show
that rejection occurs at a rate of α once the evidence is weak enough, so the top left corner
is less interesting than the top centre, which gives the power for tests of moderate strength
spread throughout p.

When w is small and lHR(p;w) ≈ lPea(p)/2, HR (p;w) is relatively weak when strong
evidence is concentrated in a few tests. The contours for w = e−6 are nearly horizontal
for log KL divergences between 2.5 and 5 and the power is nearly identical in the bottom
right and the top left corners. On the other hand, when w ≈ 1 and lw(p) ≈ −lFis(p)/2,
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Figure 4.5: The power of HR (p;w) under H3 by D(a, w) and η split by ln(w). Note how
the contour for a power of one extends nearly to the bottom of the plot when w = 1, but
stops near 0.75 when w = e−6.

HR (p;w) is relatively powerful when evidence is strong and concentrated in a few tests.
This is starkly visible when w = 1, the power contours are nearly vertical, and the bottom
right corner has a power of almost 1. Between these extremes, the power contours display
a mix of these seemingly oppositional sensitivities to strength and prevalence.

4.4.4 Case 4: when both the hypothesis and w are incorrect

Finally, consider the most pessimistic case. In the preceding section, w at least matched
the non-null distribution f under H3, but this may not always be so. Suppose, instead,
everything is mis-specified. That is, generate Mη p-values according to f = Beta

(
a, 1/ω+

a(1− 1/ω)
)
and M(1− η) from the uniform distribution and compute HR (p;w) for each

of w = e−6, e−3, 1/2, and 1 for every setting from Section 4.4.3 and repeat this generation
10,000 times. The power, given by proportion of rejections, follows an interesting pattern
in the strength and prevalence of evidence, which is illustrated by the power contours of
HR (p; 1) in Figure 4.6 and the difference in power contours in Figure 4.7.

Compared to the power contours of HR (p;ω) in Figure 4.5, the contours of HR (p; 1)
in Figure 4.6 show greater red saturation – and thus greater power – in the lower right
corner of every panel. Thus, HR (p; 1) has power greater than or equal to that ofHR (p;ω)
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Figure 4.6: Power contours of HR (p; 1) under H3 by D(a, ω) and η displayed using the
saturation palette of Figure 4.5.

Figure 4.7: Contours of the difference in power of HR (p; 1) and HR (p;ω) under H3 by
D(a, w) and η, displayed using a divergent palette. HR (p; 1) is more powerful for strong
evidence concentrated in a few tests and less powerful when weak evidence is spread among
most tests.

in this region for every ω. The magnitude of this improvement is unclear, however, due to
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the difficulty comparing the contours between plots. Figure 4.7 facilitates the comparison
by plotting the difference between the power contours of HR (p; 1) and HR (p;ω) directly
for all settings. This more precise plot demonstrates that the most powerful HR (p;ω) to
test H3 against H0 depends on the the strength and prevalence of evidence alone, not ω.

Specifically, Figure 4.7 shows that HR (p; 1) is more powerful than the correctly-
specified HR (p;ω) in the lower right corner of the D(a, ω), η space and does worse
left of centre at the top for both ω = e−6 and e−3. In the final panel where ω = 1,
HR (p; 1) = HR (p;ω) and so the difference in their powers is zero everywhere. Recalling
the interpretation of these regions for these facets, this indicates HR (p; 1) is more pow-
erful than HR (p;ω) at testing H3 against H0 when strong evidence is concentrated in a
few tests, but is less powerful when evidence is weaker and spread widely. This pattern
holds for every ω, albeit with differences in magnitude. Additionally, it is not symmetric:
when HR (p; 1) is more powerful, the magnitude of the difference tends to be greater than
in regions where it is less powerful.

This parallels Loughin (2004), who found Fis(p) more powerful than other alterna-
tives against H3 when strong evidence was concentrated in a few tests. As lFis(p) ∝
lHR(p; 1) =⇒ Fis(p) = HR (p; 1), this means that Fisher’s method is once again rel-
atively powerful for the same setting among the UMP family of tests HR (p;ω). The
consistency of this result in both simulation studies warrants further investigation. To aid
in this, marginal and central rejection levels are introduced to capture the tendency of a
test to reject weak evidence spread among all tests and strong evidence concentrated in a
few, along with a meaningful quotient that combines the them.

4.5 Central and marginal rejection levels in pooled

p-values

Recall that any pooled p-value g(p) behaves like a univariate p-value, that is g(p) ∈ [0, 1]
and g(p) ∼ U under H0. It may be based on order statistics and use Equation (4.3),

ord (p; k) =
M∑
l=k

(
M

l

)
pl(k)(1− p(k))

M−l,

or it may be based on the quantile transformations of Equation (4.4),

g(p) = 1− FM

(
M∑
i=1

F−1(1− pi)

)
.
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In either case, g(p) must be non-decreasing in every argument if it is to create convex
acceptance regions and therefore be admissible8, continuous in every pi if it is to have well-
defined rejection boundaries, and symmetric in pi if no margin is to be favoured. Given
these common properties, concepts of marginal and central rejection can be defined in
order to describe rejection in the cases of evidence against H0 concentrated in one test and
evidence against H0 spread among all tests, respectively.

These correspond to the largest p-values for a given FWER α which still result in
rejection in two separate cases. The first of these, the marginal level of the pooled p-value,
is the largest value of the minimum p-value which still leads to rejection at level α. The
second, the central level of the pooled p-value, is the largest value which all p-values can
take simultaneously while still resulting in rejection.

4.5.1 Characterizing central behaviour

The simulations of Section 4.4 suggest a pooled p-value g(p) which is powerful at rejecting
weak evidence spread among all p-values will reject H0 when all tests give relatively large
p-values compared to α. Under the rejection rule g(p) ≤ α, this is captured by the largest
pc such that g(pc) = α for pc = (pc, . . . , pc)

T. Explicitly:

Definition 1 (The central rejection level). For a pooled p-value g(p), the central rejection
level, pc, is the largest p-value for which g(p) ≤ α when p = (pc, . . . , pc)

T. That is

pc(g) = sup
{
p ∈ [0, 1] : g(p, p, . . . , p) ≤ α

}
(4.8)

pc quantifies the maximum p-value shared by all tests which still leads to rejection and
therefore is directly related to the power of g(p) along pc. As g(p) is non-decreasing,
rejection occurs for any p in the hypercube [0, pc]

M and so a larger pc implies rejection
for a larger volume of [0, 1]M . It also suggests pooled p-values smaller than pc within this
hypercube if g(p) is continuous and monotonic.

This general definition can be applied to the pooled p-values of Equations (4.3) and
(4.4) to obtain simple expressions for pc.

Proposition 2 (The central rejection level of order statistics). pc
(
ord (p; k)

)
is given by

the largest p ∈ [0, 1] which satisfies

M∑
l=k

(
M

l

)
pl(1− p)M−l ≤ α. (4.9)

8See Birnbaum (1954) and Owen (2009) for a detailed discussion of admissibility and convexity.
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Proof. The definition of pc forces p(1) = p(2) = · · · = p(M) = pc. Therefore p(k) = pc
and so pc is the largest p ∈ [0, 1] which satisfies ord ((p, . . . , p); k) ≤ α. Expanding
ord ((p, . . . , p); k) gives Equation (4.9).

While this cannot generally be solved for a closed-form pc, the particular cases of
ord (p; 1) = Tip(p) and ord (p;M) admit

pc(Tip) = 1− (1− α)
1
M (4.10)

and
pc
(
ord (;M)

)
= α

1
M (4.11)

respectively. Also note that pc
(
ord (; k)

)
defines a constant rejection boundary around the

regions of [0, 1]M where k−1 p-values are less than or equal to pc,M−k elements are greater,
and exactly one is equal to pc. In particular, this means that pc(Tip) = pc

(
ord (; 1)

)
is

constant along each margin, as M − 1 points are greater than pc(Tip) along each margin.
Next, consider pc for the general quantile transformation of Equation 4.4.

Proposition 3 (The central rejection level of quantile pooled p-values). Given a pooled
p-value based on quantile transformations as in Equation (4.4),

g(p) = 1− FM

(
M∑
i=1

ciF
−1(1− pi)

)
,

the central rejection level is given by

pc
(
g(p)

)
= 1− F

(
1∑M
i=1 ci

F−1
M (1− α)

)
(4.12)

if F and FM are continuous CDFs.

Proof. As F and FM are CDFs , they are monotonically non-decreasing real-valued func-
tions over their ranges. If F and FM are also continuous, then F−1 and F−1

M are continuous.
Therefore, we can drop the supremum from Equation 4.8 and consider the equality

α = g(pc, pc, . . . , pc).

Expanding g and solving for pc implies

pc = 1− F

(
1∑M
i=1 ci

F−1
M (1− α)

)
.
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If the p-values are unweighted, then c1 = c2 = · · · = cM = 1,
∑M

i=1 ci = M and
the behaviour of pc depends on the relative growth of F−1

M in M . If F−1
M (1 − α) grows

in M such that 1
M
F−1
M (1 − α) is unbounded, pc will go to zero. If, on the other hand,

limM→∞
1
M
F−1
M (1−α) = c <∞, pc will go to 1−F (c). This provides a general expression

for the soft truncation threshold of Zaykin et al. (2007) and suggests interesting asymptotic
behaviour for pooled p-values based on quantile functions along the line p1 = p2 = · · · = pM .

This behaviour can be demonstrated concretely for several quantile transformations.
Stouffer et al. (1949) takes F = Φ and FM =

√
MΦ9 in Equation 4.4 to give Sto(p) and so

lim
M→∞

1

M
F−1
M (1− α) = lim

M→∞

1√
M

Φ−1(1− α) = 0

for all α > 0. This implies

lim
M→∞

pc(Sto) = 1− Φ(0) =
1

2
. (4.13)

Indeed, taking Sto(p), substituting p1 = · · · = pM = pc(Sto), and taking the limit gives

lim
M→∞

1− Φ

(
1√
M

M∑
i=1

Φ−1
(
1− pc(Sto)

))
= 1− Φ

(
lim

M→∞

√
MΦ−1

(
1− pc(Sto)

))
.

Evaluating further gives

lim
M→∞

√
MΦ−1(1− pc) =


−∞ when pc >

1
2

0 when pc =
1
2

∞ when pc <
1
2
,

and so Sto(p) is either 0, 1
2
, or 1 for large M when p1 ≈ p2 ≈ · · · ≈ pM . Furthermore, it

will reject H0 for any FWER level α if p1, p2, . . . , pM are all less than 1
2
when M is large

enough.

Fχ(x;κ) admits similar analysis. By the central limit theorem

lim
κ→∞

χ2
κ → Z ∼ N(κ, 2κ)

where N(µ, σ2) is a normal distribution with mean µ and variance σ2. Therefore, as
M →∞

Fχ(x;Mκ)→ Φ

(
x−Mκ√

2Mκ

)
.

9Though it uses scaling in computation to avoid this, the distribution is the same.
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This implies that the pooled p-value based on the χ2 quantile has the limiting value

lim
M→∞

1− Fχ

(
MF−1

χ

(
1− pc;κ

)
;Mκ

)
= 1− lim

M→∞
Φ

(
MF−1

χ

(
1− pc;κ

)
−Mκ

√
2Mκ

)

when p1 = · · · = pM = pc. As Φ is absolutely continuous the limit can be taken inside the
argument to give

1− Φ

(
lim

M→∞

√
M

2κ

[
F−1
χ (1− pc;κ)− κ

])
.

Now,

lim
M→∞

√
M

2κ

[
F−1
χ (1− pc;κ)− κ

]
=


−∞ when pc > 1− Fχ(κ;κ)

0 when pc = 1− Fχ(κ;κ)

∞ when pc < 1− Fχ(κ;κ),

and so the pooled p-value based on the χ2 quantile transformation behaves similarly to
Sto(p). It is asymptotically either 1, 1

2
, or 0 when p1 ≈ p2 ≈ · · · ≈ pM depending on

whether all are greater than, equal to, or less than 1− Fχ(κ;κ). Additionally, this implies
that

pc = 1− Fχ(κ;κ) (4.14)

for the χ2 quantile case. So, although pc depends on κ, all χ2 quantile pooled p-values have
identical behaviour about their respective pc.

The form of Equation (4.4) suggests that this result applies generally. Suppose the
random variable with CDF F has a mean µ and variance σ2. Under H0, F

−1(1 − pi)
for i = 1, . . . ,M are independent and identically-distributed realizations of this random
variable and so

∑M
i=1 F

−1(1 − pi) is asymptotically normally distributed with mean Mµ

and variance Mσ2 by the central limit theorem. Therefore FM −−−−→
M→∞

√
MσΦ + Mµ for

the pooled p-value based on F and the harsh asymptotic boundary at pc derived for Sto
will occur for any evidential statistic that uses quantile functions.

4.5.2 Characterizing marginal behaviour

Besides the central behaviour of a pooled p-value g(p), the simulations of Section 4.4
indicate large differences in power occur for the rejection rule g(p) ≤ α when strong
evidence exists in a single test. This is captured by the marginal rejection level at b.
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Definition 2 (The marginal rejection level at b). For a symmetric pooled p-value g(p),
the marginal rejection level at b, pr(g; b), is the largest individual p-value in [0, b] for which
g(p) ≤ α when all other p-values are b ∈ [0, 1]. Without loss of generality, define

pr(g; b) = sup
{
p1 ∈ [0, b] : g(p1, b, . . . , b) ≤ α

}
. (4.15)

In particular, the marginal value when b = 1 is of interest, that is when there is minimal
evidence against all hypotheses other than H01. Therefore, also define

pr(g) = lim
b→1

sup
{
p1 ∈ [0, b] : g(p1, b, . . . , b) ≤ α

}
. (4.16)

Note that symmetry is only necessary to avoid defining marginal rejection levels for
each index i ∈ {1, . . . ,M} separately and that the term marginal rejection level refers to
Equation (4.16). If g is non-decreasing in all of its arguments, pr(g; b) gives the largest
value of p(1) that still leads to rejection at α when the evidence in all other p-values is
bounded at b. The most extreme version of this measure is given by pr(g). By taking
b = 1, it measures the power of g for evidence in a single test when all other tests provide
no evidence against H0, and so the sensitivity of g to evidence in a single test. This leads
to a key lemma for ord (p; 1) = Tip(p).

Lemma 1 (The marginal rejection level for the minimum statistic). The marginal rejection
level for gT ip has two cases:

pr(Tip; b) =

{
b for b < 1− (1− α)

1
M

1− (1− α)
1
M for b ≥ 1− (1− α)

1
M .

Proof. Recall that
Tip(p) = 1− (1− p(1))

M

is a function of the minimum alone. Rejection occurs when Tip(p) ≤ α, or rather when

p(1) ≤ 1− (1−α)
1
M . When b < 1− (1−α)

1
M and p1 ≤ b, all values are below the rejection

threshold and so p(1) attains its upper bound. Therefore

pr(Tip; b) = sup
{
p1 ∈ [0, b] : g(p1, b, . . . , b) ≤ α

}
= b.

When b ≥ 1− (1−α)
1
M , rejection will only occur if p(1) is below the rejection threshold at

α, and so

pr(Tip; b) = sup
{
p1 ∈ [0, b] : g(p1, b, . . . , b) ≤ α

}
= 1− (1− α)

1
M .
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A direct consequence of Lemma 1 is that pr(gT ip) = pc(gT ip), which Theorem 1 proves
is uniquely true for Tip(p).

As with pc, a larger pr indicates greater power in a particular region of the unit
hypercube. While pc defines the rejection cube [0, pc]

M , pr defines the rejection shell
{p ∈ [0, 1]M : p(1) ≤ pr} with a flat boundary at pr along each margin. A larger pr
implies a larger shell and therefore a greater volume of [0, 1]M where H0 is rejected and
smaller pooled p-values within this volume if g(p) is monotonic. Again, general expressions
are provided for pr for the order statistic and quantile transformation pooled p-values.

Proposition 4 (The marginal rejection level for order statistics). For k ≥ 2, pr
(
ord (; k) , b

)
=

b when
∑M

l=k

(
M
l

)
bl(1− b)M−1 ≤ α and does not exist otherwise.

Proof. Recall that

gOrd(p; k) =
M∑
l=k

(
M

l

)
pl(k)(1− p(k))

M−l

and note Equation 4.15 forces p(k) = b for all k > 1. If
∑M

l=k

(
M
l

)
bl(1 − b)M−1 ≤ α, then

the supremum of p1 is b. On the other hand, if
∑M

l=k

(
M
l

)
bl(1− b)M−1 ≥ α there is no value

of p1 which leads to rejection and so pr
(
ord (; k) , b

)
does not exist.

In particular, this implies that pr(ord (; k)) does not exist for k ≥ 2, in other words
the pooled p-value based on p(k) has a value independent of p(1) for k ≥ 2. So long as k
tests are less than a particular bound, ord (p; k) will reject. If fewer than k are below that
bound, the values of these small p-values are irrelevant.

Proposition 5 (The marginal rejection level of quantile transformation statistics). Given
an unweighted evidential statistic based on quantile transformations as in Equation 4.4,

g(p) = 1− FM

(
M∑
i=1

F−1(1− pi)

)
,

if FM and F are both continuous then

pr(g; b) = 1− F
(
F−1
M (1− α)− [M − 1]F−1(1− b)

)
.

Further, if both are absolutely continuous

pr(g) = 1− F

(
F−1
M (1− α)− [M − 1] lim

x→0+
F−1(x)

)
(4.17)
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Proof. Substituting Equation 4.4 into Equation 4.15 gives

pr(g; b) = sup

{
p : 1− FM

(
F−1(1− p) + [M − 1]F−1(1− b)

)
≤ α

}
.

As both FM and F are CDFs, they are non-decreasing. If they are also continuous, their
inverses exist and the supremum can be dropped to give

pr(g; b) = 1− F
(
F−1
M (1− α)− [M − 1]F−1(1− b)

)
.

If they are both absolutely continuous, then the limit

1− lim
b→1

F
(
F−1
M (1− α)− (M − 1)F−1(1− b)

)
can be taken into the argument of F to give Equation 4.17.

Many proposals use absolutely continuous CDFs, so this can be readily applied. Sto(p),
for example, has

pr(Sto) = 1− Φ

(√
MΦ−1(1− α)− [M − 1] lim

x→0+
Φ−1(x)

)
= 0

for any α and M as limx→0Φ(x) = −∞. Similarly, the proposal by Mudholkar and George
(1977) has pr = 0, as it uses the logistic distribution which also has limx→0 F (x) = −∞.
This suggests that, for a large enough p-value on all remaining tests, no level of evidence in
a single test will cause the rejection of H0 for either of these pooled p-values; their marginal
rejection levels are always 0 for large enough b.

4.5.3 The centrality quotient

Beyond providing definitions that clarify the power of a pooled p-value to detect evidence
spread among all tests and evidence in a single test, pc and pr as defined in Equations
(4.16) and (4.8) can be combined into a single value summarizing the relative preference
for diffuse or concentrated evidence. First, a key relationship between pc and pr is proven.

Theorem 1 (Order of pc and pr). For a pooled p-value g(p) that is continuous, symmetric,
and monotonically non-decreasing in all arguments, pc ≥ pr if both exist. Furthermore,
equality occurs iff g(p) is constant in pk for pk ̸= p(1), that is if g(p) = f(p(1)) is a function
of the minimum p-value alone.
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Proof. Consider pc(g) as in Definition 4.8. Then

pc(g) = sup
{
p ∈ [0, 1] : g(p, . . . , p) ≤ α

}
.

Suppose
pr(g) = lim

b→1
sup

{
p1 ∈ [0, b] : g(p1, b, . . . , b) ≤ α

}
exists. If g is symmetric, pr(g) captures the marginal rejection level of g in all margins. If
g is continuous, then both pc(g) and pr(g) lie on the α level surface of g. Therefore

g(pc, . . . , pc) = α = g(pr, 1, . . . , 1).

But g is non-decreasing in all of its arguments, so

g(pc, 1, . . . , 1) ≥ g(pc, pc, . . . , pc) = g(pr, 1, . . . , 1)

and therefore
pc ≥ pr.

If pc = pr, then substitute

α = g(pc, . . . , pc) = g(pr, . . . , pr).

As g is non-decreasing
g(pr, . . . , pr) ≤ g(pr, 1, . . . , 1) = α

and so
g(pr, 1, . . . , 1) = g(pr, pr, . . . , pr).

This implies that the average slope of g over [pr, 1], equivalently [pc, 1], is zero for all
pk ̸= p1. As g is continuous and non-decreasing, this implies that the slope must be zero
for every point in this interval for all pk ̸= p1. As pk ≥ p1 for all pk ∈ p over this region,
p1 = p(1) by definition. By the symmetry of g, the same argument holds for every pk.
Therefore g(p) = f(p(1)) for some non-decreasing function f .

To prove the reverse direction note that if g(p) = f(p(1)), then

α = g(pc, pc, . . . , pc) = g(pc, 1, . . . , 1)

and so pc = pr by the definition of pr and the continuity of g. By symmetry, this same
argument holds for any margin.
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Two facts follow directly from this proof. First, Theorem 1 implies that pc = pr only for
Tip(p) = ord (p; 1) among symmetric, continuous, monotonically non-decreasing p-values
as Tip(p) is the unique pooled p-value defined by p(1). A second corollary is the existence
of a sensible centrality quotient to quantify the balance between central and marginal
rejection levels in pooled p-values.

Definition 3 (The centrality quotient). Suppose g is a continuous, symmetric, and mono-
tonically non-decreasing pooled p-value for which pr(g) and pc(g) defined as in Equations
(4.16) and (4.8) exist, define the centrality quotient

q(g) =
pc(g)− pr(g)

pc(g)
. (4.18)

Theorem 1 implies that q(g) ∈ [0, 1] with meaningful bounds. If q(g) = 0, g(p) will
reject based on the smallest p-values alone, increasing the marginal rejection level as large
as possible while staying non-decreasing. Moreover, q(g) = 0 implies g(p) is the pooled
p-value based on p(1) alone, Tip(p). In contrast, when q(g) = 1, g cannot reject based on
the evidence contained in a single test, instead it requires evidence in many or all tests, for
example Sto(p). Between these extremes, pooled p-values with larger centrality quotients
will reject H0 for a larger range of pc values and a smaller range of pr values, and so will
be more powerful at detecting evidence spread broadly at the cost of power when evidence
is concentrated in a small number of p-values.

Indeed, increasing w decreases the centrality quotient of HR (p;w). This matches the
empirical results obtained in Section 4.4.4 and in particular Figure 4.4.4, where larger w
values provided greater power when the prevalence of evidence was small but the strength
of evidence was large and smaller w values gave greater power in the case of weak evidence
with high prevalence. For α = 0.05, the centrality quotients of a range of w values in
HR (p;w) are compared to those of several quantile transformation proposals in Table 4.1
over a range of M values. As predicted by the asymptotic argument at the end of Section
4.5.1, every method tends towards a centrality of 1 as M increases and each FM converges
to a corresponding normal CDF.

Beyond HR (p;w), other methods show the same relationship between the centrality
quotient and regions of relative power in the empirical explorations in Westberg (1985),
Loughin (2004), and Kocak (2017). Pooled p-values with larger centrality quotients are
more powerful for weak evidence spread among all tests than those with smaller centrality
quotients, but are relatively weak against strong evidence concentrated in a few tests. This
is suggestive of an inverse relationship between pr and pc over different pooled p-values,
but this is not the case generally. Consider, as a counter-example, Sto(p) and the proposal
of Mudholkar and George (1977): both have pr = 0 but different values of pc.
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M
Pooled p-value 2 5 10 20
Tippett (1931) 0 0 0 0

Cinar and Viechtbauer (2022) 0.83 0.99 1.00 1.00
Stouffer et al. (1949) 1 1 1 1

Fisher (1932) 0.91 1.00 1.00 1.00
Mudholkar and George (1977) 1 1 1 1

Wilson (2019) 0.49 0.79 0.90 0.95
HR (p; e−6) 1.00 1.00 1.00 1.00
HR (p; e−3) 1.00 1.00 1.00 1.00
HR (p; 1) 0.91 1.00 1.00 1.00

Table 4.1: Centrality quotients for certain pooled p-values.

4.6 Controlling the centrality quotient

Table 4.1, and others which could be constructed like it, provide only a limited ability to
select a centrality quotient. Most of the proposals have centrality near 1, and all proposals
approach 1 as M increases. Rather than choose among these other limited proposals when
power is desired in a particular region, this work proposes a family of quantile pooled p-
values based on χ2

κ which precisely controls the centrality for any M . Following Equation
(4.4), define the χ2

κ quantile pooled p-value

chi (p;κ) = 1− Fχ

(
M∑
i=1

F−1
χ (1− pi;κ);Mκ

)
(4.19)

where κ ∈ [0,∞) is the the degrees of freedom of the quantile transformation applied
to the pi and doubles as a centrality parameter that sets q

(
chi (;κ)

)
arbitrarily.10 This

family of pooled p-values includes several widely-used previous proposals. Setting κ =
2 gives Fis(p), κ = 1 gives the proposal from Cinar and Viechtbauer (2022), taking
limκ→∞ chi (p;κ) gives Sto(p), and taking limκ→0 chi (p;κ) gives Tip(p). While the former
two are by definition, the latter must be proven. First, we prove limκ→∞ chi (p;κ) = Sto(p)
by applying the central limit theorem.

10This is similar to the gamma method of Zaykin et al. (2007), but with a different parameter choice.
It is possible the same control of c may be obtained with a general gamma CDF, but sticking to the χ2

κ

simplifies the number of parameters from two to one.
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Theorem 2 (Limiting value of chi (p;κ) as κ→∞).

lim
κ→∞

chi (p;κ) = Sto(p)

Proof. Note that Equation (4.19) is always a pooled p-value, i.e. has a uniform distri-
bution for any choice of κ. By the CLT, limκ→∞ Fχ(x;κ) = Φ(x), and so in the limit
chi (p;κ) becomes the pooled p-value derived from the sum of standard normal quantile
transformations, Sto(p).

The proof for chi (p; 0) is slightly more involved, and relies on Theorem 1.

Theorem 3 (Limiting value of chi (p;κ) for κ = 0).

lim
κ→0

chi (p;κ) = Tip(p) = ord (p; 1)

Proof. Theorem 1 proves that pr = pc for a pooled p-value if and only if that pooled p-value
is Tip = ord (; 1). Therefore, the limit is proven if

lim
κ→0

pr
(
chi (;κ)

)
= lim

κ→0
pc
(
chi (;κ)

)
Expressing these quantities as probability statements gives

pc
(
chi (;κ)

)
= P

(
χ2
κ ≥

1

M
F−1
χ (1− α;Mκ)

)
,

and
pr
(
chi (;κ)

)
= P

(
χ2
κ ≥ F−1

χ (1− α;Mκ)
)
.

The case of χ2
0 is a degenerate distribution at 0. That is

Fχ2(x; 0) =

{
0 x < 0

1 x ≥ 0.

This can also be seen from the limit of Markov’s inequality for the χ2
κ distribution,

P (χ2
κ ≥ a) ≤ κ

a
,

which goes to zero for any a > 0 as κ → 0. As Fχ(x;κ) is continuous and monotonically
increasing for all κ, this also implies

F
(κ
α
;κ
)
≥ 1− α
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=⇒ 1− F
(κ
α
;κ
)
≤ α

=⇒ P
(
χ2
κ ≥

κ

α

)
≤ α

=⇒ F−1
χ (1− α;κ) ≤ κ

α
.

This bound is not particularly tight, for α = 0.05 it only restricts the 0.95 quantile to be
less than 20 times the mean. However, it suffices to evaluate

lim
κ→0

∣∣∣∣ 1MF−1
χ (1− α;Mκ)− F−1

χ (1− α;Mκ)

∣∣∣∣
=
M − 1

M
lim
κ→0

F−1
χ (1− α;Mκ)

≤M − 1

M
lim
κ→0

Mκ

α
= 0

and therefore

lim
κ→0

1

M
F−1
χ (1− α;Mκ) = lim

κ→0
F−1
χ (1− α;Mκ)

for any α > 0. This implies that pc
(
chi (;κ)

)
= pr

(
chi (;κ)

)
in the limit κ→ 0.

The result of Theorem 3 can be understood intuitively using the non-central χ2
0 of

Siegel (1979) with a non-centrality parameter λ, call it χ2
0(λ). When λ → 0, χ2

0(λ) → χ2
0

in distribution, so taking χ2
0(λ) with small λ should provide some sense of how χ2

0 behaves.
Unlike χ2

0, however, χ
2
0(λ) has a discrete probability mass at 0 for all λ > 0. As a result,

the quantile function of χ2
0(λ), F

−1
λ , returns zero for any input less than e−

λ
2 and so the

terms in the sum
M∑
i=1

F−1
λ (1− pi)

are non-zero only for those i where pi ≤ 1− e−
λ
2 . As λ→ 0, this sum becomes arbitrarily

close to chi (; 0) but only the smallest p-values contribute. Eventually, only the minimum
contributes to the sum, and so chi (;κ) ≈ f(p(1)) for very small κ values.

The limits limκ→0 chi (p;κ) = Tip(p) and limκ→∞ chi (p;κ) = Sto(p) are also demon-
strated empirically by generating nsim independent realizations of p assuming H0 is true.
For each vector pi, compute chi (pi;κ) for a range of κ, Sto(pi), and Tip(pi) and compare
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(a)

(b)

(c)

Figure 4.8: A comparison of chi (pi;κ), Sto(pi), and Tip(pi) values for 1000 independently
generated pi ∼ Unif([0, 1]5) in the case of (a) small κ, (b) moderate κ, and (c) large κ.
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chi (pi;κ) to the other two pooled p-values. Figure 4.8 shows this pattern for a few κ when
M = 5.

As expected, the agreement between chi (p;κ) and Tip(p) is perfect for small enough
κ, the two functions have identical outputs for κ = 0.0035 in Figure 4.8(a). Similarly,
chi (p;κ) and Sto(p) match for large κ, as when κ ≈ 3000 in Figure 4.8(c). Note that the
particular values of κ where this close agreement occurs will depend on M .

Perhaps more interesting is the curved boundary of the points along the top of the plot
of chi (p; 0.0035) against Sto(p) in Figure 4.8(a), many points populate the lower right
corner of this plot but there are none in the upper left. This pattern is mirrored in Figure
4.8(c) for the plot of chi (p; 2981) against Tip(p). As chi (p;κ) is essentially identical to
one of Tip(p) or Sto(p) in these cases, this pattern reflects the relationship between Tip(p)
and Sto(p). By definition, Tip(p) considers only p(1), but any of the pi can impact Sto(p).
As a result there will be many cases where a small Tip(p) occurs despite a large Sto(p)
because a very small p(1) happens by chance. The reverse is impossible, if Tip(p) is large
then p(1) is large and therefore all values in p are large, suggesting a large Sto(p).

4.6.1 Choosing a parameter

In addition to these meaningful limits, there seems to be a monotonically increasing rela-
tionship between κ and q

(
chi (;κ)

)
. Let χ∗

κ(α) be the 1−α quantile of the χ2 distribution
with κ degrees of freedom, then chi (p;κ) has the central rejection level

pc
(
chi (;κ)

)
= 1− Fχ

(
1

M
F−1
χ (1− α;Mκ);κ

)
= P

(
χ2
κ ≥

1

M
χ∗
Mκ(α)

)
(4.20)

and the marginal rejection level

pr
(
chi (;κ)

)
= 1− Fχ

(
F−1
χ (1− α;Mκ);κ

)
= P

(
χ2
κ ≥ χ∗

Mκ(α)

)
, (4.21)

implying

q
(
chi (;κ)

)
=

pc
(
chi (;κ)

)
− pr

(
chi (;κ)

)
pc
(
chi (;κ)

)
= P

(
χ2
κ ≤ χ∗

Mκ(α) χ2
κ ≥

1

M
χ∗
Mκ(α)

)
. (4.22)
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That is, the centrality quotient of chi (p;κ) is the conditional probability that a χ2
κ random

variable is less than χ∗
Mκ(α) given that it is greater than 1

M
χ∗
Mκ(α).

A better sense of the region corresponding to this conditional probability for α < 0.5
is garnered by writing χ∗

Mκ in terms of the mean of the χ2
Mκ distribution, Mκ. Taking an

arbitrary remainder function RMκ(α) > 0 such that χ∗
Mκ(α) := Mκ+RMκ(α), substitution

gives

q
(
chi (;κ)

)
= P

(
χ2
κ ≤Mκ+RMκ(α) χ2

κ ≥ κ+
1

M
RMκ(α)

)
,

clarifying that q
(
chi (;κ)

)
is a conditional probability on the right tail of the χ2

κ distribution
when α < 0.5. Making more precise statements about RMκ(α) is challenging due to
the small values of κ which may be chosen for chi (;κ). Most approximations of χ2 tail
probabilities and quantiles either break down when the degrees of freedom is less than one
or explicitly assume more than one degrees of freedom (Hawkins and Wixley, 1986; Canal,
2005; Inglot, 2010). Nonetheless, the above probability can be computed numerically, as
was done for the curves of q

(
chi (;κ)

)
by log10(κ) for M ranging from 2 to 10,000 in Figure

4.9.

The curves of q
(
chi (;κ)

)
by κ have a consistent sigmoid shape for all M . Most of

the change in the centrality quotient occurs for values in a three unit range in log10(κ)
for any M , though the centre of this range decreases as M grows. When κ = 10−3, for
example, the centrality quotient when M = 100 is greater than 0.8 while the same κ value
corresponds with a centrality quotient of less than 0.05 when M = 2. Just as with any
other pooled p-value, increasing M increases the centrality of chi (;κ) for a given κ as
the sum of independent p-values becomes more normally distributed by the central limit
theorem.11

In practice, the inverse of the above curves may be of greater interest to control the
centrality quotient under chi (p;κ) rather than simply report it. Figure 4.9 does allow the
selection of κ for a given centrality quotient by estimating the κ value where the intersection
between a curve and a vertical line at κ is at the desired quotient, but a table displaying
the numerically estimated inverse for evenly-spaced κ as in Table 4.2 is more precise and
straightforward to use. Determining the desired log10(κ) for a given centrality quotient
and M proceeds as for a table of critical values. The user searches down the columns for
the M most closely corresponding to the setting at hand, and then searches through that

11This can also be understood geometrically. For a pooled p-value in M dimensions, the volume of the
marginal shell of width pr is 1 − (1 − pr)

M , which approaches 1 for any pr > 0 as M → ∞. As the total
volume of the rejection region is α for the rejection rule g(p) ≤ α, pr must decrease in M to hold the
volume constant.
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Figure 4.9: The centrality quotient of chi (;κ) by log10(κ)

row for the desired column. If q
(
chi (;κ)

)
= 1 or 0 is desired, the table is unnecessary as

Sto(p) or Tip(p) can be used directly. Unlike with critical value tables, there is no need to
be conservative: linear interpolation between the provided log10(κ) values is a reasonable
approach to choosing κ.

Using the parameter κ of chi (p;κ), the relative preference of chi (p;κ) to rejection
along the margins or in the centre can be directly controlled. Large κ produce a pooled
p-value which is powerful at detecting evidence spread among all tests, while small κ favour
the detection of concentrated evidence in a single test with extremes giving the widely-used
Tip(p) and Sto(p). The parameter κ orders pooled p-values of the chi (p;κ) family by
relative centrality, simplifying the choice of pooled p-value and communication of results.
Finally, as it is based on Equation (4.4), it is an exact quantile-based method which does
not rely on asymptotic behaviour and which could, hypothetically, be computed by hand
with the aid of χ2 quantile tables.
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Centrality quotient
M 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 -2.1 -1.7 -1.4 -1.2 -0.9 -0.7 -0.4 -0.1 0.3
5 -2.8 -2.5 -2.3 -2.1 -1.9 -1.7 -1.4 -1.2 -0.8
20 -3.7 -3.4 -3.1 -2.9 -2.8 -2.6 -2.4 -2.1 -1.8
100 -4.6 -4.3 -4 -3.8 -3.7 -3.5 -3.3 -3 -2.7
500 -5.4 -5.1 -4.8 -4.7 -4.5 -4.3 -4.1 -3.9 -3.5
2000 -6.1 -5.8 -5.5 -5.3 -5.2 -5 -4.8 -4.6 -4.2
10000 -6.9 -6.6 -6.3 -6.1 -6 -5.8 -5.6 -5.4 -5

Table 4.2: log10(κ) values by q
(
chi (;κ)

)
and M to aid in parameter selection for the

desired balance of central and marginal rejection.

4.6.2 Comparing the chi-squared pooled p-value to the UMP
benchmark

Recall the simulation studies that motivated the exploration of central and marginal rejec-
tion levels. After a benchmark power computation, the power of HR (p;w) for α = 0.05
was evaluated under H4 for a range of beta alternatives (f = Beta(a, 1/ω + a(1 − 1/ω)))
with KL divergences from uniform (D(a, ω)) spanning e−5 to e5. Correct specification of
w was important: the larger the magnitude of w − ω, the larger the decrease in power of
HR (p;w) from HR (p;ω). Under H3, mis-specification did not matter at all, the power of
HR (p;w) was dictated by the the proportion of false null hypotheses (η) and the strength
of evidence against H0 in each non-null hypothesis (D(a, ω)). The parameter w tunes
HR (p;w) to favour either weak evidence spread among all tests, or strong evidence in
only a few.

Finer selection of this tradeoff is achieved with the parameter κ using the chi (p;κ)
family of pooled p-values, but controlling centrality is of little use if chi (p;κ) is not powerful
under the settings that motivated their definition. The power of chi (p;κ) at level α =
0.05 for each κ ∈ {e−8, e−4, 1, 2, e4, e8} was therefore determined under every setting from
Section 4.4 using the same simulated samples generated under H4. Prior to the simulation,
it is expected is that large κ will be uniformly more powerful than small κ, as under
H4 evidence is spread among all tests. The results confirmed this expectation: the most
powerful chi (p;κ) for all settings under H4 was chi (p; e8) ≈ chi (p; 2981). It is compared
to the both the UMP and mis-specified HR (p;w) in Figure 4.10 by adding a dark grey
line to Figure 4.4.
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Figure 4.10: A comparison of chi (p; 2981) to the UMP and mis-specified HR (p;w) under
H4. chi (p; 2981) nearly UMP power more consistently than any HR (p;w), and so is more
robust to f .

The pooled p-value chi (p; 2981) has higher power than most mis-specified HR (p;w)
for all settings in this case and is close to the UMP more consistently than any HR (p;w).
Only when w ≈ ω does HR (p;w) beat chi (p; 2981), and so it is less robust to mis-
specification of f than chi (p; 2981). It may therefore be advisable to use chi (p;κ) with a
large κ (or simply Sto(p)) when testing H4 with beta alternatives in the case where ω is
not known, rather than risk the penalty of choosing w wrong when using HR (p;w). This
is despite the fact that HR (p;ω) is UMP for this setting.

For the case where p was generated under H3, chi (p;κ) was again computed for each
κ ∈ {e−8, e−4, 1, 2, e4, e8} over the 10,000 independent samples for each setting of D(a, ω),
ω, and η with M = 10 from Section 4.4. Contour plots analogous to Figure 4.7 showing
the differences in power between chi (p;κ) and HR (p; 1) = chi (p; 2) were generated.
The reference HR (p; 1) was chosen because it is a test shared by both the chi (p;κ) and
HR (p;w) families.

The patterns of power for chi (p;κ) mimic those of HR (p;w): large κ favour evidence
spread among all tests as do small w in HR (p;w). Despite this similarity, chi (p; 2981)
has higher power when applied to the case of concentrated evidence and so is more robust

95



(a)

(b)

Figure 4.11: Contours for the power of HR (p; 1) = chi (p; 2) minus (a) chi (p; e8) ≈
chi (p; 2981) and (b) chi (p; e−8) ≈ chi (p; 0.003) by η and D(a, ω) facetted by ω. Com-
pared to Figure 4.7, (a) displays less of a penalty for the case of concentrated evidence
while still outperforming HR (p; 1) for evidence spread among all tests.

under H3. This is seen clearly in a comparison of the bottom right corner of Figure 4.7 to
Figure 4.11(a), the former shows a much larger and darker red region than the latter.

The chi (p;κ) family also extends the range of possible centrality parameters compared
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to HR (p;w). As HR (p; 1) = chi (p; 2) is one of the boundaries of the w parameter range,
no comparable pooled p-values to chi (p;κ) for κ < 2 exist in the HR (p;w) family. Using
chi (p;κ) therefore gives greater control over the balance of central and marginal rejection
than HR (p;w), though it seems exceptionally small κ in chi (p;κ), or equivalently Tip(p),
should only be used sparingly. Figure 4.11(b) shows that chi (p; 0.003) loses power almost
everywhere compared to chi (p; 2) in exchange for higher power only in the case of extreme
evidence in a single test. Under H3, very small values of κ should probably only be used
if such a pattern of evidence is strongly suspected.

The chi (p;κ) family is therefore of interest both practically and theoretically. It pro-
vides control over central and marginal rejection under H3 and robustly gives nearly UMP
power for large values of κ under H4. It has interpretable endpoints which cover a greater
range of centrality quotients than HR (p;w) and gives a means of controlling the bias
towards central rejection present in all quantile pooled p-values as M increases. chi (p;κ)
is a pooled p-value with great potential as a practical tool for controlling the FWER when
testing H0.

4.7 Identifying plausible alternative hypotheses and

selecting tests

The link between κ, the centrality quotient, and relative power in regions of the D(a, w), η
plane under H3 can be exploited to identify alternatives to H0 that could have plausibly
generated p. Rather than selecting a particular κ value, we can consider all possible κ
values simultaneously, compute chi (p;κ) for each, and record

κmin = argmin
κ∈[0,∞)

chi (p;κ) (4.23)

As each κ value is associated with a particular centrality quotient, each κ identifies a
particular region of relative power against others in the D(a, w), η plane under H3. At the
same time, κmin reports the value of κ which produces the smallest pooled p-value for p
and therefore suggests the κ value where evidence against H0 is the strongest relative to
other κ values. As stronger evidence leads to more frequent rejection and higher power
when H0 is false, κmin therefore links the evidence present in p to a region in D(a, w), η if
we assume H3 is truly used to generate the data with f = Beta

(
a, 1/w + a(1− 1/w)

)
.
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(a) (b)

Figure 4.12: The (a) density and (b) central quantiles and median by κ for the null case.
All lines are flat and above the null quantiles from the larger simulation as expected.

4.7.1 Non-increasing beta densities

Begin with a demonstration of the sweep of κ values for previously explored cases by
generating curves of chi (;κ) by κ for different densities under H4. In each of the following,
samples of 100 i.i.d. p-values from different beta distributions are generated independently
1,000 times and chi (;κ) is computed for a sequence of κ values chosen uniformly on the
log scale. Let the ith sample be pi and the pooled p-value computed using parameter κj for
pi be χij = chi (pi;κj). To provide context to χij, a larger simulation of 100,000 samples
was generated under H0 and the minimum of chi (pi;κj) for the same sequence of κj values
was recorded. Figure 4.12(b) displays the median and 0.5, 0.95, and 0.99 central quantiles
for f = Beta(1, 1) (equivalent to the null case) alongside the Beta(1, 1) density in 4.12(a).
For reference three dashed red lines at the observed 0.05, 0.01, and 0.001 quantiles of the
minimum pooled p-value over the 100,000 simulated null cases have been added.

This case shows a flat median curve and flat central quantiles which are all slightly
above the corresponding minimum quantiles. The null case performs as expected, κmin is
distributed uniformly over the range of κ values and would produce values below the null
quantiles at the expected proportions. A contrasting case in shown in Figure 4.13, which
uses the same layout for an identical simulation carried out when f = Beta(0.5, 1).
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Figure 4.13: The (a) density and (b) central quantiles and median by κ for p-values gener-
ated identically and independently from a Beta(0.5, 1) distribution. The minimum around
κ = 2 corresponds to the UMP.

Displaying the median and the same central quantiles as before, there is a unique
minimum at κ = 2, a lower right end to the curve than the left end, and a generally lower
value across its entire length. If one of these curves was observed in practice, κmin ≈ 2
would be chosen and larger κ values may not be fully ruled out. This conclusion would
be correct: under H4 with f = Beta(0.5, 1) the UMP pooled p-value is HR (p;w) with
w = (1 − a)/(b − a) = 1 and HR (p; 1) = chi (p; 2) = Fis(p). Furthermore, the power
investigations in Section 4.6.2 demonstrate that chi (p; 2981) ≈ Sto(p) is nearly as powerful
as the UMP for all w under H4. This confirms empirically that the level of the curve of
chi (p;κ) over κ corresponds to the relative power of pooled p-values in chi (p;κ) for this
beta distribution.

Of course, this conclusion should be expanded to H3 and so mixture of Beta(0.1, 1)
and Beta(1, 1) distributions is considered. The first distribution provides strong evidence
against the null hypothesis while the second corresponds to the uniform distribution, and
so contains no evidence against the null. Mixing these such that the probability of drawing
from Beta(0.1, 1) is 0.05 and the probability of drawing from the null is 0.95 we are placed
in the D(a, w), η space at 0.3, 0.05. Simulating this as for the null and Beta(0.5, 1) cases
and displaying the central quantiles of χij alongside the mixture density gives Figure 4.14.
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Figure 4.14: The (a) density and (b) central quantiles and median by κ for the mixture
0.05Beta(0.1, 1) + 0.95Beta(1, 1). Small κ values provide the smallest pooled p-values,
and hence power at detecting this alternative.

The central quantiles are more variable for this case than the unmixed densities because
the probability of generating any p-values from Beta(0.1, 1) is small and so many samples
would have included only null p-values. Nonetheless, the median has a unique minimum
near κ = 0.01, and is generally lower for small κ than large κ. Considering the coordinates
of this case in the D(a, w), η plane, this is completely consistent with the earlier investiga-
tions of power where small κ values were most powerful for strong evidence concentrated
in a few tests. In practice, seeing the median curve would cause us to suspect this case
correctly.

4.7.2 Identifying a region of alternative hypotheses

While these one-to-one comparisons between densities and κ curves help to demonstrate the
link between κmin and the alternative densities used to generate p, they are not incredibly
informative. Given p and supposing we generate such a curve of chi (p;κ) by κ, we would
need to sort through an incredible number of density-curve pairs to identify plausible
alternatives corresponding to the curve obtained.

Instead, consider a more automated approach. Given a collection of p-values, this
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generates a curve by sweeping parameter values of κ, identifies the minimum κ values (or
any below a particular threshold), and maps these back onto the plane of strength and
prevalence depicted in, for example, Figure 4.11. This requires a detailed guide of where
each κ value is most powerful in the η,D(a, w) plane so that κmin or the range of significant
κ values can be placed accurately. Therefore, a simulation was carried out over 20 ln(w)
values evenly spaced from −6 to 0, η values from 0 to 1 in increments of 1/80, and 80
lnD(a, w) values evenly spaced between −5 and 5. For each combination, 10,000 samples
of 80 p-values were generated with 80η following the beta distribution specified by ln(w)
and lnD(a, w) and 80(1− η) following the uniform distribution.12

Each of the 10,000 samples then had pooled p-values computed over a sweep of 65
lnκi values evenly spaced from −8 to 8 and the power was computed for the rejection rule
chi (p;κi) ≤ 0.05 (corresponding with a level α = 0.05). The κi with the greatest power for
each combination corresponds to κmin for that combination because rejection is determined
by thresholding the pooled p-value and so a higher power implies a lower distribution of
the pooled p-value at a given point. Bivariate discretized Gaussian smoothing is applied to
each chi (p;κi) power surface in η,D(a, w) for each w value in order to obtain a smoothed
estimate of the power surface minimally impacted by random binomial noise. This was
completed only because none of the investigations carried out indicated discontinuities in
the power or distribution of p-values by κi.

For each w, the power surfaces of every chi (p;κi) in η,D(a, w) were then compared
to the maximum among them point-wise. This is motivated by the simpler case shown in
Figure 4.13, as several κi values are often equally powerful for a given setting. Specifically,
the comparison was a binomial test of the difference in proportions using a normal approx-
imation at 95% confidence. A surface was deemed equal to the maximum power at that
point if the test failed to reject the null hypothesis of equal proportions.13 For each κ and
w, all of this pre-processing gave a matrix in η and lnD(a, w) indicating whether chi (p;κi)

12This resolution was not the only one tried, similar experiments were carried out for M = 10, 20, and
40 and the only impact of increasing M , the number of steps in η, and the number of steps in lnD(a,w)
was increasing resolution of the same patterns. This suggests that these patterns do not depend on the
sample size.

13For powers p1 and p2 computed over the same number of trials n, this computes

z =

√
n(p1 − p2)√
2p(1− p)

where p = p1+p2

2 and then compares z to normal critical values. By the CLT, z ∼ N(0, 1) approximately
for large n, and as 10,000 simulations are performed for each power estimate, this approximation should
be quite accurate.
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achieved the maximum power for that combination for every κi. To produce a final sum-
mary in η and lnD(a, w) alone, these indicators were summed over w for each κi. Finally,
masks were added in the top right and bottom left corners where all methods are equally
powerful with powers 1 and 0.05 respectively to make the meaningful patterns more visible.
Figures 4.15(a)–(d) display these sums (counts of cases in w where κi achieved maximum
power) for several κi in a given η, lnD(a, w) region, with guide histograms on each row and
column added to quickly indicate the relative marginal frequencies. Each plot is therefore
rich with both marginal and joint information on the regions where a particular κi is most
powerful.

Consistent with previous investigations, this map shows that the regions where the
small κ values are most powerful correspond to small η values. The mode of the histogram
of η values increases steadily in κ until it is near one when κ = e8. For κ = e−4, the
pooled p-value is only most powerful for settings with η < 0.1, such that a minimum of
the parameter curve below e−4 ≈ 0.02 indicates a small minority of tests are significant.

Given that these plots display counts of cases where a particular chi (p;κ) is most
powerful, choosing to select w evenly-spaced on the log scale inadvertently places greater
weight on small values of w and under-samples large values in order to achieve more
complete coverage of D(a, w). Even for moderate w floating point representation limits
prevent the computation of a and b for the beta distributions with large KL divergences.
Choosing parameters to span strength is one of two possible perspectives, the other focuses
on even exploration of the parameter space. For this parameter-based perspective, the
exact same procedure was performed but with 20 w values selected at even increments
from 0.05 to 1. Figures 4.16(a)–(d) present the same heatmaps as Figure 4.15 from this
perspective.

There are some noteworthy differences between this and the first set of heatmaps. The
bias towards smaller proportions and stronger evidence in the first is quite clear when it is
compared to the second, which generally shows similar shapes but more evenly distributed
saturation across this shape. This leads to changes in the regions suggested for a particular
κmin, but these are typically minor. The biggest difference occurs for large κ, where the
bias towards small values in Figure 4.15 obscures all of the internal variation in the middle
top that can be seen in Figure 4.16.

Without these plots, an analyst would be left trying to identify alternatives from a
density estimate. Besides showing comparable information about the prevalence of evidence
to a density estimate in the histogram along the right side of the plot, these plots of
plausible alternatives give information about likely strengths of evidence and regions for
the combination of both. By leveraging the links between the centrality quotient, κ, and
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a) lnκ = 8 b) κ = 2

c) lnκ = −1 d) lnκ = −4

Figure 4.15: Likely alternatives for a range of κ values. For full coverage of D(a, w), w was
chosen uniformly on a log scale.

the distribution and strength of evidence in p, these maps provide richer and clearer
information.
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a) lnκ = 8 b) κ = 2

c) lnκ = −1 d) lnκ = −4

Figure 4.16: Likely alternatives for a range of κ values. w was chosen uniformly for these
images, leading to worse coverage of D(a, w) but more appropriate coverage of w.
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4.7.3 Selecting a subset of tests

Perhaps the most important part of the alternative heatmaps presented in Figures 4.15
and 4.16 are the histograms along the right margin that indicate the likely prevalence
of evidence in the data. Once κmin has been determined using a sweep of κ values, and
a plausible set of alternatives has been identified using these alternative heatmaps, the
corresponding range of proportions can be used to identify a subset of tests of interest.
If false positives are less problematic to analysis than false negatives, the upper bound of
this range might be taken, with the other bound taken if the opposite is true. In either
case, suppose the chosen proportion is η∗, then the Mη∗ largest values of F−1(1− pi;κmin)
are the tests most contributing to the small value of chi (p;κmin) and so are the tests of
greatest interest that can be selected for further investigation.

4.7.4 Centrality in other beta densities

Until now, it was always assumed that p-values follow a non-increasing beta density when
the null hypothesis is false. This is a reasonable assumption, many statistical tests have
this property for the rejection rule thresholding the p-value at α. Relaxing this assumption,
however, allows an exploration into how chi (p;κ) behaves for a broader variety of densities
and whether centrality is still a useful concept under these other distributions of non-null
p-values.

First, consider the case of a strictly increasing density under H4. Whether or not this
case is interesting is a matter of opinion. Under the convention that small p-values are
evidence against H0, such a density produces even less evidence against H0 than the null
distribution itself. It would be reasonable to expect, then, that this case produces only
very large chi (p;κ) for all κ values. Following the same procedure as Section 4.7.1, this
expectation is tested for Beta(1, 0.5), resulting in the curve and density displayed in Figure
4.17.

As expected, this setting gives only large chi (p;κ) values for every κ. There is a slight
dip to small p-values for small κ, likely a result of the small p-values that still occur for this
density occasionally, but it barely crosses the null reference lines. Perhaps a more realistic
case is a density that rarely, if ever, produces minimum p-values small enough to warrant
rejection alone, but does tend to produce far more p-values less than 0.5 than expected
under the null hypothesis. For such a setting, the previous investigations into centrality
suggest that κmin should be large. An example is f = Beta(2, 4) under H4, shown in Figure
4.18.
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(a) (b)

Figure 4.17: The (a) density and (b) central quantiles and median by κ for p-values from a
Beta(1, 0.5) distribution. The pooled p-value is generally large compared to the empirical
curve minimum quantiles.

Once again, this plot matches the expectation reasoned from centrality, despite the
relaxation of the assumptions used to motivate centrality. Both of these examples suggest
that the concepts of central and marginal rejection may have use beyond non-increasing
densities, and provide a promising framework for future investigation.

106



(a) (b)

Figure 4.18: The (a) density and (b) central quantiles and median of a p-values following a
Beta(2, 4) distribution. The absence of very small p-values and bias towards smaller ones
means large κ values are most powerful.
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4.8 The PoolBal package

There is no lack of packages available to pool p-values in R. The most recent of these,
poolr (Cinar and Viechtbauer, 2021), lists 8 others all providing piecemeal coverage of
every pooled p-value proposal14. Rather than re-implement the functionality provided
by these packages, the PoolBal package aims primarily to support the evaluation of the
central rejection level, marginal rejection level, and centrality quotient for these and any
future packages which pool p-values. As they both allow some tuning of centrality, these
core functions are supported by implementations of chi (p;κ) and HR (p;κ) along with
functions to evaluate the Kullback-Leibler divergence for general densities and compute it
for the beta density in particular. This is meant to make the adoption of the framework
provided in this work as simple as possible.

Briefly summarized, the functionality of PoolBal includes

klDiv, betaDiv: compute the Kullback-Leibler divergence for arbitrary densities and the
uniform to Beta case, respectively

findA: invert a given Kullback-Leibler divergence and most powerful test parameter w to
identify the unique Beta parameter a that corresponds to this setting

pBetaH4, pBetaH3: helpers to generate p under under H4 and H3

estimatePc, estimatePrb, estimateQ: wrappers for uniroot from base that estimate
the central rejection level, marginal rejection level at b, and centrality quotient for
an arbitrary function

chiPool: an implementation of chi (p;κ)

chiPc, chiPr, chiQ: functions to compute the central rejection level, marginal rejection
level, and centrality quotient of chi (p;κ) using Equations (4.20), (4.21), and (4.22)

chiKappa: a wrapper for uniroot from base that inverts a given centrality quotient to
give the κ value in chi (p;κ) with the corresponding quotient

hrStat, hrPool: compute lHR(p;w) and HR (p;w) for p, with the p-value determined
empirically using simulated null data

14These are Dewey (2022) Zhang et al. (2020); Wilson (2019); Yi and Pachter (2018); Poole and Gibbs
(2015); Dai et al. (2014); Schröder et al. (2011); Zhao (2008). Most of these packages cover a subset of
pooling functions or implement adjustments for dependence rather than attempting to be the complete
package for pooling p-values.
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hrPc, hrPr, hrQ: functions to compute the central rejection level, marginal rejection level,
and centrality quotient of HR (p;κ) using simulation and uniroot

altFrequencyMat: function allowing access to a summarized version of the simulation
results from Section 4.7.2

marHistHeatMap: function which generates heatmaps with marginal histograms, that is
visualizations such as those in Figure 4.16.

The package can be found on the author’s GitHub and CRAN (Salahub, 2023b).

4.9 Conclusion

When presented with M p-values from independent tests of hypotheses H01, . . . , H0M , a
natural way to control the family-wise error rate (FWER) is by pooling these p-values using
a function g(p). If g(p) is constructed using the sum of quantile transformations or the
order statistics of the p-values, then the rejection rule g(p) ≤ α controls the FWER at α.
Selecting between the many possible g(p) requires the choice of an alternative hypothesis
from the telescoping set H1 ⊃ H2 ⊃ H3 ⊃ H4 in order to determine their powers against
these alternatives. H3 and H4, though the most restrictive, still require the choice of η, the
prevalence of non-null p-values in p, and f , the distribution of these non-null values. An
obvious choice for f is the beta distribution restricted to be non-decreasing, as this biases
non-null p-values lower than null p-values. By using η and the Kullback-Leibler divergence
of f from the uniform distribution, both the prevalence and strength of non-null evidence
can be measured.

If all the evidence is non-null, i.e. η = 1, the pooled p-value based on lw(p) =
w
∑M

i=1 ln pi − (1 − w)
∑M

i=1 ln(1 − pi) is uniformly most powerful (UMP) but is sensi-
tive to the specification of its parameter w ∈ [0, 1]. The power of HR (p;w) to reject
the alternative hypothesis is reduced when w does not match the true parameter ω under
H4. When η ̸= 1, both the prevalence and strength of non-null evidence dictate the most
powerful choice of w. Small values of w are more powerful for weak evidence spread among
all tests while large values are better at detecting strong evidence in a few tests.

This reflects a more universal pattern in pooled p-values and motivates a new paradigm
for selecting and analyzing them. The marginal level of rejection at α, the largest indi-
vidual p-value that leads to rejection at α when all other p-values are 1, and the central
rejection level at α, the largest value simultaneously taken by all elements of p which still
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leads to rejection at α, characterize this paradigm. By defining the central and marginal re-
jection level, a number of fundamental properties can be proven. Among them, the central
rejection level of a pooled p-value satisfying some mild conditions is always greater than or
equal to the marginal rejection level, with equality occurring only for Tip(p). This order
allows a centrality quotient to be defined which summarizes the preference of a pooled
p-value to diffuse or concentrated evidence with a value in [0, 1].

In order to control this quotient, a pooled p-value based on χ2
κ quantile transformations

was defined, chi (p;κ). By choosing the degrees of freedom κ ∈ [0,∞), arbitrary control
over the centrality of the pooled p-value is obtained. Increasing κ raises the centrality
quotient, and decreasing it drops the quotient. Furthermore, the limiting cases of κ = 0
and κ → ∞ correspond to Tip(p), the minimum order statistic p-value, and Sto(p), the
normal quantile transformation p-value. Both of these limiting pooled p-values are classic
pooling functions which have been used and studied widely in the literature. The pooled
p-value chi (p;κ) therefore provides a means to balance an important aspect of pooling
p-values with a single parameter that has ready interpretation along its range. Comparing
its power to HR (p;w) under H3 and H4, chi (p;κ) loses less power than HR (p;w) with w
mis-specified. It is therefore more robust and demonstrates that the central and marginal
rejection paradigm is instructive to predict which version of chi (p;κ) will be most powerful
for a particular alternative hypothesis. In conclusion, chi (p;κ) and the centrality quotient
are both potent tools for pooling p-values to control the FWER.
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Chapter 5

A Simple Genetic Model

In this chapter, a toy genetic model is presented to provide a basic understanding of
genetics. It is not meant to be comprehensive, nor to fully describe every aspect of the
rich field of genomics. Instead, it has been included to contextualize this often-repeated
setting for measuring association and multiple testing.

G S T X zselect annotate encode summarize

Figure 5.1: A model of genomic association studies.

Genetic research today routinely considers the entirety of a genome, defined by Doerge
et al. (1997) as all heritable material potentially passed to offspring, to identify regions
strongly related to physical traits. The goal is to associate measured genome sequences, the
genotype, with physical characteristics, the phenotype. Traits can be monogenic, impacted
by a single region of the genotype, or oligogenic, impacted by several regions together.
Computational and methodological advances in the pursuit of these quantitative trait loci
(QTLs) have distinguished genomics as its own field. Central to genomics is the genome-
wide association study (GWAS), where many markers, sequences of nucleotides at known
positions on the genome, are measured. The measurement of markers and their structure
is critical in the search for QTLs.
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Figure 5.1 draws on the literature to present a model outlining the conversion of raw
marker measurements into data. The key steps of selection, annotation, encoding, and
summarization are identified as maps between increasingly abstract representations of the
genome, highlighted in plain language. While such a simple representation is no replace-
ment for surveys such as Uffelmann et al. (2021) and Tam et al. (2019), it supplies a guiding
framework suitable for the introduction of the topic to anyone with a mathematical back-
ground but very little biology experience.

The model starts with G, the whole genome of an organism. Genetic information is
stored in DNA, a long molecule consisting of a sequence of four nucleotide bases : guanine,
cytosine, adenine, and thymine. A diplodic individual inherits one version or variant of a
complete DNA sequence from each parent, and so has two copies in all somatic (i.e. non-
reproductive) cells. Though it can be represented as one long sequence, DNA is actually
organized into chromosomes, separate strands of DNA which contain only a part of the
sequence. As much of genetic research concerns diplodic species, this is implicitly assumed
in the following.

It is generally not feasible to design a study around the measurement of all of G, and
so the select step chooses regions to measure, represented in S. Often S consists of a se-
ries of single nucleotide polymorphisms (SNPs), single nucleotide substitutions in a known
sequence at a known position. In human studies this is supported by SNP databases
such as NCBI (2021) which document hundreds of millions of common SNPs in the hu-
man genome1. These are observed by means of arrays capable of identifying hundreds
of thousands of SNPs simultaneously, see LaFramboise (2009); Tam et al. (2019). As no
array simultaneously measures all SNPs, selection is necessary, motivated by previous find-
ings and linkage disequilibrium, the correlation between markers at different regions of the
genome that facilitates inference to regions outside of those selected in S. While third
generation genome sequencing technologies allow for entire genomes to be sequenced, their
persistent high costs and more than a decade of SNP array development leave arrays as the
dominant measurement method (Heather and Chain, 2016; Hasin et al., 2017; Uffelmann
et al., 2021).

After selecting SNPs to obtain S, the data must be annotated. The raw signal pro-
duced by a SNP array is fluorescence, with different degrees of fluorescence corresponding
to different genotypes. Converting the fluorescent areas of an array to a genotype is a
challenging problem and has developed in tandem with the arrays themselves (LaFram-
boise, 2009). Early models used non-parametric clustering techniques on the signal from

1Despite this massive database, only a fraction occur frequently enough to be used. Koboldt et al.
(2013) identifies about 15 million SNPs common enough in humans to be useful
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several array sections, but more complex hidden Markov and Bayesian models have also
been developed. Whatever method is used, the selected regions are assigned genotypes in
T. Often these are denoted with capital or lowercase letters at each SNP, as in Siegmund
and Yakir (2007) and Visscher and Goddard (2019).

Finally, relationships within T and between T and an observed trait are quantified by
converting each annotated SNP to a number. We first encode each SNP variant with a
numeric value and then summarize both variants at each location into a single value. Typ-
ically no distinction is made between these steps: the dominance and additive summaries
move directly from an annotated genotype to a numeric value in Lander and Botstein
(1989), Cheverud (2001), and Siegmund and Yakir (2007). They are separated here for
clarity and full generality.

This section presents the details of this model, starting with an explanation of the
model and all necessary notation in Section 5.1. The model is then used in a derivation of
the Haldane map distance, a common measure used to locate SNPs, in Section 5.2 leading
directly to a derivation of the correlation between markers under classic genetic population
settings in Section 5.3. A software package in R which mirrors the model is outlined in
Section 5.5 and used to simulate different recombination mechanics in the following sections
before these are compared to real genetic data from mice in Section 5.7.

5.1 Denoting a genome

The model begins with
G = [g1|g2], g1,g2 ∈ BNP

where B = {adenine, guanine, cytosine, thymine} is the set of nucleotide bases and NP

is the length of the genome. In humans NP ≈ 3, 234, 830, 000. G represents the whole
genome of an individual, with all chromosomes placed sequentially in two adjacent columns
corresponding to the maternally and paternally inherited variants. Though both of these
variants are complete double-stranded sequences of DNA, nucleotides pair uniquely. Ade-
nine binds exclusively with thymine and guanine binds exclusively with cytosine. Therefore
g1 and g2 record the pattern only for one of the two DNA strands for each column, the
complementary strand is implied by this sequence and the unique binding of nucleotides.

Rather than address the whole genome, typically only a selected subset of segments are
of interest. This is represented by

S = [s1|s2], s1, s2 ∈ BK
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with K ≪ NP . The mapping G → S chooses K rows of G to create S. This mapping is
very seldom a random one. Previous work and databases of SNPs or other known markers
motivate the choice of rows. Most commonly, then, the mapping G→ S is a non-random
selection of M < K disjoint sequences from G.

In the case where S contains only SNPs, the markers are biallelic, i.e. the population
is dominated by two different sequences or alleles at the marker. These can be denoted
using two different letters, such as A and B, or analogously the uppercase and lowercase
version of the same letter, such as A and a. Converting the measured markers to letters is
called annotation, a mapping S→ T with

T = [t1|t2], t1, t2 ∈ {A, a}M .

Denoting the ith position of tj as tij, tlj = A and tmj = A do not represent identical
sequences at positions l and m. Instead this indicates that the sequences annotated by the
capital at each position are present at their respective positions.

These annotated variants in T might next be converted to a numeric form. This is a
mapping T→ X such that

X := [x1|x2], x1, x2 ∈ RM .

Commonly this is even more restrictive, with xj ∈ {0, 1}M where

xij =

{
1, if tij = A

0, if tij = a
, (5.1)

is an indicator of the presence of the allele denoted by a capital.

Finally, X may be converted into a vector

z ∈ RM

summarizing the individual’s inherited variants using a map X → z. Examples include
dominance, which takes zi = max{xi1, xi2}, homozygosity, which takes zi = Ixi2

(xi1), and
additivity, which takes z = x1+x2, where x1 and x2 are given according to Equation (5.1)
and Iy (x) is the indicator function

Iy (x) =

{
1, if x = y

0, otherwise.
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The additive summary gives z ∈ {0, 1, 2}M so zi is equal to the count of copies of A at the
ith marker across both of an individual’s inherited variants.

Figure 5.1 displays this model, with descriptive names added to each mapping. In the
first step, G → S, segments of the genome are selected to obtain the marker sequences
of interest. The next step, S → T, annotates the chosen markers by indicating which of
the common alleles is present at that marker. These annotations are then converted to
numeric values, or encoded, in the step T→ X. Finally, the matrix X is summarized into
a vector z with some row-wise operation.

5.2 Deriving map distance

The model presented in Section 5.1 is useful beyond providing a guide to genetic data.
With only a few assumptions, it shows the Haldane map distance (Haldane, 1919) to be
a corollary of the structure of DNA and mechanics of inheritance2. A derivation of the
Haldane map using the model of Section 5.1 is completed here, starting with a simple
sketch of sexual reproduction.

5.2.1 Sexual reproduction

Sexual reproduction is the recombination of the genomes of two parents to create offspring
genetically distinct from both. A distinction must be made between reproductive or sex
cells, e.g. sperm, and somatic cells. While somatic cells contain two variants of the
germline, sex cells contain only one. When two sex cells combine, each provides its own
variant to the resulting offspring. Inheritance is mediated by the creation of sex cells, which
itself involves the random selection of variants contained within somatic cells by meiosis.

To track the parental variants which may be inherited, introduce two matrices to rep-
resent the maternal and paternal genomes of which G is the offspring:

M = [m1|m2] and F = [f1|f2],
2In contrast to a physical distance based on the spatial position of markers, the Haldane map is a

linkage distance which is based on the probability of markers being inherited together. There is a large
body of literature developing linkage (or genetic map) distances, a quick overview can be found in Speed
(2005). We break from the traditional probabilistic approach seen in Zhao and Speed (1996) and Lange
(2002), for example, because it is not necessary to obtain the Haldane map and the derivation here makes
direct use of the structure of G as outlined. Genetics is introduced here to contextualize later work rather
than to fully review statistical methods in the field.
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where m1,m2, f1, f2 ∈ BNP . Crudely, sexual reproduction is the construction of G from one
random column of M and one random column of F. So, G could be [m1|f2], for example.

The real mechanism is much more complex. During meiosis, the columns of M and F
are perturbed. Rather than being inherited by G in the same form as in M and F, regions
in f1 may swap with regions in f2 and the same may occur with m1 and m2. This occurs
either due to the independent assortment of chromosomes or due to the crossing over of
variants within chromosomes.

Independent assortment is a direct consequence of the structure of the genome in so-
matic cells. Each chromosome is a separate molecule and so when sex cells are created,
the variant of one chromosome inherited by offspring is independent of other chromosomes
inherited from the same parent. This means that either of the paternal and maternal vari-
ants of a chromosome is equally likely to be passed on regardless of which variant is passed
on for another chromosome.

Additionally, these variants may not be inherited identically as they appear in M or
F. There is a chance that the variants in a parent physically cross over each other while
separating to form sex cells. Occasionally, this crossing results in a swap of the entire
chromosome on either side of the cross, creating two completely new variants.

5.2.2 Modelling cross overs

Both crossing over and the independent assortment of chromosomes occur within each
parental genome independently of the other parent, and so only one of the parents needs
to be considered in modeling cross overs. Suppose it is M.

Start with the assumption that genetic recombination is independent between chromo-
somes. Specifically, chromosomes not only assort independently but crossing over occurs
independently on each chromosome and will affect only that chromosome’s variants. This
assumption can be thought of as a slightly stronger version of independent assortment.
Therefore consider a vector

h ∈ {1, 2, . . . , C}NP

for C ∈ N which denotes the chromosomal membership of each row of M. For simplicity,
set hi ≤ hj for all i ≤ j. In other words, all base pairs of a chromosome appear in
adjacent rows with some specified ordering of the chromosomes. Assuming cross overs
occur independently for each chromosome, a cross over in chromosome c, say, will affect
only those rows of M where h = c. Starting with the simplest case, where h is a vector of
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ones and so M contains a single chromosome, we can extend results to the entire genome
by considering every other chromosome in the same way.

For this single chromosome, consider a cross over beginning at the ith base pair, meaning
the two variants of the chromosome physically cross at the ith base pair. Assuming the
variants are always perfectly aligned so that the ith position on one variant will match
with the ith on the other, each variant is consquently separated into two parts: the part
up to, but not including, the ith base pair, and the part from the ith base pair until the
end. These two parts are then swapped between the variants, so that the first part of one
variant forms a new chromosome with the second part of the other. Whenever a cross over
is said to “begin at index i”, it will refer to this sort of crossing: a swap of the columns for
the first i− 1 rows of M (or F). Introduce an indicator vector

V = (V1, . . . , VNP
)T

where

Vi =

{
1 if a cross over at base pair i occurs,

0 otherwise,
(5.2)

and define π = (π1, π2, . . . , πNP
) so that πi = P (Vi = 1). This can be done without loss

of generality, as the order of cross overs in time does not affect the final chromosome.
Any chromosome, offspring, or sex cell for which any cross overs have occurred is called
recombinant.

As we rarely sequence the entire genome of an individual’s somatic and sex cells, we will
seldom see M and its recombinant forms. Instead, just as S is derived from G, MS and FS

are derived fromM and F respectively. Swaps of the markers ofMS and FS as inferred from
S are then used to estimate the number of sex cells containing recombinant chromosomes.
The proportion of sex cells produced with such a swap is called the recombination rate for
the pair of markers.

However, the recombination rate for a pair of markers tells us nothing of how many
cross over events occurred between them. Any odd number of events leads to a swap, while
any even number will be undetectable. With this restricted view, the true count of indices
i for which Vi = 1 cannot be known, and hence the πi cannot be estimated individually.

5.2.3 Simplifying assumptions

Fortunately, if the recombination of two particular markers on the genome is all that is of
interest, estimating individual πi values is unnecessary. Consider two such marker positions,
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j and k with j < k, and note that cross overs beginning at any of j + 1, j + 2, . . . , k − 1, k
all result in these positions being split between variants. For identifiability assume that
πj+1 = πj+2 = · · · = πk−1 = πk = πj:k. Let Nc be a random variable counting the number
of cross overs in the interval {j + 1, j + 2, . . . , k − 1, k}. Then

P (Nc = nc) =

(
k − j

nc

)
πnc
j:k(1− πj:k)

k−j−nc

if cross overs occur independently. For brevity, let r = k − j and π = πj:k, which gives

P (Nc = nc) =

(
r

nc

)
πnc(1− π)r−nc , (5.3)

where r is a unitless count of base pairs between positions j and k.

Recall that NP ≈ 3,234,830,000 in humans. This large number of base pairs spread
over the 23 human chromosomes means that j and k will typically be separated by a great
number of base pairs, and so r will be very large. Indeed, examples in Nyholt (2004),
Salyakina et al. (2005), and Galwey (2009) have thousands or tens of thousands of base
pairs between marker locations. Therefore, consider the limit of this expression as r →∞:

lim
r→∞

P (Nc = nc) = lim
r→∞

(
r

nc

)
πnc(1− π)r−nc .

At this point, a substitution can be made:

π =
βd(j, k)

r
:=

βd

r
,

with β, d(j, k) ∈ R. This substitution reparametrizes the probability π with a rate param-
eter, β, a distance measure, d(j, k), and the r base pairs separating j and k. As the units
of β and d will always result in a unitless product, their selection is arbitrary. Any distance
d can be chosen and will invoke a corresponding β. This flexibility gives a great deal of
freedom to choose a particular map distance to represent a corresponding model.

The substitution also leads to a substantial simplification, as

lim
r→∞

(
r

nc

)(
βd

r

)nc
(
1− βd

r

)r−nc

=
(βd)nc

nc!
lim
r→∞

rnc +O(rnc−1)

rnc

(
1− βd

r

)r−nc

=
(βd)nc

nc!
e−βd = lim

r→∞
P (Nc = nc), (5.4)
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the Poisson limit approximation for the binomial distribution.

Recall that ifNc is odd, it will result in a swap of markers j and k between variants, while
if Nc is even, there will be no swap in the chromosome passed on. Define the recombination
probability pr(d), which gives the probability of observing a swap for positions j and k
with distance d(j, k) := d between them. Then pr(d) is given by a sum of all odd terms
from Equation (5.3). Taking the simplification of Equation (5.4) gives

∞∑
l=0

(βd)2l+1

(2l + 1)!
e−βd = e−βd

∞∑
l=0

(βd)2l+1

(2l + 1)!
=

1

2

(
1− e−2βd

)
= pr(d). (5.5)

A final substitution converts Equation (5.5) to a form familiar to researchers in genomics.
Setting β = 1

100
so that each each unit increase in d corresponds to a 0.01 increase in the ex-

pected number of cross overs gives Haldane’s formula for the map distance in centiMorgans
or cM.

By accounting for the structure of the genome and making a number of simplify-
ing assumptions, our genetic model gives this classic result without any reference to the
population-level differential equation used in its original derivation. Indeed, it indicates
this population-level differential equation is a direct consequence of the structure of the
genome. We can go a step further and compute a simple expression for genetic correlation
using this distance under the additive map to summarize X.

5.3 Genetic correlation

Recall z as depicted in Figure 5.1, the correlation between markers refers to the observed
correlation matrix of the vector z in a particular population. This correlation has seen use
in multiple test adjustment (Cheverud, 2001; Li and Ji, 2005; Galwey, 2009) and is generally
important in defining linkage disequilibrium between markers. For clarity, let z indicate
an instance of the random vector Z = (Z1, Z2, . . . , ZM)T which follows the distribution of
the summarized values z in a particular population. This population may be real, as is the
case when this modelling is used in practice, or purely hypothetical, as will be the case in
the following analysis.

Consider two markers in the annotated matrix T at row indices j and k. Introduce
c, which is defined similarly to h from the derivation of map distance, but now indicates
chromosomal membership for the markers in T rather than the base pairs in G. As
individual markers are not split over chromosomes, c is always unambiguously defined.
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Either markers j and k are on the same chromosome, that is cj = ck, or they are not,
and so cj ̸= ck. If they are not, the assumptions of Section 5.2.2 dictate that there will be
no correlation between Zj and Zk, as these markers will assort independently along with
their respective chromosomes by assumption. If they are on the same chromosome, let
d(j, k) = d be the genetic distance between them measured in cM as in Equation (5.5).
Denote the alleles of j with A and a respectively and use B and b analogously for k. Assume
that the pairwise association of alleles at these markers in the population is of interest, i.e.
that all other markers on this chromosome can be ignored for the moment. This setting
creates the radically simplified

T =

[
A a
b B

]
,

where the letters placed above are merely demonstrative. The simplified

X =

[
xj1 xj2

xk1 xk2

]
,

with all entries in {0, 1} follows immediately. As was the case for z, these lowercase entries
are realizations of random variables Xrs, r ∈ {j, k}, s ∈ {1, 2}. Then X implies

Z =

[
Zj

Zk

]
=

[
Xj1 +Xj2

Xk1 +Xk2

]
under the additive map. Consider Corr(Zj, Zk) for a population resulting from the sexual
reproduction of two known parents. The mechanics of sexual reproduction outlined in
Section 5.2.1 and the genotype of the parents determine the distribution of Zj and Zk.

From the matrices M and F introduced alongside sexual reproduction, take simplified,
annotated forms of these matrices to represent the paternal and maternal encodings at j
and k. Explicitly,

FX =

[
fj1 fj2
fk1 fk2

]
and MX =

[
mj1 mj2

mk1 mk2

]
, (5.6)

where all entries are once again in {0, 1}. Assume that FX and MX are known and
introduce the difference matrix

∆ =

[
fj1 − fj2 mj1 −mj2

fk1 − fk2 mk1 −mk2

]
:=

[
δjF δjM
δkF δkM

]
. (5.7)

This matrix will be useful in representing the correlation between Zj and Zk. Finally,
assume that the variation in Z results purely from genetic recombination.

120



Begin with the expectation of Z. Assuming no preferential inheritance of either variant,
Xj1 is equally likely to be either fj1 or fj2 and so takes a uniform distribution over these
two possibilities. A similar logic for all other entries in X applies, and so

E[Z] =

[
E[Xj1] + E[Xj2]
E[Xk1] + E[Xk2]

]
=

1

2

[
fj1 + fj2 +mj1 +mj2

fk1 + fk2 +mk1 +mk2

]
,

from which it follows

V ar(Zj) = E[(Xj1 +Xj2)
2]− E[Zj]

2

=
1

4

[
2∑

i=1

2∑
k=1

(fji +mjk)
2 − (fj1 + fj2 +mj1 +mj2)

2

]
.

=
1

4

[
(fj1 − fj2)

2 + (mj1 −mj2)
2
]

=
1

4

[
δ2jF + δ2jM

]
. (5.8)

Analogously,

V ar(Zk) =
1

4

[
δ2kF + δ2kM

]
. (5.9)

While the covariance

Cov(Zj, Zk) =
2∑

l=1

2∑
m=1

Cov(Xjl, Xkm) (5.10)

can be expressed as a sum of four terms, each of which can be considered in turn.

Cov(Xj1, Xk2) and Cov(Xj2, Xk1) can be evaluated immediately. Both of these terms
measure the covariance between values on the diagonals ofX, that is the covariance between
the maternally and paternally donated variants of the genome inherited from F and M,
respectively. These covariances therefore measure the amount of inbreeding in a population,
the degree to which parents tend to have the same genotype. Crow and Kimura (1970)
quantify these covariances with a coefficient r for general populations. With known parents,
however, these diagonal values are independent of each other and therefore uncorrelated.3

Explicitly, Cov(Xj1, Xk2) = Cov(Xj2, Xk1) = 0 if FX and MX are known matrices.

3This can be confirmed by tedious algebra.
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Cov(Xj1, Xk1) and Cov(Xj2, Xk2) measure the covariance of encodings on the same
variant, and cannot be so easily dismissed. Instead, consider Cov(Xj1, Xk1) and expand:

Cov(Xj1, Xk1) = E[Xj1Xk1]− E[Xj1]E[Xk1].

The equal probabiliy of inheritance of variants gives E[Xj1] =
1
2
(fj1 + fj2) and E[Xk1] =

1
2
(fk1 + fk2). Next consider E[Xj1Xk1].

There are four possible values of Xj1Xk1, corresponding to inheritance of either of the
two parental variants with or without recombination. If no recombination occurs, an event
with probability 1 − pr(d), either fj1fk1 or fj2fk2 is inherited with equal probability. If a
cross over between j and k leads to recombination, then either fj1fk2 or fj2fk1 is passed
on with equal probability. Accounting for these four possibilities gives

E[Xj1Xk1] =
(
1− pr(d)

)(1

2
fj1fk1 +

1

2
fj2fk2

)
+ pr(d)

(
1

2
fj1fk2 +

1

2
fj2fk1

)
.

Combining this with the expectations of Xj1 and Xk1 and simplifying gives

Cov(Xj1, Xk1) = E[Xj1Xk1]− E[Xj1]E[Xk1]

=
1

4

(
1− 2pr(d)

)(
fj1fk1 + fj2fk2 − fj2fk1 − fj1fk2

)
=

1− 2pr(d)

4
δjF δkF . (5.11)

By the same logic

Cov(Xj2, Xk2) =
1− 2pr(d)

4
δjMδkM . (5.12)

We obtain the covariance of Zj and Zk by substituting Equations (5.11) and (5.12) and
Cov(Xj1, Xk2) = Cov(Xj2, Xk1) = 0 into Equation (5.10) to get

Cov(Zj, Zk) =
1− 2pr(d)

4

[
δjF δkF + δjMδkM

]
. (5.13)

Finally, Equations (5.8), (5.9), and (5.13) can be combined to determine the correlation:

Cov(Zj, Zk)√
V ar(Zj)V ar(Zk)

:= (1− 2pr(d))γ = Corr(Zj, Zk), (5.14)

where

γ =

[
δjF δkF + δjMδkM

]
√(

δ2jF + δ2jM
)(
δ2kF + δ2kM

) . (5.15)
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So, the correlation is a product of
(
1− 2pr(d)

)
, which depends on the markers in question,

and a factor γ, which depends on the known parents. An even simpler expression is
obtained by substituting the Haldane recombination probability from Equation (5.5) in
place of pr(d):

Corr(Zj, Zk) =
(
1− 2pr(d)

)
γ

=

(
1− 2

[
1

2

(
1− e−2βd

)])
γ

= γe−2βd, (5.16)

and so using the Haldane map distance the correlation between Zj and Zk decays expo-
nentially in d(j, k) with an intercept γ determined by the parents’ annotated matrices. As
the entries in MX and FX are all 0 or 1, the differences in ∆ are all -1, 0, or 1. There
are therefore 34 = 81 potential γ values, though most of these are not unique. 17 of these
are undefined, corresponding to cases where V ar(Zj) = 0 or V ar(Zk) = 0. Table 5.1
summarizes the frequency of different γ values for the remaining 64 combinations. Only

γ Frequency
−1 8
− 1√

2
16

0 16
1√
2

16

1 8

Table 5.1: Frequency of γ values across the 64 combinations for which correlation is defined

five symmetrically-distributed values are possible. A number of population settings for γ
are of particular interest due to their use in mouse breeding experiments outlined in Green
et al. (1966).

One such setting is the the F2 intercross design. Cross here is short for sexual repro-
duction, rather than crossing over. This design considers the population resulting from the
cross of MX and FX with

FX = MX =

[
1 0
1 0

]
.

In this setting all the differences in γ are 1 and so γinter = 1.
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The next is the N2 backcross. Here the cross is between MX and FX defined as

FX =

[
f f
f f

]
, and MX =

[
1 0
1 0

]
.

where f ∈ {0, 1}. In this setting, both differences defined on FX are 0 while both of those
defined on MX are 1. This gives γback = 1, the same as that of the intercross population.

Other interesting cases without historical basis involve

FX =

[
0 1
1 0

]
or MX =

[
0 1
1 0

]
,

as these can result in γ < 0, and so a negative correlation. For example, if

FX = MX =

[
0 1
1 0

]
,

then γ = −1. Many other settings lead to no measured correlation. Take

FX =

[
0 1
1 0

]
and MX =

[
1 1
0 0

]
for example. Note that these negative values are somewhat arbitrary. The encoding of 1
or 0 for particular alleles at a marker is not prescribed, but is rather an analytical choice.
Therefore in any of these cases the encoding could be switched to give a positive γ of the
same magnitude.

Finally, these results can be extended to the whole genome. Recalling that j and k
were restricted to the same chromosome, this pairwise result can be generalized to the
correlation matrix of Z for markers measured on different chromosomes. For markers on
the same chromosome correlations will be proportional to 1 − 2pr(d), where pr(d) is the
probability of recombination as a function of the distance between markers. Based on the
independent assortment of different chromosomes, the correlations will be zero for any pair
j and k not on the same chromosome.

In other words, if cj = ck, Equation (5.14) dictates the correlation between Zj and Zk.
On the other hand, if cj ̸= ck the correlation between Zj and Zk will be zero. This implies
a block diagonal structure corresponding to the chromosomes with correlations dictated
by the probability of recombination within each chromosome. Most generally

Corr(Zj, Zk) = Icj (ck) γ
(
1− 2pr(d)

)
, (5.17)
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and under the assumptions of the Haldane model

Corr(Zj, Zk) = Icj (ck) γe
−2βd(j,k). (5.18)

For a demonstration of how this expression can be helpful in practice, see how it is used
to improve robustness to missing data in Appendix A.

5.4 Inbreeding

Recombination not only generates variation in the genome captured by the correlation, it
can also remove all variation at a marker location in a population, called fixation of the
genetic sequence at a marker. Inbreeding, the sexual reproduction of genetically similar
individuals, leads to fixation if the individuals are similar enough and inbreeding continues
for long enough4. To see how, consider all possible offspring of the most extreme case: the
reproduction of two siblings with the same parents.

Let the variants of the marker at position j be xj1, xj2 for the first sibling and yj1, yj2
for the second sibling. Fixation is defined as the event xj1 = xj2 = yj1 = yj2 = a, as from
that point onwards the only version of marker j which can be inherited is a. As the siblings
have shared parentage, represent the two paternal copies at that marker with fj1 and fj2
and the two maternal copies with mj1 and mj2 and assume that fj1 = fj2 = mj1 = mj2

is not true, i.e. that the marker is not already fixed. Next, we can simplify the problem
by taking fj1, fj2,mj1,mj2 ∈ {0, 1} and considering the additive summary for each sibling
t1 = xj1 + xj2 ∈ {0, 1, 2} and t2 = yj1 + yj2 ∈ {0, 1, 2}. As each variant is passed on with
equal probability, using the additive summary results in no loss of generality.

Under these assumptions we can capture the state of the siblings with the tuple
t = (zj1, zj2), or generally for siblings after k generations of sibling inbreeding as t(k) =

(z
(k)
j1 , z

(k)
j2 ). Fixation occurs if t(k) = (2, 2) or t(k) = (0, 0), as t(k+n) = t(k) for any n ∈ Z

in both cases, and the rules of recombination outlined prior define a transition matrix for

4We assume that mutations do not occur or at least that they are rare enough to be ignored.
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t(k) to t(k+1):

R =



(0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (1, 2) (2, 1) (2, 2)

(0, 0) 1
(0, 1) 1/4 1/4 1/4 1/4
(1, 0) 1/4 1/4 1/4 1/4
(0, 2) 1
(1, 1) 1/16 1/8 1/8 1/16 1/4 1/16 1/8 1/8 1/16
(2, 0) 1
(1, 2) 1/4 1/4 1/4 1/4
(2, 1) 1/4 1/4 1/4 1/4
(2, 2) 1


where zeros have been left blank for readability. R has the stationary distribution π =
(1/2, 0, 0, 0, 0, 0, 0, 0, 1/2), is aperiodic, and has two absorbing states, both of which corre-
spond to fixation. Therefore, as k → ∞, P (t(k) /∈ {(0, 0), (2, 2)}) = 0 and so fixation for
any marker is inevitable under sustained brother-sister inbreeding. About 99% of genetic
markers are fixed after 20 generations of inbreeding (Casellas, 2011), meaning roughly 20%
of unfixed markers become fixed for every generation of brother-sister inbreeding5.

This is not an abstract consideration, it has been used since the early 1900s to create
genetically similar strains of mice to investigate the heritability of traits and disorders
(Green et al., 1966). Some of these strains have been bred for more than a century by
groups such as the Jackson Laboratory as models for disease and drug testing, and so are
practically genetically uniform (Beck et al., 2000). While mutations and selection pressures
favouring genetic variability can still cause genetic drift (Casellas, 2011), these strains are
much less variable than natural populations and were the best instrument to reveal the
associations between genetic information and physical traits for much of the twentieth
century.

Modern advances in sequencing technology and computation have drastically changed
this as every subject in a study can now be effectively sequenced at hundreds of thousands
of markers (LaFramboise, 2009; Uffelmann et al., 2021). Model organisms still produce
clearer results, as less genetic variation means less noise for models than incorporate the
genome. Additionally, randomized and controlled experimental designs are possible to
implement for mouse strains which cannot be conducted on humans.

The advancement of computing power has presented simulation as a third option within
the last decade (Messer, 2013). Rather than fight against the dynamics of actual repro-

5Wright (1933), considering numerous inbreeding scenarios including half-siblings, derived a value of
19.1% per generation of brother-sister inbreeding.
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duction, modern software can be used to simulate genetics under complete control to test
models and gain insight into real genetic processes. Based on the simple model presented
above, such a simulated genetic system was created in R.

5.5 The toyGenomeGen package

The R toyGenomeGen package is based on the S3 classes genome and population and
functions that act on these classes to mimic genetic recombination. An instance of the
genome class has four slots:

encoding: a two-column numeric matrix X giving the encodings of markers,

alleles: a list with the same length as the number of rows as X providing the annotations
in T,

chromosome: a factor giving the chromosomal membership of each row of X, and

location: a list of numeric vectors providing the distance into each chromosome the mark-
ers are found.

Marker names, for example SNP identifiers from NCBI (2021), are stored as the row
names of encoding. A simple print method prevents the potentially overwhelming entire
genome from being printed all at once, while a plotmethod visualizes genome objects using
separate lines for each chromosome on which points with shapes indicating the values in
the corresponding row of encoding are plotted.

A genome object can be created either randomly using simGenome, based on pro-
vided slot values using makeGenome, or from an appropriately-structured data.frame using
asGenome. Random generation is supported by helper functions which generate marker
encoding matrices, locations, and chromosomes given some parameters. For flexbility,
simGenome accepts these helpers as arguments, allowing for users to define functions that
create the behaviour they would like to model.

A population object is a more memory-efficient representation of a list of genomes
measured at the same locations which avoids redundant information by placing all X
matrices into a list in the slot encodings and storing their common locations, chromo-
somes, and alleles in slots identical to a single genome. A population is created by calling
asPopulation on a list of genomes, which removes row names from each encoding and
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fills the alleles, chromosome, and location slots using the first genome in the list after
checking for consistency. A slot called marker is also added to provide the marker names.
Populations can be subset on both markers and individual genomes using the function
subsetPopulation, and individual genomes can be extracted using selectGenome. Dy-
namic selection of individual genomes based on a logical function acting as an inclusion
rule is supported by the filterPopulation wrapper.

Aside from basic manipulation and display functionality, the mechanics of genetic re-
combination are supported by the functions meiose and sex. meiose accepts a genome

object and produces a single column encoding generated by modelling the crossing over
and independent assortment of its encodings. By default, it uses the Haldane map and
recombination model described above, but it accepts any function which outputs a vector
of indices that indicate where cross-overs occur. Given the locations of cross over events,
sections of the columns of encoding are swapped accordingly. sex is a wrapper function
for meiose that accepts two genome objects and then combines their independent meiosis
products.

Correlation based on linkage disequilibrium within genome objects is computed us-
ing popCorrelation and theoryCorrelation. Calling popCorrelation computes Pear-
son’s product moment correlation for a given population object and a scoring function.
theoryCorrelation instead accepts a mapping function and setting which are used with
Equation (5.17) to generate a theoretical correlation matrix. By default, the additive scor-
ing z = x1 + x2 and Haldane map are used. Correlation matrices generated by either can
be visualized using the image wrapper corrImg with guidelines for the chromosomes added
by addChromosomeLines after corrImg has been called.

In addition to these classes and functions, toyGenomeGen includes eleven real genetic
data sets adapted from public data hosted on the Mouse Genome Database (MGD) (Bult
et al., 2019). The MGD provides annotation data for more than a dozen mouse populations
resulting from crosses of known strains of mice alongside references which allow the cM
distances between markers to be determined. All of these resources are publicly provided in
tab-delimited text files at the Mouse Genome Informatics website: www.informatics.jax.
org, and panels with clear legends were extracted and converted to population objects
for the R package.

5.5.1 Similar packages

toyGenomeGen occupies a previously unfilled niche in genetics packages for R. Flexible
experiments which virtually test different models of heredity are not easily carried out
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in existing packages, as most provide support for analysis early in the schematic shown
in Figure 5.1. The rtracklayer (Lawrence et al., 2009) and BSgenome (Pagés, 2023)
packages, for example, are primarily concerned with efficiently loading and annotating full
genome sequences, corresponding to steps between the representations G, S, and T in our
schematic. valr (Riemondy et al., 2017), GenomicRanges (Lawrence et al., 2013), and a
handful of less popular related packages support efficient comparison of genomic intervals,
or rows within G.6

Existing simulation packages focus on mimicking existing data, often samples from the
1000 Genomes Project (Fairley et al., 2020) or NCBI’s dbGaP (NCBI/NLM, 2023). This
is the explicit goal of sim1000G (Dimitromanolakis et al., 2019) and TriadSim (Shi et al.,
2018). As a result, both of these packages restrict the methods of recombination which
can be used to move a population forward in order to replicate the patterns already ob-
served in samples rather than explore the possible mechanisms that lead to those patterns.
TriadSim, in particular, chooses an inflexible “hot-spot” model to choose recombination
events.

Outside of R , there are many software tools that simulate genetics for the purpose of
testing analytical methods or generating pseudo-observations under different assumptions.
The United States National Institutes of Health maintains a list of reviewed genetic simula-
tion resources which contained 227 approved simulators at the beginning of October 2023.
Using the web page’s “Compare by attribute” feature, these were filtered down to simula-
tors which match the detail and functionality of toyGenomeGen, leaving only two candidate
software tools which model the evolution of large populations over many generations. The
first, simuPOP (Peng et al., 2012) implemented in python and C++, models recombination
with its Recombinator function class that supports custom probabilities of recombination
between markers or requires a distance and intensity pair for each to determine recombi-
nation. These mechanics are identical to the defaults in toyGenomeGen. The second, SLiM
(Haller and Messer, 2023), is implemented in a custom scripting language that supports
many different models of recombination that include and extend beyond those explored
here.

Of course, the toy genomic model developed for toyGenomeGen has been created pri-
marily to facilitate understanding and exploration. The broader scopes of simuPOP and
SLiM give far more functionality to model evolution by linking genotypes to phenotypes,
supporting mating pair selection, evaluating fitness, and modeling multiple species simul-
taneously. These complex relationships are not needed to introduce genetics in the context

6BSgenome, rtracklayer, and GenomicRanges all share authors and seem to be products of an organized
team effort by multiple researchers at the Fred Hutchison Cancer Research Center in Seattle.
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of exploring data, however. toyGenomeGen provides a light and focused alternative to these
extensive software projects.

5.6 Replicating common simulation patterns

To demonstrate this use, toyGenomeGen is used to recreate simulated population settings in
the literature using the default Haldane map. Cheverud (2001) investigates the correlation
between markers for a single chromosome with equidistant markers for chromosome lengths
of 50, 75, and 100 cM with markers equidistant at 50, 25, 12.5, and 6.25 cM were simulated
for populations of 500 F2 intercross offspring. Lander and Botstein (1989) simulates twelve
chromosomes of length 100 cM with markers every 20 cM along each for a population of
250 N2 backcross offspring.

The simulations of Cheverud (2001) and Lander and Botstein (1989) were recreated us-
ing toyGenomeGen. Specifically, these were the 100 cM chromosome with 6.25 cM separated
markers of Cheverud (2001) and the twelve 100 cM chromosomes with 20 cM separated
markers of Lander and Botstein (1989). The resulting simulated correlation matrices and
theoretical correlation matrices are visualized side by side using corrImg in Figures 5.2
and 5.3. The same colour palette is used as earlier.

Figure 5.2(a) displays a pattern of constant off-diagonal lines of decreasing value, as
expected from Equation (5.5). Roughly the same pattern is seen in Figure 5.2(b), though
it is noisier. Rather than having clear constant lines along each off-diagonal, Figure 5.2(b)
has regions of similar values which occur across several off-diagonal lines. This leads to the
appearance of large squares of more strongly related values, a pattern absent from Figure
5.2(a).

Figure 5.3 displays the setting of Lander and Botstein (1989) with the addition of guide
lines to aid in reading the plot. As suggested by Equation (5.5) and shown in Figure 5.3(a),
Figure 5.3(b) has a stark block diagonal structure which agrees with these guide lines. The
simulation therefore agrees very well with theory in this aspect. Within the chromosomes,
there is also good agreement between Figure 5.3(a) and Figure 5.3(b). Both have decreasing
correlations along the off-diagonal lines, with Figure 5.3(b) displaying similar departures
from Figure 5.3(a) as Figure 5.2(b) does from Figure 5.2(a).

A more interesting noise pattern is seen between chromosomes outside the blocks in
Figure 5.3(b). Unlike the strictly positive correlations seen in Figure 5.2, both negative
and positive correlations are observed. Though many chromosomes show consistent pat-
terns between their markers, with all correlations either positive or negative as between
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(a) (b)

Figure 5.2: The (a) theoretical and (b) simulated correlation matrix of a population of
500 F2 intercross offspring measured on a 100 cM chromosome with markers each 6.25 cM
apart.

chromosomes 9 and 6 or 11 and 12, many have more complicated relationships. Between
chromosomes 7 and 3, for example, both negative and positive correlations are observed
between markers which are larger than the smallest intra-chromosomal correlations within
2. This gives a sense of what patterns we might expect in real data between chromosomes.

5.7 Comparing the model to reality

The motivation for the creation of toyGenomeGen and its default settings was to com-
plement the simple genetic model derived previously. However, this simple model and the
context it provides are only useful if they reflect reality. The data included in toyGenomeGen
give a perfect opportunity to assess this.

Two of the real data sets included in toyGenomeGen are independent realizations of an
identical population setting: the BSB mouse cross first outlined in Fisler et al. (1993).
BSB mice are those resulting from the N2 backcross of the C57BL/6J and Mus Spre-
tus inbred mouse strains, detailed respectively in JAX (2022) and Dejager et al. (2009).
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(a) (b)

Figure 5.3: The (a) theoretical and (b) simulated correlation matrices of a population of
250 N2 backcross offspring measured on twelve 100 cM chromosomes with markers 20 cM
apart on each.

The first of these is jax bsb from Rowe et al. (1994) and the second is ucla bsb from
Welch et al. (1996). Both the JAX and UCLA BSB cross data were downloaded from
www.informatics.jax.org/downloads/reports/index.html before being converted to
populations and saved.

The data sets require further cleaning before being used, however. Any markers without
complete observations are removed from both data sets and any individual mice with
incomplete data are excluded using the subsetPopulation function. For the JAX BSB
data this leaves 94 mice annotated at 1496 markers while the UCLA BSB data has 66 mice
annotated at 111 markers. The correlation matrices for these data sets are displayed in
Figures 5.4(a) and 5.5(a) respectively using the divergent palette defined earlier.

To determine the expected distribution of these correlations, the cM positions of mea-
sured markers were used to simulate 10,000 crosses under the Haldane model of indepen-
dent recombination for each of the JAX BSB and UCLA BSB settings with toyGenomeGen.
Figures 5.4(b) and 5.5(b) display example correlation matrices from one such simulated
population. For both settings, the quantile of each experimental pairwise correlation was
then computed using the 10,000 simulated crosses. Figures 5.4(c) and 5.5(c) shade quan-
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tiles which are less than 250 and greater than 9,750 for their respective settings. These
correspond to unadjusted two-sided 95% confidence rejection regions for each correlation.

(a) (b) (c)

Figure 5.4: (a) Experimentally observed and (b) simulated correlations for markers from
Rowe et al. (1994). (c) displays quantiles determined from 10,000 simulated crosses. Quan-
tiles less than 250 or greater than 9,750 are shaded.

(a) (b) (c)

Figure 5.5: (a) Experimentally observed and (b) simulated correlations for markers from
Welch et al. (1996). (c) displays quantiles determined from 10,000 simulated crosses.
Quantiles less than 250 or greater than 9,750 are shaded.

Qualitatively, the simulated examples show good agreement to experimental results.
In both Figures 5.4 and 5.5 the patterns of correlation between chromosomes are sim-
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ilar between experiment and simulation. Figures 5.4(c) and 5.5(c) additionally suggest
that patterns of departure may simply be noise. The shaded regions of unusually strong
correlations do not appear to follow any clear pattern.

The similarity continues within chromosomes. Figures 5.4(c) and 5.5(c) are generally
not shaded within chromosomes. In particular, very little of the region close to the diagonal
is shaded. The most noteworthy pattern in either sub-plot occurs in the corners of the
diagonal squares indicating chromosomes in Figure 5.4(c). Many of these corners are
shaded blue, suggesting these distant intra-chromosome correlations are less than might
be expected. The pattern of shading is suggestive of block structures within chromosomes
where contiguous sections are fit well by the model but may have more complex dynamics
between them.

A likely explanation is the non-independence, or interference, of cross overs. Broman
et al. (2002) evaluated the pattern of cross overs in the cross of Rowe et al. (1994), the
basis of the JAX BSB data, and found that cross overs were not fully independent. Most
mouse chromosomes are much less than 100 cM in length, yet cross overs rarely occur
within 20 cM of each other and fewer cross overs than expected occurred on the same
chromosome. This interference will have little impact on the correlation between markers
with short distances between them, as more than one cross over event is unlikely to occur
in a short interval. Markers separated by longer distances are impacted by this observed
interference to a greater extent, as the observed number of double cross overs will be less
than expected. This increases the chance that distant markers will be separated in meiosis
by a single crossover, leading to a weaker correlation than predicted by the model.

That said, this pattern is not repeated in Figure 5.5 and the shading of quantiles has
not been adjusted to account for the many multiple tests performed in each plot. In order
to get a greater sense of this experimental departure from our simple model, the common
markers measured between the UCLA BSB and JAX BSB data were identified and the
correlation matrices computed for these common locations in order to view the behaviour
of two experimental replicates rather than two cases with one. These correlations are
displayed in Figure 5.6. Most chromosomes have only one marker measured in common
between these experiments, but chromosomes 2, 4, and 18 have several.

These common markers were again used to simulate 10,000 independent replicates of
each of the JAX and UCLA crosses which were paired and the average of the correlation
matrices computed for each pair. Independence was assumed because the experiments of
Rowe et al. (1994) and Welch et al. (1996) were carried out years apart in different labs.
The results of this simulation are displayed in the novel correlation test plot of Figure 5.7.
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(a) JAX BSB data (b) UCLA BSB data

Figure 5.6: Pairwise correlations for the common marker positions of the JAX and UCLA
BSB data.

5.7.1 The correlation test plot

The heatmaps displayed so far have some shortcomings. As they are symmetric about the
diagonal, identical information is encoded by the cells on either side, meaning effectively
half of the plot is simply a copy. Further, since all the plot is occupied by hue information,
effectively communicating the distribution of repeated samples is impossible. These limita-
tions are necessary when displaying hundreds or thousands of cells, but the common BSB
markers number in the tens. This gives an opportunity to display much more information.

Figure 5.7 simultaneously displays the observed quantile and simulated distribution of
the mean correlation across the 10,000 pairs using a matrix of panels. Along the diagonal,
each panel displays the name of a marker. Above the diagonal, the panels display a kernel
density estimate (KDE) of the distribution of mean correlations across all 10,000 simulated
pairs. Added to this plot are a dashed line to indicate the JAX correlation, a dot-dashed
lined to indicate the UCLA correlation, and a thick line to indicate their mean. The area
of the KDE below this mean is shaded, and the number of simulated pairs in this shaded
region is displayed in the corresponding panel below the diagonal. The panels below the
diagonal therefore report the quantile of the mean in the simulated data, with shading
added when the value is less than 250 or above 9,750. This plot allows us to see not only
the quantiles of the observed means, but also the distributions of those means across the
10,000 simulated populations.
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Figure 5.7: The correlation test plot for the JAX and UCLA BSB crosses. The upper
cells show the distribution of 10,000 simulated averaged correlations between the JAX and
UCLA BSB crosses. The experimental results are marked by broken lines and their mean
marked by a thick line. The bottom cells give the quantile of the corresponding mean.

In Figure 5.7, the distributions of simulated mean correlations are generally symmetric
and unimodal. The shape and spread of the distribution of correlations seems highly
dependent on the proximity of a pair of markers. Markers which are close together in cM
and have a high correlation display very little variation across the simulations relative to
markers which are further apart on the same chromosome or are on different chromosomes.
Generally, the observed mean correlations in the real data are not extreme relative to the
simulated distributions. This can be seen in both the KDEs above the diagonal and the
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quantiles shown below it.

Of the fifty five lower cells, nine are shaded. The first of these, between markers
D2Mit22 and a, is misleading. The observed quantiles are computed by counting the values
less than or equal to that observed, but this pair has an observed mean correlation of 1. It
is therefore necessarily larger than or equal to all other mean correlations, despite having
an identical value to 291 simulated means. This shading should therefore be ignored, as
the value is not so unusual.

All but one of the remaining shaded cells involve chromosome 4. Within chromosome 4,
the lines for the independent realizations of correlation from the JAX and UCLA data are
much closer together on the kernel density estimate than in other cells. They are almost
identical between the experiments. This consistent departure of markers on chromosome 4
from the expectations of the model therefore suggests that chromosome 4 may experience
stronger cross over interference than chromosome 1 and 18. Chromosome 4 is therefore
noteworthy for the poorer fit of the model to its correlations and the consistency of these
correlations over independent experiments, observations supported entirely by the package
toyGenomeGen.

5.8 Conclusion

This chapter is not meant to make the reader an expert in genetics. The model of genetic
measurement and derivation of the Haldane map distance were simple and limited. Pri-
marily, they have been included because genetics is a frequent setting for the application of
pairwise measures of association to detect interesting relationships. Creating a clear and
simple model that (at least somewhat) reflects real data and implementing a toy version
of that in R facilitates easier discussion later.

Such explorations are not without new tools, however. The toyGenomeGen package
provides a simple way to test different feed-forward models of genetics, and so to participate
in recent work moving away from classic map distances (Veller et al., 2020; Kivikoski et al.,
2023). toyGenomeGen forces no particular choice of location structure of cross function,
and so could be adapted to generate distributions under settings using other measures of
distance on a genome.

As well, the straightforward context motivated a novel take on the scatterplot matrix
that takes advantage of the mirrored cells to display both test and distributional infor-
mation. These plots are well-suited to visualize how an observed matrix compares to a
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simulated distribution of matrices, without the need to reduce either to a univariate sum-
mary.
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Chapter 6

Example Application: Monogenic
and Oligogenic Traits

The χ2 pooling method of Section 4 can be applied to the genetic model from Section 5 to
relate a trait to genetic information on N individuals. Recall the last step of the schematic
in Figure 5.1, where annotated genetic information is encoded numerically and summarized
into a single value at each marker. The problem is associating a matrix of summarized
encodings

Z = [z1, z2, . . . , zM ],

where zm = (zm1, zm2, . . . , zmN)
T gives the summarized encoding of marker m for each

individual, to a trait vector y = (y1, . . . , yN)
T providing an experimental measurement for

each individual. Let the theoretical correlation matrix of Z be Σ = [ρij] where ρii = 1 and
ρij is given by Equation 5.18, that is

ρij = Icj (ci) γe
−2βd(i,j)

where γ is a constant taking values outlined in Section 5.3. Commonly, γ = 1.

When y is realized from Z, two patterns are possible. The trait can either be oli-
gogenic, arising from genetic information encoded in numerous genes or marker locations,
or monogenic, arising from the genetic code in a single gene or even at a single marker.
A complete list of identified monogenic traits and conditions in humans can be found at
Online Mendelian Inheritance in Man (OMIM), and include some kinds of albinism and
cystic fibrosis. Common examples of oligogenic traits in humans include eye colour, hair
colour, and height.

139

https://omim.org/


These two types of association between genotype and phenotype can be simply concep-
tualized as linear models. That is, we assume

y = Zβ + ϵ (6.1)

where β = (β1, . . . , βM)T is a constant vector and ϵ is a random vector accounting for
unmeasured sources of variation such as environmental factors. If y is monogenic, then
βm = 0 for all but one index m ∈ {1, . . . ,M}. If y is oligogenic, then multiple entries in
β are non-zero. Fitting linear models of this type for genomic studies is computationally
challenging due to the large size and high collinearity of Z, and so a pairwise significance
test t can be applied to every m ∈ {1, . . . ,M} to give M statistics tm = t(y,xm) and M
p-values pm = P (t(X, Y ) ≥ tm|Cov(X, Y ) = 0). By taking only those tm (pm) greater
than (less than) a threshold, the columns of Z can be filtered in advance to reduce the
computational burden by identifying the most promising markers. The null hypothesis is
assumed to be

H0 : p1, . . . , pM
iid∼ U(0, 1)

as before.

Central and marginal rejection and the centrality quotient are useful concepts to guide
our approach to this problem. If Σ = I, a monogenic trait will give uniform p-values
for all of p = (p1, . . . , pM)T except for one single p-value which is biased towards zero.
In contrast, many of the p-values in p should be biased to small values for a oligogenic
trait. Therefore, pooled p-values with small centrality quotients will be powerful in the
identification of monogenic traits and pooled p-values with large centrality quotients will
powerfully identify oligogenic traits. Performing a sweep of κ values in chi (p;κ) provides
distinctive curves that distinguish these cases under independence, as in Section 4.7.1 for
mixtures of beta distributions.

Of course, we cannot assume independence in genetics. Markers follow the correlation
structure outlined in Chapter 5, that of a block diagonal matrix with decreasing correlations
away from the diagonal within each block. Applying the rejection rule chi (p;κ) ≤ α only
controls the family-wise error rate (FWER) at α under independence, for dependent data
this control is not guaranteed. Addressing this problem is critical to controlling the FWER
in genetic data.

6.1 Independent genetic data

To demonstrate the different curves of chi (p;κ) in κ for monogenic and oligogenic traits
under independence, the JAX BSB data set from the toyGenomeGenR package (explored in
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detail in Section 5.7) is used as a model genome from which traits are generated. Briefly,
it records the annotations of genetic markers at 1496 locations in 94 mice of the same
inbred strain. For simplicity, traits are generated using the linear model of Equation 6.1

and β ∈ {0, 1}M with ϵ1, . . . , ϵM
iid∼ N(0, 0.3). That is, the trait either depends on a marker

or does not, there is no difference in the coefficients between marker sites that are related
to the trait. To obtain independent markers within the data, the markers nearest to the
midpoint of each chromosome of each genome are selected, giving 20 marker encodings for
each of the 94 individuals. Figure 6.1 displays an image of the sample correlation matrix
with no patterns present beyond noise, confirming the selected sites are uncorrelated in
this sample.

Figure 6.1: The sample correlation matrix of the selected midpoint markers on each chro-
mosome of the JAX BSB data. These are consistent with underlying model correlations of
zero.

For η = 0.05, 0.25, 0.5, 0.75, and 1, the first Mη markers are used to generate y indepen-
dently 1000 times. Each marker vector zi is then tested against y to generate 20 p-values
for each repetition using random recursive binning with a stop criterion limiting the depth
to two as in Section 3. Values of κ were selected at increments of 0.1 on the natural log
scale over the range −8 to 8, and a sweep of all κ values was performed for each sample of
20 p-values. The resulting curves for η = 0.05, 0.5, and 1 are shown in Figure 6.2.

Consistent with the known alternative densities in Section 4.7.1, increasing η increases
the κ that minimizes the curve. Unlike the previous explorations, however, the KL diver-
gence of the distribution of p-values is no longer controlled and instead depends on the
distribution of p-values under the model. An unfortunate consequence of this is that the
value of chi (p;κ) increases for all κ as η increases. As the test of H0 is based on threshold-
ing chi (p;κ), this suggests the power of H0 decreases as η increases for this linear model.
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(a) (b) (c)

Figure 6.2: Pooled p-values for pairwise tests of independent markers against traits by
κ when (a) η = 0.05, (b) η = 0.5, and (c) η = 1. Red horizontal lines indicate the
corresponding null quantiles of the minimum of the κ curves. The regions where chi (p;κ)
is smallest are as expected: increasing η increases the prevalence of evidence across all tests
and therefore the κ which minimizes the curve.

This makes sense intuitively, as any individual marker will be a poorer predictor of the
trait when the trait is oligogenic and so all will produce weaker evidence, equivalently
p-values less biased towards zero, when tested pairwise. Detecting such a subtle bias from
a relatively small sample of M = 20 is challenging.

That said, the shapes of the chi (p;κ) curve still differ in η and so provide information
about the alternative hypothesis generating the data. This is especially true when combined
with Figure 4.16 to link the minimum κ with alternatives in the η, KL divergence plane.
Figure 6.2(a) shows a majority of chi (p;κ) curves have a clear minimum at small κ,
suggesting the plausible alternatives can be seen in Figure 4.16(d) and correctly implying
the alternative has a small η value. Figure 6.2(b) shows a curve of chi (p;κ) which tends
to have has its minimum near moderate κ values, suggesting η near 0.5 are most likely by
using Figure 4.16(b). Finally, Figure 6.2(c) tends to have a minimum for large κ, suggesting
correctly that η is larger than 0.6 using Figure 4.16(a). Even in this final, weakest, case
chi (p;κ) changes noticeably in κ. The distribution of chi (p; 10−3) effectively matches the
null quantiles while chi (p; 103) is biased to smaller values. Therefore, the shape of the
curve still provides useful information and taking the minimal κ gives an indication of the
region of plausible alternatives for (b) and (c), though it is less compelling than for (a).
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6.2 Dependent genetic data

In practice, markers of interest are commonly on the same chromosome and so dependence
cannot be ignored. The impact of this dependence was investigated in the JAX BSB data
by applying the same linear model to generate traits using 10 marker annotations evenly
spaced along each of chromosomes one and two. This keeps the total number of markers
fixed at M = 20 but gives the block correlation structure seen in Figure 6.3 that is typical
of genetic marker data.

Figure 6.3: Correlations for 20 markers sampled evenly across chromosomes one and two
in the JAX BSB data, grouped and labelled by chromosome.

Repeating the generation method from the independent case, curves of chi (p;κ) by
κ can be constructed which naively make no adjustment to account for the dependence
known in advance. Figure 6.4 displays these curves and the impact of dependence is clear:
chi (p;κ) is drastically smaller than in the independent case at every η for every κ. Despite
this, the minimizing κ for the curves in Figure 6.4 are similar to those of Figure 6.2. Indeed,
the conclusions of these plots change very little with the introduction of dependence and
the curves still correctly identify η. The shape of these curves and their minima seem
to be accentuated by the dependence if anything, giving an even stronger signal of the η
generating the p-values.

Though the relative shape of these curves still provides useful information, their much
smaller values compared to the independent case suggest a problem. Thresholds developed
in the independent case (such as the quantiles plotted with dashed red lines) no longer
provide a meaningful indication of the significance of the curve shapes. Some adjustment
therefore has to be made so these thresholds remain meaningful under dependence or to
account for dependence when generating the curves.
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(a) (b) (c)

Figure 6.4: Pooled p-values for pairwise tests of dependent markers aginst by κ without
adjustment when (a) ρ = 0.05, (b) ρ = 0.5, and (c) ρ = 1. Despite the introduction of
dependence, the curves give the same conclusions as the independent case.

6.3 Adjusting for dependence

A direct approach estimates the appropriate threshold using permutations, the method of
choice to obtain p-values under dependence in Conneely and Boehnke (2007), Han et al.
(2009), and Cinar and Viechtbauer (2022). Just as was done to generate the null quantiles
for the minimum of the chi (p;κ) curve by κ, many repeated cases of dependent Z which
are unrelated to y could be generated and used to construct chi (p;κ) curves. There are
two ways to generate these examples. The first simulates H0 by shuffling the phenotype
measurements in y and computing t against the unshuffled columns of Z many times.
This breaks any relationships present between Z and y without changing the character-
istics of either or assuming any parametric distribution, but requires observed data. A
second method would generate many representative Z using, for example, the machin-
ery of toyGenomeGenR and y independently from some presumed underlying distribution.
Unlike the first, this could be done before any data is observed.

In either case, the number of possible permutations grows rapidly in N , requiring
the generation of many Z and y pairs to explore the space of possible permutations.
Implementation therefore imposes a considerable computational burden (Han et al., 2009;
Cinar and Viechtbauer, 2022), and proposed remedies still require many thousands of
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permutations1. Rather than spend such computational effort to determine the correct
threshold for a preliminary aspect of analysis that only indicates whether H0 is false, other
approaches choose to approximate the distribution of pooled p-values under dependence.

One group of methods does this by computing meff , the “effective number of tests”
present in M correlated tests of significance, using functions of the eigenvalues of Σ. The
statistic associated with a pooled p-value is then scaled by

meff

M
before using the indepen-

dent distribution function to compute its p-value (Cheverud, 2001; Nyholt, 2004; Li and Ji,
2005; Galwey, 2009). While they make no distributional assumptions, these adjustments
are ad hoc and often provide anti-conservative adjustments that fail to control the FWER
at the nominal level (Salyakina et al., 2005; Cinar and Viechtbauer, 2022). In light of
this, estimating the effective number of tests is an adjustment best avoided for handling
dependence.

Assuming that t are from a multivariate normal distribution with mean zero and corre-
lation matrix Σ, Conneely and Boehnke (2007), Han et al. (2009), and Cinar and Viecht-
bauer (2022) provide adjustments based on approximate normal integrals. This is moti-
vated, in part, by the asymptotic normality of many test statistics in genetics. Under this
assumption, a p-value can be computed by an appropriate normal integral scaled for bet-
ter agreement with the empirical distribution. Though these methods are accurate, they
give a joint p-value for the vector t, making their application to the curves of a pooled
p-value that is a function of t less straightforward. The integrals could still be computed
for chi (p;κ), but a simpler and faster option exists, the method of Brown (1975) along
with its refinements in Yang et al. (2016), Poole et al. (2016), and Cinar and Viechtbauer
(2022).

Developed specifically for the pooled p-value Fis(p) = chi (p; 2), this first computes the
covariance between ln pi and ln pj given ρij and the distribution of the underlying statistics
t. By assuming t ∼MVN(0,Σ), this can be simulated and approximated by a polynomial
(Brown, 1975; Yang et al., 2016), computed directly by the appropriate bivariate normal
integral (Cinar and Viechtbauer, 2022), or approximated by the empirical CDF (Poole
et al., 2016). Next, the approximation of Satterthwaite (1946) is applied to match the first
two moments of the sum of correlated ln pi values to cχ

2
k where c is positive scaling constant.

This method is faster and simpler than permutation tests while still giving approximately
correct p-values when applied to a linear model in simulation tests performed by Yang
et al. (2016).

1Knijnenburg et al. (2009), for example, model the tail of permuted statistics with a generalized Pareto
distribution estimated by maximum likelihood and still require thousands of simulations to obtain a good
approximation.
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6.3.1 Modifying Brown’s method

To generalize the method of Brown (1975) for any κ in chi (p;κ) and p-values resulting
from non-normal statistics, apply Satterthwaite’s moment-matching approximation to

lχ(p;κ) =
M∑

m=1

F−1
χ (1− pm;κ)

with a dependent pi and pj. Explicitly, this assumes lχ(p;κ) ∼ cχ2
d and so

E
[
lχ(p;κ)

]
= E

[
cχ2

d

]
and

V ar
(
lχ(p;κ)

)
= V ar

(
cχ2

d

)
to give

c =
V ar

(
lχ(p;κ)

)
2E
[
lχ(p;κ)

]
and

d =
2
(
E
[
lχ(p;κ)

])2
V ar

(
lχ(p;κ)

) .

Using these constants, the adjusted pooled p-value is computed as

1− Fχ

(
1

c
lχ(p;κ); d

)
.

The expectation, E
[
lχ(p;κ)

]
= Mκ, is unchanged by dependence, but the variance

becomes

V ar
(
lχ(p;κ)

)
=

M∑
i=1

V ar
(
F−1
χ (1− pi;κ)

)
+

M∑
i=1

∑
j ̸=i

Cov
(
F−1
χ (1− pi;κ), F

−1
χ (1− pj;κ)

)
.

Regardless of the dependence present between variables, V ar
(
F−1
χ (1 − pi;κ)

)
= 2κ while

the cross terms must be estimated. Noting that the variance is not affected by dependence,
define

rij = Cor
(
F−1
χ (1− pi;κ), F

−1
χ (1− pj;κ)

)
and then adjustment for dependence requires estimating

2κrij = Cov
(
F−1
χ (1− pi;κ), F

−1
χ (1− pj;κ)

)
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based on ρij for the markers generating test statistics ti and tj from which pi and pj are
computed. Expanding the covariance expression gives

E
[
F−1
χ (1− Ft(ti);κ)F

−1
χ (1− Ft(tj);κ)

]
− E

[
F−1
χ (1− Ft(ti);κ)

]
E
[
F−1
χ (1− Ft(tj);κ)

]
where Ft is the CDF of t. The univariate expectations are straightforward to evaluate, as
1− Ft(ti) is uniformly distributed so

E
[
F−1
χ (1− Ft(ti);κ)

]
= κ.

Substituting this and the joint distribution of ti and tj into the expression for the covariance
gives

2κrij =

∫ ∞

−∞

∫ ∞

−∞
F−1
χ (1− Ft(ti);κ)F

−1
χ (1− Ft(tj);κ)f(ti, tj)dtidtj − κ2

where f(ti, tj) is the joint density of ti and tj.

At this point, the methods of all of Yang et al. (2016), Poole et al. (2016), and Cinar
and Viechtbauer (2022) would compute the integral by assuming[

ti
tj

]
∼MVN

([
0
0

]
,

[
1 ρij
ρij 1

])
and evaluating it numerically. Both Yang et al. (2016) and Poole et al. (2016) then use
polynomials to summarize the relationship between rij and ρij, while Cinar and Viechtbauer
(2022) instead provide a look-up table in their R software package.

To address the non-normality of the statistic presented in Section 3, Monte Carlo
integration of simulated genetic data is used to estimate rij as a function of ρij rather
than assuming the distribution of ti, tj. Following Yang et al. (2016), the relationship
between the two uncovered by Monte Carlo integration is summarized by a tenth-order
polynomial for each κ value. This uses Monte Carlo integration to generalize the method
of Brown (1975) to non-normal statistics t pooled with arbitrary chi (p;κ).

Specifically, for each ρij ∈ {0, 0.02, 0.04, . . . , 1} and lnκ ∈ {−8,−7.9,−7.8, . . . , 8},
matrices of correlated marker encodings Z ∈ {0, 1}94×2 are generated 10,000 times using
simplified code from the toyGenomeGenR package2. As the goal of the simulation is to
determine the null relationship of ρij and rij, both of the simulated markers zi, zj are

compared to an independently generated trait y = (y1, . . . , y94)
T with y1, y2, . . . , y94

iid∼
N(0, 0.3) using random recursive binning with a depth limit of 2 as described in Chapter 3

2This code removed structures, names, and formatting for the sake of increased efficiency.
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to keep the computation time of the simulation relatively short. The obtained p-values pi
and pj are transformed to F−1

χ (1−pi;κ) and F−1
χ (1−pj;κ) and the correlation between the

transformed values rij is computed for each κ and ρij. To obtain repeated observations at
each point, this entire procedure was replicated 5 times and tenth-order even polynomials
predicting rij from ρij using these simulated observations are fit using least squares for
each κ.

The exclusion of odd polynomial terms follows Yang et al. (2016) and makes sense in
the case of simulated genetic data. Negative correlation between zi and zj does not reflect
a different pattern of measuresments, but is instead a consequence of the arbitrary choice
of encoding. Simply flipping the encoding for each marker from 0 to 1 and 1 to 0 gives
the same magnitude of correlation with opposite sign (see Section 5.3). Recursive binning
as a measure of association will give identical p-values for both the positive and negative
cases as the marginal pattern of values is the same, and this symmetry implies only even
functions need to be considered. Plots of simulated rij and ρij for several κ are shown in
Figure 6.5.

(a) (b) (c)

Figure 6.5: Correlation between F−1
χ (1−pi;κ) and F−1

χ (1−pj;κ) by ρij when (a) log10(κ) =
−3.5, (b) κ = 1, and (c) log10(κ) = 3.5 with tenth-order even polynomials fit by least
squares plotted in red over top. More variation is observed for small and large κ values
than for moderate ones.

The fitted polynomials corresponding to the red lines drawn on Figure 6.5 are summa-
rized in Table 6.1. As described above, each is a tenth-order even polynomial and so takes
the form

rij = c1ρ
2
ij + c2ρ

4
ij + c3ρ

6
ij + c4ρ

8
ij + c5ρ

10
ij ,
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the table reports these coefficients for κ = 10−3.5, 1, 100.3 ≈ 2, and 103.5. For moderate κ,
the small coefficients for larger exponents suggest that rij ≈ ρ2ij. Large and small κ have
much more complicated polynomials.

κ c1 c2 c3 c4 c5
10−3.5 -0.18 1.92 -4.05 3.14 0.09
1 0.98 0.05 -0.06 0.03 0.00
2.0 1.00 -0.02 0.14 -0.25 0.13
103.5 0.79 -4.78 18.03 -26.18 13.07

Table 6.1: Polynomial model coefficients relating rij to ρij for several κ values

To determine where these polynomials provide a reasonable approximation, a plot of
the coefficient of determination R2 of the models by log10(κ) was produced in Figure 6.6.
As demonstrated in the example plots of Figure 6.5, the large variation for small κ values
leads to large residuals and poor performance of the polynomial model while moderate κ
values are predicted essentially perfectly. The poor model fit due to the increased variation
for extreme κ values suggests that the estimation of rij from ρij is less accurate in these
cases, and so the adjusted p-value will be as well.

The same pattern is repeated in the findings of Section 7.4, where the evidential estimate
is much less variable in simulated data sets when generated using chi (p;κ) with a moderate
κ value. Both observations are related to the behaviour of F−1

χ (p;κ) for extreme κ.

Observe that Figure 6.5(a) has r12 = 0 for all 5 repeated measurements whenever
ρ12 < 0.5 and recall from Section 4.6 that when κ ≈ 0 the CDF Fχ(x;κ) approximates a
step function at x = 0. This means the quantile function can be thought of as

F−1
χ (1− p;κ) ≈

{
∞ when p ≥ 1− ϵ

0 when p < 1− ϵ,

for ϵ > 0 which can be made arbitrarily small by taking κ arbitrarily close to zero. Very
small differences in pi and pj are therefore magnified when they are converted by the χ2

κ

quantile function, weakening their linear dependence. Only for the strongest relationships
where pj ≈ pj is this effect negligible.

Though still more variable than moderate κ, the increased variation is less severe for
large κ, compare Figure 6.5(a) to Figure 6.5(c). This is explained by a quirk of the p-
values computed. Occasionally, data are simulated which, by chance, do not differ from
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Figure 6.6: The polynomial model coefficients of variation by log10(κ). For κ values between
10−1.5 and 103, the models achieve excellent fits.

expectation at all when split using the recursive binning algorithm. In this case, ti = 0 or
tj = 0 and so pi = 1 or pj = 1 which means F−1

χ (1− pi;κ) = 0 or F−1
χ (1− pj;κ) = 0 for all

κ. If this occurs for only one of zi or zj, the other statistic will have a very large p-value
that is not quite 1, call it 1 − δ, and so its transformed quantile will be strictly greater
than zero. As κ increases, the difference between F−1

χ (0;κ) = 0 and F−1
χ (δ;κ) grows as

the expected value of χ2
κ grows, pulling the δ quantile away from zero for any δ > 0. This

increasing difference in the case of the random agreement of expected and observed counts
in the recursive binning algorithm is thereby responsible for the poorer fit as κ increases.

Nonetheless, the coefficient of determination in Figure 6.6 is never less than 0.65 and is
greater than 0.95 for most of the range of κ values. This means a majority of the variation is
explained in every case and only a small proportion remains unexplained in the best cases.
With these polynomials, the correlation matrix between markers Σ can be converted into
approximate covariances between Fχ(1 − pi;κ) and Fχ(1 − pj;κ) for log10 κ ∈ [−1.5, 3],
supporting the Satterthwaite approximation of the distribution of lχ(p;κ) to adjust for
dependent p-values.
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6.3.2 Applying the adjustment

Recall the curves of chi (p;κ) by κ for dependent p-values in Figure 6.7 and for independent
p-values in Figure 6.2. Under dependence, the curves had nearly universally smaller values
than in the independent case, suggesting exaggerated significance to the results. The
preceding method can now be used to adjust the dependent curves to bring their significance
levels closer to the independent curves.

First, the observed correlation matrix of the genetic data that generated these p-values is
used to estimate the covariance of F−1

χ (1−pi;κ) and F−1
χ (1−pj;κ) based on the polynomials

describing the results of Monte Carlo integrations spanning the range of correlations. Given
the covariance between F−1

χ (1−pi;κ) and F−1
χ (1−pj;κ), a Satterthwaite approximation of

the distribution of lχ(p;κ) =
∑M

m=1 F
−1
χ (1 − pm;κ) is used to compute adjusted p-values.

Repeating this process for each κ value leads to an adjusted curve. The central 95%
quantiles and medians of the adjusted curves and original curves are plotted in Figure 6.7.

(a) (b) (c)

Figure 6.7: Central 0.95 quantiles and medians of adjusted and unadjusted pooled p-
values by κ when (a) η = 0.05, (b) η = 0.5, and (c) η = 1 for markers spread across two
chromosomes. The adjustment has increased the level of the curves and made their relative
peaks and troughs less pronounced.

As desired, the adjustment for dependence increases the pooled p-value at every κ for
every η, and so seems to have accounted for the dependence in the p-values. Additionally,
the conclusions of the curves have not changed drastically, suggesting that the minimum
of the κ curve is not affected by this adjustment. Still, these curves do not look like those
from the independent case, and so the impact of dependence has not been completely
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removed. It is probably the case that it is easier to detect any association between Z and y
when there is dependence present, as dependence causes the related tests to become more
significant together, making the p-values all smaller as a group.

To ensure that the method does not spuriously change independent curves, the sample
correlation matrix displayed in Figure 6.1 was also used to adjust κ curves for the indepen-
dent data. The central 95% quantiles and median are displayed in Figure 6.8 for both the
adjusted and unadjusted curves. Applying this method barely changes the quantiles or me-
dian, suggesting it behaves correctly and does not change the p-values in the independent
case.

(a) (b) (c)

Figure 6.8: Central 0.95 quantiles and medians of adjusted and unadjusted pooled p-values
by κ when (a) η = 0.05, (b) η = 0.5, and (c) η = 1 for the case of independent markers.
The adjustment barely impacts the shape and value of the curve under independence.

6.4 Real genotype and phenotype data

To test this method on real data, the ideal would be a set of individuals with their genotypes
and phenotypes both measured. However, data of this kind is hard to come by and typically
requires an application or association with an institution with access. This limits the ability
of researchers to test new methods.

In order to circumvent this, an improvised paired genotype and phenotype dataset
was created from the Mouse Phenome Database (MPD), a public repository of genotype
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and phenotype data for inbred strains of mice (Bogue et al., 2020). These inbred strains
are effectively genetically identical after hundreds of generations of inbreeding, and so
sequencing data from an individual can be treated as the generic sequence data for every
individual within a strain. Downloading and using this data requires no proposal or account
and so serves as a useful test case. To demonstrate its use, the UCLA SNP panel (Eskin,
2023) was joined to the blood serum data of Svenson et al. (2007), both downloaded using
the MPD API.

The blood serum data measures plasma lipids (e.g. cholesterol, triglycerides) in 10
week old mice that had been fed a standard laboratory mouse diet since weaning with a
distribution by inbred strain and sex summarized in Table 6.2. Briefly, an average of 26
mice from each of 43 different inbred strains roughly balanced over the sex of the mice
are recorded, though certain strains have many more observations than others. The blood
serum measurements are not the final goal of the study; at 10 weeks the mice were given
a diet conducive to the formation of plaque within arterial walls in order to determine the
effectiveness of lab mice as a model of human plaque formation. The data explored here
are merely the baseline.

Table 6.2: Distribution of mice in the blood serum data of Svenson et al. (2007) by sex
and strain identifier. The data are roughly balanced by sex, though the strains have very
different numbers of observations.

Jackson Lab Strain ID Females Males Total
PL/J 27 23 50
RF/J 23 21 44
AKR/J 29 14 43

129S1/SvImJ 24 18 42
BALB/cByJ 21 21 42
C57BL/10J 30 10 40
C57L/J 15 22 37

C57BL/6J 25 11 36
C58/J 10 20 30

Continued on next page
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Table 6.2 – continued from previous page
Jackson Lab Strain ID Females Males Total

NOD/ShiLtJ 10 20 30
MOLF/EiJ 14 15 29
RIIIS/J 13 16 29
LP/J 17 11 28

DBA/1J 11 16 27
C3H/HeJ 11 15 26
CAST/EiJ 12 14 26
FVB/NJ 10 16 26
SWR/J 10 16 26
I/LnJ 12 13 25

NON/ShiLtJ 10 15 25
SM/J 14 11 25

C57BR/cdJ 11 13 24
CZECHII/EiJ 11 13 24
MSM/MsJ 12 12 24
PWK/PhJ 11 13 24
DBA/2J 10 13 23
A/J 10 12 22

C57BLKS/J 10 12 22
MA/MyJ 11 11 22
NZB/BlNJ 12 10 22
NZW/LacJ 12 10 22

BTBR T+ Itpr3tf/J 11 10 21
BUB/BnJ 11 10 21
CE/J 11 10 21

JF1/MsJ 9 12 21
SPRET/EiJ 11 10 21

Continued on next page
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Table 6.2 – concluded from previous page
Jackson Lab Strain ID Females Males Total

CBA/J 10 10 20
KK/HlJ 9 11 20
SJL/J 10 10 20

WSB/EiJ 10 9 19
SEA/GnJ 8 10 18
PERA/EiJ 8 9 17
BALB/cJ 0 5 5
Total 566 573 1139

After joining the UCLA SNP panel data to the blood serum data, the joined genotype-
phenotype data are cleaned to remove mostly incomplete markers and markers with no
variation. The format and limits of API extraction of the data organizes markers into
groups corresponding to each API request, and so a subsample from these groups is taken
as they roughly span the genome. The SNP with the most complete data is selected within
each request group, and the others are dropped to give a final count of 1052 SNPs spanning
all 20 chromosomes measured for each of the 1139 mice.

Within strains, the X/Y chromosome (which controls sex in mice in the same way as in
humans) is a source of genetic variation that must be controlled. To avoid complications
that result from this chromosome, the data are further restricted to contain only the 550
female mice at all 1052 locations. The measurement of total lipoproteins that are not high
density (non-HDL) is selected as the target trait, and each SNP is tested against it using
a recursive binning test restricted to a depth of two to match earlier simulations. The
resulting p-values are adjusted using the modification of Brown’s method outlined earlier
in this section. Figure 6.9 displays the chi (p;κ) curves adjusted using the theoretical
correlation of the SNPs computed according to their centiMorgan distances as in Chapter
5. Theoretical correlation is used instead of an observed correlation matrix because the
genotype matrix is artificially generated by repeating entries for each strain from a different
data set.

The adjusted curve in Figure 6.9 increases from a minimum pooled p-value of roughly
10−3.4 at the smallest κ to a maximum of 1 for all κ > 0.3. Indeed, the majority of κ values
in Figure 6.9 lie above the null 5% cutoff and only those less than κ ≈ 10−0.75 are below
it. Comparing this to the adjusted curves from the simple linear models tested earlier
suggests that only a small proportion of markers are associated with the concentration of
total non-HDL in mouse blood serum.
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Figure 6.9: The adjusted chi (p;κ) curves for the female measurements of total concen-
tration of non-HDL in blood serum. The curve is below the 5% threshold and slowly
increasing for all log10 κ < −0.75, with a flatter section between κ = 10−3 and 10−1.5.

More precisely, the simulations outlined in Section 4.7.2 can be used to identify the
plausible region of alternative hypotheses to H0 that corresponds with the curve in Figure
6.9. In this section, 100,000 examples of samples of p-values following an alternative to H0

were generated with a set proportion of non-null p-values (η) following a beta distribution
with a particular Kullback-Leibler divergence from uniform (D(a, w)). The power of dif-
ferent κ in chi (p;κ) to detect these alternatives was computed and summarized across the
range of possible beta alternative parameter values to identify the regions in η and D(a, w)
where each κ is most powerful. This was connected to the chi (p;κ) curves by observing
that the most powerful κ corresponds to the value minimizing the chi (p;κ) curve. Two
possible perspectives were displayed, one spanning the beta parameter w evenly and one
spanning D(a, w) evenly.

For this case, we want to filter the SNPs to identify those that are likely associated
with blood serum non-HDL concentration without assuming much about the alternative
distribution. Choosing to span D(a, w) evenly over-represents extreme beta parameter
values in the alternative, which corresponds to a non-uniform prior over the alternative
beta distribution. Instead, we choose to be agnostic and take the perspective of a uniform
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prior on the beta parameter w. Taking all κ values lying below the 5% threshold in
the adjusted case as our range of plausible κ values, we generate the map of plausible
alternatives for κ ≤ 0.18 shown in Figure 6.10(a).

(a) (b)

Figure 6.10: (a) The map of plausible alternatives for κ ≤ 0.17. The rotated histogram
on the right axis suggests a region of plausible alternatives has ρ ∈ (0.05, 0.15). (b)
F−1
χ (1− pi; 0.18) by the sample quantile pi. For the chosen cutoff 0.05, markers associated

with p-values left of the vertical red line are considered the markers of interest.

This figure displays a heatmap of the region of alternative hypotheses where κ values less
than 10−0.75 are most powerful. Darker saturation indicates more parameter settings where
these κ are most powerful. Histograms with the same resolution as the heatmap display
a scaled sum of this power for the corresponding margin. In particular, the histogram on
the right side of the plot suggests that these κ are most powerful for η ∈ (0.05, 0.15) with a
peak in power around 0.05. Noting, in addition, the similar shape of the curve in this case
to the simulated linear traits, we hypothesize that roughly 5% of the SNPs are relevant
to determining non-HDL concentration in blood serum. We therefore focus on finding the
0.05M = 0.05× 1052 ≈ 53 marker locations which produce the largest value of

F−1
χ (1− p; 0.18).
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As the same κ value is applied to all tests these will simply be the smallest p-values, but
converting to the χ2

0.18 quantile is a useful visual transformation to display the tests of
interest, as demonstrated in Figure 6.10(b).

Considering the 53 SNP markers chosen by this cutoff, a natural question is their
distribution across the genome. The line plot of Figure 6.11 displays the frequency of
the 53 identifed SNPs by chromosome. Though only a small number of factors have been
identified by the procedure, they are spread widely. This result is consistent with previous
QTL analysis, which did not localize the genes responsible for non HDL cholesterol to a
single chromosome, or even a handful.

Figure 6.11: Frequency of identified markers by chromosome. The levels of non HDL
cholesterol are strongly associated to a small number of factors widely spread on different
chromosomes.

Indeed, the review of factors affecting blood serum lipoproteins in Wang and Paigen
(2005) can be summarized into a similar plot by counting the number of identified regions
on each chromosome which are associated with non-HDL blood serum concentrations in
mice. This this review used the QTL method of Lander and Botstein (1989), it identified
a very similar pattern on the genome to that identified here, in particular chromosomes
1, 19, and 11. The agreement of the novel method of pooled p-values presented here with
the regions of interest identified by this more established method indicates the promise
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of the new method as a means to select regions in genomic studies. This is despite the
data limitations present in this investigation that were not present in other studies, where
phenotype and genotype data for individuals was collected and compared directly.

Figure 6.12: Frequency of markers by chromosome in Wang and Paigen (2005). The
pattern between the two is rather similar, in particular in the peaks on chromosomes 1,
19, and 11.

6.5 Conclusions

An obvious application of central and marginal rejection in chi (p;κ) comes from consid-
ering the simple linear model y = βZ + ϵ to relate a trait y to summarized encodings at
M markers Z in a population, where β ∈ 0, 1M . The inheritance of traits through genetic
information exists on a scale of monogenic to oligogenic, in the former case βm = 1 for
exactly one m in {1, . . . ,M} while in the most extreme version of the latter βm = 1 for
all m ∈ {1, . . . ,M}. Increasing the proportion of coefficients which are one corresponds to
increasing the η value of the alternative hypothesis without controlling the strength of the
individual departures. Therefore, chi (p;κ) can be applied to identify the most plausible
alternative hypotheses and corresponding range of η, indicating the proportion of markers
contributing to a trait.
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The dependence present in Z complicates this by producing smaller values of chi (p;κ)
across all κ for the same pattern of coefficients. Though the identification of η through
the minimum location of this curve appears to be robust to dependence, thresholds which
apply to the independent case cannot be used, making the significance of results unclear.
Rather than perform simulations tailored to the specific correlation pattern and data to
determine the correct thresholds for every investigation, a Satterthwaite approximation is
proposed. Polynomials summarizing the relationship between genetic correlation and the
correlation of χ2 computed using Monte Carlo integration are used to approximate the
distribution of lχ(p;κ) and adjust chi (p;κ). This adjustment places chi (p;κ) in a more
appropriate range when the values of p are dependent and correctly leaves independent
p-values unadjusted. Applying this to real data, certain patterns in the genome identified
using other methods are reproduced with adjusted chi (p;κ) curves as a guide to selection.
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Chapter 7

Example Application: Meta-Analysis

Pooled p-values are not new to meta-analysis, it is standard to combine individual p-
values into a global p-value with a pooling function (Sinha et al., 2011). The framework of
centrality and χ2 pooling function chi (p;κ) outlined in Section 4 can be directly applied to
this case. The larger the centrality quotient of a pooling function of p-values (equivalently
the larger the κ in chi (p;κ)), the more its pooled p-value depends on the mean of combined
p-values and ignores the extremes.

A novel use of pooling functions is explored in the following section. By identifying a
region of values which all individual estimates agree are plausible for the global parameter,
a pooled p-value can be used to combine individual parameter estimates into a single
global estimate of the unknown parameter. This presents a new perspective of combining
estimates where each estimate provides an individual measure of the plausibility of a global
estimate before the collection of individual measures is judged by a pooling function, say
chi (p;κ). This method seems to produce regions which are conservative in the inclusion
of the true parameter and which simultaneously test the equality of study parameters in
their construction. Though this method does not outperform classic confidence intervals,
simulations suggest it provides richer information and is a promising avenue for future
investigation.

7.1 Combining parameter estimates

Suppose we have a collection of M independent studies investigating a population param-
eter θ with respective sample sizes n1, . . . , nM and define the corresponding parameter
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values for each study as θ1, . . . , θM . A key assumption of meta-analysis is homogeneity of
study parameters, that is

θ1 = · · · = θM = θ.

If the homgeneity assumption is false, meaningful differences exist between studies, perhaps
due to differences in design or the sampled population, and their combination requires more
careful analysis (if it makes sense at all).

Of course, we cannot know θ1, . . . , θM and only observe estimates θ̂1, . . . , θ̂M with cor-
responding estimators θ̃1, . . . , θ̃M . Let the observed standard errors of these estimates be
s1, . . . , sM , where each sm is an estimate of the corresponding theoretical standard de-
viation σ1, . . . , σM . The classic method of combining the study estimates into a single
parameter estimate takes a weighted combination of the individual estimates

θ̂ =

∑M
m=1 θ̂ms

−2
m∑M

m=1 s
−2
m

, (7.1)

where the weight of each estimate is inversely proportional to its variance. Commonly,
parameter estimator θ̃i will be approximately or asymptotically normal and so

θ̃ ∼ N

(
θ,

1∑M
m=1 s

−2
m

)
if the homogeneity assumption is true. This admits a test of homogeneity based on the
statistic

X2 =
M∑

m=1

(
θ̂m − θ̂

)2
s2m

which is approximately χ2
M−1 distributed if all of the previous assumptions hold and all

nm are large enough (Sinha et al., 2011). We reject homogeneity at level α if X2 is greater
than the 1− α quantile of the χ2

M−1 distribution.

7.2 Defining an evidential estimate

To depart from the classic approach and use pooled p-values, note that each term of X2 is
the squared standardized difference of θ̂ from θ̂m, defined for the mth study as

dm(x) =
x− θ̂m
sm

.
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The standardized difference gives the distance between a hypothesized x and θ̂k in units
of the estimated standard deviation of θ̃m, and so represents the distance between them
scaled by the standard deviation of the estimator. Rather than take the square of these
distances, the evidential estimate converts each dm(x) to a p-value and reports the set of
x where a pooled p-value computed using these is above a chosen threshold.

Assuming θ̃m ∼ N(θm, σ
2
m) and s2m is an unbiased estimate of σ2

m, dm(x) will have a
non-central t distribution with nm − 1 degrees of freedom and non-centrality parameter
x − θm for any constant x. Let tν(µ) be a random variable following a non-central t
distribution with ν degrees of freedom and non-centrality parameter µ, so tν(0) is a central
t-distributed random variable on ν degrees of freedom, denoted tν . Hypothesizing x = θm,
the non-centrality parameter is x− θm = 0 and

pm(x) = P
(
|tnm−1| ≥ |dm(x)|

)
= 2P

(
tnm−1 ≤ −|dm(x)|

)
is the p-value of dm(x) testing H0m : θm = x. As tν is normal in the limit of large ν, an
approximate p-value for large nm is given by

pm(x) = P
(
|z| ≥ |dm(x)|) = 2P (z ≤ −|dm(x)|

)
where z ∼ N(0, 1). This converts the standardized differences d1(x), . . . , dM(x) into M
p-values p(x) = (p1(x), . . . , pM(x))T which can be pooled using chi (p(x);κ) to test the
simultaneous hypothesis

H0 = ∩Mm=1H0m

and evaluate the overall evidence that x = θ1 = · · · = θM = θ.

To establish a region of plausible θ values, a sequence of x values can be proposed
and used to generate a sequence of chi (p(x);κ) values in this manner. Those x where
chi (p(x);κ) > a for a threshold a ∈ (0, 1) define a set in which chi (p(x);κ) fails to reject
H0 at level a. Within this set, there is not enough evidence to reject any individual H0k

and so all θ̂k agree on the plausibility of x = θ. Therefore define the evidential region for
threshold a to be the set

Ea = {x : chi (p(x);κ) > a} (7.2)

and take the x value maximizing chi (p(x);κ) as a point estimate of θ, as it gives the
weakest evidence against H0 as measured by chi (p(x);κ). Call this point estimate the
evidence-minimizing estimate (EME) of θ defined as

θ̂(E) = argmax
x∈R

chi (p(x);κ) . (7.3)
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While this derivation took a particular choice of dm(x) ∼ tnm−1, any function which admits

p-values based on θ̂1, . . . , θ̂M and x can be used in this way to define an evidential region.
If Ea is convex, its boundaries are given by the minimum and maximum value of Ea.

It is possible that maxx∈R chi (p;κ) ≤ a, in which case Ea is the empty set denoted
∅ and there are no x which all studies agree are plausible for x = θ = θ1 = · · · = θM at
a. The corresponding conclusion is that θ1, . . . , θM are not all equal and so homogeneity
cannot be assumed. Evidential intervals therefore simultaneously perform an implicit test
of homogeneity during their construction.

7.3 Choosing a centrality parameter

Expanding Equation (7.3) gives

θ̂(E) = argmax
x∈R

[
1− Fχ

(
M∑

m=1

F−1
χ

(
1− pm(x);κ

)
;Mκ

)]

and Equation (7.2) gives

Ea =

{
x : 1− Fχ

(
M∑

m=1

Fχ

(
1− pm(x);κ

)
;Mκ

)
≥ a

}
.

The mechanics of these expressions are dictated by the choice of κ, which determines
the impact of individual p-values, and pm(x) = f(|dm(x)|) where f gives the p-value of
an observed standardized difference. For any discrepancy measure |dm(x)|, such as the
standardized difference, larger values provide stronger evidence against the null hypothesis
and a value of zero indicates perfect agreement. Therefore f(·) is monotonically decreasing
function with a maximum of pm(x) = f(|dm(x)|) = 1 at |dm(x)| = 0.

To evaluate the choice of κ, recall from Section 4.5.3 that the centrality quotient of
chi (p;κ) increases in the centrality parameter κ: the larger the value of κ the less any
individual p-value affects the pooled p-value. When κ ≈ 0, chi (p;κ) is a non-decreasing
function of the minimum of p alone while κ → ∞ gives a chi (p;κ) which is only weakly

affected by the minimum. As the θ̂m farthest from x give the largest discrepancy measures
and therefore the smallest p-values, this suggests the value of chi (p(x);κ) will be dominated

by the most distant θ̂m from x when κ ≈ 0 and will largely ignore these distant θ̂m when
κ is large.
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On the other hand, as x approaches θ̂m, pm(x)→ 1 for each m ∈ {1, . . . ,M}. When κ
is large Fχ(x;κ) ≈ Φ(x), the standard normal CDF, and chi (p(x);κ) ≈ Sto(p(x)) which
gives

lim
x→θ̂m

F−1
χ (1− pm(x)) ≈ lim

pm(x)→1
Φ−1(1− pm(x)) = Φ−1(0) = −∞,

and implies

lim
x→θ̂m

chi (p(x);κ) ≈ 1− lim
pm(x)→1

Φ

(
1√
M

∑
i ̸=m

Φ−1(1− pi(x)) +
1√
M

Φ−1(1− pm(x))

)
= 1− Φ(−∞) = 1

whenever x = θ̂m for every m ∈ {1, . . . ,M}. This suggests spikes in chi (p(x);κ) at each

θ̂m when κ is large and that Sto(p(x)) will not have a unique maximum value of θ̂(E).
Indeed, it may produce evidential regions which are not convex for certain choices of a.

Such spikes are avoided when κ ≈ 0, in which case chi (p(x);κ) ≈ Tip(p(x)) ignores

the single large p-value that occurs whenever x = θ̂m. This is also an appealing choice intu-
itively, as it constructs an EME and evidential interval that bound the strongest evidence
against H0 by a. In this case

θ̂(E) ≈ argmax
x∈R

Tip(p(x)) = argmax
x∈R

p(1)(x)

The value of x which maximizes p(1)(x) for a discrepancy measure dm(x) is the value of x
which minimizes |d(M)(x)|, so

argmax
x∈R

p(1)(x) = argmin
x∈R

|d(M)(x)| = argmin
x∈R

max
m∈{1,...,M}

|θ̂m − x|
sm

.

The x which satisfies this expression must be a value within the range of θ̂1, . . . , θ̂M . To
see this, first suppose x is outside the range of {θ̂1, . . . , θ̂K}. Then note that increasing or
decreasing x to move closer to the estimates will simultaneously decrease all dm(x) and so
also decrease their maximum. Therefore, the value of x which minimizes |d(M)(x)| must lie
within the range of study means. As it is an internal point, it will be determined by only
the largest value and smallest values of θ̂m/skm.

Let l be the index in {1, . . . ,M} of the minimum of θ̂1/s1, . . . , θ̂M/sM and u that of
the maximum. Then either |dl(x)| or |du(x)| will be the maximum of |d1(x)|, . . . , |dM(x)|
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for any internal point x. To simultaneously minimize these discrepancies, the EME must
satisfy ∣∣dl(θ̂(E)

)∣∣ = ∣∣du(θ̂(E)
)∣∣ =⇒ θ̂(E)

sl
− θ̂l

sl
=

θ̂u
su
− θ̂(E)

su

to give

θ̂(E) =
θ̂us

−1
u + θ̂ls

−1
l

s−1
u + s−1

l

which is similar to θ̂ of Equation (7.1) but considers only the most extreme estimates
and uses estimated standard deviations instead of estimated variances. The evidential
intervals and EME for small κ are therefore expected to follow the centre of the range of
θ̂1/s1, . . . , θ̂M/sM , generating an internal interval closer to whichever of θ̂l and θ̂u has the
smaller estimated variance.

Finally, a moderate κ value can be considered with chi (p; 2) = Fis(p(x)), or

chi (p(x); 2) = 1− Fχ

(
−2

M∑
m=1

ln pm(x); 2M

)

as F−1
χ (1− p; 2) = −2 ln p. Not only is this κ interesting because it corresponds to Fisher’s

method, but as Fχ is one-to-one the EME is given by

argmax
x∈R

[
1− Fχ

(
−2

M∑
m=1

ln pm(x); 2M

)]
= argmax

x∈R

M∑
m=1

ln pm(x) = argmax
x∈R

M∏
m=1

pm(x).

The evidential estimate when κ = 2 thereby maximizes the geometric mean of p1(x), . . . , pM(x)
and Ea defines a set where the geometric mean of p1(x), . . . , pM(x) is greater than

− exp
[(
F−1
χ (1− a)

)1/M]
/2.

The behaviour of this function is not clear in advance. The spikes at each estimate and
tendency to chase the centre of the range are straightforward to show for large and small
κ respectively, but the shape and location of moderate κ are less clear.

To gain intuition about the behaviour of Ea and θ̂(E) for these less obvious cases, curves
of chi (p(x);κ) by x for different values of κ and patterns of observed study estimates

θ̂1, . . . , θ̂M can be inspected. In each of the following examples, eight study means and
their variances are chosen deliberately to illustrate the behaviour of Ea and θ̂(E) for three
κ which span the range of κ values, specifically κ = 10−3.5 ≈ 0.0003, 100.3 ≈ 2, and
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103.5 ≈ 3162. First, consider symmetric patterns about the mean of estimates shown in
the matrix of plots in Figure 7.1.

Each subplot in the matrix displays curves of chi (p(x);κ) for a range of x values overtop

vertical gray lines at each θ̂m and a thicker vertical gray line at θ̂ computed using Equation
(7.1). A horizontal dashed line at a = 0.05 serves as an example threshold illustrating how
the curves determine evidential intervals: Ea is defined by the region where the curve is
above the threshold. Below the plot of curves, approximate 95% confidence intervals are
added to each individual estimate at staggered heights so all intervals are visible. Finally,
a point at θ̂ is added below these intervals along with a black line giving its 95% confidence
interval.

So, for example, the plot in the top right shows three coloured curves symmetric about
0. The green curve displays chi (p(x); 10−3.5), the orange curve displays chi (p(x); 2), and
the purple curve displays chi (p(x); 103.5). As expected, the purple curve spikes at each of
the grey lines indicating individual estimates and the green curve peaks at 0, the centre of
the range of estimates. The orange curve displays neither of these tendencies, and instead
smoothly and symmetrically increases above the threshold in the centre of the range. All
three methods produce similar evidential intervals for this plot.

Looking below the curves in this subplot, the individual estimates and their 95% con-
fidence intervals can be inspected by viewing the horizontal grey lines. The estimates are
symmetric about zero and have identical variance, with a greater concentration near zero
than elsewhere. Many of the individual confidence intervals overlap, though there is no
region where all overlap. The curves of chi (p(x);κ) are larger when more of the intervals
overlap and smaller when fewer overlap, demonstrating the connection between individual
assessments of plausibility and the pooled evidential estimate. Looking lower still, a point
and a vertical line are plotted at θ̂ and its associated 95% confidence interval is drawn
with a horizontal black line. In this case, the evidential regions at a = 0.05 are intervals
of similar width that nearly match the 95% confidence interval about θ̂ for every κ.

For the leftmost subplot in the second row, the same pattern of estimates is displayed
again but the identical variance of every estimate is smaller, which can be seen immediately
by comparing the individual confidence intervals below the plot of curves. By decreasing
the width of the intervals, their overlap is reduced and the value of chi (p(x);κ) decreases
at all x for every κ. For the threshold plotted, this leads to Ea = ∅ for every κ.
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Figure 7.1: Canonical examples of θ̂m symmetrically located about the centre of their
range.

168



In the third row the variance is no longer constant for every estimate. Rather, the
leftmost estimate has twice the variance of the estimates in the middle and the rightmost
estimate has half their variance. This both lowers chi (p(x);κ) by reducing the overlap
of intervals and pulls the maximum of each curve to the right, towards the estimate with
smaller variance. The shift is particularly dramatic for κ = 10−3.5, which has a maximum
nearly three quarters of the range above the leftmost estimate, rather than perfectly centred
as before. Though the shape of chi (p(x); 103.5) is distorted towards this estimate, its
location and peak are still nearly at zero. The moderate κ = 2 seems to attempt a balance
of these two extreme κ and peaks somewhere between them at a lower value. It matches θ̂
and its confidence interval most closely, while the large and small κ form intervals almost
entirely above and below θ̂.

In the second column, the variance patterns in each row are the same as are the left-
and rightmost estimates, but the internal estimates are now spread evenly across the range
of estimates, leading to less central overlap in their confidence intervals. This does not
impact chi (p(x); 10−3.5) at all, as it only considers the most extreme estimates and so has
curves identical to those in the first column. In comparison, the curves for κ = 103.5 and
2 are lower for the evenly spaced estimates than the centrally concentrated pattern. By
decreasing the concentration of estimates, the average p-value in the central overlapping
region is reduced and so these estimates with moderate and large centrality quotients give
a smaller pooled p-value. The confidence intervals around θ̂ are unchanged, as the weighted
mean of the evenly spaced pattern is identical to the centrally concentrated one.

Finally, the third column displays the same progression of variances with all estimates
highly concentrated near their centre so their individual confidence intervals nearly com-
pletely overlap. This high concentration of estimates results in chi (p(x);κ) ≈ 1 near the
centre of the estimates for all κ, and creates evidential intervals which extend beyond the
range of estimates. The width of these intervals decreases as the variances decrease, and all
intervals are pulled towards the extreme estimate with the smallest variance. The abrupt
step of the curve to one observed when κ = 10−3.5 is a result of limits in the computation
of the corresponding χ2 quantiles.

Another informative setting is asymmetric, where one or two estimates disagree with
the others. Figure 7.2 displays a matrix of subplots similar to Figure 7.1 where the estimate
values are constant in each column and the variance values are constant in each row. While
the previous case highlighted the difference between symmetric and asymmetric patterns,
these explore increasing distances between a single estimate and the others by decreasing
the smallest estimate in successive rows while the others remain constant. As before, the
estimates in the first and second row have equal variances with the second row having the
smaller variance of the two. In the final row, the leftmost estimate has a smaller variance
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than the others while the rightmost estimate has a larger variance.

In these cases, the difference between small and large κ choices is stark. Consider the
first subplot in the first row, where the evidential interval for κ = 10−3.5 is highest in the
centre of the range of estimates despite the high concentration of estimates on the right. In
contrast, the curve for κ = 103.5 ignores the smallest estimate and produces an evidential
region around the cluster of other estimates, suggesting robustness to the single dissenting
estimate. Attempting to balance these two inconsistent patterns of evidence, the moderate
κ = 2 has a lower level than either extreme κ and a location somewhere between them,
though still favouring the cluster of estimates.

Moving across the first row, observe that the heights of the curves for all κ are reduced as
the dissenting estimate moves away from the others. This reduction is least consequential
for κ = 103.5, which still produces an evidential interval for the farthest case when the
others are well below the example threshold of 0.05. Comparing subplots down the rows
shows that reducing the variance of the estimates, in particular the smallest estimate, has
a similar impact.
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Figure 7.2: Canonical examples where most values of θ̂m are concentrated on the upper
end of their range.
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A final illustrative case adds identical off-centre estimates between two fixed extreme
estimates, shown in Figure 7.3. As expected, κ = 103.5 and 2 both produce chi (p(x);κ)
curves which are largest around the repeated internal estimates while small κ = 10−3.5 is
largest in the centre of the range no matter the number of repeated estimates. Though
the location of this maximum doesn’t move, the curve for κ = 10−3.5 still produces a
non-empty evidential interval when M grows large enough, suggesting the implicit test of
homogeneity is useful even when the chosen κ does not follow the pattern of evidence.
When there are enough measurements in agreement, chi (p(x);κ) will ignore disagreement
by one observation for any κ.

(a) (b) (c)

Figure 7.3: Canonical examples demonstrating the impact of adding (a) 0, (b) 10, or (c) 25
study estimates at a non-central point between two fixed estimates. While the confidence
intervals decrease in width for every additional mean, the evidential intervals widen.

Figure 7.3 also demonstrates the different behaviour of evidential intervals and confi-
dence intervals when θ̂1 = θ̂2 = · · · = θ̂M . As the variance of the confidence interval is
estimated by

1∑M
m=1 s

−2
,

the width of a confidence interval always decreases whenM increases, provided all estimates
have finite variance. For any choice of κ and pm(x), however, adding a new mean does not

necessarily decrease the size of evidential regions. Indeed, in the case where θ̂1 = · · · =
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θ̂M = y and s1 = · · · = sM = s the width of evidential intervals actually increases in M .1

This behaviour is understood by considering the level of central rejection for chi (p(x);κ).

Recall Equation (4.12), which expresses the central rejection level for the χ2 pooled
p-value as

pc = 1− Fχ

(
1

M
F−1
χ (1− α;Mκ);κ

)
→ 1− Fχ (κ;κ)

as M → ∞. This limit implies a harsh rejection boundary at pc = 1 − Fχ(κ;κ) for large
M such that

chi
(
(p, . . . , p)T;κ

)
=


1 when p > 1− Fχ(κ;κ)

1/2 when p = 1− Fχ(κ;κ)

0 when p < 1− Fχ(κ;κ).

In meta-analysis, this creates an asymptotic evidential interval based on Fχ(;κ) which does
not depend on the threshold a, and within which chi (p(x);κ) = 1. The bounds of this
interval will be the two values of x for which pm(x) = 1− Fχ(κ;κ), that is where

P

(
|x− θ̃m|

s
<
|x− y|

s

)
= Fχ(κ;κ)

for m = 1, . . . ,M . As M increases, the evidential intervals begin to approach a piecewise
constant function that is one within these bounds and zero outside of them. Effectively, the
method does not distinguish between any of the values within this range of the repeated
study estimates, and the only way to decrease the range is to decrease the variance of the
corresponding estimators.

This behaviour seems counter-intuitive; such close agreement of many estimates sug-
gests that the global parameter has been found. Indeed, that is the conclusion supported
by the decreasing width of the confidence intervals as more estimates are added. That
evidential intervals behave so differently in this case is instructive.

Recall the observation from Figure 7.1 that the curves of chi (p(x);κ) are highest in
regions where multiple 95% confidence intervals for individual estimates overlap. This is
a visual representation of the way these curves are constructed: each x is individually
compared to each estimate for plausibility using pm(x) before a pooling function combines
these individual votes of plausibility. When numerous estimates perfectly coincide, all agree
on the plausibility of nearby values and pooling functions which are based on the majority

1Note Ea defines an interval for any a and κ in this case because the only localized spike in chi (p(x);κ)
occurs at x = y and chi (p(x);κ) decreases monotonically as |x− y| increases.
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vote, such as chi (p(x); 103.5), therefore take large values for these nearby points. Only

decreasing the individual variances so that pm(x) decreases faster in |θ̂m − x| shortens the
plausible regions. Adding more identical estimates only increases the number of concurring
votes for the plausibility of nearby values.

All of this suggests that centrality is a useful concept when choosing κ to produce
evidential intervals in meta-analysis. Large values of κ with large centrality quotients
tend to produce evidential intervals which follow groups of tightly clustered estimates,
often ignoring any extreme estimates that disagree. Just as an individual p-value is not
generally enough to reject when using large κ to pool tests, an individual estimate barely
affects chi (p(x);κ) for large κ when combining estimates in meta-analysis. Small κ display
the opposite tendency, ignoring any central patterns of estimates in favour of a region that
balances the evidence against the most extreme estimates. A small centrality parameter
suggests that only the smallest p-values matter in testing, and similarly that only the most
extreme estimates matter in meta-analysis. Moderate κ present something of a balance,
which often leads them to reject homogeneity when the extremes and central patterns are
not consistent even though larger or smaller κ fail to reject.

For any κ, evidential regions provide richer information than confidence intervals. Pri-
marily, this is due to the implicit test of homogeneity. While a confidence interval can
always be constructed and does not have a built in feature that communicates when the
interval may not be meaningful, the curve of chi (p(x);κ) provides information about both
the location of a pooled estimate and consistency of all individual estimates. By changing
κ, consistency can be evaluated along a range from the majority vote for large κ to only
the most extreme votes for small κ. A secondary consequence of this is a more informative
behaviour of evidential regions about the pattern of estimates than confidence intervals.
Large κ produce evidential regions that chase clusters and ignore single dissenting esti-
mates while small κ consider only the extreme estimates and so ignore clusters entirely.
Confidence intervals cannot be so easily tuned to create such a broad range of behaviours.

7.4 Simulating coverage and rejection probabilities

Once κ is chosen, with the above results suggesting a moderate κ to balance the behaviour
of the extremes, the construction of Ea requires the choice of a threshold a. Changing
a changes both α(a) = P (Ea = ∅), the probability of rejecting H0, and the evidential
intervals created when Ea ̸= ∅. Of equal interest to testing H0 and thus homogeneity
is the coverage probability π(a) = P (θ ∈ Ea|Ea ̸= ∅). The former justifies inference by
indicating whether a common θ is plausible while the latter indicates our confidence that
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Ea includes the common θ should it exist. Both pieces of information are contained in Ea

and so both are controlled by the threshold a. To investigate the behaviour of α(a) and
π(a), a simulation study follows.

Two generative models are commonly used in meta-analysis: the fixed-effect model
and random-effects model of study means (Normand, 1999; Sinha et al., 2011). Assuming
normality, the fixed-effect model asserts

θ̃m ∼ N(θ, σ2
m)

where σ2
m > 0 is the variance of θ̃m arising from random sampling of the population. The

random-effects model takes
θ̃m|θm ∼ N(θm, σ

2
m)

where
θm|θ ∼ N(θ, τ 2)

for some specified τ > 0, where σ2
m > 0 again represents the variation in θ̃m arising from

random sampling. If τ > 0, then P (θ1 = · · · = θM) = 0, and so homogeneity is violated.
The magnitude of this violation increases in τ , very large τ will tend to produce study
means far apart while τ ≈ 0 will generate θ1 ≈ · · · ≈ θM and so behaves similarly to
the fixed-effect case. Indeed, the fixed-effect model is a special case of the random-effects
model with the parameter choice τ = 0.

7.4.1 Fixed-effect with equal variances

As Ea incorporates a test of θ1 = · · · = θM = θ in its construction and this assump-
tion is explicitly violated under random-effects with τ > 0, the coverage and rejection
probabilities were first computed assuming the fixed-effect model. Explicitly, 240 study
observations are generated independently from a N(0, 4) distribution split into 8 groups of

n = 30 observations each. Within each group, the observed mean θ̂m and mean standard
deviation s2m are computed and recorded. This was repeated 1000 times. For each repe-

tition, the t29 distribution is then used to compute pm(x) from dm(x) = x−θ̂m
sm

and these
are pooled using chi (p(x);κ) for every lnκ ∈ {−8,−7.9,−7.8, . . . , 8} over x from −1.5
to 1.5 at increments of 0.01. For each κ, evidential intervals Ea are constructed for every
threshold a ∈ {0.01, 0.02, . . . , 0.2}, a point estimate θ̂(E) is determined by the location of
the maximum of chi (p(x);κ), and the inclusion of the true mean of 0 in Ea is determined.

Consistent with the different behaviours seen in Section 7.3, the choice of κ seems
consequential to the variability of θ̂(E). Figure 7.4(a) displays the median, mean, and
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(a) (b)

Figure 7.4: (a) The median (black line), mean (dashed red line), and central quantiles

(labelled polygons) of θ̂(E) compared with the central 0.5 and 0.95 quantiles of θ̂ (dotted

black lines). The region near 1 in κ has minimal variance in θ̂(E) and a very similar

distribution to θ̂, as shown in (b) for κ = 1.

central quantiles of θ̂(E) across all values of κ and compares them with the central quantiles
of θ̂ from Equation (7.1) displayed by dotted lines. With the exception of very small

values of κ, θ̂(E) is unbiased and symmetrically distributed2 though the variation of θ̂(E)

changes considerably in κ. The local spikes in chi (p(x);κ) whenever x = θ̂m for some
m ∈ {1, . . . ,M} for large κ make the choice of a maximum dependent on which sampled x
is closest to an observed estimate. Similarly, the increased variance for small κ can be seen
as a result of chi (p(x);κ) considering only the largest and smallest standardized distances,

meaning θ̂(E) is effectively based on only two observations. Moderate values in the range
[1/2, 2] have neither of these quirks and so appear to minimize the variance of θ̂(E). They

also produce estimates which are nearly identical to θ̂, seen in Figure 7.4(b). This latter
property is not necessarily desirable in principle, but is an interesting feature.

Choosing κ = 2 due to its generally symmetric and smooth curves across all settings
in Figures 7.1 and 7.2 and because it uses the classical Fis(p) to construct evidential

2The negative bias in these cases is an artifact of computation for extremely small degrees of freedom
in the χ2 distribution.

176



regions, all 1000 instances of Ea were plotted as stacked lines for a = 0.05 and a = 0.01
in Figures 7.5(a) and (b).3 These plots order the intervals by their left bounds as a visual
aid and plot empty intervals as space at the top of each stack, allowing the reader to
simultaneously observe α(a) and every evidential interval. For a more complete depiction
of the relationship between α and a, Figure 7.5(c) plots the two across all thresholds a
with a black reference line added at α(a) = a.

(a) (b) (c)

Figure 7.5: Ea for κ = 2 under H0 when (a) a = 0.05 and (b) a = 0.1. The space at the
top of the vertical axis without intervals corresponds to the cases where Ea = ∅, the black
dashed horizontal line indicates 1−a. In all cases α < a, indicating the threshold a defines
a conservative test with a true level less than the chosen threshold a, shown in more detail
in (c).

At every threshold a, α(a) < a, indicating that the rejection rule chi (p(x); 2) ≤ a
swept over all x is a conservative test of H0 at level a. To estimate α(a) based on these
simulations, a polynomial is fit using least squares with stepwise selection excluding the
intercept (as P (chi (p(x); 2) < 0) = 0) to the observed a, α(a) pairs. This gives the
quadratic

α(a) = 0.514a+ 0.891a2

with a coefficient of determination R2 = 0.998 and highly significant individual coefficients
with p-values both less than 0.000035. The fitted line is shown in red on Figure 7.5(c).

3Though all evidential regions are intervals for κ = 2, this would not necessarily be the case for larger
κ. As demonstrated earlier, non-convex evidential regions are possible for large κ.
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Figure 7.6: The 95% confidence intervals of θ̂, which tend to be shorter and less variable
in length than Ea.

Another insight of Figure 7.5 is that evidential intervals, where they exist, have more
variable widths than the corresponding confidence intervals of θ̂ displayed in Figure 7.6.
The evidential intervals have widths which are much less regular with a tendency to be
shorter when the left bound is larger, compared to the relatively consistent widths inde-
pendent of location for the confidence intervals. Figure 7.7 makes this clearer by plotting
the widths of 95% confidence intervals against evidential intervals with a = 0.05 for each of
the 1000 simulated data sets in a scatterplot. Marginal histograms are added to both mar-
gins with constant bin widths so that the marginal distributions can be compared directly
along with the joint distributions. Ea tends to produce much wider intervals than the
confidence interval most of the time, and these widths tend to be more variable. The range
of the confidence interval widths is roughly 0.15 compared to the range of 1 for evidential
intervals. Despite this, the widths seem related with larger confidence intervals associated
with larger evidential intervals, likely because both increase as any of s1, . . . , sM increase.

The examples in Section 7.3 give some insight into this observation. It was noted there
that the pattern of θ̂1, . . . , θ̂M affects the size of Ea, with close agreement of estimates
(relative to their respective variances) leading to larger evidential regions and estimates
far from each other (relative to their variances) leading to smaller evidential regions. Figure
7.8 plots three particular simulations of the 1000 that match these earlier behaviours. As
before, the width of the confidence interval does not change greatly for different patterns of
estimates while chi (p(x); 2) produces a wide interval in Figure 7.8(c) when the estimates
are tightly clustered, a very narrow interval in Figure 7.8(b) when two estimates seem to
disagree with the others, and a moderate interval when the estimates do not display either
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(a) (b)

Figure 7.7: 95% confidence interval widths against evidential interval widths when a = 0.05
for all 1000 simulated meta-analyses. (a) uses equal axis ranges while (b) restricts the range
horizontally to make details visible. The widths of evidential intervals vary more than
confidence intervals and are wider generally, though a positive relationship exists between
the two.

pattern as in Figure 7.8(a). These examples correspond to the red square, the red triangle,
and the red circle in Figure 7.7 respectively.

The behaviour of these intervals is the same in this simulated case as in the constructed
ones. When all means are close together relative to their variances, values of x outside of
the range of means will still produce pm(x) values large enough to be considered plausible
by Ea for all m ∈ {1, . . . ,M}. The opposite is true when study means are spread widely
relative to their variances, in which case the region where chi (p(x);κ) ≥ a may be very

small and so Ea will be shorter than the confidence interval around θ̂.

Though the behaviour of chi (p(x); 2) contains information about the distribution of
study estimates, the resulting variability in the length of Ea means the coverage probability
π(a) = P (θ ∈ Ea|Ea ̸= ∅) is not obvious. The inclusion of θ = 0 in each of the 1000 Ea

for each κ is therefore determined and plotted by κ in Figures 7.9(a) and (b) for a = 0.05
and 0.1. A vertical line at κ = 2 provides reference, as well as horizontal lines at 1 − a
and 1 − a/2. Grey polygons plotted around the line give approximate 95% confidence
intervals for each coverage probability based on a normal approximation to the binomial
distribution. Figure 7.9(c) plots the observed π by a when κ = 2.
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(a) (b) (c)

Figure 7.8: Plots showing the pattern of study estimates when the ratio of widths of the
evidential interval with a = 0.05 for κ = 2 to 95% confidence intervals (a) is nearly one,
(b) is the smallest observed over 1000 repetitions, and (c) is the largest observed over 1000
repetitions. The patterns here match those of the constructed examples earlier.

A consistent pattern in π and κ is observed across different thresholds a. When κ ≈ 0,
π(a) is slightly less than 1− a, it then increases to a maximum above 1− a/2 when κ ≈ 1
before decreasing to values greater than 1− a for κ ≈ 10 and increasing again as κ grows
larger. As 1 − π(a) > a for all but small κ, it seems the evidential regions produced
are conservative for all thresholds a ∈ {0.01, 0.02, . . . , 0.2}. More precisely, 1 − π(a) was
estimated using the observed a, 1 − π(a) pairs using stepwise linear regression without
an intercept, as a = 0 generates the evidential interval E0 = R which implies π = 1 by
definition. The fitted model is

π(a) = 1− 0.342a− 0.588a2

with R2 = 0.998 and individual coefficients with p-values both less than 0.00016. A red
line displays the model on Figure 7.9(c).

In the case of the fixed-effect model with equal estimator variances, it seems Ea produces
regions and an implicit test homogeneity which are both conservative at level a. That is to
say, the coverage probability of Ea is greater than or equal to a and the probability that
falsely rejects the null hypothesis is less than or equal to a. For both, inference is supported
with at least a confidence. Just as in the constructed case, the intervals produced contain
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(a) (b) (c)

Figure 7.9: Coverage probabilities π of Ea when κ = 2 for studies with equal estimator
variance when (a) a = 0.05 (b) a = 0.1. Black horizontal dashed lines indicate 1− a while
red horizontal dashed lines indicate 1− a/2. (c) plots 1 - π(a) by a when κ = 2. Coverage
probabilities increase in κ until κ ≈ 1, after which they decrease slightly, suggesting these
most stable estimates also uniquely maximize the coverage probability.

information about the overlap of individual estimate confidence intervals, and so their
widths change considerably in the concentration of estimates.

7.4.2 Fixed-effect with unequal variances

Commonly s21 ̸= . . . ̸= s2M due to differences in study sample size or design. To address
this case, the fixed-effect equal variance simulation was repeated with unbalanced study
sizes to investigate the how unequal variances of θ̃1, . . . , θ̃M affect evidential intervals. As
before, each repetition in this second simulation study generates 240 observations from a
N(0, 4) distribution and divides them into 8 groups, but it does not assume a fixed sample
size for the studies. Instead, 240 labels are randomly sampled with replacement from a set
with repeated entries, explicitly {1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8}, and
assigned to each observation in order. This creates a wide variety of study sizes n1, . . . , nM

summarized in the histogram of Figure 7.10. Group sizes ranged from 7 to 81 with a large
peak in frequency near 25 and and a smaller one near 60.

Once groups were assigned, the analysis for each of 1000 simulations was identical to
the case of equal variances. Group means θ̂1, . . . , θ̂M and mean variances s1, . . . , sM were
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Figure 7.10: Histogram of the frequency of different group sizes over 1000 repeated samples.

computed and used to generate pm(x) based on dm(x) and the tnm−1 distribution, and these
were pooled for a range of κ values. Evidential intervals were constructed for a range of
thresholds a. All parameter choices were the same as in the case of equal variances.

As before, the first investigation was of the median, mean, and central quantiles of θ̂(E)

across all values of κ, displayed in Figure 7.11. Though it is still unbiased, θ̂(E) displays
greater variation for small κ in this case compared to the case of equal variance. The EME
for small κ values is less variable than large κ in the case of equal study variances but is
more variable for this simulation with unequal and random variances. The constructed
examples of Section 7.3 shed some light on this pattern. When κ is small its maximum
is pulled towards whichever of the two bounding estimates has smaller variance, and if
the variances of these bounding estimates are not fixed then the extra variation in these
variances translates to a more variable EME for small κ. In contrast, large κ values tend to
chase the cluster of estimates nearest to each other, which is less affected by the increased
variation of individual study means.

Despite this, κ values between [1/2, 2] are still the most stable and produce EMEs with

very similar values to θ̂ as seen in Figure 7.11(b). Tangentially, this suggests that in both

the equal variance and unequal variance settings, θ̂ approximately minimizes

M∑
m=1

F−1
χ

(
1− 2Ft

(
−|x− θk|

sk
;nm − 1

)
; 1

)
over x ∈ R, where Ft(x; k) denotes the CDF of a tk random variable.
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(a) (b)

Figure 7.11: (a) The median (black line), mean (dashed red line), and central quantiles

(labelled polygons) of θ̂(E) compared with the central quantiles of θ̂ (dotted black lines).

The region near 1 in κ with minimal variance for θ̂(E) has a very similar distribution to θ̂,
as shown in (b) for κ = 1.

Focusing again on κ = 2 due to the stability of θ̂(E) for this κ and others near one in
both the equal and unequal variance settings, all 1000 Ea are displayed for κ = 2 when
a = 0.05 and 0.1 in Figures 7.12(a) and (b). These intervals look similar to the equal
variance case. They seem to have roughly the same variability in length and are again
conservative with α(a) < a, a pattern shown in more detail in Figure 7.12(c). Once again,
stepwise selection of parameters in linear regression is used to fit a polynomial without an
intercept to estimate α(a). The quadratic

α(a) = 0.515a+ 0.525a2

is selected with coefficient of determination R2 = 0.999 and individual coefficient p-values
both less than 0.00008. As before, the threshold a defines a conservative test at level a
against homogeneity, as it has a type I error less than a.

Comparing E0.05 to the 95% confidence intervals for the fixed-effect model with unequal
variances gives similar insight to the equal variance case. The evidential intervals and
confidence intervals have similar marginal distributions to the equal variance case and a
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(a) (b) (c)

Figure 7.12: Ea for κ = 2 under H0 for studies with unequal estimator variance when (a)
a = 0.05 and (b) a = 0.1. (c) displays α(a) when κ = 2, demonstrating the conservative
test at level a established by the threshold a.

similar joint distribution. The evidential intervals are generally wider and more variable
than the confidence intervals, and the two seem positively associated.

Figure 7.13: 95% confidence interval widths against evidential interval widths when a =
0.05 for all 1000 simulated meta-analyses with unequal variances. The pattern is the same
as for equal variances.

184



Finally, π(a) in the case of unequal variances is plotted by κ for several values of a
in Figure 7.14. The pattern observed across all a is nearly identical to the case of equal
variances: the coverage probability is lower for small κ, achieves a maximum above 1−a/2
for κ between 1/2 and 2, drops slightly around κ ≈ 10, and then increases to just less
than 1− a/2 for large κ. The observed inclusion probability is plotted by a when κ = 2 in
Figure 7.14(c), displaying a similar pattern to the equal variance case yet again.

(a) (b) (c)

Figure 7.14: Coverage probabilities π of Ea when κ = 2 for studies with unequal estimator
variance when (a) a = 0.05 (b) a = 0.1. Black horizontal dashed lines indicate 1− a while
red horizontal dashed lines indicate 1 − a/2. The pattern of π in κ is nearly identical to
the case of equal variances. (c) plots 1 - π(a) by a when κ = 2.

In contrast to the equal variance case, however, stepwise selection of a polynomial model
without an intercept for π(a) when variances are not equal chooses a linear model

π(a) = 1− 0.415a

with R2 = 0.996 and a coefficient p-value less than the floating point numerical precision
of R . Though it is once again conservative, this is different than the quadratic fit found
in the fixed variance case.

Generally, changing from equal variance in study means to unequal and random vari-
ances does not seem to change much about the behaviour of evidential intervals. All of the
same patterns observed for the equal variance case are repeated here. The only noteworthy
exception is the variability of the EME for small κ, which is higher in this case owing to
the increased variability of the standard deviations for the largest and smallest estimates.
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7.4.3 Random-effects

In contrast to these two examples of the fixed-effect model, which assume the hypothesis
of homogeneous estimates, H0 : θ1 = · · · = θM , the random-effects model takes

θ̃m|θm ∼ N(θm, σ
2
m)

with
θm|θ ∼ N(θ, τ 2)

for τ > 0, σ2
m > 0. This explicitly violates H0, as θM ∼ N(θ, τ 2) implies P (θk = θl) = 0

for all k ̸= l. Therefore, we expect Ea to produce empty intervals more frequently under
random-effects than the fixed-effect model where H0 is true. In the random-effects case,
the proportion of empty intervals produced is the power of Ea to detect violations of
homogeneity under this alternative.

To simulate the power of evidential intervals at detecting random-effects as a function
of τ , 8 study means θmi were generated independently and identically N(0, τ 2i ) for every
τi ∈ {0.1, 0.2, . . . , 1.9}. For the mth study mean under variance τi, 30 observations were
generated independently and identically following N(θmi, 4− τ 2i ) in order to keep the total
variance comparable to the fixed-effect cases already investigated. The construction of
evidential intervals proceeded by ignoring these known quantities and estimating θ̂mi and
its standard deviation from each group separately before pooling these for the same range
of κ values as in the fixed case (lnκ ∈ {−8,−7.9, . . . , 7.9, 8}) and thresholding these by
the same a (a ∈ {0.01, 0.02, . . . , 0.2}). This procedure was repeated for 1000 repetitions,
and the evidential intervals and EME were recorded for every case.

Figure 7.15 displays example evidential intervals for a = 0.05 when κ = 2 and τ = 1/
√
2.

As anticipated, these are empty much more frequently than in the fixed-effect case (Figure
7.5(a)). In a vast majority of repetitions, chi (p(x); 2) produces an empty evidential region
when the means are generated from a normal distribution with variance 1. When Ea ̸= ∅,
the resulting intervals are more variable and narrow than in the fixed case.

Not all κ values proved this powerful, however. Figure 7.16(a) displays filled contours of
the power surface of E0.05 as a function of τ 2/4 (the proportion of total variance explained
by τ) and κ. The power at detecting the random-effects model is generally high, when the
proportion of explained variance is only 0.2 the least powerful κ choices have a power of
nearly 0.8. The most powerful choices seem to be κ in the range [1/2, 2], with κ = 1 having
the greatest power only narrowly. Figure 7.16(b) compares the power curve of E0.05 for
κ = 2, the cross-section of the surface in Figure 7.16(a) at the black line, to the power of
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Figure 7.15: E0.05 when κ = 2 for the random effects case with τ = 1/
√
2. As expected,

the method detects the inhomogeneity in most repetitions, achieving a power of 0.86.

the classical test

X2 =
M∑

m=1

(θ̂m − θ̂)2

s2m
≥ χ∗

M−1(α(0.05)) ≈ χ∗
M−1(0.514a+ 0.891a2) = χ∗

M−1(0.028)

where χ∗
k(α) is the 1− α critical value for the χ2

k distribution. Though E0.05 derived from
chi (p(x); 2) does not attain the classical power in this setting, the two curves are quite
close. Choosing κ = 1 tells a similar story. The classical test is slightly more powerful in
this setting, but not by much.

7.5 Discussion

Given the observed reduction in the variance of the EME when κ is chosen in the interval
[1/2, 2] and the relatively high power of κ values in this range, it seems these κ values
should be preferred in the construction of Ea using chi (p(x);κ). These patterns were
nearly identical in the fixed-effect case both when all estimate variances were equal and
when they were not, and are all interpretable in light of the demonstrated behaviour of
chi (p(x);κ) for canonical examples. Moderate κ values in this range present a balance of
the tendency to chase clusters of estimates for large κ and the tendency to care only about
the bounding estimates for small κ.
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(a) (b)

Figure 7.16: (a) power of E0.05 by the portion of total variance explained by τ . Extreme
choices of κ which are very small or large have low power relative to κ values in the interval
[1/2, 2]. The power of E0.05 when κ = 2 is compared to the classical test of homogeneity
at level 0.514× 0.05 + 0.891× 0.052 = 0.028 in (b). The implicit test based on evidential
intervals is only slightly less powerful than the classical one.

The threshold a ∈ (0, 1) for κ values in this range additionally defines a conservative
test for homogeneity at level a and generates conservative 1 − a evidential intervals for θ
when homogeneity is true. In particular, if κ = 2 is chosen and a ≤ 0.05, the actual level of
the test for homogeneity is well-approximated by α(a) = a/2 and the coverage probability
π(a) is strictly greater than 1 − a/2. For small α and κ = 2, simulations suggest the
evidential interval E2α simultaneously tests H0 at level α and has coverage probability of
at least 1−α, therefore simultaneously controlling both the probability of false rejection of
H0 and the probability of excluding of the true mean at α. This pattern is observed under
simulation for both the case of equal variances and unequal variances in study estimators
when H0 is true.

Though it may just be a curiosity, there is a suggestive parallel between chi (p(x); 2)

and the likelihood ratio test. Define L(θ̂m|x) as the likelihood of obtaining an observed

study estimate of θ̂m given a true study parameter of x. The joint likelihood of the sample
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θ̂1, . . . , θ̂M is
M∏

m=1

L
(
θ̂m|x

)
under the assumption of independent and homogeneous studies. The log-likelihood of the
data is given by

ln
M∏

m=1

L(θ̂m|x) =
M∑
i=1

lnL(θ̂m|x),

and thresholding or maximizing this quantity is the basis of likelihood estimation. Recall

chi (p(x); 2) = 1− Fχ

(
−2

M∑
m=1

ln pm(x); 2M

)
(7.4)

as F−1
χ (1−p; 2) = −2 ln p. As Fχ is injective and monotonic, the threshold chi (p(x); 2) > a

is equivalent to some threshold
M∑
i=1

ln pm(x) > a′

for a′ that is a monotonic transformation of a. The quantities L(θ̂m|x) and pm(x) are
closely related, as

pm(x) = 1− c

∫ |θ̂m|

−|θ̂m|
L(t|x)dt

for a normalizing constant c such that c
∫∞
−∞ L(t|x)dt = 1. Though the specific thresholds

will be different, both of these use model-defined likelihood functions to generate a statistic
based on the sum of natural logarithms to make decisions about H0. Moreover, if pm(x) is

replaced by L(θ̂m|x) in Equation (7.4), the expression becomes the asymptotic p-value of
the log-likelihood ratio −2

∑M
m=1 lnLm(x) testing

H0 : θ1 = · · · = θM = x

against
HA : θm ̸= x for at least one m ∈ {1, . . . ,M},

so the substitution of this related quantity changes chi (p(x); 2) to the Neyman-Pearson
UMP test.

Both evidential estimates and likelihood estimates depend entirely on the model-defined
likelihood L(θ̂m|x), but approach measuring the plausibility of θ̂m given x differently. The
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likelihood takes the probability density of θ̂m directly while chi (p(x); 2) integrates the
density in the tails beyond the observed value, complicating analysis of the behaviour of
Ea in theory. Consider α(a) = P (Ea = ∅) and π(a) = P (θ ∈ Ea|Ea ̸= ∅), for example.
Evaluating

α(a) = P (Ea = ∅) = P

(
max
x∈R

chi (p(x); 2) < a

)
is not straightforward as it requires the distribution of

max
x∈R

{
1− Fχ

(
−2

M∑
m=1

ln

[
1− c

∫ |θ̃m|

−|θ̃m|
L(t|x)dt

]
; 2M

)}
. (7.5)

The coverage probability π(a) additionally requires evaluation of

1− Fχ

(
−2

M∑
m=1

ln

[
1− c

∫ |θ̃m|

−|θ̃m|
L(t|θ)dt

]
; 2M

)
conditioned on the distribution of the quantity in Equation (7.5). The results of the pre-
ceding simulations and the similar form of chi (p; 2) to the likelihood ratio support further
investigation of both expressions to better characterize evidential intervals to combine stud-
ies in meta-analysis. Though it is less powerful than the classical method for the case of
equal variances and random-effects, it may prove more powerful for other settings.

7.6 Recommendations

When using evidential intervals in practice, the preceding simulations suggest chi (p(x); 1)
or chi (p(x); 2) is prudent unless there is a compelling reason to choose otherwise. These
settings produce the least variable EME that balances the tendencies of larger and smaller
κ to ignore certain estimates. Large κ may be chosen if a small proportion of estimates
which disagree with the others and a pooled estimate ignoring these is desired. Small κ
are harder to justify, as they ignore all but the smallest and largest estimates.

If chi (p(x); 2) is chosen, simulations indicate that a threshold of a produces Ea which

have coverage probability π(a) ≥ a and tests θ̂1 = · · · = θ̂M at level α(a) ≤ a. To choose
a threshold when sample sizes are not equal, the polynomials α(a) = 0.515a + 0.525a2

and π(a) = 1 − 0.415a can be solved for a given a desired α(a) or π(a) if the estimates
are computed from samples of different size. Alternatively, a threshold can be chosen
in advance and these polynomials used to report the empirical coverage probability and
type I error rate. If sample sizes are not equal, the corresponding polynomials are instead
α(a) = 0.514a+ 0.891a2 and π(a) = 1− 0.342a− 0.588a2.
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7.7 Real data

The metadat package in R (White et al., 2022) contains several meta-analysis data sets
reporting statistical summaries of studies collected to address a common theme. One
such data set from Konstantopoulos (2011) addresses the performance of students in the
United States under modified school calendars. In contrast to the standard school calendar,
which gives students two months of holiday every summer, modified calendars maintain the
same number of instructional days but distribute vacation throughout the year rather than
concentrating it in July and August. The studies in Konstantopoulos (2011) all record the
standarized difference in mean performance on a common test given to students receiving a
modified schedule and others receiving a standard schedule in the same school. White et al.
(2022) provide these differences in means, their pooled standard errors, and the district of
each school in R, and Figure 7.17 displays the differences in means with intervals given by
their standard errors for each school organized and coloured by district.

Figure 7.17: Difference in mean performance between students on a modified calendar and
those on the standard calendar by district. Each point represents a different school within
each district. The range of points varies widely by district.

Immediately obvious is the strong impact of district on the observed mean differences.
Most districts form distinct clusters with overlapping intervals with the exception of the
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7th and 10th districts, which have mean differences spread over a wide range by school.
This has considerable impact on the evidential intervals for the data. Due to its good
performance in simulations, chi (p(x); 2) was applied to the entire data set in an attempt
to estimate Ea at a = 0.05 to produce an approximate 97.5% evidential interval and test
homogeneity at approximately 0.025. Sweeping x values from −2 to 2, no region gave
chi (p(x); 2) ≥ 0.05. Indeed, the maximum of 8.7× 10−83 at 0.04 provides strong evidence
against the hypothesis of homogeneity. Given the clear groups of performance by school
district in Figure 7.17, this is unsurprising.

Noting that the effects within the districts tend vary less than between them, however,
chi (p; 2) was used estimate θ̂(E) and Ea for each district separately and plot the resulting
evidential intervals at α = 0.05 in Figure 7.18. Even within districts, H0 is rejected in 5
instances which therefore produce no evidential regions at α = 0.05, though θ̂(E) still exists
and is recorded.

Figure 7.18: Difference in mean performance between students on a modified calendar and
those on the standard calendar by district with E0.05 and θ̂(E) plotted over them. “X”
points indicate θ̂(E) in districts where the implicit test in Ea rejected homogeneity within
the district.

The districts which produce evidential intervals are split evenly above and below zero,
and four of the six intervals include zero. These results are consistent with the statistics re-
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ported in Konstantopoulos (2011) by district. Though the original study reported a barely
significant positive effect for the the mean difference it is not clear this combined estimate
is appropriate. The largest positive mean differences have evidence of heterogeneity at
0.05 and the least variable evidential intervals and estimates all occur near zero and tend
to include zero in their evidential intervals and confidence intervals. In short, there is not
enough consistent evidence that the switch away from a summer vacation to year-round
schooling has an impact on student performance in general, though it may have impacts
locally.

7.8 Conclusions

The combination of study estimates by thresholding at a and maximizing chi (p(x);κ) over

a sequence of candidate x values to obtain Ea and θ̂(E) is a promising method for further
investigation. The EME θ̂(E) is unbiased and has variability similar to θ̂ for κ ∈ [1/2, 2].
Constructing an evidential region Ea for a κ in this range produces a region that implicitly
tests homogeneity conservatively at a, and produces a region with coverage probability
greater than 1 − a. This is despite having a width which changes considerably in the
pattern of study estimates, with clustered estimates relative to their standard deviations
giving wider regions and spread estimates giving narrower regions. All of this can be
understood by considering the set of x values which all estimates agree are plausible,
and considering how the choice of κ impacts which estimates are favoured and which
are relatively ignored. Small κ effectively only heed the smallest and largest estimates,
while large κ ignore extreme estimates in favour of large groups of close estimates. These
behaviours are exactly as expected given the corresponding centrality quotients.

Of course, these results do not show the evidential method to be optimal for any setting,
and have not analyzed the coverage probability of Ea or probability of rejecting H0 when
it is true. The simulations completed here are also incomplete, there are many other
settings under both the assumption of homogeneity and when it is violated than could be
investigated. Despite these limitations, the results obtained here are promising and suggest
further investgiations may give interesting results.

There are also obvious extensions to the simple idea presented here. Methods exist
to estimate and account for τ from θ̂1, . . . , θ̂K and s1, . . . , sK in order to estimate θ, such
as restricted maximum likelihood and Bayesian estimation (Normand, 1999; Sinha et al.,
2011). Though a cautious approach calls for more data or more detailed analysis of each
study when homogeneity is rejected, the computation of pm(x) could be modified to account
for τ by computing it based on a more complex likelihood before sweeping x. Any model
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which admits p-values for all x can be used with the preceding framework to construct Ea

and θ̂(E).
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Chapter 8

Conclusions

This thesis has addressed several aspects of the problem of detecting associations in large
data sets. A new measure based on recursive binary splits was established and explored
as a way to measure association. It was proven that splits only need to be considered
at the coordinates of observed points to produce a binning maximizing scores based on
the χ2 and mutual information. Simulation studies characterized the null distribution of
the χ2 statistic on bins produced by the algorithm under different splitting regimes and
demonstrated its power at detecting patterns in both constructed and real data. Random
splitting was shown to be as powerful at detecting a range of patterns as maximized
splitting, but with a null distribution conservatively approximated by the appropriate
χ2 distribution if bin size is limited. To detect association, random splitting therefore
provides conservative p-values and a conservative test without any simulation. Maximized
splitting, in contrast, requires simulation to model its null distribution, but produces final
bins which can be plotted to effectively visualize a pairwise relationship. The recursive
binning algorithm was implemented in the R package AssocBin, providing easy access to
this promising method of analyzing pairwise dependence.

A framework to analyze pooled p-values was then developed. Central and marginal
rejection represent two meaningful patterns of significance that arise in collections of M p-
values. After defining both quantities and demonstrating their relevance to the behaviour
of the uniformly most powerful test for a restricted beta family, the central rejection level
was proven to always be greater than or equal to the marginal rejection level. The centrality
quotient capitalizes on this proof to define a measure between 0 and 1 that communicates
whether marginal or central rejection is favoured by a pooling function. It was proven
that the centrality quotient of the pooled p-value based on quantiles of the χ2

κ distribution,
chi (p;κ), can be controlled by changing the degrees of freedom κ, and expressions for
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the centrality quotient of chi (p;κ) were derived. Simulation studies demonstrated the
robustness of chi (p;κ) to mis-specification of its parameters compared to the uniformly
most powerful pooled p-value. A link between the pattern of significance and the degrees
of freedom that minimize chi (p;κ) was leveraged to generate a map that conveys a region
of most plausible alternative hypotheses given a curve generated by applying the pooled
p-value to a sample for different degrees of freedom. Code to compute central rejection,
marginal rejection, the χ2 poooled p-value, the uniformly most powerful pooled p-value,
and generate these maps was combined into the R package PoolBal to facilitate its use.

The thesis next took a deeper dive into the important motivating example of genome-
wide association studies. A mathematical model was derived from first principles and then
used to derive expressions for the correlation between genetic markers and these were com-
pared to real data using a custom plot matrix, the correlation test plot. This plot indicated
a good fit to the observed data. The full model was implemented in the toyGenomeGen

package to fill an unmet need for software that can perform fully customizable genetic
experiments in R.

All previous results were combined to demonstrate how monogenic and oligogenic traits
can be separately identified by recursive binning and the χ2 pooled p-value adjusted to ac-
count for genetic correlation. Simulations showed that oligogenic and monogenic data lead
to distinct patterns in the curve of chi (p;κ) by κ for linear effects of genetic information
on traits. A Satterthwaite approximation was developed to adjust these curves to account
for known correlations between pairs of genetic markers to great effect. When applied to
a real data set, adjusted curves produced results similar to those previously seen in the
literature.

Finally, the use of chi (p;κ) to combine parameter estimates in meta-analysis was ex-
plored. By considering many candidate estimates, a plausible region based on the set of
values where chi (p;κ) is above some threshold is obtained. The resulting evidential region
thereby simultaneously combines estimates and tests them for homogeneity. Calibration
of coverage probabilities and test levels were determined for the cases of equal and unequal
estimate variances. In simulation, these regions were shown to be responsive to patterns
in the data which traditional confidence intervals ignore without sacrificing much power
or coverage probability. Indeed, by changing κ, different treatment of outliers can be ob-
tained for the same combination method. The results of this exploration were intriguing,
and recommendations for future investigation and use were provided.

In short, this thesis presents new methods in measuring association and combining p-
values, with the latter supported by a novel framework proven relevant for the choice of
pooled p-values. A complete tutorial on the basics of genetics results in a simple expression
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for genetic correlation which matches observation reasonably well. Several software tools
implement all of these results to make them accessible for any R user. They are then
immediately applied to one established problem and to make first developments into one
exploratory and novel method in meta-analysis. A common theme of using many pairwise
tests to gain insight about data ties these topics together. Each chapter addresses a
different part a complicated puzzle: some motivate, others develop methods, and the last
few demonstrate these methods in action.

8.1 Future directions

Recursive binning has a number of desirable qualities. Under random splitting the dis-
tribution of the χ2 statistic over the final bins can be conservatively approximated, and
maximized binning provides a convenient visualization of the data at the end. Both result
in more flexible bin shapes than are possible through other, marginal binning methods such
as Reshef et al. (2011), Jiang et al. (2015), and Heller et al. (2016). Comparing random
binning to these earlier methods may prove interesting, as the greedy nature of bin-based
methods has proven a point of contention in the past (Gorfine et al., 2012; Kinney and
Atwal, 2014a; Reshef et al., 2014; Kinney and Atwal, 2014b; Simon and Tibshirani, 2014).

The conversion to ranks is a natural way to focus on the association between variables
independent of their margins. Recursive binning is but one way to tesselate the unit square,
and others invite further investigation. For one, it allows for different grid shapes to be
used, such as as hexagonal bins (Carr et al., 1987), or custom bins designed to identify
density in specific regions. Scott (1988) notes that hexagonal bins introduce less bias in
two-dimensional histograms than rectangular ones, but the impact this would have on
measuring association is not clear. Additionally, it is not obvious how to implement non-
rectangular bins into the recursive algorithm. Alternatively, particular patterns of interest
may be captured by specific binnings applied to data, or different split logic that changes
bin density in certain regions of interest. In the S&P 500 data, for example, the corner bins
have a particularly relevant interpretation that suggests increasing the number of corner
bins to model tail dependence. This also suggests further investigations into copulas as a
way to simulate rank patterns.

Deeper exploration of central and marginal dependence could also prove interesting.
Though the minimum pooled p-value was proven to uniquely produce a centrality quotient
of 0, at least two pooled p-values produce centrality quotients of 1 despite defining different
combination functions. The curvature of the rejection boundary therefore seems relevant
to further characterize this balance of marginal and central rejection. This is rather easy to
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visualize in two dimensions, but quite tricky in three or more. Similarly, it is not obvious
how these concepts apply to more complicated sequential rejection methods, for example
those of Simes (1986) and Hochberg (1988), or to methods designed to control the false
discovery rate, such as Genovese and Wasserman (2002).

Within the χ2 quantile function, solidifying the theory behind the curves generated by
sweeping κ in the χ2 pooling function would lend greater confidence to their application.
Though the empirical use of these curves was demonstrated, little was proven about them.
More fully exploring the theory of these curves would allow for stronger statments to be
made, perhaps shedding more light on the plausible alternatives they imply. Simulations
also suggested that the χ2 pooled p-value could prove powerful in detecting alternative beta
densities which are not strictly decreasing, a setting which is thus far relatively unexplored
in the literature. Extending pooled p-values to this, perhaps, more realistic case would be
useful and could pave the way to even more general alternative distributions which are not
part of the beta family.

Though the focus of the genetic example here was diploid organisms, the genetic model
outlined easily accounts for other ploidy with the addition or removal of columns from
the annotation matrix. As several common plant species such as alfalfa and potato are
tetraploid, this could expand the search for relevant data. Due to the relative ease of
measurement and simpler ethical concerns, obtaining paired measurements of traits and
genomes for these plants could prove simpler than for humans or mice. This could poten-
tially garner more complete data on which to apply the methods of Chapter 6.

Evidential regions as a way to combine parameter estimates were treated as an applica-
tion here, but the intriguing early results obtained suggest they may be worthy of study in
their own right. The simulation settings and theory presented in this work barely scratch
the surface of the method, but already garnered results suggesting their promise. Identi-
fying cases where evidential regions are preferred over classical confidence intervals would
be very informative, and would provide guidance on where to look next and inspiration for
attempts to understand them theoretically.
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Appendix A

Structural means for robustness to
missing data

The methods adjusting for dependence in Chapter 6 all require a genetic correlation or
linkage disequilibrium (LD) matrix Σ though missing data often forces us to use the pair-
wise correlation/LD matrix Σ′ which may not be positive definite. To minimize the impact
of this missing data, it is natural to reduce the difference between Σ and Σ′ in a suitable
norm. In this appendix, it is shown that a simple pre-processing step which convertsΣ′ to a
Frobenius-optimal matrix approximating Σ given a known theoretical correlation structure
drastically improves robustness to missing data at the expense of some bias when the data
are complete. In the following,Σ and the term LD matrix will be used interchangeably.1

Recall that assessing the impact of a region of the genome on a measured trait re-
quires adjusting test statistics to account for the LD between marker regions (Lander and
Botstein, 1989; Uffelmann et al., 2021), that is the correlation of genetic markers over
successive generations. For regions i and j on chromosomes ci and cj, LD(i, j) can be
computed using the equation

[Σ]ij = LD(i, j) = I(ci = cj)γe
− d(i,j)

50

where d(i, j) is an additive measure of genetic distance between markers i and j and γ is a
constant determined by population characteristics. LD(i, j) is constant in d(i, j), implying
a theoretical structure to the LD matrix which can be computed in advance. Despite

1A version of this appendix is currently under review for submission to IEEE Transactions on Compu-
tational Biology and Bioinformatics with a co-author, Jeffrey Uhlmann.
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this theoretical knowledge, this matrix is still computed on genomic samples in order to
determine the observed correlation between tests, Σ̂, and use this to adjust for dependence
in multiple testing. When data are missing, this is computed pairwise to give Σ̂′ which
may differ further from Σ, adding additional error.

Rather than using Σ̂′ directly, the theoretical structure of Σ can be leveraged to com-
pute a Frobenius-optimal approximating matrix given Σ̂′ by taking means along the the-
oretical level sets of Σ. This guarantees adherence to the prescribed theoretical structure
and reduces the impact of individual missing entries by taking means over the observed
correlations. First, consider the problem generally.

A.1 Approximating a general matrix

Suppose we would like to approximate the n× n matrix

M =


m00 m01 . . . m0,n−1

m10 m11 . . . m1,n−1
...

...
. . .

...
mn−1,0 mn−1,1 . . . mn−1,n−1

 (A.1)

mij ∈ C with a matrix T ∈ Cn×n with a particular structure for computational or an-
alytical reasons, for example circulant T for preconditioning Chan (1988); Venkatapathi
and Harlprasad (2022) and Toeplitz-Hankel T for physical modelling Narayan and Shas-
try (2021). For any application, the approximating matrix T should be optimal by some
measure, commonly the Frobenius norm of the difference of matrices

||T−M||F =
√
trace ((T−M)∗(T−M)), (A.2)

where A∗ is the conjugate matrix of A ∈ Cn×n. Minimizing this for a circulant T is the
express goal of Chan (1988) and was noted as a positive feature of the approximation in
Venkatapathi and Harlprasad (2022). Both of these are particular cases of a more general
result that can construct an optimal matrix approximation for an arbitrary structure.

Structure inT ∈ Cn×n is limited here to cases where equality of the entries tij, 0 ≤ i, j ≤
n−1 follows a pattern in i and j. Explicitly, given an index function f : {0, 1, . . . , n−1}2 7→
{0, 1, 2, . . . , K} that provides membership of the i, j entry to a level set, T is structured
with index function f(i, j) if

tij = tf(i,j). (A.3)
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This implies a kth index set Tk = {(i, j)|f(i, j) = k} with cardinality |Tk| = nk > 0.

The index function f(·, ·) defines the structure of T by defining the Tk. Common struc-
tures and corresponding index functions are shown in Table A.1, though these functions
are not unique. Many candidate functions define identical index sets, Hankel matrices for
example can take either f(i, j) = j + i or f(i, j) = 2(n− 1)− j − i.

Table A.1: Some common examples of structured index functions.

Structure f(i, j)
Circulant (i− j) mod n
Toeplitz j − i+ n
Hankel i+ j

A.2 Optimizing the Frobenius norm

Using the notation defined above, consider the following theorem.

Theorem 4 (Means minimize ||T−M||F ). TM with

tij = tf(i,j) = mf(i,j) (A.4)

is the Frobenius-optimal structured matrix with index function f(i, j) that approximates
M, where

mk :=
1

nk

∑
Tk

mij. (A.5)

is the mean of entries in M over the kth index set. The minimum error, ||TM −M||F , is
proportional the total within-group standard deviation of entries in M over all index sets.

Proof. Take mk to be the mean of entries in M for the kth index set as in Equation A.5,
define the vector of all such means

m = (m0,m1, . . . ,mK)
T.

Further, denote the vector of unique tk as

t = (t0, t1, . . . , tK)
T
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and the diagonal matrix of nk as

N = diag(n0, n1, . . . , nK).

As Equation A.2 is always positive, any T which minimizes ||T−M||F will also minimize
||T−M||2F . Expanding gives

trace ((T−M)∗(T−M)) = traceM∗M

− traceM∗T

− traceT∗M

+ traceT∗T. (A.6)

M∗M is constant in T, so can be ignored. The latter three terms can be considered indi-
vidually to give traceT∗T =

∑K
k=0 nkt

∗
ktk, traceM

∗T =
∑K

k=0 nktkm
∗
k, and traceT∗M =∑K

k=0 nkt
∗
kmk. So we seek to minimize

F (t) =
K∑
k=0

nkt
∗
ktk −

K∑
k=0

nkt
∗
kmk −

K∑
k=0

nktkm
∗
k,

which can be written in matrix form as

F (t) = t∗Nt− t∗Nm−m∗Nt

= (t−m)∗N (t−m)−m∗Nm.

As nk > 0 for all k = 0, 1, . . . , K, N is positive definite, and so the quadratic form x∗Nx
has a minimum of zero when x = 0. Therefore F (t) is minimized for t = m and has a
minimum of

F (m) = −m∗Nm = −
K∑
k=0

nk||mk||2. (A.7)

So TM is the Frobenius-optimal structured matrix with index function f(i, j) approximat-
ing M. The residual TM −M has a squared Frobenius norm of

||TM −M||2F =
K∑
k=0

nk

(∑
Tk

||mij||2

nk

− ||mk||2
)

=
K∑
k=0

nkσ
2
k (A.8)
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where σ2
k = 1

nk

∑
Tk (mij −mk)

2 is the variance of the mij in the index set Tk. Therefore
we have

1√
n
||TM −M||F =

√√√√ K∑
k=0

nk

n
σ2
k,

which is the total within-group standard deviation from the structured means.

A.3 Applying the optimal approximation to simulated

data

The first test of this proposal is a simulation study where 100 synthetic populations of 100
individuals were generated measured at 20 markers with d(i, j) = 15 cM and ci = cj = 1
for each pair. This setting gives, in theory, a Toeplitz LD matrix. For each simulated
population, the complete data was first used to compute Σ̂ and determine its eigenvalues.
Increasing proportions of observations were then removed completely at random from the
data to simulate different data completeness, and at each proportion the Σ̂′ was computed
and used to generate the nearest Toeplitz matrix based on Theorem4. The minimum
eigenvalue and sum of squared errors in the ordered eigenvalues from the complete data
LD matrix were computed and recorded for both the pairwise LD matrix Σ̂′ and the nearest
Toeplitz matrix T̂. Figure A.1 displays the result for proportions missing ranging from 0
to 0.4.

Figure A.1(a) shows that the nearest Toeplitz is more robust to negative eigenvalues
than the pairwise LD matrix. A vast majority of the 100 simulated populations have
nearest Toeplitz matrices with no negative eigenvalues until more than a third of the data
is missing, and even then only about 25% produce negative eigenvalues. In contrast, the
pairwise LD matrix has negative eigenvalues more than 75% of the time when as little as
15% of the data is missing. Figure A.1(b) indicates this robustness also extends to the
sum of squared differences between ordered eigenvalues, which does not depend greatly on
the completeness of the data for the nearest Toeplitz matrix but does for the pairwise LD.
The cost of this robustness is potential bias when the data is (mostly) complete.

A.4 Using real data

Following the simulated study of the previous section, we now corroborate our findings by
replicating the experiment on real data. The JAX BSB data from Rowe et al. (1994) in-
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(a) (b)

Figure A.1: Paired boxplots of the (a) minimum eigenvalues and (b) sum of squared errors
in the ordered eigenvalues for the pairwise LD matrix and the nearest Toeplitz matrix
by the proportion of data missing. The nearest Toeplitz, displayed to the right of the
corresponding proportion for each pair of boxplots, is more robust to missing data than
the pairwise LD matrix, displayed to the left for each pair, but is biased when the data are
complete.

cluded in the toyGenomeGenR package contains partial measurement of 5951 markers across
all chromosomes on 94 mice. Complete observations present on 2624 of the markers and
were used to create a 2624×2624 observed correlation matrix. In contrast to the previous
simulated example, these markers are not positioned uniformly across chromosomes, the
cM distances between adjacent markers differ greatly.

Instead of focusing on all of the markers, however, we make the real data comparable
to the simulated case by considering only those markers on chromosome 1. This leaves 199
markers measured across the chromosome with adjacent distances ranging from less than
0.01 cM to 4.37 cM. The cM distances were used to generate a theoretical correlation/LD
matrix, the theoretical correlations were rounded to two decimal places, and the rounded
correlations were treated as the level sets of the theoretical structured matrix. Note that
unlike the examples illustrated above, these level sets do not correspond with any named
structured matrix. Nonetheless, Theorem 4 dictates that the optimal structured approxi-
mation in the Frobenius norm for this unnamed structure is given by means computed over
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the level sets. An unfortunate consequence of the lack of correspondence with a named
matrix is that there is no guarantee that the result will be a valid correlation matrix.

These steps give us the observed matrix Σ̂ on the full data and the theoretical cor-
relation matrix Σ based on cM distances. Once again, marker measurements were then
removed completely at random from the JAX BSB data 100 times for each of a range of
proportions of missingness, the pairwise LD matrix and the optimal structured approxi-
mation based on the theoretical level sets were generated, and both were compared to the
observed matrxi Σ̂ using the minimum eigenvalue and sum of squared errors. Figure A.2
results.

(a) (b)

Figure A.2: Paired boxplots of the (a) minimum eigenvalues and (b) sum of squared er-
rors in the ordered eigenvalues for the pairwise LD matrix (on the left) and the optimal
structured matrix (on the right) by the proportion of data missing. The bias in the opti-
mal structured matrix is more serious in this case than the simulated example: negative
eigenvalues are produced for the complete data.

First, note that the larger correlation matrix for the real data example has resulted
in less variability in the summaries of eigenvalues for both the pairwise LD and optimal
structured matrices, accentuating differences in perfomance. Just as in the simulated case,
the optimal structured matrix proves far more robust to missing data. Both the minimum
eigenvalue and the sum of squared errors barely change on average as the proportion of
missing data increases. In contrast, the pairwise LD matrix has an error that grows in the
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proportion of missing data and a minimum eigenvalue which continues to decrease as data
is removed. When as little as 15% of the data is missing, the optimal structured matrix is
better by both metrics.

The bias of the optimal approximation is more severe in the real data than the sim-
ulated data, however. For a mostly complete data set, the optimal structured matrix
produces negative eigenvalues and it does not correspond with a correlation matrix. In
cases with nearly complete data, an optimal structured approximation should only be used
if the structure is Toeplitz, circulant, or of another class with known qualities to its eigen-
spectrum. When large proportions of the data are missing, however, applying structural
means greatly improves the stability of estimates.
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Appendix B

Demonstrating toyGenomeGen

The following is a short introduction to the features of toyGenomeGen that loosely follows
the demos included in the package.

B.1 Constructing genomes

We begin by creating a genome using the default options and specifying only the number
of markers on each chromosome.

## define the marker distribution by chromosome

markerDist <- c("1" = 5, "2" = 10, "3" = 7, "X" = 5)

## construct a genome based on this distribution

g <- simGenome(markerDist)

The print.genome method gives a basic summary of g.

> g

A genome object encoding 30 markers across 4 chromosomes , distributed:

5 10 7 5

The plot.genome method shows more detail.

plot(g, add.legend = TRUE)
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Different point types quickly communicate the encodings to the user, lines group the chro-
mosomes, and point locations show where markers have been measured. By changing the
elevs and epch arguments, both the presumed encodings and points displaying them can
be changed. Note that the encoding strings matched back to elevs are generated from g

by pasting the columns of g$encoding together row-wise with a space between them. By
default simGenome presumes evenly-spaced markers across each chromosome with 50 cM
of separation and generates X such that one column contains only ones and the other only
zeros, though the order of these columns is random.

Very different genomes can be obtained by changing the defaults of simGenome. Inspec-
tion shows that the default marker generation function is markerHybrid and the default
location generation function is locationRegular:

> formals(simGenome)

$nmark

$alleles

$markerFuns

markerHybrid

$locFuns

locationRegular

Calling simGenome again but using one of the other marker functions, say markerPureDom,
and the other location generation function, locationUniform, gives a radically different
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genetic structure.

g <- simGenome(markerDist , markerFuns = markerPureDom ,

locFuns = locationUniform)

plot(g, add.legend = TRUE)

locationUniform generates markers randomly along each chromosome based on a uniform
distribution between 0 and 100 by default and markerPureDom producesX with every entry
1. The complementary function markerPureRec produces X with every entry 0. For even
greater control, we can supply a list of functions to apply to each chromosome separately.

g <- simGenome(markerDist ,

markerFuns = list(markerPureDom , markerPureRec ,

markerHybrid , markerHybrid),

locFuns = list(locationUniform , locationRegular ,

locationUniform , locationRegular ))

plot(g, add.legend = TRUE)
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The default behaviours can be modified by wrapping the appropriate function in a closure.

uni100500 <- function(n) locationUniform(n, min = 100, max = 500)

reg25 <- function(n) locationRegular(n, delta = 25)

g <- simGenome(markerDist ,

markerFuns = list(markerPureDom , markerPureRec ,

markerHybrid , markerHybrid),

locFuns = list(uni100500 , reg25 ,

locationUniform , locationRegular ))

plot(g, add.legend = TRUE)

Finally, plot characteristics such as the length of chromosomes and the point type to use
for encodings can be changed by specifying the chrLens and epch arguments.
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plot(g, add.legend = TRUE , chrLens = c(500, 400, 250, 400),

epch = c(19, 14, 9, 1))

Users can define their own marker and location functions to pass into simGenome for com-
plete control over the generation of a genome object. They must accept a single argument n
and return a two-column matrix with n (for custom marker functions) or a numeric vector
of length n (for custom location functions). Other helpers exist to convert a data.frame

to a genome and to create a genome directly from provided slots with checks to ensure con-
formity of arguments. These are outlined in the basicDemo.R demo in the toyGenomeGen
package.

genomes based on real data are provided by the 11 data sets included in toyGenomeGen.
These report the results of backcross experiments carried out with different known strains
of inbred mice by several different labs. Loading and inspecting a sample genome from one
of these experiments is easy in the package.

> data(ucla_bsb)

> ucla_bsb

A population of 67 genomes encoded at 223 markers across 20

chromosomes , distributed:

21 15 11 16 10 12 11 7 18 13 13 9 8 5 14 4 7 9 12 8

Roughly 3 % of the data is missing.

> x1 <- selectGenome(ucla_bsb , ind = 1)

> plot(x1 , add.legend = TRUE)
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This plot is much more complicated than the earlier examples of g, but still displays an
important feature of each genome. Recall that in a backcross experiment, we cross the
encodings

FX =

f f
...

...
f f

 , and MX =

1 0
...

...
1 0

 .

where f ∈ {0, 1}. In this case only the encodings 0 1 and 1 1 are possible as f = 1. If
crossing over did not occur every chromosome would be identically 0 1 or 1 1 at every
marker position, and the encodings within each chromosome would be identical. Every
time a change in point type is observed along a chromosome in this plot, recombination
(an odd number of cross overs) occurred in the region between the different point types.
See, for example, the change from triangle to square in chromosome 7. Not only does this
plot give an overview of the markers in genome, it also gives a peek into the distribution
of their recombination.

B.2 Simulating recombination

Before simulating a cross, we generate two genomes corresponding with the N2 backcross
setting.

## start by defining the locations and chromosomes

locs <- rep(list(cumsum(rep (25 ,10))) , 2)

alls <- rep(list(c("A", "a")), 20)
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chr <- factor(rep("1", "2"), each = 10)

## use settings to generate two genomes

g1 <- makeGenome(locs , alls , chr)

g2 <- makeGenome(locs , alls , chr , enc = markerPureDom (20))

Generating a new genome based on the cross between them is accomplished by calling the
wrapper function sex on the pair.

o1 <- sex(g1 , g2)

plot(o1) # can see recombination in point changes

Whole populations can be generated with replicate from base R .

popsize <- 1000

pop <- asPopulation(replicate(popsize , sex(g1 , g2), simplify = FALSE))

These populations can be visualized using the corrImg function and addChromosomeLines.

## define some constants to control the visualization

pal <- colorRampPalette(c("steelblue", "white", "firebrick"))(49)

corBrks <- seq(-1, 1, length.out = 50)

## plot correlation

corrImg(popCorrelation(pop), col = pal , breaks = corBrks ,

xaxt = "n", yaxt = "n")

addChromosomeLines(pop)
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To read this plot, note that the hue of this heatmap at the i, j square counted from the
top left is given by the diverging palette based on the corresponding break in corBrks

containing correlation between zi and zj. Darker colours indicate stronger correlation, red-
shaded cells have positive values, and blue-shaded cells have negative values. The lines
demarcating the chromosomes are helpful primarily as guides to separate the intra- and
inter-chromosome patterns of correlation.

Theoretical correlations based on a map function are generated with theoryCorrelation
with the default using Haldane’s map and generating correlations by Equation 5.18.

corrImg(theoryCorrelation(pop), col = pal , breaks = corBrks ,

xaxt = "n", yaxt = "n", main = "Haldane␣map")

addChromosomeLines(pop)

corrImg(theoryCorrelation(pop , map = mapKosambi), col = pal ,

breaks = corBrks , xaxt = "n", yaxt = "n",

main = "Kosambi␣map")

addChromosomeLines(pop)
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As the default settings of sex assume the Haldane map function and independent recom-
bination, it is no surprise that the Haldane map theoretical correlation matrix looks closer
to the measured correlation matrix on pop than the Kosambi map.

To change the default recombination behaviour, we pass relevant arguments to the
helper meiose inside of sex by setting the optional arguments to sex.

> formals(sex)

$genome1

$genome2

$probs1

NULL

$probs2

NULL

$map

mapHaldane

$crossFun

crossIndep

The arguments probs1 or probs2 allow users to provide custom probabilities of recombi-
nation for each adjacent marker pair, for example gathered experimentally. These prob-
abilities override the provided map function and are passed to crossFun along with the
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locations of markers on the genome. crossFun defines recombination within mieose, the
function that recombines the copies within genome1 and genome2 before mixing them
to generate offspring. The default function, crossIndep, assumes independence between
crossovers and so is effectively a wrapper for runif:

> crossIndep

function (probs , locs)

{

breaks <- runif(length(probs))

which(breaks < probs)

}

<bytecode: 0x0000024ab6fd68b8 >

<environment: namespace:toyGenomeGenR >

The independent assumption underlying this function, though simple, does not always
provide a good fit in practice (Broman et al., 2002) and crossovers are often modelled
by a renewal process with scaled χ2 holding times (Housworth and Stahl, 2003; Lange,
2002). crossChi defined below provides an example of how such an renewal process can
be implemented in toyGenomeGen.

crossChi <- function(probs , locs) { # must accept two arguments

locLen <- length(locs) # largest location

crosses <- numeric () # cross indices

currPos <- 100*rchisq(1, df = 2) # current position of process

while (currPos < locs [1]) { # only care within marker range

new <- 100*rchisq(1, df = 2) # next holding time

currPos <- currPos + new # update break spot

}

while (currPos <= locs[locLen ]) { # breaks within markers

crosses <- c(crosses , sum(locs < currPos )) # index of split

new <- 100*rchisq(1, df = 2)

currPos <- currPos + new

}

crosses

}

Using crossChi, we can generate a second population using the renewal process model of
cross over recombination.

pop2 <- asPopulation(replicate(popsize ,

sex(g1 , g2 , crossFun = crossChi),

simplify = FALSE ))

Just as before, the correlation matrix under the additive map can be used to visualize this
and compare it to the previous population generated assuming independent cross overs
and Haldane’s map.
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corrImg(popCorrelation(pop2), col = pal , breaks = corBrks ,

xaxt = "n", yaxt = "n", main = "Chi␣renewal␣process")

addChromosomeLines(pop2)

corrImg(popCorrelation(pop), col = pal , breaks = corBrks ,

xaxt = "n", yaxt = "n", main = "Independent␣Haldane")

addChromosomeLines(pop)

Changing the dynamics of recombination in toyGenomeGen is as simple as defining a func-
tion like crossChi.
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