
Proving Properties of Fibonacci
Representations via Automata

Theory

by

Sonja Linghui Shan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Sonja Linghui Shan 2024



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

This thesis is based, in part, on joint work with my supervisor Jeffrey Shallit [28]. Parts
of Chapter 1, 2.1, 4, 5, 6, 7, 8, and 9 are based, in part, on my joint paper [28], and taken
verbatim from that paper.

iii



Abstract

In this work, we introduce a novel framework for mechanically testing the complete-
ness and unambiguity of Fibonacci-based representations via automata theory. We call
a representation (or a number system) complete and unambiguous when it provides one
and only one representation for each number in the range covered by the representation.
Many commonly used representations are complete and unambiguous: consider the famil-
iar binary number system—each natural number has a unique representation up to leading
zeros. Additionally, if a representation is complete, we describe an algorithm, of O(log n)
complexity, to find a representation for any particular number n.

Since a number system is a set of valid representations (or strings), it can be seen as
a formal language. If the language is regular, then we can test the membership of any
given string with a finite automaton. This combined with Büchi’s [8] theorem—stating
that there exists a decision procedure that, given a first-order logical formula, using addi-
tion and indexing into an automatic sequence, will decide the truth or falsity of it—gives
the theoretical foundation of our framework. Since each Fibonacci-based representation
previously proposed in the literature actually forms a regular language, our framework can
therefore provide a unified approach to significantly shorten and simplify their proofs of
correctness. In addition to verification, our process can easily check whether a new pro-
posed system is complete and unambiguous. This saves the need to have a long case-based
or induction proof accompanying each new system. We propose several new systems, dis-
covered from an exhaustive search of automata with a small number of states, and show a
succinct proof of correctness for each following our framework.

Throughout the rest of this thesis, we demonstrate the versatility and efficacy of our
framework by testing a diverse set of previously published and newly discovered represen-
tations. We consider representations covering different ranges of numbers: just natural
numbers or all integers. We also consider representations using different alphabets and
representations evaluated with different underlying sequences: Fibonacci numbers with
positive or negative or positive and negative indices. For each representation, we analyze
its definition to express it as a regular language and a finite automaton, then convert num-
bers in it to a form that can be processed by the software we use, and finally construct
the first-order logical formulas asserting completeness and unambiguity. Different repre-
sentations call for different proof processes; in particular, the conversion process needs to
be customized to fit different alphabets, evaluation equations, and underlying sequences.
We explain the different ways of making these adjustments as well as the tradeoffs we face;
a larger intermediate automaton could simplify the construction of the first-order logical
formulas but might also require a more complicated proof of correctness.

iv



Acknowledgements

I would like to thank my supervisor, Jeffrey Shallit, for his guidance, patience, and
encouragement.

I also thank Eric Blais and Barbara Csima for agreeing to read my thesis.

Finally, I would like to thank Arshia Fazeli for his support and the many particle-related
jokes.

v



Dedication

To my mother.

vi



Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xii

1 Motivation and Preliminaries 1

2 Automata Theory and Logic 5

2.1 Automata Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Balanced Binary Representation 10

4 Our Framework 14

4.1 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Finding a Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



5 Converter Automata 18

5.1 Conversion to the NegaFibonacci Representation . . . . . . . . . . . . . . . 18

5.2 Decomposition of fsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Conversion to the Zeckendorf Representation . . . . . . . . . . . . . . . . . 26

6 Representation of Natural Numbers Using Digits 0 and 1 Only 28

6.1 Zeckendorf Representation: The Canonical Form . . . . . . . . . . . . . . . 28

6.2 Brown’s “Lazy” Representation . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 A New Representation: EPAS . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Representation of Natural Numbers Using Digits −1, 0 and 1 33

7.1 Representation Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1.1 Hajnal’s Alternating Representation . . . . . . . . . . . . . . . . . . 33

7.1.2 Hajnal’s Even Representation . . . . . . . . . . . . . . . . . . . . . 35

7.1.3 Hajnal’s Odd Representation . . . . . . . . . . . . . . . . . . . . . 36

7.2 Proof of Completeness and Unambiguity . . . . . . . . . . . . . . . . . . . 37

7.2.1 Proof Using fcanon as Converter . . . . . . . . . . . . . . . . . . . 37

7.2.2 Proof Using fsc as Converter . . . . . . . . . . . . . . . . . . . . . 38

7.3 Extending the Representations . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Representation for All Integers 42

8.1 Alpert Representation: Using Digits −1, 0, and 1 . . . . . . . . . . . . . . 42

8.2 Bunder Representation: Using Negatively Indexed Fibonacci Numbers . . . 44

9 New Representations 47

9.1 Maximum Dictionary Order Representation . . . . . . . . . . . . . . . . . 47

9.2 Finding New Perfect Systems of Small Complexity via Exhaustive Search . 51

viii



10 Representation Using Fibonacci Numbers With Positive and Negative
Indices 54

10.1 Park Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.2 Anderson Representation: Completeness for Pairs of Numbers . . . . . . . 57

11 Final Remarks 62

11.1 Open Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63

ix



List of Figures

2.1 Automaton accepting strings containing no occurrence of 11. . . . . . . . . 6

3.1 Automaton accepting valid balanced binary representations. . . . . . . . . 11

3.2 Automata for conversion to the binary representation. . . . . . . . . . . . . 12

4.1 Automaton showing −27 in balanced binary representation. . . . . . . . . 17

5.1 Left shifter automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Equality checking automaton. . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 DFA fcanon for conversion to the Zeckendorf representation. . . . . . . . . 27

6.1 DFA for Zeckendorf’s greedy representation. . . . . . . . . . . . . . . . . . 29

6.2 DFA for Brown’s lazy representation. . . . . . . . . . . . . . . . . . . . . . 30

6.3 Automaton showing 17 in the Brown representation. . . . . . . . . . . . . . 31

6.4 Automaton for the new system EPAS. . . . . . . . . . . . . . . . . . . . . 32

7.1 DFA for the alternating conditions. . . . . . . . . . . . . . . . . . . . . . . 34

7.2 DFA for the even conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 DFA for the odd conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 Automaton showing −6 in the modified odd representation. . . . . . . . . 40

8.1 DFA for Alpert’s far-difference representation. . . . . . . . . . . . . . . . . 43

8.2 DFA for Bunder’s negaFibonacci system. . . . . . . . . . . . . . . . . . . . 45

x



8.3 Right shifter automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1 DFA for comparing strings in dictionary order. . . . . . . . . . . . . . . . . 49

9.2 DFA for converting to dictionary order representation. . . . . . . . . . . . 50

9.3 DFA showing 18 in maximum dictionary order representation. . . . . . . . 51

9.4 The DFA one0sq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.5 The DFA az. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.1 Binary right shifter automaton. . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2 The automaton rshiftPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.3 The automaton phin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.4 Automaton showing valid EZ representations for 18 and −5. . . . . . . . . 61

xi



List of Tables

1.1 Greedy and lazy Fibonacci representations. . . . . . . . . . . . . . . . . . . 3

3.1 Examples of binary and balanced binary representations. . . . . . . . . . . 10

3.2 Examples of balanced binary representations. . . . . . . . . . . . . . . . . 11

5.1 Examples of negaFibonacci representations for non-negative integers. . . . 19

5.2 Examples of negaFibonacci representations for negative integers. . . . . . . 19

6.1 Examples of EPAS representations. . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Examples of alternating representations. . . . . . . . . . . . . . . . . . . . 34

7.2 Examples of even representations. . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 Examples of odd representations. . . . . . . . . . . . . . . . . . . . . . . . 36

8.1 Examples of Alpert’s far-difference representations. . . . . . . . . . . . . . 42

9.1 Examples of maximum dictionary order representations. . . . . . . . . . . 48

10.1 Examples of the Park representations. . . . . . . . . . . . . . . . . . . . . . 55

10.2 Example of a pair of numbers following Anderson’s theorem. . . . . . . . . 58

xii



Chapter 1

Motivation and Preliminaries

Given an increasing sequence (sn)n≥0 of positive integers, a numeration system or a repre-
sentation is a way of expressing natural numbers as a linear combination of the sn. Many
different numeration systems, such as representation in base k, or the more exotic sys-
tems based on the Fibonacci numbers, have been proposed. For example, recall that the
Fibonacci numbers, sequence A000045 in the On-Line Encyclopedia of Integer Sequences
(OEIS), are defined by the recurrence Fn = Fn−1 + Fn−2 for n ≥ 2 and the initial values
F0 = 0, F1 = 1. Consider writing a non-negative integer n as a sum of distinct Fibonacci
numbers Fi for i ≥ 2. Some numbers, such as 12, have only one such representation
(12 = 8+3+1 = F6+F4+F2), while others have many: 8 = F6 = F5+F4 = F5+F3+F2.

There are two very desirable characteristics of a numeration system. First, complete-
ness: every natural number should have a representation. Second, unambiguity: no natural
number should have two or more different representations. These two goals are typically
achieved by restricting the types of representations that are considered valid within the
system. If a system achieves both goals, we say it is perfect. For Fibonacci representations,
various perfect systems have been proposed.

Among all possible perfect systems based on Fibonacci numbers, one is considered
the canonical form: the Zeckendorf or greedy representation. This representation can
be computed as follows: first, choose the largest index i such that Fi ≤ n. Then the
representation for n is Fi plus the (recursively-computed) representation for n − Fi. The
representation for 0 is the empty sum of 0 Fibonacci numbers. A simple induction now
shows that the greedy algorithm produces one and only one representation for every natural
number, which is evidently unique.

This representation was originally noted by Zeckendorf, but was first published by

1

https://oeis.org/A000045


Lekkerkerker [16] and only later by Zeckendorf himself [31]. It was also anticipated, in
much more general form, by Ostrowski [20].

An alternative (but equivalent) definition of Zeckendorf representation is to impose a
condition that valid representations must obey. For example, the Zeckendorf condition
requires that a representation be valid if and only if no two consecutive Fibonacci numbers
appear in the sum.

It is convenient to express arbitrary sums of distinct Fibonacci numbers as strings of
digits over a finite alphabet (in analogy with base-k representation). Let x = a1 · · · at be a
string (or word) made up of integer digits. We define its value as a Fibonacci representation
as follows:

[x]F :=
∑
1≤i≤t

aiFt+2−i. (1.1)

Note that these strings are in “most-significant-digit” first format. For example, [2101]F =
2F5 + F4 + F2 = 14.

It is also useful to define a (partial) inverse to [x]F . By (n)F we mean the binary string
x such that x is the Zeckendorf representation of n; alternatively, such that [x]F = n and x
contains no occurrence of the block 11. In what follows, we adopt this string-based point
of view almost exclusively. We can think of the condition “no occurrence of the block 11”
as a rule, specifying which representations are valid, adopted precisely to guarantee both
completeness and unambiguity.

In formal language theory, a language L is a (finite or infinite) collection of strings. A
rule is then encoded by the language or set of strings that obey the rule. Completeness
then becomes the assertion that for all n there exists a string x ∈ L such that [x]F = n,
while unambiguity becomes the assertion that there do not exist distinct strings x, y ∈ L
such that [x]F = [y]F .

1

Let us look at another example involving the Fibonacci numbers, one that can be
seen as a mirror case to the Zeckendorf representation: the so-called lazy representation
published by Brown in [5]. The computation of it differs from Zeckendorf only in their first
steps: here we choose the largest index i such that

∑i−1
j=2 Fj < n.

Because of this, the representation is called “lazy” as it avoids including a Fibonacci
number unless it has to. For example, the Brown representation (10)B = 1110 avoids
the inclusion of F6, unlike the Zeckendorf one where (10)F = 10010, since that can be
compensated with the inclusion of F5 and F4. The consequence of this difference is that,

1We adopt the convention that two strings are considered to be the same if they differ only in the
number of leading zeros. Thus, for example, [100]F = [0100]F = 3 are the same representation.

2



in this system, representations correspond (via Eq. (1.1)) to binary strings having no
occurrence of the block 00 (where leading zeros are not even considered). Once again, this
rule provides a numeration system that is both complete and unambiguous [5]. Table 1.1
gives both greedy (Zeckendorf) and lazy (Brown) representations for the first few natural
numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11
greedy ϵ 1 10 100 101 1000 1001 1010 10000 10001 10010 10100
lazy ϵ 1 10 11 101 110 111 1010 1011 1101 1110 1111

Table 1.1: Greedy and lazy Fibonacci representations.

The greedy and lazy representations are certainly not the only possible perfect numer-
ation systems based on the Fibonacci numbers. In fact, there are uncountably many such
systems! These result from making a choice, for all n having at least two different repre-
sentations as sums of distinct Fibonacci numbers, about which particular representation
is chosen to be valid. (By a result of Robbins [24], “most” numbers have more than one
representation as a sum of distinct Fibonacci numbers.)

If we demand that the set of valid representation forms a regular language—that is,
accepted by a finite automaton; see Chapter 4—there are still infinitely many different
systems (although only countably many). For example, consider choosing the t’th largest
possible representation for n in lexicographic order (if there are at least t), and otherwise
the lexicographically first. It will follow from results below that, for each t ≥ 0, this choice
gives a regular language Lt of valid representations.

Some natural questions then arise: given a language L encoding the “rule” a represen-
tation must obey (such as no occurrence of the block 11, or no occurrence of the block 00),
how can we determine if the corresponding set of Fibonacci representations is complete and
unambiguous? And if it is complete, how can we efficiently find a representation for a given
number n? Up to now, each new system proposed required a new proof, often a rather
tedious case-based proof by induction. Here we provide a general framework for answering
these questions “automatically”, via an algorithm, in the case where the language of valid
representations is regular.

These ideas are capable of generalization. For example, we can also consider represen-
tations for all integers Z, instead of just the natural numbers N. This can be achieved in
two distinct ways:

3



• By allowing a larger digit set, say, {−1, 0, 1};

• By using the negaFibonacci system invented by Bunder [9], based on the Fibonacci
numbers of negative index F−n for n ≥ 1.

Once again, we would like a choice of valid representations that is complete and unam-
biguous.

In this work we show how to decide these properties, provided that the set of valid
representations forms a regular language (which is indeed the case for all the proposed
systems in the literature).

Now we give an outline of this thesis. In Chapter 2, we explain the basics of automata
theory and first-order logic needed to understand the rest of the paper. In Chapter 3, we
provide an introductory example of applying our framework on a lesser known base-2 rep-
resentation. In Chapter 4 we elaborate on our framework, its theoretical foundation, and
its complexity. In Chapter 5 we analyze the automata needed to translate arbitrary repre-
sentations into representations that are recognized by the software used in our framework.
In Chapter 6 we discuss how to test completeness and ambiguity for systems using digits
0 and 1 only. In Chapter 7 we discuss systems using digits 0, 1,−1 only. In Chapter 8 we
discuss representations for all integers, not just the natural numbers. In Chapter 9 we dis-
cuss new Fibonacci representations not previously studied in the literature. In Chapter 10
we discuss representations that make use of both the positively indexed and negatively
indexed Fibonacci numbers. Finally, in Chapter 11, we conclude our work and present the
open problem that remained for us.

We are interested in the Fibonacci representation because of its close connection to
problems of number theory. One example is the Sturmian sequence called the Fibonacci
word [4]; here the nth symbol of the sequence is exactly the least significant digit of the
Fibonacci (Zeckendorf) representation of n. The Fibonacci word has many interesting
properties, for example, a self-similar fractal curve can be created based on it [17].

Although not elaborated on in detail, our framework is applicable for number systems
that are not Fibonacci-based. We provide an example of base-2 systems in Chapter 3. As
long as a representation corresponds to a regular language and numbers in this represen-
tation can be converted to a form accepted by the software we use for computation, our
framework can be applied to judge its completeness and unambiguity.

4



Chapter 2

Automata Theory and Logic

In this chapter, we recall some of the basics of automata theory and first-order logic.

2.1 Automata Theory

If Σ is a finite alphabet, then Σ∗ denotes the set of all finite strings with symbols chosen
from Σ. The empty string is denoted by ϵ.

A finite automaton M is a simple model of a computer. It takes inputs, which are
finite strings over some finite alphabet Σ, and either accepts or rejects each string. At any
moment, the automaton can be in one of a finite number of different states. Each input
string is processed symbol-by-symbol, starting in an initial state, and reading each new
symbol causes a transition to a new state, according to a transition table. Some states are
distinguished as “final” or “accepting”, and an input x is accepted iff processing x leads
to a final state at the end. The set of all accepted strings is called the language of the
automaton, and is denoted by L(M).

More formally, a deterministic finite automaton (or DFA) is a quintupleM = (Q,Σ, q0, F, δ)
where

• Q is a finite nonempty set of states;

• Σ is the input alphabet;

• q0 ∈ Q is the starting state;

5



• F ⊆ Q is the set of final states;

• and δ : Q× Σ → Q is the transition function.

The transition function δ is extended to the domain Q×Σ∗ as follows: δ(q, x) is the state
reached upon reading x, starting in state q. Then L(M), the language of M , is defined to
be {x ∈ Σ∗ : δ(q0, x) ∈ F}.

It is often useful to display an automaton using a graphical format called a transition
diagram. In such a diagram, states are represented by circles and accepting states are
represented by double circles. Labeled arrows indicate the transitions, and a state with
an arrow going in, but no origin, is the accepting state. Although the transition function
δ(q, a) is required to be complete in a DFA (that is, it is well-defined for all states q and
input symbols a), a common convention in transition diagrams is to omit transitions when
they go to a “dead” state; that is, a state from which one can never reach an accepting
state. For example, Figure 2.1 displays an automaton accepting those strings over {0, 1}
containing no two consecutive 1’s.

0

0

11
0

21

0,1

Figure 2.1: Automaton accepting strings containing no occurrence of 11.

There are basic algorithms in automata theory that can do operations on languages
specified by DFA’s. For example, given automata M1 and M2 for (respectively) languages
L1 and L2, it is easy to algorithmically construct an automaton for the union or intersection
of L1 and L2.

If L is the language of some DFA, we say that L is regular. A classic theorem of
automata theory—Kleene’s theorem—provides an alternate characterization of the regular
languages, through regular expressions [13]. A regular expression denotes a language,
and consists of subexpressions joined by various operations: concatenation, union, and

6



Kleene closure. The concatenation of two languages L1 and L2, L1L2, is defined to be
{uv : u ∈ L1, v ∈ L2}. Set-theoretic union is denoted by the symbol |. The Kleene closure
of a language L is the set of all finite strings obtained by concatenating 0 or more copies
of strings of L, and is denoted by the symbol ∗. For example, the language of all strings
containing no two consecutive 1’s is denoted by the regular expression (0|10)∗(1|ϵ).

The following particular case of a theorem of Büchi [8] (as later corrected by Bruyère,
Hansel, Michaux, and Villemaire [7]) is our principal tool in the paper.

Theorem 1. There is a decision procedure that, given a first-order logical formula F
involving natural numbers, comparisons, automata, and addition, and no free variables,
will decide the truth or falsity of F . Furthermore, if F has free variables, the procedure
constructs a DFA accepting those values of the free variables (in Fibonacci representation)
that make F evaluate to TRUE.

The specific case of the decision procedure for Fibonacci representation is discussed in
detail by Mousavi, Schaeffer, and Shallit in [19, Theorem 2.2]. For the extension permitting
quantification over integers instead of just natural numbers, see [29].

We should explain how automata can process pairs, triples, and generally k-tuples of

inputs. This is done by replacing the input alphabet Σ with the alphabet

k times︷ ︸︸ ︷
Σ× Σ× · · · × Σ .

In other words, inputs are k-tuples of alphabet symbols. The i’th input then corresponds
to the concatenation of the i’th components of all the k-tuples. Of course, this means that
all k inputs have to have the same length; this is achieved by padding shorter inputs, if
necessary, with leading zeros.

The decision procedure of Theorem 1 has been implemented in free software called
Walnut, originally created by Hamoon Mousavi [18]; also see the book [27]. We recall some
of the basics of Walnut syntax:

• eval evaluates a formula with no free variables and returns TRUE or FALSE; def
defines an automaton for future use; reg defines a regular expression.

• In a regular expression, the period is an abbreviation for the entire alphabet.

• & is logical AND, | is logical OR, => is logical implication, <=> is logical IFF, ~ denotes
logical NOT.

• A denotes ∀ (for all); E denotes ∃ (there exists).

7



• ?msd_fib tells Walnut to evaluate an arithmetic expression using Fibonacci repre-
sentation.

• ?msd_neg_fib tells Walnut to evaluate an arithmetic expression using negaFibonacci
representation.

• ?msd_2 tells Walnut to evaluate an arithmetic expression using base-2 representation.
This is also the default choice if no representation is specified in a formula.

• Negative numbers are placed in square brackets. For example, [-1] tells Walnut that
to evaluate the number as −1.

• The order of the parameters of an automaton defined in Walnut with def follows
alphabetical order. For example, the following is a definition statement from Chap-
ter 3.

def bbrEval_pos "?msd_2 Eu,v $bbrPos(s,u) & $bbrNeg(s,v) & z+v=u":

Since there are two free variables in the formula, s and z, the automaton has two
parameters. Therefore when we call bbrEval_pos with two arguments, the first
argument will be considered as s in the formula by Walnut and, the second, z.

We use Walnut to do the computations needed to verify that a given system is complete
and unambiguous.

For much more about Walnut, including a link to download it, visit
https://cs.uwaterloo.ca/~shallit/walnut.html .

2.2 First-Order Logic

In first-order logic, we quantify over individuals of the domain. This differentiates it from
true/false propositions as well as from second-order logic where variables and quantifiers
for sets of sets are allowed.

The terms and formulas of first-order logic consist of two kinds of symbols: logical
symbols with fixed semantic meanings and non-logical symbols whose meanings are subject
to interpretation. Logical symbols include the following.

8

https://cs.uwaterloo.ca/~shallit/walnut.html


• Connectives: ¬ for negation, ∧ for conjunction, ∨ for disjunction, =⇒ for implica-
tion, and ⇐⇒ for biconditional.

• The universal quantifier ∀ and the existential quantifier ∃.

• Punctuation symbols: the left and right parentheses and the comma.

• The free variable symbols and the bound variable symbols.

Non-logical symbols include:

• individual symbols such as the individual constant 0,

• relation symbols such as the equality symbol, and

• function symbols such as +.

Notice that there is not one single “first-order language” as we can choose the sets of
individual, relation, and function symbols, and their meanings. An interpretation of a first-
order language consists of a domain and a mapping of individual symbols to individuals in
the domain, m-ary relation symbols to m-ary relations on the domain, and n-ary function
symbols to n-ary functions on the domain.

For example, this thesis concerns the first-order languages using N or Z as a do-
main, with relations and functions being comparisons, addition, and automata representing
Fibonacci-automatic sequences.

9



Chapter 3

Balanced Binary Representation

As an introduction to our approach, here we discuss a representation related to, but not
as well known as, the familiar binary representation. We also prove its completeness and
unambiguity.

We start by considering the binary number system where every non-negative integer
can be uniquely represented as a sum of powers of 2, not considering leading zeros, as
follows:

[x]2 :=
∑
0≤i≤j

ai2
i, (3.1)

where ai ∈ {0, 1}. If we expand the allowed alphabet to ai ∈ {−1, 0, 1} and we impose
a rule stating that no two nonzero digits can appear consecutively in the representation,
then we obtain what is call the balanced binary representation [25] or BBR (also considered
by others including [23], [11], and [22] under different names). In Table 3.1, we give both
the binary and balanced binary representations, (n)2 and (n)BBR, for the first few natural
numbers. We use 1̄ to denote the digit −1 in the representation.

n 0 1 2 3 4 5 6 7 8 9 10 11

(n)2 ϵ 1 10 11 100 101 110 111 1000 1001 1010 1011
(n)BBR ϵ 1 10 101̄ 100 101 101̄0 1001̄ 1000 1001 1010 101̄01̄

Table 3.1: Examples of binary and balanced binary representations.

As a result of the expanded alphabet, not only the natural numbers but all integers

10



can be expressed: in Table 3.2, we give the balanced binary representations (n)BBR for the
first few negative integers.

n −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11

(n)BBR 1̄ 1̄0 1̄01 1̄00 1̄01̄ 1̄010 1̄001 1̄000 1̄001̄ 1̄01̄0 1̄0101

Table 3.2: Examples of balanced binary representations.

Theorem 2. The balanced binary representation is a complete and unambiguous numera-
tion system for all integers.

Proof. We first translate the rule disallowing consecutive nonzero digits into an automaton
via the following regular expression and definition.

reg bbrExclude {-1,0,1} ".*(1|[-1])(1|[-1]).*":

def bbr "~$bbrExclude(s)":

The resultant automaton bbr is displayed in Figure 3.1; it accepts a string s iff s is over
the alphabet {−1, 0, 1} and has no consecutive nonzero digits.

Figure 3.1: Automaton accepting valid balanced binary representations.

Then we consider how to make Walnut recognize the value of an arbitrary balanced
binary representation: we convert it to the binary representation using the fact that the
binary system is built into Walnut as the msd_2 number system.

To convert an arbitrary BBR string, we first pull it apart into two binary strings using
automata built with regular expressions. The automaton bbrPos takes two strings in
parallel as input: a string w over the alphabet {−1, 0, 1} and a string x over {0, 1}. And it
accepts iff x has a 1 everywhere w has a 1. The automaton bbrNeg takes the same input,

11



but it accepts iff x has a 1 everywhere w has a −1. Let s, u, and v be strings. If bbrPos
accepts s and u and bbrNeg accepts s and v, then we know the value of s is the difference of
the values of u and v. This is what we rely on to create the “conversion” automata displayed
in Figure 3.2: bbrEval_pos for translating the positive integers and bbrEval_neg for the
negative integers. Two are necessary because we use the msd_2 number system which
assumes that the domain of objects is the natural numbers. Both automata work for the
zero strings. The automaton bbrEval_pos takes two strings in parallel as input: a string
s over the alphabet {−1, 0, 1} and a number n in the binary representation. It accepts iff
s, evaluated according to Eq. (3.1) with the expanded alphabet ai ∈ {−1, 0, 1}, is equal
to n. The automaton bbrEval_neg takes the same input, but it accepts iff s, evaluated in
the same way, is equal to −n. We present the automata definitions as follows.

reg bbrPos {-1,0,1} msd_2 "([-1,0]|[0,0]|[1,1])*":

reg bbrNeg {-1,0,1} msd_2 "([-1,1]|[0,0]|[1,0])*":

def bbrEval_pos "?msd_2 Eu,v $bbrPos(s,u) & $bbrNeg(s,v) & z+v=u":

def bbrEval_neg "?msd_2 Eu,v $bbrPos(s,u) & $bbrNeg(s,v) & z+u=v":

(a) The DFA bbrEval_pos. (b) The DFA bbrEval_neg.

Figure 3.2: Automata for conversion to the binary representation.

Now we prove completeness by testing two statements in Walnut. The statement
bbrC_pos asserts that, for all non-negative integers n, there exists a string s such that
s is a valid balanced binary representation and s evaluates to n. The statement bbrC_neg
makes the same assertion except that s should evaluate to −n.

eval bbrC_pos "?msd_2 An Es $bbr(s) & $bbrEval_pos(s,n)":

# evaluates to TRUE, 17 ms

eval bbrC_neg "?msd_2 An Es $bbr(s) & $bbrEval_neg(s,n)":

# evaluates to TRUE, 2 ms

12



Before we can prove unambiguity, we need to create an automaton to test if two strings
over the alphabet {−1, 0, 1} are the same. We do so as follows.

reg same {-1,0,1} {-1,0,1} "([-1,-1]|[0,0]|[1,1])*":

To prove unambiguity, we again use two statements to cover all integers. Using bbrU_pos,
we assert that, for any non-negative integer n, there do not exist two different valid balanced
binary representations s and t such that both s and t evaluate to n. The statement
bbrU_neg makes the same assertion except that s and t should evaluate to −n.

eval bbrU_pos "?msd_fib ~En,s,t $bbr(s) & $bbr(t) & (~$same(s,t))

& $bbrEval_pos(s,n) & $bbrEval_pos(t,n)":

# evaluates to TRUE, 7 ms

eval bbrU_neg "?msd_fib ~En,s,t $bbr(s) & $bbr(t) & (~$same(s,t))

& $bbrEval_neg(s,n) & $bbrEval_neg(t,n)":

# evaluates to TRUE, 5 ms

This completes our proof that the balanced binary representation is complete and unam-
biguous for all integers.

We consider this example concerning the familiar binary number systems as an intro-
duction to our framework which will be detailed in the next chapter. The rest of our
work focuses on more exotic systems based on the Fibonacci numbers, as they yield more
interesting variations.

13



Chapter 4

Our Framework

In this chapter, we introduce our approach and discuss its theoretical underpinning and
complexity. We now state one of our main results.

Theorem 3. There is an algorithm that, given rules that specify which representations
are valid (in the form of a regular language L of all valid representations), will decide
if the corresponding numeration system based on the Fibonacci numbers is complete and
unambiguous for N.

Proof. Using Theorem 1, it suffices to express the properties of completeness and unam-
biguity as a first-order logic formula F . Once this is done, the decision algorithm can
determine if F is true or false.

Completeness says every integer has a representation in L. We can express this as
follows:

∀n ∃x x ∈ L ∧ [x]F = n, (4.1)

Unambiguity says that no integer has two distinct representations in L. We can express
this as follows:

¬∃x, y ∈ L (¬ equal(x, y)) ∧ [x]F = [y]F . (4.2)

Here equal means that x and y are the same, up to leading zeros.

These two statements above include operations checking:

1. the membership of an arbitrary string in a language (x ∈ L)

14



2. whether a string, evaluated according to Eq. (1.1), corresponds to a certain number
([x]F = n)

3. whether two strings are equal up to leading zeros (equal(x, y))

4. whether two numbers are equal ([x]F = [y]F )

5. whether two numbers add correctly.

For 4 and 5, we rely on automata discussed in [19]. For 3, we can construct such automata
in Walnut via regular expressions. For 2, we devote Chapter 5 to constructing automata for
such purposes. For 1, if the language L is regular, the membership test can be expressed
in a first-order language involving addition and automata. Therefore, completeness and
unambiguity are decidable.

Theorem 3 can be carried out mechanically with Walnut as follows.

• First, we define the language L of valid representations and construct a corresponding
automaton via a regular expression. This is used to implement the expressions x ∈ L
in Formula 4.1 and x, y ∈ L in Formula 4.2. The DFA bbr in Chapter 3 and greedy

in Chapter 6.1 are examples of such automata.

• Since L may not be a numeration system built into Walnut, we need a “converter”
automaton to translate between arbitrary representations and representations that
are recognized and can be processed by Walnut. This is necessary for implementing
the comparisons [x]F = n in Formula 4.1 and [x]F = [y]F in Formula 4.2. An
example of such “converter” automata are bbrEval_pos and bbrEval_neg we saw
in Chapter 3. And we will see many more examples related to the Fibonacci-based
numeration systems in Chapter 5, 7.2.1, 8, and 10.

• Lastly, we need to translate the first-order logical formulas asserting completeness and
unambiguity of L into Walnut code. Examples include the bbrC_pos and bbrU_neg

evaluation statements in Chapter 3 and farDiffC and farDiffU in Chapter 8.1. Our
proofs are completed as these evaluation statements return TRUE.

4.1 Algorithm Complexity

Now we discuss the complexity of our algorithm.

15



Theorem 4. Let S be an arbitrary numeration system. Let M be the automaton accepting
the regular language of all valid representations in S. We can check the unambiguity of S
in time polynomial in the number of states of M .

Consider the evaluation statement for unambiguity; we use our work from Chapter 3
as an example:

eval bbrU_pos "?msd_fib ~En,s,t $bbr(s) & $bbr(t) & (~$same(s,t))

& $bbrEval_pos(s,n) & $bbrEval_pos(t,n)":

Assume the automaton representing the rule, such as bbr, has n states. Intersecting two
copies of it with same, which has two states, and two copies of bbrEval_pos, each of
which also has two states, gives an automaton of 8n2 states. As we will see in Chapter 5,
the number of states of other kinds of “comparator” automata is fixed. Therefore the
conclusion of this analysis holds for other representations instead of just the example here.

Theorem 5. Let S be an arbitrary numeration system. There is an algorithm checking the
completeness of S, running in exponential time in the number of states of the automaton
representing the rules of S.

Consider the evaluation statement for completeness from Chapter 3:

eval bbrC_pos "?msd_2 An Es $bbr(s) & $bbrEval_pos(s,n)":

The universal quantifier in ∀n in Formula 4.1, implemented as An in the above evaluation
statement, is evaluated via subset construction under our approach. Since the subset
construction could, in principle, increase the size of an NFA with n states to a DFA with
2n states, this provides an exponential upper bound on the complexity of the algorithm.
It remains an open problem for us whether there exists a way to check the completeness
of a numeration system in polynomial time.

4.2 Finding a Representation

Once we prove that a regular language L provides a system that is complete, we can find
a representation in L for any particular number n efficiently in O(log n) time.

16



The first step is to represent n in the canonical form of a number system (n)C , for exam-
ple, (n)2 for binary number systems or the Zeckendorf representation (n)F for Fibonacci-
based number systems. This can be done using the greedy algorithm.

Let the converter automaton be M . We construct a new automaton from M using
two intersections. The first intersection is with an automaton with a first component that
belongs to L, while the second component is arbitrary. The second intersection is with an
automaton where the first component is arbitrary, and the second is of the form 0∗(n)C .
This gives a new automaton of O(log n) states, and it now suffices to find any accepting
path (a path from the initial state to the final state). This can be done in linear time in
the number of states using depth-first or breadth-first search. This gives us an O(log n)
algorithm to find a representation. Thus we have proved:

Theorem 6. Suppose L is a regular language. If L is complete, we can find a representation
for an integer n in O(log n) time.

Remark 7. Here we use the convention of the so-called “word RAM” model, where we
assume that n fits in a single machine word, or more generally that we can perform basic
operations on integers with O(log n) bits in unit time.

We will see more examples concerning Fibonacci-based number systems in later chap-
ters. Here we illustrate with an example of finding the balanced binary representation of
−27. We build a DFA:

def bbrN27 "?msd_2 $bbrEval_neg(s,x) & $bbr(s) & x=27":

The resultant DFA from this command of intersections is displayed in Figure 4.1. The
accepted inputs are [s = 0n(−27)BBR, x = 0n(27)2] where n ≥ 0. 0n denotes n copies of
0 concatenated together. Thus finding any accepting path gives the valid balanced binary
representation of −27 as −100101. Notice x is positive because the converter automaton
we use is bbrEval_neg which evaluates s against the negated value of x; see Chapter 3 for
its detailed definition.

Figure 4.1: Automaton showing −27 in balanced binary representation.

17



Chapter 5

Converter Automata

As we discussed in Chapter 4, a crucial step in our proof is translating numbers in arbitrary
representations into representations that are recognized and can be processed by Walnut.
We build converter automata for this purpose. In this chapter we go into detail about
these automata.

Two Fibonacci-based numeration systems are built into Walnut: Zeckendorf and ne-
gaFibonacci. To test an arbitrary Fibonacci representation for completeness and unambi-
guity, we need to “convert” it to either the Zeckendorf or negaFibonacci representation.
To be more precise, the conversion is done via a comparison of numbers in two differ-
ent representations. We start with focusing on the conversion to negaFibonacci because
Zeckendorf can only be used to represent the natural numbers. Furthermore, the conver-
sion to Zeckendorf requires a much simpler automaton and a significantly shorter proof of
correctness.

5.1 Conversion to the NegaFibonacci Representation

We first introduce the negaFibonacci representation in more detail. Bunder [9] invented
it as a numeration system representing all integers, instead of just the natural numbers.
In this system, we write integers as a sum of distinct Fibonacci numbers with negative
indices, subject to the condition that no two consecutive Fibonacci numbers can be used.
Let x = at · · · a1 be a string (or word) over {0, 1}. We define its value as a negaFibonacci
representation as follows:

[x]NF :=
∑
1≤i≤t

aiF−i. (5.1)

18



Note that these strings are in “most-significant-digit” first format. For example, [1001]NF =
F−4+F−1 = −3+1 = −2. Since F−n = (−1)n+1Fn for n ∈ N, this is the same as enforcing
the requirement in a Fibonacci representation atFt + · · ·+ a1F1 with digits ai ∈ {−1, 0, 1},

(a) only the terms with odd indices are allowed to be positive,

(b) only the terms with even indices are allowed to be negative, and

(c) no two consecutive nonzero digits can appear.

This requirement guarantees that the representation is complete and unambiguous. We
give two tables of negaFibonacci representations of integers: the first few natural numbers
are given in Table 5.1 and the first few negative integers are given in Table 5.2. We use 1̄
to denote the digit −1 in the representation.

n 0 1 2 3 4 5 6 7 8 9 10

(n)NF ϵ 1 100 101 1001̄0 10000 10001 10100 10101 1001̄01̄0 1001̄000

Table 5.1: Examples of negaFibonacci representations for non-negative integers.

n −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

(n)NF 1̄0 1̄001 1̄000 1̄01̄0 1̄00101 1̄00100 1̄00001 1̄00000 1̄0001̄0 1̄01̄001

Table 5.2: Examples of negaFibonacci representations for negative integers.

For conversions to the negaFibonacci representation, we use a converter automaton of
53 states, fsc. We “guessed” its composition following the techniques described in [27,
Chap. 5.6] using a variant of the Myhill-Nerode theorem. The automaton fsc takes two
inputs in parallel:

1. a string s over the alphabet {−1, 0, 1}, and

2. a number n in negaFibonacci representation.

The automaton fsc accepts iff s, evaluated according to Eq. (1.1), is equal to n. Now we
prove the correctness of our “guess”.

19



Theorem 8. The converter automaton fsc is correct.

Proof. There are three parts to this proof. We need to show that:

1. for every string s over the alphabet {−1, 0, 1}, there exists a number n such that fsc
accepts the pair (s, n),

2. for every string s, there exists only one number n such that the pair is accepted, and

3. every string s is accepted with the correct number n.

Before we can prove the first point, we need to consider that, when an automaton accepts
multiple inputs in parallel, the shorter one is always padded to make both inputs have the
same length. The same number in different representations can have different lengths; for
example, recall the Brown representation of 9 from Chapter 1, (9)B = 1101, has three fewer
digits than (9)NF = 1001̄01̄0. So for the string (9)B to be accepted with (9)NF, we need
to pad (9)B with three zeros. We are not concerned about the case where the arbitrary
representation string is longer than the negaFibonacci string because the negaFibonacci
representation is built into Walnut and it is padded with zeros automatically as needed.
Therefore we prove the first point, only for the strings that start with at least three zeros,
in Walnut as follows.

reg three0s {-1, 0, 1} "000.*":

eval existn "As $three0s(s) => En $fsc(s,n)":

# evaluates to TRUE

# 2 ms

For the second point, we assert the following:

¬∃s,m, n fsc(s,m) ∧ fsc(s, n) ∧m ̸= n.

This translates into Walnut as follows.

eval onlyn "~Es,m,n $fsc(s,m) & $fsc(s,n) & m!=n":

# evaluates to TRUE

# 20 ms

20



For the third point, we proceed by induction on the number of nonzero terms in s. Let
sk+1 be a string with k + 1 nonzero terms. We assume sk is sk+1 without its most sig-
nificant nonzero term or the leftmost term. Let (sk+1,m) and (sk, n) be string-number
pairs accepted by fsc. Let x be a number in the Fibonacci representation that records
the absolute difference between m and n. Therefore (x)F contains only one 1 which is
the difference between sk and sk+1. And (x)F shifted one position to the left equal either
(m−n)NF or (n−m)NF. To assert this relation, we build the automaton fibToNeg. It takes
two arguments in parallel: a number u in Fibonacci and a number v in NegaFibonacci. It
accepts iff (u)F has only one 1 and (u)F shifted one position to the left equal (v)NF.

reg fibToNeg msd_fib msd_neg_fib "[0,0]*[0,1][1,0][0,0]*":

Now, to prove that x records the correct difference, we have four cases to consider. Since
m and n are expressed in NegaFibonacci and x is in Fibonacci, we need to differentiate
based on if the leftmost term of sk+1 is a 1 or −1 and if the leftmost term is followed by
an odd or even number of terms.

1. If the leftmost term of sk+1 is a 1 followed by an odd number of terms, we use the
following regular expression to assert how sk+1, sk, and (x)F are related:

reg diff1odd {-1, 0, 1} {-1, 0, 1} msd_fib

"[0,0,0]*[1,0,1]([0,0,0]|[1,1,0]|[-1,-1,0])

(([0,0,0]|[1,1,0]|[-1,-1,0])([0,0,0]|[1,1,0]|[-1,-1,0]))*":

In this case, (x)F shifted one position to the left should equal (m−n)NF; we test this
as follows.

eval correct1odd "As,t ?msd_fib Ax ?msd_neg_fib Am,n

($diff1odd(s,t,x) & $fsc(s,m) & $fsc(t,n)) => $fibToNeg(x, m-n)":

# evaluates to TRUE, 30 ms

2. If the leftmost term is a −1 followed by an odd number of terms, then the shifted
(x)F should equal (n −m)NF. We assert how sk+1, sk, and (x)F are related in this
case and test (x)F as follows.

21



reg diffN1odd {-1, 0, 1} {-1, 0, 1} msd_fib

"[0,0,0]*[-1,0,1]([0,0,0]|[1,1,0]|[-1,-1,0])

(([0,0,0]|[1,1,0]|[-1,-1,0])([0,0,0]|[1,1,0]|[-1,-1,0]))*":

eval correctN1odd "As,t ?msd_fib Ax ?msd_neg_fib Am,n

($diffN1odd(s,t,x) & $faut2(s,m) & $faut2(t,n)) => $fibToNeg(x, n-m)":

# evaluates to TRUE, 42 ms

We see that, to handle the different cases, we only need to change the regular ex-
pression asserting the relationship of sk+1, sk, and (x)F as well as the arguments to
fibToNeg.

3. If the leftmost term is a 1 followed by an even number of terms, then the shifted (x)F
should equal (n−m)NF. We test this case as follows.

reg diff1even {-1, 0, 1} {-1, 0, 1} msd_fib

"[0,0,0]*[1,0,1](([0,0,0]|[1,1,0]|[-1,-1,0])

([0,0,0]|[1,1,0]|[-1,-1,0]))*":

eval correct1even "As,t ?msd_fib Ax ?msd_neg_fib Am,n

($diff1even(s,t,x) & $faut2(s,m) & $faut2(t,n)) => $fibToNeg(x, n-m)":

# evaluates to TRUE, 41 ms

4. If the leftmost term is a −1 followed by an even number of terms, then the shifted
(x)F should equal (m− n)NF. We test this case as follows.

reg diffN1even {-1, 0, 1} {-1, 0, 1} msd_fib

"[0,0,0]*[-1,0,1](([0,0,0]|[1,1,0]|[-1,-1,0])

([0,0,0]|[1,1,0]|[-1,-1,0]))*":

eval correctN1even "As,t ?msd_fib Ax ?msd_neg_fib Am,n

($diffN1even(s,t,x) & $faut2(s,m) & $faut2(t,n)) => $fibToNeg(x, m-n)":

# evaluates to TRUE, 44 ms

Finally, we establish the base case that strings of only zeros are accepted as 0 as follows.

22



reg only0s {-1, 0, 1} "0*":

eval baseCase "As $only0s(s) => $fsc(s,0)":

# evaluates to TRUE, 20 ms

This completes our induction proof. Therefore every s is accepted with the correct n and
fsc is correct.

5.2 Decomposition of fsc

To better comprehend the 53-state-automaton fsc, we try to build it piece by piece from
smaller automata. Recall the two inputs to fsc: let t be a string over {−1, 0, 1} and z be
a number in the negaFibonacci representation. We consider how t can be converted to z
as follows.

The first step is to shift t one position to the left since t is evaluated according to
Eq. (1.1) whereas the negaFibonacci representation makes use of F1. We build a “shifter”
automaton called lshift and display it in Figure 5.1. The command lshift(t,s) guar-
antees the string s as t shifted one position to the left.

Figure 5.1: Left shifter automaton.

Now we consider how we can convert the shifted string s to fulfil the three requirements
of the negaFibonacci representation:

1. only the terms with odd indices are allowed to be positive,

2. only the terms with even indices are allowed to be negative, and

3. no two consecutive nonzero digits can appear.

23



Consider the following strategy of pulling apart s into four valid negaFibonacci represen-
tations u, v, i and j.

1. We use the automaton decompEven1, built using a regular expression, and the com-
mand decompEven1(s,u) to obtain a string u. The string u has a 1 everywhere s
has a 1 with an even index. However, the value of u, evaluated as a negaFibonacci
representation, is the negated value of the 1’s with even indices in s.

reg decompEven1 {-1,0,1} msd_neg_fib "[0,0]*|([0,0]*

([-1,0]|[0,0]|[1,0])(([1,1]|[-1,0]|[0,0])([-1,0]|[0,0]|[1,0]))*)":

2. Similarly, we use decompOddN1(s,v) to ensure that the string v has a 1 everywhere
s has a −1 with an odd index. Like u, the value of v needs to be negated for the
same reason.

reg decompOddN1 {-1,0,1} msd_neg_fib "[0,0]*|([0,0]*

([-1,1]|[0,0]|[1,0])(([-1,0]|[0,0]|[1,0])([-1,1]|[0,0]|[1,0]))*)":

3. Following the same idea, decompCopyEven(s,i) (decompCopyOdd(s,j)) ensures that
the string i (j) has a 1 everywhere s has a −1 (1) with an even (odd) index. Notice
the values of i and j do not need to be negated since they, evaluated as negaFibonacci
representations, already represent the values of the digits they picked out from s.

reg decompCopyEven {-1,0,1} msd_neg_fib "[0,0]*|([0,0]*

([-1,0]|[0,0]|[1,0])(([-1,1]|[0,0]|[1,0])([-1,0]|[0,0]|[1,0]))*)":

reg decompCopyOdd {-1,0,1} msd_neg_fib "[0,0]*|([0,0]*

([1,1]|[-1,0]|[0,0])(([-1,0]|[0,0]|[1,0])([1,1]|[-1,0]|[0,0]))*)":

For the reason discussed above, now we consider how to negate the values of u and
v. We build an equality checker automaton nfequal displayed in Figure 5.2. It takes two
negaFibonacci representations m and n in parallel as input and accepts iff [m]NF = −[n]NF.
As an example, consider the input [1, 0][0, 1][0, 0][0, 1] to nfequal, whose first components
spell out m = 1000 and whose second components spell out n = 0101. Given this input,
the automaton visits, starting in state 0, successively, states 1, 3, 4, and 3 and accepts.

24



Therefore m should evaluate to the negated value of n. Indeed we have [m]NF = F−4 =
−3 = −(F−3 + F−1) = −[n]NF. The commands nfequal(u,x) and nfequal(v,y) ensure
that x and y are the negated values of u and v, respectively.

def nfequal "?msd_neg_fib a=0-b":

Figure 5.2: Equality checking automaton.

Finally, we construct z as the sum of x, y, i, and j. We code the entire process in the
Walnut code below which creates a 55-state automaton legofsc. It takes the following in
parallel as input:

1. a string s over the alphabet {−1, 0, 1}, and

2. a number n in negaFibonacci representation.

The automaton legofsc accepts only if s, evaluated according to Eq. (1.1), is equal to n.
Recall that our goal is to have legofsc function the same as fsc. However, notice that
legofsc has two more states than fsc does. The effect of this is that fsc accepts every
pair of [s, n] input legofsc accepts, but not the other way around. If a pair of [s, n] input
is accepted by fsc but not legofsc, then the s is nonempty and has at most one leading
zero. We prove that, as long as the string input s in [s, n] starts with at least two zeros,
then legofsc and fsc are equivalent. Since representations are not differentiated by the
number of leading zeros, for the purpose of this thesis, legofsc is equivalent to fsc and
we have accomplished what we set out to do.

def legofsc "?msd_neg_fib Es,u,v,x,y,i,j $lshift(t,s)

& $decompEven1(s,u) & $decompOddN1(s,v) & $nfequal(u,x) & $nfequal(v,y)

& $decompCopyEven(s,i) & $decompCopyOdd(s,j) & z=x+y+i+j":

25



reg two0s {-1, 0, 1} "00.*":

eval fscEq "At,z $two0s(t) =>

($legofsc(t,z) => $fsc(t,z)) & ($fsc(t,z) => $legofsc(t,z))":

# evaluates to TRUE, 11 ms

5.3 Conversion to the Zeckendorf Representation

To convert from an arbitrary Fibonacci representation to the Zeckendorf representation,
we observe the following:

Proposition 9. We can convert a binary string x to a Zeckendorf representation y for
the same number using the following algorithm: first append a 0 on the front, if necessary.
Then scan the string from left to right, replacing each occurrence of “ 011” successively
with “ 100”.

Proof. Each such replacement does not change the value of [x]F given how Fibonacci
numbers are composed. The algorithm terminates because each replacement lowers the
total number of 1’s by 1. Finally, the algorithm cannot result in two consecutive 1’s,
because it introduces two consecutive 0’s, only the second of which can later change to a
1.

We implement this idea as a DFA fcanon that takes two inputs in parallel:

1. a string s over the alphabet {0, 1}, and

2. a number n in Zeckendorf representation.

The automaton fcanon accepts if s, evaluated according to Eq. (1.1), is equal to n. The
automaton keeps track of [x′]F − [y′]F for the prefix x′ of x seen so far, and similarly for
the prefix y′ of y seen so far. Note that we assume that x and y have the same length, with
the shorter of the two prefixed by leading zeros, if necessary. It is depicted in Figure 5.3.
This automaton was given by Berstel [3] in a slightly different form. Also see [26].

As an example, consider the input [0, 1][1, 0][1, 0][1, 1][0, 0] to fcanon, whose first com-
ponents spell out x = 01110 and whose second components spell out y = 10010. Starting
in state 0, the automaton visits, successively, states 1, 2, 0, 3, 0, and hence accepts—as it
should, since [x]F = [y]F .

26



Figure 5.3: DFA fcanon for conversion to the Zeckendorf representation.

27



Chapter 6

Representation of Natural Numbers
Using Digits 0 and 1 Only

In this chapter we consider representations of the natural numbers by Fibonacci numbers
using digits 0 and 1 only.

6.1 Zeckendorf Representation: The Canonical Form

Recall that the definition of the Zeckendorf representation can be seen as a rule stating
that a valid representation is over the alphabet {0, 1} with no consecutive 1’s. We write
the following regular expression to create an automaton greedy accepting only the strings
that can be valid Zeckendorf representations.

reg negExclude {-1,0,1} ".*[-1].*":

reg greedyExclude {-1,0,1} ".*11.*":

def greedy "~$greedyExclude(s) & ~$negExclude(s)":

We display greedy in Figure 6.1. Notice the DFA greedy is defined over the alphabet
{−1, 0, 1} even though any valid representation is over {0, 1}. This is because greedy

needs to work with the converter automaton fsc, as defined in Chapter 5.1, to prove the
completeness and unambiguity of the Zeckendorf representation, and fsc is defined over
{−1, 0, 1}. By including the expression ~$negExclude(s), the DFA greedy is effectively
defined over {0, 1}.

28



Figure 6.1: DFA for Zeckendorf’s greedy representation.

We test the completeness and unambiguity of the Zeckendorf representation as follows.

eval zeckendorfC "?msd_neg_fib An n>=0 => Es $fsc(s,n) & $greedy(s)":

# evaluates to TRUE, 20 ms

eval zeckendorfU "~En,s,t $greedy(s) & $greedy(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 13 ms

These Walnut commands are direct translations of Formula 4.1 and Formula 4.2. We add
the n>=0 restriction in the completeness evaluation statement because the msd_neg_fib

number system is used and it assumes that the domain of objects is all integers; we choose
the msd_neg_fib number system so that n can be properly processed by fsc. As both
statements evaluate to TRUE, we prove that the Zeckendorf representation is complete and
unambiguous.

6.2 Brown’s “Lazy” Representation

Now we consider the Brown representation. Recall that its definition can be seen as a rule
stating that any valid representation cannot have consecutive 0’s.1 We define the following
DFA that accepts only the regular language made of strings abiding by that rule.

reg lazyExclude {-1,0,1} "0*1([-1]|0|1)*00([-1]|0|1)*":

def lazy "~$lazyExclude(s) & ~$negExclude(s)":

1This rule does not concern the leading zeros. In general, the rules / conditions imposed by represen-
tations do not concern the leading zeros.

29



We evaluate the completeness and unambiguity of the Brown representation using similar
statements as what we have seen for Zeckendorf.

eval brownC "?msd_neg_fib An n>=0 => Es $fsc(s,n) & $lazy(s)":

# evaluates to TRUE, 9 ms

eval brownU "?msd_neg_fib ~En,s,t $lazy(s) & $lazy(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 12 ms

As both statements evaluate to TRUE, we proved that the Brown representation is a perfect
system. Note that this conclusion can be proved in another way using the converter
automaton fcanon instead of fsc. To do that, we modify the definition of lazy, as the
alphabet it is defined over needs to agree with the alphabet of fcanon. Note that both
definitions of the DFA lazy give the same transition diagram shown in Figure 6.2. Then
we check the completeness and unambiguity of the Brown representation using fcanon as
follows.

Figure 6.2: DFA for Brown’s lazy representation.

reg lazyExclude {0,1} "0*1(0|1)*00(0|1)*":

def lazy "~$lazyExclude(s)":

reg equal {0,1} {0,1} "([0,0]|[1,1])*":

eval brownC "?msd_fib An Es $fcanon(s,n) & $lazy(s)":

eval brownU "?msd_fib ~En,s,t $lazy(s) & $lazy(t) & (~$equal(s,t))

& $fcanon(s,n) & $fcanon(t,n) ":

Again, both return TRUE. Here we use equal to check whether two binary strings over
{0, 1} are the same.

30



From comparing the two sets of definition and statements, we can tell that fcanon

is a better fit for Brown’s representation even though the advantage is not great due to
the simplicity of the representation. As we will see in later sections, the advantage of
choosing a suitable converter automaton becomes more pronounced when dealing with
more complicated representations. Several factors impact this decision:

• One concerns whether the alphabet of the representation underlying the converter
agree with that of the representation our proofs are about. For our example here,
Brown’s representation uses the same binary alphabet fcanon uses, and that consis-
tency simplifies the definition of lazy.

• The other factor concerns whether the converter can accept the same range of num-
bers as the definition DFA. In our example above, the negaFibonacci representation
underlying fsc can represent all integers, whereas Brown’s representation is for only
the natural numbers. That is why the completeness assertion can omit n>=0 with
the use of fcanon.

• One additional consideration is the level of complexity of the converter automata: fsc
has 49 more states than fcanon and therefore requires a much longer and complicated
proof of correctness.

With the proven completeness of Brown’s representation, we give an example of find-
ing the Brown representation for a particular number, say 17, to echo the discussion in
Chapter 4.2. We define the following DFA.

def brown17 "?msd_fib $fcanon(s,x) & $lazy(s) & x=17":

The DFA brown17 takes two parallel inputs: [s = 0∗(17)B, x = 0∗(17)F ] and is displayed
in Figure 6.3. Following its transitions, we find our answer (17)B = 11101.

Figure 6.3: Automaton showing 17 in the Brown representation.

31



6.3 A New Representation: EPAS

In addition to shortening proofs about established systems, our approach can test new
systems efficiently. Here we turn to a new system for representing natural numbers we
call EPAS (even-prefix, alternating suffix). In this system, a representation is valid if it
can be broken into two parts: a (possibly empty) prefix that has all its runs of 1’s of even
length, and a (possibly empty) suffix that looks like 101010 · · · (which can end in either 0
or 1). The first few valid representations (n)EPAS are given in Table 6.1. We display the
automaton accepting only valid EPAS representations in Figure 6.4.

n 1 2 3 4 5 6 7 8 9 10 11 12
(n)EPAS 1 10 11 101 110 111 1010 1100 1101 1110 1111 10101

Table 6.1: Examples of EPAS representations.

Figure 6.4: Automaton for the new system EPAS.

Theorem 10. Let L = (0|11)∗(10)∗(1|ϵ). Then L is complete and unambiguous for Fi-
bonacci representations.

Proof. We use the following Walnut code:

reg epas {0,1} "(0|11)*(10)*(1|())":

eval epasC "?msd_fib An Ex $epas(x) & $fcanon(x,n)":

eval epasU "?msd_fib ~En,x,y $epas(x) & $epas(y) & (~$equal(x,y))

& $fcanon(x,n) & $fcanon(y,n)":

And both return TRUE.

This example shows how simple it is to test a new proposed representation for com-
pleteness and unambiguity.

32



Chapter 7

Representation of Natural Numbers
Using Digits −1, 0 and 1

We now turn to representations using digits −1, 0, and 1 in the Fibonacci system. Recently,
Hajnal [12] described three Fibonacci representations using Eq. (1.1) to associate a string
s = etet−1 · · · e2 ∈ {−1, 0, 1}∗ with a natural number n: alternating, even, and odd. Using
induction and case-based arguments, he proved that each of these three representations is
complete and unambiguous.

Using automata, we can replace his rather long arguments with our general approach.
We first describe each of his systems, and show that the set of valid representations for all
natural numbers is a regular language.

7.1 Representation Definitions

7.1.1 Hajnal’s Alternating Representation

The alternating representation requires a representation to fulfill four conditions:

1. the most significant nonzero term is positive,

2. two adjacent nonzero terms cannot be of the same sign,

3. two adjacent nonzero terms have at least one zero in between, and

33



4. if there are two or more nonzero terms, then there have to be at least two zeros
between the last and the second-last nonzero terms.

We denote a number n in this representation as (n)ALT and give the first few valid repre-
sentations in Table 7.1 where 1̄ is used for −1.

n 1 2 3 4 5 6 7 8 9 10 11

(n)ALT 1 10 100 1001̄ 1000 1001̄0 10001̄ 10000 101̄001 1001̄00 10001̄0

Table 7.1: Examples of alternating representations.

We use the following Walnut code to implement the four conditions of the alternating
representation:

reg altInclude1 {-1,0,1} "(0*|0*1.*)":

reg altExclude1 {-1,0,1} ".*(10*1|[-1]0*[-1]).*":

reg altExclude2 {-1,0,1} ".*(1[-1]|[-1]1).*":

reg altInclude2 {-1,0,1} "(0*|0*10*|0*[-1]0*|.*(100+[-1]|[-1]00+1)0*)":

def alt "$altInclude1(s) & ~$altExclude1(s) & ~$altExclude2(s)

& $altInclude2(s)":

The result is an automaton of 12 states that checks whether an input over the alphabet
{−1, 0, 1} is alternating, and is illustrated in Figure 7.1.

Figure 7.1: DFA for the alternating conditions.

34



7.1.2 Hajnal’s Even Representation

The even representation requires three conditions:

1. the most significant nonzero term is positive,

2. only positions indexed with even numbers, such as e2, can have nonzero terms, and

3. two adjacent nonzero terms cannot both be −1.

We denote a number n in this representation as (n)E and show valid representations in
Table 7.2.

n 1 2 3 4 5 6 7 8 9 10 11

(n)E 1 101̄ 100 101 101̄00 101̄01 10001̄ 10000 10001 10101̄ 10100

Table 7.2: Examples of even representations.

reg evenInclude1 {-1,0,1} "(0*|0*1.*)":

reg evenInclude2 {-1,0,1} "0*|0*.(0.)*":

reg evenExclude {-1,0,1} ".*[-1]0*[-1].*":

def even "$evenInclude1(s) & $evenInclude2(s) & ~$evenExclude(s)":

This gives us a 5-state automaton to check the even condition, which is illustrated in
Figure 7.2.

Figure 7.2: DFA for the even conditions.

35



7.1.3 Hajnal’s Odd Representation

The odd representation adds an epsilon term to the sum in Eq. (1.1), therefore associating
a string etet−1 · · · e2ϵ, where ϵ ∈ {−1, 0}, with a number n. The odd representation requires
the string to meet three conditions:

1. the most significant nonzero term is positive,

2. only positions indexed with odd numbers (such as e3) and the epsilon term are allowed
to be nonzero, and

3. two adjacent nonzero terms cannot both be −1.

We denote a number n in this representation as (n)O. We give in Table 7.3 the first few
valid representations with the last digit in the representation being the ϵ term.

n 1 2 3 4 5 6 7 8 9 10

(n)O 1 100 101̄00 10001̄ 10000 10101̄ 10100 101̄0000 101̄0101̄ 101̄0100

Table 7.3: Examples of odd representations.

We express the odd representation conditions in Walnut as follows. Notice we relax
the third condition (required in [12]) slightly by limiting its application to only the string
etet−1 · · · e2 without the ϵ term.

reg oddInclude1 {-1,0,1} "(0*|0*1.*)":

reg oddInclude2 {-1,0,1} "0*|0*(.0)*":

reg oddExclude {-1,0,1} ".*[-1]0*[-1].*":

def odd "$oddInclude1(s) & $oddInclude2(s) & ~$oddExclude(s)":

This gives us a 5-state automaton to check the odd condition, which is illustrated in
Figure 7.3.

36



Figure 7.3: DFA for the odd conditions.

7.2 Proof of Completeness and Unambiguity

It now remains to use our technique to show that these representations proposed by Hajnal
are all complete and unambiguous.

7.2.1 Proof Using fcanon as Converter

Our approach relies on the converter automaton fcanon with an added layer in order to
process strings over {−1, 0, 1}. We construct such an automaton as follows. The idea is
to use one automaton to “select” the positive digits of a representation, another one to
“select” the negative digits, and then do an (implicit) subtraction to obtain the value of
the representation.

reg posdigits {-1,0,1} {0,1} "([1,1]|[-1,0]|[0,0])*":

reg negdigits {-1,0,1} {0,1} "([-1,1]|[1,0]|[0,0])*":

def fcanon2 "?msd_fib Et,u,w,s $negdigits(x,t) & $posdigits(x,u)

& $fcanon(t,w) & $fcanon(u,s) & z+w=s":

This gives a 24-state automaton fcanon2, the analogue of fcanon, for doing the conversion.

Let us now check that the alternating representation of Hajnal is both complete and
unambiguous.

eval altRepC "?msd_fib An Es $fcanon2(s,n) & $alt(s)":

# evaluates to TRUE, 4 ms

eval altRepU "?msd_fib ~En,s,t $alt(s) & $alt(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

# evaluates to TRUE, 41 ms

37



Similarly, we can check the even and odd representations, as follows:

eval evenRepC "?msd_fib An Es $fcanon2(s,n) & $even(s)":

# evaluates to TRUE, 1 ms

eval evenRepU "?msd_fib ~En,s,t $even(s) & $even(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

# evaluates to TRUE, 4 ms

eval oddRepC "?msd_fib An

(Es $fcanon2(s,n) & $odd(s)) | (Et $fcanon2(t,n+1) & $odd(t))":

# evaluates to TRUE, 7 ms

eval oddRepU "~En,s,t $odd(s) & $odd(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

# evaluates to TRUE, 4 ms

This completes our proof that all three systems of Hajnal are complete and unambiguous.

Remark 11. We noticed, by testing the following, that this representation is also complete
if ϵ ∈ {1, 0} instead of ϵ ∈ {−1, 0} as required in [12].

eval oddRepC1 "?msd_fib An

(Es $fcanon2(s,n) & $odd(s)) | (Et $fcanon2(t,n-1) & $odd(t))":

# evaluates to TRUE, 4 ms

7.2.2 Proof Using fsc as Converter

We can also check the completeness and unambiguity of the alternating representation as
follows.

eval altRepC "?msd_neg_fib An n>=0 => Es $fsc(s,n) & $alt(s)":

# evaluates to TRUE, 9 ms

eval altRepU "?msd_neg_fib ~En,s,t $alt(s) & $alt(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 83 ms

38



Notice that with fsc we do not need to construct an analogue like fcanon2, since the alter-
nating representation (and the other two Hajnal representations) and the negaFibonacci
representation use the same alphabet. On the other hand, we need to bound the n in
the completeness evaluation statement to n>=0 due to the number system in use, as we
explained in Chapter 6.1. We use the following statements to evaluate the even and odd
representations with fsc.

eval evenRepC "?msd_neg_fib An n>=0 => Es $fsc(s,n) & $even(s)":

# evaluates to TRUE, 7 ms

eval evenRepU "?msd_neg_fib ~En,s,t $even(s) & $even(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 10 ms

eval oddRepC "?msd_neg_fib An n>=0 =>

(Es $fsc(s,n) & $odd(s)) | (Et $fsc(t,n+1) & $odd(t))":

# evaluates to TRUE, 12 ms

eval oddRepU "?msd_neg_fib ~En,s,t $odd(s) & $odd(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 6 ms

7.3 Extending the Representations

Now we consider an interesting property of the alternating representation—it is easy to
negate a number. All we need to do is to change the sign of each nonzero digit in a
representation. For example, (6)ALT = 1001̄0 and the string 1̄0010 would evaluate to −6
according to Eq. (1.1). Notice the string 1̄0010 follows all but the first conditions in the
definition of the alternating representation: the most significant nonzero term is positive.
This condition is also present in the definitions for the even and odd representations.
Therefore we are interested in the effect of omitting this condition from all three definitions.
We show that the modified representations become complete and unambiguous for all
integers instead of just the natural numbers. We modify the representation definition
automata as follows.

def altInt "~$altExclude1(s) & ~$altExclude2(s) & $altInclude2(s)":

def evenInt "$evenInclude2(s) & ~$evenExclude(s)":

39



def oddInt "$oddInclude2(s) & ~$oddExclude(s)":

We prove that these three modified representations are complete for all integers as follows.
Note that we no longer need the n>=0 qualification.

eval altIntC "?msd_neg_fib An Es $fsc(s,n) & $altInt(s)":

# evaluates to TRUE, 3 ms

eval evenIntC "?msd_neg_fib An Es $fsc(s,n) & $evenInt(s)":

# evaluates to TRUE, 1 ms

eval oddIntC "?msd_neg_fib An Es

($fsc(s,n) & $oddInt(s)) | (Et $fsc(t,n+1) & $oddInt(t))":

# evaluates to TRUE, 5 ms

eval oddIntC1 "?msd_neg_fib An Es

($fsc(s,n) & $oddInt(s)) | (Et $fsc(t,n-1) & $oddInt(t))":

# evaluates to TRUE, 5 ms

Recall Remark 11, here we notice the same thing: the modified odd representation is
complete with either ϵ ∈ {−1, 0} (the condition in [12]) or ϵ ∈ {1, 0}. This is intriguing
because negation via simply changing the signs of nonzero terms would require the alphabet
of ϵ to be {−1, 0, 1}. For example, the negation of (6)O = 10101̄, with the last digit
ϵ = −1, is 1̄01̄01 where the last digit shows ϵ = 1. Therefore our intuition gained from the
alternating representation example does not apply. Out of interest, we construct a DFA,
displayed in Figure 7.4, which reveals the modified odd representation of −6 as 1̄010100
where ϵ = 0.

def oddIntN6 "?msd_neg_fib $fsc(s,x) & $oddInt(s) & x+6=0":

Figure 7.4: Automaton showing −6 in the modified odd representation.

Now we prove the unambiguity of the modified representations.

40



eval altIntU "?msd_neg_fib ~En,s,t $altInt(s) & $altInt(t)

& (~$same(s,t)) & $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 36 ms

eval evenIntU "?msd_neg_fib ~En,s,t $evenInt(s) & $evenInt(t)

& (~$same(s,t)) & $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 6 ms

eval oddIntU "?msd_neg_fib ~En,s,t $oddInt(s) & $oddInt(t) & (~$same(s,t))

& $fsc(s,n) & $fsc(t,n)":

# evaluates to TRUE, 5 ms

As all evaluations return TRUE, all three modified representations are complete and unam-
biguous for all integers.

41



Chapter 8

Representation for All Integers

In this chapter, we investigate two different ways to represent all integers (not just the
natural numbers) using Fibonacci representations.

8.1 Alpert Representation: Using Digits −1, 0, and 1

Alpert [1] described a far-difference representation for Fibonacci numbers that writes every
integer with a Fibonacci numeration system using the digits −1, 0, 1. In Alpert’s system,
the far-difference representation requires the string to have

1. at least three zeros between any two nonzero terms of the same sign, and

2. at least two zeros between any two nonzero terms of different signs.

We use (n)A to denote a number n in this representation; see examples in Table 8.1.

n 1 2 3 4 5 6 7 8 9 10 11

(n)A 1 10 100 1001̄ 1000 1001̄0 10001̄ 10000 10001 1001̄00 10001̄0

Table 8.1: Examples of Alpert’s far-difference representations.

One nice feature of Alpert’s system is that it is very easy to negate an integer: all
we have to do is change the sign of each digit. This is reminiscent of our discussion in
Chapter 7.3. We express the far-difference representation conditions in Walnut as follows.

42



reg exclude1 {-1,0,1} ".*([-1][-1]|[-1]0[-1]|[-1]00[-1]|11|101|1001).*":

reg exclude2 {-1,0,1} ".*([-1]1|1[-1]|10[-1]|[-1]01).*":

def alpert "~$exclude1(s) & ~$exclude2(s)":

This gives a 7-state automaton that checks the Alpert conditions, as illustrated in Fig-
ure 8.1.

Figure 8.1: DFA for Alpert’s far-difference representation.

As in the last sections, we check completeness and ambiguity with two different com-
parator automata. Using fcanon, we first construct fcanon2 as discussed in Chapter 7.2.1.
Additionally, since we have to check positive and negative integers separately, we need an
automaton fcanon2_neg that takes a string x over the alphabet {−1, 0, 1} and a natural
number n ≥ 0 in parallel as inputs and accepts if and only if [x]F = −n.

def fcanon2_neg "?msd_fib Et,u,w,s $negdigits(x,t) & $posdigits(x,u)

& $fcanon(t,w) & $fcanon(u,s) & z+s=w":

We can then prove the completeness and unambiguity of this system as follows.

eval farDiffC_pos "?msd_fib An Es $fcanon2(s,n) & $alpert(s)":

eval farDiffC_neg "?msd_fib An Es $fcanon2_neg(s,n) & $alpert(s)":

# both evaluate to TRUE, 3 ms

eval farDiffU_pos "?msd_fib ~En,s,t $alpert(s) & $alpert(t)

& (~$same(s,t)) & $fcanon2(s,n) & $fcanon2(t,n)":

43



eval farDiffU_neg "?msd_fib ~En,s,t $alpert(s) & $alpert(t)

& (~$same(s,t)) & $fcanon2_neg(s,n) & $fcanon2_neg(t,n)":

# both evaluate to TRUE, 9 ms

This concludes our proof, using fcanon, of the completeness and unambiguity of Alpert’s
conditions.

With the use of fsc, our proof statements in Walnut are significantly more straightfor-
ward. As discussed in Chapter 6.2, this is because both Alpert’s and the negaFibonacci
representations use the same alphabet and can represent the same range of numbers.

eval farDiffC "?msd_neg_fib An Es $fsc(s,n) & $alpert(s)":

eval farDiffU "?msd_neg_fib ~En,s,t $alpert(s) & $alpert(t)

& (~$same(s,t)) & $fsc(s,n) & $fsc(t,n)":

# both evaluate to TRUE, 17 ms

Thus we have easily verified the correctness of Alpert’s conditions.

8.2 Bunder Representation: Using Negatively Indexed

Fibonacci Numbers

Now we consider the completeness and unambiguity of Bunder’s negaFibonacci system.
Since this is the system underlying the converter automaton fsc, we can only use fcanon
as the converter automaton for our proof of correctness. Recall that Bunder’s system can
be seen as a rule stating that (a) only the terms with odd indices are allowed to be positive
and only the terms with even indices are allowed to be negative and (b) no two consecutive
nonzero digits can appear. These conditions can be coded in regular expression as follows:

reg bunderEx1 {-1,0,1} ".*1.(..)*":

reg bunderEx2 {-1,0,1} ".*[-1](..)*":

reg bunderEx3 {-1,0,1} ".*((1[-1])|([-1]1)).*":

def bunder "~$bunderEx1(x) & ~$bunderEx2(x) & ~$bunderEx3(x)":

44



Figure 8.2: DFA for Bunder’s negaFibonacci system.

which gives the automaton bunder in Figure 8.2.

Now we can check completeness and unambiguity using fcanon much as we did for
Alpert’s system, but there is a new wrinkle: negaFibonacci representations have an extra
digit at the end, corresponding to the term a1F1, that must be taken care of. To do this we
introduce a “shifter” automaton that shifts a representation one position to the right, and
we use another automaton lastbit, constructed in regular expression below, to determine
if the last bit of a representation is 1 or 0. The shifter is called rshift and is displayed in
Figure 8.3. Notice that it is very similar to lshift discussed in Chapter 5.2.

Figure 8.3: Right shifter automaton.

Then Bunder’s representation can be verified to be complete and unambiguous, as
follows:

reg lastbit {-1,0,1} {0,1} "([0,0]|[1,0]|[-1,0])*([1,1]|[0,0])":

def fcanon3 "?msd_fib Et,u,m $rshift(x,t) & $lastbit(x,u)

& $fcanon2(t,m) & z=m+u":

def fcanon3_neg "?msd_fib Et,u,m $rshift(x,t) & $lastbit(x,u)

& $fcanon2_neg(t,m) & z=m-u":

45



eval bunderC_pos "?msd_fib An Es $fcanon3(s,n) & $bunder(s)":

eval bunderC_neg "?msd_fib An Es $fcanon3_neg(s,n) & $bunder(s)":

# both evaluate to TRUE, 3 ms

eval bunderU_pos "?msd_fib ~En,s,t $bunder(s) & $bunder(t) & (~$same(s,t))

& $fcanon3(s,n) & $fcanon3(t,n)":

eval bunderU_neg "?msd_fib ~En,s,t $bunder(s) & $bunder(t) & (~$same(s,t))

& $fcanon3_neg(s,n) & $fcanon3_neg(t,n)":

# both evaluate to TRUE, 12 ms

Thus we have verified the correctness of Bunder’s conditions.

46



Chapter 9

New Representations

In this chapter we look at complete and unambiguous Fibonacci representations that were
not studied previously in the literature.

9.1 Maximum Dictionary Order Representation

Here we consider an entirely new Fibonacci representation based on dictionary order. We
first introduce how strings are compared in dictionary order. Let s = s1s2 · · · sm and
t = t1t2 · · · tn where m ≤ n be two strings. Let i such that 1 ≤ i ≤ m be the first position
where si ̸= ti. If si < ti, then s < t in dictionary order; otherwise s > t. For example,
1011 < 1100, but 1011 > 1001. If there is no such position i, then either s = t or s is a
proper prefix of t. In this latter case we say s < t. For example, 110 = 110 and 110 < 1100.

Consider a representation of natural numbers by always choosing the largest string
representation in dictionary order for every number. Since every number has a Fibonacci-
based representation, the representation is complete. Since we choose only one Fibonacci-
based representation for each number, the representation is unambiguous. We use (n)D to
denote a number n in the maximum dictionary order representation. Representations of
the first few numbers are given in Table 9.1.

We now show that

Theorem 12. The set of largest Fibonacci representations in dictionary order forms a
regular language.

47



n 1 2 3 4 5 6 7 8 9 10 11

(n)D 1 10 11 101 110 111 1010 1100 1101 1110 1111

Table 9.1: Examples of maximum dictionary order representations.

Proof. The idea is to construct a comparator DFA dGreater that can take two represen-
tations in parallel and decide if one is greater than the other, in dictionary order.

In order to take two representations in parallel, they would have to be the same length,
and therefore the shorter one would have to be padded with leading zeros to make it the
same length as the longer one. In this case, it is not hard to see that no automaton can
do the needed comparison.

However, in our case, we can take advantage of the following fact: two Fibonacci
representations for the same number cannot be of wildly different lengths.

Lemma 13. The lengths of two Fibonacci-based representation strings for the same natural
number differ by one at most (not counting leading zeros).

Proof. Let s and t be two Fibonacci representations for a natural number m. Without loss
of generality, assume that s is longer. Suppose the leading 1 digit of s corresponds to Fi.
If s and t differ in length by more than one, then t is a sum of some Fj’s where j ≤ i− 2.
Now a classic identity on Fibonacci numbers states that

∑
0≤j≤n Fj = Fn+2− 1. Using this

relation, we conclude that
∑i−2

j=2 Fj = Fi − 2 < Fi. Therefore s and t do not represent the
same number.

Using this fact, it is indeed possible to compare two strings in dictionary order with a
comparator automaton.

48



Figure 9.1: DFA for comparing strings in dictionary order.

It is shown in Fig. 9.1 and takes two inputs in parallel, s′ and t′. Let s and t be s′ and
t′ without leading zeros. The DFA dGreater accepts if and only if s is greater than t in
dictionary order. We have three cases to consider: |s| > |t|, |s| < |t|, and |s| = |t|. We
now discuss how the 8 states of dGreater relate to these 3 cases.

• State 0 is the initial state.

• State 1 is reached if |s| > |t|; that is, if s′ starts with 1 and t′ starts with 01.

• State 2 is reached when |s| > |t|, s ends in 1, and based on the inputs so far, t is a
proper prefix of s therefore s > t.

• State 3 is reached when |s| > |t|, s ends in 0, and based on the inputs so far, t is a
proper prefix of s therefore s > t.

• State 4 is reached when |s| < |t| and t ends in 1, and based on the inputs so far, s is
a proper prefix of t therefore s < t.

• State 5 is reached when |s| < |t| and t ends in 0, and based on the inputs so far, s is
a proper prefix of t therefore s < t.

• State 6 is reached when |s| = |t| and, based on the inputs so far, we have s = t.

49



• State 7 is one of the accepting states. It is reached when we can identify a position i
such that si > ti . Additional symbols read, starting from this state, cannot change
the comparison result.

It is now easy to verify that the transitions maintain the invariants corresponding to each
state, and we leave this to the reader.

Using the comparator automaton, we can build a DFA dictOrder that finds the maxi-
mum dictionary order representation for each natural number. We implement it in Walnut

as follows.

def dictOrder "$fcanon(s,x) &

(At $fcanon(t,x) => ($dGreater(s,t)|$equal(s,t)))":

The automaton dictOrder takes two inputs in parallel: a number x in Zeckendorf rep-
resentation and a string s ∈ {0, 1}∗; and it only accepts if, out of all Fibonacci-based
representations of x, the string s is the greatest based on dictionary order. It has 7 states
and is depicted in Figure 9.2.

0

[0,0]
1[1,0]

2

[1,1]

3
[0,1]

4
[0,0]

[1,1]
5[0,1]

[1,1]

[0,0]

6[1,1]
[0,0]

Figure 9.2: DFA for converting to dictionary order representation.

We show an example of using dictOrder to find the representation of a particular
number: the following Walnut statement constructs a DFA displayed in Figure 9.3 and it
shows (18)D = 11110.

def dict18 "?msd_fib $dictOrder(s,x) & x=18":

50



Figure 9.3: DFA showing 18 in maximum dictionary order representation.

9.2 Finding New Perfect Systems of Small Complex-

ity via Exhaustive Search

We see that a Fibonacci-based representation of natural numbers can be represented by
a language over the binary alphabet {0, 1}. If the language is regular, we can express
it with a DFA and test its completeness and unambiguity in Walnut. For example, the
Zeckendorf representation can be expressed as a 3-state DFA (counting in the sink state)
and the Brown one, a 4-state DFA. Therefore we were curious about whether there exist
other DFAs with a small number of states that can qualify as complete and unambiguous
representations. We conducted an exhaustive search to find such automata and found a
surprising number of them. If we allow up to 7 states, we found more than 28 new complete
and unambiguous representations.1 We present two interesting examples out of the seven
new 6-state representations.

Theorem 14. Let L = 0∗(ϵ|1|10(ϵ|0|1)1∗(01+)∗(ϵ|0)). Then L is complete and unambigu-
ous.

Proof. We use the following Walnut code:

reg one0sq {0,1} "0*(()|1|10(()|0|1)1*(01+)*(()|0))":

eval one0sqTestC "?msd_fib An Ex $one0sq(x) & $fcanon(x,n)":

eval one0sqTestU "?msd_fib ~En,x,y $one0sq(x) & $one0sq(y) & (~$equal(x,y))

& $fcanon(x,n) & $fcanon(y,n)":

Both returned TRUE. Here one0sq tests membership in L.

We display the DFA one0sq accepting the language L in Figure 9.4. Notice this repre-
sentation allows 1000 at the very beginning but no other consecutive 0’s are allowed. This

1There could be more as the heuristics we used to trim our search tree can sometimes exclude eligible
representations if, for two numbers m,n where m < n, the representation of m is longer than that of n.

51



Figure 9.4: The DFA one0sq.

restriction on 00 blocks is very similar to Brown’s lazy representation. In fact, Brown’s
representation can be expressed, in the form of a regular expression, as

0∗(ϵ|11∗(01+)∗(ϵ|0)) = 0∗(ϵ|1|10(ϵ|0|1)1∗(01+)∗(ϵ|0)).

We can imagine that a new representation could be generated for allowing a block of 00
after the second 1, or the third, or after both the first and third 1, or the first and fourth,
etc. This offers another construction of infinitely many perfect representations.

Theorem 15. Let L be the language accepted by the DFA az. Then L is complete and
unambiguous.

Figure 9.5: The DFA az.

Proof. We use the following Walnut code:

eval azTestC "?msd_fib An Ex $az(x) & $fcanon(x,n)":

eval azTestU "?msd_fib ~En,x,y $az(x) & $az(y) & (~$equal(x,y))

& $fcanon(x,n) & $fcanon(y,n)":

Both returned TRUE. Here az tests membership in L.

52



The strings in L can end with a single 1 or the block 11 or an odd number of 0’s, but not
an even number of 0’s. Additionally, the strings cannot contain the block “11” anywhere
but the end. This restriction on “11” is reminiscent of the Zeckendorf representation.

53



Chapter 10

Representation Using Fibonacci
Numbers With Positive and Negative
Indices

In this chapter, we apply our approach to test representations that employ a sequence of
Fibonacci numbers with both positive and negative indices.

10.1 Park Representation

Park et al.[21] showed that, given any integers r and n with n ≥ 2, there exists a com-
plete representation for natural numbers using Fibonacci numbers whose indices are not
congruent to r modulo n. For arbitrary r and n, we do not believe that our approach is
applicable. However, if we fix an r and an n, then we have a particular representation and
we can use our framework to prove the completeness of it.

We focus on the case where r = 0 and n = 3, that is, the representation using only the
Fibonacci numbers whose indices are not multiples of 3. We call it the Park representation
for our discussion here.

Let x = au · · · a1 and y = av · · · a−1 be two strings of integer digits. Let k ∈ Z such
that v ≤ k ≤ u, each ak ∈ {0, 1}, and ak = 0 when k is a multiple of 3. We define the
value of x and y as a Park representation as follows:

[x+ y]P = [x]P+ + [y]P− =
∑
1≤i≤u

aiFi +
∑

v≤j≤−1

ajFj (10.1)

54



We give a valid Park representation for each of the first few natural numbers in Table 10.1.
We put a dot in place of a0. We write x as is, in “most-significant-digit” first format, before
the dot; we write y in reverse, in “least-significant-digit” first format, after the dot. Note
that the Park representation is complete but not unambiguous, unlike the representations
discussed above. Therefore the representations listed in Table 10.1 may not be the only
valid ones.

n 0 1 2 3 4 5 6 7 8 9

(n)P 1.01̄ .1 1.1 11.1 1010. 1011. 1011.1 11000.01̄ 11000. 11000.1

Table 10.1: Examples of the Park representations.

Each Park representation has two parts: one associated with the positively indexed
Fibonacci numbers, the string x, and one with the negatively indexed Fibonacci numbers,
the string y. We handle the two parts separately because x and y are constricted by
different sets of conditions.

For the positively indexed part of the Park representation, the only condition we want
to encode is that a 0 must appear for positions whose indices are multiples of 3. We do so
as follows.

reg parkPos {0,1} "0*(()|1(0..)*|1(.0.)*.)":

Since the string is over {0, 1}, it is natural to use fcanon as the converter automaton, but
there is one issue: Park’s representation makes use of the term F1, and therefore the string
x has an extra digit a1 at the end. We need to shift the string one position to the right
before it can be processed by fcanon. We use the shifter automaton rshiftBin displayed
in Figure 10.1; this is the binary version of the shifter in Figure 8.3. We also need an
automaton lastbitBin, constructed in regular expression below, to determine whether a1
is 0 or 1. Then we can construct the converter fcanonParkPos for the positively indexed
part of the Park representation. The automaton fcanonParkPos takes a string x over the
alphabet {0, 1} and a number z in the Fibonacci representation in parallel as input and
accepts iff [x]P+ = z.

reg lastbitBin {0,1} {0,1} "([0,0]|[1,0])*([1,1]|[0,0])":

def fcanonParkPos "?msd_fib Et,u,m $rshiftBin(x,t) & $lastbitBin(x,u)

& $fcanon(t,m) & z=m+u":

55



Figure 10.1: Binary right shifter automaton.

For the negatively indexed part of the Park representation, it can be seen as a string
adhering to the following set of conditions:

1. only the terms with odd indices are allowed to be positive,

2. only the terms with even indices are allowed to be negative, and

3. 0 must appear where the index is a multiple of 3.

We represent these conditions as follows.

reg parkNegEx1 {-1,0,1} ".*1.(..)*":

reg parkNegEx2 {-1,0,1} ".*[-1](..)*":

reg parkNegIn {-1,0,1} "0*(()|([-1]|1)(0..)*|([-1]|1)(.0.)*.)":

def parkNeg "~$parkNegEx1(x) & ~$parkNegEx2(x) & $parkNegIn(x)":

Notice we can use the converter fcanon3 developed in Chapter 8.2 to evaluate the neg-
atively indexed part of the Park representation. With this, we can define the following
converter automaton for Park representations.

def fcanonPark "?msd_fib Eu,v $fcanonParkPos(x,u) & $fcanon3(y,v)

& u+v=z":

This gives an 81-state automaton fcanonPark that takes the following in parallel as input:

1. a string x over the alphabet {0, 1},

2. a string y over {−1, 0, 1}, and

56



3. a natural number z in the Fibonacci representation.

The automaton fcanonPark accepts if and only if [x + y]P = z. Now we are equipped to
prove the completeness of the Park representation via the following evaluation.

eval parkC "?msd_fib An Es,t $fcanonPark(s,t,n) & $parkPos(s)

& $parkNeg(t)":

# evaluates to TRUE, 36 ms

Thus we have proved that the Park representation is complete.

10.2 Anderson Representation: Completeness for Pairs

of Numbers

In this section we examine one more proof of completeness that can be simplified with
our approach, however the completeness here is for pairs of numbers instead of individual
numbers as we have seen so far. Anderson [2] used the Extended Fibonacci Zeckendorf
(EZ) representation in which integers are expressed as sums of non-consecutive Fibonacci
numbers without restriction on the signs of the subscripts. For example, let m ≥ 0, n > 0,
and a be integers, and let

a =
∑

0≤i≤m

ciFi +
∑

−n≤j≤−1

cjFj, (10.2)

then (a)EZ = cmcm−1 · · · c1c0|c−1 · · · c−n+1c−n where | is placed after the coefficient of F0.

Now let b be an integer and ϕ = 1+
√
5

2
. Anderson proved that, if bϕ + a > 0, there exists

an EZ representation of b such that

b =
∑

0≤i≤m

ciFi+1 +
∑

−n≤j≤−1

cjFj+1 (10.3)

or (b)EZ = cmcm−1 · · · c1c0c−1|c−2 · · · c−n+1c−n. To clearly present how a and b are related
in Anderson’s theorem, we show how the coefficients correspond to the Fibonacci numbers
in Table 10.2.

To prove Anderson’s theorem, our first step is to assert conditions about a and b with
automata. Let s, t, u, v be strings such that (a)EZ = s|tR and (b)EZ = u|vR. Note that wR

is the reversal of a string or word w. We consider the following aspects.

57



Fm+1 Fm · · · F2 F1 F0 F−1 F−2 · · · F−n+1 F−n

(a)EZ 0 cm · · · c2 c1 c0 c−1 c−2 · · · c−n+1 c−n

(b)EZ cm cm−1 · · · c1 c0 c−1 c−2 c−3 · · · c−n 0

Table 10.2: Example of a pair of numbers following Anderson’s theorem.

• The strings s and u should follow the rule of the Zeckendorf representation and we
use the automaton greedy defined below to test them. This is the binary alphabet
version of the one defined in Chapter 6.1.

reg greedyExclude {0,1} ".*11.*":

def greedy "~$greedyExclude(s)":

• The strings t and v should follow the Bunder conditions; we can test them using
bunder defined in the Chapter 8.2. Note that the Bunder conditions here combined
with the Zeckendorf conditions above guarantee that no consecutive Fibonacci num-
bers are used in (a)EZ or (b)EZ.

• The string s is u shifted one position to the right and we can check that using the
automaton rshiftBin defined in Chapter 10.1.

• The string v is t “shifted” one position to the right; however, there is a complication
caused by the Bunder representation format. Suppose a coefficient c is 1, when it is
the coefficient for F−1 or any other Fibonacci numbers with an odd negative index,
c is expressed as 1 in the Bunder representation. But when c is the coefficient for
Fibonacci numbers with an even negative index, it is expressed as −1. Therefore we
build the shifter rshiftPGA displayed in Figure 10.2 to handle this particular right
shift.

• The last digit in u should be the same as the last digit in t. We verify this with the
use of lastbit defined in Chapter 8.2 and lastbitBin defined in Chapter 10.1.

With these considerations, we build the automaton pgaPair; it takes strings s, t, z ∈ {0, 1}∗
and u, v ∈ {−1, 0, 1}∗ in parallel and accepts if and only if s|tR and u|vR are valid EZ
representations and they relate as described in Anderson’s theorem.

58



Figure 10.2: The automaton rshiftPGA.

def pgaPair "$greedy(s) & $greedy(u) & $bunder(t) & $bunder(v)

& $rshiftBin(u,s) & $rshiftPGA(t,v) & $lastbitBin(u,z) & $lastbit(t,z) ":

Now we consider the converters we need to evaluate EZ representations. We again use
(a)EZ = s|tR as an example. The string s can be handled by fcanon once it is shifted
two positions to the right; we can accomplish this via rshiftBin and catches whether F1

should be included via lastbitBin. The following gives a 7-state automaton fcanonF0

which is an analogue of fcanon.

def fcanonF0 "?msd_fib Em,t,u,y $rshiftBin(x,y) & $rshiftBin(y,t)

& $lastbitBin(y,u) & $fcanon(t,m) & z=m+u":

We can evaluate t using fcanon3 and fcanon3_neg which are devised in Chapter 8.2.
With these, we are equipped to build converter automata for (a)EZ. If a ≥ 0, then we have
two cases to consider depending on whether t evaluates to a positive number; each case is
evaluated differently and they combine to form a converter for (a)EZ as follows.

def fcanonPGA1 "?msd_fib Ex,y $fcanonF0(s,x) & $fcanon3(t,y) & z=x+y":

def fcanonPGA2 "?msd_fib Ex,y $fcanonF0(s,x) & $fcanon3_neg(t,y) & z+y=x":

def fcanonPGA_pos "$fcanonPGA1(s,t,z) | $fcanonPGA2(s,t,z)":

If a < 0, then t must evaluate to a negative number and we build a converter for (a)EZ as
follows.

59



def fcanonPGA_neg "?msd_fib Ex,y $fcanonF0(s,x) & $fcanon3_neg(t,y)

& z+x=y":

The automata fcanonPGA_pos and fcanonPGA_neg both take

1. a string s ∈ {0, 1}∗,

2. a string t ∈ {−1, 0, 1}∗, and

3. a number z in the Fibonacci representation in parallel as input.

The automaton fcanonPGA_pos accepts iff s and t evaluate to z. On the other hand,
fcanonPGA_neg accepts iff s and t evaluate to −z.

One last thing to consider is calculating bϕ in Walnut. We use the approach presented
in [27, Chap. 10.11]. The Walnut code below gives the 7-state automaton phin displayed
in Figure 10.3. It takes two numbers b and c, both in the Fibonacci representation, in
parallel and accepts iff c = bϕ.

reg lshiftBin {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":

def phin "?msd_fib (c=0 & b=0) | Ex $lshiftBin(b-1,x) & c=x+1":

Figure 10.3: The automaton phin.

Now we prove Anderson’s theorem. Since Anderson’s condition is bϕ+ a > 0, we have
three cases to consider. If a, b > 0, we evaluate as follows.

eval anderson1 "?msd_fib Aa,b Es,t,u,v,z $pgaPair(s,t,u,v,z)

& $fcanonPGA_pos(s,t,a) & $fcanonPGA_pos(u,v,b)":

# evaluates to TRUE, 31 ms

60



If a ≥ 0, b ≤ 0, and bϕ+ a > 0, we evaluate as follows.

eval anderson2 "?msd_fib Aa,b,c (a>=0 & $phin(b,c) & a>=c+1) => Es,t,u,v,z

$pgaPair(s,t,u,v,z) & $fcanonPGA_pos(s,t,a) & $fcanonPGA_neg(u,v,b)":

# evaluates to TRUE, 38 ms

If a ≤ 0, b ≥ 0, and bϕ+ a > 0, we evaluate as follows.

eval anderson3 "?msd_fib Aa,b,c (b>=0 & $phin(b,c) & c>=a+1) => Es,t,u,v,z

$pgaPair(s,t,u,v,z) & $fcanonPGA_neg(s,t,a) & $fcanonPGA_pos(u,v,b)":

# evaluates to TRUE, 32 ms

As all statements evaluate to TRUE, we verified Anderson’s theorem.

We show an example of finding the set of qualifying coefficients given a pair of a and
b. Say a = 18 and b = −5. We can see that bϕ+ a > 0. Since a ≥ 0 and b ≤ 0, we modify
the evaluation statement anderson2 into the following definition.

def anderson18N5 "?msd_fib $pgaPair(s,t,u,v,z) & $fcanonPGA_pos(s,t,a)

& $fcanonPGA_neg(u,v,b) & a=18 & b=5":

The automaton anderson18N5 is displayed in Figure 10.4 and the order of the arguments
is a, b, s, t, u, v, z. This reveals (18)EZ = 1010|0010001 and (−5)EZ = 10100|01̄0001̄ as
qualifying EZ representations.

Figure 10.4: Automaton showing valid EZ representations for 18 and −5.

61



Chapter 11

Final Remarks

In the chapters above, we present a framework for mechanically testing, via automata
theory, the completeness and unambiguity of Fibonacci-based representations, also called
numeration systems. We illustrate its effectiveness and versatility by applying it to a
diverse set of previously published and newly discovered representations. Additionally, if a
representation is proved to be complete, we describe an algorithm, of O(log n) complexity,
to find a representation for any particular number n.

11.1 Open Problem

As discussed in Chapter 4.1, given an automatic numeration system, our framework presents
an algorithm checking its completeness, running in exponential time in the number of states
of the automaton depicting the system. Therefore a natural question is to ask whether
there exists a way of assessing the completeness of a given automatic numeration system
in polynomial time. This problem remains open for us.

62



References

[1] H. Alpert. Differences of multiple Fibonacci numbers. INTEGERS, 9(#A57), 2009.
(electronic).

[2] P. G. Anderson. Extended Fibonacci Zeckendorf theory. In Proceedings of the Sixteenth
International Conference on Fibonacci Numbers and Their Applications, pages 15–21.
The Fibonacci Association, 2014.

[3] J. Berstel. An exercise on Fibonacci representations. RAIRO Inform. Théor. App.,
35:491–498, 2001.

[4] J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola. Combinatorics on words:
Christoffel words and repetitions in words, volume 27 of CRM Monograph Series.
American Mathematical Society, 2009.

[5] J. L. Brown, Jr. A new characterization of the Fibonacci numbers. Fibonacci Quart.,
3(1):1–8, 1965.

[6] J. L. Brown, Jr. Unique representation of integers as sums of distinct Lucas numbers.
Fibonacci Quart., 7:243–252, 1969.

[7] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc., 1:191–238, 1994. Corrigendum, Bull. Belg. Math.
Soc. 1 (1994), 577.

[8] J. R. Büchi. Weak secord-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960. Reprinted in S. Mac
Lane and D. Siefkes, eds., The Collected Works of J. Richard Büchi, Springer-Verlag,
1990, pp. 398–424.

[9] M. W. Bunder. Zeckendorf representations using negative Fibonacci numbers. Fi-
bonacci Quart., 30:111–115, 1992.

63



[10] L. Carlitz, R. Scoville, and V.E. Hoggatt, Jr. Fibonacci representations of higher
order. Fibonacci Quart., 10:43–69, 94, 1972.

[11] U. Güntzer and M. Paul. Jump interpolation search trees and symmetric binary
numbers. Inform. Process. Lett., 26(4):193–204, 1987.

[12] P. Hajnal. A short note on numeration systems with negative digits allowed. Bull.
Inst. Combin. Appl., 97:54–66, 2023.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[14] A. F. Horadam. Zeckendorf representations of positive and negative integers by Pell
numbers. In G. E. Bergum, A. N. Philippou, and A. F. Horadam, editors, Applications
of Fibonacci Numbers, volume 5, pages 305–316. Kluwer, 1993.

[15] S. Labbé and J. Lepšová. A numeration system for Fibonacci-like Wang shifts. In
T. Lecroq and S. Puzynina, editors, WORDS 2021, volume 12847 of Lecture Notes in
Computer Science, pages 104–116. Springer-Verlag, 2021.

[16] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen
van Fibonacci. Simon Stevin, 29:190–195, 1952.

[17] A. Monnerot-Dumaine. The Fibonacci word fractal. 2009. hal-00367972.

[18] H. Mousavi. Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017
[cs.FL], available at http://arxiv.org/abs/1603.06017, 2016.

[19] H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-automatic
words, I: basic results. RAIRO Inform. Théor. App., 50:39–66, 2016.

[20] A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh.
Math. Sem. Hamburg, 1:77–98,250–251, 1922. Reprinted in Collected Mathematical
Papers, Vol. 3, pp. 57–80.

[21] H. Park, B. Cho, D. Cho, Y. D. Cho, and J. Park. Representation of integers as sums
of Fibonacci and Lucas numbers. Symmetry, 12(10):1625, 2020.

[22] H. Prodinger. On binary representations of integers with digits −1, 0, 1. INTEGERS,
0(#A08), 2000. (electronic).

64

http://arxiv.org/abs/1603.06017


[23] G. W. Reitwiesner. Binary arithmetic. In Advances in Computers, volume 1, pages
231–308. Elsevier, 1960.

[24] N. Robbins. Fibonacci partitions. Fibonacci Quart., 34:306–313, 1996.

[25] J. Shallit. A primer on balanced binary representations. https://cs.uwaterloo.ca/

~shallit/Papers/bbr.pdf, 1992.

[26] J. Shallit. Robbins and Ardila meet Berstel. Inform. Process. Lett., 167:106081, 2021.

[27] J. Shallit. The Logical Approach to Automatic Sequences: Exploring Combinatorics
on Words with Walnut, volume 482 of London Math. Soc. Lecture Notes Series. Cam-
bridge University Press, 2022.

[28] J. Shallit and S. L. Shan. A general approach to proving properties of Fibonacci rep-
resentations via automata theory. In Electronic Proceedings in Theoretical Computer
Science, volume 386, pages 228–242. Open Publishing Association, 2023.

[29] J. Shallit, S. L. Shan, and K. H. Yang. Automatic sequences in negative bases and
proofs of some conjectures of shevelev. RAIRO-Theor. Inf. Appl., 57:4, 2023.

[30] N. J. A. Sloane et al. The on-line encyclopedia of integer sequences, 2022. Available
at https://oeis.org.

[31] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège, 41:179–182, 1972.

65

https://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf
https://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf
https://oeis.org

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Motivation and Preliminaries
	Automata Theory and Logic
	Automata Theory
	First-Order Logic

	Balanced Binary Representation
	Our Framework
	Algorithm Complexity
	Finding a Representation

	Converter Automata
	Conversion to the NegaFibonacci Representation
	Decomposition of fsc
	Conversion to the Zeckendorf Representation

	Representation of Natural Numbers Using Digits 0 and 1 Only
	Zeckendorf Representation: The Canonical Form
	Brown's ``Lazy'' Representation
	A New Representation: EPAS

	Representation of Natural Numbers Using Digits -1, 0 and 1
	Representation Definitions
	Hajnal's Alternating Representation
	Hajnal's Even Representation
	Hajnal's Odd Representation

	Proof of Completeness and Unambiguity
	Proof Using fcanon as Converter
	Proof Using fsc as Converter

	Extending the Representations

	Representation for All Integers
	Alpert Representation: Using Digits -1, 0, and 1
	Bunder Representation: Using Negatively Indexed Fibonacci Numbers

	New Representations
	Maximum Dictionary Order Representation
	Finding New Perfect Systems of Small Complexity via Exhaustive Search

	Representation Using Fibonacci Numbers With Positive and Negative Indices
	Park Representation
	Anderson Representation: Completeness for Pairs of Numbers

	Final Remarks
	Open Problem

	References

