
Re-encoding Resistance: Towards
Robust Covert Channels over
WebRTC Video Streaming

by

Adrian Daniel Cruzat La Rosa

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Adrian Daniel Cruzat La Rosa 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Internet censorship is an ongoing phenomenon, where state level agents attempt to con-
trol the free access to information on the internet for purposes like dissent suppression and
control. In response, research has been dedicated to propose and implement censorship
circumvention solutions. One approach to circumvention involves the use of steganogra-
phy, the process of embedding a hidden message into a cover medium (e.g., image, video,
or audio file), such that sensitive or restricted information can be exchanged without a
censoring agent being able to detect this exchange. Stegozoa, one such steganography
tool, proposes using WebRTC video conferencing as the channel for embedding, to allow
a party within a restricted area to freely receive information from a party located outside
of this area, circumventing censorship. This project on itself, is an extension of an earlier
implementation, and it assumes a stronger threat model, where WebRTC connections are
not peer-to-peer but instead mediated by a gateway server, which may be controlled, or
influenced, by the censoring agent. In this threat model, it is argued that an attacker (or
censor) may inspect the data being transmitted directly, but has no incentive to change
the video data.

With our work, we seek to challenge this last assumption, since many applications
using this WebRTC architecture can and will in fact modify the video, likely for non mali-
cious purposes. By implementing our own test WebRTC application, we have shown that
performing video re-encoding (that is decoding a VP8 format video into raw format and
then back) on the transmitted data, is enough to render an implementation like Stegozoa
inoperable. We argue that re-encoding is commonly a non-malicious operation, which may
be justified by the application setup (for example to perform video filtering, or integrity
checks, or other types of computer vision operations), and that does not affect a regular
non-Stegozoa user. It is for this reason, that we proposed that re-encoding robustness is a
necessary feature for steganographic systems.

To this end, first we performed characterization experiments on a popular WebRTC
video codec (VP8), to understand the effects of re-encoding. Similarly, we tested the
effects of this operation when a hidden message is embed in a similar fashion to Stegozoa.
We were able to show that, DCT coefficients, which are used commonly as the target for
message embedding, change enough to cause loss of message integrity due to re-encoding,
without the use of any error correction. Our experiments showed that higher frequency
Discrete Cosine Transform (DCT) coefficients are more likely to remain stable for message
embedding after re-encoding. We also showed that a dynamically calculated embedding
space (that is the set of coefficients that may actually be used for embedding), akin to

iii

Stegozoa’s implementation, is very likely to be different after re-encoding, which creates a
mismatch between sender and receiver.

With these observations, we then sought to test a more robust implementation for
embedding. To do so, we combined the usage of error correction (in the form of Reed-
Solomon codes), and a static embedding space. We showed that message re-transmission
(that is, embedding in multiple frames) and error correction are enough to send a message
that will be received correctly. Our experiments showed that this can be used as a low-
bandwidth non time-sensitive channel for covert communications. Finally, we combined our
results to provide a set of guidelines that we believe are needed to implement a WebRTC
based, VP8 encoded, censorship circumvention.

iv

Acknowledgements

I would like to thank my supervisor, Professor Diogo Barradas, for his input, contri-
butions, and guidance that shaped and made this Thesis possible. I am thankful for the
many hours that were spent in discussion through the life of this project, as well as the
trust that was put on me to carry it out to completion. I am also thankful to Professors
Florian Kerschbaum and Mohammad Ali Salahuddin for agreeing to be the readers of my
thesis and providing valuable feedback to this work.

A mis padres Ricardo y Maria, y a mis hermanas Claudia y Nataly, les agradezco por
haberme acompañado siempre. Su ayuda y empuje me han hecho llegar hasta donde estoy
hoy. Gracias por nunca dudar mis decisiones y siempre haberlas apoyado.

To my parents Ricardo and Maria, and my sisters Claudia and Nataly, I thank them
for being with me through this journey. They helped and pushed so I can be where I am
today. Thanks for always trusting and supporting my choices.

The journey of writing this Thesis would have not been possible without the many
people that supported me, academically or otherwise. Thanks to James, Stefen, and Chris,
some of my oldest friends, who I can always rely on, and who I’ve had the luck to share
many a Christmas with. To Devon, Maria, Colin, and Sasha, who I know since undergrad
at RIT, and can chat with everyday. To Mattie, Gen, and Albert, for the many lunches
we’ve shared together, and all the support we’ve had for each other. To all the amazing
people I’ve met through Mambo club, in particular Ciara, Art, Grace, Andrée, Piyush,
and Anna-Maria. To my labmates in the CrySP lab, specially to Vecna, Thomas, John,
Lucas, Ru, Jason, and Bailey.

v

Dedication

This is dedicated to Alistar and Yaku, whose memories I keep alive.

vi

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Related Work 5

2.1 Censorship Resistant Technologies . 5

2.2 Steganography . 8

2.2.1 Image steganography . 8

vii

2.2.2 Video steganography . 11

2.2.3 Robust steganography . 13

2.2.4 Attacking steganography . 14

2.3 Overview of Related Technologies . 15

2.3.1 WebRTC . 15

2.3.2 Architectures for WebRTC services 16

2.3.3 The VP8 codec . 18

2.3.4 Summary . 20

3 Robustness Concerns for Video Steganography over WebRTC 21

3.1 WebRTC Experimental Testbed . 21

3.1.1 WebRTC gateway server . 22

3.1.2 Application server architecture . 24

3.2 Attacking Stegozoa . 25

3.2.1 Stegozoa implementation details . 26

3.2.2 Breaking Stegozoa’s covert channel through re-encoding 26

3.2.3 Why does Stegozoa break? . 27

4 Characterizing VP8 Re-encoding 30

4.1 Local Testbed Configuration . 30

4.1.1 Testbed design and data collection 30

4.1.2 VP8 codec instrumentation . 34

4.2 VP8 Characterization . 37

4.2.1 General VP8 characterization . 38

4.2.2 Embedding space changes . 40

4.2.3 Embedding survivability . 41

4.2.4 Characterization conclusions . 44

viii

5 Towards Robust Video Steganography over WebRTC 45

5.1 Threat Model and Design Goals . 45

5.2 Towards Robust Steganography in VP8 . 47

5.2.1 Robust embedding spaces . 47

5.2.2 Error correction . 49

5.3 Re-encoding Robust System Recommendations 53

5.3.1 Design considerations . 53

5.3.2 Limitations and future work . 56

6 Conclusions 58

References 60

ix

List of Figures

2.1 WebRTC architectures. 17

2.2 Frame to quantized sub-block decomposition. 19

3.1 WebRTC application architecture diagram. 22

3.2 WebRTC gateway server pipeline. 24

4.1 Workflow of our offline VP8 re-encoding testbed. 31

4.2 Macroblock encoding and decoding process with processing hooks. 35

4.3 Box plot of percent of coefficients with value 0 per frame. 38

4.4 Percent of zero coefficients per position. 38

4.5 Box plot of the maximum positive coefficient value per frame. 39

4.6 Box plot of the minimum negative coefficient value per frame. 39

5.1 Sample sub-block before and after re-encoding. 48

x

List of Tables

4.1 Testbed configuration parameters. 32

4.2 VP8 codec configuration. 33

4.3 Percent of embedding space constant frames per video sample. 41

4.4 Error rate for least significant bit embedding. 42

4.5 Error rate for 11th coefficient embedding. 42

5.1 Estimated RS code parameters for only key frame embedding. 50

5.2 Estimated RS code parameters for all frame embedding. 50

5.3 Observed error and complete message survivability rates at different RS
redundancy levels. 51

xi

List of Abbreviations

DCT Discrete Cosine Transform xix, xx, xxii, xxiii, xxix, xxx, xxxvi–xxxviii, xl, xliv,
xlvii, xlviii, lvii, lxviii

LSB Least Significant Bit xvii, xix

MCU Multipoint Control Unit xxvii, xxviii

ML Machine Learning xx

P2P Peer-to-Peer xvii, xxvi, xxvii, lxv

PSNR Peak signal to noise ratio xix

SFU Selective Forwarding Unit xxvii, xxviii

SSIM Structural index similarity xix

STC Syndrome-Trellis Coding xvii, xx, xxxvi, xxxviii, xxxix, l, li, lvii, lix, lxvi

xii

Chapter 1

Introduction

1.1 Overview

Internet censorship is an increasingly pressing issue, with many authoritative governments
around the world actively implementing stringent Internet monitoring and blocking con-
trols [14]. The motivations that lead these governments to deploy tight surveillance and
censorship policies are generally tied to a desire to control the free flow of information
and exchange of ideas in the Internet [70] towards stifling political dissidence and making
it hard for other nations to build awareness over potential crises happening within the
country [3, 60].

Throughout the past few years, we have witnessed multiple techniques being employed
in censorship apparatuses. These have ranged from the simple usage of keyword-based
filters [11] or the outright blocking of Internet destinations [54], to the more intricate
monitoring of social media platforms [71], web and games’ chat-rooms [12], the throttling of
connections to some Internet destinations [2], or the blocking of specific Internet protocols
(e.g., those aimed at increasing users’ privacy when accessing the web, like Tor [16], or
those specifically crafted to avoid censorship, like Shadowsocks [1]).

As monitoring and blocking techniques become more sophisticated, activists and re-
searchers strive to develop new tools whose primary goal is to enable users to circumvent
censorship, ensuring oppressed citizens’ unrestricted access to online content and the free-
dom to communicate with one another. Thus, the interaction between censorship tech-
niques and censorship circumvention tools is typically perceived as a cat-and-mouse game,
where censors attempt to block novel circumvention tools, and the developers of such tools
continually improve those tools, hoping to be one step ahead of censors’ capabilities.

1

Given the above, it is clear that circumvention tools must operate covertly to suc-
cessfully evade the scrutiny of state-level entities, safeguarding users against potential
repercussions. Nevertheless, many of such tools face significant challenges, as they maybe
challenging to deploy, or prone to detection through a variety of attacks based on deep
packet inspection [16] and statistical traffic analysis [68].

A relatively recent approach for building censorship-circumvention tools that address
all of the above challenges is that of generating covert channels over video-conferencing
applications. In a nutshell, these tools are perceived as a) being easy to use, since they
piggyback data on applications that typical Internet users are familiar with; b) easy to
deploy, since they do not require users to set up or interact with any additional infras-
tructure (all they need is a third-party peer located outside the censored region), and; c)
resistant to detection, since they embed covert data in such a way that the traffic generated
by video-conferencing applications retains its statistical properties. One common assump-
tion performed by this kind of tools (e.g., DeltaShaper [6] or Protozoa [7]) is that censors
only possess the ability to monitor the encrypted traffic being generated by the video-
conferencing applications, which is typically encrypted end-to-end, but not the contents of
the actual media being exchanged.

In the current Internet landscape, however, these assumptions might not always hold.
For instance, Protozoa leverages WebRTC [44] (a framework and set of protocols that
enables the exchange of real-time media directly between browsers) to hide covert data in
the end-to-end encrypted media exchanged directly between peers. To ensure quality of
service requirements and apply other validation procedures, most WebRTC applications
today (including popular ones, like Discord [74]) no longer default to connect users directly
in a peer-to-peer fashion, but rather utilize media servers, named WebRTC gateways, that
decrypt, process, and re-encrypt video streams as needed. It is fathomable that state-level
entities might exploit the behaviour of these media servers, either by colluding with service
providers or setting up their own in state-controlled media applications (e.g., WeChat [62]
in China), to snoop into the media exchanged between peers and block those streams that
are suspected of carrying covert channels.

Aware of this potential detection vector, Figueira et al. [22] leverage sophisticated video
steganography techniques to embed covert messages in media exchanged over WebRTC.
They develop a new tool, Stegozoa, which assumes that a censor might have control over
a WebRTC gateway and inspect the contents of media streams. Their evaluation shows
that, while Stegozoa’s covert channel achieves a smaller throughput than previous tools,
it can exchange covert data while resisting both traffic analysis and steganalysis attacks
aimed at uncovering covert channels in the media stream.

2

Despite its advances on censorship-circumvention, one important assumption of Stego-
zoa is that the censor is considered to be a fully-passive adversary that can only inspect,
but not modify, the contents of the media stream being exchanged between two commu-
nicating peers. One might then wonder whether Stegozoa can operate within a stronger
threat model where the adversary is given the capabilities to manipulate the media being
exchanged, e.g., by re-encoding or applying some filter over the exchanged media. Indeed,
this is not a far-fetched assumption, given that even legitimate WebRTC applications al-
ready provide users with the option to apply image filters over the exchanged media.

In this thesis, we investigate the robustness of Stegozoa’s covert channel to perturba-
tions introduced on the media streams exchanged by the communicating peers. Beyond
the analysis of tailored perturbations aimed at breaking the operation of Stegozoa, we
present a study over the perturbations caused by seemingly innocuous re-encoding op-
erations, performed by WebRTC gateways, which showcase the inability of Stegozoa’s
implementation to deal with trivial media stream manipulations. In addition, we analyze
the steganographic primitives used in Stegozoa’s implementation towards understanding
why these are unable to survive the above perturbations. Finally, we suggest an alternative
steganographic embedding approach, leveraging error-correction codes, that allows for the
development of a covert channel that is is robust against media stream manipulations.

1.2 Contributions

Towards carrying out the investigation laid-out in the previous section, this thesis provides
the following list of technical contributions:

• The implementation of a laboratory testbed, consisting of a customWebRTC gateway
and a set of WebRTC media peers, which can be used for assessing the effects of media
manipulation operations in the contents of WebRTC encoded media.

• A set of experiments that showcase Stegozoa’s lack of robustness to media manipu-
lation operations performed by a WebRTC gateway.

• An experimental characterization study of the effects of re-encoding operations on
the content of WebRTC video streams’ encoded representations, when leveraging the
popular VP8 video codec.

• An exploration over the use of different error-correction codes towards the develop-
ment of a robust, low-bandwidth, steganographic scheme over VP8 that can resist
media re-encoding.

3

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we provide background knowledge on
related censorship-circumvention tools, as well as on steganography and steganalysis prim-
itives. In Chapter 3, we showcase Stegozoa’s lack of robustness to media manipulation op-
erations. Chapter 4 presents our characterization study on the effects of media re-encoding
operations. Chapter 5 describes our experiments towards the design of a robust steganog-
raphy scheme over WebRTC that can withstand manipulations of the video stream. Lastly,
in Chapter 6, we summarize our main takeaways, detail the limitations of our approach,
and point towards compelling directions for future work.

4

Chapter 2

Related Work

In this chapter we present relevant work, and other background information that we deem
necessary for the rest of our work. We start in Section 2.1 discussing censorship circumven-
tion and tools that have been implemented for this goal. Next, in Section 2.2, we delve into
steganography, a process that is used to embed hidden messages in a cover medium and
which can be used to implement censorship resistant technologies. We also discuss work
on attacking steganography to detect it, hinder it, or otherwise disable it in this section.
Finally, on Section 2.3 we provide an overview of some existing technologies that we used
in our research and experiments.

2.1 Censorship Resistant Technologies

As we had originally discussed in Chapter 1, there are ever increasing efforts from state-level
agents to control free flow of information on the Internet. In response to this adversarial
behaviour, a number of censorship resistant and avoidant technologies have been proposed
and studied over recent years. In this section we explore seminal, and state-of-the-art
solutions that seek to address this issue.

Tor, a project aiming to provide private, and anonymous access to the Internet 1, is a
widespread and highly supported tool for censorship avoidance [36]. The Tor network uses a
series of volunteer relays (or nodes), in conjunction with onion encryption, to anonymously
connect a client with server. Entry nodes are publicly listed in the Tor directory, making
them easy targets for blocking for state level agents [76]. To address this issue, the Tor

1The Tor Project: https://torproject.org

5

https://torproject.org

project also supports “bridges”, unlisted entry nodes, that can allow censored clients from
accessing the network, under the assumption that a censor would not be able to block all
bridges 2.

It has been shown, however, that through methods such as traffic analysis a censor may
be able to correlate a client’s Tor traffic and block their access to the network [13] (e.g.,
by ISP level blocking of a bridge). In response, multiple solutions have been proposed
to protect clients from this kind of censorship and analysis. Pluggable transports, are a
category of circumvention tools supported by the Tor project, four of which are readily
accessible 3:

• obsf4. Makes Tor traffic random such that an observer may not be able to determine
its type.

• meek. Traffic is made to look as if the client was accessing a popular website instead
of the Tor network.

• Snowflake. Uses volunteer proxy peers to route traffic to make it look as if it was
a video call.

• WebTunnel. Makes connection to the Tor network appear as if the client is using
a website through HTTPS

Other protocols have also been implemented to attempt to address this problem.
Projects such as SkypeMorph and StegoTorus aim to mimic other protocols (e.g., Skype
and HTTPS) to prevent traffic from being detected by a censor [48, 75]. ScrambleSuit
attempts to obfuscate communication using traffic morphing techniques, making the com-
munication harder to fingerprint [77]. Fifield et al. [21], proposed “domain fronting”, a
mechanism to make HTTPS requests appear to an outside observer to be directed to a
“free” domain, while internally, in the HTTP Host header, the true “blocked” domain is
placed. This method can be used to reach otherwise blocked nodes.

These systems are not infallible however, and developments in more sophisticated at-
tacks show the ongoing battle between circumvention and detection. Work from Houmansadr
et al. has shown for example that “unobservable” solutions such as those proposed above
that rely on protocol mimicking can be detected even by a weak adversary [30]. He et
al. showed an attack that attempts to determine the type of content being accessed [28].
Habibi Lashkari et al. proposed using timing features to characterize Tor traffic [26].

2What is a bridge?: https://support.torproject.org/censorship/censorship-7
3CIRCUMVENTION: https://tb-manual.torproject.org/circumvention

6

https://support.torproject.org/censorship/censorship-7
https://tb-manual.torproject.org/circumvention

Outside the realm of Tor, we find solutions that also seek to enable free, uncensored
communication on the Internet. DeltaShaper from Barradas et al. encodes a covert message
into a barcode like pattern and then superimposes it on a cover video [6]. This video is
then transmitted through a conferencing application such as Skype. While it successfully
enables a covert channel, DeltaShaper is weak to image analysis since a clear perturbation
is added to the video.

Barradas et al. later propose Protozoa, a system that creates a covert communication
channel by replacing the encoded media data within WebRTC video calls with covert
resources (concretely, enabling the covert exchange of raw IP traffic) [7]. This solution
is vulnerable to man-in-the-middle attacks, where adversaries controlling media relaying
servers would be trivially able to determine that the data being exchanged does not follow
the expected WebRTC media format. As we discuss in Section 2.3.2, WebRTC is likely
to follow a non Peer-to-Peer (P2P) architecture, so the party in control of the WebRTC
application (adversarial or otherwise) would be able to identify Protozoa.

Figueira et al. proposed Stegozoa as an improvement on Protozoa [22]. For their im-
plementation, they consider a stronger threat model where WebRTC connections are not
peer-to-peer but instead over gateways that may be controlled by an adversary, and they
may have transparent access to the data being sent across. In this scenario, the adversary
is able to perform traffic analysis and steganalysis on the video stream shared between
the two parties. In the case of Protozoa, the adversary would be able to easily determine
that the video stream packets have been replaced with the covert data. Stegozoa instead,
uses steganography to embed the stego-data by utilizing a combination of Syndrome-Trellis
Coding (STC) and Least Significant Bit (LSB) shifting on the client side into the client
video stream before it is sent to the gateway server. The data is then recovered on the other
end by performing the reverse process. With this approach, Stegozoa was able to resist
traffic analysis and steganalysis (achieving close to random guessing in both cases against
state of the art network traffic and steganalysis classifiers). Their prototype achieved an
average throughput of 8 to 10 Kbps, usable for low bandwidth applications (e.g., download-
ing tweets and news articles), with a relatively low latency. This implementation achieved
usability, covert data can be exchanged between parties with an adversary in the mid-
dle with complete access to the data stream, and portability, independent of the target
WebRTC platform. Stegozoa, however, remains vulnerable to various intentional and un-
intentional attacks from an adversary in control of, or at least a high level of influence over,
a WebRTC gateway which we discuss in further detail in Chapter 3.

Jia et al. also take advantage of multimedia channels for sending secure covert mes-
sages [37]. Their goal is to produce an audio-based steganographic protocol that is not
vulnerable to content mismatching attacks, such as those identified by Geddes et al. [24].

7

In this type of attack, significant differences between covert content and the expected “nor-
mal” content are apparent/distinguishable by a classifier. For their case in particular, this
attack is possible due to variable bitrate encoding used by most audio/video conferencing
applications (such as Skype). They solve this problem by using a generative model that
shapes a stream of audio traffic that preserves the timing features of a real conversation
between two peers. The tool, Voiceover, was shown to be more resistant to classification
compared to cases where the traffic is not shaped to the expect “real” content, with good-
put of close to 60 bytes per second. The relatively low goodput, which is better suited for
low bandwidth transmissions, can be attributed to the trade-off needed to achieve higher
robustness, and the audio medium being used.

Many of the works referenced in this section rely on steganography (video, audio, im-
age, or others) when building these censorship circumvention tools. We further analyze
steganography techniques and implementations in the next section.

2.2 Steganography

In this section, we review the current state-of-the-art on steganographic techniques and
implementations. These methods allow for concealed embedding of messages within oth-
erwise innocuous mediums (such as image, video, audio). We will then detail how these
techniques can be used as the building blocks for censorship resistant communication. In
Section 2.2.1 we explore the development and the state of the art in image steganography.
Due to the relative closeness of both mediums (video and image), the concepts from this
section can be used as the foundation for video steganography. In Section 2.2.2, we build
upon those ideas by presenting work that implements them in the video domain, as well
as showing other techniques unique to the domain. This set of methods are the most
directly applicable to the scenario envisioned in this thesis. Finally in Section 2.2.3 we
discuss the concept of robust steganography, that is the ability to resist various passive
and active attacks or transformations to the medium used for concealment, and existing
implementations. This robustness is what allows for the creation of censorship resistant
communication channels, the principal goal of this work.

2.2.1 Image steganography

As implied by the name, this type of steganography uses images as the medium to conceal
a message. In this work, we use the term cover image (or later cover video) to refer to

8

unmodified images that are used as the basis for message embedding. These images can be
ordinary repurposed images (e.g., photographs or digital illustrations) [33], or entirely syn-
thesized for steganography purposes [42] [59]. Once one or more steganographic methods
are applied on these cover images, we obtain a resulting image that has an inserted message
that can be extracted by a different party. We use the term stego-image (or stego-video)
to refer to this modified image.

The goal of image steganography is to create a stego-image carrying the hidden message
that is indistinguishable (visually, statistically, or otherwise) from a cover image. Or stated
differently, for the purposes of our work, create images such that an adversary could not
accurately determine with high enough confidence that a message is embedded on any given
image (stego-image or otherwise). For censorship resistant communications, this quality
means that a censor may not be able easily detect and stop communication between covert
parties, or if attempts to do so it may incur a high collateral damage cost. Peak signal
to noise ratio (PSNR) and Structural index similarity (SSIM) are two common metrics to
measure imperceptibility in image steganography [65].

One of the approaches towards undetectable steganography focuses on minimizing the
distortion caused in the stego-image during the embedding of stegobits, such as those by
Holub et al., and Pevný et al. [29, 57]. Practical implementations of steganography are not
likely to create stego-images so distorted (or otherwise “off-looking”) that they could be
easily identified by a human observer. These implementations may however, add enough
noise (in this case noise can be understood as a kind of distortion) to the stego-image may
be discovered by statistical, or machine learning models. Pevný et al. proposed a method
that used Markov chains at the spatial domain to identify stego noise caused by LSB
steganography [56]. More sophisticated methods such as neural networks have also been
used to detect stego noise. For example, Qian et al., used deep learning to extract features
from stego-images with the goal of steganalysis [58]. We discuss more such methods of
detection in Section 2.2.4.

Image steganography methods can be classified according to the domain being targeted,
either spatial or transform. In the spatial domain, embedding of the hidden message is done
directly on the pixel values representing the image. The domain transform on the other
hand, is reached after performing a Fourier Transform (or more commonly Discrete Cosine
Transform (DCT)) to a spatial image, and is commonly used for compression, prediction,
transmission tasks. Domain transform steganography covers methods that embed the
message after the image has gone through this transform.

Spatial domain. In the spatial domain, an earlier implementation by Pevný et al. aimed
to minimize the noise within this domain [57]. This method works by creating distortion

9

cost tables from modifying a given pixel, using previous steganalysis work from Pevný et
al. [56] to compute them. Hussain et al. [32] used a hybrid adaptive embedding scheme,
with choice of least significant bit or rightmost digit embedding, to minimize distortions
during the embedding process. Yang et al. [80] proposed a method using generative
adversarial networks to create a stego-image while minimizing embedding costs.

Transform domain. There is also a wide diversity of image steganography methods in
the transform domain. Fakhredanesh et al. [19] implemented a steganography method for
embedding after a discrete wavelet transform to a spatial image. In the realm of discrete
cosine transform, we have for example work from El Rahman [17], in which the stego
message was embedded in the least significant bits of medium and high frequency DCT
coefficients, and Zhu [83], utilizing DCT coefficients to embed a message that is robust to
JPEG compression. Similarly, Evsutin et al. [18] provided a scheme that worked after a
discrete Fourier transform, and could potentially be used for other tranforms.

A parallel problem to calculating correct embedding costs, that is, determining the
impact to image quality of using a given bit for embedding, and minimizing it, is using
this information to efficiently embed the stegobits. Filler et al. [23] proposed a method
to efficiently embed bits in the cover image while minimizing the costs (as determined by
a cost function or matrix). This methodology relies on syndrome-trellis codes (STC) and
the Viterbi algorithm. Holub et al. [29] proposed UNIWARD, a universal distortion cost
function for image embedding in arbitrary domains. At a high level, this method uses di-
rectional filter bank decomposition to identify image areas that are difficult to statistically
model in one or more directions (for example, non smooth areas with texture or noisy
regions) and assigns them a low distortion cost, while doing the opposite for smoother
regions. They then use Syndrome-Trellis coding to efficiently embed stegobits using the
calculated costs. Formally, this method uses a directional filter bank composed of three
kernels that finds smoothness in horizontal, vertical, and diagonal directions, to produce
differential residuals. The cost function is computed as the sum of all these residuals be-
tween a cover image and a stegoimage, represented in the spatial domain (pixels). Notably,
this method can also be applied at the transform domain by first converting JPEG repre-
sentation to pixel representation. As previously mentioned, the output of this cost function
is used by the STC algorithm to efficiently embed the bits of the secret message. UNI-
WARD, in its three varieties (spatial, transform, and side informed transform domains)
showed steganalysis robustness against Machine Learning (ML) classifiers when compared
against state-of-the-art steganographic methods at the time.

10

2.2.2 Video steganography

Video steganography is the next logical step from image steganography. In a simplified
model, a video could be described as a series of still images (or frames) stitched together
over time. A naive implementation could then use one of the previously shown methods to
embed a message, or part of it, into each “frame” of a cover-video to produce a stego-video.
An outstanding feature that is revealed from this model is the increased space afforded for
embedding. A large message, such as a file, could be transmitted this way, split over as
many frames as needed. Furthermore, in a scenario where the video has an indefinite
length (e.g., a video call), data could be transmitted arbitrarily and over time. We now
have access to even more use cases, such as covered web navigation and hidden back and
forth communication.

Realistically, most forms of video do not quite work in this way, and video steganog-
raphy has to account for these nuances. For example, videos transmitted over the wire
may go through compression (different to image compression), encoding and re-encoding.
Similarly, videos are seldom composed of solely key-frames (standalone reference frames),
but instead may use one or more forms of prediction to generate “in-between frames” from
those key frames. These techniques aim to reduce the space used by the video, but for the
purposes of steganography also reduce the available embedding space.

Even with this distinction between both mediums, the goals stay relatively similar.
Produce a stego-image/video with minimal visual or statistical distortion (to minimize de-
tectability), with optimal embedding capacity, and robust to intentional and unintentional
attacks. For this reason, and due to the closeness of mediums, video steganography can
leverage some of the methods used in image steganography, such as STC encoding, as for
example in Figueira et al [22].

Video steganography techniques can be divided into three categories: pre-embedding,
intra-embedding, and post-embedding, depending on the embedding domain [43].

Pre-embedding. In this category, embedding is done to the uncompressed video (either
on the spatial or transform domain). Embedding at this stage means the scheme is inde-
pendent from any compression or other algorithms that may be used to process the video
before transmission. On the other hand, since the embedding is happening before (likely
lossy) compression, some of data may be lost. These methods then require some level of
redundancy or other recovery methods to guarantee the integrity of the message. In the
spatial domain, an early contribution by Cetin and Ozcerit [10] combined least significant
bit embedding with spatial histograms to select the most appropriate pixels for embed-
ding. Hu et al. [31] implemented a method to embed a similarly sized video into a raw

11

video stream, using the four least significant bits of pixel values. As for the transform
domain, work from Patel et al. [55] first performed a wavelet transform on the cover video,
embedded the message in the least significant bits of the transformed video, and then used
the audio channel to provide metadata on the embedding. Mstafa et al. [51] used DCT
coefficients as the target with embedding, in combination with Hamming and BCH codes
for added security and robustness.

Intra-embedding. This type of embedding happens while the video is being encoded
(such as by a codec like VP8 or H.264), such as during motion estimation, or frame predic-
tion. A clear advantage of this type of embedding is that it happens after compression, or
other lossy operations are performed on the video, meaning there is a lower chance for the
stego-message to be corrupted. However, since most codecs are highly efficient and tend
to remove a large amount of redundancy from the video, this leaves a much more reduced
embedding capacity in the medium compared to pre-embedding. Figueira et. al [22] em-
bedded messages in the DCT coefficients (except for the lowest frequency one) of a VP8
encoded video which was then retrieved during decoding by the recipient. Cao et al. [9]
developed a scheme for embedding using the H.264 codec based on intra-prediction modes.

Post-embedding In this embedding type, the message is inserted on the bitstream prod-
uct of a cover video that has been processed by a codec, or otherwise has been compressed.
The benefit of this type of embedding is that this is the last stage before a cover video is
transmitted providing the highest degree of integrity, and it may not be codec or imple-
mentation specific. However, it is important to note that since heavy modifications to the
bitstream may cause it to no longer be properly formatted, an adversary could identify the
steganography attempts. Barradas et al. [7] proposed a method that replaced the video
stream of a conference call (through an app such as Skype) with the hidden data wanted to
be transmitted. While highly efficient, this method is vulnerable to a man-in-the-middle
that may access and try to decode the “video” since it no longer follows the format. Xu et
al. [78] proposed a method for taking advantage of the binary encoder of H.264/AVC videos
to encode a message in the encrypted bitstream without disrupting the video format.

In the previous sections we have discussed some examples of video and image steganog-
raphy. Various times we’ve mentioned robust steganography methods, which imply a level
of resistance from various types of attacks and analysis of scheme. In the next section we
discuss the goals of robust steganography and present how it is implemented.

12

2.2.3 Robust steganography

Robustness in steganography refers to the ability of the encoding mechanism to resist
various changes (malicious or otherwise) that may occur to the communication channel.
Ideally, a cover image or video should not suffer any variations during transmission and
recovery. This scenario requires no further modifications or alterations to be applied to the
media during exchange between involved parties. For example, by sharing a stego-image
or video by USB stick from a friend to another. However, in many realistic scenarios, the
medium is likely to be compressed, rotated, have noise added to it, cropped, etc. Scenarios
like this include posting media to social media or using web conferencing software. In any
case, they involve one or more parties in the middle of the communication (be it a server,
the user’s browser, or the network structure) that may alter the media. For the purposes of
our work, we are interested in the model where an opposing third-party agent may attempt
to halt or disrupt these communication channels and thus breaking the bridge between the
two parties. Robust steganographic methods that may resist such attacks are relevant to
our work.

JPEG compression robustness has been widely studied and improved upon. Most of
these methods embed their payload at the transform domain (e.g., DCT), as opposed to
the spatial domain (e.g., least significant bits of a pixel).

Singh et al. [67] proposed a model to hide a secret image (akin to a watermark) within a
cover image by first using Arnold Shuffling on the payload, and using two pseudo random
sequences to determine which DCT coefficients to change. This approach showed some
robustness, noise and filtering, and while the original message is not completely recovered,
it still recovers enough of the embedded watermark.

Qian et al. [59] approach generates synthetic texture images embedded with the de-
sired message from cover texture images. The stego textures can then be used in larger
image compositions (for example as background grass). These textures showed resilience
to various levels of JPEG compression.

In a similar approach, Tao et al. [72] aim to generate a pre-image, from a base cover
image, that when compressed will have the same DCT coefficients as if the payload had
been embedded in the base cover image. This method requires to know details about the
compression used by the transmission channel and may not be resilient to other kinds of
attacks.

13

2.2.4 Attacking steganography

In this section, we discuss topics relating to steganography detection, destruction, sanitiza-
tion, and other related attacks. We frame these attacks from the point of view of censoring
agents whose main goal is to disrupt the covert communication between two parties. Our
aim is to provide a high level understanding of the capabilities of said agents. We divide
this section into steganalysis, research in the area of detecting hidden communications,
and steganography destruction, attacks that aim to “clean” steganographic channels while
preserving the original medium (image or video).

An active warden looking to prevent or disrupt hidden communications may seek to
first detect when said covert channels are being used, and then retaliate as they see fit (this
can include for example, blocking communications between parties, or disallowing upload
of images/videos with embedded steganography to social networks). Here, we provide
a look at the state-of-the-art in steganography detection, a process commonly known as
steganalysis.

Steganalysis. Current developments in detecting image steganography rely on neural
network models. Boroumand et al. [8] proposed SR-NET, which used deep residual net-
works for image steganalysis, both in the spatial and transform domain. You et al. [81]
implemented a method based on how stego noise affects different areas of the image, cre-
ating different residuals in the sub-regions of the image. The proposed method uses a
Siamese CNN on two different sections of the image to determine their similarity and iden-
tify the use of steganography. Their performance is comparable to that of SR-NET, while
minimizing the number of parameters.

Li et al. [41] adapted XU-CNN [79] for steganalysis. They used “diverse activation
modules” in their network, which activate their outputs differently and then concatenates
them for subsequent layers. They showed better performance using multiple parallel mod-
ules or subnets as opposed to one net with multiple filters. it reliably detects common
adaptive steganography methods including S-UNIWARD [29], HILL[40], CMD-HILL [39].

Sanitization. An active warden may choose to not perform steganalysis, but instead
sanitize every input (in this case images or video) they receive from a user, effectively
destroying hidden messages if those exist, while preserving the perceived quality of the
cover medium experienced by users that do not engage in covert communications. The goal
of this approach is not to detect the presence of steganographic marks but instead damage
them enough that they cannot be easily recovered by the intended party. Zhu et al. [84]
developed a neural network to attempt to remove steganographic content from images
uploaded to social networks. Similarly, Zhu et al. [85] furthered this work by implementing

14

a scheme that was able to also remove information that was robustly embedded in the
cover.

In this section we have discussed various methods of steganography for both images
and videos. We also showed possible attacks on this methods, that aim to either identify
their presence to out right block the communication channel, or instead attempt to remove
it, disrupt, or sanitize medium such that the message is lost and unrecoverable once it
reaches the receipient. In the next section we move away from steganography and instead
focus on other complimentary technologies that will also play a role in our research.

2.3 Overview of Related Technologies

In this section we provide relevant details for building a basic understanding over the
technologies we will heavily reference throughout the following chapters. Specifically, Sec-
tion 2.3.1 discusses details on WebRTC and how this framework can be used for supporting
video calls and conferencing. Section 2.3.2 discusses different WebRTC deployments from
an architectural perspective. Lastly, Section 2.3.3 describes the VP8 video codec, which is
the default choice for video encoding and decoding operations on WebRTC media streams.

2.3.1 WebRTC

WebRTC is an open-source project that provides real time communications (RTC) for
web browsers and mobile applications through a set of APIs [44]. Most modern browsers
natively support WebRTC, and allow users to exchange real-time media. The WebRTC
protocol can be divided in four phases that facilitate setting up this interaction.

The first phase is concerned with signaling between peers. The goal of this stage is for a
peer to find and start negotiating a session with another peer. To do so, an initiating peer
must start a discovery process to find available peers, usually with infrastructure hosted
by the application being used. A signaling protocol is then used to mediate session details
(such as supported codecs, bandwidth limits, IP addresses). While there is no standardized
protocol, Session Initiation Protocol (SIP) is a common choice for this task [63]. Regardless
of the chosen method, the details required for establishing a connection are set at the end
of this phase.

Next is the connection phase. In this phase, the peers seek to establish a communication
channel between them, using the details gathered in the previous step. WebRTC uses the

15

Interactive Connectivity Establishment (ICE) protocol to enable this process. For a client
sitting behind a NAT network, the ICE protocol may rely on the Session Traversal Utilities
for NAT (STUN) protocol to facilitate NAT traversal. The STUN server (outside the NAT
network), allows the client to self discover the port and IP address assigned to them by
the NAT, and open other ports needed for communicating with their peer [47]. In cases
where the clients cannot possibly connect directly (for example due to restrictive NAT
configurations), the Traversal Using Relays around NAT (TURN) protocol is employed. A
TURN relay serves as an intermediary between the clients, where the communications for
each client appear to be incoming from the relay [46]. In this configuration, the TURN relay
does not have transparent access to packets being exchanged, it only serves as forward point
between peers. The WebRTC application commonly provides the needed STUN servers
and TURN relays.

The next phase is concerned with securing the data exchanged via WebRTC. Specifi-
cally, to secure the media transmitted through the negotiated channel, WebRTC uses the
Secure Real-Time Protocol (SRTP) and Datagram Transport Layer Security (DTLS). The
SRTP protocol is an extension of the Real-Time Protocol (RTP), and is used to encrypt
packets between peers. This protocol is required to use DTLS to negotiate key exchanges
for the session. Concretely, DTLS is a UDP protocol based on streaming TLS which allows
for private low latency communication channel [61].

The last phase is concerned with the actual communication between peers. At its core,
it leverages the RTP protocol for the exchange of messages (which are encrypted through
SRTP). In addition, the RTP Control Protocol (RTCP) is used to exchange call metadata
with the goal of providing feedback on the quality of the ongoing call to all peers [64].
Stream Control Transmission Protocol (SCTP) may also be used to securely transmit
arbitrary data between peers, using DTLS again for encryption negotiation.

This is a high level description of WebRTC for enabling a call between two or more
peers. In the following section, we go over common architectures for WebRTC services.

2.3.2 Architectures for WebRTC services

In its original specification, WebRTC was designed to operate in a P2P architecture be-
tween clients. Coined the RTC trapezoid, the architecture would have a web application
mediate path signaling between two (or more) peers. Once connection details are known to
each party, a media path is created between each peer, and data is transmitted using the
provided APIs. Each peer is in charge of encoding and decoding incoming and outgoing

16

Figure 2.1: WebRTC architecture for P2P, SFU, and MCU for a web call with 4 peers.

media respectively as needed. Transmission of media (voice, video, or generic) carries on
between the peers without the involvement of the the third-party web application.

In practice however, it is unlikely that a WebRTC application is implemented in a
true P2P architecture due to various constraints. Scalability is one such limitation. In
the trapezoid architecture, each peer is required to maintain a media channel with each
other peer (for n participants, n − 1 channels are setup by each peer) as well as many
media encoder/decoders instances to sustain the mesh-like topology. For instance, Jansen
et al. [35] studied the performance of WebRTC video calls as more peers were added and
observed that data rates for 4 peers were up to 3 times higher than 2 peer connections.
To address this issue, WebRTC applications instead use centralized solutions such as SFU
and MCU.

In these architectures, the peers do not connect directly with one another, but instead
establish a peer connection with a central server. In the case of an SFU-based system, a
central server receives one or more data streams (with varying qualities) from each peer, and
selects which per-peer stream to forward. MCU-based systems, on the other hand, receive
the streams from all participants, mix them into a single data stream (e.g., combining all
individual peer video streams into a single video stream), and forwards it to every peer.
Also, while these architectures were designed with scalability in mind, they can still be
used when a call is held between only two peers. Figure 2.1 shows a diagram of the three
architectures.

Notably, what this implies in both non-P2P cases, is that the central server will typically
have transparent access to the data being transmitted, since the encryption channel is now
established between each peer and the server, as opposed to peer to peer. Due to the
inherent lack of end to end encryption, a new WebRTC API, Insertable Streams, has been
implemented. This feature would allow for pre-processing of raw video/audio before it

17

is sent to the server. Using this API, the clients are able to add an additional layer of
encryption on the media, guaranteeing end to end encryption between peers 4. While a
plausible solution, it is still up to the application provider to enable it in their setups, and
it has not yet become standarized.

In Chapter 3, we further elaborate on how the SFU and MCU architectures become a
vector for disrupting covert channels that rely on the video stream.

2.3.3 The VP8 codec

VP8 is an open source video compression format codec that aims for high compression
efficiency and low decoding complexity [5]. Notably, it is widely used and supported by
most popular browsers (e.g., Chrome, Edge, Firefox, Safari) [49]. Next, we address how
VP8 represents images, describe the main image encoding abstractions used by VP8, and
summarize its encoding and decoding procedures. For the purposes of this document,
the following is a reasonably detailed explanation of the process which is intentionally
simplified. We refer the curious reader to the official VP8 codec specification [5], which
provides full details about the VP8 encoding procedure and mechanisms.

Colorspace format. The VP8 codec works with an 8-bit YUV 4:2:0 format. Put in
simple terms, a given video frame is composed of three planes: a “luma” (Y) plane, and
two “chroma” (U and V) planes. Each 8-bit pixel in a chroma plane, corresponds to a
2×2 block of luma 8-bit pixels, giving the luma component a higher resolution than the
other two planes. The VP8 encoding algorithm splits a frame into macroblocks, where
each macroblock is composed of 24 sub-blocks (and in some cases adds a 25th “virtual”
block), divided as follows: 16 sub-blocks represent the Y plane, and 8 represent the U
and V planes. Each of the sub-blocks corresponds to an array of 16 8-bit pixels from the
uncompressed frame.

Image encoding abstractions. At the highest level, the VP8 encoder first generates
an intraframe (also known as a key frame) for the given video input. This frame is then
followed by any number interframes (also known as predicted frames). The difference
between these two types of frames is that interframes depend on all previous frames (up
to the last intraframe) to be reconstructed, whereas an intraframe is reconstructed using
itself as an input only. This loop is repeated as needed until the input is completely
encoded. The decoding process takes in these series of compressed frames, starting with
an intraframe, to reconstruct the YUV format signal.

4https://jitsi.org/blog/e2ee/

18

https://jitsi.org/blog/e2ee/

Figure 2.2: Frame to quantized sub-block decomposition.

Encoding process. The encoding process can be broken down into the following steps:

First, the type of frame is determined from the state of the encoder. As established
previously, the first frame to be output by the encoder is always an intraframe. A frame
can also be set as an intraframe if the algorithm determines it is required to convey large
changes of information in the overall media (e.g., for a scene cut), or due to quality of service
configurations (e.g., mandating the insertion of a key frame every n encoded frames).

Second, and regardless of the frame type, the macroblocks for each frame are processed
in a similar fashion, by generating predicted macroblock. The prediction modes for a
given macroblock are selected differently depending on whether these are included in an
intraframe or an interframe. Macroblock prediction in intraframes rely on information
about other macroblocks in the same frame, while macroblocks pertaining to interframes
can rely on other macroblocks in the same frame, or across other interframes. After predic-
tion is issued, the encoder then calculates a residue signal between each of the composing
sub-blocks of the original and predicted macroblock.

Third, a DCT transform is then applied to each of the residue sub-blocks, resulting in
an array of 16 coefficients, ordered from low to high frequency in a zig-zag order. After
the transform is applied, the coefficient sub-blocks then undergo a quantization step. In
this step, each of the coefficients is divided by the corresponding value on a quantization
table, and then rounded down. It is important to note that the quantization factors used for
quantizing higher frequency coefficients tend to be larger values, causing the high frequency
coefficient values to often be rounded down to zero. Figure 2.2 presents an example of how
a quantized DCT sub-block is calculated from the original frame during encoding following
these steps.

Lastly, the resulting sparse quantized sub-blocks (whose coefficient values will mostly be
zero), are then losslessly compressed using a boolean encoder. Each encoded frame output

19

by the encoder is composed of an uncompressed header containing metadata for the whole
frame (such as an indication of the frame type), plus the compressed representation of
macroblocks that comprise a given frame.

Decoding process. The decoder is mainly responsible for reversing the steps of the
encoding process so that video frames can be reconstructed. The main steps are as follows:

First, after the frame metadata is processed, the macroblocks are decompressed and
handled in order. A predicted macroblock is generated using either the current frame data,
or a previously decoded reference frame (depending on frame/prediction types).

Second, the residue signal of the macroblock is then generated and added to the pre-
dicted block. For each residue sub-block in a macroblock, the values are de-quantized, by
multiplying them by the values in the quantization table.

Third, an inverse DCT transform is then performed on the de-quantized values and the
residue signal is finally added to the predicted frame. (The de-quantization and transform
steps may be skipped if a block is marked to have no non-zero values.) The product of
processing all the macroblocks is a reconstructed YUV frame.

Lastly, the reconstructed YUV frame is passed through a loop filter to reduce blocking
artifacts at macro and sub-block boundaries. Once a frame undergoes all the above steps,
the decoder starts the decoding of the next frame in the pipeline.

2.3.4 Summary

In this chapter we first presented ongoing work related to censorship circumvention. We
discussed various tools that in one way or another let a user within the area of influence of a
censoring agent (such as a state level one) freely access information on the Internet. Then,
we focused on one particular method used in such tools, steganography, that allows covert
messages to be embedded within otherwise “normal” media, so that an adversary cannot
detect the presence of such communication. We gave an overview of work in both image
and video steganography, two common and closely related mediums. We also discussed
robust steganography, that which can resist active and passive attacks, as well as known
attacks to the proposed methods. Finally, we concluded this chapter by providing an
overview of technologies we will be using in this work, namely WebRTC, a solution for web
communications, and the VP8 codec, a common codec for WebRTC.

20

Chapter 3

Robustness Concerns for Video
Steganography over WebRTC

In this chapter, we study the robustness of existing steganography schemes used to build
covert channels over WebRTC-based media streams against adversaries that are able to
intercept and modify encoded media streams in transit.

Section 3.1 provides details of our experimental testbed, encompassing the implemen-
tation of a custom WebRTC video conferencing service that will be used during our study.
This service will leverage a deployment of a WebRTC gateway, allowing us to mediate
the transmission of video streams and apply different perturbations in the encoded media
comprising those streams.

In Section 3.2, we analyze the robustness of Stegozoa, a state-of-the-art WebRTC based
steganography system, against the manipulation of encoded media. We demonstrate its
drawbacks against adversaries with the ability to apply perturbations in media streams, and
identify a set of characteristics that make the steganography mechanisms fueling Stegozoa
inadequate to resist against such adversaries.

3.1 WebRTC Experimental Testbed

To study the implementation and applicability of different steganography schemes over We-
bRTC media channels, we implemented our own instrumented WebRTC video conferencing
application. To this end, we leveraged the Kurento Media Server (KMS) project [20], a
C/C++ library of tools and components for implementing video applications for WebRTC.

21

Figure 3.1: Architecture for our WebRTC experimental testbed in our two server con-
figuration. 1) Client reaches the application requesting to start a call with a new user.
2) Application server calls the Kurento API on the media server to handle signaling and
creates a communication channel with each of the clients. 3) Once the WebRTC call has
been started, the client sends the encrypted video payload to the media server. 4) Server
relays the media to the receiver, optionally performing operations on the underlying video.

KMS provides us with the necessary tools for implementing both an application server that
handles connecting two (or more peers) into a video call, and a WebRTC gateway server
that mediates the actual call, and through which the encoded media contents flow.

Figure 3.1 shows the overall architecture of our testbed, showcasing how each differ-
ent server interacts with clients and one another. In the following sections, we provide
implementation and configuration details for each of these servers.

3.1.1 WebRTC gateway server

At a high level, the gateway server is composed of interconnecting media elements (na-
tive and custom implemented) which create a media pipeline. Examples of two different
pipelines are shown on the WebRTC server section in Figure 3.2. For our purposes, the
most basic pipeline connects a “sender” WebRTC element with a “receiver” WebRTC ele-
ment (for one way communication, or duplicated for a full-duplex channel). The “sender”
element handles receiving the web packets from the video sending peer, and then passes
encoded frames through the pipeline. The “receiver” on the other hand, accepts encoded
video frames from the pipeline and handles their transmission to the receiving peer.

We note that while WebRTC is compatible with other video codecs (e.g., H.264, VP9),
our server is configured to work only with the VP8 codec, which is the usual default choice.
Besides, our WebRTC elements expect to receive and send VP8 encoded frames, but this
does not imply that said frames will remain VP8-encoded at every stage of the pipeline,

22

potentially undergoing other transformations and conversion between image/colorspace
formats. This is an important feature which we will discuss later in this section.

We now describe important additions to the media pipeline, which can be made in an
ad-hoc fashion to include customizable video filtering elements and video conversion layers.

Customizable filter element. The base pipeline configuration can be enhanced by
adding more elements at any point in the pipeline. Natively, KMS offers media elements for
various tasks such as video recording and playback, signal processing and computer vision
operations, and video mixing and dispatching. Of particular interest for our research, it
also offers customizable filter elements. These filters can be used for multiple purposes,
including adding noise to a frame, perform live changes and retouches to frames, tracking
objects (e.g., find a face in a video stream), super-imposing images (e.g., adding a hat to
a head when detected). Kurento provides support for the implementation of these filters
using the GStreamer and OpenCV libraries.

When connected to the pipeline, each filter element expects a video frame, applies a
transformation, and then passes the frame along to the next element in the pipeline. By
default, these filter elements expect to receive and transmit raw RGB frames (i.e., frames
which are not compressed/encoded). These “expectations” are called element capabilities
(or caps, for short). The caps of an element (which may include attributes such as reso-
lution, image bit-depth, and audio and video codecs supported) can be understood as the
super set of all possible configurations of media an element can handle (either incoming or
outgoing). Ideally, each element in the pipeline has at least one configuration that inter-
sects with the caps of another element connected to it, allowing for a seamless interaction
between attached elements.

However, as we have mentioned before, our WebRTC elements expect to receive and
forward VP8 encoded frames, whereas the filter elements expect raw frames. Thus, a
specific conversion layer is required to handle mismatches that could be caused during the
conversion of VP8 encoded frames to RGB and back.

Agnostic bin. To handle the above kind of mismatches between the capabilities of a
sending (source) element and a receiving (sink) element, the KMS pipeline implements
an intermediary mediation layer known an agnostic bin. The role of the agnostic bin is
to convert the source media into a format the sink can handle (as determined by their
capabilities), by performing operations such as transcoding. In the case of our application,
when we connect a filter element between the twoWebRTC elements, this layer first decodes
the VP8 frames into raw (RGB pixel value) frames, and then moves it along the pipeline.
Similarly, once the filter finishes processing a frame, the frame gets re-encoded back to
VP8 format and passed along the pipeline. Notably, the transcoding mediation happens

23

Figure 3.2: WebRTC Server pipeline with and without the use of pluggable filters. In this
example, the filter receives a frame and adds a an icon on top of the image.

regardless of the actual implementation of the filter (or any other element) – it only depends
on a capability mismatch between two connected elements. That is to say, an “empty” filter
element can be added to the pipeline to trigger one or more iterations of VP8 transcoding.

The final server implementation consists of a two pipelines (fully duplexed, one for
each peer in the call), that each have a WebRTC sender and a WebRTC receiver element.
The caller pipeline also has zero or more filter elements in between the WebRTC elements.
Figure 3.2 shows the process of sending a video frame from one peer through our WebRTC
gateway server for both with and without filter scenarios.

3.1.2 Application server architecture

Complementing the gateway server, we also have an application server. The responsibility
of this server is to allow users to initiate WebRTC calls with one another. The implemen-
tation is heavily based on the samples provided by Kurento. It is written in Java using
the Spring Boot framework. At a high level, it allows a user to register, and then start
a call request with another registered peer. The receiving peer may accept or reject the
call. If accepted, the application server performs the necessary API calls to instantiate the

24

pipelines in our gateway server, and performs the required signaling to start a WebRTC
call (more details on this process on Section 2.3.1). Once the call is established, any of
the peers may end the call and return to the original state. Implementation details are
provided below.

Interacting with the gateway server. Interactions with a Kurento server (in this case
our gateway server) are done through the Kurento Protocol. This protocol is built on top
of JSON-RPC and uses WebSocket for transport. Kurento provides a set of Java APIs
that encapsulates this protocol, and allows our server to perform a series of requests on the
server to establish a call. When starting a call, the application server first requests a new
set of media pipelines to be created (for outgoing and incoming video), and then requests
for the WebRTC elements to be instantiated. Depending on the operation mode, the server
may also request for a filter element to be created. Once created, another request is made
to connect the elements for the connection. Finally, a request to start an SDP negotiation
is sent, at which point the gateway server creates the video call for the two peers.

Modes of operation. For simplicity, when starting a new call, the user is provided with
a choice of two modes of operation for the WebRTC call. A clean-channel, in which no
filters are applied in-between the WebRTC media elements on the gateway server, and
a filter-channel in which at least one filter element is placed in the pipeline. The clean-
channel mode, as the name implies, emulates a regular clean call in which no processing is
performed over the video stream. Conversely, the filter-channel mode will force the media
stream to undergo (at least) a round of VP8 decoding and re-encoding. We note that
these modes are exposed to the user simply for making it convenient for us to conduct our
experiments. In a realistic scenario, the gateway server implementation may remove these
controls away from the user, and instead automatically determine its mode of operation.

3.2 Attacking Stegozoa

As previsouly mentioned in Chapter 2, Stegozoa is a recent example of a censorship-
circumvention tool that leverages image steganography techniques to embed covert data
in the encoded video media exchanged in WebRTC calls. However, Stegozoa’s design does
not consider the potential manipulation of encoded media by WebRTC gateways (whether
these are explicitly adversarial or not). Next, we present the implementation details of
this tool, highlighting possible design aspects that might prevent the correct operation of
covert channel if subject to manipulations of the encoded media. Then, we leverage our
experimental testbed to showcase an attack on this system. We conclude this section by
discussing our key findings.

25

3.2.1 Stegozoa implementation details

At a high level, Stegozoa instruments the VP8 codec library (libvpx) in the communicating
endpoints’ machine, towards embedding covert data in the encoded video frames exchanged
between peers. Specifically, Stegozoa embeds steganographic messages in the least signif-
icant bits of some of the quantized DCT coefficients composing an encoded frame, which
we call the embedding space.

In particular, Stegozoa filters out all 0 and 1 coefficients, as well as DC coefficients,
from its embedding space. The reasons for this filtering are twofold: changing coefficients
valued at 1 and 0 could greatly affect the quality of the compression algorithms, leading to
severe changes on traffic patterns, and changing DC coefficients could bring severe changes
to the reconstructed frames, potentially becoming a telltale sign that some steganography
system had been put in place by the communicating peers.

Upon filtering out these specific coefficients, Stegozoa takes a parsimonious approach
at covert data embedding. Namely, it leverages the STC algorithm to determine which
of the coefficients in the embedding space should be used for message embedding (aiming
to reduce perceptible changes to frames once these are reconstructed), and sets the least
significant bits of each of those coefficients accordingly.

When the steganographically-marked encoded video is received by the communicating
endpoint, the receiver performs the reverse process. In a nutshell, once having access to the
quantized DCT coefficients during video decoding, STC is performed in a reverse fashion
to determine the locations of the embedded message. The covert message is then extracted
from the least significant bits of the coefficients identified as carrying covert data.

From the above explanation, it becomes clear that Stegozoa was not designed with the
goal to resist an adversary that can directly manipulate the encoded video stream, and
thus, thwart the process of identifying which STC-chosen coefficients carry covert data or
change the potential contents of the covert message itself. In the next section, we construct
a simple proof-of-concept attack on Stegozoa by leveraging our filter-channel construction
introduced in Section 3.1, and which, amongst other image perturbations, will also force the
WebRTC gateway to perform one round of VP8 decoding and re-encoding before sending
the resulting media to a Stegozoa peer.

3.2.2 Breaking Stegozoa’s covert channel through re-encoding

The goal of our attack is to showcase that simple media manipulation procedures can
disrupt Stegozoa’s covert channel, preventing Stegozoa peers from exchanging covert mes-

26

sages. We aim to keep these manipulations simple and imperceptible to regular users,
since we believe real-world censors would be interested in preventing the communication
of Stegozoa peers while not causing collateral damage to peers that are legitimately using
the WebRTC video-conferencing service to communicate amongst themselves.

A basic Stegozoa setup. We used the instructions provided by the Stegozoa develop-
ers [22] to deploy the tool in our WebRTC testbed. To verify that our setup works as
expected, we connected two Stegozoa peers through a clean-channel connection, and were
able to verify that the Stegozoa peers were able to correctly exchange covert messages
through the video stream. This confirmed that our deployment is functionally equivalent
to that used in the original implementation of Stegozoa, and which was showcased using
the Jitsi WebRTC application. Upon setting up an operational testbed, we then proceeded
to test our first attack.

Attacking Stegozoa through video filters. Instead of a clean-channel, we connected
a video filter element in our pipeline in order to apply various types of noise into the video
stream (i.e., VP8 → Raw → Filter Raw → VP8). Our first attack was based on a blurring
filter with a configurable window size, and which averaged the value of a given pixel with
the pixels around it within the set window. A window of size 3 (3 pixels wide and high),
for instance, would average the value of a given pixel with those immediately contiguous to
it. Similarly, a window of size 1, would average the value of only the given pixel, essentially
resulting in a non-operation. We initially designed this experiment to apply video blurring
with an increasing size of pixel averaging windows, until we could verify Stegozoa was no
longer able to establish a connection with a peer. However, we verified that using a window
of size 1 was enough to prevent the Stegozoa client from establishing a connection.

Attacking Stegozoa through video re-encoding. In order to verify the simplicity of
the above attack, we completely removed the filter functionality. Essentially, we set up a
“do nothing” filter, which would simply cause the WebRTC gateway to trigger a round of
decoding and re-encoding of VP8 video frames (i.e., VP8 → Raw → VP8). Interestingly,
we verified that this operation would be sufficient to prevent Stegozoa clients from correctly
reconstructing steganographically-embedded messages from the encoded video stream.

3.2.3 Why does Stegozoa break?

Since the original design of Stegozoa does not consider the construction of a covert channel
that resists the manipulation of encoded media (e.g., against censors that attempt to nor-
malize video frames’ DCT coefficients LSBs), the results presented in the previous section
are not exactly surprising. What is noteworthy, however, is that Stegozoa’s embedding

27

mechanism is trivially broken even under non-adversarial conditions. By studying the im-
plementation of Stegozoa, and the details of the VP8 codec, we were able to hypothesize a
set of reasons that may cause Stegozoa to become inoperational after simple manipulations
of the encoded media.

• Lossiness of VP8 codec: The VP8 codec algorithm is highly optimized to minimize
the amount of data required to represent a frame. It does so in two main ways, by
using inter- and intra-frame prediction methods and by discarding (i.e., turning to
zero) high frequency coefficients. While both of these operations are lossy, Stegozoa
mitigates this effect by embedding messages after the loss of data happens (i.e., after
the quantization of coefficients). Adding a round of video re-encoding, however,
re-introduces this lossiness to the steganographic embedding space, and may cause
enough changes to the embedding coefficients such that the receiving client is unable
to reconstruct the original message.

• Different VP8 settings: The threat model for Stegozoa states that the peers have
full control of the software running on their machines. That is, they can configure
and instrument the VP8 codec used on their machines as they see fit. In our testbed,
there exists an additional pair of encoder/decoders that are controlled by the owner
of the gateway server. Slight tweaks to the configuration (such as quality of encoding,
how often key frames are created, or bitrate) may cause unpredictable effects on the
values of the DCT coefficients Stegozoa depends on to carry covert data.

• Fragility of the embedding algorithm: Stegozoa uses STC to efficiently embed
its message in a given embedding space. However, STC was not designed to be
robust against changes in the embedding space, and a single error in the stego-vector
(e.g., flipping the least significant bit of a coefficient), triggers cascading errors on
the recovery of the steganographically-embedded message (if it can be recovered at
all).

• Fragility of the embedding space: The Stegozoa embedding space does not use
the entirety of the coefficients composing a frame, but instead, dynamically filters out
coefficients valued at zero and one at embed time, using the remaining coefficients
as an input for the STC algorithm. During message recovery, the same filtering is
performed so that the exact same embedding space is re-generated by the other peer.
From our observations, zero valued coefficients are not guaranteed to remain static
after re-encoding, and the reverse is also true for non-zero coefficients. By changing
the embedding space, the input for STC itself also changes, preventing the correct
recovery of the covert message.

28

• Lack of error correction: As evidenced above, Stegozoa’s steganographic embed-
ding procedure assumes the STC stego-vector remains unmodified during transmis-
sion, and thus ignores the need for correcting errors at the stego-vector level. Our
observations suggest that slight modifications to the stego-vector deem a Stegozoa
message to become unrecoverable.

In the next chapter, we conduct a series of experimental tests using the VP8 codec to
validate the above hypotheses. Specifically, we aim to quantify the observable changes on
encoded media upon re-encoding operations, and assess their potential impact on stegano-
graphic schemes like those used in Stegozoa.

29

Chapter 4

Characterizing VP8 Re-encoding

In this chapter, we perform a set of experiments on the VP8 codec to better understand
the effects of re-encoding operations performed over a video stream. Our experiments will
be focused on analysing the changes caused to quantized DCT coefficient values, which are
the vehicle of choice for multiple video steganography tools, including Stegozoa, after each
round of encoding. In Section 4.1, we provide details on the testbed we designed to carry
out these experiments. Then, in Section 4.2, we describe our characterization experiments
and present our results.

4.1 Local Testbed Configuration

To conduct our experiments, we implemented a different testbed from that focused on
the previous chapter. Specifically, we implemented an offline testbed in which we isolate
VP8 codec operations without additional networking-induced considerations, and therefore
focus only on observable changes in encoded media caused solely by re-encoding procedures.

4.1.1 Testbed design and data collection

Our offline testbed consists of a modified VP8 codec deployment in a local machine with
a 2.8GHz 11th Gen. Intel i7 CPU and 16GB RAM. To collect the necessary data for our
analysis, our testbed requires the implementation of a set of sensors and actuators within
the codec codebase, which we implement through instrumentation code (see Section 4.1.2).

30

Figure 4.1: Workflow of our offline VP8 re-encoding testbed.

The entirety of our testbed is implemented in ∼1 300 lines of C code for the main test setup,
with an additional 100 lines for instrumenting the VP8 codec as previously mentioned.

Testbed workflow. We refer to the steps in Figure 4.1 to describe the workflow we
follow for performing our embedding experiments using the testbed. This worflow includes
a total of six phases, which we describe below. Observational experiments (those that
simply analyze the effects of re-encoding) follow a similar simplified process. Throughout
our description, we highlight which steps may be skipped for these experiments.

• (1) Configuration and setup phase. We read in the parameters for an experi-
ment, including the source YUV video, codec settings, number of re-encoding layers
to execute, and error correction configuration. We then configure a pair of VP8 en-
coders and decoders, and additionally a new pair for each iteration of re-encoding
wanted. The first frame of the video is read into memory. Table 4.1 shows a summary
of the configuration parameters available at this stage.

• (2) Message generation phase. We generate a random bitstream array whose
length is determined during the configuration phase. The probability of 1s and 0s
can be biased if desired. Then, if required, additional redundancy can be added to
the message by using an error correction algorithm whose parameterization is defined
during the configuration phase. This step may be skipped for tests where we are only
observing the re-encoding behaviour and not embedding a message.

• (3) Encoding and decoding phase. We start the encoding process with the
current frame in memory using the original encoder. Our hook code runs during this

31

Testbed-specific parameters

Parameter Description

Embedding Coefficient Index of the sub-block coefficient used for embedding. Range is 0 to 15.
Embedding Bit Index of the bit in the embedding coefficient to shift to embed message.

Range from 0 to 15, where 0 is the least significant bit.
Message Size Size in bits of the message to embed. Range from 0 to the number of

sub-blocks in a frame.
Error Correction Enable or disable error correction on the embedded message.
Error Correction Level Used to determine the amount of redundancy for error correction.
Iterations Number of re-encoding iterations to perform on a video. A value of 0

means no re-encoding happens.
Max Frames Maximum number of frames that are processed per video.

VP8-specific parameters

Parameter Description

Width Width in pixels of the source video.
Height Height in pixels of the source video.
Frame rate Number of frames encoded per second of video.
Deadline Maximum time in ms to process a frame. Higher values can improve visual

quality at the cost of performance.
Bitrate Bitrate per second that the encoder should target.
Key Frame Interval Maximum number of predicted frames encoded in a row without a key

frame. Value of 0 allows any number of predicted frames in a row.

Table 4.1: Testbed configuration parameters.

process, calling our embed function with the message we generated on the previous
step. The resulting encoded stego-frame is passed to the original decoder. Again,
our hook is called, this time invoking the recovery function, to extract the message
from the same bits it was embedded on. We also store the new decoded raw frame
in memory. Same as in the previous phase, the message recovery process may be
skipped for experiments where we do not embed any data.

• (4) Message reconstruction phase. In case that error correction has been enabled
during the encoding of a message, we attempt to reconstruct the original message
once it is retrieved from a frame, storing the resulting message in local storage. If no
error correction has been applied, we directly store the retrieved message.

• (5) Re-encoding phase. If our testbed is configured to perform re-encoding oper-
ations and we have not yet reached the last re-encoding layer, the raw frame decoded
in step (3) is re-encoded using the encoder defined at configuration time. We note

32

Parameter Value Notes

Frames per second 30 Match source video.
Width 1 280 Match source video.
Height 720 Match source video.
Deadline 300 000 Match Kurento Media Server default.
Bitrate 20 000 Match Kurento Media Server defualt.
Key Frame Interval 0 Match Kurento Media Server default.

Table 4.2: VP8 codec configuration.

that, in our experiments, we only use the VP8 encoder, and perform no other mes-
sage embedding procedures at this stage. The new encoded frame is passed to the
corresponding decoder to generate a new decoded frame, and we then attempt the
extraction of the stego-message in phase 4. If no more re-encoding operations are to
be performed in phase 5, the process continues to phase 6.

• (6) Process next frame phase. If there are frames left on the original source
video, or if we have not reached the desired number of frames to be processed in the
experiment, we jump to phase 1 and read in the next available raw frame from the
source video. Otherwise, we are done processing the current video and we read the
next configuration file, if available.

Data collection. For our characterization experiments We used 20 YUV 4:2:0 video
samples, with at a 1280 × 720 resolution, at 30 frames per second with a duration of
10 seconds each (i.e., 300 frames). The video samples used in our characterization are
uniformly sampled from four different categories, including: a) chat, where a person talks
directly to a camera, simulating a video call; b) collaboration, showing a screen capture of
someone using collaborative coding software; c) gaming, showing a video game broadcast,
or; d) sports, depicting video broadcasts of multiple sport activities. While videos in the
first category can more closely resemble a typical video conferencing call, we drew videos
from other categories as it would be trivial for a steganographic system’s users to arbitrarily
set the cover media (e.g., injecting any pre-recorded video into their webcam feed).

We configured the VP8 codec used in our testbed to match the default codec options
used in our Kurento-based WebRTC testbed presented in Section 3.1 (Table 4.2 provides
a summary of the chosen values for each configuration parameter). Kurento is configured
for a production environment, with a set of parameter choices that enable for reasonable
trade-offs between the codec performance and the resulting media quality perceived by
users. Importantly, this also means that our local testbed configuration matches the one

33

we used for testing Stegozoa, which we found to be inoperable after re-encoding operations
performed by Kurento.

In our experiments, and with the help of our testbed, we saved the DCT coefficient
values obtained after the original encoding of each frame, as well as the coefficient values of
each frame after one round of re-encoding. Specifically, given our parameterization of VP8,
each frame will be divided internally by the codec into 3 600 macroblocks, each containing
16 Y sub-blocks with 16 residual DCT coefficients. This amounts to a total of 92 1600
DCT coefficients per frame, or otherwise a one-to-one correspondence with the number of
pixels in the original video.

4.1.2 VP8 codec instrumentation

For our implementation, we instrumented a version of the libvpx library, which holds the
source for the VP8 codec. We modified the libvpx code such that we have access to the
quantized coefficients from the residual signal as soon as they become available during
encoding and decoding. Our objective was to create a set of “hooks” on the libvpx code,
such that when the quantized coefficients become available, a user defined function is
called to do some processing on them. This processing could be passive (such as inspecting
values and storing to be used later), or active (modifying coefficient values to embed a
stego-message). Next, we detail how we performed the codec instrumentation and describe
our processing functions. In Figure 4.2, we present a diagram of the encoding and decoding
algorithms showing the location of our hooks.

Encoder instrumentation. Focusing on the encoding side of the process, first we had to
modify the encoder, so that we can pass user defined processing functions during instantia-
tion. We modified the C structure for the encoder to include a flag which will be set to true
if we want our hook code to be exectued. Similarly, we added a function pointer member to
this structure, which will hold the user defined processing function that takes in a pointer
to the macroblock being processed and an optional context pointer that may be used during
processing. We then modified the encoding algorithm at two points. Depending on whether
a intra or interframe is being encoded, the functions vp8cx encode intra macroblock and
vp8cx encode inter macroblock are called, respectively. Regardless, each of these func-
tions, perform the prediction, DCT transform, and quantization steps mentioned earlier.
After these operations are performed, we add our hook that checks that the processing flag
is set to true, and if that is the case, calls the user provided processing function. Next, the
boolean encoding process continues as normal.

Decoder instrumentation. For the decoder, on the other hand, we do similar modifica-

34

Figure 4.2: Macroblock encoding and decoding process with processing hooks.

tions. We modify the structure for the decoder to add a similar check flag and processing
function pointer. For the decoder algorithm, we also modified the process at two points,
however, due to different reasons. As it was mentioned in the decoding overview, a mac-
roblock may be skipped if there are no non-zero coefficients. As we are interested in
processing all coefficients, regardless of state, we add our hooks at either of these branch-
ing points. In the skip path, we inject our hook code right before the decoder context
is reset. Conversely, in the other scenario, our code is called after the boolean decoding,
and before the coefficients are dequantized. Importantly, while it is possible to modify the
quantized coefficients at this stage, since this would be the message extraction phase of the
communication channel there is no need to do so. For this reason, the processing function
called by the hook are expected to be passive (that is, purely observational).

Processing Functions As the name implies, the processing functions perform user de-
fined processing of quantized coefficients during encoding and decoding, which get called
by our hook code. They do so at a macroblock level, similar to how VP8 processes a frame
macroblock by macroblock, and following the same order. The parameters for these func-
tions are very similar for the encoding and decoding phases. They both receive a pointer to
the current macroblock (these are the same structures VP8 uses), the type of frame (intra
or inter frame), and a context void pointer. The context pointer is user defined, and holds
persistent data that may be used across various calls to the processing function. Since
it is readily available, the decoder processing function also takes in a macroblock index,
indicating the ordinal for the macroblock in the processing order. The functions return a
status code corresponding to the success of performing the operations.

35

We have implemented three types of processing functions for our experiments. One for
observing and recording a set of coefficients from each macroblock (which may be all of
them), one for embedding data into a macroblock, and one for recovering embedded data
from a macroblock. All three of them perform operations only on the Y component sub-
blocks of a macroblock (the first 16 in order). We decided to focus only on this component,
as changes to the Y component typically cause fewer distortions to an image, causing this
component to be a usual target for video steganography techniques. However, we note that
our instrumentation hooks could be easily extended to work on the other components too.

Observing function. This function has the most straightforward implementation and can
be hooked to either the encoder or the decoder. As each macroblock is received, the
coefficients of each block are written to a comma-separated file in order. Subsequent re-
encoding iteration values are written in a new line. The saved files can then be compared.

On the other hand, the embedding and recovering functions have complementary im-
plementations, and heavily make use of the context pointer. For the embedding function,
the context has a list of indexes of the coefficients used for embedding (we can think of
all the Y coefficients of a frame as a long list of numbers, and we use this as their index),
embedding bit (for example the 0th, or least significant bit), the message to embed across
the entire frame (a bit array), the index for the next message bit to embed, the index of
the current macroblock, and the size of the message in bits. The recover function uses a
similar context, except the message array starts empty and gets populated as the message
is recovered, and keeps track of a recover index instead of an embed bit.

Embedding function. This function is hooked to the encoder, and its goal is to allow us
to embed (part of) a stego-message into a given macroblock undergoing processing. To do
so, the context passed as a parameter includes an array of ordered embedding coefficient
indexes, as well as a pointer to the current embedding index (which starts at the first
element in the array). Every coefficient in a frame can be given a unique index (e.g., the
first coefficient of the first sub-block of the first macroblock would have index 0), the array
is a subset which will be used for embedding the stego-message. If the current embedding
index corresponds to one of the coefficients in the macroblock, we replace the ith bit in
the binary representation of the corresponding coefficient with the next message bit, where
i is the value of the embedding bit parameter. After, the end of block function is called
and the current embedding index pointer is then moved to the next element in the array.
This embedding and updating process is repeated until either the message is exhausted or
the next embedding index falls outside of the range of the macroblock. Once we are done
with a macroblock, we increase the current macroblock index in the context and return
the control to the VP8 codec.

36

Recover function. This function is hooked to the decoder, and we use it to recover the
message we had previously embedded. The function reverses the embedding process, and
uses a similar context, except the message array starts empty and gets populated as the
message is recovered, and keeps track of a recover index instead of an embed bit. Once
again, we calculate the list of available coefficient indexes in the macroblock, using the
same formula as during the embedding. Similarly, if the next coefficient index to recover
is found in this macroblock, we save into the message array the value of the bit at the
ith position in the binary representation of the coefficient. The process is repeated until
the next recover index is outside the bounds of this macroblock, or we have recovered the
entire message (as specified by the message size parameter). No end of block update is
needed at this stage since we are not modifying any of the coefficient values. The control
is then returned to the codec.

End of block update function This function is not called directly but used by the embedding
function. After embedding the message bit, we perform an “end of block update”. The
reason for this operation is because the macroblock object keeps track of an end of block
value for all sub-blocks. This value corresponds to the 1-based index of the last non-zero
coefficient of a block in zig-zag order, or 0 if all values in the sub-block are 0. The VP8
algorithm uses this value for efficiency purposes, including during the binary compression,
to reduce the number of values that need to be processed. Since our embedding could
change a non-zero value to zero, or vice versa, it is imperative that we update the end of
block to correspond to the new true end of block. Failing to do so may cause a value that
is now non-zero to be compressed as a 0 (because it was ignored), or VP8 decoder to flag
a macroblock as corrupt and stopping the entire process.

4.2 VP8 Characterization

This section presents the results of the experiments we performed to characterize the
changes on the values of the DCT coefficients of encoded frames, after multiple rounds of
encoding with the VP8 codec. First, we aim to get a grasp of how the DCT coefficients
composing a typical encoded VP8 frame look like (Section 4.2.1). Then, we aim to charac-
terize the changes observed once we subject encoded video to a decoding and re-encoding
procedure, like the one performed in Kurento (Section 3.1.1). Following, based on these
observations, we analyze why Stegozoa is rendered inoperable after re-encoding operations
(Section 4.2.2), and what requirements must be met for the design of a steganographic
system that can survive re-encoding (Section 4.2.3).

37

Figure 4.3: Box plot of percent of coeffi-
cients with value 0 per frame.

Figure 4.4: Percent of zero coefficients per
position.

4.2.1 General VP8 characterization

The goal of our first characterization experiment is to establish a baseline of the contents
of encoded media frames. When doing so, we were particularly interested in understanding
the percent of DCT coefficients that assume a value of 0 after the quantization step during
encoding. Given that the codec was designed with high compression efficiency in mind, our
expectations are that most values will be 0. Thus, our first experiment aims to contextualize
and ground this expectation. We also hypothesize that an iteration of re-encoding would
preserve the values coefficients in similar ranges.

In Figure 4.3 we present a summary of the percentage of zero valued coefficients per
frame for both the original video samples and the re-encoded versions. The average value of
0 coefficients is 98.43% and 98.52% for the original and the re-encoded video, respectively.
Similarly, we have a mean of 99.61% and 99.70% and a standard deviation of 2.78 and
2.71, respectively. Notably, both plots show a long fading tail of outlier examples that
extend down to 75% range. It is likely that these outliers are key-frames, due to those
generally encoding more data. Even with these outliers, it is clear that the quantization
step is turning most of the coefficients into zero. A similar comparison can be done at a
per-macroblock level. The median for both the original and re-encoded videos is 100% and
the standard deviations are 4.87 and 4.79, respectively. Or in other words, we can expect
at least 50% of the macroblocks to be “empty”. This is another proof of the efficiency of
the codec, since the empty macroblocks will be skipped during the process.

38

Figure 4.5: Box plot of the maximum posi-
tive coefficient value per frame.

Figure 4.6: Box plot of the minimum nega-
tive coefficient value per frame.

Spliced differently, we can also look at the average percent of zero coefficients for each
of the 16 coefficients. By design, VP8 codec preserves lower frequency (in zig-zag order)
coefficients during the quantization step. Figure 4.4 shows the percent of zero values per
coefficient order. Lower frequency (those that have the most impact on the image quality)
are less likely to be zero than those of higher frequency. This holds true in our observations.

With the same goal to establish a baseline for the codec, we also look at the value
ranges for the quantized coefficients. Intuitively, we would expect that larger coefficient
values may be more likely to survive re-encoding. While coefficients are represented as 16
bit signed integer, our initial observations show the maximum values for the coefficients do
not get close to this ceiling. By measuring a realistic range, we can have a bound on how
large a change we can make to a coefficient during embedding.

We now summarize the largest positive and negative values among quantized coefficients
in a frame. Focusing first on the positive values (Figure 4.5), we can observe that non outlier
values are all less than 100 units, with a maximum observed value of 210, for both the
original encoding and the re-encoding. Conversely, for negative values (Figure 4.6), the non
outliers are within 80 units, with the largest observed values at -190 and -191, respectively.
From these observations, we can conclude that for non outlier values (both negative and
positive), any changes to the least 6 significant bits of the value will not create a new value
larger than any previously observed. At worst, a change to the 6th bit would result in a
value of 127 (0111111 in 2’s compliment binary), which is within the observed values. It is
important to note that this ceiling is not taking into account the actual magnitude of the

39

change, and we expect that while this is a best case scenario, embedding may be limited
to lesser bits than the 6th bit.

In general, the results from these experiments match our expectations of the codec.
The characterization experiments have shown that VP8 is highly efficient both in terms
of data being transmitted (high density of zero values can be highly compressed), and
processing (empty macroblocks and frames can be ignored). With these observations in
mind, the rest of our experiments in this section focus on how re-encoding directly affects
covert channels that rely on these coefficients.

4.2.2 Embedding space changes

In this subsection, we describe our experiments towards measuring possible covert data
embedding space changes that re-encoding may cause to Stegozoa. Previously, we men-
tioned that one of the factors that may prevent Stegozoa’s correct operation are changes to
this space. As a reminder, Stegozoa filters out the first (DC) coefficient of any sub-block,
and similarly filters out coefficients that are either 0 or 1. Every coefficient not being fil-
tered is considered to be part of the embedding space. Changes to this space would cause
the underlying Stegozoa embedding algorithm (STC) to produce the wrong output (cor-
rupted stego-message). We seek to analyze if there is any consistency on this space after
re-encoding by measuring increases and decreases, as well as what percent of sub-blocks
remain constant.

To measure changes to the embedding space, we proceed as follows: for each pair
of coefficients (extracted from the original and the re-encoded frames, respectively), we
compare if they are inside or outside the embedding space. We qualify it as a space
increase when the original coefficient would be filtered out, but the re-encoding coefficient
would have not, and vice-versa for a space decrease. We also count the number of frames
where all sub-blocks are “constant”, i.e., sub-blocks without any changes in the embedding
space in either direction.

The total number of space increases per frame observed in our experiments lead to a
mean of 540 and a median of 39, with a standard deviation of 1191.95 and a maximum
increase of 19068 (2.0% of all coefficients in a frame). Similarly for space decreases, we
observed a mean of 719.13, a median of 65, with a standard deviation of 1499.00 and
a maximum decrease of 20233 (2.1% of all coefficients in a frame). From these summary
statistics, it is clear that these changes in space are fairly spread out. Further, we measured
that 75% of all the frames had at least 1 space increase and 2 space decreases. These
figures go up to 2 space increases and 5 space decreases for the 70th percentile, or up to 11

40

Video Category Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Chat 31.67% 30.00% 30.33% 27.33% 34.33%
Collaboration 41.33% 39.00% 24.33% 40.00% 28.67%
Gaming 5.67% 3.33% 0.33% 0.33% 2.67%
Sports 10.33% 0.33% 0.67% 47.00% 0.00%

Table 4.3: Percent of embedding space constant frames per video sample.

space increases and 23 space decreases for the 60th percentiles. Considering a system like
Stegozoa relies on this space to be stable (where one change would be enough to disrupt the
reverse STC algorithm), we can infer why a message cannot be sent through this channel
without being corrupted.

We now focus instead on the number of frames that exhibit a constant embedding
space. A summary of our findings is presented in Table 4.3, where we analyze the number
of constant frames in each of 5 different videos pertaining to a different video baseline. For
samples in the chat and collaboration categories we see a consistent level constant frames,
clustered around 30%. On the other hand, for gaming and sports, with the exception of
the 4th sample of the latter, the percent of constant frames plummets to 10% or less. One
possible explanation for this behaviour is that collaboration and chat samples may have a
smaller number of major changes in the video, and may have more “empty” or mostly zero-
valued coefficient frames, compared to gaming and sports. Regardless, in terms of affecting
the correct functionality of Stegozoa, this shows us that even in the best case scenario (the
more stable samples, chat and collaboration), it would not be able to calculate the same
embedding space for two thirds of all frames. This is assuming that the actual values have
not changed (which is not guaranteed), and that Stegozoa determined there was enough
embedding space on the given frame.

4.2.3 Embedding survivability

Next we seek to measure the survivability of an embedded message after re-encoding.
For this experiment, we generate and embed a stego-message into a VP8 encoded frame
following the flow detailed in Figure 4.1. We then extract the stego-message from the same
coefficients we used for embedding, after a round of re-encoding. The survibility rate is the
total number of matching bits between the original and extracted message over the total
bit length of the message.

Our goal is to find the best performing configuration, between embedding coefficient (1
through 15), and embedding bit (least significant bit, second least significant, and so on).

41

Coefficient All frames Only key frames

1 34.04% 20.75%
2 30.18% 14.78%
3 30.06% 14.17%
4 33.38% 21.35%
5 32.25% 19.60%
6 31.01% 12.48%
7 22.88% 11.37%
8 29.98% 18.03%
9 33.01% 14.06%
10 28.31% 3.65%
11 25.43% 3.14%
12 29.18% 16.04%
13 25.07% 13.77%
14 26.11% 3.38%
15 21.84% 1.24%

Table 4.4: Least significant bit embedding, per coefficient, message error rate after re-
encoding. DC (0th) coefficient excluded from analysis.

Embedding bit All frames Only key frames

0 25.16% 2.94%
1 41.81% 9.99%
2 52.68% 12.63%
3 56.79% 17.66%
4 56.74% 30.18%
5 59.86% 39.04%

Table 4.5: Variable bit embedding, on 11th coefficient, message error rate after re-encoding.

Commonly, to make it harder to perceive that an image carries a steganographic message,
the least significant bit is chosen for message embedding. For this reason, we conduct
our first set of experiments holding the embedding bit constant (least significant), and
changing the embedding coefficient. We then repeat this experiment holding the embedding
coefficient constant (choosing the best performing from the previous experiment), and
varying the embedding bit.

Table 4.4 shows the results of the first set of experiments. We present the embed
message error rate for all non DC (0th index) coefficients, highlighting the best performing
ones. For each frame of each sample, we embedded a random message 3000 bits long in the
given coefficient in a sub-block using least significant bit shifting. We then re-encoded each

42

frame, and recovered the message by reversing the process. The error rates presented are
measured by comparing each original message with its corresponding recovered message,
across all samples, and calculating the percent of bits that were not preserved (or flipped).
Lower values represent higher survivality rates for the message, and we present our results
both for all frames, as well as only key frames.

Notably, in all cases, error rates are lower on key frame only embedding. A likely
explanation for this behaviour is that during encoding (or re-encoding) these type of frames
carry more data than the predicted counterparts, since they are reconstructed without any
other frames as reference. In other words, the codec will perform less lossy operations
during the quantization process in order to preserve that information. We hypothesize that
this is what allows messages to better survive a round of re-encoding. It is important to
note however, that while a client can configure the codec being used by WebRTC to force
more frequent key frames, the codec in the server decoding and re-encoding the media
cannot be configured in such a way. For this reason, we believe that a steganography
method may rely on the “naturally occurring” key frames (as determined by the codec
itself), but not force more frequent key frames.

Regardless of the type of frame, we also observed that error rates tend to decrease as we
use higher frequency coefficients (in zigzag order). We reason that a one unit increase (for
example embedding a 1 in a coefficient that was otherwise 0) in high frequency quantized
coefficients, corresponds to a much higher increase in the corresponding non-quantized
coefficient, since this value is multiplied by a higher quantization factor. This implies a
higher distortion or impact in the cover image. Similarly, higher frequency coefficients
tend to be valued at zero. By embedding on these coefficients, the statistical features are
disturbed. We understand both these effects as trade-offs between encoding robustness
and observability (both in terms of steganalysis and image analysis).

Given these results, we have chosen the 11th coefficient as the best candidate for the
embedding bit experiments. On key frame only embedding, it has comparable performance
to the other two best coefficients, while having a lower index in the zigzag order. Similarly,
it ranks 4th for all frame embedding, and within a percent of the third best performing.

We present the results of the embedding bit experiments in Table 4.5. As with the
previous experiments, we see a clear improvement in performance when embedding happens
only on key frames. Similarly, the performance of the 0th bit embedding is comparable to
what we had previously measured.

Most surprisingly perhaps, changing embedding from least significant bit towards higher
bits causes higher rates of message error rates. Intuitively, we expect a bigger change to the
quantized coefficient value to be more likely to survive re-encoding. However, since most

43

coefficient values are zero, our embedding on higher bits, taking the 4th bit for example,
would change the binary value from 00000 to 10000. We hypothesize that, during the
re-encoding, the value may be quantized to a slightly lower but non-zero value (in the
example it would change to 01111), causing the recovery process to wrongly extract a zero
instead of a 1. We do not further investigate the reasons for this effect, but experimentally
conclude that 0th (least significant) bit embedding is the best choice for our use case.

4.2.4 Characterization conclusions

In this section we have experimentally observed the behaviour of the VP8 codec both
during regular encoding and after re-encoding. We have shown the high efficiency of the
codec, which translates in a high density of 0 coefficients in a given frame. We also made
observations on the range of values (positive and negative) that coefficients normally take.
This information is useful guiding our choices in subsequent experiments. We measured
changes in embedding space, which helped us explain one reason why Stegozoa does not
properly operate after re-encoding, as well as gave a justification to look into a fixed or
static embedding space. Finally, we performed experiments on message survivability after
re-encoding. We were able to experimentally choose parameters, for both embedding bit
and coefficient, that can guide our development of a more robust scheme. The observations
from this section are used throughout Chapter 5.

44

Chapter 5

Towards Robust Video
Steganography over WebRTC

This chapter, based upon our previous observations from Chapter 3 and Chapter 4, ex-
plores athe design of a video steganography system providing re-encoding robustness. In
Section 5.1, we present our threat model and discuss our design goals for a system that
can work under this model. Section 5.2 discusses some of the implementation decisions
we made to align with our goals. Finally, in Section 5.3 we collect all of our observations
and experiments to present recommendations for implementing a VP8 re-encoding robust
system. In this section we also discuss the limitations of our work, as well as areas of
possible future work based on our findings.

5.1 Threat Model and Design Goals

In the context of our research, the goal of the adversary is to disrupt covert communication
channels that leverage WebRTC video conferencing systems, all without having to rely on
detecting such methods and avoiding to disturb the communications of legitimate users.
We assume that our adversary has control of the WebRTC gateway servers that mediate
video calls (either by owning or otherwise influencing/colluding with the owners of such
servers) and is then able to freely manipulate the VP8 encoded video being exchanged by
peers. For instance, the adversary is able to decode encoded media into raw video frames,
optionally adding noise, and then re-encode each frame back to VP8 before transmitting
it to the intended receiver. We point out that this kind of “attack” is also within the

45

power of a non-malicious or non-colluding agent. As an example, projects like Kurento
(leveraged in our experiments), allow non-malicious WebRTC services’ operators to apply
video filters to WebRTC media streams, possibly rendering existing covert channels like
those produced by Stegozoa inoperational.

We leave several possible attacks outside the scope of our threat model. Firstly, we
assume that the software and hardware being used by the peers engaging in communi-
cation are trusted, and not under the influence of the adversary (e.g., free from malware
compromises that could allow the adversary to interfere with local operations like covert
message embedding). Secondly, due to potential collateral damage, the adversary will not
completely halt WebRTC communications within their sphere of influence, and will avoid
to severely disrupt video streams so as to ensure a reasonable QoS for legitimate users of
videoconferencing services.

Design goals. Given our threat model, which defines a stronger active adversary model
than the passive one considered by Stegozoa, we set the goal of improving the robustness
of WebRTC video calls as a channel for censorship resistance communication. Throughout
this chapter, we seek a more robust approach to video steganography that can survive
interference with the media elements responsible for carrying covert data. We set the
following goals for the design of such a system:

• VP8 re-encoding resistance: Given the insights obtained from our VP8 encoding
characterization, we seek to devise steganographic message embedding methods that
offer robustness against simple re-encoding operations. The sender of a message
should be able to add enough redundancy to the message such that the receiver is
able to recover and correct the message after a bounded set of perturbations are
applied to encoded media within the WebRTC gateway server.

• WebRTC application independence: The embedding and error correction meth-
ods shall not rely on the carrier application. That is, the system should be usable
regardless of the WebRTC video conferencing application being used.

• Reasonable robustness/throughput trade-off: Our robust message encoding
scheme shall only use as much redundancy as required for ensuring message surviv-
ability, towards maximizing the available space for useful message contents.

In the next section, we describe multiple choices that we made when implementing a
prototype system towards achieving these goals.

46

5.2 Towards Robust Steganography in VP8

In this section, we start by elaborating on the robustness issues caused by re-encoding
operations over the VP8 codec, and then propose strategies to increase the robustness
of covert data transfers over VP8. We note that the solutions we introduce exhibit a
set of trade-offs between robustness and other desirable characteristics of steganography.
For example, adding error correction will reduce the goodput (non-redundant throughput)
of our system, in exchange for the ability to recover the message successfully. Similarly,
statically choosing an embedding space solves the dynamic space problem, but may impose
observable changes to the cover video (since we are not actively choosing least impactful
locations).

5.2.1 Robust embedding spaces

One major challenge we identified for existing steganographic systems that make use of
VP8 (throughout Chapter 4) was that such systems could face difficulties in their operation
should they rely on dynamically-calculated embedding spaces. Previously, we defined the
embedding space as the set of values that can be selected for embedding a stego-message
or, particularly for our case, the set of DCT coefficients in video frames. A coefficient found
to be within the embedding space does not necessarily imply that this coefficient will be
selected or changed by the stenography algorithm, but that it might be so. Regardless of
how it is selected, the assumption is that both the sender and receiver must be able to
calculate (or have agreed) on the same set of coefficients as the embedding space, since this
will be used as the input for the message extraction algorithm (such as reverse-STC for
Stegozoa). Through this subsection, we argue that in order to achieve better robustness,
static embedding spaces are the more practical choice.

Issues with dynamic embedding spaces. Our characterization experiments showed
that one cannot rely on the assumption that a dynamic embedding space will remain
constant after one ore more layers of re-encoding. Using the filtering mechanism from
Stegozoa as an example (where quantized coefficients with values 1 or 0 are filtered out of
the embedding space), we were able to observe that the embedding space may not only
experience shrinkage (non-zero and non-one values changing to either zero or one), but
also have the opposite effect (by having coefficients valued at zero and one changing to
other values) after the media is re-encoded. Our experiments showed that even relatively
large values may still be re-encoded as a zero or one, which means that we cannot reliably
assume that more aggressive value filtering would ensure that the embedding space remains

47

Figure 5.1: Sample sub-block before and after re-encoding. Coefficient values that did
not change after re-encoding in white. Cells in yellow are coefficient values that changed
after re-encoding, but did not change the embedding space. Cells in green and red are
coefficients that changed in value and also changed the embedding space, increase and
decrease respectively.

constant during re-encoding operations. Similarly, we showed that after re-encoding, a
value that was originally zero or one could turn into a relatively large value, showing another
reason why this kind of more aggressive filtering would not be sufficient. In Figure 5.1 we
illustrate this phenomenon by using a sample sub-block before and after a layer of re-
encoding.

We hypothesize that predicting how re-encoding would affect dynamic embedding
spaces would not be entirely practical, especially if there is no control over the codec
parameters used by the adversary’s WebRTC gateway during re-encoding.

Advantages of static embedding spaces. Instead of computing a dynamic embedding
space, we propose a more straightforward embedding scheme, using a static embedding
space. Strawman examples would be, for instance, to include every coefficient or every
second lowest frequency coefficient of each block in the embedding space. In this case,
we are guaranteed that the space will not change regardless of re-encoding operations. It
is important to highlight that when we describe the space as static, we mean it to be
agreed beforehand by the sender and receiver of a covert message, and not dynamically
determined during embedding. This does not imply that the actual embedding space may
not be refreshed; for example, using one of the previous scenarios, the embedding space
could switch to every 3rd coefficient instead of every 2nd coefficient after a certain number
of messages are sent. The only requirement is that the space is consistently agreed on
between both communicating parties before having to process a frame or macroblock, and
therefore not susceptible to changes due to re-encoding.

It is worth noticing that the selection of the elements composing embedding space can

48

have direct effects on the ability of an adversary to perform steganalysis of the embedded
content. As we have previously shown, each frame is mostly composed of 0 coefficients.
By choosing to include 0 in the embedding space, this ratio of 0 to non 0 values may be
decreased enough to hint at adversary that something is happening to the cover medium.
Similarly, by reducing the number of 0 coefficients in a frame, the compressed frame will
be larger in size than if it had not been changed. This feature may also be used by the
adversary performing steganalysis.

For our implementation, we aim to maximize re-encoding robustness; from our obser-
vations, a static embedding space provides better opportunities for message recovery since
this avoids possible inconsistencies caused by the dynamic calculation of the embedding
space. We recognized this as a trade-off, that may be fine tuned in later implementations.
We discuss a similar necessary trade-off in the next subsection.

5.2.2 Error correction

As we have shown in Chapter 4, the process of re-encoding a video may cause considerable
changes on the coefficients used for stego-message embedding. To address this issue, we
seek to add redundancy to the stego-message we are embedding such that it may be
recoverable post re-encoding. Following from the previous section, we also highlight how
choosing a static embedding space also helps with error correction efforts. As we saw with
Stegozoa, changes on the coefficients included or excluded in its embedding space caused a
mismatch in input for the STC algorithm, between embedding and recovering the message.
Paired with variations in the actual values of the coefficients, recovering the stego-message
becomes impractical. Instead, by selecting a predetermined set of coefficients known both
by the sender and receiver, we simplify the error correction problem by only focusing on
the effects of the channel noise (re-encoding) without the additional overhead of having to
determine which coefficients are actually part of the message.

For our experiments we chose Reed-Solomon error correcting codes (RS codes for short).
RS codes are a popular solution that have been used in CD, DVD and Blu-Ray discs [53],
QR Codes [69], and satellite based message transmissions [66]. Even more relevant, they
have been successfully used in image and video steganography error correction [4, 38, 82].
RS codes also allow us to fine tune the level of redundancy used in our message given the
noise we have measured in our channel. We now provide details on RS, our implementation
and evaluation.

Reed-Solomon (RS) error correcting codes. RS codes operate on blocks of data
called symbols. A code block with n total symbols is composed of k message symbols and

49

Symbol Size n c t k Redundancy Ratio

2 3 1 2 1 66.67%
3 7 1 2 5 28.58%
4 15 2 4 11 26.67%
5 31 5 10 21 32.26%
6 63 12 24 39 38.10%
7 127 26 52 75 40.95%
8 255 58 116 139 45.50%

Table 5.1: Estimated parameters (n, c, t, and k) for a given symbol size using calculated
error rate of 3.14% for key frame only embedding. Additionally, the redundancy ratio
(t/n), as a reference of the efficiency of the configuration, where lower values are better.

Symbol Size n c t k Redundancy Ratio

2 3 2 4 - -
3 7 5 10 - -
4 15 11 22 - -
5 31 24 48 - -
6 63 53 106 - -
7 127 111 222 - -
8 255 231 462 - -

Table 5.2: Estimated parameters (n, c, t) for a given symbol size using calculated error
rate of 25.43% for embedding on every frame. K and message ratios are not provided since
the number of correction symbols exceeds the number of symbols in the message.

t (or n − k) check symbols. This code is able to detect up to t corrupted symbols, and
correct up to t/2 corrupted symbols. Additionally, the implementation we chose to use
(standalone copy of Linux Kernel implementation 1) is configured in such a way that the
maximum number of symbols in a code word is 2b− 1, where b is the length in bits of each
symbol. As an example, a symbol size of 8 bits implies a maximum size of 255 symbols,
and at most being able to detect 254 corrupted symbols and correct 127 corrupted symbols
(assuming that all but one symbol is redundancy, or k = 1, t = 244, t/2 = 127).

It is relevant to mention at this point that corrupted symbols may have any number
of corrupted bits (from 1 to b). Since each individual bit of a symbol is embedded on
a different coefficient, changes to the coefficient due to re-encoding may cause no new
corrupted symbols (if the symbol already had a wrong bit), or up to one corrupted symbol.

1https://github.com/quiet/libfec/tree/master

50

https://github.com/quiet/libfec/tree/master

Redundancy Symbols Error rate Error rate (key) Full message Full message (key)

116 24.75% 2.28% 4.53% 71.66%
166 24.35% 1.91% 8.48% 75.00%
216 24.12% 1.11% 13.43% 83.33%
254 25.29% 2.50% 34.68% 86.66%

Table 5.3: Experimentally observed error and complete message survivability rates at
different RS redundancy levels for both key and all frame embedding

Assuming that the embedding bit of a coefficient has a chance to be flipped (from 0 to 1 or
vice versa) of P , and each symbol is composed of b bits, the probability that a symbol will
not be corrupted is (1− P)b. Briefly, longer symbols are less likely to not be corrupted.

Given the measurements from our characterization experiments in Section 4.2.4, we can
tailor the RS parameters to VP8 re-encoding. We concluded that the 11th (raster order)
coefficient and the 0th (least significant) bit provided one of the best trade-offs between
low message error rate and frequency. For all frames we observed an error rate of 25.43%,
and an error rate of 3.14% on only key frames. If we are to take these as the probability P
of any bit to flip, then we can estimate that the number of corrupted symbols per message,
c, is equals to (1 − 0.2543)b and (1 − 0.0314)b, respectively. With c, we can also estimate
the number of redundancy symbols t needed, as t = 2 ∗ C, and k as k = n− t = 2b − 1.

Tables 5.1, and 5.2 provide a summary of the values for n, c, t, and k for values of b
from 2 to 8, using our observed error rate for both key and all frame embedding. From
our estimations, no matter the size of the symbol, on average, more symbols will get
corrupted per code word than what are possible to fix using RS codes if we are to embed
on all available frames. On the other hand, for only key frame embedding, we observe
smaller error rates. The key frame only table also presents the redundancy ratio (t/k or
the total number of error correction symbols over the total number of symbols). A lower
redundancy ratio implies that more bits of the code word can be used for the actual message
being transmitted. At 8 bit symbols, on average we will need 45.5% of the message for
redundancy, and the ratios tend downwards as we reduce the symbol size (up until we
reach 2 and 3 bit symbols). Since encoding a message of the same size would require more
instances of RS encoding and decoding, we decided to test on 8 bit symbol sizes as they
show good performance.

Message survivability with RS error correction. To measure in practice the surviv-
ability of messages encoded using RS codes, we perform a similar experiment to those in
Section 4.2.1. This time, after we generate a random bit stream message, we encoded it
using a RS code, setting the total message to 255 8-bit symbols. We also set the number

51

of redundancy symbols to the estimated 116 (and in increments of 50 until we reach the
maximum of 254). During recovery, we attempt to reconstruct the original message, and
store the recovered bits. We compare both the original and recovered message to measure
both the per bit error rate, as well as the total number of frames in which the whole mes-
sage was received correctly. We conduct these data embedding experiments for both key
frames only and all types of frame, although we expect the latter not to perform well.

The results of our experiments are presented on Table 5.3. In general, it appears
that error correction marginally improved overall error rates, particularly for key frame
embedding only. Since RS codes work in an all or nothing manner (it either corrects
the entire message or not), we can infer this marginal decreases in error rates are due to
the relatively low number of complete messages that were fixed (shown in the following
columns). However, this is still an improvement over no error correction being used.

Analyzing all frame embedding, it is clear that even extreme levels of error correction
are not enough to reliably transmit a recoverable message. We can calculate the expected
number of message re-transmissions, R, before it is correctly received using the formula
R = 1/P , where P is the probability of a message being received (in this case our complete
message rate). Similarly, we can calculate the bit rate, br (or expected number of useful
bits per message sent) using the formula br = kbits/R, where kbits is the number of non
redundancy symbols times the number of bits per symbol. For the 4 values, we observed
50.37, 62.94, 41.90, and 2.74 bits per message transmission (each message being 2040 bits).

We can perform the same calculations on only key frame embedding. For the used levels
of redundancy, we observed the bit rates of 796.85, 534, 259.98, and 6.93 bits per message
transmission. Interestingly, we can observe clear diminishing returns as we increase the
number of parity symbols, as they stop providing message correctness for the number of
symbols needed.

Message transmission rate. At first glance, it would appear that key frame embedding
may be orders of magnitude better than all frame embedding. However, we have to bear
in mind the frequency of key frames in the encoded videos. For each of the 300 frame
samples we studied, only 3 of those frames were key frames. That is, only 1 in 100 frames
would be a candidate for embedding in the second case. In other words, if we adjust our
per message bit rate to a per frame bit rate by multiplying by the percent of useful frames
(0.001 and 1, respectively), we obtain new values of 7.96, 5.34, 2.59, and 0.0693 bits per
frame for key frame only embedding, while all frame embedding bit rates remain the same.

With this new calculated values, we can conclude that all frame embedding with 166
redundancy symbols will provide the best message transmission throughput. Due to the
diminishing returns, we can infer that there is a “sweet spot” of how much redundancy

52

to use, trading off between survivability and useful symbols. We also point out that this
kind of message transmission is reliant on having both a re-transmission mechanism, and
a general expectation that “eventually” the message will survive. This calculated bit rate
does not include the overhead required for this mechanism. We argue that in cases that a
message needs to be reliably transmitted with seldom need for re-transmission, it is better
to use key frame embedding in exchange for a much lower long run throughput. This is can
be specially true if the transmitted video is more likely to have more key frames encoded
by the codec than our samples (perhaps one with more scene cuts). Regardless, we propose
both methods as valid options for different use cases.

5.3 Re-encoding Robust System Recommendations

In this section we draw conclusions from all of our experiments to provide recommendations
towards a re-encoding resistant censorship circumvention system. We offer suggestions nec-
essary for a resilient system under our threat model. We provide design recommendations
given our observations from our experiments in Section 5.3.1. Then we conclude this sec-
tion by going over the limitations from our experiments, and discuss new areas that may
be worth being explored to improve this design in Section 5.3.2.

5.3.1 Design considerations

Codec modification. As we have shown from our testbed design, the VP8 codec can be
modified to insert “hook” functions which can handle embedding and recovering of a stego
message. These modifications should be done on the VP8 codec library used by the browser
of choice of the client (e.g., Chrome, Firefox, or Edge). Our implementation provides both
the points in the process where these functions should be hooked, as well as the foundation
to apply bit embedding and recovery. In our tests, we limited our embedding to a single
set of coefficients (for example, only 11th coefficients), however by providing different
embedding locations, a more complex scheme can be used. As we previously showed, any
scheme must also correctly update end of block pointers after embedding, which we also
provide in our implementation.

Messaging control. In our implementation, we generate messages statically; for each
frame, we create a random bit stream and embed it into the frame. A proper censorship
circumvention tool will need to implement some kind of data exchange layer that accepts
user-generated messages to be sent through the channel to meet the needs of the user (e.g.,

53

to relay small instant-messaging alike messages). Similar to Stegozoa’s implementation,
there must exist a middle control layer that communicates with the “hook” code and pro-
vides not only the message to be embedded as well as other needed parameters such as the
indexes of the embedding coefficients. As we showed in our error correction experiments,
this layer should also implement reliable communication and be able to handle message
re-transmission since there is an expectation that some messages (or the majority, for all
frame embedding) will be corrupted beyond recovery. We suggest a kind of dynamic chan-
nel adjustment, perhaps increasing or decreasing the number of times a message is being
sent as the average survivability is observed. This control unit should also be able to take
advantage of the lesser error rates of key frame embedding to send messages that require
a higher level of integrity without re-transmission (such as synchronization messages).

Choice of bit and coefficient embedding. Following the results of our experiments,
we showed that embedding on the highest frequency coefficients (i.e., 11th, 14th, 15th)
decreases the likelihood of a bit being flipped due to re-encoding. Similarly, we showed
that, perhaps initially intuitively, embedding on the least significant bit of a coefficient
improves the survivability of the message. This result plays in favor of undetectability,
since the distortion introduced due to embedding is minimized using least significant bit
embedding.

Embedding space. We showed that relying on dynamically calculated embedding space
may prove hard (or in practice impossible) due to the unpredictability of the VP8 codec
during re-encoding. We believe this is the main reason our attack rendered Stegozoa
inoperable. Thus, we suggest instead using a statically determined embedding space (e.g.,
“every other coefficient” or “only embed on the 5th sub-block of each macroblock”). We
recognize the trade off between observability and encoding robustness, however we believe
this is a necessary choice. We also point out that, paired with a mechanism such as
message control, the peers using the system may update the rules they use for determining
this static space.

Error correction. In our experiments we showed that high levels of redundancy in error
correction are needed due to the high bit error rates, regardless if the embedding happens
only on key frames or on all frames. In general increasing the amount of redundancy
increases the survivability rate of the message, however we observed diminishing returns
in terms of rate of message transmission. As we observed, relying on both message re-
transmission and just enough error correction allows for a more efficient system.

Zero-biased messages. In our characterization experiment we showed that, as expected,
that most coefficients have a value of zero. We argue then that a message with a higher
frequency of zeros will be less likely to be corrupted, compared to the even probability

54

random messages we generated. While we have not provided any methods to generate
such messages, if a scheme is able to bias the message composition towards zero values, we
expect better survival rates.

Choice between key and all frame embedding. As we showed, messages embedded
in key frames are more likely to be recoverable after a layer of re-encoding, compared to
a message embedded on a predicted frame. However, we also showed that due to their
relative infrequency, relying on key frames only is overall less efficient in terms of useful
bits per message. In scenarios were the message is encoded and decoded only by the sender
and receiver (such as in P2P mode, or in our filter-less architecture), the clients can force
their instance of the codec to inject more key frames in the stream. In our attack scenario,
on the other hand, there exist at least one pair of encoder/decoder that are configured by
the owner of the gateway server, and are not accessible to the clients. The implication here
is that the server encoder configuration may reduce the number of produced key frames to
a minimum, therefore making this technique unreliable.

Usability. Given the relatively low effective bit rates we observed with our experiments,
paired with the need to rely on message re-transmission, we argue that a tool like this is
better suited for low bandwidth and non-time sensitive data exchanges. Scenarios such as
key exchanges, transmission of Tor bridge addresses, tweet and short message transmission,
are a good example of use cases that can be accomplished with this system. It is necessary
to point out, that in the case of cryptographic keys for example (or other sensitive informa-
tion), the data could be extracted by an adversary that exactly knows the embedding bit
and coefficients, as well as error correction scheme, and other configurations being used.
Similarly, such data needs complete integrity to be usable for both parties. For the former
problem, we argue that the configuration parameters described can be understood as a
shared secret between the clients, and additional levels of security can be used on the ex-
change to mitigate this issue. On the latter problem, while it is likely that some messages
will be irrecoverable, with re-transmission we can assure that eventually the crypto bits
will be received correctly. In the case of RS codes, we can assume that the correct message
has been received once it can be recovered, since it works in all or nothing fashion. For
the case of continued data transmission, since the channel can remain open for as long as
needed, a user may dynamically request new messages to be sent through this channel.

The above recommendations serve as the first step for developing a re-encoding resistant
covert channel over VP8 video streams. In the next subsection, we discuss areas of possible
improvement that can be built on top of our findings.

55

5.3.2 Limitations and future work

In this section, we discuss some of the limitations of our work and provide pointers for
future developments towards building a full-fledged and robust censorship resistant com-
munication tool over VP8 video streams.

Choice of error correction codes. In our tests, we chose to use RS codes for error
correction. RS codes are good for error detection as well as detecting erasures in the data.
In our case, we know data will not be erased (we always receive the expected number of
coefficients), only possibly corrupted. We argue that there may be other error correction
implementations that may be more efficient and effective at recovering the embedded mes-
sage. Based on previous work, Bose–Chaudhuri–Hocquenghem codes [50] and Low Density
Parity-Check codes [15] may be options that can be further explored.

Embedding schemes. In our experiments we decided to embed one bit in each coefficient
in our embedding space. Schemes such as STC look at the entirety of the possible em-
bedding space instead and minimize embedding distortions. In Section 3.2.3, we discussed
that while STC is intended for efficient embedding, it is fragile to errors, which was one of
the reasons Stegozoa was rendered inoperable. However, combining it with error correction
could potentially allow for the message to be correctly extracted, while minimizing distor-
tions on the cover. Work from Kin-Cleaves et al. [38], and Guan et al. [25] have previously
attempted combining error correction with STC embedding. For this work, to provide a
baseline for robust embedding, we decided not to add such schemes. Our implementation
could be extend to use them.

Media cover selection. In this work, we did not extensively discuss the selection of the
cover video medium used to embed the stego message and then transmit to the other party.
We deemed these problem to be outside of the scope of our research, however recognizing
them is also an important consideration to implement a robust solution. For one, a cover
video that naturally creates more key frames than our samples could help take advantage
of their high survivability rates. The video cover could also be chosen so that it is more
likely to go through re-encoding without much change in the coefficients for a given frame.
The inverse could also be done, by preprocessing the cover media to understand how it
behaves under re-encoding, one could choose the most stable coefficients as the targets for
embedding.

Unobservability. One of the limitations of our experiments is that our focus is on re-
encoding robustness while forgoing an evaluation of how detectable potential distortions
in the cover media may be. Instead, we focused our presentation on the best case sce-
nario for messages to survive through the encoding/decoding process while acknowledging

56

these trade-offs. However, more work is required to properly assess the unobservability
and undetectability of the steganographic embedding while maintaining a reasonable level
of robustness. We leave for future work finding the correct choices between these two
important properties.

Network conditions. We performed our message survivability experiments in an offline
testbed. We did not perform a closer analysis on how data transmission through an actual
network may also cause the VP8 codec to dynamically adjust its operation. Due to network
conditions, encoding quality, video bitrate, resolution and other configuration parameters
may be dynamically adjusted by both the VP8 codec and by the WebRTC server. These
changes may cause differences in the DCT coefficients being used for embedding, potentially
causing higher error rates than we observed on our offline testbed.

57

Chapter 6

Conclusions

In this work, we started by presenting a picture of the ongoing struggle to provide free and
uncensored access to the internet. Powerful state-level agents pour considerable resources
in controlling the exchange of information on the web to quell political dissent. We have
also presented the continued efforts to mitigate, avoid, or otherwise circumvent this kind of
control. In particular, we focused on steganography-based systems as a potential solution.
These schemes rely on embedding a hidden message in a cover medium such as audio, video
or packet traffic, in such a way that it cannot be detected by any other party besides the
intended recipient. One such project we studied, Stegozoa, used WebRTC video confer-
encing applications to effectively create a covert channel between a party with free access
to the internet and another within the control of an oppressing regime.

With our work, we showed that systems like Stegozoa are not infallible. Due to the
common architecture used by WebRTC servers, even a non-malicious agent could disrupt
covert channel by causing the video to be re-encoded. We dedicated a portion of our
work analyzing why VP8 re-encoding may cause this kind of disruption. In particular,
we analyzed the changes caused to DCT quantized coefficients, a series of values used
by the VP8 codec in conjunction with frame prediction methods to compress and then
later recreate a video frame, as they are a common medium for stego-message embedding
(such as in the case of Stegozoa). By implementing our own WebRTC video application,
we confirmed that video re-encoding caused enough modifications on the cover medium to
make it so that a stego message is not recoverable by the recipient. We isolated the effect of
re-encoding by creating an offline testbed, and were able to show that it makes impractical
to dynamically determine an embedding space (as it was being done with Stegozoa). We
also showed experimentally the error rates of a transmitted message depending on the
chosen index of the embedding coefficient and the embedding bit. Our results confirmed

58

that bits embedded on higher frequency coefficients are less likely to be corrupted, and
that least significant bit embedding is the best choice for embedding.

These experiments were carried out both for key frame only embedding and embedding
on every frame. As a reminder, VP8 encoded videos consist of two types of frames, key
or intra frames, which can be described as self-contained unit that only relies on itself to
reconstruct the raw frame it represents, and predicted or inter frames, which unlike key
frames, rely on previous key or predicted frames for reconstruction. Embedding data on
key frames resulted in much lower error rates when compared to embedding on both key
and predicted frames.

With this information, we were then able to test the usage of error correction methods
in order to transmit a message that is recoverable, or eventually recoverable. Given the
error rates we observed during our previous experiments, combined with the choice of RS
codes for our method of error correction, we were able to estimate the level of redundancy
needed to transmit a message preserving its integrity. In our experiments we tested on
this estimated level, as well as more conservative (higher redundancy) levels, both when
embedding on key frames only and on every frame. We showed that using a combination
of re-transmission and relatively high levels of error correction may provide the best data
transmission rates when using RS codes for error correction when embedding messages on
a cover video. We also showed that embedding on key frames only greatly increases the
integrity of the messages being transmitted, however their relative low occurrence made
them worse than simply transmitting the message multiple times on multiple frames.

Finally, we combined all the observations from our experiments to provide a set of guide-
lines that we believe are needed to robustly transmit a stegonographic message through a
VP8 encoded video medium. We provided our suggestions as building blocks for implement-
ing a censorship circumvention solution that relies on WebRTC conferencing applications.
From our observations and results, we believe these to be necessary for designing such a
system under our proposed threat model. Finalizing our recommendations, we also dis-
cussed limitations of our experiments, and proposed areas of future work that can be built
upon our work.

59

References

[1] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. How China Detects and
Blocks Shadowsocks. In Proceedings of the ACM Internet Measurement Conference,
pages 111–124, New York, NY, USA, October 2020. Association for Computing Ma-
chinery.

[2] Collin Anderson. Dimming the Internet: Detecting Throttling as a Mechanism of
Censorship in Iran, June 2013. arXiv:1306.4361 [cs].

[3] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet Censorship in Iran:
A First Look. In Proceedings of 3rd USENIX Workshop on Free and Open Commu-
nications on the Internet, Washignton, D.C., August 2013.

[4] Ananya Banerjee and Biswapati Jana. A robust reversible data hiding scheme for color
image using reed-solomon code. Multimedia Tools and Applications, 78(17):24903–
24922, September 2019.

[5] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical overview of VP8, an open
source video codec for the web. In Proceedings of the 2011 IEEE International Con-
ference on Multimedia and Expo, pages 1–6, July 2011.

[6] Diogo Barradas, Nuno Santos, and Lúıs Rodrigues. DeltaShaper: Enabling Unobserv-
able Censorship-resistant TCP Tunneling over Videoconferencing Streams. Proceed-
ings on Privacy Enhancing Technologies, 2017(4):5–22, October 2017.

[7] Diogo Barradas, Nuno Santos, Lúıs Rodrigues, and Vı́tor Nunes. Poking a Hole in
the Wall: Efficient Censorship-Resistant Internet Communications by Parasitizing on
WebRTC. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 35–48, Virtual Event USA, October 2020.

60

[8] Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep Residual Network for Ste-
ganalysis of Digital Images. IEEE Transactions on Information Forensics and Secu-
rity, 14(5):1181–1193, May 2019.

[9] Mingyuan Cao, Lihua Tian, and Chen Li. A Secure Video Steganography Based on the
Intra-Prediction Mode (IPM) for H264. Sensors, 20(18):5242, January 2020. Number:
18 Publisher: Multidisciplinary Digital Publishing Institute.

[10] Ozdemir Cetin and A. Turan Ozcerit. A new steganography algorithm based on
color histograms for data embedding into raw video streams. Computers & Security,
28(7):670–682, October 2009.

[11] Abdelberi Chaabane, Terence Chen, Mathieu Cunche, Emiliano De Cristofaro, Arik
Friedman, and Mohamed Ali Kaafar. Censorship in the Wild: Analyzing Internet
Filtering in Syria. In Proceedings of the 2014 Conference on Internet Measurement
Conference, pages 285–298, Vancouver, BC, Canada, November 2014.

[12] Jedidiah R. Crandall, Masashi Crete-Nishihata, Jeffrey Knockel, Sarah McKune,
Adam Senft, Diana Tseng, and Greg Wiseman. Chat program censorship and surveil-
lance in China: Tracking TOM-Skype and Sina UC. First Monday, June 2013.

[13] Alfredo Cuzzocrea, Fabio Martinelli, Francesco Mercaldo, and Gianni Vercelli. Tor
traffic analysis and detection via machine learning techniques. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pages 4474–4480, Boston, MA, December
2017.

[14] Ronald Deibert, John Palfrey, Rafal Rohozinski, and Jonathan Zittrain, editors. Ac-
cess Controlled: The Shaping of Power, Rights, and Rule in Cyberspace. The MIT
Press, 2010.

[15] I. Diop, S. M Farss, K Tall, P. A. Fall, M L Diouf, and A K Diop. Adaptive steganog-
raphy scheme based on LDPC codes. In Proceedings of the 16th International Confer-
ence on Advanced Communication Technology, pages 162–166, Pyeongchang, Korea
(South), February 2014. Global IT Research Institute (GIRI).

[16] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. Analyzing China’s Blocking of Un-
published Tor Bridges. In Proceedings of the 8th USENIX Workshop on Free and Open
Communications on the Internet, Baltimore, MD, August 2018.

61

[17] Sahar A. El Rahman. A comparative analysis of image steganography based on DCT
algorithm and steganography tool to hide nuclear reactors confidential information.
Computers & Electrical Engineering, 70:380–399, August 2018.

[18] Oleg Evsutin, Anna Kokurina, Roman Meshcheryakov, and Olga Shumskaya. The
adaptive algorithm of information unmistakable embedding into digital images
based on the discrete Fourier transformation. Multimedia Tools and Applications,
77(21):28567–28599, November 2018.

[19] Mohammad Fakhredanesh, Mohammad Rahmati, and Reza Safabakhsh. Steganog-
raphy in discrete wavelet transform based on human visual system and cover model.
Multimedia Tools and Applications, 78(13):18475–18502, July 2019.

[20] Luis López Fernández, Miguel Paŕıs Dı́az, Raúl Beńıtez Mej́ıas, Francisco Javier
López, and José Antonio Santos. Kurento: a media server technology for conver-
gent WWW/mobile real-time multimedia communications supporting WebRTC. In
Proceedings of the 2013 IEEE 14th International Symposium on ”A World of Wireless,
Mobile and Multimedia Networks”, pages 1–6, June 2013.

[21] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-
resistant communication through domain fronting. Proceedings on Privacy Enhancing
Technologies, 2015(2):46–64, 2015.

[22] Gabriel Figueira, Diogo Barradas, and Nuno Santos. Stegozoa: Enhancing WebRTC
Covert Channels with Video Steganography for Internet Censorship Circumvention. In
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, pages 1154–1167, Nagasaki Japan, May 2022.

[23] Tomáš Filler, Jan Judas, and Jessica Fridrich. Minimizing Additive Distortion in
Steganography Using Syndrome-Trellis Codes. IEEE Transactions on Information
Forensics and Security, 6(3):920–935, September 2011.

[24] John Geddes, Max Schuchard, and Nicholas Hopper. Cover your ACKs: pitfalls of
covert channel censorship circumvention. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 361–372, Berlin, Germany,
2013.

[25] Qingxiao Guan, Peng Liu, Weiming Zhang, Wei Lu, and Xinpeng Zhang. Double-
Layered Dual-Syndrome Trellis Codes Utilizing Channel Knowledge for Robust
Steganography. IEEE Transactions on Information Forensics and Security, 18:501–
516, 2023.

62

[26] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. Characterization of Tor Traffic using Time based Features:. In
Proceedings of the 3rd International Conference on Information Systems Security and
Privacy, pages 253–262, Porto, Portugal, 2017.

[27] A.I. Hashad, A.S. Madani, and A.El Moneim A. Wahdan. A Robust Steganography
Technique Using Discrete Cosine Transform Insertion. In Proceedings of the 2005
International Conference on Information and Communication Technology, pages 255–
264, Cairo, Egypt, 2005.

[28] Gaofeng He, Ming Yang, Junzhou Luo, and Xiaodan Gu. A novel
application classification attack against Tor. Concurrency and Com-
putation: Practice and Experience, 27(18):5640–5661, 2015. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3593.

[29] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. Universal distortion function
for steganography in an arbitrary domain. EURASIP Journal on Information Security,
2014(1):1, January 2014.

[30] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The Parrot Is Dead:
Observing Unobservable Network Communications. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, pages 65–79, May 2013.

[31] Sheng Dun Hu and Kin Tak U. A Novel Video Steganography Based on Non-uniform
Rectangular Partition. In In Proceedings of the 2011 14th IEEE International Confer-
ence on Computational Science and Engineering, pages 57–61, Dalian, August 2011.

[32] Mehdi Hussain, Ainuddin Wahid Abdul Wahab, Noman Javed, and Ki-Hyun Jung.
Hybrid Data Hiding Scheme Using Right-Most Digit Replacement and Adaptive Least
Significant Bit for Digital Images. Symmetry, 8(6):41, June 2016. Number: 6 Pub-
lisher: Multidisciplinary Digital Publishing Institute.

[33] Mehdi Hussain, Ainuddin Wahid Abdul Wahab, Yamani Idna Bin Idris, Anthony T.S.
Ho, and Ki-Hyun Jung. Image steganography in spatial domain: A survey. Signal
Processing: Image Communication, 65:46–66, July 2018.

[34] Lakhmi C. Jain, Sheng-Lung Peng, and Shiuh-Jeng Wang. Security with Intelligent
Computing and Big-Data Services 2019: Proceedings of the 3rd International Con-
ference on Security with Intelligent Computing and Big-data Services (SICBS), 4–6
December 2019, New Taipei City, Taiwan. April 2020.

63

[35] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zussman.
Performance Evaluation of WebRTC-based Video Conferencing. ACM SIGMETRICS
Performance Evaluation Review, 45(3):56–68, March 2018.

[36] Eric Jardine. Tor, what is it good for? Political repression and the use of online
anonymity-granting technologies. New Media & Society, 20(2):435–452, February
2018. Publisher: SAGE Publications.

[37] Watson Jia, Joseph Eichenhofer, Liang Wang, and Prateek Mittal. Voiceover:
Censorship-Circumventing Protocol Tunnels with Generative Modeling. Free and
Open Communications on the Internet, 1:67–80, 2023.

[38] Christy Kin-Cleaves and Andrew D. Ker. Adaptive Steganography in the Noisy Chan-
nel with Dual-Syndrome Trellis Codes. In 2018 IEEE International Workshop on
Information Forensics and Security (WIFS), pages 1–7, Hong Kong, Hong Kong, De-
cember 2018. IEEE.

[39] Bin LI, Ming Wang, Xiaolong Li, Shunquan Tan, and Jiwu Huang. A Strategy of Clus-
tering Modification Directions in Spatial Image Steganography. IEEE Transactions
on Information Forensics and Security, 10(9):1905–1917, September 2015.

[40] Bin Li, Ming Wang, Jiwu Huang, and Xiaolong Li. A new cost function for spatial
image steganography. In 2014 IEEE International Conference on Image Processing
(ICIP), pages 4206–4210, Paris, France, October 2014. IEEE.

[41] Bin Li, Weihang Wei, Anselmo Ferreira, and Shunquan Tan. ReST-Net: Diverse
Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis.
IEEE Signal Processing Letters, 25(5):650–654, May 2018.

[42] Jia Liu, Yan Ke, Zhuo Zhang, Yu Lei, Jun Li, Minqing Zhang, and Xiaoyuan Yang.
Recent Advances of Image Steganography With Generative Adversarial Networks.
IEEE Access, 8:60575–60597, 2020.

[43] Yunxia Liu, Shuyang Liu, Yonghao Wang, Hongguo Zhao, and Si Liu. Video steganog-
raphy: A review. Neurocomputing, 335:238–250, March 2019.

[44] Salvatore Loreto and Simon Pietro Romano. Real-Time Communications in the Web:
Issues, Achievements, and Ongoing Standardization Efforts. IEEE Internet Comput-
ing, 16(5):68–73, September 2012.

64

[45] Xiaojing Ma, Zhitang Li, Hao Tu, and Bochao Zhang. A Data Hiding Algorithm for
H.264/AVC Video Streams Without Intra-Frame Distortion Drift. IEEE Transactions
on Circuits and Systems for Video Technology, 20(10):1320–1330, October 2010.

[46] Philip Matthews, Jonathan Rosenberg, and Rohan Mahy. Traversal Using Re-
lays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN). Request for Comments RFC 5766, Internet Engineering Task Force, April
2010. Num Pages: 67.

[47] Philip Matthews, Jonathan Rosenberg, DanWing, and Rohan Mahy. Session Traversal
Utilities for NAT (STUN). Request for Comments RFC 5389, Internet Engineering
Task Force, October 2008. Num Pages: 51.

[48] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Gold-
berg. SkypeMorph: protocol obfuscation for Tor bridges. In Proceedings of the 2012
ACM conference on Computer and communications security, pages 97–108, Raleigh,
NC, USA, October 2012.

[49] Mozilla. Codecs used by WebRTC - Web media technologies | MDN, July 2023.

[50] Ramadhan J. Mstafa and Khaled M. Elleithy. A DCT-based robust video stegano-
graphic method using BCH error correcting codes. In Proceedings from the 2016
IEEE Long Island Systems, Applications and Technology Conference (LISAT), pages
1–6, April 2016.

[51] Ramadhan J. Mstafa and Khaled M. Elleithy. A novel video steganography algorithm
in DCT domain based on hamming and BCH codes. In Proceedings of 2016 IEEE
37th Sarnoff Symposium, pages 208–213, September 2016.

[52] Ramadhan J. Mstafa, Khaled M. Elleithy, and Eman Abdelfattah. A Robust and Se-
cure Video Steganography Method in DWT-DCT Domains Based on Multiple Object
Tracking and ECC. IEEE Access, pages 1–1, 2017.

[53] Johnny Phuong Nguyen. Applications of Reed-Solomon codes on optical media storage.
PhD thesis, San Diego State University, 2011.

[54] Arian Akhavan Niaki, Shinyoung Cho, Zachary Weinberg, Nguyen Phong Hoang, Ab-
bas Razaghpanah, Nicolas Christin, and Phillipa Gill. ICLab: A Global, Longitudinal
Internet Censorship Measurement Platform. In In Proceedings of the 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 135–151, May 2020. ISSN: 2375-1207.

65

[55] Khushman Patel, Kul Kauwid Rora, Kamini Singh, and Shekhar Verma. Lazy Wavelet
Transform Based Steganography in Video. In 2013 International Conference on Com-
munication Systems and Network Technologies, pages 497–500, April 2013.

[56] Tomáš Pevný, Patrick Bas, and Jessica Fridrich. Steganalysis by subtractive pixel
adjacency matrix. In Proceedings of the 11th ACM workshop on Multimedia and
security, MM&Sec ’09, pages 75–84, Princeton, NJ, USA, September 2009.

[57] Tomáš Pevný, Tomáš Filler, and Patrick Bas. Using High-Dimensional Image Models
to Perform Highly Undetectable Steganography. In Rainer Böhme, Philip W. L. Fong,
and Reihaneh Safavi-Naini, editors, Information Hiding, Lecture Notes in Computer
Science, pages 161–177, Berlin, Heidelberg, June 2010. Springer.

[58] Yinlong Qian, Jing Dong, Wei Wang, and Tieniu Tan. Deep learning for steganalysis
via convolutional neural networks. In Media Watermarking, Security, and Forensics
2015, volume 9409, pages 171–180. SPIE, March 2015.

[59] Zhenxing Qian, Hang Zhou, Weiming Zhang, and Xinpeng Zhang. Robust Steganog-
raphy Using Texture Synthesis. In Jeng-Shyang Pan, Pei-Wei Tsai, and Hsiang-Cheh
Huang, editors, Advances in Intelligent Information Hiding and Multimedia Signal
Processing, Smart Innovation, Systems and Technologies, pages 25–33, Cham, 2017.
Springer International Publishing.

[60] Reethika Ramesh, Ram Sundara Raman, Matthew Bernhard, Victor Ongkowijaya,
Leonid Evdokimov, Anne Edmundson, Steven Sprecher, Muhammad Ikram, and Roya
Ensafi. Decentralized Control: A Case Study of Russia. In Proceedings 2020 Network
and Distributed System Security Symposium, San Diego, CA, 2020.

[61] Eric Rescorla and Nagena Modadugu. Datagram Transport Layer Security. Request
for Comments RFC 4347, Internet Engineering Task Force, April 2006. Num Pages:
25.

[62] Lotus Ruan, Jeffrey Knockel, Jason Q. Ng, and Masashi Crete-Nishihata. One App,
Two Systems: How WeChat uses one censorship policy in China and another interna-
tionally. Technical Report Citizen Lab Research Report No. 84, University of Toronto,
November 2016. Section: Free Expression Online.

[63] Eve Schooler, Jonathan Rosenberg, Henning Schulzrinne, Alan Johnston, Gonzalo
Camarillo, Jon Peterson, Robert Sparks, and Mark J. Handley. SIP: Session Initiation
Protocol. Request for Comments RFC 3261, Internet Engineering Task Force, July
2002. Num Pages: 269.

66

[64] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RTP: A
Transport Protocol for Real-Time Applications. Request for Comments RFC 3550,
Internet Engineering Task Force, July 2003. Num Pages: 104.

[65] De Rosal Igantius Moses Setiadi. PSNR vs SSIM: imperceptibility quality assessment
for image steganography. Multimedia Tools and Applications, 80(6):8423–8444, March
2021.

[66] Priyanka Shrivastava and Uday Pratap Singh. Error Detection and Correction Us-
ing Reed Solomon Codes. International Journal of Advanced Research in Computer
Science and Software Engineering, 2013.

[67] Siddharth Singh and Tanveer J Siddiqui. A Security Enhanced Robust Steganography
Algorithm for Data Hiding. International Journal of Computer Science Issues, 9(3),
May 2012.

[68] Mohammad Hassan Mojtahed Soleimani, Muharram Mansoorizadeh, and Mohammad
Nassiri. Real-time identification of three Tor pluggable transports using machine
learning techniques. The Journal of Supercomputing, 74(10):4910–4927, October 2018.

[69] Tan Jin Soon. QR Code. Synthesis Journal, 2008(2008):59–78, 2008.

[70] Taiyi Sun and Quansheng Zhao. Delegated Censorship: The Dynamic, Layered, and
Multistage Information Control Regime in China. Politics & Society, 50(2):191–221,
June 2022. Publisher: SAGE Publications Inc.

[71] Yun Tai and King-wa Fu. Specificity, Conflict, and Focal Point: A Systematic Investi-
gation into Social Media Censorship in China. Journal of Communication, 70(6):842–
867, December 2020.

[72] Jinyuan Tao, Sheng Li, Xinpeng Zhang, and Zichi Wang. Towards Robust Image
Steganography. IEEE Transactions on Circuits and Systems for Video Technology,
29(2):594–600, February 2019.

[73] Matias Tassano, Julie Delon, and Thomas Veit. FastDVDnet: Towards Real-Time
Deep Video Denoising Without Flow Estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1354–1363, Seattle,
WA, USA, 2020.

[74] Jozsef Vass. How Discord Handles Two and Half Million Concurrent Voice Users using
WebRTC, September 2018.

67

[75] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven
Cheung, Frank Wang, and Dan Boneh. StegoTorus: a camouflage proxy for the Tor
anonymity system. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 109–120, Raleigh, NC, USA, October 2012.

[76] Philipp Winter and Stefan Lindskog. How China Is Blocking Tor, April 2012.
arXiv:1204.0447 [cs].

[77] Philipp Winter, Tobias Pulls, and Juergen Fuss. ScrambleSuit: a polymorphic network
protocol to circumvent censorship. In Proceedings of the 12th ACM workshop on
Workshop on privacy in the electronic society, pages 213–224, Raleigh, NC, USA,
November 2013.

[78] Dawen Xu and Rangding Wang. Context adaptive binary arithmetic coding-based
data hiding in partially encrypted H.264/AVC videos. Journal of Electronic Imaging,
24(3):033028, June 2015. Publisher: SPIE.

[79] Zhongwen Xu, Yi Yang, and Alexander G. Hauptmann. A discriminative CNN video
representation for event detection. In In Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1798–1807, Boston, MA, USA, June
2015.

[80] Jianhua Yang, Kai Liu, Xiangui Kang, Edward K. Wong, and Yun-Qing Shi. Spatial
Image Steganography Based on Generative Adversarial Network, April 2018.

[81] Weike You, Hong Zhang, and Xianfeng Zhao. A Siamese CNN for Image Steganalysis.
IEEE Transactions on Information Forensics and Security, 16:291–306, 2021.

[82] Yi Zhang, Xiangyang Luo, Chunfang Yang, and Fenlin Liu. Joint JPEG compression
and detection resistant performance enhancement for adaptive steganography using
feature regions selection. Multimedia Tools and Applications, 76(3):3649–3668, Febru-
ary 2017.

[83] Zhiqiang Zhu, Ning Zheng, Tong Qiao, and Ming Xu. Robust Steganography by
Modifying Sign of DCT Coefficients. IEEE Access, 7:168613–168628, 2019.

[84] Zhiying Zhu, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. Destroying robust
steganography in online social networks. Information Sciences, 581:605–619, Decem-
ber 2021.

68

[85] Zhiying Zhu, Ping Wei, Zhenxing Qian, Sheng Li, and Xinpeng Zhang. Image San-
itization in Online Social Networks: A General Framework for Breaking Robust In-
formation Hiding. IEEE Transactions on Circuits and Systems for Video Technology,
33(6):3017–3029, June 2023.

69

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Overview
	Contributions
	Thesis Outline

	Related Work
	Censorship Resistant Technologies
	Steganography
	Image steganography
	Video steganography
	Robust steganography
	Attacking steganography

	Overview of Related Technologies
	WebRTC
	Architectures for WebRTC services
	The VP8 codec
	Summary

	Robustness Concerns for Video Steganography over WebRTC
	WebRTC Experimental Testbed
	WebRTC gateway server
	Application server architecture

	Attacking Stegozoa
	Stegozoa implementation details
	Breaking Stegozoa's covert channel through re-encoding
	Why does Stegozoa break?

	Characterizing VP8 Re-encoding
	Local Testbed Configuration
	Testbed design and data collection
	VP8 codec instrumentation

	VP8 Characterization
	General VP8 characterization
	Embedding space changes
	Embedding survivability
	Characterization conclusions

	Towards Robust Video Steganography over WebRTC
	Threat Model and Design Goals
	Towards Robust Steganography in VP8
	Robust embedding spaces
	Error correction

	Re-encoding Robust System Recommendations
	Design considerations
	Limitations and future work

	Conclusions
	References

