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Abstract

Formal verification plays a crucial role in enhancing the reliability of computing systems
by mathematically checking the correctness of a program. Although recent years have
witnessed lots of research and applications that optimize the formal verification process,
the issue of false assurance persists in certain stages of the formal verification pipeline.
The false assurance problem is critical as it can easily undermine months if not years of
verification efforts.

In this thesis, we first generalized the formal verification process. We then identified
and analyzed specific stages susceptible to false assurance. Subsequently, a systematization
of knowledge pertaining to the false assurance issues observed at these stages is provided,
accompanied by a discussion on the existing defense mechanisms that are currently available.

Specifically, we focused on the problem of formal specification incompleteness. We
presented Fast in this thesis, which is short for Fuzzing-Assisted Specification Testing.
Fast examines the spec for incompleteness issues in an automated way: it first locates
spec gaps via mutation testing, i.e., by checking whether a code variant conforms to
the original spec. If so, Fast further leverages the test suites to infer whether the gap
is introduced by intention or by mistake. Depending on the codebase size, Fast may
choose to generate code variants in either an enumerative or evolutionary way. Fast is
applied to two open-source codebases that feature formal verification and helps to confirm
13 and 21 blind spots in their spec respectively. This highlights the prevalence of spec
incompleteness in real-world applications.
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Chapter 1

Introduction

Formal verification is a one-of-its-kind tool in enhancing the dependability of comput-
ing systems by mathematically proving their correctness — i.e., a system complies with
its specifications under all possible conditions. Compared with other quality assurance
tools such as testing, code review, and auditing, formal verification provides a superior
dependability guarantee due to mathematical rigor, certainty of correctness, and a com-
prehensive coverage [79]. While still exotic in the general software development practice,
in safety-critical industries such as avionics, formal verification is often either required or
highly recommended by regulatory standards due to its thoroughness and rigor, making it
indispensable for compliance [24].

As computing systems become increasingly integral to modern life, more software pro-
grams become safety-critical and the need for their dependability escalates, necessitating
an increasing adoption of formal verification in recent years. In fact, formal verification
has found applications across various sectors, both academically and industrially. Amazon
Web Services (AWS), for instance, uses formal verification to bolster the security of its
cloud infrastructure [40], showcasing a practical integration of formal verification in a
commercial setting. The seL4 microkernel is another example, where formal verification un-
derpins the implementation correctness of an operating system kernel without compromising
performance [97].

Despite the guarantee of high assurance, formal verification is often perceived as a costly
approach, requiring substantial human expertise and financial resources. To be specific,
writing formal specifications often requires a completely different mindset of programming
(declarative vs imperative) which usually necessitates additional training on the software
developers. Specifications and proofs, if needed, are often developed in a lesser-known
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syntax and can sometimes be even more verbose than the implementation. In fact, even
for the most qualified researchers, it is still a time-consuming and tedious task to formally
verify any real-world program thoroughly. Illustrative of this is the example of seL4 [97]. A
close examination of the verification effort statistics reveals the allocation of resources: 4
person-months for the abstract spec development, 2 person-years for the Haskell prototype,
2 person-months for implementing the Haskell prototype in C, and an astounding 20 person-
years in the proof phase! The 20 person-years used in the proof phase includes 9 person-years
invested in formal language frameworks, proof tools, proof automation, theorem prover
extensions and libraries, and 11 person-years for seL4-specific proof. Not to mention that in
the case where the codebase needs to be upgraded, based on the different types of changes,
the cost also varies. In the worst case where new, large, cross-cutting features are added,
chances are that it requires several person-years to re-verify. This underscores the detailed
and demanding nature of formal verification both in time and expertise.

Frankly speaking, for most software programs, especially those with time-to-market
pressure, adopting formal verification for dependability assurance can be prohibitively
expensive. Nonetheless, in situations where software correctness is essential, developers are
willing to take the high costs and resort to formal verification for the possibility of providing
correctness guarantee to the largest extent. In the domain of smart contracts, the Certora
Prover[3] offers a rule-based verification framework designed to identify vulnerabilities,
logical inconsistencies, or departures from specified behaviors. Given the immutable nature
of smart contracts upon deployment to the blockchain, any modification post-deployment
is infeasible. Consequently, formal verification serves as a crucial preemptive measure to
avert substantial financial losses attributable to flaws within smart contracts.

On the bright sight, integrating formal verification into the development cycle can
emphasize the importance of correctness. The process of devising specifications and
reasoning about the correctness of the program implementation compels developers to be
more thorough and explicit on expressing their intention, which can enhance clarity and
precision. This is important especially for subtle algorithms or cases with complicated
state space. For example, in CPU design, formal verification can pinpoint subtle timing
issues and rare conditions that traditional testing might miss. However, for non-technical
stakeholders, the excessive cost, together with the complex and time-consuming process of
implementing formal verification, may create an illusion that if a program is formally verified,
the program’s security is no longer a concern. This assumption can be dangerously
misleading!

The truth is: even though formal verification is able to significantly reduce the chance of
having uncovered bugs, it does not reduce the probability to zero. As perfectly illustrated
by NASA in its report [2]:
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We are very good at building complex software systems that work 95% of the time,
but we do not know how to build complex software systems that are ultra-reliably
safe (i.e. Pf < 10−7/hour).

The quotation from the NASA report touches on a critical tension in the domain of formal
verification: while formal verification offers a robust framework for ensuring that the
software behaves as intended, it does not mean that the verified software is worry-free.
This 5% gap is what we call false assurance in this thesis, and is one of the reasons why
software that undergoes a rigorous process of formal verification can still be vulnerable.

False assurance can stem from various sources, including but not limited to incorrect or
missing specifications, wrong assumptions about the environment, or flaws in the compilation
or verification toolchains. In fact, in §3 we show that false assurance can arise from virtually
every step in a formal verification process. On the other hand, the false assurance issue
has been recognized and tackled by the community for decades with a rich set of tools
and methodologies proposed to reduce or even mitigate false assurance hidden in different
aspects of formal verification. On a high-level, these mechanisms can be categorized into
two types: fuzzing (testing the procedure exhaustively) and modeling (adding another layer
of verification to one of the procedures in the original verification process).

In this thesis, we first outline different flavors of formal verification and a generic
workflow of the verification process (§2.1). We then present a catalog of false assurance
that can possibly appear in the generic process. For each step prone to false assurance, we
survey existing defense mechanisms as well as identify open problems (§3). Specifically, we
focus on the problem of false assurance in formal specifications, and proposed a framework
named Fast which can examine the incompleteness problem in an automated way (§4).

We would like to stress upfront that the goal of this thesis is NOT to undermine the
utility of formal verification by cataloging potential points of failure. On the contrary,
we intend to explore avenues for enhancing the level of assurance that formal verification
can offer. Additionally, we aim to demystify the concept and foster broader adoption by
elucidating its true significance. Crucially, our goal is to cultivate an informed understanding
among stakeholders, particularly those not intimately involved with the verification and
implementation processes, to ensure that the “formally verified” designation is neither
misconstrued as an infallible guarantee nor overlooked for its substantial value.
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Chapter 2

Background

2.1 Formal Verification

In this section, we give a brief introduction to formal verification for software systems,
compare it with other software assurance approaches, describe common flavors of software
verification, and present a conceptual workflow for the most common usage scenarios.

2.1.1 A Quest for Correctness

Correctness of programs has always been a major concern. Ensuring correctness is a
fundamental aspect of software development. Correctness refers to the property of a
software system that operates according to its intended requirements under all defined
conditions.

For most software systems, the quest for correctness begins with a thorough understand-
ing of the intended functionality and business requirements of the software, which forms
the basis for all subsequent efforts:

1 Rigorous and systematic testing [158], such as unit, integration, and system testing,
ensures that the most critical aspects of the software perform as expected.

2 Beyond basic testing, dynamic analysis, including fuzzing (for program state explo-
ration) [113] and runtime verification (for bug oracle definition) [18], expand both
state coverage and bug scope of execution-based approaches.
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Figure 2.1: Trade-off between engineering cost and assurance level for security methods

3 Other than dynamic analysis, static analysis, such as declarative bug patterns (e.g.,
CodeQL [190]), abstract interpretation (e.g., Infer [4]), and symbolic execution (e.g.,
KLEE [31]), scale up the assurance guarantee from one concrete execution to an
abstraction of program logic.

4 Ultimately, the application of formal methods provides a mathematical and logical
approach to ascertain program correctness across all possible inputs and states with
ideally no abstraction to program semantics.

While formal verification can provide the highest level of correctness assurance, in
practice, it is rarely used, as the high assurance guarantee comes with extra engineering cost
as demonstrated in Figure 2.1. Higher levels of assurance typically correlate with higher
engineering costs. At the lower end of both cost and assurance is unit testing, which is
characterized by minimal engineering effort but also provides the lowest level of assurance.
Fuzz testing is noted for its feedback loop mechanism, implying a middle ground in terms
of cost and assurance. Between the extremes of unit testing and formal verification, there
exist various forms of static analysis, each likely offering a different balance of cost versus
assurance. Hence, a practical consideration in choosing the right program correctness
assurance method is balancing between engineering cost and level of assurance offered by
various approaches, which also hinges on the specific needs of a project and the permissible
engineering expenses.
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2.1.2 Types of Formal Verification

By definition, formal verification is an approach used to check the correctness of a program
mathematically. Based on the relationship between verification specification and the original
program to be verified, formal verification framework can be categorized into model checking
and deductive verification [100].

Model checking. Model checking takes the system to be analyzed as a state-transition
system. The general approach of model checking is composed of three parts [38]:

1 Finite state-transition graphs (S) which provide the formalism for the system.

2 Description of correctness properties (φ) for state-transition systems.

3 Model-checking algorithm which is a decision procedure for determining whether
S conforms to the description φ.

In order to perform model checking on a system, the system has to be able to be modeled
by state-transition systems. if S =⇒ φ, that means φ constrains S, otherwise if S ≠⇒ φ,
the model checker will output a counterexample in S which violates φ. It is easy to see
from the description of model checking process that model checking face the problem of
state explosion. Under most circumstances, there requires a bound to limit the number of
states, which will make some of the bugs hidden in the states that have been pruned.

Deductive verification. Deductive verification approaches the challenge of ensuring that
a program behaves correctly by requiring a more involved specification process. In contrast
to model checking, which exhaustively explores the possible states of a system, deductive
verification leverages logical reasoning to infer correctness. This method assumes a more
comprehensive role for specifications, which necessitates a profound comprehension of the
system under scrutiny to formulate accurate and detailed expectations of its behavior. The
advantage of deductive verification lies in its capacity to deal with systems that have an
infinite or very large state space, which model checking struggles with due to state explosion.
This makes it particularly suitable for verifying properties of algorithms or systems where
the number of states cannot be feasibly enumerated, as is often the case with complex
software and hardware systems.

Deductive verification can be categorized based on the level of automation it incorporates.
An elementary instance is the pen-and-paper proof [77], which refers to the most basic
step-by-step reasoning on a program. This approach is used in the early attempt to verify
programs. It is obvious that the deficiency with pen-and-paper approach is that it is
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inherently time-consuming and heavily reliant on the individuals conducting the proof.
When it comes to validating the proof, it still requires extra human effort to validate the
proof, thereby limiting its practical efficacy and scalability in the verification process. it
also inherently carry a risk of incorrectness due to human error, rendering the guarantee of
their correctness somewhat elusive. Furthermore, this traditional method lacks adaptability
when dealing with code updates; changes in the code often require a comprehensive review
and possible reconstruction of both the specification and the proof, these processes are
generally largely manual and exhaustive. To overcome the limitations of the manual
method, automated proofs have been developed. SMT solvers such as Z3 [43], CVC4 [16]
are examples in this line of work as automatic theorem provers. However, automated proofs
share the same deficiency as in model checking: if the search space for the given problem
is too large, it will simply be too hard to validate. Besides, it is undecidable whether the
automated provers can find proof for a given verification condition or not.

Between these two lines of work (pen-and-paper proof and automated proof), proof
assistants, such as Isabelle [183], Coq [83], Agda [162] bridge human effort and computational
power. Proof assistant works by requiring the programmer to input the major proof steps,
and automatically provide assistance (validation of the reasoning steps, proved theorem
storage, etc.,) when necessary.

2.1.3 Practical Concerns

There is no doubt that among security approaches, formal verification in general is a strict
approach which can provide higher assurance. Nevertheless, this precision comes with its
own set of challenges and costs. Scalability is one of the biggest challenges for formal
verification. Ideally, every program should have complete mathematical proof. While the
codebases nowadays are large enough that, big companies like Google are managing billions
of lines of code, such that achieving such exhaustive verification becomes impractical. At
the same time, proving a software system correct requires more effort and skills than
writing the system itself. Consequently, formal verification is predominantly reserved
where correctness is of crucial importance, and the codebase is not large enough that it
will feasibly undergo the verification process (or sometimes, only part of the code will be
formally verified). In scenarios where both software and hardware systems must ensure
uncompromised correctness, formal verification emerges as the favored strategy to provide
the utmost confidence in their reliability. Under such circumstances, formal verification is
always the preferred solution to provide the highest possible guarantee of correctness.
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2.1.4 Overall Workflow of Formal Verification

Despite the various different types of formal verification, the framework of formal verification
can be described as shown in Figure 3.1, in summary, the overall workflow can be decomposed
to the following steps:

Code transformation. Normally, source code will not be directly compared with
the requirements. The conversion of program code into an abstract representation is
an essential step in the verification process, especially in complex formal verification
frameworks. This process allows the original code to be presented in a form that is more
suitable for formal analysis. For example, in the framework of seL4 [97, 138], Haskell is
chosen as the initial development language. The Haskell prototype is manually translated
into C implementation as a compromise between high performance and convenience for
formal verification developers. The use of Haskell is restricted to a subset that can be
automatically translated into the language of the theorem prover. In this case, the translated
C implementation enables optimization, and the Haskell prototype provides convenience for
verification developers.

Requirement modeling. The requirement originated from the expectation of the
behaviors in the program. It often requires a form of carrier to formally describe the
generalized requirement into formalized description framework, in this way, the description
can be fed into the formal verification framework. Generally, the requirement for the code
is represented in some formal description language. There are different methods to model
the requirement, based on different verification frameworks. These modeling approaches
include pre-post condition modeling, state machine modeling, temporal logic modeling,
etc. One example is predicate abstraction [1]. Predicate abstraction is an interpretation
technique in which the abstract domain is constructed from a given set of predicates over
program variables.

Build proof obligation. Formal specification and abstract code representation are
used to construct proof obligation (a.k.a., verification condition). For example, Move [20] is
a programming language developed for smart contracts by Meta. The language features
formal verification at its core through its home-grown verification tool - Move Prover [53].
In a verification process, the input is the combination of move code and specification. The
source code will be compiled into bytecode and the specification will be parsed into AST.
These two parts will then go through a pipeline of merging and transformation, and finally
be compiled into Boogie [14].

Verify proof obligation. Last but not least, the obligation is verified by verification
tool. For the example used before, in Move framework, the verification conditions in Boogie
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format will be translated to SMT format which can be solved by SMT solver such as
Z3 [43] or CVC4 [16]. As for model checking, popular model checkers include NuSMV,
the first model checker to be based on Binary Decision Diagrams (BDDs) [37], Simple
Promela Interpreter (SPIN) [81], the model checker especially used for concurrent and
distributed systems. PRISM [103], a probabilistic model checker. Process Analysis Toolkit
(PAT) [119, 171], a self-contained framework for composing, simulating and reasoning of
concurrent, real-time systems and other possible domains. It includes user interfaces, a
model editor and an animated simulator.
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Chapter 3

False Assurance

Besides the scalability challenge, false assurance is a significant impediment that can easily
undermine the efforts and investments in formal verification. For the part of the code
that claims to be guarded by formal verification, false assurance refers to the failure to
provide complete assurance; or the discrepancies between actual program implementation
and formal specifications. Marton et al. [22] illustrated this through an inductive approach
in two case studies. They collected falsifiable approaches at first, then tried to falsify
the assumptions. The result uncovers gaps between formal, deductive-only approaches
and practical security applications. The false assurance problem is notably prevalent
in cryptography, where implementations are generally subjected to rigorous verification
processes. Some works [46, 98, 99] summarized the problems of provable security as
inadequate definitions, bodacious assumptions, and problematic proofs.

In this thesis, we want to focus more on the implementation side of false assurance
than the overall mindset of programming formal verification. At the same time, we are
providing a systematical analysis in the development of formal verification techniques
and the according defense for the false assurance problem. Specifically, as presented in
Figure 3.1, along the process of formal verification, false assurance can reside in several
different points, the false assurance will also propagate along different layers of the process.
We generalize and pinpoint the following false assurance locations:

1 Specification. The program specifications are a set of expectations for the behavior of
the program. In the context of formal verification, the specifications provide the expectations
and instructions for the verification framework to check the implementation. However,
there’s a risk that specifications might be incomplete or inaccurately reflect the intended
requirements, which can lead to false assurance.
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Figure 3.1: Formal verification workflow with false assurance

2 Code semantics. Programmers can have different understandings of the semantics
of code. For most projects, the standard of interpreting the semantics is from the official
document. However, different programmers can interpret it in different ways, or there might
be mistakes in the document itself. Such disparities can cause a misalignment in the formal
specification process, contributing to false assurance.

3 Abstract representation. Abstractions in code are crucial for scalability, main-
tenance and readability. For example, in the translation validation process in seL4, the
C source code is parsed into higher order logic representation (HOL), and subsequently
converted into graph language. This graph is then matched against a version derived
from the binary code to ensure the correct compilation. However, the tools used for these
conversions are not infallible and may introduce inaccuracies.

4 Code transformation. Usually, source code will not be directly used as an input
for verification, source code typically undergoes transformation to align with the formal
verification model. In this process, the transformation tool can be problematic that it will
lead to discrepancies between the transformed code and the target code.

5 Verification tool. The proof obligation that comes from all the preprocessing steps
will eventually be handled by the verification tool, which determines their validity. For
example, theorem prover in deductive proofs is a form of verification tools.
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6 Hardware. The source code gets compiled into binary code which will be executed
on hardware. The reliability of the hardware itself is pivotal; any underlying bugs can
compromise the correctness of the program execution, thus leading to false assurance.

Based on the pipeline described in Figure 3.1, here we elaborate more on each false
assurance point, with examples and the analysis of current research on the discovery of
false assurance and potential defense mechanisms. The defense mechanisms have been
generalized into Table 3.2. The criteria for paper selection is listed in the appendix. In
the following table, the number of bugs found labeled with * is not direct bug discovery,
but potential optimization on performance; The number of bugs labeled with [-c] is the
number of errors reported from the tool provided in the papers, but has not been officially
confirmed. e.g., it can be the number of failed generated tests by the testing subject.

3.1 Specification

Developing a program starts with conceptual requirements. However, there is no guarantee
that the basic requirements or assumptions for the program to be verified will be established
correctly.

In formal verification, the conversion from conceptual requirements into formal specifi-
cations is critical, yet inherently fraught with challenges. There is no absolute assurance
that the original requirements are flawless or that the derived specifications comprehen-
sively encapsulate the intended program functionality. This potential for incorrectness and
incompleteness during the transition from conceptual requirements to formal specifications
can introduce risks, particularly in the verification of expansive systems. Such systems
often necessitate underlying assumptions or the omission of certain code segments, further
compounding the possibility of false assurance. The fidelity of translating conceptual
requirements to formal specifications is thus not infallible, and discrepancies in conveying
the true intent are a concern. Here we take an example of functional verification to illustrate
the specification incompleteness problem in formal verification. In this example shown
in Figure 3.2a, the developer intends to increment each element in the vector by one.
The specification ensures that each element in the return vector will get incremented by
one compared with the vector in the precondition. However, the specification shown in
Figure 3.2b fails to also monitor that the lengths of the vector from precondition and post-
condition have to be the same. Under the current setting, should the function erroneously
eliminate an element, the verification could erroneously succeed due to the oversight in
the specification. This exemplifies how a seemingly comprehensive verification process can
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1 fn add(v: [int]) -> [int] {
2 for i in 0..len(v){
3 v[i] = v[i] + 1;
4 }
5 return v;
6 }

(a) code for add

1 spec for fn add {
2 ensures forall
3 i in 0..len(result):
4 result[i] = v[i] + 1;
5 }

(b) spec for add

Figure 3.2: Demonstration of specification incompleteness

overlook critical aspects, resulting in a misalignment between the verified behavior and the
intended functionality of the program.

3.1.1 Gauging Incompleteness

The idea of finding discrepancies between specifications and the actual implementation is
known as gauging specification incompleteness in the literature [159, 173]. Some research
works try to measure the quality of specifications by heuristic based approaches. Leveson
et al. identified a set of formal criteria to identify missing, incorrect, and ambiguous
requirements for process-control systems [85, 112, 137]. Csertan et al. introduced a reduced
form of state charts in order to automate the verification process [41]. Most recently,
Bognar et al [22] use an inductive way to show the gap between the mathematical model
provided by formal methods and the actual system through two case studies on embedded
security architectures. Specifically, they first identify falsifiable assumptions about the
system behavior, then validate whether the assumption holds in the real system and if not,
try to exploit missing attacker capabilities.

3.1.2 Mutation Testing

The heuristic based approach requires lots of manual effort. In the hardware verification
context, mutation testing [147] is used to solve the same problem in a more automated
way. Because formal verification has a longer history in hardware design compared with
software design, mutation testing has been applied to improve the completeness of hardware
specifications, we see implementations on digital circuits [102, 177], processor [66], etc.

However, in the software verification context, the implementation of formal verification is
less common. There has been earlier research work on specification mutation [89]. We can see
the applications for mutation testing on specification and description language(SDL) [167],
model language [51], etc. FAST [88] proposed an evolutionary mutant generation approach,
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it also leverages the test suites to infer whether the gap is introduced by intention or by
mistake. FAST [88] works by firstly locating SPEC gaps via mutation testing, i.e., by
checking whether a CODE variant conforms to the original SPEC. If CODE conforms to
the SPEC, FAST will leverage the test suites to infer whether the gap is introduced by
intention or by mistake. Depending on the codebase size, FAST may choose to generate
CODE variants in either an enumerative way or an evolutionary way.

For model checkers, mutation testing is also used to check the incompleteness of
properties that are being checked in the model checkers. Example includes NuSMV [71],
some FSMs [11, 151].

3.2 Semantics

The official reference for most programming languages is the manual. However, although
manuals can provide a formal syntax definition, there is no formal semantics definition,
which means that the semantics of the source code can be interpreted in different ways. This
can bring extra trial and error for the developers and will lead to possible false assurance.

1 std::size_t func(int x)
2 {
3 std::size_t a;
4 if (x)
5 a = 5;
6 return a;
7 }

In the above example, this C++ code snippet represents a function where the return value
will be given based on the value of the one parameter that is taken into the function. If the
parameter is non-zero, the return value will be 5, otherwise it will be an undefined behavior
based on the definition of C++. In this case, there is a chance of getting undefined behavior
if variable x is provided with the value 0 and the if branch is not reached. Generally,
programmers are expected to prevent undefined behavior from happening. Compilers are
not required to diagnose undefined behavior, and the compiled program is not required to
do anything meaningful. However, when undefined behavior like this is passed on to the
next layer, it can lead to errors in the next several layers.

3.2.1 Formal Semantics

One way to mitigate the semantic problem is by providing a formal framework for program-
ming language semantics. One example on this line of work is K-framework. K-framework
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[156, 157, 164] is a tool-supported rewrite-based framework for defining programming
language design and semantics. K offers several implementation scenarios including interac-
tive execution (kcompile, kparse), state space exploration (krun), and deductive program
verification(kprove), etc. K-framework has also led to other works, K-LLVM [114] provides
complete formal LLVM IR semantics [192].

3.2.2 Fuzzing

Zest [146] adapts the algorithm used by CFG tools in order to quickly explore the semantic
analysis stages of test programs. Fuzzing has also been used on specific applications targeting
semantic bugs, for example, TCP stacks [194], file systems [96], web browser [193].

3.3 Transformation

As shown in Figure 3.1, source code normally will not be directly used in generating
proof obligations, it will go through a transformation process. Compilation is one of the
transformation approaches. However, the compiler might provide false assurance since
it can not be guaranteed to be bug free. The consequence is that compiler can result in
compiled code that has discrepancies with the source code. Analysis of compiler bugs in
GCC and LLVM [170] shows that GCC has 39,890 reported bugs in a time range of 16
years. LLVM has 12,842 in a time range of 12 years. C compiler has a longer history of
being a research object. In order to better illustrate the potential optimization problem,
here is an optimization error example in LLVM. Given a code piece:

1 a + b > a

The LLVM IR code before any optimization is as below:

1 %add = add nsw %a, %b
2 %cmp = icmp sgt %add, %a

However, after the optimization, the optimized code is:

1 %cmp = icmp sgt %b, 0

the equivalent code will be:
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1 b > 0

In this case, when a is assigned with the value INT_MAX, and b is assigned with 1, the
result of a + b should lead to value overflow, which is an undefined behavior[109] in LLVM.
However, since it is optimized to b > 0, the value of a does not matter anymore. This line
of code will always be evaluated to be valid. Therefore the optimization adds incorrectness
into the process. The correctness of code transformation process is a concern, it is a hidden
threat to program safety.

3.3.1 Formal Verification

One of the idealistic ideas is to secure the compiler with formal verification. There have
been mature projects targeting formally verifying the compiler implementations of different
programming languages with the hope to be exempted from miscompilation. For C,
CompCert [17, 111, 174] is an optimized compiler where the executable code produced is
proved to behave exactly as specified by the semantics of the source C program, Frama-C [42]
is a source code analysis platform that aims at conducting verification of industrial-size
C programs. ESC/Java [69] is an experimental compile-time program checker that finds
common programming errors. It is powered by verification-condition generation and
automatic theorem-proving techniques. Spec# [15] is a programming system which is
consisted of Spec# programming language, Spec# compiler and the Boogie static program
verifier. The compiler can emit run-time checks to enforce the specifications, and the verifier
can check the consistency between the program and it’s specifications. CertiCoq [5] is a
mechanically verified, optimized compiler for Coq that bridges the gap between certified
high-level programs and their translation to machine language. Rustbelt[90] is designed
for formally verifying Rust compiler. Some work targets on creating a formalized model
on some specific issues. VCC [39] focuses on verifying c programs in concurrent scenarios,
formalizing the racy access semantics of an LLVM fragment [33]. Vellvm [192] (verified
LLVM), is a framework for reasoning about programs expressed in LLVM’s intermediate
representation and transformations that operate on it. The framework is built using the
Coq interactive theorem prover, and provides a mechanized formal semantics of LLVM’s
intermediate representation, its type system, and properties of its SSA form. Crellvm [91]
augment an LLVM optimizer to generate translation results together with their correctness
proofs, which can then be checked by a proof checker formally verified in Coq.
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3.3.2 Translation Validation

Translation Validation [165] looks at the problem of miscompilation from another perspective.
Formal verification tries to prove in advance that the compiler always produce target code
that can correctly convey the functionality of source code. While translation validation
can provide more usability by hiding the tedious formal verification workload. The Alive
line of work focuses on handling undefined behavior in LLVM optimized IR. Lee et al.
summarized the undefined behavior design in LLVM [109]. Alive [122] is a domain-
specific language for writing optimizations and prove the correctness of the optimizations.
Furthermore, Alive translates into C++ code that implements the optimization pass.
AliveInLean [107] took one step further from Alive in that it specified and verified Alive in
Lean [9]. Alive2 [121]can take an unoptimized function in LLVM IR and either prove that
it is refined by the optimized version of the function or show a set of inputs that illustrate
a failure of refinement, taking undefined behavior into consideration. Alive2 also proposes
its own memory model [108]. The similar approach has also been used on other compilers,
including machine learning compilers [12]. CORK [123] is an automatic equivalence checker
that supports loop optimizations over rational numbers.

3.3.3 Fuzzing

It is obvious that formal verification is going to take lots of effort when trying to verify
a compiler, especially with the constant upgrade and possibly new variations. Another
more intuitive way to test the correctness of compiler is to generate test cases and feed the
compiler with the generated test cases. randprog is such a generator [176]. However, this
generator itself has many limitations. In a large code base as compiler, we will want to be
able to reach a test case that is closer to vulnerability in the code base. In several following
works, randprog is used as a base tool, with optimizations on the deficiencies. Eric and John
extended randprog by enabling the availability of finding volatile bugs with access summary
testing [58] with the tool named volcheck. Except for testing the correctness of programs
themselves, there are works that focus on a certain functionality of the program. For
example, targeting testing the correctness compiler’s local optimization rules, Optgen [26]
can automatically generate peephole optimizations. CSmith [189] compared with randprog
has lots of optimizations, including complex control flow and supports for data structures
such as pointers, arrays, structs, etc. YARPGen [120] took one step further from CSmith
by including a method for generating expressive programs that avoid undefined behavior
without using dynamic checks, and implementing generation policies to increase the diversity
of generated code, thus triggering more optimizations. Besides research based on randprog,
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there are other testing approaches with more limited test generation constraints. Le et al.
proposed equivalence modulo inputs(EMI) [104], which tries to exploit the interplay between
dynamically executing a program P on a subset of inputs and statically compiling P to work
on all inputs. To be specific, EMI works by modifying unexecuted parts of the seed program
with the information provided by code coverage tools. This simple strategy of deleting
statements, which is more succinct in terms of code size compared with Csmith work well in
practice. This approach is novel in that it is easily applicable, and it can generate test cases
based on real-world code. The EMI test approach has been later extended in several works.
Both Orion and Athena perform EMI by deleting code from or inserting code into regions
that are not executed under the inputs. Athena [105] based on Orion, with enabling code
insertion into unexecuted program regions and using Markov Chain Monte Carlo(MCMC)
techniques to guide the generation process. Proteus [106] utilizes the techniques from both
CSmith and Orion to test Link-time optimization (LTO). Epiphron [168] targets compiler
diagnostic warnings. It leverages the techniques from Orion and solved several challenges
that are specifically for compilers’ warning, including aligning warnings, reducing test cases,
and generating effective test programs. Hermes [169] mitigates the limitation by allowing
mutation in the entire program.

3.4 Verification Tools

The proof obligation has to go through verification tools in order to get the final result.
Depending on the specific type of formal verification, the verification approach also varies.
But it is an essential step in order to validate the proof obligation. In terms of deductive
verification, the correctness of SAT, SMT provers has gained lots of focus. As for model
checking approaches, the correctness and performance of model checkers are the focused
points.

When it comes to the evaluation of formal verification tools, soundness, completeness,
performance are the usual aspects to be judged upon.

3.4.1 Fuzzing

FuzzSMT [25] is a blackbox grammar-based fuzzer for generating syntactically valid SMT
instances. FuzzSMT is unable to preserve satisfiability at the same time. StringFuzz [21]
fuzzes SMT solver with string and regex constraints. BanditFuzz [163] took one step
further than StringFuzz, using reinforcement learning to provide better performance than
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StringFuzz. Bugariu et al [30] targets the problem of not able to automatically classify the
result as true or false by synthesizing input formulas that are satisfiable or unsatisfiable by
construction and use it as ground truth in test oracle. Dominik et al. proposed a semantic
fusion approach. Semantic fusion is a general and effective way to solve the problem of
generating test formulas to validate SMT solvers [186]. OpFuzz [184] uses type-aware
operator mutation by mutating the operator within the seed formulas to generate well-typed
mutant formulas. STORM [128] serves as a blackbox mutational fuzzing technique, which
takes inspiration from AFL and generates new SMT instances by mutating existing ones.
TypeFuzz [148] combines mutational and grammar-based type-aware fuzzing. To be specific,
given a seed formula ϕ, they firstly choose an expression within ϕ, then pick an operator of
the same type as the expression and fill operator’s arguments with expressions from ϕ.

3.4.2 Formal Verification

As for model checking approaches, it is more common to see that model checkers have been
formally verified to add more assurance. Esparza et al [62] presented an LTL model checker
that has been completely verified using the Isabelle theorem prover. Formal verification has
also been used in verifying interactive proof assistance tools. SMTCoq [61, 92] increases
the level of automation of Coq by automatically calling external solvers and checking their
answers to solve a class of Coq goals; while at the same time provides an independent and
certified checker for SAT and SMT proof witnesses. It was further extended to support
more use cases and different SMT solvers, or provide new tactics to the existing solvers
[13, 60]. Sozeau et al [166] presented a type checker for the kernel of Coq, which is proven
correct in Coq with respect to its formal specification and axiomatisation of part of its
metatheory.

3.5 Hardware

False assurance in hardware lies in the fact that many developers think once the program
is handed to hardware, there will be no problem afterward [93]. However, real-world cases
show that the hardware assurance is still problematic. SHADE [87] is a tool that targets
false assurance from automated visual inspection approach. In this paper they proposed
an algorithm which exploits shadows cast by surface-mount components to accurately
distinguish them from their invalid counterparts (e.g. traces, vias, board text) Since the
consequence of having errors in hardware is more intuitive, hardware has long been a target
of formal verifications. It is a wild-range concept therefore the target for formal verification
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comes in different perspectives. The recent popular discussion about Rowhammer[139],
which is a hardware security vulnerability that affects dynamic random-access memory
(DRAM) chips, stems from the miniaturization of DRAM cells, which has made them more
vulnerable to electromagnetic interference from neighboring cells. Rowhammer provides a
demonstration of the possibility that a circuit-level failure mechanism can cause a system
security vulnerability with crucial consequences. The mitigations for Rowhammer include
adding detection in the memory controller or refreshing the potential victim to lower the
chance of being targeted. PROTRR provides in-DRAM Target Row Refresh mitigation
with formal security guarantees and high performance [118, 129, 130, 150].

3.5.1 Formal Verification

For the hardware description languages, the common languages usually have extensive
work on formal verification. Hardware description languages includes Verilog [6, 144],
VHDL [95], SystemC [117]. Some tools also provide formal verification functionality during
the development procedure[154], including JasperGold, OneSpin, etc.

3.5.2 Fuzzing

Exhaustive approaches are also used in detecting bugs in hardware description languages [59,
116]. Register transfer level (RTL) hardware is not inherently executable. Therefore, they
can be simulated in software model, where the problems in hardware fuzzing can be solved
via the approaches used in software fuzzing [175]. For example, the fuzzer is able to provide
coverage metrics in the software model; the software model is also able to provide a hardware
equivalent crash.
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Chapter 4

Finding Specification Blind Spots via
Fuzz Testing

4.1 Introduction

Abstractly, applying formal verification to a computing system can be decomposed into
two (somewhat) orthogonal processes: 1 developing a complete set of specifications for the
target system and 2 proving or disproving that the actual implementation is in conformance
with the specifications. In this thesis, we use spec as an abbreviation of the specifications
modeled in predicate calculus with symbolic semantics and code to represent the actual
implementation in programming languages with concrete and executable semantics. The
formal verification process can then be decomposed into 1 devising the spec and 2
checking that spec ⊒ code (i.e., code conforms to spec).

Recent years have witnessed great progress on addressing problem 2 as evident by the
consistent stream of improvements on automated theorem provers [44, 70, 135, 148, 185, 186],
while far less attention has been paid to problem 1 . This can be a dangerous disparity—
even a program is thoroughly verified with a perfect verification toolchain, this program is
only as correct as its spec. Errors in the spec can be as bad, if not worse, as errors in the
code. One of the concerning scenarios is unintended gaps in the spec. The gaps will create
verification blind spots in which the program behaviors are unconstrained. In the worst
case, there is nothing to prevent a malicious developer from hiding backdoors and trojans
behind these blind spots [65, 66], and such malicious code can survive regardless of how
rigorous the verification is—a single blind spot in the spec can easily undermine
months if not years of verification efforts.
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The consequences of an incomplete set of spec is exacerbated by the high costs of
adopting formal methods. As of now, formal verification is still an expensive technique due
to the extra effort of writing spec. In both case studies covered in the thesis (§4.6.1 and
§4.6.2), the spec is not developed by the team who originally write the code. Instead,
they are developed by a dedicated team of experts with years of training and practice
(including a PhD degree) in formal methods. However, despite the high costs, the industry
is willing to pursue this route with an expectation that formally verified programs have
higher assurance. While it is true that formally verified programs generally have higher
assurance, it is important to boost a general awareness that the formally verified “stamp”
should not be blindly trusted without a good understanding of the completeness of the
spec in the first place.

Fortunately, gauging the completeness of spec is not a new problem—it has received
more attention in hardware verification than software verification, likely because formal
methods have a longer history in hardware design. Most of the existing solutions in hardware
verification to detect incompleteness in spec are based on mutation testing [64, 172], where
a mutant is created by altering either the spec or code and check if the mutant can be
“killed”, i.e., the mutated code or spec can be proved to be non-conformant with the
unmodified counterpart. As a result, any surviving mutant raises a signal where the spec
might be incomplete.

The mutation testing technique sheds light on how we might find gaps in the spec of
formally verified software systems. In particular, it is natural to research on 1 whether
mutation testing is readily applicable in the software verification context; and 2 if not,
what improvements should be applied on conventional mutation testing. With an enhanced
mutation testing framework oriented towards software verification, we can finally pursue
our meta-quest: 3 is incompleteness issues in spec prevalent in mature codebases?

We seek to answer all questions raised above with an integrated tool: Fast, short
for Fuzzing-Assisted Specification Testing. In particular, we first confirm that adopting
mutation testing in the software verification context can be effective in uncovering spec
gaps in our case studies—a sizable basket of low-hanging fruits. However, in the face of
complicated programs, conventional mutation testing with a random mutation strategy is
less effective in finding “deeper” and “more interesting” gaps in the spec.

Consider a procedure in which we attempt to measure spec completeness by producing
a stream of code mutants and checking whether these mutants can be “killed” by the
original spec. There are at least two challenges in this procedure:

• When a mutant passes the verification, how can we tell that the gap in the
spec is by intention or by mistake? Even though the mutant passes the verification,
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it is still possible that the code is meant to be written freely in the unspecified part, which
means the mutant does not indicate an underlying mistake, and the spec is intentionally
abstract in this part of programming. Therefore, we need a method that automatically
categorizes whether a gap in the spec is intentional or mistaken.

• How to produce a mutant that is more likely to pass the verification? Brute-force
enumeration of all possible mutations in the code might work for simple software/hardware
systems (e.g., UART circuit [141]), but such a practice can be futile in complicated software
programs with nearly infinite ways to mutate. We need a systematic approach to produce
“meaningful” mutants that can pass verification in a reasonable amount of time.

To tell whether a gap in the spec is by intention or by mistake, the fundamental insight
is to exploit and synergize the “redundancy” and “diversity” in formally verified programs.
To be exact, spec, code, and test suites are all derived from the same set of requirements
but programmed with different mentalities: for example, in different languages (or even
programming paradigms), asynchronously, with different evolution paths, and ideally by
different and independent teams. It is therefore less likely that the three derivations will
bear the same mistake. This paves the way for finding errors in one component by cross-
comparing it against the other two. In fact, this principle is already applied to check the
correctness of code by both running it against test suites and proving it against the spec.
In this thesis, we show that the same procedures can be used to check incompleteness in
spec as well (and deficiencies in test suites too, as by-products of our methods).

We further solve the mutant generation problem with an evolution strategy adopted
from modern software fuzzers. The insight is to simulate the natural selection process by
allowing the mutant with higher “fitness” score to have more chances of further mutations.
In essence, each code mutant is evaluated for “fitness” when verified against the spec
and only high-quality mutants survive and participate in future rounds of mutation. In
this way, all fuzzing efforts are retained, and each generation of mutants gets closer to
the evolution goal—passing the verification. The “fitness” metric can be as simple as the
number of verification errors triggered when verifying the code mutant against the spec.

Like most fuzz-based tools, Fast cannot guarantee the absence of incompleteness issues
in spec, but can be used to boost confidence that there are no obvious loopholes in spec.
In other words, we see Fast as a cheap but effective fortification on the financial and
time investment on writing spec and also the co-evolution of spec and code, such that
the accumulated formal verification effort can not be easily undermined by unintended
omissions by spec writers.

25



4.2 Background

In this section, we give a brief introduction to the spec incompleteness problem. We
then introduce and differentiate two stochastic testing methods: mutation testing and fuzz
testing, which are later combined in our work. In light of the proliferation of research works
in mutation and fuzz testing, this section also serves as a best-effort survey of related works
with elaborations on how Fast differ form them.

4.2.1 Automated Function Verification

While Fast can be applied to different flavors of formal verification (e.g., protocol verifica-
tion [80], state-machine transitions [54, 134], etc.), in this thesis, we focus on a specific type
of verification: functional correctness verification with preconditions and postconditions,
sometimes also known as “design-by-contract” [132].

In function verification, the spec target is typically the code that constitute a single
function and developers provide pre- and post-conditions for the function body in the form
of spec predicates, which typically include conditions over function parameters and/or
environmental states that can be referred to by the code in the function. The spec may
include constructs that do not have concrete executable semantics, such as universal and
existential quantification over unbounded domains. Although specified against a single
function, pre- and post-conditions are not limited to establishing the correctness of one
function only. They contribute to the establishment of overall program correctness as
preconditions are verified at caller side such that postconditions can be assumed after the
call.

Recent years have seen a gradual adoption of many function verification frameworks
and broadly categorized, they follows either automated deductive verification in which
the manual effort is limited to writing the spec only and the proof obligation is fulfill
automatically (e.g., SeaHorn [76], Kani [8] VeriFast [84]), or interactive verification in which
both the spec and a majority of the proof needs to be developed manually (e.g., HOL [74],
Isabelle [183], Coq [83]). It is worth highlighting that Fast requires a fully automated
process on checking whether a code mutant conforms to spec. Therefore, Fast is only
compatible with automated deductive function verification systems.

Figure 3.2 is an illustration of function verification. In this simple case, the developers’
intention, as correctly implemented in the code, is to increment one for each element in
the vector. The spec for this function, as described in the ensures postcondition, asserts
that for each element in the return vector, it gets incremented by one compared with its
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1 fn add1(v: [int]) -> [int] {
2 for i in 0..len(v) {
3 v[i] = v[i] + 1;
4 }
5 // mutation to the code
6 v.pop();
7 return v;
8 }

(a) code mutant for add1

1 spec for fn add1 {
2 ensures forall
3 i in 0..len(result):
4 result[i] = v[i] + 1;
5 // missed post-condition
6 ensures
7 len(result) == len(v);
8 }

(b) Complete spec for add1

Figure 4.1: Finding the gap in spec via code mutant

counterpart in the input vector. The spec shows no preconditions, as this function can be
called from any state. It is then the job of the verification tool to fuse the code and spec
into a proof obligation that can be discharged to backend solvers (typically SMT solvers)
to handle.

4.2.2 The Completeness of Specifications

While it is obvious that in Figure 3.2 the code conforms to the spec, the spec, however,
has a serious omission and does not fully capture the developers’ intention. Imagine if
the add1 function is implemented differently, as shown in Figure 4.1a, with an extra pop()
after the original loop. The current spec, which only checks whether the value of every
remaining element in the vector is increased by one, will still pass under the code mutant—
an undesirable behavior! The complete spec is shown in Figure 4.1b with an extra ensures
clause which further restricts the ability for the add1 function to modify the input vector.
This missing ensures represents an incompleteness issue of the original spec.

The example in Figure 3.2 and 4.1 highlights a lesser-known view about formal
verification—writing spec is essentially another form of programming to capture the
same requirement, just like writing code [140]. Therefore, if bugs are commonly found in
code, especially in large codebases, how can we be assured that the spec is not “buggy”?
The idea of finding discrepancies between spec and code is known as gauging the com-
pleteness of spec in the literature [159, 173], and has received more attention in hardware
(integrated circuit in particular) verification than software verification, likely due to the
fact that formal methods have a longer history in hardware design. A recent work uses an
inductive way to show the gap between the mathematical model provided by formal methods
and the actual system through two case studies on embedded security architectures [22]. In
the hardware verification context, mutation testing is a more popular way to gauge the
incompleteness gap, as will be described in §4.2.3,
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4.2.3 Mutation Testing

Although Fast draws inspiration from mutation testing on hardware spec completeness,
the idea of mutation testing actually originated from the skepticism on the correctness of
software test suites. While the correctness of code is guarded by tests, there is nothing
to ensure that the test suite itself is comprehensive enough. This is similar to the spec
incompleteness problem Fast aims to solve.

In a high-level description, mutation testing assesses the quality of a test suite by
applying mutations to a program and checking if the test suite reacts differently with the
original code vs the code mutant [187]. Since its inception in 1970s [27, 49, 78], mutation
testing has been applied to various use cases, as summarized below:

Completeness evaluation of different styles of tests. code testing has multiple
types/styles such as, unit testing [178], integration testing [47, 75], end-to-end testing [147],
etc. These related works use mutation testing to check the quality of different types of test
suites. The general evaluation process is to conduct random mutations on the code and
check to see if the mutant can be killed by any test case in the test suite.

Another way to categorize the related works is by the programming language in which
code is implemented. Mutation rules have been introduced into different languages to
test the effectiveness of the test suites (with a focus on unit tests). Examples of language
mutation include: C++ [48], Java [125], Ruby [115]. Mutation testing can be used to ensure
the effectiveness of large applications developed with multiple languages as well, such as
web applications [153] and Android applications [136]. In these works, the integration and
end-to-end tests are usually the subject of evaluation.

Mutation testing has also been used on programs that do not have concrete execution
semantics. For example, several work targets mutation testing on finite-state machines
(FSMs) [63, 126] which are only tested via simulation. They use a comprehensive checklist
to select the mutation points.

Fast is similar to this line of research in terms of producing valid code mutants. But
Fast differs from them not only in the evaluation target (i.e., spec vs tests) but also in
the way how Fast produces surviving code mutants and checks the quality of a mutant.

Completeness evaluation of hardware spec. In the hardware verification context,
mutation testing has been used to improve the completeness of hardware spec [66, 102, 177].
The general process of mutation testing in hardware verification is to inject specific functional
transformations in circuit (i.e., the code) programmed in languages like VHDL or Verilog.
These programs (code mutants), are syntactically correct but functionally incorrect. The

28



mutants will be given to the verifier together with the spec to see whether the mutated
implementation may still satisfy the spec.

Fast shares the same goal with this line of research: finding gaps in spec. But Fast faces
two more challenges: 1) judging whether a surviving code mutant signals an intentional
gap or a blind spot, and 2) producing surviving mutants with a much larger domain of
random mutations. None of these problems are solved in the related works.

Mutation directly on spec. The earlier research work on spec mutation [10, 89, 133, 167]
considered code as a black-box, and mutate the spec in order to find out incompleteness
in spec [28], There are some implementations on FSM-based spec [45, 152].

Fast differs from this line of research in that Fast mutates code instead of spec. spec
are generally more versatile than code. For example, spec can be declarative, imperative,
state-machines, etc, while code are typically imperative with a common set of operators
such as binary operators. Therefore, the surveyed works are applied in highly-specialized
context while code mutation-based framework like Fast has a higher chance of being
generalized to other formally verified systems.

Generic improvement. Last but not least, the final line of related work focuses on
improving the mutation testing approach in general. For example, several works sought to
reduce the cost of mutation testing by selecting a subset of mutants [29], applying selective
mutations [131], or adopting heuristics and search-based [188] mutant generation.

Fast is orthogonal to these lines of research while its results can be integrated into Fast
when applicable. We leave some of the integration items as future work §5.

4.2.4 Evolution Strategy in Fuzzing

Fuzzing (also known as fuzz testing) is a software testing scheme that checks the correctness of
a program by repeatedly generating random inputs and monitoring the program executions
for defects [127]. As the input space of a program is (in most cases) too huge for an
exhaustive enumeration, strategically generating inputs that may bear a higher chance of
triggering a bug is crucial. For example, a program that takes a string of bytes as input
(such as XML file parsers) has a (virtually) infinitely large input space and there is no way
to exhaustively enumerate it.

Mutation testing faces a similar problem. Even with a medium-sized project, the
number of potential code points for mutation multiplied by the potential ways to mutate
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each code point produces an extremely large search space. Furthermore, compared with
testing (i.e., concrete execution), formal verification (i.e., abstract and symbolic execution)
is usually orders of magnitude slower. For example, the S2N test suite finishes in seconds
while the verification takes tens of minutes. This slowness further limits the applicability of
exhaustive enumerations to small codebases only.

In modern fuzzing research, one way to deal with the state exploration problem is to
simulate the natural selection process, with a combination of random mutation and survival
of the fittest. To be specific, in each mutation round, random mutation is used to add more
chance in exploring more path that has not been explored. the survival of the fittest process
effectively ranks different seeds based on the feedback (e.g., code or path coverage in most
fuzzing work), and gives the seed with a higher ranking a better chance to generate inputs
for future rounds of testing.

Feedback loop. Evolutionary fuzzers use feedback from each loop of fuzzing to discover
over time the execution state space of the program. Among all the building blocks of a
modern fuzzer (e.g., mutation rules, seed scheduling, feedback mechanisms), the metric
that provides an objective evaluation on the seed quality is of paramount importance to
the effectiveness of a fuzzer. For example, the pioneer work American Fuzzy Lop [191] is
an evolutionary fuzzer which uses code coverage to guide the process of seed generation. It
maintains a seed queue that stores all the seeds, including the initial seeds chosen by the
user as well as the ones that are mutated from the existing seeds and cause the program
to reach new and unique execution states. This has inspired a fleet of coverage-guided
works [23, 68, 124, 155, 161, 179].

Similar to evolutionary fuzzers, Fast navigates itself in a huge code mutant search space
via a feedback mechanism. However, existing code-coverage based feedback is neither
applicable in Fast nor can be easily exposed from the backend solvers. Fast proposes its
new metric to evaluate a code mutant: the number and variety of verification errors from
the solver.

Language fuzzing. Fuzzing has been used on different types of software systems as
summarized by this survey [127]. One line of research that is especially related to Fast
is language fuzzing. Language fuzzing aims to find issues with compilers or interpreters
(e.g., virtual machines or JIT engines). For example, Superion [182] is an AFL-based
fuzzer to find the bugs in XML and JavaScript engines. There are also other works aiming
at JavaScript engines [55, 149], and Java language [86, 94]. Research works aiming at
optimizing the language fuzzing process has been proposed as well. For example, generating
the input mutant in a more efficient way [52, 57], some other works use different feedback
patterns (e.g. code coverage) to guide the fuzzing mutant[82, 145].
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Fast is similar to this line of research as they share the same target to mutate—code.
However, existing works have not taken the completeness problem of spec into consideration.
A smaller difference is that not all language fuzzing tools need to produce valid and type-
checked code mutants, but this is a requirement for Fast.

4.3 The Tale of spec, code, and Tests

As demonstrated in the language fuzzing work (§4.2.4), creating a diverse set of code
mutants is not a challenge for mutation testing. A more fundamental challenge is how to
judge whether a surviving mutant is “meaningful”. To be specific, in the context of Fast,
when a code mutant passes the verification and signals a gap (e.g., Figure 4.1a), how can
we tell that the gap in the spec is by intention or by mistake?

The insight behind Fast is to exploit and synergize the “redundancy” and “diversity”
in formally verified programs: spec (from the spec team), code (from the dev team),
and test suites (from the QA team) are all derived from the same set of requirements but
programmed with totally different mentalities. It is therefore unlikely that the three teams
(spec, dev, and QA) will make the same mistake. This paves the way for finding errors
in one component by cross-comparing it against the other two. In fact, this principle is
already applied to check the correctness of code by both running it against test suites and
proving it against the spec. In this section, we show that the same procedures can be used
to check incompleteness in spec as well (and deficiencies in test suites too, as by-products
of our methods).

Notations. To precisely describe how Fast solves the problem, we first introduce some
basic notations:

– We denote the spec to check as S, the code from devs as C, and the tests from QA
as T .

– We denote the refines-to relation as ⊒. By definition, S ⊒ C as C verifies under S.
– We denote semantically equivalence as ≡. C ≡ C ′ means C behaves like C ′ in every

observable way.
– Each test case t ∈ T is a concrete input for C and C passes the test suite T , denoted

as C ≻ T , if and only if C passes every test case t.

Definition of a gap in spec. With these notations, we can formally define what a “gap”
stands for in spec:

– Suppose we are able to hire an independent team of developers to work on the code
and this new dev team produces new code C ′ where (C ′ ̸≡ C) ∧ (S ⊒ C ∧ S ⊒ C ′).
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Then the semantic difference between C and C ′ (denoted as ∆C) indicates a gap in
the spec.

– Symmetrically [101, 102], gaps in spec can be exposed with an “alternative” spec team.
Suppose we are able to find another spec S ′ such that (S ′ ̸⊒ S) ∧ (S ⊒ C ∧ S ′ ⊒ C).
Then the difference between S and S ′ (denoted as ∆S) represents a gap in the spec.

In the running example of Figure 3.2 and 4.1, C, S, and C ′ are shown in Figure 3.2a, 3.2b,
and 4.1a, respectively. It is easy to observe that (C ′ ̸≡ C) ∧ (S ⊒ C ∧ S ⊒ C ′), and this
signals a gap in S.

Although it is possible to obtain C ′ or S ′ by hiring independent teams and to gauge ∆C

and ∆S with expert reviews, such a practice is neither cost-effective nor scalable. This is
where Fast fits into the picture. The mutation testing component of Fast plays the roles
of independent dev and spec teams that produce C ′ and S ′; while the gauging component
of Fast judges whether a ∆C or ∆S signals a blind spot in the spec. In this thesis, we
focus on mutation testing to create ∆C . More discussion on spec mutation can be found
in §5.

Definition of a meaningful gap in spec. With the definition of a gap, how can
Fast tell that the gap is inadvertently introduced into the spec? On first thought, this
seems to be an unsolvable problem as spec are, by design, more abstract than code. To
illustrate, assume spec S requires sorting the input but does not dictate a sorting algorithm.
Therefore, the code is free to use either quick sort (C) or merge sort (C ′) to satisfy S, i.e.,
S ⊒ C ∧ S ⊒ C ′ signals a gap in S. However, if gaps are indeed expected between spec
and code, how can we tell that a gap is by intention or by mistake?

The solution is to invite the test suites (T ) as an independent “referee” to the “rally”
between C and S. To illustrate, in Figure 3.2, it is reasonable to expect that the add1
function will be accompanied by a unit test t ∈ T like the following:

assert add1([0,1,2]) == [1,2,3];

While this test t is unlikely to be written with the intention to block the code mutant C ′, C ′

will not pass this test case. In formal notations, we have S ⊒ C ′ ∧ C ′ ̸≻ T . In other words,
the test suite (T ) captures some valid intention that is not captured in the spec (S)—a
strong indication that the gap in the spec is not intentional but more like a mistake.

Summary. There are only five possibilities after Fast obtains a code mutant and runs
it for testing and proving:

1 S ⊒ C ′∧C ′ ≻ T ∧T ̸⊥ ∆C =⇒ there is a gap in the spec and this gap is intentional,
as the test suites also explicitly allow this behavior (by the clause T ̸⊥ ∆C).

2 S ⊒ C ′ ∧ C ′ ≻ T ∧ T ⊥ ∆C =⇒ there is a gap in the spec and we cannot conclude
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whether the gap is intentional or mistaken, as the test suites also fail to capture this
behavior (by the clause T ⊥ ∆C).

3 S ̸⊒ C ′ ∧ C ′ ≻ T =⇒ the mutant is killed by the spec but passes the test suite,
indicating that there might be incompleteness in the test suite.

4 S ⊒ C ′∧C ′ ̸≻ T =⇒ there is a gap in the spec and this gap is mistaken as it misses
an important property that is captured even in concrete test cases.

5 S ̸⊒ C ′ ∧ C ′ ̸≻ T =⇒ the mutant is killed by the spec and does not pass the test
suite, this is expected and does not raise a signal.

When a gap is exposed through code mutants, Fast is able to infer the intention with the
help of a robust test suite. If Fast is unable to deduce the intention for a particular gap,
the gap represents some vacancy in the program semantics where neither the spec nor test
suites cover. In such a case, Fast will report the gap to the users for manual analysis.

Level of manual effort When applied to an automated deductive verification system,
Fast can find spec gaps automatically (case 4 ) while optional manual effort can help
uncover more insights on the result (in other cases).

• Case 1 and 2 : manual checking can confirm whether S ⊒ C ′ is caused by an equivalent
mutant, an intentional gap in spec, or incompleteness in both spec and tests.

• Case 3 : manual checking can confirm whether S ̸⊒ C ′ is caused by out-of-sync proof hints
(e.g., loop invariants) or a genuine spec violation. The latter case signals incompleteness
in test suite, not spec.

• Case 4 : requires no manual effort to confirm a spec gap.
• Case 5 : C ′ ̸≻ T confirms C ′ is not an equivalent mutant. Manual checking can help

decide whether S ̸⊒ C ′ is caused by missing manual proof hints (e.g., loop invariants) or a
genuine spec violation. The former case might hide a gap in spec — this is a limitation
of Fast.

We provide more background information on the two case studies covered in §4.6.1 and §4.6.2
respectively as well as a discussion on how loop invariants might have an impact on Fast
in automatically confirming gaps in spec.

4.4 Background of the Case Studies

4.4.1 Background on Diem Payment System

The Move programming language. Move [20] is a programming language developed for
smart contracts by Meta although it has transitioned into a community-backed project now.
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Figure 4.2: Move Prover architecture and workflow

The language features formal verification at its core through its home-grown verification
tool Move Prover [53], which statically verifies the correctness of Move smart contracts
modeled with the Move Specification Language.

The Move Prover. The architecture of the Move Prover is shown in Figure 4.2. Move
code and spec are treated as input to the prover. The source code will be compiled into
bytecode and the spec will be parsed into AST. Two parts will then go through a pipeline
of merging and transformation and finally be compiled into Boogie [14], the intermediate
verification language. The verification conditions in Boogie format will then be translated
into SMT format which can be solved by SMT solver such as Z3 [44] or CVC4 [50].

The Diem Payment Network (DPN). DPN is the first major client of Move and Move
Prover. The smart contract aims to function as a full-fledged and versatile payment/banking
system with capabilities of handling multiple currencies, account roles, and rules for
transactions. The DPN features a 7:5 code-spec ratio (with around 2,000 lines of core
code in Move) which shows how the codebase is extensively specified. Most importantly,
formal verification on DPN is fully automated and runs continuously with unit and integration
tests, all open-sourced on GitHub—making DPN a perfect case study to test the effectiveness
of Fast. The CI test coverage for DPN is 73%.
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4.4.2 Background on AWS TLS Implementation

About S2N. Amazon S2N-TLS [160] is a C99 implementation of the TLS/SSL protocols.
The previous de facto reference implementation contains more than 500,000 lines of code with
at least 70,000 of those involved in processing TLS. In contrast, S2N implements the TLS
protocol with less than 32,000 lines of code. Most of the implementations, including both
the cryptographic primitives (e.g., HMAC) and the protocol itself (e.g., TLS handshake),
are specified using SAW script [56]. The SAW toolchain is responsible for proving that the
code conforms to the spec. The CI test code coverage rate for s2n-tls is 89.87%.

About SAW Software Analysis Workbench (SAW) is an industrial verification tool
designed to prove equivalence properties between abstract spec and concrete code. The
architecture of SAW is shown in Figure 4.3. It takes functions in LLVM IR as well as
SAW-script to bridge the IR and the verification toolchain. If a function has an associated
Cryptol spec, it will also be symbolically executed. The function terms and spec terms
will be proven to be equivalent using What4 [72] behind the scenes.

4.4.3 Loop Invariants

Fast requires an automated deductive verification system to be the verifier and trusts its
capacity in proving (or disproving) that an arbitrary code mutant conforms to the spec.
In reality, deductive verifiers are often less capable than expected and might give up on
solving complicated puzzles. A prominent example is proving post conditions for a function
with loops in its control flow, as shown in Figure 4.4.

Instrumenting loop invariants is a typical approach to overcome this challenge. Effectively,
loop invariants serve as hints to the automated prover and guides it to the proving of
function postconditions. The drawback of adding loop invariants is that the proof hints are
tightly coupled with the code and if the code changes, e.g., via mutation by Fast, the
mutant C ′ might still satisfy the postconditions but the prover won’t be able to draw the
same conclusion due to out-of-sync loop invariants.

In other words, although C ′ appears to be S ̸⊒ C ′ ∧ C ′ ̸≻ T (case 5 in §4.3), it might
actually be case 4 S ⊒ C ′ ∧ C ′ ̸≻ T should the loop invariants be updated; i.e., spec
misses an incompleteness in the spec.

In fact, whether Fast is missing issues in the spec also depends on whether loop
invariants, being more coupled with code, should be considered as spec or implementation
details. As far as the authors know, there is no definite answer to this question and we are
open to all views on this subject.
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Figure 4.3: SAW architecture and workflow

One data point we can offer is that loop invariants are indeed considered as spec by
the DPN team as these invariants are not only hints for proving postconditions (as shown
in Figure 4.4) but also contracts that need to be implemented in the loop body. In Fast,
we actually had a mutation on line 44 from i = i + 1 to i = i + 2 and as expected, this
causes failure in both the verification and testing. The rationale from the DPN team is
that, should the loop be converted to a recursive function, loop invariants automatically
become pre- and post-conditions (i.e., spec) for the converted function. Therefore, a failing
loop invariant signals a robust spec.

An alternative approach in automated deductive verification to solve the complexity
caused by loops is bounded model checking (BMC) which unroll loops to a certain depth, at
the expense of completeness. A BMC-style verifier is compatible with Fast as the verifier
can prove (or disprove) whether an arbitrary code mutant conforms to the spec.

36



4.5 Design of Case Studies

4.5.1 Enumerative code Mutant Generation

With the spec gap classification problem solved in §4.3, the next road blocker of porting
mutation testing into the software verification context is code mutant generation, i.e., how
to produce a code mutant that may pass the verification under the original
spec. In this section, we describe an enumerative strategy which is more suitable for
small and simple codebases but is already effective enough to find shallow gaps in spec
even for mature codebases. We describe a more sophisticated code mutation generation
strategy which is more suitable for large and complex codebases in §4.5.2. It is important
to emphasize here that in both strategies, when verifying the mutated code against spec,
Fast will check the overall verification result instead of whether the modified function
passes verification or not.

Type-preserving mutation. Recall that the goal of mutation is to produce valid code
mutants that should at least compile and execute, otherwise, Fast won’t be able to even
verify and test the code mutant. This requires that whatever mutation rule Fast applies
to convert C to C ′, the rule must respect the type system in which C is constructed. As a
result, in Fast, all mutation rules are type-preserving by design. Table 4.1 shows the list of
mutation rules available in Fast that are considered type-preserving in most programming
languages.

It is worth-noting that while the mutation rules in Fast preserve typing information,
Fast does not guarantee that the code mutant must be semantically different from
the original code, i.e., C ′ ̸≡ C. For example, (a - a) * 2 will always evaluate to zero
regardless of which rule we use to mutate the constant 2. However, in practice, such cases
are extremely rare (and are most likely to be eliminated by compiler optimizations). The
chances of producing a semantically equivalent code mutant under these rules are small
and can be left to manual review after Fast have found a surviving mutant. We observed
one such case in our experiments and presented it as a false positive case in §4.6.1.

Enumerative algorithm. Given the limited set of mutation rules discussed in Table 4.1,
for small codebases that do not have many instructions in the original code, it might
seem feasible to even try all possible mutation strategies using an algorithm described
in algorithm 1.

An exponential search space. Note that algorithm 1 can be trivially extended to
support the mutation of multiple code locations at the same time, i.e., producing high-order
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Algorithm 1: Enumerative mutation testing
Input: Original code C, spec S, and test suite T
foreach Instruction I ∈ C do

if I has a mutation point then
foreach rule r to mutate I do

∆C ← apply(r, I) ;
C ′ ← repackage(∆C , C) ;
Run C ′ through verification and testing ;
Check which of the following applies:

1. S ⊒ C ′ ∧ C ′ ≻ T ∧ T ̸⊥ ∆C

2. S ⊒ C ′ ∧ C ′ ≻ T ∧ T ⊥ ∆C

3. S ̸⊒ C ′ ∧ C ′ ≻ T
4. S ⊒ C ′ ∧ C ′ ̸≻ T
5. S ̸⊒ C ′ ∧ C ′ ̸≻ T

Report cases 2 and 4
end

end
end

code mutant by mutating more than one instruction in the original code. Essentially, this
means that with an enumerative approach, the search space is exponential to the number
of mutable locations in the code. We denote the number of possible mutation locations
in the code as n. For one instruction, there can be multiple possible mutation locations:
operator, operand(s). Therefore, the search space will be 2n where n ≥ I, I ∈ C. However,
it is still debatable on the effectiveness of high-order code mutants due to the coupling
effect (more details in §4.7). Fast found mixed evidence on coupling effect in our case
studies.

4.5.2 Evolutionary code Mutant Generation

As shown in §4.6.1, the enumerative code mutant generation strategy works well for small
codebases, however, when facing a larger codebase, enumerating all the possible code
mutants is not a preferable approach as the number of possible mutants grows exponentially
with the size of the codebase. Therefore, we need a strategy that can produce code mutants
that are inherently more likely to pass the verification than random guessing.

To navigate the search space for surviving code mutant, Fast incorporates an evo-
lutionary process in mutant generation, inspired by the effectiveness of coverage-guided
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fuzzers. In conventional fuzzing, unexpected inputs are fed to a program with the hope of
triggering unsafe behaviors in the program. In Fast, the “unexpected” inputs are code
mutants C ′ and “unsafe” behavior is defined when C ′ passes verification, i.e., S ⊒ C ′.
Although C ′ passing the test suite is also “unsafe” (as they signal gaps in the test suite),
they are by-products and the focus of the mutator is still to produce code mutants that
pass the verification.

Like every genetic algorithm, Fast needs to answer two questions in its design: 1 what
to mutate in one evolution round and 2 which mutant “fits” the environment and thus,
should be given more opportunities to generate future seeds.

Mutation points. The solution to 1 is to pre-collect potential mutation points in the
code before evolution starts. In this information collection step, Fast scans the given
code from beginning to end and matches every instruction with the possible mutation
patterns defined in Table 4.1. Similar to the enumerative approach (§4.5.1), the mutation
rules must preserve typing information after the transformation.

“Fitness” evaluation. The solution to 2 is spec coverage, a simple metric to measure
how far the mutant is from its evolution goal—passing the verification. In Fast, spec
coverage is measured by the verification errors triggered by a code mutant. For each code
mutant that fails the verification, Fast expects a report from the verifier to describe the
failure. The report can be as simple as a binary pass/fail signal or a list of tuples (X, Y, Z)
each contains a record on spec X fails on code location Y due to reason Z. Of course, the
more verbose the information, the better it is for Fast to measure the “fitness” of a mutant.
Fortunately, in practice, most formal verification tools can give a very detailed explanation
of a verification error, some even include counterexamples that can be concretely executed
to pinpoint the error.

Intuitively, code mutants that reduce verification errors reported in the “parent” mutant
(i.e., a strict subset of errors) will be considered as “fit” and should be used to seed more
mutants. Similarly, code mutants that uncover previously unknown verification errors are
considered as increasing spec coverage, and hence, will be given more chances to mutate
because this opens more diversity for evolution.

Each code mutant that is considered “fit” is assigned an initial score which is inversely
related to two factors: 1) how many verification errors remain and 2) how long is the
mutation trace. For the same set of verification errors, Fast favors the smaller mutant (i.e.,
smaller edit distance from the original code).

Seed scheduling. While the “fitness” evaluation decides whether a new code mutant
should be considered as a seed for future rounds of mutation, Fast also needs to adjust
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the scores of the parent seed of this mutant. In general, Fast will reward the parent seed
if the new mutant is “fitting” and penalize the parent seed if the new mutant is “boring”. A
mutant is “boring” if it neither expands the spec coverage nor fixes any verification error
in the parent seed.

Overall fuzzing process. Figure 4.5 shows the evolutionary code mutant generation
strategy in Fast. Fast maintains a seed pool to keep track of seeds that can be used
for future mutation rounds. All seeds in the seed pool are ordered by their score. Each
evolution round starts with the seed selection process which is essentially temporarily
popping the seed with the highest score out of the seed pool. Then, an additional mutation
step is applied to the selected seed and the new code mutant is sent for verification and
testing.

• If the verification passes, depending on the results from the test suites, Fast will
signal whether this code mutant signals an intentional or unintentional gap in the
spec (or mark it as an inconclusive case).

• If the verification fails, Fast evaluate the “fitness” of the new code mutant and save
a new seed if it “fit”. Fast will also update the score of the parent seed and put it
back into the seed pool as well.

It is worth mentioning that unlike conventional fuzzing which can be jump-started from
a seed pool with many test cases, at the very beginning, the seed pool in Fast has one
seed only, which is the original code without any mutations. Fast gives this genesis seed
a sufficiently high score to quickly populate a large number of single-mutation seeds in the
pool. But after the bootstrapping period, this genesis seed is no different from other seeds
in Fast’s point of view.

4.6 Implementation of Case Studies

4.6.1 Case Study: Diem Payment Network

Being a small yet critical smart contract, the Diem Payment Network [7] is a perfect case
study for Fast to apply enumerative mutant generation strategy for finding blind spots in
its comprehensive spec system.

Applying Fast to DPN. Figure 4.6 shows how Fast is applied to find spec blind spots
on DPN. Briefly,
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1. Fast first collects all possible mutation points in the DPN core code by statically
analyzing the Move source code abstract syntax trees (ASTs) which are available in the
Move compilation pipeline.

2. Fast then iteratively goes over each mutation point and follow the generic mutation rules
in Table 4.1 to produce code mutant. For constant mutations, code randomly picks
one of the three mutation rules listed in Table 4.1 to get the mutation target. All code
mutations are inserted before typing step in the compiler to ensure that the code mutant
is indeed valid Move code which in theory, can be developed by human developers.

3. With each code mutant generated, Fast passes it to the prover along with the original
spec and check for verification results from the Move prover. The Move Prover will
report the verification status and a detailed explanation of verification errors, i.e., which
spec property is violated on which line of code, if any.

Findings. Fast identified 404 code locations where mutations can be applied—a number
suitable for brute-force enumeration. The true omissions are summarized in Table 4.2,
which is obtained by the following procedure:

- After enumerating each of the 404 code locations with one random mutation, together
with higher-order mutations with a boundary of the number of mutation points used
in constructing higher-order mutant. The boundary is set to 3 here. Fast reported 16
cases where the code mutant survived the verification.

- Among the 16 surviving code mutants, 8 mutants failed the tests, including 4 mutants
that passed the tests in its original setup but failed after an automated re-genesis-and-test
infrastructure was later landed in the codebase (marked as "Fail∗" in Table 4.2). 8
mutants passed the tests unconditionally, out of which 2 are covered by test cases.

- After analyzing all 16 cases, we confirmed 13 cases to be true omissions with spec fixed
in pull request 1, 2, 3. The remaining 3 are false positives (explained later in case 2-4).

Sample reports. We present two true omissions, the false positive case, and the intended
gap for readers’ information.

Case 1: spec omission signaled by a test failure. In the following snippet, the original
code will add the sequence_number with 1 at the end of this function. Fast mutated the
constant 1 to be 0 and observed that the code mutant still passed the verification.

1 // code snippet in DiemAccount.move
2 fun epilogue_common<Token>(account: &signer)
3 acquires DiemAccount {
4 let sender = Signer::address_of(account);
5 let sender_account =
6 borrow_global_mut<DiemAccount>(sender);
7 sender_account.sequence_number =
8 sender_account.sequence_number + 1;
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9 //! ^
10 //! mut: 1 -> 0;
11 }

However, the unit test failed because increasing the sequence number in the users’ account
is monitored by the following snippet of code in the unit test:

1 assert_eq!(sender_seq_num + 1, updated_sender.sequence_number());

In other words, this case obeys the pattern S ⊒ C ′ ∧ C ′ ̸≻ T , which is a clear signal that
some intention failed to be captured in the spec. In fact, this is a serious loophole. It is a
security requirement to increment the sequence number in the user’s account after each
transaction is sent, otherwise, the account can be vulnerable to replay attacks! The fix for
this loop is to add an extra ensures clause in the spec, as shown below:

1 spec epilogue_common{
2 //... redacted ...
3 //! fix: added missing ensures
4 ensures
5 global<DiemAccount>(account).sequence_number
6 == old(global<DiemAccount>(account).sequence_number) + 1;
7 }

Case 2: spec omission confirmed manually. In the code snippet below, Fast mutated
the parameter that controls the exchange rate to the Diem coin when registering USD coin
and yet this mutant managed to pass both verification and testing. This was a surprise as
the stability of Diem coin is a core business requirement. However, later we noticed that
the exchange rate is not used in DPN due to historical reasons.

1 // code snippet in XUS.move
2 fun initialize(dr_account: &signer, tc_account: &signer) {
3 Diem::register_SCS_currency<XUS>(...,
4 /* exchange rate = 1:1 */ FixedPoint32::new(1, 1)
5 //! ^
6 //! mut: ^ 1 -> 0;
7 )
8 // ... redacted ...
9 }

The fix is to add an extra ensures clause in the USD coin registration function.

Case 3: false positive due to semantic equivalence. While applying mutation rules
in Table 4.1 will likely distort the semantics of the code, there might still be a small chance
that a semantically equivalent code mutant can be produced, as shown in the following
snippet.
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1 // code snippet in AccountLimits.move
2 fun can_withdraw_and_update_window<CoinType>(
3 amount: u64,
4 sending: &mut Window<CoinType>,
5 ) {
6 // ... redacted ...
7 sending.tracked_balance =
8 if (amount >= sending.traced_balance) { 0 }
9 //! ^^

10 //! mut: >= -> > (i.e., greater than)
11 else { sending.tracked_balance - amount };
12 // ... redacted ...
13 }

Although the mutant (with >= mutated into >) passed the verification, it does not imply
a gap in the spec. In fact, the mutant is semantically equivalent to the original code:
when amount == sending.tracked_balance, the difference between them is 0, therefore, it
does not matter whether the difference is calculated in the then or else branch.

Case 4: intended gap in spec. Our manual analysis also revealed an intended gap in
the spec, as shown below:

1 // code snippet of DiemAccount.move
2 fun writeset_epilogue(account: signer, sequence_number: u64) {
3 epilogue_common<XUS>(account, sequence_number, 0, 0, 0);
4 //! ^ ^
5 //! mut 1: 0 -> 1
6 //! mut 2: 0 -> 1
7 }
8 fun epilogue_common<Token>(
9 account: &signer, sequence_number: u64,

10 gas_price: u64, max_gas_units: u64, gas_units_remaining: u64
11 ) {
12 let fee_amount = gas_price * max_gas_units;
13 if (fee_amount > 0) {
14 // ... redacted ...
15 assert!(/* some condition P to abort */);
16 }
17 }
18

19 spec epilogue_common{
20 // ... redacted ...
21 aborts_if
22 (gas_price * max_gas_units > 0) && (/* some condition P */)
23 }

Notice the two parameters (gas_price and max_gas_units) in the parameter list of function
prologue_common. Both the test and spec require the product of the two parameters to be
0, but there are no specific requirements for the two parameters separately. As a result,
mutating either of them from 0 to 1 has no effect on both testing and verification. This
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example (which maps to two reports by Fast) follows the pattern S ⊒ C ′∧C ′ ≻ T∧T ̸⊥ ∆C .
As a result, although both code mutants pass verification, they are considered to be an
intended gap in spec.

4.6.2 Case Study: AWS TLS Implementation

An ideal showcase for evolutionary mutation testing is a codebase that is sophisticated
enough (such that enumeration of mutations is not feasible) and yet extensively specified
(such that gaps in spec are relatively rare). S2N, Amazon’s home-grown TLS implementa-
tion, is a good candidate.

Applying Fast to S2N. While Figure 4.5 shows the overall fuzzing process implemented
in Fast, Figure 4.7 shows how Fast is applied to find spec blind spots on S2N from the
point of view of a single fuzzing round. Briefly,
1. Fast first collects all possible mutation points in S2N code. While it is doable at

the C AST level, Fast chooses to statically analyze the LLVM IR which is obtained
by compiling and linking together all relevant C source code. This is primarily for
convenience reasons.

2. However instead of iteratively going over all mutation points to produce code mutant,
Fast adopts the evolutionary scheme described in Figure 4.5 by rewarding code mutants
that are more likely to succeed (i.e., pass the verification) in future rounds of mutations.

3. With each code mutant generated, Fast passes it to SAW (the verifier) along with the
original spec and check for verification results. SAW will report the verification status
and a detailed explanation of verification errors, i.e., which spec property in spec is
violated and its reason.

Findings. Fast identified 6772 code locations where mutations can be applied—
making brute-force enumeration infeasible, especially consider the possibilities of high-order
mutants. Therefore, the best way to explore the search space is via evolutionary mutation.
In particular, Fast starts with an empty seed (i.e., the original code) in the seed pool and
on each fuzzing round, it chooses whether to replace the mutation on one code location
(denoted as retrial mutants) or append a mutation to a new code location (i.e., creating
high-order mutants). We ran Fast for 72 hours, we got a total of 348 surviving code
mutants that passed the verification, out of which 12 are retrial mutants, 9 are high-order
mutants, and the majority (327) are mutants obtained by applying mutation on a single
code location in one trial.

Among these surviving mutants, we manually sampled 22 for initial analysis, with a
prioritization on mutants that caused test case failures. Out of the 22 cases, 15 triggered
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test failures and we confirm that they all signal a loophole in the spec. The remaining 7
code mutants passed the test suite, out of which 6 have no coverage on the mutation point
and the one with coverage is confirmed to be an intended gap in the spec (with details
explained later in case 4). These findings are summarized in Table 4.3. We have reported
all findings to the development team of S2N. The team has acknowledged all reports and
we are currently waiting for their patches. (see our initial reporting for more samples other
than the case studies shown here).

Sample reports. A surviving code mutant must be in one of the following categories:
1) one mutation trial on a single code location, 2) multiple mutation trials on a single
code location, and 3) mutations on multiple code locations. We showcase a sample in
each category as well as provide a detailed explanation for the intended gap Fast found.

Case 1: single location single mutation. In the following snippet, Fast obtained a
surviving code mutant by negating one of the predicates in a if condition.

1 // a simplified code snippet in s2n_handshake_io.c
2 int s2n_conn_set_handshake_type(struct s2n_connection *conn) {
3 // ...redacted...
4 if ((
5 conn->mode == S2N_SERVER &&
6 conn->status_type == S2N_STATUS_REQUEST_OCSP &&
7 conn->handshake_params.our_chain_and_key &&
8 #! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9 #! mut: negate this condition, i.e., replace it into below

10 #! ’conn->handshake_params.our_chain_and_key == NULL’
11 conn->handshake_params.our_chain_and_key->ocsp_status.size > 0
12 ) || s2n_server_sent_ocsp(conn)) {
13 s2n_handshake_type_set_tls12_flag(conn, OCSP_STATUS));
14 }
15 return S2N_SUCCESS;
16 }

The mutant passes both verification and testing. After investigation, we found out that this
gap is caused by the fact that the value our_chain_and_key is neither monitored in the spec
nor in test. Fast therefore identified it as a S ⊒ C ′ ∧ C ′ ̸≻ T case. A closer examination
of the code revealed that this is a dangerous modification: in the code mutant, should
execution ever reaches this if-statement, it is guaranteed that the program will crash due
to a null-pointer dereference. This at least violates one of the high-level guarantees that
there should be no memory errors in the S2N codebase and yet neither test nor spec covers
it.

Case 2: single location with multiple mutation trials. In the snippet below, We observed
that Fast first attempted to mutate operator |= to &=. Although this attempt failed, Fast
was able to discover new verification errors which allows the seed to have further mutations.
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In the next round of mutation, Fast replaced |= with ˆ=. This code mutant passed both
verification and testing.

1 S2N_RESULT s2n_handshake_type_set_tls12_flag(
2 struct s2n_connection *conn,
3 s2n_tls12_handshake_type_flag flag)
4 {
5 // ... redacted ...
6 conn->handshake.handshake_type |= flag;
7 #! ^^
8 #! mut trial 1: |= -> &= // fail verification
9 #! mut trial 2: |= -> ^= // pass verification

10 // ... redacted ...
11 }

During investigation, we noticed that the spec attempts to confine the possible values of
handshake_type, as shown below:

1 // a redacted spec for the function being verified
2 conn_set_pre_tls13_handshake_type : connection -> connection
3 conn_set_pre_tls13_handshake_type conn = conn’
4 where conn’ = {handshake = handshake’, /* redacted */}
5 (handshake’ : handshake) = {
6 handshake_type = handshake_type’
7 /* redacted */
8 }
9 handshake_type’ =

10 NEGOTIATED || full_handshake ||
11 perfect_forward_secrecy || ocsp_status || ...;

When the operator is mutated to &=, the result of conn->handshake.handshake_type can
be 0 (e.g., when conn->handshake.handshake_type == 0). But 0 is not allowed by spec,
hence the verification failure. However, when the operator is mutated to ˆ=, all the possible
results are included in the spec. interestingly, the counterpart function for TLS 1.3 does
not suffer from this incompleteness issue.

Case 3: mutations on multiple code locations. In the snippet shown below, Fast
applied two mutations on different code locations. The net effect of the two mutations is
essentially marking the precondition to be unconditionally true. The mutant passes both
verification and testing. However, applying any single mutation led to verification failure.

1 int s2n_blob_zero(struct s2n_blob *b) {
2 POSIX_PRECONDITION(s2n_blob_validate(b));
3 #! ^^^^^^^^^^^^^^^^^^^^
4 #! mut (net effect) s2n_blob_validate(b) -> TRUE
5 POSIX_CHECKED_MEMSET(b->data, 0, MAX(b->allocated, b->size));
6 POSIX_POSTCONDITION(s2n_blob_validate(b));
7 return S2N_SUCCESS;
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8 }
9

10 // with POSIX_PRECONDITION pre-unrolled.
11 int s2n_blob_zero(struct s2n_blob *b) {
12 S2N_RESULT result = s2n_blob_validate(b);
13 if (result ^ 1) {
14 #! ^
15 #! mut 1: ^ -> | (bit-or) // fail verification
16 #! mut 2: swap the if-else branches // pass verification
17 return S2N_FAILURE;
18 } else {
19 POSIX_CHECKED_MEMSET(b->data, 0, MAX(b->allocated, b->size));
20 POSIX_POSTCONDITION(s2n_blob_validate(b));
21 return S2N_SUCCESS;
22 }
23 }

In fact, it is surprising that the verification can even pass without the precondition requiring
the input blob to be valid.

Case 4: an intended gap. The intended gap can be illustrated with the following code
snippet with mutation done by Fast inlined:

1 static S2N_RESULT
2 s2n_conn_set_tls13_handshake_type(struct s2n_connection *conn) {
3 // ... redacted ...
4 if (conn->psk_params.chosen_psk == NULL) {
5 // The constant FULL_HANDSHAKE bears value 2
6 s2n_handshake_type_set_flag(conn, FULL_HANDSHAKE);
7 #! ^^^^^^^^^^^^^^
8 #! mut: FULL_HANDSHAKE -> 3
9 #! i.e. FULL_HANDSHAKE -> FULL_HANDSHAKE | NEGOTIATED

10 }
11 // ... redacted ...
12 return S2N_RESULT_OK;
13 }

By mutating the constant FULL_HANDSHAKE (aliased to integer 2) to 3, the new code still
passes the full suite of verification and tests. Upon further investigation, we notice the
definition of the s2n_handshake_type_flag is an enum in C language:

1 typedef enum {
2 INITIAL = 0,
3 NEGOTIATED = 1,
4 FULL_HANDSHAKE = 2,
5 CLIENT_AUTH = 4,
6 NO_CLIENT_CERT = 8,
7 } s2n_handshake_type_flag;

Hence, logically, after mutation, the new code is setting the flag to be
FULL_HANDSHAKE | NEGOTIATED.
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S2N indeed has a dedicated spec for this function (shown below) which explicitly allows
the NEGOTIATED flag to be either set or unset. which explains why this is an intended gap
explicitly allowed in the spec.

1 // a redacted spec for the function being verified
2 conn_set_tls13_handshake_type : connection -> connection
3 conn_set_tls13_handshake_type conn = conn’
4 where conn’ = {handshake = handshake’, /* redacted */ }
5 (handshake’ : handshake) = {
6 handshake_type = handshake_type’,
7 /* redacted */
8 }
9 handshake_type’ = NEGOTIATED || full_handshake

10 || /* redacted */
11 full_handshake = if conn.chosen_psk_null
12 then FULL_HANDSHAKE
13 else 0
14 // spec for other fields are redacted

4.7 Extra Evaluations

While the effectiveness and practicality of Fast is evaluated on the two real-world case
studies (§4.6.1 and §4.6.2), in this section, we highlight some extra statistics that may help
justify the key design choices of Fast.

Effectiveness of test suite. We evaluate the effectiveness of using test suite as a referee
in categorizing a gap found in spec, i.e., whether the gap is by intention or by mistake. The
evaluation is based on the mutants that successfully pass the verification in both codebases,
and the test suites we used here are the unit tests, integration tests, as well as end-to-end
tests available in the codebase.

Table 4.2 shows the overall result in DPN. For all 16 cases which we report, Fast is
able to automatically judge whether a gap in the spec is intentional or mistaken in 10
cases (8 blind spots and 2 intentional gaps), showing a 62.5% automation rate on gap
categorization. Table 4.3 shows the 22 cases we investigated in S2N-TLS. Fast is able
to automatically categorize spec gaps in 16 of them, showing a 72.7% automation rate.
Based on these results, it is reasonable to conclude that using test suite as a referee for
spec incompleteness judgment is feasible.

Coupling effect. Coupling effect has a non-neglectable influence on the usefulness of
producing higher-order mutant in Fast. Coupling effect came to researchers’ notice shortly
after the appearance of mutation testing [49]. The idea is that mutants can be limited
to simple one-hop changes without impairing much on the overall effectiveness. This is
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because complex faults can be decoupled to simple faults in such a way that a test data set
that detects all simple faults in a program will detect most complex faults. Coupling effect
has got both empirical [142] and theoretical [180, 181] support.

Based on the result in the case studies, we do observe that coupling effect has an impact
on the usefulness of generating high-order mutants in Fast. Given the relatively small size
of the DPN codebase, we indeed attempted to enumerate all two and three-code-location
mutants in the DPN but this exercise yielded no new findings, hence, making a strong
indication that high-order mutants might be of limited value in small codebases. The
S2N results are more encouraging: while the majority of surviving code mutants are still
single-location mutations, we start to observe code mutants that must rely on two or more
mutations to survive and usually signals a more interesting gap. We expect that coupling
effect is stronger in small codebases while high-order mutations are more useful in medium
to large codebases.

Effectiveness of evolution. Figure 4.8 shows the accumulated number of surviving
mutants found by Fast as evolutionary mutation testing continues to run on S2N. All
experiments are performed on a server running Ubuntu 20.04 with an Intel Xeon E7-8870
(2.40GHz CPU) with 80 cores and 1 TB RAM. Consistent with conventional fuzzing, in
Fast, the rate of producing new surviving code mutants decreases gradually over time
until reaching a saturation point.
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1 fun add_members_internal<T: copy>(
2 members: &mut vector<T>,
3 to_add: &vector<T>,
4 ): bool {
5 let num_to_add = Vector::length(to_add);
6 let num_existing = Vector::length(members);
7

8 let i = 0;
9 while ({

10 spec {
11 invariant i <= num_to_add;
12

13 // the set can never reduce in size
14 invariant len(members) >= len(old(members));
15

16 // the current set maintains the uniqueness of the elements
17 invariant forall j in 0..len(members), k in 0..len(members):
18 members[j] == members[k] ==> j == k;
19

20 // the left-split of the current set is exactly the same as
21 // the original set
22 invariant forall j in 0..len(old(members)):
23 members[j] == old(members)[j];
24

25 // all elements in the the right-split of the current set is
26 // from the `to_add` vector
27 invariant forall j in len(old(members))..len(members):
28 contains(to_add[0..i], members[j]);
29

30 // the current set includes everything in `to_add` seen so far
31 invariant forall j in 0..i: contains(members, to_add[j]);
32

33 // having no new members means that all elements in the `to_add`
34 // vector seen so far are already in the existing set (vice versa)
35 invariant len(members) == len(old(members)) <==>
36 (forall j in 0..i: contains(old(members), to_add[j]));
37 };
38 (i < num_to_add)
39 }) {
40 let entry = Vector::borrow(to_add, i);
41 if (!Vector::contains(members, entry)) {
42 Vector::push_back(members, *entry);
43 };
44 i = i + 1;
45 };
46

47 Vector::length(members) > num_existing
48 }
49 spec add_members_internal {
50 // function never aborts
51 aborts_if false;
52

53 // everything in the `to_add` vector must be in the updated set
54 ensures forall e in to_add: contains(members, e);
55

56 // everything in the old set must remain in the updated set
57 ensures forall e in old(members): contains(members, e);
58

59 // everything in the updated set must come from either the old set
60 // or the `to_add` vector
61 ensures forall e in members:
62 (contains(old(members), e) || contains(to_add, e));
63

64 // returns whether a new element is added to the set
65 ensures result == (exists e in to_add: !contains(old(members), e));
66 }

Figure 4.4: A Move function with loop invariants
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# Category Mutation point Mutate into

1 Unary Neg - Drop the operator
2 Not ! Drop the operator

3

Binary

Add + One of -, *, /, %
4 Sub - One of +, *, /, %
5 Mul * One of +, -, /, %
6 Div / One of +, -, *, %
7 Mod % One of +, -, *, /

8

Bitwise

BitAnd & One of |, ˆ
9 BitOr | One of &, ˆ

10 BitXor ˆ One of &, |
11 Shl « One of »L, »A
12 LShr »L Shl «
13 AShr »A Shl «

14

Compare

Lt < One of <=, >=, >, ==, !=
15 Le <= One of <, >=, >, ==, !=
16 Ge >= One of <, <=, >, ==, !=
17 Gt > One of <, <=, >=, ==, !=

18 Equality Eq == !=
19 Neq != ==

20
Constant

<value> One of 0, 1, -1, MIN, MAX, etc.
21 <value> One of value+1, value-1, etc.
22 <value> A random value in range

23

Structure

<if-else> Swap the branches
24 <continue> break the loop
25 <break> continue the loop
26 ITE ?: Swap the operands

Table 4.1: Generic code mutation rules available in Fast
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Chapter 5

Discussion and Future Work

5.1 Mutating spec.

Fast finds gaps in the spec by keeping the spec intact and mutating the code. Sym-
metrically, and also proved in theory [101, 102], we can find the same gaps by keeping the
code unmodified and mutating the spec. In the example shown in Figure 3.2, the gap in
the spec can be revealed by mutating the spec into the following snippet.

1 spec for fn add1 {
2 // mutation: len(result) -> len(v)
3 ensures
4 for all i in 0..len(v):
5 result[i] = v[i] + 1;
6 }

In fact, as discussed in §4.2.3, the initial works on applying mutation testing into a formal
verification context mainly focuses on mutating the expressions in the spec [28, 89, 143].

However, the symmetry of code and spec mutation only applies to finding gaps in
the spec and does not apply to the process of judging whether the gap is intentional or
mistaken. In Fast, we can categorize the gap by simply running the tests against the code
mutant. But for spec mutants, running tests is futile as the code is unmodified. This is
the primary reason why Fast does not adopt the spec mutation approach.

The solution to extend the symmetry into the gap categorization process is spec
embedding, i.e., embedding spec at proper code locations, denoted as CS. Given that CS

is executable, we can run any spec mutant CS′ against the test suit T and check whether
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CS′ passes T . Note that in this case, the gap in the spec is considered mistaken if CS′ ≻ T
and intentional if the test fails. And yet, even with the symmetry extended, embedding logic
is written in a more expressive language and has its own set of challenges (e.g., unrolling
existential and universal quantifiers).

5.2 Coverage Tooling for spec Completeness

It is worth noting that while mutation testing is initially proposed to gauge the completeness
of the test suite, it is rarely considered a mainstream approach for this purpose. What
is more popular now is various code coverage metrics, usually presented in terms of line
coverage, instruction coverage, or branch coverage. Paranoid maintainers of open-source
projects may even require that any new code needs to be accompanied by test cases to
maintain a high ratio of code coverage in the codebase. As a result, the community has
accumulated a sufficient set of tooling for code coverage measurement and reporting.

In a no-so-surprising contrast, to the best of our knowledge, there is no such tooling to
measure code coverage for spec. It is not hard to imagine that such coverage tracking
tools will be extremely challenging to build. Every code snippet seems to participate in
the proving of some spec properties based on how the verification problems are handled in
state-of-the-art verifiers [14, 32, 67, 110], and it is hard to untangle the complicated logical
formula. However, despite the technical challenges, we believe that such tooling is necessary
when formal verification gains enough traction and we hope that the findings from Fast
can serve as a weak call to build coverage tracking tooling tailored for spec among the
community.

5.3 The Applicability of Fast

Fast is applicable to a formally verified software when two conditions are met: 1) the
verification system is fully automated, and 2) Fast can modify some form of code
representation (e.g. LLVM IR). Therefore, besides the SAW toolchain, Fast is also
compatible with combinations like LLVM + SeaHorn, LLVM + Kani (for Rust) etc. For
adapting Fast to new verification systems, e.g., CBMC, a new mutator is required because
CBMC has its own version of language IR.

The general applicability of Fast is limited at the moment, as formal verification is yet
to be a standard industrial practice (unlike testing), hence the lack of spec components
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in most software. However, we believe formal methods will gain traction and now is the
perfect time to build the necessary tools to warn about potential defects in spec before its
too late.

5.4 Causes of Missing spec Gaps by Fast

Fast cannot find all potential gaps in spec for at least two reasons: First, the mutant
evolution approach is inherently incomplete. Similar to why fuzzing cannot find all bugs in
a software, the evolutionary mutation strategy cannot produce code mutants that uncover
all gaps in spec— the search space is too large to enumerate. Second, as discussed in §4.3,
certain spec gaps require manual effort to confirm, especially in case 5 where the code
mutant fails verification — manual effort is needed to check whether the verification failure
is caused by out-of-sync proof hints (which hides a spec gap) or a genuine spec violation.

5.5 Formal Specifications Beyond Verification

The provable way of programming extends beyond providing intuitive security assurances.

In this thesis, we have conducted a systematic analysis of the false assurance problem
inherent in formal verification, which might lead to the impression that formal verification
tends to be error-prone, and the problems are ubiquitous. It is important to recognize that
all programs possess specifications. Even in the absence of formal specifications, informal
formats such as documentation and program requirements still exist. The rationale for
adopting formal specifications is twofold: they are not only a fundamental component of the
formal reasoning process but also impose a disciplined approach, encouraging programmers
to aim for more comprehensive and precise methodologies.

5.6 The Misconception of "Formally Verified" Claims

Many projects boasting formal verification often describe their code base as having been
“formally verified”, which can create a false impression of being error-free. Such claims can
be misleading, potentially leading to significant consequences. Unlike the traditional testing
approach, the assumptions underpinning the formal verification model, such as constraints
on the running environment, parameter selections, components of the trusted computing

59



base, and the extent of code verification, are critical to the completeness and effectiveness of
formal verification results. As such, it is imperative that all assumptions are both clarified
and justified [137].

5.7 Metrics to Measure Formal Verification

Building upon the previous point, merely enumerating assumptions in formal verification
is insufficient. The quality of the verification, e.g., the sufficiency of the properties in the
specification, is unknown. While traditional testing approaches allow for straightforward
coverage assessment through source code instrumentation, formal verification presents
challenges in both defining coverage metrics and engaging interactively with the verification
process to obtain intermediate data. Some studies have utilized coverage metrics to gauge
specification completeness and the extent of system behavior coverage. However, these
approaches are limited to certain senarios. Coverage metrics are mostly used in simulation-
based verifications [173], and are also later adopted by model checking [36]. Mutation
testing is another approach that is used to test the robustness of the formal verification
model. The deficiency of mutation testing approach is that it tends to be computationally
expensive, and it is also difficult to guide the mutation testing process to focus on the
portions of a program which are necessary to be checked. Ghassabani et al [73] proposed
using Inductive Validity Cores (IVCs), which determine a minimal set of model elements
necessary to estabilish a proof.
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Chapter 6

Conclusion

In this thesis, we first generalized the formal verification process, within which we identified
and analyzed specific stages prone to false assurance. We provided a systematization of
knowledge on the false assurance observations at these different stages, together with a
discussion on the existing defense mechanisms.

Focusing on the false assurance problem in formal specification, we present Fast, a tool
for exposing incompleteness issues in formal spec. Fast shows how the “redundancy” and
“diversity” in formally verified programs (spec, code, and test suites) can be synergized
for cross-checking and provides concrete designs and implementations for spec blind spots
detection via enumerative and evolutionary mutation testing. We applied Fast to DPN
and S2N and confirmed 13 and 21 blind spots in their spec respectively. This highlights
the prevalence of spec incompleteness in real-world applications. We hope the findings
from Fast can serve as a weak call to draw more attention on measuring and ensuring the
quality of spec in formally verified codebases.
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[8] Vytautas Astrauskas, Aurel Bílỳ, Jonáš Fiala, Zachary Grannan, Christoph Matheja,
Peter Müller, Federico Poli, and Alexander J Summers. The prusti project: Formal
verification for rust. In Proceedings of the 22th NASA Formal Methods Symposium
(NFM), Pasadena, CA, May 2022.

[9] Jeremy Avigad, Leonardo De Moura, and Soonho Kong. Theorem proving in lean.
Online: https://leanprover. github. io/theorem_ proving_ in_ lean/theorem_ prov-
ing_ in_ lean. pdf, 2021.

62

https://shemesh.larc.nasa.gov/fm/fm-why-new.html
https://shemesh.larc.nasa.gov/fm/fm-why-new.html
https://certora.com
https://fbinfer.com/
https://www.diem.com/


[10] Emine G Aydal, Richard F Paige, Mark Utting, and Jim Woodcock. Putting formal
specifications under the magnifying glass: Model-based testing for validation. In
Proceedings of the 2nd International Conference on Software Testing, Verification,
and Validation (ICST), Denver, CO, April 2009.

[11] Danial Nikbin Azmoudeh and Yvan Labiche. Analysis of mutation operators for
fsm testing. In Proceedings of the 16th IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Dublin, Irelands, April
2023.

[12] Seongwon Bang, Seunghyeon Nam, Inwhan Chun, Ho Young Jhoo, and Juneyoung
Lee. Smt-based translation validation for machine learning compiler. Haifa, Israel,
August 2022.

[13] Haniel Barbosa, Chantal Keller, Andrew Reynolds, Arjun Viswanathan, Cesare Tinelli,
and Clark Barrett. An interactive smt tactic in coq using abductive reasoning. In
Proceedings of the 39th International Conference on Logic Programming (ICLP),
London, UK, August 2023.

[14] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M
Leino. Boogie: A Modular Reusable Verifier for Object-oriented Programs. In
Proceedings of the 2005 International Symposium on Formal Methods for Components
and Objects (FMCO), Amsterdam, The Netherlands, August 2005.

[15] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The spec# programming
system: An overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS), Marseille, France, March 2004.

[16] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Proceedings of
the 23rd International Conference on Computer Aided Verification (CAV), Snowbird,
UT, July 2011.

[17] Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification of an
ssa-based middle-end for compcert. ACM Transactions on Programming Languages
and Systems (TOPLAS), 36(1):1–35, 2014.

[18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to
runtime verification. Lectures on Runtime Verification: Introductory and Advanced
Topics, pages 1–33, 2018.

63



[19] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner,
Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Sig-
noles, et al. The dogged pursuit of bug-free c programs: the frama-c software analysis
platform. Communications of the ACM, 64(8):56–68, 2021.

[20] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd Nowacki,
Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al. Move: A language
with programmable resources. Libra Assoc, 2019.

[21] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. Stringfuzz: A fuzzer for string solvers. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), Oxford, UK, July
2018.

[22] Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind the gap: Studying the
insecurity of provably secure embedded trusted execution architectures. In Proceedings
of the 43rd IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2020.

[23] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based Greybox
Fuzzing as Markov Chain. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), Vienna, Austria, October 2016.

[24] Hamza Bourbouh, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat,
Louise A Dennis, and Michael Fisher. Integrating formal verification and assurance:
an inspection rover case study. In Proceedings of the 13th NASA Formal Methods
Symposium (NFM), Virtual, May 2021.

[25] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt solvers. In
Proceedings of the 7th International Workshop on Satisfiability Modulo Theories, pages
1–5, 2009.

[26] Sebastian Buchwald. Optgen: A generator for local optimizations. In Proceedings
of the 24th International Conference on Compiler Construction (CC), London, UK,
April 2015.

[27] Tim Budd and Fred Sayward. Users guide to the pilot mutation system. Yale
University, New Haven, Connecticut, Technique Report, 114, 1977.

[28] Timothy A Budd and Ajei S Gopal. Program testing by specification mutation.
Computer languages, 10(1):63–73, 1985.

64



[29] Timothy Alan Budd. Mutation Analysis of Program Test Data. Yale University, 1980.

[30] Alexandra Bugariu and Peter Müller. Automatically testing string solvers. In
Proceedings of the 42th International Conference on Software Engineering (ICSE),
Seoul, South Korea, October 2020.

[31] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), San Diego, CA, December 2008.

[32] Kyle Carter, Adam Foltzer, Joe Hendrix, Brian Huffman, and Aaron Tomb. SAW:
The Software Analysis Workbench. In Proceedings of the 21st European symposium
on programming (ESOP), Pittsburgh, PA, March 2013.

[33] Soham Chakraborty and Viktor Vafeiadis. Formalizing the concurrency semantics
of an llvm fragment. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization (CGO), Austin, TX, February 2017.

[34] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
Compiler bug isolation via effective witness test program generation. In Proceedings
of the 24th European Software Engineering Conference (ESEC) / 27th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), New York, NY, August
2019.

[35] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-
directed differential testing of jvm implementations. In proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
85–99, 2016.

[36] Hana Chockler, Orna Kupferman, and Moshe Y Vardi. Coverage metrics for formal
verification. In Correct Hardware Design and Verification Methods: 12th IFIP WG
10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila, Italy, October
21-24, 2003. Proceedings 12, pages 111–125. Springer, 2003.

[37] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv:
A new symbolic model verifier. In Proceedings of the 11st International Conference
on Computer Aided Verification (CAV), Trento, Italy, July 1999.

[38] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al.
Handbook of model checking, volume 10. Springer, 2018.

65



[39] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A practical system for
verifying concurrent c. In International Conference on Theorem Proving in Higher
Order Logics, pages 23–42. Springer, 2009.

[40] Byron Cook. Formal reasoning about the security of amazon web services. In
Proceedings of the 30th International Conference on Computer Aided Verification
(CAV), Oxford, UK, July 2018.

[41] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza, and
Dániel Varró. VIATRA-visual Automated Transformations for Formal Verification
and Validation of UML Models. Washington, D.C., September 2017.

[42] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-c. In Proceedings of the 32nd International Conference
on Software Engineering and Formal Methods (SEFM), Thessaloniki, Greece, October
2012.

[43] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[44] de Moura, Leonardo and Bjørner, Nikolaj. Z3: An efficient smt solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Budapest, Hungary, March–April 2008.

[45] Simone Do Rocio Senger De Souza, Jose Carlos Maldonado, Sandra Camargo Pinto Fer-
raz Fabbri, and Wanderley Lopes De Souza. Mutation testing applied to estelle
specifications. Software Quality Journal, 8(4):285–301, 1999.

[46] Jean Paul Degabriele, Kenny Paterson, and Gaven Watson. Provable security in the
real world. May 2010.

[47] Marcio Eduardo Delamaro, Jose Carlos Maldonado, and Aditya P Mathur. Integration
Testing Using Interface Mutation. In Proceedings of the 7th International Symposium
on Software Reliability Engineering (ISSRE), New York, NY, November 1996.

[48] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Antonio
García-Domínguez, and Juan José Domínguez-Jiménez. Assessment of class mutation
operators for c++ with the mucpp mutation system. Information and Software
Technology, 81:169–184, 2017.

66



[49] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[50] Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett, and Cesare Tinelli. A tour
of cvc4: How it works, and how to use it. In Proceedings of the 2014 International
Conference on Formal Methods in Computer-Aided Design (FMCAD), Lausanne,
Switzerland, October 2014.

[51] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schobbens,
and Patrick Heymans. Featured model-based mutation analysis. In Proceedings
of the 38th International Conference on Software Engineering (ICSE), Austin, TX,
May–June 2016.

[52] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Language Fuzzing Using Constraint
Logic Programming. In Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Vasteras Sweden, September 2014.

[53] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Emma
Zhong. Fast and Reliable Formal Verification of Smart Contracts with the Move
Prover. In Proceedings of the 28th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Munich, Germany, April
2022.

[54] Nicolas Dilley and Julien Lange. Automated Verification of Go Programs via Bounded
Model Checking. In Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Melbourne, Austrailia, November 2021.

[55] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros
Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, et al. Favocado:
Fuzzing the Binding Code of JavaScript Engines Using Semantically Correct Test
Cases. In Proceedings of the 2021 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2021.

[56] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan McNamee, and
Aaron Tomb. Constructing Semantic Models of Programs with the Software Analysis
Workbench. In Proceedings of the 8th Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE), Toronto, Canada, July 2016.

[57] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars Grunske. Evolutionary
Grammar-based Fuzzing. In Proceedings of the 12th International Symposium on
Search Based Software Engineering (SSBSE), Bari, Italy, October 2020.

67



[58] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it. In
Proceedings of the 8th International Conference on Embedded Software (EMSOFT),
Atlanta, GA, October 2008.

[59] Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth, and Giampaolo
Bella. Embedded fuzzing: a review of challenges, tools, and solutions. Cybersecurity,
5(1):18, 2022.

[60] Burak Ekici, Guy Katz, Chantal Keller, Alain Mebsout, Andrew J Reynolds, and
Cesare Tinelli. Extending smtcoq, a certified checker for smt. arXiv preprint
arXiv:1606.05947, 2016.

[61] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew
Reynolds, and Clark Barrett. Smtcoq: A plug-in for integrating smt solvers into coq.
In Proceedings of the 29th International Conference on Computer Aided Verification
(CAV), Heidelberg, Germany, July 2017.

[62] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf,
and Jan-Georg Smaus. A fully verified executable ltl model checker. In Proceedings
of the 25th International Conference on Computer Aided Verification (CAV), Saint
Petersburg, Russia, July 2013.

[63] Sandra Camargo Pinto Ferraz Fabbri, Jose Carlos Maldonado, Tatiana Sugeta, and
Paulo Cesar Masiero. Mutation Testing Applied to Validate Specifications Based
on Statecharts. In Proceedings of the 10th International Symposium on Software
Reliability Engineering (ISSRE), Boca Raton, FL, November 1999.

[64] Nicole Fern and Kwang-Ting Cheng. Detecting Hardware Trojans in Unspecified
Functionality Using Mutation Testing. In Proceedings of the 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Austin, TX, November
2015.

[65] Nicole Fern and Kwang-Ting Cheng. Mining Mutation Testing Simulation Ttraces
for Security and Testbench Debugging. In Proceedings of the 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Irvine, CA, November
2017.

[66] Nicole Fern and Kwang-Ting Cheng. Evaluating Assertion Set Completeness to
Expose Hardware Trojans and Verification Blindspots. In Proceedings of the 2019
Design, Automation and Test in Europe Conference and Exhibition (DATE), Florence,
Italy, March 2019.

68



[67] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where Programs Meet
Provers. In Proceedings of the 22nd European symposium on programming (ESOP),
Rome, Italy, March 2013.

[68] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. {AFL++}:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th USENIX
Workshop on Offensive Technologies (WOOT), Boston, MA, August 2020.

[69] Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson, James B Saxe,
and Raymie Stata. Extended static checking for java. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Berlin, Germany, June 2002.

[70] Mathias Fleury. Optimizing a Verified SAT Solver. In Proceedings of the 11th NASA
Formal Methods Symposium (NFM), Houston, TX, May 2019.

[71] Gordon Fraser and Franz Wotawa. Using model-checkers to generate and analyze
property relevant test-cases. Software Quality Journal, 16:161–183, 2008.

[72] Galois. What4: New library to help developers build verification and program analysis
tools. https://github.com/GaloisInc/what4, 2022.

[73] Elaheh Ghassabani, Andrew Gacek, Michael W Whalen, Mats PE Heimdahl, and
Lucas Wagner. Proof-based coverage metrics for formal verification. In Proceedings
of the 32th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Urbana, IL, October 2017.

[74] Michael JC Gordon. Hol: A proof generating system for higher-order logic. In VLSI
specification, verification and synthesis, pages 73–128. Springer, 1988.

[75] Mark Grechanik and Gurudev Devanla. Mutation Integration Testing. In Proceedings
of the 2016 IEEE International Conference on Software Quality, Reliability and
Security (QRS), Vienna, Austria, August 2016.

[76] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. The
seahorn verification framework. In Proceedings of the 27th International Conference
on Computer Aided Verification (CAV), Snowbird, UT, July 2015.

[77] Reiner Hähnle and Marieke Huisman. Deductive software verification: from pen-and-
paper proofs to industrial tools. Computing and Software Science: State of the Art
and Perspectives, pages 345–373, 2019.

69

https://github.com/GaloisInc/what4


[78] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE transactions
on software engineering, (4):279–290, 1977.

[79] Osman Hasan and Sofiene Tahar. Formal verification methods. In Encyclopedia of
Information Science and Technology, Third Edition, pages 7162–7170. IGI global,
2015.

[80] Katharina Hofer-Schmitz and Branka Stojanović. Towards formal verification of iot
protocols: A review. Computer Networks, 174:107233, 2020.

[81] Gerard J Holzmann. Software model checking with spin. Advances in Computers,
65:77–108, 2005.

[82] Zhijian Huang and Yongjun Wang. Jdriver: Automatic driver cclass generation for
afl-based java fuzzing tools. Symmetry, 10(10):460, 2018.

[83] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a
tutorial. Rapport Technique, 178, 1997.

[84] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and
Frank Piessens. Verifast: A powerful, sound, predictable, fast verifier for c and java.
NASA Formal Methods, 6617:41–55, 2011.

[85] Matthew S Jaffe, Nancy G Leveson, Mats Heimdahl, and Bonnie Melhart. Software
requirements analysis for real-time process-control systems. 1990.

[86] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. jFuzz: A
concolic Whitebox Fuzzer for Java. In Proceedings of the 1st NASA Formal Methods
Symposium (NFM), Moffett Field, CA, April 2009.

[87] Nathan T Jessurun, Olivia P Paradis, Mark Tehranipoor, and Navid Asadizanjani.
Shade: Automated refinement of pcb component estimates using detected shadows.
In Proceedings of the 2020 IEEE Physical Assurance and Inspection of Electronics,
Washington, DC, July 2020.

[88] Ru Ji and Meng Xu. Finding Specification Blind Spots via Fuzz Testing. In Proceedings
of the 2023 IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA,
5 2023.

[89] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2010.

70



[90] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:
Securing the foundations of the rust programming language. January 2017.

[91] Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park,
Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur,
et al. Crellvm: verified credible compilation for llvm. In Proceedings of the 2018
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Philadelphia, PA, June 2018.

[92] Chantal Keller. Smtcoq: Mixing automatic and interactive proof technologies. Proof
Technology in Mathematics Research and Teaching, pages 73–90, 2019.

[93] Christoph Kern and Mark R Greenstreet. Formal verification in hardware design: a
survey. ACM Transactions on Design Automation of Electronic Systems (TODAES),
4(2):123–193, 1999.

[94] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu. POSTER: AFL-based
Fuzzing for Java with Kelinci. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, October–November
2017.

[95] Wilayat Khan, Zhe Hou, David Sanan, Jamel Nebhen, Yang Liu, and Alwen Tiu. An
executable formal model of the vhdl in isabelle/hol. arXiv preprint arXiv:2202.04192,
2022.

[96] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding semantic bugs in file systems with an extensible fuzzing framework. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
Ontario, Canada, October 2019.

[97] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
et al. SeL4: Formal Verification of an OS Kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), Big Sky, MT, October 2009.

[98] Neal Koblitz and Alfred Menezes. Critical perspectives on provable security: Fifteen
years of" another look" papers. Cryptology ePrint Archive, 2019.

[99] Neal Koblitz and Alfred J Menezes. Another look at" provable security". Journal of
Cryptology, 20:3–37, 2007.

71



[100] Moez Krichen. A survey on formal verification and validation techniques for internet
of things. Applied Sciences, 13(14):8122, 2023.

[101] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. A Theory of Mutations with
Applications to Vacuity, Coverage, and Fault Tolerance. In Proceedings of the 2008
International Conference on Formal Methods in Computer-Aided Design (FMCAD),
Portland, ON, November 2008.

[102] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. On the Duality between Vacuity
and Coverage. Technical Report UCB/EECS-2008-26, EECS Department, University
of California, Berkeley, March 2008.

[103] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic
model checker. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 200–204. Springer, 2002.

[104] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. June 2014.

[105] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via guided
stochastic program mutation. July 2015.

[106] Vu Le, Chengnian Sun, and Zhendong Su. Randomized stress-testing of link-time
optimizers. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), Baltimore, MD, July 2015.

[107] Juneyoung Lee, Chung-Kil Hur, and Nuno P Lopes. Aliveinlean: a verified llvm
peephole optimization verifier. In Proceedings of the 31st International Conference
on Computer Aided Verification (CAV), New York, NY, July 2019.

[108] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P Lopes. An smt encoding
of llvm’s memory model for bounded translation validation. Los Angeles, CA, July
2021.

[109] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P Lopes. Taming undefined behavior in llvm.
June 2017.

[110] K Rustan M Leino. Dafny: An Automatic Program Verifier for Functional Correct-
ness. In Proceedings of the 16th International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR), Dakar, Senegal, April 2010.

72



[111] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. Compcert-a formally verified optimizing compiler. In ERTS
2016: Embedded Real Time Software and Systems, 8th European Congress, 2016.

[112] Nancy Leveson. Completeness in Formal Specification Language Design for Process-
control Systems. In Proceedings of the 2000 Workshop on Formal Methods in Software
Practice (FMSP), Portland, OR, August 2000.

[113] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):1–13,
2018.

[114] Liyi Li and Elsa L Gunter. K-llvm: a relatively complete semantics of llvm ir. In
34th European Conference on Object-Oriented Programming (ECOOP 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[115] Nan Li, Michael West, Anthony Escalona, and Vinicius HS Durelli. Mutation Testing
in Practice Using Ruby. In Proceedings of the 8th IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), Graz, Austria,
April 2015.

[116] Bin Lin, Jinchao Chen, and Fei Xie. Selective concolic testing for hardware trojan
detection in behavioral systemc designs. In Proceedings of the 2020 Design, Automation
and Test in Europe Conference and Exhibition (DATE), Grenoble, France, March
2020.

[117] Bin Lin and Fei Xie. A systematic investigation of state-of-the-art systemc verification.
Journal of Circuits, Systems and Computers, 29(15):2030013, 2020.

[118] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss. Nethammer: Inducing rowhammer faults
through network requests. In Proceedings of the 5th IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), Genoa, Italy, September 2020.

[119] Yang Liu, Jun Sun, and Jin Song Dong. Pat 3: An extensible architecture for building
multi-domain model checkers. In ISSRE, pages 190–199, 2011.

[120] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for c and
c++ compilers with yarpgen. September 2020.

[121] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
Alive2: bounded translation validation for llvm. In Proceedings of the 2020 ACM

73



SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
New York, NY, June 2021.

[122] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably
correct peephole optimizations with alive. In Proceedings of the 2015 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Portland,
OR, June 2015.

[123] Nuno P Lopes and José Monteiro. Automatic equivalence checking of programs with
uninterpreted functions and integer arithmetic. International Journal on Software
Tools for Technology Transfer, 18:359–374, 2016.

[124] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. {MOPT}: Optimized Mutation Scheduling for Fuzzers. In Proceedings
of the 28th USENIX Security Symposium (Security), Santa Clara, CA, August 2019.

[125] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated class mutation
system. Software Testing, Verification and Reliability, 15(2):97–133, 2005.

[126] José Carlos Maldonado, Márcio Eduardo Delamaro, Sandra CPF Fabbri, Adenilso da
Silva Simão, Tatiana Sugeta, Auri Marcelo Rizzo Vincenzi, and Paulo Cesar Masiero.
Proteum: A family of tools to support specification and program testing based on
mutation. In Mutation testing for the new century, pages 113–116. Springer, 2001.

[127] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing:
A survey. IEEE Transactions on Software Engineering, 47(11):2312–2331, 2019.

[128] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. Detecting critical bugs in smt solvers using blackbox mutational fuzzing.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 701–
712, 2020.

[129] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi. Protrr: Principled
yet optimal in-dram target row refresh. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2022.

[130] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and Kaveh Razavi. Rega:
Scalable rowhammer mitigation with refresh-generating activations. In Proceedings of

74



the 44th IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2023.

[131] Pedro Reales Mateo and Macario Polo Usaola. Reducing mutation costs through
uncovered mutants. Software Testing, Verification and Reliability, 25(5-7):464–489,
2015.

[132] Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992.

[133] Tim Miller and Paul Strooper. A framework and tool support for the systematic
testing of model-based specifications. ACM Transactions on Software Engineering
and Methodology (TOSEM), 12(4):409–439, 2003.

[134] Felipe R Monteiro, Mikhail R Gadelha, and Lucas C Cordeiro. Model checking c++
programs. Software Testing, Verification and Reliability, 32(1):e1793, 2022.

[135] Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh.
Z3str4: A Multi-armed String Solver. In Proceedings of the 24th International
Symposium on Formal Methods (FM), Beijng, China, November 2021.

[136] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez,
Gabriele Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshy-
vanyk. Mdroid+: A Mutation Testing Framework for Android. In Proceedings
of the 40th International Conference on Software Engineering: Companion (ICSE-
Companion), Gothenburg, Sweden, May–June 2018.

[137] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin
Monate. Testing or formal verification: Do-178c alternatives and industrial experience.
IEEE software, 30(3):50–57, 2013.

[138] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: from general purpose to
a proof of information flow enforcement. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2013.

[139] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(8):1555–1571, 2019.

[140] Lee Naish. Specification= Program+ Types. In Proceedings of the 7th International
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), Pune, India, December 1987.

75



[141] J Norhuzaimin and HH Maimun. The Design of High Speed UART. In Proceedings
of the 2005 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE),
Johor Bahru, Malaysia, December 2005.

[142] A Jefferson Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1(1):5–20, 1992.

[143] Vadim Okun. Specification Mutation for Test Generation and Analysis. University of
Maryland, Baltimore County, 2004.

[144] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A formal verifica-
tion framework for bluespec system verilog. In Proceedings of the 2013 Forum on
specification and Design Languages (FDL), pages 1–7. IEEE, 2013.

[145] Rohan Padhye, Caroline Lemieux, and Koushik Sen. JQF: Coverage-guided Property-
based Testing in Java. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), San Jose, CA, July 2019.

[146] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
Semantic fuzzing with zest. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), San Jose, CA, July 2019.

[147] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman.
Mutation testing advances: an analysis and survey. In Advances in Computers, volume
112, pages 275–378. Elsevier, 2019.

[148] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. Generative
type-aware mutation for testing smt solvers. Proceedings of the ACM on Programming
Languages, 5(OOPSLA):1–19, 2021.

[149] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing Javascript
Engines with Aspect-preserving Mutation. In Proceedings of the 41st IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2020.

[150] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and Jae W
Lee. Graphene: Strong yet lightweight row hammer protection. In Proceedings of the
53th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Athens, Greece, October 2020.

[151] Alexandre Petrenko, Omer Nguena Timo, and S Ramesh. Multiple mutation testing
from fsm. In Formal Techniques for Distributed Objects, Components, and Systems:

76



36th IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th
International Federated Conference on Distributed Computing Techniques, DisCoTec
2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings 36, pages 222–238.
Springer, 2016.

[152] Pinto Ferraz Fabbri, S.C. and Delamaro, M.E. and Maldonado, J.C. and Masiero,
P.C. Mutation Analysis Testing for Finite State Machines. In Proceedings of the 5th
International Symposium on Software Reliability Engineering (ISSRE), Monterey, CA,
November 1994.

[153] Upsorn Praphamontripong and Jeff Offutt. Applying Mutation Testing to Web
Applications. In Proceedings of the 3rd IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Paris, France, April 2010.

[154] Ratish J Punnoose, Robert C Armstrong, Matthew H Wong, and Mayo Jackson.
Survey of existing tools for formal verification. Technical report, Sandia National
Lab.(SNL-CA), Livermore, CA (United States), 2014.

[155] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2017.

[156] Grigore Rosu. K: A rewriting-based framework for computations–preliminary version–.
2007.

[157] Grigore Ros,u and Traian Florin S, erbănută. An overview of the k semantic framework.
The Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[158] Per Runeson. A survey of unit testing practices. IEEE software, 23(4):22–29, 2006.

[159] Martin Schickel, Volker Nimbler, Martin Braun, and Hans Eveking. An efficient
synthesis method for property-based design in formal verification: On consistency and
completeness of property-sets. In Advances in Design and Specification Languages for
Embedded Systems, pages 179–196. Springer, 2007.

[160] Steve Schmidt. Introducing s2n-tls, a new open source tls
implementation. https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/, 2022.

77

https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/


[161] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. {kAFL}:{Hardware-Assisted} Feedback Fuzzing for {OS} Kernels. In
Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, Canada,
August 2017.

[162] Christopher Schwaab and Jeremy G Siek. Modular type-safety proofs in agda. In
Proceedings of the 7th ACM SIGPLAN Workshop on Programming Languages meets
Program Verification (PLPV), Rome, Italy, January 2013.

[163] Joseph Scott, Trishal Sudula, Hammad Rehman, Federico Mora, and Vijay Ganesh.
Banditfuzz: Fuzzing smt solvers with multi-agent reinforcement learning. In Interna-
tional Symposium on Formal Methods, pages 103–121. Springer, 2021.

[164] Traian Florin Şerbănuţă and Grigore Roşu. K-maude: A rewriting based tool for
semantics of programming languages. In Rewriting Logic and Its Applications: 8th
International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010,
Paphos, Cyprus, March 20-21, 2010, Revised Selected Papers 8, pages 104–122.
Springer, 2010.

[165] M Siegel, A Pnueli, and E Singerman. Translation validation. In Proceedings of
the 4th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Lisbon, Portugal, March–April 1998.

[166] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo
Winterhalter. Coq coq correct! verification of type checking and erasure for coq, in
coq. January 2019.

[167] Tatiana Sugeta, José Carlos Maldonado, and W Eric Wong. Mutation testing
applied to validate sdl specifications. In Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (CEC), Oxford, UK, March 2004.

[168] Chengnian Sun, Vu Le, and Zhendong Su. Finding and analyzing compiler warning
defects. In Proceedings of the 38th International Conference on Software Engineering
(ICSE), Austin, TX, May–June 2016.

[169] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code
mutation. In Proceedings of the 31th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Amsterdam, Nether-
lands, September 2020.

78



[170] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward understanding
compiler bugs in gcc and llvm. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), Saarbrücken Germany, July 2016.

[171] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification
under fairness. In Proceedings of the 21st International Conference on Computer
Aided Verification (CAV), Grenoble, France, July 2009.

[172] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal Verification of Neural
Network Controlled Autonomous Systems. In Proceedings of the 22nd ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, Montreal, Canada,
April 2019.

[173] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of
hardware designs. IEEE Design & Test of Computers, 18(4):36–45, 2001.

[174] Zachary Tatlock and Sorin Lerner. Bringing extensibility to verified compilers. June
2010.

[175] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic Rizzo,
and Matthew Hicks. Fuzzing hardware like software. In Proceedings of the 31st
USENIX Security Symposium (Security), Boston, MA, August 2022.

[176] Bryan Turner. Random c program generator. Retrieved from, 2007.

[177] Patrice Vado, Yvon Savaria, Yannick Zoccarato, and Chantal Robach. A Methodology
for Validating Digital Circuits with Mutation Testing. In Proceedings of the 2000 IEEE
International Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland,
May 2000.

[178] Auri Marcelo Rizzo Vincenzi, José Carlos Maldonado, Ellen Francine Barbosa, and
Márcio Eduardo Delamaro. Unit and integration testing strategies for c programs
using mutation-based criteria. In Mutation testing for the new century, pages 45–45.
Springer, 2001.

[179] Dmitry Vyukov. Syzkaller, 2015.

[180] KS How Tai Wah. Fault coupling in finite bijective functions. Software Testing,
Verification and Reliability, 5(1):3–47, 1995.

[181] KS How Tai Wah. A theoretical study of fault coupling. Software testing, verification
and reliability, 10(1):3–45, 2000.

79



[182] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-aware
Greybox Fuzzing. In Proceedings of the 41th International Conference on Software
Engineering (ICSE), Montreal, Canada, May 2019.

[183] Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. The isabelle framework.
In International Conference on Theorem Proving in Higher Order Logics, pages 33–38.
Springer, 2008.

[184] Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effectiveness
of type-aware operator mutations for testing smt solvers. September 2020.

[185] Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effectiveness
of type-aware operator mutations for testing smt solvers. Proc. ACM Program. Lang.,
4(OOPSLA), nov 2020.

[186] Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT Solvers
via Semantic Fusion. In Proceedings of the 2020 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), New YorkNY, June
2020.

[187] W Eric Wong. Mutation Testing for the New Century, volume 24. Springer Science
& Business Media, 2001.

[188] Baowen Xu, Xiaoyuan Xie, Liang Shi, and Changhai Nie. Application of genetic
algorithms in software testing. In Advances in Machine Learning Applications in
Software Engineering, pages 287–317. IGI Global, 2007.

[189] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. In Proceedings of the 2011 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), San Jose, CA, June
2011.

[190] Dongjun Youn, Sungho Lee, and Sukyoung Ryu. Declarative static analysis for
multilingual programs using codeql. Software: Practice and Experience, 2023.

[191] Michal Zalewski. American fuzzy lop, 2017.

[192] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. For-
malizing the llvm intermediate representation for verified program transformations.
In Proceedings of the 2012 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Beijing, China, June 2012.

80



[193] Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong
Wu, Shanshan Li, and Bin Gu. Towards better semantics exploration for browser
fuzzing. October 2023.

[194] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-Min
Hu. {TCP-Fuzz}: Detecting memory and semantic bugs in {TCP} stacks with fuzzing.
In Proceedings of the 2021 USENIX Annual Technical Conference (ATC), online, July
2021.

81



APPENDICES

82



Appendix A

Paper selection criteria

Security Software
Engineering

Programming
Language

Formal
Verification
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S&P FSE/ESEC OOPSLA
CCS ISSTA

Table A.1: Conferences selection in this thesis

We search for relevant papers that conform to the false assurance problem detailed in §3.
Specifically, our initial paper screening is based on the conferences listed in Table A.1, after
2016. Some exceptional papers do not match these two conditions but still got listed in
Table 3.2 for some special contribution. We follow the citation trees from the initial set of
papers for additional relevant works.
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