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Abstract

With the rapid progress of quantum computers in recent years, efforts have been made
to standardize new public-key cryptographic protocols which would be secure against them.
One of the schemes in contention was Supersingular Isogeny Diffie-Hellman (SIDH). This
scheme relied on the assumed hardness of the isogeny problem on supersingular elliptic
curves. However, in the SIDH protocol extra information on the secret isogenies is trans-
mitted. In July 2022, Castryck and Decru found a way to exploit this information to
completely break the scheme. They gave an implementation of their attack which allows
to recover Bob’s secret key in a few seconds on a laptop. Usually, Alice and Bob’s secret
isogenies are taken to have degree 2a and 3b respectively. This thesis gives a more gen-
eral implementation of the attack in Magma which works even if Alice and Bob’s secret
isogenies have degrees ℓaA and ℓbB for more general primes ℓA and ℓB.
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Chapter 1

Introduction

1.1 Public-Key Cryptography

Public-key cryptography gives a way for two parties to establish a shared secret key over
an insecure channel. The first such key-exchange algorithms to be commercialized include
RSA and Elliptic Curve Diffie-Hellman (ECDH) which were developed in 1977 and 1976
respectively. These remain the most used public-key cryptosystems today. Public-key
cryptosystems rely on the use of hard mathematical problems. There are said to be asym-
metric because, although the underlying mathematical problem is difficult to solve (i.e. it
would be infeasible to solve in a reasonable amount of time with our current computing
capabilities), checking the correctness of a solution is easy. For example, RSA relies on the
difficulty of factoring large integers and ECDH relies on the difficulty of solving discrete
logarithms on elliptic curves.

While no serious classical threats have yet been found for RSA or ECDH, in 1994, Shor
[13] discovered a polynomial-time quantum algorithm which can be applied to solving
both integer factorization and discrete logarithms. At the time, quantum computers were
a purely theoretical concept, but in recent years, significant investments have been put in
to build them. While we are still ways away from having quantum computers powerful
enough to factor RSA-sized integers, we need to prepare for this eventuality. This prompted
the National Institute for Standards and Technology (NIST) to launch a competition for
the standardization of new public-key cryptosystems that are believed to be secure against
quantum computers.
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1.2 Isogeny-based Cryptography

One of the schemes proposed for the NIST competition was Supersingular Isogeny Diffie-
Hellman (SIDH). This key-exchange protocol was first proposed by Jao and De Feo in 2011
[8]. This scheme relied on the assumed hardness of the isogeny problem on supersingular
elliptic curves which will be introduced below. In July 2022, SIDH advanced to the fourth
and final round of the NIST competition as an alternate candidate. However, a few weeks
later, Castryck and Decru [3] discovered an attack that allowed to recover Bob’s secret
isogeny in a few hours on a laptop. Later improvements have made it possible to run the
attack in a few seconds [11].

In the SIDH protocol, Alice’s and Bob’s secret isogenies are usually taken to have degree
2a and 3b respectively. In order to recover Bob’s secret isogeny, the Castryck-Decru attack
requires to compute a degree 2a isogeny in dimension 2. Formulas by Richelot [15] allow
to do this efficiently and make the attack possible. If instead, we wanted to recover Alice’s
secret isogeny, we would need to compute a degree 3b isogeny in dimension 2. Formulas
to do this have also been developed in [2] and optimized in [6]. An implementation of the
attack that works to recover Alice’s isogeny has been done in Magma.

This prompts the question of whether the attack would still be feasible if Alice and
Bob’s secret isogenies had degrees ℓaA and ℓbB where ℓA and ℓB are primes larger than 2 and
3. Implementing the attack in that case would require to compute a degree ℓe isogeny in
dimension 2 for ℓ > 3. Formulas to do this have been developed by Cosset and Robert [5].
They have been mostly implemented in a Magma package called Avisogenies. However,
the package lacked implementations for some of the necessary steps of the attack, namely
the “glue” and “split” cases which are explained below. The main contribution of this
thesis is to implement these and to use them to give a working implementation for the
Castrick-Decru attack when Alice and Bob use general primes ℓA and ℓB in the SIDH
protocol.
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Chapter 2

Background on Elliptic Curves and
Abelian Varieties

In this chapter, we will present the background theory on elliptic curves that is necessary
to understand the SIDH protocol. We will also introduce some background information on
abelian varieties of genus 2 as the Castryck-Decru attack relies on these higher dimensional
varieties.

2.1 Elliptic Curves

Definition 2.1.1 (Elliptic Curve). An elliptic curve E is the set of solutions to an
equation of the form

y2 = x3 + Ax+B,

where the discriminant of the polynomial f(x) = x3 + Ax+ B is non zero. If K is a field
with A,B ∈ K, we say that E is defined over K and write E/K.

We can look at the set of points (x, y) on E such that x, y ∈ L for any field L ⊇ K.
We denote this set by E(L). In this thesis, we will mostly consider elliptic curves defined
over a finite field Fp2 where p is a prime number.

The most interesting feature of elliptic curves is that the set of points E(L) forms an
abelian group. However, in order to define a group law that satisfies the four axioms of a
group, we need to add an extra point to E(L) which is called the point at infinity and is
usually denoted by ∞ or O. This point will serve as the identity element.
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Group Law

Let E be an elliptic curve and P1 = (x1, y1) and P2 = (x2, y2) be points on E. The group
law is defined as follows:

1. If x1 ̸= x2 then trace the line going through P1 and P2. Let (x3, y3) denote the
coordinates of the third point of intersection of this line with the curve. Then,
P1 + P2 = (x3,−y3)

2. If x1 = x2 and y1 = −y2 then P1 + P2 = ∞ (i.e. P1 = −P2)

3. If P1 = P2 and y1 ̸= 0 then trace the line tangent to the curve at P1 and proceed as
in 1. (point doubling)

4. P +∞ = P for all P on E. (∞ is the identity)

The commutativity, identity and inverses properties of a group are easily verified from
this definition. It is straightforward to translate these geometric manipulations into al-
gebraic formulas that can be used to quickly compute the sum of any two points on the
curve. We can then use these formulas to check that P1 + (P2 + P3) = (P1 + P2) + P3 for
any three points on the curve, which then proves associativity. Computer packages such
as Sage or Magma have efficient implementations of elliptic curve arithmetic.

Let E be an elliptic curve defined over Fp2 . We can look at the set of points on E over
F p2 that have order dividing n for any integer n. We denote this set E[n]:

Definition 2.1.2 (n-torsion Subgroup). The n-torsion subgroup of E/Fp2 is the set of
points in E(F p2) whose order divides n:

E[n] = {P ∈ E(F p2) | nP = ∞}.

It can be shown that if p doesn’t divide n then E[n] ≃ Zn × Zn. The group E[p] will
be either {∞} or isomorphic to Zp. This allows us to make the following definition:

Definition 2.1.3 (Supersingular Elliptic Curve). An elliptic curve E defined over Fp2 is
supersingular if E[p] = {∞}. That is, if it has no points of order p.

The main interest of supersingular elliptic curves is that we have E(Fp2) ≃ Zp+1×Zp+1

for any supersingular elliptic curve E and prime p. Therefore, if we work with a prime p
that has the form p = AB − 1, any supersingular elliptic curve will have its full A and B
torsion defined over Fp2 .

4



2.2 Isogenies

Definition 2.2.1 (Isogeny). Let E1 and E2 be elliptic curves. An isogeny between E1

and E2 is a rational map
ϕ : E1 → E2

satisfying ϕ(∞) = ∞.

It turns out that only requiring ϕ(∞) = ∞ implies that ϕ(P + Q) = ϕ(P ) + ϕ(Q) for
any points P and Q. The proof of this can be found in theorem 4.8 of chapter 3 in [14].
Therefore, any isogeny is a homomorphism. Since ϕ is a rational map, this means there
exist rational functions ϕ1(x, y) and ϕ2(x, y) such that

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)).

Using the relation y2 = x3 +Ax+B and the fact that ϕ is a homomorphism, we can write

ϕ1(x, y) =
p1(x)

q1(x)

and

ϕ2(x, y) =
p2(x)

q2(x)
y.

Here, p1, q1, p2 and q2 are polynomials in Fp2 [x]. The exact procedure to reduce isogenies
to this form can be found in section 2.9 of [17].

This allows us to give the following simple definition of the degree of an isogeny:

Definition 2.2.2 (degree of an isogeny). Let E1 and E2 be elliptic curves defined over Fp2

and ϕ : E1 → E2 be an isogeny between the two. The degree of ϕ is

deg(ϕ) = max{deg(p1), deg(q1)}.

An alternative and more standard definition for the degree of an isogeny can be found
in [14] section 3.4. An isogeny of degree one is an isomorphism. The following definition
will be useful in determining which elliptic curves are isomorphic to one another

Definition 2.2.3 (j-invariant). Let E : y2 = x3 + ax + b be an elliptic curve defined over
Fp2. The j-invariant of E is

j(E) = 1728
4a3

4a3 + 27b2
.
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If E and E ′ are two elliptic curves defined over Fp2 , then E(F p2) ≃ E ′(F p2) if and only
if j(E) = j(E ′).

Going back to general-degree isogenies, a simple example that works on any curve is
the multiplication by m map:

Example 2.2.1. Let E be an elliptic curve. The multiplication by m map

[m] : E → E

P 7→ mP

is an isogeny.

Other useful isogenies are the Frobenius morphisms:

Example 2.2.2. If E is defined over a field of characteristic p and q = pr for some integer
r, then we can define the isogeny

ϕq : E → E(q)

as
ϕq(x, y) = (xq, yq)

This isogeny is called the qth-power Frobenius morphism.

In what follows, we will be concerned with computing isogenies that are “separable”.
Separable isogenies are nice to work with as their codomain is fully determined by their
kernel. Furthermore, we have that if ϕ is separable then deg(ϕ) = #ker(ϕ). For a formal
definition of separable isogenies and a proof of these facts see [14] section III.4. Every
isogeny can be written as the composition of a frobenius morphism with a separable isogeny
(see [14] II.2.12 for a proof). Once we know the kernel of an isoeny, we can compute its
codomain and its image on any point efficiently by using Velu’s formulas [16]. Isogenies do
not have inverses. However, we can work with the following:

Proposition 2.2.1 (Dual Isogeny). Let E1 and E2 be elliptic curves and ϕ : E1 → E2 be
an isogeny between them with deg ϕ = m. Then, there exists a unique isogeny

ϕ̂ : E2 → E1

such that ϕ̂ ◦ ϕ = [m]. This isogeny is called the dual of ϕ.

Proof. See [14] III.6.1a.
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2.3 Divisors

The Castryck-Decru attack on SIDH relies on the computation of isogenies on genus 2
abelian varieties. In order to generalize the preceding concepts to higher genus, we first
need to introduce the notion of a divisor. For simplicity, we begin by defining divisors of
elliptic curves.

Definition 2.3.1 (Divisor of a cuvre). Let E/Fp2 be an elliptic curve. The set of divisors
of E, denoted Div(E) is the free abelian group generated by the formal symbols (P ) for
P ∈ E(F p2). In other words, a divisor is a formal sum:

D =
∑
j

aj(Pj),

where aj ∈ Z and Pj ∈ E(F p2).

We can then introduce the notion of degree of a divisor:

Definition 2.3.2 (Degree of a divisor). The degree of a divisor D =
∑

j aj(Pj), denoted
deg(D) is

deg(D) =
∑
j

aj.

We will be particularly interested in divisors of degree 0. The set of such divisors is
denoted Div0(E). Another set of divisors that will be of interest are principal divisors. To
define these, we need to first introduce the concept of functions on an elliptic curve.

Definition 2.3.3 (Function on an Curve). A function on an elliptic curve E/Fp2 is a
rational function f(x, y) ∈ F p2(x, y) which takes as input points on E and returns an
element of F p2 or ∞.

f : U → F p2 ∪ {∞}

where U ⊆ E(F p2).

By following a similar procedure as with isogenies, we can always write f as

f(x, y) =
p(x)

q(x)
y,
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where p, q ∈ F p2 [x]. If f(P ) = 0, we say that f has a zero at P and if f(P ) = ∞ (i.e.
q(P ) = 0), we say that f has a pole at P . For a fixed point P , we can always rewrite f as

f = ur
Pg,

where g(P ) ̸= 0 or ∞ and uP is a rational function in F p2(x, y) such that uP (P ) = 0. We
say that r is the order of f at P and denote this by ordP (f). This allows us to introduce
another type of divisors

Definition 2.3.4 (Divisor of a function). Let E/Fp2 be an elliptic curve and f be a function
on E. The divisor of f is defined as

div(f) =
∑
P

ordP (f)(P ).

Since we are working over finite fields, the sum above is finite and so div(f) ∈ Div(E).

Proposition 2.3.1. Let E/Fp2 be an elliptic curve and f be a function on E. Then,

• deg(div(f)) = 0

• If div(f) = 0 then f is constant.

Proof. See [14] Section 2.3, proposition 3.1

Definition 2.3.5 (Principal divisor). A divisor D ∈ Div(E) is principal if it can be
written as D = div(f) for some function f on E.

The use of principal divisors is to define an equivalence relation on elements of Div0(E).

Definition 2.3.6 (Divisor equivalence). Let D1 and D2 be divisors on a elliptic curve E.
We say that D1 is linearly equivalent to D2 and write D1 ∼ D2 if D1 −D2 is principal.

This equivalence relation is the building block for two very important groups:

Definition 2.3.7 (Divisor class group). Let E be an Elliptic Curve. The Divisor class
group of E, also called the Picard group, is

Pic(E) = Div(E)/ ∼ .

8



It follows from proposition 2.3.1 that the set of principal divisors is a subset of Div0(E).
Therefore, we can also define the following group:

Definition 2.3.8 (Jacobian). Let E be an elliptic curve. The Jacobian of E, denoted
Jac(E) or Pic0(E) is

Jac(E) = Div0(E)/ ∼ .

It is actually the case that for elliptic curves, Jac(E) ≃ E(F p2). The simplest way to
go from divisors to points on the curve is through the following natural map:

ν : Div(E) −→ E(F p2)∑
j

aj(Pj) 7→
∑
j

ajPj.

We will be interested in the restriction of this map to the set of divisors of degree 0,
Div0(E). Clearly, this map is surjective since

ν((P )− (∞)) = P

for any point P on E. Furthermore, it can be shown that the kernel of ν is the set
of principal divisors. A proof of this can be found in [17] section 11.1, theorem 11.2.
Therefore, it follows from the first isomorphism theorem that

Jac(E) ≃ E(F p2).

We can deduce from this isomorphism that every element of Jac(E) has a unique repre-
sentative of the form (P )− (∞) for some P ∈ E(F p2).

2.4 Abelian Varieties of Genus 2

Elliptic curves are abelian varieties of genus one. We will now introduce another type of
abelian varieties that are a generalization of elliptic curves to higher genera:

Definition 2.4.1 (Hyperelliptic Curve). A hyperelliptic curve C of genus g defined
over a field K is an equation of the form

C : y2 + h(x)y = f(x),

where h, f ∈ K[x] with deg(h) ≤ g and 2g + 1 ≤ deg(f) ≤ 2g + 2.

9



If the characteristic of K is different from 2, we can always complete the square on the
left eliminate the h. Since we will be working with fields Fp2 for large primes p, this will
always be the case and so in the future, we will only consider hyperelliptic curves of the
form y2 = f(x). We will also mostly be restricting ourselves to the case g = 2 from now
on.

While the set of points on hyperelliptic curves of genus 2 doesn’t form a group directly
as it did with elliptic curves, we can construct divisors and the Jacobian of any hyperelliptic
curve C in exactly the same way as we did above for elliptic curves and work with the
group Jac(C) instead. In the case of hyperelliptic curves of genus 2, every element in the
Jacobian has a unique representative of the form

(P ) + (Q)− 2(∞),

where P and Q are points on the curve. Divisors in this form are referred to as reduced
divisors .

We can also construct abelian varieties of genus 2 in a different way. That is, we can
take the product group of two elliptic curves E1×E2. The set of points (P1, P2) on E1×E2

will also form a group. Any abelian variety of genus 2 will be either the Jacobian of a
hyperelliptic curve or the product of two elliptic curves.

2.5 Isogenies in Dimension 2

We can look at isogenies between abelian varieties in dimension 2. Specifically, we will be
interested in isogenies

Φ : E1 × E2 → E3 × E4

that go from a product of two elliptic curves to the product of two elliptic curves. Such
isogenies were characterized by Kani’s theorem [9]. They can be written in matrix form

Φ =

(
α β
γ δ

)
where α : E1 → E3, β : E2 → E3, γ : E1 → E4 and δ : E2 → E4 are dimension one
isogenies of elliptic curves. We will be working with separable isogenies and so the number
of points in kerΦ determines its degree d. The degree of dimension 2 isogenies is often
written as (d, d) to emphasize the fact that we are working in higher dimension. We would
like to have isogeny formulas analogous to Velu’s formulas that allow us to compute the
codomain of dimension 2 isogenies from their kernel.
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By factoring d, we can break up Φ into the composition of smaller isogenies of prime
degree. When d = ℓe for some prime ℓ, we call this composition an (ℓ, ℓ)-isogeny chain.
When working over Fp2 , it is overwhelmingly likely that all of the middle steps of the chain
will be between Jacobians of hyperelliptic curves. Therefore, to map a point through the
chain, we will first need to map it through a “Glue” isogeny

ϕgl : E1 × E2 → Jac(Hgl)

then we map it through e− 2 isogenies between Jacobians

ϕ : Jac(C) → Jac(C ′)

and finally, we map it through a “split” isogeny:

ϕsp : Jac(Hsp) → E3 × E4.

Formulas due to Richelot [15] address the three cases when ℓ = 2. When ℓ = 3, explicit
formulas have also been found [2, 6]. In the case of a generic prime ℓ, Cosset and Robert
[5] have developed formulas that make use of theta coordinates. These are the formulas
we will be working with.

2.6 Mumford Coordinates

Mumford coordinates give a practical way to represent divisors on the Jacobian of hyper-
elliptic curves. As stated before, in the case of genus 2, any element in the Jacobian can
be represented uniquely as a reduced divisor:

D = (P ) + (Q)− 2(∞).

Write P = (x1, y1) and Q = (x2, y2). Then, the Mumford representation of D is

D = [u(x), v(x)],

where u(x) = (x − x1)(x − x2) and v(x) is the line such that v(x1) = y1 and v(x2) = y2.
Cantor’s algorithm gives a way to efficiently add divisors when they are written in this
form.

11



Chapter 3

Supersingular Isogeny Diffie-Hellman

Supersingular Isogeny Diffie-Hellman is a key-exchange protocol based on walks on the
isogeny graph of supersingular elliptic curves. It was first proposed in 2011 by Jao and De
Feo [8]. It was submitted to the United States National Institute of Standards and Tech-
nology’s (NIST) competition for standardization of post-quantum cryptography protocols.
It advanced to the fourth round of the competition as an alternate candidate. However,
in July 2022, Castryck and Decru [3] found a devastating attack against the protocol that
allowed to recover Bob’s secret key in a few hours on a laptop. Later improvements by
others, notably Odompheng [11], made it possible for the attack to run in a few seconds.

3.1 Protocol

To start the protocol, Alice and Bob must choose two integers a and b and two small primes
ℓA and ℓB such that p = ℓaAℓ

b
B − 1 is a large prime. The small primes are usually taken to

be ℓA = 2 and ℓB = 3 to maximize the speed of the computations. However, we will be
considering the case where larger values of ℓA and ℓB are chosen. From here, Alice and Bob
pick a starting supersingular elliptic curve E0 which is defined over Fp2 . This is usually
taken to be E0 : y

2 = x3 + 6x2 + x. Alice and Bob can then agree on a basis ⟨PA, QA⟩ and
⟨PB, QB⟩ for the ℓaA and ℓbB torsion on E0 respectively. This completes the initial setup.

To exchange a key, Alice and Bob will both start by choosing a secret integer skA
and skB. Alice will then compute the codomain EA of the ℓaA-isogeny ϕA whose kernel
is generated by PA + skAQA. She will then transmit EA to Bob along with the images
ϕA(PB) and ϕA(QB) of the generators of the ℓbB-torsion under the isogeny. Bob will do

12



E0 EA

EB EAB

ϕB

ϕA

ϕ′
B

ϕ′
A

Figure 3.1: SIDH key exchange diagram

the corresponding thing: he will choose a secret integer skB and construct an isogeny
ϕB : E0 → EB whose kernel is PB + skBQB. He will then transmit EB, ϕB(PA) and
ϕB(QA) to Alice. With this information, Alice will compute the codomain EAB of the
isogeny ϕ′

A : EB → EBA whose kernel is generated by ϕB(PA) + skAϕB(QA). Bob will
do the corresponding computation by calculating the codomain EAB of the isogeny ϕ′

B :
EA → EAB whose kernel is generated by ϕA(PB) + skBϕA(QB). Alice and Bob will land
on isomorphic curves EAB ≃ EBA and so they can use the j-invariant of these curves as
their shared secret key. The key exchange protocol is summarized in figure 3.1.

The security of this protocol was based on the assumed hardness of the isogeny problem.
This hardness assumption states that, given two isogenous elliptic curves E1 and E2, it is
computationally infeasible to recover the kernel of an isogeny between them. However, in
the SIDH protocol, more information than just the codomain of the isogenies is transmitted,
namely, the image of the isogeny ϕA (resp. ϕB) on the ℓaA (resp. ℓbB) torsion. It was believed
for a long time that the transmission of this extra information did not impact the security
of the scheme. However, Castryck and Decru [3] showed how it could be exploited to
completely break the scheme.

3.2 Castryck-Decru Attack

In what follows, we will be working to recover Alice’s isogeny ϕA. Since we are working with
arbitrary ℓA and ℓB, this does not affect the generality of the attack. The breakthrough
idea of Castryck and Decru is to look at higher dimension isogeny chains that start and
end on a product of elliptic curves. These chains were characterized by Kani [9]. The
goal is to construct such an isogeny chain for which the kernel can be calculated from the
torsion point information and where one of the components gives us the image of ϕ̂A on
any point of EA, when mapping a suitable point through the chain. Once this is done, we
can compute ϕ̂A on generators P ′

A and Q′
A of the ℓaA-torsion on EA. We then know that

the kernel of ϕA is generated by either ϕ̂A(P
′
A) or ϕ̂A(Q

′
A). Castryck and Decru originally

devised this attack in dimension 2 but Robert [12] later generalized their idea to dimensions

13



E0 EA

E0 C

γ

ϕA

γ′

ϕ′
A

Figure 3.2: Isogeny Square used in the Castryck-Decru attack

4 and 8 which allow for more flexibility in the starting curve. We will be working only with
the dimension 2 case.

To construct the desired isogeny chain, we first need an endomorphism γ on E0 which
has degree c = ℓbB− ℓaA. The purpose of choosing γ in this way is to ensure that the isogeny
chain meets the criteria for Kani’s theorem and so the chain indeed splits at the end. We
can then build the isogeny square in figure 3.2.

The dimension 2 isogeny chain will be

Φ : E0 × EA → E0 × C

where

Φ =

(
γ̂ ϕ̂A

−ϕ′
A γ′

)
The kernel of Φ is given by

⟨(ℓaAPB,−ϕA(γ̂(PB))), (ℓ
a
AQB,−ϕA(γ̂(QB)))⟩,

where PB and QB are generators for the ℓbB-torsion on E0 as in section 3.1. If γ can be com-
puted efficiently, this kernel can be obtained almost directly from the public information
passed on in the SIDH protocol. Furthermore, we have that

Φ(∞, P ) = (ϕ̂A(P ), γ′(P ))

for any P ∈ EA(Fp2), and therefore computing this chain on (∞, P ′
A) and (∞, Q′

A) will give

us ϕ̂A(P
′
A) and ϕ̂A(Q

′
A) as desired.

The first hurdle when implementing this attack is to find a suitable endomorphism γ
which can easily be computed on any point of E0. When E0 is y2 = x3 + 6x2 + x, we can
take γ = [u]+2i[v] where 2i = ρ̂◦ ι◦ρ with ρ a 2-isogeny connecting E0 to E ′

0 : y
2 = x3+x

and ι is the well-known endomorphism

ι : E ′
0 → E ′

0

(x, y) 7→ (−x, iy).

14



With this choice, we have that deg(γ) = u2 + 4v2 and so we must choose u and v so
that ℓbB − ℓaA = u2 + 4v2.

The resulting isogeny chain will have degree (ℓbB, ℓ
b
B) and can be broken down into one

(ℓB, ℓB) gluing step, b− 2 (ℓB, ℓB) -isogenies between Jacobians of hyperelliptic curves and
one (ℓB, ℓB) splitting step. In the case where ℓB = 2, the chain can be computed using
formulas by Richelot which is what was done in the original implementation by Castryck
and Decru. The case where ℓB = 3 has also been implemented in [6].

15



Chapter 4

Computing (ℓ, ℓ)-isogeny
glue-and-split chains

In order to be able to generalize the Castryck-Decru attack to primes ℓA and ℓB that are
different from 2 and 3, we need to be able to compute a chain of dimension 2 (ℓ, ℓ)-isogenies
that starts with a gluing step and ends with a splitting step for an arbitrary prime ℓ.
Cosset and Robert [5] have devised algorithms to compute (ℓ, ℓ)-isogenies between abelian
varieties of genus g that make use of theta coordinates. These algorithms are implemented
in a Magma package called Avisogenies.

4.1 Theta Coordinates and Mumford Coordinates

Theta coordinates are derived from the Riemann theta function. This function is defined
on Cg ×Hg where Hg is the Siegel upper-half plane. A matrix Ω belongs to Hg if and only
if it is symmetric and its imaginary part is positive definite.

Definition 4.1.1 (Riemann theta function). Let Ω ∈ Hg and z ∈ Cg. The Riemann
theta function is defined as

θ(z,Ω) =
∑
n∈Zg

exp(iπnTΩn+ 2iπnT z).

Theta coordinates give a way to embed abelian varieties of genus g in the projective
plane Png−1. This works regardless of which type of abelian variety we are working with.
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Therefore, in genus 2, it gives us a common system of coordinates to work with both
Jacobians of hyperelliptic curves and products of elliptic curves. The integer n in Png−1

is the level of the theta functions from which the coordinates originate. The Riemann
theta function can be generalized by adding characteristics a, b ∈ Qg to it. Depending on
its characteristic, a theta function will satisfy a recurrence relation involving an integer
n. This integer is referred to as the level of the function. For a fixed matrix Ω, the theta
functions of characteristic b ∈ Qg are defined as

θb(·,Ω) : Cg → C

z 7→
∑
m∈Zg

exp
(
iπ

(
mTΩm+ 2mT (z + b/2)

))
.

More generally, the theta functions of characteristic a, b ∈ Qg are defined as

θa,b(z,Ω) =
∑
m∈Zg

exp

[
iπ

((
m+

a

2

)T

Ω
(
m+

a

2

)
+ 2

(
m+

a

2

)T
(
z +

b

2

))]
.

Theta functions of level n form a vector space of dimension ng. To embed an abelian
variety in the projective plane, we will use a basis for that vector space. Different choices
of bases will give different embeddings. Therefore, for each abelian variety, there exist
several different coordinates that can be used, depending on the level of theta functions
and the basis chosen. We will be mainly working with theta functions of level 2 and genus
2 and therefore we will be working on P3.

The original Riemann theta functions were defined over the complex numbers. Abelian
varieties of genus g over C can be represented as points on Cg modulo a lattice ΛΩ. This
lattice can be written as ΩZg ×Zg where Ω is a g× g matrix in the Siegel upper half-plane
Hg. Here however, we are working with abelian varieties defined over a finite field Fp2 and
so we will work with the analogous theta functions defined over Fp2 .

A basis for the vector space of theta functions of level 2 when g = 2 is given by the
functions whose characteristic b are (0, 0), (0, 1), (1, 0) and (1, 1):

F2(2) = {θ00(·,Ω), θ01(·,Ω), θ10(·,Ω), θ11(·,Ω)} .

This is the basis we will be mainly working with. We will also need to work with genus 1
as an intermediate step in the conversion of elements on the product of elliptic curves into
theta coordinates. When g = 1, a basis is given by the theta functions of characteristic 0
and 1:

F2(1) = {θ0(·,Ω), θ1(·,Ω)} .
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Starting with a divisor D given in Mumford coordinates on the Jacobian of a hyperel-
liptic curve C of genus 2 defined over Fp2 , we would like to use the basis F2(2) to map D
to a point on P3. There exists a one-to-one correspondence between points on Jac(C) and
elements on (Fp2)

2 modulo a lattice ΛΩ = ΩZ2+Z2. To do this, we first need to map D to
a point z ∈ (Fp2)

2 such that z mod ΛΩ is the point on (Fp2)
2/ΛΩ corresponding to D on

Jac(C). We can then map z to

θD = (θ00(z,Ω) : θ01(z,Ω) : θ10(z,Ω) : θ11(z,Ω)) ∈ P3(Fp2).

We refer to the point obtained on the projective plane as a theta point. This mapping
gives a correspondence between Divisors on Jac(C) and points on P3(Fp2). A more detailed
introduction to theta functions and a proof of the validity of this correspondence is given
in [4] chapter 3. We can proceed analogously to obtain the theta coordinates of a point P1

on an elliptic curve E1. These are given by

θP1 = (θ0(z1,Ω1) : θ1(z1,Ω1)) ∈ P1(Fp2)

where ΛΩ1 = Ω1Z + Z is a lattice such that Fp2/ΛΩ1 is in one-to-one correspondence with
E1 and z is a point on Fp2 which corresponds to P when modded out by ΛΩ1 . If we also
have the theta coordinates

θP2 = (θ0(z2,Ω2) : θ1(z2,Ω2)) ∈ P1(Fp2)

of a point P2 on another elliptic curve E2, then the theta coordinates of the point (P1, P2)
on the variety E1 × E2 are given by

θ(P1,P2) =
(
θ0(z1,Ω1)θ0(z2,Ω2) : θ0(z1,Ω1)θ1(z2,Ω2) :

θ1(z1,Ω1)θ0(z2,Ω2) : θ1(z1,Ω1)θ1(z2,Ω2)
)
∈ P(Fp2)

3.

The precise formulas to convert between Mumford coordinates and theta coordinates
are given in the appendix of [5] and are implemented in Avisogenies. We will abbreviate

the coordinate θij(z,Ω) as θ
D
ij and similarly, θi(zj,Ωj) will be abbreviated as θ

Pj

i . We can
also represent A = Jac(C) itself using theta coordinates by computing

θA = (θ00(0,Ω) : θ01(0,Ω) : θ10(0,Ω) : θ11(0,Ω)) ∈ P3.

This is referred to as the theta null point of A and its coordinates correspond to the theta
coordinates of the identity element on A. We will abbreviate the coordinate θij(0,Ω) as
θAij.
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In section 4.4.3, we will also need to make use briefly of theta functions of level 4 using
the basis F(2,2). This basis includes theta functions with a non-zero characteristic a ∈ Q2.
The basis is given by:

F(2,2)(2) =
{
θ00,00(·,Ω), θ00,01(·,Ω), θ00,10(·,Ω), θ00,11(·,Ω)
θ01,00(·,Ω), θ01,01(·,Ω), θ01,10(·,Ω), θ01,11(·,Ω)
θ10,00(·,Ω), θ10,01(·,Ω), θ10,10(·,Ω), θ10,11(·,Ω)
θ11,00(·,Ω), θ11,01(·,Ω), θ11,10(·,Ω), θ11,11(·,Ω)

}
.

This is sometimes referred to as level (2, 2) because of the choice of basis. These functions
are sometimes renumbered using indices 1 to 16. Different numberings were used by dif-
ferent people. To avoid confusion, we will stick to labelling the coordinates using the four
binary digits. Some of the numberings used by other authors are explicited in [4] section
3.1.2.

4.2 The Avisogenies Package

Avisogenies is a Magma package developed by Damien Robert and Romain Cosset. It
contains implementations of algorithms to compute genus 2 (ℓ, ℓ)-isogenies in theta coor-
dinates for an arbitrary prime ℓ. Currently, it can be used to compute the theta null
point of the codomain of such an isogeny by using the function IsogenieG2Theta in
the file isogenie.m. It also contains implementations of the conversion between Mum-
ford coordinates and theta coordinates in the functions MumfordToLevel2ThetaPoint and
Level2ThetaPointToMumford. These can be used for any genus and so they can be used to
convert an elliptic curve point or a divisor on a hyperelliptic curve into theta coordinates.
They can be found in the file morphisms.m

The package also contains conversions between a theta null point and its corresponding
hyperelliptic curve of genus two. These conversions are implemented in the functions
theta point from ros and theta null from rosenhain in the file rosenhain.m. They
are so called because they make use of the Rosenhain form of a curve. A hyperelliptic
curve of genus 2 is in Rosenhain form if it has the form

y2 = x(x− 1)(x− λ)(x− µ)(x− ν).

The function RosenhainForm allows to convert a curve to its Rosenhain form which must
be done before computing its theta null point.
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Theta coordinates can also be used to represent points on a variety A = E1 × E2 that
is the product of two elliptic curves. The (ℓ, ℓ)-isogeny formulas that are implemented
in Avisogenies work regardless of whether we are working with the theta coordinates
of a product of elliptic curves or of the Jacobian of a hyperelliptic curve. However, the
Avisogenies package has no implementation of the conversion between points on the
product of elliptic curves and theta coordinates which is necessary for the gluing and
splitting steps of the isogeny chain.

In order to map points through the chain, we need a function that computes the image
of a point given the kernel of an isogeny. The package Avisogenies contains an untested
function ImagePoint, which takes as input a divisor in Mumford coordinates on the Jaco-
bian of a genus 2 curve, as well as the kernel of an isogeny in Mumford coordinates and
returns the the image of the divisor under that isogeny as well as the codomain curve.
When testing this function, we obtained an error and so some bugs had to be fixed before
it could be used. We also needed to reorganize it so that it could be used for the glue and
split cases as well.

In summary, in order to be able to use Avisogenies to compute an (ℓ, ℓ)-isogeny glue
and split chain, the following things needed to be done:

• Implement the conversion from an elliptic curve to its theta null point

• Implement the conversion from the theta null point of two elliptic curves E1 and E2

to the theta null point of the product E1 × E2

• Implement the conversion from a point on a product of elliptic curves to theta coor-
dinates

• Fix the ImagePoint function and reorganize it so that it takes as input and outputs
theta coordinates and so can be also used for the glue and split cases

• Implement the conversion from a theta null point of the product of two elliptic curves
to the theta null point of each elliptic curve.

• Implement the conversion from a theta null point to an elliptic curve

• Implement the conversion from the theta coordinates of a point (P,Q) on the product
of two elliptic curves to the points P and Q.
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4.3 Computing the Image of a Point

Algorithm 4.5 in [5] describes how to compute the image of a point using theta coordi-
nates. It is implemented in the file Image.m of the Avisogenies package. However, the
implementation had not been tested and contained some bugs.

The first step of the algorithm is to find an integer matrix F such that F TF = ℓI.
To do this, the authors first write ℓ as a sum of two squares ℓ = a2 + b2 or four squares
ℓ = a2 + b2 + c2 + d2 if two is not possible. Then they take F to be either

F =

(
a b
−b a

)
or

F =


a b c d
−b a −d c
−c d a −b
−d −c b a


We will deal with the 4× 4 case but the same applies to the 2× 2 case. In step 4, we need
to take a vector (m1,m2,m3,m4) such that(

ℓ 0 0 0
)
F−1 =

(
m1 m2 m3 m4

)
.

The authors take this vector to be (a, b, c, d). However it doesn’t satisfy the equation since,(
ℓ 0 0 0

)
F−1 = (a,−b,−c,−d)

so we obtain an error when running the code. This suggests that we should take a to have
the opposite sign from b, c and d when constructing F . Indeed, taking the negative root
of a2 instead of the positive one solved the problem.

There was also a minor typo in the original version of the ImagePoint function. In the
equation on line 193, the c should be cx instead.

Finally, there were some issues with the way the conversion between Mumford and
theta coordinates was done. However we needed to be able to use this function in the glue
and split cases too and so we simply removed this from the function so that it would take
as input and output theta coordinates. The conversions for the three cases (glue, split and
Jacobian to Jacobian) were done from scratch in separate functions.
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4.4 Theta Coordinates and Product Varieties

In this section, we describe how to convert between points on a product of elliptic curves
and theta coordinates. This is necessary to complete the gluing and splitting steps of the
chain.

4.4.1 Gluing

In this step, we are given two elliptic curves E0 and EA, the kernel of an (ℓA, ℓA)-isogeny

Φgl : E0 × EA → Jac(Hgl),

where Hgl is a hyperelliptic curve of genus 2, as well as a pair of points P = (∞, P ′
A) and

Q = (∞, Q′
A) on E0 × EA that we would like to map through Φgl.

The isogeny algorithm implemented in Avisogenies allows us to compute the codomain
curve Hgl as well as Φgl(P) and Φgl(Q). The algorithm to recover Hgl takes as input the
theta null point θE1×E2 of E1 × E2 along with the theta points of all the elements in the
kernel of Φgl. In order to compute the image of P, we also need to give as input the theta
coordinates of P+K for all K ∈ kerΦgl (and similarly for Q).

Therefore, in order to be able to complete the gluing step, we first need to compute
the theta null point of the product variety A = E0 × EA. The first step is to compute
the theta null points θE0 and θEA of E0 and EA. The procedure is given in [10] section
4. However, the formulas given are for theta points of level 4 and so we combine these
with the conversion formulas between level 2 and level 4 theta points which are given in
[4] section 3.1.2. Starting from an elliptic curve E : y2 = f(x), to obtain the level 2 theta
null point θE, we first compute the roots e1, e2 and e3 of f(x). Then, θE = (θE0 : θE1 ) with

θE0 =
√
e1 − e3 +

√
e1 − e2

θE1 =
√
e2 − e3.

Once we have obtained θE0 and θEA , we can compute the theta null point of A,

θA = (θA00 : θ
A
01 : θ

A
10 : θ

A
11)
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where

θA00 = θE0
0 · θEA

0

θA01 = θE0
0 · θEA

1

θA10 = θE0
1 · θEA

0

θA11 = θE0
1 · θEA

1

In order to compute the theta coordinates of a point P = (R, S) on A we proceed in a very
similar way. We first compute the theta coordinates θR and θS of the elliptic curve points
R and S. This conversion can be done by using the function MumfordToLevel2ThetaPoint

that has already been implemented in the Avisogenies package. The theta coordinates
of P will then be given by

θP00 = θR0 · θS0
θP01 = θR0 · θS1
θP10 = θR1 · θS0
θP11 = θR1 · θS1

Using these two procedures, we can obtain the theta null point and all of the theta points
that are needed as input to the Avisogenies algorithm and therefore obtain the codomain
curve C and the image points Φgl(P) and Φgl(Q) completing the first step of the chain.

4.4.2 Splitting

In this step, we are given the Jacobian Jac(Hsp) of a genus 2 hyperelliptic curve Hsp : y
2 =

f(x), as well as the kernel of an (ℓA, ℓA)-isogeny:

Φsp : Jac(Hsp) → E ′
0 × C ′

for which we know the codomain is the product of two elliptic curves E ′
0 and C ′. We

would like to recover the images of the two divisors DP and DQ through Φsp where DP

and DQ are the images of P and Q respectively through the rest of the chain. By using
the functions available in Avisogenies, we can obtain the theta points θΦ(P) and θΦ(Q) of
Φsp(DP) = Φ(P) and Φsp(DQ) = Φ(Q) along with the theta null point θB of B = E ′

0×C ′.
In what follows, we will work with Φ(P) and write

Φ(P) = (P ′
0, P

′
C),
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where P ′
0 ∈ E ′

0(Fp2) and P ′
C ∈ C ′(Fp2). We expect the coordinates of θΦ(P) to have the

form

θ
Φ(P)
00 = θ

P ′
0

0 · θP
′
C

0

θ
Φ(P)
01 = θ

P ′
0

0 · θP
′
C

1

θ
Φ(P)
10 = θ

P ′
0

1 · θP
′
C

0

θ
Φ(P)
11 = θ

P ′
0

1 · θP
′
C

1 .

If this is the case, we can reverse the process in section 4.4.1 to recover Φ(P). How-
ever, this does not always happen as theta coordinates are not unique up to isomorphism.
Therefore, we might need to apply an automorphism to θΦ(P) so that it has the form
above. The procedure to find and apply the correct isomorphism is described in the next
section. For now, we will assume that θΦ(P) has the form above. We will be working to
recover P ′

0 as this is the point that should equal ϕ̂A(P
′
A). In order to do this, the first

step is to recover θ
P ′
0

0 and θ
P ′
0

1 . Since these are projective coordinates, we are really only

interested in the ratio θ
P ′
0

0 /θ
P ′
0

1 . This ratio is equal to θ
Φ(P)
00 /θ

Φ(P)
10 which we can compute

directly. Once we have that, we can feed these coordinates into the Avisogenies function
Level2ThetaPointToMumford to recover P ′

0. This function also takes as input the roots of
the polynomial defining the elliptic curve on which P ′

0 lies as well as the theta null point
of that curve. This does not appear to be a problem since we know that P ′

0 must lie on E ′
0

which is isomorphic to the starting curve E0. However, there are two issues that we run
into.

The first one is that, as stated before, theta coordinates are not unique up to isomor-
phism and so if we give as input to Level2ThetaPointToMumford the theta coordinates
of P ′

0 and the roots of the polynomial of E0, we get an error. Therefore, we must start by
recovering the equation for E ′

0 from the theta null point θB.

The second issue is that the points P ′
0 and P ′

C might have gotten swapped through

the chain and so when we evaluate θ
Φ(P)
00 /θ

Φ(P)
10 we might actually have calculated θ

P ′
C

0 /θ
P ′
C

1

instead. In order to test whether we have the correct point, we can try running the function
Level2ThetaPointToMumford by using the theta null point and the roots of the polynomial
of the elliptic curve E ′

0. If we actually gave as input the theta coordinates of P ′
C instead of

the ones for P ′
0, we will get an error and so we can retry by using θ

Φ(P)
00 /θ

Φ(P)
01 as θ

P ′
0

0 /θ
P ′
0

1

instead.
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Recovering the equation of E ′
0 from θB

We will assume for now that θB has the form

θB00 = θ
E′

0
0 · θC′

0

θB01 = θ
E′

0
0 · θC′

1

θB10 = θ
E′

0
1 · θC′

0

θB11 = θ
E′

0
1 · θC′

1 .

If that is not the case then we need to start by following the procedure outlined in
section 4.4.3 to get a point of this form. We start by recovering the ratio of the theta

coordinates of E ′
0 θ

E′
0

0 /θ
E′

0
1 by taking it to be the ratio θB00/θ

B
10. It might be the case that the

curves E ′
0 and C ′ are swapped. If this happens, we can detect it once we have obtained the

equation for E ′
0 by comparing its j-invariant with the one of E0. If these are different, we

restart the procedure by taking θB00/θ
B
01 as the ratio of the theta coordinates of E ′

0 instead.
In the gluing step, we explained how to obtain the theta coordinates of an elliptic curve
E : y2 = f(x) from the roots e1, e2, e3 of f . We simply took

θE0 =
√
e1 − e3 +

√
e1 − e2

θE1 =
√
e2 − e3

We would now like to invert these equations to obtain e1, e2 and e3 from θE0 and θE1 .
We only care about finding one set of roots e1, e2, e3 that satidfy this equation and not all
of them. Therefore, we can start by setting e2 = 0. Squaring the second equation, we get

e3 = −(θE1 )
2.

Replacing these values in the first equation and moving
√
e1 to the left we get:

θE0 −
√
e1 =

√
e1 + (θE1 )

2.

Squaring both sides we get:

(θE0 )
2 − 2

√
e1θ

E
0 + e1 = e1 + (θE1 )

2

moving 2
√
e1θ

E
0 to the right and everything else to the left, then squaring both sides, we

obtain
((θE0 )

2 − (θE1 )
2)2 = 4e1(θ

E
0 )

2
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or

e1 =
((θE0 )

2 − (θE1 )
2)2

4(θE0 )
2

.

Therefore, we have that the equation of an elliptic curve E with theta coordinates
(θE0 , θ

E
1 ) is given by

y2 = (x− e1)(x− e2)(x− e3)

with

e1 =
((θE0 )

2 − (θE1 )
2)2

4(θE0 )
2

.

e2 = 0

e3 = −(θE1 )
2.

Once we have recovered these roots from θE
′
0 , we have all the necessary ingredients to

call the function Level2ThetaPointToMumford to recover P ′
0. When calling this function,

the order of the roots matter so it is important to give them as a list [e1, e2, e3] in that
order. Once we have P ′

0, we can call the Magma function IsIsomorphic to obtain the
isomorphism from E ′

0 to E0 in order to get P0 = ϕ̂A(P
′
A).

4.4.3 Applying Automorphisms to Theta Coordinates

It may be the case that after we apply the isogeny formula, we obtain a theta null point
θB and a theta point θΦ(P) that don’t have a product structure. By that we mean that the
coordinates of θB (and θΦ(P)) cannot be written as

θB = (xu : xv : yu : yv)

for some elements x, y, u, v in the base field Fp2 . In that case, we must apply an automor-
phism to θB before proceeding further. In order to do this, we will work with the squares
of the theta coordinates of level (2, 2) as it is easier to detect which automorphism must be
applied in that case. The squares of the theta coordinates of level (2, 2) are in one-to-one
correspondence with the theta coordinates of level 2. We will write the (square of the)
theta null point of level (2, 2) of B as

θ̄B = (θ̄B0000 : θ̄
B
0001 : θ̄

B
0010 : θ̄

B
0011 :

θ̄B0100 : θ̄
B
0101 : θ̄

B
0110 : θ̄

B
0111 :

θ̄B1000 : θ̄
B
1001 : θ̄

B
1010 : θ̄

B
1011 :

θ̄B1100 : θ̄
B
1101 : θ̄

B
1110 : θ̄

B
1111) ∈ P15.
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We first need to convert θB into a point of level (2, 2). The conversion formulas are given
in section 3.1.2 of [4] and are implemented in the functions AlgebraicToAnalyticThetaNullPoint
and AlgebraicToAnalyticThetaPoint in the Avisogenies package. Rewriting these for-
mulas using our notation, we have that

θ̄B0000 = (θB00θ
B
00 + θB10θ

B
10 + θB01θ

B
01 + θB11θ

B
11)/4

θ̄B0001 = (θB01θ
B
00 + θB11θ

B
10 + θB00θ

B
01 + θB10θ

B
11)/4

θ̄B0010 = (θB10θ
B
00 + θB00θ

B
10 + θB11θ

B
01 + θB01θ

B
11)/4

θ̄B0011 = (θB11θ
B
00 + θB01θ

B
10 + θB10θ

B
01 + θB00θ

B
11)/4

θ̄B0100 = (θB00θ
B
00 + θB10θ

B
10 − θB01θ

B
01 − θB11θ

B
11)/4

θ̄B0101 = (θB01θ
B
00 + θB11θ

B
10 − θB00θ

B
01 − θB10θ

B
11)/4

θ̄B0110 = (θB10θ
B
00 + θB00θ

B
10 − θB11θ

B
01 − θB01θ

B
11)/4

θ̄B0111 = (θB11θ
B
00 + θB01θ

B
10 − θB10θ

B
01 − θB00θ

B
11)/4

θ̄B1000 = (θB00θ
B
00 − θB10θ

B
10 + θB01θ

B
01 − θB11θ

B
11)/4

θ̄B1001 = (θB01θ
B
00 − θB11θ

B
10 + θB00θ

B
01 − θB10θ

B
11)/4

θ̄B1010 = (θB10θ
B
00 − θB00θ

B
10 + θB11θ

B
01 − θB01θ

B
11)/4

θ̄B1011 = (θB11θ
B
00 − θB01θ

B
10 + θB10θ

B
01 − θB00θ

B
11)/4

θ̄B1100 = (θB00θ
B
00 − θB10θ

B
10 − θB01θ

B
01 + θB11θ

B
11)/4

θ̄B1101 = (θB01θ
B
00 − θB11θ

B
10 − θB00θ

B
01 + θB10θ

B
11)/4

θ̄B1110 = (θB10θ
B
00 − θB00θ

B
10 − θB11θ

B
01 + θB01θ

B
11)/4

θ̄B1111 = (θB11θ
B
00 − θB01θ

B
10 − θB10θ

B
01 + θB00θ

B
11)/4.

Once we have obtained the coordinates of θ̄B in this way, we can separate them into
two sets. The “even” coordinates:

{θ̄B0000, θ̄B0010, θ̄B0001, θ̄B0011, θ̄B1000, θ̄B1001, θ̄B0100, θ̄B0110, θ̄B1100, θ̄B1111}

and the “odd” coordinates:

{θ̄B0101, θ̄B0111, θ̄B1010, θ̄B1110, θ̄B1011, θ̄B1101}.
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If we are working with a theta null point, the odd coordinates should all be zero.
Furthermore, if we are working with the theta null point of a variety that is the product
of two elliptic curves as we are now, exactly one of the even coordinates will be zero. In
order for the corresponding theta null point of level 2 to have the desired form, we need
the even zero coordinate to be θ̄B1111.

The process to apply an automorphism to a theta point of level (2, 2) is detailed in [4]
section 3.1.5. It is only done for the case where the theta point is defined over C but it is
straightforward to adapt it to Fp2 . An automorphism on θ̄B can be represented as a 4× 4
matrix

γ =

(
A B
C D

)
in the symplectic group Sp(4,Z) where A,B,C,D are 2 × 2 matrices with entries in Fp2 .
The matrix γ belongs to Sp(4,Z) if and only if the following two conditions are satisfied:

1. ATC and DTB are symmetric

2. ATD − CTB = I

where I is the 2×2 identity matrix. To write out how the matrix γ acts on the coordinates
of θ̄B, we first define the vector

d = diag(ATC)||diag(DTB) ∈ (Z/2Z)4

which consists of the concatenation of the diagonal entries of ATC with the diagonal
entries of DTB reduced modulo 2. The matrix γ will then act in the following way on the
coordinate θ̄Bc :

γ · θ̄Bc = ζ2γζ
2
γ·cθ̄

B
c+d

where ζγ and ζγ·c are roots of unity in Fp2 depending on γ and γ and c respectively. These
are squared because we are working with the squares of the coordinates of level (2, 2). In
this equation, we view the index c of the coordinate as a vector in (Z/2Z)4 which allows
us to perform the addition c + d. Since we are working with projective coordinates and
ζγ does not depend on the coordinate, we can treat it as a projective factor and ignore it.
Therefore, it only remains to determine the value of ζγ·c. We write the index c as c = a||b
where a and b are vectors in Z× Z. Note that here we look at the index as a vector over
the integers and not over Z/2Z. When working over C, the root ζγ·c is given by

ζγ·c = exp(−πi(aTABTa+ bTCDT b+ 2aTBCT b))
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We let
e = −(aTABTa+ bTCDT b+ 2aTBCT b)

and add or substract a multiple of 2 so that e ∈ (−1, 1]. When writing this root in cartesian
coordinates, we have that:

When e = −3

4
: ζγ·c = − 1√

2
− 1√

2
i

When e = −1

2
: ζγ·c = −i

When e =
1

4
: ζγ·c =

1√
2
− 1√

2
i

When e = 0 : ζγ·c = 1

When e =
1

4
: ζγ·c =

1√
2
+

1√
2
i

When e =
1

2
: ζγ·c = i

When e =
3

4
: ζγ·c = − 1√

2
+

1√
2
i

When e = 1 : ζγ·c = −1

When working over Fp2 , we can simply use the corresponding root where
√
2 is a square

root of 2 in Fp2 and i is a square root of −1 in Fp2 .

To choose the correct automorphism to apply, we start by identifying which of the even
coordinates of θ̄B is zero. Call the index of that coordinate i. We then pick γ ∈ Sp(4,Z) so
that i = [1, 1, 1, 1] + d where d is defined as above and the indices are viewed as vectors in
(Z/2Z)4. A suitable matrix gamma for each of the even coordinate being zero is recorded
inside the function get aut matrix in the file Automorphism.m (see appendix A).

Once we have applied γ to θ̄B, we can convert γ · θ̄B back to level 2 by using the
Avisogenies function AnalyticToAlgebraicThetaPoint. The conversion formulas are
given below:

γ · θB00 = γ · θB0000 + γ · θB0100 + γ · θB1000 + γ · θB1100
γ · θB01 = γ · θB0001 + γ · θB0101 + γ · θB1001 + γ · θB1101
γ · θB10 = γ · θB0010 + γ · θB0110 + γ · θB1010 + γ · θB1110
γ · θB11 = γ · θB0011 + γ · θB0111 + γ · θB1011 + γ · θB1111
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The point
γ · θB = (γ · θB00 : γ · θB01 : γ · θB10 : γ · θB11)

should now have the desired form. We will then need to apply the same automorphism
γ to the point θΦ(P) so that it also has a product structure. We first need to obtain the
squares of the coordinates of level (2, 2) of θΦ(P):

θ̄Φ(P) = (θ̄
Φ(P)
0000 : θ̄

Φ(P)
0001 : θ̄

Φ(P)
0010 : θ̄

Φ(P)
0011 :

θ̄
Φ(P)
0100 : θ̄

Φ(P)
0101 : θ̄

Φ(P)
0110 : θ̄

Φ(P)
0111 :

θ̄
Φ(P)
1000 : θ̄

Φ(P)
1001 : θ̄

Φ(P)
1010 : θ̄

Φ(P)
1011 :

θ̄
Φ(P)
1100 : θ̄

Φ(P)
1101 : θ̄

Φ(P)
1110 : θ̄

Φ(P)
1111 ) ∈ P15.

These are given by

θ̄
Φ(P)
0000 = (θB00θ

Φ(P)
00 + θB10θ

Φ(P)
10 + θB01θ

Φ(P)
01 + θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
0001 = (θB01θ

Φ(P)
00 + θB11θ

Φ(P)
10 + θB00θ

Φ(P)
01 + θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
0010 = (θB10θ

Φ(P)
00 + θB00θ

Φ(P)
10 + θB11θ

Φ(P)
01 + θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
0011 = (θB11θ

Φ(P)
00 + θB01θ

Φ(P)
10 + θB10θ

Φ(P)
01 + θB00θ

Φ(P)
11 )/4

θ̄
Φ(P)
0100 = (θB00θ

Φ(P)
00 + θB10θ

Φ(P)
10 − θB01θ

Φ(P)
01 − θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
0101 = (θB01θ

Φ(P)
00 + θB11θ

Φ(P)
10 − θB00θ

Φ(P)
01 − θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
0110 = (θB10θ

Φ(P)
00 + θB00θ

Φ(P)
10 − θB11θ

Φ(P)
01 − θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
0111 = (θB11θ

Φ(P)
00 + θB01θ

Φ(P)
10 − θB10θ

Φ(P)
01 − θB00θ

Φ(P)
11 )/4

θ̄
Φ(P)
1000 = (θB00θ

Φ(P)
00 − θB10θ

Φ(P)
10 + θB01θ

Φ(P)
01 − θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
1001 = (θB01θ

Φ(P)
00 − θB11θ

Φ(P)
10 + θB00θ

Φ(P)
01 − θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
1010 = (θB10θ

Φ(P)
00 − θB00θ

Φ(P)
10 + θB11θ

Φ(P)
01 − θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
1011 = (θB11θ

Φ(P)
00 − θB01θ

Φ(P)
10 + θB10θ

Φ(P)
01 − θB00θ

Φ(P)
11 )/4

θ̄
Φ(P)
1100 = (θB00θ

Φ(P)
00 − θB10θ

Φ(P)
10 − θB01θ

Φ(P)
01 + θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
1101 = (θB01θ

Φ(P)
00 − θB11θ

Φ(P)
10 − θB00θ

Φ(P)
01 + θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
1110 = (θB10θ

Φ(P)
00 − θB00θ

Φ(P)
10 − θB11θ

Φ(P)
01 + θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
1111 = (θB11θ

Φ(P)
00 − θB01θ

Φ(P)
10 − θB10θ

Φ(P)
01 + θB00θ

Φ(P)
11 )/4.
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We then apply the automorphism γ to these coordinates by computing

γ · θ̄Φ(P)
c = ζ2γζ

2
γ·cθ̄

Φ(P)
c+d

where d, ζγ and ζγ·c are the same as above. We then convert these coordinates back to level
2 using the same formulas as before. We should now have that the point

γ · θΦ(P) = (γ · θΦ(P)
00 : γ · θΦ(P)

01 : γ · θΦ(P)
10 : γ · θΦ(P)

11 )

has the form
γ · θΦ(P) = (xu : xv : yu : yv).
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Chapter 5

Timings and Conclusion

5.1 Timings

We ran the code in appendix A to recover Alice’s secret isogeny using different sets of
parameters ℓA, ℓB, a and b. To do this, we used Magma version 2.27-8 on an Intel Core
i5-7200U CPU at 2.50GHz. For some parameter sets we had to extend Alice’s isogeny by
a degree d isogeny so that ℓbB − dℓaA can be written as u2 + 4v2 for integers u and v. The
timings of the attack given the different parameter choices are compiled in table 5.1.

ℓA ℓB a b p time

2

5

93 104 2935104 − 1 ≈ 2335 83 s

216 115 22165115 − 1 ≈ 2484 2 mins

109 216 21095216 − 1 ≈ 2611 4 mins

7 113 106 21137106 − 1 ≈ 2411 38 mins

11 99 80 2991180 − 1 ≈ 2376 ≈ 3 hours

3

5 79 88 4 · 379588 − 1 ≈ 2326 72 s

7 102 73 4 · 3102773 − 1 ≈ 2369 21 mins

5 7 107 102 4 · 51077102 − 1 ≈ 2537 50 mins

Table 5.1: Timings of the attack for different choices of parameters

In [5] section 5.5, the authors give a brief complexity analysis of the isogeny algorithms
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implemented in Avisogenies. The run time for the computation of each ℓB-isogeny de-
pends on whether ℓB can be written as the sum of two squares. If it can, then the run
time is in O(ℓ2B) and otherwise, ℓB will be written as the sum of four squares and the run
time will be in O(ℓ4B). This explains the big increase in time between ℓB = 5 and ℓB = 7.
Furthermore, when running the attack, we need to compute b-isogenies of degree ℓB and
so the timings also depend heavily on b. Somewhat counter intuitively, the runtime of the
attack when recovering Alice’s isogeny does not directly depend on ℓA or a. However, these
will influence the size of the field Fp2 and so bigger values of ℓA and a will make the field
arithmetic slower, especially when we need to take square roots in the gluing step.

5.2 Future work

A natural next step would be to use Avisogenies to implement the dimension 4 and
8 attacks proposed by Robert in [12]. The isogeny formulas implemented in the package
should in theory work in higher dimension. However, most of the implementation currently
available in the package is restricted to genus 2, specifically when it comes to the conversion
to and from theta coordinates. Therefore, more implementation work needs to be done
before this is possible.

This work could also be useful in implementing future attacks on M-SIDH or MD-SIDH,
two SIDH variants proposed in [7] to counter the initial Castryck-Decru attack. Finally,
FESTA, another isogeny-based scheme proposed in [1] makes use of the Castryck-Decru
attack in its key exchange protocol. Our current (ℓ, ℓ)-isogeny chain could allow for more
flexible parameter choices in this scheme, provided that it was optimized sufficiently.
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Appendix A

Magma Code

The code acompanying this thesis can be found at the following Gitlab repository:

https://git.uwaterloo.ca/jmlaflam/sidh-attack/.

It contains the following files:

• Gluing.m: This file contains implementations of the methods in section 4.4.1 to
convert a product of elliptic curves and points on it to theta coordinates.

• Spitting.m: This file contains implementations of the methods in section 4.4.2 to
convert theta points to points on a product of elliptic curves.

• automorphism.m: This file contains implementations of the methods in section 4.4.3
to apply automorphisms to theta coordinates. It also contains a function get aut matrix

which stores matrices for the right automorphism to apply in all possible cases.

• ImagePoint.m: This file is a modified version of the file Image.m of the Avisogenies
package which contains the modifications described in section 4.3.

• attack ll.m: This is the main file and contains an implementation of the attack
when Bob’s prime is ℓb = 5. It contains several functions that were taken from the
file sikep751 attack.m which can be found here.

• parameters.txt: This file contains the list of parameters in table 5.1 along with
suitable values of u, v and d which can be copy and pasted at the top of the file
attack ll.m to run the attack on the different parameter sets.
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All of these files make use of the package Avisogenies which can be downloaded at
https://gitlab.inria.fr/roberdam/avisogenies/. In order to run the code, the import path
for the functions coming from this package will need to be modified at the top of each file.
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