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Abstract 

Due to the rapid advancement of modern industrial processes, a considerable number of measured 

variables enhance the complexity of systems, progressively leading to the development of multivariate 

statistical analysis (MSA) methods to exploit valuable information from the collected data for 

predictive modeling, fault detection and diagnosis, such as partial least squares (PLS), canonical 

correlation analysis (CCA) and their extensions. However, these methods suffer from some issues, 

involving the irrelevant information extracted by PLS, and CCA’s inability to exploit quality 

information.  Latent variable regression (LVR) was designed to address these issues, but it has not been 

fully and systematically studied.  

A concurrent kernel LVR (CKLVR) with a regularization term is designed for collinear and nonlinear 

data to construct a full decomposition of the original nonlinear data space, and to provide 

comprehensive information of the systems. Further, dynamics are inevitable in practical industrial 

processes, and thus a dynamic auto-regressive LVR (DALVR) is also proposed based on regularized 

LVR to capture dynamic variations in both process and quality data. The comprehensive monitoring 

framework and fault diagnosis and causal analysis scheme based on DALVR are developed. Their 

superiority can be demonstrated with case studies, involving the Tennessee Eastman process, Dow’s 

refining process and three-phase flow facility process. 

In addition to MSA approaches, autoencoder (AE) technology is extensively used in complicated 

processes to handle the expanding dimensionality caused by the increasing complexity of industrial 

applications. Apart from modeling and fault diagnosis, anomaly detection draws great attention as well 

to maintain the performance, avoid economic losses, and ensure safety during the industrial processes. 

In view of advantages in dimensionality reduction and feature retention, autoencoder (AE) technology 

is widely applied for anomaly detection monitoring. Considering both high dimensionality and dynamic 

relations between elements in the hidden layer, an improved autoencoder with dynamic hidden layer 

(DHL-AE) is proposed and applied for anomaly detection monitoring. Two case studies including 

Tennessee Eastman process and Wind data are used to show the effectiveness of the proposed 

algorithm.  



 

 vi 

Acknowledgements 

I would like to express my sincere gratitude to all the individuals and institutions who have supported 

and contributed to the completion of this doctoral research. 

First and foremost, I extend my deepest appreciation to my supervisors, Professors Qinqin Zhu and 

Ali Elkamel, for their invaluable guidance, unwavering support, and endless patience throughout this 

journey. Without their support and guidance, this thesis would not have been possible. 

Moreover, I am indebted to the members of my thesis committee, Professor Helen Shang, Professor 

Alex Penlidis, Professor Chandra Madhuranthakam, and Professor Pan Zhao, for their valuable insights, 

constructive feedback, and critical review of this work. Their diverse perspectives and constructive 

criticisms have undoubtedly enhanced the quality of this thesis. 

I am grateful to my coworker, Dr. Mohamed EL KOUJOK, research scientist at CanmetENERGY 

in Varennes, for the camaraderie and intellectual discussions, which have enriched my understanding 

of the subject matter and made the research process more enjoyable. 

I am deeply appreciative of my family for their unconditional love, understanding, and 

encouragement throughout my academic pursuits. Your support has been the bedrock of my 

perseverance. I want to thank all my friends for providing me with constant encouragement and help 

during challenging times. 

Lastly, I wish to thank the entire department of chemical engineering community for providing an 

intellectually stimulating environment in which to pursue my degree. 

To all those mentioned above and to those whose names I have inadvertently omitted, your 

contributions, whether big or small, have played a crucial role in making this research possible. Thank 

you for being a part of this journey. 



 

 vii 

Dedication 

To my dear parents, my beloved husband, and my lovely kid with my everlasting love. 

 



 

 viii 

Table of Contents 

Examining Committee Membership ....................................................................................................... ii 

Author’s Declaration ............................................................................................................................. iii 

Statement of Contributions .................................................................................................................... iv 

Abstract .................................................................................................................................................. v 

Acknowledgements ............................................................................................................................... vi 

Dedication ............................................................................................................................................ vii 

List of Tables ......................................................................................................................................... xi 

List of Figures ...................................................................................................................................... xii 

Nomenclature ....................................................................................................................................... xv 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Motivation .................................................................................................................................... 1 

1.2 Research Objectives ..................................................................................................................... 3 

1.3 Thesis Organization ...................................................................................................................... 3 

Chapter 2 Background and Literature Review ....................................................................................... 5 

2.1 Multivariate Statistical Analysis Methods .................................................................................... 5 

2.1.1 Multivariate Statistical Analysis ............................................................................................ 5 

2.1.2 Nonlinear Extensions of Multivariate Statistical Analysis .................................................. 10 

2.1.3 Dynamic Regularized Latent Variable Regression.............................................................. 12 

2.2 Process Monitoring ..................................................................................................................... 13 

2.2.1 Fault Detection .................................................................................................................... 13 

2.2.2 Fault Identification and Diagnosis ....................................................................................... 15 

2.3 Causal Analysis for Root Cause Identification........................................................................... 18 

2.3.1 Time-Domain Granger Causality ........................................................................................ 19 



 

 ix 

2.3.2 Conditional Spectral Granger Causality .............................................................................. 20 

2.4 Autoencoder ............................................................................................................................... 21 

2.5 Auto-Regressive Integrated Moving Average Model................................................................. 22 

2.6 Anomaly Detection ..................................................................................................................... 23 

Chapter 3 Nonlinear Latent Variable Regression for Process Monitoring ........................................... 25 

3.1 Kernel Latent Variable Regression and Its Monitoring Scheme ................................................ 25 

3.2 Concurrent KLVR-based Monitoring ......................................................................................... 28 

3.3 Synthetic Case Study .................................................................................................................. 33 

3.3.1 Fault in Covariation Subspace ............................................................................................. 35 

3.3.2 Fault in Output-Principal Subspace ..................................................................................... 37 

3.3.3 Fault in Input-Principal Subspace........................................................................................ 38 

3.3.4 Fault in Input-Residual Subspace ........................................................................................ 40 

3.4 Tennessee Eastman Process Case Study .................................................................................... 42 

3.4.1 Monitoring of IDV (5) ......................................................................................................... 45 

3.4.2 Monitoring of IDV (11) ....................................................................................................... 47 

3.5 Dow's Refining Process Case Study ........................................................................................... 49 

3.6 Summary .................................................................................................................................... 53 

Chapter 4 Dynamic Latent Variable Modeling for Temporal Modeling and Monitoring .................... 55 

4.1 Dynamic Auto-Regressive Latent Variable Regression ............................................................. 55 

4.2 Concurrent Dynamic Decomposition ......................................................................................... 59 

4.3 Comprehensive Dynamic Monitoring Scheme........................................................................... 62 

4.4 Tennessee Eastman Process Case Study .................................................................................... 64 

4.4.1 Modeling Performance ........................................................................................................ 64 

4.4.2 Concurrent Monitoring Performance ................................................................................... 65 



 

 x 

4.5 Summary .................................................................................................................................... 71 

Chapter 5 DALVR-based Fault Diagnosis and Causal Analysis Framework ...................................... 72 

5.1 DALVR-based Fault Diagnosis and Causal Analysis Framework ............................................. 72 

5.2 Tennessee Eastman Process Case Study .................................................................................... 75 

5.3 Three-phase Flow Facility Case Study ....................................................................................... 81 

5.4 Summary .................................................................................................................................... 84 

Chapter 6 Improved Autoencoder with Dynamic Hidden Layer for Anomaly Detection .................... 85 

6.1 Autoencoder with Dynamic Hidden Layer ................................................................................. 85 

6.2 Anomaly Detection Scheme Based on DHL-AE ....................................................................... 88 

6.3 Tennessee Eastman Process Case Study .................................................................................... 89 

6.4 Summary .................................................................................................................................... 93 

Chapter 7 Conclusions .......................................................................................................................... 94 

References ............................................................................................................................................ 95 

Appendix A Calculation of Spectral Density ..................................................................................... 107 



 

 xi 

List of Tables 

Table 1: 𝐌 for the general form of RBC .............................................................................................. 17 

Table 2: Concurrent monitoring statistics and corresponding control limits  ...................................... 31 

Table 3: FDRs and FARs for quality-relevant disturbances in TEP  ................................................... 43 

Table 4: FARs for quality-irrelevant disturbances in TEP  .................................................................. 43 

Table 5: Parameters and MSEs of KLVR, KPLS, rLVR and PLS in Dow's refining process  ............ 49 

Table 6: FDRs and FARs of algorithms for faulty case in Dow's refining process ............................. 50 

Table 7: Monitoring statistics and control limits for CDALVR  .......................................................... 63 

Table 8: MSEs for DrLVR and DALVR in additional simulation of TEP  ......................................... 65 

Table 9: FDRs and FARs for output-relevant disturbances in additional simulation of TEP  ............. 66 

Table 10: FARs for output-irrelevant disturbances in additional simulation of TEP  .......................... 67 

Table 11: MSEs for DrLVR, DAPLS, and DALVR in TEP ................................................................ 75 

Table 12:  MSEs for different parts of DALVR in TEP ....................................................................... 75 

Table 13:  Monitoring metrics of 𝑇2 for quality-relevant disturbances in TEP ................................... 76 

Table 14:  FARs of 𝑇2 for quality-irrelevant disturbances in TEP ...................................................... 76 

Table 15:  Monitoring metrics of 𝑇2 for the three-phase flow facility ................................................. 82 

Table 16:  Activation function and parameter selection for IDV (2) in TEP ....................................... 91 

Table 17:  Statistical metrics results of algorithms for comparison for IDV (2) in TEP ...................... 93 

 

 

 

 



 

 xii 

List of Figures 

Figure 1: Multilayer monitoring framework based on CKLVR ........................................................... 32 

Figure 2: CKLVR-based monitoring diagram ...................................................................................... 33 

Figure 3: KPCA-based monitoring results with fault in CVS (𝑓𝑥 = 1) .................................................. 34 

Figure 4: CKLVR-based monitoring results with fault in CVS (𝑓𝑥 = 1) ............................................... 35 

Figure 5: KLVR-based monitoring results with fault in CVS (𝑓𝑥 = 1) ............................................... 36 

Figure 6: KPCA-based monitoring results with fault in OPS (𝑓𝑦 = 4)................................................... 36 

Figure 7: CKLVR-based monitoring results with fault in OPS (𝑓𝑦 = 4) ............................................ 37 

Figure 8: KLVR-based monitoring results with fault in OPS (𝑓𝑦 = 4) ............................................... 38 

Figure 9: KPCA-based monitoring results with fault in IPS (𝑓𝑥 = 1) ................................................. 38 

Figure 10: CKLVR-based monitoring results with fault in IPS (𝑓𝑥 = 1)  ............................................. 39 

Figure 11: KLVR-based monitoring results with fault in IPS (𝑓𝑥 = 1)  .............................................. 40 

Figure 12: KPCA-based monitoring results with fault in IRS (𝑓𝑥 = 0.1)............................................ 40 

Figure 13: CKLVR-based monitoring results with fault in IRS (𝑓𝑥 = 0.1) ......................................... 41 

Figure 14: KLVR-based monitoring results with fault in IRS (𝑓𝑥 = 0.1) ........................................... 42 

Figure 15: KPCA-based process and quality monitoring results for IDV (5) ...................................... 45 

Figure 16: CKLVR-based monitoring results for IDV (5) ................................................................... 46 

Figure 17: KLVR-based monitoring results for IDV (5) ...................................................................... 46 

Figure 18: KPCA-based process and quality monitoring results for IDV (11) .................................... 47 

Figure 19: CKLVR-based monitoring results for IDV (11) ................................................................. 48 

Figure 20: KLVR-based monitoring results for IDV (11) .................................................................... 48 

Figure 21: KPCA-based process and quality monitoring results in Dow's refining process  ............... 51 

Figure 22: CKLVR-based monitoring results in Dow's refining process   ........................................... 51 

Figure 23: CKPLS-based monitoring results in Dow's refining process  ............................................. 52 



 

 xiii 

Figure 24: KLVR-based monitoring results in Dow's refining process  .............................................. 52 

Figure 25: KPLS-based monitoring results in Dow's refining process  ............................................... 53 

Figure 26: LVR-based monitoring results in Dow's refining process  ................................................. 53 

Figure 27: PLS-based monitoring results in Dow's refining process  .................................................. 53 

Figure 28: CDALVR-based monitoring framework  ........................................................................... 60 

Figure 29: Output variations for normal case in additional simulation of TEP  ................................... 65 

Figure 30: PCA-based process and quality monitoring results for IDV (1)  ........................................ 67 

Figure 31: CDALVR-based monitoring results for IDV (1)  ............................................................... 68 

Figure 32: DrLVR-based monitoring results for IDV (1) .................................................................... 69 

Figure 33: PCA-based process and quality monitoring results for IDV (14)  ...................................... 69 

Figure 34: CDALVR-based monitoring results for IDV (14)  ............................................................. 70 

Figure 35: DrLVR-based monitoring results for IDV (14) .................................................................. 70 

Figure 36: Fault diagnosis and root cause identification framework based on DALVR ...................... 74 

Figure 37: DALVR-based monitoring result for IDV (1) .................................................................... 78 

Figure 38: Relative reconstruction-based contribution results for IDV (1) .......................................... 78 

Figure 39: Time-domain Granger causality map for IDV (1) .............................................................. 78 

Figure 40: Causal flow results for IDV (1)........................................................................................... 79 

Figure 41: Conditional spectral Granger causality results for IDV (1) ................................................ 79 

Figure 42: Direct causal analysis for IDV (1) ...................................................................................... 80 

Figure 43: DALVR-based monitoring result for faulty case 3 ............................................................. 81 

Figure 44: Relative reconstruction-based contribution results for faulty case 3 .................................. 81 

Figure 45: Time-domain Granger causality map for faulty case 3 ....................................................... 83 

Figure 46: Conditional spectral Graner causality results for faulty case 3 ........................................... 83 

 



 

 xiv 

Figure 47: Direct causal analysis for faulty case 3 ............................................................................... 84 

Figure 48: Structure of autoencoder with dynamic hidden layer ......................................................... 87 

Figure 49: Anomaly detection monitoring scheme based on DHL-AE ............................................... 88 

Figure 50: Anomaly detection monitoring results of DHL-AE for IDV (2) in TEP ............................ 91 

Figure 51: Anomaly detection monitoring results of DKPCA for IDV (2) in TEP ............................. 92 

Figure 52: Anomaly detection monitoring results of VAE for IDV (2) in TEP ................................... 92 



 

 xv 

Nomenclature 

  

𝑎𝑖𝑗,𝑙  
auto-regressive coefficients (𝑙 = 1, 2, … , 𝑟) for two time series 𝐱𝑖 

and 𝐱𝑗 

𝐚𝑖
(𝑡)

 anomaly score for 𝐱𝑖
(𝑡)

 

[𝐴𝑖𝑗(𝑓)] 
coefficient matrix for Fourier transformation at frequency 𝑓 (𝑖 is the 

row index, and 𝑗 is the column index) 

AE autoencoder 

AR accuracy rate 

ARIMA autoregressive integrated moving average 

ARX auto-regressive exogenous 

𝑏 
regression coefficient of relation between process/input and 

quality/output scores 

𝐛1 bias of encoder 

𝐛2 bias of decoder 

𝐁 
diagonal matrix for regression coefficient of relation between 

process/input and quality/output scores 

𝑐 width of Gaussian function 

𝐜 loading vector for dynamic part in quality/output matrix 

𝐜𝑠𝑡 loading vector for static part in quality/output matrix 

𝐂 loading matrix for quality/output matrix 

CCA canonical correlation analysis 

CDALVR concurrent dynamic auto-regressive latent variable regression 

CKLVR concurrent kernel latent variable regression 



 

 xvi 

CSGC conditional spectral Granger causality 

CSGC𝐱𝑗→𝐱𝑖|𝐳1,𝐳2,…,𝐳𝑣(𝑓) 
CSGC index from the 𝑗th variable to the 𝑖th variable 𝐱𝑖 exclude at 

frequency 𝑓 

CVS covariation subspace 

𝑑 dynamic order for quality/output variables 

𝑑𝑎 degree of differencing for ARIMA 

𝐃𝑐 rectangular diagonal matrix in SVD for CVS 

DALVR dynamic auto-regressive latent variable regression 

DAOS dynamic auto-regressive output subspace 

DAPLS dynamic auto-regressive partial least squares 

DCVS dynamic covariation subspace 

DHL-AE autoencoder with dynamic hidden layer 

DiPCA dynamic inner principal component analysis 

DiPLS dynamic inner partial least squares 

DIPS dynamic input principal subspace 

DKPCA dynamic kernel principal component analysis 

DrLVR dynamic regularized latent variable regression 

𝐞 moving average part in ARIMA 

𝒆𝑖(𝑘) residual/prediction errors of the 𝑖th variable 

𝒆𝑖(𝑗)(𝑘) 
prediction error that excludes the 𝑗th variable to predict the 𝑖th 

variable 

𝐞𝑡 moving average part existing in the input z at time 𝑡 in ARIMA 

𝐞(𝑡) 
moving average part 𝐞 existing in the latent variables at time 𝑡 in 

DHL-AE 



 

 xvii 

𝐸𝑖(𝑓) 
representation of 𝐴𝑖𝑖(𝑓) × 𝐱𝑖(𝑓) + 𝐴𝑖𝑗(𝑓) × 𝐱𝑗(𝑓) in matrix 

calculation (𝑖 is the row index, and 𝑗 is the column index) 

ELU exponential linear unit 

𝑓 frequency  

𝑓𝑖 fault magnitude for a faulty sample 

𝑓𝑖
𝜑

 fault magnitude for a faulty sample for 𝜑 index 

𝑓𝑥 fault magnitude of input 

𝑓𝑦 fault magnitude of output 

𝑓1 activation function used to construct the hidden layer 

𝑓2 activation function used to construct the output layer 

𝐹 Hilbert space  

𝐹𝑙,𝑛−𝑙 𝐹-distribution with 𝑙 and 𝑛 − 𝑙 degrees of freedom 

𝐹𝐱𝑗→𝐱𝑖 TDGC index from the 𝑗th variable to the 𝑖th variable 

FAR false alarm rate 

FDR false detection rate 

𝑔 representation of max(𝑠, 𝑑) 

𝑔𝑑𝑥 scaling factor of 𝜑𝑑𝑥,cl 

𝑔𝑠 scaling factor  

𝑔𝑠𝑥 scaling factor of 𝑄𝑠𝑥,cl 

𝑔𝑠𝑦 scaling factor of 𝑄𝑠𝑦,cl 

𝑔𝑥 scaling factor of 𝑄𝑥,cl 

𝑔𝑦 scaling factors of 𝑄𝑦,cl 

𝑔𝜑 scaling factor of control limit of 𝜑 statistic 



 

 xviii 

𝐆 spectral transfer function matrix of incomplete system 

�̃�𝑖𝑖 
elements in matrix G̃𝑗𝑗 = G𝑗𝑗 − G𝑖𝑗

2 /G𝑖𝑖 (𝑖 is the row index, and 𝑗 is 

the column index) 

GMM Gaussian mixture model 

ℎ degree of freedom 

ℎ𝑑𝑥 degree of freedom of 𝜒2-distribution used in 𝜑𝑑𝑥,cl 

ℎ𝑥 degree of freedom of 𝜒2-distribution used in 𝑄𝑥,cl 

ℎ𝑠𝑥 degree of freedom of 𝜒2-distribution used in 𝑄𝑠𝑥,cl 

ℎ𝑠𝑦 degree of freedom of 𝜒2-distribution used in 𝑄𝑠𝑦,cl 

ℎ𝑦 degree of freedom of 𝜒2-distribution used in 𝑄𝑦,cl 

ℎ𝜑 degrees of freedom of control limit of 𝜑 statistic 

𝐇 spectral transfer function matrix of complete system 

𝐻𝑖𝑗(𝑓) 
element in spectral transfer function matrix at frequency 𝑓 (𝑖 is the 

row index, and 𝑗 is the column index) 

𝐈 identity matrix 

𝐈𝑑 𝑑 × 𝑑 identity matrix 

𝐈𝑚 𝑚 ×𝑚 identity matrix 

𝐈𝑝 𝑝 × 𝑝 identity matrix 

𝐈𝑠+1 (𝑠 + 1) × (𝑠 + 1) identity matrix 

ICA independent component analysis 

Index(𝐳𝑖) reconstructed fault detection index for 𝐳𝑖 

Index(𝐳𝑖)
𝜑 reconstructed fault detection index for 𝐳𝑖 based on 𝜑 index 

IPS input-principal subspace 



 

 xix 

IRS input-residual subspace 

𝑘 dimension of compressed representation in autoencoder 

𝐤𝑡 representation of 𝚽𝜙(𝐱new) 

𝑘(x𝑖 , x𝑗) kernel function 

𝐊 kernel matrix 

𝐊𝑐 kernel matrix of �̃�𝑐 

𝐊𝑡 kernel matrix for test samples 𝐗𝑡 

KPCA kernel principal component analysis 

KLVR kernel latent variable regression 

KPLS kernel partial least squares 

𝑙 latent variable number  

𝑙𝑐 principal component number in CVS 

𝑙𝑑𝑦 principal component number in DAOS 

𝑙𝑠𝑥 principal component number in SIPS 

𝑙𝑠𝑦 principal component number in SOPS 

𝑙𝑥 principal component number in IPS 

𝑙𝑦 principal component number in OPS 

𝐿(∙) loss function 

𝐿1 predictable quality/output-relevant fault alarm 

𝐿2 unpredictable quality/output-relevant fault alarm 

𝐿3 process/input-relevant and/or quality/output-irrelevant fault alarm 

ℒ Lagrangian function 

Leaky ReLU leaky rectified linear unit 



 

 xx 

LFP local-field potential 

LVR latent variable regression 

𝑚 process/input variable number 

𝑚𝑓 latent variable number in kernel 

𝑚′ latent variable number in hidden layer 

𝐌 general matrix determined by corresponding monitoring index 

MAE mean absolute error 

MAR missing alarm rate 

MSE mean squared error 

MSA multivariate statistical analysis 

M2D-CCA multi-objective two-dimensional canonical correlation analysis 

𝑛 sample number 

𝒩(𝜇, 𝜎2) Gaussian distribution with mean 𝜇 and variance 𝜎2 

NN neural network 

NRMSE normalized root mean squared error 

OPS output-principal subspace 

ORS output-residual subspace 

𝑝 quality/output variable number 

𝑝𝑎 number of time lags for ARIMA 

𝐏 loading matrix for process/input variables 

𝐏𝑑𝑥 loading matrix of dynamic process/input variations 

𝐏𝑠𝑥 loading matrix of static process/input variations 

𝐏𝑠𝑦 loading matrix of static quality/output principal variations 



 

 xxi 

𝐏𝑥 input-principal loading matrix in CKLVR 

𝐏𝑦 output-principal loading matrix in CKLVR 

PCA principal component analysis 

PCS principal component subspace 

PLS partial least squares 

PR precision rate 

𝐪 quality/output weighting vector 

𝑞𝑎 order of moving average part 

𝐐 quality/output score matrix 

𝑄 𝑄 statistic 

𝐐𝑐 representation of 𝐕𝑐𝐃𝑐  

𝑄cl control limit of 𝑄 statistic 

𝑄𝑑𝑥 𝑄 statistic for DIPS in CDALVR 

𝑄𝑑𝑥,cl control limit of 𝑄𝑑𝑥 statistic 

𝑄𝑖𝑖(𝑓) 
spectral density of the target variable 𝐱𝑖 in incomplete system at 

frequency 𝑓 

𝑄𝑠𝑥 𝑄 statistic for SIRS in CDALVR 

𝑄𝑠𝑦 𝑄 statistic for SORS in CDALVR 

𝑄𝑥 𝑄 statistic for IRS in CKLVR 

𝑄𝑥,cl control limit of 𝑄𝑥 statistic 

𝑄𝑦 𝑄 statistic for ORS in CKLVR 

𝑄𝑦,cl control limit of 𝑄𝑦 statistic 

𝑟 auto-regressive model order 



 

 xxii 

rLVR regularized latent variable regression 

rRBC relative reconstruction-based contribution 

rRBC𝑖
𝜑

 
relative reconstruction-based contribution of the 𝑖th variable for 𝜑 

index 

𝐑 representation of 𝐖(𝐏⊤𝐖)−1 

𝐑𝑐 representation of 𝐑𝐂⊤𝐕𝑐𝐃𝑐
−1 

𝐑𝑐
†
 representation of (𝐑𝑐

⊤𝐑𝑐)
−1𝐑𝑐

⊤ 

𝐑𝑥 parameters for 𝐭𝑑𝑥,𝑘  determined by DiPCA 

ℝ𝑛×𝑚 𝑛 ×𝑚 matrix 

RBC reconstruction-based contribution 

RBC𝑖
Index amount of reconstruction along the fault direction 𝜉𝑖 

RBCavg,𝑖
𝜑

 
average values of the 𝑖th variable calculated with RBC𝑖

𝜑
 obtained 

from normal data 

RBC𝑖
𝜑

 amount of reconstruction along the fault direction 𝜉𝑖 for 𝜑 index 

ReLU rectified linear unit 

RE reconstruction error 

RMSE root mean squared error 

RS residual subspace 

𝑠 dynamic order for process/input variables 

𝐒 spectral density matrix of complete system 

𝑆𝑖𝑖(𝑓) 
spectral density of the target variable 𝐱𝑖 in complete system at 

frequency 𝑓 

𝐒𝑥 covariance matrix of input 

SGC spectral Granger causality 



 

 xxiii 

SGC𝐱𝑗→𝐱𝑖(𝑓) SGC index from the 𝑗th variable to 𝑖th variable at frequency 𝑓 

SIPS static input principal subspace 

SIRS static input residual subspace 

SOPS static output principal subspace 

SORS static output residual subspace 

Span{∙} span of a set of vectors or matrix 

SVD singular value decomposition 

SVM support vector machine 

𝐭 process/input score vector 

�̂� predicted process/input score vector 

𝐭𝑑𝑥,𝑘 score vector in DIPS for 𝐱𝑘 

�̂�𝑑𝑥,𝑘 predicted score vector in DIPS for 𝐱𝑘 

𝐭𝑖 
process/input score vector corresponding to the 𝑖th latent variable 

(𝑖 = 1, 2, . . . , 𝑙) 

𝑡𝑘 process/input score of (𝐱𝑘 , 𝐲𝑘) 

𝐭new process/input score vector of 𝐱new 

𝐭𝑠𝑥,𝑘 score vector in SIPS for 𝐱𝑘 

𝐭𝑠𝑦,𝑘 static output score vector in SOPS for 𝐱𝑘 

𝐭𝑥,new process-relevant/input-principal score vector of 𝐱new 

𝐭𝑦,new unpredictable quality-relevant/output-principal score vector of 𝐱new 

𝑡𝑟(∙) trace of a square matrix 

𝐓 process/input score matrix 

�̂�𝑑𝑥 predicted score matrix of dynamic process/input variations 



 

 xxiv 

𝐓𝑠 representation of 𝐙𝑥(𝐈𝑠+1⊗𝐰) 

𝐓𝑠𝑥 score matrix of static process/input variations 

𝐓𝑠𝑦 score matrix of static quality/output principal variations 

𝐓𝑥 process/input-principal score matrix in CKLVR 

𝐓𝑦 quality/output-principal score matrix in CKLVR 

𝑇2 Hotelling’s 𝑇2 statistic 

𝑇𝑐
2 Hotelling’s 𝑇2 statistic for CVS in CKLVR / DCVS in CDALVR 

𝑇𝑐,cl
2  control limit of 𝑇𝑐

2 statistic 

𝑇cl
2 control limit of Hotelling’s 𝑇2 statistic 

𝑇𝑑𝑥
2  Hotelling’s 𝑇2 statistic for DIPS in CDALVR 

𝑇𝑑𝑥,cl
2  control limit of 𝑇𝑑𝑥

2  statistic 

𝑇𝑑𝑦
2  Hotelling’s 𝑇2 statistic for DAOS in CDALVR 

𝑇𝑠𝑥
2  Hotelling’s 𝑇2 statistic for SIPS in CDALVR 

𝑇𝑠𝑦
2  Hotelling’s 𝑇2 statistic for SOPS in CDALVR 

𝑇𝑥
2 Hotelling’s 𝑇2 statistic for IPS in CKLVR 

𝑇𝑥,cl
2  control limit of 𝑇𝑥

2 statistic 

𝑇𝑦
2 Hotelling’s 𝑇2 statistic for OPS in CKLVR 

𝑇𝑦,cl
2  control limit of 𝑇𝑦

2 statistic 

TDGC time-domain Granger causality 

TEP Tennessee Eastman process 

TPFF three-phase flow facility 

𝐮 quality/output score vector 



 

 xxv 

𝐮𝑐,𝑘 dynamic output-relevant score vector in DCVS for 𝐱𝑘 

𝐮𝑐,new predictable quality/output-relevant score vector for 𝐱new in CKLVR 

𝐮𝑔 
quality/output score vector containing dynamic cross- and auto-

correlations 

�̂�𝑔 
predicted quality/output score vector containing dynamic cross- and 

auto-correlations 

�̂�𝑔,𝑖 

predicted quality/output score vectors containing dynamic cross- and 

auto-correlations corresponding to the 𝑖th latent variable 

(𝑖 = 1, 2, . . . , 𝑙) 

𝑢𝑘 quality/output score of (𝐱𝑘 , 𝐲𝑘) 

�̂�𝑘 predicted quality/output score of (𝐱𝑘 , 𝐲𝑘) 

𝐮𝑠 quality/output score vector for 𝐘𝑠 

�̂�𝜓,𝑘 auto-regressive output score vector in DAOS for 𝐱𝑘 

𝐔𝑐 predictable quality/output score matrix in CKLVR 

𝐔𝑑 representation of 𝐙𝑦(𝐈𝑑⊗𝐪) 

𝐔𝑖𝑛 
spectral density matrix of system with one variable excluded for the 

causality test 

�̂�𝑔 
predicted quality/output score matrix containing dynamic cross- and 

auto-correlations 

𝐔𝑠 quality/output score matrix for 𝐘𝑠 

�̂�𝑠 predicted quality/output score matrix for 𝐘𝑠 

�̂�𝜓 representation of 𝐙𝑦(𝝍⊗𝐐) 

𝒰([0,1]) uniform distribution in the interval [0,1] 

𝐯 input vector for ARIMA 



 

 xxvi 

𝐯𝑡 aggressive part existing in the input 𝐳 at time 𝑡 in ARIMA 

𝐯(𝑡) aggressive part existing in the latent variables at time 𝑡 in DHL-AE 

var(∙) variance of a vector 

𝐕𝑐 complex unitary matrix in SVD for CVS 

VAE variational autoencoder 

VAR vector-autoregressive 

𝐰 process/input weighting vector 

𝐖 process/input weighting matrix 

𝐖𝑥 input-principal weighting matrix in CKLVR 

𝐖1 weights of encoder 

𝐖2 weights of decoder 

𝐱 process/input vector 

𝐱∗ fault-free input samples  

�̃�𝑐 
process/input vector after extraction of dynamic and auto-regressive 

variations for 𝐱𝑘 

𝐱𝑖 the 𝑖th vector of process/input matrix 

𝐱𝑖
(𝑡)

 element at time 𝑡 in the 𝑖th vector of process/input matrix 

�̃�𝑘 residual vector in SIRS for 𝐱𝑘 

𝐱new new input sample for testing 

�̂�new representation of 𝐏𝐑⊤ 𝐱new 

�̃�new representation of (𝐈 − 𝐏𝐑⊤) 𝐱new 

𝐱𝜁,𝑘 representation of ∑ 휁𝑖𝐱𝑘−𝑖
𝑠
𝑖=0  

𝐗 process/input matrix 



 

 xxvii 

�̃� residual of process/input matrix in DALVR 

𝐗𝑖 a subset of the collected input samples 𝐗 = [𝐱1, 𝐱2, . . . , 𝐱𝑠+𝑁]
⊤ 

𝐗𝑟 residual of process/input matrix 

�̃�𝑠 static process/input residual 

𝐗𝑡 input matrix for testing 

𝐗𝛽 representation of 𝐙𝑥(𝜷⊗ 𝐈𝑚) 

𝐗𝜁 representation of [𝐙𝑥(𝜻 ⊗ 𝐈)] 

𝐲 quality/output vector 

𝐲∗ fault-free output samples 

�̃�𝑐 
quality/output vector after extraction of dynamic and auto-regressive 

variations 

𝐲𝑖 the 𝑖th sample of quality/output matrix 

�̃�𝑘 static output residual vector in SORS for 𝐲𝑘 

�̂�new predicted output of 𝐱new 

𝐘 quality/output matrix 

𝐘 predicted quality/output matrix 

𝐘 output residual matrix 

𝐘𝑐 
quality/output matrix after extraction of predictable dynamic and 

auto-regressive variations 

𝐘𝑐 unpredictable output matrix in CKLVR 

𝐘𝑔 dynamic part in quality/output matrix 

𝐘𝑔 dynamic predictable quality/output matrix 

𝐘𝑔 residual of dynamic part in quality/output matrix 



 

 xxviii 

𝐘𝑟 residuals of quality/output matrix 

𝐘𝑠 a subset of the collected output samples 𝐘 = [𝐲1, 𝐲2, . . . , 𝐲𝑠+𝑁]
⊤ 

𝐘𝑥𝑔 
dynamic cross-correlation quality/output part in quality/output 

matrix 

𝐘𝑦𝑔 dynamic auto-correlation quality/output part in quality/output matrix 

𝐘𝛿 representation of 𝐙𝑦(𝜹⊗ 𝐈𝑝) 

𝐘0:𝑔−1 static part in quality/output matrix 

𝐳 reconstructed vector in hidden layer 

�̂� predicted reconstructed vector in hidden layer 

𝐳𝑖 reconstructed vector for a fault-free sample 

𝐳𝑡 component of time series 𝐳 at time 𝑡 

𝐳𝑥 variables that may influence time serise 𝐱𝑖 and 𝐱𝑗 (𝑥 = 1, 2, … , 𝑣) 

𝐳(𝑡) 
compressed representation vector for autoencoder at time 𝑡 (𝑡 =

1, 2, … , 𝑛) 

�̂�(𝑡) 
predicted compressed representation vector for autoencoder at time 𝑡 

(𝑡 = 1, 2, … , 𝑛) 

𝐙 compressed representation matrix for autoencoder 

�̂� predicted compressed representation matrix for autoencoder 

𝐙𝑠 representation of [𝐗𝑠, 𝐗𝑠−1, … , 𝐗1] 

𝐙𝑥 representation of [𝐗𝑔, 𝐗𝑔−1, … , 𝐗𝑔−𝑠] 

𝐙𝑦 representation of [𝐘𝑔−1, 𝐘𝑔−2, … , 𝐘𝑔−𝑑] 

𝑍 space in the hidden layer 

  



 

 xxix 

𝛼 confidence interval 

𝛂 nonlinear weighting vector for 𝐊 

𝛂𝚽 nonlinear projection vector for 𝚽 

𝐀 nonlinear weighting matrix 

𝛽𝑥 weighting coefficient elements in 𝜷 (𝑥 = 1, 2, … , 𝑠) 

𝜷 weighting coefficient vector for process/input scores 

𝛽𝑎,𝑖 parameters of the autoregressive part for ARIMA (𝑖 = 1, 2, … , 𝑝𝑎)  

𝐵 backshift operator 

𝛾 regularized parameter 

𝛾𝑤 regularized parameter for 𝐰 

𝛾𝛽 regularized parameter for 𝜷 

𝛾𝛿  regularized parameter for 𝜹 

𝛿𝑥 weighting coefficient elements in 𝜹 (𝑥 = 1, 2, … , 𝑑) 

𝜹 weighting coefficient vector for quality/output scores 

𝚪 error covariance matrix of incomplete system 

𝚪𝑐 
representation of (𝐃𝑐

−⊤𝐕𝑐
⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀𝐊𝐀(𝐓⊤𝐊𝐀)−1𝐂⊤𝐕𝑐𝐃𝑐

−1)−1 

𝐃𝑐
−⊤𝐕𝑐

⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀 

𝜺𝑔 regression error for dynamic inner structure in DALVR 

휀𝑘 regression error for inner structure 

𝜺𝑃𝐿𝑆 error of relation between process/input and quality/output scores 

𝜺𝑡 white noise error term at time 𝑡 

𝜺(𝑡) reconstruction error of an input vector 𝐱(𝑡) 

𝜺𝑖
(𝑡)

 reconstruction error of 𝐱𝑖 at time 𝑡 



 

 xxx 

휁𝑥 
elements in predicted weighting vector of process/input matrix (𝑥 =

0, 1, 2,… , 𝑠) 

𝜻 predicted weighting vector of process/input matrix 

𝜃𝑖 parameters of moving average part in ARIMA (𝑖 = 1, 2,… , 𝑞𝑎) 

𝚯𝑥 dynamic weighting coefficient vector for �̂�𝑑𝑥,𝑘 

𝜅 representation of 𝛾/𝜆𝛼 

𝜅𝑞 representation of 𝜆𝑞𝛿/𝜆𝑞 

𝜅𝑤 representation of 𝛾𝑤/𝜆𝑤𝛽 

𝜅𝛽 representation of 𝛾𝛽/𝜆𝑤𝛽 

𝜅𝛿 representation of 𝛾𝛿/𝜆𝑞𝛿 

𝜆𝑞 Lagrange multiplier for 𝐪 

𝜆𝑞𝛿 Lagrange multiplier for 𝐪 and 𝜹 

𝜆𝑤𝛽 Lagrange multiplier for 𝐰 and 𝜷 

𝜆𝛼 Lagrange multiplier for 𝛂 

𝚲 variance matrix of latent variables 

𝚲𝑐 variance matrix of 𝐔𝑐 

𝚲𝑑𝑥 variance matrix of �̂�𝑑𝑥 

𝚲𝑑𝑦 variance matrix of �̂�𝜓 

𝚲𝑠𝑥 variance matrix of 𝐓𝑠𝑥 

𝚲𝑠𝑦 variance matrix of 𝐓𝑠𝑦 

𝚲𝑥 variance matrix of process/input variables 

𝚲𝑦 variance matrix of quality/output variables 

𝝁 mean value of a matrix 



 

 xxxi 

𝜉𝑖 fault direction for a faulty sample 

𝚵𝑥 process/input matrix with faulty samples 

𝚵𝑦 quality/output matrix with faulty samples 

𝜒 space of input and output data 

𝜒ℎ,𝛼
2  𝜒2-distribution with ℎ degrees of freedom 

𝜎 density of Gaussian kernel function 

𝚺 error covariance matrix of complete system 

𝜏 threshold of anomaly scores 

𝜙(∙) nonlinear projection indicator 

�̃�𝑐(𝐱new) 
nonlinear input vector for 𝐱new after extraction of predictable 

variations 

𝜙𝑟(𝐱new) residual of 𝜙(𝐱new) 

𝜑 single statistic combined 𝑇2 with 𝑄 

𝜑cl control limit of 𝜑 

𝜑𝑑𝑥 𝜑 statistic for DIPS in CDALVR 

𝜑(𝐱) process of encoding 

𝜑: 𝜒 → 𝑍 
projection from the space of input and output data to the space in the 

hidden layer 

𝚽 input matrix after nonlinear mapping 

�̃� nonlinear input residual 

�̃�𝑐 nonlinear input matrix after extraction of predictable variations 

𝚽𝑑𝑥 representation of 
𝐏𝑑𝑥𝚲𝑑𝑥

−1𝐏𝑑𝑥
⊤

𝑇𝑑𝑥,cl
2 +

𝐈−𝐏𝑑𝑥𝐏𝑑𝑥
⊤

𝑄𝑑𝑥,cl
 

𝚽𝜑 representation of 
𝐑𝚲−1𝐑⊤

𝑇cl
2 +

 𝐈−𝐏𝐑⊤

𝑄cl
 



 

 xxxii 

𝜓𝑥 
elements in predicted weighting vector of quality/output matrix (𝑥 =

0, 1, 2,… , 𝑑) 

𝜓[𝜑(𝐱)] process of decoding 

𝜓: 𝑍 → 𝜒 
projection from the space in the hidden layer to the space of input 

and output data   

𝝍 predicted weighting vector of quality/output matrix  

  

𝟏𝑘 all-one vector of length 𝑘 

𝟏𝑛 all-one vector of length 𝑛  

〈𝐚, 𝐛〉 dot product between vectors 𝐚 and 𝐛 

𝐌∗ corresponding adjoint matrix of a known matrix 𝐌 

M̃𝑗𝑗 
calculation as M̃𝑗𝑗 = M𝑗𝑗 −M𝑖𝑗

2 /M𝑖𝑖  (𝑖 is the row index, and 𝑗 is the 

column index) 

⊗ Kronecker product between vectors 𝜷 and 𝐰 

 

 

 

 

 

 

 

 



 1 

Chapter 1 

Introduction 

1.1 Motivation 

To assure the safe operation of industrial processes and the quality of their products, multivariate 

statistical analysis (MSA) has been extensively used for the purpose of predictive modeling [1]-[2], 

fault detection and diagnosis [3]-[7], and causal analysis [8]-[9], which are critical for the enhancement 

of safety, reliability, and maintainability of industrial processes.  Among them, principal component 

analysis (PCA) [10], independent component analysis (ICA) [11], partial least squares (PLS) [12], 

canonical correlation analysis (CCA) [13], and latent variable regression (LVR) [14]-[15] are the most 

widely used ones.  

As an unsupervised algorithm, PCA has been in common usage from its birth. Assuming that the 

data follows Gaussian distributions, PCA extracts the latent variables, which are also known as 

principal components, via maximizing the variations of process variables. With PCA, the original 

process data can be decomposed into two subspaces: principal component subspace, which includes 

most variances of process variables, and residual subspace [10]. To eliminate the assumption of 

Gaussian distribution, ICA has been designed to capture non-Gaussian variations via minimizing the 

dependence between independent components [11]. When the collected data contains both process and 

quality data, supervised algorithms are preferred to fully exploit the information in the data. Supervised 

methods are designed to construct the relations between process and quality variables. For instance, 

PLS maximizes covariances between input and output, but its extracted space may contain extraneous 

variances of process data, leading to ineffective quality prediction. Alternatively, CCA addresses this 

issue by maximizing their correlations, but it fails to make full use of the quality information [16]. LVR 

was proposed to maximize the prediction projection of quality data on the latent space, and it has shown 

superiority over PLS and CCA in terms of quality-relevant modeling and monitoring [14].  

Considering the advantages of LVR, a novel concurrent kernel LVR (CKLVR) is proposed in this 

thesis to improve the quality-relevant modeling performance and realize a comprehensive nonlinear 

monitoring framework. In the CKLVR algorithm, the kernel LVR (KLVR) is designed to map the 

process matrix into a higher-dimensional feature space, where process and quality data are related 

approximately linearly. It is noted that a regularization term is also designed in KLVR to avoid the 

negative effects brought by strong collinearity. Further, subsequent decomposition is conducted to 
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decompose the extracted feature space into different subspaces, including process-relevant variations, 

potentially quality-relevant variations, and quality variations that are not predictable from process, with 

each serving a particular monitoring purpose. The monitoring framework is referred to as multi-layer 

monitoring, since different fault alarming levels are attached to these spaces, where quality and quality-

relevant anomalies receive the highest alarming level while process-relevant ones are ranked as the 

lowest. The superiority of the proposed algorithm is demonstrated through case studies of a numerical 

example, the Dow’s Refining Process and the Tennessee Eastman process (TEP). 

In addition, dynamics is also a key issue in the related field since it is one of the typical characteristics 

of real-world processes, and two kinds of dynamics exist, namely the temporal dependence between 

adjacent samples, and the dynamic cross-correlations between various variables. It is of key importance 

to capture temporal relations, and various dynamic models were proposed, such as dynamic PLS [17], 

dynamic CCA [18], and dynamic rLVR [19]. These methods are effective to capture cross-correlations 

between the input and output data. To fully exploit both auto and cross temporal relations, dynamic 

auto-regressive approaches have been proposed inspired by the auto-regressive exogenous (ARX) 

model, such as dynamic auto-regressive PLS (DAPLS) [20]. DAPLS has better performance in 

modeling and monitoring, but it still suffers the same issues as the PLS. Considering the superiority of 

LVR over PLS and CCA, a novel dynamic auto-regressive LVR (DALVR) algorithm is designed to 

fully exploit system dynamics, which can capture dynamic cross-correlations and auto-correlations 

simultaneously. DALVR-based concurrent monitoring scheme is also developed for comprehensive 

monitoring. 

After identifying anomalies, the fault diagnosis can be further used to determine the root cause. The 

existing diagnosis methods include contribution plots [21], subspace extraction methods [22], and 

reconstruction-based contribution (RBC) [23]. Compared with other approaches, RBC has the great 

advantage of its non-rigorous diagnosability analysis and the inability to diagnose faults with unknown 

directions in contribution plots and subspace extraction methods [24]. To further eliminate the smearing 

effect, causal analysis can be proposed to investigate causal relations between contributing variables 

selected by RBC. As one of the most commonly used approaches, Granger causality is chosen to 

construct a fault diagnosis and causal analysis framework in this work. 

Apart from MSA methods, it is also valuable for autoencoders (AE) to exploit dynamic relations in 

the datasets.  AE is a current research focus due to its ability to extract features and reduce 
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dimensionality of datasets [25]. However, due to the assumption of most AE algorithms that data points 

are considered as independent samples, it is still a challenging issue to deal with complex data, 

especially dynamic relations. To overcome this issue, an improved AE is proposed to capture dynamics 

in the hidden layer. The corresponding anomaly detection monitoring framework is developed as well 

for the safety and security of complex processes in industrial applications [26]. 

1.2 Research Objectives 

The primary objectives of this research are listed below: 

1. A nonlinear LVR algorithm with a regularization term is designed to model the nonlinearities and 

collinearity in complex processes and thus to improve the predictive modeling performance. Based on 

this nonlinear LVR method, a concurrent modeling and anomaly detection scheme is proposed to 

extract and monitor nonlinear variations in process and quality spaces comprehensively, where the 

monitoring index is designed for each extracted subspace with different alarming levels. 

2. A novel dynamic auto-regressive regularized LVR (DALVR) algorithm is proposed to exploit 

dynamic correlations and auto-correlations simultaneously. A DALVR-based concurrent modeling and 

fault detection framework is developed for multi-layer comprehensive monitoring. 

3. An integrated fault diagnosis and root cause identification framework is developed based on 

DALVR for causal analysis, where a relative RBC (rRBC) is first proposed to narrow down the faulty 

candidates, and then the integration of time-domain Granger causality (TDGC) and conditional spectral 

Granger causality (CSGC) is developed to improve the efficiency and effectiveness of root cause 

analysis. 

4. Considering dynamic relations in the hidden layer, a novel autoencoder is designed to address 

high-dimensional and time-dependent issues existing in the real-world data simultaneously. On the 

basis of the improved autoencoder, an anomaly detection monitoring scheme is constructed. 

5. Simulation and industrial datasets are used for case studies to validate the superiority and 

effectiveness of proposed methods. 

1.3 Thesis Organization 

To make a clear scope view to the structure of the thesis, all the chapters are organized as follows: 
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1. Chapter 1 gives a general introduction to the primal motivation, research objectives and 

organization of this research. 

2. Chapter 2 provides a brief background introduction of MSA methods, process monitoring, fault 

diagnosis and causal analysis. Some classical MSA approaches are introduced in this chapter, such as 

principal component analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA), 

and latent variable regression (LVR), together with their nonlinear and dynamic extensions. The 

following is the content of process monitoring, involving fault detection, identification and diagnosis. 

Two of the most frequently used approaches, contribution plots and RBC, are presented. Additionally, 

the definition of causal analysis and two causal analysis methods are contained in this chapter, including 

TDGC and CSGC. 

3. Chapter 3 proposed kernel latent variable regression (KLVR) and its concurrent quality and 

process-related monitoring framework.  Case studies on a synthetic case, Tennessee Eastman Process 

(TEP) and Dow’s refining process are demonstrated to show the superiority of CKLVR. 

4.  Chapter 4 elaborates the details of DALVR with the corresponding concurrent monitoring scheme, 

and its performance is validated with the additional TEP data. 

5. Chapter 5 presents a fault diagnosis and root cause identification framework based on DALVR, 

and its superiority is shown by case studies on TEP and the three-phase flow facility (TPFF) data. 

6. Chapter 6 demonstrates a novel autoencoder with dynamic hidden layer (DHL-AE) and the 

corresponding anomaly monitoring scheme. The effectiveness can be proven by a case study on TEP 

data. 

7. Finally, Chapter 7 draws the conclusions. 
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Chapter 2 

Background and Literature Review 

2.1 Multivariate Statistical Analysis Methods 

2.1.1 Multivariate Statistical Analysis 

Due to the advanced data sensory techniques, the explosive growth of collected data has brought large 

values and challenges to the industrial applications. Data-driven statistical process monitoring has been 

extensively employed in the area of process systems engineering for prediction [1], process monitoring 

[2]-[3], fault identification and diagnosis [3]-[7], and causal analysis [8]-[9], which plays a vital part in 

ensuring product quality and operation safety in industrial processes.  

Various machine learning algorithms are proposed and adapted to improve monitoring accuracy, 

including both unsupervised and supervised ones. As an unsupervised modeling algorithm, principal 

component analysis (PCA) [10] has been widely applied to the extraction of latent variables by 

maximizing the variations of the projected variables, and it decomposes the original data into principal 

component subspace (PCS) and residual subspace (RS). PCS contains most variances of the original 

data, while RS mainly includes the noise [27]. The PCA-based monitoring is constructed to detect faults 

in PCS and RS via 𝑇2 statistic [28] and 𝑄 statistic [29], respectively. Several variants of PCA have also 

been developed in the past decades. For instance, multiblock PCA was developed by Westerhuis et al. 

[30] for enhancing the interpretability of multivariate algorithms, which is applicable to data with large 

number of variables. Multi-scale principal component analysis was designed by Misra et al. [31] for 

the detection and identification of faults at different scales. Amin et al. [32] combined multivariate 

exponentially weighted moving average with PCA to handle the monitoring of unobservable faults. 

PCA considers statistics (mean and variance) of the data, and it assumes that the data follows a 

Gaussian distribution. Instead, independent component analysis (ICA) [33] removes the assumption of 

data distribution, and it decomposes the original data into a linear combination of independent 

components and captures non-Gaussian variations by minimizing the dependence between independent 

components [34]. In recent years, modified versions have been proposed by researchers. Kano et al. 

[35] used ICA to transform the observed multivariate data into statistically independent components, 

and combined ICA with a novel statistical process control method focusing on data-driven essential 

variables that could be estimated from measured process variables. PCA-ICA integrated with Bayesian 
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method was developed by Jiang et al. [36] for non-Gaussian fault diagnosis, which was employed to 

generate signature evidence of efficient fault. An improved ICA methodology named multi-scale 

independent component analysis [34] was put forward in order to improve the monitoring performance 

under noisy environment. 

Both PCA and ICA pay attention to the input or output only, thus failing to consider the connection 

between input and output variables, which increases the difficulty to locate the root causes. 

Alternatively, partial least squares (PLS) [12] serves as a supervised learning algorithm, and it 

constructs its latent space by maximizing the covariation between input and output data. PLS focuses 

on both the process and quality data, but some components of the captured principal features are 

orthogonal or irrelevant to the output data, which may deteriorate the monitoring performance. Further, 

its residual space may contain large variations, which are not appropriate to employ 𝑄  index for 

monitoring. Improvements of basic PLS have been developed over the past few years. For instance, a 

novel framework of localized process diagnosis based on multiblock PLS was utilized for the 

monitoring of a complex chemical process [37].  To capture the characteristics of dynamic processes, 

a dynamic inner PLS (DiPLS) was designed by Dong and Qin [17], providing an explicit description 

for dynamic inner and outer models simultaneously. To achieve efficient modeling of processes, Xu 

and Zhu [20] proposed a novel dynamic auto-regressive PLS (DAPLS) approach to capture both auto-

correlations and cross-correlations between the input and output data. 

In contrast to PLS, CCA extracts latent variables by maximizing the correlation between input and 

output data, thus all the captured information is related to the output. Therefore, it eliminates the 

extraneous variances caused by the input variables, leading to a better prediction power. Various 

extensions of CCA have also been proposed for the purpose of tackling processes with more complex 

characteristics. Combined with the statistical local method, an improved CCA-based fault detection 

approach was put forward for the sake of incipient multiplicative faults in the industrial practice [38]. 

A generalized CCA-based scheme integrated with the threshold-setting based on the randomized 

algorithm was developed by Chen et al. [39] to improve the fault detection performance. Jiang et al. 

[40] designed a multi-objective two-dimensional CCA (M2D-CCA)-based framework for fault 

detection with respect to successive batch processes. The issue involved with CCA-based monitoring 

methods is that the variances of the output variables are not exploited, which, however, is important for 

quality-relevant monitoring [41]. 
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In order to overcome the variance issue involved in PLS and CCA, latent variable regression (LVR) 

was proposed to consider both the correlation between input and output data and the variances of quality 

variables. The superiority of LVR over PLS and CCA in terms of quality-relevant modeling and 

monitoring was demonstrated both theoretically and experimentally in Zhu’s work [42].  

To elaborate the algorithms proposed in this work, some classical MSA methods, PLS, CCA, and 

LVR, and their corresponding monitoring methods are reviewed in subsequent subsections. 

2.1.1.1 Partial Least Squares 

As one of the most extensively used algorithms, PLS [12] lays a solid foundation for further research 

and investigation on MSA. Assume that the input matrix is defined as 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑛]
⊤ ∈ ℝ𝑛×𝑚, 

which contains 𝑛 samples with each having 𝑚 process variables, while the output matrix is denoted as 

𝐘 = [𝐲1, 𝐲2, … , 𝐲𝑛]
⊤ ∈ ℝ𝑛×𝑝 with 𝑝 quality variables. The objective of PLS is 

max
𝐰,𝐪

  𝐽outer = 𝐭
⊤𝐮 = 𝐰⊤𝐗⊤𝐘𝐪

𝑠. 𝑡.  ‖𝐰‖ = 1, ‖𝐪‖ = 1
(2.1) 

where 𝐭 = 𝐗𝐰 and 𝐮 = 𝐘𝐪 are defined as process and quality score vectors, and they represent the 

projections of input and output matrices, respectively. 𝐰 ∈ ℝ𝑚 and 𝐪 ∈ ℝ𝑝 are weighting vectors for 

𝐗 and 𝐘, respectively. Here, the constraints are used to ensure the stability and solvability of the model. 

Setting the norm values of 𝐰 and 𝐪 equal to 1 aims to look for unit vectors that maximize the covariance. 

Eq. (2.1) defines the objective of PLS outer structure, and its solution can be obtained with the aid of 

Lagrange multipliers.  

For the inner structure, PLS constructs a relation between process and quality scores as 

𝐭 = 𝑏𝐮 + 𝜺𝑃𝐿𝑆 (2.2) 

where 𝑏 and 𝜺𝑃𝐿𝑆 represent the regression coefficient and error, respectively. The prediction of process 

score vector is denoted as �̂� = 𝑏𝐮, where 𝑏 = 𝐮⊤𝐭/𝐭⊤𝐭. More details can refer to Literature [12]. 

With 𝑙 latent variables extracted by iterative procedure, PLS decomposes 𝐗 and 𝐘 as follows: 

{
𝐗 = 𝐓𝐏⊤ + 𝐗𝑟
𝐘 = 𝐓𝐁𝐐⊤ + 𝐘𝑟

(2.3) 



 

 8 

where 𝐓 = [𝐭1, 𝐭2, … , 𝐭𝑙] ∈ ℝ
𝑛×𝑙  is the score matrix, 𝐏 = [𝐩1, 𝐩2, … , 𝐩𝑙] ∈ ℝ

𝑚×𝑙  and 𝐐 =

[𝐪1, 𝐪2, … , 𝐪𝑙] ∈ ℝ
𝑝×𝑙 denote the loading matrix for process variables and quality score matrix, and 

𝐁 = diag[𝑏1, 𝑏2, … , 𝑏𝑙]. 𝐗𝑟 and 𝐘𝑟 are residuals of input and output matrices, respectively.  

For a new data sample 𝐱new ∈ ℝ
𝑚, its quality variables are predicted by PLS as 

�̂�new = 𝐐𝐑
⊤𝐱new (2.4) 

where 𝐑 = 𝐖(𝐏⊤𝐖)−1 ∈ ℝ𝑚×𝑙  with 𝐖 = [𝐰1, 𝐰2, … ,𝐰𝑙] ∈ ℝ
𝑚×𝑙  as the input weighting matrix. 

𝐱new can be decomposed as  𝐱new = �̂�new + �̃�new, and �̂�new and �̃�new are  

�̂�new = 𝐏𝐑
⊤ 𝐱new ∈ Span{𝐏}               (2.5) 

�̃�new = (𝐈 − 𝐏𝐑
⊤) 𝐱new ∈ Span{𝐑}

⊥. (2.6) 

Assuming that variations in 𝐗 and 𝐘 obey normal distribution, monitoring indices, the Hotelling’s 

𝑇2 [28] and 𝑄 indices [29], can then be defined to detect whether anomalies are involved in �̂�new and 

�̃�new. 𝑇2 and 𝑄 can be obtained as 

𝑇2 = 𝐭new
⊤ 𝚲−1𝐭new                  (2.7) 

𝑄 = ‖�̃�new‖
2 = �̃�new

⊤ �̃�new (2.8)

where the latent score vector 𝐭new = 𝐑
⊤𝐱new, and 𝚲 =

1

𝑛−1
𝐓⊤𝐓 contains the variances of the latent 

variables. 𝑇2 index is used to monitor faults that are relevant to quality variables, while 𝑄 index is to 

capture anomalies existing in the residual space. 

Their corresponding control limits are designed as [3] 

𝑇cl
2 =

𝑙(𝑛2−1)

𝑛(𝑛−𝑙)
𝐹𝑙,𝑛−𝑙,𝛼

𝑄cl = 𝑔𝑠𝜒ℎ,𝛼
2

(2.9)

where 𝛼 is the confidence interval, and the confidence level is represented by (1 − 𝛼) × 100%. 𝐹𝑙,𝑛−𝑙  

denotes an 𝐹-distribution with 𝑙 and 𝑛 − 𝑙 degrees of freedom. 𝜒ℎ,𝛼
2  defines a 𝜒2-distribution with ℎ  

degrees of freedom, and 𝑔 is a scaling factor [58]. The calculation of 𝑔𝑠 and ℎ are calculated according 

to Literature [28]. When the sample number 𝑛 is large enough, 𝑇cl
2 can also be approximated by 𝑇cl

2 =

𝜒𝑙,𝛼
2  [29]. 
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2.1.1.2 Canonical Correlation Analysis 

PLS extracts latent variables by maximizing covariances between quality and process data, but it fails 

to avoid variance information that is not highly correlated to quality data. To overcome this drawback 

of PLS, CCA focuses on maximizing correlation between quality and process data. In this case, all the 

captured information is related to quality data. The objective of CCA is formulated as follows [18]: 

max
𝐭,𝐮
  𝐽 =

𝐭⊤𝐮

‖𝐭‖‖𝐮‖
. (2.10) 

where 𝐭  and 𝐮  are score vectors of process and quality matrices. Considering the definition of 

correlation, Eq. (2.10) can be reorganized as  

max
𝐰,𝐪

  𝐽 = 𝐭⊤𝐮 = 𝐰⊤𝐗⊤𝐘𝐪

𝑠. 𝑡.  ‖𝐗𝐰‖ = 1, ‖𝐘𝐪‖ = 1.
(2.11) 

After all latent variables are extracted, CCA decomposes 𝐗 and 𝐘 as 

{
𝐗 = 𝐓𝐏⊤ + 𝐗𝑟
𝐘 = 𝐓𝐐⊤ + 𝐘𝑟.

(2.12) 

𝑇2 and 𝑄 statistics of CCA for process monitoring can be constructed as shown in Eqs. (2.5) - (2.9). 

More details can be found in Literature [13] and [18]. 

2.1.1.3 Latent Variable Regression 

LVR shows its superiority due to its better prediction performance than PLS and more sufficient 

exploitation on the quality information than CCA [14]. LVR considers the correlation between 𝐗 and 

𝐘 and the variance of 𝐘 simultaneously, which is shown as 

max
𝐰,𝐪

  𝐽 = 𝐰⊤𝐗⊤𝐘𝐪

𝑠. 𝑡.  ‖𝐗𝐰‖ = 1, ‖𝐪‖ = 1
(2.13) 

where the symbols in Eq. (2.13) are identical to those in Eq. (2.1).  

The calculation of matrix inversion (𝐗⊤𝐗)−1 is involved when obtaining model parameters in Eq. 

(2.13), and LVR may get poor modeling performance in the existence of strong collinearity in 𝐗 [14]. 

Thus, a regularization term is introduced into LVR, which constructs a regularized LVR (rLVR) method. 
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max
𝐰,𝐪

  𝐽 = 𝐪⊤𝐘⊤𝐗𝐰−
𝛾
2
‖𝐰‖2

𝑠. 𝑡.  ‖𝐗𝐰‖ = 1, ‖𝐪‖ = 1
(2.14) 

where 
𝛾

2
‖𝐰‖2 is the regularization term to handle the potential singular value issues in 𝐗⊤𝐗, and 𝛾 is 

the regularized parameter. 

With rLVR, 𝐗 and 𝐘 can be decomposed into 

{
𝐗 = 𝐓𝐏⊤ + 𝐗𝑟
𝐘 = 𝐓𝐂⊤ + 𝐘𝑟

(2.15) 

where 𝐓, 𝐏 , 𝐗𝑟 and 𝐘𝑟 have the same meaning as those in PLS, and 𝐂 ∈ ℝ𝑝×𝑙  denotes the loading 

matrix for quality variables. The detailed algorithm can be found in Literature [14] and [42]. Similar to 

PLS, 𝑇2 and 𝑄 indices and corresponding control limits can be developed for rLVR based on Eqs. (2.5) 

- (2.9). 

2.1.2 Nonlinear Extensions of Multivariate Statistical Analysis 

The typical MSA methods including PLS, CCA, and LVR are based on a linearity assumption, and 

their performance is usually poor in practical industrial processes, since nonlinearity is inevitable in 

these processes.  

The aforementioned algorithms are capable of process monitoring, but they are based on the implicit 

assumption that there exist linear relations between process and quality variables, leading to poor 

performance in real-world nonlinear processes. To overcome this issue, their nonlinear extensions were 

proposed. Wold et al. [43] employed quadratic polynomial to build up the nonlinear relations for the 

applications such as multivariate calibration and process optimization. Rosipal and Trejo [44] proposed 

a kernel PLS (KPLS) methodology for nonlinear data by combining the reproducing kernel Hilbert 

space with PLS to project the original data into a higher-dimensional feature space. After nonlinear 

mapping, linear relation can be established and extracted in the higher-dimensional feature space, 

leading to better monitoring performance. The multi-scale KPLS algorithm was designed by Zhang and 

Hu [45] to exploit the multi-scale nature of nonlinear data by incorporating KPLS with wavelet analysis. 

Zhou et al. [46] developed a new fault identification method for KPLS-based monitoring to deal with 

the issue of strong nonlinearity and few fault samples. Nonlinear counterparts were also developed for 

CCA such as kernel CCA [47] and mixture CCA [48]. 
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Apart from nonlinear extensions of the aforementioned algorithms, other nonlinear machine learning 

methods are also popularly used to address this issue, such as neural network (NN) and support vector 

machine (SVM) models. Qin and McAvoy [49] developed a neural net PLS algorithm by embedding 

multilayer neural networks into the PLS modeling. Shang et al. [50] proposed a NN based soft sensor 

to model massive nonlinear data. Based on the optimization of neuron number in the hidden layer of 

NNs, a hybrid artificial neural network model was designed for the fault detection and diagnosis of 

complex process systems [51]. SVM has also been utilized to handle nonlinear problems by 

incorporating the kernel trick, which projects the input data into a higher dimensional subspace and 

obtains solutions via solving quadratic programming optimization [52]. Compared with NNs, SVM can 

avoid the local minimum problems which exist in neural networks, leading to great generalization 

capacity. For instance, Li et al. [53] combined SVM and kernel PCA (KPCA) and developed a novel 

fault recognition algorithm, leading to a higher recognition rate than KPCA. An SVM-based algorithm 

designed for fault detection in high-speed trains was studied by Liu et al. [54] with cost-sensitive 

strategy handling imbalanced data and weighted-feature strategy differentiating features. Other 

nonlinear methods including k-nearest neighbor algorithm [55]- [56] are also applied for process 

monitoring. However, these algorithms are time-consuming due to their computational complexity, and 

their interpretability is weak compared with kernel MSA methods. Thus, in this work, Gaussian kernel 

function is chosen to construct a nonlinear variant of MSA methods, and its concept is defined as 

follows [57]. Suppose 𝐱 ∈ ℝ𝑛 is a non-empty subset, and 𝜙 is a nonlinear mapping from 𝐱 to a Hilbert 

space 𝐹. 𝑘(x𝑖 , x𝑗) is defined as kernel function: 

𝑘(x𝑖, x𝑗) = 〈𝜙(x𝑖), 𝜙(x𝑗)〉  ∀x𝑖, x𝑗 ∈ 𝐱 (2.16) 

where 〈𝐚, 𝐛〉 denotes the dot product between vectors 𝐚 and 𝐛. The kernel function changes a non-linear 

problem into a linear one.  

As one of the most popular kernel functions, Gaussian kernel function has better smoothing 

performance and ability to approximate any nonlinear function using fewer parameters. Thus, it is 

widely used for nonlinear issues, which is given by 

𝑘(x𝑖, x𝑗) =
1

2𝜋
exp (−

‖x𝑖 − x𝑗‖
2

2𝜎2
) (2.17) 

where 𝜎 is density of Gaussian kernel function and it is an adjustable parameter. 
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To simplify the calculation, Eq. (2.17) can be rewritten as 

𝑘(x𝑖, x𝑗) = exp (−
‖x𝑖 − x𝑗‖

2

𝑐
) (2.18) 

where 𝑐  represents the width of a Gaussian function, which determines the robustness of kernel 

mapping.  

2.1.3 Dynamic Regularized Latent Variable Regression 

Correlation is one of the typical characteristics of real-world processes, and it can be classified into two 

categories, namely the temporal dependence between adjacent samples, and the dynamic cross-

correlations between various variables. Various dynamic extensions were proposed, such as dynamic 

PLS [17], dynamic CCA [18], and dynamic rLVR [19].  These models consider dynamic cross-

correlations, while the dynamic auto-correlations are ignored, which are also very important for the 

accurate prediction and monitoring performance of quality variables. Due to the superiority of LVR 

over PLS and CCA which has been discussed in the previous section, the dynamic variant of LVR, 

namely dynamic rLVR (DrLVR) [19], is reviewed in this section, which serves as a steppingstone to 

the objectives proposed in this work. 

DrLVR maximizes the covariance between current quality score and current and past process scores, 

and its objective is 

max
𝐰,𝐪,𝜷

  𝐽 = 𝐪⊤𝐘𝑠
⊤𝐙𝑠(𝜷⊗𝐰) −

𝛾
2
‖𝜷⊗𝐰‖2

𝑠. 𝑡.  ‖𝐙𝑠(𝜷⊗𝐰)‖ = 1, ‖𝐪‖ = 1, ‖𝜷‖ = 1
(2.19) 

where 𝐙𝑠 = [𝐗𝑠, 𝐗𝑠−1, … , 𝐗1] ∈ ℝ
𝑁×(𝑚𝑠), and 𝐗𝑖 = [𝐱𝑖 , 𝐱𝑖+1, … , 𝐱𝑖+𝑁]

⊤ ∈ ℝ𝑁×𝑚 (𝑖 = 0,1, … , 𝑠) is a 

subset of the collected input samples 𝐗 = [𝐱1, 𝐱2, . . . , 𝐱𝑠+𝑁]
⊤ ∈ ℝ(𝑁+𝑠)×𝑚 . 𝐘𝑠 =

[𝐲𝑖+1, 𝐲𝑖+2, … , 𝐲𝑖+𝑁]
⊤ ∈ ℝ𝑁×𝑝  is a subset of the collected output samples 𝐘 = [𝐲1, 𝐲2, . . . , 𝐲𝑠+𝑁]

⊤ ∈

𝑅(𝑁+𝑠)×𝑝 , and 𝑠  is the time lag which reflects the dynamics degrees in the system. 𝜷 =

[𝛽0, 𝛽1, . . . , 𝛽𝑠]
⊤ ∈ ℝ𝑠+1  represents the weighting coefficient vector for 𝐰, and 𝜷⊗𝐰 denotes the 

Kronecker product between  𝜷  and 𝐰 . 
𝛾

2
‖𝜷⊗𝐰‖2  is the regularization term to deal with the 

collinearity issue existing in the original data. 

To align with the dynamic outer model, the inner structure of DrLVR is constructed by a linear 

regression between quality score and a set of past process scores as follows: 
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𝑢𝑘 = 𝛽0𝑡𝑘 + 𝛽1𝑡𝑘−1 +⋯+ 𝛽𝑠𝑡𝑘−𝑠 + 휀𝑘 (2.20) 

where 𝑡𝑘 = 𝐱𝑘
⊤𝐰 and 𝑢𝑘 = 𝐲𝑘

⊤𝐪 represent process and quality score of the sample (𝐱𝑘 , 𝐲𝑘). 휀𝑘 is the 

regression error. To extract other sets of latent variables, deflation should be performed on 𝐗 and 𝐘𝑠 

[19].  

DrLVR decomposes 𝐗 and 𝐘𝑠 as 

{
𝐗 = 𝐓𝐏⊤ + 𝐗𝑟
𝐘𝑠 = �̂�𝑠𝐂

⊤ + 𝐘𝑟
(2.21) 

where �̂�𝑠 is the prediction of quality score matrix 𝐔𝑠 = [𝐮𝑠,1, 𝐮𝑠,2, … , 𝐮𝑠,𝑙] ∈ ℝ
𝑁×𝑙. Here, 𝐮𝑠 = 𝐘𝑠𝐪 

corresponds to the quality score of the 𝑖th  latent variable, and 𝐮𝑠 = [𝑢𝑠+1, 𝑢𝑠+2, … , 𝑢𝑠+𝑁]
⊤ ∈ ℝ𝑁 . 

Other symbols retain the same meanings as those in Eqs. (2.1), (2.13), and (2.14). 

Based on Eq. (2.21), the predicted output 𝐘𝑠 is expressed as 

𝐘𝑠 = �̂�𝑠𝐂
⊤. (2.22) 

Similar to PLS and rLVR, DrLVR-based monitoring is performed on a new sample (𝐱𝑘 , 𝐲𝑘)  

according to Eqs. (2.5) - (2.9). More details on DrLVR and its monitoring scheme can be referred to 

Literature [19]. 

2.2 Process Monitoring 

Over the past few decades, multivariate analysis has been commonly applied for process monitoring. 

As one of the most active research domains in process control, statistical process monitoring (SPM) 

has been developed and used for different industrial applications, such as chemicals, microelectronics, 

manufacturing, and pharmaceutical processes. The related tasks involve fault detection, fault 

identification, fault diagnosis, fault estimation, and fault reconstruction [3]. In this work, we focus on 

fault detection, identification, and diagnosis. Note that for process monitoring, process data is in 

accordance with the connotation of input data, while quality data is consistent with the definition of 

output data. 

2.2.1 Fault Detection 

Fault detection is considered as the first step in process monitoring, and monitoring statistics are used 

to determine abnormal datapoints. The Hotelling’s 𝑇2 and 𝑄 statistics are used to detect out-of-control 
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situations in principal component subspace and residual subspace, respectively. 𝑄 is also known as the 

squared prediction error (SPE) [3]. Combined 𝑇2 with 𝑄, a single index 𝜑 was proposed for monitoring 

as follows [3]: 

𝜑 =
𝑇2

𝑇cl
2 +

𝑄

𝑄cl
(2.23) 

where 𝑇cl
2 and 𝑄cl represent the control limits of 𝑇2 with 𝑄, respectively. 

Assuming that 𝜑 follows a 𝜒2-distribution approximately, its control limit 𝜑cl is obtained by 

𝜑cl = 𝑔
𝜑𝜒ℎ𝜑,𝛼

2 (2.24) 

where 

𝑔𝜑 =
𝑡𝑟(𝐒𝑥𝚽)

2

𝑡𝑟(𝐒𝑥𝚽)
, ℎ𝜑 =

[𝑡𝑟(𝐒𝑥𝚽)]
2

𝑡𝑟(𝐒𝑥𝚽)
 

and 𝐒𝑥 is the covariance matrix of input 𝐗. 

These statistics are effective for quality-relevant monitoring, but they ignore process-relevant 

variations and quality variations that are not predictable from process variables, which are also of vital 

importance for operation safety and product quality. To address this issue, several decomposition 

methods have been developed to obtain more comprehensive monitoring results. The orthogonal signal 

correction (OSC) was used to remove information unrelated to the output [59], but it fails to provide 

enough information on the input data. Later, the total PLS (TPLS) was put forward by Zhou et al. [60] 

to resolve these issues by decomposing the space of process data into four different subspaces. However, 

the output-relevant monitoring of TPLS only focuses on quality variances that can be predicted by the 

process variables. Additionally, it is unnecessary for TPLS to decompose the process space into four 

subspaces, and it is sufficient to differentiate between output-relevant and input-relevant variances. 

Alternatively, to monitor process-relevant and quality-relevant faults, a concurrent PLS (CPLS) [61] 

was developed to partition the original feature space into five subspaces, involving covariation subspace, 

output-principal subspace, output-residual subspace, input-principal subspace, an input-residual 

subspace. The CPLS-based monitoring considers both process and quality variables, which constructs 

comprehensive monitoring of both process-relevant and quality-relevant faults. A similar concurrent 

framework was also developed for CCA. Similar to CPLS, concurrent CCA was proposed by Zhu et al.  

[62] for quality-relevant fault detection, decomposes the original data space into five subspaces, 
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including correlation subspace, process-principal subspace, process-residual subspace, quality-

principal subspace, and quality-residual subspace.  

2.2.2 Fault Identification and Diagnosis 

Once an anomaly is detected with the monitoring statistics, it is necessary to determine its assignable 

causes. Several approaches are proposed for fault identification and diagnosis, such as contribution 

plots [21], subspace extraction methods [22], and reconstruction-based contribution (RBC) [23].  

As one of the early proposed fault diagnosis methods, contribution plots diagnose the causes by 

identifying the corresponding contribution of each variable to the monitoring indices, with the 

assumption that faulty variables contribute more to the monitoring statistics.  Hopkins et al. patented 

the commercial use of contribution plots. A novel contribution plots method with a new indicator was 

developed by Wang et al. [63] for quality relevant fault diagnosis. Bounoua and Bakdi [64] improved 

the contribution plots to analyze the cause for abnormal process conditions, indicating more accurate 

information. Additionally, an enhanced comprehensive contribution plots approach was designed to for 

Bayesian fusion based distributed multivariate statistical process monitoring, which improved its fault 

isolation efficiency [65]. 

Subspace extraction methods are also developed for root cause analysis. For instance, a PCA-based 

subspace reconstruction approach was proposed by Dunia and Qin [66] for multidimensional fault 

identification and reconstruction. Subsequently, Gertler et al. [67] put forward an isolation enhanced 

PCA method. Based on a robust reconstruction error calculation, a novel fault identification method 

proposed by Choi et al. [68] was formulated to handle nonlinear relations by kernel PCA. Besides, to 

deal with inaccurate fault subspace extraction and unidentified false alarms, a modified PLS algorithm 

developed by Hu et al. [69] was designed to gain a precise subspace through orthogonal decomposition 

and extract purer quality-related and quality-unrelated fault subspaces. 

To address the issues involving non-rigorous diagnosability analysis and inability to diagnose faults 

with unknown directions in the previous methods, Alcala and Qin [23] proposed an RBC approach, 

which denotes the amount of reconstruction in the direction of each variable to minimize the fault 

detection statistics. Later, several variants of RBC have also been proposed. Specifically, a generalized 

RBC approach with a total PLS model was created by Li et al. [70], showing its superiority to 

contribution plots-based diagnosis methods. To identify the variables that are the most responsible for 

the fault, He et al. [71] established a generic reconstruction based multivariate contribution analysis 
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framework for fault diagnosis with a branch and bound algorithm for the efficient solution to the 

combinatorial optimization problem. Two modified RBC approaches including a generalized RBC 

method and RBC ratio method were proposed by Mnassri et al. [72] to tackle complex faults and 

remedy the defective of the traditional RBC method. 

As preliminaries of proposed fault diagnosis and causal analysis framework, contribution plots and 

RBC methods are reviewed in the following subsections. 

2.2.2.1 Contribution Plots 

𝑇2  and 𝑄  are the most commonly used statistics for fault diagnosis with contribution plots. 

Contribution plots on 𝑇2 denote the significance of the effect of for each variable, which focus on score 

vectors of MSA methods. Variables with the largest contributions are selected as contributing variables 

which cause abnormal situations. Contribution plots on 𝑄 indicate the contribution of each variable. If 

the 𝑄 value of a sample vector is abnormal, the corresponding variables with significant contribution 

need further investigation.  

The contribution of 𝑄 for each variable is simply dividing the summation of 𝑄 into each variable, 

while the contribution of 𝑇2 is not defined clearly as that of 𝑄 due to the definition of 𝑇2 [3]. Nomikos 

defined a distribution 𝑇2  involving cross talk among variables, potentially resulting in negative 

contributions [73]. To eliminate the cross talk among variables and locate the root cause of a fault in a 

decentralized manner, Qin et al.  [74] proposed novel definitions of block and variable contributions to 

𝑇2 and 𝑄 for decentralized monitoring. Westerhuis et al. [75] included all principal components for the 

generalization of 𝑇2 contributions. 

There is no need to provide any prior knowledge required to generate contribution plots, which makes 

contribution plots method easy to calculate. However, prior knowledge is necessary to interpret the 

plots and find the root cause. As explained and analyzed by Kourti and MacGregor [76], although 

contribution plots cannot locate the cause of an abnormal situation explicitly, they narrow down the 

range of candidates for root cause, since the contribution from each variable is propagated to other 

variables in obtaining the projection of residual subspace. Such “smearing” effect will reduce the 

difference between contributing and non-contributing variables, leading to misidentification in some 

cases [3]. Thus, further studies are necessary to overcome the drawback of contribution plots.  
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2.2.2.2 Reconstructed-Based Contribution 

To eliminate the “smearing” effect, the reconstruction-based contribution (RBC) with known fault 

directions and fault magnitude has been developed to locate the assignable cause from a set of 

contributing variables which are considered as candidates of root cause. 

Since RBC retains satisfactory fault diagnosis performance, it is used as the basis of our work, and 

its idea is reviewed briefly in the following. For a faulty sample 𝐱, a reconstructed vector along its fault 

direction 𝜉𝑖 with a fault magnitude of 𝑓𝑖 is expressed as 

𝐳𝑖 = 𝐱 − 𝜉𝑖𝑓𝑖 (2.25) 

where 𝐳𝑖 represents a fault-free sample. Then, the general form of a reconstructed fault detection index 

is constructed as 

Index(𝐳𝑖) = 𝐳𝑖
⊤𝐌𝐳𝑖 = ‖𝐳𝑖‖M

2 = ‖𝐱 − 𝜉𝑖𝑓𝑖‖M
2 (2.26) 

where 𝐌  is determined by the corresponding monitoring index. For instance, 𝐌  for 𝑇2  and  

𝑄 indices are presented in Table 1 [23].  

Table 1: 𝐌 for the general form of RBC 

Index 𝑇2 𝑄 

𝐌  𝐑𝚲−1𝐑⊤  𝐈 − 𝐏𝐑⊤ 

RBC identifies the fault detection by minimizing Index(𝐳𝑖) for different variable directions, and it 

assumes that the direction with the largest fault magnitude is the faulty direction [23]. Taking the first 

derivative of Index(𝐳𝑖) with regard to 𝑓𝑖 and making it equal to zero yield 

𝑓𝑖 = (𝜉𝑖
⊤𝐌𝜉𝑖)

−1
𝜉𝑖
⊤𝐌𝐱.  

Then the amount of reconstruction along the fault direction 𝜉𝑖, denoted as RBC𝑖
Index, is 

RBC𝑖
Index = ‖𝜉𝑖𝑓𝑖‖M

2 = 𝐱⊤𝐌𝜉𝑖(𝜉𝑖
⊤𝐌𝜉𝑖)

−1
𝜉𝑖
⊤𝐌𝐱. (2.27) 
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2.3 Causal Analysis for Root Cause Identification 

To deal with quality-related problems, root cause identification is a key step to identify the main reason 

for the process faults or failures. To locate the causes of faults, causal analysis, which is also known as 

root cause analysis, is developed to explore causal relations between components of time series, and it 

has attracted plenty of attractions in the related fields including public health, policy, finance, physics, 

medicine, biology, environmental science, and public health [77]. Many efficient methods have been 

designed for causal analysis, such as dynamic causal model [78], Granger causality [79]-[80], transfer 

entropy [81], randomization test [82], and phase slope index [83]. Among them, Granger causality and 

transfer entropy are the most commonly used and reliable approaches, but Granger causality is preferred 

in complex processes due to its computation efficiency [84].  

Originated from econometrics, on the basis of linear vector-autoregressive (VAR) modeling, Granger 

causality [79] was proposed to handle stochastic time-series datasets, and has been developed as a time 

series analysis approach [85]. Conceptually, as a measure of the predictive ability from a signal to 

another, if the predictive ability of the signal is statistically different from that in the opposite direction, 

there exists Granger causal relationship between these two signals. Due to its simplicity, usability, 

robustness, and extendibility [86]-[87], Granger causality has been attached great importance to by 

many researchers [77]. At the early stage, focusing on linear relations, Geweke [88] proposed the 

definition of causality for multiple time series, which was seen as the supplement and extension of 

Granger’s previous work. Later, to address early clarification of statistical issues, Granger causality 

was used for local-field potentials (LFPs) [89].  

Since Granger causality can determine whether a signal Granger-causes another one, it is feasible to 

evaluate whether a set of variables includes valuable information that can be used to enhance the 

predictive performance of another set of variables for root cause analysis, which is meaningful for the 

causal analysis for dynamic systems [90]. Goebel et al. [89] combined an adaptive multivariate VAR 

modeling technique with Granger causal analysis to capture fast-changing cortical dynamics. 

Incorporating sparse regression approaches with Granger causality, a modified Granger causality 

framework [91] was provided to estimate high-dimensional dynamical models. In consideration of 

hemodynamics responses between regions in the brain, a measure of Granger causality was validated 

by David et al. [92] to determine the connectivity from time series. Integrating explicit observation 

expressions for hemodynamics responses, Ryali et al. [93] analyzed a state-space framework combined 
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with Granger causality. Integrating the Geweke's spectral approach with the time-varying 

autoregressive with exogenous input (ARX) modeling method, a novel parametric scheme for 

conditional Granger causality was established by Li et al. [94] to capture dynamic interaction relations 

in oscillatory neocortical sensorimotor networks. To reveal dynamic interaction patterns of cortical 

regions in surgical training on effective brain connectivity, dynamic spectral Granger causality was 

applied by Kamat et al. [95] via the short-time Fourier transform approach. Considering the existence 

of nonlinear relations in datasets, Shen et al. [96] proposed a root cause analysis framework which 

combines a recurrent NN with Granger causality test. 

In the following two subsections, two most frequently used Granger causality methods, namely time-

domain Granger causality (TDGC) [90] and conditional spectral Granger causality (CSGC) [97], are 

reviewed in details and will be adapted in the proposed work. 

2.3.1 Time-Domain Granger Causality 

Given two time series 𝐱𝑖(𝑘) and 𝐱𝑗(𝑘) in stationary stochastic processes, a bivariate auto-regressive 

model at time 𝑘 is constructed as [90] 

𝐱𝑖(𝑘) =∑𝑎𝑖𝑖,𝑙𝐱𝑖(𝑘 − 𝑙)

𝑟

𝑙=1

+∑𝑎𝑖𝑗,𝑙𝐱𝑗(𝑘 − 𝑙)

𝑟

𝑙=1

+ 𝒆𝑖(𝑘)

𝐱𝑗(𝑘) =∑𝑎𝑗𝑖,𝑙𝐱𝑖(𝑘 − 𝑙)

𝑟

𝑙=1

+∑𝑎𝑗𝑗,𝑙𝐱𝑗(𝑘 − 𝑙)

𝑟

𝑙=1

+ 𝒆𝑗(𝑘)

(2.28) 

where 𝑟 defines the AR model order, 𝑎𝑖𝑗,𝑙 (𝑙 = 1,2,… , 𝑟) can represent the AR coefficients, and 𝒆𝑖(𝑘) 

and 𝒆𝑗(𝑘) are the residuals or prediction errors of 𝐱𝑖(𝑘) and 𝐱𝑗(𝑘), respectively. 

To perform the AR model on each time series, one variable, 𝐱𝑖 or 𝐱𝑗, can be excluded. Therefore, 

Eq. (2.28) can be simplified into 

𝐱𝑖(𝑘) =∑𝑏𝑖,𝑙𝐱𝑖(𝑘 − 𝑙)

𝑟

𝑙=1

+ 𝒆𝑖(𝑗)(𝑘)

𝐱𝑗(𝑘) =∑𝑏𝑗,𝑙𝐱𝑗(𝑘 − 𝑙)

𝑟

𝑙=1

+ 𝒆𝑗(𝑖)(𝑘)

(2.29) 

where 𝒆𝑖(𝑗)(𝑘) expresses the prediction error that excludes the 𝑗th variable to predict the 𝑖th variable, 

which can be used to determine whether a causal-and-effect relationship exists. 
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It is defined that 𝐱𝑗 Granger-causes 𝐱𝑖 if the exclusion of 𝐱𝑗 reduces the ability to predict  𝐱𝑖 when 

all the other variables are involved in the regression model. The TDGC from Variable 𝑗 to Variable 𝑖 

is measured by the following index 

𝐹𝐱𝑗→𝐱𝑖 = ln
var(𝒆𝑖(𝑗))

var(𝒆𝑖)
(2.30) 

where var(∙) denotes the variance. Thereafter, the statistical significance is assessed by an F test. More 

details can be found in Literature [90]. 

2.3.2 Conditional Spectral Granger Causality 

As the theoretical foundation of CSGC, it is necessary to review spectral Granger causality (SGC) first 

[98]. Due to oscillating variables in real-world industrial processes, it is feasible and appropriate to use 

SGC to investigate cause-and-effect relationship among them. SGC is the spectral decomposition of 

TDGC for multiple time series. Compared with TDGC, SGC provides more information on the granger 

causality at a specific frequency range, so it can be used to combine with TDGC for Granger causality 

analysis. Theoretically, SGC is defined as 

SGC𝐱𝑗→𝐱𝑖(𝑓) = ln
𝑆𝑖𝑖(𝑓)

𝑆𝑖𝑖(𝑓) − (𝚪𝑗𝑗 −
𝚪𝑖𝑗
2

𝚪𝑖𝑖
) |𝐇𝑖𝑗(𝑓)|

2
(2.31)

 

where 𝑆𝑖𝑖(𝑓) defines the spectral density of the target variable 𝐱𝑖  at frequency 𝑓, which represents 

components in spectral density matrix 𝐒. The detailed calculation of 𝑆𝑖𝑖(𝑓) is shown in Appendix A.  

In addition to the mutual relations between 𝐱𝑖 and 𝐱𝑗, other variables 𝐳1, 𝐳2, . . . , 𝐳𝑣 may also affect 

them, which should be included to analyze the causality. However, SGC fails to consider this effect. 

Alternatively, conditional SGC (CSGC) was developed [97]. With the spectral transformation and 

Wilson factorization [99], a multivariate system with 𝑣 + 2 variables (𝐱𝑗, 𝐱𝑖, 𝐳1, . . . , 𝐳𝑣) is formulated 

as 

𝐒(𝐱𝑗, 𝐱𝑖 , 𝐳1, … , 𝐳𝑣 , 𝑓) = 𝐇(𝑓)𝚺𝐇
∗(𝑓)

𝐔𝑖𝑛(𝐱𝑗, 𝐳1, … , 𝐳𝑣 , 𝑓) = 𝐆(𝑓)𝚪𝐆
∗(𝑓)

(2.32) 

where 𝐳1, 𝐳2, . . . , 𝐳𝑣 are variables that may influence 𝐱𝑖 and 𝐱𝑗. 𝐒 and 𝐔𝑖𝑛 define the spectral matrices 

of complete system and system with Variable 𝐱𝑖 excluded for the causality test. 𝐇 and 𝐆 represent the 
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spectral transfer function matrices, while 𝚺 and 𝚪 are the error covariance matrix of complete and 

incomplete systems, respectively. Thus, the corresponding CSGC index can be computed as 

CSGC𝐱𝑗→𝐱𝑖|𝐳1,𝐳2,…,𝐳𝑣(𝑓) = ln
𝚪𝑖𝑖

|𝐐𝑖𝑖(𝑓)𝚪𝑗𝑗𝐐𝑖𝑖
∗ (𝑓)|

(2.33) 

where 

𝐐 =

[
 
 
 
 
 
�̃�𝑖𝑖 0 �̃�𝑖𝐳1
0 1 0
�̃�𝐳1𝑖 0 �̃�𝐳1𝐳1

⋯ �̃�𝑖𝐳𝑣
⋯ 0
⋯ �̃�𝐳1𝐳𝑣

⋮ ⋮ ⋮
�̃�𝐳𝑣𝑖 0 �̃�𝐳𝑣𝐳1

⋱ ⋮
⋯ �̃�𝐳𝑣𝐳𝑣]

 
 
 
 
 
−1

×

[
 
 
 
 
�̃�𝑖𝑖 �̃�𝑖𝑗 ⋯

�̃�𝑗𝑖 ⋯ ⋯
⋯ ⋯ ⋯

⋯ �̃�𝑖𝐳𝑣
⋯ ⋮
⋯ ⋮

⋮ ⋮ ⋮
�̃�𝐳𝑣𝑖 0 �̃�𝐳𝑣𝑗

⋱ ⋮
⋯ �̃�𝐳𝑣𝐳𝑣]

 
 
 
 

. 

The calculation of �̃�𝑖𝑖 can refer to Eqs. (A.1) - (A.6).  

If 𝐱𝑗 does not Granger-cause 𝐱𝑖, but other variables among  𝐳1, 𝐳2, … , 𝐳𝑣 affect both 𝐱𝑗 and 𝐱𝑖, 𝚪𝑖𝑖 

will be equal to |𝐐𝑖𝑖(𝑓)𝚪𝑗𝑗𝐐𝑖𝑖
∗ (𝑓)|, thus leading to  CSGC𝐱𝑗→𝐱𝑖|𝐳1,𝐳2,...,𝐳𝑣(𝑓) = 0; if there is Granger 

causality between 𝐱𝑗 and 𝐱𝑖, CSGC𝐱𝑗→𝐱𝑖|𝐳1,𝐳2,...,𝐳𝑣(𝑓) > 0. Moreover, to determine whether 𝐱𝑗 Granger-

causes 𝐱𝑖, the robustness of CSGC is supposed to be tested against the null hypothesis. 

2.4 Autoencoder 

Considerable technological progress such as artificial intelligence and real-time signal processing 

methods has equipped existing industrial systems with highly sophisticated technologies in diverse 

fields, leading to significant enhancement on the complexity of real-world industrial applications, 

especially chemical industry. The collected data from complicated practical industry processes 

primarily consists of multivariate time series data with high dimensionality. To ensure the operational 

safety and security of complex industrial systems, anomaly detection has been a critical issue for 

identifying abnormal observations or events that deviate from normal patterns, which may cause 

potential problems in industrial practice [100]. 

Several classical machine learning and deep learning methods have been widely adopted in industry 

and academia. More concretely, multivariate statistical approaches such as clustering [101], principal 

component analysis (PCA) [102], and Gaussian mixture model (GMM) [103] have been used to detect 

abnormal points that exhibit substantial deviations from the normal data. In terms of machine learning-

based algorithms, support vector machines (SVM) [104], random forests [105], and neural networks 
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[106] are also suitable for anomaly detection by model training. Deep learning methods have also been 

employed for identifying abnormal events or observations that deviate significantly from the expected 

or typical behavior of the data [107]. Due to the ability to capture complex patterns, feature extraction 

and dimensionality reduction, autoencoder (AE) technology has been considered as a popular choice 

for anomaly detection in chemical practice [108]. However, they pay less attention to dynamic 

behaviors existing in industrial datasets. Thus, it still remains a challenging issue carrying out the 

reliable results of anomaly detection from high-dimensional data that changes over time. 

For reasons of identifying anomalies in real-world data with high dimensional and time-dependent 

properties, some classical algorithms such PCA and AE, and their corresponding variants can be 

employed for dimensionality reduction and feature extraction. Specifically, to handle time-dependent 

samples, dynamic PCA has been created to extract dynamics in the original data and detect irregular 

observations or samples [109]. To overcome the assumption of most AE algorithms that data points are 

considered as independent samples, considering the dynamic relations existing in the original collected 

data from industrial applications, some pre-processing approaches for time series data have been 

adopted for the construction of frameworks combined with AE methods, such as mutual information 

[110] and dynamic thresholding mechanism [111]. However, these proposed schemes focus on the pre-

processing methods, without any consideration for the improvement of AE structure. Pre-processing 

increases the complexity of algorithms, rendering disadvantages involving high computational costs, 

prolonged running time, difficulty of implementation, and higher demand on data quality [112]. 

Compared with PCA, AE methods possess the strengths including handling missing data, learning 

hierarchical representations, new data generation, and data processing capabilities [113]. Thus, AE is 

adopted to build up the anomaly detection scheme proposed in this work.  

2.5 Auto-Regressive Integrated Moving Average Model 

Autoregressive Integrated Moving Average (ARIMA) models have been commonly utilized in time 

series analysis. Due to its flexibility and applicability, ARIMA models have been developed and applied 

for processing data with trends, irregular fluctuations, or even seasonality. Typically, an ARIMA model 

consists of auto-regressive part and moving average part. The autoregressive part captures the temporal 

dependence of current value based on its past values, while the differencing process depends on the 

integrated part. Additionally, the error term is processed as a linear combination of past error terms by 
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the moving average part [114]. Given an input vector 𝐯 ∈ ℝ𝑛, which can also be expressed as time series, 

the autoregressive part at time 𝑡 (𝑡 = 1, 2,… , 𝑛) is expressed by 

𝐯𝑡 =∑𝛽𝑎,𝑖𝐯𝑡−𝑖 + 𝜺𝑡

𝑝𝑎

𝑖=1

(2.34) 

where 𝐯𝑡 denotes the aggressive part 𝐯 existing in the input 𝐳 at time 𝑡. 𝑝𝑎 is the number of time lags, 

and 𝛽𝑎,𝑖 (𝑖 = 1, 2, … , 𝑝𝑎) are parameters of the autoregressive part. 𝜺𝑡 denotes the white noise error term 

at time 𝑡, which is typically assumed to be independent and conform to a normal distribution with zero 

mean. 

The moving average part is given by 

𝐞𝑡 = 𝝁+∑𝜃𝑖𝜺𝑡−𝑖 + 𝜺𝑡

𝑞𝑎

𝑖=1

(2.35) 

where 𝐞𝑡 denotes the moving average part 𝐞 existing in the input z at time t. 𝝁 represents the mean of 𝐞.  

𝑞𝑎 is the order of the moving average part. 𝜃𝑖 (𝑖 = 1, 2, … , 𝑞𝑎) are parameters of the moving average 

part. 𝜺𝑡 is the white noise error term at time 𝑡 for the moving average part as well. 

Combining Eq. (2.34) with Eq. (2.35), the ARIMA model is defined by 

𝐳𝑡 = (1 −∑𝛽𝑎,𝑖𝐵
𝑖

𝑝𝑎

𝑖=1

)

−1

(1 − 𝐵)−𝑑𝑎 (1 −∑𝜃𝑖𝐵
𝑖

𝑞𝑎

𝑖=1

)𝜺𝑡 (2.36) 

where 𝐳𝑡 represents the component of time series 𝐳 at time 𝑡.  𝐵 denotes the backshift operator, which 

operates on an element of the compressed representation to construct the previous element and can be 

expressed as 𝐵𝐳𝑡 = 𝐳𝑡−1, ∀𝑡 > 1. 𝑑𝑎 denotes the degree of differencing, which is the number of times 

the time series 𝐳 has that had past values subtracted. Here, 𝑝𝑎, 𝑑𝑎, and 𝑞𝑎 are non-negative integers. 

2.6 Anomaly Detection 

Anomaly detection refers to the identification of anomalies, which are defined as abnormal events, 

observations, or samples that significantly deviate from the normal or expected behavior of given data 

to indicate the potential problems in the dataset [115]. The early detection of anomalies plays an essential 

role in industrial practice to raise the system safety, prevent failures, reduce downtime, and improve 
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production in manufacturing, since anomalies are considered as indicative of potential issues involving 

safety risks, equipment failures, and maintenance problems [116]. To detect anomalies in a given dataset, 

the model that captures the normal observations or behaviors is constructed by the training period, and 

the test data is applied for the identification of abnormal points which are not fitted with the training 

model. 

Anomaly detection using dimensionality reduction has been developed based on the assumption that 

variables in the input data are correlated with each other and their features can be captured by projecting 

them into a lower dimensional subspace where the samples are significantly different from the original 

ones [25]. For AE, in the training period, the input matrix 𝐗 = [𝐱(1), 𝐱(2), … , 𝐱(𝑛) ] ∈ ℝ𝑛×𝑚 with normal 

samples is considered as the training set, where n and m denote the number of samples and variables in 

the original data. Then, the corresponding compressed representation matrix 𝐙 = [𝐳(1), 𝐳(2), … , 𝐳(𝑛) ] ∈

ℝ𝑛×𝑘 is reconstructed as �̂� = [�̂�(1), �̂�(2), … , �̂�(𝑛) ] ∈ ℝ𝑛×𝑘 to capture the features of 𝐗, where k is the 

dimension of the compressed representation. The output of the model is reproduced by decoder as �̂� =

[�̂�(1), �̂�(2), … , �̂�(𝑛) ] ∈ ℝ𝑛×𝑚
′
 (𝑚′ ≤ 𝑚), and mean squared error (MSE) is used as the reconstruction 

error (RE) between input and output is calculated as [113] 

𝜺(𝑡) = ‖𝐱(𝑡) − �̂�(𝑡)‖
2

(2.37) 

where 𝜺(𝑡) denotes the RE of an input vector 𝐱(𝑡) at time 𝑡 (𝑡 = 1, 2, … , 𝑛). RE is obligated to update 

the parameters of encoder and decoder and calculate the anomaly score for anomaly detection. 

 

  



 

 25 

Chapter 3 

Nonlinear Latent Variable Regression for Process Monitoring 

With the advancement of modern science and technologies, the industrial processes tend to be 

increasingly complex, leading to collinearity and nonlinearity. Collinearity in collected adjacent 

samples can be solved by introducing a regularization term in matrix inversions, while nonlinearity can 

be handled via nonlinear variants of MSA approaches. However, the existing nonlinear MSA methods 

such as KPLS and KCCA suffer from the same issues as described in Chapter 1. Considering the 

advantage of LVR over PLS and CCA [14],  a nonlinear extension of LVR is proposed in this chapter, 

and a concurrent decomposition with subsequent PCA operation is conducted to obtain a 

comprehensive modeling and monitoring performance. 

3.1 Kernel Latent Variable Regression and Its Monitoring Scheme 

Define 𝜙 as a nonlinear projection indicator to map process variables from the original space into the 

feature space 𝐹 , which is a higher-dimensional feature space. The original process matrix 𝐗  is 

transformed into 𝚽 = [𝜙(𝐱1), 𝜙(𝐱2), … , 𝜙(𝐱𝑛)]
⊤ ∈ ℝ𝑛×𝑚𝑓 in the feature space. It is assumed that in 

the feature space, variables are linearly related with each other. Based on Eq. (2.16), the kernel matrix 

is constructed as 𝐊 = 𝚽𝚽⊤ ∈ ℝ𝑛×𝑛 . For simplicity, With the kernel function in Eq. (2.18), the 

optimization objective of KLVR is designed as 

max
𝛂𝚽,𝐪

  𝐽 = 𝐪⊤𝐘⊤𝚽𝛂𝚽 −
𝛾
2
‖𝛂𝚽‖

2

𝑠. 𝑡.  ‖𝚽𝛂𝚽‖ = 1, ‖𝐪‖ = 1
(3.1) 

where 𝛂𝚽 = 𝚽
⊤𝛂 and 𝐪 are projection vectors for 𝚽 and 𝐘, respectively. Replacing the calculation of 

𝚽 with kernel matrix 𝐊 simplifies Eq. (3.1), leading to 

max   
𝛂,𝐪

𝐽 = 𝐪⊤𝐘⊤𝐊𝛂−
𝛾
2𝛂

⊤𝐊𝛂

𝑠. 𝑡.  ‖𝐊𝛂‖ = 1, ‖𝐪‖ = 1
(3.2) 

where 𝛂 and 𝐪 are weighting vectors for 𝐊 and 𝐘, respectively. In KLVR, the process score vector can 

be rewritten as 𝐭 = 𝚽𝛂𝚽 = 𝐊𝛂.  

Lagrange multipliers are used to solve Eq. (3.2): 
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ℒ = 𝐪⊤𝐘⊤𝐊𝛂−
𝛾

2
𝛂⊤𝐊𝛂+

𝜆𝛼
2
(1 − 𝛂⊤𝐊2𝛂) +

𝜆𝑞
2
(1 − 𝐪⊤𝐪). (3.3) 

After taking derivatives with respect to 𝛂  and 𝐪  and setting them equal to zero, the following 

expressions are retained from Eq. (3.3). 

𝐊𝐘𝐪 = 𝜆𝛼(𝐊 + 𝜅𝐈)𝐊𝛂

𝐘⊤𝐊𝛂 = 𝜆𝑞𝐪                      
(3.4) 

where 𝜅 = 𝛾/𝜆𝛼.  

Arrange terms in Eq. (3.4), obtaining 

(𝐊 + 𝜅𝐈)−1𝐘𝐘⊤𝐊𝛂 = 𝜆𝛼𝜆𝑞𝛂

𝐘⊤(𝐊 + 𝜅𝐈)−1𝐊𝐘𝐪 = 𝜆𝑞𝜆𝛼𝐪.
(3.5) 

    Eq. (3.5) implies that 𝜆𝛼  and 𝜆𝑞  are eigenvalues of (𝐊 + 𝜅𝐈)−1𝐘𝐘⊤𝐊  and 𝐘⊤(𝐊 + 𝜅𝐈)−1𝐊𝐘 , 

respectively, while 𝛂 and 𝐪 are their corresponding eigenvectors. 

Accordingly, the outer structure of KLVR can be obtained by iterating the following relations until 

convergence. 

(1) 𝛂 = (𝐊 + 𝜅𝐈)−1𝐮, 𝛂 = 𝛂/‖𝐊𝛂‖; 

(2) 𝐭 = 𝐊𝛂; 

(3) 𝐪 = 𝐘⊤𝐭, 𝐪 = 𝐪/‖𝐪‖; 

(4) 𝐮 = 𝐘𝐪. 

Afterwards, perform deflation on 𝚽 and 𝐘 to remove the effects of the extracted latent variables as 

follows: 

𝚽 ≔ (𝐈 − 𝐭𝐭⊤)𝚽

 𝐘 ≔ (𝐈 − 𝐭𝐭⊤)𝐘.
 

Given 𝐊 = 𝚽𝚽⊤, 𝐊 is deflated as 

𝐊 ≔ (𝐈 − 𝐭𝐭⊤)𝐊(𝐈 − 𝐭𝐭⊤). 

Due to the consistent inner and outer objectives, similar to LVR, inner model is not needed in KLVR. 

The detailed KLVR algorithm is summarized as follows: 
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1. Pre-process process and quality matrices to obtain centered 𝐊 and scaled 𝐘.  

2. The iteration number is set as 𝑖 = 1, and initialize 𝐊 and 𝐘 as 𝐊1 = 𝐊, 𝐘1 = 𝐘, and 𝐮𝑖 as the first 

column of 𝐘. 

3. Perform the following (1)-(4) iteratively until convergence. 

(1) 𝛂𝑖 = (𝐊𝑖 + 𝜅𝐈)
−1𝐮𝑖, 𝛂𝑖 = 𝛂𝑖/‖𝐊𝑖𝛂𝑖‖; 

(2) 𝐭𝑖 = 𝐊𝑖𝛂𝑖; 

(3) 𝐪𝑖 = 𝐘𝑖
⊤𝐭𝑖, 𝐪𝑖 = 𝐪𝑖/‖𝐪𝑖‖; 

(4) 𝐮𝑖 = 𝐘𝑖𝐪𝑖. 

4. Perform deflation on 𝐊 and 𝐘 as 

𝐊𝑖+1 = (𝐈 − 𝐭𝑖𝐭𝑖
⊤)𝐊𝑖(𝐈 − 𝐭𝑖𝐭𝑖

⊤)

𝐘𝑖+1 = (𝐈 − 𝐭𝑖𝐭𝑖
⊤)𝐘𝑖.                 

 

5. Set 𝑖 ≔ 𝑖 + 1, and return to Step 3 until l latent variables are extracted.  

With KLVR, 𝚽 and 𝐘 are decomposed by KLVR as 

𝚽 = 𝐓𝐏⊤ +𝚽𝑟

𝐘 = 𝐓𝐂⊤ + 𝐘𝑟
 

where 𝐏 = 𝚽⊤𝐓  and 𝐂 = 𝐘⊤𝐓  represent the loading matrices for 𝚽  and 𝐘 , while 𝚽𝑟  and 𝐘𝑟  are 

residuals of 𝚽 and 𝐘, respectively.  

According to the score matrix 𝐓 = 𝚽𝐑, 

𝐑 = 𝐖(𝐏⊤𝐖)−1 = 𝚽⊤𝐀(𝐓⊤𝐊𝐀)−1 (3.6) 

where 𝐀 = [𝛂1, 𝛂2, … , 𝛂𝑛]
⊤ ∈ 𝑅𝑛×𝑙, and 𝐖 = 𝚽⊤𝐀. 

For test samples 𝐗𝑡, its kernel matrix 𝐊𝑡 should be first centered as 

𝐊𝑡 ≔ (𝐊𝑡 −
1

𝑛
𝟏𝑘𝟏𝑛

⊤𝐊)(𝐈𝑛 −
1

𝑛
𝟏𝑛𝟏𝑛

⊤) 

where 𝐊 is the kernel matrix of the training data 𝐗. 
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For a single test sample 𝐱new,  its kernel is designed as 𝑘(𝐱𝑖 , 𝐱new) = 〈𝜙(𝐱𝑖), 𝜙(𝐱new)〉, where 𝐱𝑖 

represents the 𝑖th sample of the training data. The score vector 𝐭new is calculated as 

𝐭new = 𝐑
⊤𝜙(𝐱new) = 𝚽

⊤𝐀(𝐓⊤𝐊𝐀)−1𝐤𝑡 (3.7) 

where 𝐤𝑡 = 𝚽𝜙(𝐱new). 

Two statistics, 𝑇2 and 𝑄, are employed to detect the variations in the principal component subspace 

and residual subspace, which are decomposed with KLVR. 𝑇2 and 𝑄 indices are defined as  

𝑇2 = 𝐭new
⊤ 𝚲−1𝐭new  (3.8) 

𝑄 = ‖𝜙𝑟(𝐱new)‖
2 (3.9) 

where 𝚲 =
1

𝑛−1
𝐓⊤𝐓  includes the variances of principal components, and 𝜙𝑟(𝐱new) = 𝜙(𝐱new) −

𝐏𝐭new represents the residual of 𝜙(𝐱new). With the model parameters obtained from KLVR model, the 

𝑄 index is denoted as 

𝑄 = 𝜙(𝐱new)
⊤ 𝜙(𝐱new) − 2𝐤𝑡

⊤𝐓𝐭new + 𝐭new
⊤ 𝐓⊤𝐊𝐓𝐭new (3.10) 

where 𝜙(𝐱new)
⊤ 𝜙(𝐱new) = 1 −

2

𝑛
∑ 𝑘(𝐱𝑖, 𝐱new)
𝑛
𝑖=1 +

1

𝑛2
∑ ∑ 𝑘(𝐱𝑖 , 𝐱𝑗)

𝑛
𝑗=1

𝑛
𝑖=1  (𝑖, 𝑗 = 1, 2, . . . , 𝑛).  

The control limits of 𝑇2 and 𝑄 indices are designed in the same way as in Eq. (2.9) [3]. 

3.2 Concurrent KLVR-based Monitoring  

KLVR-based monitoring only focuses on the monitoring of quality anomalies, failing to provide a 

comprehensive monitoring for variations in both process and quality variables. Thus, a concurrent 

modeling and fault detection framework is developed based on KLVR, which constructs a multilayer 

monitoring structure to capture and monitor variations in both quality and process spaces. The proposed 

method is named concurrent KLVR (CKLVR). 

CKLVR decomposes the original data space into five subspaces, including covariation subspace 

(CVS), input-principal subspace (IPS), input-residual subspace (IRS), output-principal subspace (OPS) 

and output-residual subspace (ORS). The details of CKLVR algorithm are outlined as follows. 

1. Scale 𝐗 and 𝐘 to zero mean and unit variance, and 𝐗 is processed to obtain the mean-centered 𝐊. 

2. Perform KLVR on the mean-centered 𝐊 and 𝐘 with 𝑙 latent variables to obtain T, 𝐂, and R. 
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3. Construct the predictable output matrix in CVS as 𝐘 =  𝐓𝐂⊤, and then perform singular value 

decomposition (SVD) on 𝐘 to capture the predictable variations with 𝑙𝑐 principal components as 

𝐘 = 𝐔𝑐𝐃𝑐𝐕𝑐
⊤ ≡ 𝐔𝑐𝐐𝑐

⊤ (3.11) 

where 𝐔𝑐  reflects the covariations in 𝚽 which are predictable from 𝐘 .  𝐐𝑐 = 𝐕𝑐𝐃𝑐  includes all 𝑙𝑐 

nonzero singular values in descending order and their corresponding right singular vectors. Since 𝐕𝑐 is 

orthonormal,  

𝐔𝑐 = 𝐘𝐕𝑐𝐃𝑐
−1 = 𝐓𝐂⊤𝐕𝑐𝐃𝑐

−1 = 𝚽𝐑𝐂⊤𝐕𝑐𝐃𝑐
−1 ≡ 𝚽𝐑𝑐 (3.12) 

where 𝐑𝑐 =  𝐑𝐂
⊤𝐕𝑐𝐃𝑐

−1 = 𝚽⊤𝐀(𝐓⊤𝐊𝐀)−1𝐂⊤𝐕𝑐𝐃𝑐
−1. 

4. The unpredictable output matrix is denoted as 𝐘𝑐 = 𝐘 − 𝐔𝑐𝐐𝑐
⊤, and perform PCA on 𝐘𝑐 with 𝑙𝑦 

principal components 

𝐘𝑐 = 𝐓𝑦𝐏𝑦
⊤ + 𝐘 (3.13) 

where 𝐓𝑦 = 𝐘𝑐𝐏𝑦 is the output-principal score matrix, 𝐏𝑦 denotes the output-principal loading matrix, 

and 𝐘 represents the output residual matrix. 

5. Variations that are quality-irrelevant but process-relevant can be extracted by �̃�𝑐 = 𝚽− 𝐔𝑐𝐑𝑐
†
, 

where 𝐑𝑐
† = (𝐑𝑐

⊤𝐑𝑐)
−1𝐑𝑐

⊤. Theoretically, the next step is to perform PCA on �̃�𝑐  with 𝑙𝑥  principal 

components as 

�̃�𝑐 = 𝐓𝑥𝐏𝑥
⊤ + �̃� (3.14) 

where 𝐓𝑥 = �̃�𝑐𝐏𝑥 denotes the input-principal score matrix, 𝐏𝑥 is the input-principal loading matrix, 

and �̃� represents the input residuals.  

The explicit nonlinear calculation can be circumvented by performing PCA on 𝐊𝑐 = �̃�𝑐�̃�𝑐
⊤, and the 

input-principal score matrix 𝐓𝑥 can be expressed as 

𝐓𝑥 = �̃�𝑐𝐏𝑥 = 𝐊𝑐𝐖𝑥 (3.15) 

where 𝐖𝑥  contains scaled eigenvectors of 
1

𝑛
�̃�𝑐�̃�𝑐

⊤  corresponding to the 𝑙𝑥  largest eigenvalues. 

Besides, the input-principal loading matrix 𝐏𝑥 can be represented as 𝐏𝑥 = �̃�𝑐
⊤𝐖𝑥.  

Consequently, CKLVR decomposes the process and quality data as  
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{
𝚽 = 𝐔𝑐𝐑𝑐

† + 𝐓𝑥𝐏𝑥
⊤ + �̃�

𝐘 = 𝐔𝑐𝐐𝑐
⊤ +𝐓𝑦𝐏𝑦

⊤ + 𝐘
(3.16) 

where 𝐔𝑐𝐑𝑐
†
 represents the predictable quality-relevant variations in process variables, showing the 

relations between process and quality variables, while 𝐔𝑐𝐐𝑐
⊤ includes predictable quality variations, 

and they build up CVS together.  𝐓𝑥𝐏𝑥
⊤ in IPS captures major process-relevant but quality-irrelevant 

variations, while �̃� in IRS represents the process residuals. 𝐓𝑦𝐏𝑦
⊤  in OPS contains major quality-

relevant variations that are unobservable for the process data, and ORS is constructed by the residuals 

𝐘.  

For a new data sample pair (𝐱new, 𝐲new) can be decomposed by CKLVR into 

{
𝜙(𝐱new) = 𝐑𝑐

†⊤𝐮𝑐,new + 𝐏𝑥𝐭𝑥,new + �̃�(𝐱new)

𝐲new = 𝐐𝑐𝐮𝑐,new + 𝐏𝑦𝐭𝑦,new + �̃�new
(3.17) 

where score vectors 𝐮𝑐,new = 𝐑𝑐
⊤�̃�(𝐱new) , 𝐭𝑥,new = 𝐏𝑥

⊤�̃�𝑐(𝐱new) , and 𝐭𝑦,new = 𝐏𝑦
⊤�̃�𝑐,new  are 

calculated directly through the kernel form  𝐤𝑡 = 𝚽𝜙(𝐱new), which are specifically presented as 

follows: 

𝐮𝑐,new = 𝐃𝑐
−⊤𝐕𝑐

⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀⊤𝐤𝑡                                               (3.18) 

𝐭𝑥,new = 𝐖𝑥
⊤(𝐤𝑡 − 𝐔𝑐𝚪𝑐𝐤𝑡 − 𝐊𝚪𝑐

⊤𝐮𝑐,new + 𝐔𝑐𝚪𝑐𝐊𝚪𝑐
⊤𝐮𝑐,new) (3.19) 

𝐭𝑦,new = 𝐏𝑦
⊤𝐘 − 𝐏𝑦

⊤𝐐𝑐𝐃𝑐
−⊤𝐕𝑐

⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀⊤𝐤𝑡                     (3.20) 

where 𝚪𝑐 = (𝐃𝑐
−⊤𝐕𝑐

⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀𝐊𝐀(𝐓⊤𝐊𝐀)−1𝐂⊤𝐕𝑐𝐃𝑐
−1)−1𝐃𝑐

−⊤𝐕𝑐
⊤𝐂(𝐓⊤𝐊𝐀)−⊤𝐀  is defined for 

ease of presentation. In addition, �̃�(𝐱new) and �̃�new can be attained by 

{
�̃�(𝐱new) = �̃�𝑐(𝐱new) − 𝐏𝑥𝐭𝑥,new

�̃�new = (𝐈 − 𝐏𝑦𝐏𝑦
⊤)�̃�𝑐,new.

(3.21) 

Then, the monitoring statistic of each subspace is designed to indicate process and quality anomalies 

with different alarming levels.  

Since the predictable quality-relevant score vector 𝐮𝑐,new, process-relevant score vector 𝐭𝑥,new, and 

unpredictable quality-relevant score vector 𝐭𝑦,new involves variations of the whole system, for a new 

testing sample pair (𝐱new, 𝐲new), the Hotelling’s 𝑇2, 𝑇𝑐
2, 𝑇𝑥

2, and 𝑇𝑦
2 are applied for monitoring: 



 

 31 

𝑇𝑐
2 = (𝑛 − 1)𝐮𝑐,new

⊤ 𝐮𝑐,new (3.22) 

𝑇𝑥
2 = 𝐭𝑥,new

⊤ 𝚲𝑥
−1𝐭𝑥,new        (3.23) 

𝑇𝑦
2 = 𝐭𝑦,new

⊤ 𝚲𝑦
−1𝐭𝑦,new        (3.24) 

where 𝚲𝑥 =
1

𝑛−1
𝐓𝑥
⊤𝐓𝑥  and 𝚲𝑦 =

1

𝑛−1
𝐓𝑦
⊤𝐓𝑦  represent the variances of process and quality variables 

with respect to principal components 𝑙𝑥 and 𝑙𝑦, respectively. 

The 𝑄𝑥 and  𝑄𝑦 indices are designed for residuals of process variations, where 𝑄𝑥 index is  

𝑄𝑥 = ‖�̃�(𝐱new)‖
2
= ‖�̃�𝑐(𝐱new) − 𝐏𝑥𝐭𝑥,new‖

2
                                                  

= �̃�𝑐
⊤(𝐱new)�̃�𝑐(𝐱new) − 𝟐�̃�𝑥

⊤(𝐱new)𝐏𝑥𝐭𝑥,new + 𝐭𝑥,new
⊤ 𝐏𝑥

⊤𝐏𝑥𝐭𝑥,new (3.25)
 

where �̃�𝑐(𝐱new) = �̃�(𝐱new) − 𝐑𝑐
†⊤𝐮𝑐,new = 𝜙(𝐱new) −𝚽

⊤𝚪𝑐
⊤𝐮𝑐,new, and every term in Eq. (3.25) 

can be computed as 

�̃�𝑐
⊤(𝐱new)�̃�𝑐(𝐱new) = 1 − 𝟐𝐮𝑐,new

⊤  𝚪𝑐𝐤𝑡 + 𝐮𝑐,new
⊤ 𝚪𝐊𝚪𝑐

⊤𝐮𝑐,new            

�̃�𝑥
⊤(𝐱new)𝐏𝑥𝐭𝑥,new = (𝐤𝑡

⊤ − 𝐮𝑐,new
⊤ 𝚪𝑐𝐊)(𝐈 − 𝐔𝑐𝚪𝑐)

⊤𝐖𝑥𝐭𝑥,new           

𝐭𝑥,new
⊤ 𝐏𝑥

⊤𝐏𝑥𝐭𝑥,new = 𝐭𝑥,new
⊤ 𝐖𝑥

⊤(𝐈 − 𝐔𝑐𝚪𝑐)𝐊(𝐈 − 𝚪𝑐
⊤𝐔𝑐

⊤)𝐖𝑥𝐭𝑥,new 

where �̃�𝑐 = 𝚽− 𝐔𝑐𝐑𝑐
† = 𝚽− 𝐔𝑐  𝚪𝑐 𝚽, 𝐏𝑥 = �̃�𝑐

⊤𝐖𝑥, and �̃�𝑐�̃�𝑐
⊤ = (𝐈 − 𝐔𝑐𝚪𝑐)𝐊(𝐈 − 𝚪𝑐

⊤𝐔𝑐
⊤). 

In addition, the 𝑄𝑦 statistic can be calculated as 

𝑄𝑦 = ‖�̃�new‖
2 = ‖�̃�𝑐,new − 𝐏𝑦𝐭𝑦,new‖

2
= �̃�𝑐,new

⊤ (𝐈 − 𝐏𝑦𝐏𝑦
⊤)�̃�𝑐,new

= (𝐲new − 𝐐𝑐𝐮𝑐,new)
⊤
(𝐈 − 𝐏𝑦𝐏𝑦

⊤)(𝐲new − 𝐐𝑐𝐮𝑐,new).          (3.26)
 

Table 2: Concurrent monitoring statistics and corresponding control limits 

 Statistics Control limits  Alarming level 

 𝑇𝑐
2  𝑇𝑐,cl

2 = 𝜒𝛼,𝑙𝑐
2  𝐿1 

𝑇𝑥
2  𝑇𝑥,cl

2 = 𝜒𝛼,𝑙𝑥
2  𝐿3 

 𝑄𝑥  𝑄𝑥,cl = 𝑔𝑥𝜒𝛼,ℎ𝑥
2  𝐿2 

𝑇𝑦
2 𝑇𝑦,cl

2 = 𝜒𝛼,𝑙𝑦
2  𝐿2 

𝑄𝑦  𝑄𝑦,cl = 𝑔𝑦𝜒𝛼,ℎ𝑦
2  𝐿3 
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The corresponding control limits of 𝑇𝑐
2, 𝑇𝑥

2, 𝑇𝑦
2, 𝑄𝑥 , and 𝑄𝑦  indices are summarized in Table 2, 

where 𝑔𝑥  and 𝑔𝑦  represent scaling factors of control limits, while ℎ𝑥  and ℎ𝑦  denote the degrees of 

freedom of 𝜒2-distribution used in the computation of 𝑄𝑥,cl and 𝑄𝑦,cl, respectively [117]. 

 

Figure 1: Multilayer monitoring framework based on CKLVR 

The CKLVR-based multilayer monitoring framework is illustrated in Figure 1, which decomposes 

the original process and quality data into five subspaces, namely CVS, OPS, ORS, IPS, and IRS. 

Different fault alarms align with faults detected in different subspaces, which is founded on whether 

anomalies observed by statistics are quality-relevant or not. More concretely, 𝐿1 , 𝐿2 , and 𝐿3  are 

attached for faults with descending importance. The monitoring procedure for a new sample is 

summarized. 

1. If 𝑇𝑐
2 > 𝑇𝑐,cl

2 , the 𝐿1 fault alarm is fired in CVS with (1 − 𝛼) × 100% confidence, indicating that 

a quality-relevant fault is detected. 

2. If 𝑇𝑦
2 > 𝑇𝑦,cl

2  , a quality-relevant fault is detected with (1 − 𝛼) × 100% confidence, and it is 

attached with a 𝐿2 alarming level. This fault is in OPS, and it is unpredictable from process variables. 

3. If 𝑄𝑦 > 𝑄𝑦,cl, a quality-irrelevant fault with a 𝐿3 alarming level is detected with (1 − 𝛼) × 100% 

confidence. 

4. If 𝑇𝑥
2 > 𝑇𝑥,cl

2 , a quality-relevant but process-irrelevant fault is detectable for IPS with (1 −

𝛼) × 100% confidence, showing that the fault is attached to the 𝐿3 alarming level. 
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5. If 𝑄𝑥 > 𝑄𝑥,cl, a potentially quality-relevant fault can be observed in IRS with  (1 − 𝛼) × 100% 

confidence, which implies the fault pertains to the 𝐿2 alarm.  

 

Figure 2: CKLVR-based monitoring diagram 

Additionally, the whole CKLVR-based monitoring scheme is demonstrated in Figure 2 for better 

understanding. 

3.3 Synthetic Case Study 

In this section, a synthetic case study is employed to illustrate the effectiveness of CKLVR-based 

multilayer monitoring. The fault-free process and quality variables are generated as follows: 

𝐱1 = 𝐳1 + 3 sin(𝐳2) + 𝐳3 + 𝐞1
𝐱2 = 3𝐳1 + cos(𝐳3) + 𝐞2
𝐱3 = 4𝐳1

2 + 𝐳2 + 3𝐳3 + 𝐞3
𝐱4 = 4𝐳1 + 4 sin(𝐳2) + 𝐞4
𝐱5 = sin(𝐳2) + 𝐞5

                 
𝐲1 = sin(𝐱1) + 2𝐱2 + cos(𝐱3) + 𝐱4 + 𝐯1
𝐲2 = 3𝐱1 + cos(𝐱2) + 4𝐱4 + 𝐯2

 

where 𝑧𝑘 ∼ 𝒰([0,1]) , 𝑒𝑘 ∼ 𝒩(0, 0.2
2) , and 𝑣𝑘 ∼ 𝒩(0, 0.1

2) . Specifically, 𝒰([0,1])  represents a 

uniform distribution in the interval [0,1], and  𝒩(𝜇, 𝜎2) denotes a Gaussian distribution with mean 𝜇 

and variance 𝜎2.  

Here, 200 samples are generated under normal conditions to form a CKLVR model, and 400 samples 

are generated for testing. The model parameters are determined by a 10-fold cross validation jointly: 
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For CKLVR, 𝑙 = 1, 𝜅 =  0.004, 𝑐 = 110, 𝑙𝑐 = 1, 𝑙𝑥 = 4, and 𝑙𝑦 = 2, while for KLVR, 𝑙 = 1, 𝜅 =

 0.004, and 𝑐 = 110. Note that the 𝑄𝑦 statistic is null since 𝑙𝑦 is equal to the number of quality data 𝑝. 

The confidence level of control limit is chosen as 95%. 

Thus, to verify the monitoring performance, four faults are added from the 201st samples to the end 

in subspaces including CVS, OPS, IPS, and IRS as follows: 

𝐱 = 𝐱∗ + 𝚵𝑥𝑓𝑥
𝐲 = 𝐲∗ + 𝚵𝑦𝑓𝑦

 

where 𝐱∗ and 𝐲∗ are fault-free samples, 𝚵𝑥 and 𝚵𝑦 represent matrices of different faulty cases, and 𝑓𝑥 

and 𝑓𝑦 denote fault magnitudes, respectively. 

To show the ground truth for each case, KPCA-based monitoring is performed in each faulty case on 

process variables and quality variables, respectively. 𝑇𝑦
2 is used to describe quality variables, while 𝑇𝑥

2 

and 𝑄𝑥 are statistics for process monitoring. 

 

Figure 3: KPCA-based monitoring results with fault in CVS (𝑓𝑥 = 1) 

Concretely, the monitoring results of KPCA, CKLVR, and KLVR for each faulty scenario are 

demonstrated as follows: Figures 3, 4, and 5 describe the corresponding results of the fault in CVS; 
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Figures 6, 7, and 8 show the monitoring results of the fault in OPS; Figures 9, 10, and 11 display the 

monitoring results of the fault in IPS; and Figures 12, 13, and 14 demonstrate the results of the fault in 

IRS. 

3.3.1 Fault in Covariation Subspace 

To create a fault in CVS, 𝚵𝑥 is chosen as the first column of 𝐑𝑐 that is normalized to unit norm. As is 

shown in Figure 3, although the fault has influence on both process and quality variables, only the 

process part relevant to quality variable is affected, and 𝑄𝑥 is within the control limit.  

 

Figure 4: CKLVR-based monitoring results with fault in CVS (𝑓𝑥 = 1) 
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Figure 5: KLVR-based monitoring results with fault in CVS (𝑓𝑥 = 1) 

 

Figure 6: KPCA-based monitoring results with fault in OPS (𝑓𝑦 = 4) 

The fault detection results of CKLVR and KVLR are displayed in Figures 4 and 5, respectively. As 

is shown in Figure 4, CKLVR-based monitoring provides a clear and accurate monitoring result for 

each subspace: only the 𝑇𝑐
2 statistic raises the 𝐿1 fault alarm, while other monitoring indices are not 

affected, implying that it is a predictable output-relevant fault, which is in line with the result of KPCA-

based monitoring. By contrast, although KLVR in Figure 5 observes the fault with the 𝑇2 statistic, no 
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further information is provided. Meanwhile, process-relevant variations and unpredictable quality-

variations remain unexploited. 

3.3.2 Fault in Output-Principal Subspace 

To introduce a fault to OPS, the fault direction matrix 𝚵𝑦 is selected as the first column of 𝐏𝑦 which is 

normalized to unit norm. Figure 6 shows that only the 𝑇𝑦
2  index exceeds its control limit, which 

indicates that the fault is input-irrelevant but output-relevant. 

 

Figure 7: CKLVR-based monitoring results with fault in OPS (𝑓𝑦 = 4) 

Figure 7 demonstrates CKLVR-based monitoring. Since this quality-relevant fault is not related to 

process data, 𝑇𝑐
2  remains unchanged. Only 𝑇𝑦

2  successfully identifies the 𝐿1  fault alarm, which 

indicates it is quality-relevant but process-irrelevant. 𝑇𝑥
2 and 𝑄𝑥 that are related to process variables are 

within their corresponding limits. Accordingly, the monitoring results of CKLVR are consistent with 
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KPCA-based monitoring. However, KLVR-based monitoring in Figure 8 illustrates that the fault is 

unobservable for both 𝑇2 and 𝑄 statistics, and thus it is concluded that the monitoring performance of 

CKLVR is more comprehensive than that of KLVR. 

 

Figure 8: KLVR-based monitoring results with fault in OPS (𝑓𝑦 = 4) 

3.3.3 Fault in Input-Principal Subspace 

 

Figure 9: KPCA-based monitoring results with fault in IPS (𝑓𝑥 = 1) 
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The fault direction matrix 𝚵𝑥 is selected as the first column of 𝐏𝑥 to introduce a fault to IPS which is 

also normalized to unit norm. According to Figure 9, KPCA-based monitoring shows that the added 

fault is quality-irrelevant but process-relevant. 

Figure 10 presents CKLVR-based monitoring, which illustrates that the 𝐿3 fault alarm is only fired 

by 𝑇𝑥
2 while other statistics remain normal. This indicates that the fault only affects process variations, 

which aligns with the fault design. In contrast, KLVR only observes the fault by the 𝑄 index, as is 

shown in Figure 11. Since the 𝑄 statistic reflects variations that are not excited in the training phase but 

are potentially quality-relevant, no valuable conclusions can be conducted from Figure 11. 

 

Figure 10: CKLVR-based monitoring results with fault in IPS (𝑓𝑥 = 1) 
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Figure 11: KLVR-based monitoring results with fault in IPS (𝑓𝑥 = 1) 

3.3.4 Fault in Input-Residual Subspace 

The input residual can be calculated as 

�̃�(𝐱) = (𝐈 − 𝐏𝑥𝐏𝑥
⊤)(𝐈 − 𝐑𝑐𝐑𝑐

†)𝜙(𝐱). (3.27) 

 

Figure 12: KPCA-based monitoring results with fault in IRS (𝑓𝑥 = 0.1) 

Thus, to make sure that the fault only occurs in IRS, the basis vector 𝚵𝑥 of IRS is chosen as the left 

singular vectors of (𝐈 − 𝐏𝑥𝐏𝑥
⊤)(𝐈 − 𝐑𝑐𝐑𝑐

†) that is related to non-zero singular values, and 𝚵𝑥 needs to 
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be normalized to unit norm. From Figure 12, KPCA-based monitoring demonstrates that the potential  

𝐿2 fault alarm is only observable for the 𝑄𝑥 index. 

The monitoring performance of CKLVR is demonstrated in Figure 13. It is noted that only 𝑄𝑥 

successfully detects the fault, while other statistics remain normal, which aligns with Figure 12.  KLVR 

shown in Figure 14 does not observe the fault with 𝑇2 and 𝑄. This only implies that the predictable 

quality variations remain normal, and without further decomposition, the status of other subspaces 

cannot be obtained. Thus, as shown in the discussions above, CKLVR realizes the comprehensive 

monitoring of all subspaces, which is also beneficial for further analysis. 

 

Figure 13: CKLVR-based monitoring results with fault in IRS (𝑓𝑥 = 0.1) 
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Figure 14: KLVR-based monitoring results with fault in IRS (𝑓𝑥 = 0.1) 

3.4 Tennessee Eastman Process Case Study 

In this section, the Tennessee Eastman Process (TEP) proposed by Downs and Vogel [118] is used for 

case study to further investigate the effectiveness of the CKLVR-based multilayer monitoring 

framework. TEP is a benchmark industrial process to evaluate different methods of process monitoring. 

The whole process contains five major unit operation plants, involving a chemical reactor, product 

condenser, recycle compressor, vapor-liquid separator and product stripper. Eight components (A-H) 

are included in TEP: four gaseous reactants (A, C, D, E), the inert material (B), and two liquid products 

(G,H) along with a by-product (F), which can be shown as follows: 

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙)     (Product)

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙)     (Product)

𝐴(𝑔) + 𝐸(𝑔) → 𝐹(𝑙)

3𝐷(𝑔) → 2𝐹(𝑙)          
                             

(By − product)
(By − product)

 

Reactions involved in TEP are exothermic, irreversible and approximately 1-order with respect to 

concentrations of reactants. In addition, TEP is under closed-loop control. Readers can refer to 

Literature [60] and [62] for more details. 

TEP is composed of two blocks of variables with a total number of 53, including 12 manipulated 

variables (XMV (1-12)) and 41 measured variables (XMEAS (1-41)). Here, XMEAS (1-22) and XMV 

(1-11) are chosen as process variables to construct 𝐗, while XMEAS (35-36) are selected as quality 

variables to form 𝐘.  
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500 samples are simulated in TEP for training and 960 samples for testing. Process variables XMEAS 

(1-22) and XMV (1-11) are sampled at an interval of 3 minutes, while quality variables XMEAS (35-

36) are sampled every 6 minutes, which gives rise to the irregular sampling intervals for process and 

quality variables. To balance the sampling discrepancy, data sampling is necessary, and only 1/2 

samples without duplicate samples are employed [60]. Accordingly, only half of the data (250 normal 

samples and 480 faulty samples) are used for modeling and testing.  

Table 3: FDRs and FARs for quality-relevant disturbances in TEP 

Disturbance 

FDR  FAR  

 KLVR CKLVR KLVR CKLVR  

 𝑇2 𝑇2  𝑇𝑐
2  𝑇𝑦

2   𝑇𝑥
2  𝑇2 𝑇2  𝑇𝑐

2  𝑇𝑦
2   𝑇𝑥

2 

 IDV (1) 0.8750 1 0.7639 0.9028  1   0.1397 0.0956 0.0931 0.0025 0.0122 

 IDV (2) 0.9536  0.9969 0.8824 0.9907 1 0.1847 0.1083 0.1019 0.0064 0.0227 

IDV (5) 0.7778 1 0.7556 0.9778 0.9429 0.0920 0.0598 0.0552 0.0046 0.0187 

 IDV (6) 0.0731 1 0.0705 1 0.8333 0.0825 0.0722 0.0722 0 0 

 IDV (7) 0.8769 1 0.8462 0.9231 1 0.1687 0.1446 0.1398 0.0048 0.0125 

IDV (8)  0.8811 1 0.8238 0.9736 0.9974 0.4466 0.4229 0.4190 0.0079 0.0217 

IDV (10) 0.7308 1 0.6538 0.9615 0.8721 0.1740 0.1410 0.1410 0 0.0309 

IDV (12) 0.8371 1 0.7841 0.9773 0.9949 0.4213 0.3889 0.3843 0.0139 0 

IDV (13) 0.8697 1 0.8275 0.9718 0.9894 0.3469 0.3163 0.3163 0.0051 0 

 

Table 4: FARs for quality-irrelevant disturbances in TEP 

Disturbance 
KLVR CKLVR 

𝑇2 𝑇2 𝑇𝑐
2  𝑇𝑦

2   𝑇𝑥
2 

IDV (3) 0.0972 0.0346 0.0302 0.0043 0.0128 

IDV (4) 0.0395 0.0148 0.0148 0 0.2578 

IDV (9) 0.1017 0.0297 0.0275 0.0021 0.0411 

IDV (11) 0.1199 0.0407 0.0321 0.0086 0.1446 

IDV (14) 0.0169 0.0021 0 0.0021 0.0361 

IDV (15) 0.1064 0.0489 0.0468 0.0021 0.0176 

 

By reference to the criteria established by Zhou et al. [60], 15 disturbances (IDV (1-15)) can be 

classified into two categories, quality-relevant and quality-irrelevant disturbances. IDV (1-2, 5-8, 10, 

12-13) are identified as quality-relevant disturbances, while IDV (3-4, 9, 11, 14-15) are quality-
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irrelevant disturbances. For the purpose of better illustration, IDV (5, 11) are chosen as examples of 

two kinds of disturbances to show the monitoring performance of CKLVR in detail.  

By 10-fold cross validation, the numbers of principal components for CKLVR are determined as 𝑙 =

1, 𝑙𝑐 = 2, 𝑙𝑥 = 14, and 𝑙𝑦 = 2, while for KLVR, 𝑙 = 1. The width of Gaussian kernel function is 𝑐 =

5000. For CKLVR-based monitoring, 𝑄𝑦 is null, since 𝑙𝑦 = 2 while 𝑝 = 2. The confidence level of 

control limit is selected to be 99 %. 

False detection rates (FDRs) and false alarm rates (FARs) of quality-relevant and quality-irrelevant 

disturbances [60] are summarized in Tables 3 and 4, respectively. The FDR and FAR are defined on 

the premise of KPCA-based monitoring which is considered as ground truth and taken as the criterion 

to n classify normal and faulty samples, where FDR is the ratio of number of actual faults that are 

detectable for the proposed algorithm and number of total faulty samples, while FAR is the ratio of 

number of normal samples that are incorrectly categorized as faults and number of total normal samples. 

To investigate quality-relevant monitoring performance, 𝑇2 of CKLVR is defined as a combination 

of 𝑇𝑐
2 and 𝑇𝑦

2, which illustrates the monitoring results of predictable and unpredictable quality-relevant 

disturbances. 

As shown in Table 3, for quality-relevant disturbances in TEP, CKLVR achieves higher quality-

relevant monitoring FDRs than KLVR, since it monitors quality-relevant anomalies that are both 

predictable and unpredictable from process variable, while KLVR only has the process information that 

are related with quality variables. In terms of FARs of quality-relevant disturbances, except IDV (13), 

the Hotelling's 𝑇2 statistics of CKLVR and subspaces are lower than 𝑇2 of KLVR, which indicates 

improved monitoring performance of CKLVR. For IDV (13), the difference of 𝑇2 between KLVR and 

CKLVR is in a reasonable range, which will not affect the advantage of CKLVR over KLVR. 

For quality-irrelevant disturbances, FARs are of the top priority to focus on, since the total number 

of faulty samples in FDR is close to zero and it is meaningless to calculate FDRs. As shown in Table 

4, CKLVR gains better monitoring results than KLVR due to its smaller FARs for all cases. 

Furthermore, process-relevant FDRs and FARs are also available in CKLVR with 𝑇𝑥
2, which yet attracts 

lower attention than 𝑇𝑐
2  and 𝑇𝑦

2 . Consequently, it is concluded that CKLVR is superior to KLVR 

because of its comprehensive monitoring ability and fault detection performance. 
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To further validate the effectiveness of CKLVR over KLVR, two disturbances, IDV (5) and IDV 

(11), are applied for visual comparison. 

3.4.1 Monitoring of IDV (5) 

IDV (5) is caused by a step change of condenser cooling water inlet temperature [118]. As shown in 

Figure 15, KPCA-based monitoring on the process and quality variables illustrates that IDV (5) has 

influence on both process and quality variables transiently. More concretely, quality variations are 

abnormal in the interval [83rd, 130th], while in terms of process variables, faulty samples are detectable 

for 𝑇𝑥
2 from 81st to 168th and the anomalies detected by 𝑄𝑥 are from 81st to 182nd. 

 

Figure 15: KPCA-based process and quality monitoring results for IDV (5) 

  The monitoring results of CKLVR and KLVR are demonstrated in Figures 16 and 17, respectively. 

All the monitoring indices of CKLVR in Figure 16 successfully observe the disturbance, and later return 

to normal, which is consistent with the process and quality monitoring results shown in Figure 15. For 

𝐿1-level alarming with respect to 𝑇𝑐
2 and 𝑇𝑦

2, it is noted that the disturbance of IDV (5) on quality 

variables is predictable from process variables, and thus most quality deviations are captured in CVS 

subspace with 𝑇𝑐
2  around the interval of faulty samples from 88th to 132nd. At the same time, 𝑇𝑦

2 

observes additional quality-relevant but process-irrelevant anomalies in the interval of faulty samples 

[83rd, 130th], which is in accordance with 𝑇𝑦
2 of KPCA-monitoring. Furthermore, CKLVR also detects 
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anomalies by 𝑇𝑥
2 around the sample range from 81st to 171st, while 𝑄𝑥 around the sample range from 

81st to 172nd, and the disturbance has longer influence on process-relevant indices 𝑇𝑥
2  and 𝑄𝑥  than 

quality-relevant indices 𝑇𝑐
2 and 𝑇𝑦

2.  

 

Figure 16: CKLVR-based monitoring results for IDV (5) 

 

Figure 17: KLVR-based monitoring results for IDV (5) 

By contrast, the monitoring result with KLVR in Figure 17 presents that the disturbance can be 

detected by 𝑇𝑐
2  from 87th to 134th and 𝑄  from 81st to 172nd, which indicates that KLVR-based 

monitoring only reflects the transient effect of the disturbance on the principal and residual subspaces, 
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and it has no knowledge about the process and remaining quality variations, leading to less informative 

presentation. 

3.4.2 Monitoring of IDV (11) 

IDV (11) results from random variations of reactor cooling water inlet temperature [118]. From KPCA-

based monitoring in Figure 18, IDV (11) only affects the 𝑇𝑥
2 and 𝑄𝑥 statistics for process variables from 

83rd, while 𝑇𝑦
2 remains unaffected, demonstrating that the disturbance is process-relevant but quality-

irrelevant.  

 

Figure 18: KPCA-based process and quality monitoring results for IDV (11) 

Figures 19 and 20 illustrate CKLVR-based and KLVR-based monitoring results, respectively. The 

monitoring results of CKLVR is in line with Figure 18: only process-relevant indices 𝑇𝑥
2  and 𝑄𝑥  

observe anomalies with the 𝐿3-level alarming and 𝐿2-level alarming from the 84th and 83rd faulty 

sample, respectively, and quality-relevant statistics 𝑇𝑐
2 and 𝑇𝑦

2 are within their corresponding control 

limits, indicating that the disturbance is process-relevant but it is unrelated to quality variables.  



 

 48 

 

Figure 19: CKLVR-based monitoring results for IDV (11) 

 

Figure 20: KLVR-based monitoring results for IDV (11) 

KLVR-based monitoring is illustrated in Figure 20. The disturbance which affects the faulty samples 

is undetectable for 𝑇2 statistics, since  𝑇2 values of most samples are within control limits. 𝑄 observes 

faulty samples from the 83rd in the residual subspace caused by the disturbance, but any further 

information on the root causes is difficult to obtain. 
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3.5 Dow's Refining Process Case Study 

The Dow's refining process was presented by Braun et al. [119] as a data science challenge problem, 

and the variables are anonymized due to privacy issues. The whole process consists of three distillation 

columns, including Primary Column, Feed Column and Secondary Column, and the Primary Column 

unit is controlled based on the reflux to feed ratio. 45 variables are collected from the process, including 

44 process variables (𝑥1-𝑥44) and a quality variable (𝑦). Among the process variables, Variables 𝑥1-

𝑥21 and 𝑥41-𝑥44 are from the Primary Column, Variables 𝑥22-𝑥35 are from the Secondary Column, 

and 𝑥36-𝑥40 are from the Feed Column. The quality variable y is the impurity level sampled from the 

Primary Column. The sampling interval of the dataset is one per hour. More details of the process can 

be found in Literature [119]. 

In this case study, the dataset is first preprocessed to remove outliers and missing values. Then 3000 

samples are selected as training data, and 1753 samples are chosen as test data, among which the first 

1153 samples are normal data, while the latter 600 are faulty samples. The confidence level of control 

limit is selected as 99 %. KLVR, KPLS, rLVR and PLS models are developed with the training data, 

and their parameters are determined by cross-validation, which are listed in Table 5. Mean squared 

errors (MSEs) [119] of KLVR, KPLS, rLVR and PLS for normal test samples are also summarized in 

Table 5. For KLVR and rLVR, 𝜅 =  0.005. As shown in the table, KLVR and KPLS obtain lower 

MSEs than rLVR and PLS, implying the importance to employ kernel techniques for nonlinear 

processes. Further, KLVR has the lowest MSE, which indicates the superiority of KLVR in terms of 

prediction performance over KPLS.  

Table 5: Parameters and MSEs of KLVR, KPLS, rLVR and PLS in Dow's refining process 

Algorithm   KLVR KPLS rLVR PLS  

Principal component number 𝑙 4 5 2 1 

Kernel width 𝑐 900 2000 - - 

MSEs 0.5647 0.6496 1.1427 4.2561 

Table 6 summarizes the FDRs and FARs of CKLVR, CKPLS, KLVR, KPLS, rLVR and PLS for 

faulty test samples. For both CKLVR and CKPLS, 𝑙𝑐 = 1, 𝑙𝑥 = 5, and 𝑙𝑦 = 1. As shown in Table 6, 

the concurrent decomposition divides the input and output data into different subspaces including CVS, 

OPS, IPS and IRS, and of 𝑇𝑐
2 , 𝑇𝑦

2 , 𝑇𝑥
2 , and 𝑄𝑥  indices present their monitoring performance, 

respectively. It is noted that the ORS subspace does not exist since the output only has one variable in 
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this case study. Due to the subsequent decomposition, concurrent kernel algorithms retain more 

comprehensive monitoring results than others. In addition, as shown in Table 6, CKLVR performs 

better than CKPLS with lower FARs, while its FDRs are comparable to those of CKPLS.  

Table 6: FDRs and FARs of algorithms for faulty case in Dow's refining process 

Algorithm 
FDR FAR 

𝑇2 𝑇𝑐
2 𝑇𝑦

2  𝑇𝑥
2 𝑄𝑥 𝑇2 𝑇𝑐

2 𝑇𝑦
2  𝑇𝑥

2 𝑄𝑥 

CKLVR 0.9921 0.9868 0.9553 0.9868 0 0.1545 0 0.1545 0 0 

CKPLS 0.9921 0.9842 0.9263 0.9973 0.0297 0.2773 0 0.2773 0 0.0076 

KLVR 0.9921 - - - - 0 - - - - 

KPLS 0.9816 - - - - 0.0182 - - - - 

rLVR 0.9829 - - - - 0 - - - - 

PLS 0.9816 - - - - 0 - - - - 

For better visualization, Figure 21 illustrates the KPCA-based monitoring result which shows the 

real situation of this case. Figures 22-27 present the monitoring results of CKLVR, CKPLS, KLVR, 

KPLS, rLVR and PLS, respectively. As shown in the monitoring results of KLVR, KPLS, rLVR and 

PLS, faults are detected with both 𝑇2 and 𝑄 indices; however, no further detailed information can be 

drawn from Figures 22-27. Instead, CKLVR in Figure 22 detects the 𝐿1 alarm fault with 𝑇𝑐
2 index 

indicating that Samples [113rd, 122nd] and [190th, 554th] are quality-relevant faulty samples that can be 

predicted from process variables, which aligns with the quality monitoring results on quality data as 

shown in Figure 21. Further, monitoring results with 𝑇𝑦
2 of CKLVR indicate that faulty samples in the 

range of [183rd, 546th] also affect the quality variables in the OPS subspace in the way of 𝐿1 alarm fault. 

Process variations that are not related to quality in IPS subspace also deviate from their normal 

conditions, while the process residual subspace is unaffected. It is noted that the monitoring results of 

CKPLS are similar to those of CKLVR; however, due to the incomplete exploitation of KPLS, 

anomalies are still detected in the process residual subspace. Therefore, the superiority of CKLVR-

based multilayer monitoring scheme over other algorithms is observed. 
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Figure 21: KPCA-based process and quality monitoring results in Dow's refining process 

 

Figure 22: CKLVR-based monitoring results in Dow's refining process 
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Figure 23: CKPLS-based monitoring results in Dow's refining process 

 

Figure 24: KLVR-based monitoring results in Dow's refining process 
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Figure 25: KPLS-based monitoring results in Dow's refining process 

 

Figure 26: LVR-based monitoring results in Dow's refining process 

 

Figure 27: PLS-based monitoring results in Dow's refining process 

3.6 Summary 

In this chapter, CKLVR is proposed by incorporating the concurrent modeling of process and quality 

variables with KLVR algorithm, which improves the nonlinear modeling performance and enhances 
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the comprehensiveness of data exploitation. After performing CKLVR, the process and quality data are 

concurrently projected into five subspaces, and their corresponding indices designed for comprehensive 

process monitoring. 

Different fault scenarios in different subspaces are simulated in the numerical simulation case study 

to evaluate the effectiveness of the proposed CKLVR method. The case studies on Tennessee Eastman 

Process and Dow's refining process demonstrate that CKLVR achieves a more comprehensive and 

accurate modeling and monitoring performance than other algorithms such as CKPLS and KPLS. 
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Chapter 4 

Dynamic Latent Variable Modeling for Temporal Modeling and 

Monitoring 

Due to the advancement of industrial technologies, another typical characteristic involved in the process 

and quality data is the complicated dynamics. The dynamic MSA methods reviewed in Chapter 1 focus 

only on capturing the dynamic cross-correlations between process and quality variables, leaving the 

dynamics in remaining spaces unexploited. However, both dynamic cross-correlations and auto-

correlations are important for accurate dynamic quality modeling.  Thus, inspired by the work of Xu 

and Zhu [20], a dynamic auto-regressive model is developed for LVR, namely dynamic auto-regressive 

LVR (DALVR), which realizes a comprehensive exploitation of dynamics in quality data.   

4.1 Dynamic Auto-Regressive Latent Variable Regression 

Different from the dynamic algorithms reviewed in Chapter 2, DALVR considers both the dynamic 

cross-correlations between process variations and quality variations, and the dynamic relations among 

quality variables. With the same denotations as in DrLVR, the score vectors 𝑡𝑘 and 𝑢𝑘 for (𝐱𝑘 , 𝐲𝑘) are 

𝑡𝑘 = 𝐱𝑘
⊤𝐰 

𝑢𝑘 = 𝐲𝑘
⊤𝐪.

(4.1) 

DALVR assumes that the current output scores 𝑢𝑘 are dependent on the past output scores and input 

scores, which is shown as follows: 

𝑢𝑘 = 𝛽0𝑡𝑘 + 𝛽1𝑡𝑘−1 +⋯+ 𝛽𝑠𝑡𝑘−𝑠 + 𝛿1𝑢𝑘−1 +⋯+ 𝛿𝑑𝑢𝑘−𝑑 + 휀𝑘 (4.2)

where 𝑠  and 𝑑  represent the dynamic orders for input and output variables, respectively. 𝛽𝑖  (𝑖 =

0,1, . . . , 𝑠)  and 𝛿𝑖  (𝑖 = 0,1, . . . , 𝑑)  are weighting parameters for input and output scores. 휀𝑘  is the 

regression error. The prediction of 𝑢𝑘 can be presented as  

�̂�𝑘 =∑ 𝛽𝑗

𝑠

𝑗=1

𝑡𝑘−𝑗 +∑ 𝛿𝑗

𝑑

𝑗=1

𝑢𝑘−𝑗 = [𝐱𝑘
⊤, 𝐱𝑘−1

⊤ , … , 𝐱𝑘−𝑠
⊤ ](𝜷⊗𝐰) + [𝐲𝑘−1

⊤ , … , 𝐲𝑘−𝑑
⊤ ](𝜹⊗ 𝐪) (4.3) 

where 𝜷 = [𝛽0, 𝛽1, . . . , 𝛽𝑠]
⊤ is the weighting coefficient vector for 𝐰 and 𝜹 = [𝛿1, 𝛿2, . . . , 𝛿𝑑]

⊤ is the 

weighting coefficient vector for 𝐪. Eq. (4.3) can be transformed into a matrix form for the whole 

training data X = [𝐱1, 𝐱2, … , 𝐱𝑔+𝑁+1]
⊤

 and Y = [y1, 𝐲2, … , y𝑔+𝑁+1]
⊤

, which is 
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�̂�𝑔 = 𝐙𝑥(𝜷⊗𝐰) + 𝐙𝑦(𝜹 ⊗ 𝐪) (4.4) 

where 𝑔 = max(𝑠, 𝑑), and  

𝐙𝑥 = [𝐗𝑔, 𝐗𝑔−1, … , 𝐗𝑔−𝑠] ∈ ℝ
𝑁×(𝑠+1)𝑚

𝐙𝑦 = [𝐘𝑔−1, 𝐘𝑔−2, … , 𝐘𝑔−𝑑] ∈ ℝ
𝑁×𝑑𝑝    

𝐗𝑖 = [𝐱𝑖 , 𝐱𝑖+1, … , 𝐱𝑖+𝑁]
⊤ ∈ ℝ𝑁×𝑚

𝐘𝑖 = [𝐲𝑖, 𝐲𝑖+1, … , 𝐲𝑖+𝑁]
⊤ ∈ ℝ𝑁×𝑝  

        

(4.5) 

where 𝑖 = 0,1,2,… , 𝑔.  

It is also noted that the score vectors 𝐭𝑖 and 𝐮𝑖 can be calculated for each 𝐗𝑖 and 𝐘𝑖 as follows: 

𝐭𝑖 = 𝐗𝑖𝐰
𝐮𝑖 = 𝐘𝑖𝐪.

(4.6) 

DALVR is designed to maximize the covariance between 𝐮𝑔 and �̂�𝑔, and its objective is  

max
𝐰,𝐪,𝜷,𝜹

  𝐪⊤𝐘𝑔
⊤[𝐙𝑥(𝜷⊗𝐰) + 𝐙𝑦(𝜹 ⊗ 𝐪)] −

𝛾𝑤
2
‖𝐰‖2 −

𝛾𝛽

2
‖𝜷‖2 −

𝛾𝛿
2
‖𝜹‖2

𝑠. 𝑡.  ‖𝜷⊗𝐰‖ = 1, ‖𝜹⊗ 𝐪‖ = 1, ‖𝐪‖ = 1
(4.7) 

where 𝛾𝑤, 𝛾𝛽 and 𝛾𝛿  are regularized parameters to handle collinearity issues. For ease of presentation, 

define 𝐗𝛽, 𝐓𝑠, 𝐘𝛿, and 𝐔𝑑 as 

𝐗𝛽 = 𝐙𝑥(𝜷⊗ 𝐈𝑚) =∑𝛽𝑖𝐗𝑔−𝑖

𝑠

𝑖=0

𝐓𝑠 = 𝐙𝑥(𝐈𝑠+1⊗𝐰) = [𝐭𝑔, 𝐭𝑔−1, … , 𝐭𝑔−𝑠]

𝐘𝛿 = 𝐙𝑦(𝜹⊗ 𝐈𝑝) =∑𝛿𝑖𝐘𝑔−𝑖

𝑑

𝑖=1

𝐔𝑑 = 𝐙𝑦(𝐈𝑑⊗𝐪) = [𝐮𝑔−1, 𝐮𝑔−2, … , 𝐮𝑔−𝑑].

(4.8) 

Then the objective in Eq. (4.7) can be rewritten as 

max
𝐰,𝐪,𝜷,𝜹

  𝐪⊤𝐘𝑔
⊤(𝐓𝑠𝜷 +𝐔𝑑𝜹) −

𝛾𝑤

2
‖𝐰‖2 −

𝛾𝛽

2
‖𝜷‖2 −

𝛾𝛿

2
‖𝜹‖2

𝑠. 𝑡.  ‖𝐓𝑠𝜷‖ = 1, ‖𝐔𝑑𝜹‖ = 1, ‖𝐪‖ = 1
(4.9)

which defines the outer structure of DALVR. 

The Lagrange multipliers 𝜆𝑞𝛿, 𝜆𝑤𝛽, and 𝜆𝑞 are employed to solve the objective in Eq. (4.7): 
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ℒ = 𝐪⊤𝐘𝑔
⊤(𝐓𝑠𝜷 + 𝐔𝑑𝜹) −

𝛾𝑤
2
‖𝐰‖2 −

𝛾𝛽

2
‖𝜷‖2 −

𝛾𝛿
2
‖𝜹‖2 +

 𝜆𝑤𝛽

2
(1 − 𝜷⊤𝐓𝑠

⊤𝐓𝑠𝜷)

+
 𝜆𝑞𝛿
2
(1 − 𝜹⊤𝐔𝑑

⊤𝐔𝑑𝜹) +
𝜆𝑞
2
(1 − 𝐪⊤𝐪).            (4.10)

 

Take derivatives with regard to 𝐰, 𝐪, 𝜷, and 𝜹 and set these equations to zero, leading to 

    (𝐗𝛽
⊤𝐗𝛽 + 𝜅𝑤𝐈)

−1
𝐗𝛽
⊤𝐮𝑔 = 𝜆𝑤𝛽𝐰 (4.11) 

(𝐘𝛿
⊤𝐘𝛿 + 𝜅𝑞𝐈)

−1
(𝐘𝑔

⊤𝐓𝑠𝜷 + 𝐘𝑔
⊤𝐔𝑑𝜹 + 𝐘𝛿

⊤𝐮𝑔) = 𝜆𝑞𝛿𝐪                                      (4.12) 

     (𝐓𝑠
⊤𝐓𝑠 + 𝜅𝛽𝐈)

−1
𝐓𝑠
⊤𝐮𝑔 = 𝜆𝑤𝛽𝜷 (4.13) 

  (𝐔𝑑
⊤𝐔𝑑 + 𝜅𝛿𝐈)

−1
𝐔𝑑
⊤𝐮𝑔 = 𝜆𝑞𝛿𝜹 (4.14) 

where 𝜅𝑤 = 𝛾𝑤/𝜆𝑤𝛽 , 𝜅𝛽 = 𝛾𝛽/𝜆𝑤𝛽 , 𝜅𝛿 = 𝛾𝛿/𝜆𝑞𝛿 , and  𝜅𝑞 = 𝜆𝑞𝛿/𝜆𝑞 . 𝜅𝑤 , 𝜅𝛽 , and 𝜅𝛿  can be 

processed by the iteration calculation of Eqs. (4.11) - (4.14).  

As shown in Eqs. (4.11) - (4.14), the compact form of 𝐰, 𝐪, 𝜷, and 𝜹 cannot be obtained. Thus, the 

model parameters are calculated iteratively as follows.  

1. Scale 𝐗 and 𝐘 to zero mean and unit variance. 

2. Initialize 𝐮 as some column of 𝐘, 𝐮𝑔 as some column of 𝐘𝑔, 𝜷 and 𝜹 as unit random vectors. 

3. Repeat the following relations iteratively until convergence. 

(1) Construct 𝐗𝛽 = ∑ 𝛽𝑖𝐗𝑔−𝑖
𝑠
𝑖=0 , 𝐘𝛿 = ∑ 𝛿𝑖𝐘𝑔−𝑖

𝑑
𝑖=1 , and 𝐔𝑑 = [𝐮𝑔−1, 𝐮𝑔−2, . . . , 𝐮𝑔−𝑑]; 

(2) 𝐰 = (𝐗𝛽
⊤𝐗𝛽 + 𝜅𝑤𝐈)

−1
𝐗𝛽
⊤𝐮𝑔; 

(3) 𝐭 = 𝐗𝐰, and form 𝐓𝑠 = [𝐭𝑔, 𝐭𝑔−1, . . . , 𝐭𝑔−𝑠]; 

(4) 𝐪 = (𝐘𝛿
⊤𝐘𝛿 + 𝜅𝑞𝐈)

−1
(𝐘𝑔

⊤𝐓𝑠𝜷 + 𝐘𝑔
⊤𝐔𝑑𝜹 + 𝐘𝛿

⊤𝐮𝑔), and 𝐪 = 𝐪/‖𝐪‖; 

(5) 𝐮𝑔 = 𝐘𝑔𝐪; 

(6) 𝜷 = (𝐓𝑠
⊤𝐓𝑠 + 𝜅𝛽𝐈)

−1
𝐓𝑠
⊤𝐮𝑔, and 𝜷 = 𝜷/‖𝐓𝑠𝜷‖; 

(7) 𝜹 = (𝐔𝑑
⊤𝐔𝑑 + 𝜅𝛿𝐈)

−1
𝐔𝑑
⊤𝐮𝑔, and 𝜹 = 𝜹/‖𝐔𝑑𝜹‖. 
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To align with the modeling of dynamic outer structure, a dynamic inner structure is built based on 

the latent variable modeling structure to describe the relations among 𝐮𝑔, 𝐓𝑠 and 𝐔𝑑: 

𝐮𝑔 = 𝐓𝑠𝜻 + 𝐔𝑑𝝍+ 𝜺𝑔 (4.15) 

where 𝜻 = [휁0, 휁1, . . . , 휁𝑠]
⊤  and 𝝍 = [𝜓1, 𝜓2, . . . , 𝜓𝑑]

⊤  are weighting vectors of input and output 

matrices respectively, and 𝜺𝑔 is the regression error. With the obtained 𝜻 and 𝝍,  𝐮𝑔 can be predicted 

by 

�̂�𝑔 = 𝐓𝑠𝜻 + 𝐔𝑑𝝍. (4.16) 

After the outer and inner models are obtained, deflation should be performed on 𝐗 and Y to eliminate 

the effects of the extracted latent variables. The input matrix 𝐗 can be deflated by 

𝐗 ≔ 𝐗 − 𝐭𝐩⊤ (4.17) 

where 𝐩 = 𝐗⊤𝐭/𝐭⊤𝐭. 

The deflation of Y needs to be partitioned into two parts: the static part 𝐘0:𝑔−1 ≡ {𝐲𝑖}𝑖=0
𝑔−1

 and the 

dynamic part 𝐘𝑔 ≡ {𝐲𝑖}𝑖=𝑔
𝑛 . 𝐘0:𝑔−1 is deflated by 

𝐘0:𝑔−1 ≔ 𝐘0:𝑔−1 −  𝐭𝐜𝑠𝑡
⊤ (4.18) 

where 𝐜𝑠𝑡 = 𝐘0:𝑔−1
⊤ 𝐭/𝐭⊤𝐭; while 𝐘𝑔 is deflated by 

𝐘𝑔 ≔ 𝐘𝑔 − �̂�𝑔𝐜
⊤ (4.19) 

where 𝐜 = 𝐘𝑔
⊤�̂�𝑔/�̂�𝑔

⊤�̂�𝑔. 

After modeling with DALVR, 𝐗 and 𝐘𝑔 are decomposed as 

{
 
 

 
 
𝐗 =∑𝐭𝑖𝐩𝑖

⊤

𝑙

𝑖=1

+ �̃� = 𝐓𝐏⊤ + �̃�

𝐘𝑔 =∑�̂�𝑔,𝑖𝐜𝑖
⊤

𝑙

𝑖=1

+ 𝐘𝑔 = �̂�𝑔𝐂
⊤ + 𝐘𝑔

(4.20) 

where �̂�𝑔 = [�̂�𝑔,1, �̂�𝑔,2, . . . , �̂�𝑔,𝑙] ∈ ℝ
𝑁×𝑙 , and �̃� and 𝐘𝑔 are residuals of 𝐗 and 𝐘𝑔. 𝐭𝑖 , 𝐩𝑖 , �̂�𝑔,𝑖, and 𝐜𝑖 

correspond to the 𝑖th latent variable (𝑖 = 1, 2, . . . , 𝑙), respectively. 
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4.2 Concurrent Dynamic Decomposition 

To realize a comprehensive modeling and monitoring of the process and quality spaces as for KLVR 

in Chapter 2, the modified concurrent dynamic modeling framework is also developed for DALVR, 

which is summarized as follows. 

1. DALVR is performed on scaled 𝐗 and Y for the modeling parameters 𝐑, 𝐐, 𝐂, 𝜻 and 𝝍. 

2. Divide the dynamic predictable output 𝐘𝑔 into the dynamic cross-correlation output part 𝐘𝑥𝑔 and 

dynamic auto-correlation output part 𝐘𝑦𝑔:  

𝐘𝑔 = 𝐘𝑥𝑔 + 𝐘𝑦𝑔 = [𝐙𝑥(𝜻 ⊗ 𝐑)]𝐂⊤ + [𝐙𝑦(𝝍⊗𝐐)]𝐂⊤ (4.21) 

where 𝐘𝑥𝑔  are the quality variations that can be predicted from input variables, and 𝐘𝑦𝑔  are auto-

regressive quality variations. 

(1) SVD is performed on 𝐘𝑥𝑔 to capture the dynamic cross-correlations that are observable from input 

variables: 

�̂�𝑥𝑔 = 𝐔𝑐𝐃𝑐𝐕𝑐 ≡ 𝐔𝑐𝐐𝑐
⊤ (4.22) 

where 𝐔𝑐 represents the covariations in 𝐗 that are relevant to 𝐘𝑥𝑔; 𝐐𝑐 = 𝐕𝑐𝐃𝑐 contains all non-zero 

singular values in a descending order and the corresponding right singular vectors. Due to the 

orthogonality of 𝐕𝑐, 𝐔𝑐 can be rewritten as 

𝐔𝑐 = 𝐘𝑥𝑔𝐕𝑐𝐃𝑐
−1 ≡ 𝐗𝜁𝐑𝑐  (4.23) 

where 𝐗𝜁 = 𝐙𝑥(𝜻⊗ 𝐈) = ∑ 휁𝑖𝐗𝑠−𝑖
𝑠
𝑖=0 , and 𝐑𝑐 = 𝐑𝐂

⊤𝐕𝑐𝐃𝑐
−1. 

(2) Define �̂�𝜓 = 𝐙𝑦(𝝍⊗𝐐), and the auto-regressive part 𝐘𝑦𝑔 can be written as 

𝐘𝑦𝑔 = [𝐙𝑦(𝝍⊗𝐐)]𝐂⊤ ≡ �̂�𝜓𝐂
⊤. (4.24) 

3. The quality residual 𝐘𝑐 = 𝐘 − 𝐘𝑥𝑔 − 𝐘𝑦𝑔 only contain static variations, and thus perform static 

PCA on  𝐘𝑐 to extract static principal variations: 

𝐘𝑐 = 𝐓𝑠𝑦𝐏𝑠𝑦
⊤ + 𝐘 (4.25) 

where 𝐓𝑠𝑦 and 𝐏𝑠𝑦 are the score and loading matrices of static output principal variations, respectively.  

𝐘 is the static output residual. 
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4. Dynamic inner PCA (DiPCA) [120] is performed on 𝐗 to capture both dynamic and static input 

variations simultaneously: 

𝐗 = �̂�𝑑𝑥𝐏𝑑𝑥
⊤ + 𝐓𝑠𝑥𝐏𝑠𝑥

⊤ + �̃�𝑠 (4.26) 

where �̂�𝑑𝑥 is the score matrix of dynamic input variations and 𝐏𝑑𝑥 is the loading matrix of dynamic 

input variations, which are predictable for the past input scores. 𝐓𝑠𝑥 is the score matrix of static input 

variations and 𝐏𝑠𝑥 is the loading matrix of static input variations, and �̃�𝑠 represents the static input 

residuals.  

 

Figure 28: CDALVR-based monitoring framework 

For better understanding, the concurrent DALVR (CDALVR) based modeling framework is 

summarized in Figure 28, where the subspaces names are also defined. With CDALVR, 𝐗 and 𝐘 are 

decomposed as 

{
𝐗 = �̂�𝑑𝑥𝐏𝑑𝑥

⊤ + 𝐓𝑠𝑥𝐏𝑠𝑥
⊤ + �̃�𝑠

𝐘𝑔 = 𝐔𝑐𝐐𝑐
⊤ + �̂�𝜓𝐂

⊤ + 𝐓𝑠𝑦𝐏𝑠𝑦
⊤ + 𝐘.

(4.27) 

where 𝐔𝑐𝐐𝑐
⊤ denotes predictable dynamic variations in process variables related to quality data, which 

is projected into the dynamic covariation subspace (DCVS). �̂�𝜓𝐂
⊤ represents auto-regressive relations 

in quality data, corresponding to the dynamic auto-regressive output subspace (DAOS). 𝐓𝑠𝑦𝐏𝑠𝑦
⊤  in the 

static output principal subspace (SOPS) contains major static quality-relevant variations, and 𝐘 shows 

the static output residual subspace (SORS). �̂�𝑑𝑥𝐏𝑑𝑥
⊤  in the dynamic input principal subspace (DIPS) 
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captures dynamic process-relevant but quality-irrelevant variations.  𝐓𝑠𝑥𝐏𝑠𝑥
⊤  includes static process-

relevant but quality-irrelevant variations to form static input principal subspace (SIPS). The static input 

residual subspace (SIRS) is constructed by �̃�𝑠. 

After the DALVR model is obtained with training data, it can be employed for online modeling, and 

it decomposes a new test sample (𝐱𝑘 , 𝐲𝑘) into 

{
𝐱𝑘 = 𝐏𝑑𝑥 �̂�𝑑𝑥,𝑘 + 𝐏𝑠𝑥𝐭𝑠𝑥,𝑘 + �̃�𝑘
𝐲𝑘 = 𝐐𝑐𝐮𝑐,𝑘 + 𝐂�̂�𝜓,𝑘 + 𝐏𝑠𝑦𝐭𝑠𝑦,𝑘 + �̃�𝑘

(4.28) 

where for 𝐱𝑘, �̂�𝑑𝑥,𝑘 is the score vector in DIPS, 𝐭𝑠𝑥,𝑘 is the score vector in SIPS, and �̃�𝑘 is the residual 

vector in SIRS, which are obtained by 

�̂�𝑑𝑥,𝑘 =∑𝚯𝑥,𝑖𝐭𝑑𝑥,𝑘−𝑖

𝑠

𝑖=1

    (4.29) 

𝐭𝑠𝑥,𝑘 = 𝐏𝑠𝑥�̃�𝑐                      (4.30) 

�̃�𝑘 = (𝐈 − 𝐏𝑠𝑥𝐏𝑠𝑥
⊤ )�̃�𝑐 (4.31) 

where 𝐭𝑑𝑥,𝑘 = 𝐑𝑥𝐱𝑘 , and �̃�𝑐 = 𝐱𝑘 − 𝐏𝑑𝑥 �̂�𝑑𝑥,𝑘 . 𝐏𝑑𝑥 , 𝐏𝑠𝑥 , 𝚯𝑥 , and 𝐑𝑥  are parameters determined by 

DiPCA [120]. 

For the decomposition of 𝐲𝑘 in Eq. (4.28), 𝐮𝑐,𝑘 is the score vector in DCVS, �̂�𝜓,𝑘 is the score vector 

in DAOS, 𝐭𝑠𝑦,𝑘 is the score vector in SOPS, and �̃�𝑘 is residual vector in SORS, which are  

𝐮𝑐,𝑘 = 𝐑𝑐
⊤𝐱𝜁,𝑘                 (4.32) 

�̂�𝜓,𝑘 =∑𝜓𝑖𝐲𝑘−𝑖𝐐

𝑠

𝑖=1

       (4.33) 

 𝐭𝑠𝑦,𝑘 = 𝐏𝑠𝑦
⊤ �̃�𝑐                      (4.34) 

  �̃�𝑘 = (𝐈 − 𝐏𝑠𝑦𝐏𝑠𝑦
⊤ )�̃�𝑐 (4.35) 

where 𝐱𝜁,𝑘 = ∑ 휁𝑖𝐱𝑘−𝑖
𝑠
𝑖=0 , and �̃�𝑐 = 𝐲𝑘 − 𝐐𝑐𝐮𝑐,𝑘 − 𝐂�̂�𝜓,𝑘. 
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4.3 Comprehensive Dynamic Monitoring Scheme 

To develop a comprehensive dynamic monitoring scheme for the extracted subspaces, their monitoring 

statistics are designed, which is called concurrent DALVR (CDALVR). 

For a test sample pair (𝐱𝑘 , 𝐲𝑘), the dynamic output-relevant score vector 𝐮𝑐,𝑘 is monitored with the 

𝑇𝑐
2 index in DCVS. 

𝑇𝑐
2 = 𝐮𝑐,𝑘

⊤ 𝚲𝑐
−1𝐮𝑐,𝑘 = 𝐱𝜁,𝑘

⊤ 𝐑𝑐𝚲𝑐
−1𝐑𝑐

⊤𝐱𝜁,𝑘 (4.36) 

where 𝚲𝑐 is the variance matrix of 𝐔𝑐. Note that the variations in this subspace are predictable from 

input variables.  

For the auto-regressive output score vector �̂�𝜓,𝑘 , which is not predictable from input, its 

corresponding statistic 𝑇𝑑𝑦
2  is 

𝑇𝑑𝑦
2 = �̂�𝜓,𝑘

⊤ 𝚲𝑑𝑦
−1�̂�𝜓,𝑘 (4.37) 

where 𝚲𝑑𝑦 is the variance matrix of �̂�𝜓. 

The static output score vector 𝐭𝑠𝑦,𝑘 and the static output residual vector �̃�𝑘 are monitored by 

𝑇𝑠𝑦
2 = 𝐭𝑠𝑦,𝑘

⊤ 𝚲𝑠𝑦
−1𝐭𝑠𝑦,𝑘                          (4.38) 

𝑄𝑠𝑦 = ‖�̃�𝑘‖
2 = �̃�𝑐

⊤(𝐈 − 𝐏𝑠𝑦𝐏𝑠𝑦
⊤ )�̃�𝑐 (4.39) 

where 𝚲𝑠𝑦 is the variance matrix of 𝐓𝑠𝑦. 

For the decomposed input subspaces, variations in DIPS, SIPS and SIRS are captured by 𝜑𝑑𝑥, 𝑇𝑠𝑥
2  

and 𝑄𝑠𝑥 respectively, which are defined as 

𝜑𝑑𝑥 = �̂�𝑑𝑥,𝑘
⊤ 𝚽𝑑𝑥 �̂�𝑑𝑥,𝑘 =

𝑇𝑑𝑥
2

𝑇𝑑𝑥,cl
2 +

𝑄𝑑𝑥
𝑄𝑑𝑥,cl

(4.40) 

𝑇𝑠𝑥
2 = 𝐭𝑠𝑥,𝑘

⊤ 𝚲𝑠𝑥
−1𝐭𝑠𝑥,𝑘                                 (4.41) 

𝑄𝑠𝑥 = ‖�̃�𝑘‖
2 = �̃�𝑐

⊤(𝐈 − 𝐏𝑠𝑥𝐏𝑠𝑥
⊤ )�̃�𝑐      (4.42) 

where 𝜑𝑑𝑥 is a combined index integrating Hotelling's 𝑇2 with 𝑄 statistics [3], and 𝚽𝑑𝑥 is  

𝚽𝑑𝑥 =
𝐏𝑑𝑥𝚲𝑑𝑥

−1𝐏𝑑𝑥
⊤

𝑇𝑑𝑥,cl
2 +

𝐈 − 𝐏𝑑𝑥𝐏𝑑𝑥
⊤

𝑄𝑑𝑥,cl
(4.43) 
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where 𝚲𝑑𝑥 is the variance matrix of �̂�𝑑𝑥, 𝐏𝑑𝑥 is the loading score matrix of �̂�𝑑𝑥, and 𝑇𝑑𝑥,cl
2  and 𝑄𝑑𝑥,cl 

are the corresponding control limits [60]. 𝚲𝑠𝑥 in Eq. (4.41) represents the variance matrix of 𝐓𝑠𝑥. 

The details of the control limits of the aforementioned statistics are summarized in Table 7, where  

𝑙𝑐, 𝑙𝑑𝑦, 𝑙𝑠𝑦, and 𝑙𝑠𝑥 denote the number of latent variables for 𝐮𝑐,𝑘, �̂�𝜓,𝑘, �̃�𝑐 and �̃�𝑐, respectively. The 

calculations of control limits corresponding to each subspace are obtained according to Literature [3] 

and [60]. 

To differentiate the importance of detected anomalies, as shown in Table 7, different alarming levels 

𝐿1, 𝐿2, and 𝐿3 are attached to faults or disturbances observed in subspaces decomposed by CDALVR, 

where  𝐿1 and 𝐿3 represent the highest and lowest alarming level, respectively. More concretely, the 

faults with 𝐿1 alarming level will affect output variables, the 𝐿2 alarming faults have potential influence 

on the output, and the 𝐿3 alarms are raised for the input-relevant and output-irrelevant faults.  

Table 7: Monitoring statistics and control limits for CDALVR 

Subspace Characteristics Statistics Control limit 
Alarming 

level 

Output 

DCVS Dynamic; predictable from input 𝑇𝑐
2 𝑇𝑐,cl

2 = 𝜒𝛼,𝑙𝑐
2  𝐿1 

DAOS Auto-regressive; unpredictable from input 𝑇𝑑𝑦
2  𝑇𝑑𝑦,cl

2 = 𝜒𝛼,𝑙𝑑𝑦
2  𝐿1 

SOPS Static; unpredictable from input 𝑇𝑠𝑦
2  𝑇𝑠𝑦,cl

2 = 𝜒𝛼,𝑙𝑠𝑦
2  𝐿1 

SORS Static; unpredictable from input 𝑄𝑠𝑦   𝑄𝑠𝑦,cl = 𝑔𝑠𝑦𝜒𝛼,ℎ𝑠𝑦
2  𝐿3 

Input 

DIPS Dynamic 𝜑𝑑𝑥 𝜑𝑑𝑥,cl = 𝑔𝑑𝑥𝜒𝛼,ℎ𝑑𝑥
2  𝐿3 

SIPS Static 𝑇𝑠𝑥
2  𝑇𝑠𝑥,cl

2 = 𝜒𝛼,𝑙𝑠𝑥
2  𝐿3 

SIRS Static, potentially relevant to output 𝑄𝑠𝑥 𝑄𝑠𝑥,cl = 𝑔𝑠𝑥𝜒𝛼,ℎ𝑠𝑥
2  𝐿2 

 

The concurrent dynamic monitoring procedure is outlined as follows: 

1. If 𝑇𝑐
2 > 𝑇𝑐,cl

2 , the 𝐿1 fault alarm is raised with (1 − 𝛼) × 100% confidence in DCVS, denoting 

that the fault is dynamic output-relevant and predictable from input data.  

2. If 𝑇𝑑𝑦
2 > 𝑇𝑑𝑦,cl

2  , with (1 − 𝛼) × 100% confidence, a dynamic auto-regressive output-relevant 

fault is fired in DAOS with 𝐿1 alarming level, which is unpredictable from input variables. 

3. If 𝑇𝑠𝑦
2 > 𝑇𝑠𝑦,cl

2  , a static output-relevant and input-irrelevant fault is detected in SOPS with (1 −

𝛼) × 100% confidence, which indicates that a 𝐿1 fault alarm occurs. 
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4. If 𝑄𝑠𝑥 > 𝑄𝑠𝑥,cl , a static output-irrelevant fault is observed in SIRS with (1 − 𝛼) × 100% 

confidence, which means that a 𝐿2 fault alarm is raised, and this fault is input-relevant and potentially 

relevant to output data. 

5. If 𝑄𝑠𝑦 > 𝑄𝑠𝑦,cl, a static output-relevant fault with a 𝐿3 alarming level is detectable for SORS with 

(1 − 𝛼) × 100% confidence. 

6.If 𝜑𝑑𝑥 > 𝜑𝑑𝑥,cl, a 𝐿3 fault alarm is activated in DIPS with (1 − 𝛼) × 100% confidence, showing 

that a dynamic input-relevant fault is observable. 

7. If 𝑇𝑥
2 > 𝑇𝑥,cl

2 , a static input-relevant fault is detectable for SIPS with (1 − 𝛼) × 100% confidence, 

indicating that the fault is attached to the 𝐿3 alarming level. 

4.4 Tennessee Eastman Process Case Study 

In this section, the additional simulation data of TEP [121] is utilized to investigate the modeling and 

monitoring performance of DALVR and CDALVR. The dataset contains 50,000 training samples and 

96,000 testing samples for each disturbance. 500 simulation runs are included in the dataset, and each 

run contains 41 measured variables (XMEAS (1-41)) and 11 manipulated variables (XMV (1-11)). 

To illustrate the dynamic modeling performance of DALVR, XMEAS (1-22) and XMV (1-11) are 

selected as input variables 𝐗, while XMEAS (38) is chosen as the output variable 𝐘. Note that the 

variables in 𝐗 are sampled with an interval of 3 minutes, while the output variable 𝐘 is sampled every 

15 minutes. Thus, to address the irregular sampling frequency, the filtering approach described by Zhu 

et al. [62] is employed to balance the sampling discrepancy. 

4.4.1 Modeling Performance 

Determined by the cross-validation method, the modeling parameters for DALVR are 𝑙 = 2, 𝑠 = 2, 

and 𝑑 = 2; for DrLVR, 𝑙 = 5 and 𝑠 = 1. The regularized parameters for DALVR are 𝛾𝑤 = 0.005, 

𝛾𝛽 = 0.005, and 𝛾𝛿 = 0.005, while for DrLVR, 𝜅 = 0.005. The confidence level is selected to be 99 

%. The prediction performance is measured by MSEs, which are summarized in Table 8, and the output 

variations predicted by DALVR and DrLVR are presented in Figure 29. Compared with DrLVR, 

DALVR achieves a more comprehensive exploitation on the quality space, and thus as shown in Table 

8, its MSE is lower than that of DrLVR, which is in line with the predictive performance shown in 

Figure 29. 
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Table 8: MSEs for DrLVR and DALVR in additional simulation of TEP 

Variable DrLVR DALVR 

XMEAS (38) 0.3570 0.3308 

 

 

Figure 29: Predicted output variations for normal case in additional simulation of TEP 

4.4.2 Concurrent Monitoring Performance 

The TEP simulates 20 disturbances, and the first 15 known disturbances (IDV (1-15)) are adopted for 

analysis in this case study. With the control limit selected as 99%, the FDRs and FARs [62] results of 

output-relevant and output-irrelevant disturbances are summarized in Tables 9 and 10, respectively. 

Note that the 𝑇2 statistic of CDALVR in these two tables is the combination of the 𝑇𝑐
2, 𝑇𝑑𝑦

2 , and 𝑇𝑠𝑦
2  

statistics, which is for output-relevant anomaly detection, including both predictable and unpredictable, 

dynamic and static faults. The 𝑇2 statistic realizes a comprehensive monitoring for output relevant data.  

As shown in Table 9, CDALVR achieves comparable FDRs with DrLVR, with better performance 

for IDV (7) and IDV (10), and its false alarms are raised much less than DrLVR. Furthermore, 

CDALVR-based monitoring provides detailed information for each subspace, monitoring dynamic and 

static variations in both input and output data. For output-irrelevant disturbances, only FARs are listed 

in Table 10, since there are few faulty samples and FDRs are noisy. As shown in the table, in most 

cases, CDALVR achieves better monitoring results than DrLVR with smaller FARs. The input-relevant 

FARs are also available in CDALVR with 𝑇𝑠𝑥
2 , which yet should receive lower attention than output-

related monitoring indices.  
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Table 9: FDRs and FARs for output-relevant disturbances in additional simulation of TEP 
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Table 10: FARs for output-irrelevant disturbances in additional simulation of TEP 

Disturbance 
DrLVR CDALVR 

𝑇2 𝑇2 𝑇𝑐
2 𝑇𝑑𝑦

2  𝑇𝑠𝑦
2  𝜑𝑑𝑥 𝑇𝑠𝑥

2  

IDV (3) 0.0123 0.0161 0.0100 0 0.0072 0 0.0067 

IDV (4) 0.1907 0.0178 0.0106 0 0.0077 0 0.2253 

IDV (9) 0.0124 0.0196 0.0118 0 0.0077 0 0.2253 

IDV (11) 0.3765 0.0208 0.0133 0 0.0080 0 0.0768 

IDV (14) 0.9595 0.0814 0.0260 0 0.0590 0 0.0752 

IDV (15) 0.0145 0.0211 0.0144 0 0.0070 0 0.0096 

 

 

Figure 30: PCA-based process and quality monitoring results for IDV (1) 

As observed, CDALVR shows superiority to DrLVR due to its comprehensive monitoring ability 

and improved anomaly detection performance.  

For better illustration, IDV (1) (an output-relevant disturbance) and IDV (14) (an output-irrelevant 

disturbance) are chosen to visualize the monitoring performance of CDALVR and DrLVR. The first 

100 samples are training data, while the 101st-200th samples are the first round of testing data. 

IDV (1) introduces a step change of A/C feed ratio in Stream 4 [118], and as shown in the PCA-

based monitoring results in Figure 30, it affects the output variable transiently. Specifically, output 

variable is abnormal in the interval [110th, 174th], while for input variables, 𝑇𝑥
2  and 𝑄𝑥 detect the faults 

from 106th and 105th sample respectively. 
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Figure 31: CDALVR-based monitoring results for IDV (1) 

The monitoring results of CDALVR and DrLVR are presented in Figures 31 and 32, respectively. 

Figure 31 shows that all quality relevant monitoring indices of CDALVR detect the anomalies, and 

they return to normal conditions later, which is consistent with the PCA-based monitoring results in 

Figure 30. 𝑇𝑐
2 is constructed by the predictable dynamic output-relevant variations, and in it captures 

the anomalies in DCVS for the 111st-150th faulty samples. 𝑇𝑑𝑦
2  detects dynamic output-relevant faulty 

samples that are unpredicted from the input in the range of [112nd, 175th]. 𝑇𝑠𝑦
2  also successfully detects 

additional static output-relevant anomalies in the interval of [118th, 173rd]. The monitoring results of 

output-relevant statistics in CDALVR are in line with the 𝑇𝑦
2  of PCA-monitoring in Figure 30. In 

addition to quality-relevant anomalies, CDALVR also detects anomalies in the input data with 𝜑𝑑𝑥 

from the 109th sample, 𝑇𝑠𝑥
2  from the 107th sample and 𝑄𝑥 from the 106th sample. It is observed that the 

IDV (1) disturbance affects input data longer than quality variables. In contrast, both monitoring indices 
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of DrLVR keep alarming from the 105th sample, and it cannot provide a detailed analysis for the sources 

of the detected faults. 

 

Figure 32: DrLVR-based monitoring results for IDV (1) 

 

Figure 33: PCA-based process and quality monitoring results for IDV (14) 

    The IDV (14) disturbance is caused by the sticking issue of the reactor cooling water valve [118]. 

The PCA-based monitoring in Figure 33 indicates that it affects 𝑇𝑥
2 and 𝑄𝑥 statistics from the 105th 

sample, while its 𝑇𝑦
2  index remains unaffected, showing that this disturbance is input-relevant and 

output-irrelevant. Figures 34 and 35 summarize the CDALVR-based and DrLVR-based monitoring 

results, respectively. CDALVR 's monitoring results generally align with Figure 33: only the input-

relevant statistics 𝑇𝑠𝑥
2  and 𝑄𝑥  raise the  𝐿3 -level alarms from the 105th and 106th faulty samples, 

respectively, and quality-relevant indices 𝑇𝑐
2 , 𝑇𝑑𝑦

2 , 𝑇𝑠𝑦
2  and dynamic input-relevant index 𝜑𝑑𝑥  are 

within their corresponding control limits. DrLVR has both monitoring indices exceeding their control 
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limit, and it is hard to collect any further information from Figure 35. Thus, DrLVR based monitoring 

method is less informative than CDALVR. 

 

Figure 34: CDALVR-based monitoring results for IDV (14) 

 

Figure 35: DrLVR-based monitoring results for IDV (14) 
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4.5 Summary 

This chapter proposes a DALVR method by modeling both dynamic cross-correlations and dynamic 

auto-correlations simultaneously, leading to the enhancement of ability to handle dynamic relations. A 

dynamic comprehensive modeling and monitoring framework is also developed with subsequent 

decompositions. Case study on the TEP data illustrates that DALVR establishes a more predictive 

relationship between input and output data compared with DrLVR. Meanwhile, CDALVR 

accomplishes a comprehensive multilayer monitoring on both input- and output-relevant faults, which 

can distinguish detected anomalies in different subspaces given dynamic or static characteristics. 
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Chapter 5 

DALVR-based Fault Diagnosis and Causal Analysis Framework 

As shown in previous chapters, KLVR was designed to deal with nonlinearity in practical processes, 

and its concurrent modeling and monitoring scheme realizes a comprehensive anomaly detection in 

both quality and process spaces. A dynamic auto-regressive LVR was further proposed to capture 

system dynamics in practical processes. DALVR fully extracts the information in both input and output 

data by considering cross-correlations between input and output and auto-correlations from current and 

past output information. A comprehensive monitoring scheme was also developed to monitor dynamic 

anomalies. However, fault detection is only the first step, and it is necessary to analyze the root causes 

of the detected faults. In this chapter, a fault diagnosis and causal analysis scheme is designed for further 

analysis. 

5.1 DALVR-based Fault Diagnosis and Causal Analysis Framework 

Root cause identification is a key issue for fault diagnosis. After an anomaly is detected, it is necessary 

to locate their root causes to ensure the operation safety and efficiency, and the increasingly complex 

processes in industrial practice have increased the difficulty of fault diagnosis. Traditional fault 

diagnosis approaches can only determine variables contributing to the fault initially, failing to locate 

the root cause accurately due to ignorance of a cause-and-effect relationship between selected variables. 

It is necessary to integrate traditional fault diagnosis approaches with causality analysis to improve the 

ability of root cause identification, leading to the proposed DALVR-based fault diagnosis and causal 

analysis framework.  

The monitoring scheme based on DALVR includes 𝑇2 and 𝑄 statistics, which can be obtained in a 

similar way. To ensure the monitoring and diagnosis efficiency, based on Eq. (2.23), a combined 

monitoring index 𝜑 is first designed by integrating 𝑇2 and 𝑄 indices as 

𝜑 =
𝑇2

𝑇cl
2 +

𝑄

𝑄cl
= 𝐱⊤𝚽𝜑𝐱 (5.1) 

where 

𝚽𝜑 =
𝐑𝚲−1𝐑⊤

𝑇cl
2 +

 𝐈 − 𝐏𝐑⊤

𝑄cl
. (5.2) 
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The control limit of 𝜑 is obtained by Eq. (2.24).  

Then, RBC is adopted and modified as the first step of root cause analysis. RBC obtains the amount 

of reconstruction along each variable by minimizing its effect over the detection statistics [66]. Its key 

assumption is that reconstruction magnitude in the fault direction should be larger than other non-faulty 

variables. Assuming that 𝐱𝑖 is affected by a fault, according to Eqs. (2.25)-(2.28), the reconstructed 

combined monitoring index based on 𝜑 index is formulated as 

Index(𝐳𝑖)
𝜑 = 𝐳𝑖

⊤𝚽𝜑𝐳𝑖 = ‖𝐳𝑖‖Φ
2 = ‖𝐱 − 𝜉𝑖𝑓𝑖‖Φ

2 . (5.3) 

To make Index(𝐳𝑖) within the control limit, the fault magnitude 𝑓𝑖  is determined by minimizing 

Index(𝐳𝑖). Thus, take the first derivative of Index(𝐳𝑖) with regard to 𝑓𝑖 and make it equal to zero yields: 

𝑓𝑖
𝜑
= 𝜉𝑖(𝜉𝑖

⊤𝚽𝜑𝜉𝑖)
−1
𝜉𝑖
⊤𝚽𝜑𝐱. (5.4) 

Then the reconstruction amount along fault direction 𝜉𝑖, RBC𝑖
𝜑

, is 

RBC𝑖
𝜑
= ‖𝜉𝑖𝑓𝑖‖Φ

2 = 𝐱⊤𝚽𝜑𝜉𝑖(𝜉𝑖
⊤𝚽𝜉𝑖)

−1
𝜉𝑖
⊤𝚽𝜑𝐱. (5.5) 

RBC is an effective approach for fault diagnosis, but sometimes it is not reliable enough, since for 

each variable, the RBC value may be affected by other variables. To alleviate this issue, a relative RBC 

index, namely rRBC𝑖
𝜑

, is employed instead. rRBC𝑖
𝜑

 is defined as the ratio of RBC𝑖
𝜑

 to the average 

values of the 𝑖th variable calculated with RBCavg,𝑖
𝜑

 obtained from the normal data. rRBC𝑖
𝜑

 is formulated 

as 

rRBC𝑖
𝜑
=

RBC𝑖
𝜑

RBCavg,𝑖
𝜑 =

𝐱⊤𝚽𝜑𝜉𝑖(𝜉𝑖
⊤𝚽𝜑𝜉𝑖)

−1
𝜉𝑖
⊤𝚽𝜑𝐱

RBCavg,𝑖
𝜑 . (5.6) 
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Figure 36: Fault diagnosis and root cause identification framework based on DALVR 

rRBC𝑖
𝜑

 can remove the interference brought by the correlations among various variables. The 

variables that have larger rRBC𝑖
𝜑

 values are regarded as the main contributing variables, which are used 

for further root cause identification. To further attribute the root causes of the detected fault, TDGC 

[90] and CSGC [97] described in Chapter 2 are employed to identify the causal relations of the 

contributing variables identified by RBC. TDGC is easy to implement and understand, so it is 

extensively used in root cause analysis. However, sometimes it fails to provide enough information to 

locate the root causes due to the existence of other potential causes. Thus, it is necessary to enhance 

reliability. In this work, we integrate another causality approach with TDGC to address this issue. 

4 
4 

4 

4 

4 
Use Eq. (4.15) 
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CGSC has good causal inference performance since it can identify the causal relationship in the 

frequency domain, providing strong support for further root cause analysis. However, its computational 

cost is relatively large. If the range of variables is narrowed down, it will be more efficient. To combine 

their advantages and improve the performance of causal analysis, the integration of TDGC and CSGC 

will lead to the improvement of reliability and effectiveness. 

The integrated framework is depicted in Figure 36. In the framework, DALVR is first performed on 

historical normal data to obtain model parameters, and fault detection and diagnosis statistics are 

developed with DALVR. For online monitoring, new samples are processed and monitored with the 

established statistics. Once a faulty sample is identified, relative RBC is conducted to obtain 

contributing variables, which will then be employed for further root cause identification with TDGC 

and CSGC. 

5.2 Tennessee Eastman Process Case Study 

The Tennessee Eastman Process (TEP) [118] is analyzed to show the efficacy of the proposed 

framework. In this section, XMEAS (1-22) and XMV (1-11) are selected as input variables (Variables 

1-33), while XMEAS (38) serves as the output variable. 

Table 11: MSEs for DrLVR, DAPLS, and DALVR in TEP 

Variable DrLVR DAPLS DALVR 

XMEAS (38) 0.3872 0.1726 0.1464 

 

Table 12: MSEs for different parts of DALVR in TEP 

Variable DALVR Cross-correlation part Auto-correlation part 

XMEAS (38) 0.1464 0.6799 0.1920 

 

The modelling performance of DrLVR and DALVR are first compared, which are trained with 500 

normal samples. With the cross-validation method, the parameters are determined as 𝑙 = 1, 𝑠 = 1, 𝑑 =

1 , 𝛾𝜔 = 0.005 , 𝛾𝛽 = 0.005 , and 𝛾𝛿 = 0.005  for DALVR; and 𝑙 = 1 , 𝑠 = 3 , and 𝜅 = 0.005  for 

DrLVR. Apart from DrLVR, DAPLS is also used to reflect the effectiveness of DALVR on prediction. 

For DAPLS, 𝑙 = 3 , 𝑠 = 3 , and 𝑑 = 1 . The confidence level is chosen as 99 %. The prediction 

performance is evaluated with MSEs, which are summarized in Table 11. 
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Table 13: Monitoring metrics of 𝑇2 for quality-relevant disturbances in TEP 

Fault 

Type 

FDR FAR AR PR 

DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR 

IDV (1) 0.7826 1 0.8261 0.1575 0.7808 0.1370 0.8281 0.4063 0.8542 0.6102 0.2875 0.6552 

IDV (2) 0.9167 1 1 0.7667 0.7889 0.7389 0.2760 0.2604 0.2969 0.0738 0.0779 0.0764 

IDV (5) 1 0.8414 1 0.8025 0.0896 0.7963 0.3187 0.5000 0.3240 0.1815 0.3256 0.1826 

IDV (6) 0.9905 1 1 0.2818 0.2364 0.2773 0.9281 0.9458 0.9533 0.9220 0.9343 0.9436 

IDV (7) 0.8182 0.9273 0.8364 0.3431 0.2336 0.1387 0.7031 0.8125 0.8542 0.4891 0.6145 0.6970 

IDV (8) 0.8860 0.9485 0.9051 0.3263 0.5158 0.1789 0.7708 0.7188 0.8125 0.7304 0.6525 0.8298 

IDV (10) 0.5818 0.7091 0.7818 0.3577 0.2774 0.2818 0.6250 0.7188 0.6938 0.3951 0.5065 0.4538 

IDV (12) 0.7964 0.9273 0.8291 0.5244 0.4878 0.4268 0.7010 0.7500 0.7281 0.7145 0.7183 0.6796 

IDV (13) 0.8145 0.9274 0.8306 0.2353 0.3676 0.1018 0.7969 0.8229 0.8333 0.8632 0.8214 0.9035 

 

Table 14: FARs of 𝑇2 for quality-irrelevant disturbances in TEP 

Fault Type DrLVR DAPLS DALVR 

IDV (3) 0.0957 0.0213 0.0319 

IDV (4) 0.2116 0.0212 0.0847 

IDV (9) 0.0851 0.0319 0.0266 

IDV (11) 0.1341 0.0391 0.0391 

IDV (14) 0.4063 0.0885 0.0521 

IDV (15) 0.0737 0.0105 0.0211 

 

Compared with DrLVR, DALVR achieves a much lower MSE than DrLVR, since it exploits more 

information with the aid of historical quality data. The MSEs of DALVR, its cross-correlation part, and 

auto-correlation part are shown in Table 12. As shown in Table 12, both cross-correlation part and auto-

correlation part have higher MSEs than the overall MSE value of DALVR, which implies that the 

modelling performance with past process samples only or past quality samples only is not satisfactory. 

With the control limit selected as 99%, the false detection rates (FDRs) and false alarm rates (FARs) 

of these two categories are summarized in Tables 13 and 14, respectively. FDR is the ratio of the 

number of actual faults that are detected with the selected algorithm and the number of total faulty 

samples, while FAR is the ratio of the number of normal samples that are incorrectly categorized as 

faults and the number of total normal samples. FDR and FAR are used to measure the monitoring 

performance of algorithms. The larger the FDR is, the better the monitoring performance is, while the 

smaller the FAR is, the better the monitoring performance is. Compared with DrLVR, DALVR can 

capture more variance of the data, leading to better modelling performance. In this case, theoretically, 
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the performance of DALVR on fault detection and alarm will be better than DrLVR. Apart from FDR 

and FAR, accuracy rate (AR) and precision rate (PR) can be also used as measures of observational 

error to compare the monitoring performance. AR is the percentage of correct predictions for a given 

dataset, which evaluates how close or far off the samples are to their true values. PR measures that 

fraction of examples classified as faulty samples that are truly faulty, which measures how close or 

dispersed the samples are to each other [122].  

As shown in Table 13, for output-relevant disturbances, for IDV (1, 5, 8, 12, and 13), DALVR 

achieves the smallest FARs and the largest ARs and PRs, while its FDRs are comparable to those of 

DrLVR and DAPLS. For IDV (2, 6, 7, and 10), FDRs of DALVR are largest among these algorithms, 

while their ARs and PRs are either the largest or relatively large, and FARs are either the smallest or 

relatively small. Thus, in general, DALVR has better fault detection ability, accuracy, and precision 

performance in quality-relevant monitoring, since compared with other static and dynamic algorithms, 

DALVR employs both past process and quality information for predictive modelling, and it can capture 

the data variations more accurately. For output-irrelevant disturbances, only FARs are listed in Table 

14, since there are few faulty samples and FDRs, ARs, and PRs are noisy. As shown in Table 14, 

DALVR obtains comparable or smaller FARs compared with other algorithms. FARs of DALVR are 

comparable or smaller compared to other algorithms, which means that there are only a few normal 

samples classified as faulty samples erroneously. Thus, as observed, DALVR shows superiority due to 

its comprehensive monitoring ability and improved anomaly detection performance. 

One of the quality-relevant faults, IDV (1), is selected as an instance to illustrate the proposed fault 

diagnosis and root cause identification framework. IDV (1) is a step change in the A/C feed ratio in 

Stream 4. Specifically, it causes a decrease of 3% in the A feed and an increase of 3% in the C feed 

[118]. The DALVR-based monitoring result with the combined index 𝜑 is shown in Figure 37, and the 

fault is detected since the 165th sample. The rRBC𝜑 of the 165th sample is then illustrated in Figure 38. 

As shown in Figure 38, RBC identifies many faulty variables due to the interrelations among variables, 

including Variables 7, 15, 17, 18, 20, 29–31, and 33. To further accurately locate the root causes, these 

variables are selected as the potential contributing candidates in the subsequent Granger causal analysis. 
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Figure 37: DALVR-based monitoring result for IDV (1) 

 

Figure 38: Relative reconstruction-based contribution results for IDV (1) 

 

Figure 39: Time-domain Granger causality map for IDV (1) 
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Figure 40: Causal flow results for IDV (1) 

 

Figure 41: Conditional spectral Granger causality results for IDV (1) 

Figure 39 shows the TDGC map of the 165th sample in IDV (1), where V7, V15, V17, V18, V20, 

V29, V30, V31, and V33 represent Variables 7, 15, 17, 18, 20, 29–31, and 33, respectively. In Figure 

39, the green arrows connecting two nodes represent the causality between these two variables, while 

the blue lines denote the mutual effects between those two variables, failing to provide evidence of their 

causal relations. Moreover, by reference to the definition of causal flow in a node as the number of 
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outgoing flows minus that of incoming flows [90], the causal flows of each variable are shown in Figure 

40. It can be seen that Variables 15, 18, 30, and 33 have a positive causal flow, so they are potentially 

supposed to be the root causes, while Variables 7 and 17 have a negative causal flow, indicating that 

they are less likely to be the faulty variables. 

 

Figure 42: Direct causal analysis for IDV (1) 

From the TDGC map, it is observed that Variable 18 Granger-causes Variables 15 and 30, but it fails 

to provide further information on their causal relations. Thus, CSGC is further applied on these 

contributing variables (Variables 15, 18, 30, and 33). Figure 41 depicts the CSGC graph for these 

variables of the 165th sample. As illustrated in Figure 41, the subplot under Column V18 on Row V33 

has strong variations, while the fluctuation of the subplot under Column V33 on Row V18 is smaller, 

showing that Variable 18 has larger causal effect on Variable 33. Thus, it is concluded that Variable 18 

is the root cause of IDV (1), which is validated with the actual variations in the process shown in Figure 

42. At the beginning, IDV (1) causes the composition change of A and C feeds in Stream 4. Then 

Stream 4 flows to the stripper, leading to direct influence on the level (Variable 15) and temperature 

(Variable 18) of the stripper (Variable 18). Afterwards, the stripper steam flows to the reactor, which 

affects the subsequent components, including the compressor, reactor, condenser, and separator. Finally, 
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the flow reaches the stripper again and affects the output variable in the product, which is the 

composition of Product E. Consequently, it is reasonable to conclude Variable 18 as the root cause, 

which aligns with the available information of IDV (1), and the affected variables align with the 

extracted contributing variables, showing the effectiveness of the proposed fault diagnosis and root 

cause identification framework. 

5.3 Three-phase Flow Facility Case Study 

The three-phase flow facility (TPFF) is provided by Cranfield University, and it is a pressurized system 

with controlled and measured flowrates of water, oil, and air [123]. TPFF includes three normal datasets 

(T1, T2, and T3) and six faulty cases with 24 variables. In this case study, Variables 1–7, 10, 11, 12, 

19–21, and 23 are chosen as process variables and Variable 13 is the quality variable, which is the flow 

density in the top riser. 

 

Figure 43: DALVR-based monitoring result for faulty case 3 

 

Figure 44: Relative reconstruction-based contribution results for faulty case 3 

The DrLVR, DAPLS, and DALVR models are trained with the samples in T2, and their parameters 

are determined as follows: 𝑙 = 1, 𝑠 = 3, and 𝜅 = 0.005 for DrLVR; 𝑙 = 5, 𝑠 = 1, 𝑑 = 1, 𝛾𝑤 = 0.005, 𝛾𝛽 = 

0.005, and 𝛾𝛿 = 0.005 for DAPLS; 𝑙 = 1, 𝑠 = 1, 𝑑 = 1, 𝛾𝑤 = 0.005, 𝛾𝛽 = 0.005, and 𝛾𝛿 = 0.005 for DALVR. 

T3 is employed as the test data, and the monitoring metrics of 𝑇2 are summarized in Table 15. The 

confidence level of control limit is chosen as 99%. The faults in the three-phase flow facility (TPFF) 
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can be divided into quality-relevant ones (faulty cases 1, 2 and 4–6) and quality-irrelevant ones (faulty 

case 3) [20], and the monitoring performance of several algorithms are summarized in Table 5. For 

quality-relevant faults, DALVR obtains the largest ARs, and PRs for faulty cases 1, 2, and 5, while its 

FDRs are either the largest or relatively high, and it maintains the smallest FARs for faulty case 2 and 

comparable FARs for faulty cases 1 and 5. For faulty case 2, although the FDR of DrLVR is the largest, 

its FAR is also very high, which shows poor monitoring performance. For faulty case 4, the 

performance of DALVR is mediocre, and for faulty case 6, DALVR has the smallest FAR, and its FDR, 

AR, and PR are comparable to the largest values. For quality-irrelevant cases, FAR is the main index 

that needs to be considered. The FAR of DALVR is the smallest one. Generally, the monitoring 

performance of DALVR is the best among these algorithms. 

Table 15: Monitoring metrics of 𝑇2 for the three-phase flow facility 

Fault 

Type 

FDR FAR AR PR 

DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR 

1 0.9976 1 1 0.1548 0.2541 0.1550 0.8442 0.7692 0.8592 0.3707 0.2845 0.3946 

2 0 1 0.1429 0.1078 1 0.0957 0.8904 0.0020 0.9027 0 0.0020 0.0030 

4 0.8386 0.9609 0.8723 0.2131 0.9973 0.2403 0.7753 0.0687 0.7398 0.1771 0.0666 0.1271 

5 0.9162 0.9746 0.9626 0.1296 0.5787 0.1534 0.8784 0.5546 0.8805 0.6916 0.3483 0.7109 

6 0.0054 0.0325 0.0049 0.0140 0.0278 0 0.9238 0.9004 0.9236 0.0667 0.0422 0.0778 

3 0 0 0 0.4978 1 0.4225 0 0 0 0 0 0 

 

Faulty case 3 is selected for further investigation, where the top separator input blockage is 

introduced into the system [123]. Figure 43 presents the monitoring result based on DALVR with the 

combined index, which shows that the fault is detected from the 3554th sample. The relative RBC of 

the 3554th sample is shown in Figure 44, and Variables 2, 6, and 7 (V2, V6, and V7) are selected as the 

contributing variables for further Granger causality. As shown in Figure 45, Variable 2 Granger-causes 

Variable 7, but the relationships between Variables 2, 6 and 6, 7 cannot be identified with TDGC in 

Figure 45. To further determine the cause-and-effect relations of Variables 2 and 6, and 6 and 7, the 

root cause analysis with CSGC is further conducted. The result of CSGC in Figure 46 demonstrates 

that the subplot under Column V2 on Row V6 has stronger peak than the subplot under Column V6 on 

Row V2, while the subplot under Column V6 on Row V7 has smaller variations than the subplot under 

Column V7 on Row V6, which indicates that in frequency domain, Variable 2 Granger-causes Variable 

6, and Variable 7 also affects Variable 6. Thus, it is concluded that Variable 2 is supposed to be the 

root cause. 
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Figure 45: Time-domain Granger causality map for faulty case 3 

 

Figure 46: Conditional spectral Graner causality results for faulty case 3 

Based on the ground truth of faulty case 3, the fault is caused by the blockage of top separator input. 

Variable 2 measures the pressure in the bottom of the riser, Variable 6 is the difference pressure between 

the bottom of the riser and the top separator input, and Variable 7 denotes the differential pressure over 

VC404. As shown in Figure 47, it is noted that the top separator input blockage reduces the pressure in 

the top separator input, imposing influence on the pressure in the 4-inch riser. Thus, the value of 

Variable 2 is affected, which can reasonably be considered as the root cause. This causal inference is 

denoted by green lines. The difference pressure between the bottom of the riser and the top separator 

input will be affected slightly and return to normal rapidly, which makes no sense to the influence of 

other variables. In terms of the causal relationship between Variables 2 and 7, which is illustrated by 
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orange lines in Figure 47, Variable 2 affects the level in 3-phase separator directly, and the level in a 

series of separator facilities will also change subsequently. Through the 2-inch riser, Variable 7 is 

affected correspondingly. Therefore, Variable 2 acts as the root cause in faulty case 3, and the 

effectiveness of the framework is also proven. 

 

Figure 47: Direct causal analysis for faulty case 3 

5.4 Summary 

In this chapter, an improved fault diagnosis and root cause identification framework is also developed 

based on DALVR to identify, investigate, and categorize the root causes of faulty samples. The 

framework effectively integrates the relative RBC for fault diagnosis, and TDGC and CSGC for root 

cause analysis. The case studies with the Tennessee Eastman process and three-phase flow facility have 

demonstrated the effectiveness of the proposed DALVR method and the corresponding fault diagnosis 

and root cause identification framework. 
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Chapter 6 

Improved Autoencoder with Dynamic Hidden Layer for Anomaly 

Detection 

Inspired by autoregressive integrated moving average (ARIMA) model [114], the hidden layer of AE 

is improved to handle the issue of dynamics in this section. Then, a modified autoencoder method with 

dynamic hidden layer (DHL-AE) is proposed to address both high dimensionality and dynamic 

relations simultaneously and the corresponding anomaly detection monitoring scheme is designed to 

improve the performance of identifying abnormal points. The validity and superiority of DHL-AE and 

its corresponding anomaly detection monitoring are proved by case studies. 

6.1 Autoencoder with Dynamic Hidden Layer  

As a specific type of neural networks, AE has been created by encoding the input into a compressed 

representation and decoding it back to reconstruct the input that is nearly identical to the original input 

to greatest extent possible [124]. The purpose of AE is to learn a lower-dimensional and meaningful 

representation of the input in an unsupervised way via minimizing the reconstruction error based on a 

loss function in training [113]. Typically, the mean squared error (MSE) between the original input and 

the corresponding reconstructed output is adopted to be the loss function.  

Assuming 𝐱 ∈ ℝ𝑛 as the input, the loss function is expressed as [113] 

𝐿(𝐱, �̂�) = ‖𝐱 − �̂�‖2 (6.1) 

where 𝐿(∙) expresses the loss function and �̂� is the corresponding reconstructed output vector of 𝐱. The 

encoder projects the input into the hidden layer to obtain a compressed representation 𝐳 ∈ ℝ𝑘, and the 

decoder reconstructs the output of AE based on 𝐳 as �̂�. To construct the encoder by the projection from 

the space of input and output data to the space in the hidden layer 𝜑: 𝜒 → 𝑍 and decoder by the 

projection from the space in the hidden layer to the space of input and output data  𝜓: 𝑍 → 𝜒, the 

objective of AE is defined as [125] 

argmin
𝜑,𝜓

‖𝐱 − 𝜓[𝜑(𝐱)]‖2 (6.2) 

where 𝜑(𝐱)  denotes the process of encoding, and 𝐳 = 𝜑(𝐱) . 𝜓[𝜑(𝐱)]  represents the process of 

decoding, and  �̂� = 𝜓[𝜑(𝐱)]. 
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More concretely, encoding and decoding can be expressed as 

𝐳 = 𝑓1(𝐖1𝐱 + 𝐛1)

�̂� = 𝑓2(𝐖2𝐱 + 𝐛2)
(6.3) 

where 𝑓1  and 𝑓2  represent the activation functions used to construct the hidden and output layers, 

respectively. 𝐖1 and 𝐛1 are the weights and bias of encoder, while 𝐖2 and 𝐛2 are the weights and bias 

of decoder. 

Based on the structure of AE, DHL-AE algorithm is constructed by processing dynamics in the 

hidden layer. Premised on the assumption of normalized input, the encoder maps the original input into 

the latent space in hidden layer, and the dynamics in the original data are captured by the compressed 

representation. After decoding, dynamic relations are also retained in the output, which is considered 

as the reconstructed input. Thus, to deal with dynamic datasets, it is reasonable to handle dynamic 

relations in the hidden layer. 

For the dynamic input data 𝐗 ∈ ℝ𝑛×𝑚, after normalization, the encoder projects 𝐗 into the latent 

space in the hidden layer, obtaining 𝐙 = 𝑓1(𝐖1𝐗 + 𝐛1) ∈ ℝ
𝑛×𝑘 . Considering dynamic relations 

existing in the input 𝐗, motivated by ARIMA, the components of compressed representation in the 

hidden layer can be constructed as follows [126]: 

�̂�(𝑡) = 𝐯(𝑡) + 𝐞(𝑡)               

𝐯(𝑡) =∑𝛽𝑖𝐳
(𝑡−𝑖)

𝑝

𝑖=1

             

𝐞(𝑡) =∑𝜃𝑖𝜺
(𝑡−𝑖) + 𝜺(𝑡)

𝑞

𝑖=1

(6.4) 

where �̂�(𝑡) ∈ ℝ𝑘 represents the compressed representation reconstructed considering dynamic relations 

in 𝐳(𝑡) obtained by encoding at time t, which consists of the autoregressive part 𝐯(𝑡) and the moving 

part 𝐞(𝑡). 

Similar to Eq. (2.36), Eq. (6.4) can also be reorganized as 

�̂�(𝑡) = (1 −∑𝛽𝑎,𝑖𝐵
𝑖

𝑝𝑎

𝑖=1

)

−1

(1 − 𝐵)−𝑑𝑎 (1 −∑𝜃𝑖𝐵
𝑖

𝑞𝑎

𝑖=1

)𝜺(𝑡) (6.5) 



 

 87 

where 𝜺(𝑡) is the white noise error at time 𝑡 (𝑡 = 1, 2, … , 𝑛) for the moving average part. After the 

process in the hidden layer, the decoder reconstructs the output from �̂� via �̂� = 𝑓2(𝐖2�̂� + 𝐛2) ∈ ℝ
𝑚′. 

The structure of DHL-AE algorithm is visualized as Figure 48, and the detailed DHL-AE algorithm 

is summarized as follows:  

1. Scale the input data 𝐗 = [𝐱(1), 𝐱(2), … , 𝐱(𝑛) ] into zero mean and unit variance. 

2. The normalized input data is fed to DHL-AE. 

3. After encoding via 𝐙 = 𝑓1(𝐖1𝐗 + 𝐛1), the input 𝐱(1), 𝐱(2), … , 𝐱(𝑛) can be projected to the latent 

space in the hidden layer as the compressed representation 𝐙 = [𝐳(1), 𝐳(2), … , 𝐳(𝑛) ]. 

4. Decompose 𝐳(1), 𝐳(2), … , 𝐳(𝑛) into two parts, involving the autoregressive part 𝐯(1), 𝐯(2), … , 𝐯(𝑛) 

and the moving average part 𝐞(1), 𝐞(2), … , 𝐞(𝑛), leading to the reconstructed compressed representation 

�̂�(𝑡) = 𝐯(𝑡) + 𝐞(𝑡) (t = 1, 2, ..., n). 

5. The decoder reconstructs the input as the output of DHL-AE by �̂� = 𝑓2(𝐖2�̂� + 𝐛2), where �̂� =

[�̂�(1), �̂�(2), … , �̂�(𝑛) ]. 

 
Figure 48: Structure of autoencoder with dynamic hidden layer 
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Figure 49: Anomaly detection monitoring scheme based on DHL-AE 

6.2 Anomaly Detection Scheme Based on DHL-AE 

To enhance the performance, improve the safety, and decrease the potential losses of the process, in this 

chapter, DHL-AE is integrated with anomaly detection to identify anomalies in the process monitoring. 

Anomaly detection is based on the conversion from reconstruction errors to anomaly scores. The 

anomaly score for a datapoint 𝐱𝑖
(𝑡)

 is computed as [127] 
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𝐚𝑖
(𝑡) = (𝜺𝑖

(𝑡) − 𝝁)
⊤
𝚺−1 (𝜺𝑖

(𝑡) − 𝝁) (6.6) 

where 𝐚𝑖
(𝑡)

 is the anomaly score for 𝐱𝑖
(𝑡)

. 𝜺𝑖
(𝑡)

 represents the corresponding RE. 𝝁 and Σ are obtained 

from a normal distribution using maximum likelihood estimation based on 𝜺𝑖
(𝑡)

 [128]. 

To determine whether a sample is an anomaly or not, the threshold of anomaly scores, which is 

denoted by 𝜏, is learned using the normal data [127]. If 𝐚𝑖
(𝑡)
> 𝜏, the corresponding sample 𝐱𝑖

(𝑡)
 is 

labelled as an anomaly, while if 𝐚𝑖
(𝑡)
< 𝜏, 𝐱𝑖

(𝑡)
 is considered as a normal point. For better illustration, the 

integrated scheme is depicted in Figure 49. In the scheme, DHL-AE is first performed on the normal 

data after normalization to obtain the proper activation function and model parameters. Then samples of 

testing data are processed by anomaly detection monitoring to identify irregular datapoints. 

6.3 Tennessee Eastman Process Case Study 

In this section, the Tennessee Eastman Process (TEP) is applied for case study to demonstrate the 

effectiveness of the proposed anomaly detection monitoring framework, with 15 disturbances (IDV (1–

15)) simulated in the dataset [118]. XMEAS (1-9) are chosen as input variables, and 500 normal 

datapoints in d00 are selected as training data. Faulty data d02_te is utilized for testing, which represents 

the disturbance of IDV (2) and has 960 samples in total. 

The activation function and model parameters are determined by the training data. The first three-

quarters of the training data are designated as the training set, while the complement of the training set 

is assigned as the test set. Mean squared error (MSE), root mean squared error (RMSE), normalized 

root mean squared error (NRMSE), and mean absolute error (MAE) [129] are considered as the 

candidates of model selection criteria to determine the best activation function and model parameters 

involving the dimension of output and compressed representation of DHL-AE. The activation function 

is selected from rectified linear unit (ReLU) [130], leaky rectified linear unit (Leaky ReLU) [131], and 

exponential linear unit (ELU) [132]. As mentioned in Section 6.1, 𝑚′ denotes the dimension of output 

�̂�  after decoding, and 𝑘  refers to the dimension of the compressed representation of input after 

encoding. 

The results of activation function and parameter selection for modeling are shown in Table 16. In 

terms of activation function, Leaky ReLU and ELU perform better than ReLU, since they have lower 

MSE, RMSE, and NRMSE for all the metrics which are used for activation function and parameter 
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selection. Considering the selection criteria and process time simultaneously, the combination of ELU 

as the activation function and RMSE as the selection criteria is the best choice due to the smallest values 

of metrics including MSE, RMSE, NRMSE, and MAE, as well as the shortest process time. In this 

case, the parameters are determined as follows: the dimension of the output 𝑚′ = 8, and the dimension 

of the compressed representation 𝑘 = 5. Thus, it is concluded that for TEP, ELU is selected as the 

activation function, and the model parameters are selected as 𝑚′ = 8 and 𝑘 = 5. 

In this case study, the proposed anomaly detection monitoring framework based on DHL-AE is 

applied for the detection of the anomalies in d02_te. Taken as the ground truth, PCA-based anomaly 

detection monitoring is assigned as the criterion to classify a sample into normal or abnormal 

datapoints. To manifest the superiority and effectiveness of the DHL-AE based anomaly detection 

scheme, other methods involving dynamic kernel PCA (DKPCA) [133] and variational autoencoder 

(VAE) [134] are selected to compare with DHL-AE, since DKPCA and VAE are both suitable for 

processing complex data with nonlinearity and dynamic relations. Determined by cross validation, the 

model parameters of DKPCA are selected as follows: the number of principal components 𝑙 = 1, the 

dynamic order for input variables 𝑠 = 20, and the width of Gaussian kernel function 𝑐 = 50000. For 

VAE, the model parameters are chosen as follows: the batch size is 100; the dimensionality of latent 

variable is 3; Leaky ReLU is adopted in both encoder and decoder, while binary cross-entropy loss 

[135] and Kullback-Leibler divergence [136] are used for loss function. 

Figures 50-52 illustrate the anomaly detection monitoring results of DHL-AE, DKPCA, and VAE for 

comparison. As is shown in these figures, the anomaly scores of the first approximately 210 data points 

are below the corresponding threshold, while the anomaly scores of the remaining data points exceed 

the threshold, indicating that they are all detected as anomalies.   

For better understanding, the following metrics are introduced to demonstrate the comparison results 

statistically: accuracy, precision, recall, F1-score [137], false detection rate (FDR), false alarm rate (FAR) 

[138], and missing alarm rate (MAR) [139], and the corresponding results are presented in Table 17. 

Among the performance of the algorithms, the proposed algorithm performs best on all the metrics 

except FDR and MAR. Despite not being the best in FDR and MAR, DHL-AE is still comparable to the 

FDR and MAR values of VAE, which is the best-performing algorithm on these two metrics. Thus, it is 

concluded that DHL-AE takes advantages over other DKPCA and VAE in this case study. 
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Table 16: Activation function and parameter selection for IDV (2) in TEP 

Activation Function Selection Criteria m' K MSE RMSE NRMSE MAE Time/s 

ReLU 

MSE 6 13 0.2537 0.5037 1.3305 0.3145 3288.84 

RMSE 6 13 0.2537 0.5037 1.3305 0.3145 3535.73 

NRMSE 6 13 0.2537 0.5037 1.3305 0.3145 4398.42 

MAE 7 1 0.2178 0.4667 1.2327 0.3283 3254.39 

Leaky ReLU 

MSE 8 5 0.2034 0.4510 1.1914 0.3141 3716.17 

RMSE 8 5 0.2034 0.4510 1.1914 0.3141 3309.23 

NRMSE 8 5 0.2034 0.4510 1.1914 0.3141 3925.47 

MAE 8 5 0.2034 0.4510 1.1914 0.3141 3108.95 

ELU 

MSE 8 5 0.2034 0.4510 1.1914 0.3141 3298.11 

RMSE 8 5 0.2034 0.4510 1.1914 0.3141 3006.76 

NRMSE 8 5 0.2034 0.4510 1.1914 0.3141 3122.58 

MAE 7 1 0.2178 0.4667 1.2327 0.3283 3603.27 

 

 

Figure 50: Anomaly detection monitoring results of DHL-AE for IDV (2) in TEP 
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Figure 51: Anomaly detection monitoring results of DKPCA for IDV (2) in TEP 

 

Figure 52: Anomaly detection monitoring results of VAE for IDV (2) in TEP 
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Table 17: Statistical metrics results of algorithms for IDV (2) in TEP 

Algorithms Accuracy Precision Recall F1-Score FDR FAR MAR 

DHL-AE 0.7615 0.7721 0.8270 0.7986 0.6740 0.1730 0.3260 

DKPCA 0.6437 0.6661 0.7559 0.7082 0.4939 0.2441 0.3260 

VAE 0.6374 0.7137 0.6055 0.6522 0.6800 0.3945 0.3200 

 

6.4 Summary 

To deal with issues of high-dimensionality and time-dependence existing in the real-world datasets, 

DHL-AE is proposed in this chapter, and a DHL-AE based anomaly detection monitoring framework 

is also developed to identify abnormal samples, which is conducive to ensuring the safety of industrial 

processes and solving the potential problem in the complex industrial applications. The Tennessee 

Eastman process is used for the case study to show the effectiveness and superiority of the proposed 

DHL-AE method and the corresponding scheme for anomaly detection monitoring. 
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Chapter 7 

Conclusions 

In this thesis, novel methodologies on dynamic latent variable modeling and monitoring are explored 

and developed to address the key challenges in dealing with complex data containing nonlinearities, 

dynamic relations, and high dimensionality.   

To handle collinear and nonlinear data, adopting Gaussian kernel function, a concurrent kernel latent 

variable regression (CKLVR) with a regularization term is constructed by performing a full 

decomposition of original process data space. Based on CKLVR, a concurrent monitoring scheme is 

designed for fault detection. A synthetic simulation and Tennessee Eastman process (TEP) are used for 

case studies to demonstrate the effectiveness of CKLVR-based monitoring scheme. 

Apart from nonlinearities, dynamic relations are also necessary to be considered for modeling and 

monitoring. In this case, a dynamic auto-regressive LVR (DALVR) algorithm is created based on 

regularized LVR to extract dynamic cross-correlations and auto-correlations simultaneously from both 

process and quality data. To obtain comprehensive monitoring results, the corresponding concurrent 

DALVR-based monitoring framework is constructed. The additional simulation of TEP is chosen for 

case study to show the effectiveness and validity. 

Combining reconstruction-based contribution (RBC) with time-domain Granger causality (TDGC) 

and conditional spectral Granger causality (CSGC), DALVR-based fault diagnosis and causal analysis 

framework is also constructed to locate the root cause of a fault and obtain more accurate fault diagnosis 

results. The effectiveness of the proposed framework is validated by case studies on the TEP and three-

phase flow facility process. 

Not only multivariate statistical analysis (MSA) methods, but also autoencoder (AE) techniques are 

applied for handling complex processes with nonlinearities and dynamics. Moreover, AE approaches 

are also effective to cope with high dimensionality. To address the issues of both high dimensionality 

and dynamic relations between elements in the hidden layer, a novel autoencoder with dynamic hidden 

layer (DHL-AE) is proposed and employed for anomaly detection, which plays an important role in 

stability and safety of real-world industrial applications. A case study on TEP is performed to show the 

effectiveness and advantages of DHL-AE over existing methods including dynamic kernel PCA 

(DKPCA) and variational autoencoder (VAE). 
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Appendix A 

Calculation of Spectral Density 

Spectral density 𝑆𝑖𝑖(𝑓) in SGC, which is applied for CSGC in Section 2.3.2, can be calculated as 

follows [98]. 

Assume the Fourier transformation is applied for SGC, obtaining 

[
𝐴𝑖𝑖(𝑓) 𝐴𝑖𝑗(𝑓)

𝐴𝑗𝑖(𝑓) 𝐴𝑗𝑗(𝑓)
] [
𝐱𝑖(𝑓)

𝐱𝑗(𝑓)
] = [

𝐸𝑖(𝑓)

𝐸𝑗(𝑓)
] (A. 1) 

where [𝐴𝑖𝑗(𝑓)]  define the coefficient matrix. Define 𝐻𝑖𝑗(𝑓) = [𝐴𝑖𝑗(𝑓)]
−1

 as the spectral transfer 

function matrix, and Eq. (A.1) is rewritten as 

[
𝐱𝑖(𝑓)

𝐱𝑗(𝑓)
] = [

𝐻𝑖𝑖(𝑓) 𝐻𝑖𝑗(𝑓)

𝐻𝑗𝑖(𝑓) 𝐻𝑗𝑗(𝑓)
] [
𝐸𝑖(𝑓)

𝐸𝑗(𝑓)
] . (A. 2) 

Thus, the spectral density matrix is obtained as 

𝐒(𝑓) = 𝐇(𝑓)𝚺𝐇∗(𝑓) (A. 3) 

where 𝚺 is the error covariance matrix of a full model which can be obtained by matrix factorization 

[99]. Besides, the superscript of ∗ means the corresponding adjoint matrix of a known matrix. 

Pre-multiply Eq. (A. 3) on both sides with [
1 0

−Σ𝑖𝑗/Σ𝑖𝑖 1], leading to 

[
𝐱𝑖(𝑓)

𝐱𝑗(𝑓)
] = [

�̃�𝑖𝑖(𝑓) �̃�𝑖𝑗(𝑓)

�̃�𝑗𝑖(𝑓) �̃�𝑗𝑗(𝑓)
] [
𝐸𝑖(𝑓)

�̃�𝑗(𝑓)
] (A. 4) 

where 

�̃�𝑗(𝑓) = 𝐸𝑗(𝑓) −
Σ𝑖𝑗

Σ𝑖𝑖
𝐸𝑖(𝑓) (A. 5) 

[
�̃�𝑖𝑖(𝑓) �̃�𝑖𝑗(𝑓)

�̃�𝑗𝑖(𝑓) �̃�𝑗𝑗(𝑓)
] =

[
 
 
 
 𝐻𝑖𝑖(𝑓) +

Σ𝑖𝑗

Σ𝑖𝑖
𝐻𝑖𝑗(𝑓) 𝐻𝑖𝑗(𝑓)

𝐻𝑗𝑖(𝑓) +
Σ𝑖𝑗

Σ𝑖𝑖
𝐻𝑖𝑖(𝑓) 𝐻𝑗𝑗(𝑓)]

 
 
 
 

. (A. 6) 

    Thus, 𝑆𝑖𝑖(𝑓) is expressed as 
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𝑆𝑖𝑖(𝑓) = �̃�𝑖𝑖(𝑓)Σ𝑖𝑖�̃�𝑖𝑖
∗ (𝑓) + �̃�𝑖𝑗(𝑓)Σ̃𝑗𝑗�̃�𝑖𝑗

∗ (𝑓) (A. 7) 

where Σ̃𝑗𝑗 =Σ𝑗𝑗 −Σ𝑖𝑗
2 /Σ𝑖𝑖 . 

 


