An In-Depth Exploration of the
High-Quality Entity Linking for
Information Retrieval: MMEAD

by

Luyun Lin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2023

(© Luyun Lin 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Statement of Contributions

Chapter 3 is based on the co-authored work published in [29]. I declare that I am respon-
sible for the code contribution, conducting of experiments, and paper writing.

111

Abstract

Entity linking has emerged significantly during the digital information explosion, aiming
to provide context and meaning to huge amounts of unstructured data. While traditional
information retrieval primarily relied on keyword-based searches, it often yielded contextu-
ally insufficient and ambiguous results. Entity linking fundamentally involves connecting
distinct mentions to specific entities in a knowledge base. This process not only resolves am-
biguities but also enriches the contextual understanding of the data by associating named
entities with their corresponding entries in the knowledge graph.

To truly harness the potential of entity linking, we must explore this concept within
specific contexts and scenarios, which necessitates the availability of robust benchmark
datasets that reflect the complexities of real-world information. MS MARCO serves as a
key benchmark and resource for the development of deep learning models in the domain
of information retrieval. It offers a distinctive chance to observe entity linking in practice
and to test its effectiveness across a variety of situations. In this background, we introduce
and emphasize the MS MARCO Entity Annotations and Disambiguations (MMEAD),
a framework uniquely designed to bridge MS MARCO collections with state-of-the-art
entity linkers. Grounded in the solid foundation of Wikipedia knowledge graphs, MMEAD
prioritizes user-friendliness, precision, extensibility, and comprehensive metadata provision.
Its data representation through the intuitive JSONL files ensures a seamless entity-linking
experience.

Addressing the challenges in information retrieval, the research utilizes MMEAD to
explore expansion via entity-linked terms, fine-tuning both sparse and dense retrieval tech-
niques. This entity expansion approach to data augmentation aims to align more closely
with the real user intentions.

Furthermore, this work integrates the strengths of MMEAD with powerful systems
such as Faiss and DuckDB, dissolving the barriers between structured and unstructured
data searches into a unified comprehensive search framework, providing enhanced data
categorization, entity frequency assessments, and more, pointing toward a transformative
shift in data retrieval and management systems. It also demonstrates the merging of
MMEAD with Wikidata capitalizing on the strengths of open-linked data to offer a rich,
synthesized view of global information.

v

Acknowledgements

[want to express my gratitude to my supervisor Prof.Jimmy Lin for his invaluable guid-
ance throughout my research. His insights have broadened my perspective, deepening my
understanding beyond my specific work. From before I even began my master’s program,
Prof. Lin provided hands-on guidance that shaped my career path in NLP research. His
consistent support has not only polished my research skills but also influenced my personal
growth. I'm truly honored to have had the chance to work under his supervision.

I would also like to thank the readers of my thesis, Professor Charles Clarke and Pro-
fessor Tamer Ozsu, for dedicating their valuable time to review my work.

Then, I want to express my gratitude for the opportunity to be a part of RSVP.ai.
It was here that I was first led to the world of Natural Language Processing (NLP). My
experience at the company not only deepened my knowledge but also provided me with
invaluable hands-on experience on NLP projects. I'm especially thankful for my amazing
colleagues. Their continuous encouragement, guidance, and support played an instrumental
role during my time at the company. Their friendship made every challenge seem achievable
and turned our workplace into a nurturing environment for growth and learning.

Dedication

This is dedicated to my families for their unconditional love.

vi

Table of Contents

Author’s Declaration
Statement of Contributions
Abstract
Acknowledgements
Dedication

List of Figures

List of Tables

1 Introduction

1.1 Contributions e,

1.2 Thesis Organization

2 Background

2.1 Knowledge Graph
2.2 Entity Linking oo

2.3 Information Retrieval

2.3.1 BM25 .

vii

ii

iii

iv

vi

xi

(S

© © N o o

2.3.2 Dense Passage Retrieval 10

24 MS MARCO 10
24.1 MS MARCO Chameleons 11
2.5 DuckDB 12
2.6 Vector Database 12
MMEAD 14
3.1 Example 15
3.2 Entity Links 17
3.2.1 Radboud Entity Linker o 0. 17
3.22 BLINK. 18
3.3 DuckDB 18
3.4 Howtouse e 19
Information Retrieval with MMEAD 20
4.1 Datasets 20
4.1.1 MS MARCO 20
4.1.2 MS MARCO Chameleons 20
4.2 Methods 21
421 Sparse e 21
4.2.2 Dense 23
4.3 Experimental Setup 27
4.4 Results 28
441 Sparse e 28
442 Dense e 29
4.4.3 Discussion 31

viil

5 Applications

5.1 Vector Search in DuckDBo
5.1.1 Architecture
5.1.2 Dataset
5.1.3 Vector Preparation
5.1.4 Vector Search Example
5.1.5 Further Search Refinement Example 1
5.1.6 Further Search Refinement Example 2
52 MS MARCO GEO Heatmap
5.2.1 Dataset
5.2.2 Method

5.2.3 Result

6 Conclusion and Future Work

6.1 Future Work

References

X

34
34
35
35
36
37
40
42
45
45
45
46

47
49

50

List of Figures

1.1 MMEAD entity connection found in the MS MARCO v1 query and passage. 3

2.1 Example Knowledge graph with entity descriptions. 7

2.2 Entity Linking process, showcasing steps of Entity Recognition to identify
entity candidates followed by Entity Disambiguation to accurately link each
entity to its unique identifier in Wikipedia. 8

5.1 Locations of entities found in the MS MARCO v2 passage collection. . . . 46

List of Tables

4.1 Results on the MS MARCO v1 passage collection, Recall@1000 28
4.2 Results on the MS MARCO v1 passage collection, MRR@10 29
4.3 Results on the MS MARCO v1 passage collection, RECALL@1000 30

4.4 Results on the MS MARCO v1 passage collection, MRR@10 30

X1

Chapter 1

Introduction

Entity linking has become increasingly important in today’s digital environment. Given
the explosive growth of information on the internet and the complexity of unstructured
data, the need to connect entities to their corresponding real-world meaning has become
more crucial. In the past, information retrieval was primarily keyword-based, with search
engines returning results based solely on the presence of specific words or phrases. This
approach often led to results that lacked context and were ambiguous. Entity linking, at
its core, refers to connecting distinct pieces of text or data points to specific entities in a
knowledge base, offering a structured and meaningful context to unstructured information.
This process involves identifying named entities within a text, such as people, organizations,
locations, and concepts, and linking them to their corresponding entries in a knowledge
graph or database. This not only helps in disambiguating a term’s meaning but also
facilitates a richer understanding of the context in which it is used.

The rise and success of deep learning in various NLP fields have led to the emergence of
deep learning-based entity linking strategies [0, 68]. In contrast, traditional machine learn-
ing methodologies face challenges in two primary areas: first, achieving high-performance
features requires extensive amounts of detailed and labor-intensive feature engineering; sec-
ond, the reliance on selected knowledge base and domain knowledge during feature design
makes it difficult to generalize the trained model across others [68]. Recent trends highlight
the growth in deep learning-oriented entity linking techniques, reducing the need for man-
ual feature creation. Deep learning has become the leading framework for state-of-the-art
entity linking methods, excelling in autonomously identifying key features and adapting
across domains [64, 67, 68].

Entity linking is pivotal in addressing challenges associated with information retrieval [22,

, 806]. Omne common challenge in information retrieval is the “vocabulary mismatch”
problem [20], which occurs when users phrase searches differently than the terminology
in relevant passages. In this scenario, entity linking acts as a bridge by identifying and
unifying named entities in the text. One of the effective strategies to counteract this
problem is expansion. Through the selection and addition of candidate terms, expansion
refines queries or passages, ensuring they align more closely with the user’s intended search,
thereby yielding more accurate results.

On the other hand, while neural-driven entity linking methods offer enhanced perfor-
mance, they also come with specific challenges [0, 68]. A notable concern is their consid-
erable computational power requirement. These methods often need advanced hardware,
which might not always be available or financially feasible. The complexity and depth of
neural models, especially those like Transformers [30], require robust hardware setup, often
involving specialized GPUs. Additionally, many of these studies continue to depend on ex-
ternal sources [1, 17, 53, 57]. Such dependence can reduce the flexibility and adaptability of
systems when these resources are unavailable or constrained. Furthermore, the complexity
inherent in these models can impact computational speed. Neural operations, especially
within deep learning processes, consume significant processing time, potentially slowing
down real-time applications and development processes and affecting workflow efficiency.

To explore the potential of entity linking and leverage its power to enhance data com-
prehension effectively, it is crucial to engage with the right datasets and experimental
frameworks. These should be capable of addressing the complexities of real-world data,
serving as benchmarks for both development and evaluation. Contextual exploration and
validation of entity linking demand not only advanced algorithms but also extensive, an-
notated datasets that can harness the full capabilities of these advanced entity linking
systems. Nonetheless, acquiring datasets that are robust, comprehensive, and accurately
annotated has always been a challenge. A robust dataset not only provides the materi-
als that enable a deeper dive into the complexities of the task, but also provides efficient
analytical operations and fast data access.

The richness of data sources such as the MS MARCO collections [50] offers a prime
opportunity to observe entity linking in action and to challenge its capabilities in diverse
scenarios. The MS MARCO datasets have emerged as benchmarks for evaluating deep
learning techniques in Information Retrieval, serving not only for benchmarking purposes
but also as valuable tools for zero-shot and few-shot learning across a range of retrieval
tasks. However, neural IR models based on MS MARCO’s text often struggle with complex
concepts in the real world [63]. Entity Linking, which plays a pivotal role in associating
text with such concepts, can pinpoint references within the text and map them to entries
in a knowledge graph. Nonetheless, one of the challenges to adopting neuro-symbolic in IR

IKIPEDIA

“The Free Encyclopedia

https://fen.wikipedia.org/wiki/Florida_Gulf_Coast_University ‘

Query: How many students at facu / e Ui

Passage: Student Life. Florida Gulf Coast University
has a total undergraduate enrollment of 13,717, with

a gender distribution of 45 percent male students and Y ; :
55 percent female students. At this school, 36 S aessonige ne
percent of the students live in college-owned, Type

-operated or -affiliated housing and 64 percent of LT

students live off campus. Insatton

‘Academic
affiliation

Figure 1.1: MMEAD entity connection found in the MS MARCO v1 query and passage.

is the complexity and computational challenge of annotating large datasets with entities.
To meet these needs and advance both the research and practical applications of entity
linking, here the MS MARCO Entity Annotations and Disambiguations (MMEAD) [29]
comes into play. It bridges the gap between advanced entity linking approaches and the
practical challenges of real-world information retrieval by integrating the MS MARCO
collections (versions 1 and 2) [50] with cutting-edge entity linkers, namely REL [79] and
BLINK [36]. MMEAD aims to address this by offering accessible entity annotations for
the MS MARCO collections. The example Figure 1.1 illustrates how the entity links in
MMEAD can bridge the gap between a query and the corresponding passages in the MS
MARCO dataset.

MMEAD is constructed using knowledge graphs derived from Wikipedia dumps and
prioritizes user accessibility, high-quality entity links, extensibility, and the inclusion of
valuable metadata. Essentially, it presents data in user-friendly JSONL files that follow the
MS MARCO v2 collections format. This design ensures seamless entity link identification
and guarantees precision by integrating with top-tier entity link algorithms and systems.
Through this thesis, I will delve deeper into MMEAD’s objectives, design principles, and
its potential to tackle real-world challenges.

By utilizing the high-quality entity linking dataset MMEAD, my primary focus is on
expansion through entity-linked terms. In this context, the information retrieval system

augments queries or passages by incorporating terms associated with entities found in the
text. I explore this approach in both sparse and dense retrieval contexts.

The integration of structured and unstructured data has always been a challenge in the
world of data management. Traditional two-stage search methods can struggle to extract
cohesive information from mixed data sources.

With MMEAD, it does not just search for keywords or strings but actively understands
the mentions and entities. This deep understanding boosts both search accuracy and
contextual relevance. Building upon the functionality of the MMEAD entity, showcases
have been developed using the strengths of Faiss (Facebook AI Similarity Search) [27] and
DuckDB [56]. Faiss specializes in efficient similarity search and clustering of dense vectors,
making it a prime choice for managing and retrieving unstructured data. DuckDB, on
the other hand, is an analytical data management system optimized for complex queries
on large-scale structured datasets. Integrating these systems facilitates a revolutionary
approach. Instead of separating searches between structured and unstructured data, we
now have a seamless, one-fit-all search method. The search happens concurrently, utilizing
the strengths of each component. The result is a smooth, efficient, and highly accurate
retrieval system.

Beyond simple searches, We demonstrate how to use MMEAD to enhance interac-
tive search applications. The system can categorize passages by entity requests, aligning
them with user intentions. Additionally, it can produce entity frequency tables, offer-
ing a detailed view of specific data occurrences, thus enhancing analysis precision. The
blend of MMEAD with vector search is not just an upgrade but an insight approach for
next-generation data systems that promise intelligence, connectivity, and intuitive insights.
Furthermore, the integration of Wikidata with MMEAD maps demographic patterns, dig-
ital divide, and illustrates the capability of open-linked data to merge diverse datasets into
a singular, insightful visualization that can enhance our understanding of spatial narratives
and inform a more equitable digital representation.

1.1 Contributions

The main contributions of this work are as follows:

e Introduce a comprehensive resource MMEAD, offering reusable entity links for the
MS MARCO document and passage ranking collections. This resource is enhanced by
state-of-the-art entity linking tools to ensure precise annotation. It’s readily available

as a Python package on PyPI. While MMEAD aims to support neuro-symbolic IR
research and enhance neural retrieval models, it also tackles the challenges posed by
the computational demands of advanced neural-empowered entity linking methods.

e Demonstrate the usage of MMEAD significantly enhances retrieval effectiveness for
both sparse and dense retrieval, with notable improvements observed for hard queries
that were under-performed with the text-only method.

e Demonstrate the capabilities of MMEAD within a vector search database. By in-
tegrating MMEAD with tools like Faiss and DuckDB, we’ve established a dynamic
search that combines structured and unstructured data. This application not only
retrieves information rapidly but also categorizes and evaluates the significance of
specific segments. As a result, it emphasizes key concepts and crucial details within
the searched information.

e Showcase the application of data in geographical contexts by plotting all MMEAD
entities with available geographical data from the MS MARCO v2 passage collection
on a static map.

1.2 Thesis Organization

This thesis is structured as follows:

Chapter 2 provides the foundational knowledge by introducing essential background
information, general terms, necessary techniques and concepts.

In Chapter 3, we delve into MMEAD), discussing its objectives, motivations, and foun-
dational structure.

Chapter 4 takes a practical turn, presenting experiments conducted on MMEAD for
both sparse and dense information retrieval, accompanied by results and observations.

Chapter 5 showcases the integration capabilities of MMEAD with vector search and
traditional database systems, alongside with an illustrative example of geographical context
application.

Finally, Chapter 6 wraps up the thesis, reflecting on potential future research and
development directions.

Chapter 2

Background

In this section, I will introduce the basic background, general terms, key concepts, and
techniques required to understand the workflow.

2.1 Knowledge Graph

Knowledge graph is a powerful tool for integrating information, providing a structured and
dynamic representation. It is a structured collection of organized data that can be accessed
for particular details. A Knowledge graph is a Knowledge base that is typically constructed
using three distinct and infinite sets: E (Entities), P (Predicates), and L (Literals). Entities
represent distinct objects, concepts, or predicates that can be uniquely identified, either
physically or abstractly [59]. A predicate acts as a relational link or property that connects
entities or binds an entity to a value. A literal is an atomic, indivisible value that represents
basic pieces of information. Unlike entities, literals serve as the foundational data points,
describing attributes or properties of entities [59, 8, 17]. Knowledge graphs are key to
the Semantic Web, enabling the interlinking of diverse datasets to form a vast, global
knowledge graph. This term gained popularity with Google’s semantic search initiative,
which focused on understanding and connecting things, not just keywords '. Knowledge
graphs are characterized by their descriptive nature of real-world entities, schema-defined
classifications, the capacity for linking any entities, and their coverage across multiple
domains. Moreover, knowledge graphs can assist with advanced features such as question
answering [10, 44], information retrieval [11], etc.

Thttps://blog.google/products/search /introducing-knowledge-graph-things-not /

Johannes Kepler Kepler space telescope

Johannes Kepler was a German
astronomer ... best known for
his laws of planetary motion.

... is a retired space telescope
launched by NASA to ... Named
after astronomer Johannes Kepler.

- = Named after

Kepler's laws of planetary motion
... are three scientific laws describing
the motion of planets around the Sun,
published by Johannes Kepler.

... is an independent agency ...
for the civilian space program ...

Astronomer

| i
<

An astronomer is a scientist in
the field of astronomy ...

Figure 2.1: Example Knowledge graph with entity descriptions.

Some popular knowledge graphs include DBpedia [3], which extracts structured content
from Wikipedia; YAGO [73, 74], which integrates information from various sources like
Wikipedia and WordNet [15]; and Wikidata [31], a collaboratively edited knowledge graph
hosted by the Wikimedia. Figure 2.1 shown an example of a KG with entity descriptions
sourced from Wikidatabm[33].

2.2 Entity Linking

Entity Linking refers to the process of extracting the mentioned terms from a text and
connecting them to the corresponding entries in a knowledge base. The primary objective
of entity linking is to disambiguate textual mentions and accurately associate them with
their appropriate identifiers in a reference source. Such associations enhance the semantic
richness of textual data and establish a bridge between unstructured content and structured
databases.

Its applications span a diverse range of domains. For instance, in information ex-
traction, entity linking clarifies ambiguities related to named entities, thereby improving
the quality of the data extracted [31]. In information retrieval, it enhances traditional
keyword-focused searches by accurately understanding the specific semantic meaning of
user queries [05, 87, 60]. In content analysis, especially in platforms such as recommen-
dation systems [92, 19, 13], entity linking helps in providing content aligned with a user’s
interest in particular entities. Moreover, question answering systems rely on entity linking
to better understand user queries, enabling more contextually relevant responses [97, 69].

Entity Recognition Entity Disambiguation

~° Eastern Security Network
/

/", © Echo state network

= ~® Electronic serial number

en.wikipedia.org/wiki/Electronic_serial_number

®
What is the esn number for ? i ﬂ° WAKIPEDIA

-0
PO Apple

~
~

b Apple Inc.

en.wikipedia.org/wiki/.

Figure 2.2: Entity Linking process, showcasing steps of Entity Recognition to identify
entity candidates followed by Entity Disambiguation to accurately link each entity to its
unique identifier in Wikipedia.

There are two main challenges associated with entity linking: Entity Recognition and
Entity Disambiguation. Entity Recognition is the process of identifying and classifying
entities present in text, often categorize them into predefined categories such as persons,
organizations, locations, dates, and more. This task primarily focuses on identifying spans
in sentences that correspond to these unique entities [15]. On the other hand, entity disam-
biguation seeks to link the recognized entities in unstructured content to their appropriate
identifiers in a structured database. This task focuses on determining the correct and
unique reference for each entity based on its contextual information, given that many en-
tities can have multiple potential references. The challenge is in accurately aligning the
recognized entity with its intended representation within the knowledge base, ensuring a
match between the information extracted from the text and the existing database [15, 75].
As shown in Figure 2.2, the Entity Recognition process identifies esn and apple as enti-
ties. Subsequently, the Entity Disambiguation process determines the correct references
for these entities, where esn refers to Electronic Serial Number and apple is linked to Apple
Inc.

2.3 Information Retrieval

Information Retrieval (IR) involves extracting relevant data from large collections based
on specific user queries, matching user queries to relevant pieces of data sourced from
documents or passages in large pre-build databases [71]. The primary IR models include
the Boolean, Vector Space, Probabilistic, and Inference Network models. The Boolean
model utilizes Boolean algebraic operations such as AND, OR, and NOT to define rela-
tions between terms and documents, though it lacks the capability to rank the retrieved
documents [34, 37]. In the Vector Space model, both documents and queries are repre-
sented as vectors within a multidimensional space, and they are ranked based on their
cosine similarity, incorporating a TF-IDF weighting scheme [70]. The Probabilistic model
ranks documents based on the probability of their relevance to a given query, using binary
vectors to represent documents and queries [19]. The Inference Network model [78] treats
document retrieval as an inference process within a network and scores documents based
on term strength [23, 62, 93].

BM25 and Dense Passage Retrieval (DPR) are currently among the popular techniques
in the field of information retrieval [26, 77, 16], widely recognized for their effectiveness in
handling retrieval tasks.

2.3.1 BM25

BM25 is a popular and widely used algorithm in the field of information retrieval. It
stands as a more advanced evolution of the TF-IDF (Term Frequency-Inverse Document
Frequency) approach [58]. BM25, part of the family of probabilistic retrieval models, is
designed to rank documents based on their relevance to a given search query. At its
core, BM25 calculates the relevance score of a document to a search query using two
main components: term frequency (TF) and inverse document frequency (IDF). The term
frequency component measures how often a query term appears in a document, assuming
that the more frequent a term is in a document, the more relevant the document is to
that term. The inverse document frequency component assesses the importance of the
term across the entire collection, with rarer terms being given more weight as they are
considered more significant [28, (1, 58]. This algorithm is particularly effective in large-
scale text databases, where it can efficiently sift through vast amounts of data to find the
most relevant documents based on the user’s query.

2.3.2 Dense Passage Retrieval

Dense Passage Retrieval (DPR) is an advanced method in the field of information retrieval,
aiming to enhance the effectiveness and accuracy of extracting relevant information within
large collections of text. In contrast to traditional bag-of-word search methods, it utilizes
deep learning models, especially transformers, to understand and match the context and
semantics of queries with passages. The core concept of DPR is to represent both the
query and the passages in a high-dimensional vector space using neural network models.
These models are trained to project the queries and the passages into a space where the
semantic similarity between them can be measured effectively. The key advantage of DPR
is its ability to capture the underlying meaning of the text, rather than relying solely on
keyword matches. This allows the model to compare and rank passages based on their
semantic similarity to the query, effectively addressing the “vocabulary mismatch” [20]
issue commonly encountered in sparse retrieval techniques [30, 94, 39, 5, 88, 95].

2.4 MS MARCO

MS MARCO, MAchine Reading COmprehension dataset [50], is a series of datasets in
large-scale specifically constructed for the development and evaluation of machine reading
comprehension systems. This dataset has been influential in the field of natural language
processing (NLP) and has played a pivotal role in advancing the state of the art in machine
understanding of text. The uniqueness of MS MARCO lies in its composition, which is
based on real-world data. The dataset itself is composed of anonymized questions sampled
from Bing’s search queries along with multiple candidate answers sourced from real docu-
ments. These documents include a variety of sources like web pages, providing a rich and
diverse set of language usage and topics. One of the key aspects of MS MARCO is that it
includes not only the questions and answers but also the human-generated answers. The
structure of MS MARCO supports deep learning models to be trained in a way that mir-
rors the unpredictability and variety of questions posed by real-world users, a significant
departure from datasets composed of synthetic questions.

The dataset contains 1M anonymized questions with human-generated answers and
8.8M passages extracted from web documents. One of the most impactful tasks of this
dataset is passage ranking, created by combining all passages from the MS MARCO dataset
and pairing them with relevant questions and passage identifiers. These passage and ques-
tion collections for an ad-hoc retrieval task at TREC. 2

2https://trec.nist.gov

10

The following is the example of the passage, query and relevant judgment grel, which
labels each query alongside its corresponding relevant passages.

what is paula deen’s brother

Query 1048585

Over the last decade, Costa Rica has evolved from being a mere eco-tourism destination
and emerged as a country of choice for foreigners, particularly from United States and
Canada. These seek quality healthcare services and surgeries at a much lower price than
their home countries.

Passage 48 - MS MARCO Passage collection v1

300674 0 7067032 1
125705 0 7067056 1
94798 0 7067181 1

Qrel Relevence Judgement

The release of MS MARCO has had a substantial impact on Al research. It has served
as a benchmark for numerous machine reading comprehension competitions and shared
tasks, helping to push the boundaries of what deep learning models can achieve in terms
of language understanding. The tasks derived from MS MARCO test a system’s ability to
handle ambiguity, reasoning, and the synthesis of information across different parts that
are crucial for a wide range of applications.

2.4.1 MS MARCO Chameleons

MS MARCO Chameleons [2] consist of challenging queries from the original MS MARCO
passage dataset. These queries are determined by state-of-the-art rankers, BM25, DeepCT |
DocT5Query[51], RepBERT [96], ANCE [39] and TCT-ColBERT [12]. These rankers show
poor effectiveness in finding relevant matches for these queries, so the testing focuses on
the bottom 50% of the worst-performing queries from the subsets of Veiled Chameleon
(Hard), Pygmy Chameleon (Harder), and Lesser Chameleon (Hardest), which represent
increasing levels of difficulty.

11

J

e Veiled Chameleon: It comprises 3,119 queries that were consistently among the bot-
tom 50% of the worst-performing queries across at least 4 rankers.

e Pygmy Chameleon: It comprises 2,473 queries that were consistently among the
bottom 50% of the worst-performing queries across at least 5 rankers.

e Lesser Chameleon: It comprises 1,693 queries that were consistently among the bot-
tom 50% of the worst-performing queries across at least 6 rankers.

2.5 DuckDB

DuckDB [50] is a high-performance analytical database system, designed for speed, depend-
ability, portability, and user-friendliness. Beyond the foundational SQL features, DuckDB
offers an enriched SQL language variant that supports a range of complex data structures
and file formats.

Efficiency: High efficiency for OnLine Analytical Processing (OLAP) [6, 55] workloads
while maintaining reasonable OnLine Transaction Processing (OLTP) [55] performance.
This balance makes it suitable for scenarios that entail concurrent data modifications and
visualization-driven OLAP queries.

Stability: System stability is crucial, as a crash in the embedded database should
never lead to the host system’s failure; instead, queries should be abort-able and resource
contention should be managed gracefully.

Transferring: Efficient data transfer between the database and application, facilitated
by their shared process and address space, there’s a significant potential for optimization.

Portability: The database is both embeddable and portable. It operates seamlessly in
the host environment without the need for external library dependencies or process state
modifications while handling the signals.

2.6 Vector Database

Vector database have become crucial due to the increasing need to digitally represent
complex data like text, images, and videos. This need is increasingly in areas such as
recommendation engines, search engines, and question answering systems. The data is

12

represented using numerical vectors, which are cost-effective in terms of storage and com-
parison. However, its high dimensionality and sparsity require custom solutions for effective
storage, retrieval, and conducting mathematical tasks over these vectors. [70]

There are two categories for vector database: specialized and one-size-fits-all.

Specialized systems are optimized for contemporary computing infrastructures, lever-
aging both CPUs and GPUs to ensure peak efficiency. These systems support a wide
range of query types, from vector similarity searches with diverse similarity functions to
attribute filtering and multi-vector query processing. They often feature various indexing
options and a flexible interface for integrating new indexes. With an emphasis on high-
dimensional vectors, these systems guarantee scalability and consistent availability across
multiple systems [$2, 85].

On the other hand, the ”one-size-fits-all” offers a general-purpose solution that aims
to cater to a wide range of use cases related to vector embeddings. These databases are
designed with the belief that a single set of features and tools can effectively address diverse
needs. For instance, a customer on an e-commerce platform might search for a dress not
only based on visual similarity but also using structured attributes like price. [34]

13

Chapter 3

MMEAD

MMEAD [29], stands for MS MARCO Entity Annotations and Disambiguations. It is
a Python-based resource package that offers entity links for the MS MARCO datasets.
MMEAD provides a standardized format to store and share links for documents and pas-
sages across both MS MARCO collections (v1 and v2) [50]. These entity links are generated
using state-of-the-art entity linking tools, namely REL [79] and BLINK [30], leveraging
knowledge graphs from Wikipedia. MMEAD aims to simplify the process of loading link
data and entity embeddings, making it easy for users to work with.

The design principles of MMEAD are derived from these goals:

e Easy-to-use: Interacting with linked entities should be straightforward. Ideally, only
a handful of code lines should be necessary to access data, its textual occurrences,
and representations. MMEAD data is made publicly accessible in the user-friendly
JSONL format, which aligns with the MS MARCO v2 collections [50]. Each JSON
line contains entity links for a document or passage, identifiable via unique identifiers.
These lines have distinct JSON fields for each section’s entities, body, header, and
title. For every entity, entity_id, start_pos, end_pos, entity, and details fields are
available. Notably, the details field is a JSON object offering linker-specific details,
like the entity type from the NER module and the confidence level.

e High-quality: A high quality entity links for the MS MARCO collections [50] enable
the application of models and reasoning over the entities. MMEAD offers entity
links generated by leading entity linking systems. This includes links from REL
for both MS MARCO v1 and v2 passages and documents and from BLINK [30]
for MS MARCO v1 passages. Given the high precision of these systems and their

14

dependency on reputable knowledge bases, the accuracy of detected mentions and
their corresponding entities is assured.

e Extensibility: The MMEAD framework promises effortless integration of the entity
data with other entity linking systems. Following the MMEAD entity link format, it
allows the MMEAD Python library to work directly with any system sharing links
similarly. Notably, REL [79] provides comprehensive guidelines for updating newer
knowledge base versions, enable the easy releases of links to newer versions.

e Useful metadata: with supplementary data that beneficial for experiments, this im-
plies linking entities to their corresponding identifiers and associated latent represen-
tations. Specifically, Wikipedia2Vec embeddings [90] are released with both 300d and
500d feature vectors, a mapping of entities to their identifiers is provided alongside.

3.1 Example

Start from an example of MMEAD data, here is a text span from MS MARCO V1 PAS-
SAGE [50] collection, there are a few mentions in the text that can be linked to Wikipedia.

Over the last decade, Costa Rica has evolved from being a mere eco-tourism destination
and emerged as a country of choice for foreigners, particularly from United States and
Canada. These seek quality healthcare services and surgeries at a much lower price than
their home countries.

In the JSON form output from MMEAD [29], the above entities will be represent as:

{
"passage": [
{
"entity_id":55561,
"start_pos":22,
"end_pos":32,
"entity":"Costa Rica",
"details":{
"tag":"LOC",
"md_score":0.9983808696269989
+
3,
{

15

"entity_id":3434750,
"start_pos":156,
"end_pos":169,
"entity":"United States",
"details":{
"tag":"LOC",
"md_score":0.9943509995937347

}
},
{
"entity_id":5042916,
"start_pos":174,
"end_pos":180,
"entity":"Canada",
"details":{
"tag":"LOC",
"md_score":0.9999330043792725
X
}
1,
"pid":48
where:

e pid: identifier of passage in the collection

e passage: Linked entities in list

e An entity is presented as:

entity_id: internal entity identifier which can be mapped to corresponding
wikipedia identifier

start_pos the start position of mention found in text
end_pos the end position of mention found in text
entity Entity found in the text

details Linker specific information, confidence etc

16

3.2 Entity Links

In this section, I will describe the systems used to generate entity annotations for the MS
MARCO collections [50] in the context of MMEAD.

3.2.1 Radboud Entity Linker

The Radboud Entity Linker (REL) [79] is an open-source toolkit designed for entity linking.
Built on state-of-the-art methods and packages from advanced natural language processing
research, REL efficiently maps text mentions to their corresponding entities in knowledge
bases. Its architecture follows conventional entity linking pipelines and consists of three
components: (i) Mentions Detection, (ii) Candidates Selection, and (iii) Entity Disam-
biguation.

Mentions Detection

The objective of mention detection is to identify text spans, or "mentions,” that may be
linked to specific entities. To achieve this, a Named Entity Recognition (NER) tool is used,
particularly the state-of-the-art NER tool called Flair [1], which is built on contextualized
word embeddings. By allowing the replacement of NER tools, users can replace Flair with
other NER tools like spaCy! or dictionary-based methods that best suit their needs.

Candidates Selection

REL select up to 7 top candidate entities from the mentions provided in the previous step.
The first 4 out of these top 7 are ranked by P(e|m) as min(1, Pyiri(e|m) + Py aco(€e|m))
for given entity e and mention m, where Py;(elm) is estimated by summing the hy-
perlink counts from Wikipedia and CrossWikis [72]. On the other hand, Pyaco(e|m) is
the uniform probability derived from YAGO dictionary[73]. The remaining 3 entities are
ranked based on context similarity, described by e” Y wee W, where ¢ is 50-words context
surrounding mention m, and both w and e are entity and word embedding vectors provided
by Wikipedia2Vec [90].

Thttps://spacy.io

17

Entity Disambiguation

The final step involves entity disambiguation. REL associates mentions with their cor-
responding entities in the Wikipedia knowledge graph. REL’s approach to entity disam-
biguation is based on the Ment-norm method [35]. A two-layer neural network is utilized
to combine P(e|m) with the max-marginal likelihood of an entity related to a document.

3.2.2 BLINK

BLINK [36], which stands for Bi-directional Linking of Nodes using Kernels, is one of the
state-of-the-art entity linking systems designed to map textual mentions in documents to
distinct entities within large knowledge bases. BLINK offers efficient and precise entity
identification, and annotating text in alignment with organized knowledge sources. The
system employs a dual-stage approach to entity linking, grounded in refined BERT [12]
architectures. In the first stage, BLINK performs retrieval in a dense space, steered by
a bi-encoder that separately embeds the mentioned context and respective entity descrip-
tions. In the subsequent phase, every potential candidate undergoes detailed examination
via a cross-encoder, merging the mention and entity textual content. In comprehensive
entity linking benchmarks, BLINK’s performance is comparable to that of REL in terms
of effectiveness.

3.3 DuckDB

The entity annotations, which comprise metadata and other descriptive information re-
lated to various entities, are securely housed within a DuckDB [56] database. This spe-
cialized storage system is highly optimized for analytical tasks, ensuring that operations
performed on the data are executed with remarkable efficiency. As a result of this opti-
mization, users experience smooth and efficient access to the entities contained within the
database. DuckDB’s design is particularly adept at handling complex queries and large
volumes of data, this setup is especially beneficial for environments where rapid retrieval
and manipulation of annotation data are crucial to the workflows, such as in machine
learning projects, research databases where annotations are integral to categorization and
search functionality.

18

3.4 How to use

MMEAD data can be easily accessed via a few lines of Python code.

e Installation

$ pip install mmead

e Resource Loading

>>> from mmead import get_links
>>> links = get_links('vl', 'passage', linker='rel')

e Get entity links with specified doc/passage id

>>> links.load_links_from_docid (123)
{"passage":[{"entity_id":"7954681",...}

Benefiting from DuckDB as a backbone of MMEAD, entity linking data can be directly
accessed via SQL queries.

>>> from mmead import load_links

>>> cursor = load_links(
'msmarco_vl_passage_links',
verbose=False

)
>>> cursor.execute ("""
SELECT pid
FROM msmarco_vl_passage_links_rel
WHERE entity='Nijmegen'
nn ll)
>>> cursor.fetchall ()
[(771129,), (1273612,), (1418035,), ...]

19

Chapter 4

Information Retrieval with MMEAD

In this section, I present a series of experiments that demonstrate the effectiveness and po-
tential of MMEAD [29] in enhancing neural retrieval models. These experiments integrate
MMEAD annotations into well-established information retrieval models. Regarding sparse
retrieval, I built upon the work of Early Stage Sparse Retrieval with Entity Linking [65, 60]
incorporating with MMEAD for entity expansion.

4.1 Datasets

4.1.1 MS MARCO

In this study, I utilized the MS MARCO passage collection v1 for the information retrieval
experiments. Specifically, I employed the development set, referred to as dev, and filtered
for entries that had relevance judgments available in the grel file. This file consists of a
total of 6,980 queries.

4.1.2 MS MARCO Chameleons

Further experiments are conducted on the obstinate query sets of the MS MARCO Chameleons [2],
include all the subsets of Veiled Chameleon (Hard), Pygmy Chameleon (Harder), and Lesser
Chameleon (Hardest).

20

4.2 Methods

4.2.1 Sparse

To showcase the effectiveness of MMEAD’s [29] entity expansion in sparse retrieval, I
followed a previous work, Early Stage Sparse Retrieval with Entity Linking [65, 60], carried
out experiments that enhance existing sparse retrieval models using MMEAD annotations.

For sparse entity expansion retrieval, a state-of-the-art open-source sparse passage re-
triever Anserini, is used here. Anserini’s [J1] sparse retrieval represents the traditional
bag-of-words representations and keyword-based matching techniques. It utilizes classic
term-frequency-inverse-document-frequency (TF-IDF) weightings and BM25 ranking algo-
rithms to score and rank documents based on their relevance to a query. These techniques
have been the backbone of text-based search for decades, proving effective in many sce-
narios. Built on the robust foundation of the Lucene backend, Anserini’s implementation
provides a reliable and efficient alternative for those seeking traditional IR methods without
the complications of advanced neural models. In the context of sparse retrieval, Anserini
efficiently indexes, ranks, and retrieves documents based on term frequency-inverse doc-
ument frequency (TF-IDF) and other classic retrieval models. This ensures rapid and
precise retrieval from large-scale text collections. Given its strong performance and exten-
sive stability, Anserini’s sparse retrieval serves as a robust baseline for many information
retrieval tasks and provides an essential contrast to emerging dense retrieval model.

No Expansion

For the base comparison, I adopted BM25, utilizing its implementation as used in Anserini
with hyper-parameters were specifically set at k1 = 0.82 and b = 0.68. These parameters
have been demonstrated to yield optimal results for the MS MARCO dataset [50]. During
the indexing process of MS MARCO, standard procedures were employed. Notably, neither
the queries nor the passages underwent any form of expansion during this baseline testing.

Expansion With Entity Text

In this approach, both passages and queries are expanded using the textual representations
of the annotated entities, as sourced from MMEAD [29]. By augmenting these passages
and queries with the context of these entities, I expected a more comprehensive understand-
ing and potentially more relevant for retrieval tasks. Following this expansion process, I

21

applied the BM25 retrieval model. It’s important to note that the BM25 model was run
using the identical configuration and hyper-parameter settings as previously detailed in the
baseline setting. This consistency ensures that any observed performance variations can be
attributed to the entity expansion process rather than changes in the model’s parameters.

Query Expansion:

’What is prime rate in canada Canada

Passage Expansion:

What is the Prime Rate? In Canada, the prime rate is a guideline interest rate used by
banks on loans for their most creditworthy, best, or prime clients. The prime rate rises
and falls with the ebb and flow of the Canadian economy, influenced significantly by the
overnight rate, which is set by the Bank of Canada. Bank of Canada Canada

Expansion With Entity Hash

Instead of directly using the textual representation of entities for expansion, an alterna-
tive method to expand passages and queries is to incorporate the MD5 hash of the entity
text [05], sourced from MMEAD [29], into the passages and queries. The choice to employ
MD5 hashing was influenced by two main factors. First, it offers a standardized repre-
sentation for multi-word terms, ensuring uniformity. Second, it effectively minimizes the
chance of inaccurate matches between queries and unrelated passages. After establishing
these expansions, we then implemented the BM25 model, adhering to the hyper-parameter
configurations described in our baseline.

Query Expansion:

’What is prime rate in canada 445d337b5cd5de476f99333df6b0c2a7

Passage Expansion:

What is the Prime Rate? In Canada, the prime rate is a guideline interest rate used by
banks on loans for their most creditworthy, best, or prime clients. The prime rate rises
and falls with the ebb and flow of the Canadian economy, influenced significantly by the
overnight rate, which is set by the Bank of Canada. 73bb9596e36cd23969cbf72¢16d0a0df
445d337b5cd5ded76£99333df6b0c2a7

Fusion

In the domain of information retrieval (IR), the term Fusion refers to the process of in-
tegrating results from various retrieval systems or algorithms. This aims to establish a

22

unified, coherent ranking set of results. On one hand, it aims to enhance retrieval effec-
tiveness by capitalizing on the distinct strengths found within various retrieval methods.
On the other hand, it aims to provide consistent and reliable performance across a wide
spectrum of topics and diverse query formulations. By employing run combinations, re-
searchers can unleash the collective potential of multiple systems, ensuring that the final
output is not only comprehensive but also optimally aligned with user intent and needs.

The second series of experiments are conducted using Reciprocal Rank Fusion (RRF) [9],
an established method in information retrieval, widely recognized for its effectiveness in
fusing results from multiple retrieval systems. Unlike traditional score-based aggregation
methods that often requires complex normalization due to divergent scoring metrics across
systems, RRF leverages the stability of rank positions. For a given result, the RRF score
is derived from the summation of the reciprocals of its rank across the assorted result lists.
Subsequent to the computation, items are ranked based on their cumulative RRF score to
produce the final consolidated ranking. RRF is computed as the formula:

RRF(deD)=3" m (4.1)

Here, k is a hyperparameter that can be fine-tuned. However, I chose to use a default
value of k = 60 across all configurations.

4.2.2 Dense

For dense retrieval, I utilize Tevatron [21] - a cutting-edge efficient and flexible toolkit
designed to synergize the best of dense retrieval methods. Dense retrieval is gaining pop-
ularity in recent studies. It focuses on understanding the deeper meaning in searches and
benefits from using advanced, pre-trained language models. The need for adaptable solu-
tions has grown clear in light of challenges such as CPU memory limitations when dealing
with large corpora and increasing accelerator (GPU/TPU) demands with growing model
sizes. Tevatron offered a comprehensive solution to these challenges. At its core, Tevatron
integrates leading open-source packages: datasets for management, transformers for mod-
eling, and FAISS [27] for retrieval. It’s also adaptable, supporting the widely-used Pytorch
framework [51]. Overall, Tevatron emerges as a solution, providing a cutting-edge platform
equipped with state-of-the-art models, ensuring researchers have the flexibility to dive into
varied research domains across multiple datasets.

23

No Expansion

Consistent with the approach taken in the sparse experiments, I set a baseline where
both the queries and the passages remained untouched, without any form of expansion.
For this baseline setup, I used specific hyper-parameters: a batch size of 8, a learning
rate set to Je-6, a maximum query length of 16, and a maximum passage length of 128.
After training this configuration over three epochs, I was able to replicate the baseline
performance from Tevatron, ensuring its reliability and serving as a foundation against
which other configurations can be compared.

Expansion With Entity Text

1. Query and Passage Expansion

In parallel with the sparse experiments, this method subjects both passages and
queries to an expansion process. This expansion incorporates the textual representa-
tions of the entities sourced from MMEAD [29] annotations. The fundamental idea
is that by augmenting the passages and queries with this additional entity context,
they would not only have more detailed information but also be more relevant when
searching or retrieving information. Anticipating that this enriched context would
amplify their relevance, I proceeded to employ the Tevatron [21] model. To ensure a
controlled experiment, I maintained consistency by using the identical configuration
and hyper-parameter settings that were outlined in our baseline scenario. Maintain-
ing this consistency is essential, as it ensures that any performance changes can be
attributed directly to the effects of entity expansion rather than variations in the
model’s configurations.

o Query

’What is prime rate in canada Canada

e Passage

What is the Prime Rate? In Canada, the prime rate is a guideline interest
rate used by banks on loans for their most creditworthy, best, or prime clients.
The prime rate rises and falls with the ebb and flow of the Canadian economy;,
influenced significantly by the overnight rate, which is set by the Bank of
Canada. Bank of Canada Canada

24

2. Passage Expansion

A notable experimental approach involves solely focusing on passage expansion rather
than query expansion. Passage expansion is often privileged over query expansion
due to its ability to uphold the user’s original intent, eliminating the modification
of their initial query and thereby reducing the potential for misinterpretation [958,

|. Notably, passage expansion can be executed offline during the indexing phase,
thereby optimizing real-time query processing, a critical advantage when deploying
large language models. This method of expansion not only retains but also augments
the contextual richness of a passage, thereby amplifying its relevance to an extended
spectrum of associated queries. Using this method often leads to more consistent
and trustworthy search results. This boosts user trust and interest while avoiding
the unpredictability and extra computing effort that comes with expanding queries.

e Query
’What is prime rate in canada Canada

e Passage

What is the Prime Rate? In Canada, the prime rate is a guideline interest
rate used by banks on loans for their most creditworthy, best, or prime clients.
The prime rate rises and falls with the ebb and flow of the Canadian economy,
influenced significantly by the overnight rate, which is set by the Bank of
Canada. Bank of Canada Canada

Expansion With Wikipedia

Instead of using hash entity expansion, I incorporated the background context from Wikipedia
into the expansion. In the context of large language models (LLMs), hash entity expansion
is deemed sub-optimal. The primary reason is the inherent loss of semantic and contex-
tual information when entities are converted into hash values, rendering them semantically
meaningless to the pretrained model. These hash functions, being non-reversible, further
isolate original data, making it inaccessible for the LLM to produce meaningful content.
Moreover, unless LLMs are specifically trained on datasets with prevalent hash entity ex-
pansion, they lack the foundational understanding to process these hashes.

25

1. Query and Passage Expansion

Both passages and queries to an expansion process, not only with the entity text,
but also the background context from Wikipedia are added to each labeled entity.
By incorporating supplementary context, not just a broadening of vocabulary, but
also heightened the ability to distinguish variations in phrasing and expression. This
comprehensive textual expansion acts as a bridge, seamlessly connecting different
terminologies, aiming to enhancing the model’s capabilities and ensuring a more
adaptable response to a wide spectrum of user inputs. Additionally, by offering
clearer and more detailed context, the expanded text plays a crucial role in minimizing
ambiguities that might arise, thereby ensuring that the model’s output is precisely
and contextually aligned.

To do this, [initially annotate both the query and the passage utilizing the MMEAD [29]
tool. Subsequent to this annotation, I retrieved its description from Wikipedia for
every identified entity. This is achieved by referencing its unique Wikipedia ID and
employing the Anserini tool in conjunction with the Wikipedia dump from 2019.
Only the first sentence from each Wikipedia document is extracted and subsequently
integrated as background context during the expansion process.

e Query
’What is prime rate in canada Canada

e Passage

What is the Prime Rate? In Canada, the prime rate is a guideline in-
terest rate used by banks on loans for their most creditworthy, best, or
prime clients. The prime rate rises and falls with the ebb and flow of the
Canadian economy, influenced significantly by the overnight rate, which is
set by the Bank of Canada. Canada: canada is a country in north america
Bank of Canada: the bank of canada (boc;) is a crown corporation and
canada’s central bank.

2. Passage Expansion

Consistent with the previously mentioned expansion technique, I retained the query
in its original form. However, I enriched the passages by incorporating annotations
sourced from MMEAD [29]. Additionally, I sourced relevant context from Wikipedia
for these passages, using the identical methodology employed during the Query and
Passage Expansion processes.

26

o Query

’What is prime rate in canada

e Passage

What is the Prime Rate? In Canada, the prime rate is a guideline in-
terest rate used by banks on loans for their most creditworthy, best, or
prime clients. The prime rate rises and falls with the ebb and flow of the
Canadian economy, influenced significantly by the overnight rate, which is
set by the Bank of Canada. Canada: canada is a country in north america
Bank of Canada: the bank of canada (boc;) is a crown corporation and
canada’s central bank.

4.3 Experimental Setup

ALL experiments are conducted using a single machine of, Intel(R) Xeon(R) Gold 6134
CPU @ 3.20GHz, 128G RAM for sparse retrievals on the MS MARCO passage [50], run
combinations, evaluations. A single Tesla P40 GPU is employed to conduct the dense
retrieval, including training, encoding and evaluations.

Recall

Recall@K is a metric used to show the effectiveness of a retrieval system. Specifically, it
measures the proportion of relevant documents that are retrieved in the top K results out
of all the relevant documents available. It can be defined mathematically below:

RecalloK — Number of relevant documents in top K results

4.2
Total number of relevant documents in the dataset (42)

Mean Reciprocal Rank

Mean Reciprocal Rank, is a metric used particularly in scenarios where the system is
expected to return a list of ranked items to a query. Given a set of queries, the reciprocal
rank for each query is the multiplicative inverse of the rank of the first relevant result. The
formula for reciprocal rank is shown below:

1
Rank of First Relevant Document in results

Reciprocal Rank = (4.3)

27

MRR is the average of the reciprocal ranks of results for a set of queries defined as:

1
len(Q)

Reciprocal Rank = Reciprocal Rank,, (4.4)

4.4 Results

4.4.1 Sparse

The experiments were conducted utilizing the MS MARCO v1 passage ranking collec-
tion [50] and MS MARCO Chameleons, specifically focusing on queries that have at least
one entity annotation. For queries that don’t contain any linked entities, the expanded
query remains identical to the original one, so it will not make a difference with expansion
or not. The result shown in Table 4.1 and Table 4.2.

The 4 columns correspond to varying difficulty levels of the dataset. The dev column
represents the development set of MS MARCO [50] with 6,980 queries. The hard column is
the Veiled Chameleon subset of MS MARCO Chameleons [2], which has 3,119 queries. The
harder category is represented by the Pygmy Chameleon set with 2,473 queries. Lastly,
the hardest column pertains to the Lesser Chameleon set, comprising 1,693 queries.

The rows, labeled in alphabetical order, represent different experimental setup. The
names of these setup clearly state the type of experiment.

Table 4.1: Results on the MS MARCO v1 passage collection, Recall@1000

R@1000

dev hard harder hardest
a. BM25 - No Expansion 0.9111 0.7855 0.7444 0.6677
b. BM25 — Entity Text 0.9183 0.8240 0.7951 0.7298
c. BM25 — Entity Hash 0.9105 0.7980 0.7576 0.6848
d. RRF — No Expansion + Entity Text 0.9338 0.8436 0.8124 0.7500
e. RRF — No Expansion + Entity Hash 0.9250 0.8260 0.7921 0.7205
f. RRF — Entity Text + Hash 0.9231 0.8260 0.7982 0.7314
g. RRF — No Expansion + Entity Text + Hash | 0.9313 0.8370 0.8043 0.7376

Table 4.1 shows the recall@1000 results of the subset queries with at least one entity.
The expansion using FEntity Text boosted a lot across all difficulty levels compared to the

28

rest. For RRF, No Ezpansion + Entity Text configuration achieves the highest Recall@1000
for all difficulty levels. The rest of the combination does not seem to improve much or
remains unchanged compared with the Entity Text Expansion.

Table 4.2 shows the MRR@10 results of the subset queries with at least one entity. In
the analysis of the dev set, there is no identification of any further relevant passages. It
appears that expansion with Entity Text gives the best results when the difficulty level
increases. When evaluating the reciprocal rank fusion methods, although they notably
enhance the performance of recall, however, when evaluating the MRR@10 metric, there
was no noticeable advantage in utilizing RRF compared to solely employing one of the
entity expansion methods.

Table 4.2: Results on the MS MARCO v1 passage collection, MRR@10

MRR@10

dev hard harder hardest
a. BM25 - No Expansion 0.2413 0.0373 0.0137 0.0000
b. BM25 — Entity Text 0.2202 0.0385 0.0173 0.0057
c. BM25 — Entity Hash 0.2199 0.0383 0.0175 0.0052
d. RRF — No Expansion + Entity Text 0.2372 0.0385 0.0163 0.0019
e. RRF — No Expansion + Entity Hash 0.2378 0.0367 0.0152 0.0034
f. RRF — Entity Text + Hash 0.2218 0.0375 0.0161 0.0053
g. RRF — No Expansion + Entity Text + Hash | 0.2358 0.0391 0.0156 0.0035

In summary, leveraging entities in sparse retrieval enhances the model performance, as
evidenced by the provided tables. Whether incorporated as text or hash, entity informa-
tion typically yields better retrieval metrics than the baseline. For the R@1000 metric,
configurations utilizing entity data consistently outperform the base configurations, with
the /textitRRF - No Expansion + Entity Text achieving the highest scores across all test
scenarios. Similarly, for the MRR@10 metric, the inclusion of entity information, par-
ticularly in the BM25 - Entity Text configuration, delivers superior results in the harder
categories. Overall, the data indicates that incorporating entity information into sparse
retrieval techniques can substantially enhance their performance.

4.4.2 Dense

The experiments were conducted similarly to the sparse experiments, utilizing both the MS
MARCO vl passage ranking collection [50] and MS MARCO Chameleons [2] for queries
that contained at least one entity annotation. The result shown in Table 4.3 and Table 4.4

29

The result structure is consistent with the sparse experiments.

Table 4.3: Results on the MS MARCO v1 passage collection, RECALL@1000

R@1000
dev hard harder hardest
a. Baseline — No Expansion 0.8888 0.7201 0.6714 0.5978
b. Entity Text — Query & Passage 0.8899 0.7299 0.6836 0.6165
c. Entity Text — Passage 0.8870 0.7223 0.6684 0.5978
d. Wiki Sentence — Query & Passage | 0.8694 0.6887 0.6542 0.5839
e. Wiki Sentence — Passage 0.8693 0.6892 0.6440 0.5776

Table 4.3 shows the Recall@1000 results from dense experiments for subset queries
containing at least one entity. Using Entity Text expansion on both passages and queries
resulted in the most improvement across all difficulty levels compared to other methods.
Methods based on Wikipedia yield scores that are quite similar across datasets, but they
don’t notably alter the results. In general, strategies that integrate both the Query and
Passage tend to outperform those focused solely on the passage. Approaches that use
Wikipedia sentences, regardless of whether they take the query into account, tend to
underperform compared to those that exclusively rely on entity text.

Table 4.4: Results on the MS MARCO v1 passage collection, MRR@10

MRR@10
dev hard harder hardest
a. Baseline — No Expansion 0.3707 0.0824 0.0503 0.0353
b. Entity Text — Query & Passage 0.3666 ~ 0.0901 0.0561 0.0411
c. Entity Text — Passage 0.3744 0.0890 0.0498 0.0340
d. Wiki Sentence — Query & Passage | 0.3545 0.0931 0.0630 0.0480
e. Wiki Sentence — Passage 0.3622 0.0913 0.0572 0.0448

Table 4.4 shows the MRR@10 results for the subset queries with at least one entity. For
the development set, methods that focus solely on passages perform relatively better. As
query complexity increases, techniques that utilize information from both the query and
passage prove to be more effective. The benefit is especially apparent when Wiki sentences
are expanded for both the query and passage for these more challenging queries.

Overall, in dense retrieval, the Entity Text expansion in both query and passage emerges
as the best approach for this dataset. It consistently delivers top-tier performance in the

30

R@1000 metric across all difficulty levels. This dominance suggests that it has a robust
capability to recall relevant results within the top 1000 items, regardless of the challenge’s
complexity. Moreover, under the MRR@10 metric, it remains competitive, securing high
rankings, especially in the hard and hardest datasets, even if it doesn’t always clinch the
top spot. Its all-around competence and its evident superiority in the R@1000 metric
demonstrate its effectiveness when leveraging MMEAD [29] into dense retrieval tasks.

4.4.3 Discussion

Query: What is protected by hipaa rules

Query Entity Expansion: Health Insurance Portability and Accountability Act
Target Passage: HIPAA (Health Insurance Portability and Accountability Act of 1996) is
United States legislation that provides data privacy and security provisions for safeguarding
medical information.

Passage Entity Expansion: United States Health Insurance Portability and Account-
ability Act

Query: what does cissp stand for?

Query Entity Expansion: Certified Information Systems Security Professional

Target Passage: Certified Information Systems Security Professional (CISSP) is an in-
dependent information security certification governed by the International Information
Systems Security Certification Consortium, also known as (ISC)%.

Passage Entity Expansion: (ISC)? ... Certified Information Systems Security Profes-
sional

Examples of how MMEAD can help the retrieval results.

Example 4.4.3 shows how MMEAD expanded entities can help with the retrieval re-
sults. In the first instance, MMEAD expands the HIPAA in the query to its full form.
Without this expansion, information retrieval systems struggled to match the query with
relevant documents, especially the relevant document using the full form instead of the
acronym. The entity expansion ensures that the query and the target passage are seman-
tically aligned, improving the accuracy of the retrieval. Similar to the first example, the
second example also expanded the acronym CISSP. This is particularly important because

31

CISSP is a less commonly known term compared to HIPAA. Without entity linking, the
connection between the query and the relevant passage could be easily missed. The ex-
pansion enables the retrieval system to accurately match the query with a passage that
defines CISSP, even if the passage doesn’t directly use the acronym. In the result, both
examples successfully recognized the relevant target passages following the expansion, in
contrast to previous misses.

Query: What is a mra business definition

Query Entity Expansion: Mail retrieval agent

Target Passage: Diffen Health Diagnostics. An MRA, or magnetic resonance angiogram,
is a type of MRI scan that uses MRI’s magnetic fields and radio waves to produce pictures
of blood vessels inside the body, allowing doctors to locate problems that may cause reduced
blood flow.

Passage Entity Expansion: Marketing Research Association Magnetic resonance imag-
ing

Query: What are cra

Query Entity Expansion: Fair Credit Reporting Act

Target Passage: What is CRA? The Community Reinvestment Act (CRA) is a law
intended to encourage depository institutions to help meet the credit needs of the commu-
nities in which they operate, including low- and moderate-income (LMI) neighborhoods,
consistent with safe and sound banking operations. (CRA does not encourage the exten-
sion of unsafe or unsound credit.)

Passage Entity Expansion: Community Reinvestment Act.

Examples of MMEAD negatively impacts the retrieval results.

Example 4.4.3 illustrate how entity expansion can sometimes negatively impact infor-
mation retrieval result by causing misalignment between the user’s query and the target
passage. Here, the first query likely refers to a business-related term MRA but the en-
tity expansion mistakenly interprets it as Mail retrieval agent. The target passage, on
the other hand, discusses a medical imaging technique. The passage entity expansion fur-
ther confuses the context by introducing Marketing Research Association. This mismatch
indicates that the entity expansion led the retrieval system the wrong way, aligning the

32

query with an irrelevant passage due to an incorrect interpretation of the acronym. In
the second case, the query incorrectly expanded to Fair Credit Reporting Act. The correct
expansion, as indicated by the target passage, should be Community Reinvestment Act.
This misinterpretation by the entity expansion also leads to a rank drop of the relevant
information. The user’s intent was to know about the Community Reinvestment Act, but
the expanded query might direct the system towards information related to a different
aspect, thus boosting irrelevant information to the top.

Incorrect entity expansion can cause a misalignment between the query’s intended
meaning and the information provided in the target passages. This demonstrates the
importance of accurate context understanding in entity linking for effective information re-
trieval. These examples also highlight the challenge faced by most entity-linking systems,
which are biased towards longer texts. However, real-world user queries tend to be noisy,
poorly structured, and short, often lacking helpful context especially when facing the less
commonly known terms [7, 18, 25, 38].

33

Chapter 5

Applications

Through these quantitative evaluations, I have demonstrated MMEAD’s [29] ability to
leverage entities effectively boosts retrieval effectiveness, especially on standard bench-
mark datasets. However, the potential of MMEAD doesn’t end there. In the following
section, I will explore diverse examples that further highlight a range of applications and
comprehensive usefulness of MMEAD in enriching search applications.

ALL experiments in this section are conducted using a single machine of, Intel(R)
Xeon(R) Gold 6134 CPU @ 3.20GHz with 128G RAM.

5.1 Vector Search in DuckDB

Vector search is a modern technique used in information retrieval where textual data,
such as passages or documents, are represented as vectors in a high-dimensional space
using embedding models. When a user submits a query, it is converted into a vector
representation in the same space. By comparing the similarity between the query vector
and passage vectors, the system can identify and rank passages most relevant to the query.

Integrating vector search into a database management system (DBMS) can address the
growing need to process and retrieve complex, unstructured, and semantically-rich data
in modern applications. Traditional DBMSs, optimized for structured data and exact-
match queries, often struggled when encountering with the requirements such as semantic
text search and cross-modal search. By leveraging dense embeddings, vector search can
capture the underlying semantics of data, enabling more context-aware and meaningful
search results. Vector search not only enhances the flexibility and efficiency of the DBMS

34

in handling modern data challenges but also provides a smooth and easy-to-use connection
between managing structural data and the growing world of deep learning data methods.

5.1.1 Architecture
DuckDB Template

DuckDB [56] stands out as a distinctive in-memory analytical database, carefully designed
for enhanced analytical performance. Developed in C++, this relational Database Man-
agement System (DBMS) has been optimized for Online Analytical Processing (OLAP). It
is particularly notable for its ability to efficiently process complex queries that encompass
large portions of stored datasets. Beyond its performance capabilities, DuckDB is well-
known for its seamless deployment and integration features. Coupled with its extensive
SQL language variant, make it a preferred choice for both developers and data analysts.
Furthermore, DuckDB extends its flexibility by offering a customizable extension mecha-
nism via the DuckDB extension template!, a tool designed mainly to assist users in the
smooth creation, evaluation, and distribution of custom DuckDB extensions.

FAISS Integration

FAISS (Facebook AI Similarity Search) [27], stands out by its specialized design for efficient
similarity search of high-dimensional vectors. As modern applications increasingly rely on
vector representations for tasks such as semantic text search or cross-model retrieval, tra-
ditional DBMS can struggle with the computational demands of nearest neighbor searches.
FAISS offers a solution to the challenge of efficiently finding the most similar vectors in
large datasets. By integrating FAISS into a DuckDB, combines the robustness and struc-
tured data management capabilities of traditional databases with state-of-the-art vector
search capabilities.

5.1.2 Dataset

I utilized the MS MARCO passage collection v1 [50] for the vector search integration
showcases. Specifically, I employed the 8.8 million passages only as the knowledge base,
and conduct vector searches on top of it.

Thttps://github.com/duckdb/extension-template

35

5.1.3 Vector Preparation

I first create the embeddings(vectors) of the 8.8 million passages. These vectors are ob-
tained from Pyserini [11], a Python toolkit for information retrieval (IR) that serves as a
bridge between the popular Anserini [91] library and Python. With its user-friendly APIs,
Pyserini allows for vector encoding in just a single line of code. For example, via:

python -m pyserini.encode \
input --corpus collections.json \
--fields text \
--delimiter "\n" \

--shard-id 0 \
--shard-num 1 \
output --embeddings test_emb/ \
encoder --encoder castorini/tct_colbert-v2-hnp-msmarco \
--fields text \
--batch 32 \
--fpl6

This creats the embeddings for the passages using the model TCT-ColBERTv2 [13].

Then I utilize DuckDB’s built-in load function to integrate the Faiss-DuckDB exten-
sion. This approach allows us to directly load a pre-compiled, customized extension into
DuckDB. By doing so, we can leverage the powerful features of Faiss within the DuckDB
environment. This integration enhances our database’s capabilities, enabling DuckDB to
perform complex vectorized queries and operations more efficiently.

>>> LOAD 'faiss.duckdb_extension’

After obtaining the vector embbeddings, they can be directly loaded into DuckDB from
the result JSON file. Utilizing read_json_auto function, DuckDB automatically infers the
data types within the JSON file, effectively creating a table view of the contained data.
This process simplifies data handling, as it enables the direct application of SQL operations
on the data structured within the JSON file, thereby streamlining database management
and query execution.

36

>>> CREATE TABLE msmarco AS
SELECT % FROM read_json_auto('test_emb/embeddings.jsonl ',
format='newline_delimited');

The next step involves creating a FAISS index within DuckDB. This is achieved by
calling a specialized function named FAISS_.CRFEATE, which is defined within the custom
extension. Once the FAISS index is created, the subsequent action is to populate it with
relevant data. This is accomplished by using another customized function, FAISS_ADD,
which is specifically defined to insert data into the FAISS index. These functions are part
of the custom extension and are essential for integrating FAISS indexing capabilities into
DuckDB, thereby enabling efficient search and retrieval operations within the database.

>>> CALL FAISS_CREATE('index_name', 768, 'IDMap, Flat')
>>> CALL FAISS_ADD ((SELECT id as docid, vector as vec FROM msmarco),
'index_name');

Until now, DuckDB has achieved comprehensive support for vector search operations
by integrating with FAISS, enabling efficient and effective handling of high-dimensional
data searches.

5.1.4 Vector Search Example

In this example, we conduct a passage retrieval experiment, retrieving the top 1000 pas-
sages using queries from the TREC 2019 Deep Learning Tracks?. We employ the TCT-
ColBERTv2 [13] model, the same as used in passage embedding generation for the queries.
These pre-encoded queries are also available for download through Pyserini’s API.

This step is important as it tests our ability to replicate standard results using vector
search in DuckDB.

Result

Before doing the actual search, we examine the query in detail to understand its structure.
As shown in the table, ¢id represents the query id and emb is the float vector representation
of each query.

2https://microsoft.github.io/msmarco/ TREC-Deep-Learning-2019.html

37

>>> SELECT id, emb from query_embedding limit 10;

qid emb
int64 float] |

19335 | [0.110..., 0.192..., 0.004..., -0.029..., 0.151..., 0.189..., 0.200..., -0.072..., -0.126...,
47923 | [-0.083..., 0.083..., 0.064..., 0.013..., 0.050..., 0.130..., 0.169..., -0.182..., -0.234...,
87181 | [-0.039..., 0.116..., 0.171..., 0.066..., 0.075..., 0.052..., 0.084..., -0.128..., -0.018...,
87452 [0.077..., 0.167..., 0.120..., 0.098..., 0.210..., 0.167..., 0.160..., -0.238..., 0.027...,
104861 | [0.166..., 0.196..., 0.168..., 0.234..., 0.337..., 0.260..., 0.108..., -0.101..., 0.196...,
130510 | [-0.091..., 0.047..., 0.023..., -0.062..., 0.137..., 0.187..., 0.145..., -0.015..., -0.124.._,
131843 | [-0.178..., 0.048..., 0.219..., 0.047..., 0.074..., 0.116..., 0.120..., 0.002..., -0.093...,
146187 | [0.158..., 0.027..., 0.181..., -0.034..., 0.128..., 0.064..., 0.207..., 0.009..., -0.030...,
148538 | [0.157..., -0.082..., 0.022..., 0.031..., 0.139..., -0.051..., 0.302..., 0.012..., -0.069...,
156493 | [0.092..., 0.318..., 0.206..., -0.016..., 0.366..., 0.097..., 0.006..., -0.135..., -0.061...,

In this process, the first step involves loading a collection of passages, which is the
query dataset we examed in the previous process. This dataset is then subjected to a
search operation to identify and retrieve the top 1000 passages using the vector database
created in 5.1.3. These passages are selected based on their similarity via inner product.
Following the retrieval of these passages, an intermediate table, referred to as raw_rst, is
created. The purpose of this table is to systematically display the intermediate results of
the search operation. This table include the query id as id and its raw matching result
of score, rank, document id label. The creation of this intermediate table is allowing us

to review and analysis of the search results before any further processing or refinement is
undertaken.

>>> CREATE TABLE raw_rst AS
SELECT id, NULL AS COL2, NULL AS COLS5,
UNNEST (FAISS_SEARCH('flat ', 1000, emb)) AS RAW
FROM query_embedding;
>>> SELECT x FROM raw_rst limit 5;
>>>

id RAW

int64 struct(rank integer, 'label' bigint, distance float)

38

19335 {'rank': 0, 'label': 8412682, 'distance': 79.02593}

19335 {'rank': 1, 'label': 342431, 'distance': 79.00702}
19335 {'rank': 2, 'label': 2304005, 'distance': 78.89528}
19335 {'rank': 3, 'label': 527692, 'distance': 78.886}
19335 {'rank': 4, 'label': 1720389, 'distance': 78.85274}
5 row 4 columns

Then, we store the obtained results into a file, specifically formatting it according to
the trec (Text REtrieval Conference)®. This is a widely recognized format used primarily
in information retrieval systems, allowing for efficient and standardized evaluation and
comparison of different systems or algorithms. By saving the results in this format, it
becomes easier to conduct comparisons and analyses later on.

>>> COPY (select id, I[fNull(COL2,'Q0"),
raw. label as docid,
(raw.rank + 1) as rank,
raw. distance as distance ,
[fNull (COL5, 'Faiss') from raw_rst)
TO 'query_result.csv' WITH (DELIMITER '-');

After we obtained the result file, we use Pyserini’s integrated evaluation tools to thor-
oughly assess the performance of the retrieval result file. This process involves running
the result file through Pyserini’s evaluation tool, computes various metrics. These metrics
provide insights into how well the retrieval system is performing in terms of relevance and
accuracy of the returned results.

>>> python -m pyserini.eval.trec_eval -c -1 2 -m map dl19-passage \
query_result.csv

0.4469

>>> python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
query_result.csv

0.7204

3https://trec.nist.gov/pubs/trec28/trec2019.html

39

>>> python -m pyserini.eval.trec_eval -c -1 2 -m recall.1000 dI19-passage \
query_result.csv
0.8261

All the evaluated results aligned perfectly with the results obtained through Pyserini’s
two-click reproductions process [10]. This consistent correlation underscores the reliability
and accuracy of the results achieved in both evaluations.

5.1.5 Further Search Refinement Example 1

Imagine you are a researcher who would like to delve into the depths to uncover insights
about the Lewis and Clark expedition, and you are particularly interested in finding infor-
mation about Sacagawea’s involvement. As you explore this extensive dataset, your goal
is to extract narratives and reveal her contributions. You are not just looking for general
information about the expedition; you are on a quest to find those hidden texts that reveal
Sacagawea’s impact.

In this example, one can further refine search results by categorizing vector search
results based on entity mentions. We can accomplish this by first retrieving passages using
vector search, and then a subsequent processing step uses the MMEAD entity tool to
categorize specific entities within these passages:

e Passages that mention the specified entity or entities.

e Passages that do not contain the entity mentions.

This approach ensures that users not only find content relevant to their broad search
term but also have the option to focus on the mentioned specific entities they might be par-
ticularly interested in. This combination of vector search with entity-based categorization
offers a more refined and effective search experience.

Result

In the process of examining the query, we utilize the functionality of DuckDB to directly
import data from JSON format. This approach simplifies the process of data manipula-
tion and analysis. By loading JSON data directly into DuckDB, we bypass the need for
intermediate data conversion. DuckDB’s ability to handle JSON format allows for a seam-
less integration of complex, nested data structures. Once the JSON data is loaded into

40

DuckDB, it will automatically inference the data types and transformed into a structured
table format. By converting JSON data into a tabular form, we can leverage SQL queries
to efficiently extract, filter, and manipulate the data as required for our specific analytical
needs. Here query id shown as qid, query text as text and the query vector representation
as emb.

>>> select % from read_json_auto('../data/emb_queries.json',

format="'newline_delimited');

qid text emb
int64 varchar double] |

0 | Lewis and Clark expedition to the Pacific Ocean | [0.047.., 0.184.., -0.043.., 0.284..,

For the process of retrieval, we first load the query data from the JSON file using
the same function read_json_auto. The next step is to conduct a search for passages that
are relevant to the encoded query. The relevance of a passage is determined based on
inner product. In this example, we identify the top 1000 passages that are most relevant
to the query. To facilitate a clearer examination and analysis of these search results, an
intermediate table, named passage_rst, is created. We only need the relevant passage id in
this example to further refine the search result as passage id can be queried as an indicator
in MMEAD.

>>> CREATE TABLE passage_rst AS
SELECT qid, UNNEST(FAISS_.SEARCH('index_name', 1000, emb)).label as docid
from read_json_auto('emb_queries.json', format='newline_delimited');
>>> SELECT % FROM passage_rst limit 5;
>>>
qid docid
int64 int64

7915180
2104864
2104859
8839349
7253743

O OO OO

(6]

rows

41

Then we execute a query to retrieve a specific set of passages. These passages are char-
acterized by their explicit inclusion of Sacagawea as an identified entity. To accomplish this,
we join the intermediate results obtained from previous step with the MMEAD database.
After the joining process, we apply a filter specifically targeting the entity term Sacagawea.
By doing so, we ensure that the final list of passages extracted from the database is highly
relevant and focused solely on content that specifically mentioned Sacagawea.

>>> SELECT DISTINCT passage_rst.docid FROM passage_rst
LEFT JOIN mmead_vl_pas ON mmead_vl_pas.docid=passage_rst.docid
WHERE mmead_vl_pas.entity="'Sacagawea';
>>>
docid
int64

3044517
5373614
5373613
7244392

34 rows

In this scenario, we harness the capabilities of DuckDB, Faiss, and MMEAD with min-
imal SQL code, efficiently retrieving and categorizing relevant data points from a multi-
dimensional space. This process involves organizing search results into meaningful cat-
egories, showcasing the adaptability of our integrated system in handling complex data
operations from search and retrieval in high-dimensional spaces to effective classification
and organization of the outcomes.

5.1.6 Further Search Refinement Example 2

Beyond categorizing vector search results, we can also measure how often specific entities,
such as individuals, locations, institutions, etc., emerge in the result from vector search.

Suppose a researcher is delving into the popularity of tourist attractions in Paris, seeking
insights beyond the general information by uncovering detailed narratives about the city’s
landmarks, culture, and connections. To achieve this, one can highlight the most talked-
about landmarks and cultural aspects, revealing each attraction’s relative popularity by
quantifying their presence in the data source.

42

By counting the popularity of the entities, we can obtain a more clearer insight of the
major themes, topics, or objects of interest associated with the search query within the
returned passages.

Result

Same as the process of examining the query in 5.1.5, we use DuckDB to directly im-
port JSON data, streamlining data manipulation and analysis. Upon loading JSON into
DuckDB, it infers data types and automatically structures the data into a table view. In
the query table, ¢qid denotes the query id, text represents the query text, and emb indicates
the query vector representation.

'../data/emb_queries.json',

format="'newline_delimited');

>>> select * from read_json_auto(

qid text emb
int64 | varchar double[]
0 Paris | [-0.029.., -0.012.., 0.172.., 0.147.., 0.104.., 0.0767.., 0.145.., 0.0131..,

Again in this process, we begin by loading and searching for relevant passages using the
encoded query data aiming to identify and retrieve the top 1000 passages that are most
pertinent to our query. Then we create an intermediate table, named popularity_rst to
display intermediate results in a clear and organized manner. In this example, we require
only the relevant passage ids to enhance the search results. The passage id serves as a key
indicator in the MMEAD, allowing for more precise querying and refinement of the results.

>>> CREATE TABLE popularity_rst AS
SELECT qid, UNNEST(FAISS_.SEARCH('index_name', 1000, emb)).label as docid
from read_json_auto('emb_queries.json', format='newline_delimited');
>>> SELECT % FROM popularity_rst limit 5;

>>>
qid docid
int64 into4
1 5219520
1 1485616
1 1047740

43

1 4295731
1 3204988

5 rows

Following the data retrieval, the next step is refinement. During this stage, we focus
on measuring the frequency of entities that are mentioned within the retrieved passages.
This is achieved by performing a join operation between the intermediate result table and
MMEAD. The join operation is to efficiently correlate the data from these two sources. By
doing this, we can gain insights into how frequently specific entities are referenced across
the collected data.

>>> SELECT mmead_vl_pas.entity , COUNT(mmead_vl_pas.entity)
FROM passage_rst LEFT JOIN mmead_vl_pas
ON mmead_vl_pas.docid=passage_rst.docid
GROUP BY mmead_vl_pas.entity
ORDER BY COUNT(mmead_vl_pas.entity) DESC;

>>>

entity count(entity)
varchar inte4
Paris 1699
France 668
United States 118
Notre-Dame de Paris 70
Seine 69
1074 rows

This example illustrates how our integration allows for the easy creation of a mentioned
entity frequency table for further analysis, enabling a deeper and more comprehensive
understanding of the topic, subjects, or objects of interest that are connected with the
search query in the returned text passages. Moreover, this process can be enhanced by
applying additional filters to the data found in MMEAD’s metadata, allowing for more
refined and targeted insights.

44

5.2 MS MARCO GEO Heatmap

The incorporation of entity links to Wikidata [31] can serve as a gateway to the expansive
universe of open-linked data. This interconnection is instrumental in enriching the data
ecosystem, enabling a seamless fusion with other databases and resources. By leveraging
these links, we unlock the potential to create innovative applications.

5.2.1 Dataset

Here, a practical application of this using the MS MARCO dataset [50]. T utilized the MS
MARCO passage collection v2, the 138.4M passages, to construct the heatmap.

5.2.2 Method

By leveraging the identified entities within these passages sourced from MMEAD, we
queried Wikidata [31] to obtain geographical coordinates for those entities within the text
that correspond to physical locations, example query shown in 5.2.2. Each location entity
was matched with its unique identifier on Wikipedia. Upon successfully retrieving the coor-
dinates associated with these identified entities, we then generated a visual representation
by plotting each data point onto a global map. The representation through this mapping
is an illustrative canvas that allows for the geographical context of the textual information
to emerge vividly.

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wikibase: <http://wikiba.se/ontology#
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX psv: <http://www.wikidata.org/prop/statement/value/>
SELECT ?coordinate_node ?lon ?lat WHERE {
values ?ids { entity_ids }
7ids 7p 7statement
?statement psv:P625 7coordinate_node
7coordinate_node wikibase:geolLongitude 7lon.
?7coordinate_node wikibase:geolLatitude 7lat.

45

o

> 4 . b
-_% e - },@-

Figure 5.1: Locations of entities found in the MS MARCO v2 passage collection.

5.2.3 Result

An illustrative example of this is presented in Figure 5.1, which displays all the geographical
entities culled from the MS MARCO version 2 passages collection [50] comprises 138.4M
passages. Every entity is denoted by a semi-transparent blue dot on the map. The geo-
graphic distribution of these blue dots tells a story that aligns with real-world demograph-
ics. However, this also reveals a disproportionate representation of entities from regions
such as North America and Europe, along with other economically advanced areas. Such
a pattern likely reflects the digital divide and the data biases in knowledge representation
that tend to favor more developed parts of the globe.

This kind of visualization is not only informative but also highlights the utility of
open-linked data in providing more detailed insights. By leveraging the connections, we
can transform raw data into a geographical narrative, offering a spatial dimension to our
understanding of data distributions and biases. Moreover, these visual and data integrative
approaches pave the way for more complex analyses and applications, bridging the gap
between textual information and geographic contextualization.

46

Chapter 6

Conclusion and Future Work

In conclusion, entity linking has become a fundamental component of NLP systems. As
the volume of digital information continues to grow, the ability to connect words and
phrases to real-world entities is crucial for making sense of the vast amount of unstructured
data available today. Whether it’s for search engines, recommendation systems, or data
integration, entity linking plays an important role in unlocking the full potential of the
information age.

In this study, I delved into the MMEAD, a high-quality entity linking dataset. By
providing entity annotations for the MS MARCO document and passage ranking collec-
tions, MMEAD addresses a critical gap in the development of neuro-symbolic IR models.
More than just unifying the entity linking data format, this resource is readily available to
researchers through its intuitive Python package.

When turning to sparse retrieval, incorporating entity information enhances the perfor-
mance. Whether using entity data as text or hash, it consistently outperforms the baseline
configurations. For the R@Q1000 metric, configurations utilizing entity data consistently
outperform the base configurations. Similarly, for the MRR@10 metric, the inclusion of
entity information, especially with the Entity Text configuration, delivers superior results,
even in more challenging categories. In the context of dense retrieval, the Entity Text
expansion in both queries and passages stands out as the best approach for this dataset. It
consistently achieves top-tier performance in the R@Q1000 metric across all difficulty levels,
indicating its robust ability to recall relevant results within the top 1000 items, regardless
of complexity. Additionally, under the MRR@10 metric, it competes effectively, securing
high rankings. Its all-around competence and evident superiority in these evaluation met-
rics demonstrate its effectiveness in enhancing information retrieval tasks when leveraging

47

MMEAD.

Beyond quantitative results, MMEAD has the potential to enhance search applications
through a variety of methods. Exploring MMEAD with a vector search database reveals
several key insights. Similar to enhanced information retrieval, this dataset provides a
foundational knowledge graph, enabling the vector search system to navigate through a
web of interconnected data points. Instead of treating data as isolated silos, the integrated
system presents them in relation to one another, offering users a comprehensive view. This
integration addresses a longstanding challenge in data management: harmonizing struc-
tured and unstructured data. The entity links in MMEAD provide structured insights into
otherwise unstructured datasets. When combined with database and vector search, there’s
a seamless fusion of structured logic with the fluidity of unstructured data, addressing a
broad spectrum of applications. This results in a dynamic search experience, where users
can ask specific questions while also exploring a broad range of topics. Moreover, this
exploration underscores the importance of adaptability and scalability in modern data sys-
tems. As cross-model needs increase, the underlying search infrastructure must be agile
enough to incorporate these changes without sacrificing performance. Integrating MMEAD
with a vector search database provides notable enhancements in data retrieval and anal-
ysis and sets the stage for the next generation of intelligent, interconnected, and intuitive
data systems. Lastly, the fusion of Wikidata with MMEAD exemplifies the capabilities of
open-linked data, moving beyond the simple data connection to a richer synthesis of global
information. The visual representation not only reflects the underlying demographic pat-
terns but also highlights the digital divide. This insightful visualization showcases the
power of integrating diverse data sets to uncover spatial narratives and biases, enhancing
our understanding and potentially guiding more equitable information representation in
the digital age.

Within the context of MMEAD, there are numerous possibilities to explore. One sig-
nificant advantage is its seamless integration of annotations from a wide range of linking
systems, greatly simplifying the process of diversifying data sources. This enables us to
incorporate entity data from multiple sources, enriching the metadata with additional con-
textual information. Furthermore, we can expand the entity linking dataset beyond MS
MARCO by incorporating other essential benchmarks, allowing us to adapt to various
scenarios effectively.

48

6.1 Future Work

For dense retrieval, we have many options yet to explore. For instance, we can use infor-
mation from large language models, or we can train the model using only data enriched
with entities.

In Question Answering systems, entity linking enables us to connect questions with
relevant knowledge base entries, thereby improving the accuracy and relevance of answers.
In Summarization tasks, it assists in identifying key entities, enriching the summary with
external context. In Classification, entity linking aids in categorizing documents with
greater precision. Lastly, in Recommendation Systems, it enhances personalization by
identifying user preferences and interests.

The potential applications are not limited to these areas alone, as entity linking con-
tinues to evolve and find new use cases. Having access to this unified format provides us
with a potent tool for extracting, enhancing, and establishing connections among entities.
This ultimately advances capabilities in information retrieval and knowledge management
across various domains. The possibilities are indeed boundless, and we are just scratching
the surface of what can be achieved through this innovative resource.

49

References

1]

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and
Roland Vollgraf. Flair: An easy-to-use framework for state-of-the-art nlp. In Pro-
ceedings of the 2019 conference of the North American chapter of the association for
computational linguistics (demonstrations), pages 54-59, 2019.

Negar Arabzadeh, Bhaskar Mitra, and Ebrahim Bagheri. Ms marco chameleons: chal-
lenging the ms marco leaderboard with extremely obstinate queries. In Proceedings of
the 30th ACM International Conference on Information € Knowledge Management,
pages 4426-4435, 2021.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer, Key-
Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Gol-
beck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, pages 722-735, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi Li. Bridge text and knowledge
by learning multi-prototype entity mention embedding. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1623-1633, Vancouver, Canada, July 2017. Association for Computa-
tional Linguistics.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
Pre-training tasks for embedding-based large-scale retrieval, 2020.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap
technology. ACM Sigmod record, 26(1):65-74, 1997.

20

[7]

[11]

[12]

[15]

[16]

Lihan Chen, Jiaqing Liang, Chenhao Xie, and Yanghua Xiao. Short text entity linking
with fine-grained topics. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM 18, page 457466, New York, NY,

USA, 2018. Association for Computing Machinery.

Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over
knowledge graph. Fxpert Systems with Applications, 141:112948, 2020.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fu-
sion outperforms condorcet and individual rank learning methods. In Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, pages 758-759, 2009.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, and
Wei Wang. Kbqa: learning question answering over qa corpora and knowledge bases.
arXw preprint arXiw:1903.02419, 2019.

Zhuyun Dai and Jamie Callan. Context-aware sentence/passage term importance
estimation for first stage retrieval. arXiv preprint arXiw:1910.10687, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiw:1810.04805, 2018.

Tommaso Di Noia and Vito Claudio Ostuni. Recommender systems and linked open
data. In Reasoning Web International Summer School, pages 88-113. Springer, 2015.

Qian Dong, Yiding Liu, Suqi Cheng, Shuaigiang Wang, Zhicong Cheng, Shuzi Niu,
and Dawei Yin. Incorporating explicit knowledge in pre-trained language models for
passage re-ranking. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 22, page 14901501,
New York, NY, USA, 2022. Association for Computing Machinery.

Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, Tim Finin, et al. Entity dis-
ambiguation for knowledge base population. In Proceedings of the 23rd International
Conference on Computational Linguistics, 2010.

Faezeh Ensan and Weichang Du. Ad hoc retrieval via entity linking and semantic
similarity. Knowledge and Information Systems, 58:551-583, 2019.

ol

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

Dieter Fensel, Umutcan Simsgek, Kevin Angele, Elwin Huaman, Elias Kérle, Oleksan-
dra Panasiuk, Ioan Toma, Jiirgen Umbrich, Alexander Wahler, Dieter Fensel, et al.
Introduction: what is a knowledge graph? Knowledge graphs: Methodology, tools and
selected use cases, pages 1-10, 2020.

Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short texts with
wikipedia pages. IEEE Software, 29(1):70-75, 2012.

Norbert Fuhr. Probabilistic models in information retrieval. The computer journal,
35(3):243-255, 1992.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary
problem in human-system communication. Commun. ACM, 30(11):964971, nov 1987.

Luyu Gao, Xueguang Ma, Jimmy J. Lin, and Jamie Callan. Tevatron: An efficient
and flexible toolkit for dense retrieval. ArXiv, abs/2203.05765, 2022.

Emma J Gerritse, Faegheh Hasibi, and Arjen P de Vries. Entity-aware transformers
for entity search. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1455-1465, 2022.

Dr S Gomathi and Dr M Lavanya. A survey on application of information retrieval
models using nlp. Int. J. of Aquatic Science, 12(3):2129-2138, 2021.

Michel Goossens, Frank Mittelbach, and Alexander Samarin. The BTEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

Yingjie Gu, Xiaoye Qu, Zhefeng Wang, Baoxing Huai, Nicholas Jing Yuan, and Xiaolin
Gui. Read, retrospect, select: An mrc framework to short text entity linking, 2021.

Venkat N. Gudivada, Dhana L. Rao, and Amogh R. Gudivada. Chapter 11 - infor-
mation retrieval: Concepts, models, and systems. In Venkat N. Gudivada and C.R.
Rao, editors, Computational Analysis and Understanding of Natural Languages: Prin-
ciples, Methods and Applications, volume 38 of Handbook of Statistics, pages 331-401.
Elsevier, 2018.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data, 7(3):535-547, 2019.

Ammar Ismael Kadhim. Term weighting for feature extraction on twitter: A compar-
ison between bm25 and tf-idf. In 2019 international conference on advanced science
and engineering (ICOASE), pages 124-128. IEEE, 2019.

o2

[29]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

Chris Kamphuis, Aileen Lin, Siwen Yang, Jimmy Lin, Arjen P de Vries, and Faegheh
Hasibi. Mmead: Ms marco entity annotations and disambiguations. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 2817-2825, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain
question answering. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, edi-
tors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6769-6781, Online, November 2020. Association for Com-
putational Linguistics.

Jun-Tae Kim and Dan I. Moldovan. Acquisition of linguistic patterns for knowledge-
based information extraction. IEEFE transactions on knowledge and data engineering,
7(5):713-724, 1995.

Donald Knuth. The TgXbook. Addison-Wesley, Reading, Massachusetts, 1986.

Leslie Lamport. ATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

Arash Habibi Lashkari, Fereshteh Mahdavi, and Vahid Ghomi. A boolean model in
information retrieval for search engines. In 2009 International Conference on Infor-
mation Management and Engineering, pages 385-389. IEEE, 2009.

Phong Le and Ivan Titov. Improving entity linking by modeling latent relations
between mentions. arXw preprint arXiv:1804.10637, 2018.

Martin Josifoski Sebastian Riedel Luke Zettlemoyer Ledell Wu, Fabio Petroni. Zero-
shot entity linking with dense entity retrieval. In EMNLP, 2020.

Joon Ho Lee. Analyzing the effectiveness of extended boolean models in information-
retrieval. Technical report, Cornell University, 1995.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad, and Wen tau Yih. Efficient
one-pass end-to-end entity linking for questions, 2020.

Yizhi Li, Zhenghao Liu, Chenyan Xiong, and Zhiyuan Liu. More robust dense retrieval
with contrastive dual learning. In Proceedings of the 2021 ACM SIGIR International
Conference on Theory of Information Retrieval, ICTIR 21, page 287296, New York,
NY, USA, 2021. Association for Computing Machinery.

23

[40]
[41]

[42]

[43]

[48]

[49]

Jimmy Lin. Building a culture of reproducibility in academic research, 2022.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and
Rodrigo Nogueira. Pyserini: A python toolkit for reproducible information retrieval
research with sparse and dense representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 2356-2362, 2021.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. Distilling dense representations
for ranking using tightly-coupled teachers. arXiv preprint arXiv:2010.11386, 2020.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. In-batch negatives for knowl-
edge distillation with tightly-coupled teachers for dense retrieval. In Anna Rogers,
lacer Calixto, Ivan Vuli¢, Naomi Saphra, Nora Kassner, Oana-Maria Camburu, Trapit
Bansal, and Vered Shwartz, editors, Proceedings of the 6th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2021), pages 163-173, Online, August 2021.
Association for Computational Linguistics.

Aiting Liu, Ziqi Huang, Hengtong Lu, Xiaojie Wang, and Caixia Yuan. Bb-kbqa:
Bert-based knowledge base question answering. In China National Conference on
Chinese Computational Linguistics, pages 81-92. Springer, 2019.

Xing Liu, Huigin Chen, and Wangui Xia. Overview of named entity recognition.
Journal of Contemporary Educational Research, 6(5):65-68, 2022.

Xueguang Ma, Kai Sun, Ronak Pradeep, Minghan Li, and Jimmy Lin. Another look
at dpr: reproduction of training and replication of retrieval. In Furopean Conference
on Information Retrieval, pages 613-626. Springer, 2022.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. Joint learning of
named entity recognition and entity linking. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: Student Research Workshop, pages
190-196, Florence, Italy, July 2019. Association for Computational Linguistics.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):3941, nov 1995.

Cataldo Musto, Giovanni Semeraro, Pasquale Lops, and Marco de Gemmis. Combin-
ing distributional semantics and entity linking for context-aware content-based recom-
mendation. In User Modeling, Adaptation, and Personalization: 22nd International

o4

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceedings 22, pages
381-392. Springer, 2014.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Ma-
jumder, and Li Deng. Ms marco: A human-generated machine reading comprehension
dataset. 2016.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. From doc2query to doctttttquery.
Online preprint, 6:2, 2019.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion
by query prediction. arXwv preprint arXiv:1904.08375, 2019.

Yasumasa Onoe and Greg Durrett. Fine-grained entity typing for domain indepen-
dent entity linking. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8576-8583, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

Hasso Plattner. A common database approach for oltp and olap using an in-memory
column database. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, pages 1-2, 2009.

Mark Raasveldt and Hannes Miihleisen. Duckdb: an embeddable analytical database.
In Proceedings of the 2019 International Conference on Management of Data, pages
1981-1984, 2019.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva Varma. ELDEN: Improved en-
tity linking using densified knowledge graphs. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pages 1844-1853, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics.

Juan Ramos et al. Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume 242,
pages 29-48. Citeseer, 2003.

95

[59]

[60]

[61]

[62]

[63]

[64]

[68]

[69]

[70]

Simon Razniewski, Hiba Arnaout, Shrestha Ghosh, and Fabian Suchanek. Complete-
ness, recall, and negation in open-world knowledge bases: A survey, 2023.

Ridho Reinanda, Edgar Meij, and Maarten de Rijke. Mining, ranking and recommend-
ing entity aspects. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 15, page 263272, New
York, NY, USA, 2015. Association for Computing Machinery.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework:
Bm?25 and beyond. Foundations and Trends®) in Information Retrieval, 3(4):333—
389, 20009.

Akram Roshdi and Akram Roohparvar. Information retrieval techniques and appli-

cations. International Journal of Computer Networks and Communications Security,
3(9):373-377, 2015.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee, and Danqgi Chen. Simple entity-
centric questions challenge dense retrievers. arXiv preprint arXiv:2109.08535, 2021.

Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, and Chris
Biemann. Neural entity linking: A survey of models based on deep learning. Semantic
Web, 13(3):527-570, 2022.

Dahlia Shehata, Negar Arabzadeh, and Charles LA Clarke. Early stage sparse retrieval
with entity linking. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 4464-4469, 2022.

Shehata, Dahlia. Information retrieval with entity linking. Master’s thesis, 2022.

Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai Zhang,
Zhiwei Tai, and Jianmin Wang. Towards natural language interfaces for data visual-
ization: A survey. IFEE transactions on visualization and computer graphics, 2022.

Wei Shen, Yuhan Li, Yinan Liu, Jiawei Han, Jianyong Wang, and Xiaojie Yuan. Entity
linking meets deep learning: Techniques and solutions, 2021.

Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base:
Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data Engi-
neering, 27(2):443-460, 2015.

Vaibhav Kant Singh and Vinay Kumar Singh. Vector space model: an information
retrieval system. Int. J. Adv. Engg. Res. Studies/IV/I1/Jan.-March, 141(143), 2015.

o6

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

[81]

Amit Singhal et al. Modern information retrieval: A brief overview. IEEFE Data Eng.
Bull., 24(4):35-43, 2001.

Valentin I Spitkovsky and Angel X Chang. A cross-lingual dictionary for english
wikipedia concepts. 2012.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic
knowledge. In Proceedings of the 16th International Conference on World Wide Web,
WWW 07, page 697706, New York, NY, USA, 2007. Association for Computing
Machinery.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontology
from wikipedia and wordnet. Web Semant., 6(3):203217, sep 2008.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou Ji, and Xiaolong Wang.
Modeling mention, context and entity with neural networks for entity disambiguation.
In Twenty-fourth international joint conference on artificial intelligence, 2015.

Toni Taipalus. Vector database management systems: Fundamental concepts, use-
cases, and current challenges. arXwv preprint arXiw:2309.11322, 2023.

Nandan Thakur, Nils Reimers, Andreas Rckl, Abhishek Srivastava, and Iryna
Gurevych. Beir: A heterogenous benchmark for zero-shot evaluation of information
retrieval models, 2021.

Howard Turtle and W Bruce Croft. Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems (TOIS), 9(3):187-222, 1991.

Johannes M. van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Balog, and Arjen P.
de Vries. Rel: An entity linker standing on the shoulders of giants. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR '20. ACM, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceed-

ings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 60006010, Red Hook, NY, USA, 2017. Curran Associates Inc.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: A free collaborative knowledge-
base. Commun. ACM, 57(10):7885, sep 2014.

57

[82]

[83]

[87]

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu
Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built
vector data management system. In Proceedings of the 2021 International Conference
on Management of Data, pages 2614-2627, 2021.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi
Li, and Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained
language representation. Transactions of the Association for Computational Linguis-
tics, 9:176-194, 2021.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and
Yuanzhe Cai. Analyticdb-v: A hybrid analytical engine towards query fusion for
structured and unstructured data. Proc. VLDB Endow., 13(12):31523165, aug 2020.

Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. Hqann: Efficient
and robust similarity search for hybrid queries with structured and unstructured con-
straints. In Proceedings of the 31st ACM International Conference on Information €
Knowledge Management, pages 4580-4584, 2022.

Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Bag-of-entities representation for
ranking. In Proceedings of the 2016 ACM International Conference on the Theory of

Information Retrieval, ICTIR ’16, page 181184, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Word-entity duet representations for
document ranking. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR '17, page 763772, New
York, NY, USA, 2017. Association for Computing Machinery.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid
Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative contrastive
learning for dense text retrieval, 2020.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid
Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative contrastive
learning for dense text retrieval. arXiv preprint arXiv:2007.00808, 2020.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu
Takefuji, and Yuji Matsumoto. Wikipedia2vec: An efficient toolkit for learning and
visualizing the embeddings of words and entities from wikipedia. arXiv preprint
arXiv:1812.06280, 2018.

o8

[91]

[92]

[93]

[94]

[95]

[96]

Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use of lucene for
information retrieval research. In Proceedings of the 40th international ACM SIGIR
conference on research and development in information retrieval, pages 1253-1256,
2017.

Yi Yang, Ozan Irsoy, and Kazi Shefaet Rahman. Collective entity disambiguation
with structured gradient tree boosting. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pages 777-786, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics.

Binbin Yu. Research on information retrieval model based on ontology. FURASIP
Journal on Wireless Communications and Networking, 2019(1):1-8, 2019.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Learning to
retrieve: How to train a dense retrieval model effectively and efficiently, 2020.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Repbert: Con-
textualized text embeddings for first-stage retrieval, 2020.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Repbert: Con-
textualized text embeddings for first-stage retrieval. arXiw preprint arXiv:2006.15498,
2020.

Wenzheng Zhang, Wenyue Hua, and Karl Stratos. Entqa: Entity linking as question
answering. arXiw preprint arXiw:2110.02369, 2021.

Shengyao Zhuang and Guido Zuccon. Fast passage re-ranking with contextualized ex-
act term matching and efficient passage expansion. arXiv preprint arXiv:2108.08513,
2021.

29

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Organization

	Background
	Knowledge Graph
	Entity Linking
	Information Retrieval
	BM25
	Dense Passage Retrieval

	MS MARCO
	MS MARCO Chameleons

	DuckDB
	Vector Database

	MMEAD
	Example
	Entity Links
	Radboud Entity Linker
	BLINK

	DuckDB
	How to use

	Information Retrieval with MMEAD
	Datasets
	MS MARCO
	MS MARCO Chameleons

	Methods
	Sparse
	Dense

	Experimental Setup
	Results
	Sparse
	Dense
	Discussion

	Applications
	Vector Search in DuckDB
	Architecture
	Dataset
	Vector Preparation
	Vector Search Example
	Further Search Refinement Example 1
	Further Search Refinement Example 2

	MS MARCO GEO Heatmap
	Dataset
	Method
	Result

	Conclusion and Future Work
	Future Work

	References

