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Abstract

Despite the fact that the Boolean satisfiability (SAT) problem is NP-complete and believed
to be intractable, SAT solvers are routinely used by practitioners to solve hard problems in
wide variety of fields such as software engineering, formal methods, security, and AI. This
gap between theory and practice has motivated an entire line of research whose primary
goals are twofold: first, to develop a better theoretical framework aimed at accurately cap-
turing solver behavior and thus prove tighter complexity bounds; and second, to further
experimentally verify the soundness of the theory thus developed via rigorous empirical
analysis and design theory-inspired techniques to improve solver performance. This inter-
play between theory and practice is at the heart of the work presented here.

More precisely, this thesis contains a collection of results which attempt to resolve the
above-described discrepancy between theory and practice. The first two sets of results are
centered around the restart problem. Restarts are classes of methods which aim at erasing
part of the progress a solver may have made at run time, in order to help solvers escape
from the “bad parts” of the search space. We provide a detailed theoretical analysis of the
power of restarts used in modern Conflict-Driven Clause Learning (CDCL) SAT solvers,
where we prove a series of equivalence and separation results for various configurations
of solvers with and without restarts. From the intuition developed via this theoretical
analysis, we design and implement a machine learning based reset policy, where resets
are variants of restarts that erase activity scores in addition to the parts of the solver
state erased by restarts. We perform extensive experimental work to show that our reset
policy outperforms both baseline and state-of-the-art solvers over a class of cryptographic
instances derived from bitcoin mining problems.

In a different direction, we propose the concept of hierarchical community structure
(HCS) for Boolean formulas. We first theoretically show that formulas with “good” HCS
parameter values have short CDCL proofs. Then we construct an Empirical Hardness
Model using the HCS parameters. These HCS parameters exhibit a robust correlation
with solver run time, leading to the development of a classifier capable of accurately dis-
tinguishing between easily solvable industrial instances and challenging random/crafted
scenarios. We also present scaling studies of formulas with HCS structures to further
support of theoretical analysis.

In the latter part of the thesis, the focus shifts to satisfaction-driven clause-learning
(SDCL) solvers, known to be being exponentially more powerful than CDCL solvers. De-
spite the theoretical strength of SDCL, it remains a challenge to automate and determinize
such solvers. To address this, we again leverage machine learning techniques to strategically
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decide when to invoke an SDCL subroutine, with the goal of minimizing the associated
overhead. The resulting SDCL solver, enhanced with MaxSAT techniques and conflict
analysis, outperforms existing solvers on combinatorial benchmarks, particularly demon-
strating superior efficacy on Mutilated Chess Board (MCB) problems.
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Chapter 1

Introduction

The primary focus of the research presented in this thesis is a deeper theoretical under-
standing of SAT solvers, and leveraging that understanding to empirically improving them
further. SAT solvers have been widely used for a variety of applications, including prob-
lems in software engineering [29], formal methods [32], security [40, 117], and AI [24]. The
problem solved by SAT solvers, namely, the Boolean satisfiability problem is at the core of
the famous P vs. NP question [35]. Developing theories and tools for better understanding
SAT algorithms is one of the most impactful lines of research within the community of
researchers who are interested in the theory of solvers (broadly construed to include SAT,
SMT, CP,VG MILP, and first-order automated theorem provers).

In this thesis, we developed deep insights into how SAT solvers work and what kinds
of problems SAT solvers are good or bad at solving. The work and analysis are both
theoretical and practical. On the theoretical side, we aim to understand what makes a
solver robust and efficient for specific sets of problem benchmarks through the lens of
proof complexity theory. First, this requires mathematical abstractions of solvers, that we
use to perform rigorous theoretical analysis while at the same time empirically checking
our theoretical understanding through performing extensive experiments. On the practical
side, we aim at finding desirable sets of benchmarks for which SAT solvers are a natural fit
for the problems, and then apply machine learning techniques to help solvers solve these
classes of instances more efficiently. These ML techniques are usually innovated by a good
understanding of proof theoretical properties of solvers and the class of instances under
consideration.

There are four core chapters in this thesis. In Chapter 3, we prove a series of theoretical
results that characterize the power of restarts for various models of SAT solvers [69]. More
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precisely, we make the following contributions. First, we prove an exponential separation 1

between a drunk randomized CDCL solver model with restarts and the same model without
restarts using a family of satisfiable instances. Second, we show that the configuration of
CDCL solver with VSIDS branching and restarts (with activities erased after restarts) is
exponentially more powerful than the same configuration without restarts for a family of
unsatisfiable instances. To the best of our knowledge, these are the first separation results
involving restarts in the context of SAT solvers. Third, we show that restarts do not add
any proof complexity-theoretic power vis-a-vis several models of CDCL and DPLL solvers
with non-deterministic static variable and value selection. Inspired by our theoretical
model, we developed a practical restart policy which were able to solve all 500 instances of
Bitcoin mining instances while many state-of-the-art solvers cannot solve any of the 500
instances at all.

In Chapter 4, taking the intuition developed in our theoretical analysis of the power
of restarts, we propose a variant of restart, which we call reset. In most modern solvers,
variable activities are preserved across restart boundaries, which means restarts do not
interfere with the behavior of the branching heuristic. Hence solvers still branch “locally”
with respect to the branching heuristic. To encourage more “global” reasoning, we study
the effect of resets, which randomizes the activity scores of the variables of the input for-
mula, thus potentially enabling a better global exploration of the search space. The crucial
question one needs to address is when to invoke restarts with reset and when to invoke
restarts without reset. We model the problem of whether to trigger restart with reset or
restart without reset as a multi-armed bandit(MAB) problem and propose a reinforcement
learning (RL) based reset policy using Thompson sampling. The Thompson sampling al-
gorithm is designed to balance the exploration-exploitation tradeoff by probabilistically
and adaptively choosing arms (restart with reset vs. restart with no reset) based on their
estimated rewards. The proposed reset policy is compared with state-of-the-art CDCL
solvers on a set of crypto benchmarks generated from bitcoin mining problems, and the
results show that the proposed RL based reset policy outperforms baseline solvers Maple-
SAT, Kissat, Kissat MAB Hywalk. More specifically, all of these solvers can only solve less
than 15 out of 500 of these crypto instances with a 5000 seconds timeout, whereas their
modified version with our RL reset policy can solve almost all 500 instances given the same
timeout. Additionally, our solver with RL reset remains competitive against their baseline
on SAT competition instances.

In Chapter 5, for a better understanding of the success of modern CDCL solvers, we

1We say proof system A and proof system B are exponentially separated, or more specifically, A is
exponentially more powerful than B, if there exists a class of formulas F , where F has polynomial size
proofs in A and only exponential size proofs inB. See Background 2 for more details about these definitions.
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proposed parameters based on a graph partitioning called Hierarchical Community Struc-
ture (HCS), which captures the recursive community structure of a graph of a Boolean
formula [68]. The idea of HCS comes from the fact that human-written systems tend to be
hierarchical and modular, and we expect Boolean formulas describing these systems will
also have these structures. We show that HCS parameters are strongly correlative with
solver run time using an Empirical Hardness Model, and further build a classifier based
on HCS parameters that distinguishes between easy industrial and hard random/crafted
instances with very high accuracy. We further strengthen our hypotheses via scaling stud-
ies. On the theoretical side, we show that counterexamples that plagued flat community
structure do not apply to HCS and that there is a subset of HCS parameters such that
restricting them limits the size of embeddable expanders.

In Chapter 6, we study a class of SAT solvers that are mathematically proven to be
exponentially stronger than the state-of-the-art class of solvers for solving industrial SAT
problems, namely conflict-driven clause learning (CDCL) solvers [80, 83]. CDCL based
solvers have been dominating the field for more than 20 years. Despite its empirical success,
it has been mathematically proven that there exists an infinite family of SAT problem
inputs that would require any CDCL solvers exponential time (in the input formula’s
size) to solve, which means CDCL solvers are hopeless at solving such instances. Most of
the work currently in the community aims at understanding and improving CDCL based
solvers, however, it is also important to attempt to break the barrier of CDCL and study
stronger systems. Satisfaction-driven clause-learning (SDCL) solvers are variants of CDCL
solvers recently proposed, it was mathematically shown to be strictly more powerful than
CDCL solvers [60, 59]. That is, there exist input formulas that require exponential CDCL
runtime and only polynomial SDCL runtime. The idea of SDCL is still at its young stage
and there has not been much work around it. We think the idea of SDCL is very natural,
theoretically powerful, and interesting.

Even though SDCL solvers are theoretically more powerful than CDCL solvers, de-
terminizing and designing a practical SDCL solver is still very challenging. It has been
mathematically proven that determinizing and automating CDCL is NP-Hard and thus
infeasible [9]. And we believe automating SDCL is only going to be harder as it is more
powerful. But this also makes SDCL a very fruitful direction to explore, the idea we have
is to use ML techniques to help automate SDCL solvers. At the end of the day, solvers
are logical reasoning engines that apply logical deduction step by step, the bottleneck in
automating solvers comes precisely from the fact that sequencing these deduction steps
is hard. And we think reinforcement learning can be quite powerful in helping solvers
select and sequence deduction steps. In our SDCL paper [90], where we designed a ba-
sic infrastructure of SDCL on top of MapleSAT. The infrastructure was combined with
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a MaxSAT technique for learning SDCL clauses, as well as a technique inspired by con-
flict analysis which tries to minimize the final SDCL clause being learned by the solver.
The final solver we designed outperforms all existing solvers over a class of combinatorial
benchmarks called Multilated Chess Board (MCB) problems. To build on to this work, we
design a ML technique for invoking SDCL to maximize the learning rate.

In summary, this thesis presents new proof complexity-theoretic analysis of SAT solver
heuristics, specifically restart and reset, and leverages the insights thus gathered to develop
reinforcement learning based reset and SDCL invocation policies. We also present extensive
empirical evaluation of presented techniques on a large set of industrial benchmarks.
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Chapter 2

Background

Below we provide relevant definitions and concepts used in this thesis. We refer the reader
to the Handbook of Satisfiability [20] for literature on CDCL and DPLL solvers and to [64,
14] for literature on proof complexity.

2.1 CNF formulas

Let X be a finite set of propositional variables. A literal is a propositional variable (x)
or the negation of one (¬x). The negation of a literal l, denoted ¬l, is x if l = ¬x and
is ¬x if l = x. A clause is a disjunction of distinct literals l1 ∨ . . . ∨ ln (interchangeably
denoted with or without brackets). A CNF formula is a conjunction of distinct clauses
C1 ∧ . . . ∧ Cm. When convenient, we consider a clause to be the set of its literals, and a
CNF to be the set of its clauses. In the rest of the chapter, we assume that all formulas
are CNF.

Satisfaction An assignment is a set of non-contradictory literals. A total assignment
contains, for each variable x ∈ X , either x or ¬x. Otherwise, it is a partial assignment.
We denote by ¬α the clause consisting of the negation of all literals in the assignment α.
An assignment α satisfies a literal l if l ∈ α, it satisfies a clause C if it satisfies at least
one of the literals in C, and it satisfies a formula F if it satisfies all the clauses in F . We
denote these as α |= l, α |= C, and α |= F , respectively. A model for a formula is an
assignment that satisfies it. A formula with at least one model is satisfiable; otherwise, it
is unsatisfiable. Given a formula F , the SAT problem consists of determining whether F
is satisfiable. An assignment α falsifies a literal l if ¬l ∈ α, falsifies a clause if it falsifies

5



all its literals, and falsifies a formula if it falsifies at least one of its clauses. The truth
values of literals, clauses, and formulas are undefined for an assignment if they are neither
falsified nor satisfied. Given a clause C and an assignment α, we denote by touchedα(C) the
disjunction of all literals of C that are either satisfied or falsified by α, by untouchedα(C)
the disjunction of all undefined literals, and by satisfiedα(C) the disjunction of all satisfied
literals.

Unit propagation Given a formula F and an assignment α, unit propagation extends α
by repeatedly applying the following rule until reaching a fixed point: if there is a clause
with all literals falsified by α except one literal l, which is undefined, add l to α. If, as
a result, a clause is found that is falsified by α (called conflict), the procedure stops and
reports that a conflict clause has been found.

Formula relations Two formulas F and G are equisatisfiable, denoted F ≡SAT G, if
F is satisfiable if and only if G is satisfiable, and they are equivalent, denoted F ≡ G, if
they are satisfied by the same total assignments. We write F ⊢1 G (F implies G by unit
propagation) if for every clause C ∈ G of the form l1∨. . .∨ln, it holds that unit propagation
applied to F ∧ ¬l1 ∧ . . . ∧ ¬ln results in a conflict. We say that G is a logical consequence
of F (written F |= G) if all models of F are models of G.

CDCL The Conflict-Driven Clause Learning (CDCL) algorithm is the most successful
procedure to-date for determining whether certain types of industrial formulas are satis-
fiable [79]. Let F denote such a formula. The CDCL procedure starts with an empty
assignment α, which is extended and reduced in a last-in first-out (LIFO) way, by the fol-
lowing three steps until the satisfiability of the formula is determined (see Algorithm 6.2.2
removing lines 9-12):

1. Unit propagation is applied.

2. If a conflict is found, a conflict analysis procedure [119] derives a clause C (called a
lemma) which is a logical consequence of F . If C is the empty clause, we can conclude
that F is unsatisfiable. Otherwise, it is guaranteed that by removing enough literals
from α, a new unit propagation is possible due to C. This process is called backjump.
Additionally, lemma C is conjuncted (learnt) with F , and the procedure returns to
step (i).

3. If no conflict is found in unit propagation, either α is a total assignment (and hence it
satisfies the formula), or an undefined literal is chosen and added to α (the branching
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step). The choice of this literal, called a decision literal, is determined by sophisti-
cated heuristics [18] that can have a huge impact on the performance of the CDCL
procedure.

CDCL as a Proof System We treat CDCL solvers as proof systems. For proof systems
A and B, we use A ∼p B to denote that they are polynomially equivalent (p-equivalent).
Throughout this chapter, it is convenient to think of the trail π of the solver during its
run on a formula F as a restriction to that formula. We call a function π : {x1, . . . , xn} →
{0, 1, ∗} a restriction, where ∗ denotes that the variable is unassigned by π. A

2.2 Restart Policies

A restart policy is a method that erases part of the state of the solver at certain intervals
during the run of a solver [48]. In most modern CDCL solvers, the restart policy erases the
assignment trail upon invocation but may choose not to erase the learnt clause database
or variable activities. Throughout this chapter, we assume that all restart policies are non-
deterministic, i.e., the solver may (dynamically) non-deterministically choose its restart
sequence. We refer the reader to a paper by Liang et al. [75] for a detailed discussion on
modern restart policies.

To overcome the limitation of biased “local” search introduced by restarts, the concept
of resetting has been proposed, where the activity scores of the variables are randomized
after the assignment trail is erased 1. Traditionally, a reset refers to zeroing out or ran-
domizing activity scores of all variables of an input formula. Below we provide formal
definitions for reset strategies, categorized as full and partial reset.

Definition 1 (Full Reset). Upon invocation, a full reset policy randomizes the activity
scores of all variables (and thus randomizes the variable order for branching), in addition
to deleting the contents of the assignment trail as in restart policies.

Definition 2 ((k-)Partial Reset). Upon invocation, a partial reset policy retains the top
k variables in the same exact order as before the reset, and the order of all the remaining
variable activities is randomized. The contents of the assignment trail are deleted.

1We are aware of empirical work on these, but we couldn’t find formal papers on this topic
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2.3 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning that focuses on training agents
to take actions (make decisions) in an environment to maximize some notion of reward.
The agent learns through a process of interacting with the environment and receiving
feedback in the form of rewards or penalties. RL frameworks are typically based on the
idea of a Markov Decision Process (MDP), which is a mathematical model for decision
making in which the outcomes of actions are probabilistic and depend on the current state
of the environment. The agent’s objective is to learn a policy, which is a mapping from
states to actions, that maximizes the expected cumulative reward over time.

2.3.1 Multi-Armed Bandit (MAB)

The Multi-Armed Bandit (MAB) problem is one of the simplest RL problems and is par-
ticularly useful when we want to model an agent that has to make frequent actions in a
dynamic and uncertain environment. In MAB problems, an agent takes action and receives
feedback from the environment. Over time, the agent learns which action (or combination
of actions) is likely to provide the best reward in the long run and selects it more frequently.

MAB problems exhibit a nice trade-off between exploration and exploitation as the
agent has to constantly make choices to decide which arm to play. Selecting a less explored
arm to play is considered exploration, while repeatedly playing a previously played arm is
considered exploitation. After a sufficient amount of exploration, an RL agent may have
enough confidence in the expected rewards from different arms that it can start exploiting
the arms with the highest expected reward. We refer the reader to Sutton and Barto for
a detailed discussion on reinforcement learning and MAB problems [108].

2.3.2 Thompson Sampling

Thompson sampling [110], also called Probability matching strategies or Bayesian Bandits
is a well-known approach for solving the MAB problem. In Thompson Sampling, the
algorithm assumes that the prior distribution of each arm’s(action’s) reward is a beta
distribution. The beta distribution has two shape parameters, denoted by α and β, which
control the shape of the distribution. The mean of the distribution is given by α/(α + β),
and the variance is given by αβ/((α+β)2(α+β+1)). In the context of Thompson Sampling,
the shape parameters α and β are often used to represent the number of successes and
failures of each arm, respectively. Typically, we would consider pulling an arm as a success
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if the reward from pulling the arm is “good enough”, what is “good enough” depends on
the context and should be customized to adapt to the underlying problem.

Each time an arm is pulled, the algorithm updates the shape parameters for the beta
distribution of that arm based on the outcome of the pull. If the pull results in a success,
α for that arm is incremented by 1, and if it fails, the arm’s β is incremented by 1. These
updates help to refine the algorithm’s estimate of the reward distribution for each arm,
which in turn informs its future decisions about which arm to pull. By using the beta
distribution in this way, Thompson Sampling can balance the exploration-exploitation
tradeoff by probabilistically selecting arms based on their estimated reward distributions.
This approach allows the algorithm to explore arms with uncertain rewards while also
exploiting arms with high estimated rewards, leading to better performance.

2.4 Variable Incidence Graph (VIG)

Researchers have proposed a variety of graphs to study graph-theoretic properties of
Boolean formulas. In this work, we focus on the Variable Incidence Graph (VIG), pri-
marily due to the relative ease of computing community structure over VIGs compared
to other graph representations. The VIG for a formula F over variables x1, . . . , xn has
n vertices, one for each variable. There is an edge between vertices xi and xj if both xi

and xj occur in some clause Ck in F . One drawback of VIGs is that a clause of width w
corresponds to a clique of size w in the VIG. Therefore, large width clauses (of size nε)
can significantly distort the structure of a VIG, and formulas with such large width clauses
should have their width reduced (via standard techniques) before using a VIG.

2.5 Community Structure and Modularity

Intuitively, a set of variables (vertices in the VIG) of a formula forms a community if these
variables are more densely connected than to variables outside of the set. An (optimal)
community structure of a graph is a partition P = {V1, . . . , Vk} of its vertices into commu-
nities that optimizes some measure capturing this intuition, for instance, modularity [88],
which is the one we use in this chapter. Let G = (V,E) be a graph with adjacency matrix
A and for each vertex v ∈ V denote by d(v) its degree. Let δP : V × V → {0, 1} be the
community indicator function of a partition, i.e. δP (u, v) = 1 iff vertices u and v belong to
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the same community in P . The modularity of the partition P is

Q(P ) :=
1

2|E|
∑
u,v∈V

[
Au,v −

d(u)d(v)

2|E|

]
δP (u, v) (2.1)

Note that Q(P ) ranges from −0.5 to 1, with values close to 1 indicating good community
structure. We define the modularity Q(G) of graph G as the maximum modularity over
all possible partitions, with corresponding partition P(G). Other measures may produce
radically different partitions.

2.6 Expansion of a Graph

Expansion is a measure of graph connectivity [61]. Out of several equivalent such measures,
the most convenient to relate to HCS is edge expansion: given a subset of vertices S ⊆ V ,
its edge expansion is h(S) = |E(S, V \S)| / |S|, and the edge expansion of a graph is
h(G) = min1≤|S|≤n/2 h(S). A graph family Gn is an expander if h(Gn) is bounded away
from zero. Resolution lower bounds (of both random and crafted formulas) often rely on
strong expansion properties of the graph [15].
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Chapter 3

Towards a Complexity-theoretic
Understanding of Restarts in SAT
solvers

Restarts are a widely-used class of techniques integral to the efficiency of Conflict-Driven
Clause Learning (CDCL) Boolean SAT solvers. While the utility of such policies has been
well-established empirically, a theoretical explanation of whether restarts are indeed crucial
to the power of CDCL solvers is lacking. In this chapter, we prove a series of theoretical
results that characterize the power of restarts for various models of SAT solvers. More
precisely, we make the following contributions. First, we prove an exponential separation
between a drunk randomized CDCL solver model with restarts and the same model without
restarts using a family of satisfiable instances. Second, we show that the configuration of
CDCL solver with VSIDS branching and restarts (with activities erased after restarts) is
exponentially more powerful than the same configuration without restarts for a family of
unsatisfiable instances. To the best of our knowledge, these are the first separation results
involving restarts in the context of SAT solvers. Third, we show that restarts do not add
any proof complexity-theoretic power vis-a-vis several models of CDCL and DPLL solvers
with non-deterministic static variable and value selection.

3.1 Introduction

Over the last two decades, Conflict-Driven Clause Learning (CDCL) SAT solvers have had
a revolutionary impact on many areas of software engineering, security, and AI. This is
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primarily due to their ability to solve real-world instances containing millions of variables
and clauses [80, 83, 20, 93, 7], even though the Boolean SAT problem is known to be an
NP-complete problem and is believed to be intractable in the worst case.

This remarkable success has prompted complexity theorists to seek an explanation for
the efficacy of CDCL solvers, to bridge the gap between theory and practice. Fortunately,
a few results have already been established that lay the groundwork for a deeper un-
derstanding of SAT solvers viewed as proof systems [13, 53, 27]. Among them, the most
important result is the one by Pipatsrisawat and Darwiche [93] and independently by Atse-
rias et al. [7], which shows that an idealized model of CDCL solvers with non-deterministic
branching (variable selection and value selection), and restarts is polynomially equivalent
to the general resolution proof system. However, an important question that remains open
is whether this result holds even when restarts are disabled, i.e., whether configurations of
CDCL solvers without restarts (when modeled as proof systems) are polynomial equiva-
lent to the general resolution proof system. In practice, there is significant evidence that
restarts are crucial to solver performance.

This question of the “power of restarts” has prompted considerable theoretical work.
For example, Bonet, Buss, and Johannsen [25] showed that CDCL solvers with no restarts
(but with non-deterministic variable and value selection) are strictly more powerful than
regular resolution. Despite this progress, the central questions, such as whether restarts
are integral to the efficient simulation of general resolution by CDCL solvers, remain open.

In addition to the aforementioned theoretical work, there have been many empirical
attempts at understanding restarts given how important they are to solver performance.
Many hypotheses have been proposed aimed at explaining the power of restarts. Examples
include the heavy-tail explanation [48], and the “restarts compact assignment trail and
hence produce clauses with lower literal block distance (LBD)” perspective [75]. Having
said that, the heavy-tailed distribution explanation of the power of restarts is not considered
valid anymore in the CDCL setting [75].

3.1.1 Contributions

In this chapter, we make several contributions to the theoretical understanding of the
power of restarts for several restricted models of CDCL solvers:

1. First, we show that CDCL solvers with backtracking, non-deterministic dynamic
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variable selection, randomized value selection, and restarts1 are exponentially faster
than the same model, but without restarts, with high probability (w.h.p)2. A no-
table feature of our proof is that we obtain this separation on a family of satisfiable
instances. (See Section 3.3 for details.)

2. Second, we prove that CDCL solvers with VSIDS variable selection, phase saving
value selection, and restarts (where activities of variables are reset to zero after
restarts) are exponentially faster (w.h.p) than the same solver configuration but
without restarts for a class of unsatisfiable formulas. This result holds irrespective of
whether the solver uses backtracking or backjumping. (See Section 3.4 for details.)

3. Finally, we prove several smaller separation and equivalence results for various con-
figurations of CDCL and DPLL solvers with and without restarts. For example,
we show that CDCL solvers with non-deterministic static variable selection, non-
deterministic static value selection, and with restarts, are polynomially equivalent
to the same model but without restarts. Another result we show is that for DPLL
solvers, restarts do not add proof theoretic power as long as the solver configuration
has non-deterministic dynamic variable selection. (See Section 3.5 for details.)

3.2 Notation for Solver Configurations Considered

In this section, we precisely define the various heuristics used to define SAT solver config-
urations in this paper. By the term solver configuration, we mean a solver parameterized
with appropriate heuristic choices. For example, a CDCL solver with non-deterministic
variable and value selection, as well as an asserting learning scheme with restarts would be
considered a solver configuration.

To keep track of these configurations, we denote solver configurations by the notation
ME,R

A,B , where M indicates the underlying solver model (we use C for CDCL and D for DPLL
solvers); the subscript A denotes a variable selection scheme; the subscript B is a value
selection scheme; the superscript E is a backtracking scheme, and finally the superscript
R indicates whether the solver configuration comes equipped with a restart policy. That
is, the presence of the superscript R indicates that the configuration has restarts, and its
absence indicates that it does not. A ∗ in place of A,B, or E denotes that the scheme is

1In keeping with the terminology from [1], we refer to any CDCL solver with randomized value selection
as a drunk solver.

2We say that an event occurs with high probability (w.h.p.) if the probability of that event happening
goes to 1 as n → ∞.
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Table 3.1: Solver configurations in the order they appear. ND stands for non-deterministic
dynamic.

Model Variable Selection Value Selection Backtracking Restarts

CT,R
ND ,RD CDCL ND Random Dynamic Backtracking Yes

CT
ND ,RD CDCL ND Random Dynamic Backtracking No

CJ,R
VS ,PS CDCL VSIDS Phase Saving Backjumping Yes

CJ
VS ,PS CDCL VSIDS Phase Saving Backjumping No

CJ,R
S ,S CDCL Static Static Backjumping Yes

CJ
S ,S CDCL Static Static Backjumping No

DT
ND ,∗ DPLL ND Arbitrary Backtracking No

DT,R
ND ,ND DPLL ND ND Backtracking Yes

DT
ND ,ND DPLL ND ND Backtracking No

DT,R
ND ,RD DPLL ND Random Dynamic Backtracking Yes

DT
ND ,RD DPLL ND Random Dynamic Backtracking No

CJ,R
ND ,ND CDCL ND ND Backjumping Yes

CJ
ND ,ND CDCL ND ND Backjumping No

arbitrary, meaning that it works for any such scheme. See Table 3.1 for examples of solver
configurations studied in this chapter.

3.2.1 Variable Selection Schemes

1. Static (S): Upon invocation, the S variable selection heuristic returns the unassigned
variable with the highest rank according to some predetermined, fixed, total ordering of
the variables.

2. Non-deterministic Dynamic (ND): The ND variable selection scheme non-determin-
istically selects and returns an unassigned variable.

3. VSIDS (VS) [83]: Each variable has an associated number, called its activity, initially
set to 0. Each time a solver learns a conflict, the activities of variables appearing on the
conflict side of the implication graph receive a constant bump. The activities of all variables
are decayed by a constant c, where 0 < c < 1, at regular intervals. The VSIDS variable
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selection heuristic returns the unassigned variable with the highest activity, with ties broken
randomly.

3.2.2 Value Selection Schemes

1. Static (S): Before execution, a 1-1 mapping of variables to values is fixed. The S value
selection heuristic takes as input a variable and returns the value assigned to that variable
according to the predetermined mapping.

2. Non-deterministic Dynamic (ND): The ND value selection scheme non-deterministically
selects and returns a truth assignment.

3. Random Dynamic (RD): A randomized algorithm that takes as input a variable
and returns a uniformly random truth assignment.

4. Phase Saving (PS): A heuristic that takes as input an unassigned variable and returns
the previous truth value that was assigned to the variable. Typically solver designers
determine what value is returned when a variable has not been previously assigned. For
simplicity, we use the phase saving heuristic that returns 0 if the variable has not been
previously assigned.

3.2.3 Backtracking and Backjumping Schemes

To define different backtracking schemes we use the concept of decision level of a variable
x, which is the number of decision variables on the trail prior to x. Backtracking (T):
Upon deriving a conflict clause, the solver undoes the most recent decision variable on the
assignment trail. Backjumping (J): Upon deriving a conflict clause, the solver undoes
all decision variables with a decision level higher than the variable with the second-highest
decision level in the conflict clause.

Note on Solver Heuristics. Most of our results hold irrespective of the choice of de-
terministic asserting clause learning schemes (except for Proposition 6). Additionally, the
questions we address in this chapter make sense only when it is assumed that solver heuris-
tics are polynomial time methods.
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3.3 Separation for Drunk CDCL with and without

Restarts

Inspired by Alekhnovich et al. [1], where the authors proved an exponential lower bound for
drunk DPLL solvers over a class of satisfiable instances, we studied the behavior of restarts
in a drunken model of CDCL solver. We introduce a class of satisfiable formulas, Laddern,
and use them to prove the separation between CT,R

ND ,RD and CT
ND ,RD . At the core of these

formulas is a formula that is hard for general resolution even after any small restriction
(corresponding to the current trail of the solver). For this, we use the well-known Tseitin
formulas.

Definition 3 (Tseitin Formulas). Let G = (V,E) be a graph and f : V → {0, 1} a labelling
of the vertices. The formula Tseitin(G, f) has variables xe for e ∈ E and constraints⊕

uv∈E xuv = f(v) for each v ∈ V .

For any graph G, Tseitin(G, f) is unsatisfiable iff
⊕

v∈V f(v) = 1, in which case we call
f an odd labelling. The specifics of the labelling are irrelevant for our applications, any
odd labelling will do. Therefore, we often omit defining f , and simply assume that it is
odd.

The family of satisfiable Laddern formulas are built around the Tseitin formulas, unless
the variables of the formula are set to be consistent to one of two satisfying assignments, the
formula will become unsatisfiable. Furthermore, the solver will only be able to backtrack
out of the unsatisfiable sub-formula by first refuting Tseitin, which is a provably hard task
for any CDCL solver [112].

The Laddern formulas contain two sets of variables, ℓij for 0 ≤ i ≤ n − 2, j ∈ [log n]
and cm for m ∈ [log n], where n is a power of two. We denote by ℓi the block of variables
{ℓi1, . . . , ℓilogn}. These formulas are constructed using the following gadgets.

Ladder gadgets: Li := (ℓi1 ∨ . . . ∨ ℓilogn) ∧ (¬ℓi1 ∨ . . . ∨ ¬ℓilogn).
Observe that Li is falsified only by the all-1 and all-0 assignments.

Connecting gadgets: Ci := (c
bin(i,1)
1 ∧ . . . ∧ c

bin(i,logn)
logn ).

Here, bin(i,m) returns the mth bit of the binary representation of i, and c1m := cm, while
c0m := ¬cm. That is, Ci is the conjunction that is satisfied only by the assignment encoding
i in binary.

Equivalence gadget: EQ :=
∧n−2

i,j=0

∧logn
m,k=1(ℓ

i
k ⇐⇒ ℓjm).

These clauses enforce that every ℓ-variable must take the same value.
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Definition 4 (Ladder formulas). For G = (V,E) with |E| = n − 1 where n is a power
of two, let Tseitin(G, f) be defined on the variables {ℓ01, . . . , ℓn−2

1 }. Laddern(G, f) is the
conjunction of the clauses representing

Li ⇒ Ci, ∀0 ≤ i ≤ n− 2

Ci ⇒ Tseitin(G, f), ∀0 ≤ i ≤ n− 2

Cn−1 ⇒ EQ.

Observe that the Laddern(G, f) formulas have polynomial size provided that the degree
of G is O(log n). As well, this formula is satisfiable only by the assignments that sets cm = 1
and ℓij = ℓpq for every m, j, q ∈ [log n] and 0 ≤ i, p ≤ n− 2.

These formulas are constructed so that after setting only a few variables, any drunk
solver will enter an unsatisfiable subformula w.h.p. and thus be forced to refute the Tseitin
formula. Both the ladder gadgets and equivalence gadget act as trapdoors for the Tseitin
formula. Indeed, if any c-variable is set to 0 then we have already entered an unsatisfiable
instance. Similarly, setting ℓij = 1 and ℓpq = 0 for any 0 ≤ i, p ≤ n − 2, j, q ∈ [log n]
causes us to enter an unsatisfiable instance. This is because setting all c-variables to 1
together with this assignment would falsify a clause of the equivalence gadget. Thus, after
the second decision of the solver, the probability that it is in an unsatisfiable instance
is already at least 1/2. With these formulas in hand, we prove the following theorem,
separating backtracking CT

ND ,RD solvers with and without restarts.

Theorem 1. There exists a family of O(log n)-degree graphs G such that

1. Laddern(G, f) can be decided in time O(n2) by CT,R
ND ,RD , except with exponentially

small probability.

2. CT
ND ,RD requires exponential time to decide Laddern(G, f), except with probability

O(1/n).

The proof of the preceding theorem occupies the remainder of this section.

3.3.1 Upper Bound on Ladder Formulas Via Restarts.

We present the proof for part (1) of Theorem 1. The proof relies on the following lemma,
stating that given the all-1 restriction to the c-variables, CT

ND ,RD will find a satisfying
assignment.

17



Lemma 1. For any graph G, CT
ND ,RD will find a satisfying assignment to

Laddern(G, f)[c1 = 1, . . . , clogn = 1] in time O(n log n).

Proof. When all c variables are 1, we have Cn−1 = 1. By the construction of the connecting
gadget, Ci = 0 for all 0 ≤ i ≤ n− 2. Under this assignment, the remaining clauses belong
to EQ, along with ¬Li for 0 ≤ i ≤ n−2. It is easy to see that, as soon as the solver sets an
ℓ-variable, these clauses will propagate the remaining ℓ-variables to the same value.

Put differently, the set of c variables forms a weak backdoor [115, 116] for Laddern
formulas. Part (1) of Theorem 1 shows that, with probability at least 1/2, CT,R

ND ,RD can
exploit this weak backdoor using only O(n) number of restarts.

of Theorem 1 Part (1). By Lemma 1, if CT,R
ND ,RD is able to assign all c variables to 1 before

assigning any other variables, then the solver will find a satisfying assignment in time
O(n log n) with probability 1. We show that the solver can exploit restarts in order to
find this assignment. The strategy the solver adopts is as follows: query each of the c-
variables; if at least one of the c-variables was assigned to 0, restart. We argue that if the
solver repeats this procedure k = n2 times then it will find the all-1 assignment to the
c-variables, except with exponentially small probability. Because each variable is assigned
0 and 1 with equal probability, the probability that a single round of this procedure finds
the all-1 assignment is 2− logn. Therefore, the probability that the solver has not found the
all-1 assignment after k rounds is

(1 − 1/n)k ≤ e−k/n = e−n.

3.3.2 Lower Bound on Ladder Formulas Without Restarts

We now prove part (2) of Theorem 1. The proof relies on the following three technical
lemmas. The first claims that the solver is well-behaved (most importantly that it cannot
learn any new clauses) while it has not made many decisions.

Lemma 2. Let G be any graph of degree at least d. Suppose that CT
ND ,RD has made

δ < min(d − 1, log n − 1) decisions since its invocation on Laddern(G, f). Let πδ be the
current trail, then

1. The solver has yet to enter a conflict, and thus has not learned any clauses.
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2. The trail πδ contains variables from at most δ different blocks ℓi.

The proof of this lemma is deferred to the appendix.

The following technical lemma states that if a solver with backtracking has caused the
formula to become unsatisfiable, then it must refute that formula before it can backtrack
out of it. For a restriction π and a formula F , we say that the solver has produced a
refutation of an unsatisfiable formula F [π] if it has learned a clause C such that C is
falsified under π. Note that because general resolution p-simulates CDCL, any refutation
of a formula F [π] implies a general resolution refutation of F [π] of size at most polynomial
in the time that the solver took to produce that refutation.

Lemma 3. Let F be any propositional formula, let π be the current trail of the solver, and
let x be any literal in π. Then, CT

ND ,ND backtracks x only after it has produced a refutation
of F [π].

Proof. In order to backtrack x, the solver must have learned a clause C asserting the
negation of some literal z ∈ π that was set before x. Therefore, C must only contain the
negation of literals in π. Hence, C[π] = ∅.

The third lemma reduces proving a lower bound on the runtime of CT
ND ,ND on the

Laddern formulas under any well-behaved restriction to proving a general resolution lower
bound on an associated Tseitin formula.

Definition 5. For any unsatisfiable formula F , denote by Res(F ⊢ ∅) the minimal size of
any general resolution refutation of F .

We say that a restriction (thought of as the current trail of the solver) π to Laddern(G, f)
implies Tseitin if π either sets some c-variable to 0 or π[ℓij] = 1 and π[ℓpq ] = 0 for
some 0 ≤ i, q ≤ n − 2, j, q ∈ [log n]. Observe that in both of these cases the formula
Laddern(G, f)[π] is unsatisfiable.

Lemma 4. Let π be any restriction that implies Tseitin and such that each clause of
Laddern(G, f)[π] is either satisfied or contains at least two unassigned variables. Suppose
that π sets variables from at most δ blocks ℓi. Then there is a restriction ρ∗π that sets at
most δ variables of Tseitin(G, f) such that

Res(Laddern(G, f)[π] ⊢ ∅) ≥ Res(Tseitin(G, f)[ρ∗π] ⊢ ∅).
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We defer the proof of this lemma to the appendix, and show how to use them to prove
part (2) of Theorem 1. We prove this statement for any degree O(log n) graph G with
sufficient expansion.

Definition 6. The expansion of a graph G = (V,E) is

e(G) := min
V ′⊆V,|V ′|≤|V |/2

|E[V ′, V \ V ′]|
|V ′|

,

where E[V ′, V \V ′] is the set of edges in E with one endpoint in V ′ and the other in V \V ′.

For every d ≥ 3, Ramanujan Graphs provide an infinite family of d-regular expander
graphs G for which e(G) ≥ d/4. The lower bound on solver runtime relies on the general
resolution lower bounds for the Tseitin formulas [112]; we use the following lower bound
criterion which follows immediately3 from [15].

Corollary 1 ([15]). For any connected graph G = (V,E) with maximum degree d and odd
weight function f ,

Res(Tseitin(G, f) ⊢ ∅) = exp

(
Ω

(
(e(G)|V |/3 − d)2

|E|

))
We are now ready to prove the theorem.

of part (2) Theorem 1. Fix G = (V,E) to be any degree-(8 log n) graph on |E| = n − 1
edges such that e(G) ≥ 2 log n. Ramanujan graphs satisfy these conditions.

First, we argue that within δ < log n−1 decisions from the solver’s invocation, the trail
πδ will imply Tseitin, except with probability 1 − /2δ−1. By Lemma 2, the solver has yet
to backtrack or learn any clauses, and it has set variables from at most δ blocks ℓi. Let x
be the variable queried during the δth decision. If x is a c variable, then with probability
1/2 the solver sets ci = 0. If x is a variable ℓij, then, unless this is the first time the solver
sets an ℓ-variable, the probability that it sets ℓij to a different value than the previously set
ℓ-variable is 1/2.

Conditioning on the event that, within the first log n − 2 decisions the trail of the
solver implies Tseitin (which occurs with probability at least (n−8)/n), we argue that the

3In particular, this follows from Theorem 4.4 and Corollary 3.6 in [15], noting that the definition of
expansion used in their paper is lower bounded by 3e(G)/|V | as they restrict to sets of vertices of size
between |V |/3 and 2|V |/3.
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runtime of the solver is exponential in n. Let δ < log n− 1 be the first decision level such
that the current trail πδ implies Tseitin. By Lemma 3 the solver must have produced a
refutation of Laddern(G, f)[πδ] in order to backtrack out of the unsatisfying assignment.
If the solver takes t steps to refute Laddern(G, f)[πδ] then this implies a general resolution
refutation of size poly(t). Therefore, in order to lower bound the runtime of the solver, it
is enough to lower bound the size of general resolution refutations of Laddern(G, f)[πδ].

By Lemma 2, the solver has not learned any clauses, and has yet to enter into a conflict
and therefore no clause in Laddern(G, f)[πδ] is falsified. As well, πδ sets variables from
at most δ < log n − 1 blocks ℓi. By Lemma 4 there exists a restriction ρ∗π such that
Res(Laddern(G, f)[π] ⊢ ∅) ≥ Res(Tseitin(G, f)[ρ∗π] ⊢ ∅). Furthermore, ρ∗π sets at most
δ < log n− 1 variables and therefore cannot falsify any constraint of Tseitin(G, f), as each
clause depends on 8 log n variables. Observe that if we set a variable xe of Tseitin(G, f)
then we obtain a new instance of Tseitin(Gρ∗π , f

′) on a graph Gρ∗π = (V,E\{e}). Therefore,
we are able to apply Corollary 1 provided that we can show that e(Gρ∗π) is large enough.

Claim 1. Let G = (V,E) be a graph and let G′ = (V,E ′) be obtained from G by removing
at most e(G)/2 edges. Then e(G′) ≥ e(G)/2.

Proof. Let V ′ ⊆ V with |V ′| ≤ |V |/2. Then, E ′[V ′, V \ V ′] ≥ e(G)|V ′| − e(G)/2 ≥
(e(G)/2)|V ′|.

It follows that e(Gρ∗π) ≥ log n. Note that |V | = n/8 log n. By Corollary 1,

Res(Laddern(G, f)[π] ⊢ ∅) = exp(Ω(((n− 1)/24 − 8 log n)2/n)) = exp(Ω(n)).

Therefore, the runtime of CT
ND ,ND is exp(Ω(n)) on Laddern(G,F ) w.h.p.

3.4 CDCL+VSIDS Solvers with and without Restarts

In this section, we prove that CDCL solvers with VSIDS variable selection, phase saving
value selection and restarts (where activities of variables are reset to zero after restarts)
are exponentially more powerful than the same solver configuration but without restarts,
w.h.p.

Theorem 2. There is a family of unsatisfiable formulas that can be decided in polynomial
time with CJ,R

VS ,PS but requires exponential time with CJ
VS ,PS , except with exponentially small

probability.
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We show this separation using pitfall formulas Φ(Gn, f, n, k), designed to be hard for
solvers using the VSIDS heuristic [114]. We assume that Gn is a constant-degree expander
graph with n vertices and m edges, f : V (Gn) → {0, 1} is a function with odd support as
with Tseitin formulas, we think of k as a constant and let n grow. We denote the indicator
function of a Boolean expression B with JBK. These formulas have k blocks of variables
named Xj, Yj, Zj, Pj, and Aj, with j ∈ [k], and the following clauses:

•
(⊕

e∋v xj,e = f(v)
)
∨
∨n

i=1 zj,i, expanded into CNF, for v ∈ V (Gn) and j ∈ [k];

• yj,i1 ∨ yj,i2 ∨ ¬pj,i3 for i1, i2 ∈ [n], i1 < i2, i3 ∈ [m + n], and j ∈ [k];

• yj,i1 ∨
∨

i∈[m+n]\{i2} pj,i ∨
∨i2−1

i=1 xj,i ∨ ¬xj,i2 for i1 ∈ [n], i2 ∈ [m], and j ∈ [k];

• yj,i1 ∨
∨

i∈[m+n]\{m+i2} pj,i∨
∨m

i=1 xj,i∨
∨i2−1

i=1+Ji2=nK zj,i∨¬zj,i2 for i1, i2 ∈ [n] and j ∈ [k];

• ¬aj,1 ∨ aj,3 ∨¬zj,i1 , ¬aj,2 ∨¬aj,3 ∨¬zj,i1 , aj,1 ∨¬zj,i1 ∨¬yj,i2 , and aj,2 ∨¬zj,i1 ∨¬yj,i2
for i1, i2 ∈ [n] and j ∈ [k]; and

•
∨

j∈[k] ¬yj,i ∨ ¬yj,i+1 for odd i ∈ [n].

To give a brief overview, the first type of clauses are essentially a Tseitin formula and
thus are hard to solve. The next four types form a pitfall gadget, which has the following
easy-to-check property.

Claim 2. Given any pair of variables yj,i1 and yj,i2 from the same block Yj, assigning
yj,i1 = 0 and yj,i2 = 0 yields a conflict.

Furthermore, such a conflict involves all of the variables of a block Xj, which makes the
solver prioritize these variables and it becomes stuck in a part of the search space where
it must refute the first kind of clauses. Proving this formally requires a delicate argument,
but we can use the end result as a black box.

Theorem 3 ([114, Theorem 3.6]). For k fixed, Φ(Gn, f, n, k) requires time exp(Ω(n)) to
decide with CJ

VS ,PS , except with exponentially small probability.

The last type of clauses, denoted by Γi, ensure that a short general resolution proof
exists. Not only that, we can also prove that pitfall formulas have small backdoors [115,
116], which is enough for a formula to be easy for CJ,R

VS ,PS .

Definition 7. A set of variables V is a strong backdoor for unit-propagation if every
assignment to all variables in V leads to a conflict, after unit propagation.
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Lemma 5. If F has a strong backdoor for unit-propagation of size c, then CJ,R
VS ,PS can solve

F in time nO(c), except with exponentially small probability.

Proof. We say that the solver learns a beneficial clause if it only contains variables in V .
Since there are 2c possible assignments to variables in V and each beneficial clause forbids
at least one assignment, it follows that learning 2c beneficial clauses is enough to produce
a conflict at level 0.

Therefore it is enough to prove that, after each restart, we learn a beneficial clause with
large enough probability. Since all variables are tied, all decisions before the first conflict
after a restart are random, and hence with probability at least n−c the first variables to be
decided before reaching the first conflict are (a subset of) V . If this is the case then, since
V is a strong backdoor, no more decisions are needed to reach a conflict, and furthermore
all decisions in the trail are variables in V , hence the learned clause is beneficial.

It follows that the probability of having a sequence of n2c restarts without learning a
beneficial clause is at most

(1 − n−c)n
2c ≤ exp(−n−c · n2c) = exp(−nc) (3.1)

hence by a union bound the probability of the algorithm needing more than 2c ·n2c restarts
is at most 2c · exp(−nc).

We prove Theorem 2 by showing that Φ(Gn, f, n, k) contains a backdoor of size 2k(k+1).

of Theorem 2. We claim that the set of variables V = {yj,i | (j, i) ∈ [k]×[2k+2]} is a strong
backdoor for unit-propagation. Consider any assignment to V . Each of the k + 1 clauses
Γ1,Γ3, . . . ,Γ2k+1 forces a different variable yj,i to 0, hence by the pigeonhole principle there
is at least one block with two variables assigned to 0. But by Claim 2, this is enough to
reach a conflict.

The upper bound follows from Lemma 5, while the lower bound follows from Theorem 3.

3.5 Minor Equivalences and Separations Solvers with

and without Restarts

In this section, we prove four smaller separation and equivalence results for various config-
urations of CDCL and DPLL solvers with and without restarts.

23



3.5.1 Equivalence between CDCL Solvers with Static Configura-
tions with and without Restarts

First, we show that CDCL solvers with non-deterministic static variable and value selection
without restarts (CJ

S ,S ) is as powerful as the same configuration with restarts (CJ,R
S ,S ) for

both satisfiable and unsatisfiable formulas. We assume that the BCP subroutine for the
solver configurations under consideration is “fixed” in the following sense: if there is more
than one unit clause under a partial assignment, the BCP subroutine propagates the clause
that is added to the clause database first.

Theorem 4. CJ
S ,S ∼p CJ,R

S ,S provided that they are given the same variable ordering and
fixed mapping of variables to values for the variable selection and value selection schemes
respectively.

We prove this theorem by arguing for any run of CJ,R
S ,S , that restarts can be removed

without increasing the run-time.

Proof. Consider a run of CJ,R
S ,S on some formula F , and suppose that the solver has made

t restart calls. Consider the trail π for CJ,R
S ,S up to the variable l from the second highest

decision from the last learnt clause before the first restart call. Now, observe that because
the decision and variable selection orders are static, once CJ,R

S ,S restarts, it will force it to
repeat the same decisions and unit propagations that brought it to the trail π. Suppose
that this is not the case and consider the first literal on which the trails differ. This
difference could not be caused by a unit propagation as the solver has not learned any
new clauses since the restart. Thus, it must have been caused by a decision. However,
because the clause databases are the same, this would contradict the static variable and
value order. Therefore, this restart can be ignored, and we obtain a run of CJ,R

S ,S with d− 1
restarts without increasing the run-time. The proof follows by induction. Once all restarts
have been removed, the result is a valid run of CJ

S ,S .

Note that in the proof of Theorem 4, not only we argue that CJ
S ,S is p-equivalent to CJ,R

S ,S ,
we also show that the two configurations produce the same run. The crucial observation
is that given any state of CJ,R

S ,S , we can produce a run of CJ
S ,S which ends in the same

state. In other words, our proof not only suggests that CJ,R
S ,S is equivalent to CJ

S ,S from a
proof theoretic point of view, it also implies that the two configurations are equivalent for
satisfiable formulas.
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3.5.2 Equivalence between DPLL Solvers with ND Variable Se-
lection on UNSAT Formulas

We show that when considered as a proof system, a DPLL solver with non-deterministic
dynamic variable selection, arbitrary value selection and no restarts (DT

ND ,∗) is p-equivalent
to DPLL solver with non-deterministic dynamic variable and value selection and restarts
(DT,R

ND ,ND), and hence, transitively p-equivalent to tree-like resolution—the restriction of
general resolution where each consequent can be an antecedent in only one later inference.

Theorem 5. DT
ND ,∗ ∼p D

T
ND ,ND .

Proof. To show that DT
ND ,ND p-simulates DT

ND ,∗, we argue that every proof of DT
ND ,ND can

be converted to a proof of same size in DT
ND ,∗. Let F be an unsatisfiable formula. Recall

that a run of DT
ND ,ND on F begins with non-deterministically picking some variable x to

branch on, and a truth value to assign to x. W.l.o.g. suppose that the solver assigns x to
1. Thus, the solver will first refute F [x = 1] before backtracking and refuting F [x = 0].

To simulate a run of DT
ND ,ND with DT

ND ,∗, since variable selection is non-deterministic,
DT

ND ,∗ also chooses the variable x as the first variable to branch on. If the value selection
returns x = α for α ∈ {0, 1}, then the solver focus on the restricted formula F [x = α] first.
Because there is no clause learning, whether F [x = 1] or F [x = 0] is searched first does not
affect the size of the search space for the other. The proof follows by recursively calling
DT

ND ,∗ on F [x = 1] and F [x = 0]. The converse direction follows since every run of DT
ND ,∗

is a run of DT
ND ,ND .

Corollary 2. DT
ND ,∗ ∼p D

T,R
ND ,ND .

Proof. This follows from the fact that DT,R
ND ,ND ∼p D

T
ND ,ND . Indeed, with non-deterministic

branching and without clause learning, restarts cannot help. If ever DT,R
ND ,ND queries a vari-

able x = α for α ∈ {0, 1} and then later restarts to assign it to 1−α, then DT
ND ,ND ignores

the part of the computation when x = α and instead immediately non-deterministically
chooses x = 1 − α.

It is interesting to note that while the above result establishes a p-equivalence between
DPLL solver models DT

ND ,∗ and DT,R
ND ,ND , the following corollary implies that DPLL solvers

with non-deterministic variable and randomized value selection are exponentially separable
for satisfiable instances.
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3.5.3 Separation Result for Drunk DPLL Solvers

We show that DPLL solvers with non-deterministic variable selection, randomized value
selection and no restarts (DT

ND ,RD) is exponentially weaker than the same configuration

with restarts (DT,R
ND ,RD).

Corollary 3. DT
ND ,RD runs exponentially slower on the class of satisfiable formulas Laddern(G, f)

than DT,R
ND ,RD , with high probability.

The separation follows from the fact that our proof of the upper bound from Theo-
rem 1 does not use the fact the solver has access to clause learning, which means the solver
DT,R

ND ,RD can also find a satisfying assignment for Laddern(G, f) in time O(n2), except with
exponentially small probability. On the other hand, the lower bound from Theorem 1 im-
mediately implies an exponential lower bound for DT

ND ,RD , since DT
ND ,RD is strictly weaker

than CT
ND ,RD .

3.5.4 Separation Result for CDCL Solvers with WDLS

Finally, we state an observation of Robert Robere [99] on restarts in the context of the
Weak Decision Learning Scheme (WDLS).

Definition 8 (WDLS). Upon deriving a conflict, a CDCL solver with WDLS learns a
conflict clause which is the disjunction of the negation of the decision variables on the
current assignment trail.

Theorem 6. CJ
ND ,ND+WDLS is exponentially weaker than CJ,R

ND ,ND+WDLS.

Proof. The solver model CJ
ND ,ND with WDLS is only as powerful as DT

ND ,ND , since each
learnt clause will only be used once for propagation after the solver backtracks immediately
after learning the conlict clause, and remains satisfied for the rest of the solver run. This
is exactly how DT

ND ,ND behaves under the same circumstances. On the other hand, WDLS
is an asserting learning scheme [92], and hence satisfies the conditions of the main theorem
in [93], proving that CDCL with any asserting learning scheme and restarts p-simulates
general resolution. Thus, we immediately have CJ,R

ND ,ND with WDLS is exponentially more
powerful than the same solver but with no restarts (for unsatisfiable instances).
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3.6 Related Work

In this section we limit ourselves to previous work as it pertains to understanding the
power of restarts, both from empirical and theoretical points of view. We refer the reader
to Liang et al. [75] for a more detailed discussion of well-known restart heuristics such as
Luby [77].

Previous Work on Theoretical Understanding of Restarts: Buss et al. [27] and Van
Gelder [113] proposed two proof systems, namely regWRTI and pool resolution respectively,
with the aim of explaining the power of restarts in CDCL solvers. Buss et al. proved that
regWRTI is able to capture exactly the power of CDCL solvers with non-greedy BCP
and without restarts and Van Gelder proved that pool resolution can simulate certain
configurations of DPLL solvers with clause learning. As both pool resolution and regWRTI
are strictly more powerful than regular resolution, a natural question is whether formulas
that exponentially separate regular and general resolution can be used to prove lower
bounds for pool resolution and regWRTI, thus transitively proving lower bounds for CDCL
solvers without restarts. However, since Bonet et al. [25] and Buss and Ko lodziejczyk [28]
proved that all such candidates have short proofs in pool resolution and regWRTI, the
question of whether CDCL solvers without restarts are as powerful as general resolution
still remains open.

Previous Work on Empirical Understanding of Restarts: The first paper to discuss
restarts in the context of DPLL SAT solvers was by Gomes and Selman [48]. They proposed
an explanation for the power of restarts popularly referred to as “heavy-tailed explanation
of restarts”. Their explanation relies on the observation that the runtime of randomized
DPLL SAT solvers on satisfiable instances, when invoked with different random seeds, ex-
hibits a heavy-tailed distribution. This means that the probability of the solver exhibiting
a long runtime on a given input and random seed is non-negligible. However, because of
the heavy-tailed distribution of solver runtimes, it is likely that the solver may run quickly
on the given input for a different random seed. This observation was the motivation for the
original proposal of the restart heuristic in DPLL SAT solvers by Gomes and Selman [48].

Unfortunately, the heavy-tailed explanation of the power of restarts does not lift to the
context of CDCL SAT solvers. The key reason is that, unlike DPLL solvers, CDCL solvers
save solver state (e.g., learnt clauses and variable activities) across restart boundaries. Ad-
ditionally, the efficacy of restarts has been observed for both deterministic and randomized
CDCL solvers, while the heavy-tailed explanation inherently relies on randomness. Hence,
newer explanations have been proposed and validated empirically on SAT competition
benchmarks. Chief among them is the idea that “restarts compact the assignment trail
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during its run and hence produce clauses with lower literal block distance (LBD), a key
metric of quality of learnt clauses” [75].

Our Separation Results and Heavy-tailed Explanation of Restarts: A cursory
glance at some of our separation results might lead one to believe that they are a complexity-
theoretical analogue of the heavy-tailed explanation of the power of restarts, since our
separation results are over randomized solver models. We argue this is not the case. First,
notice that our main results are for drunk CDCL solvers that save solver state (e.g., learnt
clauses) across restart boundaries, unlike the randomized DPLL solvers studied by Gomes
et al. [48]. Second, we make no assumptions about independence (or lack thereof) of
branching decisions across restarts boundaries. In point of fact, the variable selection in
the CDCL model we use is non-deterministic. Only the value selection is randomized.
More precisely, we have arrived at a separation result without relying on the assumptions
made by the heavy-tailed distribution explanation, and interestingly we are able to prove
that the “solver does get stuck in a bad part of the search space by making bad value
selections”. Note that in our model the solver is free to go back to “similar parts of the
search space across restart boundaries”. In fact, in our proof for CDCL with restarts, the
solver chooses the same variable order across restart boundaries.

3.7 Conclusions

In this chapter, we prove a series of results that establish the power of restarts (or lack
thereof) for several models of CDCL and DPLL solvers. We first showed that CDCL
solvers with backtracking, non-deterministic dynamic variable selection, randomized dy-
namic value selection, and restarts are exponentially faster than the same model without
restarts for a class of satisfiable instances. Second, we showed CDCL solvers with VSIDS
variable selection and phase saving without restarts are exponentially weaker than the
same solver with restarts, for a family of unsatisfiable formulas. Finally, we proved four
additional smaller separation and equivalence results for various configurations of DPLL
and CDCL solvers.

By contrast to previous attempts at a “theoretical understanding the power of restarts”
that typically assumed that variable and value selection heuristics in solvers are non-
deterministic, we chose to study randomized or real-world models of solvers (e.g., VSIDS
branching with phase saving value selection). The choices we made enabled us to more
effectively isolate the power of restarts in the solver models we considered. This leads us
to the belief that the efficacy of restarts becomes apparent only when the solver models

28



considered have weak heuristics (e.g., randomized or real-world deterministic) as opposed
to models that assume that all solver heuristics are non-deterministic.
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Chapter 4

A Reinforcement Learning based
Reset Policy for CDCL SAT Solvers

Restart policies are an important and widely studied class of techniques used in state-of-
the-art Conflict-Driven Clause Learning (CDCL) Boolean SAT solvers, wherein some part
of the state of solvers is erased at certain intervals during the run of the solver. In most
modern solvers, variable activities are preserved across restart boundaries. An implication
of this is that solvers continue to search parts of the assignment tree that are not far from
the one immediately prior to a restart. To enable the solver to potentially search distant
parts of the assignment tree, we study the effect of resets, a variant of restart which not
only erases the assignment trail, but also randomizes the activity scores of the variables of
the input formula, thus potentially enabling a better global exploration of the search space.
The crucial question one needs to address here is when to invoke reset because randomizing
variable activity can lower solver performance for certain classes of instances such as ones
obtained from verification applications.

In this chapter, we model the problem of whether or not to trigger reset as a multi-armed
bandit (MAB) problem, and propose a reinforcement learning (RL) based reset policy
using Thompson sampling. The Thompson sampling algorithm is designed to balance the
exploration-exploitation tradeoff by probabilistically and adaptively choosing arms (reset
vs. no reset) based on their estimated rewards during the solver’s run. The proposed reset
policy is compared with state-of-the-art CDCL solvers Kissat, Kissat MAB-HyWalk and
MapleSAT on a set of 500 Satcoin benchmarks as well as 400 Main Track instances from
the SAT competition 2022. Our results show that the proposed RL based reset policy
convincingly outperforms their baseline solvers on Satcoin benchmarks, while retaining its
competitiveness on the SAT competition instances, suggesting that the adaptive aspect of
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our RL policy helps the solver to dynamically and profitably adapt the reset frequency for
a given input instance.

4.1 Introduction

Over the last few decades, Conflict-Driven Clause Learning (CDCL) solvers have had a
dramatic impact on many areas of software engineering [29], security [40, 117], and AI [24].
This is in part due to heuristics such as branching methods (e.g., VSIDS [83] and LRB [72]),
deletion techniques [47], and restart policies [49], to name just a few. A fundamental
problem that solver designers often face is that a set of techniques that work well for a
class of instances can fail miserably for another.

An excellent example of this phenomena is the widespread use of restart policies such
as Luby [77]. While these policies may differ in terms of frequency of restart, almost all
of them have one feature in common, namely, that activities of variables are not changed
across restart boundaries. There is good empirical reason for this design choice. It has been
observed that setting activities to zero or randomizing the variable ranking in addition to
everything that a traditional restart does (which we refer to as reset1), can somewhat neg-
atively affect solver performance on SAT competition 2022 Main Track instances. On the
other hand, in a recently published paper on restart policies [114, 70], it was mathemat-
ically shown that reset outperforms restart policies on a class of crafted instances called
pitfall formulas.

It is therefore natural to ask “can we get the best of both worlds, i.e., develop an
adaptive technique that dynamically and optimally switches between restarts and resets
during the run of a solver for a given instance such that it outperforms, in terms of solving
time, any other possible ordering of restart and reset calls?” In this chapter, we address
this question from an empirical point of view.

To motivate the exploration of reset policies we start by making a few observation
about traditional restarts methods. One well-known observation is that since activities are
preserved across restart boundaries2, the part of search space explored by the solver is not
all that different from what it was searching prior to the restart. We refer to such behavior

1We do not claim to be the first to come up with the idea of reset. Instead, our work focuses on
using reinforcement learning to optimally and adaptively switch between restart and reset policies for a
given instance. We do introduce this new term reset, with the goal of clarifying the distinction between
traditional restarts vs. resets.

2Informally, the term restart boundary refers to a point in time, measured from the start of a solver
run, when a restart occurs.
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of the solver as “local”. Informally, we say that the solver’s search is local, if the variable
order defined by the activities of the variables after a restart is “similar” to the ones prior
to that restart. We say that the solver’s search is global, if the variable order across restart
boundaries are “far apart”.

This chapter is motivated by an observation we made about the performance some of
the best SAT solvers, namely Kissat [42], Kissat MAB-HyWalk [120] and MapleSAT [72],
on cryptographic instances in general, and Satcoin instances in particular3. Specifically, we
observed that both these solvers performed poorly on such instances. Upon experimenting
with a variety of restart policies, we finally observed that when the activities were period-
ically reset to random values, the solvers performance improved dramatically. Further, as
we increased the frequency of reset, we observed that these reset-based solvers performed
better on Satcoin benchmarks. By contrast, these reset variants behaved poorly on SAT
competition Main Track instances, even though their non-reset cousins performed well.
Finally, as we experimented with greater frequency of reset, the performance of these reset
variants got progressively worse.

This led us to ask the above-stated question for restarts vs resets, namely, “is there
an adaptive technique that can switch between restarts and resets dynamically during a
solver’s run for a given instance?”.

We address the above question by proposing a novel approach for CDCL solvers using
a reinforcement learning reset policy, specifically with the Thompson sampling algorithm,
modeling restarts and resets as an MAB problem with two arms. The decision between
restart and reset is driven by a reward mechanism using learning rate (LR), an empiri-
cal measure of SAT solving efficiency. Our technique’s efficacy is demonstrated through
experiments on state-of-the-art solvers against their reset variants.

4.1.1 Contributions.

1. First, we model the problem of deciding whether to reset as a multi-armed ban-
dit (MAB) problem, and we solve the problem using a method called Thompson
sampling. In order to adapt the Thompson Sampling algorithm to the context of
CDCL solvers, where the underlying search space changes may get restricted over
time due to clause learning, and then expand due to clause deletion, we came up
with a novel technique which decays the shape parameters used in the Thompson
Sampling algorithm.

3These instances are obtained from a bitcoin mining application that uses the SHA256 Hash func-
tion [78].
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2. Second, we also propose partial resets, a variant of resets: instead of randomly shuf-
fling the activity scores for all variables, a partial reset preserves the order of top
activity variables before the reset. That is, the top k after a reset is exactly the set
of variables with top k activities in the exact same order. This technique aims at
preserving some “locality” information of the branching heuristic while reinitializing
the search to be “global” at the same time. We also observe that from a theoretical
point of view, a partial reset is strictly weaker than a full reset. That is, there exists a
class of formulas for which CDCL solver with VSIDS-like branching and full reset has
a polynomial upper bound, whereas the same configuration with full reset replaced
by partial reset has an exponential lower bound.

3. We empirically evaluated our RL reset policy on state-of-the-art solvers like Kissat,
Kissat MAB-HyWalk, and MapleSAT, using two benchmark sets. Our modified
solvers significantly outperformed baselines on Satcoin instances, crypto benchmarks
from bitcoin mining, solving all 500 instances in under 2000 seconds compared to
the baseline’s less than 15 instances within a 5000 second timeout. Despite this
improvement on crypto benchmarks, our RL reset solvers maintained competitive
performance on Main Track instances from the SAT competition 2022 and solved
even more instances with our partial reset technique for baseline solvers MapleSAT
and Kissat.

4.2 Reset Models

The problem of whether to restart or reset in a SAT solver can be modeled as a Reinforce-
ment Learning (RL) problem by appropriately defining the states, actions, rewards, and
the learning objective, similar to previous work on RL for SAT heuristics such as RL-based
branching [72] as well as restarts [75].

1. States: The states represent the current state of the SAT solver, including the
assignment of truth values to the variables, the current clause database, and any
other relevant information.

2. Actions: The actions represent the decision of whether to perform a restart or a
reset.

3. Rewards: The rewards represent the quality of the actions being taken. In our
model, we use the local learning rate (llr) between two decision points to measure
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the quality of the action. The agent is rewarded if llr is improved and penalized
otherwise.

4. Learning Objective: The learning objective is to find a policy, that maximizes the
expected llr over time.

The RL agent starts in some initial state, takes an action, observes the new state and
reward, and updates its policy based on the observed experience. The agent should balance
between the exploitation of the current knowledge and the exploration of new actions to
learn better policies.

The problem of whether to restart or reset in a SAT solver is a good fit for RL because
it is a sequential decision-making problem where the outcomes of actions are dependent on
the current state of the environment. RL provides a way to learn a policy that maximizes
the expected cumulative reward over time, which is particularly useful when the reward is
uncertain or difficult to compute analytically.

We first give the definition of local learning rate(llr). “Local” here refers to the solver’s
performance (via the notion of learning rate) in between two consecutive restart boundaries.
We then use llr to evaluate whether the previous pull of arms is a success or failure.

Definition 9 (local learning rate(llr)). Let t1, t2, t3, ....tk be timestamps of when restarts
occur. We denote the number of learnt clauses added in between ti and ti+1 by num c(i, i+
1), the number of decisions the solver made by num d(i, i + 1). We define the notion
of local learning rate (llr), and denote the llr between ti and ti+1 as llr(i, i + 1), where

llr(i, i + 1) = num c(i,i+1)
num d(i,i+1)

.

Traditionally, a range of metrics including solving time, number of decisions, number
of conflicts, average width and many others have been used to evaluate SAT solver’s per-
formance. In this chapter we choose to use llr, offers a new and meaningful dimension
for assessing SAT solver effectiveness. Different solvers have varied branching behaviours,
learning techniques, clause deletion policies, making it challenging to compare them on a
like-for-like basis. LLR gives a normalized measure of how effective a solver is at gener-
ating learned clauses for every decision it makes. If a solver learns more clauses with the
same number of decisions, it means that the solver is more efficient in exploring its current
search space. This efficiency could lead to faster solving time.

For the rest of this section, we describe five reset models we study in this chapter.
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Full Reset with Fixed Probabilities In this model, we first predetermine a probability
p. At restart boundaries, we generate a random number r, if r ≤ p, then reset is performed,
else reset is not performed. The goal of this model is to serve as a baseline model for
exploring the potential of resets.

Decision based Full Reset with Thompson Sampling For this method, we adapt
the Thompson sampling technique for solving our MAB model of the reset problem. We
do this by first defining what is meant by success and failure. Ideally, we would like to
count as success those actions that lead to a better search space where the solver can
make progress faster. There have been various metrics proposed and studied to measure
progress, including metrics to capture the quality of learnt clauses, decisions etc. For
example, the size of clauses and literal block distance (LBD) [10] are well-known metrics
to measure the quality of learnt clauses. Activities and global learning rate are examples
of quality metrics for decisions [83, 76]. And lastly, learning rate and propagation rates are
examples of metrics which try to capture the quality of the performance of the solver in the
underlying search space [72, 87]. In this particular model, we choose a design which gives
us a simplest model using Thompson sampling. Each time the solver makes a decision on
a variable, we let the solver perform BCP till saturation, and if the solver hits a conflict,
we consider the decision variable being good, and then increase the reward count for no
restart by one, and if the decision does not lead to a conflict, we would increase the reward
for restart by one. The intuition is that we would like to encourage a solver to restart if a
sequence of decision does not lead to many conflicts.

Full Reset with Thompson Sampling For this model We chose the notion of learning
rate to evaluate the performance of the arms in our model because it is well known to be
an effective measure of solver’s progress [72]. To be more specific, we use an exponential
moving average (EMA) of local learning rates, which we refer to as EMA(llr), to keep track
of each arm’s historical performance, and then consider the pulling of an arm at ti as a
success if EMA(llr) < llr(i, i + 1). Otherwise when EMA(llr) ≥ llr(i, i + 1), we would
increase the failure count by one. Figure 4.1 contains the overall structure of reset model
using Thompson Sampling.

Full Reset with Thompson Sampling and Decaying Shape Parameters In the
context of whether to restart or reset, the output of the Thompson sampling algorithm
relies on the historical performance of resetting. However during a solver’s run, the solver
keeps learning conflict clauses as well as deleting useless clauses over time, which means
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Algorithm 1 RL reset with decaying shape parameters

1: if If restart criteria is met: then
2: update EMA llr()
3: if EMA llr < llr: then
4: last arm.alpha += 1
5: else
6: last arm.beta += 1
7: end if
8: decay(alpha1, beta1, alpha2, beta2)
9: Erase the assignment trail
10: last arm = pick arm(alpha1, beta1, alpha2, beta2)
11: if last arm == reset: then
12: randomize activity scores()
13: end if
14: end if

the underlying search space gradually changes all the time. Thus a success (or a failure)
for an arm at the beginning of the run may be quite useless for determining which arm to
pull at a later stage of the solve run. To solve this problem, we apply a decay, 0 < d < 1,
to the shape parameters every time one of the shape parameters gets updated, to give
more weights to successes and failures of the arms’ recent performances. Without loss of
generality, assume at the time we would like to increase α by one, instead of just adding
one to α, we do αnew = α ∗ d + 1, and at the same time, we update β as well by doing
βnew = β ∗ d. See Algorithm 1 for pseudocode. Through our experiments, we found that
decaying shape parameters are crucial to the performance of our RL reset policy.

Partial resets We also explore a variant of full reset referred to as partial reset. As
defined earlier, in a partial reset the activities of the top-k variables are retained across
reset boundaries and the activities of the remaining variables are randomized. To achieve
this, the ordering of top k variables are recorded before randomizing activities, and after
randomizing activities for all variables, the top k variables receive a constant bump, just
enough so that they still have top activities, and in the same order as before the reset.
The reason for exploring partial resets is that full reset may not be the best strategy for
industrial instances that have a lot of “locality”.
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Arm 1: Reset
Successes ( ): 2  Failures ( ): 5

Solver (Environment)
Action

Feedback
Arm 2: Restart

Successes ( ): 10  Failures ( ): 3

Agent

successes += 1

Yes No

failures += 1

LLR > EMA_llr?

Figure 4.1: The figure describes our reset method. Immediately prior to calling reset (and
after the assignment trail has been deleted), we sample from the beta distribution for each
arm and pick the arm with the higher of the two sampled values. Further, we then compute
the llr after the action is taken, update the EMA llr, and compare the llr and EMA llr. If
llr > EMA llr, the number of success is increased by 1 for the selected arm, and if llr ≤
EMA llr, the number of failure is increased by 1.

4.3 Theoretical Observations

4.3.1 Lower Bound for Partial Reset

We observe that solvers using a particular partial reset model suffer from the same expo-
nential lower bound as those using VSIDS-like branching heuristic and restart as shown
by Viyals [114]. However, in a separate paper, Li et al. [70] showed that these same set of
instances can be solved in polynomial time by solvers with VSIDS-like branching and full
reset.

All statements below are probabilistic; the probability comes from the fact that we are
resolving ties between variables with the same score at random. We first state the relevant
theorems.
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Theorem 7. [114][Vinyal’s Theorem] There is a family of instances, called pitfall formu-
las, that have polynomial resolution proofs, but CDCL with VSIDS and restarts requires
exponential time to solve them, except with exponentially small probability.

Theorem 8. [70] The family of formulas from Theorem 7 can be solved in polynomial
time by CDCL with VSIDS and full resets, except with exponentially small probability.

Observation 1. Consider any partial reset strategy as defined below: the activities of
variables that have positive (respectively, zero) activity score prior to a reset remain positive
(respectively, zero) after a reset. Given the lower bound theorem by Vinyals 7, we can easily
see that CDCL with VSIDS and a partial reset strategy requires exponential time to solve
the pitfall formulas, except with exponentially small probability.

To see this, first recall Vinyal’s theorem applies to any solver that satisfies Definition 3.1
as defined in his paper [114]. Briefly, Definition 3.1 roughly states that VSIDS-like branch-
ing heuristics always prefer variables that have participated in a conflict over variables that
have never been assigned.

Observe that CDCL with VSIDS-like branching and partial reset satisfies this definition
since any variable that participates in a conflict has a positive activity and those which
have not been assigned have a 0 activity score. After a partial reset, these scores are carried
over. Given the structure of pitfall formulas, this behavior of reset implies that if the solver
is starts branching in the hard component of the pitfall formulas, then it cannot escape
this hard part without actually constructing an exponential-sized proof.

Further note that, in their paper Li et al. [70] showed that if restarts are replaced with
full reset in a CDCL solver with VSIDS-like branching, then it has a polynomial upper
bound for pitfall formulas. Thus, CDCL solvers with VSIDS-like branching and partial
reset can be exponentially weaker than ones with full reset.

4.3.2 Bounds with Decaying Shape Parameters

One reason to apply a decay to the shape parameters used in Thompson Sampling is to
adapt to the change in the underlying search space. Here, we would like to argue from
another angle that the decay is needed.

First, note that the values of the shape parameters are upper-bounded by the sum of
the geometric series limk→∞1 + d + d2 + d3... = 1

1−d
, which is a constant. Therefore, for

small values of d, the shape parameters stay at low values at all times.
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Also recall the formulas for the mean and variance for the beta distribution: if X ∼
beta(α, β), then the mean of X is

E[X] =
α

α + β

and the variance of X is

V ar[X] =
αβ

(α + β)2(α + β + 1)

Without a decay, the shape parameters α and β may get arbitrarily large and become
unbounded. When shape parameters for Thompson Sampling are large and unbounded,
the variance when sampling from the underlying beta distribution becomes very small,
leading to the following simple observation.

Observation 2. limα→∞ V ar[X] → 0 and limβ→∞ V ar[X] → 0.

This means that the solver would keep picking the same arm, even if the arm fails
to perform. A constant change in the values of the shape parameters would not change
the underlying distribution too much, the mean would not change much and the variance
would remain low, leading to the following observation. Thus, the Thompson Sampling
algorithm becomes less exploratory, at least for very long time intervals.

Observation 3. When α >> β and α → ∞, α
α+β

- α
α+β+1

→ 0.

On the other hand, when we apply a decay to the shape parameters, the shape pa-
rameters are upper bounded by a constant. Applying a constant change in the values of
the shape parameters would change the mean by at least a constant, thus making the
algorithm more exploratory, leading to the following observation.

Observation 4. For α, β < c where c is a constant, α
α+β

- α
α+β+1

> 1
4c+2

.

4.4 Experimental Results

In this Section, we report on the extensive experimental evaluation we performed to test
the above-described full and partial reset policies as implemented in Kissat, Kissat MAB-
HyWalk and MapleSAT solvers.

39



Number of solved instances
SATComp 2022 Satcoin

K 272 0
K RLDecay full 276 360
K RLDecay partial 274 496
Khy 289 7
Khy RLDecay full 271 500
Khy RLDecay partial 277 489
M 178 13
M RLDecay full 178 500
M RLDecay partial 182 500

Table 4.1: Number of solved instances for baseline solvers Kissat(K), Kissat MAB-
HyWalk(Khy) and MapleSAT(M) along with their reset variants. Observe that Kissat,
Kissat MAB-HyWalk and MapleSAT perform poorly on Satcoin instances. By contrast, the
reset variants of Kissat and MapleSAT outperform their respective baselines on Main Track
2022 instances, and vastly outperform on Satcoin instances together with Kissat MAB-
HyWalk’s reset variants.

4.4.1 Benchmarks

1. Satcoin instances [78]: These instances are derived from Bitcoin mining problems.
Satcoin instances are search problems that involve finding a nonce value that, when
combined with a block header, results in a hash value that is lower than a given dif-
ficulty target. By varying the difficulty target, one can generate Satcoin instances of
various hardness and perform scaling studies. These instances are highly challenging
and require a significant amount of computational effort to solve.

2. Main Track instances from SAT Competition 2022 [102]: The Main Track
instances are a set of problems used in SAT Competition 2022. The Main Track
instances are designed to be representative of real-world SAT problems and cover
a wide range of applications, including verification, planning, and scheduling. The
instances are a mix of easy, medium, and hard instances. The Main Track instances
are a widely recognized benchmark for evaluating the performance of SAT solvers.
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PAR2 scores
maintrack2022 Satcoin

K 3685.04 9749.96
K RLDecay full 3611.54 4023.91
K RLDecay partial 3691.41 569.81
Khy 3345.14 9841.02
Khy RLDecay full 3802.69 452.16
Khy RLDecay partial 3680.96 722.37
M 5246.65 9744.82
M RLDecay full 5258.53 403.28
M RLDecay partial 5689.92 463.19

Table 4.2: PAR2 scores for baseline solvers Kissat, Kissat MAB-HyWalk and MapleSAT
along with their reset variants.

4.4.2 Experimental Setup

We ran each solver configuration on each instance on Intel E5-2683 v4 Broadwell @ 2.1GHz
CPUs running Linux 3.10.0-1160.88.1.el7.x86 64 (Digital Research Alliance of Canada),
with a timeout of 5000 seconds of CPU time. The performance of the solvers is com-
pared using PAR-2 scores. Parameters and metrics being used are standard in the SAT
community [102].

Since the baseline solvers all have an option to enable randomness, we use the same
default random seeds as the baseline solvers. We use 0.8 for both computing the EMA llr
as well as decaying the shape parameters used in Thompson sampling.

4.4.3 Full Reset with Fixed Probabilities

For a fixed probability reset, we pre-determine a probability p and we perform a reset with
probability p at restart boundaries. We make the following observations:

1. With the fixed probability resetting policy, we solve significantly more Satcoin in-
stances than the baseline solver, which can barely solve any of these instances. Even
with 5% probability of reset, the reset solver solves more than 200 out of 500 Satcoin
instances within 5000 seconds timeout limit.

2. There is a positive correlation between the reset probability and the performance
of the solver on Satcoin instances. As we increase the probability, the reset solvers
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solve all 500 out of 500 Satcoin instances at 20% fixed probability reset. When
the probability goes up from 20% to 50%, the time used to solve all 500 instances
continues to reduce.

However, by using fixed probability reset policy on Main Track instances from SAT
competition 2022, completely different observations are made:

1. When we have a relatively small reset probability, the reset policy’s performance can
match the traditional CDCL solver. For example, 5% reset probability MapleSAT
solver can solve 178 instances, which is the same number of solved instances by the
base solver.

2. As we increase the reset probability, the performance on Main Track instances de-
grades significantly. To give an example, 50% reset probability MapleSAT solver
solves 166 instance while the base solver solves 178 instances.

The experiments with fixed probability reset policy demonstrate its advantages in solv-
ing Satcoin instances, and a higher reset probability is desired to solve Satcoin instances
efficiently. Nonetheless, an overly resetting solver leads to poor performance on Main Track
instances.

4.4.4 Full Reset with and without Thompson Sampling and De-
caying Shape Parameters

In our experiments, we noticed that the Thompson sampling algorithm was significantly
influenced by the initial warm-up phase of the solvers, leading to a bias against resets. This
was because the early performance metrics didn’t accurately represent the search space. To
adapt the constantly changing search space, we developed RL reset solvers with decaying
alpha and beta values. The results are as follows:

Decaying Shape Parameters

1. For Satcoin instances, solvers with RL reset policies without decaying alpha and beta
values barely solves any instances. This is due to the warm-up bias mentioned above.
In the early stage of the search, the RL model does not really trigger a reset. This bias
was taken to the later stage of the search, which significantly reduces the number
of resets being carried out. As we discussed in the experiments with fixed reset

42



probabilities, Satcoin instances can only be solved efficiently with higher probability
of reset. With decaying alpha and beta values, the RL model focuses more on the
outcomes of recent decisions, thus being more exploratory, and more resets are carried
out even when the recent search does not produce good performance according to
llr. For RL reset with decaying alpha and beta values, we not only solve all 500
Satcoin instances, but also perform almost as efficiently as the 50% fixed probability
reset solver from previous experiments, except much resets needed. Please see the
Appendix for a more detailed analysis.

2. For Main Track instances, the RL reset with decaying alpha and beta values slightly
improved based solvers’ performance for Kissat and MapleSAT. However, for Kissat MAB-
HyWalk, the baseling solver remains the top.

After analyzing the experimental results for RL reset, it is clear that the RL reset reduces
the performance loss of the solver over Main Track instances, while preserving its power in
Satcoin formulas by dynamically adjusting the likelihood of triggering a reset.

Decision based and LLR based resets

We observe that for decision based reset policy which modifies reward for reset and
no reset every decision point, the performance of the underlying solver is worse than the
model where we update the reward after a window of conflict (See Figure 4.2). Our
hypothesis is that, updating per decision can introduce bias. Simply rewarding restart
when a sequence of decisions do not lead to conflicts may not be beneficial as certain
search space or conflicts relies on having multiple assumptions being made and requres
a longer trail, and it is possible that after a long trail the solver start making progress.
However when we consider LLR based techniques, we evaluate solver performance for a
short history, and aggregate the progress the solver made through learning rate, which is
a more gentle way of measuring progress.

4.4.5 Partial Reset

We observe that when implementing a partial reset strategy, there does not seem to be
a obvious trend in how many of the top k variables should be preserved. For main track
instances, among k = 5, 10, 20 and 30, k = 5 has the best performance, but yet k = 10
performs worse than k = 30. Additionally k = 5 not only performed better than other
values of k, it also improved upon the performance of the baseline solver for MapleSAT and
remains competitive for other baseline solvers. And for SATcoin instance, having partial
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Figure 4.2: Solving times for MapleSAT with decision based reset policy vs LLR based
reset policy over SATcomp benchmarks. LLR based reset policy has a clear advantage over
decision based models.

restart improve the performance of Kissat with RL reset policy, and remains competitive
for other baseline solvers.

4.5 Related Work

There has been considerable theoretical and empirical work on restarts. Liang et al. [75]
provide a nice overview of the empirical work on restarts, while the paper by Li et al. [70]
gives a thorough overview of the proof complexity of restarts. Below we focus mostly on
reset policies, and contrast with restart methods if necessary.

4.5.1 Empirical Work on Reset Policies

Chaff [83] was the first CDCL solver to implement restart. CaDiCal [16] being the first
CDCL solver with the idea of rephasing, where the phase value of variables is reset on
certain intervals during the run of the solver. While many solver developers have exper-
imented with reset policies, we are not aware of a thorough and systematic study such
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techniques. To the extent that we know, we are the first to explore RL-based full and
partial reset policies.

4.5.2 Theoretical Work on Reset Policies

The first paper to discuss restarts in the context of DPLL SAT solvers was by Gomes and
Selman [48]. They proposed an explanation for the power of restarts popularly referred
to as “heavy-tailed explanation of restarts”. Their explanation relies on the observation
that the runtime of randomized DPLL SAT solvers on satisfiable instances, when invoked
with different random seeds, exhibits a heavy-tailed distribution. This means that the
probability of the solver exhibiting a long runtime on a given input and random seed is
non-negligible. However, because of the heavy-tailed distribution of solver runtimes, it is
likely that the solver may run quickly on the given input for a different random seed. This
observation was the motivation for the original proposal of the restart heuristic in DPLL
SAT solvers by Gomes and Selman [48].

4.5.3 Use of Reinforcement Learning in Solvers

The use of RL techniques for switching between solver heuristics has been explored in the
past. The earliest work for using RL to switch between heuristics that we are aware of is
by Lougdakis et al. [65]. In their work, they switch between different branching heuristics.
Liang et al. [72] were among the first to model branching as an MAB problem. Liang et
al. [75] also developed an RL technique for switching between restart policies. Another
example of the use of RL techniques to switch between branching heuristics at each restart
is [31].

Our work differs from these previous methods in the following important ways. First,
we adapt Thompson sampling to our setting to solve the problem of switching between
reset heuristics. Second, we use a shaping mechanism to help our learning agent to explore
more than it otherwise would. Third, we develop our technique for the setting of reset
policies. Another point of differentiation is that we are not aware of previous work that
thoroughly and systematically explores a variety of reset policies in multiple SAT solvers
over a comprehensive benchmark.
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4.6 Conclusion

In this chapter, we revisit the idea of resetting variable activities at certain intervals during
the run of the solver. Specifically, we study a range of reset policies and devise a RL
based technique to switch between restart and reset in the Kissat, Kissat MAB-HyWalk
and MapleSAT solvers. We observe that a full reset (i.e., randomizing the activity of
all variables) performs dramatically well for Satcoin instances, irrespective of the baseline
solver used. However, the same technique is somewhat weaker on the SAT competition
2022 main track instances compared to the corresponding baselines. This behavior of reset
motivates the design of a reinforcement learning policy that adaptively chooses to invoke
a reset based on the success of previous invocations as measured by an EMA over a metric
we call local learning rate.

We implement our techniques in two state-of-the-art baseline solvers, namely, Kissat,
Kissat MAB-HyWalk and MapleSAT. Via extensive experimentation, we show that both
our full and partial reset techniques vastly outperform the baseline on Satcoin benchmarks,
while the partial reset solvers outperform the respective baselines on the SAT competition
2022 Main Track instances. We also show that by performing partial reset we improve
the performance of the resetting solvers relative to full reset solvers, while maintaining
exceptional performance over Satcoin instances.
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Chapter 5

On the Hierarchical Community
Structure of Practical Boolean
Formulas

Modern CDCL SAT solvers easily solve industrial instances containing tens of millions of
variables and clauses in them, despite the theoretical intractability of the SAT problem.
This gap between practice and theory is a central problem in solver research. It is believed
that SAT solvers exploit structure inherent in industrial instances, and hence there have
been numerous attempts over the last 25 years at characterizing this structure via parame-
ters. These can be classified as rigorous, i.e., they serve as a basis for complexity-theoretic
upper bounds (e.g., backdoors), or correlative, i.e., they correlate well with solver run time
and are observed in industrial instances (e.g., community structure). Unfortunately, no
parameter proposed to date has been shown to be both strongly correlative and rigorous
over a large fraction of industrial instances.

Given the sheer difficulty of the problem, we aim for an intermediate goal of proposing
a set of parameters that is strongly correlative and has good theoretical properties. Specifi-
cally, we propose parameters based on a graph partitioning called Hierarchical Community
Structure (HCS), which captures the recursive community structure of a graph of a Boolean
formula. We show that HCS parameters are strongly correlative with solver run time using
an Empirical Hardness Model, and further build a classifier based on HCS parameters that
distinguishes between easy industrial and hard random/crafted instances with very high
accuracy. We further strengthen our hypotheses via scaling studies. On the theoretical
side, we show that counterexamples which plagued flat community structure do not apply
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to HCS, and that there is a subset of HCS parameters such that restricting them limits
the size of embeddable expanders.

5.1 Introduction

Over the last two decades, Conflict-Driven Clause-Learning (CDCL) SAT solvers have had
a dramatic impact on software engineering [29], formal methods [32], security [40, 117], and
AI [24], thanks to their ability to solve large real-world instances with tens of millions of
variables and clauses [102], notwithstanding the fact that the Boolean satisfiability (SAT)
problem is known to be NP-complete and is believed to be intractable [35]. A plausible
explanation of this apparent contradiction would be that NP-completeness of the SAT
problem is established in a worst-case setting, while the dramatic efficiency of modern SAT
solvers is witnessed over “practical” instances. However, despite over two decades of effort,
we still do not have an appropriate mathematical characterization of practical instances
(or a suitable subset thereof) and attendant complexity-theoretic upper and lower bounds.
This gap between theory and practice is rightly considered one of the central problems in
solver research by theorists and practitioners alike.

The fundamental premise in this line of work is that SAT solvers are able to find short
proofs (if such proofs exist) in polynomial time (i.e., they are efficient) for industrial in-
stances and that they are able to do so because they somehow exploit the underlying
properties (a.k.a. structure) of such industrial Boolean formulas1, and, further, that hard
randomly-generated or crafted instances are difficult because they do not possess such
structure. Consequently, considerable work has been done in characterizing the structure
of industrial instances via parameters. The parameters discussed in literature so far can
be broadly classified into two categories: correlative and rigorous2. The term correlative
refers to parameters that take a specific range of values in industrial instances (as opposed
to random/crafted) and further have been shown to correlate well with solver run time.
This suggests that the structure captured by such parameters might explain why solvers
are efficient. An example of such a parameter is modularity (more generally community
structure [6]). By contrast, the term rigorous refers to parameters that characterize classes
of formulas that are fixed-parameter tractable (FPT), such as backdoors [116, 122], back-
bones [82], treewidth, and branchwidth [3, 101], among many others [101], or have been

1The term industrial is loosely defined to encompass instances obtained from hardware and software
testing, analysis, and verification applications.

2Using terminology by Stefan Szeider [109].
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used to prove complexity-theoretic bounds over randomly-generated classes of formulas
such as clause-variable ratio (a.k.a., density) [34, 103].

The eventual goal in this context is to discover a parameter or set of parameters that
is both strongly correlative and rigorous, such that it can then be used to establish pa-
rameterized complexity-theoretic bounds on an appropriate mathematical abstraction of
CDCL SAT solvers, thus finally settling this decades-long open question. Unfortunately,
the problem with all the previously proposed rigorous parameters is that either “good”
ranges of values for these parameters are not witnessed in industrial instances (e.g., such
instances can have both large and small backdoors) or they do not correlate well with
solver run time (e.g., many industrial instances have large treewidth and yet are easy to
solve, and treewidth alone does not correlate well with solving time [81]).

Consequently, many attempts have been made at discovering correlative parameters
that could form the basis of rigorous analysis [6, 46]. Unfortunately, all such correlative
parameters either seem to be difficult to work with theoretically (e.g., fractal dimension [4])
or have obvious counterexamples, i.e., it is easy to show the existence of formulas that si-
multaneously have “good” parameter values and are provably hard-to-solve. For example,
it was shown that industrial instances have high modularity, i.e., supposedly good com-
munity structure [6], and that there is good-to-strong correlation between modularity and
solver run time [89]. However, Mull et al. [84] later exhibited a family of formulas that have
high modularity and require exponential-sized proofs to refute. Finally, this line of research
suffers from important methodological issues, that is, experimental methods and evidence
provided for correlative parameters tend not to be consistent across different papers in the
literature.

Hierarchical Community Structure of Boolean Formulas: Given the sheer diffi-
culty of the problem, we aim for an intermediate goal of proposing a set of parameters
that is strongly correlative and has good theoretical properties. Specifically, we propose
a set of parameters based on a graph-theoretic structure called Hierarchical Community
Structure (HCS), inspired by a commonly-studied concept in the context of hierarchical
networks [33, 97], which satisfies all the empirical tests hinted above and has better the-
oretical properties than previously proposed correlative parameters. The intuition behind
HCS is that it neatly captures the structure present in human-developed systems which
tend to be modular and hierarchical [106], and we expect this structure to be inherited by
Boolean formulas modelling these systems.

Contributions3:
3Instance generator and data can be found at https://satsolvercomplexity.github.io/hcs. Also,

for the full-length paper and appendices (with proofs of theorems in Section 5.5), please refer to the arXiv
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1. Empirical Result 1 (HCS and Industrial Instances): We show that a set of
parameters based on the HCS of the variable-incidence graph (VIG) of Boolean for-
mulas are effective in distinguishing industrial instances from random/crafted ones.
Moreover, we build a classifier that robustly classifies SAT instances into the cat-
egories they belong to (verification, random, etc.). The classification accuracy is
approximately 99% and we perform a variety of tests to ensure there is no overfitting
(See Section 5.4.1).

2. Empirical Result 2 (Correlation between HCS and Solver Run Time): We
build an empirical hardness model based on our HCS parameters to predict the solver
run time for a given problem instance. Our model, based on regression, performs
well, achieving an R2 score of 0.83, much stronger than previous such results (See
Section 5.4.2)

3. Empirical Result 3 (Scaling Experiments of HCS Instances): We empirically
show, via scaling experiments, that HCS parameters such as community degree and
leaf-community size positively correlate with solving time. We empirically demon-
strate that formulas whose HCS decompositions fall in a good range of parameter
values are easier to solve than instances with a bad range of HCS parameter values
(See Section 5.4.4).

4. Theoretical Results: We theoretically justify our choice of HCS by showing that
it behaves better than other parameters. More concretely, we show the advantages
of hierarchical over flat community structure by identifying HCS parameters which
let us avoid hard formulas that can be used as counterexamples to community struc-
ture [84], and by showing graphs where HCS can find the proper communities where
flat modularity cannot. We also show that there is a subset of HCS parameters (leaf-
community size, community degree, and fraction of inter-community edges) such that
restricting them limits the size of embeddable expanders (See Section 5.5).

5. Instance Generator: Finally, we provide an HCS-based instance generator which
takes input values of our proposed parameters and outputs a formula that satisfies
those values. This generator can be used to generate “easy” and “hard” formulas
with different hierarchical structures (See Section 5.4.4).

Research Methodology: We also codify a set of empirical tests which we believe pa-
rameters must pass in order to be considered for further theoretical analysis. While other

version of the paper [68].
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researchers have considered one or more of these tests, we bring them together into a co-
herent and sound research methodology that can be used for future research in formula
parameterization (See Section 5.2). We believe that the combination of these tests provides
a strong basis for a correlative parameter to be considered worthy of further analysis.

5.2 Research Methodology

As stated above, the eventual goal of the research presented here is to discover a structure
and an associated parameterization that is highly correlative with solver run time, is wit-
nessed in industrial instances, and is rigorous, i.e., forms the basis for an upper bound on
the parameterized complexity [101] of the CDCL algorithm. Considerable work has already
been done in attempting to identify exactly such a set of parameters [89]. However, we
observed that there is a wide diversity of research methodologies adopted by researchers in
the past. We bring together the best lessons learned into what we believe to be a sound,
coherent, and comprehensive research methodology explained below. We argue that every
set of parameters must meet the following empirical requirements in order to be considered
correlative:

1. Structure of Industrial vs. Random/Crafted Instances: A requisite for a
structure to be considered correlative is that industrial instances must fall within a
certain range of values for the associated parameters, while random and crafted in-
stances must have a different range. An example of such a structure is the community
structure of the VIG of Boolean formulas, as parameterized by modularity. Multiple
experiments have shown that industrial instances have high modularity (close to 1),
while random instances tend to have low modularity (close to 0) [89]. This could
be demonstrated via a correlation experiment or by building a classifier that takes
parameter values as input features.

2. Correlation between Structure and Solver Run Time: Another requirement
is correlation between parameters of a structure and solver run time. Once again,
community structure (and the associated modularity parameter) forms a good ex-
ample of a structure that passes this essential test. For example, it has been shown
that the modularity of the community structure of industrial instances (resp. ran-
dom instances) correlates well with low (resp. high) solver run time [89]. One may
use either correlation methods or suitable machine learning predictors (e.g., random
forest) as evidence here.
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3. Scaling Studies: To further strengthen the experimental evidence, we require that
the chosen structure and its associated parameters must pass an appropriately de-
signed scaling study. The idea here is to vary one parameter value while keeping as
much of the rest of the formula structure constant as possible, and see its effect on
solver run time. An example of such a study is the work of Zulkoski et al. [121], who
showed that increasing the mergeability metric has a significant effect on solver run
time.

Limitations of Empirical Conclusions: As the reader is well aware, any attempt at
empirically discovering a suitable structure (and associated parameterization) of Boolean
formulas and experimentally explaining the power of solvers is fraught with peril, since all
such experiments involve pragmatic design decisions (e.g., which solver was used, choice of
benchmarks, etc.) and hence may lead to contingent or non-generalizable conclusions. For
example, one can never quite eliminate a parameter from further theoretical analysis based
on empirical tests alone, for the parameter may fail an empirical test on account of bench-
marks considered or other contingencies. Another well-understood issue with conclusions
based on empirical analysis alone is that they by themselves cannot imply provable state-
ments about asymptotic behavior of algorithms. However, one can use empirical analysis to
check or expose gaps between the behavior of an algorithm and the tightness of asymptotic
statements (e.g., the gap between efficient typical-case behavior vs. loose worst-case state-
ments). Having said all this, we believe that the above methodology is a bare minimum
that a set of parameters must pass before being considered worthy of further theoretical
analysis. In Section 5.4, we go into further detail about how we protect against certain
contingent experimental conclusions.

Limits of Theoretical Analysis: Another important aspect to bear in mind is that it
is unlikely any small set of parameters can cleanly separate all easy instances from hard
ones. At best, our expectation is that we can characterize a large subset of easy real-world
instances via the parameters presented here, and thus take a step towards settling the
central question of solver research.

5.2.1 What is evidence?

In general, evidence is the result of testing a hypothesis. The precise definition of what
constitutes evidence changes depending on the hypothesis that we want to test. In this
work, our hypothesis is that our proposed set of parameters is predictive of the difficulty
of SAT instances. For a predictive parameterization of the difficulty of SAT instances, a
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formula is easy if and only if it has ‘good’ parameter values; conversely, a formula is hard
if and only if it has ‘bad’ parameter values. This hypothesis is general and can be applied
to any proposed set of parameters.

With this hypothesis, it is clear that any potential evidence which tests this hypothesis
must relate parameter values to the solving times of CNF formulas. This definition in-
cludes empirical data on the parameter values and solving times of a CDCL solver on CNF
formulas, instance generators and results derived from the analysis of this data, and theo-
retical results based on models of the system. This is the type of data that our proposed
tests will produce. Analysis of this evidence should allow us to determine whether our
parameters meet the criteria to be considered a predictive set of parameters. The evidence
that we present in this work consists of two machine learning classifiers, scaling studies
demonstrating the correlation between parameter values and solving time, and theoretical
results identifying the relationships between our parameters and the size of the CDCL
proof.

Description of Parameter Computation Apart from the running time and satisfiabil-
ity data which we compute using a CDCL SAT solver, we also need to compute the values
of the parameters of interest. We implemented a tool to compute the hierarchical com-
munity structure parameters of a formula. Our tool recursively computes the community
structure of the formula using the Louvain method [23], producing a hierarchical tree by
repeatedly decomposing communities into smaller sub-communities. Logging the values
of the metrics of interest at every node in the hierarchy separates the processes of data
collection and analysis, allowing us to later analyze the data without needing to aggregate
all of the metrics immediately. The hierarchical structure of each formula is later recov-
ered by parsing the stored data, and higher-level parameters are computed by iterating
over the communities of the reconstructed HCS tree. We run all of our computing jobs on
SHARCNET.

Our hierarchical parameter computations result in parameter data for each of the com-
munities and sub-communities in the formula. In order to extract information from our
computed data, we aggregate parameter values within each formula to provide a further
abstraction of the properties of the formula. This involves computing average values for
the parameters over every community as well as at each depth of the hierarchical tree.
These aggregated parameters for each formula serve as the basis for further analysis.
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5.2.2 How is evidence analyzed?

Evidence is analyzed by systematically looking for correlations in the data. This involves
producing data visualizations in the form of various plots and histograms to develop intu-
ition about the problem.

When testing whether different instance classes have different parameter values, we
analyze the data in two ways:

1. Average value plots (parameter value vs. depth): we aggregate parameter values
by computing averages over the instances belonging to each class and plotting these
average parameter values for each depth. These plots give us an initial impression of
whether the parameter values are different for different instance classes. We can then
precisely quantify the difference between the classes by developing machine learning
models.

2. Machine learning models: we train a series of machine learning classifiers to distin-
guish between different instance classes using our parameters as inputs. We randomly
divide our benchmark instances into training and verification sets at a proportion of
80% training and 20% verification. To ensure the robustness of our results, we repeat
this procedure five times and report the average classifier accuracies.

When testing whether a parameter correlates with running time, we analyze the data
in two ways (similarly to when we are testing whether parameter values can be used to
separate instance classes):

1. Scatter plots (parameter value vs. running time): for each instance, plot the pa-
rameter value against the solving time for the instance. We also consider log-log
plots. Then, fit a trendline to the data and calculate the R2 correlation value for the
dataset. We measure the strength of the correlation by how close |R2| is to 1. In
order to check whether combinations of our parameters might correlate with running
time, we additionally consider linear combinations of our parameters. This process
of combining parameters is similar to the technique used to test the combinations of
parameters in [121]. In our work, we treat the timeout as the actual solving time of
the instance. This can affect the quality of our correlation results.

2. Machine learning models: using our parameters, we train ML models to classify the
formula into one of two classes: ‘easy’ or ‘hard’. This technique is not affected by
the fact that the true solving time is not represented for instances which time out.
Regardless of the true running time, instances which time out are ‘hard’.
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• For the instance family classifier: Instances are labelled with the class of instances
they were acquired from

• For the hardness classifier: Instances are labelled as ‘easy’ if their running times are
less than the median running time and ‘hard’ otherwise

5.2.3 Caveats when analyzing evidence

In our analysis, we aggregate the collected data by computing averages. Within a formula,
we argue that this is reasonable when the hierarchical tree is relatively balanced, i.e., the
parameters do not take on extremely different values for different communities and branches
of the hierarchical tree. Similarly, within a class of instances, simply taking averages is
reasonable when the sample instances are all similar to each other. It is possible that a
more sophisticated method exists for aggregating our data, but we are unaware of any such
scheme which can be demonstrably justified for our data.

When drawing (contingent) conclusions after analyzing the data, it is imperative that
we are aware of the assumptions that our conclusions rely upon. We note that regardless
of how we define our parameters, there will always be other parameters which will be more
predictive than our parameters in certain scenarios.

5.2.4 When is evidence considered to support a hypothesis?

In general, evidence is considered to support a hypothesis if the data does not contradict
any of the predictions made by the hypothesis. Otherwise, the evidence is considered to
refute the hypothesis. This means that there is a different way for each type of evidence
to support or refute a hypothesis, depending on the different predictions made by the
hypothesis. Our hypothesis is that a set of parameters is ‘predictive’, which is an imprecise
statement and therefore hard to verify. Even with our four empirical requirements, In order
to test the hypothesis, it must be refined further.

Ideally, the set of parameters we pick would be 100% accurate in meeting both of the
criteria identified in subsection 5.2.1. However, in practice, it is highly unlikely that such
a parameterization will ever be identified. Thus, we do not argue that the parameters we
present are the ideal set of parameters, but simply that they are a good set of parameters.
With this aim, we define a minimum threshold of accuracy/confidence that the results
must meet before we consider the evidence to support the hypothesis.
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For the machine learning models we present, we say that the evidence supports our
hypothesis when the classification accuracies are high (above 75% ). Otherwise, we say
that the evidence refutes our hypothesis.

This chapter is founded on a series of empirical results where a SAT solver is used to
compute solving times for an array of propositional formulas. Thus, our results are subject
to the limitations and practicalities of the real world, and there are a vast number of design
choices which must be made in order to produce a result. Some of the choices we make
are inherently arbitrary, and in many cases, it is difficult to argue whether one decision or
definition is better than another.

The validity of the conclusions in any empirical work is contingent on the soundness
of these decisions. In general, empirical work is fraught with ‘contingent conclusions’ and
practical decisions that may lead us astray. Hence, we are very cautious in making highly
conservative conclusions. We can identify correlations, but we cannot determine cause-
and-effect. This means that we will never have a sense of finality about when to stop
looking at parameters, and that we cannot conclusively say that the parameters we favour
in this chapter will stand the test of time. Given all of these caveats, all we can say is that
our current crop of parameters seem better suited as a basis for further theoretical analysis
than previously proposed ones.

5.2.5 Definition of Difficulty

The terms ‘easy’ and ‘hard’ refer to an intuitive and imprecise notion of difficulty. Unfor-
tunately, since these terms are relative, we cannot precisely delineate this boundary, and
any practical definition must be completely arbitrary.

From the perspective of the resolution proof system, the ‘ideal’ definition of difficulty
refers to the size of the resolution refutation of an unsatisfiable formula. Unfortunately, it
is meaningless for satisfiable formulas because the resolution proof system produces proofs
by deriving contradictions and ultimately deriving UNSAT (⊥). Moreover, with finite
computation resources, determining whether a polynomially-sized proof exists for a given
propositional formula is impractical. Even if a polynomially-sized proof exists, we cannot
guarantee that we will be able to find it.

In light of these concerns, we must consider a more practical definition. We define the
difficulty of a CNF instance by the amount of time taken for a SAT solver to solve it. This
definition works for both SAT and UNSAT instances, but introduces some new practical
considerations.
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Since we only have access to finite computing resources, we must limit the amount of
time allocated to the solver for attempting to solve each instance. This will be the maximum
time allowed for each instance, and serves as the boundary for classifying instances into
the ‘hard’ end of the difficulty spectrum, where any instances which can be solved in less
time are considered ‘easy’. This decision is arbitrary and might not be reflective of the
instances which are considered to be difficult in the future. In light of this, we choose a
value of 5000 seconds4 as a reasonable time limit.

5.3 Hierarchical Community Structure

Given that many human-developed systems are modular and hierarchical [106], it is nat-
ural to hypothesize that these properties are transferred over to Boolean formulas that
capture the behaviour of such systems. We additionally hypothesize that purely randomly-
generated or crafted formulas do not have these properties of hierarchy and modularity,
and that this difference partly explains why solvers are efficient for the former and not
for the latter class of instances. We formalize this intuition via a graph-theoretic concept
called Hierarchical Community Structure (HCS), where communities can be recursively
decomposed into smaller sub-communities. Although the notion of HCS has been widely
studied [33, 97], it has not been considered in the context of Boolean formulas before.

Hierarchical Community Structure Definition: A hierarchical decomposition of a
graph G is a recursive partitioning of G into subgraphs, represented as a tree T . Each
node v in the tree T is labelled with a subgraph of G, with the root labelled with G itself.
The children of a node corresponding to a (sub)graph H are labelled with a partitioning
of H into subgraphs {H1, . . . , Hk}; see Figure 5.1. There are many ways to build such
hierarchical decompositions. The method that we choose constructs the tree by recursively
maximizing the modularity, as in the hierarchical multiresolution method [51]. We call
this the HCS decomposition of a graph G: for a node v in the tree T corresponding to a
subgraph H of G, we construct |P(H)| children, one for each of the subgraphs induced by
the modularity-maximizing partition P(H), unless |P(H)| = 1, in which case v becomes
a leaf of the tree. In the case of HCS decompositions, we refer to the subgraphs labelling
the nodes in the tree as communities of G.

We are interested in comparing the hierarchical community structures of Boolean for-
mulas in conjunctive normal form, represented by their VIGs. For this comparison, we use

4This value is the time limit used by the SAT competition
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Figure 5.1: A hierarchical decomposition (right) constructed by recursively maximizing
the modularity of the graph (left).

the following parameters:

• The community degree of a community in a HCS decomposition is the number of
children of its corresponding node.

• A leaf-community is one with degree 0.

• The size of a community is its number of vertices.

• The depth or level of a community is its distance from the root.

• The inter-community edges of a partition P(H) are EIC (H) =
⋃

Hi,Hj∈P(H) E(Hi, Hj),

the edges between all pairs of subgraphs, and their endpoints VIC (H) =
⋃
EIC are

the inter-community vertices. Note that 2|EIC (H)|/|H| is an upper bound for the
edge expansion of H.

Note that these parameters are not independent. For example, changes in the number
of inter-community vertices or inter-community edges will affect modularity. Since our
hierarchical decomposition is constructed using modularity, this could affect the entire
decomposition and hence the other parameters.

5.4 Empirical Results

We now turn to the results of our empirical investigations with HCS parameters. We
computed 49 unique parameters capturing the HCS structure, together with several base
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parameters measuring different structural properties of input VIGs5. To compute the hier-
archical community structure, we used the Louvain method [23] to detect communities and
recursively call the Louvain method to produce a hierarchical decomposition. The Louvain
method is considered to be more efficient and produces higher-modularity partitions than
other known algorithms.

Experimental Design. In our experiments we used a set of 10 869 instances from five
classes, which we believe is sufficiently large and diverse to draw sound empirical conclu-
sions (See Appendix [68]). We did not explicitly balance the ratio of satisfiable instances
in our benchmark selection because we expect our methods to be sufficiently robust as long
as the benchmark contains a sufficient number of SAT and UNSAT instances.

In order to get interesting instances for modern solvers, we considered formulas which
were previously used in the SAT competition from 2016 to 2018 [102]. Specifically, we took
instances from five major tracks of the competition: agile, verification, crypto, crafted, and
random. We also generated additional instances for some classes: for verification, we scaled
the number of unrolls when encoding finite state machines for bounded model checking;
for crypto, we encoded SHA-1 and SHA-256 preimage problems; for crafted, we generated
combinatorial problems using cnfgen [67]; and for random, we generated k-CNFs at the
corresponding threshold CVRs for k ∈ {3, 5}, again using cnfgen. A summary of the
instances is presented in the Appendix.

We preprocessed all formulas using the MiniSAT preprocessor [41], and used Maple-
SAT [73] as our CDCL solver of choice since it is a leading and representative solver. The
core of the preprocessing was a combination of variable elimination with subsumption and
self-subsuming resolution [41]. For computing satisfiability and running time, we used
SHARCNET’s Intel E5-2683 v4 (Broadwell) 2.1 GHz processors [104], limiting the com-
putation time to 5 000 seconds6. For parameter computation we did not limit the type of
processor because structural parameter values are independent of processing power.

5.4.1 HCS-based Category Classification of Boolean Formulas

The question whether our set of HCS parameters is able to capture the underlying structure
that differentiates industrial instances from the rest naturally lends itself to a classification
problem. Therefore, we built a multi-class Random Forest classifier to classify a given
SAT instance into one of the five categories: verification, agile, random, crafted, or crypto.

5For a complete list, see: https://satsolvercomplexity.github.io/hcs/data
6This value is the time limit used by the SAT competition.
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Category Runtime
Score 0.996 ± 0.001 0.825 ± 0.016

Top 5 features

rootMergeability

maxInterEdges/CommunitySize

cvr

leafCommunitySize

lvl2InterEdges/lvl2InterVars

rootInterEdges

lvl2Mergeability

cvr

leafCommunitySize

lvl3Modularity

Table 5.1: Results for classification and regression experiments with HCS parameters.
For regression we report R2 values, whereas for classification we report the mean of the
balanced accuracy score over 5 cross-validation datasets.

Random Forests [26] can learn complex, highly non-linear relationships while having simple
structure, and hence are easier to interpret than other models (e.g., deep neural networks).

We used an off-the-shelf implementation of a Random Forest classifier implemented
as sklearn.ensemble.RandomForestClassifier in scikit-learn [91]. Using the default
set of parameters in scikit-learn version 0.24, we trained our classifier using 800 randomly
sampled instances of each category on a set of 49 features to predict the class of the problem
instance. We found that our classifier performs extremely well, giving an average accuracy
score of 0.99 over 5 cross-validation datasets. Further, the accuracy did not depend on our
choice of classifier. In particular, we found similar accuracy scores when we used C-Support
Vector classification [95] instead of Random Forests.

We also determined the five most important features used by our classifier. Since
several features in our feature set are highly correlated, we first performed a hierarchical
clustering on the feature set based on Spearman rank-order correlations. From the 22
clusters that were generated, we arbitrarily chose a single feature from each cluster as a
representative member of the cluster f7. Using these 22 representative features, we then
computed their importance using permutation importance [26]. In Table 5.1 we list the
top five representative features from each cluster, not necessarily in order of importance.

7See https://satsolvercomplexity.github.io/hcs/data for details on clusters.
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5.4.2 HCS-based Empirical Hardness Model

We used our HCS parameters to build an empirical hardness model (EHM) to predict
the run time of MapleSAT on a given instance. Since the solving time is a contin-
uous variable, we considered a regression model built using Random Forests, namely
sklearn.ensemble.RandomForestRegressor from scikit-learn [91]. Before training our
regression model, we removed instances which timed-out at 5 000 seconds and those in-
stances that were solved almost immediately (in zero seconds) to avoid issues with artifi-
cial cut-off boundaries. We then trained our Random Forest model using the default set of
parameters in scikit-learn version 0.24 to predict the logarithm of the solving time using
the remaining 1 880 instances, equally distributed between different categories.

We observed that our regression model performs quite well, with an R2 score [107] of
0.83, which implies that in the training set, almost 83% of the variability of the dependent
variable (i.e., in our case, the logarithm of the solving time) is accounted for, and the
remaining 17% is still unaccounted for by our choice of parameters. Similar to category
classification, we also looked for the top five predictive features used by our Random
Forest regression model using the exact same process. We list the representative features
in Table 5.1.

Additionally, we trained our EHM on each category of instances separately. We found
that the performance of our EHM varies with instance category. Concretely, agile outper-
formed all other categories with an average R2 value of 0.94, followed by random, crafted
and verification instances with scores of 0.81, 0.85 and 0.74 respectively. The worst perfor-
mance was shown by the instances in crypto, with a score of 0.48.

5.4.3 HCS Parameter Value Ranges for Industrial/Random In-
stances

In the previous section, we reported on the top five parameters most predictive of the solver
runtime in the context of our Random Forest regression model. These parameters can be di-
vided into five distinct classes of parameters: mergeability-based, modularity-based, inter-
community edge based, CVR, and leaf-community size. The parameters CVR, mergeability
and modularity have been studied by previous work. CVR [30] is perhaps the most studied
parameter among the three. Zulkoski et al. [121] showed that mergeability, along with
combinations of other parameters, correlates well with solver run time; Ansotegui et al. [6]
showed that industrial instances have good modularity compared to random instances; and
Newsham et al. [89] showed that modularity has good-to-strong correlation with solver run
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Figure 5.2: Dependence of the number of inter-community edges at the root level (rootIn-
terEdges) vs. the number of variables in a formula, for verification and random instances
in our dataset. The two distinct lines (starting from the bottom) for random instances
correspond to 3-CNFs and 5-CNFs, respectively.

time. We examined the remaining parameters, i.e. inter-community edge based parameters
(rootInterEdges) and leaf-community size to gain a better understanding of the impact
of these parameters on the problem structure and solver runtime, respectively. In this sub-
section, we look at how HCS parameters scale as the size of industrial instances increases.
And in Section 5.4.4, we introduce a HCS instance generator, which we use to perform a
set of controlled experiments. We then discuss how the hardness of the instances changes
when certain HCS parameters are increased/decreased.

Observations. We observe that hierarchical decomposition generally produces leaf com-
munities of maximal size comparable to the largest clause width, except for very unbalanced
formulas (easy for other reasons). The community degree is highest at root level of every
instance, and seems to be bounded by O(log n). This fits within the range of parameters
considered in Section 5.5.

In Figure 5.2, we show how the inter-community edge based parameter rootInterEdges
scales with the number of variables in a formula, for verification and random instances.
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We note that for random instances, rootInterEdges grows linearly with the instance size,
whereas in verification instances it grows sublinearly. This supports our intuition that
graphs of hard (random) instances are expanders, whereas graphs of industrial instances
are not.

5.4.4 Scaling Experiments with HCS parameters

Instance Generator. To isolate the effects of HCS parameters on solver runtime, we
built an HCS instance generator to construct SAT instances with varying leaf-community
size and other HCS parameters. On a high level, the instance generator constructs instances
bottom-up, starting with random disjoint formulas of predefined CVR as leaf communities,
then combining them recursively by introducing bridge clauses with variables in at least
two sub-communities to form super-communities at that level, which in turn are combined
at the following level. We point out that in our generator, modularity is specified implicitly
through the above parameters, and we do not control for mergeability at all. We refer the
reader to the works by Zulkoski et al. [121] and Giráldez-Cru [45] for literature on the
empirical behaviours of mergeability and power law, respectively.

It is important to note that our HCS instance generator is not intended to be perfectly
representative of real-world instances. In fact, there are multiple properties of our generated
instances which are not reflective of industrial instances. For example, our generator
assumes that all leaf-communities have the same size and depth, which is demonstrably
untrue of industrial instances. In some cases, the communities produced by our generator
might not be the same as the communities which would be detected using the Louvain
method to perform a hierarchical community decomposition. For example, it might be
possible to further decompose the generated “leaf-communities” into smaller communities.
Thus, our generator is only intended to demonstrate the effect of varying HCS parameters
on solver runtime.

Observations. We constructed formulas with varying CVR, power law parameter, hi-
erarchical degree, depth, inter-community edge density, inter-community variable density,
and clause width. We found evidence which suggests that increasing any of leaf-community
size, depth, or community degree, while keeping every other HCS parameter fixed, increases
the overall hardness of the generated formula. For example, we found that changing the
size of leaf-communities from 15 variables to 20, the solving time changed from 4.96 sec-
onds to upwards of 5000 seconds. Similarly, changing the depth from 4 to 5 resulted in an
increase in solving time from 0.03 seconds to over 5000 seconds.
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5.4.5 Discussion of Empirical Results

The goal of our experimental work was to first ascertain whether HCS parameters can dis-
tinguish between industrial and random/crafted instances, and whether these parameters
show any correlation with CDCL solver runtime. The robustness of our classifier indicates
that HCS parameters are indeed representative of the underlying structure of Boolean for-
mulas from different categories. Further, our empirical hardness model confirms that the
correlation of HCS parameters with solver run time is strong—much stronger than previ-
ously proposed parameters. We also find that our HCS parameters are more effective in
capturing the hardness or easiness of formulas from industrial/agile/random/crafted, but
not crypto. The crypto class is an outlier. It is not clear from our experiments (nor any
previous ones) as to why crypto instances are hard for CDCL solvers.

We also identified the top five (representative) parameters in terms of their importance
in predicting the category (classification) or runtime of an instance (regression). The
accuracy for classification and regression with only the top features features dropped to
0.94 and 0.77, respectively, suggesting that only a few parameters are likely to play a role
in closing the question on why solvers are efficient for industrial instances. Note that a
classification accuracy of 0.99 is likely to suggest that our model is over-fitting. Fortunately,
in our case our models are trained over a large set of instances obtained via very different
methods (e.g., random over various widths, different kinds of crafted, verification instances
from different domains), and therefore, there is sufficient entropy in our data set so that
overfitting is unlikely to be a concern for the robustness of our model.

In our investigation of parameters based on inter-community edges and leaf-community
size, we found that industrial instances typically have small average leaf-community size,
high modularity, and relatively few inter-community edges, while random/crafted have
larger average leaf-community size, low modularity, and a very high number of inter-
community edges. This suggests that leaf-community size and the fraction of inter-community
edges, as well as community degree, are important HCS parameters to consider further.

5.5 Theoretical Results

In this section, we show that hierarchical decomposition avoids some of the pitfalls of
flat community structure, a promising correlative parameter for explaining easiness of the
industrial instances [89]. Community structure was theoretically shown to be insufficient by
Mull et al. [84], where they showed that formulas with good community structure can have
random formulas embedded in them either in a community or over the inter-community
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edges. To avoid embedding a random formula in a community, its size has to be small
(relative to the entire graph), and avoiding expanders over inter-community edges requires
that there not be too many communities. A way to be able to restrict both is to consider
a hierarchical decomposition, limiting both the number of sub-communities (community
degree) in each level of the decomposition, as well as the leaf community size thus avoiding
the most important issues that flat community structure suffers from.

Based on our experimental work, we narrow down the most predictive HCS parameters
to be leaf-community size, community degree, and the number inter-community edges in
each decomposition. These parameters also play a role in our theoretical results below.
For a formula to have “good” HCS, we restrict the parameter ranges as follows: the graph
must exhibit O(log n) leaf-community size and community degree, and have a small number
of inter-community edges in each decomposition of a community. These assumptions are
supported by our experimental results (See Appendix [68]). We show that these restrictions
are necessary in Appendix, where we also present a significantly simplified proof of the
result of Mull et al. [84].

Bounding the Size of Expanders in Good HCS Graphs. Ideally, we would like
to be able to prove an upper bound on proof size or search time which depends on the
HCS parameters of a formula. Unfortunately, our current state of understanding does
not allow for that. A step towards such a result would be to show that formulas with
good HCS (and associated parameter value ranges) are not susceptible to typical methods
of proving resolution lower bounds. Currently, all resolution bounds exploit expansion
properties – typically boundary expansion – of the CNF formula (or more precisely its
bipartite constraint-variable incidence graph (CVIG)). Therefore our goal is to show that
formulas with good HCS parameters have poor expansion properties, and also do not have
large expanding subgraphs embedded within them. Note that the VIG is related to the
CVIG by taking the square of its adjacency matrix, from where it follows that, for formulas
with low width, if the VIG is not edge-expanding then the CVIG is not vertex-expanding.
Furthermore, again for formulas with low width, vertex expansion is closely related to
boundary expansion. Hence we only need to focus on VIG edge expansion. With this in
mind, we state several positive and negative results.

First, we observe (see Appendix) that if the number of inter-community edges at the
top level of the decomposition grows sub-linearly with n and at least two sub-communities
contain a constant fraction of vertices, then this graph family is not an expander. Unfor-
tunately, we can also show (see Appendix) that graphs with good HCS can simultaneously
have sub-graphs that are large expanders, with the worst case being very sparse expanders,
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capable of “hiding” in the hierarchical decomposition by contributing relatively few edges
to any cut. To avoid that, we require an explicit bound on the number of inter-community
edges, in addition to small community degree and small leaf-community size. This lets us
prove the following statement.

Theorem 9. Let G = {Gn} be a family of graphs. Let f(n) ∈ ω(poly(log n)), f(n) ∈ O(n).
Assume that G has HCS with the number of inter-community edges o(f(n)) for every
community C of size at least Ω(f(n)) and depth is bounded by O(log n). Then G does not
contain an expander of size f(n) as a subgraph.

Note that our experiments show that the leaf size and depth in industrial instances are
relatively small and the number of inter-community edges grows slowly. From this and the
theorem above, we can show that graphs with very good HCS properties do not contain
linear-sized expanders.

Lower Bounds Against HCS: We are also able to show several of strong lower bounds
on formulas with good HCS (see Appendix). For a number of combinations of parame-
ters, we show that restricting ourselves to “good” ranges of these parameters does not rule
out formulas which require superpolynomial size resolution refutations. Our most striking
counterexample essentially shows that if the degree of the VIG is more than a small con-
stant, then it is possible to embed formulas of superpolynomial resolution complexity. In
contrast with the previous results on the size of embeddable expanders in instances with
good HCS, this result shows how to embed a sparse expander of superlogarithmic size.

Hierarchical vs. Flat Modularity: It is well-known that modularity suffers from a
resolution limit and cannot detect communities smaller than a certain threshold [43], and
that HCS can avoid this problem in some instances [23]. In Appendix we provide an
asymptotic, rigorous statement of this observation.

Theorem 10. There exists a graph G whose natural communities are of size log(n) and
correspond to the (leaf) HCS communities, while the partition maximizing modularity con-

sists of communities of size Θ
(√

n/ log3 n
)
.

5.6 Related Work

Community Structure: Using modularity to measure community structure allows one
to distinguish industrial instances from randomly-generated ones [6]. Unfortunately, it has
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been shown that expanders can be embedded within formulas with high modularity [84],
i.e., there exist formulas that have good community structure and yet are hard for solvers.

Heterogeneity: Unlike uniformly-random formulas, the variable degrees in industrial
formulas follow a powerlaw distribution [5]. However, degree heterogeneity alone fails to
explain the hardness of SAT instances. Some heterogeneous random k-SAT instances were
shown to have superpolynomial resolution size [22], making them intractable for current
solvers.

SATzilla: SATzilla uses 138 disparate parameters [118], some of which are probes aimed at
capturing a SAT solver’s state at runtime, to predict solver running time. Unfortunately,
there is little or no evidence that most of these parameters are amenable to theoretical
analysis.

Clause-Variable Ratio (CVR): Cheeseman et al. [30] observed the satisfiability thresh-
old behavior for random k-SAT formulas, where they show formulas are harder when their
CVR are closer to the satisfiability threshold. Outside of extreme cases, CVR alone seems
to be insufficient to explain hardness (or easiness) of instances, as it is possible to gen-
erate both easy and hard formulas with the same CVR [44]. Satisfiability thresholds are
poorly defined for industrial instances, and Coarfa et al. [34] demonstrated the existence
of instances for which the satisfiability threshold is not equal to the hardness threshold.

Treewidth: Although there are polynomial-time non-CDCL algorithms for SAT instances
with bounded treewidth [3], treewidth by itself does not appear to be a predictive parameter
of CDCL solver runtime. For example, Mateescu [81] showed that some easy instances have
large treewidth, and later it was shown that treewidth alone does not seem to correlate
well with solving time [121].

Backdoors: In theory, the existence of small backdoors [116, 100] should allow CDCL
solvers to solve instances quickly, but empirically backdoors have been shown not to
strongly correlate with CDCL solver run time [62].

5.7 Conclusions and Future Work

In this chapter, we propose HCS as a correlative set of parameters for explaining the power
of CDCL SAT solvers over industrial instances, which also has good theoretical properties.
Empirically, HCS parameters are much more predictive than previously proposed correla-
tive parameters in terms of classifying instances into random/crafted vs. industrial, and
in terms of predicting solver run time. Among the top five most predictive parameters,
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three are HCS parameters, namely leaf-community size, modularity and fraction of inter-
community edges. The remaining two are cvr and mergeability. We further identify the
following core HCS parameters that are the most predictive among all HCS parameters,
namely, leaf-community size, modularity, and fraction of inter-community edges. Indeed,
these same parameters also play a role in our subsequent theoretical analysis, where we
show that counterexamples to flat community structure do not apply to HCS, and that
restricting certain HCS parameters limits the size of embeddable expanders. In the final
analysis, we believe that HCS, along with other parameters such as mergeability or het-
erogeneity, will play a role in finally settling the question of why solvers are efficient over
industrial instances.
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Chapter 6

Adaptive Invocation of SDCL
through Reinforcement Learning: A
VSIDS-inspired Approach

In our preceding paper, we introduced MapleSDCL, a pioneering Satisfaction-Driven Clause
Learning (SDCL) SAT solver. A rigorous empirical evaluation attested to its proficiency,
particularly in swiftly solving Mutilated Chess Board (MCB) problems, outpacing tradi-
tional CDCL solvers without necessitating alterations to the branching heuristic of the
foundational CDCL SAT solver. While MapleSDCL demonstrated commendable perfor-
mance, our insights revealed an opportunity: optimizing the accuracy of SDCL invocations.

This chapter pivots around the implementation and evaluation of a reinforcement learn-
ing (RL) framework tailored to enhance the efficiency of SDCL invocations. Given the as-
sociated computational cost of invoking SDCL and the observation that every invocation
does not invariably result in clause learning, we propose an RL-based model to ascertain
scenarios where SDCL invocation is most promising.

6.1 Introduction

Conflict-Driven Clause Learning (CDCL) SAT solvers are routinely used to solve large
industrial problems obtained from a variety of applications in software engineering [29],
formal methods [32], security [40, 117] and, AI [24], even though the underlying Boolean
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satisfiability (SAT) problem is well known to be NP-complete [35] and believed to be in-
tractable in general. Despite this, solver research has made significant progress in improving
CDCL solvers’ components and heuristics [79].

It is well known that CDCL SAT solvers are polynomially equivalent to resolution [94,
8], and consequently, it follows that classes of formulas, such as the pigeon hole principle
(PHP), that are hard for resolution are also hard for CDCL SAT solvers. To address such
limitations, researchers are actively designing and implementing solvers that correspond to
stronger propositional proof systems.

One such class of solvers is called Satisfaction-Driven Clause Learning (SDCL) solvers [57,
56, 55], which are based on the propagation redundancy (PR) property [54, 56]. The SDCL
paradigm extends CDCL in the following way: unlike CDCL solvers, SDCL solvers may
learn clauses even when an assignment trail α is consistent. To be more precise, an SDCL
solver first computes a new formula Pα(F ), known as a pruning predicate. Then, it checks
the satisfiability of Pα(F ). If it is satisfiable, it means ¬α is redundant with respect to the
formula, and the solver can learn the clause (¬α). Even though the intuition is clear and
procedures for computing a possible Pα(F ) are very well defined, it is still an extremely
challenging task to automate SDCL.

There are two main problems in this setting: first, the satisfiability check for the formula
Pα(F ) is NP-complete and is hard to solve in general. It essentially requires the SDCL
solver to call another SAT solver that we refer to as a sub-solver. Given that this sub-solver
call can be expensive, one needs to be strategic about when to invoke it during the run of
an SDCL solver. Second, the clauses learned by SDCL can be large, and we want to learn
shorter clauses whenever possible.

While the latter has been tackled in our prior research [90], this chapter zeroes in on the
former problem, aiming to heighten the success rate of SDCL invocations. We introduce an
approach inspired by the VSIDS branching heuristic. In essence, each variable is assigned
an activity score reflecting its recent usefulness. Variables pivotal in recent CDCL learnt
clauses receive higher activity scores, guiding the solver to prioritize them in subsequent
attempts. For SDCL, we maintain a distinct set of scores, and we award variables that
lead to successful SDCL invocations.

6.2 Propagation Redundancy and SDCL

Despite their success in a variety of real-world applications [105, 96, 21, 58], CDCL SAT
solvers have well-known limitations. Proof complexity techniques have established the

70



polynomial equivalence between CDCL and general resolution [94, 8], the proof system
with the inference rule that allows one to derive C ∨D given two clauses of the form l∨C
and ¬l∨D. An important consequence of this equivalence is that if an unsatisfiable formula
does not have a polynomial size proof by resolution, no run of CDCL can determine the
unsatisfiability of the formula in polynomial time.

6.2.1 Propagation Redundancy

This limitation has motivated the search for extensions of CDCL solvers that may al-
low the resultant method to simulate more powerful proof systems. One example is the
extended resolution proof system [111]: by allowing the introduction of new variables to
resolution, it can produce polynomial size proofs of the pigeon-hole principle [36], which re-
quires exponential-size resolution proofs otherwise. However, adding new variables would
exponentially increase the search space of the formula. A newer direction [54, 56] tries
to avoid the addition of new variables, and is instead based on the well-known notion of
redundancy:

Definition 10. A clause C is redundant with respect to a formula F if F and F ∧C are
equisatisfiable.

To provide a more useful characterization of redundancy, we need some definitions.

Definition 11. Given an assignment α and a clause C, we define C|α = ⊤ if α |= C;
otherwise C|α is the clause consisting of all literals of C that are undefined in α. For a
formula F , we define the formula F|α = {C|α | C ∈ F and α ̸|= C}.

Theorem 11 ([54], Theorem 1). A non-empty clause C is redundant with respect to a
formula F if and only if there exists an assignment ω such that ω |= C and F ∧¬C |= F |ω.

From a practical point of view, this characterization does not help much, because even
if we know ω (known as the witness) it is hard to check whether the property holds. This
is why a more limited notion of redundancy has been defined [54]:

Definition 12. A clause C is propagation redundant (PR) with respect to a formula
F if there exists an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω

Note that since F ∧ ¬C ⊢1 F |ω implies F ∧ ¬C |= F |ω, any PR clause is redundant.
Hence, we can add PR clauses to our formula to make it easier to solve without affecting its
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satisfiability. If we force ω to assign all variables in C but no other variable, we can obtain
weaker but simpler notions of redundancy: if we force ω to satisfy exactly one literal of
C, we obtain literal-propagation redundant (LPR) clauses; if allow ω to satisfy more than
one literal of C, we obtain set-propagation redundant (SPR) clauses. Obviously, any LPR
clause is SPR, and any SPR clause is PR, but none of these three notions are equivalent
as the following examples show.

Example 1 ([54]). Let F = {x∨ y, x∨¬y∨ z, ¬x∨ z, ¬x∨u, x∨¬u} and C = x∨u.
The witness ω = {x, u} satisfies C and, since F |ω = {z}, it holds that F ∧¬C ⊢1 F |ω, that
is, unit propagation on F ∧ ¬x ∧ ¬u ∧ ¬z results in a conflict. Hence, C is SPR w.r.t. F .

However, it is not LPR. The reason is that there are only two possible witnesses that
satisfy exactly one literal of C: ω1 = {x,¬u} and ω2 = {¬x, u}. But we have both F |ω1 and
F |ω2 contain, among others, the empty clause. Hence, F ∧¬C ⊢1 F |ω1 and F ∧¬C ⊢1 F |ω2

require that unit propagation on F ∧ ¬C, that is, F ∧ ¬x ∧ ¬u, results in a conflict, which
is not the case.

Example 2 ([54]). Let F = {x∨y,¬x∨y,¬x∨z} and C = (x). If we consider the witness
ω = {x, z}, we have that F |ω = {y}. It is obvious that ω |= C and also F ∧ ¬x ⊢1 y.
Thus, C is PR w.r.t. F . However it is not SPR because the only possible witness would be
ω1 = {x}, but F |ω1 = {y, z} and it does not hold that F ∧ ¬x ⊢1 z.

6.2.2 SDCL and Reducts

It was proved in [54] that the proof system that combines resolution with the addition of
PR clauses admits polynomial-sized proofs for the pigeon hole principle. However, it is not
a trivial task to add this capability to CDCL solvers. This question was addressed with
the development of Satisfiability-Driven Clause Learning (SDCL) [57]. The key notion in
this new solving paradigm is the one of pruning predicate:

Definition 13. Let F be a formula and α an assignment. A pruning predicate for F
and α is a formula Pα(F ) such that if it is satisfiable, then the clause ¬α is redundant
w.r.t. F .

SDCL extends CDCL in the following way (See also Algorithm 6.2.2). Before making
a decision, a pruning predicate for the assignment α and formula F is constructed. If
satisfiable, we can learn ¬α and use it for backjump and continuing the search, hence
pruning away the search tree without needing to find a conflict. This leads to the simple
code in Algorithm 6.2.2, where removing lines 9 to 12 results in the standard CDCL

72



Algorithm 2 The SDCL algorithm. Note that removing lines 11-14 results in the CDCL
algorithm.

1: α := ∅
2: while true do
3: α := unitPropagate(F, α)
4: if conflict found then
5: C := analyzeConflict()
6: F := F ∧ C
7: if C is the empty clause then
8: return UNSAT
9: end if
10: α := backjump(C, α)
11: else if Pα(F ) is satisfiable then
12: C := analyzeWitness()
13: F := F ∧ C
14: α := backjump(C, α)
15: else
16: if all variables are assigned then
17: return SAT
18: end if
19: α := α ∪Decide()
20: end if
21: end while

algorithm, and where we can assume, for simplicity, that analyzeWitness() returns ¬α.
More sophisticated versions of analyzeWitness are discussed in the next Section.

We can understand SDCL as a parameterized algorithm, since the use of different
pruning predicates Pα(F ) leads to distinct types of SDCL algorithms with possibly different
underlying proof systems. In the following, we summarize the contributions of [57, 55] and
explain the different pruning predicates and the corresponding proof systems that are
known.

Definition 14. Given formula F and a (partial) assignment α, the positive reduct pα(F )
is the formula ¬α ∧G, where G = {touchedα(D) | D ∈ F and α |= D}.

That is, we only consider clauses satisfied by α, and among them, only the literals that
are assigned. In [57] it is proved that pα(F ) is a valid pruning predicate. Moreover, a
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precise characterization of the redundancy achieved by pα(F ) is given: pα(F ) is satisfiable
if and only if ¬α is set-blocked in F .

Definition 15. A clause C is set-blocked in a formula F if there exists a subset L ⊆ C
such that, for every clause D containing the negation of some literal in C, the clause
(C \ L) ∨ ¬L ∨D contains two complementary literals.

The results in [57] imply that a proof system based on resolution and set-blocked
clauses has polynomial size proofs for the pigeon hole principle. It is also known [54] that
set-blocked clauses are a particular case of SPR clauses. If one wants to obtain the full
power of SPR clauses, the following pruning predicate is needed:

Definition 16. Given formula F and a (partial) assignment α, the filtered positive
reduct fα(F ) is the formula ¬α ∧ G, where G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1

untouchedα(D)}.

Again, a precise characterization of the power of fα(F ) is known [55]: fα(F ) is satisfiable
if and only if ¬α is SPR with respect to F . Despite being harder to compute than pα(F ), the
fact that fα(F ) is a subset of the clauses in pα(F ) makes it easier to check for satisfiability.
Finally, another pruning predicate is given in [55] that achieves the full power of PR clauses,
but it is not considered to be practical. We close this sequence of pruning predicates and
their corresponding redundancy characterization with a novel pruning predicate and its
corresponding redundancy notion.

Definition 17. Given formula F and a (partial) assignment α, the purely positive
reduct ppα(F ) is the formula ¬α ∧G, where G = {satisfiedα(D) | D ∈ F and α |= D}.

Since all clauses in ppα(F ) are subclauses of clauses in pα(F ), whenever ppα(F ) is
satisfiable, pα(F ) is also satisfiable. This proves that ppα(F ) is a pruning predicate, but
we can be more precise about the notion of redundancy it corresponds to.

Definition 18. We say that a literal l ∈ C blocks C in F if an only if for every clause
D in F containing literal ¬l, resolution between C and D gives a tautology. A clause C is
blocked in F if and only if there exists some literal l ∈ C that blocks C in F .

Theorem 12. Given a formula F and an assignment α, the formula ppα(F ) is satisfiable
if and only if the clause ¬α is blocked in F .

Proof. Left to right: let β be a model of ppα(F ). Since β |= ¬α, we can take any literal
¬l in ¬α satisfied by β. We now prove that ¬l blocks ¬α in F . Let us consider a clause
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of the form l ∨ C ∈ F . Since l ∈ α we have that α |= l ∨ C, and hence there is a clause
of the form l ∨ satisfiedα(C) in ppα(F ). Since β |= ppα(F ) and β |= ¬l, necessarily
β |= satisfiedα(C). This means that C contains a literal from α different from l, and
hence if we apply resolution between the clause ¬α and l ∨ C we obtain a tautology.

Right to left: Assume w.l.o.g. that the clause ¬α is blocked w.r.t. ¬l in F . We prove
that α̂ := α \ {l} ∪ {¬l} is a model of ppα(F ). It is obvious that α̂ satisfies the clause
¬α ∈ ppα(F ). Any other clause D ∈ ppα(F ) is of the form satisfiedα(C) for some C ∈ F
such that α |= C. There are now in principle two cases:

1. if D is not the unit clause l, it necessarily contains a literal from α different from l,
and hence α̂ satisfies it.

2. If D is the unit clause l, this means that clause C ∈ F does not contain any literal
from α except for l. Thus, applying resolution between ¬α and C cannot give a
tautology, contradicting the fact that ¬α is blocked w.r.t ¬l in F . Hence, this case
cannot take place.

We finish this section with one important remark about the computation of reducts in
SDCL: we need to add all already computed redundant clauses in the reduct computation
when trying to find additional ones. Let us show why not doing this is incorrect. Given the
satisfiable formula (x1∨x2)∧ (¬x1∨¬x2)∧ (x3∨x4), the SDCL solver might first build the
assignment α = {x1,¬x2}. Its positive reduct is (¬x1∨x2)∧ (x1∨x2)∧ (¬x1∨¬x2), which
is satisfiable, and hence we learn the redundant clause ¬x1 ∨ x2. If the solver now builds
the assignment {¬x1, x2}, the positive reduct w.r.t F is (x1∨¬x2)∧(x1∨x2)∧(¬x1∨¬x2),
which is again satisfiable and allows us to learn the clause x1 ∨ ¬x2. However, adding the
two learned redundant clauses to F makes it unsatisfiable. The solution is to build the
second positive reduct w.r.t. F conjuncted with the first learned redundant clause. The
corresponding reduct is (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2), which is now
unsatisfiable and hence does not allow us to learn the second redundant clause.

A natural question that arises now is whether we also need to add all clauses that were
derived using CDCL-style conflict analysis in a reduct. The answer is that we do not need
to do so. The reason is that, given two formulas G1 ≡ G2, it holds that C is redundant
w.r.t. G1 if and only if C is redundant w.r.t G2. Now, if the current formula that the SDCL
solver has in its database is F ∧ L ∧R, where F is the original formula, L are the lemmas
derived by CDCL-style conflict analysis and R are the learned redundant clauses, it holds
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that F ∧ L ∧ R ≡ F ∧ R. Therefore, it is sufficient to compute redundant clauses w.r.t.
F ∧ R only. Having said that, it is better to compute reduntant clauses w.r.t F ∧ R ∧ U ,
where U denotes CDCL-derived unit clauses, because it results in smaller reducts and
faster sub-solver calls. Note that for correctness, clauses in R are never deleted. This
design decision prevents us from using off-the-shelf proof checkers like dpr-trim1.

6.3 Experimental Evaluation

As we try to refine Satisfaction-Driven Clause Learning (SDCL) solvers, we have drawn
upon the proven strengths of the VSIDS branching heuristic, specifically from its imple-
mentation in MapleSAT. The integration was straightforward; we directly transplanted
MapleSAT’s VSIDS code to assign SDCL activity scores to variables. This, however,
brings forth a complex challenge: translating the aggregated information from these activ-
ity scores into actionable decisions.

Central to every SDCL invocation’s success is the assignment trail, a series of variable
assignments that directly influence the outcome of the SDCL call. If one envisions each
variable assignment as carrying a weight or ”score” denoting its relevance, the cumulative
weight of the trail could potentially inform the likelihood of a successful SDCL invocation.
The crux of our exploration revolves around this aggregation. Our primary objective is to
devise a mechanism that evaluates the combined activity scores of all variables on a given
trail and translates this aggregated value into a binary decision—invoke SDCL or abstain.

There are two challenges we need to address:

• Score Aggregation: Combining individual variable scores, focusing on ensuring that
the aggregated value is a reliable predictor of SDCL invocation success.

• Threshold Determination: Identifying optimal cut-off values for the aggregated score,
above which SDCL invocation is deemed promising and below which it’s considered
prudent to avoid.

In the process of identifying an optimal trail for SDCL invocation, a comparison is
made between the average activity score and the median activity score of the variables
within that trail. The reasoning for this comparison is rooted in the nature of distribution:

1https://github.com/marijnheule/dpr-trim
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• When the average score exceeds the median, the distribution of activity scores is
skewed to the right. This suggests that there is a greater presence of variables
with higher scores in the trail, indicating these are “beneficial” or “advantageous”
variables.

• Conversely, when the average is less than the median, the distribution leans to the
left, implying a deficit of such advantageous variables.

However, an empirical observation has been made that a direct comparison between the
average and median can lead to excessive invocations of SDCL in certain problem instances.
This frequent reliance on SDCL can introduce considerable overhead, affecting the efficiency
of the solution process.

To address this, an adjustment has been proposed. Rather than comparing the average
directly to the median, the average is multiplied by a factor “d” (where 0 < d < 1) prior to
the comparison. This modification aims to optimize the number of SDCL calls, ensuring
a balance between solver accuracy and operational efficiency.

In Figure 6.1, we see that the overall success rate of SDCL calls goes down as the
underlying MCB problems scale and get harder, regardless of the value of d. However,
we also observe that d = 0.95 seems to improve the success rate for SDCL calls the most
for MCB problems. On the other hand, we observe that for randomG instances, d = 0.95
becomes a poorly performing configuration in terms of SDCL success rate. This suggests
that there is no fixed d value that works across all the benchmarks under consideration.
Thus, motivating for a better and more adaptive way to choose a d value. In the same
time, the observation above suggests that there is some merit to the idea of using VSIDS
like mechanism to account for the usefulness of trail variables in the context of SDCL.

6.4 Conclusions and Future Work

The integration of the VSIDS branching heuristic into the Satisfaction-Driven Clause
Learning (SDCL) framework presents a promising avenue for enhancing solver performance.
By assigning activity scores to variables, akin to the VSIDS methodology, and adapting
their aggregation based on a balance between average and median values, a more discern-
ing strategy for SDCL invocation is proposed. While the direct comparison of average
and median activity scores led to excessive SDCL calls in specific instances, introducing a
modifying factor ’d’ has shown potential in optimizing these invocations. This synergy be-
tween VSIDS and SDCL not only amplifies the precision of SDCL solver decisions but also
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Figure 6.1: By varying the factor “d”, the success of SDCL invocations changes for different
instances.

underscores the value of merging established heuristics with innovative solution methods.
Also, the trends observed in the experiments motivate a smart and adaptive strategy for
determining the value of the ‘d’ factor.

78



Chapter 7

Conclusion

In conclusion, this thesis has made contributions to both the theoretical understanding and
practical enhancement of SAT solvers. The research addresses some of the open problems
in the critical challenge of bridging the gap between a theoretical understanding of the
intricacies of SAT solver efficiency and their empirical success. The thesis also proposes
several machine learning based techniques which improve solver performance on wide range
of benchmarks, thus pushing forward the state-of-the-art in solver heuristics.

The theoretical contributions include an understanding of the power of restarts in vari-
ous models of SAT solvers, providing results such as exponential separations between solver
configurations with and without restarts. These findings not only contribute to the theo-
retical foundations of SAT solving but also lead to the development of a practical restart
policy that outperforms state-of-the-art solvers on challenging instances, including those
derived from bitcoin mining problems.

Building upon the theoretical insights into restarts, the thesis introduces the concept
of resets and formulates the problem of choosing between restarts with and without resets
as a multi-armed bandit (MAB) problem. A reinforcement learning (RL) based reset
policy is proposed, demonstrating superior performance on bitcoin mining benchmarks
and maintaining competitiveness against baseline solvers in SAT competition instances.

Furthermore, the research explores the hierarchical community structure (HCS) of
Boolean formulas, using parameters derived from graph partitioning to develop an Em-
pirical Hardness Model. The HCS parameters are shown to be strongly correlated with
solver run time, leading to the creation of a classifier that accurately distinguishes between
easy industrial and hard random/crafted instances. The scalability studies confirm our
theory of HCS and provide more empirical evidence for our theory.
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Finally, the thesis also presents novel techniques in the context of satisfaction-driven
clause-learning (SDCL) solvers, a new class of solvers known to be exponentially stronger
than CDCL solvers. Despite the theoretical power of SDCL, there are many challenges in
automating and determinizing such solvers. To address this, we propose machine learning
techniques to help decide when to invoke a SDCL subroutine, where their goal is to invoke
the SDCL sub-solver in a strategic way to reduce the associated overhead. The resulting
SDCL solver, integrated with MaxSAT techniques and conflict analysis, surpasses exist-
ing solvers on certain combinatorial benchmarks, specifically the Mutilated Chess Board
(MCB) problems.

In summary, this thesis contributes by combining theoretical advancements, practical
innovations, and the application of machine learning to enhance solver performance. The
insights gained not only deepen our understanding of the underlying principles of SAT
solving, but also offer practical solutions that push the boundaries of solver capabilities in
addressing complex real-world problems.
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[21] Armin Biere and Daniel Kröning. Sat-based model checking. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of
Model Checking, pages 277–303. Springer, 2018.

[22] Thomas Bläsius, Tobias Friedrich, Andreas Göbel, Jordi Levy, and Ralf Rothen-
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[43] Santo Fortunato and Marc Barthélemy. Resolution Limit in Community Detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[44] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, and Andrew M. Sutton. Phase
Transitions for Scale-Free SAT Formulas. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, page 3893–3899. AAAI Press, 2017.
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