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Abstract

A graph is a set of vertices, with some pairwise connections given by a set of edges. A
graph drawing, such as a node-link diagram, visualizes a graph with geometric features.
One of the most common forms of a graph drawings are straight-line point drawings, which
represent each vertex with a point and each edge with a line segment connecting its relevant
points, and poly-line point drawings, which more generally allow edges to be represented
by poly-lines. Of particular interest to this work are planar straight-line drawings and
planar poly-line drawings, in which no two vertices share a location, and no two edges
cross (except at shared endpoints).

We study the morphing problem for planar drawings: Given two planar drawings of
the same graph, can we output a continuous transformation (a “morph”) from one to the
other, such that each intermediate drawing is also a planar drawing? It is quite easy to
test if a morph exists, but the test is non-constructive. We are interested in the problem
of constructing morphs with simple representations. Specifically, we study sequences of
linear morphs, which represent the overall morph with a sequence of drawings, so that
each pair of adjacent drawings in the sequence can be linearly interpolated. Each drawing
in the sequence is called an “explicit” intermediate drawing, since it given explicitly in the
output.

Previous work has shown that a pair of straight-line drawings of an n-vertex graph
can be morphed using O(n) linear morphs, so that every explicit intermediate drawing
is a straight-line drawing. We show that an additional constraint can be added, at the
cost of a small tradeoff: We further restrict the explicit intermediate drawings to lie on an
O(n)×O(n) grid, while allowing them to be poly-line drawings with O(1) bends per edge.
Additionally, we give an algorithm that computes this sequence in O(n2) time, which is
known to be tight. Our methods involve morphing another class of drawings—orthogonal
box drawings—which represent each vertex with an axis-aligned rectangle, and each edge
with an orthogonal poly-line. Our methods for morphing orthogonal box drawings make use
of methods known for morphing orthogonal point drawings, which are poly-line drawings
that restrict each poly-line to use only axis-aligned line segments.
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Chapter 1

Introduction

Graphs are an extensively studied mathematical model for all sorts of real life objects, such
as train networks, social links among groups of people, molecules, and integrated circuits.
A graph consists of a set of vertices (e.g., train stations, people, atoms, circuit components)
and a set of edges which connect pairs of vertices (e.g., routes between train stations, pairs
of friends, chemical bonds, wires between components). It is also often assumed that the
graph is a simple graph , meaning that each edge connects a pair of distinct vertices, and
no two edges connect the same pair of vertices.

Graphs can be visualized with all sorts of diagrams, and in particular graph drawing
is the field which studies these diagrams. In the field of graph drawing, one of the primary
research topics is the topic of planar graph drawings . These are a special form of
two-dimensional node-link diagrams. A node-link diagram is a geometric representation
of a graph with explicit shapes (e.g., points, circles, rectangles) representing vertices, and
simple curves representing edges joining pairs of these points. It is a planar graph drawing
if no two vertex shapes intersect, and no two edge curves intersect except at a common
endpoint.

A morph between a pair of planar graph drawings of the same graph (with the corre-
spondence of vertices) is a continuous transformation between them. Of particular inter-
est are planarity-preserving morphs (also called morphs that preserve planarity),
where the continuous transformation preserves planarity throughout. It should be noted
that morphs that are not planarity-preserving are not interesting, since such morphs can be
typically be achieved by simply interpolating between the coordinates of the shapes/curves
in each of the two drawings (assuming some kind of interpolation is possible). The field of
graph morphing studies constructions for planarity-preserving morphs, and it has applica-
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tions in animation and computer graphics [26].

A face of a planar graph drawing D is a maximal connected open region of R2 \D and
is identified by the clockwise cycle of edges in D forming its boundary in R2. The outer
face of a planar graph drawing is the unique face with unbounded area. A necessary
condition for a planarity-preserving morph to exist between two planar graph drawings
is that the drawings are compatible , i.e., they have the same set of faces and the same
outer face. Such pairs of drawings are also sometimes called “topologically equivalent” or
“isomorphic” (if the underlying graph is connected). In fact, all pairs of compatible planar
graph drawings have a planarity-preserving morph between them (for related discussion,
see Diestel’s graph theory textbook [19, Ch 4.3]). Furthermore, for a connected graph, it
can be tested in linear time whether a pair of drawings are compatible by checking that
the faces are made up of the same sets of vertices and edges, and that the outer faces
in particular match. However, this test does not give a morph on its own. Explicitly
constructing a morph which can be rendered and animated requires more work, which is
the topic of this thesis.

1.1 Background and Related Work

Three well-studied types of planar graph drawings are planar straight-line drawings, planar
poly-line drawings, and planar orthogonal point drawings. All of these represent vertices
with points, and each has a restriction on the types of curves used to represent edges: A
straight-line drawing uses a single line segment for each edge, a poly-line drawing
uses a poly-line for each edge (a non-self-intersecting path made up of line segments,
whose non-terminal endpoints are called bends), and an orthogonal point drawing
(sometimes called an “orthogonal drawing”) uses orthogonal poly-lines (only horizontal
and vertical line segments in each edge path). See Figure 1.1 for some examples of these
types of drawings.

Straight-line drawings, poly-line drawings, and orthogonal point drawings all represent
vertices with points. For this reason, such drawings are sometimes called point drawings,
but other types of drawings where vertices are represented by other classes of shapes exist
too. For example, planar flat orthogonal drawings , used by Biedl [6], represent vertices
with horizontal line segments, and represent edges with orthogonal poly-lines that intersect
exactly two vertex representations—one at each endpoint. Another important example are
planar orthogonal box drawings , which represent vertices with axis-aligned rectangles
with non-empty interior, and edges with orthogonal poly-lines which again intersect vertex
representations at exactly their endpoints. In an orthogonal box drawing, it is additionally
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(a) A planar straight-line drawing (b) A planar poly-line
drawing

(c) A planar orthogonal point
drawing

Figure 1.1: Different types of planar graph drawings of the same graph on a 15×17 integer
grid.

required that nothing is placed in the interior of any vertex rectangle, and that no two edge
poly-lines share an endpoint along a vertex rectangle. The requirement that the interiors of
the axis-aligned rectangles are non-empty is not standard in the literature, but it will help
simplify the discussion of some results in this work. These types of drawings both use the
same class of edges as orthogonal point drawings, but use different vertex representations.
See Figure 1.2 for some examples of these types of drawings. We will occasionally use
the term orthogonal drawing when it is clear from context whether the vertices are
represented by points or boxes.

It is known that all planar graphs admit a planar straight-line drawing [49, 22, 39].
Algorithms for computing such drawings are also known, such as Tutte’s force-directed
drawing algorithm [45]. Moreover, it is known that all planar graphs with n vertices admit
a planar straight-line drawing whose vertices are all placed on an O(n)×O(n) grid [16, 36].
Furthermore, this drawing can be computed in O(n) time [36]. Various similar results exist
for the other types of drawings. See [41] for many results from the field of graph drawing.

In contrast to the problem of simply drawing planar graphs, it is an open and ongoing
topic of study to determine whether there exist planarity-preserving morphs that maintain
the same desirable properties (i.e., straight-line edges, vertices on a grid) for certain inter-
mediate drawings during the morph, while also maintaining certain desirable properties of
morphs. Progress made on this question is the topic for the remainder of this background
section. Note that from now on, except when otherwise specified, the word ‘morph’ alone
will always be used to refer to planarity-preserving morphs, and constructions of morphs
will be accompanied by proofs that they are planarity-preserving when it is appropriate.

There are two broad classes of representations for morphs: Those which only allow
the computation of “snapshots” of the drawing at a particular time, and those which can

3



(a) A planar flat orthogonal drawing (b) A planar orthogonal box drawing

Figure 1.2: Different types of planar graph drawings of the same graph which are not point
drawings, each drawn on a 17× 21 grid.

be broken into a number of distinct steps with explicit trajectories for each vertex (see
Figure 1.3). The former kind of morph can be thought of as an “implicit” morph, since
the full trajectories of the vertices are not known, while the latter can complementarily be
thought of as an “explicit” morph. We now clarify the variety of objectives that may be
desirable for computing planarity-preserving morphs.

First are the properties of the intermediate drawings at all times throughout the morph.
There are many interesting properties for graph drawings, and it is possible to maintain
some of them continuously. For example, one can strive to require the simplest possible
edge representations throughout the morph (Objective EdgeSimplicity), so that ideally
the drawing remains a straight-line drawing throughout the morph. If the morph involves
distinct steps, then additional properties can be required after each distinct step. In
particular, it may be possible to require that after each distinct step, the vertices all lie on
a small integer grid (Objective Grid).

Third, there are the desirable properties of the morph itself, which may involve the
simplicity/explicitness of the trajectories of the vertices (Objective Trajectories), or
the number of distinct steps if applicable (Objective StepCount). In the case of distinct
steps, the paths the vertices can take between morph steps should ideally be as simple to
represent as possible (also Objective Trajectories), ideally linearly interpolated paths,
and the total number of distinct steps should be minimized (Objective StepCount). The
computational model and complexity have little effect on the quality of the morph as a
visualization, but the properties of the intermediate drawings and the properties of the
morph itself can have a drastic effect. If the intermediate drawings are also good drawings,
and the paths of the vertices are simple, then it will be easier to follow the morph. Moreover,
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Figure 1.3: Two different types of morphs. The left path divides the morph into distinct
simple steps. The right path has the vertices follow complex paths for which snapshots
can be computed, where in general it might not be possible to compute the paths ahead
of time.

5



if the morph can be broken into distinct steps, and the number of these steps is small, then
an animation of the morph will be shorter.

Fourth, it is of course desirable for a morph technique to work for all planar graphs (Ob-
jective Universality), but it is sometimes easier or even potentially more interesting
to work with a particular strict subclass.

Fifth is the computational model chosen for the computation (Objective Model):
The types of values which need to be represented (real numbers, rational numbers, inte-
gers) and the operations which can be performed on them (e.g., whether square roots are
allowed). Two of the most common types of computational models are real RAM and
word RAM, which allow the storage of real numbers and integers of size at most O(log n)
(for a graph of size n) respectively. Real RAM may also be endowed with operations be-
yond standard arithmetic operations (addition/multiplication/subtraction/division), such
as the ability to find square roots. Lastly is the computational complexity of a chosen
algorithm for computing morphs (Objective Time). If the morph involves snapshots,
then we consider the algorithm that computes a snapshot. If the morph involves distinct
steps of some kind, then we consider the algorithm for computing all steps. In either case,
the complexity for the algorithm should be minimized. In the former case, the algorithm
for computing a snapshot should ideally take O(n) time. In the latter case, the algorithm
for computing all steps should ideally take O(n ·#steps) time. Both of these ideal bounds
are simply the respective sizes needed to represent the output itself.

1.1.1 Morphs that Maintain Straight-line Drawings

One of the most well-studied classes of morphs are those that maintain a straight-line
drawing at all intermediate times throughout the morph. In other words, satisfying Ob-
jective EdgeSimplicity with straight-lines is considered a requirement, Objective Grid
is ignored, and Objective StepCount is minimized. A long series of work [8, 9, 44, 24,
27, 40, 3, 2, 4, 1, 30, 31, 21] has derived increasingly more efficient algorithms to compute
increasingly shorter and simpler planarity-preserving morphs between compatible planar
straight-line drawings. This series of work also simultaneously considers a variety of com-
binations of objectives Model, Time, Trajectories, and Universality. We briefly
review these results here.

In 1944, Cairns [8, 9] gave an algorithm for computing morphs of compatible trian-
gulated (maximal) planar graphs. The main method involves distinct steps which shrink
edges to become so small that they are effectively contracted, thereby reducing the number
of vertices. This method produces poor visualizations, since most of the detail of the graph
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is effectively lost. Furthermore, the number of distinct steps in the resulting morph is ex-
ponential. In 1983, Thomassen [44] extended the same arguments to work for compatible
straight-line drawings of all planar graphs by finding compatible triangulations.

In 1999, Floater and Gotsman [24] devised a method for performing morphs continu-
ously between compatible straight-line drawings of triangulated (maximal) planar graphs,
based on Tutte’s drawing algorithm [45]. They were the first to use a snapshot method.
Specifically, they produce an algorithm which can, given some time value t ∈ [0, 1], pro-
duce a snapshot of the current drawing in the morph. The algorithm for producing this
snapshot takes O(nω/2) time, where ω is the matrix multiplication exponent, using a 2013
algorithm of Alon and Yuster [3] for solving certain linear systems. However, the compu-
tational model required is quite powerful. Square roots are required to compute even the
initial weights. Furthermore, snapshot-based methods do not have any sort of guarantees
on the quality of the visualizations, since it is not clear which snapshots should be com-
puted, or how many. In 2001, Gotsman and Surazhsky [27, 40] extended this approach
to compatible straight-line drawings of all planar graphs using compatible triangulations
with Steiner points. In 2021, Di Battista and Frati [18] analyzed the “resolution” of the
resulting morphs (essentially the minimum distance between any two features of the draw-
ing throughout the morph), and found that it was exponentially small, even for morphs
between drawings each on a small (polynomial-sized) grid.

Recent work often uses smaller morph steps where the vertices follow simple trajectories
(i.e., treating the optimization of Objective Trajectories as a hard constraint). Specifi-
cally, these morphs consist of distinct steps called linear morphs between adjacent pairs
of explicit drawings in the sequence. The continuously changing drawing during a linear
morph is defined by a time value t ∈ [0, 1], so that the position of each vertex is the linear
interpolation of its initial and final positions with t as a parameter. Sometimes they are
further restricted to unidirectional linear morphs, where all directions of movement
(or equivalently, line segments joining initial and final positions) are also assumed to all
be parallel. See Figures 1.4 and 1.5 for examples.

One breakthrough paper using linear morphs is a 2017 paper by Alamdari et al. [1] with
13 authors. They prove that between any two compatible planar straight-line drawings of
the same graph with n vertices, there is a planarity-preserving morph that uses a sequence
of O(n) unidirectional morphs. Moreover, the algorithm runs in O(n3) time. In 2019,
Kleist, Klemz, Lubiw, Schlipf, Staals, and Strash [30] improved this runtime to O(n1+ω/2 +
n2 log n), where ω is the matrix-multiplication exponent. In 2021, Klemz [31] further
improved this runtime to O(n2 log n), and O(n2) if the underlying graph is 2-connected.
The algorithm is based on the edge-shrinking techniques of Cairns, so it unfortunately
produces poor visualizations for the same reason. Furthermore, the computational model
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t = 0 t = 0.5 t = 1

Figure 1.4: An example of a linear morph, at specified times in t ∈ [0, 1]. The vertex
trajectories of each vertex are explicitly drawn as red dashed arrows for visualization (they
are not part of the drawing itself). The vertices without drawn trajectories do not move.

t = 0 t = 0.5 t = 1

Figure 1.5: An example of a unidirectional linear morph, at specified times in t ∈ [0, 1].
Observe that all vertex trajectories are parallel.

required is the strongest of all results discussed in this section: It requires computing both
square and cube roots.

In 2023, Erickson and Lin [21] derived an algorithm which finds sequences of O(n)
unidirectional linear morphs between compatible drawings of 3-connected planar graphs
with identical convex outer-polygons. It runs in O(n1+ω/2) time, where ω is the matrix
multiplication exponent. Their algorithm is quite simple and easy to implement, and is
adapted from the framework used by Floater and Gotsman for continuous morphs, rather
than the framework used by Cairns. They claim that their morphs are more visually
appealing than Alamdari et al.’s morphs, since they do not involve edge contractions.
Unfortunately, the resolution of the resulting morphs is also exponentially small, so there
is no polynomial-sized grid onto which one could place all of the vertices of the intermediate
drawings in between distinct linear morph steps (i.e., no progress for Objective Grid).

Many of the morphs discussed can be separated into distinct linear morph steps, and
hence can be represented by giving a sequence of drawings, where a linear morph can
be performed for each adjacent pair. The drawings in the sequence are called the ex-
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plicit intermediate drawings , since they are explicitly represented, as opposed to the
intermediate drawings during each linear morph which have interpolated coordinates. The
presence of these drawings is what makes this type of morph “explicit” (as discussed in
the previous subsection). Explicit intermediate drawings are analogous to keyframes in
more traditional forms of animation. None of the morph techniques discussed so far make
any guarantees about whether their explicit intermediate drawings are on a small grid.
It is an open question whether there is a sequence of O(n) linear morphs between any
two compatible planar straight-line drawings on an O(n) × O(n) grid, so that all explicit
intermediate drawings are also straight-line drawings on an O(n)×O(n) grid. It is also a
(weaker) open question whether such morphs exist with polynomial length and grid-size.
However, it is known that there are pairs of drawings on O(n)×O(n) grids which require a
sequence of Ω(n) linear morphs [1], so a result of O(n) linear morphs on an O(n)×O(n) grid
would be tight. Hence, such a construction would essentially optimize/satisfy objectives
EdgeSimplicity, Grid, Trajectories, and StepCount.

1.1.2 Morphs for Alternative Classes of Drawings

One way to weaken the requirements for construction of morphs on a grid is by significantly
restricting the class of drawings (relaxing Objective Universality). For a strict subclass
of planar straight-line drawings known as weighted Schnyder drawings, Barrera-Cruz, Hax-
ell and Lubiw [5] were able to find sequences of O(n2) planarity-preserving linear morphs
on an O(n)×O(n) sized integer grid.

Another way to weaken the requirements for construction of morphs on a grid is by
allowing the intermediate drawings to be poly-line drawings (thereby relaxing Objective
EdgeSimplicity), while also requiring that the newly-added bends of the poly-lines be
placed on the same fixed integer grid. For a pair of compatible planar straight-line drawings
of a graph with n vertices, in 2011 Lubiw and Petrick [33] derived a construction of O(n6)
linear morphs between poly-line drawings whose edges each have at most O(n5) bends,
and all of whose vertices and bends lie on an O(n3)×O(n3) grid. A standard word RAM
model can be used for the algorithm. This particular result is the primary motivation for
this thesis, and all of these bounds will be significantly improved.

There are several other classes of drawings that have been studied in the context of
morphing (i.e., alternative interesting choices for Objective Universality). One such
class is the class of planar orthogonal point drawings. In 2013, Biedl, Lubiw, Petrick
and Spriggs [7] showed that between any two compatible planar orthogonal point draw-
ings, there exists a sequence of O(n2) planarity-preserving linear morphs for which each
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intermediate drawing is also an orthogonal point drawing, and furthermore each explicit
intermediate drawing is on an O(n) × O(n) grid. In 2022, Van Goethem, Speckmann,
and Verbeek [47] improved their result to a sequence of only O(n) linear morphs, while
maintaining at most O(1) bends per edge, although they do not discuss the grid size of
their explicit intermediate drawings. They also show that their algorithm uses at most one
more than the minimum number of linear morphs. Both algorithms can be implemented
on a standard word RAM model.

Another class studied in the context of morphing is the class of “rectangular duals”,
a contact-representation of a graph with disjoint rectangles whose union must also be a
rectangle. Recently, Chaplick, Kindermann, Klawitter, Rutter, and Wolff [11] showed that
between any two compatible rectangular duals, there is a sequence of O(n2) linear morphs
which can be found in O(n3) time, but only by allowing for non-rectangular polygons as
intermediate representations during the individual morphs. Rectangular duals are a type
of “contact representation”, on which there is also a larger body of morphing results mostly
concerning the existence of morphs rather than their construction [34]. Interestingly, this
body of results additionally relates to the complexity class ∃R, for which many of the
resulting morph problems (that is, checking if certain kinds of morphs exist) are hard.

The plane is not the only manifold that admits morphs. Erickson and Lin [21] explored
morphs of some straight-line drawings on a flat torus. Since linear interpolation between
start and end-points is not well-defined in a torus (at least without specifying a homotopy
class), linear morphs as defined cannot be used on such a surface. Instead, Erickson and
Lin devise a more specialized method for representing and computing morphs on the torus.

1.2 Goal

For the remainder of this thesis, we will deal with the problem of morphing (simple) planar
graphs. It should be noted that an n-vertex planar graph has O(n) edges, which will be
important for making many of the bounds we achieve possible.

In this work, it will be shown that between a pair of compatible planar straight-line
drawings of a connected graph with n vertices, each drawn on an O(n)×O(n) grid, there
is a planarity-preserving morph consisting of a sequence of O(n) linear morphs, for which
every explicit intermediate drawing is a poly-line drawing on a O(n) × O(n) grid with
at most O(1) bends per edge. This morph can be computed with only a word RAM
model. In particular, no special operators (such as square roots or cube roots) will be
required. Moreover, this construction will be computed in O(n2) time. This essentially

10



optimizes every named objective except Objective EdgeSimplicity, which is slightly
relaxed (further optimizing this objective is an open problem, as we will briefly discuss in
Chapter 9).

This can be seen as a significant improvement over the results of Lubiw and Petrick [33],
who obtained O(n6) linear morphs, an O(n3)×O(n3) grid, and O(n5) bends per edge, while
using a word RAM model. Alternatively, it can be seen as an improvement over the results
of Alamdari et al. [1] or Erickson and Lin [21], who obtained O(n) linear morphs on an
exponentially large grid, and used a real RAM model, except that our algorithm adds a
constant number of bends to each edge during the morph.

Performing sequences of linear morphs with bends sometimes involves adding bends to
previously-straight edges. Previous work implicitly added bends as a part of linear morph
steps. For additional clarity, in this work, linear morphs will be separated from steps of the
morph that introduce bends. Bends which are coincident with other bends, or coincident
with vertices, will be permitted. Bends whose two incident edge segments form a 180◦ angle
will also be permitted. These kinds of “invisible” bends are called degenerate bends .
A pair of drawings is called equivalent if the drawings are identical after removing all
degenerate bends. In this work, a linear morph sequence is a sequence of discrete
morph steps of two types. The first type is a linear morph between two drawings with the
same number of bends along each edge. The second type is the replacement of a drawing
with an equivalent drawing that has a different number of bends along some edges. This
definition for a linear morph sequence is consistent with previous work, but more explicit. A
planarity-preserving linear morph sequence is simply one where each linear morph
step is planarity-preserving.

The following main theorem, with all the desired guarantees, will be proven:

Theorem 1.2.1 (Main). Let G be a connected planar graph with n vertices. For a compati-
ble pair of planar straight-line drawings P and Q of G, whose vertices lie on an O(n)×O(n)
grid, there exists a planarity-preserving linear morph sequence from P to Q of length O(n),
where each explicit intermediate drawing lies on an O(n)×O(n) grid and has O(1) bends
per edge. Moreover, this sequence can be found in O(n2) time.

To achieve this result, three phases are used: First, the problem of morphing straight-
line drawings is reduced to morphing orthogonal box drawings. Next, the resulting orthog-
onal box drawings are morphed to become “parallel”, in a sense that is somewhat similar
to the definition of parallel lines. Finally, these “parallel” drawings are morphed directly.
The middle step is the most complex, and involves adapting techniques used for morphing
planar orthogonal point drawings by Biedl et al. [7] and Van Goethem et al. [47]. A more
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detailed overview can be found in Section 2.5, after some discussion of preliminary results
and definitions earlier in Chapter 2.
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Chapter 2

Preliminaries

In this chapter, we discuss some key relevant results in graph morphing (Section 2.1,
Section 2.2, Section 2.3), discuss how some of these results extend to orthogonal box
drawings (Section 2.4), and give a high-level overview of our methods (Section 2.5).

2.1 Drawings, Linear Morphs, and Planar Poly-line

Drawings

Let G be a planar graph, and let v be some vertex of G. For any drawing D, let D(v)
denote the geometric representation of v in D. In particular, if D is a straight-line drawing,
D(v) is a point, while if D is instead an orthogonal box drawing, D(v) is an orthogonal
rectangle. Then, given two planar straight-line drawings P and Q of G, let MP,Q denote
the linear morph from P to Q (as defined in Chapter 1). In particular, let M t

P,Q denote
the (straight-line) drawing at a time t ∈ [0, 1]. Recall that a linear morph linearly
interpolates between the two drawings. That is, M0

P,Q(v) is P (v), M1
P,Q(v) is Q(v), and

for arbitrary t ∈ [0, 1], M t
P,Q(v) is (1 − t)P (v) + tQ(v). Edges in M t

P,Q are straight-line
segments between the locations of their endpoints at time t. Recall also that we do not
assume a-priori that edges do not cross or go through non-incident endpoints—this must
be proven as an additional property (discussed more in the next section).

If P and Q are planar poly-line drawings of a graph G with the same number of bends
along each edge, then the linear morph MP,Q also linearly interpolates the position of each
bend. The correspondence between the bends in each drawing is given by the ordering of
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the bends along each edge. If multiple bends are coincident along an edge, any compatible
ordering suffices.

Linear morphs between planar poly-line drawings require that the drawings have the
same number of bends along each edge. In order to perform morphs between planar poly-
line drawings with different numbers of bends along some edges, we must use additional
morph steps to unify the number of bends along each edge. We can accomplish this by
substituting equivalent drawings, as discussed in Section 1.2. Importantly, in this work,
we will allow our planar poly-line drawings to contain degenerate bends, which either
coincide with other bends or vertices along the same edge, or result in an angle of 180◦ (or
both). Given a pair of planar poly-line drawings P,Q of the same graph G, bends can be
added (e.g., coincident with vertices) until the resulting respective equivalent drawings P ′

and Q′ have the same number of bends along each edge. In this work, we will take care to
describe where and when bends are added.

2.2 Planarity-Preserving Linear Morphs and Sequen-

ces of Linear Morphs

Linear morphs are extremely simple to store as a data structure: they store exactly the
start and end locations of each vertex and bend. However, not all linear morphs preserve
planarity. For a simple example, see Figure 2.1. It is known that certain broad classes
of linear morphs always preserve planarity. In particular, simultaneous translations and
scales of all vertex/bend coordinates are always planarity-preserving.

Recall from Chapter 1 that a planarity-preserving linear morph sequence can exist only
if the two drawings P and Q are compatible (i.e., same set of faces and same outer face),
so we are only concerned with compatible pairs of drawings.

Some care must be taken to define planarity-preserving linear morphs of planar poly-
line drawings that permit degenerate bends. Recall that a linear morph MP,Q is considered
planarity-preserving if every implicit intermediate drawing M t

P,Q (for t ∈ [0, 1]) is itself
planar. When P and Q are planar poly-line drawings that permit degenerate bends, we
add one more requirement: For all intermediate times t ∈ (0, 1), a bend may only coincide
with another bend or a vertex if it does so in both P and Q. For example, the linear
morphs in Figure 2.2 are not planarity-preserving since a violation of this requirement
occurs at time t = 0.5 in each. Note that we separately still require that the path through
R2 for any edge contains no self-intersections (i.e., is simple), but that path can be thought
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(a) M0
P,Q = P (b) M

1
4
P,Q

(c) M1
P,Q = Q

Figure 2.1: An example of a linear morph between two (compatible) planar straight-line
drawings P and Q that is not planarity-preserving. The first intersection occurs at t = 1

4

between a vertex and an edge.

(a) P1 (b) M0.5
P1,Q1

with coinciding bends
marked by a cross.

(c) Q1

u

v

(d) P2

u

v

(e) M0.5
P2,Q2

with coinciding bends
marked by a cross.

u

v

(f) Q2

Figure 2.2: Two pairs of compatible planar poly-line drawings P1, Q1 and P2, Q2, none of
which have degenerate coinciding bends. The linear morphs from P1 to Q1 and from P2 to
Q2 are both not planarity-preserving because at time t = 0.5 bends will coincide.
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of as ignoring degenerate bends (i.e., the planarity check operates on the drawing with
degenerate bends omitted).

We can make a useful (albeit simple) observation about linear morphs that are not
planarity-preserving:

Observation 2.2.1. Let P,Q be planar poly-line drawings of the same graph G with the
same number of bends along each edge, where G has no isolated vertices. Assume the linear
morph MP,Q from P to Q is not planarity-preserving. Let t∗ ∈ [0, 1] be the infimum of all
times t at which M t

P,Q is not planar. Then t∗ is also a minimum, and t∗ ∈ (0, 1). Moreover,
there exists an edge segment e, and a vertex or bend x not incident to e, such that x and
e intersect in M t∗

P,Q.

Proof. Since the linear morph from P to Q is not planarity-preserving, there is some time
t ∈ (0, 1) such that a pair of distinct edge segments intersect in M t

P,Q at some location that
is not a shared endpoint. Note that if there is an intersection between a bend/vertex and
an edge in M t

P,Q, then there is also an intersection between two edges, since there are no
isolated vertices.

Let K ⊂ E(G)×E(G) denote the set of distinct edge segment pairs (e, e′) that intersect
at some point during the linear morph MP,Q. For all (e, e′) ∈ K, let t∗(e, e′) denote the
infimum of all times t where e, e′ intersect in M t

P,Q. Let t∗ = min(e,e′)∈K t
∗(e, e′), and

let (e1, e2) be a corresponding argument of the minimum, breaking ties arbitrarily (i.e.,
t∗ = t∗(e1, e2)). Thus, for the remainder of the proof, it suffices to show that e1 and e2
intersect at time t∗, and that their intersection at time t∗ involves at least one endpoint.

First, we consider the cases where e1 and e2 share an endpoint (a shared vertex or
bend). In this case, e1 and e2 may intersect only when they are collinear, which can only
occur at exactly one point in time, which is therefore t∗. At such a time, the shorter of the
two edge segments (without loss of generality, e1) has its unshared endpoint overlapping
with the other edge segment (e2), so the desired intersection exists in this case.

We now consider the case where e1 and e2 do not share an endpoint. Let d : [0, 1]→ R≥0
be the minimum distance function between e1 and e2 throughout the morph (that is, d(t)
is the minimum distance between e1 and e2 at time t). This is a continuous function, since
the edges move continuously. Therefore, the inverse image d−1(0) (i.e., the set of times at
which e1 and e2 intersect) is a closed set, which thus also has a minimum value t∗. This
proves the first claim.

If there is more than one intersection point between e1 and e2 at time t∗, then e1 and e2
must be collinear at time t∗. Since they intersect, and are collinear, there must be at least
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two endpoints involved in intersections, so we are done in this case, since we can choose
x to be either of the two endpoints involved in an intersection. For the remainder of this
proof, we may now assume that e1 and e2 intersect at exactly one point in M t∗

P,Q.

Suppose for contradiction that at t∗, the unique intersection point between e1 and e2 is
in the strict interiors of each edge (i.e., it does not involve any endpoints). For t ∈ [0, t∗],
let d′(t) denote the infimum distance from an intersection point of e1 and e2 to the closest
of their endpoints, or 0 if e1 and e2 do not intersect (or intersect at more than one point,
i.e., if they are parallel and intersecting). Then d′ is a continuous function, and d′(0) = 0,
while d′(t∗) > 0. By intermediate value theorem, there exists some 0 < t0 < t∗ such that
d′(t0) = d′(t∗)/2, contradicting the minimality of t∗. Therefore, at least one endpoint (i.e.,
bend or vertex) of e1 or e2 must be part of the intersection at time t∗, so we can choose x
to be one of these endpoints, completing the proof.

Not all pairs of drawings permit planarity-preserving linear morphs, so work involving
linear morphs (including ours) focuses on breaking morphs into sequences of planarity-
preserving linear morph steps. Given two planar poly-line drawings P and Q of the same
graph, recall that the linear morph from P to Q is only well-defined if the two drawings
have the same number of bends along each edge. In this work, unlike in previous works,
bends will be explicitly added or removed as a separate step. Individual morph steps must
therefore be one of two types: A step that adds or removes bends, or a step which performs
a linear morph. As discussed in the previous section, adding or removing bends can be
accomplished by replacing a drawing with an equivalent drawing.

As an example, there may be a sequence of drawings P = D1, D2, D3, D4 = Q, where
the graphs D1 and D2 are equivalent drawings with different numbers of bends along each
edge, and the linear morphs from D2 to D3 and D3 to D4 are planarity-preserving. In this
case, D2, D3, and D4 have the same number of bends along each edge. The exact definition
of these kinds of sequences is as follows:

Definition 2.2.2. Let P and Q be planar poly-line drawings of the same graph G. A linear
morph sequence of length k from P to Q is a sequence of planar poly-line drawings
P = D1, D2, . . . , Dk+1 = Q such that:

• Each drawing Di is a planar poly-line drawing of the graph G.

• For each pair of drawings Di, Di+1 (i ∈ {1, . . . , k}), either the two drawings are
equivalent drawings, or the two drawings have the same number of bends along each
edge.
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(a) P = D1 (b) D2 (c) D3 (d) D4 = Q

Figure 2.3: An example of a planarity-preserving linear morph sequence of length 3 between
two compatible planar straight-line drawings P and Q. The movement of vertices compared
to each previous step is denoted with orange arrows. Note that P and Q are the same as
in Figure 2.1, so the linear morph directly from P to Q is not planarity-preserving.

Observe that this definition implies the linear morph from Di to Di+1 is always well-
defined, as discussed in the previous section.

Recall also from Chapter 1 that the drawings D1, D2, . . . , Dk+1 are called the explicit
intermediate drawings of the planarity-preserving linear morph sequence. In contrast, the
“general” intermediate drawings also include the (infinite) set of drawings during each
linear morph from Di to Di+1. We called these implicit drawings.

Definition 2.2.3. A linear morph sequence is a planarity-preserving linear morph
sequence if, for every pair of explicit intermediate drawings Di, Di+1 that are not equiva-
lent drawings, the linear morph between them is planarity-preserving.

Take careful note of the fact that a even linear morph sequence with length two could
require an arbitrarily large representation: On its own, a linear morph sequence makes no
guarantees of the number of bends per edge nor the size of the grid required to represent
the explicit intermediate drawings. Each algorithm that produces linear morph sequences
must prove such claims separately.

For an example of a planarity-preserving linear morph sequence of poly-line drawings,
see Figure 2.5.
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(a) P = D1. One bend, but no
degenerate bends.

(b) D2. One degenerate bend,
coincident with the leftmost
vertex. D2 is an equivalent
drawing to D1.

(c) M
1
2
D2,D3

.

(d) D3. The same number of
bends as D2. The bottom-right
bend is coincident with a ver-
tex. The leftmost bend is not.

(e) D4 = Q. No degenerate
bends, but it is an equivalent
drawing to D3.

Figure 2.4: An example of a planarity-preserving linear morph sequence D1, D2, D3, D4

of length 3 between two compatible planar straight-line drawings P = D1 and Q = D4,
where the explicit intermediate drawings are planar poly-line drawings. The movement
of vertices compared to each previous step is denoted with (orange) arrows. Bends are
denoted by large (purple) empty circles.

(a) A simple planar
straight-line drawing
of K2 with no bends.

(b) Two (degenerate)
bends are both added
at the location de-
noted by the hollow
circle. This is an
equivalent drawing to
Figure 2.5a.

(c) The planar poly-
line drawing is under-
going a linear morph,
which is just begin-
ning. The vertex and
bend trajectories are
denoted by the or-
ange arrows.

(d) The planar poly-
line drawing is under-
going a linear morph,
which has just ended.
The two bends are
now at different lo-
cations, each denoted
by a hollow circle.

Figure 2.5: A demonstration of equivalent drawings, bends, degenerate bends, and linear
morphs. The bends denoted in this figure are only present for demonstration purposes,
and would not be visible in the actual drawings.
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2.3 Planarity-Preserving Unidirectional Linear Morphs

For a restricted class of linear morphs, it is quite easy to classify whether a linear morph is
planarity-preserving. Recall from Section 1.1 that unidirectional linear morphs are linear
morphs for which the directions of movement for all vertices and bends are parallel. Exist-
ing work by Alamdari et al. [1] has provided a very simple characterization of unidirectional
linear morphs that are planarity-preserving, which will be briefly reviewed in this section.

Theorem 2.3.1 (Proven but not stated by Alamdari et al. [1], Lemma 7 by Kleist et
al. [30]). Let P,Q be compatible planar straight-line drawings of the same graph. Suppose
that the linear morph MP,Q from P to Q is unidirectional in the direction of a line L. If,
for each line L′ parallel to L, the sequences of vertices and edge segments intersected in
both P and Q are equal, then the linear morph is planarity-preserving.

We’d like to use a version of the above theorem for morphing planar poly-line drawings.
In particular, we wish to apply it for planar poly-line drawings which allow for zero-length
edge segments (which implies bends may coincide with vertices and other bends). Hence,
we need to be careful how we extend the theorem statement.

For a planar poly-line drawing P , and a line L (with some direction), the line L may
intersect vertices, bends, and/or edge segments in P . In particular, it may encounter
multiple coinciding bends/vertices simultaneously. We say that the partial intersection
order of L intersecting P is the partial ordering of all vertices/bends/edge segments
in P intersected by L along its prescribed direction. In particular, elements which are
encountered simultaneously (e.g., two coinciding bends) are incomparable in this partial
ordering.

Two partial orderings <,<′ over a set S are said to be compatible if there are no two
elements s, s′ ∈ S with s < s′ and s′ <′ s. This is enough to extend the theorem for our
use-case.

Theorem 2.3.2. Let P,Q be compatible planar poly-line drawings of the same graph, with
the same number of bends along each edge. Suppose that the linear morph MP,Q from P to
Q is unidirectional in the direction of a line L. If, for each line L′ parallel to L, the partial
intersection order of L′ intersecting P is compatible with the partial intersection order of
L′ intersecting Q, then the linear morph is planarity-preserving.

Proof. The drawings P = M0
P,Q and Q = M1

P,Q are assumed to be planar. It suffices to
show that the drawing M t

P,Q is planar for t ∈ (0, 1).
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Bend-bend pairs and bend-vertex pairs that are coincident in both P and Q remain
so throughout the morph. Thus, assume without loss of generality that there are no such
pairs.

Let b be a bend and let L′ be the line parallel to L through b in P and Q. Assume as
a first case that b is coincident with some other bend/vertex x in either P or Q. Linear
morphs are reversible (i.e., the linear morph from P to Q is planarity-preserving if and
only if the linear morph from Q to P is planarity-preserving), so without loss of generality
we assume b and x are coincident in P , and not coincident in Q. Assume without loss of
generality that L′ is oriented so that b < x along L′ in Q. Then b < x along L′ at all times
t ∈ (0, 1) during the linear morph (by Lemma 7.2.1 by Alamdari et al. [1]). Therefore, no
bend is coincident with any other bend/vertex in M t

P,Q for any time t ∈ (0, 1).

By Observation 2.2.1, there is some sufficiently small time δ > 0 at which M ε
P,Q is

planar for all 0 < ε ≤ δ. Without loss of generality (since linear morphs are reversible),
assume M1−ε

P,Q is also planar for all 0 < ε ≤ δ. There are no coincident bends in M t
P,Q for

all t ∈ (δ, 1 − δ), so by Theorem 2.3.1, the linear morph from M δ
P,Q to M1−δ

P,Q is planarity-
preserving (since we can treat them as straight-line drawings, with a vertex in place of
each bend). Hence, all drawings M t

P,Q with t ∈ (0, 1) are planar, so the linear morph MP,Q

is planarity-preserving.

2.4 Linear Morphs of Orthogonal Box Drawings

The main methods of this work will use morphs of planar orthogonal box drawings in
order to derive morphs of planar poly-line drawings. Note that a linear morph between
two planar orthogonal box drawings has not yet been defined, and in fact the definition
must be carefully chosen to coincide with linear morphs of some closely related planar poly-
line drawings, though discussion of this relationship will be postponed until Section 3.1.
Recall that orthogonal box drawings represent vertices with axis-aligned rectangles (called
vertex boxes) of non-zero area, and edges with orthogonal poly-lines. Unlike planar poly-
line drawings, orthogonal box drawings require edges to be completely disjoint, even where
they attach to vertex boxes. Orthogonal box drawings are promising to work with since
they are similar to orthogonal point drawings, for which short sequences of linear morphs
are known to exist [47], as discussed in Section 1.1.

Before a discussion of morphs, it should be briefly noted exactly which geometric co-
ordinates are required to specify an orthogonal box drawing. In a straight-line drawing,
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e1

e2

e3

(a) The drawing P . The order of objects inter-
secting the red line is e1, e2, e3.

e1

e2

e3

(b) The drawing Q. The order of objects inter-
secting the dashed red line is e1, e3, e2.

Figure 2.6: An example of two drawings P and Q for which the unidirectional morph
between them is not planarity-preserving, and a line parallel to the direction of movement
on which the order of objects differs. Note that this is the same pair of drawings as in
Figure 2.1.
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coordinates are needed only for the vertices. In a poly-line drawing, coordinates are also
needed for each bend. In an orthogonal box drawing, coordinates are needed for the end-
point of each edge, called a port , in addition to the corners of each vertex box, and the
bends along each edge. Any definition of a linear morph must describe how these values
change.

The individual types of linear morphs which will be performed on orthogonal box
drawings in this work will actually be quite limited, so there is a lot of flexibility in the
definition of both linear morphs, and of planarity-preserving linear morphs. The following
is a useful and simple definition, which will suffice for all of our purposes:

Definition 2.4.1. Let P and Q be orthogonal box drawings of the same graph G with the
same number of bends along each edge, The linear morph of orthogonal box drawings
P and Q, denoted MP,Q, is the morph which linearly interpolates all corners, ports, and
bends from their locations in P to their respective locations in Q.

We let M t
P,Q denote the drawing obtained by performing this linear interpolation with

a parameter t ∈ [0, 1], where M0
P,Q = P and M1

P,Q = Q. If s is an edge segment of P/Q,
then the motion of S during the morph is determined by the motions of its endpoints. We
restrict our attention to linear morphs where horizontal edge segments remain horizontal,
and vertical edge segments remain vertical (allowing for segments of zero length when
a bend coincides with a port or another bend). Previous work on morphs of orthogonal
point drawings calls the analogous restricted linear morph an “orthogonal linear morph” or
simply “orthogonal morph” (i.e., a special kind of linear morph), but we primarily use this
restriction to make the steps of our orthogonal box morphing algorithm easier to follow.

If B is a vertex box of P/Q, then the motion of B is determined by the motion of its
four corners. We restrict our attention to linear morphs where each vertex box remains a
rectangle throughout the morph, but we do not require that the rectangle remains axis-
aligned. We call these intermediate shapes vertex rectangles , and reserve the term
“vertex box” for the axis-aligned rectangles of orthogonal box drawings (such as P and Q).
It should be noted that the drawing M t

P,Q (for t ∈ (0, 1)) is not necessarily an orthogonal
box drawing.

Definition 2.4.2. Let MP,Q be a linear morph of orthogonal box drawings P and Q. If
all the directions of movement are parallel, then MP,Q is also called a unidirectional
linear morph. We restrict our attention to unidirectional linear morphs which are strictly
horizontal or strictly vertical, which are called horizontal linear morphs and vertical
linear morphs respectively.

23



The definition of a linear morph for orthogonal box drawings explicitly permits the
vertex boxes to become non-axis-aligned rectangles during the morph (i.e., in the implicit
drawings). In particular, it may appear as if we rotated the boxes, even though we per-
formed a linear morph. See Figure 2.7 for an example of a unidirectional linear morph
of an orthogonal box drawing, and a linear morph of an orthogonal box drawing which
“rotates” a vertex box.

The definition of linear morph we have chosen for orthogonal box drawings leads to a
natural extension for the definition of “planarity-preserving”.

Definition 2.4.3. Let MP,Q be a linear morph of orthogonal box drawings P and Q. We
say that MP,Q is planarity-preserving if the following restrictions hold for every drawing
M t

P,Q (t ∈ (0, 1)):

• The four corners corresponding to each vertex form a rectangle (the vertex rectangle).
Each vertex rectangle has positive area, and no pair of vertex rectangles intersect.

• Each port lies on the boundary of its respective vertex rectangle.

• An edge appears as a path of segments joining its two ports, and this path is a simple
path, meaning that if two positive-length segments intersect at a point p, then p is an
endpoint of both segments, there is at least one bend at p, and no other positive-length
segment contains the point p.

• Apart from its ports, an edge does not share any points with any vertex rectangle.

• If a bend-bend pair or bend-port pair are coincident, then they are also coincident in
both P and Q.

Most of the linear morphs which will be used throughout this work will be horizontal and
vertical linear morphs. Under the above natural extension of planarity-preserving linear
morphs, the important result characterizing planarity-preserving unidirectional morphs on
planar poly-line drawings, specifically Theorem 2.3.2 is also true of horizontal and vertical
linear morphs of orthogonal box drawings. Note that vertex boxes remain axis-aligned
rectangles throughout horizontal (vertical) linear morphs since each pair of corners along
the same box connected by a vertical (horizontal) side of the box has the same pair of
starting and ending x-coordinates (y-coordinates).
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(a) An orthogonal box draw-
ing P1. The left hollow cir-
cle is a bend coinciding with
a port, and the right hollow
circle is a pair of coinciding
bends.

(b) The beginning of a (ver-
tical unidirectional) linear
morph from P1 to the drawing
P2 given in Figure 2.7e at time
t = 0, with the trajectory of
some corners denoted.

(c) The midpoint of the lin-
ear morph at time t = 0.5,
with some remaining trajecto-
ries and trajectories traversed
denoted.

(d) The end of the linear
morph, at time t = 1.

(e) The orthogonal box
drawing P2.

(f) The beginning of another linear
morph at time t = 0, this time from P2

to the drawing P3 given in Figure 2.7i.
This morph is not unidirectional. All
non-trivial corner/bend/port trajec-
tories are denoted.

(g) The second linear morph
at time t = 0.5. Note that
the leftmost vertex rectangle
is not axis-aligned.

(h) The second linear morph
at time t = 1.

(i) The final drawing P3, with
no degenerate bends.

Figure 2.7: An example of a linear morph sequence using orthogonal box drawings.
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2.5 Overview of Methodology

The primary goal of this work is to give an algorithm for generating a morph between com-
patible straight-line drawings, by adding bends, while also maintaining a few constraints
on the intermediate drawings. Recall the statement of the main theorem of this work:

Theorem 1.2.1 (Main). Let G be a connected planar graph with n vertices. For a compati-
ble pair of planar straight-line drawings P and Q of G, whose vertices lie on an O(n)×O(n)
grid, there exists a planarity-preserving linear morph sequence from P to Q of length O(n),
where each explicit intermediate drawing lies on an O(n)×O(n) grid and has O(1) bends
per edge. Moreover, this sequence can be found in O(n2) time.

Several constraints must be maintained throughout the long sequence of linear morphs
that we wish to construct. We will use an algorithm that carefully maintains all the
constraints while progressively constructing the sequence. The algorithm will be broken
into several phases:

Phase I: Morph the straight-line drawings into poly-line drawings which are “admitted” by
a pair of (straight-line) orthogonal box drawings. These definitions will be discussed
thoroughly in Section 3.2. At this point, the problem reduces to that of morphing
orthogonal box drawings with zero bends per edge.

Phase II: Morph the pair of orthogonal box drawings so that they are “parallel”, essentially
meaning that the sequences of ports along each side of each vertex box, as well as the
sequences of turns along each edge are all the same in both drawings. This definition
will be discussed thoroughly in Chapter 4. This will introduce O(1) bends per edge.

Phase III: Morph the pair of parallel orthogonal box drawings to be equal by appealing
to a result for morphing parallel orthogonal points drawings.

See Figure 2.8 for an example of all three phases.

Phase I will be quite short and relatively simple, and will be contained entirely within
Section 3.2. Phases II and III are, at a high-level, very similar to the techniques used by
Biedl et al. [7] to morph parallel orthogonal point drawings with O(n2) linear morphs, and
correspond to the two phases used in that work. However, Phase II is more complicated
because we are morphing orthogonal box drawings, and we are doing so with only O(n)
linear morphs. We further break up Phase II as follows:
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Phase IIa: Morph the two orthogonal box drawings so that each side of each vertex box
contains the same sequence of ports in both drawings. This will introduce bends in
the edges. At this point, if the drawings fail to be parallel, then it must be because
they have a different sequence of turns along some edges.

Phase IIb: Compute a sequence of “simultaneous twists” (to be defined in Section 5.2) to
be performed on the vertices (in one of the drawings), which will guarantee a certain
property for a pair of resulting drawings. At a high-level, this property will be that
the “net” left and right turns along each edge will be the same in both drawings. In
this phase, we only compute what the twists should be, but do not yet perform the
corresponding morphs.

Phase IIc: Perform each of the desired simultaneous twists. After each one, compress
the drawing to a small grid and simplify so that each edge consists of exclusively left
turns or exclusively right turns (and hence the sequence of turns along the edge are
the same as its “net” turns).

Each of these phases correspond directly to a phase of the algorithm used by Biedl et al. [7],
though phases IIa and IIc involve many additional details. Phases IIa, IIb, and IIc will be
completed in Chapter 4, Section 5.3, and Chapter 7 respectively.

The final result of Phase II is the following theorem for morphing orthogonal box
drawings to become parallel:

Theorem 2.5.1 (Obtaining Parallel Boxes). Let G be a connected planar graph on n
vertices. If P and Q are a pair of compatible planar orthogonal box drawings of G, both
drawn on an O(n)×O(n) grid, with O(1) bends per edge, then there exists a pair of parallel
planar orthogonal box drawings P ′ and Q′ of G and a pair of planarity-preserving linear
morph sequences of lengths kP , kQ ∈ O(n), from P to P ′ and from Q to Q′, respectively,
such that the explicit intermediate drawings in each morph sequence are all also drawn on
an O(n)×O(n) grid and have O(1) bends per edge. Moreover, these sequences can be found
in O(n2) time.

This theorem will be proven in Section 8.1.

Phase III will be quite short and simple, since it simply applies some results by Biedl
et al. [7] to orthogonal box drawings via a reduction. As such, it will be presented entirely
within the proof of Theorem 1.2.1 in Section 8.2.

To summarize: Chapter 3 contains some important definitions/reductions, and Phase I.
Chapter 4 contains Phase IIa. Chapter 5 contains some important definitions and discus-
sion, and Phase IIb. Chapter 6 contains one component of Phase IIc (“compressions”
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and “simplification”). Chapter 7 contains the other component of Phase IIc (“performing
twists”). Chapter 8 puts all the phases together and proves Theorem 2.5.1 (encapsulating
Phase II) and then Theorem 1.2.1 (the main result). In addition, it also discusses some
simple extensions of Theorem 1.2.1. Chapter 9 discusses some remaining open problems.
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Phase I

Phase IIa

Phase IIb & IIc

Phase III

Figure 2.8: An example of all phases on a very simple drawing.
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Chapter 3

Reduction to Morphing Orthogonal
Box Drawings

Phase I consists of reducing the problem of morphing planar straight-line drawings to a
morphing problem on orthogonal box drawings, and is the topic of this chapter. This
reduction has two steps. First, it will be shown that every orthogonal box drawing has an
associated planar poly-line drawing called an “admitted drawing”, and that a planarity-
preserving linear morph of the former induces the same for the latter. Second, it will be
shown that any planar straight-line drawing can be morphed to the admitted drawing of
some orthogonal box drawing.

Detailed coordinates for orthogonal box drawings will play a particularly prominent
role in this chapter, so it is helpful to recall some notation we introduced in Section 2.1.

Notation 3.0.1. For an orthogonal box drawing A and a vertex v, let A(v) denote the
vertex box of v in A.

Discussion of coordinates in this chapter will be aided by an additional concept. We
usually say that an N ×N integer grid has N columns and N rows, each numbered from
0, . . . , N − 1, and a coordinate (x, y) ∈ R2 is a grid point if x and y are integers such that
0 ≤ x, y < N . The grids we use can be assumed to have this positioning, since translations
of all our drawing types can be handled by a single (planarity-preserving) linear morph.

Given anN×N integer grid Z, we say that a (w, h)-refinement of Z is a wN× hN grid
with columns numbered 0, 1

w
, . . . , w−1

w
, 1, 1 + 1

w
, . . . , N − 1 + w−1

w
, and rows numbered

0, 1
h
, . . . , h−1

h
, 1, 1 + 1

h
, . . . , N − 1 + h−1

h
, such that a coordinate (x, y) ∈ R2 is a grid point

if wx and hy are integers and 0 ≤ x, y < N . See Figure 3.1 for examples of refinements.
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(a) A 6× 4 integer grid Z.
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(b) A (2, 1)-refinement of Z.
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(c) A (2, 2)-refinement of Z.

Figure 3.1: Examples of refinements of an integer grid.

A drawing D is said to be drawn on a (w, h)-refinement Z ′ of an N × N integer grid
if all of its coordinates are grid points of Z ′. Then, there exists a scaled drawing D′ of D
drawn on a wN ×hN integer grid Z0 (obtained by multiplying all coordinates component-
wise by (w, h)) and the linear morph from D to D′ is planarity-preserving, since it simply
scales the coordinates. Furthermore, for a pair of drawings D1, D2 drawn on Z ′, there
are corresponding scaled drawings D′1 and D′2 that are drawn on Z0 (also obtained by
scaling the coordinates in D1, D2 component-wise by (w, h)) such that the linear morph
from D1 to D2 is planarity-preserving if and only if the linear morph from D′1 to D′2 is
planarity-preserving. Hence, a refined grid should be thought of as merely a tool to simplify
presentation for this chapter. All linear morph sequences on refined grids are equivalent
to linear morph sequences on integer grids, sometimes with some additional linear morphs
that scale coordinates at the beginning and end (which does not change the asymptotic
complexity of the sequence length).

3.1 Admitted Drawings of Orthogonal Box Drawings

Admitted drawings are planar poly-line drawings which “agree” with orthogonal box draw-
ings everywhere in the plane outside each vertex box.

Definition 3.1.1. Let D be a planar orthogonal box drawing of a graph G. Then the
admitted drawing of D is the unique planar poly-line drawing P such that:

• For each vertex v ∈ V (G), the location of v in P is at the centre of the vertex box
D(v).

• For each edge e = uv ∈ E(G), the segments of e in P agree with D outside the
vertex boxes D(u) and D(v), and inside each vertex box they each contain exactly one
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(a) A planar orthogonal box
drawing D.

(b) The admitted planar poly-
line drawing P of D super-
imposed onto D.

(c) The admitted planar poly-
line drawing P of D.

Figure 3.2: An example of a planar orthogonal box drawing, and an admitted planar
poly-line drawing.

segment, joining the vertex and an additional bend at the location of the corresponding
port.

With this definition of admitted drawings, an important property can be stated about
their underlying grids.

Observation 3.1.2. Let D be a planar orthogonal box drawing of a graph G drawn on an
N×N integer grid Z. Then the admitted drawing A of D is drawn on the (2, 2)-refinement
of Z.

Proof. The only additional coordinates in A not present in D belong to the locations of
the vertices in A. For each vertex v ∈ V (G), the location A(v) is found at the centre of the
vertex box D(v), whose four corners lie in Z. Therefore, each of the x and y-coordinates of
A(v) are either an integer, or a half integer, so A(v) lies in the (2, 2)-refinement of Z.

Note that it is possible that the admitted drawing A of D is also drawn on Z itself, if
all the coordinates of vertex corners in D happen to be even. Regardless, a scaled drawing
A′ of A must exist that is drawn on a 2N × 2N integer grid, which is obtained simply by
multiplying all coordinates of A by 2.

See Figure 3.2 for an example of an admitted drawing. Admitted drawings are partic-
ularly useful because of the following result:

Lemma 3.1.3. Let P and Q be planar orthogonal box drawings of the same graph. Let P ′

and Q′ be the admitted planar poly-line drawings of P and Q, respectively. Suppose that
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the linear morph from P to Q is planarity-preserving. Then the linear morph from P ′ to
Q′ is also planarity-preserving.

Note that Lemma 3.1.3 applies even if the linear morph from P to Q is a non-horizontal
non-vertical linear morph that transforms the vertex boxes.

Proof. The admitted drawings P ′ and Q′ differ from the orthogonal box drawings P and
Q (respectively) only within each vertex box, so it suffices to show that during the morph
MP ′,Q′ , the location of each vertex v ∈ V (G) at time t remains in the strict interior of its
respective vertex rectangle in M t

P,Q.

Let the corners of the vertex boxes P (v) and Q(v) be denoted by XP
0 , X

P
1 , X

P
2 , X

P
3 and

XQ
0 , X

Q
1 , X

Q
2 , X

Q
3 respectively. Then, the location of the vertex v in M t

P ′,Q′ is

(1− t)
3∑
i=0

XP
i /4 + (t)

3∑
i=0

XQ
i /4 =

3∑
i=0

[
(1− t)XP

i + (t)XQ
i

]
/4,

which is the centre of v’s vertex rectangle in M t
P,Q. Therefore, the linear morph is planarity-

preserving.

With this result, morphing admitted drawings can be reduced to the problem of mor-
phing orthogonal box drawings. Given a pair of orthogonal box drawings A and B and a
planarity-preserving sequence of linear morphs from A to B, the corresponding sequence of
linear morphs between the admitted planar poly-line drawings is also planarity-preserving.
Hence, if A′ and B′ are planar poly-line drawings which are admitted drawings of A and
B respectively, then the problem of finding a planarity-preserving linear morph sequence
from A′ to B′ can be reduced to finding a linear morph sequence from A to B.

As an aside, the reader may question why admitted drawings have specifically been
defined so as to require the vertex lies at the centre of the vertex box. In fact, with this
alternative definition, the statement of Lemma 3.1.3 would no longer be true. If the vertex
is placed near the same corner of a vertex box in both drawings, and then the vertex box
is “rotated” similarly to the square box in Figure 2.7g, it might lie outside the vertex
rectangle, and could intersect something moving at that location.

3.2 Finding an Initial Orthogonal Box Drawing

The previous section showed that admitted planar poly-line drawings of planar orthogonal
box drawings can be a useful tool for morphing poly-line drawings. It remains to be shown
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Figure 3.3: An example of a visibility representation of a 6-vertex graph..

that an arbitrary planar straight-line drawing P can be morphed into an admitted planar
poly-line drawing P ′ of some orthogonal box drawing D, which is the purpose of this
section. This process will be broken into two substeps. First, we will use P to compute
an orthogonal box drawing D with some special properties, by using existing techniques
known for so-called “visibility representations”. Then, we will take the admitted drawing
P ′ of D, and show that a planarity-preserving linear morph sequence from P to P ′ can be
computed.

3.2.1 Visibility Representations

We introduce another well-studied class of graph drawings. For a planar graph G, a
visibility representation of G represents each vertex v as a horizontal line segment, and
each edge as either a vertical or horizontal line segment, such that for each line segment Luv
representing an edge uv, one of the endpoints of Luv intersects the horizontal line segment
representing u, and the other endpoint intersects the horizontal line segment representing
v, and no other forms of intersections are pemitted. Additionally, no pair of horizontal
line segments representing vertices may intersect. In some other literature, our “visibility
representations” could sometimes be called “flat 2-directional visibility representations”,
but since we will study no other kinds, we will omit these qualifiers. See Figure 3.3 for an
example of this type of drawing.

There is a large body of existing literature on visibility representations and their vari-
ations [42, 35, 50, 29, 6], but of particular interest to us is the following result:

Theorem 3.2.1 (Theorems 5 and 6 by Biedl [6]). Let P be a planar straight-line drawing
of an n-vertex graph G drawn on an N × N integer grid. Then there exists a visibility
representation R of G, so that the horizontal line segments representing vertices in R have
the same y-coordinates as the corresponding points representing vertices in P , and every
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possible horizontal line intersects the same sequence of edges and vertices in both drawings.
Furthermore, R is drawn on an O(n)×N integer grid.

Note that the condition on horizontal lines is (in our notation from Section 2.3) the
same as saying that the partial intersection order of horizontal lines is the same in P and
R.

For our intended application, we also need to know how efficiently we can find a drawing
R given by Theorem 3.2.1. Unfortunately, this was not discussed in the paper, and the
naive approach to the construction results in an algorithm which would be too slow for
our purposes. However, we will discuss machinery in Chapter 6 which will make the
construction of a much faster algorithm both possible and straightforward, given the above
existential proof. Hence, we will postpone any detailed discussion of an algorithm and proof
for this step until Section 6.2.5. However, the improved result, which we will use in this
chapter, is as follows:

Theorem 3.2.2. Given a planar straight-line drawing P , a visibility representation R with
the properties stated in Theorem 3.2.1 can be computed in O(n log n) time.

Since we are interested in morphing orthogonal box drawings, and not visibility rep-
resentations, we are more interested in the following corollary that replaces the visibility
representation by a straight-line orthogonal box drawing, i.e., an orthogonal box drawing
where edges have no bends:

Corollary 3.2.3. Let P be a planar straight-line drawing of a graph G drawn on an N×N
integer grid, such that no vertex lies on the row labelled 0. Then there exists an O(n)×N
integer grid Z, and a planar straight-line orthogonal box drawing D of G drawn on a (1, 3)-
refinement of Z, so that each vertex has the same y-coordinate in both P and the admitted
planar poly-line drawing P ′ of D, and every horizontal line intersects the same sequence of
edges and vertices in both P and P ′. Moreover, D and P ′ can be found in O(n log n) time.

See Figure 3.4 for examples of the constructions given by Theorem 3.2.1 and Corol-
lary 3.2.3.

Note that the assumption that no vertex in P lies on the row labelled 0 is made only
to simplify handling the edge case of coordinates for vertex boxes corresponding vertices
along the bottommost occupied row. This can be thought of as an implementation detail.

Note also that since D is drawn on a (1, 3)-refinement of Z, P ′ is therefore drawn on a
(2, 6)-refinement of Z. We will see that P ′ is more specifically drawn on a (2, 3)-refinement
of Z, though this fact is not needed for our purposes.
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(a) A planar straight-line
drawing P .

(b) A visibility representation
which would result from ap-
plying Theorem 3.2.1 to P .

(c) An orthogonal box draw-
ing, and corresponding admit-
ted drawing P ′, which would
result from applying Corol-
lary 3.2.3 to P .

Figure 3.4: An example of a straight-line (point) drawing, and other forms of drawings as
they would be computed via Theorem 3.2.1 and Corollary 3.2.3.

Proof. Apply Theorem 3.2.2 to obtain a visibility representation R in O(n log n) time, and
let Z be the integer grid on which it resides. Construct D on the (1, 3)-refinement of Z
by replacing each horizontal line segment representing a vertex with a rectangle of height
2/3 vertically centered at the original y-coordinate, and with the same x-coordinate range.
Each vertical line segment representing an edge in R is replaced with a shorter vertical
line segment whose endpoints become ports along its incident vertex boxes. Horizontal
line segments representing edges can remain identical in both R and D, since the ports for
such line segments are now found along the left and right sides of the vertex boxes.

For each vertex v in the admitted drawing P ′ of D, the point P ′(v) lies in the centre
of the vertex box D(v), and hence has the same y-coordinate as P (v).

P ′ can be directly constructed from D in O(n) time, so the time complexity of this
construction is O(n log n) in total.

3.2.2 Morphing to an Initial Admitted Drawing

The previous subsection used a planar straight-line drawing P to construct an orthogonal
box drawing D with some useful properties, and a corresponding admitted drawing P ′ of
D. In this section, we will show that a planarity-preserving linear morph sequence exists
from P to P ′. Furthermore, we also want our linear morph sequence to have some useful
properties. Specifically, we want the explicit intermediate drawings to be drawn on a small
(O(n+N)× O(n+N)) grid, and we want the length of the linear morph sequence to be
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(a) The initial
straight-line drawing
P .

(b) An equivalent
drawing to P which
introduces bends
at (potentially non-
grid) coordinates.

(c) A planar poly-line
drawing P ′, which is
an admitted drawing
of an orthogonal box
drawing.

(d) The drawing P ′,
with the vertex boxes
of the orthogonal box
drawing D overlayed.

Figure 3.5: An example of a (simple) technique for morphing to an admitted drawing which
allows introducing bends at arbitrary locations (i.e., not on a grid).

small (O(n)). We will make careful use of refinements to simplify our presentation and
proof.

As a simple aside, if we relax the grid condition so that bends can be introduced at
arbitrary locations (rather than only at grid points), similarly to the algorithm of Lubiw and
Petrick [33] discussed in Chapter 1, then this morph is quite simple: For any non-horizontal
edge, simply introduce bends to P whose y-coordinates are equal to their final locations in
the admitted drawing P ′, after which a horizontal linear morph will be planarity-preserving
by Theorem 2.3.2. See Figure 3.5 for an example of this construction.

In order to satisfy the requirement that the bends are introduced at grid points, the
bends will instead be introduced at the locations coinciding with their corresponding ver-
tices. However, this requires a longer and more complex planarity-preserving sequence of
linear morphs.

Theorem 3.2.4. Let P be a planar straight-line drawing of a graph G drawn on an N×N
integer grid. Then there exists an (O(n) + N) × N integer grid Z, and a straight-line
orthogonal box drawing D drawn on a (1, 3)-refinement of Z, so that a planarity-preserving
linear morph sequence of length O(n) exists from P to the admitted planar poly-line drawing
P ′ of D. Furthermore, each explicit intermediate drawing of the linear morph sequence is
drawn on a (2, 6)-refinement of Z, and has at most 2 bends per edge. Moreover, P ′, D,
and the linear morph sequence can be computed in O(n2) time.

Proof. Use Corollary 3.2.3 to compute an orthogonal box drawing D and its admitted
planar poly-line drawing P ′ in O(n log n) time. Assume for simplicity that P ′ does not
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contain any bends along strictly horizontal edges. They can be re-added after the morph is
complete, since the drawing without them is essentially equivalent, so long as y-coordinates
are always preserved.

Let ZP be the N ×N integer grid on which P resides. Let Z0 be the O(n)×N integer
grid whose (1, 3)-refinement ZD supports D and its (2, 6)-refinement ZP ′ supports P ′. That
is, the corners/ports/bends of D lie on grid points of ZD, and the vertices/bends of P ′ lie
on grid points of ZP ′ .

We let Z be the (O(n) +N)×N grid obtained by attaching ZP to the right of Z0, so
that Z0 forms the leftmost O(n) columns of Z, while ZP forms the rightmost N columns.
Note that all vertices have the same y-coordinate in P ′ drawn in Z0 (as a subgrid of Z),
and in P drawn in ZP (as a subgrid of Z).

It suffices to find a planarity-preserving sequence of linear morphs from P to P ′. We first
morph P to add two bends to each edge, one at each endpoint, and translate the drawing
so that it lies on the N rightmost coordinates of Z (i.e., add N to each x-coordinate). Let
P+ be the resulting drawing which is drawn on Z.

Now recall that D lies on the (1, 3)-refinement of Z0, which is the O(n) leftmost columns
of Z, and hence P ′ lies on the (2, 6)-refinement on Z0. The y-coordinates of each vertex are
shared by both P+ and P ′. See Figure 3.6 for an example of P+ and P drawn simultane-
ously. For the remainder of the proof, all bends and vertices in each explicit intermediate
drawing will use either their locations in P ′ or their locations in P+, so every explicit
intermediate drawing will be drawn on the (2, 6)-refinement of Z.

The main idea of this proof is to progressively morph vertices and edges of P+ to their
final locations in P ′, while being careful of the order chosen for these vertices and edges.
First we will find an order of all the vertices and edges. Then we will move each vertex
and edge according to this order. When it is an edge’s turn, both of its bends are moved.
When it is a vertex’s turn, the vertex itself is moved.

For a set of points and line segments (in our case, the vertices and non-horizontal edges
of P ), the visibility ordering is a partial order defined by a < b (where a, b may be
edges or vertices) if there is a horizontal line that, traversed left to right, intersects a
and then intersects b. We will move the vertices and non-horizontal edges of P+ in an
order respecting the visibility ordering given by P . Visibility orderings are known to be
acyclic [38, 14, 15, 23]. However, we wish to add some additional constraints. Specifically,
in our ordering, we will additionally require that each vertex is listed after all its incident
non-horizontal edges. All the new constraints are those of the form e < v, where e is an non-
horizontal edge incident to v. This is in fact still a visibility ordering, but one of a modified
set of points and line segments. Specifically, each point for this modified set is obtained by

38



translating the location of a vertex in P by a sufficiently small amount 0 < ε < 1 to the
right, while the line segments are obtained again from the non-horizontal edges of P . This
partial order can be computed trivially in O(n2) time by brute force comparison (i.e. check
every pair of vertex/edge, edge/edge, and vertex/vertex, and augment the result with the
additional constraints for incident vertex/edge pairs), and it can be converted to a total
order in the same time complexity using standard topological sorting algorithms [28, 43].
Faster algorithms for computing the visibility order exist, but they do not improve the
overall time complexity for computing our linear morph sequence in this proof.

We recommend studying the example in Figure 3.7 while reading the following con-
struction.

For each item in the computed total order, at most one linear morph will be performed.
If the item is a non-horizontal edge, we apply one linear morph moving both its bends from
their locations in P+ to their locations in P ′. If the item is a vertex, we apply one linear
morph, moving it from its location in P+ to its final location in P ′. A horizontal edge will
be implicitly moved with its endpoints, and so it is not included in the total order. The
length of this linear morph sequence is O(n), since there are O(n) edges and vertices. This
construction takes O(n2) time to construct as a result.

It remains only to be shown that the constructed linear morph sequence is planarity-
preserving. We show this by induction. Assume that for the first k − 1 ≥ 0 vertices
and non-horizontal edges, the linear morphs performed are planarity-preserving. Let the
explicit intermediate drawing at this stage be denoted Pk−1. For the first k−1 vertices and
non-horizontal edges in the order, the locations of the vertices and bends in Pk−1 are equal
to the corresponding locations in P ′. For the remaining vertices and non-horizontal edges,
the locations of the vertices in bends in Pk−1 are equal to the corresponding locations in
P+. Then, we consider the kth step, and split into two cases.

As a first case, assume the kth step moves a non-horizontal edge e. Then, the only
components of the drawing Pk−1 which we will change are the locations of the bends in
e. Note that, since the y-coordinates of the first and last segment in e do not overlap in
either P+ or P ′, the edge e cannot intersect itself during the linear morph. Since each
bend moves to the left during the morph, a simple 4-sided polygon Q is formed by the
line segments representing each edge segment along e in both of P+ and P ′ (not including
those with zero-length). See Figure 3.7b for an example of Q during a linear morph step.
By Observation 2.2.1, it suffices to show that Q is empty of other vertices or bends of
Pk−1. Let x be a vertex or bend of Pk−1 not found along e. Let H be the horizontal line
intersecting x. If H does not intersect Q, then x is not contained in Q. If, when H is
followed from left to right, x is found before e in Pk−1, then x is at its location in P ′ (it

39



Figure 3.6: The drawings P ′ (with D as an overlay) and P+ drawn together. Note that
they do not overlap.

is earlier in the visibility ordering). Since P and P ′ have the same intersection order of
horizontal lines by Corollary 3.2.3, we know that x is to the left of e in P ′ along H, and is
therefore to the left of Q along H. If x is found after e in Pk−1 along H, it is therefore to
the right of Q along H, since Q extends leftward from e in Pk+1.

For the second case, assume the kth step moves a vertex v. Then, the only component
of the drawing Pk−1 which we will change is the location of v. The kth step is a unidi-
rectional linear morph. Consider the horizontal line h whose y-coordinate is that of v (in
all drawings). All non-horizontal edges to the right of v along h in P+ have not yet been
moved, and all non-horizontal edges to the left of v along h in P ′ have already been moved
(by the visibility ordering). Therefore, the same order along h will be preserved by the
linear morph of the kth step, so by Theorem 2.3.2, the linear morph is planarity-preserving.
During this step, the endpoint of a horizontal edge incident to v may also be moved, and
this also does not violate planarity since v will not intersect any other vertices during the
morph (since the ordering along every horizontal line is preserved).

As another aside, it may be interesting to readers to ask why a simpler approach
doesn’t work. Specifically, let P0 be an equivalent drawing to P augmented with two
(degenerate) bends per edge, one at each endpoint. Then, if the linear morph from P0 to
P ′ was planarity-preserving, we would be done. Unfortunately, this morph is not always
planarity-preserving. In Figure 3.8 we show a 3-vertex counter-example that was found
with a constraint formulation using the SMT solver Z3 [17]. Additionally, P0 and P+ (as
defined in the above proof) differ only by a uniform horizontal translation of all vertices,
and as a result, a similar counter-example can be found which shows that the linear morph
directly from P+ to P ′ is not always planarity-preserving.
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(a) An order of the edges and vertices gener-
ated from the visibility ordering.

(b) An example of the 4-sided polygon Q (in
Step 5 below) for an edge used to prove that the
linear morph sequence is planarity-preserving.

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Step 6 Step 7 Step 8

Step 9 Step 10 Step 11

Step 12 Step 13 Step 14

Step 15

Figure 3.7: An example of a few steps in the construction of Theorem 3.2.4. At each step,
the bolded (red) object is being moved, according to the order computed from the visibility
ordering. Figure 3.7b denotes Q for the step that morphs the third edge.
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(18, 2)

(1, 1)

(34, 3)

(a) An example of a planar straight-line drawing P , with coordinates denoted. P0 is the
equivalent drawing to P that introduces bends coincident with each of the three vertices
displayed. The number of coincident bends introduced at each vertex is equal to the degree
of that vertex.

(18, 2)

(7, 1.16)

(18, 2.16)
(26, 2.83)

(25, 2.83)

(1, 1)

(34, 3)

(b) At the time t = 1/2 in the linear morph from P0 to P ′, an intersection occurs.

(1, 1)

(34, 3)

(13, 1.3)

(16, 2.6)

(18, 2.6)

(18, 2.3)

(18, 2)

(c) The admitted planar poly-line drawing P ′ of D.

Figure 3.8: A small example of why a linear morph directly from P0 to P ′ may not be
planarity-preserving. The vertex boxes of D are also drawn at each step (clipped for better
visibility).
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Chapter 4

Port Alignment of Orthogonal Box
Drawings

The goal of Phase II of the morphing procedure is to arrive at a pair of “parallel” drawings.
We say that a pair of orthogonal box drawings P ∗ and Q∗ with no degenerate bends are
parallel if the sequences of edges exiting each vertex box side, and the sequences of turns
along each edge, are all the same in P ∗ and Q∗. If P ∗ and Q∗ have degenerate bends, then
we consider them to be parallel if the drawings obtained by removing degenerate bends
are parallel. In Phase II, we are given a pair of orthogonal box drawings P and Q, and we
wish to morph to a pair of parallel orthogonal box drawings P ∗ and Q∗. The goal of Phase
IIa is to satisfy the first class of conditions of parallel drawings. That is, we are given a
pair of orthogonal box drawings P and Q, and we wish to morph to a pair of orthogonal
box drawings P ′ and Q′ such that the sequences of ports along each vertex box side is the
same in P ′ and Q′.

For a vertex v of a graph G, and two compatible planar orthogonal box drawings P and
Q of G with no degenerate bends, we say P and Q are port aligned at v if the sequences
of ports along each side of the vertex boxes P (v) and Q(v) are the same. If, dependent
on v, we can find an orthogonal rotation (i.e., by 0◦, 90◦, 180◦, or 270◦) of Q such that
the sequence of ports along each side of P (v) and each corresponding side of the rotated
Q(v) is the same, then we say that P and Q are angle aligned at v. Note that this is
a weaker condition. We also simply say that P and Q are port aligned if they are port
aligned at all vertices v ∈ V (G), and likewise we say that P and Q are angle aligned if
they are angle aligned at all vertices (with potentially different rotations for each vertex).
Clearly, if P and Q are parallel, then they are also port aligned (and hence angle aligned).
Examples of these conditions are demonstrated in Figure 4.1. In this chapter, we will focus
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(a) An orthogonal box
drawing D.

v1

v5

v2

v3
v4

(b) An orthogonal box drawing which
is port aligned with D.

v1 v2

v5
v4

v3

(c) An orthogonal box draw-
ing which is angle aligned
with D, but not port aligned
with D.

Figure 4.1: Examples of port aligned and angle aligned drawings, with labelled vertices.

on achieving port alignment, but in the next chapter we will emphasize maintaining angle
alignment after having achieved port alignment.

4.1 Obtaining Orthogonal Box Drawings with no Ports

at Corners

Before directly completing Phase IIa, we will take a brief tangent to discuss a helpful
property that can be achieved. Throughout the remainder of the thesis, including this
chapter, there are various definitions and algorithms for orthogonal box drawings whose
steps are simplified by assuming that there are no ports that coincide with corners. In this
short section, we provide a routine that allows us to assume this.

Theorem 4.1.1. Let P be an orthogonal box drawing of a graph G with n vertices, drawn
on an N × N integer grid Z. Then, there exists an orthogonal box drawing P ′ with no
port-corner coincidences, drawn on an O(N) × O(N) integer grid Z ′ and parallel to P ,
and a planarity-preserving linear morph sequence from P to P ′ with length O(1), such that
every explicit intermediate drawing is also drawn on Z ′. Moreover, P ′ and the linear morph
sequence can be computed in O(n) time.

Whenever we have an orthogonal box drawing, this result will allow us to replace it
with an orthogonal box drawing that does not contain any port-corner coincidences.
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(a) P (b) P ′, with the differing box-sizes of P as
gray dashed lines.

Figure 4.2: An example of the main construction step used in Theorem 4.1.1. The crosses
mark port-corner coincidences.

We will accomplish the proof by modifying the coordinates of the features—the ports,
bends, and corners of an orthogonal box drawing with explicitly defined coordinates.

Proof. We will first remove all port-corner coincidences for ports incident to vertical edge
segments, and then argue that by using a symmetric algorithm we can remove port-corner
coincidences involving horizontal edge segments.

Let Z be the grid on which P lies, and redraw P using a (3, 1)-refinement of Z (equiv-
alently, use a single linear morph to scale P onto a larger grid).

We will move each feature of P to a new x-coordinate on this refinement. We define
a drawing P ′ parallel to P that uses these new x-coordinates, while preserving all y-
coordinates. All the following operations are perfomed simultaneously to arrive at the new
drawing P ′:

• For each top-left or bottom-left vertex box corner, decrease its x-coordinate by 1
3
.

• For each top-right or bottom-right vertex box corner, increase its x-coordinate by 1
3
.

• For every port or degenerate bend along the left side of a vertex box that isn’t incident
to a vertical edge, decrease its x-coordinate by 1

3
.

• For every port or degenerate bend along the right side of a vertex box that isn’t
incident to a vertical edge, increase its x-coordinate by 1

3
.

• For all other features, maintain the same x-coordinates.

See Figure 4.2 for an example of this construction. Note that, in particular, the top and
bottom side of each vertex box are extended by 1

3
to the left and right, but the locations of
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ports along the top and bottom sides (including those that might have been coincident with
the corners in P ) remain unchanged. Hence, P ′ contains no port-corner coincidences that
involve ports with incident vertical edge segments. By Theorem 2.3.2, the linear morph
from P to P ′ is planarity-preserving.

The previous routine removed all port-corner coincidences involving ports that were
incident to vertical edge segments, and it did not introduce any port-corner coincidences
at all. Therefore, by the symmetry of x and y-coordinates, we may perform the symmetric
routine to remove port-corner coincidences involving ports coincident to horizontal edge
segments. In total, this involves O(1) linear morphs (including those used by refinements).
Moreover, each drawing can clearly be constructed in linear time.

As an aside, the above proof is quite similar to the proof of Corollary 3.2.3.

4.2 Port Alignment of Orthogonal Box Drawings with

no Ports at Corners

Using the result of the previous section, the main result of Phase IIa will be:

Theorem 4.2.1. Let A and B be compatible orthogonal box drawings of a graph G drawn
on an N×N grid. Then there exists an orthogonal box drawing A′ and a sequence of linear
morphs of length O(n) from A to A′ such that A′ and B are port aligned. Furthermore, A′

and all the explicit intermediate drawings in the sequence are drawn on an (N + O(n))×
(N+O(n)) grid, and have at most O(1) additional bends per edge compared to A. Moreover,
A′ and the sequence can be found in O(n2) time.

For the remainder of chapter, since the main construction will work closely with ports,
it is helpful to briefly introduce some notation. For an orthogonal box drawing D with a
vertex v and an edge e incident to v, we let D(e, v) denote the port of e along the vertex
box D(v).

The technique for proving this theorem will be to morph ports around corners. Without
loss of generality, it will suffice to assume that a port is being morphed around the top left
corner counter-clockwise, since all other cases of a port being morphed around a corner
can be achieved by symmetry.

Lemma 4.2.2. Let D be an orthogonal box drawing of a graph G drawn on an N × N
grid, such that D has no port-corner coincidences. Let e ∈ E(G) be an edge incident
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to a vertex v ∈ V (G) so that the port D(e, v) is the leftmost port along the top side of
the vertex box D(v). Then, there exists an orthogonal box drawing D′ of G drawn on an
(N +O(1))× (N +O(1)) grid, with O(1) additional bends along the edge e (and no other
additional bends), so that the sequence of ports along each side of each vertex box is the
same in both drawings, except that D′(e, v) is instead the topmost port along the left side
of the vertex box D′(v).

Furthermore, there is a planarity-preserving sequence of linear morphs from D to D′

of length O(1), such that every explicit intermediate drawing in the sequence is also drawn
on an (N +O(1))× (N +O(1)) grid, and also has O(1) additional bends along the edge e
(and no other additional bends). Moreover, both D′ and the sequence can be computed in
O(n) time.

Proof. The final planarity-preserving sequence of linear morphs will be labelled D = D1,
D2, D3, D4, D5, D6, D7 = D′. The explicit construction is given here, and a visual example
can be found in Figure 4.3.

• Let x∗ be the x-coordinate of the left side of the vertex box of v. Create D2 by shifting
every feature (bend, port, or vertex box corner) strictly to the left of the line x = x∗

to the left by 1, so no feature will have x-coordinate x∗ − 1 afterwards. The linear
morph from D1 to D2 is a horizontal linear morph, and it is planarity-preserving by
Theorem 2.3.2.

• Let y∗ be the y-coordinate of the top side of the vertex box of v. Create D3 by
shifting every feature strictly above the line y = y∗ up by 1, and every feature below
the line y = y∗ down by 1, so no feature will have y-coordinate y∗ − 1 or y∗ + 1
afterwards. The linear morph from D2 to D3 is a vertical linear morph, and it is also
planarity-preserving by Theorem 2.3.2.

• Let D4 be the equivalent drawing to D3 that introduces the bends b1, b2, b3 just after
the port p = D3(e, v), so that the location of b1 coincides with p, and the locations
of b2 and b3 coincide with each other, at a unit distance upwards from p.

• D5 can be constructed by modifying only the locations of p, b1 and b2. Specifically,
they should all be shifted horizontally to align with the left side of the vertex box.
The linear morph from D4 to D5 is a horizontal linear morph, and it is planarity-
preserving since e was assumed to be the leftmost edge along the top side of the vertex
box, and since there are guaranteed to be no conflicting bends, ports, or vertex box
corners along the path.
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D7 = D′

b3
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Figure 4.3: A port can be morphed around a corner using exactly 6 linear morphs.

• D6 can be constructed by modifying only the locations of b1 and b2. Specifically,
they should both be shifted horizontally to the left by a unit distance. The linear
morph from D5 to D6 is again a planarity-preserving linear morph since there are
guaranteed to be no conflicting bends, ports, or vertex box corners along the path.

• Finally, D7 = D′ can be constructed by modifying only the locations of b1 and p.
Specifically, they should be shifted down by a unit distance (i.e., to y∗ − 1). By the
construction of D3, no feature has y-coordinate equal to y∗−1 in D6 (since none were
moved to occupy that y-coordinate), so this does not cause any intersections. The
linear morph from D6 to D7 is a vertical linear morph, and it is planarity-preserving
again for the same reason.

The first two steps increase the size of the grid by O(1). The third step adds O(1) bends.
Each explicit intermediate drawing can be computed in O(n) time, and there are O(1) such
drawings, so the total time complexity is O(n) to compute the linear morph sequence.

Repeatedly applying this lemma on appropriate vertices will result in a proof of Theo-
rem 4.2.1:

Proof. Without loss of generality by Theorem 4.1.1, we may assume A does not have any
coinciding port-corner pairs.
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The algorithm is quite simple: Let D0 := A. For increasing values of i, consider each
side of each vertex box in Di with some edges along it, and consider the most counter-
clockwise edge along that side (i.e., leftmost along top, bottommost along left, rightmost
along bottom, topmost along right). If e is not the most counter-clockwise edge along that
side in both Di and B (or if that side does not contain edges in B), then modify Di using
Lemma 4.2.2 to morph e around the next corner counter-clockwise, and call the result
Di+1. After performing this for enough values of i, we guarantee that, for each side of the
vertex box in D that is non-empty, the most counter-clockwise edge along that side is the
same in both Di and B. Once this condition is satisfied, repeat the procedure using the
most clockwise edges along each side. Once the second procedure has completed, output
A′ := Dk, where k is the largest value for which Dk is computed (i.e., the final value of
i). Note that the second procedure won’t invalidate the guarantee of the first procedure
along any side (the only unusual case is when a side has only one edge in B, in which case
it is both the most clockwise and counter-clockwise edge on that side). So, since the most
clockwise and most counter-clockwise edges along each side match, the final drawings A′

and B must be port aligned.
During each of the two procedures, no port will move around more than 4 corners, since at
least one port along the vertex box must be the most-counter-clockwise (or most-clockwise)
edge along some side, blocking other ports from moving around that corner. Hence, each
port will move around at most 8 = O(1) corners, so Lemma 4.2.2 will be applied at
most O(1) times per edge, or O(n) times in total. Thus, there will be at most O(1) bends
additional bends per edge in the final drawing Dk, and at most O(n) additional coordinates
for a final grid size of N +O(n)×N +O(n). Moreover, the total time to compute all these
linear morphs is O(n2).

See Figure 4.4 for an example of this construction.
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The resulting drawings D
and B are port aligned at the
vertex.

Figure 4.4: An example of the construction used for proving Theorem 4.2.1, used at a
single vertex. This a representation of the relative port locations along the vertex box, but
not the exact linear morphs or explicit drawings.
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Chapter 5

Spirality and Twists of Orthogonal
Box Drawings

The goal of Phase II of the morph is to obtain parallel orthogonal box drawings. In addition
to port alignment, the second and final condition for a pair of orthogonal box drawings to
be parallel is that the sequence of turns along the path defined by each edge (along some
arbitrary direction) is the same. In order to unify these sequences of turns, it is possible
to adapt machinery developed by Biedl et al. [7] for morphing orthogonal point drawings.
Most of this machinery is adapted to form Phase IIb, discussed in this chapter, while the
rest is adapted to form Phase IIc.

There are three main steps for discussing Phase IIb. First, a (signed) measure of simi-
larity between two edges will be defined, called “spirality”. Second, a high-level operation
for adjusting the spirality of edges will be discussed, called “twists”. In addition, a new
method for adjusting the spirality of every edge simultaneously will be discussed, called
“simultaneous twists”. Lastly, a method for choosing twists will be discussed which unifies
the spirality of all edges. Besides the use of simultaneous twists, each of these steps is also
performed in a similar manner by Biedl et al. [7] for orthogonal point drawings. However,
a large number of small adaptations needed to be made for orthogonal box drawings and
simultaneous twists, so these techniques are explained in full in this chapter. Later, in
Section 6.2, it will be shown that equal spirality along each edge can be used to obtain
equal sequences of turns along each edge.
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Figure 5.1: An example of how the spirality is computed for an edge uv, oriented from u
to v. The spirality of the edge is sD(u, v) = −7.

5.1 Spirality

Spirality is a method of aggregating the sequence of turns along an edge, and it can be
used to define a measure of similarity between edges in a pair of orthogonal box drawings.
This section revises concepts devised by Biedl et al. [7] for orthogonal point drawings into
corresponding concepts for orthogonal box drawings.

Notation 5.1.1. Let D be an orthogonal box drawing with no degenerate bends. Let e = uv
be an edge. Then the spirality sD(u, v) of e in D is the number of left turns minus the
number of right turns encountered while traversing e from u to v.

See Figure 5.1 for an example of how spirality is computed along an edge. Spirality is
a discrete analogue to the turning number or total curvature of a smooth curve.

In order to discuss the relationship between spirality and pairs of parallel drawings, the
following notion is also required:

Definition 5.1.2. Let D be an orthogonal box drawing. D is said to be zig-zag-free if it
has no degenerate bends, and for each edge e = uv, there are either only left turns or only
right turns along e.
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The name “zig-zag-free” comes from an equivalent condition: In the sequence of turns
along the edge, there is no pair of adjacent left and right turns (a zig-zag). For zig-zag-
free drawings, the spirality of an edge is enough to determine its exact sequence of left and
right turns. The drawing in Figure 5.1 is not zig-zag-free—the two circled bends form a
zig-zag (and there are several others too).

Now, in order to compare two different drawings, the spirality of each edge needs to be
compared:

Definition 5.1.3. For any two vertices u and v sharing an edge in G, and any two com-
patible orthogonal box drawings P and Q of G, the difference in spirality from u to v
is ∆sP,Q(u, v) := sQ(u, v) − sP (u, v).

The following simple definition is also of importance:

Definition 5.1.4. The maximum absolute difference in spirality between two or-
thogonal box drawings P and Q of the same graph G is maxuv∈E(G) |∆sP,Q(u, v)|.

There is a key relationship between the difference in spirality and the property of port
alignment:

Observation 5.1.5. Let P and Q be compatible port aligned orthogonal box drawings of
the same graph G. Then, for each edge e = uv, ∆sP,Q(u, v) ≡ 0 (mod 4).

As a second observation, there is an important relationship between port alignment,
zig-zag-free, and the maximum absolute difference in spirality:

Lemma 5.1.6. Let P and Q be two compatible port aligned zig-zag-free orthogonal box
drawings of the same graph. If the maximum absolute difference in spirality between P and
Q is 0, then P and Q are parallel.

Proof. Let e = uv be an edge. Since P and Q are zig-zag-free, the sequence of turns along
e is given by the spirality of e in P and Q respectively. The maximum absolute difference
in spirality is 0, so ∆sP,Q(u, v) = 0, and hence the spirality of e is the same in P and Q.
Thus, the sequence of turns along e is the same in both P and Q. Since the two drawings
are port aligned, they are also parallel.

In order to apply Lemma 5.1.6, one needs to be able to find zig-zag-free drawings, and
to be able to reduce the maximum absolute difference in spirality. Reducing the maximum
absolute difference in spirality will be discussed in the succeeding sections of this chapter,
while finding zig-zag-free drawings is a nearly-solved problem in previous literature, and
will be discussed in Section 6.2.
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v∗ v∗

Figure 5.2: An example of two drawings forming a clockwise twist at a vertex.

5.2 Twists

In order to reduce the maximum absolute difference in spirality between a pair of drawings,
the spirality of edges in one drawing needs to be changed. A twist will be a type of linear
morph that changes the spirality of the edges around some vertex. A simultaneous twist
will be a type of linear morph that changes the spirality of edges around multiple vertices.
The former was used by Biedl et al. [7] for orthogonal point drawings, while the latter is
new.

A twist is just what it sounds like: It is a method for (locally) twisting a vertex box
(or set of vertex boxes), without changing the drawing globally, in a sense.

Definition 5.2.1. Let P and Q be angle aligned orthogonal box drawings of a graph G.
Let v∗ ∈ V (G). P and Q are said to form a clockwise twist at v∗ if:

• For each vertex v ∈ V (G) \ {v∗}, P and Q are port aligned at v.

• Let P̂ be a drawing obtained by rotating the entirety of P clockwise 90◦. Then P̂ and
Q are port aligned at v∗.

• For each edge e = uv with u, v 6= v∗, the spirality of e is unchanged, i.e., ∆sP,Q(u, v) =
0.

• For each edge e = uv∗, the spirality of e is changed so that one additional net left
turn is introduced, i.e., ∆sP,Q(v∗, u) = 1.

P and Q are said to form a counter-clockwise twist at v∗ if the analogous conditions
hold (rotation becomes 90◦ counter-clockwise and additional right turns are introduced).
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It turns out that applying twists as defined above can result in a linear morph sequence
with length up to Θ(n2), even for the analogous problem of morphing orthogonal point
drawings [7]. Such a sequence would be too long for our purposes. Van Goethem et al. [47]
overcame this issue for orthogonal point drawings, but their techniques would be difficult
(perhaps impossible) to use in a manner that would achieve our desired time complexity
and grid size in the final linear morph sequence. Instead, we will perform several twists at
different vertices simultaneously to overcome this issue.

In order to define a “simultaneous twist”, we add one necessary piece of input: A twist
assignment is a function t : V (G) → {−1, 0, 1} that represents the desired direction to
twist each vertex. A −1 represents a clockwise twist, a 1 represents a counter-clockwise
twist, and a 0 represents no twist.

Definition 5.2.2. Let P and Q be angle aligned compatible orthogonal box drawings of a
graph G. Let t : V (G) → {−1, 0, 1} be a twist assignment. P and Q are said to form a
simultaneous twist of the twist assignment t if:

• For each vertex v ∈ V (G), let P̂v be the drawing obtained by rotating the entire
drawing P 90◦ clockwise, 90◦ counter-clockwise, or not at all, in the cases of t(v) =
−1, t(v) = 1, and t(v) = 0 respectively. Then P̂v and Q are port aligned at v.

• For each edge e = uv, the spirality of e is changed to respect the (possible) rotations
of both u and v according to t, i.e., ∆sP,Q(u, v) = t(u)− t(v).

The reason for separating out an abstract definition of a “twist” like this, rather than
presenting an explicit algorithm to construct a twist, is two-fold: Firstly, the algorithms
and results which actually select which twists need to be performed do not need all the
additional complexity of a specific implementation, and can be presented quite abstractly.
Secondly, the actual “implementations” of twists that have all the qualities that are neces-
sary for proving Theorem 2.5.1 are quite technical (details will be discussed in Chapter 7),
so the reader may find it helpful to be able to consider the two problems separately.

Using the abstract notion of a twist, it becomes much simpler to discuss which twists
should be chosen. Given a pair of compatible orthogonal box drawings P and Q, the goal
of using twists will not exactly be to strictly reduce the maximum absolute difference in
spirality between some P ′ and Q at each step. Rather, the goal will be to find a sequence of
twists which eventually result in a maximum absolute difference in spirality of 0 between
a final drawing P ′ and Q, while also guaranteeing that P ′ is port aligned with Q. In
other words, the goal is to satisfy the pre-conditions of Lemma 5.1.6. Choosing twists that
accomplish this is the topic of the next section.
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5.3 Choosing Twists

It has been established in the previous section that twists (and simultaneous twists) change
the spirality of edges, and the manner in which spirality is changed for each type of twist
has been determined. The goal of Phase IIb is to show that, for a pair of port aligned
orthogonal box drawings P and Q, a sequence of twist assignment functions exists so that
any corresponding sequence of drawings starting with P , forming a sequence of correspond-
ing simultaneous twists, is guaranteed to end with a drawing parallel to Q. In other words,
twists will be chosen which guarantee a resulting pair of parallel drawings, satisfying the
conditions of Lemma 5.1.6.

In order to obtain such a sequence of twist assignment functions, we will show that all
solutions to a carefully chosen system of equations have the intended guarantees. Then,
it will be shown that the system of equations admits a solution consisting of O(n) twist
assignment functions. Biedl et al. [7] used a similar system of equations and corresponding
proofs to derive a sequence of O(n2) twists for orthogonal point drawings.

The system of equations will involve a sequence of twist assignment functions denoted
t1, t2, · · · : V (G)→ {−1, 0, 1}. It involves two types of constraints:

• For each edge uv ∈ E(G), ∆sP,Q(u, v) +
∑

i ti(v)−
∑

i ti(u) = 0 (constraint type 1).

• For each vertex v ∈ V (G),
∑

i ti(v) ≡ 0 (mod 4) (constraint type 2).

Let P ′ be some drawing that is the result of a sequence of simultaneous twists, starting
from P , corresponding to the sequence of twist assignment functions. The constraints
of type 1 imply that the maximum absolute difference in spirality between P ′ and Q is
0, and the constraints of type 2 imply that P ′ and Q are port aligned. The latter can
be seen by the fact that

∑
i ti(v) expresses how many times the box of v is rotated 90◦

counter-clockwise (or counter-clockwise if it is negative).

Observe that the constraints do not place any restrictions on individual twist assignment
functions, but rather operate only on the sums

∑
i ti(v) of twist assignment functions for

each vertex v ∈ V (G), indicating the (net) number of times and direction that each vertex
is twisted. Rather than computing a sequence of twist assignment functions directly, it
is simpler to compute and discuss these values, which will be referred to as the values of
a cumulative twist assignment function ṫ, and will be denoted ṫ(v) ∈ Z for each
v ∈ V (G). Given a cumulative twist assignment function ṫ, it’s trivial to greedily compute
a sequence of twist assignment functions {ti}i satisfying

∑
i ti(v) = ṫ(v). A more careful

choice of functions will need to be chosen in order to keep the number of bends along each

56



edge low, but that choice will be discussed in the proof of Theorem 5.3.3. The constraints
of both types can now be restated for a cumulative twist assignment function:

• For each edge uv ∈ E(G), add a constraint that ∆sP,Q(u, v) + ṫ(v) − ṫ(u) = 0
(constraint type 1).

• For each vertex v ∈ V (G), add a constraint that ṫ(v) ≡ 0 (mod 4) (constraint type 2).

It remains to be shown that the system of equations is feasible, and that it can be
solved efficiently. We first show that the constraints of type 1 are satisfied for every edge
provided that they are satisfied for the edges of a maximal spanning forest (i.e., a spanning
tree for each connected component).

Lemma 5.3.1. Let P and Q be compatible port aligned orthogonal box drawings of the
same graph G. Let ṫ be a cumulative twist assignment function satisfying the constraints
of type 1 for each edge in a maximal spanning forest of G. Then, ṫ satisfies the constraints
of type 1 for every edge.

Proof. Let u∗v∗ ∈ E(G) be some edge that is not part of the maximal spanning forest of
G. Together with some minimal subset of edges from the maximal spanning forest of G, it
must form a cycle C within G. Direct C in G so that it becomes counterclockwise in any
admitted drawing of P or Q, i.e., the bounded region enclosed by C lies to its left (when
traversed according to the edge directions) in each. Note that this is possible because
P and Q are compatible drawings, and hence clockwise-oriented faces must be the same
(while C is assembled from such faces).

For each drawing P and Q, consider the closed orthogonal path in the plane formed by
repeatedly moving along each edge in C, and then moving counter-clockwise around each
vertex box encountered until the port of the next edge in C is reached. See Figure 5.3 for
an example of this traced path. This path is simple in both drawings, by planarity.

A theorem of Vijayan and Wigderson [48] states that any planar orthogonal cycle has 4
more left turns than right turns when traversed counter-clockwise. Both the traced paths
are planar orthogonal cycles traversed counter-clockwise. Note that the left and right turns
encountered at each vertex box are identical along both traced paths, since P andQ are port
aligned. Therefore, if these turns are ignored, the number of left turns minus the number
of right turns must still be the same along both paths. Omitting these terms results in the
sum of spiralities along each edge of C within each of P and Q. Thus, if the sequence of
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u∗ v∗
u∗v∗

Figure 5.3: The planar orthogonal cycle which is used in the proof of Lemma 5.3.1 to show
that the edge u∗v∗ has the same spirality in both drawings.

vertices in C is v∗ = v1, v2, . . . , vk = u∗, we have ∆sP,Q(vk, v1) +
∑k−1

i=1 ∆sP,Q(vi, vi+1) = 0.
This implies

∆sP,Q(u∗, v∗) = −
k−1∑
i=1

∆sP,Q(vi, vi+1)

=
(
−ṫ(v1) + ṫ(v2)

)
+
(
−ṫ(v2) + ṫ(v3)

)
+ · · ·+

(
−ṫ(vk−1) + ṫ(vk)

)
= ṫ(u∗)− ṫ(v∗),

so the constraint of type 1 on the edge u∗v∗ is satisfied.

In addition, the constraints of type 2 can be satisfied easily as well.

Lemma 5.3.2. Let P and Q be compatible port aligned orthogonal box drawings of the
same graph G. Let ṫ be a cumulative twist assignment function satisfying the constraints
of type 1 for every edge, and satisfying the constraints of type 2 for at least one vertex in
each connected component of G. Then, ṫ satisfies the constraints of type 2 for all vertices.

Proof. The proof is inductive. Let v be a vertex whose neighbour u satisfies its constraint
of type 2. By assumption, the edge uv satisfies its constraint of type 1. P and Q are port
aligned, so Observation 5.1.5 implies that ∆sP,Q(u, v) ≡ 0 (mod 4). Therefore, ṫ(v) =
ṫ(u)−∆sP,Q(u, v) ≡ 0 + 0 (mod 4).

The main result of Phase IIb for computing a sequence of twist assignment functions
is as follows:
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Theorem 5.3.3. Let P and Q be compatible port aligned orthogonal box drawings of the
same graph G. Assume that each of P and Q have O(1) bends per edge. Then, there exist
a sequence of k ∈ O(n) twist assignment functions t1, t2, . . . , tk, such that any sequence of
orthogonal box drawings P = P0, P1, . . . , Pk, where each Pi−1, Pi form a simultaneous twist
of the twist assignment ti, has the following properties:

• Pk and Q are port aligned.

• The maximum absolute difference in spirality between the final drawing Pk and Q is
zero.

• For each edge uv ∈ E(G), the absolute value of the difference in spirality with Q
monotonically decreases throughout the sequence (i.e., |∆sPi−1,Q(u, v)| ≥ |∆sPi,Q(u, v)|
for all 0 ≤ i ≤ k).

Moreover, the sequence of twist assignment functions can be computed in O(n2) time.

Note that the requirement that each adjacent pair forms a simultaneous twist also
implies that all drawings in the sequence P0, . . . , Pk are angle aligned. In this sense, we
must “maintain” angle-alignment when using this result, as mentioned in Chapter 4.

Proof. Given a pair of compatible port aligned orthogonal box drawings P and Q of the
same graph G, Lemma 5.3.1 and Lemma 5.3.2 together imply a straightforward algorithm
for computing a cumulative twist assignment function ṫ satisfying all constraints of types 1
and 2: Start with a maximal spanning forest of G, and root each of its trees. For each root
r ∈ V (G), choose ṫ(r) := 0, so the constraint of type 2 at r is satisfied. Then, perform a
pre-order traversal of each tree, and set ṫ(v) := ṫ(u)−∆sP,Q(u, v) for a vertex v with parent
u. This choice satisfies all constraints of both types by Lemma 5.3.1 and Lemma 5.3.2.
This choice of ṫ can be computed in O(n) time, and its maximum absolute value is bounded
above by

∑
uv∈E(G) |∆sP,Q(u, v)|.

Choose k = maxv∈V (G)

∣∣ṫ(v)
∣∣. For every uv ∈ E(G), ∆sP,Q(u, v) is at most the

maximum number of bends in P and Q across the edge uv, which is O(1). Therefore,∣∣ṫ(v)
∣∣ ≤ ∑uv∈E(G) |∆sP,Q(u, v)| ∈ O(n) for every vertex v ∈ V (G). For the the ith twist

assignment function ti (where i ∈ {1, . . . , k}), choose

ti(v) :=


1 if ṫ(v) ≥ i

−1 if ṫ(v) ≤ −i
0 if − i < ṫ(v) < i

.
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It can be verified that
∑k

i=1 ti(v) = ṫ(v), so all the constraints of type 1 and 2 are satisfied
for the twist assignment functions. Therefore, the maximum absolute difference in spirality
between Pk and Q is zero, and Pk and Q are port aligned. It remains to be shown that the
absolute value of the difference in spirality with Q of each edge is monotonically decreasing.
Let uv ∈ E(G) be an arbitrary edge, and assume without loss of generality that ṫ(u) ≥ ṫ(v),
else swap u and v. Consequently, by the constraint of type 1 on uv, ∆sP,Q(u, v) = ṫ(u)−
ṫ(v) ≥ 0. We claim that ti(u) ≥ ti(v) for all i ∈ {1, . . . , k}:

• If ṫ(v) ≥ 0, then ti(u) = ti(v) for all i ∈ {1, . . . , ṫ(v)} ∪ {ṫ(u) + 1, . . . , k}. For
i ∈ {ṫ(v) + 1, . . . , ṫ(u)}, ti(v) = 0 < 1 = ti(u).

• If ṫ(u) ≤ 0, then ti(u) = ti(v) for all i ∈ {1, . . . ,−ṫ(u)} ∪ {−ṫ(v) + 1, . . . , k}. For
i ∈ {−ṫ(u) + 1, . . . ,−ṫ(v)}, ti(v) = −1 < 0 = ti(u).

• If ṫ(u) ≥ 0 ≥ ṫ(v), then ti(u) ≥ 0 ≥ ti(v) for all i ∈ {1, . . . , k}.

Hence, for all i ∈ {1, . . . , k},

∆sPi,Q(u, v) = sQ(u, v)− sPi−1
(u, v) + sPi−1

(u, v)− sPi
(u, v)

= ∆sPi−1,Q(u, v) + ti(v)− ti(u)

≤ ∆sPi−1,Q(u, v).

Therefore, since ∆sP0,Q(u, v) ≥ ∆sP1,Q(u, v) ≥ · · · ≥ ∆sPk−1,Q(u, v) ≥ ∆sPk,Q(u, v) = 0,
we have |∆sPi,Q(u, v)| ≥

∣∣∆sPi−1,Q(u, v)
∣∣, as desired.

As an aside, note that the length k of this computed linear morph sequence would
be equal to the maximum absolute value of all the cumulative twist counts, and such a
sequence can then be computed in time O(kn). For general planar graphs, we have shown
that k ∈ O(n) is possible. Prior work has shown that this is tight, i.e., that there are
examples where k ∈ Ω(n) always (as discussed in Chapter 1). However, there are special
cases of graphs (e.g., those with low-diameter spanning trees) where smaller bounds are
possible.
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Chapter 6

Simplifying and Compressing
Orthogonal Box Drawings

Phase IIc consists of two parts: Performing twists, and the simplification and compression
of the drawing. This chapter discusses the latter. During the process of generating a
sequence of linear morphs, it is possible to blow up the complexity of the drawings over
time. For example, if an operation (such as performing twists) takes an orthogonal box
drawing Ai drawn on an N × N grid with at most c bends per edge, and produces an
orthogonal box drawing Ai+1 drawn on an (N+Ω(n))×(N+Ω(n)) grid with Ω(1) additional
bends per edge, then a mere ω(1) applications of this operation will result in a drawing
already on an ω(N + n) × ω(N + n) grid, with c + ω(1) bends per edge. As an extreme
(but relevant) example, Ω(n) applications of this operation will result in a drawing on an
Ω(N + n2)× Ω(N + n2) grid, with c + Ω(n) bends per edge. Since it is a primary goal of
this work (in particular, for proving Theorem 2.5.1) to maintain an O(n)×O(n) grid and
O(1) bends per edge, these values are too large.

In this chapter, it will be shown how to simplify orthogonal box drawings by reducing
the number of bends per edge. This will be accomplished using a sequence of linear
morphs produced by repeatedly applying an operation called zig-zag elimination to
make drawings zig-zag-free (as defined in Section 5.1). Additionally, it will be shown how
to reduce the size of the grid on which an orthogonal box is drawn by compressing the
drawings. In fact, the methods for accomplishing each of these are similar to each other.

The techniques used in this chapter could be classified as a simple form of “refinement”
techniques for orthogonal box drawings, which constitute a large field (see the fairly com-
prehensive experimental paper by Six, Kakoulis, and Tollis [37], the “4M-algorithm” by
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Fößmeier and Heß and Kaufmann [25], or Lengauer’s textbook [32] for a broader discussion
of integrated circuit layout). Crucially however, the techniques in this chapter additionally
enable us to find morphs, which is not the problem of interest for refinement techniques.

6.1 Compressions

The main idea of performing compressions is that, given an orthogonal box drawing A of
a graph G with at most O(1) bends per edge, drawn on an N × N grid, there exists a
sequence of O(1) linear morphs from A into an orthogonal box drawing A′ of the same
graph G with the same number of bends along each edge, except that A′ is drawn on
an O(n) × O(n) grid. Specifically, such a sequence will involve two unidirectional linear
morphs, one horizontal and one vertical.

In other words, if some operation (e.g., performing twists) takes a drawing drawn on an
N ×N grid and produces one drawn on an N + Θ(n)×N + Θ(n) grid, then a compression
can be performed afterwards to obtain a (parallel) drawing on an O(n)× O(n) grid. The
methods we will use to accomplish this are similar to “retraction” linear morphs used by
Biedl et al. [7], except that we use the language of orthogonal box drawings, and discuss
time complexity.

This is not a surprising result: The number of distinct x or y coordinates used by
features (bends, ports, vertex box corners) in an orthogonal box drawing with O(1) bends
per edge must already be O(n). So, if N ∈ ω(n), then there must be unused values smaller
than the maximum, leaving parts of the grid unused.

Lemma 6.1.1. Let P be an orthogonal box drawing of an n-vertex graph G drawn on an
N ×N grid with O(1) bends per edge. Then, there exists an orthogonal box drawing P ′ of
the same graph G drawn on an O(n)×N grid which is parallel to P , such that the linear
morph from P to P ′ is planarity-preserving, and it is a horizontal linear morph. Moreover,
P ′ can be found in O(min{N + n, n log n}) time.

Proof. The idea for this proof is simply to “delete” the unused x-coordinates. For each
feature, store the value of its x-coordinate (along with a reference to the feature) in an array
called XCoords. There are O(n) features and hence min{O(n), N} unique x-coordinates
in total. Next, sort XCoords. This takes O(min{n log n, n + N}) time, which is the
minimum time to perform either a comparison sort or a bucket sort. Iterate through
XCoords and mark groups with identical x-coordinates. This data structure gives us a
simple way to assign new x-coordinates: We will create a new drawing P ′ by modifying
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Figure 6.1: An example of horizontal, and then vertical compression.

the x-coordinates of each features in P , while preserving y-coordinates. Specifically, if a
feature’s x-coordinate in P corresponds is part of the ith group in XCoords after sorting,
then its x-coordinate in P ′ is equal to i exactly. The maximum group index will be O(n),
so P ′ is drawn on an O(n)×N grid. We have preserved the order of all x-coordinates, so
by Theorem 2.3.2 the linear morph from P to P ′ is planarity-preserving.

Theorem 6.1.2. Let P be an orthogonal box drawing of an n-vertex graph G drawn on an
N ×N grid with O(1) bends per edge. Then, there exists an orthogonal box drawing P ′ of
the same graph G drawn on an O(n) × O(n) grid which is parallel to P . Furthermore, a
planarity-preserving linear morph sequence from P to P ′ of length 2 exists, such that the
unique explicit intermediate drawing is also parallel to P and drawn on an (N +O(n))×
(N +O(n)) grid. Moreover, P ′ and the linear morph sequence can be found in O(min{N+
n, n log n}) time.

Proof. Apply Lemma 6.1.1 first to the x-coordinates, then apply a modified symmetric
version of the lemma to the y-coordinates via the symmetry of x and y coordinates.

An example of the algorithm for Theorem 6.1.2 can be found in Figure 6.1.

6.2 Zig-Zag Elimination and Trapezoidal Maps

The previous section discussed compression, a method for limiting the number of coordi-
nates used by a drawing. This section discusses zig-zag elimination, which is a method for
limiting the number of bends used by a drawing. Recall from Section 5.1 that an orthog-
onal box drawing is zig-zag-free if every edge consists of only left or only right turns when
traversed.
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v

u

(a) An example of an
edge with no zig-zags.

v

u

(b) An example of an edge
with one (vertical) zig-zag.

v

u

(c) An example of an edge with five zig-
zags, three horizontal and two vertical.

Figure 6.2: Examples of edges with and without zig-zags. The zig-zags are highlighted as
bolder and differently coloured.

Previous works have devised methods for using linear morphs to obtain zig-zag-free
drawings in orthogonal point drawings [7, 47], and these methods could also be applied to
orthogonal box drawings. However, they do not have sufficient simultaneous guarantees of
final grid size, algorithmic complexity, and linear morph sequence length. We will discuss
their guarantees in more detail, and a strengthened version of their results for our purposes
will be obtained.

Recall from Section 5.1 that a zig-zag is an adjacent pair of left and right turns along
the traversal of an edge in a drawing. We expand this definition to include the orientation.

Definition 6.2.1. Let P be an orthogonal box drawing of an n-vertex graph G. Let e =
uv ∈ E(G) be an edge. Let b, b′ be adjacent (non-coincident) bends of e in P forming a
zig-zag. If the segment from b to b′ is horizontal, then the zig-zag is said to be a horizontal
zig-zag, otherwise it is a vertical zig-zag.

See Figure 6.2 for examples.

Our primary purpose in discussing zig-zags is to eliminate them. That is, we wish to
perform a sequences of linear morphs that will remove all of them. As a simple example,
observe that the linear morph from the drawing in Figure 6.2b to the drawing in Figure 6.2a
is planarity-preserving.

Biedl et al. [7] were the first to show that a (unidirectional) linear morph can be used
to eliminate a zig-zag. In other words, a drawing with a zig-zag can be transformed to
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one without that zig-zag using a single linear morph. This method will be very important
to this chapter, as it has numerous useful properties. An example/explanation of their
construction (which can be applied to orthogonal box drawings as well) can be found in
Figure 6.3, though the useful properties will be discussed below.

Lemma 6.2.2 (Based on the text of Section 3.2 by Biedl et al. [7]). Let P be an orthogonal
box drawing of a graph G. Let e = uv ∈ E(G) be an edge. Let b, b′ be adjacent bends of e in
P forming a horizontal zig-zag. Then there is an orthogonal box drawing P ′ of G parallel to
P except for the coincidence of the newly-degenerate bends b and b′, with several additional
properties:

• The locations of b and b′ in P ′ coincide and the incident segments are vertical.

• No other pair of bends becomes or ceases to be coincident. That is, no pair of bends
(b0, b

′
0) 6= (b, b′) is coincident in exactly one of P and P ′.

• The linear morph from P to P ′ is a planarity-preserving horizontal linear morph.

• Let xb, xb
′

be the x-coordinates of b and b′ respectively in P . Assume without loss of
generality that xb

′
> xb. Let x∗ be the location of a port/bend/corner in P . Then its

x-coordinate in P ′ is either x∗ again or x∗ +
(
xb
′ − xb

)
.

Note that the original discussion by Biedl et al. [7] of the above lemma was in the
language of orthogonal point drawings. However, the result also applies to orthogonal box
drawings, which is more useful to us.

Applications of the above lemma to obtain new drawings are referred to as zig-zag
eliminations (or in this case, horizontal zig-zag eliminations), since they remove
the bends of a zig-zag.

Van Goethem et al. [47] made the observation that repeat applications of horizontal
zig-zag elimination can be accomplished with a single linear morph (though without any
guarantees on final grid size). By repeatedly applying Lemma 6.2.2 to eliminate all hori-
zontal zig-zags, followed by applying Lemma 6.1.1 to compress the drawing, a new drawing
can be obtained that has no horizontal zig-zags and is drawn on a grid with width O(n).
Moreover, Van Goethem et al.’s lemma implies that one can morph directly to this drawing
using only two horizontal linear morphs (one to eliminate horizontal zig-zags, and one to
compress to a small grid). Unfortunately, the computation for this method can take Ω(n2)
time, which is not fast enough for our purposes. We want an algorithm that computes
a drawing with the same bounds, but that runs in only O(n) time. We will devise such
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(a) An orthogonal box drawing P with a
horizontal zig-zag.

(b) The drawing P ′ which results from apply-
ing the zig-zag elimination routine described by
Biedl et al. [7] on P .

(c) Applying their method involves partitioning the features
(bends/ports/corners) of the drawing into two halves, depend-
ing on where they lie in relation to the zig-zag. One of the sides
is visualized here with the hatched (gold) fill and the solid (red)
line exiting the top of the zig-zag. The left-side boundary is in-
clusive above the zig-zag (where it is further to the left), and
exclusive below the zig-zag (where it is further to the right).
The features on this side will be moved in the direction of the
arrows.

(d) Every feature was moved
a distance to the right ex-
actly equal to the length of
the deleted zig-zag.

Figure 6.3: An example of the zig-zag elimination linear morph method used by
Biedl et al. [7], applied to orthogonal box drawings.
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an algorithm by applying techniques of Doenhardt and Lengauer [20] for one-dimensional
compaction in VLSI design (explained below). The correctness of this application will use
properties of the zig-zag elimination process described above, even though the algorithm
itself will not.

6.2.1 Simplified Results by Doenhardt and Lengauer for One-
Dimensional Layout Compaction

In their work, Doenhardt and Lengauer [20] formalized a very general one-dimensional
compaction problem for VLSI design, which they show to be NP-hard. Doenhardt and
Lengauer give an efficient algorithm for a tractable case of their one-dimensional com-
paction problem. For clarity and simplicity, we will limit our discuss of their work to a
carefully chosen further simplified case handled by their algorithm that is most relevant to
our application. That case is as follows:

Definition 6.2.3 (Special case of of Doenhardt and Lengauer’s [20] one-dimensional layout
compaction model). Let L = {l1, . . . , ln} be a set of n vertical line segments in the plane
that do not intersect, with endpoints lying on a grid. The goal of the simplified one-
dimensional layout compaction problem is to find new x-coordinates x(li) for each
line segment li ∈ L so that:

• For each pair li, lj ∈ L such that li lies strictly to the right of lj along some horizontal
line intersecting both, it is required that x(li) − x(lj) ≥ 1. These constraints are
denoted C≤.

• The width, defined as maxi x(li)−mini x(li), is minimized.

The output of an algorithm that solves this problem is a set L′ of line segments which are
constructed by shifting each line segment li ∈ L horizontally to its assigned x-coordinate
x(li). It can be additionally required that mini x(li) = 0 without changing the minimum
width of an instance.

See Figure 6.5a and Figure 6.5f for examples of the input and output of Doenhardt and
Lengauer’s problem (respectively).

Doenhardt and Lengauer refer to C≤ as II.

Doenhardt and Lengauer give an efficient algorithm that we will refer to as “longest
path compaction” which computes a solution to the simplified one-dimensional layout
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(a) The set of line segments L. (b) The trapezoidal map of L is drawn as dot-
ted (red) lines (rays omitted).

Figure 6.4: An example of the trapezoidal map of a set of line segments L that includes
non-vertical line segments.

compaction problem in O(n log n) time. Their solution is also guaranteed to use integer
coordinates. Their algorithm does not compute C≤, since the size of C≤ could be Θ(n2) for
some instances. Doenhardt and Lengauer instead bypass this issue by using two phases in
their algorithm: The first phase computes a carefully chosen subset of C≤ with size O(n)
in O(n log n) time. The second phase uses a topological sort to compute the final set of
line segments in O(n) time.

Doenhardt and Lengauer first observe that the constraints in C≤ correspond to a di-
rected acyclic graph whose vertex set is L. Each constraint of the form x(li) − x(lj) ≥ 1
corresponds to an edge from lj to li in this graph. They call this graph G0(L). The output
of the first phase in the algorithm by Doenhardt and Lengauer is another directed acyclic
graph, with O(n) edges. They call this graph Gr

0(L), but we will call this the “trapezoidal
graph” of L, and denote it GT (L). Importantly, Doenhardt and Lengauer show that the
transitive closure of GT (L) is the same as the transitive closure of G0(L).

Towards the definition of GT (L), consider a set of (potentially not just vertical) non-
horizontal line segments L that are disjoint except for (possibly) shared endpoints. For
each endpoint x of a line segment in L, extend horizontal line segments to the left and
right of x until they each hit a line segment in L not incident to x. Note that some of
these horizontal line segments are extended infinitely, and become rays. We call this set
of horizontal line segments (and rays) the trapezoidal map [13] of L, and we will denote
it H. See Figure 6.4 for an example. Although the above definition allows sets of line
segments that may share endpoints, we will mostly deal with sets of disjoint line segments.
Under this more restricted class, we can define the trapezoidal graph GT (L) of a set of
disjoint non-horizontal line segments L to be the (simple) directed graph whose vertex-set
is L and whose edges correspond to line segments (but not rays) in H (always directed
from left to right). In particular, each edge in GT (L) can be said to be generated by
some endpoint of some line segment li ∈ L (specifically, the endpoint of the line segment li
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with which the horizontal line segment in the trapezoidal map shared an endpoint). Some
edges may be generated multiple times. We omit the additional edges for simplicity, but
record all line segment endpoints that generate each edge as additional data alongside the
trapezoidal graph itself. In this subsection and the following two subsections, we will focus
on trapezoidal maps and graphs of sets of vertical line segments. However, in Section 6.2.5,
we will use trapezoidal maps and graphs for sets of disjoint non-horizontal line segments.

We take a brief tangent to discuss some well-known results on computing trapezoidal
maps that will be useful. For an arbitrary set of disjoint non-horizontal line segments
(not just vertical line segments), it is known that its trapezoidal map can be computed
in O(n log n) time by standard methods [13]. In some cases, this time complexity can be
improved. Chazelle [12] describes a method which can be used to compute a trapezoidal
map in linear time for the non-horizontal segments of any simple polygon (when the simple
polygon, including horizontal segments, is given as input). We will also be able to make use
of this faster time complexity in our use-case, by using Chazelle’s algorithm as a subroutine,
as we will discuss in the next subsection.

We now return to the discussion of the algorithm by Doenhardt and Lengauer. For the
set of disjoint vertical line segments L, recall that Doenhardt and Lengauer compute the
trapezoidal graph GT (L) by computing the trapezoidal map of L. Specifically, they create
a directed edge corresponding to each (non-ray) edge of the trapezoidal map, directed from
left to right (this is a slight simplification of Doenhardt and Lengauer’s algorithm, but it
is equivalent for our purposes).

The second phase of the algorithm by Doenhardt and Lengauer takes as input any
directed acyclic graph G(L) whose transitive closure is the same as that of G0(L) (in
particular, they show that GT (L) suffices). It takes time O(|V (G(L))| + |E(G(L))|) to
compute the coordinates x(li) satisfying every constraint in C≤ with minimum width. In
particular, the second phase of their algorithm does not require the x-coordinates of each
line segment in L as an input, nor does it require the constraints C≤. The resulting x-
coordinates are also guaranteed to have a width no larger than the number of edges in
GT (L), which we will call the compactness property . This is a consequence of a fact
given for using the “critical-path method” (typically for scheduling) in the second phase of
Doenhardt and Lengauer’s algorithm [20]. We will omit discussion of the details of their
second phase (and the critical-path method), since we use it as a black-box, but essentially
they use a topological sort similar to the one we use in the proof of Theorem 3.2.4.

See Figure 6.5 for an example of all the different components of their algorithm which
have been discussed.
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(a) A set of vertical line seg-
ments L.

(b) The trapezoidal map of L
(rays omitted).

(c) The graph GT (L) com-
puted from the trapezoidal
map of L.

(d) The pairs of line segments
corresponding to C≤.

(e) The graph G0(L), with
the same transitive closure as
GT (L).

(f) The compacted set of line
segments, along with their
trapezoidal map. Note that
this is (combinatorially) the
same trapezoidal map as the
one of L.

Figure 6.5: Examples of the constructions for the algorithm used by Doenhardt and
Lengauer.
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6.2.2 Applying Doenhardt and Lengauer’s Results for Compres-
sions

For an orthogonal box drawing P , Doenhardt and Lengauer’s algorithm can be used to
find a compression of P , which could be used as an alternative proof of the compression
lemma (Lemma 6.1.1). This alternative method will be an important warm-up for the next
subsection. More importantly, in the process we will make use of some important concepts
for applying Doenhardt and Lenguaer’s algorithm to zig-zag elimination.

We will assume that P does not contain any successive horizontal edge segments in the
order along any edge, or zero length edge segments connecting successive horizontal edge
segments (note that this is a weaker property than P having no degenerate bends). The
vertical line segments of P , denoted V (P ), are the vertical edge segments along with
the set of minimal vertical line segments joining two ports/corners along the left and right
sides of each vertex box. Note that this is a set of line segments that are disjoint except
for (possibly) shared endpoints. We define the set of maximal vertical line segments
covering P , which we will denote as L(P ), to be the set of maximal disjoint vertical
line segments following along P . Equivalently, to define L(P ), start with the vertical line
segments V (P ) of P , and exhaustively merge all vertical segments sharing endpoints until
the result is the set of disjoint vertical line segments. Note that these segments may cover
more than one element of the drawing P (see Figure 6.6d and Figure 6.6e), and that for
any two equivalent orthogonal drawings P 0, P 1, L(P 0) = L(P 1). Also note that every port
and every corner of P is covered by some element of L(P ), and our assumption that P does
not contain successive horizontal edge segments or zero length edge segments connecting
successive horizontal edge segments guarantees that every bend of P is covered as well.

By processing the set L(P ) with the algorithm of Doenhardt and Lengauer, we obtain
new x-coordinates x(l) for each segment l ∈ L(P ). Hence, we can recover a new drawing:
For every feature of P covered by a vertical line segment l in L(P ), change its x-coordinate
to the new value x(l), to obtain a new drawing P ′. These x-coordinates respect the
relative x-order of vertical line segments (and therefore also features of P and P ′) crossed
by any horizontal line. Therefore, the linear morph from P to P ′ is planarity-preserving
by Theorem 2.3.2 (the unidirectional morph characterization theorem). It can be assumed
that all the x-coordinates of P ′ are non-negative and no larger than O(n) by the compaction
property (since there are O(n) segments) and hence this gives the same guarantees on grid
size as Lemma 6.1.1. See Figure 6.6 for some examples.

This “alternate” algorithm for performing compressions has a worse time complexity—
it takes O(n log n) time to compress the drawing. This is due to the time it takes to
compute the trapezoidal map of L(P ). If this time complexity could be improved to O(n)
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(a) An orthogonal
box drawing D.

(b) The set of vertical line segments
L(D) corresponding to D (the same as
the one used in Figure 6.5).

(c) A horizontally com-
pressed orthogonal box
drawing D′ parallel to D.

(d) An orthogonal box draw-
ing C. The filled circle de-
notes an arbitrary number of
coincident bends.

(e) The set of vertical line seg-
ments L(C) corresponding to C.
This set is the same (always these
six segments) regardless of how
many coincident bends are in C.

(f) A horizontally com-
pressed orthogonal box
drawing C ′ parallel to
C.

Figure 6.6: Two examples of how Doenhardt and Lengauer’s longest-path compaction
algorithm can be applied to orthogonal box drawings.

time, then we would be able to perform compressions in O(n) time. In fact, as we will
see, this is possible by making use of Chazelle’s algorithm for simple polygons. While we
are already able to perform compressions in O(n + N) time (on an N × N grid), and we
have no need to perform them faster for large grids, this time complexity improvement
for computing trapezoidal maps will also be useful for zig-zag eliminations in the next
subsection.

Lemma 6.2.4. Let D be an orthogonal box drawing of an n-vertex connected graph with
O(1) bends per edge, containing no degenerate bends, drawn on an O(n)×O(n) grid. Then
the trapezoidal maps of V (D) and L(D) can be computed in O(n) time.
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(a) The outer face of
a square.

(b) The trapezoidal
map of the outer face
of a square consists of
4 rays.

(c) A bounding
box added with a
connecting edge
segment.

(d) The trapezoidal
map now consists of
4 line segments.

Figure 6.7: An example of how an infinite face can be converted to a finite face for the
purposes of computing a trapezoidal map.

(a) A straight-line orthogonal
point drawing D with a marked
(hatched) face with interior R.

(b) M∗ (hatched) and its sim-
ple polygonal boundary (solid).

(c) A visualization of how M
may be computed.

Figure 6.8: An example of the construction used to replace weakly simple orthogonal
polygons with simple orthogonal polygons, for the purpose of computing trapezoidal maps.
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Proof. We first discuss computing the trapezoidal map of V (D), and afterwards we use
the trapezoidal map of V (D) to compute the trapezoidal map of L(D).

We will compute the trapezoidal map within each face of D independently. Since the
underlying graph is connected, the boundary of each face is a weakly simple polygon.
Moreover, since there are O(1) bends per edge, the total number of line segments among
all these weakly simple polygons is O(n). Let P be one such weakly simple polygon, of
a face f , so that P is the boundary an open region R (the interior of the set f , in the
point-set topology sense). Without loss of generality, we may assume that f is not an
outer face, since otherwise we may add a bounding box and a single horizontal segment to
P , to P , so that all rays of the trapezoidal map that intersect the bounding box become
segments hitting the bounding box. See Figure 6.7 for an example.

We wish to apply Chazelle’s result for (strongly) simple polygons to P . However, our
polygon P may only be weakly simple. Fortunately, since D is an orthogonal box drawing,
we know that P consists of only horizontal and vertical line segments between points on
an integer grid, which allows us to use the following construction:

• Let R∗ denote the complement of R (a closed and connected polygonal region).

• Let M be the Minkowski sum of R∗ with a (filled and closed) square of side-length
1/3. This can be computed in linear time (in the size of R∗) [13, Theorem 13.11].

• Let M∗ be the complement of M (an open region).

• Then boundary(M∗) is a (strongly) simple polygon. Compute the trapezoidal map
of the vertical segments along the boundary of M∗ using Chazelle’s algorithm.

• This trapezoidal map can be combinatorially mapped to the trapezoidal map of the
vertical segments along the boundary of R in linear time (in the size of the face).
The method for doing this is fairly straightforward:

– If p and q are connected in the trapezoidal map for M∗, then there must be
some endpoint p′ of a line segment in V (D), and some point q′ along another
line segment in V (D), such that p′ and q′ have the same y-coordinate, and
furthermore that p and q are respectively within the Minkowski sums of p′ and
q′ with a (filled and closed) square of side-length 1/3.

– Create a horizontal line segment between every such pair of points p′, q′ to obtain
the trapezoidal map of V (D).
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See Figure 6.8 for an example.

Since we can compute the trapezoidal map within each face f in linear time (in the size
of f), the whole trapezoidal map of V (D) can be computed in O(n) time.

Using the trapezoidal map of V (D), we can obtain the trapezoidal map of L(D) as
follows: Let x be an (arbitrary) endpoint of a line segment in L(D). It suffices to cast two
horizontal rays (one in each direction) out from x until they hit something in L(D) (or
out to infinity). We can simply check for the same point x among the endpoints of V (D),
and see what it hits among V (D) by using the trapezoidal map of V (D). Since L(D) is
the result of taking the union of segments in V (D), we need only find the corresponding
segment in L(D). We can also perform these operations for all such endpoints x in O(n)
total time, so we can obtain the trapezoidal map of L(D) in O(n) time as well.

As an aside, the condition that all features lie on an O(n)×O(n) grid could be relaxed
to requiring that they lie on some polynomial grid (i.e., sufficiently small so that linear time
is the same as O(n) time in the word RAM model), and the time complexity would not be
affected. However, in the next subsection, we will only use this lemma in a circumstance
where we have an O(n)×O(n) grid, so we have presented it this way for consistency and
ease-of-understanding.

6.2.3 Specializing Doenhardt and Lengauer’s Results for Simul-
taneous Horizontal Zig-Zag Elimination

Let P be an orthogonal box drawing, and let P ∗ be the result of several horizontal zig-zag
eliminations on P . The drawing P ∗ is expensive to compute (sometimes taking Ω(n2)
time), and as such we do not wish to compute it directly. Recall that the second phase
of the algorithm by Doenhardt and Lengauer does not use the x-coordinates of its input
segments L, and it instead only uses the y-coordinates and the trapezoidal graph GT (L)
induced by the trapezoidal map of L. In this subsection, it will be shown that the graph
GT (L(P ∗)) (where L(P ∗) is the set of maximal vertical line segments covering P ∗, defined
in the previous subsection) can be computed without having to compute P ∗ itself. This
will be enough to find a faster algorithm for performing simultaneous horizontal zig-zag
eliminations.

Lemma 6.2.5. Let P be an orthogonal box drawing of a graph on n vertices, with at most
O(1) bends per edge. Assume that P also contains no degenerate bends. Let P ∗ be the
result of sequentially applying horizontal zig-zag elimination on every horizontal zig-zag
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Orthogonal Box Drawings Trapezoidal Maps Trapezoidal Graphs

Zig-Zag Elimination

Figure 6.9: An example of how zig-zag elimination alters the formation of a trapezoidal
map from a drawing. The pair of coinciding bends resulting from the zig-zag elimination
is denoted with a cross.

in P , using Lemma 6.2.2. Then, given only GT (L(P )) and P itself, GT (L(P ∗)) can be
computed in O(n) time.

See Figure 6.9 for a simple example of the above lemma.

Proof. Recall that we assume that the trapezoidal graph GT (L(P )) tells us, for each edge,
from which line segment endpoints and directions it was generated (i.e., which rays cast
from which points in which directions generated the segment in the trapezoidal map that
corresponds to the edge in the trapezoidal graph).

We first consider one horizontal zig-zag elimination at a time, and discuss some impor-
tant structure. Let the sequence of drawings in the horizontal zig-zag elimination sequence
be denoted P = P1, P2, . . . , Pk = P ∗.

For the ith horizontal zig-zag elimination, let b, b′ be two adjacent (non-coincident)
bends along an edge e in Pi forming a horizontal zig-zag. Let l, l′ denote the (maximal)
vertical segments along e incident to b and b′ (respectively) in Pi. We use the same notation
for the corresponding vertices in the graph GT (L(Pi)). Let l′′ denote the unique maximal
vertical segment covering both b and b′ in Pi+1. Once again, use the same notation for the
corresponding vertex in the graph GT (L(Pi+1)).
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The horizontal zig-zag elimination lemma (Lemma 6.2.2) leaves b and b′ coincident,
and does not change the coincidence of any other pair of bends. Moreover, the linear
morph from Pi to Pi+1 is a planarity-preserving horizontal linear morph, and hence by
Theorem 2.3.2 (which characterizes planarity-preserving unidirectional linear morphs) the
order of vertical line segments intersected by any horizontal line crossing L(Pi) or L(Pi+1)
must be the same, with the exception that the line segments l, l′ in L(Pi) are replaced with
one segment l′′ in L(Pi+1) (and hence the unique horizontal line which crosses both l and l′,
in order, now only crosses l′′). Therefore, all edges of E(GT (L(Pi))) that are not incident
to either l or l′ appear in E(GT (L(Pi+1))). Moreover, GT (L(Pi+1)) can be obtained from
GT (L(Pi)) by first deleting all (at least one, up to three) edges generated exclusively by
the bends b, b′, and then merging the vertices l, l′ to obtain the vertex l′′ (and relabelling
the endpoints of all edges containing l or l′).

Essentially, we have shown that we need only perform a set of vertex merge and edge
deletion operations on the graph GT (L(P )), where our ‘vertices’ correspond to vertical
segments. We now use this structure to prove the result. By recording all the vertical
segments that are to be merged during all operations, a lookup table can be formed that
maps indices referencing vertical segments in P to indices referencing vertical segments
in P ∗. By recording all vertical segment endpoints in L(P ) that are to be deleted (that
is, bends forming horizontal zig-zags), those that are not to be deleted can check their
generated edges in the trapezoidal graph of L(P ), and find their corresponding generated
edges in L(P ∗) by using the lookup table. By doing this, GT (L(P ∗)) can be computed
from GT (L(P )) in O(n) time.

At a high level using the established notation (P is the input drawing, P ∗ is the drawing
after all horizontal zig-zag eliminations have been performed), we will compute GT (P ∗)
directly from GT (P ) by using Lemma 6.2.5. We will then use Doenhardt and Lengauer’s
longest-path compaction algorithm to compute vertical line segments and hence a drawing.
This drawing will not be P ∗, but it will be parallel to P ∗ (and hence contain no horizontal
zig-zags), which will suffice for our purposes.

Lemma 6.2.6. Let P be an orthogonal box drawing drawn on an O(n) × O(n) grid of
a connected graph G on n vertices with at most O(1) bends per edge. Assume that P
also contains no degenerate bends. Let P ∗ be the result of sequentially applying horizontal
zig-zag eliminations on every horizontal zig-zag in P . Then there exists an orthogonal box
drawing P̂ with no horizontal zig-zags drawn on an O(n)×O(n) grid, such that P̂ is parallel
to P ∗. Moreover, P̂ can be computed from P alone in O(n) time. Furthermore, the linear
morph from P to P̂ is a horizontal planarity-preserving linear morph.
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Proof. Since G is a connected graph, we can use Lemma 6.2.4 to compute the the trape-
zoidal map of L(P ) in O(n) time. Hence, we also get the trapezoidal graph GT (L(P )).

Next, by applying Lemma 6.2.5, GT (L(P ∗)) can be computed in O(n) time using
GT (L(P )). Note that the y-coordinates of each line segment endpoint in L(P ∗) can also be
trivially computed, since they are exactly the y-coordinates of the corresponding endpoints
in L(P ).

Finally, with GT (L(P ∗)) the second phase of Deonhardt and Lengauer’s longest-path
compaction algorithm can be used to obtain shifted x-coordinates x(l∗) for each line seg-
ment l∗ ∈ L(P ∗), even though we haven’t computed the original x-coordinates of L(P ∗).
For each feature in P covered by a vertical line segment l ∈ L(P ) that corresponds to a
vertical line segment l∗ ∈ L(P ∗) (note that multiple line segments in L(P ) may correspond
to a single line segment in L(P ∗), since they can be merged), the x-coordinate of that
feature can be modified to be x(l∗). This creates a new orthogonal box drawing which we
will call P̂ . There are O(n) edges in GT (P ∗), so this application of their algorithm runs
in O(n) time. Also, P̂ can be assumed to have non-negative x-coordinates no larger than
O(n) by the compaction property. Therefore, P̂ is drawn on an O(n) × O(n) grid. By
definition, P̂ is also parallel to P ∗.

Since the constraints C≤(P ∗) are respected by both P and P̂ (even though they are
not computed directly), and each pair of bends forming a horizontal zig-zag is coincident
in P̂ , the ordering along any horizontal line is preserved in the linear morph from P to
P̂ . Hence, Theorem 2.3.2 (the theorem characterizing planarity-preserving unidirectional
linear morphs) guarantees that the linear morph from P to P̂ is planarity-preserving.

Since there are O(1) bends per edge in P , there are also O(1) bends per edge in P̂ ,
since there are an equal number of bends along each edge.

See Figure 6.10 for an example of the above lemma.

Note that the newly constructed drawing P̂ contains many degenerate bends which
come from each horizontal zig-zag (recall from Chapter 1 that degenerate bends include
both coincident bends and bends that do not form turns). These can be identified and
removed to find an equivalent drawing which does not contain any degenerate bends.

6.2.4 Obtaining Zig-Zag-Free Drawings using Simultaneous Hor-
izontal/Vertical Zig-Zag Elimination

Lemma 6.2.6 gives an efficient method for removing all horizontal zig-zags from a drawing
using a single linear morph. It can also be applied symmetrically to remove all vertical zig-
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(a) P (b) P̂

(c) L(P ) (d) L(P̂ )

Figure 6.10: An example of simultaneous horizontal zig-zag elimination using the methods
of Doenhardt and Lengauer. Coinciding bends are denoted with a hollow circle.
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(a) A drawing P with a vertical zig-zag and
no horizontal zig-zags.

(b) A drawing P ′ with a horizontal zig-zag
resulting from a zig-zag elimination on P .

Figure 6.11: An example of a vertical zig-zag elimination that results a new horizontal
zig-zag.

zags from a drawing. However, removing horizontal zig-zags may introduce new vertical
zig-zags, and vice versa. See Figure 6.11. Fortunately, this method is still guaranteed to
reduce the number of bends along each edge containing a zig-zag.

Theorem 6.2.7. Let P be an orthogonal box drawing of a connected graph G drawn on an
N×N grid with O(1) bends per edge. Then there exists a compatible zig-zag-free orthogonal
box drawing P ′ of G drawn on an O(n)×O(n) grid and a planarity-preserving linear morph
sequence from P to P ′ of length O(1), such that every explicit intermediate drawing in the
sequence is drawn on an (N + O(n)) × (N + O(n)) grid and has O(1) bends per edge.
Furthermore, P ′ is port aligned to P , and the maximum absolute difference in spirality
between P and P ′ is 0. Moreover, P ′ and the linear morph sequence can be computed in
O(min{n + N, n log n}) time. Additionally, if P contained no port-corner coincidences,
then P ′ does not either.

Proof. Apply Theorem 6.1.2 to obtain an orthogonal box drawing P drawn on an O(n)×
O(n) grid, and a linear morph sequence from P to P of length O(1) where every explicit
intermediate drawing is drawn on an (N +O(n))× (N +O(n)) grid.

Starting with P , alternately apply Lemma 6.2.6 on all vertical zig-zags, and then all
horizontal zig-zags, while taking the (combinatorially smaller) equivalent drawing which
eliminates degenerate bends after each application. Repeat this until the resulting drawing
is zig-zag free. Since each edge with a zig-zag should have its number of bends reduced
after each pair of applications, and each edge starts with at most O(1) bends, this will
terminate after O(1) iterations. Call the final result P ′. Since this process uses only O(1)
iterations, each explicit intermediate drawing in the linear morph sequence from P to P ′

(as well as P ′ itself) is also drawn on an O(n)×O(n) grid.
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The first step takes O(min{n+N, n log n}) time, and the second step uses O(1) itera-
tions each taking O(n) time. Hence, the full algorithm also runs in O(min{n+N, n log n})
time.

Finally, neither step modified the coincidence of any feature pairs besides bend-bend
pairs. Therefore, if P contained no port-corner coincidences, neither does P ′.

This result is what allows us to fully solve the issues discussed at the beginning of this
chapter. Essentially, Theorem 6.2.7 implies that any orthogonal box drawing D can be
replaced with another orthogonal box drawing D′ for which the number of bends along
each edge is bounded above by the absolute value of the spirality along that edge. This
will be useful for proving the Phase II theorem (Theorem 2.5.1) in Chapter 8.

6.2.5 Fast Computation of Visibility Representations

One of the minor results in Chapter 3, regarding the time complexity of Theorem 3.2.1,
was left unproven, since it required some techniques that we had not yet discussed. Those
techniques were the topic of this section, and so we will prove the result here. Recall the
statements of Theorem 3.2.1 and Theorem 3.2.2:

Theorem 3.2.1 (Theorems 5 and 6 by Biedl [6]). Let P be a planar straight-line drawing
of an n-vertex graph G drawn on an N × N integer grid. Then there exists a visibility
representation R of G, so that the horizontal line segments representing vertices in R have
the same y-coordinates as the corresponding points representing vertices in P , and every
possible horizontal line intersects the same sequence of edges and vertices in both drawings.
Furthermore, R is drawn on an O(n)×N integer grid.

Theorem 3.2.2. Given a planar straight-line drawing P , a visibility representation R with
the properties stated in Theorem 3.2.1 can be computed in O(n log n) time.

We say that a drawing D is a a straight-line box drawing if it represents each
vertex with an orthogonal rectangle (i.e., a vertex box), and each edge with a (potentially
non-orthogonal) line segment. Note that this generalizes the notion of a straight-line
orthogonal box drawing, which further restricts the edges to be orthogonal line segments.
See Figure 6.12a for an example.

For a straight-line box drawing D with no ports along left or right sides of vertex
boxes, we say that the non-horizontal line segments of D, denoted N(D), is the
set of (disjoint) non-horizontal line segments corresponding to each non-horizontal edge,
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(a) D (b) N(D)

Figure 6.12: An example of a straight-line box drawing D, and the non-horizontal segments
N(D).

together with the vertical line segments corresponding to the left and right sides of each
vertex box. See Figure 6.12b for an example.

We now prove Theorem 3.2.2 using Theorem 3.2.1.

Proof. Let R denote a visibility representation given by Theorem 3.2.1. We will not com-
pute R. Instead, we will present an algorithm to compute a drawing R′ with all the same
properties, using only P as input. Then, similarly to the proof of Lemma 6.2.6, we will use
observations about trapezoidal maps (namely, that they capture information about inter-
section orders of horizontal lines) to show that the algorithm is correct, and this correctness
proof will make use of the existence of R.

Without loss of generality, since every horizontal line intersects the same sequence of
edges and vertices in P and R, we may assume that P and R do not contain horizontal
edges, since we may always add them afterwards. Also, again without loss of generality,
we may assume that no edge endpoint in R coincides with the endpoint of a horizontal line
segment representing a vertex in R. In some sense, our task will be to “straighten” the
non-horizontal edges of P to become vertical while expanding vertices of P to horizontal
segments—while ensuring that every horizontal line intersects the same sequence of edges
and vertices. We will accomplish this by using some “approximations” of P and R, in the
form of straight-line box drawings.

For a value ε > 0, let Pε be the straight-line box drawing obtained by starting with P
and expanding each point representing a vertex to a box of height ε while contracting each
edge so that it attaches along the sides of its incident vertex boxes. Assume further that
each box (minimally) has sufficient width so that all ports are along the top and bottom
sides, but not the corners (recall that we assumed there are no horizontal edges in P , so
this is possible). Similarly, let Rε be the straight-line box drawing obtained by starting
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(a) P (b) Pε (c) R (d) Rε

Figure 6.13: Examples of Pε and Rε, given P and R. The horizontal edges are dotted since
they are handled via a reduction in the proof.

with R and expanding each horizontal line segment of length l representing a vertex to a
box with height ε and width l, and contracting each edge accordingly. For some sufficiently
small value of ε, both Pε and Rε are planar (though not necessarily drawn on a grid). See
Figure 6.13 for an example of these drawings.

By construction, N(Pε) consists of disjoint segments. Hence, the trapezoidal graph
GT (N(Pε)) is well-defined. Moreover, GT (N(Pε)) is identical for all sufficiently small ε,
so we can compute it using standard symbolic perturbation techniques using a standard
O(n log n) time trapezoidal map algorithm [13], without computing ε itself. We will later
show that GT (N(Pε)) = GT (N(Rε)). For now, we will assume equality, and finish dis-
cussing the algorithm. Given GT (N(Rε)), we can compute compacted x-coordinates for
a (compacted and orthogonal) straight-line box drawing R′ε by running the algorithm of
Doenhardt and Lengauer on Rε (again, without computing ε, since it is only required for
the y-coordinates). By the existence of Rε, the maximum compacted x-coordinate of R′ε is
O(n). Note that R′ε has the y-coordinates of Pε (computable in linear time with a symbolic
representation). We finally let R′ be the visibility representation sharing x-coordinates with
R′ε and y-coordinates with P (also computable in linear time), completing the algorithm.

In order to prove that this algorithm is correct, it remains only to show thatGT (N(Pε)) =
GT (N(Rε)). Recall that a trapezoidal graph GT (N) of a set of disjoint non-horizontal line
segments N is induced by the trapezoidal map of N . After excluding the rays to infinity,
this is itself the set of maximal non-crossing horizontal line segments that intersect ele-
ments of N at both their endpoints (and no other location), where at least one endpoint
is shared with an element of N . Consider the horizontal lines intersecting at least one
endpoint in N . The full intersection order (that is, the order in which every element of N
is possibly intersected) of all such horizontal lines is enough to reconstruct GT (N). Denote
this set of horizontal lines by H(N). Specifically, if H(N(P (ε))) and H(N(Rε)) have the
same intersection orders in their respective drawings, then GT (N(Pε)) = GT (N(Rε)). Note
that these are the same set, since y-coordinates are shared, so we will henceforth refer to
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this set as H. Note also that we have chosen/constructed both Pε and Rε in a manner
such that no two elements of N(Pε) or N(Rε) share endpoints, since no ports were placed
along corners in either, so the intersection orders are total orders.

Now, observe that all endpoints of segments in N(Pε) and N(Rε) have y-coordinates
equal to either y(v) + ε or y(v)− ε for some vertex v with y-coordinate y(v) in P and R.
Hence, any horizontal line in H defined by y = y(v) + ε or y = y(v)− ε for some vertex v
passes through the same sequence of line segments corresponding to edges as it would in
P (resp. R), but additionally passes through the line segments corresponding to the left
and right sides of the vertex box for v in Pε (resp. Rε), and any other vertices sharing
the y-coordinate y(v). Therefore, since any horizontal line intersects the same sequence
of edges and vertices in R and P , the horizontal lines in H must also intersect the same
sequence of segments in N(Pε) and N(Rε), so GT (N(Pε)) = GT (N(Rε)).

If we assumed that the graph was connected and assumed to be drawn on anO(n)×O(n)
grid, then the run-time could be reduced to O(n) time using Lemma 6.2.4. However, the
application for this theorem in Chapter 3 is bottle-necked by a step that takes O(n2) time,
and permitting a disconnected graph is somewhat helpful for discussing an extension to
our main theorem in Section 8.3.
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Chapter 7

Linear Morph Sequences that
Perform Twists

Twists were discussed in Chapter 5 already, but an important step for using them (actually
finding the sequence of linear morphs that form a twist) was postponed. This chapter fills
that hole.

The exact locations and sizes of vertex boxes will play a very prominent role in this
chapter. Recall the notation introduced at the beginning of Chapter 2: For an orthogonal
box drawing A and a vertex v, we let A(v) denote the vertex box of v in A.

In this chapter we will deal with both twist assignment functions, and times during
linear morphs. We have previously denoted both of these with t. In order to differentiate,
we will consistently denote the former with a bold t, and the latter with simply t.

Recall from Section 5.2 that a simultaneous twist is a pair of (compatible) orthogonal
box drawings A and B of the same graph G, together with a twist assignment function
t : V (G) → {−1, 0, 1}, such that B effectively has each vertex box rotated in a direction
prescribed by t (in a way that agrees with expected changes in spirality). Given an or-
thogonal box drawing A and a twist assignment function t, it is important for the proof of
Theorem 2.5.1 (and remains to be shown) that we can compute a corresponding orthogonal
box drawing B such that A and B form a simultaneous twist given by t. Additionally,
there should be a (short) sequence of linear morphs from A to B. In other words, we wish
to design algorithm that takes A and t as input, and produces B.

There are two main steps for performing a twist with all the necessary constraints:
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1. Morph the initial drawing A into a parallel orthogonal box drawing A∗ with some
additional useful properties.

2. Introduce bends to A∗ carefully and explicitly define a final drawing B so that A∗

can be morphed to B. Then, show that A and B (or A∗ and B) form a simultaneous
twist of the twist assignment t.

The specific additional properties that will be obtained by A∗ come from the following
definitions:

Definition 7.0.1. Let A∗ be an orthogonal box drawing of a graph G. If all the vertex
boxes of A∗ are square, then A∗ is said to be have square boxes.

Definition 7.0.2. For an orthogonal box drawing A∗, a vertex v, and an integer k ≥ 1,
the k-proximal region of v in A∗ is the (two-dimensional) region of the plane with L∞
distance at most k · d(v) from A∗(v), where d(v) denotes the degree of v. The k-proximal
region of v in A∗ can also be partitioned into several subregions. For any i ∈ {1, . . . , k},
the ith annulus around v is the region of space with L∞ distance in the half-open range
((i− 1)d(v), i · d(v)] from A∗(v).

Definition 7.0.3. Let A∗ be an orthogonal box drawing of a graph G. For an integer
k, suppose that for each vertex v ∈ V (G), there are no bends, other vertex boxes, or
non-incident edge segments in the k-proximal region of v in A∗, and that no two distinct
k-proximal regions overlap. Then A∗ is said to have k-spaced boxes.

After the first step (to be handled in Section 7.1), the drawing A∗ will have square
and 2-spaced boxes. The second step (to be handled in Section 7.2) will use both of these
properties in order to carefully choose a drawing B so that the (non-unidirectional) linear
morph from A∗ to B is planarity-preserving.

7.1 Obtaining Square and 2-Spaced Boxes

In order to obtain square and 2-spaced boxes, an additional intermediate property will be
used. For an orthogonal box drawing A and a vertex v, A(v) is said to be a thin box if
one of its side lengths is less than d(v) + 2.

Step 1 (obtaining square and 2-spaced boxes) will be accomplished in two substeps 1a
and 1b. In Step 1a, a drawing with 3-spaced boxes and no thin boxes will be obtained using
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(a) An orthogonal box drawing with 1-spaced
boxes, with its 1-proximal regions drawn.

(b) An orthogonal box drawing without 1-
spaced boxes, with its 1-proximal regions
drawn, and intersections violating the 1-
spaced boxes property denoted with crosses.

(c) An orthogonal box drawing with 2-spaced square boxes, with its 1-proximal and
2-proximal regions drawn.

Figure 7.1: Examples of k-proximal regions and k-spaced boxes.
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a simple coordinate modification technique, similar to the one used to prove Lemma 4.2.2.
In Step 1b, additional bends will be added in the third annulus in order to obtain 2-spaced
and square boxes simultaneously.

Step 1a can be accomplished with the following lemma:

Lemma 7.1.1. Let A be an orthogonal box drawing of a graph G drawn on an N ×N grid
with O(1) bends per edge, and no port-corner coincidences or degenerate bends. Then there
exists an orthogonal box drawing A′ with no port-corner coincidences, 3-spaced boxes and no
thin boxes drawn on an (N +O(n))×(N +O(n)) grid that is parallel to A, and a planarity-
preserving linear morph sequence of length 2 from A to A′ whose explicit intermediate
drawing is also parallel to A and drawn on an (N +O(n))× (N +O(n)) grid. Moreover,
A′ and this linear morph sequence can be found in O(min{n log n, n+N}) time.

Proof. See Figure 7.2 for an example of the construction. The x and y coordinates will
be modified separately. This construction will use similar components to the proof of
Lemma 6.1.1. Store all the values of the x-coordinates used by features (bends, ports, and
vertex box corners) of A in an array called XCoordsWithDupes (along with a reference
to the corresponding feature). There are O(n) features and hence min{O(n), N} unique x-
coordinates in total. Next, sort XCoordsWithDupes. This takes O(min{n log n, n+N})
time, which is the minimum time to perform either a comparison sort or a bucket sort. Iter-
ate through XCoordsWithDupes and mark groups with identical x-coordinates. Create
another array XCoords whose entries correspond to the groups of XCoordsWithDupes
(i.e, an array of the unique x-coordinates), in the same relative order. This data structure
can now be used to modify all x-coordinates in a uniform manner.

The computation of the modified values for XCoords can be accomplished using a
prefix sum, as follows. Create an additional array called XOffsets with the same length
as XCoords, initialized to all zeroes. For a vertex v, add 3d(v) to the entry in XOff-
sets corresponding to its left side’s x-coordinate. Add d(v) + 2 to the entry in XOff-
sets corresponding to its right side’s x-coordinate. Add 3d(v) to the entry in XOffsets
corresponding to the next entry after its right side’s x-coordinate (if one exists). See Fig-
ures 7.2b, 7.2c, 7.2d and 7.2e. Compute the prefix sum PSumXOffsets of XOffsets.
That is, PSumXOffsets[0] = XOffsets[0] and PSumXOffsets[i] = XOffsets[i] +
PSumXOffsets[i−1] for all i > 0. Finally, add PSumXOffsets to XCoords to obtain
XCoordsNew. This procedure runs in O(n) time. Since all values of XOffsets were
non-negative, the entries of XCoordsNew are in strictly increasing order. Additionally,
for any index i > 0, XCoordsNew[i]−XCoordsNew[i− 1] ≥ XOffsets[i].
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XCoords: 0 4 8 1216202428

(a) Base drawing with XCoords and x-coordinate grid lines.

XOffsets: 0 0 0 0 0 0 0 0

(b) Base drawing with
XOffsets initialized.

XOffsets: 3 0 3 3 0 0 0 0

(c) Base drawing with
XOffsets computa-
tion done for one ver-
tex.

XOffsets: 3 0 3 9 0 0 0 5

(d) Base drawing with
XOffsets computa-
tion done for two ver-
tices.

XOffsets: 3 0 3 12 0 3 3 5

(e) Base drawing with
XOffsets computa-
tion done for all three
vertices.

PSumXOffsets: 3 3 6 1818212429

XCoordsNew: 3 7 143034414857

XCoords: 0 4 8 1216202428

XOffsets: 3 0 3 12 0 3 3 5

(f) The computation of
PSumOffsets and XCo-
ordsNew given XCoords
and XOffsets.

XCoordsNew:

3 7 14 3034 41 48 57

(g) The drawing with its final
x-coordinates, drawn with x-
coordinate grid lines.

(h) The final drawing with its
3-proximal regions drawn.

Figure 7.2: An example of how to add padding around each vertex-box (Step 1a).
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Let A′x be the drawing obtained by using these new x-coordinates and the same y-
coordinates. The order of these new x-coordinates is the same, so by Theorem 2.3.2, the
horizontal linear morph from A to A′x is planarity-preserving. Note that the largest x-
coordinate will be increased by an amount proportional to the sum of the degrees, which
is O(n). Apply the same technique again on y-coordinates to obtain a final drawing A′.
The final linear morph sequence is A,A′x, A

′.

It remains only to show that A′ has 3-spaced boxes that are not thin. The lat-
ter property is easy to show. Let v be a vertex in V (G). Let xmin(v), xmax(v) denote
the indices of the left and right coordinates (respectively) of A(v) in XCoords. Then
XOffsets[xmax(v)] ≥ d(v) + 2, so XCoordsNew[xmax(v)] −XCoordsNew[xmin(v)] ≥
d(v) + 2. The same is true for the y-coordinates, so there are no thin vertex boxes in A′.

Finally, we show that A′ has 3-spaced boxes. Let u, v be distinct vertices in V (G).
Let xmin(u) and xmax(u) again denote the indices of the left and right coordinates (re-
spectively) of A(u) in XCoords. Let xmin(v) and xmax(v) denote the same thing for
A(v). Let ymin(u), ymax(u), ymin(v), ymax(v) denote the symmetric definitions corresponding
to the top and bottom coordinates of A(u) and A(v) (note that A and A′x share the same y-
coordinates). Since the vertex boxes A(u) and A(v) do not overlap (nor do the correspond-
ing pairs of vertex boxes in A′x and A′), either [xmin(u), xmax(u)] ∩ [xmin(v), xmax(v)] = ∅
or [ymin(u), ymax(u)] ∩ [ymin(v), ymax(v)] = ∅ (or both). The arguments in both cases will
be symmetric, so assume that the former holds, and furthermore that xmax(u) < xmin(v)
(by choice of ordering on u and v). Vertex v added 3d(v) to XOffsets[xmin(v)], and
vertex u added 3d(u) to XOffsets[xmax(u) + 1], so, since xmin(v) ≥ xmax(u) + 1, we
have PSumXOffsets[xmin(v)] ≥ PSumXOffsets[xmax(u)]+3d(u)+3d(v). Hence, since
XCoords is strictly increasing, and PSumXOffsets is non-decreasing, it is also true that
XCoordsNew[xmin(v)] ≥ XCoordsNew[xmax(u)] + 3d(u) + 3d(v). Since this is true for
at least one of the x-coordinates or y-coordinates for every pair u, v, the 3-proximal regions
do not overlap. By a similar argument, since there are no degenerate bends (and hence
no bends coinciding with ports), no bend/vertex box/non-incident edge segment intersects
any 3-proximal region, and hence A′ has 3-spaced boxes.

Finally, A contained no port-corner coincidences, so A′ also does not contain any, since
no two features that had different x-coordinates or different y-coordinates in A will have
the same location in A′.

The coordinate scaling method used in Lemma 7.1.1 can be used to add spacing and
remove all thin boxes, but it’s not obvious how it can be used to make square boxes, which
are required for Step 1b (and Step 1 as a whole). Instead, we complete Step 1b by adding
a small number of bends to each edge, with the following lemma:
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Lemma 7.1.2. Let A′ be an orthogonal box drawing with no port-corner coincidences, 3-
spaced boxes and no thin boxes of a graph G drawn on an N ×N grid, with at most O(1)
bends per edge. Then there exists an orthogonal box drawing A∗ with 2-spaced square boxes
that is drawn on an N × N grid and has at most O(1) bends per edge, and a planarity-
preserving linear morph sequence of length O(1) from A′ to A∗, such that every explicit
intermediate drawing is also drawn on an N × N grid and also has at most O(1) bends
per edge. Furthermore, A∗ is port aligned with A′ and the maximum absolute difference
in spirality between A′ and A∗ is 0. Moreover, A∗ and the linear morph sequence can be
computed in O(n) time.

Proof. The orthogonal box drawing A∗ will be computed by making changes to the loca-
tions of ports and corners, while adding bends within the 3rd annulus around each vertex
box, so the 2-proximal regions will remain free of bends. This will only involve changes
within the 3-proximal region around each vertex box, and reducing the vertex box to a
subset of itself, so the changes for each vertex can be performed simultaneously. In more
detail, consider some specific vertex v. We will shrink the width of the vertex box A′(v)
to d(v) + 2 while moving all of the ports along the top and bottom of A′(v) by carefully
introducing bends in the 3rd annulus that allow us to move the ports. Then we will simi-
larly shrink the height of the resulting vertex box to d(v) + 2 while moving all of the ports
along its left and right sides by introducing more bends in the 3rd annulus. These two high
level steps will be symmetric, and each will be performed using a linear morph sequence
of length 2. We proceed by describing the former high-level step.

First, a new drawing Â∗x equivalent to A′ will be formed by introducing bends along the
edges connected to the top and bottom of A′(v) (and all other vertices simultaneously).
Let the edges along the top of A′(v) be denoted e1, e2, . . . , ek, in left-to-right order. Edge
ei will have two coinciding bends added at a distance 2d(v) + (k − i + 1) above its port.
Since 0 < k − i + 1 ≤ k ≤ d(v), these bends lie in the 3rd annulus. The edges along
the bottom will have bends added in a reflectively symmetric manner, so that the bends
in edges further to the right are further from the port. This only adds 4 bends per edge
globally, and does not change the grid size. See Figure 7.3b for an example.

Next, we construct a new drawing A∗x which moves these bends and the corners of Â∗x.
The top-left corner of the vertex box A∗x(v) should be given the same location p as it has
in Â∗x. The port of ei should then be placed at the location p + (i, 0). Note that this is
(non-strictly) to the left of its location in Â∗x, since there were no port-corner coincidences
in A. The first bend along e should be placed at the same x-coordinate as its port with
its y-coordinate unchanged from Â∗x, while the second bend should remain at the exact
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(a) The drawing A′ with its annuli. (b) The drawing Â∗x with its annuli and bends.

(c) The drawing A∗x with its bends (and the
annuli of A′).

(d) The drawing A∗ with its bends (and the
annuli of A′).

Figure 7.3: An example of how to make a vertex box square (step 1b).
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same location it had in Â∗x. The top-right corner of A∗x(v) should be given the location
p + (d(v) + 2, 0). Corners and points/bends for edges along the bottom of Â∗x(v) should
be defined in a reflectively symmetric manner. All the ports along the right side of Â∗x(v)
should have their x-coordinate changed to match the right side of A∗x(v). See Figure 7.3c
for an example.

For each edge ei, the port/first bend of ei lies to the left of (or is possibly coincident
with) its second bend. Moreover, the y-coordinate of the first bend along ei is higher
than the y-coordinate of any bend ej with j > i, so the two edges do not intersect.
By a reflectively symmetric argument, the same holds for the edges along the bottom
side. Hence, the drawing is planar. Moreover, the resulting linear morph is a horizontal
linear morph, since y-coordinates are preserved. For each pair of edges e both connected
to the top (or bottom) of A∗x(v) and Â∗x(v), the relative horizontal order is the same in
both drawings at all horizontal lines that intersect both. Hence, by Theorem 2.3.2, the
horizontal linear morph is planarity-preserving within the 3-proximal region of each vertex
box A′(v). Each of these morph constructions occur simultaneously, and none of them
move anything outside their respective 3-proximal regions, so the full simultaneous morph
is also planarity-preserving.

Finally, repeat this same sequence of linear morphs on the left and right sides of the
vertex box A∗x(v) to obtain an orthogonal box drawing A∗ with square boxes that is port-
aligned with A′. See Figure 7.3d for an example.

The 2-proximal region of v in A∗ is a subset of the 2-proximal region of v in A′, since
A∗(v) itself is a subset of A′(v) (which was not a thin box, and hence had side length at
least d(v) + 2). Since all the new bends were inserted in the 3-annulus, the final drawing
A∗ must have 2-spaced boxes.

Each edge e has 4 bends added to it in A∗ relative to A′ (possibly fewer if degenerate
bends are removed). Therefore there are O(1) bends per edge in A∗. In a traversal of e,
exactly half of these bends form left turns and the other half of them form right turns.
Therefore, the maximum absolute difference in spirality between A∗ and A′ is 0.

7.2 Performing Twists using Linear Morphs

We have shown in the previous section how to achieve an orthogonal box drawing with
2-spaced square boxes. In this section, we will show that these special boxes can be used
to perform a twist.
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a0

a1

c0

c1

b0 b1

t = 0.5

Figure 7.4: An example of Lemma 7.2.1 with α = 0.25 and t = 0.5.

This section will involve a non-unidirectional linear morph, which is not fundamentally
necessary in any other section of this thesis (we will briefly summarize this in Chapter 9).
Hence, it will be useful to have some awareness of the structure of more general linear
morphs. In particular, the following lemma will be helpful:

Lemma 7.2.1. Let a0, a1, b0, b1, c0, c1 be points in R1. Assume that there is some parameter
α such that c0 = αa0 + (1 − α)b0, and c1 = αa1 + (1 − α)b1. Then (1 − t)c0 + tc1 =
α ((1− t)a0 + ta1) + (1− α) ((1− t)b0 + tb1).

Proof. By expanding the definitions,

(1− t)c0 + tc1 = (1− t)
(
αa0 + (1− α)b0

)
t
(
αa1 + (1− α)b1

)
= (1− t)αa0 + (1− t)(1− α)b0 + tαa1 + t(1− α)b1

= α
(
(1− t)a0 + ta1

)
+ (1− α)

(
(1− t)b0 + tb1

)
,

which is our goal.

This is relevant to non-unidirectional linear morphs: The time-parametrized points
a, b, c can be used to represent features of the drawing, where (for example) at = (1 −
t)a0 + ta1 for a time t. In particular, if the point c can be formed by a specific convex
combination of a and b at both the beginning and end of the morph, then it can be formed
by that same convex combination throughout the morph (see Figure 7.4).

Lemma 7.2.2. Let A∗ be an orthogonal box drawing of a graph G drawn on an N × N
grid with O(1) bends per edge, no port-corner coincidences, and 2-spaced square boxes. Let
t : V (G) → {−1, 0, 1} be a twist assignment function. Then there exists an orthogonal
box drawing B of G, also drawn on an N × N grid and with O(1) bends per edge, such
that A∗ and B form the simultaneous twist of the twist assignment t. Furthermore, there
is a planarity-preserving linear morph sequence of length 2 from A∗ to B, where each

94



explicit intermediate drawing is also drawn on an N×N grid and has O(1) bends per edge.
Moreover, B and the linear morph sequence can be computed in O(n) time.

Proof. The construction has two steps. First, an orthogonal box drawing A∗∗ equivalent
to A∗ will be constructed that adds bends in the 2-proximal region of each vertex. Second,
B will be constructed by simultaneously moving some of these new bends, and the corners
of each vertex box, in a way that effectively rotates each vertex box.

Let v be an arbitrary vertex in G. The drawings A∗∗ and B will differ only within
the 2-proximal regions of each vertex box. As a consequence, it will suffice to describe
the structure of each within the 2-proximal region of the arbitrarily chosen v only, and
the prescribed linear morphs can be performed for all vertices simultaneously. If t(v) = 0,
then we choose that A∗∗ and B do not differ in the 2-proximal region of v, so we need only
consider the case where t(v) 6= 0. Without loss of generality, we will assume t(v) = −1, so
the twist assigned for v is clockwise.

High-level overview. At a high-level, the goal of this construction will be to allow
for the corners of the vertex box A∗∗(v) to permute in a (clockwise) cyclic manner while
maintaining planarity of the drawing (that is, each corner moves to the original location
of the next one in clockwise order). Figure 7.5 gives an example of the construction. In
particular, the corner denoted by a hollow circle, as well as Figure 7.6, should give the
reader an understanding of the intended morph for the vertex box itself (and that it is a
linear morph). Each port will also stay at the same relative location along its respective
side throughout the morph, attached to the box, which we will show using Lemma 7.2.2.
We will be adding bends to A∗∗ so that they have carefully chosen paths during the linear
morph from A∗∗ to B. These bends serve to accommodate the morph of the vertex box
and its ports while maintaining planarity.

Algorithmic construction. In order to construct A∗∗, six new bends will be added to
each edge, with three of those in the 2-proximal region of each incident vertex. Traverse an
arbitrary side of A∗(v) in the clockwise direction, and let e1, e2, . . . denote the order of the
incident edges encountered along that side. Add three new bends to ei. The first should
be coincident with the port of ei at A∗(v). The second and third should be coincident with
each other at a distance of d(v) + i from the port and first bend, so they lie in the second
annulus. See Figure 7.5b for an example of this step.

As discussed at a high-level, B is constructed by rotating all the ports and corners of
A∗∗(v) clockwise by 90◦, so that the ports are at the same relative locations along their
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(a) A drawing A∗ local to a vertex-box. (b) The drawing A∗∗ local to a vertex-box.

(c) The drawing of M
1/2
A∗,A∗∗ local to a vertex-

box.

(d) The drawing B local to a vertex-box.

Figure 7.5: An example of how to perform a twist’s (effective) rotation step. Bends are
drawn as small red vertices. One corner is denoted with a hollow circle throughout so that
the direction of the twist is easier to follow visually.
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Figure 7.6: A vertex-box mid-morph, with the directions of motion drawn. The triangle in
the striped area has 3 similar triangles that are rotationally symmetric around the moving
box.

respective sides. The first two bends of each edge are also given new coordinates in B, while
the third bend will remain at the same location in A∗∗ and B. Without loss of generality,
assume that the arbitrary side of the vertex box A∗∗(v) is the top side, which will become
the right side of the vertex box B(v). Then, the first bend along ei will be placed at a
distance i to the right of the port’s new location. The second bend will be placed directly
above this port, using the y-coordinate of the third bend and the x-coordinate of the first
bend. See Figure 7.5d for an example of this step.

Steps to prove that the morph is planarity-preserving. It remains only to show
that the linear morph from A∗∗ to B is planarity-preserving, which will additionally imply
that B is planar. Observe first that the drawings A∗∗ and B are equivalent outside the
vertex boxes and 2-proximal regions. Additionally, this is also true throughout the linear
morph from A∗∗ to B. Hence, it suffices to prove that the linear morph is planarity-
preserving within the 2-proximal region of v, since the same construction can be applied
to all 2-proximal regions simultaneously. This differs from the methods we have used to
prove that other linear morphs are planar throughout the thesis.

Let v again be an arbitrary vertex in G. In order to show that the linear morph from
A∗∗ to B is planarity-preserving in the 2-proximal region of A∗∗(v) and B(v), we will prove
important properties about each feature of the drawing. In order, we will consider the
vertex boxes, the ports, edges along the same side, and then pairs of edges along different
sides. During this process, we will prove that no pair of these features intersects in a
manner that causes the linear morph to violate the planarity-preserving constraint.

Vertex boxes and ports. Observe first that the vertex box remains a box throughout
the morph, since similar triangles can be found between adjacent moving corners of the
box, and final locations (see Figure 7.6). Additionally, the ports are each at the same
relative position along their respective sides in both A∗∗ and B, and hence by applying
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Lemma 7.2.1 for each port p (with c as the location of p, and a and b as the corners of
the vertex box side containing p), the ports remain along the vertex box M t

A∗∗,B(v) at all
times throughout the morph for t ∈ [0, 1].

Edges and the vertex box. We next show that edges along the same side of M t
A∗∗,B(v)

cannot intersect each other. Without loss of generality, we consider only the top side
(that is, the top side of A∗∗(v) that morphs to the right side of B(v)). Observe first that
the portions of the edges along the top side, restricted to the second annulus of v, form
a unidirectional (horizontal) linear morph (see Figure 7.7), and so do not intersect by
Theorem 2.3.2.

We now characterize the structure of each edge e within the 1-proximal region of v.
Note that we consider the 1-proximal region, rather than just the first annulus, since the
port of e at v (and possibly the first bend along e) will go through A∗∗(v) during the morph
(see Figure 7.5c). Let pt, bt1, b

t
2 respectively denote the locations of the port, first bend, and

second bend of e at time t. We will now briefly show the following claim:

Claim 7.2.2.1. For all t > 0, the portion of e that is contained within the 1-proximal
region of v consists of a segment leaving the port pt heading rightwards, and a left turn at
bt1 into a segment heading up towards bt2.

For the initial and final times t ∈ {0, 1}, bt1 has the same y-coordinate as pt, and so
they also share a y-coordinate for all intermediate times t ∈ [0, 1]. Similarly, for the initial
and final times t ∈ {0, 1}, bt1 has the same x-coordinate as bt2, and so they also share
an x-coordinate for t ∈ [0, 1] as well. Moreover, the x-coordinate of b11 is strictly greater
than the x-coordinate of p, while b01 is coincident with p0. Thus, for all times t ∈ (0, 1],
the x-coordinate of bt1 is strictly greater than the x-coordinate of pt. A similar argument
can be used to show that for all times t ∈ (0, 1], the y-coordinate of bt2 is strictly greater
than the y-coordinate of bt1. These statements together are enough to prove Claim 7.2.2.1.
Moreover, this implies the interior of edges do not intersect with the vertex box.

Edges along the same side. We can now show that no intersections occur between
edges of the same side within the 1-proximal region of v. By Observation 2.2.1, it suffices
to show that no bend b intersects any of the vertical or horizontal edge segments not
incident to b (we need not consider intersections with the ports, since Claim 7.2.2.1 implies
that no edge segment interior intersects the vertex box). In fact, by the previous paragraph,
the x-order of the vertical segments is preserved by the morph, and so is the y-order of
the horizontal segments. Therefore, no pair of vertical segments nor pair of horizontal

98



segments intersects. Since each bend is incident to one of each of these types of segments,
no bend intersects any non-incident edge segments.

Edges along different sides. It remains only to show that no two edges incident to
different sides of the vertex box intersect. We will show that the edges for each side lie in
disjoint regions at all times throughout the morph.

For the top side u∗ of the vertex box A∗∗(v), let R2
u∗ denote the subregion of the second

annulus directly above the first annulus (see Figure 7.7). Let R2
u denote the symmetric

subregions for all other sides u, and note that these subregions are interior-disjoint for
different sides. For each edge e whose port lies along a side u, the portion of e restricted to
the second annulus is contained entirely within R2

u in all drawings M t
A∗∗,B (for t ∈ [0, 1]).

Therefore, it suffices to verify there are no intersections between edges on different sides
within the 1-proximal region of v.

Let u denote a side of the vertex box A∗∗(v), and let u(t) (for t > 0) denote the cor-
responding side of the vertex box M t

A∗∗,B(v). We will define time-parametrized subregions
Ru(t) of the 1-proximal region of v in M t

A∗∗,B, so that the set {Ru(t)}u partitions the 1-
proximal region at all times. In particular, if u is the top side of A∗∗(v), then let Ru(t) be
the set of all points p lying in the 1-proximal region of v that do not also lie in the interior
of the vertex box M t

A∗∗,B(v), such that there is some orthogonal path starting from p that
goes down and then left, before hitting u(t). Define Ru(t) in a rotationally symmetric
manner for all other sides u. By carefully letting each u(t) include only one corner of the
respective sides (whose choice will not be important for the remainder of the proof, so
long as they are disjoint, since we have no port-corner coincidences), this partitions the
1-proximal region of v in M t

A∗∗,B into 5 parts (the four regions Ru(t) plus the interior of
the vertex box). See Figure 7.8 for an example.

By Claim 7.2.2.1, for each edge e along side u of A∗∗(v), the portion of e contained
within the 1-proximal region of v in M t

A∗∗,B is contained entirely within Ru(t).

For every pair of edges whose ports are along different sides u(t) and u′(t) of M t
A∗∗,B(v),

the portions of the edges contained within the 1-proximal region of v are themselves (fully)
contained within Ru(t) and Ru′(t). Therefore, they cannot intersect, and so no pair of
edges intersects at any time t.

Since the linear morph from A∗∗ to B is planar within the 2-proximal region of each
vertex, it is planar globally as well.

To wrap up, the main result of this chapter is as follows:
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Figure 7.7: The static region R2
u throughout the morph, for u equal to the top side of

A∗∗(v).

Figure 7.8: The dynamic region R1
u(t) throughout the morph, for u equal to the top side

of A∗∗(v).
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Theorem 7.2.3. Let A be an orthogonal box drawing of a graph G drawn on an N × N
grid with O(1) bends per edge and no port-corner coincidences. Let t : V (G)→ {−1, 0, 1}
be a twist assignment function. Then there exists an orthogonal box drawing B of G drawn
on an (N + O(n)) × (N + O(n)) grid and with O(1) bends per edge and no port-corner
coincidences, such that A and B form the simultaneous twist of the twist assignment t, and
there is a planarity-preserving linear morph sequence of length O(1) from A to B, where
each explicit intermediate drawing is also drawn on an (N +O(n))× (N +O(n)) grid and
has O(1) bends per edge. Moreover, B and the linear morph sequence can be computed in
O(min{n log n, n+N}) time.

Proof. If necessary, we may replace A with a equivalent drawing that has no degenerate
bends. Apply Lemma 7.1.1 to A to obtain a drawing A′ with 3-spaced boxes that are not
thin boxes. Apply Lemma 7.1.2 to A′ to obtain a drawing A∗ which has 2-spaced square
boxes. Finally, apply Lemma 7.2.2 to A∗ to get a drawing B for which A and B form the
simultaneous twist assigned by t.

Since each of these lemmas adds O(n) grid coordinates and O(1) bends per edge, each
explicit intermediate drawing is drawn on an (N +O(n))× (N +O(n)) grid and has O(1)
bends per edge in total. Moreover, the computations done for each of these lemmas take
at most O(min{n log n, n + N}) time (the bottleneck is Lemma 7.1.1), so this is also the
total time complexity of the construction.
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Chapter 8

Assembling the Phases

Each of the individual pieces necessary to complete each of the three phases (as discussed
in Section 2.5) has now been completed. In this chapter, these pieces will be assembled in
order to prove the main result of the thesis Theorem 1.2.1.

The main result of Phase I, Theorem 3.2.4, which reduces polyline morphing to morph-
ing of orthogonal box drawings, was both stated and proven in Chapter 3. The main result
of Phase II, Theorem 2.5.1, which morphs two orthogonal box drawings to two parallel
orthogonal box drawings, will be proven in this chapter. The main result of Phase III,
which morphs between two parallel orthogonal box drawings, will be stated and proven in
this chapter, though it is mostly a black-box result from existing literature. Once all three
phases are complete, the proof of Theorem 1.2.1 will be presented.

8.1 Assembling Phase II

Recall the statement of Theorem 2.5.1:

Theorem 2.5.1 (Obtaining Parallel Boxes). Let G be a connected planar graph on n
vertices. If P and Q are a pair of compatible planar orthogonal box drawings of G, both
drawn on an O(n)×O(n) grid, with O(1) bends per edge, then there exists a pair of parallel
planar orthogonal box drawings P ′ and Q′ of G and a pair of planarity-preserving linear
morph sequences of lengths kP , kQ ∈ O(n), from P to P ′ and from Q to Q′, respectively,
such that the explicit intermediate drawings in each morph sequence are all also drawn on
an O(n)×O(n) grid and have O(1) bends per edge. Moreover, these sequences can be found
in O(n2) time.
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The proof of Theorem 2.5.1 follows directly from the proofs of each sub-phase.

Proof of Theorem 2.5.1. Phase IIa morphs P and Q to port aligned orthogonal box draw-
ings, and was completed in Chapter 4 by Theorem 4.2.1. With this, it can be assumed
without loss of generality that the input drawings are port aligned. By Theorem 4.1.1, we
may also assume that the input drawings have no ports that lie on corners.

Phase IIb computes a sequence of twist assignment functions, and was completed in
Chapter 5 by Theorem 5.3.3. Let t1, t2, . . . , tk∗ be the sequence of k∗ ∈ O(n) twist assign-
ment functions.

Phase IIc repeatedly finds morphs which perform the twists given by each twist as-
signment function computed in Phase IIb, and after each twist it simplifies (i.e., makes it
zig-zag-free) and compresses the resulting drawing. These two routines in Phase IIc were
completed in Chapter 7 and Chapter 6, by Theorem 7.2.3 and Theorem 6.2.7 respectively.
This results in a planarity-preserving linear morph sequence P = D1, D2, . . . , Dk+1 = P ′,
where each drawing Di has O(1) bends per edge and is drawn on an O(n)×O(n) grid. A
combination of Theorem 5.3.3 and Theorem 6.2.7 guarantees that the number of bends is
always O(1) in each explicit intermediate drawing in the linear morph sequence, since the
maximum absolute spirality is always O(1), and the number of bends along an edge is al-
ways on the order of the maximum absolute spirality. In particular, this sequence contains
a subsequence P = Di1 , Di2 , . . . , Dik∗+1

= P ′ for which each consecutive pair Dij , Dij+1

form the simultaneous twist of the twist assignment function tj. This subsequence can be
obtained by choosing each drawing which is the result of applying an iteration of Theo-
rem 7.2.3 and Theorem 6.2.7 (i.e., choose one drawing after each twist is performed).

Theorem 6.2.7 can be applied to Q in order to find a linear morph sequence from Q
to an orthogonal box drawing Q′ that is zig-zag-free, port aligned with Q, and has the
same spirality along each edge as Q (and additionally is drawn on an O(n) × O(n) grid
and has O(1) bends per edge, which also applies to every explicit intermediate drawing).
Theorem 5.3.3 and Lemma 5.1.6 then guarantee that P ′ and Q′ are parallel, completing
the pair of linear morph sequences.

Each of these three sub-phases can be completed in time O(n2), and so this algorithm
runs in time O(n2) in total.

8.2 Proof of the Main Result

Phases I and II discussed in Section 2.5 have been completed, and Phase III is essentially
a use of an existing result, so the main result of this thesis can now be proven. Recall the
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statement of the main result, Theorem 1.2.1:

Theorem 1.2.1 (Main). Let G be a connected planar graph with n vertices. For a compati-
ble pair of planar straight-line drawings P and Q of G, whose vertices lie on an O(n)×O(n)
grid, there exists a planarity-preserving linear morph sequence from P to Q of length O(n),
where each explicit intermediate drawing lies on an O(n)×O(n) grid and has O(1) bends
per edge. Moreover, this sequence can be found in O(n2) time.

The proof simply applies all the existing results for Phases I and II, and uses a result
by Biedl et al. [7] for Phase III.

Proof of Theorem 1.2.1. For Phase I, apply Theorem 3.2.4, Lemma 3.1.3 and Observa-
tion 3.1.2 to reduce to the problem of morphing orthogonal box drawings P ′ and Q′,
neither of which has any bends at all. This phase takes O(n2) time and uses O(n) planarity-
preserving linear morphs, and every explicit intermediate drawing lies on an O(n)×O(n)
grid since the original straight-line drawings P and Q were drawn on an O(n)×O(n) grid.
For Phase II, apply Theorem 2.5.1 to morph P ′ and Q′ into parallel drawings P ′′ and Q′′

using O(n) planarity-preserving linear morphs, while maintaining O(1) bends per edge and
an O(n) × O(n) grid for all explicit intermediate drawings. We may also assume that P ′′

and Q′′ do not contain any degenerate bends. By Theorem 4.1.1, we may also assume that
P ′′ and Q′′ have no ports that lie on corners.

Finally, for Phase III, a pair of orthogonal straight-line (point) drawings S(P ′′) and
S(Q′′) can be introduced which are equivalent to P ′′ and Q′′ respectively. These are con-
structed by creating a vertex for each feature (corner/port/bend) in the respective orthog-
onal box drawings, and making the horizontal and vertical segments of the orthogonal box
drawings into edges (see Figure 8.1 for an example). Since P ′′ and Q′′ are parallel and do
not contain degenerate bends or ports that lie on corners (and hence contain no coinciding
features at all), the resulting drawings S(P ′′) and S(Q′′) are therefore both drawings of
the same (labelled) graph G′ as each other, and are also parallel. Note also that G′ is
connected since G is connected.

Any sequence of planarity-preserving linear morphs from S(P ′′) to S(Q′′) that do not
change the slopes of any edges (and do not introduce any bends or degeneracies) must
then also induce a sequence of planarity-preserving linear morphs from P ′′ to Q′′. Biedl et
al. [7] give an algorithm that finds such a sequence of O(n) linear morphs from S(P ′′) to
S(Q′′) (Theorem 5.3 from their paper), while maintaining an O(n) × O(n) grid (separate
discussion in Section 7.1 of their paper). In particular, they call the property that the
slopes of edges do not change the “preservation of orthogonality” throughout the morph.
This satisfies all the necessary guarantees for Phase III.

104



P ′′′ Q′′′

S(P ′′′) S(Q′′′)

Figure 8.1: An example of how the straight-line orthogonal drawings S(P ′′) and S(Q′′) are
obtained from the orthogonal box drawings P ′′′ and Q′′′. Observe that S(P ′′) and S(Q′′)
are parallel drawings of the same graph.

Each of these results guarantees that all O(n) explicit intermediate drawings will have
O(1) bends per edge and are drawn on a O(n)×O(n) grid, as desired.

Phases I and II run in O(n2) time each. While not explicitly stated in the paper of
Biedl et al. [7], it can be determined from following their definitions that our Phase III
runs in O(n2) time too. Hence, the total runtime is O(n2), as desired.

8.3 Extensions

The statement of Theorem 1.2.1 applies only to planar straight-line drawings of connected
graphs which are drawn on an O(n)×O(n) grid. However, the methods of this thesis can
be extended to relax these constraints in several ways without any difficult constructions.
We briefly outline these extensions here. In particular, this section will not give detailed
constructions, since the constructions are quite straightforward given an understanding of
the proof of Theorem 1.2.1.

Poly-line Input Drawings. First of all, the methods of this thesis extend to poly-
line drawings as well. Let P and Q be a pair of compatible planar poly-line drawings
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of the same graph G. Each drawing can be converted a planar straight-line drawing by
replacing each bend with a vertex of degree 2. The resulting pair of drawings Ps and Qs

are no longer drawings of the same graph, since an edge of G may be drawn with different
numbers of bends in P and Q. We denote their respective graphs as GP and GQ. However,
Theorem 3.2.4 can still be applied to morph Ps and Qs to orthogonal box drawings of GP

and GQ, respectively. We call the respective resulting orthogonal box drawings Pb and Qb.
Let βP , βQ : E(G)→ Z+ be the functions that count the number of bends along each edge
e ∈ E(G) in the drawings P and Q, respectively. We will add vertices to GP and GQ to
make them the same graph G′, and add corresponding vertex boxes to Pb and Qb.

Each edge in G corresponds to a path in GP and GQ. For each edge e ∈ E(G) with
βP (e) < βQ(e) (resp. βP (e) > βQ(e)), modify Pb (and the corresponding graph) as follows:
Choose some canonical edge segment e′ in Pb (resp. Qb) that is along the path corresponding
to e. Use O(1) linear morphs to add βQ(e) − βP (e) (resp. βP (e) − βQ(e)) vertex boxes to
e′, so that the path now has max{βP (e), βQ(e)} vertices in both drawings (see Figure 8.2
for the construction that adds these vertex boxes). After this has been completed for
all edges in E(G), call the resulting drawings P ′b and Q′b. They are now orthogonal box
drawings of the same graph G′. Let B =

∑
e∈E(G) max {βP (e), βQ(e)}. So, in particular,

|V (G′)| = |V (G)|+B. We continue to let n denote |V (G)|. Neither P ′b nor Q′b contains any
bends, and both are drawn on an O(n+B)×O(n+B) grid. Any planar orthogonal box
drawing of G′ (including implicit intermediate drawings) induces a corresponding admitted
planar poly-line drawing of G (see Chapter 3 for a discussion of admitted drawings), so it
suffices to find a linear morph sequence from P ′b to Q′b. Thus, the remaining steps in the
proof of Theorem 1.2.1 can be applied in order to find a linear morph sequence from P to
Q that maintains an O(n+B)×O(n+B) grid and O(βP (e) + βQ(e)) bends for each edge
e ∈ E(G). The length of this linear morph sequence is O(n + B), and the whole morph
can be computed in O ((n+B)2) time.

Disconnected Input Graphs. Theorem 1.2.1 can also be extended to handle discon-
nected graphs, at a cost to the time complexity, as well as either the grid size or the
length of the linear morph sequence. There are two steps in the proof which make use of
the connectivity of the underlying graph. First is the proof of Theorem 6.2.7, which uses
connectivity to construct a trapezoidal map in linear time by applying Chazelle’s algo-
rithm [12]. This instead can be done in O(n log n) time for disconnected graphs by using
standard methods [13]. It can even be done in O(n log log n) time [10, discussion preceding
Theorem 2.1] by swapping the balanced tree data structure used in the standard proof for
a Van Emde Boas tree [46] (since the trapezoidal map is of vertical line segments on an
O(n)× O(n) grid). The second step that makes use of the connectivity of the underlying
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(a) An orthogonal box drawing P , with the
(green and dashed) edge segments of its ad-
mitted drawing. The new vertex will be in-
troduced at the location of the red cross

(b) The coordinates of P are modified so that no
y-coordinate lies in the displayed horizontal strip,
and no x-coordinate lies in the displayed vertical
strip. A new vertex box can be added afterwards.

Figure 8.2: An example of how an additional vertex box can be added inside an edge
segment using O(1) linear morphs.

graph is in Phase III, which applies a result by Biedl et al. [7] that assumes connectivity.
Biedl et al. observe that there is a linear morph sequence of length O(n2) (which can also
be computed in O(n3) time) that accomplishes the same result for disconnected graphs.
The total run-time for this approach with O(n2) linear morphs is O(n3). Separately, we
note that Van Goethem et al. [47] extend their results in a manner that allows the handling
of disconnected graphs, but without giving a method for analyzing the resulting morph’s
grid size, or the time complexity to compute the morph. Their approach is very different
from ours, so there is no obvious analogous extension, but we can apply their algorithm
directly to our drawings in place of the algorithm by Biedl et al. for Phase III to obtain
some linear morph sequence of length O(n). Due to some details of the construction of
their algorithm, this linear morph sequence will also induce a linear morph sequence of
the orthogonal boxes. However, since they do give a detailed analysis of their grid size or
runtime, we only know them each to be polynomial with this approach.

Input Drawings on a Large Grid. Theorem 1.2.1 can be extended to handle arbitrarily
large input grids. If the initial grid is of size N × N (for N ∈ Ω(n)), then the grid size
in Theorem 1.2.1 can be amended to be O(N) × O(N). The same construction applies.
In particular, after Phase I, the problem can be reduced to one with an O(n)×O(n) grid
by applying Theorem 6.1.2 to compress both drawings. This does not increase the time
complexity to compute the whole morph, since Phase I can still be computed in O(n2) time
(assuming that the input coordinates can fit in a single word in the word RAM model).
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Morphs of Orthogonal Box Drawings. By applying only Phases II and III, we also
get a nice result for morphs of orthogonal box drawings:

Theorem 8.3.1. Let G be a connected planar graph on n vertices. If P and Q are a pair of
compatible planar orthogonal box drawings of G, both drawn on an O(n)×O(n) grid, with
O(1) bends per edge, then there exists a planarity-preserving linear morph sequence from P
to Q with length O(n), such that the explicit intermediate drawings in each morph sequence
are all also drawn on an O(n)× O(n) grid and have O(1) bends per edge. Moreover, this
sequence can be found in O(n2) time.

108



Chapter 9

Conclusion

In proving Theorem 1.2.1, this thesis addressed the problem of morphing planar straight-
line drawings using only O(n) linear morphs, while maintaining at most O(1) bends per
edge, and also requiring that all drawings lie on an O(n)×O(n) grid. This improved over
the analogous results of Lubiw and Petrick [33] which achieved a linear morph sequence of
length O(n6), whose explicit intermediate drawings lie on an O(n3)×O(n3) grid, and whose
edges have up to O(n5) bends. This also improved over the results of Alamdari et al. [1]
and Erickson and Lin [21] (which achieved O(n) linear morphs for straight-line drawings,
but did not use a grid), with a small tradeoff of allowing O(1) bends per edge. In order
to accomplish this, we used the novel technique of reducing the straight-line morphing
problem to a morphing problem on orthogonal box drawings.

In Section 8.3, we also outlined some simple extensions of Theorem 1.2.1 for polyline
input drawings, disconnected input drawings, and input drawings lying on an arbitrarily
large grid.

9.1 Open Problems

There is one obvious big open problem relevant to this thesis: Can Theorem 1.2.1 be
improved to use 0 bends per edge throughout the morph while still keeping to an O(n)×
O(n) grid? Recall that the state-of-the-art in planar straight-line morphing accomplishes
exactly this without any guarantee of even a polynomial-sized grid.

The methods of this thesis also leave many interesting small open problems, which are
much more approachable.
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First, very few of the constant factors have been optimized. In many cases this is
intentional, since it significantly improves the readability of the techniques. However, there
are several interesting open questions regarding these constants. What is the minimum
number of bends per edge using these techniques, what is the minimum grid size, and what
is the minimum number of linear morphs required? Some easy calculations (not given here)
show that for an n vertex graph, the techniques in this thesis use up to 36 bends per edge,
use an approximately 154n× 154n grid, and approximately 715n linear morphs (or 397n if
steps which introduce/remove bends are ignored). During Phase II, the maximum absolute
spirality of each edge is also bounded above by 8 (obtained at the end of Phase IIa). Hence,
the maximum absolute difference in spirality is at most 16.

Secondly, almost every linear morph used in the construction was a unidirectional linear
morph. The only significant exceptions were the linear morphs used to perform twists in
Lemma 7.2.2. We also used one non-unidirectional linear morph in Phase III (hidden inside
the black box), and many non-unidirectional linear morphs in Phase I (Theorem 3.2.4)
but each of these could be replaced by a pair of unidirectional linear morphs. So, does
there exist a sequence of only unidirectional linear morphs with all the same properties
as Theorem 1.2.1? It should be noted that, while this is yet-unknown for orthogonal box
drawings, this is true for orthogonal point drawings, where a twist can be replaced by two
unidirectional morphs [7].
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a straight-line box drawing, 81
admitted drawing, 31
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clockwise twist, 54
compactness property, 69
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counter-clockwise twist, 54
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degenerate bends, 11, 14
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equivalent, 11
explicit intermediate drawings, 9

face, 2
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flat orthogonal drawings, 2

generated, 68

graph drawing, 1
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linear morph sequence, 11, 17
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port aligned, 43
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simple graph, 1
simple path, 24
simplified one-dimensional layout compaction

problem, 67
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straight-line drawing, 2
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trapezoidal map, 68
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twist assignment, 55

unidirectional linear morph, 7, 23
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vertex rectangles, 23
vertical line segments of P , 71
vertical linear morphs, 23
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visibility ordering, 38
visibility representation, 34
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