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Abstract

Data, defined as facts and statistics collected together for analysis is at the core of
every inference or decision made by any living organism. Right from the time we are born,
our brain collects data from everything that is happening around us and helps us to make
decisions based on past experiences. With the advent of technology, humans have been
trying to develop methods that can learn from data and generalize well based on past
information. While this attempt has been greatly successful with the development of the
machine learning community, one parallel field that also developed along with it is the
need to have a theoretical understanding of these methods. It is important to understand
the workings of the algorithms to be able to quantify the cause and nature of the error
they can make so that informed decisions can be made using these results, especially for
sensitive applications such as in the medical field.

At the heart of these methods lies the mathematical formulation and analysis of such
learning algorithms. One such method that particularly caught the attention of researchers
recently is the random feature model (RFM), introduced for reducing the complexity and
faster computation of kernel methods in large-scale machine learning algorithms. These
classes of methods can provide theoretical interpretations and have the potential to perform
well numerically, thus being more reliable than black box methods such as deep neural net-
works. This thesis aims to explore RFMs by expanding their theory and applications in the
machine-learning community. We begin our exploration by developing a fast algorithm for
high dimensional function approximation using a random feature-based surrogate model.
Assuming the target function is a lower-order additive function, we incorporate sparsity as
a side information within our model to get numerical results that are better (or compara-
ble) to other well-known methods and also provide risk and error bounds for our model.
Extending the idea of learning functions, we build a model to learn and predict the dy-
namics of an epidemic from incomplete and scarce data. This model combines the idea of
random feature approximation with the use of Takens’ delay embedding theorem on the
given input data. RFMs have majorly been explored in a form that resembles a shallow
neural network with fixed hidden parameters. In our third project, motivated to work
on the idea of multiple layers in an RFM, we propose an interpretable RFM whose ar-
chitecture is inspired by diffusion models. We make the model interpretable by providing
error bounds on the sampled data from its true distribution and show numerically that the
proposed model is capable of generating images from data as well as denoising it.
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Chapter 1

Introduction

Since the origination of the term “machine learning” by Arthur Samuel, an IBM employee in
1959, it has been an area of research interest and development. Machine learning algorithms
aim to build a model for prediction or decision-making by learning from sample data.
Over the years, there has been an exponential increase in the development of data-driven
models and methods in machine learning research, with applications in several diverse fields
such as physics, chemistry, biology, economics, and engineering. Deep Neural Networks
(DNNs) [86, 127] have become the building blocks for many data-driven models. The
model architectures can range from simple feed-forward neural networks [9,137] to complex
architectures such as Convolutional Neural Networks (CNNs) [56,64,88,114,118], Residual
Network (ResNet) [68, 92, 150], Large Language Models (LLMs) [23, 37, 39, 140, 145], etc.
Other well-known data-driven methods include algorithms such as Sparse Identification of
Nonlinear Dynamics (SINDy) [28,154], Polynomial Chaos Expansion [1, 50,126], etc. The
success of these data-driven techniques may lead us to believe that the availability of data
is enough to solve problems. However, if the training data is scarce or of poor quality (for
example, noisy or incomplete data), the data-driven methods may fail or give misleading
outputs. Moreover, most of the DNN-based models are black boxes and hence have very
little interpretability. On the other hand, classical machine learning algorithms such as
Support Vector Machines (SVMs) [33,41], nearest neighbor [55,139], decision trees [80,82],
Principle Component Analysis (PCA) [21,146], etc. are interpretable since they have been
developed from an understanding of the feature space, but underperform for complex tasks.
Thus, there is a need to develop models and algorithms that are both interpretable and
can serve as an alternative to DNNs for scientific machine-learning tasks.

We are particularly interested in looking at a class of models called random feature
models (RFMs) [109–111], which are closely related to kernel methods. This research
is based on understanding and expanding the scope of RFMs. We develop algorithms for
applications in function approximation and epidemic prediction. The research also proposes
a diffusion model-inspired interpretable RFM. In the remainder of this chapter, we recall
random feature models and summarize existing literature on function approximation in
Section 1.1, followed by some preliminary discussion on learning dynamical systems in
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Section 1.2 and an introduction to diffusion models in Section 1.3. We also discuss the
objectives and contributions of this thesis and provide an overview of the coming chapters
in Section 1.4.

1.1 Random Feature Model

A complex-valued function approximation using RFM takes the form y = cTϕ(WTx+b) ∈
C where x ∈ Rd is the input data, W ∈ Rd×N (N denotes the number of random features)
is a random weight matrix, b ∈ RN is the bias vector, ϕ is a predefined non-linear function
applied element-wise and c ∈ CN is the output layer vector. For an RFM, the output
layer c is trained, while the hidden layer weights W and bias b are fixed. From the neural
network perspective, an RFM is a two-layer network with a randomized but fixed hidden
layer [109–111] as depicted in Figure 1.1.

Figure 1.1: Depiction of a random feature model. The red lines denote the components
of the (hidden) weight matrix which are randomly initialized and fixed. The green lines
denote the components of the trainable (output) vector c.

Random Feature Models and Regression

The motivation of random features lies in simplifying kernel methods that use a pre-
defined basis (often nonlinear) in the form of a kernel K(x,y). We discuss the connection

2



between RFMs and kernel methods in detail in Chapter 2. Minimization for kernel training
problems can be formulated by using linear combinations of the kernel basis on the dataset
[30, 69, 131, 157]. These methods need the kernel K to be applied to every pair of data
samples, thus limiting their applications, especially in large-scale settings. For example,
in [109] the authors show how to construct feature spaces that can uniformly approximate
shift-invariant kernels K(x − y) to within ϵ with dimensions of O(dϵ2 log 1

ϵ2
). The RFM

[109–111] is a technique to avoid the computation cost of fully evaluating the kernel.

Learning the parameters of RFMs can be done using convex optimization techniques
as training happens only over the last layer and can be solved similarly to regression
problems or their variations. Thus, given a collection of m measurements, whose inputs
(and outputs) are arranged column-wise in the matrix X ∈ Rd×m (and Y ∈ C1×m), the
random feature regression problem becomes:

min
c∈CN

∥Y − cTϕ(WTX + b)∥22 +R(c), (1.1)

with some penalty function R : CN → R. Trained coefficient vector c is obtained as
a solution to Equation 1.1. Properties with respect to approximation power, number of
trainable features, etc. for these classes of methods can be analyzed and quantified. For
example, choosing the ridge penalty withR(c) = λm ∥c∥22 leads to the random feature ridge
regression (RFRR) problem studied in [49, 89, 99, 111, 120] or when the ridge parameter
λm → 0+, the RFRR becomes the min-norm interpolation problem (also referred to as
ridge-less regression) [8, 10, 11, 67, 90, 99, 100, 142]. A detailed analysis of both the kernel
ridge regression and the RFRR problems in terms of the dimensional parameters d, m, and
N are provided in [36,99]. For example, in [120], it was shown that using N = O(m

1
2 logm)

number of random features is sufficient to achieve a test error of O(m− 1
2 ) for a function f in

an Reproducing Kernel Hilbert Space (see Definition 2.2.5) when training the output layer

of the RFRR problem. In general, to achieve a risk bound that scales like O
(
N−1 +m− 1

2

)
using the RFRR problem over the RKHS, properties of the spectrum of the kernel operator
must be known [7,49]. In practice, the technical assumptions on the spectrum and its decay
may be hard to verify for a given problem or dataset. In general, most analyses indicate
that a large N is needed for low-risk.

Additionally, it has been observed that the global minimizer of the risk using the
RFRR problem as a function of the ratio N

m
is achieved for values N

m
≫ 1 [99, 100]. That

is, the lower risk solutions occur in the very overparameterized limit. Since a large N
can limit their usefulness in many scientific problems, an alternative approach is to use
sparsity-promoting penalties (or algorithms) to obtain sparse or low-complexity models in
the overparameterized setting. For example, in [66] an ℓ1 basis pursuit denoising problem
(see Definition 2.1.10) was used to train RFM from limited (and noisy) measurements.
It was shown that when the “true” values of the final weight layer c are compressible,
the sparsity level (number of nonzero features) s can be much smaller than N to achieve
approximation bounds similar to bounds derived in [36,66]. Similar RFM-based algorithms
that have been successful in approximating functions from noisy and limited data can be
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found in [125, 151]. Similar to the RFRR problem, it was shown that when the sparsity
level s = N and the number of measurements m = O(N log(N)), the risk is bounded by

O
(
N−1 +m− 1

2

)
[36]. A related algorithm based on LASSO in [153] was used to iteratively

add a sparse number of random features to the trained RFM. Non-convex penalties to
promote sparsity can be used such as the ℓ0 regularization. In [151], an iterative pruning
approach (related to an ℓ0 penalized problem as defined in Eq. (2.1)) is shown to perform
well, in particular, for high-dimensional approximation problems with the inherent low-
order structure. Their proposed algorithm connects sparsity-promoting methods for RFM
to the pruning approaches for reducing the model complexity of overparameterized neural
networks. Pruning algorithms focus on obtaining small subnetworks with similar accuracy
to the full neural network [54,158]. Sparsity in RFM is an actively evolving area of research
owing to its wide applicability in data-scarce problems and is discussed further in Chapters
2, 3 and 4.

1.2 System Identification and Epidemic Prediction from

Partial Data

System identification involves the use of various methods for using data to build mathe-
matical models of dynamical systems. Usually, dynamical systems are learned from mea-
sured data by determining a mathematical relation between the input and output data
through a surrogate model. It is also a popular application of machine learning or artificial
intelligence-based methods where the model is trained to learn the trajectory of a dynamical
system. Given a d−dimensional time dependent data x(t) ∈ Rd, the goal is to find a func-

tion f such that
dx(t)

dt
≈ f(x(t)) i.e., approximating the function f(x(t)) is essential for suc-

cessful system identification. A common approach to learning the trajectory of a dynamical
system is either by learning the function f or directly learning the solutions x(t) itself. Some
well-known approaches for learning the solutions directly are given in [14,27,29,57]. There
are several approaches in the literature on how to learn the function f successfully. One
class of method assumes the function f(x(t)) to have sparse representations with respect to
a prescribed dictionary consisting of polynomials and/or trigonometric functions. The ac-
tive terms are then identified using sparse regression [24,25,28,62,75,97,121,125,126,141].
For example, on recovery of chaotic systems from highly corrupted data, [141] gave the
conditions under which a chaotic dynamical system can be recovered exactly from data.
The main idea used to recover the system in [141] was by representing the governing equa-
tions in the space of known functions (polynomials) to construct a dictionary matrix and
solve for the coefficients to recover the system. Similar works have also been done in [28]
and [126]. Another approach based on neural networks is modeling partial or ordinary dif-
ferential equations using either full data or partial observations with some side information
to learn the system [3, 6, 43, 59, 63, 85, 95, 96, 104,108, 112, 112, 129, 136, 148, 149]. A signifi-
cant feature of NNs that makes it unique is the presence of a nonlinear activation function.
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The activation functions that are commonly used for most NNs are Rectified Linear Units
(ReLU) or variations of ReLU, tangent hyperbolic (tanh), or sigmoid function. However,
NNs can often be highly unstable and prone to overfitting as demonstrated in [61] which
can lead them to under-perform in comparison to sparse regularization techniques. At the
same time, their effectiveness is also dependent on the availability of training data topped
with a disadvantage in terms of lack of theoretical understanding. Thus, their applications
to data-scarce regimes such as in the fields of public health or medicine can be extremely
limited. In terms of epidemic prediction, the COVID-19 pandemic was a wake-up call for
the machine learning community to come up with algorithms that would give quick predic-
tions with minimal data so that public health can be managed and appropriate measures
can be taken to control disease spread.

Surveillance data, such as daily cases, are the prime source of information about emerg-
ing infectious disease epidemics. Predicting the trajectories of epidemics from surveillance
data is currently one of the most active research areas, partially due to the COVID-19
pandemic. Compartmental models, which stratify the population into compartments ac-
cording to health status, are the most popular tools for this task. They have been used to
study many infectious disease epidemics including plague [72], Ebola [4, 71], measles [32],
HIV [19], influenza [48], and COVID-19 [42,159]. These models utilize dynamical systems
to describe the dynamics of their compartments. Traditional methods in practice make use
of an underlying model to fit the measured data and subsequently find the corresponding
parameters in the system [13, 31, 143, 159]. The assumed underlying model is generally
a newly proposed model describing the disease dynamics. However, epidemiological data
is often only partially observed where available observations are either daily active cases
or cumulative cases. The incomplete nature of data makes it hard to learn the param-
eters as missing data corresponding to other variables can lead to incorrect learning of
parameters. Inspired by the properties laid out by various delay embedding theorems, we
incorporate data corresponding to the unavailable variables using Takens’ Delay embed-
ding theorem [138]. There have been some notable works in using time delay for epidemic
predictions such as using delay differential equations in the newly proposed underlying
models [5,44,65]. However, these methods still require one to know the form of the under-
lying differential equations for learning, which is often challenging to model. Other works
of delay embedding include developing eigensystem realization algorithm in system identi-
fication to learn the eigensystem [74], extracting qualitative dynamics from data [22], and
studying nonlinear dynamics in the Koopman operator framework [26, 34, 76, 87]. Delay
embedding can be combined with neural networks to identify parameters and make predic-
tions [91, 144]. Thus a potential area of exploration would be to use delay embedding for
predicting a particular variable of a dynamical system from incomplete input data. This
idea has been developed and elaborated further in Section 2.4 and Chapter 4.
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Figure 1.2: Illustration of a diffusion model training process. The forward pro-
cess is a fixed Markov chain while the reverse process is generally learned us-
ing a parameterized model. Source: https://medium.com/@vasanth.ambrose/

diffusion-a-shallow-dive-into-image-generation-models-43034a267cc1

1.3 Diffusion Models

Generative modeling has been successfully used to generate a wide variety of data. Some
well-known models are Generative adversarial networks (GANs), flow-based models, au-
toregressive models, and Variational Autoencoders (VAEs) [46, 60, 79, 101, 152]. Diffusion
models [70, 152] are a class of parameterized models trained using variational inference
to generate samples matching the data from input distribution after a finite number of
timesteps. The model learns to reverse a fixed Markov chain which adds noise to the
input data until it is destroyed as depicted in Figure 1.2. The reverse Markov chain is
often learned using a NN. Typically, U-Net [119] (or its variations) architecture is used
for training diffusion models as it not only preserves the input-output dimensions, but the
architecture of U-Net helps the model to extract and learn features through the downsam-
pling convolutional layers. Once trained, new data is generated from noise by applying the
trained model recursively on reverse timesteps. Much has been studied in terms of improv-
ing the performance of diffusion models by introducing different loss functions [70, 156],
formulating the model as stochastic differential equations (SDEs) [133–135], exploring dif-
ferent sampling techniques post-training [94], etc. Since diffusion models generally make
use of random noise added over multiple timesteps and complex parameterized models for
training, the theoretical interpretability of these models is very limited in the literature.
Existing theory focuses on the formulation of diffusion models using various mathematical
concepts such as stochastic differential equations [133–135], ordinary differential equa-
tions [94], probabilistic models [70, 156], etc. We elaborate more in Section 2.5 which
gives the background formulation of diffusion models. While there are some theoretical
results involving error bounds of diffusion models [12, 35], they are mostly based on the
assumption that the parameterized model being used for training converges. However, for
complex networks such as a U-Net, quantifying the error bound is challenging. On the
other hand, interpretable models such as RFMs are yet to be explored for training diffu-
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sion models. Motivated to build an interpretable method for diffusion models we propose
a time-dependent random feature model for training of diffusion models which is further
discussed in Chapter 5.

1.4 Objectives and Contributions

The main objective of this research is to develop RFM-based algorithms for data-scare
problems and explore the idea of RFM in learning distributions using the training pro-
cess of diffusion models. We approach this goal by first understanding and developing
a sparsity-based RFM algorithm for function approximation. Our second objective is to
work with incomplete and scarce data. In particular, we look at incomplete data coming
from epidemiology that can be modeled using ODEs. Finally, we aim to develop an in-
terpretable RFM architecture based on diffusion models. While RFM has been an area of
much interest lately, applications of RFM to epidemiology and diffusion random features
have not appeared in the literature. We list the contributions below in detail.

• We develop an algorithm based on sparsity and RFM which is used to train sparse
additive random feature models. We include a hard thresholding step in the proposed
algorithm which is a pruning step to obtain a subset of features that could lead to
better generalization results with a smaller RFM architecture, (see also [54, 158]).
Along with obtaining a generalization bound for our approach based on the proofs
from [36,66], we show using tests on both synthetic and real-world datasets that our
proposed method performs comparably or better than other related algorithms. The
sparsity priors help to obtain important variable dependencies from the data.

• Data availability is a challenge in building algorithms for epidemic predictions. We
illustrate that it is feasible to forecast future dynamics of infectious diseases using
delay embedding. Specifically, we approximate the rate of change in the observed
variable (daily active or cumulative cases) as a sparse random feature expansion of
its time-delayed mapping. Here, a sparsity constraint in the random feature model
helps balance between the richness representation of the function space and the lim-
ited amount of available data. Then, we use the learned function to make a prediction
over a future time window. We show that our method successfully outperforms bench-
mark methods based on simulated and real datasets of various epidemics including
COVID-19 in Canada, Ebola in Guinea, Zika in Giradot, and Flu in China. Fur-
ther, our comparisons with other function approximation techniques reveal that our
RFM-based dictionary can consistently perform comparably as the best-performing
dictionary regardless of the dataset.

• Inspired by the process of building diffusion models, we proposed a model architec-
ture for generative RFM. It is one of the first works introduced to combine the idea
of random features with generative models. The new architecture acts as a bridge
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between the theoretical and generative aspects of the diffusion model by providing
approximation bounds of samples generated by diffusion model-based training algo-
rithms. We show that for each fixed timestep, our Diffusion Random Feature Model
(DRFM) can be reduced to a (shallow) random feature model preserving all the
relevant theoretical properties.

1.5 Thesis Overview

The outline of the remaining chapters is given below.

Chapter 2. We recall some important definitions and concepts from compressive sensing,
dynamical systems, and probability theory which are key to understanding the thesis con-
tents.

Chapter 3. In this chapter we propose an algorithm for approximating high dimen-
sional sparse additive functions called the Hard-Ridge Random Feature Expansion method
(HARFE). We use a hard-thresholding pursuit-based algorithm applied to the sparse ridge
regression (SRR) problem to approximate the coefficients with respect to the random fea-
ture matrix. As side information, a random sparse connectivity pattern is added in the
random feature matrix for the additive function assumption. We derive theoretical results
showing that HARFE is guaranteed to converge with a given error bound that depends
on the noise and the parameters of the sparse ridge regression model. Along with risk
bounds derivations, we also derive a risk bound on the learned model and show based on
numerical results on synthetic data as well as on real datasets that HARFE obtains lower
(or comparable) error than other state-of-the-art algorithms. The contents of this chapter
have been taken, with modifications from the article:

Saha, E., Schaeffer, H. and Tran, G., 2023. HARFE: Hard-ridge Random Feature Ex-
pansion. Sampling Theory, Signal Processing, and Data Analysis, 21(2), pp.1-24. https:

//link.springer.com/content/pdf/10.1007/s43670-023-00063-9.pdf.

Chapter 4. Compartmental models, one of the most popular tools for modeling and
predicting infectious disease epidemics may not capture the true dynamics of the epidemic
due to the complexity of the disease transmission and human interactions. We propose
an algorithm named Sparsity and Delay Embedding-based Forecasting (SPADE4) for pre-
dicting epidemics. SPADE4 predicts the future trajectory of an observed variable without
the knowledge of the other variables or the underlying system. The key ideas are to use
an RFM with sparse regression to handle the data scarcity issue and employ Takens’ de-
lay embedding theorem to capture the nature of the underlying system from the observed
variable. We show that our approach outperforms compartmental models when applied to
both simulated and real data. The contents of this chapter are taken, with modification
from the article:
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Saha, E., Ho, L. S. T. & Tran, G. SPADE4: Sparsity and Delay Embedding for Forecast-
ing Epidemics, Bull Math Biol. 85, 71 (2023). https://link.springer.com/article/

10.1007/s11538-023-01174-z

Chapter 5. Most diffusion models are computationally expensive and difficult to in-
terpret with a lack of theoretical justification. Random feature models (RFMs) on the
other hand have gained popularity due to their interpretability but their application to
complex machine learning tasks remains limited. In this chapter, we present a diffusion
model-inspired random feature model that is interpretable and gives comparable numerical
results to a fully connected neural network having the same number of trainable parame-
ters. We validate our findings by generating samples on the Fashion-MNIST dataset and
instrumental audio data. The contents of this chapter are taken, with modification from
the article (under review):

Saha, E. & Tran, G. Diffusion Random Feature Model. arxiv preprint. 2023. https:

//arxiv.org/abs/2310.04417

Chapter 6. We conclude the thesis with concluding remarks and a discussion on pos-
sible future work and open problems corresponding to the research presented.
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Chapter 2

Background

In this chapter, we give the definitions, results, and derivation essential to the research
presented in the thesis. This chapter is divided into three main sections. In Section 2.1
we provide definitions and results from compressive sensing along with some well-known
sparse recovery algorithms followed by a discussion on the formulation of random feature
models and their theoretical results. Some elementary discussion on ODEs and epidemic
models are given in Section 2.4. In the last section of this chapter, Section 2.5, we review
the basic background of probability and the formulation of diffusion models.

2.1 Basic Algorithms in Compressive Sensing

A common problem in linear algebra is to solve the problem y = Ax where the observed
data y ∈ Cm is connected to an unknown vector x ∈ CN via a measurement matrix A ∈
Cm×N . This can be found in many practical problems such as in signal and image processing
where one has to extract quantities of interest from measured data [2, 20, 40, 106]. Often
the matrix A ∈ Cm×N models the linear information measurement process. For successful
recovery of the vector x ∈ CN , the amount of measured data m has to be at least as large
as the number of components of x [53]. Practically, this is often difficult to incorporate in
most current technology, such as medical imaging, radar, mobile communication, etc. This
leads to an underdetermined system which leads to the case of infinitely many solutions
(assuming at least one solution exists). Thus, without any additional information, it is
hard to recover x when m < N . The key idea of compressive sensing lies in recovering
the vector x when m < N with the assumption that the vector x is sparse i.e., most of its
components are zero. Below we recall some relevant definitions, results, and algorithms for
sparse recovery of vectors. For a detailed understanding, we refer the reader to [53].

For a matrix A ∈ Cm×N , a sparse representation of y can be obtained by solving

minimize
z∈CN

∥z∥0 subject to Az = y. (2.1)
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The above problem is known as the ℓ0−minimization problem whose main idea is to
find the sparsest vector z satisfying y = Az. Note that in general, the recovered vector z
may not be unique. We first recall a definition and a result stated as Theorem 2.13 in [53]
which gives the conditions under which the recovered vector z will be unique.

Definition 2.1.1 (s-Sparse Vectors). A vector x ∈ CN is said to be s−sparse it it has
atmost s nonzero components.

Theorem 2.1.2. Given A ∈ Cm×N , the following properties are equivalent.

1. Every s-sparse vector x ∈ CN is the unique s-sparse solution of Az = Ax, that is, if
Ax = Az and both x and z are s-sparse then x = z.

2. The null space ker(A) does not contain an 2s-sparse vector other than the zero vector,
that is, ker(A) ∩ {z ∈ CN : ∥z∥0 ≤ 2s} = {0}.

3. For every subset S ⊆ [N ] with card(S) ≤ 2s, the submatrix AS (consisting of the
columns indexed by S) is injective as a map from CS to Cm.

4. Every set of 2s columns of A is linearly independent.

The ℓ0-minimization problem is a non-convex problem. Additionally, the problem by
itself is also NP-hard in general. Thus, a common and alternative approach to the above
problem is to use the ℓ1 norm, which is a convex relaxation of the ℓ0−problem. The
ℓ1−minimization problem consists of solving

minimize
z∈CN

∥z∥1 subject to Az = y.

Next, we discuss some elementary definitions followed by a few well-known formulations
of the ℓ1− optimization problem.

Definition 2.1.3 (Restricted Isometry Constant). The sth restricted isometry constant
δs = δs(A) of a matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22,

for all s−sparse vectors x ∈ CN . Equivalently, it is also defined as,

δs = max
S⊆[N ],card(S)≤s

∥A⋆
SAS − Icard(S)∥2→2.

Definition 2.1.4 (Null Space Property). A matrix A ∈ Cm×N is said to satisfy null space
property relative to a set S ⊆ [N ] if

∥vS∥1 < ∥vS∥1 for all v ∈ ker(A) \ {0},

where S = [N ] \ S.
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Definition 2.1.5 (Robust Null Space Property). The matrix A ∈ Cm×N is said to satisfy
the robust null space property (with respect to ∥.∥) with constants 0 < ρ < 1 and τ > 0
relative to a set S ⊆ [N ] if

∥vS∥1 ≤ ρ∥vS∥1 + τ∥Av∥ for all v ∈ CN ,

where vS denoted the restriction of the indices of v to the set S and S = [N ] \ S.

Definition 2.1.6 (ℓq- Robust Null Space Property). Given q ≥ 1, the matrix A ∈ Cm×N

is said to satisfy the ℓq-robust null space property of order s (with respect to ∥.∥) with
constants 0 < ρ < 1 and τ > 0 relative to a set S ⊆ [N ] with card(S) ≤ s if

∥vS∥q ≤
ρ

s1−1/q
∥vS∥1 + τ∥Av∥ for all v ∈ CN ,

where vS denoted the restriction of the indices of v to the set S and S = [N ] \ S.

Definition 2.1.7 (Best s-term Approximation). The ℓ1 distance to the best s-term approx-
imation of x is defined by

κ1,s(x) = inf
{
∥z− x∥1 : z ∈ CN , z is s− sparse

}
.

The value κ1,s(x) provides a measure for the compressibility of the vector x with respect
to the ℓ1. It can obtained by considering a s-sparse vector z ∈ CN , whose nonzero entries
are the s largest absolute entries of x [53]. Note that in particular κ1,s(x) = 0 if x is
s−sparse and κ1,s(x) ≤ ∥x∥1 always [66].

Definition 2.1.8 (Basis Pursuit). Given a measurement matrix A ∈ Cm×N and a mea-
surement vector y ∈ Cm, Basis Pursuit consists in finding the minimizer of the following
problem

min
z∈CN

∥z∥1 subject to Az = y. (2.2)

In general the measurement vector y ∈ Cm is noisy, y = Ax+e for some measurement
error e ∈ Cm such that ∥e∥2 ≤ η for some η ≥ 0. A general ℓ1−minimization problem,
which takes measurement noise into account, is given by the quadratically-constrained
basis pursuit.

Definition 2.1.9 (Quadratically-Constrained Basis Pursuit (QCBP)). Given a measure-
ment matrix A ∈ Cm×N and a measurement vector y ∈ Cm, QCBP consists in finding the
minimizer of the following problem:

min
z∈CN

∥z∥1 subject to ∥Az− y∥2 ≤ η. (2.3)

The solution to the above problem is also linked to the basis pursuit denoising (BPDN)
problem and the least absolute shrinkage and selection operator (LASSO) defined below.
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Definition 2.1.10 (Basis Pursuit Denoising Problem (BPDN)). Given a measurement
matrix A ∈ Cm×N and a measurement vector y ∈ Cm, BPDN consists in finding the
minimizer of the following problem

min
z∈CN

λ∥z∥1 + ∥Az− y∥22, (2.4)

for some parameter λ ≥ 0.

Definition 2.1.11 (Least Absolute Shrinkage and Selection Operator (LASSO)). Given
a measurement matrix A ∈ Cm×N and a measurement vector y ∈ Cm, LASSO consists in
finding the minimizer of the following problem

min
z∈CN

∥Az− y∥2 subject to ∥z∥1 ≤ τ, (2.5)

for some parameter τ ≥ 0.

Below we state Proposition 3.2 from [53] which shows that the solutions obtained from
BPDN, QCBP, and LASSO are equivalent.

Theorem 2.1.12. The conditions below give the equivalence of solutions obtained using
BPDN, QCBP, and LASSO.

1. If x is a minimizer of BPDN with λ > 0, then there exists η = ηx ≥ 0 such that x is
a minimizer of the QCBP problem.

2. If x is a minimizer of QCBP with η ≥ 0, then there is τ = τx ≥ 0 such that x is a
minimizer of the LASSO.

3. If x is a minimizer of the LASSO with τ > 0, then there is λ = λx ≥ 0 such that x
is a minimizer of BPDN.

Below we state Theorem 4.22 from [53] which gives the robustness of the QCBP prob-
lem.

Theorem 2.1.13. Suppose that a matrix A ∈ Cm×N satisfies the ℓ2-robust null space
property of order s with constants 0 < ρ < 1, τ > 0 and p > 1. Then, for any x ∈ CN ,
a solution x♯ of QCBP with y = Ax + e and ∥e∥2 ≤ η approximates the vector x with
ℓp-error

∥x− x♯∥p ≤
C

s1−1/p
κ1,s(x) +Ds1/p−1/2η, (2.6)

for some constants C,D > 0 depending only on ρ and τ .

13



We also discuss some well-known greedy algorithms. These are algorithms for non-
convex optimization problems. The approach is based on solving problems by making a
locally optimal choice at each stage with the expectation of finding the global optimum.
They may not be able to find the best solution to many problems as they do not explore
the solution space too much. Greedy methods, as the name suggests have the advantage
of faster convergence to a local solution and are computationally cheaper. We use the
notation Hs(z) for the hard thresholding operator of order s which keeps the s largest
absolute entries of a vector. It gives the best s-term approximation to z ∈ CN . The
notation Ls(z) gives the index set of s largest entries of z ∈ CN in modulus. Then, Hs(z)
= zLs(z).

Algorithm 2.1.14 (Orthogonal Matching Pursuit (OMP) Algorithm). Given measure-
ment matrix A ∈ Cm×N , measurement vector y ∈ Cm, initialize S0 = φ, x0 = 0. Repeat
the following steps until a stopping criterion is met at n = n̄,

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N ]

{|(A⋆(y −Axn))j|}
}
, (2.7)

xn+1 = argmin
z∈CN

{∥y −Az∥2, supp(z) ⊆ Sn+1}. (2.8)

The final output is the n̄-sparse vector x♯ = xn̄.

At each iteration, the OMP algorithm adds one index to a target support Sn followed
by updating a target vector xn that best fits the measurements such that it is supported on
the support Sn. Below we state a result that shows that the OMP algorithm can recover
sparse vectors x. The result implies stability and robustness of the OMP algorithm and is
given as Proposition 6.24 in [53].

Theorem 2.1.15. Suppose A ∈ Cm×N , let y = Ax + e for some s− sparse x ∈ CN with
S = supp(x) and some e ∈ Cm. Let (xn) denote the sequence defined by the OMP algorithm
started at an index set S0. With s0 = card(S0) and s′ = card(S \ S0), if δs+s0+12s′ <

1
6
,

then there is a constant C > 0 depending only on δs+s0+12s′ such that

∥y −Axn̄∥2 ≤ C∥e∥2, n̄ := 12s′. (2.9)

Another well-known class of greedy algorithms includes thresholding methods. We dis-
cuss two well-known thresholding algorithms namely iterative hard thresholding and hard
thresholding pursuit. The iterative hard thresholding algorithm is an iterative algorithm
used to solve the underdetermined system y = Ax, knowing that the solution is s-sparse.
The steps are described below.

Algorithm 2.1.16 (Iterative Hard Thresholding (IHT) Algorithm). Given a measurement
matrix A ∈ Cm×N and a measurement vector y ∈ Cm, the algorithm starts with an initial
s-sparse vector x0 ∈ CN , typically x0 = 0, and produces a sequence (xn) defined inductively
by

xn+1 = Hs(x
n + A∗(y −Axn)),
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where the hard thresholding operator Hs keeps the s largest modulus components of a vector,
such that Hs(z) is a (not necessarily unique) best s-term approximation z ∈ CN . The final
output is obtained when a stopping criterion is met at n = n̄ and is given by the s-sparse
vector x♯ = xn̄.

Algorithm 2.1.17 (Hard Thresholding Pursuit (HTP) Algorithm). Suppose A ∈ Cm×N

is a measurement matrix with a measurement vector y ∈ Cm, the algorithm starts with an
initial s-sparse vector x0 ∈ CN , typically x0 = 0, and produces a sequence (xn) by repeating
the following steps until a stopping criterion is met at n = n̄

Sn+1 = Ls(x
n + A⋆(y −Axn)),

xn+1 = argmin
z∈CN

{∥y −Az∥2, supp(z) ⊆ Sn+1}.

The final output is the s-sparse vector x♯ = xn̄.

The result below gives one of the well-known results for sparse recovery of vectors from
given measurements using IHT and HTP stated as Theorem 6.21 from [53].

Theorem 2.1.18. Suppose that the (6s)th order restricted isometry constant of A ∈ Cm×N

satisfies δ6s <
1√
3
, then for any x ∈ CN and e ∈ Cm, the sequence x(n) defined by the IHT

or HTP with y = Ax + e, x0 = 0, using 2s instead of s in the algorithm, satisfies

∥xn − x∥2 ≤ 2βn∥x∥2 +
D1√
s
κ1,s(x) +D2∥e∥2, (2.10)

for all n ≥ 0 where the constants β ∈ (0, 1), D1, D2 > 0 depend only on δ6s. In particular,
if the sequence x(n) clusters around some x♯ ∈ CN , then

∥x− x♯∥2 ≤
D1√
s
κ1,s(x) +D2∥e∥2. (2.11)

We would like to mention that although there are other well-known algorithms in lit-
erature for sparse recovery of vectors from measured data, we discuss the methods that
are closely connected to the research undertaken in the thesis. The main focus of one of
the research projects is to develop the HTP algorithm for ridge regression problems with a
random feature matrix A for function approximation. This idea is further developed and
detailed in Chapter 3.

2.2 Kernel Methods

In this section, we discuss function approximation using kernels, which serves as one of
the building blocks for random feature methods. In this section, we give a brief insight
into kernel methods and their advantages. For a detailed reading, we refer the readers
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to [73, 128]. Given a training set S = {(x(k), y(k))}mk=1, where x(k) ∈ Rd and y(k) ∈ R, a
linear regression model consists of finding the best interpolation real-valued function f of
the form

f(x) = ⟨ω,x⟩ = xTω =
d∑

i=1

wixi, (2.12)

for each x = [x1, · · · , xd]T ∈ S. This is one of the simplest forms of data fitting where the
linear function f of the features x matches the corresponding label y such that

|y − f(x)| = |y − ⟨ω,x⟩| ≈ 0.

This task is also known as linear regression. Geometrically, f is a hyperplane fitted through
the given d-dimensional points. The illustration in Figure 2.1 shows an example for d = 1.
Ideally, we are interested in finding a function for which the training errors for all the

f(x)

|yi-f(xi)|2

(xi,yi)

x

Y

O

Figure 2.1: Fitting a function f(x) = ωTx to a set of data points using linear regression

samples in S are small, i.e., |y − f(x)| is small for all (x(k), yk) ∈ S. The most commonly
chosen measure is the sum of the squares of the individual errors between the training data
and a particular function. This is defined by another real-valued function L given by

L(f, S) = L(ω, S) =
m∑
k=1

(y(k) − f(x(k)))2 = ∥y −Xω∥22, (2.13)

where y = [y(1), · · · , y(m)]T ∈ Rm, X = [x(1), · · · ,x(m)]T ∈ Rm×d, and ω ∈ Rd. As seen in
Figure 2.1, this corresponds to minimizing the distance between the given points and the

hyperplane being fitted. To minimize the value of L over ω, we set
∂L
∂ω

equal to zero i.e.,

∂L(ω, S)

∂ω
= −2XTy + 2XTXω = 0. (2.14)

Thus, we get the normal equations given by

XTXω = XTy. (2.15)
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If (XTX)−1 exists, then we can directly express ω as

ω = (XTX)−1(XTy), (2.16)

where the obtained ω is the unique vector that minimizes the loss.

If (XTX) is not invertible, then Eq. (2.15) has infinitely many solutions. In order to
choose an ω out of the infinite ones, there are various options. One such approach is to
use the pseudo-inverse of (XTX) to obtain ω. Then the solution is given by

ω = (XTX)+(XTy), (2.17)

where we use the superscript ‘+′ to denote the pseudo-inverse of a matrix. Note that using
the pseudo-inverse gives a unique solution which such that ω has the smallest ℓ2 norm.
Another formulation for obtaining an ω based on finding the minimum-norm solution is
known as regularization, which is formulated and discussed in Equations (2.20) and (2.21).

Note that in order to find a representation of the function f as a linear combination of
the inner products of input data, the expression in Eq. (2.16) can also be rewritten as

ω = XTX
(
(XTX)−1

)2
XTy, (2.18)

which allows us to write ω =
m∑
k=1

αkx
(k) or ω = XTα, where α = X

(
(XTX)−1

)2
XTy ∈

Rm. Thus the target function f can be evaluated as

f(x) =

〈
m∑
k=1

αkx
(k),x

〉
=

m∑
k=1

αk

〈
x(k),x

〉
. (2.19)

The predicted output on a new data point can be computed using the learned function
f(x) = ⟨ω,x⟩.

As mentioned above, another technique to choose an ω when there are infinitely many
solutions is by using regularization. The main idea is to restrict our choice of ω by imposing
certain conditions. For example, for the case of least squares regression, the choice param-
eters with small ℓ2 norm of the weights is a well-known criterion called ridge regression.
Then, the modified loss function becomes

L(f, S) = L(ω, S) =
m∑
k=1

(y(k) − f(x(k)))2 + λ

d∑
j=1

w2
j = ∥y −Xω∥22 + λ∥ω∥22, (2.20)

where λ denotes the regularization parameter and controls the strength of the ‘weight
decay’. Using the loss function in Eq. (2.20) and similar steps as in Equations (2.14) and
(2.15), the solution to obtain ω can be computed as

ω = (XTX + λI)−1(XTy). (2.21)
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Note that the term (XTX + λI) is always invertible as long as λ > 0. This result can
be verified from the fact that XTX is positive semi-definite and λI is positive definite for
λ > 0 making XTX + λI a positive definite matrix. We recall positive semi-definite and
positive definite matrices below for reference.

Definition 2.2.1 (Positive Semi-Definite (PSD) and Positive Definite (PD) Matrices). A
matrix M is called positive semi-definite if xTMx ≥ 0 ∀x ∈ Rd. If xTMx > 0 for any
nonzero vector x ∈ Rd, then the matrix M is said to be positive definite.

Regularization is a popular technique used to restrict the choice of functions when the
data is noisy and thus an exact fitting of data is undesirable. Whether we choose to use
regularization or not, the learned function in the above approaches is linear. However,
the relation between the input data and the output is often nonlinear, and thus for a
better representation we need to map the inputs to a new feature space such that it
can capture nonlinear relations. We transform the features of the input data into a new
feature space with dimension N in such a way that the relation between the transformed
feature space and the output can be represented in a linear form. Consider an embedding
map ψ : Rd → RN which helps to convert nonlinear relations to linear ones. For example,
consider a classification problem where one has to learn a function that separates two classes
of data in R2. While it may not always be possible to find a hyperplane (line in R2) that
can easily separate the two classes, mapping it to a higher dimension may make it linearly
separable (see Figure 2.2). Thus, consider a transformed set Ŝ = {(ψ(x(k)), y(k))}mk=1 and

a prediction function f̂ of the form

f̂(x) = ⟨ω, ψ(x)⟩. (2.22)

Thus, assuming we have the data matrix X = [x(1), · · · ,x(m)]T and output vector y =
[y(1), · · · , y(m)]T , the learned weights using linear regression can be computed using steps
similar to Equations (2.14) and (2.15) and is given by

ω = (ψ(X)Tψ(X))−1ψ(X)Ty (2.23)

=

[ψ(x(1), · · · , ψ(x(m))])

ψ(x(1))
...

ψ(x(m))




−1

[ψ(x(1)), · · · , ψ(x(m))]

y
(1)

...
y(m)

 , (2.24)

provided (ψ(X)Tψ(X))−1 exists. If it does not exist then one may choose to use the pseudo-
inverse or regularization techniques to obtain ω as discussed before. As in Eq. (2.16), the
the prediction function can be evaluated using,

f̂(x) =
m∑
k=1

αk

〈
ψ(x(k)), ψ(x)

〉
, (2.25)

where αk is the kth component of α = ψ(X)((ψ(X)Tψ(X))+)2ψ(X)Ty ∈ Rm. Thus for
evaluating the prediction function for every new point, one needs to compute the inner
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Figure 2.2: Illustration of the kernel trick. Source: https://borisburkov.net/

2021-08-03-1/

product with each of the training points. An easier alternative way to compute this inner
product efficiently would be to possibly use a direct function of the input features instead of
using the explicit mapping ψ. A function that performs this direct computation is known
as a kernel function.

Definition 2.2.2 (Kernel function [128]). A kernel is a function K : X × X → R such
that for all x, x̄ ∈ X it satisfies

K(x, x̄) = ⟨ψ(x), ψ(x̄)⟩,

where ψ is a mapping from X ⊆ Rd to an (inner product) feature space ψ(X).

Kernel functions help to cut down on the computational cost of calculating the inner
product between feature maps of every two data points. If the kernel function is known, a
direct evaluation of the kernel function at each input point would give the inner product
values. We give a simple example (taken with modification from [128]) below in order to
show why using a kernel function can be advantageous.

Example: In this particular example, we illustrate the advantage of using kernel
functions commonly known as the ‘kernel trick’. Suppose that for given input data
x = [x1, x2]

T ∈ R2, the nonlinear feature map ψ : R2 → R3 is defined by

ψ

([
x1
x2

])
=

 x21
x22√

2x1x2

 .
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Then for the above choice of ψ, we can see that,

⟨ψ(x), ψ(y)⟩ =
[
y21 y22

√
2y1y2

]  x21
x22√

2x1x2


= x21y

2
1 + x22y

2
2 + 2x1x2y1y2

= (x1y1 + x2y2)
2

=

〈[
x1
x2

]
,

[
y1
y2

]〉2

.

Thus we can choose its associated kernel function defined by K(x,y) = ⟨x,y⟩2 for x,y ∈ R2

since ⟨ψ(x), ψ(y)⟩ = ⟨x,y⟩2. Suppose for two input data x = [2, 3]T and y = [4, 5]T , we use
the definition of the function ψ for the evaluation of the inner product. Then computations
are as follows:

ψ(x) = ψ

([
2
3

])
=

 4
9

6
√

2

 and ψ

([
4
5

])
=

 16
25

20
√

2

 .
Thus, ⟨ψ(x), ψ(y)⟩ = 4(16) + 9(25) + 2(6)(20) = 529.

On the other hand, using the function K(x,y) = ⟨x,y⟩2 directly, we get

⟨ψ(x), ψ(y)⟩ =

〈[
2
3

]
,

[
4
5

]〉2

= (8 + 15)2 = 529.

The above example demonstrates the advantage of using a kernel function for direct com-
putation of the inner product. Thus in Eq. (2.23), the kernel function can be used directly
for computation of ψ(X)Tψ(X). The method of using a kernel function is especially ben-
eficial if the input dimension d is very large. Thus, going back to the example of the
classification problem in R2, we can observe from Figure 2.2 that although the given set
of data points may not be separable, lifting the points into a three-dimensional space can
make them separable. For example, if we use the quadratic function ⟨x,y⟩2 on each data
point, we can lift the set of points in the R2 plane into a three-dimensional parabola-like
structure. The lifting separates the red and blue points allowing us to pass a decision
hyperplane for classification. Some other well-known examples of kernel functions are:

1. Linear kernel: ∀x, x̄ ∈ X ⊆ Rd, K(x, x̄) = xT x̄.

2. Polynomial kernel: ∀x, x̄ ∈ X ⊆ Rd and c ∈ R, c ≥ 0, n ≥ 1, K(x, x̄) = (xT x̄ + c)n.

3. Gaussian kernel: ∀x, x̄ ∈ X ⊆ Rd and σ > 0, K(x, x̄) = exp

(
−∥x− x̄∥2

2σ2

)
.

4. ∀x, x̄ ∈ X ⊆ Rd and a, b ∈ R, K(x, x̄) = tanh(a(xT x̄) + b). (Note that this kernel is
valid only under particular choices of a, b,x, x̄.)
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Thus, if the kernel function representing a feature map is known, one can easily replace
the computation of the inner product ⟨ψ(x), ψ(x̄)⟩ with the evaluation of the function
K(x, x̄) for x, x̄ ∈ X ⊆ Rd to cut down on computational costs. Note that for a function
to qualify as a valid kernel, it must correspond to an inner product in some feature space.
An easy way to check if a function K is a valid kernel function or not is to check if the
kernel matrix (obtained from the Gram matrix) K generated from the given function K
is a positive semi-definite matrix or not (see Definition 2.2.1 and Theorem 2.2.4). We give
the definitions of Gram and kernel matrix for the sake of reference below.

Definition 2.2.3. (Gram and Kernel Matrix) Suppose X = {x(1), · · · ,x(m)} ⊆ Rd be a
set of m vectors. Then the Gram matrix G is a m×m matrix whose entries are given by

Gij = x(i)Tx(j).

The ‘Kernel matrix’ is the Gram matrix generated by the set of vectors {ψ(x(1)), · · · , ψ(x(m))}.

Mercer’s condition stated below gives the conditions for a function K to be a valid
kernel without the actual computation of the kernel matrix.

Theorem 2.2.4 (Mercer’s Theorem). Suppose K : X ×X → R is a function. Then K is
positive semi-definite if and only if

m∑
i=1

m∑
j=1

cicjK(x(i),x(j)) ≥ 0,

for all x(i),x(j) ∈ X ⊆ Rd and real numbers c1, · · · , cm.

Definition 2.2.5 (Reproducing Kernel Hilbert Space (RKHS) associated with a Kernel).
Let K : X ×X → R be a symmetric and positive semi-definite kernel. Then, there exists
a Hilbert space H and a mapping ψ from X to H such that

∀x, x̄ ∈ X,K(x, x̄) = ⟨ψ(x), ψ(x̄)⟩.

Furthermore, H has the reproducing property given by

∀h ∈ H,∀x ∈ X, h(x) = ⟨h,K(x, ·)⟩.

Then H is called a reproducing kernel Hilbert space associated with K. The definition
implies that the evaluation of h at x can be written as,

h(x) =
m∑
k=1

αkK(x(k),x),

for some α1, · · · , αk ∈ R.
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The RKHS H associated with kernel K is called a feature space associated with feature
mapping ψ. In general, the feature space associated with kernel map K is not unique.
The above theorem implies that symmetric positive semi-definite kernels can be used to
implicitly define a feature space or feature vectors which play an important role in deter-
mining the success of learning algorithms. Thus one can look for useful symmetric positive
semi-definite kernels that represent a versatile feature space rather than seeking the feature
by itself. Although kernel methods can cut down the cost of evaluating the inner product,
it is not easy to find a function that would separate the given data. Additionally, kernel-
based methods require the computation of kernel matrix on the data which scales poorly
with the size of the training dataset. Thus a dataset with half a million training examples
might take days to train on modern workstations. To simplify the kernel methods, random
features were introduced in [109]. We discuss the random feature method and some recent
results corresponding to them in the following section.

2.3 Learning using Random Feature Methods

The kernel trick or kernel function is based on the fact that any positive definite function
K(x,y) with x,y ∈ X ⊆ Rd defines an inner product between data points transformed
through ψ and can be quickly computed as ⟨ψ(x), ψ(y)⟩ = K(x,y). This helps to cut down
on the cost of computing the inner product between every two data points. However, even
this ‘cut down’ cost can be very high. Also, this method requires one to know the kernel
function beforehand and requires evaluations of K(x,y). As a result, large training sets
incur large computational and storage costs [109]. The authors in [109] propose the use
of an explicit mapping of the data to a low-dimensional Euclidean inner product space
using a randomized feature map ξ : Rd → RN so that the inner product between a pair of
transformed points approximates their kernel evaluation:

K(x,y) = ⟨ψ(x), ψ(y)⟩ ≈ ξ(x)T ξ(y).

For kernel methods, evaluation on a new point x is computed by f(x) =
m∑
k=1

ckK(x(k),x),

which requires O(Nd) operations, while the RFM can be evaluated by f(x) = cT ξ(x),
which requires only O(N + d) operations [109]. An alternative perspective is to view the
RFM as a nonlinear randomized function approximation. From the neural network point
of view, an RFM is a two-layer network with a randomized but fixed single hidden layer.
We define RFM below [109–111].

Definition 2.3.1 (Random Feature Approximation). Let f : Rd → C be a given unknown
function. Then RFM approximation of f takes the form

f(x) ≈ cT ξ(x) = cTϕ(WTx + b), (2.26)

where x ∈ Rd is the input data, ξ is the feature map defined through a random matrix
W ∈ Rd×N , bias vector b ∈ RN and a pre-defined non-linear function ϕ, and c ∈ CN is
the final (learnt) weight layer.
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In the above definition, we assume that the entries of the matrix W = [ωj,k] are
independent and identically distributed (i.i.d.) random variables generated by the (user-
defined) probability density function ρ(ω) i.e. ωj,k ∼ ρ(ω) for all 1 ≤ j ≤ d and 1 ≤ k ≤ N .
Similarly, the components of the bias vector b are also sampled i.i.d from a predefined
distribution. The output layer c is trained, while the hidden layer W is fixed. The main
idea of random feature methods is to transform the input with the map ϕ and apply
linear methods to approximate the solution of the nonlinear kernel machine. The random
feature maps help in the quick evaluation of the machine. Thus, given a collection of m
measurements, the objective is defined below.

Definition 2.3.2 (Optimization Problem for Random Features). Suppose the inputs (and
outputs) are arranged column-wise in the matrix X ∈ Rd×m (and Y ∈ C1×m), then random
feature regression problem becomes training c by optimizing:

min
c∈CN

∥Y − cTϕ(WTX + b)∥22 +R(c), (2.27)

with some penalty function R : CN → R and weight matrix W ∈ RN×d, bias vector b ∈ RN

and a predefined nonlinear function ϕ.

While the function ϕ can be chosen as any non-linear function, certain choices of ϕ
lead to the approximation of well-known kernel functions. One such well-known random
feature is the Random Fourier Feature (RFF) which approximates shift-invariant kernels
[109–111]. A brief discussion on RFF and shift-invariant kernels below demonstrates the
idea of using random features to construct and approximate kernels. We also recall some
relevant definitions and theorems [109].

Definition 2.3.3 (Shift Invariant Kernels). A kernel function K on Rd is called shift-
invariant if K(x,y) = g(x − y), for some complex-valued positive definite function g on
Rd.

Theorem 2.3.4 (Bochner’s Theorem). A continuous kernel K(x,y) = K(x−y) on Rd is
positive definite if and only if K(x−y) is the Fourier transform of a non-negative measure.

Random Fourier Features. We give a well-known example from [109] of how random
feature maps can be constructed to approximate kernel functions. As a consequence of
Bochner’s theorem, the authors in [109] define ξω(x) = exp(iωTx) such that

K(x− y) =

∫
Rd

ρ(ω) exp(iωT (x− y))dω = Eω[ξω(x)ξω(y)∗], (2.28)

and ξω(x)ξω(y)∗ gives an unbiased estimate of K(x,y) when ω is drawn from ρ. Thus it is
possible to obtain a real-valued mapping satisfying Eω[ξω(x)ξω(y)] = K(x,y) by choosing
ξω(x) =

√
2 cos(ωTx + b), where ω is drawn from ρ(ω) and b is drawn uniformly from

[0, 2π].
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Although RFM has received considerable attention due to its easy implementation,
interpretability, and quick evaluation, it requires more measurements than trainable pa-
rameters for accuracy. This limits their usage for data-scarce applications. In order to
make random features suitable for such applications, sparse random feature expansions
(SRFE) introduced in [66] were developed using ideas from compressive sensing to gen-
erate random feature expansions. The theoretical guarantees of SRFE hold even in the
data-scarce setting. Below we discuss some key definitions and results of SRFE from [66]
and [36].

Definition 2.3.5 (Order-q Additive Functions). Fix d, q,K ∈ N with 1 ≤ q ≤ d. A
function f : Rd → C is called an order-q additive function with at most K terms if there
exist K complex-valued functions g1, . . . , gK : Rq → C such that

f(x) =
1

K

K∑
j=1

gj(x|Sj
), (2.29)

where for each j ∈ [K], Sj ⊆ [d], Sj has q distinct indices, and Sj ̸= Sj′ for j ̸= j′. Here
x|Sj

denotes the restriction of x ∈ Rd onto Sj.

The definition above is motivated by the fact that a lot of high-dimensional functions
arising from physical systems are dominated by a few terms i.e., each of the terms depends
only on a subset of the input variables, say q out of the d with q ≪ d [45,66,84]. We recall
some key definitions and results from [66] corresponding to the SRFE model.

Definition 2.3.6 (Bounded ρ−norm functions from [66]). Fix a probability density func-
tion ρ : Rd → R and function ϕ : Rd × Rd → C. A function f : Rd → C has finite ρ-norm
with respect to ϕ(x;ω) if it belongs to the class defined by

F(ϕ, ρ) =

{
f(x) =

∫
ω∈Rd

α(ω)ϕ(x;ω) dω

∣∣∣∣∣ ∥f∥ρ := sup
ω

∣∣∣∣α(ω)

ρ(ω)

∣∣∣∣ <∞
}
.

Theorem 2.3.7 (Generalization bound for bounded ρ-norm functions from [66]). Let f ∈
F (ϕ, ρ), where ϕ(x;ω) = exp(i⟨x,ω⟩) and ρ(ω) is the density corresponding to a spherical
Gaussian with variance σ2, N (0, σ2Id). For a fixed γ, consider a set of data samples
x1, · · · ,xm ∼ N (0, γ2Id) and frequencies ω1, · · · ,ωN ∼ N (0, σ2Id). The measurement
noise ek is either bounded by E = 2ν or to be drawn i.i.d. from N (0, ν2). Let A ∈
Cm×N denote the associated random feature matrix where ak,j = ϕ(xk;ωj). Let f ♯(x) =∑N

j=1 c
♯
jϕ(x;ωj), where cj is the jth component of c obtained by solving

c♯ = argmin
c∈CN

∥c∥1 s.t. ∥Ac− y∥ ≤ η
√
m,

with η =
√

2(ϵ2∥f∥2ρ + E2) and with the additional pruning step

f ♯(x) =
∑
j∈S♯

c♯jϕ(x;ωj),

24



where S♯ is the support set of the s largest (in magnitude) coefficients of c♯. For a given s,
if the feature parameters σ and N , the confidence parameter δ, and the accuracy parameter
ϵ are chosen so that the following conditions hold:

1. γ − σ principle

γ2σ2 ≥ 1

2
(13s)

2
d , (2.30)

2. Number of features

N =
4

ϵ2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

1

δ

2

, (2.31)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)d log
N2

δ
, (2.32)

4. Dimensionality

d ≥
4 log

(
N2

δ

)
log
(

γ2σ2

e log(2γ2σ2+1)

) . (2.33)

Then with probability at least 1− 6δ the following error bound holds√∫
Rd

|f(x)− f ♯(x)|2dµ ≤ C
′
(

1 +N
1
2 s

−1
2 m

−1
4 log

1
4

(
1

δ

))
κ1,s(c

⋆) (2.34)

+ C

(
1 +N

1
2m

−1
4 log

1
4

(
1

δ

))√
ϵ2∥f∥2ρ + 4ν2, (2.35)

where C,C
′
> 0 are constants and c⋆ is the vector

c⋆ =
1

N

[
α(ω1)

ρ(ω1)
, · · · , α(ωN)

ρ(ωN)

]T
. (2.36)

Theorem 2.3.8 (Generalization bound for order-q functions from [66]). Let f be an order-
q function of at most K terms as defined in Definition 2.3.5 such that each term gℓ, ℓ =
1, · · · , K belongs to F(ϕ, ρ), where ϕ(x;ω) = ϕ(⟨x,ω⟩) = exp(i⟨x,ω⟩) and ρ : Rq → R is
the density corresponding to a spherical Gaussian with variance σ2, N (0, σ2Id). For a fixed
γ, consider a set of data samples x1, · · · ,xm ∼ N (0, γ2Id). Let ω1, · · · ,ωN ∼ N (0, σ2Id)
be a complete set of q−sparse feature weights drawn from density ρ. The measurement
noise ek is either bounded by E = 2ν or to be drawn i.i.d. from N (0, ν2). Let A ∈
Cm×N denote the associated random feature matrix where ak,j = ϕ(⟨xk,ωj⟩). Suppose
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η =
√

2(ϵ2
(
d
q

)
∥|f∥|2 + E2), where ∥|f∥| =

1

K

K∑
j=1

∥gj∥ρ. Let f ♯(x) =
N∑
j=1

c♯jϕ(x;ωj), where

c♯ is obtained by solving

c♯ = argmin
c
∥c∥1 s.t. ∥Ac− y∥ ≤ η

√
m,

with the additional pruning step

f ♯(x) =
∑
j∈S♯

c♯jϕ(x;ωj),

where S♯ is the support set of the s largest (in magnitude) coefficients of c♯. For a given s,
if the feature parameters σ and N , the confidence parameter δ, and the accuracy parameter
ϵ are chosen so that the following conditions hold

1. γ − σ uncertainty principle

γ2σ2 ≥ 1

2
(13s)

2
d , (2.37)

2. Number of features

N = n

(
d

q

)
=

4

ϵ2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
q

2
log

d

δ

2

, (2.38)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log
N2

δ
, (2.39)

4. Dimensionality

q ≥
4 log

(
N2

δ

)
log
(

γ2σ2

e log(2γ2σ2+1)

) . (2.40)

Then with probability at least 1− 6δ the following error bound holds√∫
Rd

|f(x)− f ♯(x)|2dµ ≤ C
′
(

1 +N
1
2 s

−1
2 m

−1
4 log

1
4

(
1

δ

))
κ1,s(c̃

⋆) (2.41)

+ C

(
1 +N

1
2m

−1
4 log

1
4

(
1

δ

))√
ϵ2
(
d

q

)
∥|f∥|2 + E2, (2.42)

where C,C
′
> 0 are constants and c̃⋆ = [c̃⋆1, · · · , c̃⋆N ]T ∈ CN is the vector with

c̃⋆j =
1

K

K∑
ℓ=1

c̃⋆ℓ,j, where c̃⋆ℓ,j =


αℓ(ωj)

nρ(ωj)
if supp(ωj) = Sℓ,

0 otherwise.
(2.43)

The function αℓ(ω) is the transform of gℓ from Definitions 2.3.5 and 2.3.6.
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In general, it is difficult to fully quantify and understand the theoretical bounds due
to its dependency on the interactions between the number of features, measurements, etc.
The above two theorems demonstrate that although the generalization bounds consist of
several terms, the order q assumption on the function can significantly reduce the bound
in terms of the dimension d.

Theorem 2.3.7 can be proved using Lemma 2.3.9 and Lemma 2.3.10 stated below. These
are Lemma 1 and Lemma 2 stated and proved in [66], respectively.

Lemma 2.3.9. Fix the confidence parameter δ > 0 and accuracy parameter ϵ > 0. Suppose
f ∈ F(ϕ, ρ) where ϕ(x,ω) = exp(i⟨x,ω⟩), the data samples xk have probability measure
µ(x) and ρ is a probability distribution with finite second moment used for sampling the

random weights ω. Suppose N ≥ 1

ϵ2

(
1 +

√
2 log

(
1

δ

))2

, then with probability at least

1− δ, the following holds with respect to the draw of ωj for j ∈ [N ]:√√√√∫
Rd

|f(x)− f ⋆(x)|2dµ ≤ ϵ∥f∥ρ, (2.44)

where f ⋆(x) =
N∑
j=1

c⋆j exp(i⟨x,ωj⟩), with c⋆j =
α(ωj)

Nρ(ωj)
.

Lemma 2.3.10. Let f ∈ F(ϕ, ρ), where the basis function is ϕ(x;ω) = exp(i⟨x,ω⟩).
For a fixed γ and q, consider a set of data samples x1, · · · ,xm ∼ N (0, γ2Id) with µ(x)
denoting the associated probability measure and weights ω1, · · · ,ωN drawn from N (0, σ2Id).
Assume that the noise is bounded by E = 2ν or that the noise terms ej are drawn i.i.d
from N (0, ν2). Let A ∈ Cm×N denote the associated random feature matrix where ak,j =

ϕ(xk;ωj). Suppose η =
√

2(ϵ2∥f∥2ρ + E2) and let f ♯(x) =
N∑
j=1

c♯jϕ(x;ωj), where c♯ is

obtained by solving
c♯ = argmin

c
∥c∥1 s.t. ∥Ac− y∥ ≤ η

√
m,

with the additional pruning step

f ♯(x) :=
∑
j∈S♯

c♯jϕ(x;ωj),

where S♯ is the support set of the s largest (in magnitude) coefficients of c♯. Let the random
feature approximation f ⋆ be defined as

f ⋆(x) :=
N∑
j=1

c⋆j exp(i⟨x,ωj⟩), (2.45)
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where

c⋆ =
1

N

[
α(ω1)

ρ(ω1)
, · · · , α(ωN)

ρ(ωN)

]T
. (2.46)

For a given s, if the feature parameters σ and N , the confidence δ, and accuracy ϵ are
chosen so that the following conditions hold:

γ2σ2 ≥ 1

2
(13s)

2
d ,

N =
4

ϵ2

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

1

δ

2

,

m ≥ 4(2γ2σ2 + 1)d log
N2

δ
,

d ≥
4 log

(
N2

δ

)
log
(

γ2σ2

e log(2γ2σ2+1)

) .
Then with probability at least 1− 5δ the following error bound holds

√∫
Rd

|f ⋆(x)− f ♯(x)|2dµ ≤ C
′
(

1 +N
1
2 s

−1
2 m

−1
4 log

1
4

1

δ

)
κ1,s(c

⋆) (2.47)

+ C

(
1 +N

1
2m

−1
4 log

1
4

1

δ

)√
ϵ2∥f∥2ρ + 4ν2, (2.48)

where C,C
′
> 0 are constants

The theorem below is stated from Theorem 4.3 in [36] and gives the conditions needed
to find an upper bound for the restricted isometry constant for a random feature matrix.

Theorem 2.3.11. Let the data {xk}k∈[m] be drawn from N (0, γ2Id), the weights {ωj}j∈[N ]

be drawn from N (0, σ2Id), and the random feature matrix A ∈ Cm×N be defined component-
wise by ak,j = exp(i⟨xk,ωj⟩). For η1, η2, δ ∈ (0, 1) and some integer s ≥ 1, if

m ≥ C1η
−2
1 s log(δ−1),

m

log(3m)
≥ C2η

−2
2 s log2(s) log

(
N

9 log(2m)
+ 3

)
,

√
δ η1 (4γ2σ2 + 1)

d
4 ≥ N,

where C1 and C2 are universal positive constants, then with probability at least 1− 2δ, the
s restricted isometry constant of 1√

m
A is bounded by

δs

(
1√
m
A

)
< 3η1 + η22 +

√
2η2.
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2.4 Dynamical Systems in Epidemiology

In this section, we discuss some key definitions and concepts corresponding to dynamical
systems in epidemiology. We summarize all the important definitions and concepts required
to understand the contents of the thesis. For a more detailed understanding, we refer the
reader to [83,98].

Definition 2.4.1 (Ordinary Differential Equation). An ordinary differential equation (ODE)
is an equality involving a function and its derivatives taken with respect to only one variable.
An ODE of order n is defined as

F (x, y, y′, · · · , y(n)) = 0,

where y is a function of x, y′ =
dy

dx
is the first derivative with respect to x, and y(n) =

dny

dxn
is the nth derivative with respect to x.

Definition 2.4.2 (Dynamical System). It is a system of ODEs whose general evolution
equations are given by

dx

dt
= F (t,x), (2.49)

where x = x(t) ∈ Rd is the d-dimensional state vector and F : R × Rd → Rd is the
functional operator.

Definition 2.4.3 (Delay Differential Equations with Constant Delay from [103]). Let
x(t) ∈ Rd be the state vector. Then the delay differential equation is given by

dx(t)

dt
= f (t,x(t),x(t− τ(t,x(t)))) , t0 ≤ t ≤ tf

x(t) = ϕ(t), t0 − τ ≥ t ≤ t0
(2.50)

where x(t) : [t0, tf ] 7−→ Rd, f : [t0, tf ]× Rd × Rd → Rd and τ is a positive constant.

For modeling in epidemiology, compartmental models are the most common techniques
which are based on differential equations (deterministic or stochastic). The most common
models involve a system of ODEs where the equations depend on how people may progress
between the assigned compartments in the population. For example, the population may be
stratified into compartments with labels S, I, or R, (Susceptible, Infectious, or Recovered,
respectively), and the equations are based on how the rate of change of each of these
compartments change with time as a disease progresses. Some well-known compartmental
models used in this research study are defined below.

Definition 2.4.4 (SIR Compartmental Model). Susceptible-Infectious-Recovered (SIR) di-
vides the population into three groups: Susceptible (healthy), Infectious (infected and infec-
tious), and Recovered (recovered or died). Let S, I, and R be the population of Susceptible,
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Infected, and Recovered groups, respectively. Under the SIR model, we have

dS

dt
= −βSI

P
dI

dt
=
βSI

P
− γI

dR

dt
= γI,

(2.51)

where β is infection rate, γ is the removal rate, and P denotes the population.

Definition 2.4.5 (SEIR Compartmental Model). Susceptible-Exposed-Infectious-Recovered
(SEIR) divides the population into four groups: Susceptible (healthy), Exposed (infected but
not yet infectious), Infectious (infected and infectious), and Recovered (recovered or died).
Let S,E, I, R be the population of Susceptible, Exposed, Infected, and Recovered groups,
respectively. Under the SEIR model, we have

dS

dt
= −βSI

P
dE

dt
=
βSI

P
− σE

dI

dt
= σE − γI

dR

dt
= γI,

(2.52)

where β is infection rate, σ is the latency rate, γ is the removal rate, and P denotes the
population.

Definition 2.4.6 (SµEIR Compartmental Model). SµEIR model described in [159] which
takes into account unreported cases in the SEIR model defined in Definition 2.4.5. The
dynamics of this model are given by

dS

dt
= −β(I + E)S

P
dE

dt
=
β(I + E)S

P
− σE

dI

dt
= µσE − γI

dR

dt
= γI,

(2.53)

where β is infection rate, σ is the latency rate, γ is the removal rate, and P denotes the
population. µ represents the discovery rate which characterizes the ratio of the exposed
cases that are confirmed and reported to the public. It reflects the unreported/undiscovered
cases.
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Figure 2.3: Plot of solution for the SIR model

Compartmental models (or variations around them) are the most widely used models
for predictions in epidemiology owing to their ease of understanding and implementation.
They can be numerically solved. In Figure 2.3, we plot the solutions of the SIR model
for demonstration. We solve the SIR model numerically with dt = 0.1 for t ∈ [0, 160],
initial conditions (S0, I0, R0) = (999, 1, 0) and parameters (β, γ) = (0.2, 0.1). Note that the
system is normalized by dividing by the population N = 1000 and hence the solution plot
in Figure 2.3 gives the proportion of the population on the y-axis. The plots demonstrate
the expected behavior for each of the variables where the number of susceptible people
comes down and the number of recovered goes up with time. As for the other variable,
the number of infected people keeps going up and eventually reaches a peak after which
it starts to drop as more and more people recover and develop immunity to the infection.
The interactions of the variables depend a lot on the parameters of the model β and γ as
well as the underlying assumptions. For example, in the example above we assume that
the population is constant and the recovered people gain immunity against the disease.

When learning models, often one needs to tune hyperparameters so that the model can
solve the machine-learning problem optimally. We use one such method in our research to
tune hyperparameters called the Bayesian Information Criterion (BIC) defined below.

Definition 2.4.7 (Bayesian Information Criterion). The Bayesian information criterion
(BIC) for a candidate model is defined as,

BIC = −2 logL+ p log n,

where L is the loss value, p is the number of parameters in the model and n is the number
of observations/measurements.

Predictions using dynamical systems may become additionally challenging if the data
available is only corresponding to a single variable while the underlying system is multi-
dimensional. In such situations, delay embedding theorems shed some light on systems
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recovered from delay time embeddings of a single variable belonging to a multidimensional
system.

Definition 2.4.8 (Diffeomorphism). Given two manifoldsM and N , a differentiable map
f :M→N is called a diffeomorphism if it is one-one onto and its inverse f−1 : N →M
is differentiable as well.

Theorem 2.4.9 (Takens’ Theorem). Let M be a compact manifold of dimension d. For
pairs (φ, y), with φ : M → M a smooth diffeomorphism and y : M → R a smooth
function, it is generic property that the map ψ(φ,y) :M→ R2d+1, defined by

ψ(φ,y)(x) = (y(x), y(φ(x)), ..., y(φ2d)(x))) (2.54)

is an embedding.

Takens’ theorem gives the conditions under which a system can be recovered up to
diffeomorphism from a single variable. The idea of using this theorem has already been
explored in [26,34,76]. We elaborate on the application of this theorem via an example.

Example. A well-known example of a nonlinear dynamical system is the Lorenz system:

dx1
dt

= σ(x2 − x1),

dx2
dt

= x1(ρ− x3)− x2,

dx3
dt

= x1x2 − βx3.

(2.55)

Takens’ Theorem can be used to recover a system diffeomorphic to the above system
through time embeddings of a single variable. Given the time measurement data, we are
interested in finding the corresponding governing equations. Suppose m measurements
corresponding to x1(t) is given for t = t1, · · · , tm. Choose an embedding dimension p
which is at least 2d+ 1, where d denotes the dimension of the dynamical system. We build
the matrix H using delay embeddings as illustrated below.

H =


x1(t1) x1(t2) · · · x1(tm−p+1)
x1(t2) x1(t3) · · · x1(tm−p+2)

...
...

...
...

x1(tp) x1(tp+1) · · · x1(tm)

 . (2.56)

Then each row of H contains data corresponding to a p dimension system diffeomorphic
to the original system. In Figure 2.4 (left) we plot the solution of the Lorenz system.
The system is solved using the Python ODE solver with dt = 0.01, 10000 timesteps and
parameters (σ, ρ, β) = (10, 28, 2.667), initial conditions (x1(0), x2(0), x3(0)) = (0, 1, 1.05).
We build the matrix H and to visualize the properties of the given theorem, three randomly
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Figure 2.4: Plots depicting Takens’ Delay Embedding theorem. Left: Solutions of the
Lorenz system. Right: Plot of three (out of 2d + 1) variables of a diffeomorphic system
recovered from applying Takens’ Delay Embedding theorem to the Lorenz system.

chosen rows (variables) are plotted i.e., we choose rows one, six, and seven from H as three
variables with m − p (we choose p = 2d + 1 = 7) points and plot them. From Figure 2.4
it can be seen that the plot of the three new variables is like a reshaped version of the
original one.

2.5 Diffusion Models

This section explains the background for understanding diffusion models. We include
some basic definitions from probability and statistics and include some basic derivations
for the formulation of diffusion models. For a more detailed reading, we refer the readers
to [70,116,152].

Definition 2.5.1 (Sample Space). Denoted as S, a sample space is the set that lists all
possible outcomes of an unknown experiment.

Definition 2.5.2 (Event). Any subset A of the sample space is called an event.

Definition 2.5.3 (Probability Measure). A probability measure is a real-valued function
that assigns to each event A in the sample space a probability P (A) with the following
properties:

1. P (A) ≥ 0 and P (A) ∈ [0, 1].

2. P (A) = 0 for A = φ i.e., the empty set.
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3. P (S) = 1.

4. If A1, A2, · · · is a countable sequence of disjoint events then

P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · ·

To understand the above definition consider an example of tossing a coin twice with H
denoting “Heads” and T for “Tails”. Then the sample space is S = {HH,HT, TH, TT}
any subset A = {HH,HT} (or A = {HH,TT, TH}, A = S, A = φ) is an event.

Definition 2.5.4 (Random Variable). A function X from the sample space S to the set
of all real numbers is called a random variable. (Note that the random variable X can be
either discrete or continuous.)

Definition 2.5.5 (Distribution). If X is a random variable, then the distribution of X is
the collection of probabilities P (X ∈ B) for all subsets B of the real numbers.

Definition 2.5.6 (Density Function). A function f : R → R is a density function if

f(x) ≥ 0 ∀x ∈ R and

∞∫
−∞

f(x)dx = 1.

Definition 2.5.7 (Random Vector). Also known as a multivariate random variable, it is
a column vector X = [X1, · · · , Xn]T such that each Xi for 1 ≤ i ≤ n are scalar-valued
random variables on the same probability space.

Definition 2.5.8 (Multivariate Normal Distribution). A random vectorX = [X1, · · · , Xn]T

is said to follow the normal distribution written as X ∼ N (µ,Σ) if the probability density
function is given by

p(X,µ,Σ) =
1

(2π)n/2|Σ| 12
exp

[
−1

2
(X− µ)TΣT (X− µ)

]
, (2.57)

with mean vector µ = E[X] = [E[X1], · · · , E[Xn]]T and n × n covariance matrix Σ such
that Σi,j = E[(Xi − E[Xi])(Xj − E[Xj])] for 1 ≤ i, j ≤ n.

Note that in the thesis, for ease of understanding and convenience we write q(x) =
N (µ,Σ) to mean that q(x) is the probability density function of the normal distribution
with mean µ and covariance matrix Σ. We state an elementary result below corresponding
to the sum of two random variables following Gaussian distribution.

Lemma 2.5.9. Let X and Y be two d−dimensional random variables such that X ∼
N (µX ,ΣX) and Y ∼ N (µY ,ΣY ). Then X + Y is also a random variable such that,

X + Y ∼ N (µX + µY ,ΣX + ΣY ). (2.58)
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We state some important inequalities from statistical theory which will be used later
in the proofs for the results derived in Chapters 3 and 5.

Definition 2.5.10 (Markov’s Inequality). Let X be a non-negative random variable and
t > 0 be a real number. Then,

P (X ≥ t) ≤ E[X]

t
. (2.59)

Definition 2.5.11 (Chebyshev’s Inequality). Suppose X is a random variable with finite
non-zero variance σ2. Then for any real number t > 0,

P (|X − E[X] ≥ t) ≤ σ2

t2
. (2.60)

Definition 2.5.12 (McDiarmid’s Inequality). Let X1, · · · , Xn ∈ X be independent random
variables and f : X n → R be a function. For all i ∈ {1, · · · , n}, and x1, · · · , xn, x

′
i ∈ X , if

the function ϕ satisfies

|ϕ(x1, · · · , xi−1, xi, xi+1, · · · , xn)− ϕ(x1, · · · , xi−1, x
′

i, xi+1, · · · , xn)| ≤ ci,

then for t > 0

P (ϕ(X1, · · · , Xn)− E[ϕ] ≥ t) ≥ exp

−2t2

n∑
i=1

c2i

 . (2.61)

Definition 2.5.13 (Markov Chain). A countable sequence of random variables X0, X1, X2, · · ·
along with a countable set S (called the state space which is a countable set containing pos-
sible values of Xi) is a Markov Chain if

P{Xn+1 = sn+1|Xn = sn, · · · , X0 = s0} = P{Xn + 1 = sn+1|Xn = sn},

where P (X = j|Y = i) denotes the conditional probability that the random variable X
takes value j given that the random variable Y takes value i.

The above property (often referred to as the Markov property) indicates that the con-
ditional probability of Xn+1 is only dependent on Xn and any additional knowledge of
the past variables {Xj = sj : j < n} is irrelevant. The Markov property is one of the
key concepts exploited in diffusion models. The essential idea is to systematically and
slowly destroy the structure in a data distribution through an iterative forward diffusion
process [132]. We then learn to reverse the diffusion process so that it restores the original
data structure. We first discuss the forward and reverse processes of the diffusion model.

Definition 2.5.14 (Forward Process of Diffusion Model). Let x0 ∈ Rd be a d− dimen-
sional input from an unknown distribution with probability density function q(x0). Given
a variance schedule 0 < β1 ≤ β2 ≤ · · · ≤ βK < 1, we define the forward process as

xt =
√

1− βtxt−1 +
√
βtϵ, where ϵ ∼ N (0, Id). (2.62)
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Note that we use the notation q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtId) to mean that the
probability density function of the the conditional distribution is given by

q(xt|xt−1) =
1√

(2πβt)d
exp

(
−1

2

(xt −
√

1− βtxt−1)
T (xt −

√
1− βtxt−1)

βt

)
.

The above process describes a Markov chain where only the output of the present is
relevant for the next one. Any information prior to that is irrelevant. This property helps
us to reparameterize the entire process such that the future output is dependent only on
the initial input i.e., we do not need the predecessing xt’s to get the next one. Using the
reparameterization trick, we can obtain xt at any given time t ∈ {1, . . . , T} from x0:

xt =
√
αt xt−1 +

√
1− αt ϵt−1

=
√
αtαt−1 xt−2 +

√
1− αtαt−1 ϵ̃t−2

...

=

√√√√ t∏
i=1

αi x0 +

√√√√1−
t∏

i=1

αi ϵ̃0

=
√
αt x0 +

√
1− αt ϵ̃0,

where ϵ̃i ∼ N (0, Id) for i = 0, . . . , t − 2, αt = 1 − βt for t = 1, . . . , T and αt =
t∏

i=1

αi.

Therefore, the conditional distribution q(xt+1|x0) is

q(xt+1|x0) = N (xt+1;
√
αt+1 x0, (1− αt+1)Id). (2.63)

Lemma 2.5.15. Let x1, · · · ,xT be the vectors obtained from x0 by applying the forward
process given in Definition 2.5.14. Then,

q(x1, ...xT |x0) =
T∏
t=1

q(xt|xt−1).

Proof. For T = 2, on the right-hand side, we have

q(x1|x0)q(x2|x1) = q(x1|x0)q(x2|x1,x0) =
q(x1,x0)

q(x0)
q(x2|x1,x0) =

q(x0,x1,x2)

q(x0)
= q(x1,x2|x0).

Note x2 is independent of x0 when x1 is given, hence q(x2|x1) = q(x2|x1,x0).
For T = n+ 1, we have
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n+1∏
t=1

q(xt|xt−1) =
n∏

t=1

q(xt|xt−1)q(xn+1|xn)

= q(x1, ...,xn|x0) q(xn+1|xn, ...,x0)

=
q(x0, ...,xn)

q(x0)
q(xn+1|xn, ...,x0)

=
q(x0, ...,xn,xn+1)

q(x0)

= q(x1, ...xn+1|x0),

where the second equality is obtained by using the induction hypothesis and the fact that
xn+1 is independent of x0,x1, · · · ,xn−1 when xn is given. The remaining equalities are
obtained by using Bayes’ rule.

Once the forward process has destroyed the data structure, diffusion models aim to build
a generative Markov chain that converts a simple known distribution (e.g. a Gaussian) into
a target (data) distribution using a (reverse) diffusion process. Learning involves estimating
small perturbations to the (forward) diffusion process. From Markovian theory, if βt’s are
small, the reverse process is also Gaussian [51]. If the input distribution is known, then
the reverse conditional distribution can be computed. We derive the conditional reverse
mean and covariance in the following lemma.

Lemma 2.5.16. Let q(x0) denote the probability density function of an unknown distri-
bution and 0 < β1 ≤ β2 ≤ · · · ≤ βK < 1 < 1 be a sequence of variances such that
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtId). Then for the reverse Markov chain conditioned

on x0, denoted by q(xt−1|xt,x0), the mean vector µ̃t ∈ Rd and the covariance matrix
Σ̃t = β̃tId ∈ Rd×d are given by

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt

x0 and β̃t =
1− ᾱt−1

1− ᾱt

βt,

where αt = 1− βt for t = 1, . . . , T and αt =
t∏

i=1

αi.

Proof. In order to find the mean and covariance matrix of the reverse Markov chain (con-
ditioned on x0), we use Bayes’ rule to obtain

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1,x0)

q(xt,x0)

q(x0)

q(x0)
= q(xt|xt−1,x0)

q(xt−1|x0)

q(xt|x0)
. (2.64)

Since the conditional distributions for the forward process are all Gaussian distributions,
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we can write q(xt−1|xt,x0) as

1√
(2πβt)d

exp

(
−1

2

(xt −
√
αtxt−1)

T (xt −
√
αtxt−1)

βt

)
1√

(2π(1− ᾱt−1))d
exp

(
−1

2

(xt−1 −
√
ᾱt−1x0)

T (xt−1 −
√
ᾱt−1x0)

1− ᾱt−1

)
(√

(2π(1− ᾱt))d
)

exp

(
1

2

(xt −
√
ᾱtx0)

T (xt −
√
ᾱtx0)

1− ᾱt

)

=

√
(1− ᾱt)d√

(2πβt(1− ᾱt−1))d
exp

(
−1

2

[
xT
t xt − 2

√
αtx

T
t xt−1 + αtx

T
t−1xt−1

βt

])
exp

(
−1

2

[
xT
t−1xt−1 − 2

√
ᾱt−1x

T
0 xt−1 + ᾱt−1x

T
0 x0

1− ᾱt−1

])
exp

(
1

2

[
xT
t xt − 2

√
ᾱtx

T
t x0 + ᾱtx

T
0 x0

1− ᾱt

])
. (2.65)

Simplifying Eq.(2.65), the terms inside the exponential function become,

−1

2

[
xT
t−1xt−1

(
αt

βt
+

1

1− ᾱt−1

)
− 2xT

t−1

(√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1

x0

)
+ xT

t xt

(
1

βt
− 1

1− ᾱt

)
+2

√
ᾱt

1− ᾱt

xT
t x0 + xT

0 x0
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ᾱt−1

1− ᾱt−1

− ᾱt

1− ᾱt

)]

= −1

2

[
xT
t−1xt−1

1− ᾱt

βt(1− ᾱt−1)
− 2xT

t−1

(√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1

x0

)
+

(
xt

√
1

βt
− 1

1− ᾱt

+ x0

√
ᾱt−1

1− ᾱt−1

− ᾱt

1− ᾱt−1

)T (
xt

√
1

βt
− 1

1− ᾱt

+ x0

√
ᾱt−1

1− ᾱt−1

− ᾱt

1− ᾱt−1

)]

= −1

2

(xt−1

√
αt

βt
+

1

1− ᾱt−1

−
(
xt

√
1

βt
− 1
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+ x0

√
ᾱt−1
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= −1

2


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αt

βt
+

1

1− ᾱt−1
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√
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1− ᾱt√
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1
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√
ᾱt−1
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− ᾱt

1− ᾱt−1√
αt
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+

1

1− ᾱt−1




T
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xt

√
1

βt
− 1

1− ᾱt√
αt

βt
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1

1− ᾱt−1

+ x0

√
ᾱt−1

1− ᾱt−1

− ᾱt

1− ᾱt−1√
αt

βt
+

1

1− ᾱt−1



 . (2.66)

Thus combining Equations (2.65) and (2.66) we get,

q(xt−1|xt,x0) =

√
(1− αt)d√

(2πβt(1− αt−1))d
exp

(
−1

2

(xt−1 − µ̃t)
T (xt−1 − µ̃t)

β̃t

)
, (2.67)

where

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt

x0,

and

β̃tId =
1

αt

βt
+

1

1− ᾱt−1

Id =
1− ᾱt−1

1− ᾱt

βtId.

Thus we see that the probability density function of the reverse distribution conditioned
on x0 is also a Gaussian distribution with mean vector and covariance matrix given by µ̃t

and β̃tId respectively defined above. Since diffusion models deal with learning distributions
in order to generate data, we define some commonly used terms from information theory
that are used for learning distributions.

Definition 2.5.17 (Kullback–Leibler (KL) Divergence). Let p(x) and q(x) be two proba-
bility distributions. Then the KL Divergence denoted by DKL(q(x)||p(x)) is defined as

DKL(q(x)||p(x)) = Eq(x)

[
log

(
q(x)

p(x)

)]
.

Roughly speaking, KL Divergence is a measure of the information lost when p(x) is approx-
imated by q(x).

Lemma 2.5.18 (Loss Function for Diffusion Models). Let x0 be data drawn from an
unknown input distribution q(x0). Suppose x1, · · · ,xT are the degraded data obtained by
applying the forward process given in Definition 2.5.14 and p(x0, · · · ,xT ) denote the reverse
joint distribution. Then the cross entropy loss of approximating the true input distribution
q(x0) using p(x0) (denoted by LCE) satisfies the following inequality

LCE ≤ Eq(x0:T )

[
log

q(xT |x0)

p(xT )
+

T∑
t=2

log
q(xt−1|xt,x0)

p(xt−1|xt)
− log p(x0|x1)

]
.
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Proof.

LCE = −Eq(x0)[log p(x0)] = −Eq(x0)

[
log

(∫
p(x0:T )dx1:T

)]
= −Eq(x0)

[
log

(∫
q(x1:T |x0)p(x0:T )

q(x1:T |x0)
dx1:T

)]
= −Eq(x0)

[
log

(
Eq(x1:T |x0)

p(x0:T )

q(x1:T |x0)

)]
≤ −Eq(x0)Eq(x1:T |x0) log

(
p(x0:T )

q(x1:T |x0)

)
(Using, if ϕ is convex then ϕ(E[X]) ≤ E[ϕ(X)])

= −
∫
q(x0)q(x1:T |x0) log

(
p(x0:T )

q(x1:T |x0)

)
dx1:Tdx0

= −
∫
q(x1, ..,xT ,x0) log

(
p(x0:T )

q(x1:T |x0)

)
dx1:Tdx0

= −Eq(x0:T ) log

(
p(x0:T )

q(x1:T |x0)

)
= Eq(x0:T ) log

(
q(x1:T |x0)

p(x0:T )

)
= LV LB.

Now we need a computable form for LV LB. Indeed,

LV LB = Eq(x0:T )

[
log

(
q(x1:T |x0)

p(x0:T )

)]

= Eq(x0:T )

log


T∏
t=1

q(xt|xt−1)

p(xT )
T∏
t=1

p(xt−1|xt)




= Eq(x0:T )

[
− log p(xT ) +

T∑
t=1

log
q(xt|xt−1)

p(xt−1|xt)

]

= Eq(x0:T )

[
− log p(xT ) +

T∑
t=2

log
q(xt|xt−1)

p(xt−1|xt)
+ log

q(x1|x0)

p(x0|x1)

]
.

Conditioning on x0, we get
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LV LB = Eq(x0:T )

[
− log p(xT ) +

T∑
t=2

log
q(xt|xt−1,x0)

p(xt−1|xt)
+ log

q(x1|x0)

p(x0|x1)

]

= Eq(x0:T )

[
− log p(xT ) +

T∑
t=2

log
q(xt−1|xt,x0)

p(xt−1|xt)
+

T∑
t=2

log
q(xt|x0)

q(xt−1|x0)
+ log

q(x1|x0)

p(x0|x1)

]

= Eq(x0:T )

[
log

q(xT |x0)

p(xT )
+

T∑
t=2

log
q(xt−1|xt,x0)

p(xt−1|xt)
− log p(x0|x1)

]
,

where the second equality holds since q(xt|xt−1,x0) = q(xt−1|xt,x0))
q(xt|x0))

q(xt−1|x0))
.

Thus we see from the above result that the cross entropy loss of the distribution p(x0)
approximating q(x0) is bounded above by

Eq(x0:T )

[
log

q(xT |x0)

p(xT )
+

T∑
t=2

log
q(xt−1|xt,x0)

p(xt−1|xt)
− log p(x0|x1)

]
.

Referring to Definition 2.5.17, we see that

Eq(x0:T )

[
log

q(xT |x0)

p(xT )

]
= DKL(q(xT |x0)∥p(xT )), (2.68)

Eq(x0:T )

[
log

q(xt−1|xt,x0)

p(xt−1|xt)

]
= DKL(q(xt−1|xt,x0)∥p(xt−1|xt)). (2.69)

Note that from the formulation of diffusion models, Eq. (2.68) is constant and hence often
ignored when training a diffusion model. For Eq. (2.69), since it compares two Gaussian
distributions, a closed form can be computed. We elaborate further about the closed form
for Eq. (2.69) in Chapter 5. For the last term, Eq(x0:T ) [− log p(x0|x1)], there are numerous
ways to handle this term in practice. For example, the authors in [70] chose to model
this term using a separate discrete decoder. The loss function derived in [70] can also
be connected to the stochastic differential equations (SDEs). We discuss this connection
further in Chapter 5. We end this chapter with a short discussion on Fréchet Inception
Distance (FID), a popular technique used to measure the quality of samples generated
in a generative model when the input distribution is unknown. We use the FID score in
Chapter 5 to compare the quality of samples generated using different models.
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Definition 2.5.19 (Fréchet Inception Distance (FID)). For two probability distributions
p and q over Rd with finite mean and variances, the FID is given by

dF (p, q) :=

 inf
γ∈Γ(p,q)

∫
Rd×Rd

∥x− y∥2dγ(x,y)


1

2
(2.70)

where where Γ(p, q) is the set of all measures on Rd×Rd with marginals p and q on x and
y respectively.

The exact form of the FID may be tractable for certain distributions. For example, let
p and q be two univariate Gaussian distributions with mean µp and µq, and variance σp
and σq respectively. Then the FID is given by,

dF (p, q) = (µp − µq)
2 + (σp − σq)2.

In practice for generative models like GANs, the FID is calculated using the Inception V3
model that is pre-trained on the Imagenet dataset. Both the real and generated images
are passed through the Inception V3 model which helps extract the images’ features. The
mean and variance of the real and generated features are then calculated and compared.
In general, the lower the FID scores, the better.
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Chapter 3

Function Approximation using
Hard-Ridge Random Feature
Expansion

This chapter is based on the development of a fast algorithm for high-dimensional function
approximation. The contents of this chapter are taken from the article [123], with modi-
fication. We propose a random feature model for approximating high-dimensional sparse
additive functions called the Hard-Ridge Random Feature Expansion method (HARFE).
This method utilizes a hard-thresholding pursuit-based algorithm applied to the sparse
ridge regression (SRR) problem to approximate the coefficients with respect to the ran-
dom feature matrix. The SRR formulation balances between obtaining sparse models that
use fewer terms in their representation and ridge-based smoothing that tends to be robust
to noise and outliers. In addition, we use a random sparse connectivity pattern in the ran-
dom feature matrix to match the additive function assumption. We prove that the HARFE
method is guaranteed to converge with a given error bound depending on the noise and the
parameters of the sparse ridge regression model. In addition, we provide a risk bound on
the learned model. Based on numerical results on synthetic data as well as on real datasets,
the HARFE approach obtains lower (or comparable) error than other state-of-the-art al-
gorithms. The chapter is organized as follows: the problem statement and algorithm are
introduced in Section 3.1 followed by theoretical discussion in Section 3.2. Sections 3.3
and 3.4 give results for experiments on numerical and real datasets respectively.

3.1 Problem Statement and Algorithm

We are interested in approximating an unknown high dimensional function f : Rd →
C, d ≫ 1, from a set of m samples {(xk, yk)}mk=1 where the inputs xk are drawn from an
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(unknown) probability measure µ(x) and the output data is (likely) corrupted by noise:

yk = f(xk) + ek, for k ∈ [m]. (3.1)

We assume that the noise ek is a Gaussian random variable or bounded by some constant
E, that is, |ek| ≤ E ∀k ∈ [m]. In addition, we assume that the target function f is an
order-q additive function (see Definition 2.3.5) with q ≪ d, K ≪

(
d
q

)
, and that we do

not have prior knowledge of the terms gj. Using the random feature method [66, 109], we
approximate the target function f by:

f(x) ≈ f#(x) = cTϕ(WTx) =
N∑
j=1

cjϕ(⟨x,ωj⟩),

where W = [ωk,j] ∈ Rd×N is a random weight matrix, ωj ∈ Rd are the column vectors of
the matrix W, and c ∈ CN is the coefficient vector. The random weight matrix W ∈ Rd×N

is fixed, while the coefficients c ∈ CN are trainable. The function ϕ : Rd × Rd → C is
the nonlinear activation function and can be chosen to be a trigonometric function, the
sigmoid function, or the ReLU function. Unless otherwise stated, we use the sine activation
function, i.e. ϕ(·) = sin(·). This model is a two-layer neural network with the weights in the
hidden layer being randomized but not trainable and thus the training problem relies on
learning the coefficient vector c. Theoretically, the random feature method has been shown
to be comparable with shallow networks in terms of theoretical risk bounds [109–111,120]
where the population risk is defined as

R(f#) := ||f − f#||2L2(dµ) =

∫
Rd

|f(x)− f#(x)|2dµ(x), (3.2)

which is also the L2 squared error between the true function and its approximation. Sup-
pose the entries of the random weight matrix W are i.i.d. random variables generated
by the (one-dimensional) probability function ρ(ω), ωk,j ∼ ρ(ω). Let A ∈ Cm×N be the
random feature matrix whose entries are defined as ak,j = ϕ(⟨xk,ωj⟩). Then the general
regression problem is to solve the following optimization problem:

min
c∈CN

||Ac− y||22, (3.3)

where y = [y1, y2, ..., ym]T .

For sparse additive modeling, since f is an order-q function, each entry of the random
feature matrix A should only depend on q entries of the input data xk. Therefore, we can
instead generate a sparse random matrix W where each column of W has at most q nonzero
entries following the probability function ρ(ω) [66]. One such way to generate W is to

first generate N random vectors v(j) = (v
(j)
1 , . . . , v

(j)
q )T in Rq and use a random embedding

that assigns v(j) to ωj, where ωj = (0, 0, . . . , 0, v
(j)
1 , 0, . . . , v

(j)
2 , 0, . . . , v

(j)
q , 0, . . . , 0)T . In

44



particular, for each j, we select a subset of q indices from [d] uniformly at random and
then sample each nonzero entry using ρ(ω). The sparse random matrix W can also be

obtained as W = W̃⊙M, where W̃ ∈ Rd×N is a dense matrix whose entries are sampled
from ρ(ω), the mask M ∈ Rd×N is a sparse matrix whose non-zero entries are one and
each column of M has q non-zero entries, and ⊙ denotes the element-wise multiplication.
Using this formulation, the general sparse regression problem becomes

find c ∈ CN such that ||Ac− y||2 ≤ ϵ
√
m and c is sparse, (3.4)

where ϵ is the parameter related to the noise level. The motivation for sparsity in c is due
to the assumption that K ≪

(
d
q

)
, thus not all index subsets are needed.

In order to solve the sparse random feature regression problem, we propose a new
greedy algorithm named hard-ridge random feature expansion (HARFE), which uses a
hard thresholding pursuit (HTP) like algorithm to solve the random feature ridge regression
problem. Specifically, we learn c from the following minimization problem:

min
c∈CN

∥Ac− y∥22 +mλ||c||22 such that c is s-sparse, (3.5)

where λ > 0 is the regularization parameter. Equation (3.5) can be rewritten as

min
c∈CN

∥Bc− ỹ||22 such that c is s-sparse, (3.6)

where B =

[
A√
mλIN

]
∈ C(m+N)×N and ỹ =

[
y
0

]
∈ Cm+N . To solve (3.6), we first start

with an s-sparse vector c0 ∈ CN (typically taken as c0 = 0) and update based on the HTP
approach

Sn+1 = {indices of s largest (in magnitude) entries of cn + µB⋆(ỹ −Bcn)},
cn+1 = argmin{∥ỹ −Bc∥22, supp(c) ⊆ Sn+1},

(3.7)

where µ > 0 is the step-size and s is a user defined parameter. The idea is to solve for
the coefficients using a much smaller number of model terms. The subset S given by the
indices of the s largest entries of one gradient descent step applied on the vector c is a
good candidate for the support set of c. The HTP algorithm iterates between these two
steps and leads to a stable and robust reconstruction of sparse vectors depending on the
RIP constant. The Gram matrix B⋆B is computed directly based on the ridge problem

cn + µB⋆(ỹ −Bcn) = (1−mµλ)cn + µA⋆(y −Acn).

The approach is summarized in Algorithm 1. The relative residual at the iterate cn is
defined as

Relative Residual =
||Acn − y||2
||y||2

.
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Final
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Figure 3.1: Schematic representation of HARFE. The active nodes at each iteration are
given in green.

Algorithm 1 Hard-Ridge Random Feature Expansion (HARFE)

Input: Samples {xk, yk}mk=1, non-linear function ϕ, number of features N , sparsity level s,
random weight sparsity q, step size µ, regularization parameter λ, convergence thresh-
old ϵ and total number of iterations tot iter.
Draw (q-sparse) N random weights ωj whose non-zero entries are sampled from ρ(ω).
Construct the random feature matrix A = [ϕ(⟨xk;ωj⟩)] ∈ Cm×N .

Algorithm:
Initialization: Start with s-sparse c0 ∈ CN (c0 = 0), n = 0
while (Relative Residual> ϵ) or (n<tot iter) do

c̃n+1 ← (1−mµλ)cn + µA⋆(y −Acn)
idx← indices of s largest entries of c̃n+1 ▷ Choose the subset of features Sn+1

Ā← A[:, idx]
cn+1[[N ] \ idx] = 0
cn+1[idx]← argmin{||y − Āc||22 +mλ||c||22} = (Ā⋆Ā +mλIs)

−1Ā⋆y
n = n+ 1

end while

Return: Sparse vector c = [c1, c2, ..., cN ] such that: f ♯(x) =
N∑
j=1

cjϕ(x;ωj).

One of the motivations for including the ridge penalty is that for random feature re-
gression, the sparsity level s can be large and thus the least squares step in (3.7) may be
ill-conditioned. Numerically, we observed that even a small non-zero value of λ can be
beneficial for ensuring convergence and good generalization. In Figure 3.1, we provide a
schematic representation of the sequence generated by the algorithm, namely, over each
step a sparse subset of nodes is obtained until a final configuration is achieved.
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3.2 Theoretical Discussion

The error produced by the HARFE algorithm can be established by extending the results
on the HTP algorithm to include the ridge regression term and by leveraging bounds on
the restricted isometry constant for this type of random feature matrix. Let δs(A) denote
the s-th restricted isometry constant of a matrix A ∈ Cm×N and κ1,s(x) denote the ℓ1

distance to the best s-term approximation (see Definitions 2.1.3 and 2.1.7) which provides
a measure for the compressibility of the vector x with respect to the ℓ1 norm and is obtained
by setting all but the s-largest in magnitude entries to zero.

The following result is restricted to the case when q = d and µ = 1. The q ≤ d case
follows from similar arguments [66]. From [53], the theorem below can be extended trivially
for any step size µ by scaling the matrix A and the vector y with the ratio

√
µ.

Theorem 3.2.1 (Convergence of the iterates of HARFE). Let the data {xk}k∈[m] be drawn
from N (0, γ2Id), the weights {ωj}j∈[N ] be drawn from N (0, σ2Id), and the random feature
matrix A ∈ Cm×N be defined component-wise by ak,j = exp(i⟨xk,ωj⟩). Denote the ℓ2-
regularization parameter by λ and the sparsity level by s. If

m ≥ C1 (1 + λ)−2 s log(δ−1),

m

log(3m)
≥ C2 (1 + λ)−1 s log2(6s) log

(
N

9 log(2m)
+ 3

)
,

√
δ

6
√

3
(1 + λ) (4γ2σ2 + 1)

d
4 ≥ N,

where C1 and C2 are universal positive constants, then with probability at least 1− 2δ, for
all c ∈ CN and e ∈ Cm with y = Ac + e, the sequence cn defined by the Algorithm 1 with
c0 = 0, using 2s instead of s in the algorithm, satisfies

∥cn − c∥2 ≤ 2βn∥c∥2 +
D1√
s
κ1,s(c) +D2

√
m−1∥y −Ac∥22 + λ∥c∥22

1 + λ
,

for all n ≥ 0 where the constants β ∈ (0, 1), D1, D2 > 0 depend only on δ6s(B). The matrix

B is given by B = (m+mλ)−
1
2

[
A√
mλIN

]
∈ C(m+N)×N .

Proof. The ridge regression problem:

min
c∈RN

∥Ac− y∥22 +mλ∥c∥22 (3.8)

can be written in the form:
min
z′∈RN

∥Bz′ − ỹ∥22, (3.9)
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where B = (m+mλ)−
1
2

[
A√
mλIN

]
∈ C(m+N)×N and ỹ =

[
y
0

]
∈ Cm+N . For equation (3.9),

the error is defined as ẽ = ỹ −Bz′ which is equivalent to

ẽ =

[
e

−
√
mλ c

]
∈ Cm+N .

If c is the minimizer of (3.8) and z′ is the minimizer of (3.9), then z′ = (m+mλ)
1
2 c. The

scaling is needed for the matrix to satisfy a restricted isometry property.

To estimate the restricted isometry constant of B, we first bound the restricted isometry
constant of m− 1

2A. By Theorem 2.3.11 and the assumptions, if

m ≥ 6C1η
−2
1 s log(δ−1),

m

log(3m)
≥ 6C2η

−2
2 s log2(6s) log

(
N

9 log(2m)
+ 3

)
,

√
δ η1 (4γ2σ2 + 1)

d
4 ≥ N,

where C1 and C2 are universal positive constants, then with probability at least 1−2δ, the
6s-restricted isometry constant is bounded by

δ6s (A) < 3η1 + η22 +
√

2η2,

or equivalently ∥∥m−1A⋆
SAS − IS

∥∥
2→2

< 3η1 + η22 +
√

2η2,

for all S ⊂ [N ] with |S| = 6s. Therefore, the 6s-restricted isometry constant of B satisfies

∥B⋆
SBS − IS∥2→2 =

∥∥(m+mλ)−1 (A⋆
SAS +mλIS)− IS

∥∥
2→2

=
1

1 + λ

∥∥m−1A⋆
SAS − IS

∥∥
2→2

<
3η1 + η22 +

√
2η2

1 + λ
.

Setting the parameters to η1 = 1+λ
6
√
3

and η2 =
√
1+λ

4
√
3

, then ∥B⋆
SBS − IS∥2→2 <

1√
3

if

m ≥ 648C1 (1 + λ)−2 s log(δ−1),

m

log(3m)
≥ 288C2 (1 + λ)−1 s log2(6s) log

(
N

9 log(2m)
+ 3

)
,

√
δ

6
√

3
(1 + λ) (4γ2σ2 + 1)

d
4 ≥ N.

By Equation (2.10) of Theorem 2.1.18, the sequence generated by the hard thresholding
pursuit algorithm produces a solution with the following bound

∥z′n − z′∥2 ≤ 2βn∥z′∥2 +
C√
s
κ1,s(z

′) +D∥ẽ∥2, (3.10)
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for all n ≥ 0 where the constants β ∈ (0, 1), C,D > 0 depend only on δ6s(B). Trans-
forming the variables to the original variables yields the following bound

∥cn − c∥2 ≤ 2βn∥c∥2 +
C√
s
κ1,s(c) +D (1 + λ)−

1
2 m− 1

2 ∥ẽ∥2 (3.11)

≤ 2βn∥c∥2 +
C√
s
κ1,s(c) +D (1 + λ)−

1
2 m− 1

2

√
∥e∥22 +mλ∥c∥22 (3.12)

≤ 2βn∥c∥2 +
C√
s
κ1,s(c) +D

√
m−1∥e∥22 + λ∥c∥22

1 + λ
, (3.13)

which concludes the proof.

It is worth noting that, in practice, λ > 0 is small, i.e. we would like mλ = O(1).
Thus the third term in the iterative bound is smaller than the second term and does not
contribute significantly to the overall error.

Theorem 3.2.2 (Risk bound for HARFE). Let the data {xk}k∈[m] be drawn from N (0, γ2Id),
the weights {ωj}j∈[N ] be drawn from N (0, σ2Id), and the random feature matrix A ∈ Cm×N

be defined component-wise by ak,j = exp(i⟨xk,ωj⟩). Denote the ℓ2 regularization parameter
by λ, the accuracy parameter by ϵ > 0, and the sparsity level by s. If the assumptions of
Theorem 3.2.1 are satisfied, then with probability at least 1− 3δ, the following risk bounds
hold:

R(f#) ≤ ∥f∥2ρ

(
ϵ2 +D

λ

N

(
3− 1

2 +

(
2m log

(
1

δ

)) 1
2

))

+ C
1 + λ

s

(
3− 1

2 +N

(
2m log

(
1

δ

)) 1
2

)
κs,1(∥c⋆∥)2 +DE2

(
3− 1

2m−1 +N

(
2

m
log

(
1

δ

)) 1
2

)

where,

ϵ =
1√
N

(
1 +

√
2 log

(
1

δ

))
.

and c⋆ denotes the coefficient vector corresponding to the best ϕ−based approximation f ⋆

defined in Eq. (3.18).

Proof. We use the L2 norm, which can be decomposed into two parts using the triangle
inequality:

||f − f ♯||L2(dµ) ≤ ||f − f ⋆||L2(dµ) + ||f ⋆ − f ♯||L2(dµ).

The approximation f ♯ is defined in equation (3.17) and the best ϕ-based approximation f ⋆

is given in equation (3.18).
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Following the proof in Section 6 of [36], if N ≥ 1

ϵ2

(
1 +

√
2 log

(
1

δ

))2

, then with

probability at least 1− δ, we have

||f − f ⋆||L2(dµ) ≤ ϵ||f ||ρ. (3.14)

We use McDiarmid’s Inequality to bound ||f ⋆−f ♯||L2(dµ), arguing similarly as in Lemma
2 from [66] or Section 6 of [36]. Let {zj}j∈[m] be i.i.d. random variables sampled from the
distribution µ which are independent from the sampled points {xj}j∈[m] and the frequencies
{ω}k∈[N ]. This independence assumption makes {zj}j∈[m] also independent of coefficients
c♯ and c⋆ and thus allows for the following argument. Let v be a random variable defined
by

v(z1, ..., zm) = ∥f ⋆ − f ♯∥2L2(dµ) −
1

m

m∑
j=1

|f ⋆(zj)− f ♯(zj)|2.

Then Ez[v] = 0 as

Ez[|f ⋆(zj)− f ♯(zj)|2] = Ez1,...,zm [|f ⋆(zj)− f ♯(zj)|2] = ∥f ⋆ − f ♯∥2L2(dµ).

We perturb the k−th component of v to get,

|v(z1, ..., zk, ..., zm)− v(z1, ..., z̃k, ..., zm)| ≤ 1

m

∣∣|f ⋆(zk)− f ♯(zk)|2 − |f ⋆(z̃k)− f ♯(z̃k)|2
∣∣ .

Using Cauchy-Schwarz inequality, for any z, we have,

|f ⋆(z̃k)− f ♯(z̃k)|2 ≤ N∥c̃⋆ − c̃♯∥22,

which holds since |ϕ(z,ω)| = 1. Hence,

|v(z1, ..., zk, ..., zm)− v(z1, ..., z̃k, ..., zm)| ≤ 2N

m
∥c̃⋆ − c̃♯∥22 := ∆.

Therefore, we can apply McDiarmid’s inequality to the random variable v, i.e. Pz(v −

Ez[v] ≥ t) ≤ exp(− 2t2

m∆2 ) where t := ∆

√
m

2
log

(
1

δ

)
. Following the results from Theorem

3.2.1, we have that δ6s(B) < 1√
3

(the matrix B is as obtained in equation (3.9)), then with

s replaced by 2s, with probability at least 1− 3δ (2δ for the coherence bound and δ from
the 3.14), we have:

∥f ⋆ − f ♯∥2L2(dµ) ≤
1

m

∑m
j=1 |f ⋆(zj)− f ♯(zj)|2 +N

(√
2

m
log

(
1

δ

))
∥c̃⋆ − c̃♯∥22

50



=
1

m
∥B̃(c̃⋆ − c̃♯)∥22 +N

(√
2

m
log

(
1

δ

))
∥c̃⋆ − c̃♯∥22

≤ 1√
3m
∥(c̃⋆ − c̃♯)∥22 +N

(√
2

m
log

(
1

δ

))
∥c̃⋆ − c̃♯∥22.

From Equation (2.11) of Theorem 2.1.18, ∥(c̃⋆− c̃♯)∥2 ≤
C√
s
κs,1(c̃

⋆)+D∥ẽ∥2, where C,D >

0 depend only on δ6s(B). Since c̃ =
√
m+mλc, transforming to original variables, we have:

∥f ⋆−f ♯∥L2(dµ) ≤

(
1√
3m

+N

(√
2

m
log

(
1

δ

))) 1
2 (√

m+mλ
C√
s
κs,1(∥c⋆∥) +D

√
∥e∥2 +mλ∥c⋆∥22

)
.

(3.15)

Note |c⋆k| =
1

N

∣∣∣∣α(ωk)

ρ(ω)k

∣∣∣∣ ≤ 1

N
∥f∥ρ and ∥e∥2 ≤ E. Thus, combining Equations (3.14) and

(3.15) yields

∥f − f ♯∥L2(dµ)

≤ ϵ∥f∥ρ +

(
1√
3m

+N

(√
2

m
log

(
1

δ

))) 1
2 (√

m+mλ
C√
s
κs,1(∥c⋆∥) +D

√
E2 +mλN−1∥f∥2ρ

)

≤ ϵ∥f∥ρ +

(
3− 1

4m− 1
2 +N

1
2

(
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m
log

(
1

δ

)) 1
4

)(√
m
√

1 + λ
C√
s
κs,1(∥c⋆∥) +D(E +

√
mλN− 1

2∥f∥ρ
)

= ∥f∥ρ

(
ϵ+D

√
λ
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(
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(
2m log

(
1

δ

)) 1
4
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+ C

√
1 + λ
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(
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(
2m log

(
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(
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4m− 1
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log

(
1

δ
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4

)
.

Theorem 3.2.1 highlights a theoretical purpose of λ > 0 in terms of convergence. The
constants D1, D2 > 0 in Theorem 3.2.1 depend on δ6s (B). As λ approaches zero, the value
of δ6s (B) approaches the larger value of δ6s (A) and thus β increases, which can lead to
slower convergence. As λ becomes large, the solution approaches zero and the error bounds
in Theorem 3.2.1 become trivial. In practice, we found that a small non-zero value is useful
for convergence and for mitigating the effects of noise and outliers.

Theorem 3.2.1 is stated for any vector c. We can consider two potential vectors c
depending on the scaling of N and m. First, if N is sufficiently large, then by the results
of [36,66] the matrix A will be well-conditioned with high probability (for any λ > 0) and
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thus there exists a c such that e = 0. Therefore, for small λ > 0 the relative error is
dominated by the compressibility of c:

∥cn − c∥2
∥c∥2

≤ 2βn +
C√
s

κ1,s(c)

∥c∥2
+D

√
λ

1 + λ
. (3.16)

In this setting, the HARFE algorithm can be seen as a pruning approach that generates a
subnetwork with s connections that is an approximation to the full N -parameter network,
see [54, 158].

Alternatively, we can consider the function approximation results found in [66,109–111].
Suppose we are given a probability density ρ used to sample the entries of the random
weights ω ∈ Rd and a function ϕ : Rd × Rd → C. A function f ∈ F(ϕ, ρ) if f : Rd → C
has finite ρ-norm with respect to ϕ defined by

F(ϕ, ρ) =

{
f(x) =

∫
Rd

α(ω)ϕ(x;ω) dω

∣∣∣∣∣ ∥f∥ρ := sup
ω

∣∣∣∣α(ω)

ρ(ω)

∣∣∣∣ <∞
}
,

where ρ(ω) = ρ(ω1) . . . ρ(ωd). The random feature approximation of f ∈ F(ϕ, ρ) is denoted
by f ♯ and defined as

f ♯(x) =
N∑
j=1

c♯j ϕ(x,ωj), (3.17)

where the weights {ωj}j∈[N ] are sampled i.i.d. from the density ρ. Following [109–111],
the best ϕ-based approximation of f ∈ F(ϕ, ρ) is given by f ⋆

f ⋆(x) =
1

N

N∑
j=1

α(ωj)

ρ(ωj)
ϕ(x,ωj), (3.18)

where the coefficients with respect to the random features are defined as c⋆j :=
α(ωj)

Nρ(ωj)
for

all j ∈ [N ] and thus ∥c⋆∥2 ≤ N− 1
2 ∥f∥ρ. For example, let ρ be the density associated with

N (0, σ2) and assume that the conditions of Theorem 3.2.1 hold. In this setting, it was
shown in [66] that ∥e⋆∥∞ = ∥Ac⋆ − y∥∞ ≤ ϵ∥f∥ρ, where

ϵ :=
1√
N

1 + 4γσd

√
1 +

√
12

d
log

m

δ
+

√
1

2
log

(
1

δ

) .

Therefore, the bound in Theorem 3.2.1 becomes

∥cn − c⋆∥2 ≤

(
2βnN− 1

2 +
C√
s

(
1− sN−1

)
+D

√
ϵ2 + λN−1

1 + λ

)
∥f∥ρ, (3.19)

which scales like N− 1
2 . Equation (3.19) could be refined, since in multiple places an ℓ2

bound is replaced by an ℓ∞ norm (noting that ∥f∥ρ is essentially an infinity-like norm).
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For the HARFE results in the following two sections, we observed that the value of µ
(see Algorithm 1) does not have a significant impact on the generalization. Therefore, we
set µ = 0.1 for all experiments, which can be shown to produce a convergent sequence by
extending the proofs found in [52]. In addition, we fix the sparsity ratio (s/N) to be 5%
or 10%. Since the parameter λ depends on the dataset and the noise level, it should be
tuned, for example, using cross-validation. In our experiments, we found that the optimal
regularization parameter can range from 10−12 to 10−1 depending on the input data (since
the data is not normalized). Thus, we optimize our results over a set of possible values for
λ in order to obtain good generalization.

3.3 Numerical Results on Synthetic Data

In this section, we test Algorithm 1 for approximating sparse additive functions including
the benchmark examples discussed in [15,17,66,102,107]. The experiments show that the
HARFE model outperforms several existing methods in terms of testing errors.

The step-size parameter is set to µ = 0.1 for all experiments. Other hyperparameters
will be specified for each experiment. The relative test error is calculated as

Rel(f, f ♯) =

√√√√√√
∑

x∈Xtest

|f(x)− f ♯(x)|2∑
x∈Xtest

|f(x)|2
, (3.20)

and the mean-squared test error is defined as

MSE(f, f ♯) =
1

|Xtest|
∑

x∈Xtest

|f(x)− f ♯(x)|2, (3.21)

where f is the target function and f ♯ is the trained function.

3.3.1 Low-Order Function Approximation

In the first example, we show the advantage of using a greedy approach over an ℓ1 opti-
mization problem and the benefit of the additional ridge term. The input data is sampled
from a uniform distribution U [−1, 1]d and the activation function is set to ϕ(·) = sin(·).
The nonzero entries of the random weights ωj are sampled from N (0, 1). We introduce
a set of random bias terms bj ∈ R for j ∈ [N ] so that the random feature matrix is now
defined as ak,j = sin(⟨xk,ωj⟩ + bj). The bias is sampled from U [0, 2π] to cover all phase
angles. The number of random weights is N = 104, the sparsity level is s = 500, and the
number of training and testing data are mtrain = 500 and mtest = 500, respectively. In all
experiments in this section, we set the maximal number of iterations for our method to 50.
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q
1√

1 + ∥x∥22

√
1 + ∥x∥22

x1x2
1 + x63

d∑
i=1

exp(−|xi|)

d 5 5 5 100

SRFE 1 3.30 1.29 102.1 1.20
HARFE, λ = 0 1 3.30 1.40 105.6 1.50
HARFE, λ > 0 1 3.20 1.00 100 1.10

SRFE 3 0.80 1.0 8.0 1.80
HARFE, λ = 0 3 1.00 0.25 3.20 2.70
HARFE, λ > 0 3 0.73 0.18 3.40 2.01

SRFE 5 0.56 1.10 9.24 2.04
HARFE, λ = 0 5 1.80 1.08 11.20 3.00
HARFE, λ > 0 5 0.57 1.00 7.70 2.20

Table 3.1: Relative test errors (as a percentage) for approximating various nonlinear func-
tions using different q values. For each function, the two smallest errors are highlighted (in
blue). The ridge paramater λ using in the HARFE approach is set to 10−4, 10−10, 10−10, and
10−1 (going left to right). In all experiments, mtrain = mtest = 500, N = 104, x ∼ U [−1, 1]d,
the nonzero entries of ω are drawn from N (0, 1) and bias is drawn from U [0, 2π].

Table 3.1 shows the median relative error (as a percentage) over 10 randomly generated
test sets. In the experiments, we compared the results using q ∈ {1, 3, 5}. In each case,
the HARFE approach with λ > 0 is more accurate than HARFE with λ = 0 and the
SRFE [66]. We observe that when the exact order q is known, the error is lower (see
Column 5 of Table 3.1). Although not included in the table, it is worth mentioning that
the Elastic Net model performs comparably to the SRFE model, although it does not have
the same generalization theory [66].

3.3.2 Approximation of Friedman Functions

In this example, we test the HARFE method on the Friedmann functions, which are used
as benchmark examples for certain approximation techniques [15, 17, 102, 107]. The three
Friedman functions are defined as, f1 : [0, 1]10 → R

f1(x1, ..., x10) = 10 sin(πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5,

f2 : [0, 1]4 → R

f2(x1, x2, x3, x4) =

√
(100x1)2 +

(
x3(520πx2 + 40π)− 1

(520πx2 + π)(10x4 + 1)

)2
,
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Method f1 f2 (×103) f3 (×10−3)
svm 4.36 18.13 23.15
lm 7.71 36.15 45.42
mnet 9.21 19.61 18.12
rForst 6.02 21.50 22.21
ANOVA 1.43 17.21 20.69
SRFE, q = 2 2.35 5.15 18.88
HARFE, q = 2 1.52 1.31 10.90
HARFE, q 3.01 1.90 13.28

Table 3.2: Mean-squared test errors of different methods when approximating Friedman
functions. The values for SRFE and HARFE are obtained by training the model on 100
randomly generated training sets and validating them on 100 randomly generated test sets.
We test for different q values. In the last row, q = 5 for f1 and q = d = 4 for f2 and f3.
For the HARFE, λ = 1 × 10−3, 5 × 10−3, and 1 × 10−5 for the functions f1, f2, and f3,
respectively. The two best values for every function are highlighted in blue.

and f3 : [0, 1]4 → R

f3(x1, x2, x3, x4) = arctan

(
x3(520πx2 + 40π)− (520πx2 + 40π)−1(10x4 + 1)−1

100x1

)
.

We follow the setup from [107], where both the training and testing input datasets are
randomly generated from the uniform distribution U [0, 1]d, mtrain = 200, and mtest = 1000.
In addition, Gaussian noise with zero mean and standard deviations of σ = 1.0, 125.0, and
0.1, are added to the output data. The MSE of various methods when approximating
Friedman functions are displayed in Table 3.2. We include the results of various meth-
ods found in [107] and compare them against the results of SRFE [66] and HARFE. For
HARFE, the nonzero entries of the random weight vectors ω and the bias terms are sam-
pled from U [−1, 1]. We use N = 104 features for f1 and N = 2 × 103 features for f2 and
f3, s = 200, and 50 iterations in total. Our proposed method achieves the smallest errors
when approximating Friedman functions f2 and f3 even when the value of q is unknown
(in that case, we assign q = d).

It is worth noting that although the first Friedman function has d = 10, it is a sparse
additive model of order-2, and thus is better approximated by the ANOVA, SRFE, and
HARFE models. This is verified by the results in Table 3.2 with q = 2. Note that HARFE
with q = 2 yields a comparable result with ANOVA for f1 while outperforming ANOVA
in the other two examples. For the second Friedman function, HARFE with q = 2 is
significantly better than the other methods by almost a factor of 14 times. For the third
Friedman function, when the scale of the data is taken into consideration, all methods
produce slightly worse results, with HARFE producing the lowest error overall. In Figure
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3.2, scatter plots show the true data compared to the predicted values using the HARFE
model over a test set for functions f1, f2, and f3. The HARFE model produces lower
variances for f1 and f2, while some bias occurs in f3 near zero.

Figure 3.2: Scatter plots of the true data versus the predicted values using the HARFE
model over the test set for functions f1, f2 and f3 (from left to right).

In Figure 3.3, we plot the runtimes (in seconds) of both HARFE and SRFE during the
training phase for f(x) =

√
1 + ∥x∥22 with different m and d. The stopping criteria used

for both algorithms were the same. We can see clearly that HARFE is almost 2.5 times
faster than SRFE as the number of features N increases.

In the next experiment, we would like to test HARFE for feature selection. Figure
3.4 displays a histogram illustrating the distribution of indices retained by the HARFE
approach for the Friedman function g : [0, 1]20 → R,

g(x1, ..., x20) = 10 sin(πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5.

In this experiment, we choose q = 2. From the histogram in Figure 3.4, we observe
that HARFE can redistribute the weights based on active input variables especially when
applied for a q-order additive function satisfying q ≪ d and the number of active variables
(five in this case) is much less than the input dimension (which is twenty) of the function.
Specifically, the histogram is based on the occurrence rate (as a percentage) of all twenty
variables obtained from the HARFE model. The top 5 indices correspond exactly with the
correct set.

3.4 Numerical Results on Real Datasets

We compare the performance of models obtained by the HARFE algorithm with other
state-of-the-art sparse additive models [66,77,93] when applied to eleven real datasets. An
overview of the datasets and the hyperparameters s, q,mλ used in the HARFE model are
presented in Table 3.3.
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Figure 3.3: Plots showing the time required (in seconds) for optimizing the trainable
weights c using HARFE compared with SRFE for m ∈ {250, 500, 1000} with d = 100 (left)
and d ∈ {50, 100, 200} with m = 500 (right) for the function f(x) =

√
1 + ∥x∥22.

Figure 3.4: A histogram plot displaying the distribution of indices retained by the HARFE

approach applied to the Friedman function g(x1, ..., x20) = 10 sin(πx1x2) + 20
(
x3 − 1

2

)2
+

10x4 + 5x5 using q = 2. The histogram is based on the occurrence rate (as a percentage)
of the input variables obtained from the HARFE model. The HARFE model correctly
identifies the dominating index set.

The results of COSSO, Lasso, SALSA, SpAM, and SSAM are obtained from [77,93,113]
and we include the results of the SRFE and HARFE model. The experiments follow the
setup from [77,93,113], where the training data is normalized so that the input and output
values have zero mean and unit variance along each dimension. Each dataset is divided in
half to form the training and testing sets. The results and comparisons are shown in Table
3.4. The HARFE approach produces the lowest errors on eight datasets and achieves
comparable results on the remaining datasets. Specifically, we significantly outperform
other methods on the Propulsion, Airfoil, and Forestfire datasets.

In Figure 3.5, we plot the histogram of the percentage of weights corresponding to each
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Dataset dim train val N s mλ q
Propulsion 15 200 200 3k 300 10−10 2
Galaxy 20 2000 2000 10k 1k 10−7 2
Skillcraft 18 1700 1630 20k 1k 1.0 2
Airfoil 41 750 750 80k 5k 1.0 2
Forestfire 10 211 167 4220 422 0.5 2
Housing 12 256 250 10k 1k 0.1 2
Music 90 1000 1000 10k 666 2.5 3
Insulin 50 256 250 2560 170 2.75 2
Speech 21 520 520 20k 1k 0.1 2
Telemonitor 19 1000 867 15k 937 0.1 5
CCPP 59 2000 2000 10k 1k 0.05 1

Table 3.3: Overview of eleven datasets and the values of s,mλ, and q used in the HARFE
model. The experimental setup and datasets for each test follow from [47,77,93,113].

HARFE COSSO Lasso SALSA SpAM SRFE SSAM
Propulsion 0.0000417 0.00094 0.0248 0.0088 1.1121 0.0154 -
Galaxy 0.0001024 0.00153 0.0239 0.00014 0.9542 0.0012 -
Skillcraft 0.5368 0.5551 0.6650 0.5470 0.9055 0.8730 0.5432
Airfoil 0.4492 0.5178 0.5199 0.5176 0.9623 0.5702 0.4866
Forestfire 0.2937 0.3753 0.5193 0.3530 0.9694 0.4067 0.3477
Housing 0.2636 1.3097 0.4452 0.2642 0.8165 0.6395 0.3787
Music 0.6134 0.7982 0.6349 0.6251 0.7683 1.0454 0.6295
Insulin 1.0137 1.1379 1.1103 1.0206 1.2035 1.6456 1.0146
Speech 0.0238 0.3486 0.0730 0.0224 0.6600 0.0246 -
Telemonitor 0.0370 5.7192 0.0863 0.0347 0.8643 0.0336 0.0689
CCPP 0.0677 0.9684 0.07395 0.0678 0.0647 0.07440 0.0694

Table 3.4: Average MSE on real datasets using various sparse additive models including
COSSO, Lasso, SALSA, SpAM, SRFE, SSAM, and HARFE. The lowest error for each
dataset is highlighted in blue.

variable based on the (sparse) coefficient vector approximated using HARFE (from Table
3.4) for the Propulsion, Housing, Speech, and Telemonitor datasets, respectively. For the
Propulsion test in Figure 3.5a, we see that the 14th variable (Gas turbine compressor decay
state coefficient) and the 15th variable (Gas turbine decay state coefficient) have the least
contribution to the predictor (Lever Position), while the 3rd variable (Gas turbine rate of
revolutions) is the most relevant variable to the predictor. From the random sampling, the
histograms are initiated uniformly (at least in expectation). This experiment shows that
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(a) Propulsion dataset (b) Housing dataset

(c) Speech dataset (d) Telemonitoring dataset

Figure 3.5: The histogram plots the percentage of weights corresponding to each variable
based on the (sparse) coefficient vector approximated using HARFE for the Propulsion,
Housing, Speech, and the Telemonitor datasets, respectively.

the HARFE algorithm will redistribute the weights and identify important variables as a
benefit of the sparsity-promoting aspect.

From Figure 3.5b, the HARFE variable selection suggests that the predictor of the
House dataset (per capita crime rate by town) is most affected by the 5th variable (pro-
portion of owner-occupied units built prior to 1940) and the 12th variable (median value
of owner-occupied homes in $1000’s). In Figure 3.5c, the plot shows that the 13th (Noise-
to-Harmonic or NTH parameter) significantly contributes to the output of the predictor
(median pitch) of the speech dataset. Lastly, for the Telemonitoring, the experiment in
Figure 3.5d shows several significant contributors to HARFE trained predictor.

3.5 Summary

The proposed method HARFE aims to provide a fast algorithm for learning sparse additive
functions. Theoretical results derived for HARFE indicate that the formulation of the
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algorithm using ridge regression with an HTP-based solution benefits the model in terms
of both accuracy and convergence speed.
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Chapter 4

Learning Epidemic Models from
Missing Data

This chapter is based on predicting variables of epidemic models with missing data. The
contents of this chapter are taken from the article [122], with slight modifications. The
main motivation of this research work is to build a method that could be used to predict
the future value of a particular variable belonging to a multidimensional dynamical system
assuming that the availability of data for learning is only given for that particular variable.
Such problems are frequently encountered in the field of epidemiology where one needs
to quickly get short-term predictions of a particular variable (for example, the number of
people infected) without the knowledge of any other variable or parameters. Not only is the
data availability scarce, it is also incomplete. Continuing with our exploration of random
feature models and sparsity, we now build a method for predicting the solution of an ODE
from incomplete data. We make use of Takens’ delay embedding theorem to embed the
input data into a higher dimension space so that it represents a system diffeomorphic to
the original one, which is then learned using random feature-based methods. We show
that our proposed model outperforms existing benchmark methods of parameter learning
in short-term predictions on simulated data as well as real datasets of various diseases like
COVID-19, Zika, Ebola, etc. In this chapter, Section 4.1 gives the problem setting followed
by the numerical results on synthetic and real data in Sections 4.2 and 4.3, respectively.

4.1 Motivation and Problem Setting

Given time-dependent observations {y(tk)}mk=1 from an unknown multidimensional dynam-
ical system, we propose a new inference method motivated by Takens’ Theorem (stated in
Theorem 2.4.9) where we aim to forecast the values of y(t) over a given forecast horizon
(generally one-week-ahead forecast). First proposed in 1981 in [138], given a dynamical sys-
tem φ : M →M , (M is a compact manifold of dimension d) and an observable y : M → R,
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Takens’ theorem aims to obtain information about the original dynamical system. Moti-
vated by Takens’ theorem, we assume that the rate of change in the observable y(t) is a
function of its time-delayed mapping i.e.,

ẏ(tk) = f(y(tk), y(tk−1), ..., y(tk−(p−1))), (4.1)

where p is the embedding dimension. Note that the variable y is part of an unknown multi-
dimensional dynamical system. We would like to forecast the value of y(t) while preserving
the properties of the corresponding multidimensional dynamical system. Takens’ theorem
provides a theoretical guarantee to preserve the topological structure of the multidimen-
sional dynamical system while solving the delayed equation, under certain conditions of
the dynamics. Specifically, we wish to learn the function f : Rp → R in Equation (4.1) of
the form

f(h) ≈
N∑
j=1

cjϕ(⟨h,ωj⟩), (4.2)

where ωj ∈ Rp are the random weights, ϕ is a nonlinear activation function, and c =[
c1 . . . cN

]T ∈ RN is the trainable coefficient vector. The nonlinear activation function
ϕ : Rp × Rp → R can be chosen to be a trigonometric function, the sigmoid function, or
the ReLU function. Here, we use the ReLU activation function, i.e. ϕ(·) = max{0, ·}.
Entries of the random weight vector are i.i.d. random variables generated by a probability
function ρ(ω), while the coefficients c ∈ RN are trainable. Also known as random features
model proposed in [109–111], this model can be considered as a wide two-layer neural
network where the weights in the first hidden layer are generated (following a distribution)
and frozen while training problem relies on learning the coefficient vector c. Since we
assume limited data availability, we wish to have a sparse representation of the function
f by learning the coefficient vector c with a sparsity constraint. Theoretically, when N is
very large, the random feature methods have been shown to be comparable with shallow
networks in terms of theoretical risk bounds [109–111,120].

Givenmmeasurements of the obervable y, we first build the input-output pairs {(hk, ẏ(tk))}mk=p,
where hk = [y(tk), y(tk−1), ..., y(tk−p+1))]

T for k = p, p + 1, ..,m. We approximate the out-
put data {ẏ(tk)}mk=1 from given input data {y(tk)}mk=1 using finite difference methods. In
all our numerical simulations, we build the output data as follows:

ẏ(t1) =
y(t2)− y(t1)

(t2 − t1)
;

ẏ(tk) =
y(tk+1)− y(tk−1)

(tk+1 − tk−1)
, for k = 2, ..,m− 1;

ẏ(tm) =
y(tm)− y(tm−1)

(tm − tm−1)
.

(4.3)

We used central Euler discretizations for the intermediate points to have second-order
accuracy and minimize the errors arising from using discrete methods. Other derivative
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approximation techniques could also be used, such as forward or backward discretizations.
If the data is noisy, then an additional step would be required after getting the output data
since finite difference methods may amplify the noise in the input dataset making recovery
difficult. We apply a convolution-based averaging filter on {ẏ(tk)}mk=1 with a smoothing
parameter s as given below,

ẏ(tk) =
1

s

k+1∑
n=(k+1)−(s−1)

ẏ(tn), (4.4)

where ẏ(tk) = 0 ∀ k ≤ 0 and k ≥ m+ 1 and s denotes the strength of the smoothing filter.
The value of s chosen is dependent upon the noise level present in the dataset. The value
of s used for each of the experiments has been specified in their respective sections. Let
z = [ẏ(tp), ẏ(tp+1), ..., ẏ(tm)]T and A = (ϕ(⟨hk,ωj⟩)) ∈ R(m−p+1)×N . The matrix A is given
by:

A =


ϕ(⟨hp,ω1⟩) ϕ(⟨hp,ω2⟩) ϕ(⟨hp,ω3⟩) . . . ϕ(⟨hp,ωN⟩)
ϕ(⟨hp+1,ω1⟩) ϕ(⟨hp+1,ω2⟩) ϕ(⟨hp+1,ω3⟩) . . . ϕ(⟨hp+1,ωN⟩)

...
...

...
...

...
ϕ(⟨hm,ω1⟩) ϕ(⟨hm,ω2⟩) ϕ(⟨hm,ω3⟩) . . . ϕ(⟨hm,ωN⟩)

 ∈ R(m−p+1)×N .

(4.5)
The problem (4.2) becomes,

find c ∈ RN such that z ≈ Ac and c is sparse, (4.6)

which can be solved by the following minimization problem:

c# = argmin
c∈RN

∥Ac− z∥22 + λ∥c∥1. (4.7)

Here, λ > 0 is the regularization parameter. To forecast T future values of the given
trajectory i.e., {y(tm+i)}Ti=1, we use the Euler method:

y(tm+i) = y(tm+i−1) + (tm+i − tm+i−1)f(hm+i−1), (4.8)

for all i = 1, ..., T and hk = [y(tk), y(tk−1), ..., y(tk−p+1))]
T for any integer k = m,m +

1, ...m+T . The summary of our SPADE4 algorithm is given in Algorithm 2 and schemat-
ically represented in Figure 4.1.

4.2 Numerical Experiments on Synthetic Data

In this section, we compare our proposed method and relevant benchmark methods, includ-
ing the popular SEIR model and the most state-of-the-art SµEIR model [159] on synthetic
data simulated from the SµEIR model. In this simulation study, the input data consists
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Figure 4.1: Schematic representation of SPADE4 algorithm

of time series {I(tk)}mk=1 corresponding to the infectious variable I(t) in the SµEIR model.
Our goal is to obtain a one-week-ahead forecast horizon of this infectious variable. In all
experiments, we display the predicted values of the mentioned methods versus the ground
truth when varying the size of the training data as the observed trends change (before the
peak, after the peak, and around the peak of the epidemic). We also study the robustness
of SPADE4 with respect to noise and compare it with the benchmark models.

Data Generation. We first solve the SµEIR model given in Eq. (2.53) numerically on
the time interval [0, 180] (days) with the timestep ∆t = 0.01 and the parameters of the
SµEIR model:

β = 3/14, σ = 0.25, µ = 0.75, γ = 1/14, P = S(0) + E(0) + I(0) +R(0),

and initial conditions are

S(0) = 106, E(0) = 0, I(0) = 1, R(0) = 0.

We normalize the solution by the population P before building the training dataset. The
training dataset is either noiseless {I(tk)}mk=1, or noisy {I(tk)+εk}mk=1, which resembles the
reported daily counts of active cases in an outbreak. Note that the inputs are proportions
instead of counts in this study. The size of the training data m will be specified in each
experiment.

Prediction using SPADE4. For our proposed method, the random weights ωj ∈ Rp

are sampled from N (0, 1) and bias terms bj(j ∈ [N ]) are sampled from U(0, 2π). The
number of random weights is N = 50m, where m is the number of training points. The
activation function is set to ϕ(·) = ReLU(·) and the time delay τ = 1. We choose the
embedding dimension p = 2d + 1, where d = 4 is the dimension of the multi-dimensional
dynamical system. The ℓ1−regularization parameter λ is selected by the model from a
range of possible values, λ ∈ [10−6, 5× 10−6, 10−7, 5× 10−7, 10−8, 5× 10−8, 10−9, 5× 10−9]
using the Bayesian Information Criterion (BIC) (see Definition 2.4.7). Using the training
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Algorithm 2 Algorithm for SPADE4

Input: Input data {y(tk)}mk=1; smoothing parameter s; function ϕ(·,ω) = ϕ(⟨·,ω⟩), distri-
bution ρ to sample ω, number of features N , regularization parameter λ.

Algorithm:
1: Approximate {ẏ(tk)}mk=1:

ẏ(t1)←
y(t2)− y(t1)

(t2 − t1)
, ẏ(tm)← y(tm)− y(tm−1)

(tm − tm−1)
,

ẏ(tk)← y(tk+1)− y(tk−1)

(tk+1 − tk−1)
, for k = 2, 3, . . . ,m− 1.

2: if {y(tk)}mk=1 is noisy then

ẏ(tk)← 1

s

k+1∑
n=k+2−s

ẏ(tn),

where ẏ(tk) = 0 ∀ k ≤ 0 and k ≥ m+ 1.
3: end if

4: Define z = [ẏ(tp), ẏ(tp+1), ..., ẏ(tm)]T .

5: Draw N random weights ωj ∼ ρ(ω).

6: Define the time-delay data

hk = [y(tk), y(tk−1), ..., y(tk−p+1))]
T , for k = p, . . . ,m.

7: Construct random feature matrix A = (ϕ(⟨hk,ωj⟩)) ∈ R(m−p+1)×N .

8: Solve
c# = argmin

c∈RN

∥Ac− z∥22 + λ∥c∥1.

9: for i = 1, . . . , T do

10: f̂(hm+i−1) =
N∑
j=1

c#j ϕ(⟨hm+i−1,ωj⟩).

11: y(tm+i) = y(tm+i−1) + (tm+i − tm+i−1)f̂(hm+i−1).
12: end for

13: Output: {y(tk)}m+T
k=m+1.

data, we obtain the learned coefficients c by solving the optimization problem (4.7). In
our paper, we choose the LASSO package in Python for obtaining c. We forecast the
proportion of daily active cases denoted by {Îours(tk)}m+T

k=m+1 (T denotes the prediction
window) using Equation (4.8). Note that we may also choose to use the ridge-regression
optimization problem and apply the proposed HARFE algorithm from Chapter 3. However,
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the performance of HARFE was not found to be superior to the proposed method as the
underlying function may not satisfy the assumption of being a sparse high-dimensional
additive function.

Prediction using benchmark models. For benchmark models, we use the least squares
method to learn the models’ parameters (from 100 possible random initializations) by
fitting given input data with the variable I(t) from SµEIR and SEIR models as the target
function. The parameters learnt are (β, σ, µ, γ) for the SµEIR model (Equation (2.53))
and (β, σ, γ) for SEIR model (Equation (2.52)).

Prediction accuracy. For all the methods, the accuracy of predicting the trajectory of a
novel pathogen outbreak (such as COVID-19) is measured using relative test error which
is calculated as

Error(I, Îmodel) =

√√√√√√√√
m+7∑

k=m+1

[I(tk)− Îmodel(tk)]2

m+7∑
k=m+1

[I(tk)]2
, (4.9)

where I denotes the true values and Îmodel are the predicted values of a model.

4.2.1 Results on Noiseless Simulated Data

We first present numerical results on simulated data without noise where we evaluate
model performance during key moments of the epidemic, i.e., before, around, and after
the peak of the curve. For before and after the peak, we consider data points up to 81st

and 125th days (given by the dashed vertical lines in the top left plot of Figure 4.2) out
of 180 days, respectively, as the training set, and predict for the next seven days. The
corresponding predicted curves of the one-week-ahead-forecast horizon are shown in the
middle first row and the top right plot of Figure 4.2. For assessing model performance
around the changing slope of the trajectory, we consider the number of training points
m ∈ {97, 100, 104, 108, 111} and plot the predicted curves of our proposed method and the
two benchmark models for the one-week-ahead forecast in the second row of Figure 4.2.
We observe from Figure 4.2 that the best performance is given by the benchmark model
fitted with SµEIR (green curves), closely by our proposed method (blue curves) and the
SEIR model (magenta curves). This is an expected outcome considering that we are fitting
the benchmark model with the same model from which data was simulated. However, in
real-world applications, there are irregularities in data which can make the noiseless case
too idealistic. So in the following section, we add noise to the input data and then compare
the performance of benchmark models to our SPADE4.
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Figure 4.2: Results on noiseless simulated data. First row: Noiseless training datasets
from 0 up to 81st and 125th days out of 180 days (top left). The next two figures are
the predicted values of the infectious variable I(t) in the next seven days using SPADE4
(blue), SEIR model (magenta), and SµEIR model (green) correspond to those two training
datasets versus ground truth (black). Second row: Prediction of I(t) for the next seven
days around the peak of the wave using SPADE4 (blue), SEIR model (magenta), and
SµEIR model (green) versus ground truth (black).

4.2.2 Results on Noisy Simulated Data

In this section, we consider noisy input data. As before, the data is simulated from Equation
(2.53) with the parameters described above. The input data with noise is given by:

Inoisy(t) = I(t) + εmax | I(t) |, (4.10)

where I(t) is the clean data, ε ∼ N (0, η), and η is the noise level. For all experiments involv-
ing noisy input data, we pre-process the input data by considering the seven-day average of
I(t). This is done to take care of data irregularities and to resemble setup in practice. For
our SPADE4, an additional convolution based smoothing filter with parameter s = 15 is
also used on the output vector {İ(tk)}mk=1. This is done to minimize noise amplification from
the use of finite difference approximations to obtain {İ(tk)}mk=1. Similar to the setup in Sec-
tion 4.2.1, we consider the number of training points m ∈ {81, 97, 100, 104, 108, 111, 125}
days and plot the one-week-ahead forecast. We consider 5% noise level, i.e., η = 0.05,
and plot the results in Figure 4.3. Experimental results with η = 0.02 are given in the
appendix.

Before the peak, the one-week-ahead forecast of our SPADE4 outperforms the SEIR

67



Figure 4.3: Results on simulated data with 5% noise added to input data. First row: Noisy
training datasets from 0 up to 81st and 125th days out of 180 days (top left). The next
two figures are the predicted values of the infectious variable I(t) in the next seven days
using SPADE4 (blue), SEIR model (magenta), and SµEIR model (green) correspond to
those two training datasets versus ground truth (black). Second row: Prediction of I(t)
for the next seven days around the peak of the wave using SPADE4 (blue), SEIR model
(magenta), and SµEIR model (green) versus ground truth (black).

and the SµEIR model in both cases of the noise level. After the peak, the prediction results
of SPADE4 and the SEIR model are comparable and are better than those obtained from
the SµEIR (see top row of Figure 4.3). Around the peak, (see bottom row of Figure
4.3), we observe that SPADE4 quickly picks up the changing slope in the wave. On the
other hand, the benchmark models give unreliable results at some points in the curve.
Both benchmark models overpredict the number of active cases for m ∈ {97, 100} and
underpredict the number of active cases for m = 104.

The superior performance of SPADE4 can be seen more clearly from Figure 4.4 where
we plot the validation errors for our model and the benchmark models fitted different sizes
of training data m and noise levels η = 0.02 and η = 0.05. We see that SPADE4 has low
relative error consistently while the errors for the other models tend to fluctuate to a higher
error at certain points. The performance of the benchmark models is highly influenced by
the number of training points, noise level, as well as the nature of the curve while our
proposed SPADE4 is robust to all these factors affecting input data.
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Figure 4.4: Validation errors based on various size of the training data m ∈
{81, 97, 101, 104, 108, 112, 126} for the noise level η = 0.02 (left) and η = 0.05 (right).

4.3 Numerical Experiments on Real Datasets

In this section, we demonstrate the performance of SPADE4 on various real datasets, in-
cluding daily active cases of 2019 Coronavirus (COVID-19) in Canada1 as well as cumula-
tive cases of Ebola in Guinea 2, Zika virus in Giradot [117], and influenza A/H7N9 in China
3. The training data for the benchmark models is given by I(t) for the COVID-19 dataset
and by the variable I(t) + R(t) for the remaining datasets. For each dataset, we compare
the one-week-ahead forecasts of SPADE4 with benchmark methods including SEIR and
SµEIR models across important moments in the epidemic. Predictions using SPADE4 use
the same hyperparameters as described in Section 4.2 unless specified otherwise.

4.3.1 Data from Daily Active Cases of COVID-19 in Canada

In this section, we study the one-week-ahead forecast of the number of active COVID-
19 cases in Canada (see Figure 4.5) up to the fifth wave of COVID-19. Each wave is
approximately given by the black vertical lines in Figure 4.5. We notice that the first four
waves are similar in terms of wavelength as well as amplitude. On the other hand, the fifth
wave however is different since it is driven by a much more infectious Omicron variant and
hence has a short wavelength with a higher amplitude. Therefore, we examine the forecast
within the second (from day 200 to day 380) and the fifth waves (from day 650 to day 704)
of COVID-19 in Canada.

The anomalies in how data were reported, such as the under-reporting of cases on
weekends and the backlog cases reported later, can lead to a noisy dataset. Hence, we

1https://health-infobase.canada.ca/covid-19/epidemiological-summary-covid-19-cases.

html
2https://www.kaggle.com/datasets/imdevskp/ebola-outbreak-20142016-complete-dataset
3https://datadryad.org/stash/dataset/doi:10.5061/dryad.2g43n
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Figure 4.5: Proportion of daily active COVID-19 cases in Canada from the beginning of
the pandemic to the end of the fifth wave.

Figure 4.6: Results on second wave of COVID-19 in Canada. First row: Second wave
from 0 up to 54th and 144th days out of 180 days (top left). The next two figures are
the predicted values of the infectious variable I(t) in the next seven days using SPADE4
(blue), SEIR model (magenta), and SµEIR model (green) correspond to those two training
datasets versus ground truth (black). Second row: Prediction of I(t) for the next seven
days around the peak of the wave using SPADE4 (blue), SEIR model (magenta), and
SµEIR model (green) versus ground truth (black).

consider the seven-day average of the given data as the ground truth. For the initial
conditions required by the benchmark models, we choose the initial values of the variables
I(t0) = I0, R(t0) = 0, where I0 is the first data point in the training set. Since the initial
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Figure 4.7: Results on fifth wave of COVID-19 in Canada. First row: Second wave from 0
up to 27th and 46th days out of 54 days (top left). The next two figures are the predicted
values of the infectious variable I(t) in the next seven days using SPADE4 (blue), SEIR
model (magenta), and SµEIR model (green) correspond to those two training datasets
versus ground truth (black). Second row: Prediction of I(t) for the next seven days
around the peak of the wave using SPADE4 (blue), SEIR model (magenta), and SµEIR
model (green) versus ground truth (black).

exposed population is not known, we let the model choose the best estimate of E(t0)
from {kI0 : k ∈ {0, 1, 5, 10, 15, 20, 25, 50, 80}}, which is the value of E(t0) that gives the
smallest ℓ2-squared error over the training set. Finally, the initial susceptible variable is
given by S(t0) = P − E(t0) − I(t0), where P is the approximate population of Canada,
P = 3.8 × 107. To avoid negligible values when the population P is extremely large
compared to the number of active cases, we normalize the training data by dividing the
entire dataset by c ∗ P , where c ∈ (0, 1]. Here, we choose c = 0.1. Finally, for both the
second and the fifth waves, we consider the number of training data m as the observed
trends change, including the trends before the peak, around the peak, and after the peak.
More precisely, m is chosen from the set {54, 90, 99, 108, 117, 126, 135, 144} for the second
wave and from the set m ∈ {27, 32, 35, 38, 41, 43, 46} for the fifth wave (see the top left
figures in Figure 4.6 and Figure 4.7). Note that m corresponds to the number of days
starting from the starting date of a wave.

The forecast result illustrates the advantage of our method compared to the benchmark
models. More precisely, the forecasts suggested by SPADE4 (blue curves in Figures 4.6
and 4.7) are closest to the true curve (in black) and it successfully picks up the changing
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nature of the curve around the peak quickly and adapts to the downward trend of the true
curve. With the SEIR model, as the training data varies across before, around to after
the peak (second row and top right plots in Figures 4.6 and 4.7), it tends to move from
underprediction to overprediction to an extent where it is completely away from the true
curve after the peak. The SµEIR model starts with underprediction and moves on to a
mix of overprediction and underprediction inconsistently without picking up the changing
slope of the trajectory as the size of training data varies (second row and top right plots
in Figures 4.6 and 4.7).

4.3.2 Data from Cumulative Cases of Ebola in Guinea, Zika in
Giradot and Influenza A/H7N9 in China

In this section, we use data based on cumulative cases of Ebola in Guinea, Zika in Giradot
and influenza A/H7N9 in China. For each dataset, the parameters based on the size of the
dataset, population P used for normalization of the dataset, preprocessing constant, size of
the training set and forecast horizon have been summarized in Table 4.1. The initial condi-
tions are chosen as S(t0) = P−E(t0)−I(t0), I(t0) = I0, R(t0) = 0, where I0 is the first data
point in each dataset and we estimate E(t0) from {kI0 : k ∈ {0, 1, 5, 10, 15, 20, 25, 50, 80}},
which is the value of E(t0) that gives the smallest ℓ2-squared error over the training set.
As in Section 4.3.1, we let the model choose the best estimate of E(t0). A convolution filter
with the parameter s = 10 (see Equation (4.4)) is used on the derivative vector. We test
SPADE4 on different sizes of training sets with cardinality m (see Table 4.1 for values of
m considered). Comparison with the benchmark method is done using a one-week-forecast
horizon of the proportion of cumulative cases.

Data Total Data Population c m (days) Prediction Interval
Ebola Data from
Guinea

572 135× 106 10−3 172 173-179
286 287-293

Zika Data from
Giradot

93 95× 103 1 27 28-34
65 66-72

Influenza Data from
China

128 7× 108 10−5 44 45-51
64 65-71

Table 4.1: Parameters corresponding to datasets for Ebola, Zika and influenza A/H7N9.

The one-week-ahead forecasts of the Ebola, Zika, and flu datasets are given in Figure
4.8. From the second column in Figure 4.8, we can see that the benchmark methods with
SEIR and SµEIR have a tendency to underpredict for Zika and flu datasets when the
epidemic curve has a sharp slope and the number of training points is less. For the Ebola
dataset, the SµEIR model learns well with less training data, however, the SEIR model
overpredicts far away from the true curve. At this point, however, forecasts suggested
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Figure 4.8: First column presents Ebola (top), Zika (center), and influenza A/H7N9 (bot-
tom) datasets where the training data is from day 0th to the dashed vertical lines. The
next two columns present the corresponding one-week ahead forecasts of our SPADE4 (in
blue), SEIR (in magenta), and SµEIR (in green) versus ground truth (in black).

by SPADE4 are closest to the true values. Towards the end of the curve given in the
third column of Figure 4.8, an increase in training data improves the SµEIR benchmark
method (green curves) predictions which are much closer to the true values, especially for
Ebola and flu datasets. The SEIR method predictions are still far away irrespective of
the increase in training points as the method struggles to learn the changing nature of
the trajectory. Predictions of SPADE4 remain consistently close to the true values with
slight improvement with an increase in the size of training data. This can be seen more
clearly in Table 4.2 in Section 4.3.3 where relative errors on the one-week-ahead horizon
have been summarized. The results demonstrate that the performance of the benchmark
method is dependent on the knowledge of the target model, the nature of the epidemic,
and the number of data points. Fitting to an incorrect target model or scarce training
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data can affect prediction accuracy. However, SPADE4 can predict close to the true values
without any prior knowledge of the underlying model.

4.3.3 Comparison with SEIR Models with Time-Varying Trans-
mission Rate

In this section, we provide a comparison analysis between the performance of our SPADE4
against the time-varying transmission rate SEIR models [58, 130], denoted by SEIRβ(t).
In [58, 130], the authors present β(t) using a fixed basis and learn β(t) along with the
other parameters of the model. In our paper, we compare with SEIRβ(t), where β(t) has a
Legendre polynomial basis representation of order q, i.e., given t ∈ [a, b],

β(t) =

q∑
k=0

ξkPk(x),

where x =
2t− b− a
b− a

and Pk(x) are Legendre polynomials of order 0 ≤ k ≤ q given by

P0(x) = 1, P1(x) = x,

(2k + 1)Pk+1(x) = (k + 1)xPk(x)− kPk−1(x).

We use non-linear least squares to learn the parameters γ, σ and the weights ξk’s represent-
ing β(t) for each q ∈ {1, 2, 3, 4, 5, 6} and let the model choose the best q using Bayesian
Information Criterion (BIC). To compare the performance of our SPADE4 with SEIRβ(t),
we plot the seven-day validation errors with various sizes of the training data for the sec-
ond and fifth wave of COVID-19 in Canada in Figure 4.9. Additionally, we also report in
Table 4.2 the seven-day validation errors for the datasets with cumulative data explored
in Section 4.3.2.

From Figure 4.9, one can conclude that SPADE4 consistently outperforms SEIR, SµEIR,
and SEIRβ(t) models. Especially, the performance gap is significant for the fifth wave when
the peak is sharp and the amount of available data is limited.

A similar comparison has been investigated to datasets with cumulative data, including
Ebola in Guinea, Zika in Giradot, and influenza A/H7N9 in China. The seven-day fore-
casting errors (in terms of relative validation error) are given in Table 4.2. We notice that
SPADE4 performs the best in most cases except one with the influenza A/H7N9 dataset
from China.

4.3.4 Prediction Interval

We propose a simple method to construct the prediction interval for SPADE4. The main
idea is to use part of the training data to estimate the variance σ̂(t) of Îours(t). Then,
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Figure 4.9: Validation error plot with a various number of training points for our SPADE4
(blue), SEIR (solid magenta), SEIRβ(t) (broken magenta), and SµEIR model (green) models
on second (left) and fifth (right) wave of COVID-19 dataset.

Data m SPADE4 SEIR SEIRβ(t) SµEIR

Ebola Data from Guinea
172 0.0053 0.0428 0.0811 0.0058
286 0.0012 0.0365 0.00497 0.0036

Zika Data from Giradot
27 0.0204 0.0638 0.1168 0.2185
65 0.0055 0.0302 0.0635 0.0213

Influenza Data from China
38 0.1783 0.3178 0.0511 0.3359
64 0.0079 0.2017 0.0291 0.0097

Table 4.2: Relative error over one-week-ahead forecast horizon for different sizes of training
data for the datasets corresponding to Ebola, Zika, and influenza A/H7N9.

the 95% prediction interval is Îours(t) ± 1.96σ̂(t). The detail of our construction method
is outlined in Algorithm 3. To illustrate the performance of this method, we construct
the prediction interval for the Ebola, Zika, and influenza A/H7N9 datasets using the same
setting as in Section 4.3.2. We can see that the true curve lies inside the shaded region of
the 95% prediction interval (Figure 4.10).

4.3.5 Stability

Since our proposed method SPADE4 uses random features as a basis, in all our experiments
above, we make use of a fixed seed to ensure the results are consistent over multiple
executions of the simulations. However, in this section, we provide numerical evidence of
the stability of SPADE4 with respect to the random basis generated for each simulation.
Figure 4.11 gives all the possible predicted curves for the second wave of COVID-19 in
Canada with different sizes of training data using SPADE4 (shaded in blue) over one
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Algorithm 3 Prediction Interval of SPADE4

Given: Data {I(tk)}m2
k=1; Forecast window T ; a number m1 < m2 − T .

To find: 95% prediction interval for {I(tk)}m2+T
k=m2+1.

Algorithm:
1: Initialize V = [v1, . . . ,vm2−m1−T ] ∈ RT×(m2−m1−T ) and Σ̂ = [σ̂1, . . . , σ̂T ] ∈ RT .

2: for i = 1, . . . ,m2 −m1 − T do

{Îours(tk)}m1+i+T
k=m1+i ← SPADE4({I(tk)}m1+i−1

k=1 ).

vi ← [Îours(tm1+i)− I(tm1+i), . . . , Îours(tm1+i+T )− I(tm1+i+T )]T .

3: end for

4: for j = 1, . . . , T do

σ̂j =

√√√√ 1

m2 −m1 − T

m2−m1−T∑
k=1

V [k, j]2.

5: end for

6: Find {Îours(tk)}m2+T
k=m2+1 ← SPADE4({I(tk)}m2

k=1).

7: Prediction intervals: [Î(tm2+1)± σ̂1 ∗ 1.96, . . . , Î(tm2+T )± σ̂T ∗ 1.96].
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Figure 4.10: Prediction interval for the Ebola dataset with m = 286 (m1 = 266 and
m2 = 286), Zika dataset with m = 65 (m1 = 45 and m2 = 65) and influenza A/H7N9
dataset with m = 64 (m1 = 44 and m2 = 64).

hundred randomly generated basis along with the predictions of the benchmark methods.
We can see that all the predictions made by SPADE4 are closest to the true curve (in black)
in comparison to the other methods depicting that SPADE4 performs well consistently
irrespective of the random basis generated.

Figure 4.11: Predicted seven-day forecast curves using 100 runs of SPADE4 (shaded in
blue) and the benchmark methods (SEIR model in magenta and SµEIR model in green)
for the second wave of COVID-19 in Canada before the peak, at the peak and after the
peak.

4.3.6 Varying Embedding Dimension

In this section, we demonstrate the stability of our method with respect to the choice of
the embedding dimension p. We plot the validation error for one-week ahead forecasts for
the second wave of COVID-19 in Canada with varying p and plot them in Figure 4.12. We
use p = 9 in all our experiments since we follow the population division suggested by one
of the most popular SEIR model in epidemiology. Since d = 4 in SEIR and SµEIR models,
we choose p = 2d+1 = 9. The results in Figure 4.12 demonstrate the fact that using p = 9
gives consistently good results across different sizes of training data. While values of p < 9
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Figure 4.12: Validation error plot with various number of training points for SPADE4 with
p ∈ {5, 7, 9, 11, 14} for the second wave of COVID-19 in Canada.

do not perform the best, the error does improve for some cases when p > 9. However, for
small input data, a large value of p is not feasible since it would further reduce the training
data after the use of a time delay embedding map. Thus, while the embedding dimension p
is a hyperparameter worthy of further exploration, our experiments suggest that choosing
p = 2d+ 1 outperforms other choices when both, the size of input data and the validation
error are taken into account.

4.4 Other Function Approximation Methods

In this section, we discuss the performance of SPADE4 by considering alternative function-
approximation models, namely polynomial approximation and neural networks.

In the first case, we replace the dictionary matrix A in SPADE4 with a polynomial
basis. We compare with an orthogonal polynomial basis of orders 2 and 3. Given the input
data {y(tk)}mk=1, embedding dimension p and order of the polynomial basis n, the collection
of trial functions using Legendre polynomials (as given in [126]) is given by

Aleg =



1
√

3y(t1) · · ·
√

3y(tp)

√
5(3[y(t1)]

2 − 1)

2
3y(t1)y(t2) · · ·

1
√

3y(t2) · · ·
√

3y(tp+1)

√
5(3[y(t2)]

2 − 1)

2
3y(t2)y(t2) · · ·

...
...

...
...

...
...

...

1
√

3y(tm−p+1) · · ·
√

3y(tm)

√
5(3[y(tm−p+2)]

2 − 1)

2
3y(tm−p+2)y(tm−p+3) · · ·


.

For our experiments, we choose second and third-order Legendre polynomials as the dic-
tionaries. We then solve the optimization problem as described in Eq. (4.7) and obtain
predictions using Eq. (4.8).
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For the sake of further comparison, a shallow neural network approximation of the
function f in Eq. (4.2) is also used in place of the random feature approximation i.e.,

f(h) = W2ϕ(W1h + b1), (4.11)

where for h ∈ Rp, we have trainable weights and biases given by W1 ∈ RN×p, b1 ∈ RN

and W2 ∈ R1×N . We also adjust the number of neurons in the hidden layer to match
the number of trainable parameters in SPADE4. We learn the parameters of the neural
network model by minimizing the ℓ2 norm of the true data with the approximated function
given in Eq. (4.11) using gradient descent.

Figure 4.13: Comparison of SPADE4 against Legendre polynomial dictionary of orders 2,3
and an NN approximation using simulated data with 5% noise. Predictions are made for
seven-day-ahead (left) and fourteen-day-ahead (right) intervals.

In the plots, we denote approximations using the Legendre polynomial of orders 2 and
3 by L2 and L3 respectively. NN denotes approximation using a (shallow) neural network.
We compare our method with both one-week and two-week predictions. We can see that for
each experiment, our proposed model is comparable to a different method. For example,
in Figure 4.13, we see that for a two-week prediction, SPADE4 performs comparably well
to an NN, while for a one-week prediction in Figure 4.14, the performance of SPADE4 is
comparable to the dictionary of second order Legendre polynomials. We see that SPADE4
outperforms most of the methods when the training data is limited which can be noted in
the first two points of the plots in all the Figures. A key observation is that while SPADE4
may not always give the lowest validation errors, it always performs comparably to the
best-performing method for each of the datasets. To summarize, while the nature of the
dataset may affect the performance of the other approximation methods, SPADE4 gives
reliable predictions with low validation errors regardless of the data considered.
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Figure 4.14: Comparison of SPADE4 against Legendre polynomial dictionary of orders 2,3
and an NN approximation using the second wave of the COVID-19 dataset. Predictions
are made for seven-day-ahead (left) and fourteen-day-ahead (right) intervals.

Figure 4.15: Comparison of SPADE4 against Legendre polynomial dictionary of orders 2,3
and an NN approximation using the fifth wave of the COVID-19 dataset. Predictions are
made for seven-day-ahead (left) and fourteen-day-ahead (right) intervals.

4.5 Limitations

Since the performance of SPADE4 is partially dependent on an accurate estimation of
the derivative, the method might not give accurate results if the data is extremely noisy.
Although we do use simple convolution-based smoothing filters to address noisy datasets,
more advanced denoising techniques might be required for higher levels of noise. Another
drawback of the method is the hyperparameter choice of the embedding dimension. While
Takens’ theorem gives an estimate of the embedding dimension (at least 2d+ 1), we need
an estimate of the underlying dimension d in the first place to have the estimate of 2d+1.
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Chapter 5

Diffusion Random Features Model

In this chapter, we present the notion of learning distributions, in particular learning the
mean and/or variance of a Gaussian distribution using a random feature-based method for
diffusion models. Diffusion models have always been seen as complex models requiring a
huge amount of data to perform well. Although they are well known for generating high-
resolution images, diffusion models have high computational power requirements and are
rarely interpretable. Our motivation to work with diffusion models and random features
comes from an attempt to build an interpretable model for learning distributions through
diffusion models. We build the model by considering a random feature model to be learned
for each diffusion step. This architecture helps us to build a stacked-up model consisting of
random feature models layered through time. The model is interpretable since the random
feature model can be analyzed for error bounds for each fixed timestep, and as the number
of timesteps is finite, the error bounds can be concatenated over time. We derive bounds
for sampled data using existing theory from [35] and our proposed results. The contents of
this chapter are taken from [124], with modification. the chapter is organized as follows:
Section 5.1 gives the background and motivation followed by the algorithm and theoretical
results in Section 5.2 and the experimental results in Section 5.3.

5.1 Diffusion Models and Related Works

We first recall some useful notations and terminologies corresponding to diffusion models.
In this chapter, we denote N (0, Id) the d− dimensional Gaussian distribution with the
zero mean vector and the identity covariance matrix. We use the notation p(x) = N (µ,Σ)
to mean that p(x) is the p.d.f. of a random vector x following the multivariate normal
distribution with mean vector µ and covariance matrix Σ.

A diffusion model consists of two Markov chains: a forward process and a reverse
process. The goal of the forward process is to degrade the input sample by gradually
adding noise to the data over a fixed number of timesteps. The reverse process involves
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learning to undo the added-noise steps using a parameterized model. Knowledge of the
reverse process helps to generate new data starting with a random noisy vector followed
by sampling through the reverse Markov chain [81,152].

5.1.1 Forward Process

The forward process degrades the input data such that q(xK) ≈ N (0, Id). More precisely,
let x0 ∈ Rd be input from an unknown distribution with p.d.f. q(x0). Suppose 0 <
β1 ≤ β2 ≤ · · · ≤ βK < 1 is a given variance schedule. As defined in Definition 2.5.14
in Chapter 2, the forward process generates a sequence of random variables x1,x2, ...,xK

with conditional distributions

q(xk+1|xk) = N (xk+1;
√

1− βk+1xk, βk+1Id) for k = 0, · · · , K − 1. (5.1)

Let αk = 1− βk for k = 1, . . . , K and αk =
k∏

i=1

αi.

From Eq. (2.63) in Chapter 2, the conditional distribution q(xk+1|x0) is

q(xk+1|x0) = N (xk+1;
√
αk+1 x0, (1− αk+1)Id). (5.2)

Note that, at k = K, we have

xK =
√
αK x0 +

√
1− αK ϵ,

where ϵ ∼ N (0, Id). Since 0 < β1 ≤ β2 ≤ · · · ≤ βK < 1, 0 < αK < αK
1 < 1. Therefore,

lim
K→∞

αK = 0. Hence, q(xK) =
∫
q(xK |x0)q(x0)dx0 ≈ N (0, Id), i.e., as the number of

timesteps becomes very large, the distribution q(xK) will approach the Gaussian distribu-
tion with mean 0 and covariance Id.

5.1.2 Reverse Process

The reverse process aims to generate data from the input distribution by sampling from
q(xK) and gradually denoising for which one needs to know the reverse distribution q(xk−1|xk).
In general, computation of q(xk−1|xk) is intractable without the knowledge of x0. There-
fore, we condition the reverse distribution on x0 in order to obtain the mean and variance
for the reverse process. From Lemma 2.5.16 in Chapter 2 we have,

q(xk−1|xk,x0) =

√
(1− αk)d√

(2πβk(1− αk−1))d
exp

(
−1

2

(xk−1 − µ̃k)T (xk−1 − µ̃k)

β̃k

)
, (5.3)

where,

µ̃k =

√
αk(1− αk−1)

1− αk

xk +

√
αk−1βk

1− αk

x0 and β̃k =
1− αk−1

1− αk

βk. (5.4)
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Thus the reverse distribution conditioned on x0 is q(xk−1|xk,x0) = N (µ̃k, β̃kId), where
µ̃k, β̃k are obtained above. Our aim is to learn the reverse distribution from the obtained
conditional reverse distribution. From Markovian theory, if βk’s are small, the reverse
process is also Gaussian [132]. Let pθ(xk−1|xk) be the learned reverse distribution, then
Markovian theory tells us that pθ(xk−1|xk) = N (µθ(xk, k),Σθ(xk, k)), where µθ(xk, k)
and Σθ(xk, k) are the learned mean vector and variance matrix respectively. Since the
derived covariance matrix β̃kId for conditional reverse distribution is constant, Σθ(xk, k)
need not be learnt. In [70], the authors show that choosing Σθ(xk, t) as βkId or β̃kId yield
similar results and thus we fix Σθ(xk, k) = βkId for simplicity. Furthermore, since xk is
also available as input to the model, the loss function derived in [70] as a KL divergence
between q(xk−1|xk,x0) and pθ(xk−1|xk) can be simplified as

DKL(q(xk−1|xk,x0)∥pθ(xk−1|xk) = Eq

[
1

2βk
∥µ̃k(xk,x0)− µθ(xk, k)∥2

]
+ const, (5.5)

where for each timestep k, µ̃k(xk,x0) denotes the mean of the reverse distribution con-
ditioned on x0 i.e., q(xk−1|xk,x0) and µθ(xk, k) denotes the learned mean vector. Thus,
the above equation predicts the mean of the reverse distribution when conditioned on

x0. Substituting x0 =
1√
αk

(xk −
√

1− αkϵk) in Eq. (5.4) we can obtain µ̃(xk, k) =

1
√
αk

(
xk −

βk√
1− αk

ϵ

)
. Further, since xk is known, we can use the formula for µθ(xk, k) =

1
√
αk

(
xk −

βk√
1− αk

ϵθ(xk, k)

)
. We can simplify Eq. (5.5) as:

Ek,x0,ϵ

[
1

2αk(1− αk)
∥ϵ− ϵθ(xk, k)∥2

]
. (5.6)

where ϵθ now denotes a function approximator intended to predict the noise from xk. The
above results show that we can either train the reverse process mean function approximator
µθ to predict µ̃k or modify using its parameterization to predict ϵ. In our proposed
algorithm, we choose to use the loss function from Eq. (5.6) since it is one of the simplest
forms to train and understand. This formulation of DDPM also helps us to harness the
power of SDEs in diffusion models through its connection to DSMs [18].
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5.1.3 DDPM and DSM

We can also apply the DDPM algorithm for score matching by formulating the DDPM
objective as a DSM objective.

LDDPM = Ek,x0,ϵ

[
1

2αk(1− αk)
∥ϵ− ϵθ(xk, k)∥2

]
(5.7)

= Ek,x0,ϵ

 1

2αk(1− αk)

∥∥∥∥∥xk −
√
αkx0√

1− αk

− ϵθ(xk, k)

∥∥∥∥∥
2
 (5.8)

= Ek,x0,xk

 1

2αk(1− αk)

∥∥∥∥∥xk −
√
αkx0

1− αk

√
1− αk −

√
1− αk√
1− αk

ϵθ(xk, k)

∥∥∥∥∥
2
 (5.9)

= Ek,x0,xk

 1

2αk

∥∥∥∥∥−∇xk
log q(xk|x0)−

1√
1− αk

ϵθ(xk, k)

∥∥∥∥∥
2
 (5.10)

= Ek,x0,xk

 1

2αk

∥∥∥∥∥sθ(xk, k)−∇xk
log q(xk|x0)

∥∥∥∥∥
2
 = LDSM, (5.11)

where sθ(xk, k) = − 1√
1− αk

ϵθ(xk, k). The above formulation is known as denoising score

matching (DSM), which is equivalent to the objective of DDPM. Furthermore, the ob-
jective of DSM is also related to the objective of score-based generative models using
SDEs [133]. We briefly discuss the connection between diffusion models, SDEs, and DSM
in the upcoming section [70,133,152].

5.1.4 Diffusion Models and SDEs

The forward process can also be generalized to stochastic differential equations (SDEs) if
infinite time steps or noise levels are considered (SDEs) as proposed in [152]. To formulate
the forward process as an SDE, let t = k

K
and define functions x(t), β(t) and ϵ(t) such that

x( k
K

) = xk, β( k
K

) = Kβk and ϵ( k
K

) = ϵk. Note that in the limit K →∞, we get t ∈ [0, 1].

Using the derivations from [152], the forward process can be written as an SDE of the
form,

dx =
−β(t)

2
xdt+

√
β(t)dw, (5.12)

where w is the standard Wiener process. The above equation now is in the form of an
SDE

dx = f(x, t)dt+ g(t)dw, (5.13)
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where f(x, t) and g(t) are diffusion and drift functions of the SDE respectively, and w is a
standard Wiener process. The above process can be reversed by solving the reverse SDE,

dx = [f(x, t)− g(t)2∇x(t) log q(x(t))]dt+ g(t)dw, (5.14)

where w is a standard Wiener process backwards in time, and dt denotes an infinitesimal
negative time step and q(x(t)) is the marginal distribution of x(t). Note that in particular
for Eq.(5.12), the reverse SDE will be of the form

dx =

[
β(t)

2
− β(t)∇x(t) log q(x(t))

]
dt+

√
β(t)dw. (5.15)

The unknown term ∇x(t) log q(x(t)) is called the score function and is estimated by
training a parameterized model sθ(x(t), t) via minimization of the loss given by

Eq(x(t))

[
1

2

∥∥∥sθ(x(t), t)−∇x(t) log q(x(t))
∥∥∥2
2

]
. (5.16)

Note that since q(x(0)) is unknown, therefore the distribution q(x(t)) and subsequently
the score function∇x(t) log q(x(t)) are also unknown. Referring to results from [147], we see
that the loss in Eq. (5.16) is equivalent to the denoising score matching (DSM) objective
given by,

Eq(x(t),x(0))

[
1

2

∥∥∥sθ(x(t), t)−∇x(t) log q(x(t)|x(0))
∥∥∥2
2

]
. (5.17)

We can see that the above objective is the same as the objective of DSM in the discrete
setting. Apart from the success of score-based models using SDEs, an additional advantage
of formulating the diffusion model using SDEs is the theoretical analysis based on results
from SDEs. In our paper, we aim to use this connection to build a theoretical understanding
of our proposed model.

While there are remarkable results for improving training and sampling for diffusion
models, little has been explored in terms of the model architectures. Since distribution
learning and data generation is a complex task, it is unsurprising that conventional diffu-
sion models are computationally expensive. From previous works in [70, 152, 155], U-Net
(or variations on U-Net combined with ResNet, CNNs, etc.) architecture is still the most
commonly used model for diffusion models. The architecture of U-Net is designed in a
way that it preserves the input dimension of the data i.e., the output and input dimension
are the same. Additionally, U-Nets generally consist of a contracting (downsampling) and
expanding (upsampling) path. The contracting path consists of sequences of convolutional
and max-pooling layers that downsample the input images and extract the layers. How-
ever, all these architectures have millions of parameters making training (and sampling)
cumbersome. An alternative approach to reduce the complexity of machine learning algo-
rithms is to use a random feature model (RFM) [109, 110] for approximating the kernels
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using a randomized basis. RFMs are derived from kernel-based methods which utilize a
pre-defined nonlinear function basis called kernel K(x,y). From the neural network point
of view, an RFM is a two-layer network with a fixed single hidden layer sampled ran-
domly [109,110]. Not only do random feature-based methods give similar results to that of
a shallow network, but the model in itself is also interpretable which makes it a favorable
method to use. Some recent works which use random features for a variety of tasks are
explored in [37,38,105,115,122,123]. However, random features can lack expressibility due
to their structure and thus we aim to propose an architecture that can be more flexible in
learning yet retaining properties of random features.

5.2 Algorithm and Theory

Our proposed model is a diffusion model inspired random feature model. The main idea
of our model is to build an interpretable diffusion random feature architecture. Our work
is inspired by denoising diffusion probabilistic model (DDPM) proposed in [70] and semi-
random features proposed in [78]. Let x0 ∈ Rd be the input data belonging to an unknown
distribution q(x0). Let K denote the total number of timesteps in which the forward
process is applied. Suppose N is the number of features. For each timestep k, we build a
noise predictor function ϵθ of the form

ϵθ(xk, k) =
(

sin
(
xT
kW + bT

)
⊙ cos

(
τ T
k θ

(1)
))

θ(2), (5.18)

where xk ∈ Rd, W ∈ Rd×N , b =
[
b1 . . . bN

]T ∈ RN , θ(1) =
[
θ
(1)
ki

]
∈ RK×N , τ k ∈ RK ,

θ(2) =
[
θ
(2)
ij

]
∈ RN×d, and ⊙ denotes element-wise multiplication. The vector τ k (k ≥ 1) is

a one-hot vector with the position of one corresponding to the timestep k. The motivation
to use trainable weights corresponding to the time parameter is twofold: first, we want to
associate importance to the timestep being used when optimizing the weights; secondly,
we aim to build a random feature model layered through time. The inspiration for using
cosine as an activation comes from the idea of positional encoding used for similar tasks.
In general, positional encoding remains fixed, but for our method, we wish to make the
weights associated with timestep random and trainable. This is done so that the model
learns the noise level associated with the timestep. Our aim is to train the parameters
θ = {θ(1),θ(2)} while W and b are randomly sampled and fixed. The model is trained
using Algorithm 4.

5.2.1 Theoretical Results

We provide theoretical results corresponding to our proposed model. We first formulate our
proposed model as a time-dependent layered random features model, followed by the proof
of obtaining sample generation bounds. The obtained bounds help to prove that DRFM
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Figure 5.1: Representation of DRFM. The green boxes denote the random feature layer
which is active and corresponds to the timestep selected, while the other remains fixed.

is capable of generating samples from the distribution on which it was trained using the
results from [35].

For a fixed timestep k, let xk = y then Eq. (5.18) can be written as:

ϵθ(xk, k) =
(

sin
(
xT
kW + bT

)
⊙ cos

(
τ kθ

(1)
))

θ(2)

=

sin

[y1 ... yd
] ω11 ... ω1N

... ...
...

ωd1 ... ωdN

+

 b1...
bN


⊙ [cos

(
θ
(1)
k1

)
... cos

(
θ
(1)
kN

)]θ(2)

= sin
(
xT
kW + bT

)

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(
θ
(1)
k1

)
θ
(2)
11 ... cos

(
θ
(1)
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)
θ
(2)
1d

... ...
...

cos
(
θ
(1)
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)
θ
(2)
N1 ... cos

(
θ
(1)
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)
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(2)
Nd

 .
(5.19)

For each j = 1, ..., N , let aj = sin

(
d∑

i=1

yiωij + bj

)
. Note that aj’s are fixed. Then Eq.

(5.19) becomes,

ϵθ(y, k) =
[
a1 cos

(
θ
(1)
k1

)
... aN cos

(
θ
(1)
kN

)]θ
(2)
11 ... θ

(2)
1d

... ...
...

θ
(2)
N1 ... θ

(2)
Nd

 (5.20)

=
[
a1 ... aN

]


cos
(
θ
(1)
k1

)
θ
(2)
11 ... cos

(
θ
(1)
k1

)
θ
(2)
1d

... ...
...

cos
(
θ
(1)
kN

)
θ
(2)
N1 ... cos

(
θ
(1)
kN

)
θ
(2)
Nd

 . (5.21)
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Algorithm 4 Training and sampling using DRFM

Input: Sample x0 ∼ q(x0) where q is an unknown distribution, variance schedule β =
{β1, ..., βK} such that 0 < β1 ≤ β2 ≤ · · · ≤ βK < 1, random weight matrix W = [ωij]
and bias vector b sampled from a distribution ρ and total number of epochs epoch.

Algorithm:

Training

1: Choose random timestep k ∈ {1, 2, ..., K} and build vector τ k = [0, ...0, 1, 0, ..., 0]T

where 1 is in kth position.
2: Define the forward process for k = 1, 2, ..., K as

xk =
√

1− βkxk−1 +
√
βkϵk,

where ϵk ∼ N (0, Id).
3: for j in epochs do
4: k ∼ U{1, 2, ..., K}.
5: Define τ k as in line 1.
6: ϵθ(xk, k)← (sin(xT

kW + b)⊙ cos(τ T
k θ

(1)))θ(2).

7: Update θ = [θ(1),θ(2)] by minimizing the loss L =
1

K

K∑
k=1

∥∥∥ϵk − ϵθ(xk, k)
∥∥∥2
2
.

8: end for

Sampling

9: Sample a point xK ∼ N (0, Id).
10: for k = K − 1, ..., 1 do
11: Sample ϵ ∼ N (0, Id).

12: x̃k−1 =
1√

1− βk

xk −
√
βk√

1−
k∏

i=1

(1− βi)

ϵθ(xk, k))

+ βkϵ.

13: end for
Output: Generated sample x̃0.

Thus, for a fixed time k, our proposed architecture is a random feature model with a fixed
dictionary having N features denoted by ϕ(⟨xk,ωi)⟩ = sin

(
xT
kωi + bi

)
, ∀i = 1, . . . , N and

learned coefficients C = (cij) ∈ RN×d whose entries are cij = cos
(
θ
(1)
ki

)
θ
(2)
ij , ∀i = 1, . . . , N ;

j = 1, . . . , d.

As depicted in Figure 5.1, DRFM can be visualized as K random feature models stacked
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up in a column. Each random feature model has associated weights corresponding to its
timestep which also gets optimized implicitly while training. The reformulation of DRFM
into multiple random feature models leads us to our first Lemma stated below. We show
that the class of functions generated by our proposed model is the same as the class of
functions approximated by random feature models.

Lemma 5.2.1. Let Gk,ω denote the set of functions that can be approximated by DRFM
at each timestep k defined as

Gk,ω =

{
g(x) =

N∑
j=1

cos
(
θ
(1)
kj

)
θ
(2)
j ϕ(xT

kωj)

∣∣∣∣∣∥∥∥θ(2)
j

∥∥∥
∞
≤ C

N

}
. (5.22)

Then for a fixed k, Gk,ω = Fω where

Fω =

{
f(x) =

N∑
j=1

αj ϕ(xTωj)

∣∣∣∣∣∥αj∥∞ ≤
C

N

}
. (5.23)

Proof. The above equality can be proved easily.

Fix k. Consider g(x) ∈ Gk,ω, then g(x) =
N∑
j=1

cos
(
θ
(1)
kj

)
θ
(2)
j ϕ(xT

kωj). Clearly, g(x) ∈ Fω

as
∥∥∥ cos

(
θ
(1)
kj

)
θ
(2)
j

∥∥∥
∞
≤
∥∥∥θ(2)

j

∥∥∥
∞
≤ C

N
. Thus Gk,ω ⊆ Fω.

Conversely let f(x) ∈ Fω, then f(x) =
N∑
j=1

αj ϕ(xT
kωj). Choose θ

(2)
j = αj and θ

(1)
kj =

[0, · · · , 0].

As cos
(
θ
(1)
kj

)
θ
(2)
j = αj, thus f(x) =

N∑
j=1

cos
(
θ
(1)
kj

)
θ
(2)
j ϕ(xTωj) and ∥θ(2)

j ∥∞ = ∥αj∥∞ ≤

C

N
. Hence f(x) ∈ G(k,ω) and Fω ⊆ Gk,ω.

In the next Lemma stated below, we extend results from [109–111] to find approximation
error bounds for vector-valued functions.

Lemma 5.2.2. Let X ⊂ Rd denote the training dataset and suppose q is a measure on X,
and f ⋆ a function in Fρ where

Fρ =

{
f(x) =

∫
Ω

α(ω)ϕ(x;ω) dω

∣∣∣∣∣ ∥α(ω)∥∞ ≤ Cρ(ω)

}
.

If [ωj]j∈[N ] are drawn iid from ρ, then for δ > 0, with probability at least 1−δ over [ωj]j∈[N ],

there exists a function f ♯ ∈ Fω such that

∥f ♯ − f ⋆∥2 ≤
C
√
d√
N

(
1 +

√
2 log

1

δ

)
, (5.24)
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where Fω is defined in Eq. (5.23).

Proof. We follow the proof technique described in [111]. As f ⋆ ∈ Fρ, then f ⋆(x) =∫
Ω

α(ω)ϕ(x;ω)dω. Construct fk = βkϕ(·;ωk), k = 1, · · · , N such that βk =
α(ωk)

ρ(ωk)
=

1

ρ(ωk)

α1(ωk)
...

αd(ωk)

.

Note that Eω(fk) =

∫
ω

α(ωk)

ρ(ωk)
ϕ(x;ω)ρ(ωk)dω = f ⋆.

Define the sample average of these functions as f ♯(x) =
N∑
k=1

βk

N
ϕ(x;ωk).

As
∥∥∥βk

N

∥∥∥
∞
≤ C

N
, thus f ♯ ∈ Fω. Also note that ∥βkϕ(·;ωk)∥2 ≤

√
d∥∥βkϕ(·;ωk)∥∞ ≤

√
dC.

In order to get the desired result, we use McDiarmid’s inequality. Define a scaler function
on F = {f 1, · · · ,fN} as g(F ) = ∥f ♯ − EFf

♯∥2. We claim that the function g is stable
under perturbation of its ith argument.
Define F̃ = {f 1, · · · , f̃ i, · · · ,fN} i.e., F̃ differs from F only in its ith element. Then∣∣∣g(F )− g(F̃ )

∣∣∣ =
∣∣∣∥∥∥f ♯ − EFf

♯
∥∥∥
2
−
∥∥∥f̃ ♯ − EF̃f

♯
∥∥∥
2

∣∣∣ ≤ ∥∥∥f ♯ − f̃
♯
∥∥∥
2
, (5.25)

where the above inequality is obtained from triangle inequality. Further,∥∥∥f ♯ − f̃
♯
∥∥∥
2

=
1

N

∥∥∥f i − f̃ i

∥∥∥
2
≤
∥∥∥(βi − β̃i)ϕ(·;ω)

∥∥∥
2
≤
√
dC

N
. (5.26)

Thus E[g(F )2] = E
[∥∥∥f ♯ − EFf

♯
∥∥∥2
2

]
=

1

N

E
∥∥∥∥∥

N∑
k=1

fk

∥∥∥∥∥
2

2

− ∥∥∥∥∥E
[

N∑
k=1

fk

]∥∥∥∥∥
2

2

.

Since ∥fk∥2 ≤
√
dC, using Jensen’s inequality and above result we get

E[g(F )] ≤
√

E(g2(F )) ≤
√
dC√
N
. (5.27)

Finally, the required bounds can be obtained by combining the above result and McDi-
armid’s inequality.

Using the above-stated Lemmas and results given in [35], we derive our main theorem.
Specifically, we quantify the total variation between the distribution learned by our model
and the true data distribution.

Theorem 5.2.3. For a given probability density q(x0) on Rd suppose the following condi-
tions hold:
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1. For all t ≥ 0, the score ∇ log q(x(t)) is L−Lipschitz.

2. For some η > 0, Eq(x0)[∥.∥(2+η)] is finite. Denote m2
2 = Eq(x0)[∥.∥2].

Let pθ denote learnt distribution corresponding to the DRFM trained parameterized model
ϵθ. Let pθ(x0) be the distribution of the samples generated by DRFM after K timesteps at
terminal time T . Then for the SDE formulation of the DDPM algorithm, if the step size
h := T/K satisfies h ≲ 1/L, where L ≥ 1. Then,

TV (pθ(x0), q(x0)) ≲
√
KL(q(x0)∥γ) exp(−T ) + (L

√
dh+ Lm2h)

√
T +

C2

√
TKd√
N

(
1 +

√
2 log

1

δ

)
,

(5.28)

where C2 ≥ max
1≤i≤N,1≤j≤d

∣∣∣θ(2)
ij

∣∣∣ and γ is the p.d.f. of the multivariate normal distribution

with mean vector 0 and covariance matrix Id.

Proof. Suppose the error in score estimate is bounded in L2, i.e.,

Eq(x(t))[∥pθ(x(t))−∇ ln q(x(t))∥2] ≤ ε2score.

Then from Theorem 1 in [35], we get

TV (pθ(x0), q(x0)) ≲
√
KL(q(x0)∥γ) exp(−T ) + (L

√
dh+ Lm2h)

√
T +
√
Tεscore. (5.29)

Using Lemma 2.3.7, we see that the class of functions approximated by DRFM is the same

as that of RFMs. Thus using Lemma 5.2.2 and substituting εscore =
C2

√
Kd√
N

(
1 +

√
2 log

1

δ

)
such that C2 ≥ max

1≤i≤N,1≤j≤d

∣∣∣θ(2)
ij

∣∣∣ we get the desired results.

The error bound given in Eq. (5.28) consists of three types of errors: (i) convergence
error of the forward process; (ii) discretization error of the associated SDE with step size
h > 0; and (iii) score estimation error, respectively. Note that the first two terms are
independent of the model architecture. While for most models score estimation is difficult,
our main contribution involves quantifying that error which gives us an estimate of the
number of parameters needed for the third error to become negligible. We can combine
the proof of Lemma 5.2.1, 5.2.2, and Theorem 1 from [35] to get the required bounds.

5.3 Experimental Results

In order to validate our findings, we train our proposed model on both image and audio
data. We evaluate the validity of our model on two tasks: (i) generating data from noise
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and; (ii) denoising data corrupted with Gaussian noise. The experiments on images were
done by taking one hundred images of the class “dress” and “shoes” separately from the
fMNIST dataset. For audio data, we use two music samples corresponding to the flute
and guitar. We compare our method with a fully connected version of DRFM (denoted by
NN) where we train [W,b,θ(1),θ(2)] while preserving the number of trainable parameters,
a U-Net model and a classical random feature approach with only θ(2) being trainable
(denoted by RF). The details of the implementation of all the experiments and their results
are described in the sections below.

5.3.1 The U-Net Architecture Used for Comparison

We use a simple U-Net architecture with the same number of trainable layers as that of
DRFM. The representation is given below. Note that a positional time encoding layer is
added before each downsampling step.

Figure 5.2: U-Net architecture used in the experiments. Left: One block consisting of
three convolutional layers. Right: U-Net architecture with downsampling and upsampling
layers.

5.3.2 Results on Fashion-MNIST (fMNIST) Data

We create the image dataset for our experiments by considering 100 images of size 28× 28
taken from a particular class of fMNIST dataset. DRFM is trained with 80000 random
features. For NN, U-Net, and RF we adjust the number of trainable parameters to match
that of DRFM. We use 100 equally spaced timesteps for the forward diffusion process
between 10−4 and 0.02 and train for 30000 epochs by minimizing the mean squared error
(MSE) loss using ADAM optimizer with a learning rate of η = 0.001. For the task of
generating images, we generated fifteen samples from randomly sampled noise. In our
second task we give fifteen images from the same class (but not in the training set) corrupted
with noise and test if our model can denoise the image.

Results from Figure 5.3 demonstrate that our method learns the overall features of
the input distribution. Although the model is trained with a small size of training data
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(only one hundred images) and timesteps (one hundred timesteps), we can see that the
samples generated from pure noise have already started to resemble the input distribution
of dresses. The samples generated by the U-Net model also simply learn to generate the

Figure 5.3: Figures generated from random noise when trained on 100 “dress” images with
100 timesteps linearly spaced between 10−4 and 0.02. The models were trained using 30000
epochs using ADAM optimizer with a learning rate η = 0.001 by minimizing the MSE loss.
Top left block: DRFM. Top right block: NN. Bottom left block: U-Net. Bottom
right block: RF.

overall features of the distribution. The overall sample quality is not significantly better
than the ones generated by DRFM. For NN model we note that most of the generated
samples are the same with a dark shadow while for RF model, the generated images are
very noisy and barely recognizable.

We also test our model’s ability to remove noise from images. We take fifteen random
images of “dress” not in the training data and corrupt it with 20% noise. The proposed
model is used for denoising. In Figure 5.4 we can see that the model can recover a denoised
image which is in fact better than the results obtained when sampling from pure noise.
The U-Net and NN models perform quite well for most of the images. However, in a few
cases with the NN model, it fails to denoise anything and the final image remains noisy.
RF model fails to denoise and the resultant images still contain noise.

Table 5.1 gives the Fréchet Inception Distance (FID) calculated using a batch of 50
images from the training dataset and 15 of the generated images by each of the models.
Note that the scores values given are for the sake of comparing the four methods and more
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Figure 5.4: Figures denoised from images corrupted with 20 % noise.We use 100 timesteps
linearly spaced between 10−4 and 0.02. The models were trained using 30000 epochs using
ADAM optimizer with a learning rate η = 0.001 by minimizing the MSE loss. Top left
block: DRFM. Top right block: NN. Bottom left block: U-Net. Bottom right
block: RF.

samples may improve the FID score. We see that for the generative task, the proposed
DRFM architecture gives the lowest scores. The more commonly used U-Net model is in
the third position after the NN model. For the denoising task, we see that the NN gives
the best results, (although some of the images are inconsistently noisy), followed by U-Net
and then DRFM. Note that for U-Net, while most images are denoised perfectly, some
images are incompletely formed which leads to a lower FID score. Moreover, we see that
all the FID scores are also consistent with the qualitative assessment made in Figures 5.3
and 5.4.

Model Timesteps FID Score
DRFM 100 453.87
U-Net 100 463.28

NN 100 457.21
RF 100 470.12

Model Timesteps FID Score
DRFM 100 394.99
U-Net 100 388.38

NN 100 378.18
RF 100 450.23

Table 5.1: FID scores for all the models when trained with 100 equally spaced timesteps
between 10−4 and 0.02. Right: FID scores for generative task. Left: FID scores for
denoising task.
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Figure 5.5: Generated images trained on 100 “dress” images with 1000 timesteps. Left
block: DRFM. Right block: U-Net.

In order to check the effect of the number of timesteps on the sampling power of DRFM,
we also run our model using 1000 timesteps between 10−4 and 0.02. The images generated
are given in Figure 5.5. Samples generated from noise seem to improve with the increase in
the number of timesteps for both DRFM and U-Net. However, for the denoising task, the
results are similar to those with 100 timesteps as observed in Figure 5.6. The improvement
in sample quality with an increased number of timesteps for generating data is expected
as more reverse steps would be required to generate a point in the input distribution.

Figure 5.6: Denoised images with DRFM trained on 100 “dress” images with 1000
timesteps. Left block: Noisy sample. Right block: Denoised image by DRFM.

We also conducted an experiment with a different class of data with the same experi-
mental setup as above with 100 timesteps. This time we select the class “shoes” and test
our model’s performance. The conclusions drawn support the claims we made with the
previous class of data where DRFM can denoise images well while only learning to generate
basic features of the model class when generating from pure noise. The plots for the above
are depicted in Figure 5.7.
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Figure 5.7: Figures generated from random noise when trained on 100 “shoes” images with
100 timesteps linearly spaced between 10−4 and 0.02. The models were trained using 30000
epochs using ADAM optimizer with a learning rate η = 0.001 by minimizing the MSE loss.
Top left block: Gaussian noise. Top right block: DRFM. Bottom left block: Noisy
samples. Bottom right block: Denoised image by DRFM.

5.3.3 Results on Audio Data

Our second experiment involves learning to generate and denoise audio signals. We use one
data sample each taken from two different instruments, namely guitar and flute. There
are a total of 5560 points for each instrument piece. We train our model using 15000
random features with 100 timesteps taken between 10−4 and 0.02 for 30000 epochs. The
samples are generated from pure noise using the trained model to remove noise for each
reverse diffusion step. We also test if our model is capable of denoising a signal when it is
not a part of the training set explicitly (but similar to it). For that, we use a validation
data point containing samples from a music piece when both guitar and flute are played
simultaneously. We plot the samples generated from pure Gaussian noise in Figure 5.8.
The plots in Figure 5.8 demonstrate the potential of DRFM to generate signals not a part
of the original training data. Figure 5.8(b) shows that there is no advantage of using a
NN model since the results are much worse. The network does not learn anything and
the signal generated is just another noise. On the other hand, our proposed model DRFM
generates signals that are similar to the original two signals used to train the data.

Figure 5.9 shows that when our trained model is applied to a validation data point,
it can successfully recover and denoise the signal. This is more evident when the signal
is played as an audio file. There are however some extra elements that get added while
recovering due to the presence of noise which is a common effect of using diffusion models
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(a) DRFM (b) NN (c) RF

Figure 5.8: Generated samples using different models.

for denoising.

(a) DRFM (b) NN (c) RF

Figure 5.9: Denoised signals using different models.

5.4 Summary

We propose a model based on diffusion models and random feature methods. We show
that our method of formulating the model helps us to derive bounds on the sampled data.
Our experiments indicate that the proposed model can learn to generate as well as denoise
data from a small training dataset.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis, we explored the theory and various applications of random feature models
which are beyond their conventional applications in the literature. Applications of RFMs in
data science are still limited. We start our research work with a fundamental application
of surrogate modeling i.e., function approximation. The Pareto principle states that a
small number of low-complexity interactions dominates most real-world systems. Thus,
for a given dataset we can find a sparse representation from a large set of features. In
particular, our goal was to build a model for high dimensional sparse additive functions.
We proposed a new high-dimensional sparse additive model called HARFE utilizing the
random feature method with two sparsity priors. First, we assumed that the number
of terms needed in the model is small which leads to function approximations with low
model complexity. Second, we enforce a random and sparse connectivity pattern between
the hidden layer and the input layer which helps to extract input variable dependencies.
Based on the numerical experiments on high-dimensional synthetic examples, the Friedman
functions, and real data, the HARFE algorithm was shown to produce robust results that
have the added benefit of extracting interpretable variable information. The analysis of the
HARFE algorithm utilizes techniques from compressive sensing and it was shown that the
method converges and has a reasonable error bound depending on the number of features,
the number of samples, the ridge parameter, the sparsity, the noise level, and dimensional
parameters.

Following the success of our proposed model for high-dimensional sparse additive func-
tion approximation, we extended the idea of function approximation to learning dynamical
systems from epidemiology for short-term predictions using incomplete data. We partic-
ularly looked into short-term forecasts of an epidemic-based trajectory as they serve as a
communication channel between the scientific community and decision-makers. It helps in
making informed short-term decisions such as the allocation of medical supplies, health-
care staffing needs, lockdowns, and closures. We proposed a delay embedding-based model
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called SPADE4 which forecasts the trajectory (daily active cases or cumulative cases) in
a one-week-forecast horizon. We used the given incomplete data and embedded it into
a higher dimensional space by using delay time embedding. Using Takens’ theorem, we
assumed that the new representation was diffeomorphic to the original unknown system
and used it to learn the trajectory of the rate of change of infected people using a random
feature basis. We compared SPADE4 with benchmark methods with SEIR, SEIRβ(t), and
SµEIR fitting. Our experiments on simulated and real datasets show that SPADE4 can
provide a reliable and comparatively accurate forecast that exceeds the performance of
the benchmark method. While some knowledge of the target model and initial values are
required by the benchmark model, SPADE4 has no such prerequisites for its performance.
Although the proposed algorithm requires choosing appropriate hyperparameters for its
claimed performance, using existing theoretical results on delay embedding and sparse
random feature models, we show that the choice of hyperparameters made is reasonable
for its performance. Additionally, we also provided results to show that the predictions
given by SPADE4 are stable with respect to the basis chosen as well as our choice of the
embedding dimension p. For a fair comparison, we also consider alternative function ap-
proximation models such as a (orthogonal) polynomial fitting and a fully connected shallow
neural network approximation. We conclude from our results that SPADE4 can perform
comparably to the best method for each dataset with the lowest validation errors. Some
possible limitations of the method were also discussed. For example, the performance of
SPADE4 is partially dependent on an accurate estimation of the derivative and so if the
data is extremely noisy, the model predictions may be inaccurate. For such situations, one
may need to preprocess the data using appropriate denoising techniques before applying
SPADE4.

Working with dynamical systems motivated us to work with random features that are
dependent on time. This way of formulating the model would be the starting point for
building interpretable random features for learning distributions. Thus we proposed the
Diffusion Random Feature Model (DRFM). Optimization of the coefficients in DRFM
happens corresponding to the output layer as well as the time parameter. Thus for each
timestep, there is a weighted random feature model getting optimized with the weights
representing the intermediate diffusion timesteps. Since the architecture is interpretable
from existing results, it is possible to find theoretical upper bounds on the samples gen-
erated by DRFM with respect to the input distribution. We validated our findings using
numerical experiments on audio and a small subset of the Fashion-MNIST dataset. Our
findings indicated the power of our method to learn the process of generating data from
as few as one hundred training samples and one hundred timesteps. Comparisons with a
fully connected network (when all layers are trainable) and random features method (all
but the last layer is fixed i.e., only θ2 is trainable) highlighted the advantages of our model
which performed better than both.
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6.2 Further Directions

The research conducted in the thesis opens up a wide options worthy of further exploration.
In our work on predicting epidemics, our focus was on short-term prediction of diseases
using either data from daily infected cases or cumulative cases. For the input data coming
from daily infected cases, we analyzed the disease one wave at a time. An interesting
future work would be to study seasonal diseases such as chicken pox which has oscillating
data with short periods. We would expect a successful method to be able to predict the
oscillating nature of the disease with accurate predictions for the peak for a few seasons.
It would also be a worthy exploration to understand the high-dimensional diffeomorphic
system that is assumed to be recovered from embeddings of the input data along with a
guided method to choose the embedding dimension and time delay parameter.

Since the research work on DRFM was based on time-dependent random features, we
think it would be interesting to apply the proposed architecture for learning dynamical
systems. Since our proposed model preserves the input and output dimensions, it can be
used to learn the full state information of high-dimensional systems. DRFM might also
be a good model to use for learning stochastic differential equations as the states are not
deterministic and thus allocating an RFM for each timestep might be beneficial.
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Lopez. A comprehensive survey on support vector machine classification: Applica-
tions, challenges and trends. Neurocomputing, 408:189–215, 2020.

[34] Kathleen P Champion, Steven L Brunton, and J Nathan Kutz. Discovery of nonlinear
multiscale systems: Sampling strategies and embeddings. SIAM Journal on Applied
Dynamical Systems, 18(1):312–333, 2019.

[35] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sam-
pling is as easy as learning the score: theory for diffusion models with minimal data
assumptions. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

114



[36] Zhijun Chen and Hayden Schaeffer. Conditioning of random feature matrices: Double
descent and generalization error. arXiv preprint arXiv:2110.11477, 2021.

[37] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiud-
din, Lukasz Kaiser, David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller.
Rethinking attention with performers. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021.

[38] Krzysztof Marcin Choromanski, Han Lin, Haoxian Chen, Arijit Sehanobish, Yuanzhe
Ma, Deepali Jain, Jake Varley, Andy Zeng, Michael S. Ryoo, Valerii Likhosherstov,
Dmitry Kalashnikov, Vikas Sindhwani, and Adrian Weller. Hybrid random features.
In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[39] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pel-
lat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn.
Res., 24:240:1–240:113, 2023.

[40] Il Yong Chun, Ben Adcock, and Thomas M Talavage. Efficient compressed sensing
SENSE pMRI reconstruction with joint sparsity promotion. IEEE transactions on
Medical Imaging, 35(1):354–368, 2015.

[41] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20:273–297, 1995.

[42] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen,
Alvaro J Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House,
Yuxin Huang, et al. Evaluation of individual and ensemble probabilistic forecasts of
COVID-19 mortality in the United States. Proceedings of the National Academy of
Sciences, 119(15):e2113561119, 2022.

115



[43] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and
Shirley Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

[44] R Devipriya, S Dhamodharavadhani, and S Selvi. SEIR model for COVID-19 epi-
demic using delay differential equation. In Journal of Physics: Conference Series,
volume 1767, page 012005. IOP Publishing, 2021.

[45] Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk. Approxima-
tion of functions of few variables in high dimensions. Constructive Approximation,
33(1):125–143, 2011.

[46] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real NVP. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[47] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[48] Vanja Dukic, Hedibert F Lopes, and Nicholas G Polson. Tracking epidemics with
Google flu trends data and a state-space SEIR model. Journal of the American
Statistical Association, 107(500):1410–1426, 2012.

[49] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical
understanding of neural network-based machine learning: what we know and what
we don’t. arXiv preprint arXiv:2009.10713, 2020.

[50] Oliver G Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann. On
the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical
Modelling and Numerical Analysis, 46(2):317–339, 2012.

[51] William Feller. Retracted chapter: On the theory of stochastic processes, with par-
ticular reference to applications. In Selected Papers I, pages 769–798. Springer, 2015.

[52] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing.
SIAM Journal on Numerical Analysis, 49(6):2543–2563, 2011.

[53] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive
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