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What can be said about the structure of graphs that do not 
contain an induced copy of some graph H? Rödl showed in the 
1980s that every H-free graph has large parts that are very 
sparse or very dense. More precisely, let us say that a graph F
on n vertices is ε-restricted if either F or its complement has 
maximum degree at most εn. Rödl proved that for every graph 
H, and every ε > 0, every H-free graph G has a linear-sized 
set of vertices inducing an ε-restricted graph. We strengthen 
Rödl’s result as follows: for every graph H, and all ε > 0, 
every H-free graph can be partitioned into a bounded number 
of subsets inducing ε-restricted graphs.
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1. Introduction

What can be said about the structure of graphs that do not contain an induced copy 
of some graph H? In the 1980s, Rödl [6] showed that every H-free graph has large parts 
that are very sparse or very dense.

To say that more precisely we need some definitions. Graphs in this paper are finite 
and without loops or parallel edges. If G is a graph and X ⊆ V (G), we denote the 
subgraph of G induced on X by G[X], and G denotes the complement graph of G. If 
G, H are graphs, we say that G is H-free if no induced subgraph of G is isomorphic to 
H. For a graph G, let us say X ⊆ V (G) is weakly ε-restricted if one of G[X], G[X] has 
at most ε|X|2 edges; and that X is ε-restricted if one of the graphs G[X], G[X] has 
maximum degree at most ε|X|. Rödl [6] proved the following:

1.1 Theorem. For every graph H, and all ε > 0, there exists δ > 0 such that for every 
H-free graph G, there is a weakly ε-restricted set X ⊆ V (G) with |X| ≥ δ|G|.

Every ε-restricted set is weakly ε/2-restricted, and every weakly ε/2-restricted set has 
a subset of at least half its size that is ε-restricted. Thus, an equivalent version of Rödl’s 
theorem is the following:

1.2 Theorem. For every graph H, and all ε > 0, there exists δ > 0 such that for every 
H-free graph G, there is an ε-restricted set X ⊆ V (G) with |X| ≥ δ|G|.

Rödl’s theorem is an easy consequence of Szemerédi’s regularity lemma, and has 
proved extremely useful. For example, it is now a standard tool in approaching the Erdős-
Hajnal conjecture (see for instance the breakthrough paper [2], where it was crucial, and 
much subsequent work). A proof of 1.2 not using the regularity lemma (and consequently 
with much better constants) was given by Fox and Sudakov [3].

In this paper, we are concerned with partitions of H-free graphs such that every vertex 
class is either sparse or dense. It is easy to prove that H-free graphs can be partitioned 
into a bounded number of weakly ε-restricted subsets:

1.3 Theorem. For every graph H, and all ε > 0, there is an integer N such that for every 
H-free graph G, there is a partition of V (G) into at most N weakly ε-restricted subsets.

This can be shown by applying 1.1 repeatedly to partition most of the vertices into 
weakly ε/2-restricted subsets, and then adding the remaining vertices into the largest 
set.

But what about partitions into sets that satisfy the stronger property of being ε-
restricted? This is much harder, and the main result of this paper is the following:

1.4 Theorem. For every graph H, and all ε > 0, there is an integer N such that for every 
H-free graph G, there is a partition of V (G) into at most N ε-restricted subsets.
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This is significantly stronger than 1.3.
Here is a third statement midway between the last two: that under the same hy-

potheses, V (G) is the union of at most a bounded number of ε-restricted subsets (not 
necessarily pairwise disjoint). This variation does not seem to be easy, although it does 
not imply 1.4 as far as we know.

Some remarks: sets of cardinality at most two are always ε-restricted, and for 1.4 it is 
sometimes necessary to use some ε-restricted subsets of cardinality at most two, even in 
graphs G with |G| large. For example, let G be a star K1,n with n large, and let ε < 1/3: 
then every ε-restricted subset containing the centre of the star has cardinality at most 
two. (Note that this is not the case for 1.3; for example, a large star is already weakly 
ε-restricted.)

Second, our proof of 1.4 (and the proof in [7] of 2.2, which we will need to apply) 
does not use the regularity lemma. Thus, we anticipate that the number N in 1.4 is 
significantly smaller (as a function of 1/ε) than numbers that are produced via the 
regularity lemma, but we have not made an estimate for it.

If A, B ⊆ V (G) are disjoint, we say that B is ε-sparse to A (in G) if every vertex in 
B has at most ε|A| neighbours in A; and B is ε-dense to A if B is ε-sparse to A in G. 
The method of proof of 1.4 is via the following statement:

1.5 Theorem. For every graph H, and all ε, η, θ > 0, there exists an integer N such that, 
for every H-free graph G, there is a partition of V (G) into nonempty sets

A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn,

where m ≤ |H|2 and n ≤ N , such that:

• A1, . . . , Am and C1, . . . , Cn are ε-restricted sets;
• for 1 ≤ i ≤ m, |Bi| ≤ η|Ai|;
• for 1 ≤ i ≤ m, Bi is either θ-sparse or θ-dense to Ai.

We will prove this in section 2. In section 3 we prove another result, and combine 
these two to deduce 1.4.

Let us give an idea of how 1.5 will be used to prove 1.4. Let us say a “path-partition” 
is a sequence of k + 1 disjoint subsets of V (G), say (W0, . . . , Wk), with three properties 
(that each of W0, . . . , Wk−1 is much bigger than Wk, that each of W0, . . . , Wk−1 is ε′-
restricted for some appropriate ε′, and that Wi+1 ∪ · · · ∪Wk is very sparse or very dense 
to Wi for each i). Note that the last term Wk need not be ε′-restricted; this is where 
the problem lies. We show in section 3 that if (W0, . . . , Wk) is a path-partition with 
enough terms, then the union of all these sets can be partitioned into a small number of 
ε-restricted sets. This result is rather easy.

The role of 1.5 is to deduce something similar for successively shorter path-partitions. 
(If we can prove it for sequences of length one, then the main result follows, using the 
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one-term sequence V (G).) We will need to adjust the parameters of the sequence as its 
length k becomes smaller; that is, adjust the value of ε′ such that (W0, . . . , Wk−1) are 
ε′-restricted, and adjust the density or sparsity condition.

Let (W0, . . . , Wk) be the path-partition we want to handle now. Note that the induc-
tion means that we can handle all path-partitions that are longer than (W0, . . . , Wk). 
We apply 1.5 to G[Wk]. That partitions Wk into a bounded number of ε-restricted sets 
and the pairs (As, Bs) (1 ≤ s ≤ m) as in 1.5. We are happy with the ε-restricted sets, 
and we will use the pairs (As, Bs) to replace (W0, . . . , Wk) by m longer path-partitions, 
disjoint and with union all the vertices in the union of W0, . . . , Wk that are so far un-
covered. To do so, we simply partition each Wj (for 0 ≤ j < k) into m large subsets 
W s

i (1 ≤ s ≤ m). Then we can apply the inductive hypothesis to the path-partition (
W s

0 , . . . ,W
s
k−1, As, Bs

)
for each s, and the result follows.

2. Proving the main lemma

In this section we prove 1.5. Let A, B ⊆ V (G) be disjoint, and let c, ε > 0. We say 
that (A, B) is (c, ε)-full if for all A′ ⊆ A with |A′| ≥ c|A| and B′ ⊆ B with |B′| ≥ c|B|, 
the number of edges between A′, B′ is at least ε|A′| · |B′|. Similarly, (A, B) is (c, ε)-empty
if it is (c, ε)-full in the complement graph. Thus, if (A, B) is (c, ε)-full, and A′ ⊆ A and 
B′ ⊆ B with |A′|/|A|, |B′|/|B| ≥ c′ > c then (A′, B′) is (c/c′, ε)-full.

We need a version of a standard result called the “embedding lemma”:

2.1 Lemma. Let G, H be graphs, let 0 < ε ≤ 1/2, and let Av (v ∈ V (H)) be pairwise 
disjoint nonempty subsets of V (G), such that for all distinct u, v ∈ V (H), if u, v are 
adjacent in H then (Au, Av) is (ε|H|, ε)-full, and if u, v are nonadjacent then (Au, Av) is 
(ε|H|, ε)-empty. Then for each v ∈ V (H) there exists av ∈ Av such that the map sending 
v to av for each v ∈ V (H) is an isomorphism from H to an induced subgraph of G.

Proof. We proceed by induction on |H|. If |H| ≤ 1 the result is true, so we assume 
|H| > 1. Let v ∈ V (H), and let N, M be the sets of neighbours of v in H and in H
respectively. Let c = ε|H|. For each u ∈ N there are fewer than c|Av| vertices in Av with 
fewer than ε|Au| neighbours in Au, since (Av, Au) is (c, ε)-full; and similarly for each 
u ∈ M there are fewer than c|Av| vertices in Av with fewer than ε|Au| non-neighbours 
in Au. Since (|H| − 1)c < 1 (because ε ≤ 1/2), there exists av ∈ Av with at least ε|Au|
neighbours in Au for each u ∈ N , and at least ε|Au| non-neighbours in Au for each 
u ∈ M . For each u ∈ N let Bu be the set of neighbours of av in Au, and for each u ∈ M

let Bu be the set of non-neighbours of av in Au. Thus, each Bu �= ∅, since |Bu| ≥ ε|Au|. 
Let H ′ be obtained from H by deleting v.

Thus, for all distinct u, w ∈ V (H ′), if u, w are adjacent then (Bu, Bw) is (cε−1, ε)-
full, and if u, w are nonadjacent then (Bu, Bw) is (cε−1, ε)-empty. From the inductive 
hypothesis, for each u ∈ V (H ′) there exists au ∈ Bu ⊆ Au such that the map sending u
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to au for each u ∈ V (H ′) is an isomorphism from H ′ to an induced subgraph of G. But 
then the theorem holds. This proves 2.1. �

The following is proved (without using the regularity lemma) in [7], theorem 2.2:

2.2 Lemma. For all c, ε, τ > 0 with ε < τ ≤ 8/9, there exists γ > 0 with the following 
property. Let G be a bipartite graph with a bipartition (A, B), with at least τ |A| · |B| edges 
and with A, B �= ∅. Then there exist A′ ⊆ A and B′ ⊆ B with |A′|/|A|, |B′|/|B| ≥ γ, 
such that (A′, B′) is (c, ε)-full.

Now we are ready to prove 1.5, but first let us sketch its proof. We want to partition 
V (G) into a bounded number of ε-restricted sets and “θ-restricted pairs”, by which we 
mean pairs of disjoint sets (A, B) where A is ε-restricted, B is much smaller than A, and 
B is either θ-dense or θ-sparse to A. Let V (H) = {v1, . . . , v|H|}. Suppose that we have 
chosen pairwise disjoint, nonempty, subsets D1, . . . , Dt of V (G), such that:

• for all distinct i, j with 1 ≤ i, j ≤ t, if vi, vj are adjacent in H then (Di, Dj) is 
(x, y)-full, and if vi, vj are nonadjacent in H then (Di, Dj) is (x, y)-empty, for some 
appropriate x, y.

Since G is H-free, we know that t < |H|, and our approach is to choose t as large as 
possible such that there is such a choice of D1, . . . , Dt. But to make use of the maximality 
of t, we also need that D1, . . . , Dt are “not too small”, and this is delicate. We cannot 
insist that they all have size some constant times |G|, so let us see what we really need. 
To prove the theorem, we want a partition of the vertices not in D1 ∪ · · · ∪Dt, using a 
bounded number of ε-restricted sets and θ-restricted pairs. Let us cover as much as we 
can, using (not too many) ε-restricted sets and θ-restricted pairs, and let E be the set 
of vertices that have not been covered. Now we can say what “not too small” means: we 
require that each of the sets D1, . . . , Dt has size many times |E|. If E �= ∅, we will show 
that we can choose another set Dt+1 from within E, contrary to the maximality of t. 
Thus, E = ∅, and so we have the desired partition of V (G).

Let us see this in more detail. We choose t ≤ |H| maximum such that there are 
vertex-disjoint subsets D1, . . . , Dt of V (G), and a bounded-size collection A of pairwise 
disjoint ε-restricted sets and θ-restricted pairs (the bound increasing with t), all disjoint 
from D1 ∪ · · · ∪Dt, such that:

• For all distinct i, j with 1 ≤ i, j ≤ t, if vi, vj are adjacent in H then (Di, Dj) is 
(x, y)-full, and if vi, vj are nonadjacent in H then (Di, Dj) is (x, y)-empty, for some 
appropriate x, y.

• D1, . . . , Dt are nonempty and ε′-restricted where ε′ is very small. (This extra con-
dition is needed, because when we construct the new set Dt+1, parts of D1, . . . , Dt
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will have to be discarded, and we need these parts to be ε-restricted so that we can 
add them to A.)

• D1, . . . , Dt are all many times bigger than E, where E is the “leftover” set E, that 
is, the set of vertices of G not in D1 ∪ · · · ∪Dt and not in any member of A.

If E = ∅, we have proved what we want, so we suppose for a contradiction that E �= ∅. 
We know that t < |H|, by 2.1, and now we will use E to try to increase t by 1. To build 
a new set Dt+1 within E, we like vertices that are adjacent to at least a small (constant) 
fraction of the vertices in Di for the values of i such that vi, vt+1 are adjacent in H, 
and are nonadjacent to at least a small fraction of the vertices in Di for the values of i
such that vi, vt+1 are nonadjacent (briefly, vertices that “have the desired adjacency”). 
But the vertices that do not have the desired adjacency are very sparse or very dense to 
some Di, and so we can remove them all from E by adding a few more θ-restricted pairs 
to A. (We have to keep all the sets and pairs of sets in A disjoint from D1, . . . , Dt, so 
we will have to shrink some of the sets a little, but that is straightforward.) So we can 
assume that every vertex in E has the desired adjacency. By 1.2 we can choose a linear 
subset F0 of E that is ε′-restricted, where ε′ is very small. By applying 2.2 to each of 
the pairs F0, Di in turn, we can choose a linear subset Dt+1 of F0 that satisfies the first 
and second bullets above (changing ε′ appropriately). We need to add a few sets to A
to satisfy the third bullet. There are two main issues to worry about.

• First, when we applied 2.2 to F0, Di, the set Di might shrink by a constant factor, 
and we need to take care of the “lost” vertices, those that belong to the old Di and 
not the new one. But the old Di was ε′-restricted where ε′ is very small, and so we 
can arrange that the set of lost vertices is ε-restricted, by making sure it is not too 
small, and then we can add it to A.

• Second, we have to arrange that the new leftover set, E′ say, is small compared with 
D1, . . . , Dt+1. The sets D1, . . . , Dt were shrunk in the process of finding Dt+1; but 
they remain at least a constant factor of their original sizes, and so their sizes are at 
least some constant times |E|. And the same is true for Dt+1, since Dt+1 contains 
at least a linear fraction of F0, and F0 contains a linear fraction of E. But E′ is 
a subset of E, so, while E′ might be bigger than some of D1, . . . , Dt+1, its size is 
at most some large constant times the smallest of D1, . . . , Dt+1; and therefore, by 
repeatedly applying 1.2 and adding the sets we find to A, we can reduce the size of 
E′ by any constant factor that we wish, and so bring its size down to what we need.

We restate 1.5:

2.3 Theorem. For every graph H, and all 0 < ε, η, θ < 1, there exists an integer N such 
that, for every H-free graph G, there is a partition of V (G) into nonempty sets

A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn,
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where m ≤ |H|2 and n ≤ N , such that:

• A1, . . . , Am and C1, . . . , Cn are ε-restricted sets;
• for 1 ≤ i ≤ m, |Bi| ≤ η|Ai|; and
• for 1 ≤ i ≤ m, Bi is either θ-sparse or θ-dense to Ai.

Proof. We may assume that ε, η, θ < 1/3, by reducing them if necessary. For each ε′ > 0, 
let δε′ satisfy 1.2 with ε, δ replaced by ε′, δε′ .

Let ε|H| = min(ε, (θ/4)|H|). For t = |H| − 1, |H| − 2, . . . , 0 in turn:

• for i = t, t −1, . . . , 0 in turn, let Γt,i = γt,i+1Γt,i+1 (or 1 if i = t); and choose γt,i such 
that 2.2 holds, with c, ε, τ, γ > 0 replaced by Γt,iεt+1/3, θ/4, θ/2, γt,i respectively (by 
decreasing γt,i if necessary we may assume that γt,i ≤ 1/3 and γt,i ≤ γt,i+1);

• let εt = γt,0εt+1.

For 1 ≤ i ≤ |H|, let ε′i = εiΓi−1,0 and η′i = min
(
γi−1,0,

1
2ηδε′iΓi−1,0

)
. For each 

γ > 0, let φ(γ) be the smallest nonnegative integer that satisfies (1 − δε)φ(γ) ≤ γ. For 
0 ≤ t ≤ |H|, define

	t =
∑

1≤i≤t

φ(η′i).

Let N = 	|H| + |H|(|H| + 1)/2; we claim that N satisfies the theorem.
Let G be H-free.

(1) For all γ with 0 < γ < 1, and for every X ⊆ V (G), there is a partition of X into 
at most φ(γ) + 1 sets, so that one of them has cardinality at most γ|X| and the others 
are all ε-restricted.

Let X ⊆ V (G). Choose an ε-restricted set A1 ⊆ X with |A1| ≥ δε|X|; and inductively 
for each i > 1, choose an ε-restricted set Ai ⊆ X \ (A1 ∪ · · · ∪ Ai−1) with |Ai| ≥
δε|X \ (A1∪· · ·∪Ai−1)|. It follows that |X \ (A1∪· · ·∪Ai)| ≤ (1 −δε)i|X| for each i ≥ 0, 
and in particular when i = φ(γ). This proves (1).

Let V (H) have vertices v1, . . . , v|H|. For 0 ≤ t ≤ |H|, we are interested in partitions 
of V (G) into (possibly empty) sets A1, . . . , Am, B1, . . . , Bm, C1, . . . , C�, D1, . . . , Dt, and 
E, with the following properties:

• m ≤ t(t − 1)/2 and 	 ≤ 	t;
• A1, . . . , Am, C1, . . . , C� and D1, . . . , Dt are all nonempty;
• A1, . . . , Am, C1, . . . , C� are ε-restricted;
• for 1 ≤ i ≤ m, |Bi| ≤ η|Ai|, and Bi is either θ-sparse or θ-dense to Ai;
• D1, . . . , Dt are εt-restricted;
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• for 1 ≤ i < j ≤ t, if vi, vj are adjacent in H then (Di, Dj) is (εt, θ/4)-full, and if 
vi, vj are nonadjacent then (Di, Dj) is (εt, θ/4)-empty;

• |E| ≤ (η/2) min (|D1|, . . . , |Dt|) if t > 0.

Let us call such a thing a partition of type (m, 	, t). To make clear which set plays which 
role in the partition, we will write them as:

(A1, B1), . . . , (Am, Bm)

C1, . . . , C�

D1, . . . , Dt

E.

Choose such a partition, of type (m, 	, t) say, with t ≤ |H| maximum. (This is possible, 
since G admits a partition of type (0, 0, 0), setting E = V (G).)

Since ε|H| ≤ (θ/4)|H|, and D1, . . . , Dt are nonempty, it follows from 2.1 that t ≤
|H| − 1. Choose pairwise disjoint subsets E1, . . . , Et of E with maximal union, such 
that for 1 ≤ i ≤ t, if vt+1, vi are adjacent in H then Ei is θ/2-sparse to Di, and if 
vt+1, vi are nonadjacent in H then Ei is θ/2-dense to Di. Let E0 = E \ (E1 ∪ · · · ∪ Et). 
Thus, for 1 ≤ i ≤ t, E0 is (1 − θ/2)-dense to Di if vt+1, vi are adjacent in H, and E0
is (1 − θ/2)-sparse to Di if vt+1, vi are nonadjacent. Suppose, for a contradiction, that 
E0 �= ∅.

We recall that |E| ≤ (η/2) min (|D1|, . . . , |Dt|), and since E �= ∅ (because E0 ⊆ E), it 
follows that |Di| ≥ η−1 > 1 for 1 ≤ i ≤ t. Thus, 	|Di|/2
 ≥ |Di|/3, for 1 ≤ i ≤ t.

We recall that ε′t+1 = εt+1Γt,0; let δ′t+1 = δε′t+1
. From 1.2 there is an ε′t+1-restricted 

subset F0 ⊆ E0 with |F0| ≥ δ′t+1|E0|. For 1 ≤ i ≤ t define Fi ⊆ Fi−1 with 
|Fi| ≥ γt,i|Fi−1|, and Hi ⊆ Ei with |Di|/2 ≥ |Hi| ≥ γt,i|Di|, as follows. Let us as-
sume that vt+1, vi are adjacent (if they are non-adjacent, the construction is the same in 
the complement). Thus, Fi−1 is (1 − θ/2)-dense to Di. (We remark that this is a weak 
assertion: it means that each vertex in Fi−1 has at most (1 − θ/2)|Di| non-neighbours 
in Di, but θ may be very small.) From the definition of γt,i, there exist Fi ⊆ Fi−1 and 
H ′

i ⊆ Di, with |Fi| ≥ γt,i|Fi−1| and |H ′
i| ≥ γt,i|Di|, such that (Fi, H ′

i) is (Γt,iεt+1/3, θ/4)-
full. Let Hi ⊆ H ′

i of cardinality min(|H ′
i|, 	|Di|/2
). Thus, |Hi| ≥ γt,i|Di|, because either 

|Hi| = |H ′
i| ≥ γt,i|Di|, or |Hi| = 	|Di|/2
 ≥ |Di|/3 ≥ γt,i|Di|. Since |Hi| ≥ |H ′

i|/3, it 
follows that (Fi, Hi) is (Γt,iεt+1, θ/4)-full. This completes the inductive definition.

Thus, for 1 ≤ i ≤ t, (Fi, Hi) is (Γt,iεt+1, θ/4)-full if vi, vt+1 are adjacent, and 
(Γt,iεt+1, θ/4)-empty if vi, vt+1 are non-adjacent. Also, since |Fi| ≥ γt,i|Fi−1| for 1 ≤
i ≤ t, it follows that |Ft| ≥ Γt,i|Fi|. Consequently (Ft, Hi) is (εt+1, θ/4)-full if vi, vt+1
are adjacent, and (εt+1, θ/4)-empty if vi, vt+1 are non-adjacent.

Now |E| ≤ (η/2) min (|D1|, . . . , |Dt|). We recall that η′t+1 = min
(
γt,0,

1
2ηδ

′
t+1Γt,0

)
. 

By (1) there exist pairwise disjoint, nonempty, ε-restricted subsets J1, . . . , Jn of E0 \Ft, 
with n ≤ φ(η′t+1), such that their union (J say) satisfies
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|E0 \ (Ft ∪ J)| ≤ η′t+1|E0 \ Ft|.

We claim that the sets

(A1, B1), . . . , (Am, Bm), (D1 \H1, E1), . . . , (Dt \Ht, Et)

C1, . . . , C�, J1, . . . , Jn

H1, . . . , Ht, Ft

E0 \ (Ft ∪ J)

form a partition of V (G) of type (m + t, 	 + n, t + 1). To show this, we must check the 
following conditions, where Ht+1 = Ft:

• Is it true that m +t ≤ t(t +1)/2 and 	 +n ≤ 	t+1? The first holds since m ≤ t(t −1)/2; 
and the second holds since 	 + n ≤ 	t + φ(η′t+1) = 	t+1.

• Is it true that A1, . . . , Am, D1 \ H1, . . . , Dt \ Ht, C1, . . . , C�, J1, . . . , Jn, H1, . . . , Ht

and Ft are all nonempty? Certainly A1, . . . , Am, C1, . . . , C� are nonempty from their 
definition, and so are J1, . . . , Jn. For 1 ≤ i ≤ t, since |E| ≤ (η/2)|Di| and E �= ∅, it 
follows that |Di| ≥ 2; and so Di\Hi �= ∅, since |Hi| ≤ |Di|/2. Also |Hi| ≥ γt,i|Di| > 0, 
so Hi is nonempty. Finally, |Ft| ≥ Γt,0|F0|, and |F0| ≥ δ′t+1|E0|, and E0 �= ∅ by 
assumption; so Ft �= ∅.

• Is it true that A1, . . . , Am, D1\H1, . . . , Dt\Ht, C1, . . . , C�, J1, . . . , Jn are ε-restricted? 
A1, . . . , Am, C1, . . . , C� and J1, . . . , Jn are ε-restricted from their definition. For 1 ≤
i ≤ t, Di is εt-restricted, and since |Hi| ≤ |Di|/2, it follows that Di \ Hi is 2εt-
restricted and hence ε-restricted.

• Is it true that for 1 ≤ i ≤ m, |Bi| ≤ η|Ai|, and Bi is either θ-sparse or θ-dense to Ai; 
and for 1 ≤ i ≤ t, |Ei| ≤ η|Di \Hi|, and Ei is either θ-sparse or θ-dense to Di \Hi? 
The first is true from their definition. For the second, let 1 ≤ i ≤ t. Then

|Ei| ≤ |E| ≤ (η/2)|Di| ≤ η|Di \Hi|

since |Di \Hi| ≥ |Di|/2. Also, Ei is either θ/2-sparse to Di (if vi, vt+1 are adjacent 
in H) or θ/2-dense to Di (if vi, vt+1 are nonadjacent); and so Ei is either θ-sparse 
or θ-dense to Di \Hi.

• Is it true that H1, . . . , Ht, Ft are εt+1-restricted? For 1 ≤ i ≤ t, Di is εt-restricted, 
and since |Hi| ≥ γt,i|Di| ≥ γt,0|Di|, Hi is εt/γt,0-restricted and hence εt+1-restricted. 
Also, F0 is ε′t+1-restricted, and |Ft| ≥ Γt,0|F0|; and so Ft is ε′t+1/Γt,0-restricted and 
hence εt+1-restricted.

• Is it true that for 1 ≤ i < j ≤ t + 1, if vi, vj are adjacent in H then (Hi, Hj) is 
(εt+1, θ/4)-full, and if vi, vj are nonadjacent then (Hi, Hj) is (εt+1, θ/4)-empty? If 
j = t + 1, we already saw that (Ft, Hi) is (εt+1, θ/4)-full if vi, vt+1 are adjacent, and 
(εt+1, θ/4)-empty if vi, vt+1 are non-adjacent. So we may assume that j ≤ t. Assume 
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that vi, vj are adjacent (the other case is similar). Then (Di, Dj) is (εt, θ/4)-full, and 
since |Hi| ≥ γt,0|Di| and |Hj | ≥ γt,0|Dj |, and εt = γt,0εt+1, it follows that (Hi, Hj)
is (εt+1, θ/4)-full.

• Is it true that |E0 \ (Ft ∪ J)| ≤ (η/2) min(|H1|, . . . , |Ht|, |Ft|)? For 1 ≤ i ≤ t, the 
choice of J implies that

|E0 \ (Ft ∪ J)| ≤ η′t+1|E0 \ Ft|;

and

η′t+1|E0 \ Ft| ≤ γt,0|E0|,

since η′t+1 ≤ γt,0. But

γt,0|E0| ≤ γt,0|E| ≤ (γt,0η/2)|Di| ≤ (η/2)|Hi|,

since |E| ≤ (η/2)|Di| and γt,0|Di| ≤ |Hi|. It follows that

|E0 \ (Ft ∪ J)| ≤ (η/2)|Hi|

as claimed. Finally, to show that |E0 \ (Ft ∪ J)| ≤ (η/2)|Ft|, observe that

|E0 \ (Ft ∪ J)| ≤ η′t+1|E0| ≤ η′t+1|F0|/δ′t+1 ≤ (η/2)Γt,0|F0| ≤ (η/2)|Ft|.

This proves that G admits a partition of type (m + t, 	 + n, t + 1), contrary to the 
choice of t, and so completes the proof that E0 = ∅.

By renumbering, we may assume that B1, . . . , Br �= ∅, and Br+1, . . . , Bm = ∅, and 
E1, . . . , Es �= ∅, and Es+1, . . . , Et = ∅. We claim that the pairs (Ai, Bi) for 1 ≤ i ≤ r, the 
pairs (Di, Ei) for 1 ≤ i ≤ s, the sets Ai for r + 1 ≤ i ≤ m, the sets Di for s + 1 ≤ i ≤ t, 
and the sets C1, . . . , C�, satisfy the theorem. To show this, we observe:

• The sets

A1, . . . , Am, B1, . . . , Br, C1, . . . , C�, D1, . . . , Dt, E1, . . . , Es

are pairwise disjoint and nonempty, and have union V (G).
• The sets A1, . . . , Am, C1, . . . , C� and D1, . . . , Dt are ε-restricted (because each Di is 

εt-restricted, and εt ≤ ε).
• |Bi| ≤ η|Ai| for 1 ≤ i ≤ r, and |Ei| ≤ |E| ≤ (η/2) min(|D1|, . . . , |Dt|) ≤ η|Di| for 

1 ≤ i ≤ s.
• For 1 ≤ i ≤ m, Bi is either θ-sparse or θ-dense to Ai, and for 1 ≤ i ≤ s, Ei is either 

θ/2-sparse or θ/2-dense to Di, and hence either θ-sparse or θ-dense to Di.
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• r+s ≤ |H|2, since r ≤ m ≤ t(t −1)/2 and s ≤ t, and t ≤ |H|; and 	 +(m −r) +(t −s) ≤
N , since

	 ≤ 	t ≤ 	|H| = N − |H|(|H| + 1)/2

and

m− r + t− s ≤ m + t ≤ t(t− 1)/2 + t ≤ |H|(|H| + 1)/2.

This proves 2.3. �
3. Path-partitions

We need the following two lemmas. For the first, see for example [1].

3.1 Lemma. If 0 ≤ k ≤ n are integers, then 
(
n
k

)
≤ (en/k)k.

The second lemma is the following (logarithms in this paper are to base e):

3.2 Lemma. Let ε > 0 with ε ≤ 1/16, and let p ≥ 0 be an integer. Let G be a graph, 
and let A, B be nonempty disjoint subsets of V (G), such that B is ε-sparse to A, and 
log(2|B|)/ε ≤ p ≤ |A|/12. Then there exists P ⊆ A with |P | = p, such that P is 2ε-sparse 
to B, and B is 12ε-sparse to P .

Proof. We may assume that some vertex in B has a neighbour in A, because otherwise 
the result holds, and since ε ≤ 1/16 it follows that |A| ≥ 16. Let Q be the set of 
vertices in A with fewer than 2ε|B| neighbours in B, and let q = |Q|. There are at least 
(|A| − q)(2ε|B|) and at most ε|A| · |B| edges between A and B, and so q ≥ |A|/2 ≥ 8. 
Let k = �12εp�.

Let u1, . . . , u2p ∈ Q, not necessarily all distinct. Let y be the number of subsets of Q
of cardinality p that contain all of u1, . . . , u2p (note that p ≤ |A|/12 ≤ q); and for each 
v ∈ B, let z(v) be the number of subsets I ⊆ {1, . . . , 2p} of cardinality k such that ui is 
adjacent to v for all i ∈ I (note that k = �12εp� ≤ �2p� = 2p).

(1) There is a choice of u1, . . . , u2p with y = 0 and z(v) = 0 for all v ∈ B.

Choose u1, . . . , u2p ∈ Q uniformly and independently at random. Let y be the ex-
pectation of y, and z(v) the expectation of each z(v). We will show that y < 1/2, and 
z(v) ≤ 1/(2|B|) for each v ∈ B, from which the claim follows. First,

y =
(
q

p

)(
p

q

)2p

≤
(
ep

q

)p

,

by 3.1. Since p ≤ |A|/12 and q ≥ |A|/2, it follows that ep/q < 1/2, and so y < 1/2.
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For v ∈ B, since v has at most ε|A| ≤ 2ε|Q| neighbours in Q, it follows that

z(v) ≤
(

2p
k

)
(2ε)k ≤

(
2ep
k

)k

(2ε)k =
(

4eεp
k

)k

≤
(e

3

)k

≤
(e

3

)12εp

from 3.1, and since k ≥ 12εp and e < 3. From the hypothesis, log(2|B|) ≤ εp ≤
12εp log(3/e), and so (e/3)12εp ≤ 1/(2|B|). Hence z(v) ≤ 1/(2|B|), and so the sum 
of y and all the z(v) (v ∈ B) is less than one. This proves (1).

Choose u1, . . . , u2p as in (1). Since y = 0 it follows that |{u1, . . . , u2p}| ≥ p; choose 
P ⊆ {u1, . . . , u2p} with |P | = p. Each vertex in P has at most 2ε|B| neighbours in B, 
since P ⊆ Q; and each v ∈ B has at most 12εp neighbours in P , since z(v) = 0. This 
proves 3.2. �

Let G be a graph, let k ≥ 0 be an integer, and let ε > 0. A (k, ε)-path-partition of 
G is a sequence (W0,W1, . . . ,Wk) of subsets of V (G), pairwise disjoint and with union 
V (G), such that for 0 ≤ i ≤ k − 1:

• Wi is ε-restricted;
• |Wk| ≤ |Wi|/12;
• Wi+1 ∪ · · · ∪Wk is either ε/12-sparse or ε/12-dense to Wi.

If we are trying to partition V (G) into ε-restricted sets, and G admits a (k, ε)-path-
partition, then all but one of its sets are ε-restricted; the difficulty lies in handling the 
final set Wk.

3.3 Theorem. Let 0 < ε ≤ 1/3, and let G be a graph admitting a (k, ε/4)-path-partition, 
where k = �4/ε�. Then V (G) can be partitioned into at most 2400ε−2 ε-restricted subsets.

Proof. Let (W0, . . . ,Wk) be a (k, ε/4)-path-partition of G, let p = |Wk|, and ε′ = ε/48.

(1) We may assume that log(2kp) ≤ ε′p.

Suppose not; then log(2kp) > εp/48, and since k ≤ 4/ε + 1 ≤ 13/(3ε), it follows that

26p/(3ε) ≥ 2kp > eεp/48 ≥ (εp/48)3/6,

(because ex ≥ x3/3! for all x > 0). We deduce that p2 ≤ 52 · 483/ε4, and so p ≤
2398.5/ε2. Since k ≤ 13/(3ε) ≤ 1.5/ε2, the theorem holds, because V (G) is the union of 
W0, . . . , Wk−1 and the p singletons {v} (v ∈ Wk). This proves (1).

(2) For 0 ≤ i ≤ k, there exists Ci ⊆ Wi with |Ci| = p, such that for 0 ≤ i ≤ k − 1, 
either

• Ci is 2ε′-sparse to Ci+1 ∪ · · · ∪ Ck, and Ci+1 ∪ · · · ∪ Ck is 12ε′-sparse to Ci, or
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• Ci is 2ε′-dense to Ci+1 ∪ · · · ∪ Ck, and Ci+1 ∪ · · · ∪ Ck is 12ε′-dense to Ci.

The choice of Ci is inductive, as follows: let Ck = Wk, and now suppose that 0 ≤ i ≤
k − 1, and Ci+1, . . . , Ck are defined. Let B = Ci+1 ∪ · · · ∪ Ck. Thus, |B| = (k − i)p
and B is either ε′-sparse or ε′-dense to Wi (because (W0, . . . , Wk) is a (k, 12ε′)-path-
partition). Moreover, p = |Wk| ≤ |Wi|/12. Suppose first that B is ε′-sparse to Wi. By 
(1), log(2|B|) ≤ log(2kp) ≤ ε′p. By 3.2, taking A = Wi, and replacing ε by ε′, we deduce 
that there exists Ci ⊆ Wi with |Ci| = p, such that Ci is 2ε′-sparse to B, and B is 12ε′-
sparse to Ci. Similarly, if B is ε′-dense to Wi, then 3.2 applied in G implies that there 
exists Ci ⊆ Wi with |Ci| = p, such that Ci is 2ε′-dense to B, and B is 12ε′-dense to Ci. 
In either case, this completes the inductive definition of C0, . . . , Ck, and so proves (2).

Now for 0 ≤ i ≤ k − 1, either Ci is 2ε′-sparse to Ci+1 ∪ · · · ∪ Ck, or 2ε′-dense to 
Ci+1 ∪ · · ·∪Ck; choose I ⊆ {0, . . . , k−1} with |I| ≥ k/2 such that either Ci is 2ε′-sparse 
to Ci+1 ∪ · · · ∪ Ck for all i ∈ I, or Ci is 2ε′-dense to Ci+1 ∪ · · · ∪ Ck for all i ∈ I. Let 
C =

⋃
i∈I∪{k} Ci.

(3) C is ε-restricted.

To see this, suppose first that Ci is 2ε′-sparse to Ci+1∪· · ·∪Ck for all i ∈ I. Let v ∈ Cj

where j ∈ I ∪ {k}, and let I1 = {i ∈ I : i < j}, and I2 = {i ∈ I ∪ {k} : i > j}. Since Cj

is 2ε′-sparse to Cj+1 ∪ · · · ∪ Ck, it follows that v has at most 2ε′p(k − j) ≤ εp(k − j)/4
neighbours in Cj+1 ∪ · · · ∪ Ck (and hence at most the same number in 

⋃
i∈I2

Ci). For 
each i ∈ I1, since Ci+1∪· · ·∪Ck (and hence Cj) is 12ε′-sparse to Ci, it follows that v has 
at most 12ε′p = εp/4 neighbours in Ci; and therefore v has at most εpj/4 neighbours in ⋃

i∈I1
Ci. Since v has at most p neighbours in Cj , it follows that v has at most

εp(k − j)/4 + εpj/4 + p = εpk/4 + p ≤ εpk/2 ≤ ε|C|

neighbours in C (here we use that k ≥ 4/ε and |C| ≥ pk/2), and so C is ε-restricted. 
If Ci is 2ε′-dense to Ci+1 ∪ · · · ∪ Ck for all i ∈ I, we use the same argument in the 
complement. This proves (3).

For each i ∈ I, since |Ci| = |Wk| ≤ 3|Wi|/4 and Wi is ε/4-restricted, it follows 
that Wi \ Ci is ε-restricted. But then V (G) admits a partition into the sets Wi (i ∈
{0, . . . , k − 1} \ I), the sets Wi \ Ci (i ∈ I), and C, and these sets are all ε-restricted. 
This is a total of k + 1 ≤ 4/ε + 2 sets, and 4/ε + 2 ≤ 5/ε ≤ 5/(3ε2). This proves 3.3. �

Next we combine 1.5 and 3.3 to prove an analogue of 3.3 for shorter and shorter 
sequences, and hence to prove 1.4. We will show the following (the −N at the end is for 
inductive purposes):

3.4 Theorem. Let H be a graph, and let h = |H|2. Let 0 < ε ≤ 1/3, and let K = �4/ε�. 
Let N be as in 1.5, with ε, η, θ replaced by ε/(4(2h)K), 1/(3h), ε/(48(2h)K) respectively. 
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Let 0 ≤ k ≤ K, and let G be an H-free graph admitting a (k, (2h)k−Kε/4)-path-partition 
(W0, . . . , Wk). Then V (G) can be partitioned into at most hK−k(2400/ε2 + N) − N ε-
restricted subsets.

Proof. We may assume that |H| ≥ 2 and so h ≥ 4. We proceed by induction on K − k. 
If K − k = 0 then the result follows from 3.3, so we assume that k < K, and the result 
holds for k + 1. By 1.5, there is a partition of Wk into nonempty sets

A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn,

where m ≤ h and n ≤ N , such that:

• A1, . . . , Am and C1, . . . , Cn are ε/(4(2h)K)-restricted sets;
• for 1 ≤ s ≤ m, |Bs| ≤ |As|/(3h);
• for 1 ≤ s ≤ m, Bs is either ε/(48(2h)K)-sparse or ε/(48(2h)K)-dense to As.

Let X be the union of the sets C1, . . . , Cn. Since each of these sets is ε/(4(2h)K)-restricted 
and hence ε-restricted, it follows that X can be partitioned into at most N ε-restricted 
sets. If m = 0, the theorem holds, since V (G) is the union of the sets C1, . . . , Cn and 
W0, . . . , Wk−1, and n ≤ N and k ≤ 4/ε; so we assume that m > 0. Consequently 
|Wk| ≥ |A1| ≥ 3h|B1| ≥ 3h, and for 0 ≤ i < k, |Wi| ≥ 12|Wk| ≥ 36h; and hence 
|Wi|/(2h) ≥ 1. It follows that �|Wi|/(2h)� ≤ |Wi|/h, and therefore there are h pairwise 
disjoint subsets of Wi, each of cardinality at least |Wi|/(2h). Consequently we may choose 
subsets W 1

i , . . . , W
m
i of Wi, pairwise disjoint and with union Wi, and each of cardinality 

at least |Wi|/(2h).

(1) For 1 ≤ s ≤ m, 
(
W s

0 , . . . ,W
s
k−1, As, Bs

)
is a 

(
k + 1, (2h)k+1−Kε/4

)
-path-partition 

of G[Vs], where Vs = W s
0 ∪ · · · ∪W s

k−1 ∪As ∪Bs.

To see this, we must show that

• As is (2h)k+1−Kε/4-restricted;
• |As| ≥ 12|Bs|;
• Bs is either (2h)k+1−Kε/48-sparse or (2h)k+1−Kε/48-dense to As;

and also that for 0 ≤ i ≤ k − 1:

• W s
i is (2h)k+1−Kε/4-restricted;

• |W s
i | ≥ 12|Bs|;

• W s
i+1∪· · ·∪W s

k−1∪As∪Bs is either (2h)k+1−Kε/48-sparse or (2h)k+1−Kε/48-dense 
to W s

i .
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The first three statements are immediate from the definition of the pair (As, Bs). For 
the last three, let 0 ≤ i ≤ k − 1. It follows that Wi is (2h)k−Kε/4-restricted, and since 
|W s

i | ≥ |Wi|/(2h), we deduce that W s
i is (2h)k+1−Kε/4-restricted.

To show that |W s
i | ≥ 12|Bs|, observe that |Wi| ≥ 12|Wk| ≥ 12|As| ≥ 36h|Bs|, and so 

|W s
i | ≥ |Wi|/(2h) ≥ 18|Bs|.
Finally, to show that W s

i+1 ∪ · · · ∪W s
k−1 ∪As ∪Bs is either (2h)k+1−Kε/48-sparse or 

(2h)k+1−Kε/48-dense to W s
i , observe that, since (W0, . . . , Wk) is a 

(
k, (2h)k−Kε/4

)
-

path-partition, it follows that Wi+1 ∪ · · · ∪ Wk is either (2h)k−Kε/48-sparse or 
(2h)k−Kε/48-dense to Wi, and hence so is

W s
i+1 ∪ · · · ∪W s

k−1 ∪As ∪Bs;

and therefore the latter is either (2h)k+1−Kε/48-sparse or (2h)k+1−Kε/48-dense to W s
i , 

since |W s
i | ≥ |Wi|/(2h). This proves (1).

From (1) and the inductive hypothesis, Vs can be partitioned into at most 
hK−k−1(2400/ε2 + N) − N ε-restricted subsets, for 1 ≤ s ≤ m. Since the sets 
V1, . . . , Vm, C1, . . . , Cn are pairwise disjoint and have union V (G), we deduce that V (G)
can be partitioned into at most

h(hK−k−1(2400/ε2 + N) −N) + N ≤ hK−k(2400/ε2 + N) −N

ε-restricted subsets. This proves 3.4. �
To deduce 1.4, we may assume that ε ≤ 1/3, by reducing ε if necessary; then 1.4 is 

immediate from 3.4 with k = 0, applied to the 
(
0, (2h)−Kε/4

)
-path-partition with one 

term V (G).
Finally, there is a strengthening of 1.1 due to Nikiforov [5]:

3.5 Theorem. For every graph H and all ε > 0, there exists δ > 0 such that if G is a 
graph containing fewer than (δ|G|)|H| induced copies of H, then there exists S ⊆ V (G)
with |S| ≥ δ|G| such that G[S] is weakly ε-restricted.

As before, we can remove “weakly”; and this suggests that perhaps an analogue of 
1.4 holds, with the “H-free” hypothesis replaced by the hypothesis of 3.5. This is false 
(take the union of a small random graph and a large stable set), but Tung Nguyen [4]
has recently proved the following:

3.6 Theorem. For every graph H, and all ε > 0, there exist C > 0 and an integer N > 0
such that for every graph G, if k denotes the number of distinct isomorphisms from H to 
induced subgraphs of G, then there exists X ⊆ V (G) with |X| ≤ Ck1/|H|, and a partition 
of V (G \X) into at most N ε-restricted sets.

His proof is by a modification of the arguments of this paper.
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