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Synopsis: The ability of a computer to perform tasks normally requiring human intelligence or 

artificial intelligence (AI) is not new. However, until recently, practical applications in medical 

imaging were limited, especially in the clinic. With advances in theory, microelectronic circuits 

and computer architecture as well as our ability to acquire and access large amounts of data, AI is 

becoming increasingly ubiquitous in medical imaging. Of particular interest to our community, 

radiomics tries to identify imaging features of specific pathology that can represent for example 

the texture or shape of a region in the image. This is done based on a review of mathematical 

patterns and pattern combinations. The difficulty is often finding sufficient data to span the 

spectrum of disease heterogeneity since many features change with pathology as well as over time 

and, among other issues, data acquisition is expensive. Although we are currently in the early days 

of the practical application of AI to medical imaging, research is ongoing to integrate imaging, 

molecular pathobiology, genetic make-up and clinical manifestations to classify patients into 

subgroups for the purpose of precision medicine, or in other words, predicting a priori treatment 

response and outcome. Lung cancer is a functionally and morphologically heterogeneous disease. 

Positron emission tomography (PET) is an imaging technique with an important role in the 

precision medicine of lung cancer patients that helps predict early response to therapy and guides 

the selection of appropriate treatment. Although still in its infancy, early results suggest the use of 

AI in PET of lung cancer has promise for the detection, segmentation and characterization of 

disease as well as for outcome prediction. 
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Key Points: 

1. AI is helpful to detect, segment and characterize pulmonary nodules on CT and PET. 

2. AI is a helpful adjunct for PET as a predictive and prognostic biomarker in lung cancer patients. 

3. Clinical applications of AI in PET of lung cancer patients span the spectrum of initial and 

subsequent treatment strategy, including staging, detecting recurrence and predicting outcomes. 

  



Lung Cancer, Precision Medicine and Positron Emission Tomography 

Lung cancer is the second most diagnosed malignancy according to the American Cancer 

Society, accounting for approximately 228,820 new cases and 135,720 deaths in the United States 

in 2020 (1). While localized disease may be curable, systemic disease is the leading cause of cancer-

related death, surpassing death from breast, prostate and colorectal cancer combined.  

 Lung cancer is classified into: 1. non-small cell lung cancer (NSCLC) and 2. small cell 

lung cancer (SCLC) (2). Treatment options include surgery, radiotherapy, chemotherapy, 

immunotherapy, and targeted medications including epidermal growth factor receptor (EGFR) 

inhibitors and others directed to genetic mutations (e.g. ALK, ROS1), among others. Integration  

of clinical, genomic and imaging findings may help personalize lung cancer management (2,3) and 

has the potential to identify appropriate treatment to maximize patient benefit while limiting 

toxicity.   

Positron emission tomography (PET) plays a key role in lung cancer imaging, both at the 

time of initial staging and subsequent treatment planning. The true strength of PET lies in its ability 

to detect distant metastatic disease as well as to non-invasively characterize tumor heterogeneity 

throughout the body over time. It can provide predictive and prognostic insight into therapy 

response and identify sites of disease harboring clonal proliferations of cells resistant to treatment 

such that timely treatment changes can be made. Currently, PET scanners incorporate either 

computed tomography (CT) or magnetic resonance imaging (MRI). PET/CT is more common than 

PET/MR in routine clinical practice; however, both are helpful for the assessment of patients with 

lung cancer. Also, there are several radiopharmaceuticals that may be used to image lung cancer 

with PET. The most ubiquitous PET radiopharmaceutical in oncology is 18F-labeled 2-fluoro-2-

deoxy-D-glucose ([18F]FDG), a glucose analogue that is preferentially taken up by cancer cells 

(4,5). Several other PET radiopharmaceuticals may be helpful for lung cancer imaging such as 

[18F]fluoroazomycin arabinofuranoside (FAZA) and [18F]fluoromisonidazole(1-(2-

nitroimidazolyl)-2-hydroxy-3-fluoropropane (FMISO) for targeting hypoxia, and the quinoline-

based ligands for evaluating cancer-associated fibroblasts (fibroblast activating protein inhibitors 

or FAPI), among others (6,7). To date, no radiopharmaceutical is specific for lung cancer and 

uptake can also occur in non-lung cancer malignancy or non-malignant causes. Further, the 

intensity of uptake depends on several factors in addition to pathology, such as uptake time and 

other technical parameters. Ultimately, clinical context is key for image interpretation.  

AI applications may be helpful across the spectrum of lung cancer (from localized through 

widespread disease) both at the time of initial and subsequent treatment strategy, for several tasks 

including disease detection/ staging, segmentation and response prediction, among other tasks. 



 

Current Clinical Value of PET and AI in Pulmonary Nodules and Lung Cancer Staging 

 

A solitary pulmonary nodule (SPN) is defined as being less than 3 cm in size and may be 

either solid or subsolid (8). The risk that an incidentally detected SPN to be malignant is related to 

several factors, such as the patient age, smoking history, and appearance on CT. PET/CT is not 

included in the work-up of subsolid nodules, due to their low metabolic activity and risk of false-

negative results. In this case, the Fleishner Society guidelines recommend follow up with CT to 

check for lesion stability, and imaging surveillance for up to 5 years as needed (9). However, one 

of the most common clinical indications for PET is the evaluation of a solitary solid pulmonary 

nodule that is indeterminate for malignancy based on clinical parameters and diagnostic imaging. 

[18F]FDG-PET/CT is very accurate to characterize a solid SPN as malignant, with high negative 

predictive value to exclude cancer in nodules larger than 8 mm (10-13). Also, if a nodule is known 

to be malignant, the more intensely [18F]FDG-avid the nodule is, the more aggressive the disease 

tends to be. [18F]FDG-PET/CT is also helpful for lung cancer staging. [18F]FDG-PET/CT is used 

to: 1) characterize indeterminate solitary solid pulmonary nodules over 8 mm on anatomic imaging; 

2) guide biopsy to the site of most aggressive disease, and 3) evaluate disease extent including local, 

regional and distant spread. Since certain lung cancer subtypes, such as carcinoid, may have low 

metabolic activity, while benign processes, such as infection or inflammation, may be intensely 

[18F]FDG-avid, either follow-up imaging or tissue sampling is typically needed for further 

characterization. Ultimately, the post [18F]FDG-PET/CT risk of malignancy is used to guide clinical 

decisions such as CT surveillance, biopsy and/ or surgical resection. For example, an indeterminate 

SPN on CT with a low probability of lung cancer prior to PET/CT, and low [18F]FDG avidity, 

indicates observation may be the most appropriate management. In contrast to this, an 

indeterminate SPN on CT but with intense [18F]FDG uptake indicates biopsy is necessary, with 

surgical resection if this is the only site of malignant disease. According to Society of Nuclear 

Medicine and Molecular Imaging (SNMMI), [18F]FDG-PET/CT is helpful to: 1) detect a potentially 

malignant SPN early permitting curative surgery in high-risk patients, 2) exclude malignancy in 

low-risk patients with a questionable lesion, and 3) improve outcomes by avoiding unnecessary 

surgery (14).  

In addition to lung nodule characterization, PET is helpful for lung cancer staging by 

providing complementary metabolic information to the anatomic information in CT (15). 

[18F]FDG-PET/CT helps detect malignant tissue differentiating it from adjacent benign findings 

(16). For lymph node disease (N status), [18F]FDG-PET/CT is more accurate than CT for evaluating 



disease spread (17). False-negative results may be encountered however, such as lesions that are 

too small to be detected by the scanner or those that are not metabolically active. On the other hand, 

false-positive results may occur with inflammation or infection. Therefore, tissue sampling is 

typically needed for lesion characterization (18). The sensitivity, specificity and accuracy of 

[18F]FDG-PET/CT for detecting distant metastases (M status) is very high (19, 20).  

 

Utility of AI in conjunction with PET in lung nodules and lung cancer: 

Research into the clinical applications of AI involving PET in patients with lung cancer 

have increased dramatically in recent years. This has largely resulted from improved electronics 

and software as well as access to databases containing large imaging datasets that can be used for 

training of the AI models; for example, the Lung Image Database Consortium and Image Database 

Resource Initiative (LIDC-IRDI), the US National Lung Screening Trial (NLST) and the Dutch-

Belgian Lung Cancer Screening trial (NELSON), among others (21-24). Although these databases 

have made research more ubiquitous, the available data is still limited in many ways. For example, 

while the LIDC-IRDI database comprises chest CT studies with a spectrum of benign through 

malignant findings including lung cancer and metastatic disease, very few cases have histologic 

confirmation or a 2-year follow-up. In addition, for supervised AI algorithms, performance is tied 

to the gold standard, which is often the annotation of an expert (e.g. a radiologist or a nuclear 

medicine physician), and as such remains imperfect.  

Perhaps the most common clinical applications of AI in lung cancer are in the areas of 

nodule/disease detection. In general, these studies have concentrated on the use of CT, and have 

suggested that computer algorithms improve detection and assessment and may positively impact 

patient care (25). However, there have been a few studies focused on the use of PET. While often 

retrospective and including small numbers of subjects, these studies suggest that AI is helpful, 

albeit with performance closely tied to technical parameters. A retrospective study by Schwyzer et 

al. of 57 subjects with 92 [18F]FDG-avid pulmonary nodules using a deep learning algorithms, gave 

an  area under the curve (AUC) for lung nodule detection of 0.796 [Confidence Interval (CI) 95%; 

0.772-0.869] when ordered subset expectation maximization (OSEM) reconstruction was selected. 

The algorithm performance improved to an AUC=0.848 (CI 95%; 0.828-0.869) with block 

sequential regularized expectation maximization (BSREM) reconstruction (26). Another 

retrospective study by Schwyzer et al. of 100 subjects who had PET/CT, 50 with lung cancer 

ranging from stage I to stage IV disease and 50 without lung lesions, showed a deep learning 

algorithm had sensitivity of 95.9% and specificity of 91.5% to discriminate lung cancer patients 

from normal controls. This decreased slightly with lower injected activity (27). A deep learning 



approach based on individual convolutional neural networks (CNNs) for CT and PET, followed by 

fusion of the results, was used for segmentation in lung cancer (Fig. 1) (28). Of note, accurate 

assessment of disease extent remains challenging when pathology abuts soft tissue of similar 

density, such as the pleura or blood vessels. 

There have also been several studies using AI for lung cancer staging. For example, a study 

by Kirienko et al. of 472 patients imaged with PET/CT, of which 353 had T1-T2 disease and 119 

T3-T4 tumors, achieved 69% accuracy using a convolutional neural network (CNN) to classify 

subjects as having either T1-T2 disease or T3-T4 lung cancer (29). A study by Tau et al. found the 

sensitivity, specificity and accuracy were 0.74±0.32, 0.84±0.16 and 0.80±0.17, respectively, for 

predicting lymph node positivity and 0.45±0.08, 0.79±0.06 and 0.63±0.05 for predicting distant 

metastases using a CNN in 264 subjects with non-small cell lung cancer (30).  

In addition, AI has been used for disease classification, localization and volumetric 

assessment. Often, algorithm performance improves when more input data or data types are used. 

For example, Sibille et al. investigated a deep CNN to localize and classify [18F]FDG uptake in 

lung cancer patients, based on whole-body PET/CT (31). In this study, the network structure (Fig. 

2) combined convolutional and fully connected (dense) layers, and used a number of input 

modalities (PET, CT, maximum intensity projection (MIP), and atlas position), to produce two 

output decisions; node classification and localization. For the lung cancer patients, this approach 

gave 87% sensitivity and 99% specificity for classification, with localization accuracy of 97% 

(body part), 84% (organ/tissue), and 89% (subregion/ nodal station). Hyun et al. compared several 

algorithms such as random forests, neural networks and support vector machines, among others, to 

classify pathology in a sample of 396 subjects, 210 with adenocarcinoma and 186 with squamous 

cell carcinoma (32). Interestingly, the authors found that a comparatively simple logistic regression 

model outperformed all other classifiers with accuracy estimated at 77%. 

Since certain features, such as heterogeneity, are associated with an increased risk of 

malignancy, work has also been done investigating the use of texture-based analysis to determine 

risk stratification. Sometimes, texture features are used to classify a lesion as benign or malignant.  

Radiomics, in combination with AI, tries to identify previously unknown imaging features based 

on review of mathematical patterns and pattern combinations. Further texture features that might 

not be easily quantifiable by the human eye can be extracted from images, quantified and then used 

to aid with disease characterization and classification. A study by Zhang et al. of 135 patients with 

PET/CT used radiomic features on CT and metabolic parameters on PET to classify benign from 

malignant lung lesions across a spectrum of pathology. The authors found an AUC of 0.887±0.046 

with accuracy, sensitivity and specificity of 0.815±0.066, 0.814±0.058 and 0.816±0.079, 



respectively (33). There is the suggestion that AI algorithms may reduce unnecessary follow-up 

(34-38). Regardless of AI algorithm used, however, it is important to remember that tissue sampling 

remains key for disease confirmation. Also, one of the challenges that remains is having access to 

sufficient data to capture the disease spectrum without overfitting for a specific cohort.  

Understanding the genetic and pathobiological underpinnings of lung cancer contributes to 

precision medicine by influencing the decision to treat and the type of treatment to give (39,40). 

Ultimately large prospective studies are needed to confirm utility of AI in clinical practice in this 

arena. Although standardization efforts for feature extraction have been made (41), standardization 

in image acquisition, reconstruction, and segmentation, among other things, is also needed. We are 

in the early days of the application of AI to clinical practice and transparent reporting of the data 

used and algorithm design remains essential for the assessment of reproducibility and to provide 

fair comparisons (34, 42).  

 

 

Current Clinical Value of PET and AI in Lung Cancer Treatment Strategy  

 

PET is helpful to detect and characterize lung cancer, both at initial staging as well as for 

subsequent treatment strategy development. Metrics measured from PET images, such as baseline 

intensity and extent of radiopharmaceutical uptake as well as change in these metrics with therapy, 

can be used as predictive biomarkers of response to therapy as well as a biomarkers of prognosis. 

According to the Society for Nuclear Medicine and Molecular Imaging, [18F]FDG-PET/CT is 

appropriate for: 1) restaging patients with lung cancer after treatment, 2) detection of recurrence, 

and 3) treatment response evaluation (43).  

 

Utility of AI in conjunction with PET in lung cancer follow-up: 

While preliminary investigations suggest AI may be a helpful tool in the lung cancer 

treatment algorithm, to date, the available data remains limited. In this section, we highlight a few 

studies to illustrate the spectrum of what is being studied.  

Buizza et al. used image features on PET/CT scans acquired at baseline and after 3 weeks 

of chemoradiotherapy in conjunction with linear support vector machines in 30 patients with 

NSCLC to predict survival (44). Mattonen et al. also used image features on PET/CT scans in 

conjunction with a linear regression model to predict survival in patients with NSCLC (45). While 

different algorithms have been assayed with varying results, ultimately multi-variable multi-step 

models may give among the best results. For example, a paper by Baek et al. appeared promising. 



In this paper, a sophisticated multi-step AI model (Fig. 3), referred to as a deep segmentation 

network, was trained to predict survival in patients with NSCLC (46). Using cross-validation 

experiments on a data set with 96 NSCLC cases, the AUC was 0.88 when predicting 2-year overall 

survival, representing an improvement over other techniques that produce AUC values ranging 

from 0.60 to 0.83 over the same data set. The AI model consisted of supervised U-nets, followed 

by unsupervised k-medoids clustering, and then supervised logistic regression. Contrary to the 

more conventional approach where a CNN would be directly trained with survival data, in this 

paper, the U-nets were trained for segmentation using physician-drawn regions of interest (ROIs), 

and separate networks for CT and PET data. Intermediate results from the U-nets, taken from the 

middle encoded (i.e., feature-space) layers, were used as input to the clustering algorithm. The 

authors showed that by training the U-nets in this manner, the intermediate features conveyed more 

structural information than the textural information which is more prevalent in a network trained 

directly with survival data. Results from the k-medoids algorithm were used to identify key features 

that were then fed into the supervised logistic regression algorithm, trained using survival data.  

Tseng et al. used generative adversarial networks (GANs) as part of the treatment planning 

for NSCLC to automate radiation adaptation to good effect (Fig. 4) (47). 

 

Conclusion 

 AI in conjunction with PET, though still in its infancy, has the potential to become an 

integral decision-making tool in the precision medicine algorithm of lung cancer patients. PET 

coupled with either CT or MRI provides anatmo-molecular insight during the course of lung cancer 

patient care. AI can use this the information derived from this imaging to assist with staging, 

treatment planning, and outcome prediction.  
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Figure Legends: 

 

Figure 1. Illustration of the network used by Zhao et al. to segment lung cancer based on PET/CT 

with V-net style 3D fully convolutional neural network (FCN) and feature fusion (28). The CNNs 

create feature maps for each input (PET/CT). These feature maps are concatenated and undergo 

feature re-extraction to produce a fused feature map. 

 

Figure 2. Illustration of the network used by Sibille et al. for the purpose of localization and 

classification in patients with lung cancer or lymphoma (31). Note that the model uses a 

combination of inputs (PET, CT, position of cropped region, maximum intensity projection (MIP)), 

and types of layers (convolutional, fully connected). 

 

Figure 3. Illustration of the network used by Baek et al. for the purpose of predicting survival in 

patients with non-small cell lung cancer (46). A) Simplified structure of a deep segmentation 

network to predict the likelihood of survival from NSCLC. The structure used for training included 

a U-Net (simplified here to 5 layers), k-medoids clustering, LASSO feature selection, and logistic 

regression. B) The structure used for online operation, which includes the U-Net encoder, selection 

of p relevant features, and logistic regression. 

 

Figure 4. Illustration of the network used by Tseng et al. for the purpose of radiation therapy 

planning in patients with non-small cell lung cancer (47). The framework used consisted of 3 parts: 

a Generative Adversarial Network (GAN), a Radiotherapy Artificial Environment (RAE) and a 

Deep Q-Network (DQN). A) A total of 297 variables were collected using the PET/CT, clinical 

factors, etc., with 9 variables selected using Markov Blankets and Bayesian statistics. The GAN 

was used to generate synthetic patient data. B) Real and synthesized patient data were used to 

estimate transition probabilities regarding radiation response such as pneumonitis and local control 

prediction factors. The transition probabilities make up the RAE, which produces a reward in 

response to the action taken by the optimal policy learned from the DQN.  
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