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The full Kelly portfolio strategy’s deficiency in the face of estimation errors in practice can be mitigated
by fractional or shrinkage Kelly strategies. This paper provides an alternative, the RL Kelly strategy,
based on a reinforcement learning (RL) framework. RL algorithms are developed for the practical imple-
mentation of the RL Kelly strategy. Extensive simulation studies are conducted, and the results confirm
the superior performance of the RL Kelly strategies.
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1. Introduction

In the classical Merton portfolio optimization model (Merton 1971), an investor aims to maximize
her utility by trading stocks and bonds. A common choice of the utility function is the log-utility.
Maximizing the expected log-utility of the terminal portfolio value is the same as maximizing the
expected log-return of the portfolio, and such optimality target is known ast the Kelly criterion
(MacLean et al. 2010). For this criterion, the portfolio selection problem has been well studied,
and closed-form solutions have been found in many models. It is well known that the full Kelly
strategy, the optimal allocation strategy under the Kelly criterion, outperforms other strategies in
terms of capital growth (MacLean et al. 2010). However, one important risk with the full Kelly
strategy is that an investor may have to invest a large amount of money in stocks. This fact could
lead to a substantial loss given a sequence of poor market returns.

Furthermore, the full Kelly strategy’s optimality is sensitive to estimation errors. When esti-
mation of model parameters is involved, the full Kelly strategy’s empirical performance typically
has a considerable deviation from the theoretical optimality results. As a remedy to mitigate the
adverse effect of the estimation errors and improve the full Kelly strategy’s performance, the frac-
tional Kelly strategy was introduced. Under the fractional Kelly strategy, the portfolio weight is
a fraction of that in the full Kelly strategy. Simulations and empirical evidence have shown the
advantage of the fractional Kelly strategy over the full Kelly strategy (MacLean et al. 2010, 2011,
Davis and Lleo 2013). Although there is no universal choice for the weight, a straightforward and
common example of the fractional Kelly strategy is the half Kelly strategy (Nekrasov 2014, Han
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et al. 2019), where the portfolio weight is half of that in the full Kelly strategy. This simple strategy
can reduce the portfolio risk in a bad scenario significantly (Ziemba 2016). As a member of the
fractional Kelly strategy family, the shrinkage Kelly strategy is also an alternative to adjust for
parameter estimation error. One can either shrink the estimated expected stock return towards
the risk-free return (Rising and Wyner 2012) or directly shrink the portfolio weight (Han et al.
2019). Another potential modification to the Kelly strategy is applying machine learning methods
in portfolio selection problems. Shen et al. (2019) improve the Kelly strategy by ensemble learning.
They combine the bootstrap aggregating algorithm and random subspace method to reduce the
estimation risk at a single step for multivariate portfolios. The algorithm is sequentially applied to
empirical data and shown to outperform several competing strategies.

In this paper, we apply reinforcement learning (RL) to tackle the practical challenge of the
Kelly strategy when faced with unknown model parameters. In RL, agents take actions and receive
rewards from the environment. They start with knowing very little about the environment and dy-
namically learn from interactions with the environment. Then they use the knowledge to maximize
their rewards or objectives, e.g., expected log-return in the Kelly problem. This framework is more
realistic than traditional portfolio selection models, where market parameters are assumed known
a priori to investors. An important consideration in RL is to balance exploitation and exploration
in the action process. At each decision point, the agent can either fully use the experience to exe-
cute the optimal action, i.e., exploiting the experience, or take a random action, i.e., exploring the
environment. The benefit for the agent to explore is that more information about the environment
is collected through exploration to find a better path towards higher long-term rewards. Wang
et al. (2019) formulate the exploration-exploitation trade-off in a control problem. In particular,
they adopt an entropy-regularization method to regularize the efforts in exploration and apply it
in linear-quadratic control problems.

We apply the entropy-regularization RL framework to the Kelly portfolio problem. In this prob-
lem, we assume the underlying model dynamics are known to the investor (agent) to be a geometric
Brownian motion, while the model parameters are unknown. The reward is the investment return
from a given trading strategy, and the investor needs to learn how to find the optimal strategy
to achieve the highest expected terminal log-return. We include a general time-varying tempera-
ture parameter in the regularization term to balance the degree of exploration and exploitation
in the resulting RL algorithm. We consider both the Kelly portfolio problem for controlling the
amount of investment in the stock, and the portion of wealth invested in the stock. The equivalence
between the two formulations is not as apparent as the problem under the classical formulation.
Indeed, given the same temperature parameter, they lead to different investment strategies for the
two exploratory versions. In our study, we derive the optimal exploratory solution as a Gaussian
distribution with parameters depending on time and portfolio wealth. By virtue of the derived
closed-form solutions, we identify a relationship in the temperature parameter for the two ex-
ploratory versions to yield the same exploratory investment strategy and the same exploratory
wealth process. It is worth noting that the resulting value functions are not identical even when
we set the temperature parameters to yield the same exploratory investment strategy from both.

In our study, we consider three specific functional forms for the temperature parameter in the
exploratory Kelly portfolio problems and develop implementable RL algorithms with the aid of the
obtained closed-form solutions and value functions. The variance term in the Gaussian distribution
of optimal control under the three functional forms of temperature parameter shows different time-
varying patterns: increasing, constant, and decreasing over time. We call the resulting portfolio
strategies the RL Kelly strategies. We apply the three RL algorithms in extensive simulation studies.
In particular, we conduct a simulation study to confirm the convergence of our RL algorithms, and
we then compare their performance with the fully Kelly, the fractional Kelly, and the shrinkage
Kelly (by Han et al. (2019)) strategies. The simulation results show that the RL Kelly strategies
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yield significantly better and more robust performance than these benchmark Kelly strategies even
under model misspecification (when the stock actually follows a Heston’s model). Thus, the RL
Kelly strategy provides a practical improvement to those existing Kelly strategies.

The entropy-regularization RL framework has been applied to several investment problems in
recent literature including Wang and Zhou (2019, 2020) and Dai et al. (2020). Wang and Zhou
(2019, 2020) apply the RL method to a mean-variance problem. This method benefits the investor
in the mean-variance space by achieving the target expected return faster than several other esti-
mation methods. Dai et al. (2020) also adopt a mean-variance framework but base their analysis on
the log-return of the portfolio and study the equilibrium solution, instead of the pre-commitment
solution that Wang and Zhou (2019, 2020) investigate. The exploratory mean-variance problem in
Dai et al. (2020) reduces to an exploratory Kelly problem as a special case, but our study in this
paper differs from Dai et al. (2020) and makes contributions in several different aspects. First, while
the control in Dai et al. (2020) is the investment portion of wealth, we study the exploratory Kelly
problem by considering both the amount of investment in stock and the portion of wealth in stock
as the control. We derive explicit solutions for both formulations. Second, while the discussion in
Dai et al. (2020) mainly focuses on a constant temperature parameter and covers the case with
exponentially decaying temperature parameter, our study for both formulations is for a general
time-varying temperature parameter. Third, we clarify the condition for the two formulations to
have the same exploratory investment strategy, which otherwise is not as apparent as their equiva-
lence under the classical formulation. When the temperature parameters from the two formulations
satisfy a certain equation (see equation (35)), both formulations will yield the same exploratory
investment strategy.

The RL algorithm of Wang and Zhou (2020) addresses the minimum variance of the terminal
wealth problem when the terminal mean is targeted. The RL algorithm of Dai et al. (2020) finds the
equilibrium strategy under the log-mean-variance criterion. Our RL algorithms borrow the same
idea of using temporal difference error to update parameters as in Wang and Zhou (2020) and
Dai et al. (2020), but have a different design. First, their algorithms follow an episodic framework,
where the updated values of model parameters from one episode are used as the initial values of
parameters for the next episode. The investment strategy rule is updated only at the start of each
episode and remains unchanged throughout each episode. In our paper, we interpret one episode
as one investment time horizon considered for the Kelly problem. Our RL algorithms update
the investment strategy over each trading period to make the strategy more practical. So, our
algorithm is a one-step online algorithm. Second, in our simulation studies, we treat each episode
independently and start from the same initial guess of model parameters in simulating for each
episode. The independence of all episodes run in the simulation allows us to assess the performance
of an RL algorithm applied over one episode.

The remainder of the paper is structured as follows. Section 2 introduces the classical Kelly
criterion problem. Section 3 presents the exploratory Kelly problem that takes the dollar amount
invested in stock as the control. Section 4 introduces the exploratory Kelly problem that uses
the portion of wealth as the control. Section 5 creates RL algorithms, and section 6 contains
the simulation studies. Section 7 concludes the paper. Appendix A collects the proofs for some
theoretical results in the main body of the paper. Appendix B includes the RL algorithms and
some technical details under two special time-decaying temperature parameters.

2. Kelly Criterion Problem

We consider a frictionless market and a filtered probability space (Ω,F , {Ft}0≤t≤T ,P) in a finite
time horizon [0, T ]. The market allows short-selling and leverage without extra cost. We assume
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that there are only two assets in the market: one riskless asset (bond) Bt and one risky asset
(stock) St. The risk-free interest rate is r, so that dBt = rBtdt. The stock price follows a geometric
Brownian motion (GBM) with constant parameters µ and σ:

dSt = µStdt+ σStdWt

where {Wt, 0 ≤ t ≤ T} is a standard Brownian motion.
An investor with an initial wealth of x0 trades in the market to maximize her discounted ter-

minal wealth. Denote the discounted amount invested in the stock at time t by ut ∈ R and the
corresponding discounted wealth process by xt ≡ xut ∈ R+. Under the self-financing condition, the
discounted wealth process xt satisfies:

dxut = ρσutdt+ σutdWt (1)

where ρ = µ−r
σ is the Sharpe ratio of the stock. We assume the investor aims to establish a trading

strategy according to the Kelly criterion. In other words, the investor’s optimal trading strategy is
solved from the following optimization problem:

max
u∈A(0,x0)

E[U(xuT )] = max
u∈A(0,x0)

E[log xuT ], (2)

where U is the logarithmic function, i.e., U(x) = log x for x ≥ 0, and A(0, x0) is the set of admissible
controls (i.e., R-valued measurable Ft-adapted and square integrable processes).

Through either the Hamilton-Jacobi-Bellman (HJB) equation (Merton (1971)), or the martingale
method (e.g., Goll and Kallsen (2000)), we have the optimal strategy:

u∗t (x) =
ρx

σ
, (3)

and the optimal wealth process:

dx∗t = ρ2x∗tdt+ ρx∗tdWt, or equivalently x∗t = x0e
ρ2

2
t+ρWt . (4)

Thus, the optimal expected terminal log-return is given by:

E[log x∗T ] = E
[
log x0 +

ρ2

2
T + ρWT

]
= log x0 +

ρ2

2
T. (5)

3. Exploratory Kelly Amount Problem

In this section, we extend the classical Kelly criterion problem into an RL framework. We call it
the exploratory version of the Kelly criterion problem, or simply, the exploratory (Kelly) problem.
In the section, we use the amount of investment in stock as the control process and refer to
the resulting exploratory problem as the “(exploratory Kelly) amount problem” when it becomes
necessary or helpful to distinguish the exploratory formulation from the one using portion of wealth
as the control process.
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3.1. Motivation

The exploratory formulation in Wang et al. (2019), and Wang and Zhou (2019, 2020) is motivated
by the trade-off between exploitation and exploration. In RL, when an agent is going to take an
action, they will either exploit the current knowledge or explore the environment. If exploitation is
selected, they will choose an action that maximizes the short-term rewards based on the experience
so far. This optimal short-term action is also called the greedy action. However, a short-term greedy
action may not always lead to the greatest long-term rewards due to the inadequacies of the current
level of knowledge. Consequently, it is preferable to occasionally explore the environment randomly
to improve the level of knowledge. The agent always faces a trade-off between exploitation and
exploration when trying to accumulate the largest long-term reward. One approach to solving the
RL problem is to employ an ε-greedy policy, i.e., choosing the greedy action with a probability of
1 − ε and random actions with a probability of ε, for some ε ∈ (0, 1). A larger ε leads to more
exploration, while a smaller ε favors employing the greedy strategy.

For our Kelly criterion problem, it seems that there is no need to explore the environment since
the full Kelly strategy dominates other strategies. However, the domination has been found to
fail in a practical scenario. Indeed, fractional Kelly strategies perform better than the full Kelly
strategy in practice. This is partially due to the large bets of the full Kelly strategy, which would be
very risky in a short period. Another reason is the estimation error of model parameters, i.e., µ and
σ in our setting. Estimation errors of mean returns affect portfolio selection problems more than
those of the covariances (Kallberg and Ziemba (1984)). A full Kelly strategy with biased estimates
would be dominated by a fractional Kelly strategy with unbiased estimates (Han et al. (2019)).
The deficient practical performance of the full Kelly strategy motivates us to apply exploration
methods for higher rewards.

3.2. Exploratory Wealth Process

In the Kelly criterion problem, the greedy action is given by (3). In the exploratory problem, we
consider random actions like in the ε-greedy scheme. Random actions could be formulated by a
control distribution π(u), i.e., every action is randomly drawn from the control distribution, and
the control distribution should include the greedy action in a way that the greedy action has the
highest chance to be executed. Therefore, we are now interested in finding the optimal control
distribution instead of greedy actions.

In RL, a policy is how an agent behaves in different states (Sutton and Barto (2018)). In our
scenario, the state corresponds to the current (discounted) wealth, and the policy corresponds to
the control distribution π(u). Given a control distribution π, every draw from it is a classical control
like one in equation (3). Every classical control will receive a reward from the environment. Then,
we could estimate the rewarding mechanism of the environment by drawing N classical controls.
As N goes to infinity, we would be very close to the true rewarding mechanism.

Suppose at time t, we have a control distribution πt and N independent sample classical controls
ui, i = 1, 2, ..., N , drawn from πt. {xit, t ∈ [0, T ]} is the wealth process under the control {uit, t ∈
[0, T ]} for i = 1, 2, . . . , N . The key idea is to view xit as independent samples drawn from a new
wealth process Xπ

t . We denote Xπ
t as the exploratory version of the controlled wealth process. This

new wealth process, by the idea of RL, can be approached by sample paths xit, i = 1, 2, ..., N as N
goes to infinity. Following the procedure in section 2.1 of Wang et al. (2019), we get the dynamics
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of the exploratory wealth process Xπ
t

dXπ
t =

∫
R
ρσuπt(u) dudt+

√∫
R
σ2u2πt(u)du dWt

= ρσµt dt+ σ
√
µ2
t + σ2

t dWt

=: α(πt) dt+ β(πt) dWt

(6)

where

α(πt) = ρσµt, β(πt) = σ
√
µ2
t + σ2

t (7)

and

µt =

∫
R
uπ(u) du, σ2

t =

∫
R
u2πt(u) du− µ2

t . (8)

We also assume E
[∫ T

0

√
µ2
t + σ2

t dt
]
<∞ to ensure that Xπ

t is well defined in (6).

If an agent invests following an RL policy {πt}, then, with the highest chance, the agent would
execute µt, i.e., the mean of the control distribution, and meanwhile the agent would have a chance
to explore the environment by taking other possible actions. It is worth noting, however, that the
agent’s wealth is not fully explained by the exploratory wealth process. By empirically executing
an RL policy, the wealth process is a realization from the draws of the control distribution and
the stock price process. Both are random and independent of each other. The exploratory wealth
process only incorporates the random effect from the stock price process, or equivalently from the
Brownian motion Wt. The exploratory wealth process describes the average of wealth paths from
a given exploratory investment strategy πt.

3.3. Trade-Off Between Exploitation and Exploration

If the control distribution gives a larger probability mass to a single control rule, e.g., classical
control, the agent will explore less and execute the single control rule more frequently. An extreme
case of the control distribution is that it gives probability one to a single classical control. In this
case, the agent would not explore anymore and the single control would be the optimal classical
control. So, the control distribution needs to be regulated to maintain a certain degree of exploration
in a learning procedure.

The need of regulating the level of exploration leads to the application of differential entropy,
which has been widely used in information theory to measure a random variable’s average level of
uncertainty or information (Cover and Thomas (1991)). More uncertainty of the control distribution
corresponds to a larger entropy. The differential entropy has indeed been used by Wang et al. (2019),
Wang and Zhou (2020, 2019) and Dai et al. (2020) to regularize exploration for linear-quadratic
control problems with uncertainty. In particular, it has been used by Wang and Zhou (2020) and
Dai et al. (2020) for a continuous-time mean-variance portfolio allocation problem.

The entropy for control πt is defined as:

H(πt) = −
∫
R
πt(u) log πt(u)du. (9)
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Because we study the problem in the time horizon [0, T ], the aggregated entropy of the control dis-
tribution process {πt, t ∈ [0, T ]} is the integral of the differential entropy over the whole investment
time horizon [0, T ].

Our exploratory Kelly amount problem modifies the classical optimization problem (2) by using
the exploratory wealth process and an entropy regularization term. It is defined as follows:

max
π∈A(0,x0)

E
[
logXπ

T +

∫ T

0
λa(t)H(πt) dt

]
= max

π∈A(0,x0)
E
[
logXπ

T −
∫ T

0
λa(t)

∫
R
πt(u) log πt(u) du dt

] (10)

where the exogenous parameter λa(t) > 0 regularizes the level of exploration and is called the
temperature parameter in the RL literature. The temperature parameter balances exploitation
and exploration in an RL framework. A larger λa(t) encourages more exploration as the resulting
control rule solved from (10) would lead to a larger value for the entropy H(πt). We attach the
subscript “a” in the notation λa(t) to indicate the temperature parameter is for the exploratory
amount problem, as in the subsequent sections we need to distinguish it from the temperature
parameter for the exploratory portion problem, which is formulated with the portion of wealth as
the control.
A(0, x0) in (10) is the set of admissible control distribution processes on [0, T ]. For fixed (s, x) ∈

[0, T ] × R+, a control distribution process π = {πt, s ≤ t ≤ T} belongs to A(s, x) if (Wang and
Zhou (2020))

(1) for each s ≤ t ≤ T , πt ∈ P(R) almost surely, where P(R) denotes the set of R-valued probability
density functions;

(2) for each A ∈ B(R), {
∫
A πt(u) du, s ≤ t ≤ T} is Ft-progressively measurable;

(3) E
[∫ T
s

√
µ2
t + σ2

t dt
]
<∞, 0 ≤ s ≤ T ;

(4) E
[
| logXπ

T −
∫ T
s λa(t)

∫
R πt(u) log πt(u) du dt|

∣∣∣ Xπ
s = x

]
<∞, 0 ≤ s ≤ T .

Since πt is a probability density for all t ∈ [0, T ], it must satisfy

πt(u) ≥ 0, for all u ∈ R and

∫
R
πt(u)du = 1.

Below we discuss the solution of the exploratory amount problem (10). The value function of
this optimization problem is defined as:

V a(t, x;λa(t)) = max
π∈A(t,x)

E
[
logXπ

T −
∫ T

t
λa(v)

∫
R
πv(u) log πv(u) du dv

∣∣∣∣ Xπ
t = x

]
. (11)

A standard application of the Dynamic Programming Principle yields the following HJB equation
for the value function:

vt(t, x) + max
πt∈P(R)

{
α(πt)vx(t, x) +

1

2
β2(πt)vxx(t, x)− λa(t)

∫
R
πt(u) log πt(u)du

}
= 0 (12)

with terminal condition v(T, x) = log x. In the above, vt, vx and vxx denote the corresponding
partial derivatives of the function v(t, x).
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Theorem 3.1 The maximization problem in equation (12) possesses the following density function
as a solution:

π∗t (u;x, λa(t)) =
exp

{
1

λa(t)

[
1
2σ

2vxx(t, x)u2 + ρσvx(t, x)u
]}

∫
R exp

{
1

λa(t)

[
1
2σ

2vxx(t, x)u2 + ρσvx(t, x)u
]}

du
. (13)

Proof. See Appendix A.1.

Equation (13) indicates that π∗t (u;x, λa(t)) is a Gaussian density if vxx(t, x) < 0, which actually
holds as we can tell shortly from Theorem 3.2.

Now that

µ∗t :=

∫
R
uπ∗t (u) du = − ρvx(t, x)

σvxx(t, x)

and

σ∗t :=

√∫
R
u2π∗t (u)du− (µ∗t )

2 =

√
− λa(t)

σ2vxx(t, x)
,

substituting these into the expressions for α(πt) and β(πt) in (7) and using the control π∗t (u;x, λa(t))
in equation (13), we can simplify the HJB equation (12) into:

vt(t, x)− ρ2v2
x(t, x)

2vxx(t, x)
− λa(t)

2
log

(
−σ

2vxx(t, x)

2πλa(t)

)
= 0 (14)

with v(T, x) = log x. The above partial differential equation (PDE) is actually the Merton-type
PDE in the classical optimization problem plus a term resulting from the entropy penalization. A
similar PDE arises in the mean-variance portfolio allocation problem in Wang and Zhou (2020)
but with a different terminal condition.

Define the real-valued function

f(t) = 1 +

∫ T

t
λa(s)ds, t ∈ [0, T ], (15)

and let ga be a real-valued function with ga(T ) = 0 and derivative:

g′a(t) = −ρ
2

2
f(t) +

λa(t)

2
log

σ2f(t)

2πλa(t)
. (16)

Theorem 3.2 For the exploratory optimization problem (10),

(a) the value function is

V a(t, x;λa(t)) = f(t) log x+ ga(t), (17)
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(b) the optimal control follows a Gaussian distribution

π∗t (u;x, λa(t)) ∼ N
(
u

∣∣∣∣ ρxσ , x2λa(t)

σ2f(t)

)
, (18)

(c) the exploratory wealth process Xπ∗
t under the optimal control π∗ satisfies

dXπ∗

t = ρ2Xπ∗

t dt+

√
ρ2 +

λa(t)

f(t)
·Xπ∗

t dWt, (19)

or equivalently,

Xπ∗

t = x0 exp

{
ρ2

2
t+

1

2
log

1 +
∫ T
t λa(s)ds

1 +
∫ T

0 λa(s)ds
+

∫ t

0

√
ρ2 +

λa(s)

f(s)
dWs

}
, (20)

(d) the expected terminal log-return is

E[logXπ∗

T ] = log x0 +
ρ2

2
T − 1

2
log

(
1 +

∫ T

0
λa(s)ds

)
, (21)

(e) the relative loss of expected terminal log-return is

E[log x∗T ]− E[logXπ∗

T ]

E[log x∗T ]
=

log(1 +
∫ T

0 λa(s)ds)

2 log x0 + ρ2T
, (22)

where E[log x∗T ] is the expected log-return of terminal portfolio under the classical Kelly strategy
and given in equation (5).

Proof. See Appendix A.2

According to part (b) of Theorem 3.2, the exploratory optimal control π∗ for the amount prob-
lem (10) is centered at the classical optimal control u∗ given in equation (3). The variance term in
the optimal Gaussian distribution control depends on

λa(t)

f(t)
=

λa(t)

1 +
∫ t
t λa(s)ds

.

The variance term determines the level of exploration. So, Theorem 3.2 sheds important light
on how different time-varying properties of the control distribution can be designed by using
different time-decaying λa(t), or equivalently f(t). However, not all time-decaying temperature
processes lead to a time-decaying variance, for example, linearly decaying λa(t) (see Appendix
A.3) and exponentially decaying λa(t) (see next subsection). The following proposition suggests
the conditions of f(t) for an appropriate temperature process.

Proposition 3.3 A temperature process λa(t) can be characterized by f(t) as λa(t) = −f ′(t). A
necessary and sufficient condition for λa(t) to be time-decaying and lead to a time-decaying variance
is that f(t) is strictly log-convex.
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Proof. The proof is straightforward from the definitions of λa(t) and the variance of the control

distribution, x2λa(t)
σ2f(t) .

3.4. Exploratory Solutions under Several Specific Temperature Parameters

In this section, we present results for three specific forms of temperature parameter. The variance
term shows different time-varying patterns over time under these three forms.

3.4.1. Constant λa(t). When the temperature parameter for problem (10), λa(t), is a constant
λ > 0, equations (15) and (16), together with the terminal condition ga(T ) = 0, imply

f(t) = 1 + (T − t)λ

and

ga(t) = −
∫ T

t

[
−ρ

2

2
[1 + λ(T − s)] +

λ

2
log

σ2

2πλ
+
λ

2
log [1 + (T − s)λ]

]
ds.

Computing the integral for ga and applying Theorem 3.2, we get the value function given by

V a(t, x;λ) =[1 + λ(T − t)] log x− 1 + λ(T − t)
2

log [1 + λ(T − t)]

− λρ2

4
(T 2 − t2) +

[
ρ2

2
+
λ

2

(
ρ2T − log

σ2

2πeλ

)]
(T − t),

(23)

and the optimal exploratory amount control given by

π∗t (u;x, λ) ∼ N
(
u

∣∣∣∣ ρxσ , λx2

σ2(1 + λ(T − t))

)
. (24)

3.4.2. Power-Decaying λa(t). In practice, as the agent collects more information from the
environment, their attitude towards exploration may change over time. In light of this, state-
dependent or time-dependent temperature parameters have been adopted in the literature (Ishii
et al. (2002); Wang and Zhou (2020); Dai et al. (2020)). For our exploratory amount problem, one
feasible temperature process is the power-decaying λa(t) defined as follows:

λa(t) = λ0
(T + λ1)λ0

(t+ λ1)λ0+1
(25)

with constants λ0 > 0 and λ1 > 0. Its corresponding f(t) is f(t) = (T+λ1

t+λ1
)λ0 , which is log-

convex (and therefore convex). Under this particular power-decaying temperature process, the
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value function for the amount problem (10) is given by

V a(t, x;λa(t)) =



(T+λ1

t+λ1
)λ0 log x+ ρ2(T+λ1)

2(λ0−1)

[
(T+λ1

t+λ1
)λ0−1 − 1

]
− 1

2λ0

[
(T+λ1

t+λ1
)λ0 − 1

]
− 1

2(T+λ1

t+λ1
)λ0 log σ2(t+λ1)

2πλ0
+ 1

2 log σ2(T+λ1)
2πλ0

, λ0 6= 1

T+λ1

t+λ1
log x+ ρ2(T+λ1)

2 log T+λ1

t+λ1
− T+λ1

2(t+λ1) + 1
2

− T+λ1

2(t+λ1) log σ2(t+λ1)
2π + 1

2 log σ2(T+λ1)
2π , λ0 = 1

(26)
and the optimal control is given by

π∗t (u;x, λa(t)) ∼ N
(
u

∣∣∣∣ ρxσ , λ0x
2

σ2(t+ λ1)

)
(27)

which has a time-decreasing variance λ0x2

σ2(t+λ1) .

3.4.3. Exponentially Decaying λa(t). Consider the optimization problem (10) with an
exponentially decaying temperature parameter

λa(t) = λ0e
λ0(T−t), where λ0 > 0.

Applying Theorem 3.2, we get the value function

V a(t, x;λa(t)) = eλ0(T−t) log x+

(
ρ2

2λ0
− 1

2
log

σ2

2πλ0

)(
eλ0(T−t) − 1

)
,

and the optimal amount control

π∗t (u;x, λa(t)) ∼ N
(
u

∣∣∣∣ ρxσ , λ0x
2

σ2

)

which has a time-constant variance λ0x2

σ2 .

4. Exploratory Kelly Portion Problem

In portfolio selection problems, the investor can either control the amount of wealth or the pro-
portion of wealth invested in the stock. In the classical problem, these two choices are equivalent,
producing the same optimal strategy, value function, and expected terminal log-return. In section
3, the exploratory problem is formulated in terms of controlling the amount invested in the stock
and is regularized using the differential entropy (9). Now, we revisit the problem with a regulariza-
tion based on the portion of wealth invested in the stock. We call the resulting control problem the
“exploratory (Kelly) portion problem” to it from distinguish the formulation based on the amount
of investment.

Recall that ut ∈ R represents the amount of wealth invested in the stock. Given that total
wealth is xt, the portion of wealth invested in the stock is therefore zt = ut/xt ∈ R. We denote the

11
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associated control distribution for the portion of wealth by φt(·) and still use πt(·) for the control
distribution of the amount of wealth. Then, they relate to each other by:

φt(z) = πt(zxt)xt, z ∈ R.

Therefore the entropy regularizing the new control distribution is:

H(φt) = −
∫
R
φt(z) log φt(z) dz = H(πt)− log xt, (28)

which includes the extra term “log xt”. For a solution to the exploratory problem with the entropy
applied to φt, we can apply the above relationship and solve the problem via πt:

V p(t, x;λp(t)) := max
φ∈A(t,x)

E
[
logXφ

T +

∫ T

t
λp(v)H(φv) dv

∣∣∣∣ Xφ
t = x

]
= max

π∈A(t,x)
E
[
logXπ

T +

∫ T

t
λp(v)(H(πv)− logXπ

v ) dv

∣∣∣∣ Xπ
t = x

]
= max

π∈A(t,x)
E
[
logXπ

T −
∫ T

t
λp(v)

∫
R
πv(z) log πv(z) dz dv −

∫ T

t
λp(v) logXπ

v dv

∣∣∣∣ Xπ
t = x

]
.

(29)
Thus, V p satisfies the HJB equation

vt(t, x) + max
φt∈P(R)

{
α(φt)xvx(t, x) +

1

2
β2(φt)x

2vxx(t, x)− λp(t)
∫
R
φt(z) log φt(z) dz

}
= 0

or equivalently,

vt(t, x) + max
πt∈P(R)

{
α(πt)vx(t, x) +

1

2
β2(πt)vxx(t, x)− λp(t)

∫
R
πt(z) log πt(z) dz − λp(t) log x

}
= 0

with terminal condition v(T, x) = log x.
Equations (28) and (29) demonstrate why the solutions turn out not to be equivalent when using

the amount of investment and using the portion of wealth as the control in the exploratory Kelly
problem while they are under the classical formulation. The distribution for the portion variable
yields a smaller entropy compared with that for the amount variable.

Let gp be a real function with derivative

g′p(t) = −ρ
2

2
+
λp(t)

2
log

σ2

2πλp(t)
,

and terminal condition gp(T ) = 0.

Theorem 4.1 For the exploratory optimization problem (29),

(a) the value function is

V p(t, x;λp(t)) = log x+ gp(t), (30)

12
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(b) the optimal control follows a Gaussian distribution

φ∗t (u;x, λp(t)) ∼ N
(
u

∣∣∣∣ ρσ , λp(t)σ2

)
, (31)

(c) the exploratory wealth process Xφ∗

t under the optimal control φ∗ satisfies

dXφ∗

t = ρ2Xφ∗

t dt+
√
ρ2 + λp(t) ·Xφ∗

t dWt, with Xφ∗

0 = x0,

or equivalently,

Xφ∗

t = x0 exp

{
ρ2

2
t− 1

2

∫ t

0
λp(s)ds+

∫ t

0

√
ρ2 + λp(s)dWs

}
, (32)

(d) the expected terminal log-return is

E[logXφ∗

T ] = log x0 +
ρ2

2
T − 1

2

∫ T

0
λp(s)ds, (33)

(e) the relative loss of expected terminal log-return is

E[log x∗T ]− E[logXφ∗

T ]

E[log x∗T ]
=

∫ T
0 λp(s)ds

2 log x0 + ρ2T
. (34)

Proof. The proof is parallel to that of Theorem 3.2 and hence, omitted.

Remark 1 A comparison between Theorems 3.2 and 4.1 leads to the following interesting obser-
vations:

(a) The variance term in the optimal control distribution is more directly related to the tem-
perature parameter for the portion problem than the amount problem. The variance term is
proportional to the temperature parameter for the portion problem.

When λp(t) is set to be identical to λa(t), the variance of the investment amount is larger
in the portion problem than in the amount problem (see equations (18) and (31)) since f(t) =

1 +
∫ T
t λa(s)ds ≥ 1. Accordingly, the expected terminal log-return is smaller, and the relative

loss is larger in the portion problem. A smaller exploratory variance for the amount solution is
attributed to its relatively smaller magnitude in the entropy term. As indicated in equation (29),
its entropy is smaller than that of the corresponding amount control by log xt, and therefore,
its inclusion in the optimality objective discourages exploration compared with the formulation
based on the amount variable.

(b) Equations (22) and (34) indicate that, as long as the temperature parameter is set to decrease
to zero over time, the relative loss in expected terminal log-return diminishes to zero when the
investment time horizon becomes infinitely long.

(c) If we set temperature parameters in the two exploratory Kelly problems to satisfy

λp(t) =
λa(t)

1 +
∫ T
t λa(s)ds

, t ∈ [0, t], (35)

13
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then, both problems yield the same exploratory wealth process (see equations (20) and (32)).
Furthermore, under the condition (35), the optimal amount control is equivalent to the optimal
portion control in the sense that both are Gaussian distributions and the parameters for one
are scaled by the portfolio wealth x from the other. However, it is worth noting that the value
functions differ between the two exploratory Kelly problems even if the temperature parameters
satisfy condition (35).

For the three temperature processes λa(t) given in section 3.4 for the amount problem, the
equivalent temperature process λp(t) for the portion problem is respectively as follows:

1. Constant λa(t). When the temperature parameter for problem (10), λa(t), is a constant λ > 0,
the temperature parameter for the equivalent portion control problem (29) is given by

λp(t) =
λ

1 + λ(T − t)
.

In this case, the value function for the portion problem is given by

V p(t, x;λp(t)) = log x+
ρ2

2
(T − t) +

1

4

[(
log

σ2

2πλ

)2

−
(

log
σ2(1 + λ(T − t))

2πλ

)2
]

and the optimal exploratory portion control is

φ∗t (u;x, λp(t)) ∼ N
(
u

∣∣∣∣ ρσ , λ

σ2(1 + λ(T − t))

)
.

2. Power-Decaying λa(t). When the temperature for the amount problem is λa(t) = λ0
(T+λ1)λ0

(t+λ1)λ0+1

with constants λ0 > 0 and λ1 > 0, the equivalent temperature parameter for the portion problem
is given by

λp(t) =
λ0

t+ λ1
.

In this case, the value function for the portion problem is given by

V p(t, x;λp(t)) = log x+
ρ2

2
(T − t) +

λ0

4

[(
log

σ2(t+ λ1)

2πλ0

)2

−
(

log
σ2(T + λ1)

2πλ0

)2
]

and the optimal exploratory portion control is

φ∗t (u;x, λp(t)) ∼ N
(
u

∣∣∣∣ ρσ , λ0

σ2(t+ λ1)

)
.

3. Exponentially Decaying λa(t). When the temperature for the amount problem is λa(t) =
λ0e

λ0(T−t) with constant λ0 > 0, the equivalent temperature parameter for the portion problem
is given by λp(t) = λ0. In this case, the value function for the portion problem is given by

V p(t, x;λp(t)) = log x+

(
ρ2

2
− λ0

2
log

σ2

2πλ0

)
(T − t),

14
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and the optimal exploratory portion control is

φ∗t (u;x, λp(t)) ∼ N
(
u

∣∣∣∣ ρσ , λ0

σ2

)
.

5. Exploratory RL Algorithms

5.1. Policy Improvement

In a common RL problem, an agent learns from the environment through iterations between pol-
icy evaluation and policy improvement (Sutton and Barto (2018)). We previously formulated the
procedure to find the optimal value function using the exploratory version of the wealth process
and entropy regularization. In this subsection, we study the policy improvement to complete the
essential iterations in an RL framework. We will focus on the amount problem (10) and consider
a constant temperature parameter because the results can be obtained in parallel for the portion
problem (29) and for both problems with a general time-varying temperature parameter.

For a policy of a particular type, the following theorem guarantees that it could be improved
to a Gaussian policy. The theorem is modified from Wang and Zhou (2020) to our scenario of the
Kelly criterion problem.

Theorem 5.1 Suppose πt is an admissible control policy and V π(t, x), (t, x) ∈ [0, T ] × R+ is its
corresponding value function satisfying V π

xx(t, x) < 0. Suppose a new control policy defined as

π̃t(u;x) ∼ N
(
u

∣∣∣∣ − ρV π
x (t, x)

σV π
xx(t, x)

, − λ

σ2V π
xx(t, x)

)
(36)

is also admissible under the same choice of λ. Then we have V π̃(t, x) ≥ V π(t, x). That is, we can
improve policy πt by an admissible Gaussian policy (36).

Proof. See Appendix A.4.

Since Theorem 5.1 suggests that the improved policy is Gaussian, below we illustrate how exactly
we improve Gaussian policies to the form of (24). The improvement could be achieved by updating
only the parameters of the Gaussian control, i.e., the mean and the variance. Assume we start with
a simple Gaussian control:

π0
t (u;x) ∼ N

(
u

∣∣∣∣ β1x,
cx2

1 + b(T − t)

)
(37)

with c > 0 and b > 0 guaranteeing a positive variance. To apply the update in (36), we shall
calculate the value function V π0

(t, x) and its derivatives. We start from the PDE:

V π0

t (t, x)+

∫
R

[
ρσuV π0

x (t, x) +
1

2
σ2u2V π0

xx (t, x)− λ log π0
t (u)

]
π0
t (u) du = 0, with V π0

(T, x) = log x.

Substituting the form of the control distribution π0 into the above PDE yields:

V π0

t + ρσβ1xV
π0

x +
1

2
σ2

(
β2

1 +
c

1 + b(T − t)

)
x2V π0

xx +
λ

2
log

2πecx2

1 + b(T − t)
= 0 (38)
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with the terminal condition V π0

(T, x) = log x. Following the same procedure as for solving PDE
(14), we can obtain a solution to the above PDE:

V π0

(t, x) = [1 + λ(T − t)] log x−
[
λ+ σ2c(1− λ/b)

2b
+
λ

2
(T − t)

]
log [1 + b(T − t)]

+

[(
ρσβ1 −

1

2
σ2β2

1

)
(1 + λT ) +

λ

2
log 2πce2 − λσ2c

2b

]
(T − t)

− λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
(T 2 − t2).

(39)

Calculating and substituting the corresponding derivatives of the above V π0

(t, x) into equation
(36), we obtain the update:

π1
t (u;x) ∼ N

(
u

∣∣∣∣ ρxσ , λx2

σ2(1 + λ(T − t))

)
(40)

which is exactly the optimal control defined in equation (24).
However, it is worth noting that the above two-step procedure is not a directly implementable

scheme for policy improvement since it requires the true model parameter values. The value function
V π0

depends on the true values of the parameters σ and ρ. This motivates us to develop iterative
algorithms to update our belief on the model parameters over time. The iterative algorithms will
be discussed in the following section.

5.2. Temporal Difference Error Minimization Algorithm

The previous discussion about the policy evaluation and policy improvement completes the require-
ments of RL procedures. In this subsection we build algorithms for the exploratory optimization
problems. Our discussion will be focused on the exploratory amount problem with a constant tem-
perature parameter λ. Algorithms for extensions to a time-varying temperature parameter and to
the portion problem follow in the same fashion. The design of the algorithms is adapted from Wang
and Zhou (2020). However, our algorithm is an one-step online algorithm, different from the offline
algorithm used in Wang and Zhou (2020).

Theorem 5.1 suggests that the main task is to update model parameters since the optimal controls
are from the Gaussian distribution family. We parametrize the value function V as V π(t, x;α)
and control πt(u) as πt(u;β) to facilitate the discussion of parameter updating in the algorithm,
where α = (α1, α2) and β = (β1, β2) with each element of the two vectors specified later. The
temperature parameter λ represents the weight an agent puts in exploration against exploitation.
So λ is exogenous and pre-specified by the agent.

In view of the discussion following Theorem 5.1 in section 5.1, we start with a simple Gaussian
distribution πt(u;β) parametrized by β, with mean β1x and variance

x2e−2β2−1

2π[1 + λ(T − t)]
(41)

for some constants β1 < 0 and β2 > 0. The parametrization for the above variance is to get a neat
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expression for its entropy:

−
∫
R
πt(u;β) log πt(u;β) du = log x− 1

2
log [1 + λ(T − t)]− β2. (42)

Recall that the value function under the Gaussian control in (37) is given by (39). So, for the
control πt(u;β), we set c = e−2β2−1 and b = λ in (39) to get the value function as follows:

[1 + λ(T − t)] log x− 1 + λ(T − t)
2

log [1 + λ(T − t)]

+

[(
ρσβ1 −

1

2
σ2β2

1

)
(1 + λT ) +

λ

2
log 2πce2 − σ2β2

2

]
(T − t)

− λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
(T 2 − t2).

(43)

On the other hand, equation (23) suggests the following form for the value function:

V π(t, x;α) = [1 + λ(T − t)] log x− 1 + λ(T − t)
2

log [1 + λ(T − t)] +α1(t2− T 2) +α2(t− T ), (44)

for some constants α1 and α2.
In the iterative algorithm, we start from some initialized values for the model parameters ρ and

σ. The specification of these two parameter values would give us initial values for α and β. The
initial values for β can be obtained through comparing the mean β1x and the variance term in
(41) with the counterparts in equation (24). The initial values of α can be derived by comparing
the above parametric form of V π(t, x;α) with that of V (t, x;λ) in equation (23).

Given initial values for α and β, we now discuss how to update the parameters iteratively. We
update the parameter β1 using a heuristic relationship with the other parameters α1, α2 and β2.
We update α1, α2 and β2 through a minimization procedure using the gradient descent algorithm
that we will describe in detail later.

For the update of β1, we note that β1x is the mean in the proposed Gaussian policy and ρ
σx is

the mean in the optimal Gaussian policy. So, we work to find an expression for ρ
σ in terms of the

parameters α and β. We first calculate the entropy under the optimal control distribution π∗t in
(24):

−
∫
R
π∗t (u;β) log π∗ti(u;β) du = log x− 1

2
log [1 + λ(T − t)] +

1

2
log

2πeλ

σ2
(45)

and then compare its expression with (42) to get:

β2 = −1

2
log

2πeλ

σ2
, or equivalently σ2 = 2πλe2β2+1. (46)

We consequently equate the coefficients for t2 in equations (43) and (44) to obtain

α1 =
λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
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which, along with (46), gives

ρ

σ
=

2α1

λσ2β1
+

1

2
β1 =

α1e
−2β2−1

πλ2β1
+

1

2
β1. (47)

Since β1x is the mean in the proposed Gaussian policy and ρ
σx is the mean in the optimal Gaussian

policy, we apply equation (47) to do the update:

β1 ←
(
α1e
−2β2−1

πλ2β1
+

1

2
β1

)
. (48)

For updating other parameters β2, α1 and α2, we follow the idea of Doya (2000) and Wang
and Zhou (2020) by minimizing the cumulative continuous-time temporal difference (TD) error.
Suppose πt is the optimal control and V π is the corresponding value function. Then V π satisfies
the following equation according to Bellman’s principle:

V π(t, x) = E
[
V π(s,Xπ

s )− λ
∫ s

t

∫
R
πτ (u) log πτ (u) du dτ

∣∣∣∣ Xπ
t = x

]
, s ∈ (t, T ]. (49)

The continuous-time TD error measures the difference between the two sides of the equation as s
approaches t (Doya (2000)):

εt = V̇ π(t, x;α)− λ
∫
R
πt(u;β) log πt(u;β) du (50)

where V̇ π is the partial derivative of V π with respect to time t. Then, the cumulative continuous-
time TD error to time t is defined as

Ct(α,β) =
1

2
E
[∫ t

0
|εs|2 ds

]
=

1

2
E
[∫ t

0
|V̇ π(s, x;α)− λ

∫
R
πs(u;β) log πs(u;β)du|2 ds

]
. (51)

which is a function of the parameters α and β.
To implement the RL algorithm numerically, we need to get an approximation to the TD error.

We partition the time interval [0, T ] into {ti, i = 0, . . . , n} with t0 = 0, ti+1 = ti + ∆t and
tn = T for a constant ∆t. Let xi denote the state value at time ti for i = 0, . . . , n, and write
Si = {(tj , xj); j = 0, . . . , i} for the information up to time ti. We approximate the TD error up to
time ti by (with a slight abuse of notation in the subscript of C):

Ci(α,β) =
1

2

∑
(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λ

∫
R
πtj (u;β) log πtj (u;β) du

)2

∆t. (52)
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The derivative of the value function V π at time ti is approximated by

V̇ π(ti, xi;α) =
V π(ti+1, xi+1;α)− V π(ti, xi;α)

∆t

=
[1 + λ(T − ti+1)] log xi+1 − [1 + λ(T − ti)] log xi

∆t

− [1 + λ(T − ti+1)] log [1 + λ(T − ti+1)]− [1 + λ(T − ti)] log [1 + λ(T − ti)]
2∆t

+
α1(t2i+1 − t2i ) + α2∆t

∆t
.

(53)

Using the parametrized control and (42), we take the TD error approximation as follows:

Ci(α,β) =
1

2

∑
(tj ,xj)∈Si

(
V̇ π(tj , xj ;α) + λ log xj −

λ

2
log [1 + λ(T − tj)]− λβ2

)2

∆t. (54)

We then use the Stochastic Gradient Descent Algorithm in Goodfellow et al. (2016) to update α1,
α2 and β2 at time ti. The gradients with respect to the parameters are calculated as follows:

∂Ci
∂α1

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α) + λ log xj −

λ

2
log [1 + λ(T − tj)]− λβ2

)
(t2j+1 − t2j ) (55)

∂Ci
∂α2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α) + λ log xj −

λ

2
log [1 + λ(T − tj)]− λβ2

)
∆t (56)

∂Ci
∂β2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α) + λ log xj −

λ

2
log [1 + λ(T − tj)]− λβ2

)
(−λ∆t) (57)

Supposing θα and θβ are learning rates for updating (α1, α2) and β2, we update them by
(α1, α2)

′ − θα∇αCi(α,β) and β2 − θβ∇βCi(α,β). Once we obtain an update for (α1, α2, β2), we
update β1 using (48) and keep the iterative procedure until a termination criterion is satisfied. The
pseudocode for the online updating procedure is summarized in Algorithm 1.

Algorithm 1: RL Algorithm with Amount Control

Input: Market parameters (µ, σ, r, ρ), learning rates θα, θβ, initial wealth x0, investment
horizon T , discretization ∆t, exploration rate λ.
Initialization: i = 1, α and β
while i ≤ T

∆t do
Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj , xj); j = 0, . . . , i}
Update (α1, α2)

′
as (α1, α2)

′ − θα∇αCi(α,β) using (55) and (56)
Update β2 as β2 − θβ∇βCi(α,β) using (57)
Update β1 using (48)

Update πt(u;x,α,β) as N
(
u
∣∣∣ β1x,

e−2β2−1x2

2π(1+λ(T−t))

)
i = i+ 1

end

Algorithms for other exploratory problems are given in Appendix B.
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6. Simulation Studies

This section implements the RL algorithms with simulated data and compares them with several
benchmark Kelly portfolio strategies.

6.1. Portfolio Strategies and Simulation Setting

We consider the following seven portfolio strategies:

(1) Oracle: Kelly strategy with actual parameter values,
(2) Plug-in: Kelly strategy with maximum likelihood estimation (MLE),
(3) Shrinkage: Shrinkage Kelly strategy proposed by Han et al. (2019),
(4) Fractional: Fractional Kelly strategy with MLE,
(5) RL-Amount: RL algorithm 1 with amount control and constant λ,
(6) RL-Portion: RL algorithm 2 with portion control and constant λ, and
(7) RL-Decay: RL algorithm 3 with amount control and power-decaying λa(t).

The Oracle strategy is defined in equation (3) with the true values used for the parameters ρ
and σ. The Oracle strategy is not a legitimate investment strategy because it uses true parameter
values which are unknown to us in practice. This strategy is expected to perform the best since
it is subject to no estimation risk and no cost of exploration, although its performance is not
attainable for practical use. The Plug-in strategy follows a growing window framework to form
the MLE for the parameters µ and σ (or equivalently ρ and σ), and then substitute the resulting
MLE into equation (3) for the portfolio weight. In the Shrinkage and Fractional Kelly strategies,
portfolio weights are also based on MLE but multiplied with fractional weights. The fraction in
the Shrinkage Kelly strategy is defined in equation (11) in Han et al. (2019). It is proposed to
mitigate the estimation error from MLE. The Shrinkage Kelly strategy is validated to outperform
several fractional Kelly strategies with empirical studies (Han et al. (2019)). When there are more
sample data for estimation, the fraction becomes closer to 1. For the Fractional Kelly strategy,
we test nine fractional candidates from 0.1 to 0.9 with a step size of 0.1, by M = 2,000 indepen-
dent simulations of stock returns. We consider model parameters (µ, σ, r, ρ) = (0.2, 0.1, 0.02, 1.8),
investment time horizon T = 1 year and the initial portfolio wealth x0 = 1 as the benchmark
setting in our simulation study. We discretize the investment time horizon into 252 sub-intervals
(i.e., the discretization length ∆t = 1/252) with each subinterval representing one trading day in
the stock market. For all the fractional candidates along with a fraction of one (i.e., the full Kelly
strategy), we plot the corresponding average terminal log-return in Figure 1. For the benchmark
market setting, we choose the fraction of 0.7, under which the portfolio performance is the best, in
terms of the average terminal log-return. For other market settings, we repeat the same selection
procedure to choose the best fraction.

Other strategies are also evaluated using 2,000 independent paths of stock returns. Over each
simulated path, all the strategies (2)-(7) start with an initial estimation of parameters and up-
dates parameters through time based on observed data. We set the initial estimation of the model
parameters to be the MLE from 100 simulated data points.

For the three RL based strategies, we set the default learning rates θα = θβ = 0.0005, following
Wang and Zhou (2020). For strategies RL-Amount and RL-Portion with constant temperature
parameter, we set λ = 0.5 as the default. For the RL-Decay strategy with power-decaying temper-
ature parameter, we set λ0 = 0.1 and λ1 = 0.236 in equation (25) which gives λa(0) = 0.5. Similar
to the fraction selection for the Fractional strategy, we choose the default λ from several candidates
(see Table 1). From 2,000 simulations, the RL-Amount strategy, with λ varying from 0.05 to 0.5,
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yields similar performance in terms of the average terminal log-return and its standard error. The
default λ of 0.5 is not the best temperature parameter for the benchmark market setting, but a fair
choice in comparing with MLE based strategies (i.e., strategies Plug-in, Shrinkage, and Fractional).

Figure 1. Fraction Selection for the Fractional Strategy

Table 1. Selection of Default λ: RL-Amount Strategy

λ 0.025 0.05 0.1 0.25 0.5 1

Average Terminal Log-return 1.01 1.39 1.49 1.51 1.43 1.24
Standard Error 0.12 0.07 0.05 0.04 0.04 0.05

6.2. Model Convergence

Before comparing our RL strategies with the MLE based strategies, we first investigate the con-
vergence of the exploratory algorithm with simulated data. We focus on the RL-Decay strategy,
since it has the desirable time-decaying control variance. We run the Oracle strategy and RL-Decay
strategy for different time horizons T ∈ {10/252, 1/12, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4, 2, 3, 4}, with
other parameters set as default, and then calculate the loss of the RL-Decay strategy relative to
the Oracle strategy based on 8,000 independent replications. Figure 2 illustrates the convergence
of the relative loss to zero. The relative loss diminishes quickly as T increases. Particularly, it is
close to 0 when the investment time horizon is longer than one year. It decreases to around 2%
when the time horizon is two years. These simulation results mean that the relative performance
of the RL strategy improves quickly over time and it performs almost as well as if we know the
true parameter values in the Oracle strategy when the investment time horizon is as long as one
year.

We also study the convergence of the RL algorithm under an episodic framework. In contrast to
the proposed online algorithms, an episodic algorithm only updates the model parameter values
after one episode. The learned parameter values are then used throughout the next episode. For
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Figure 2. RL-Decay Model Convergence

one simulation, we start from a random set of initial parameter values1 and run for 150 episodes
of length one year to get the terminal (year-end) utility at the end of each episode. Then in
another independent simulation, we repeat this procedure to get another 150 terminal (year-end)
utility values. In total, we repeat for 4,000 independent simulations of 150 episodes. Hence, we
have 4,000 values of the terminal (year-end) utility at the end of each episode. Their average
is taken to estimate the expected terminal utility for each episode. If the RL algorithm works,
then as k increases, the average terminal utility of the kth episode is anticipated to be close to the
theoretically optimal value in (21). The result of the RL-Decay model is shown in Figure 3. The solid
line is the average terminal utility at the end of each episode. Under the benchmark parameters,
the theoretically optimal terminal utility is 1.54 (dashed line). As indicated by the graph, after six
episodes, the average (year-end) terminal utility keeps fluctuating around the theoretically optimal
one. This validates the rapid convergence of the algorithm under the episodic framework.

6.3. Simulation Results under the Benchmark Parameters

We now implement our RL Kelly strategies as well as some MLE based Kelly strategies with
the online algorithms. We carry out these experiments because they are closer to the situation in
practice where decisions are made frequently. Figure 4 shows the distributions of the terminal log-
return under each of the strategies (2)-(7) compared to the Oracle strategy (1). Table 2 summarizes
the average terminal log-return from each strategy. The first row is the theoretically optimal value
of the expected terminal log-return in a classical Kelly criterion problem which assumes the true
model parameter values are known. We also report the standard errors of the estimates. The last
two columns are the theoretical and estimated values of the cost of the strategy, which is the relative
difference between the average terminal log-return of a specific trading strategy and the theoretical

1The initial model parameter values are chosen as the MLEs from 100 simulated data points.
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Figure 3. RL-Decay Model Convergence Under Episodic Framework

optimal terminal log-return. Note that an inevitable issue in simulations is that the wealth may
go negative, due to the uncertainty in either the stochastic stock process or the unconstrained
short-selling or leverage of the RL Kelly strategy. In this case, the log-return is meaningless. We
adopt the reflection approach to replace the negative wealth by its absolute value. The impact of
the reflection method on our results is limited. Among 2,000 simulations, each with 252 values
of wealth, only four values are reflected under the MLE based strategies. Under the RL-Amount
strategy, only two values are reflected, both greater than -0.002. There are no cases for the other
two RL strategies.

Table 2. Model Performance: Terminal Log-Return

Model Mean Std. Error Cost Ĉost

Theoretical 1.62
Oracle 1.68 0.04 0.00 0.04
Plug-in 0.93 0.05 0.00 0.42

Shrinkage 0.98 0.04 0.00 0.39
Fractional 1.20 0.04 0.00 0.26

RL-Amount 1.43 0.04 0.13 0.12
RL-Portion 1.40 0.04 0.15 0.14
RL-Decay 1.59 0.04 0.05 0.02

The results in Figure 4 and Table 2 validate the practical merit of the fractional and shrinkage
Kelly strategy over the full Kelly strategy. Furthermore, they also confirm the outperformance of
the RL strategies over the three MLE based strategies. Figure 4 indicates that the distributions of
terminal log-return from the three MLE based strategies are shifted to the left compared to those
from RL strategies. The average terminal log-return reported in Table 2 also shows that the RL
strategies yield a higher terminal log-return than the MLE based strategies on average. Moreover,
the simulated results reported in Table 2 also confirm the benefit of using time-decaying λ. With
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Figure 4. Model performance

a power-decaying λ, the agent is subject to less cost due to exploration and achieves a higher
expected terminal log-return.

Table 3 reports the statistical summary of the terminal wealth from the 2,000 simulations: average
value, standard deviation, skewness, and quantiles at levels of 0.1%, 1%, 5%, 95%, 99% and 99.9%,
respectively. To obtain wealth, we modify the reflection approach. For example, when the wealth
becomes -0.1, we build an additional account to borrow 0.2 from the bank. The total wealth is still
-0.1 but the investment wealth becomes 0.1. Then we invest based on the new wealth of 0.1. At the
end of the period, we report the total wealth. It is still possible to have negative terminal wealth.
From the result, MLE based strategies have higher average terminal wealth, as well as significantly
large standard deviations. They also have thicker tails of the wealth distribution, especially the
Plug-in and Shrinkage strategies. These are due to the nature of the (fractional) Kelly strategy,
in particular that it usually bets a large amount of money. Hence, in a few extreme cases where
a sequence of the simulated stock returns are relatively high, the MLE based strategies benefit
greatly from the aggressive investment. However, on the other hand, the aggressive investment
could lead to negative wealth when the stock returns are relatively low. The Fractional strategy
mitigates these effects by smaller investments. As a result, the distribution is centered at a smaller
mean and becomes more leptokurtic and skewed. Compared with the MLE based strategies, the
three RL strategies learn the entire wealth distribution better. Their wealth distributions are closer
to that under the Oracle strategy. Particularly, the RL strategy with power-decaying temperature
parameter has close quantiles to those under the Oracle model.

The MLE based strategies and RL strategies are essentially updating market parameters over
time. For each strategy, one simulation yields one pair of estimates (µ̂, σ̂2) by the end of the
investment time horizon. Since we have run 2,000 independent simulations for each strategy, we
obtained 2,000 pairs of estimates from each strategy. Table 4 shows the mean and its standard error
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Table 3. Model Performance: Terminal Wealth
Model Mean Std. Deviation Skewness q0.001 q0.01 q0.05 q0.95 q0.99 q0.999

Theoretical 25.53 126.47 136.38 0.02 0.08 0.26 97.59 332.76 1316.09
Oracle 23.14 63.54 8.26 0.02 0.07 0.27 96.12 265.81 936.50
Plug-in 68.29 830.54 23.61 -2.48 0.02 0.15 98.51 694.85 12862.84

Shrinkage 70.14 897.16 25.70 -0.73 0.03 0.17 99.68 691.45 13208.59
Fractional 54.72 1088.69 39.64 0.05 0.16 0.46 72.02 415.23 4526.27

RL-Amount 17.80 41.21 6.33 0.00 0.03 0.16 74.36 212.80 403.23
RL-Portion 21.69 69.22 9.96 0.00 0.04 0.17 85.79 333.25 692.60
RL-Decay 22.24 77.68 18.51 0.02 0.07 0.28 89.90 302.69 765.29

of those 2,000 estimates (for both µ and σ2) from each strategy.1 Not surprisingly, all are close to
the true parameter values after taking the average over the 2,000 estimates. But the estimation
of parameter µ from the RL strategies is consistently more robust than that from the MLE based
strategies, noting that the MLE based strategies have a higher standard error.

Table 4. Model Performance: Parameter Estimation

Model
µ σ2

Mean Std. Error Mean Std. Error

Oracle 0.2 0.1
Plug-in 0.2030 0.0018 0.0998 0.0001

RL-Amount 0.2025 0.0004 0.1025 0.0002
RL-Portion 0.2056 0.0005 0.1024 0.0002
RL-Decay 0.2054 0.0003 0.1023 0.0001

6.4. Sensitivity Tests

To assess the robustness of the outperformance of the RL strategies over the three MLE based
strategies, we repeat simulations for all strategies under different market settings, i.e., different
values of µ and σ. We report the results in Table 5.

We choose four different values for σ and seven different values for µ, which yield 28 market
scenarios in total, including the benchmark setting where (µ, σ) = (0.2, 0.1). The fractions used in
the Fractional strategy are again chosen from 9 candidates, by repeating the selection procedure
under the benchmark setting. The temperature parameters for the RL strategies are still the same.
For each scenario, we compare the average terminal log-return between the RL strategies and the
MLE based strategies. The best performance under each scenario is labeled with a superscript
asterisk. Among all the 28 scenarios, the RL strategies outperform MLE based strategies under 24
settings. Particularly, the RL-Decay strategy outperforms all the three MLE based strategies in all
24 cases. The other two RL strategies beat all MLE based strategies in 19 cases, even though the
fractions for strategy (4) are chosen based on ex-post information.

Four exceptions where RL strategies do not outperform are under settings of (µ, σ) = (−0.1, 0.01),
(0.2, 0.01), (0, 0.1) and (0, 0.15) which yield extreme values of ρ2. However, the performance of
the RL-Decay strategy is still comparable with the best one in these cases. Under the setting of
(µ, σ) = (0, 0.1) and (0, 0.15), the differences between the RL-Decay strategy and the best strategy
are less than 0.004. Under the other two cases, the relative differences are less than 5%.

To sum up, RL strategies have robust performance, in terms of the relatively high average
terminal log-return, under different market scenarios. In cases where MLE based strategies fail to

1MLE based strategies (2), (3) and (4) share the same estimates. Hence, only one set of results is reported, named Plug-in.
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Table 5. Average Terminal Log-Return under Different
Market Settings

Model
σ = 0.01

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2

Theoretical 242.00 72.00 24.50 2.00 4.50 32.00 162.00
Oracle 229.97 72.72 21.41 1.91 4.53 29.05 165.87
Plug-in 231.18 73.55∗ 20.86 1.12 3.61 29.12 166.63∗

Shrinkage 227.59 72.38 21.03 1.18 3.68 29.04 164.50
Fractional 216.63 68.92 21.28 1.40 3.89 28.77 155.94

RL-Amount 232.07∗ 71.05 21.75 1.80 4.17 29.39∗ 156.78
RL-Portion 230.88 70.97 21.70 1.78 4.17 28.99 157.73
RL-Decay 229.70 71.17 21.89∗ 1.97∗ 4.40∗ 28.95 158.74

Model
σ = 0.05

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2

Theoretical 9.68 2.88 0.98 0.08 0.18 1.28 6.48
Oracle 9.02 2.76 0.92 0.06 0.20 1.34 6.43
Plug-in 7.80 1.92 0.19 -0.62 -0.48 0.61 5.34

Shrinkage 7.96 1.99 0.24 -0.58 -0.44 0.65 5.46
Fractional 8.34 2.18 0.53 0.00 0.04 0.88 5.73

RL-Amount 8.78 2.65 0.80 -0.13 0.00 1.09 5.94
RL-Portion 8.91 2.63 0.77 -0.14 -0.02 1.06 5.99
RL-Decay 9.23∗ 2.83∗ 0.96∗ 0.06∗ 0.16∗ 1.26∗ 6.27∗

Model
σ = 0.1

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2

Theoretical 2.42 0.72 0.25 0.02 0.04 0.32 1.62
Oracle 2.31 0.67 0.22 0.01 0.06 0.35 1.68
Plug-in 1.51 -0.04 -0.47 -0.67 -0.63 -0.34 0.93

Shrinkage 1.56 0.00 -0.43 -0.63 -0.58 -0.30 0.98
Fractional 1.77 0.34 0.05 -0.01∗ 0.00 0.12 1.20

RL-Amount 2.21 0.54 0.06 -0.18 -0.14 0.15 1.43
RL-Portion 2.19 0.51 0.04 -0.28 -0.16 0.12 1.40
RL-Decay 2.38∗ 0.70∗ 0.23∗ -0.01 0.03∗ 0.30∗ 1.59∗

Model
σ = 0.15

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2

Theoretical 1.08 0.32 0.11 0.01 0.02 0.14 0.72
Oracle 1.02 0.29 0.09 0.00 0.03 0.16 0.77
Plug-in 0.28 -0.41 -0.60 -0.68 -0.65 -0.52 0.06

Shrinkage 0.33 -0.36 -0.55 -0.63 -0.61 -0.48 0.10
Fractional 0.61 0.09 0.01 -0.01∗ 0.00 0.03 0.40

RL-Amount 0.89 0.16 -0.11 -0.14 -0.16 -0.02 0.55
RL-Portion 0.87 0.12 -0.12 -0.22 -0.20 -0.06 0.51
RL-Decay 1.05∗ 0.30∗ 0.09∗ -0.01 0.00∗ 0.12∗ 0.70∗

Note: ∗: the best model among MLE based and RL models.

achieve relatively high terminal log-return, RL strategies outperform them. On the other hand,
in extreme cases of ρ2 where MLE based strategies obtain relatively high average log-return, RL
strategies also have comparable performance.

6.5. Performance under Heston’s Model

The simulation studies in the preceding subsections confirm the outperformance of our RL strategies
over the MLE based strategies under the correctly specified stock price model (i.e., the geometric
Brownian motion). To test the practical feasibility of the RL strategies, we consider Heston’s model
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for the stock price:

dSt = µStdt+
√
LtStdWt

dLt = κ(ν − Lt)dt+ ξ
√
LtdW̃t

where W̃t is a Brownian motion correlated with Wt: Cov(Wt, W̃t) = ρ̃t.
The experimental procedure is the same as before except that the stock price paths are sim-

ulated from Heston’s model with parameters µ = 0.2, ν = 0.01, ρ̃ = −0.3, κ = 2 and
ξ ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2}. We exclude the Oracle strategy from the analysis because
we implement investment strategies derived based on the geometric Brownian motion but test
them on data from Heston’s model. We use the Plug-in strategy as the benchmark and report
the relative performance of the average terminal log-return for the other five strategies in Table 6.
The average terminal log-returns are computed based on 2,000 independent replications. Zero for
the relative performance measure means an equivalent performance with the Plug-in strategy, and
the larger the relative performance, the higher the average terminal log-return for a strategy. The
issue that simulated wealth goes to negative is not very significant in the results, and we reflect
the negative values as we did in the previous simulation studies. For each different ξ value, at
most five wealth values out of the 2,000 simulations are reflected, and they are all greater than
-0.06. The issue is even less significant for a smaller ξ in the Helston’s model. From the results, the
RL-Decay strategy still has the best performance compared to the other strategies. RL-Amount
and RL-Portion strategies have better or comparable performance to the MLE based strategies in
all scenarios.

Table 6. Performance Relative to the Plug-in Strategy:
Heston’s Model

Strategy ξ = 0.001 ξ = 0.01 ξ = 0.05 ξ = 0.1 ξ = 0.15 ξ = 0.2

Shrinkage 0.06 0.07 0.08 0.09 0.13 0.22
Fractional 0.33 0.35 0.43 0.59 0.85 1.05

RL-Amount 0.56 0.57 0.63 0.69 0.76 1.01
RL-Portion 0.52 0.54 0.61 0.70 0.84 1.10
RL-Decay 0.66 0.69 0.78 0.92 1.12 1.53

7. Conclusion

The performance of the full Kelly strategy in practice is not as superior as claimed in theory due to
estimation errors in market parameters. Two alternatives to the full Kelly strategies are fractional
and shrinkage Kelly strategies. Motivated by the practical deficiency, we extend the classical Kelly
criterion problem to an RL framework. Based on the novel exploratory formulation (Wang et al.
(2019), Wang and Zhou (2020)), we build two exploratory Kelly criterion problems respectively,
taking the amount of investment and the portion of wealth as the control. The resulting optimal
strategies, the RL Kelly strategies, are sequences of normal distributions that center at the classical
optimal allocation.

We establish learning algorithms to implement the RL Kelly strategies. We use simulated data to
compare the performance of our strategies with three MLE based strategies. Our results validate the
practical advantage of the fractional and shrinkage Kelly strategies against the full Kelly strategy
with plug-in MLE. The RL Kelly strategies perform even significantly better than the fractional
and shrinkage strategies. They achieve higher average terminal log-return and obtain parameter
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estimates close to the true values of parameters. Particularly, the RL strategy with a time-decaying
λa(t) is the best in that it not only achieves the highest average terminal log-return but also learns
the entire terminal wealth distribution more precisely. Furthermore, the performance of the RL
strategies is robust under different market settings and Heston’s model. When the MLE based
strategies perform well, the RL strategies also have comparable performance. When the MLE
based strategies perform poorly, the RL strategies outperform them significantly.

Possible directions for future work include an extension of the portfolio to include multiple
stocks for log-return maximization. Another interesting direction for future research is applying
the framework to other optimality objectives (e.g., expected utility maximization) and/or other
stock price processes. For these models, the resulting HJB equations may not have a closed-form
solution, and efficient numerical methods would be needed to tackle the HJB equations in the
context of RL algorithms.
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Appendix A: Proofs of Results

A.1. Proof of Theorem 3.1

The Lagrangian function for the maximization problem is given by

L(πt, η) := ρσvx(t, x)

∫
R
uπt(u)du+

1

2
σ2vxx(t, x)

∫
R
u2πt(u)du

−λa(t)
∫
R
πt(u) log πt(u)du+ η

∫
R
πt(u)du

=:

∫
R
L(u, πt(u))du, (A1)

where η denotes the Lagrangian multiplier, and L(u, πt(u)) is given by

L(u, πt(u)) = ρσvx(t, x)uπt(u) +
1

2
σ2vxx(t, x)u2πt(u)− λa(t)πt(u) log πt(u) + ηπt(u).

By a standard Lagrangian duality argument (e.g., see Lemma 4.3 of Weng and Zhuang (2017)),
if π∗ := π∗η∗ ∈ P(R) maximizes L(π, η∗) for some η∗ ∈ R satisfying

∫
R π
∗(u)du = 1, then π∗ is a

solution to the maximization problem in equation (12). Consequently, we focus on analyzing the
optimizer(s) of L(·, η) before we show the optimality of π∗t in equation (13).

To derive a maximizer of L(·, η), we apply a pointwise maximization procedure and analyze the
integrand in (A1), L(u, πt(u)). Since π log π is convex in π while the other items in the expression
of L(u, π) are linear in π, L(u, π) is concave as a function of π. Accordingly, the first order opti-
mality condition is sufficient to determine its maximizers, whereby we take the partial derivative
of L(u, πt(u)) with respect to πt(u) and equate it to zero to get:

ρσvx(t, x)u+
1

2
σ2vxx(t, x)u2 − λa(t) log πt(u)− λa(t) + η = 0,

which gives

πt(u) = exp

(
1

λa(t)

[
1

2
σ2vxx(t, x)u2 + ρσvx(t, x)u

]
− λa(t) + η

)
.

Taking η to scale πt(u) to satisfy the constraint
∫
R πt(u)du = 1 yields the desired optimality of π∗t

in (13).

A.2. Proof of Theorem 3.2

We start from conjecturing the solution to the PDE (14) in the form v(t, x) = f(t) log x + ga(t)
for some functions f and g defined on [0, T ] with conditions f(T ) = 1 and ga(T ) = 0. This yields
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vx = x−1f(t), vxx = −x−2f(t) and vt = f ′(t) log(x) + g′a(t). It is straightforward to use equa-
tion (13) to verify equation (18) for the optimal control π∗t (u;x, λa(t)). Furthermore, substituting
the expressions of vt, vx and vxx (in terms of f and ga) into the PDE (14) yields:

vt(t, x)−ρ
2(vx(t, x))2

2vxx(t, x)
− λa(t)

2
log

(
−σ

2vxx(t, x)

2πλa(t)

)
=f

′
(t) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log

σ2x−2f(t)

2πλa(t)

=f
′
(t) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log x−2 − λa(t)

2
log

σ2f(t)

2πλa(t)

=(f
′
(t) + λa(t)) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log

σ2f(t)

2πλa(t)

=0.

The above equation implies the following ordinary differential equations (ODEs):{
f
′
(t) + λa(t) = 0,

g′a(t) + ρ2

2 f(t)− λa(t)
2 log σ2f(t)

2πλa(t) = 0,

with terminal conditions f(T ) = 1 and g(T ) = 0, which are the same as equations (15) and (16).
Using equations (6)-(8), it is easy to get the SDE in equation (19) for the exploratory wealth

process under the optimal control, and the verification for results in equations (21) and (22) also
follows trivially.

A.3. Linearly Decaying λa(t)

Theorem A.1 Consider the optimization problem (10) with a linearly time-decaying λa(t):

λa(t) = −2λ0t+ λ1

with λ0, λ1 > 0 and 2λ0T < λ1 to ensure λa(t) > 0, ∀t ∈ [0, T ]. Then, the value function is given
by

V a(t, x) =f(t) log x+
λ0ρ

2

6
(T 3 − t3)− λ1ρ

2

4
(T 2 − t2) +

ρ2

2
(−λ0T

2 + λ1T + 1)(T − t)

+

(
1

2
− log

σ2

2π

)
f(t)− 1

2
− f(t)

2
log f(t) +

λ2
a(t)

8λ0
log λa(t)−

λ2
a(T )

8λ0
log λa(T )

where f(t) = −λ0(T 2 − t2) + λ1(T − t) + 1, and the optimal control is given by

πλ∗t (u;x) ∼ N
(
u

∣∣∣∣ ρxσ , x2

σ2

−2λ0t+ λ1

−λ0(T 2 − t2) + λ1(T − t) + 1

)
for which the variance

(1) increases in [0, T ] if (2λ0T − λ1)2 − 2λ0 ≥ 0;
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(2) decreases in [0, T ] if (λ1 − λ0T )2 + λ2
0T

2 − 2λ0 ≤ 0;
(3) first increases then decreases in [0, T ], otherwise.

Proof. We apply Theorem 3.2 and only show how we derive the expression for f and ga in the
conjectured value function V a(t, x;λa(t)) = f(t) log x + ga(t) and the variance in the optimal
Gaussian control distribution.

By virtue of Theorem 3.2, we apply f
′
(t) = −λa(t) to get

f(t) = −λ0(T 2 − t2) + λ1(T − t) + 1.

Therefore, the variance of the optimal control is given by

x2λa(t)

σ2f(t)
=
x2

σ2

−2λ0t+ λ1

−λ0(T 2 − t2) + λ1(T − t) + 1
=:

x2

σ2
ζ(t)

for which the derivative is

ζ
′
(t) =

κ(t)

(−λ0(T 2 − t2) + λ1(T − t) + 1)2

with

κ(t) := 2λ2
0t

2 − 2λ0λ1t+ λ2
1 + 2λ2

0T
2 − 2λ0λ1T − 2λ0.

Therefore, we can focus on the function κ(t) and investigate its sign for the changing pattern of
the variance term. Clearly κ is decreasing in t ∈ [0, T ] since λ1 > 2λ0T . Furthermore, we observe
that κ(0) = (λ1 − λ0T )2 + λ2

0T
2 − 2λ0 and κ(T ) = (2λ0T − λ1)2 − 2λ0. So, we have


ζ
′
(t) ≥ 0, ∀t ∈ [0, T ], if (2λ0T − λ1)2 − 2λ0 ≥ 0,

ζ
′
(t) ≤ 0, ∀t ∈ [0, T ], if (λ1 − λ0T )2 + λ2

0T
2 − 2λ0 ≤ 0,

ζ
′
(t) ≥ 0 in [0, t̃] and ≤ 0 in [t̃, T ] for some t̃ ∈ (0, T ), otherwise.

The above properties of ζ
′
(t) immediately imply the desired monotonicity of the variance of the

optimal control as stated in the theorem.
For ga(t), we also apply Theorem 3.2 to get

g
′

a(t) =− ρ2

2
f(t) +

λa(t)

2
log

σ2f(t)

2πλa(t)

=− ρ2

2
f(t)− f

′
(t)

2
log f(t)− f

′
(t)

2
log

σ2

2π
− λa(t)

2
log λa(t).

Then the expression for ga(t) follows from the facts that

∫
f(t) log f(t) dt = f(t) log f(t)− f(t) + C

31



January 31, 2022 Quantitative Finance output

and

∫
λa(t) log λa(t) dt = −λ

2
a(t)

4λ0
log λa(t) +

λ2
a(t)

8λ0
+ C.

A.4. Proof of Theorem 5.1

Since π is admissible, we have, for ∀ (t, x) ∈ [0, T ]× R+,

V π
t (t, x) +

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log πt(u)

)
πt(u) du = 0.

From the results in and after Theorem 3.1, the control π̃ satisfies

V π
t (t, x)+

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log π̃t(u)

)
π̃t(u) du

=V π
t (t, x) + max

π̂∈P(R)

{∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log π̂t(u)

)
π̂t(u) du

}
≥V π

t (t, x) +

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log πt(u)

)
πt(u) du = 0.

(A2)

Let {X π̃
t , 0 ≤ t ≤ T} denote the exploratory wealth process under the control π̃. For a fixed pair

(t, x) ∈ [0, T ]× R+ and n ≥ 1, define stopping times

τn := inf

{
s ≥ t :

∫ s

t
σ2

∫
R
u2π̃vdu(V π

x (v,X π̃
v ))2 dv ≥ n

}
, n = 1, 2, . . .

and apply Itô’s lemma to obtain, for s ∈ [t, T ],

V π(s ∧ τn, X π̃
s∧τn) =V π(t, x) +

∫ s∧τn

t
V π
t (v,X π̃

v ) dv

+

∫ s∧τn

t

∫
R

(
ρσuV π

x (v,X π̃
v ) +

1

2
σ2u2V π

xx(v,X π̃
v )

)
π̃v(u) du dv

+

∫ s∧τn

t
σ

√∫
R
u2π̃vdu · V π

x (v,X π̃
v ) dWv.
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Rearranging the above equation and applying the inequality in (A2), we get

V π(t, x) =E

[
V π(s ∧ τn, X π̃

s∧τn)−
∫ s∧τn

t
V π
t (v,X π̃

v ) dv

−
∫ s∧τn

t

∫
R

(
ρσuV π

x (v,X π̃
v ) +

1

2
σ2u2V π

xx(v,X π̃
v )

)
π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]

≤E
[
V π(s ∧ τn, X π̃

s∧τn)−
∫ s∧τn

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
.

At time s = T , the above inequality holds since s ∈ [t, T ]. As n → ∞, T ∧ τn = T . By the
Dominated Convergence Theorem, we have, as n→∞,

V π(t, x) ≤E
[
V π(T ∧ τn, X π̃

T∧τn)−
∫ T∧τn

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
V π(T,X π̃

T )−
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
logX π̃

T −
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
V π̃(T,X π̃

T )−
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=V π̃(t, x).

Appendix B: RL Algorithms

B.1. RL Algorithm with Portion Control

For the exploratory problem controlling the investment portion, we parametrize the value function
as

V π(t, x;α) = log x+ α(T − t).

We also have the mean of the Gaussian control parametrized as β1 = ρ
σ and

−
∫
R
πt(u;β) log πt(u;β)du = −β2 =

1

2
log

2πeλ

σ2
.

The updating scheme for β1 goes as follows:

β1 ←
(

2α+ 2λβ2 + λ

4πλβ1
e−2β2−1 +

β1

2

)
. (B1)
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The gradients of the TD error in α and β2 at time ti are

∂Ci
∂α

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λβ2

)
(−∆t). (B2)

∂Ci
∂β2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λβ2

)
(−λ∆t) (B3)

The algorithm is summarized by pseudocode in Algorithm 2.

Algorithm 2: RL Algorithm with Portion Control

Input: Market parameters (µ, σ, r, ρ), learning rate θα, θβ, initial wealth x0, investment
horizon T , discretization ∆t, exploration rate λ.
Initialization: i = 1, α and β
while i ≤ T

∆t do
Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj , xj); j = 0, . . . , i}
Update α as α− θα∇αCi(α,β) using (B2)
Update β2 as β2 − θβ∇βCi(α,β) using (B3)
Update β1 using (B1)

Update πt(u;x,α,β) as N
(
u
∣∣∣ β1,

e−2β2−1

2π

)
i = i+ 1

end

B.2. RL Algorithm with Power-Decaying λ

For the exploratory problem with a power-decaying λ and λ0 6= 1, we parametrize the value function
as

V π(t, x;α) =

(
T + λ1

t+ λ1

)λ0

log x+ α1

(
T+λ1

t+λ1

)λ0−1
− 1

λ0 − 1
+ α2

(
T + λ1

t+ λ1

)λ0

− 1

2

(
T + λ1

t+ λ1

)λ0

log (t+ λ1) + α3.

We also have the mean of the Gaussian control parametrized as β1 = ρ
σ and

−
∫
R
πt(u;β) log πt(u;β)du = log x− 1

2
log (t+ λ1)− β2

where β2 = −1
2 log 2πeλ0

σ2 . The updating scheme for β1 goes as follows:

β1 ←
(

α1e
−2β2−1

2πλ0(T + λ1)β1
+
β1

2

)
. (B4)
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The updating scheme for α3 also applies the terminal condition and goes as follows:

α3 ←
(
−α2 +

1

2
log (T + λ1)

)
. (B5)

The gradients of the TD error in α1, α2 and β2 at time ti are

∂Ci
∂α1

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λ(tj+1)β2

)
1

λ0−1

((
T+λ1

tj+1+λ1

)λ0−1
−
(
T+λ1

tj+λ1

)λ0−1
)

(B6)

∂Ci
∂α2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λ(tj+1)β2

)((
T+λ1

tj+1+λ1

)λ0

−
(
T+λ1

tj+λ1

)λ0

)
. (B7)

∂Ci
∂β2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj , xj ;α)− λ(tj+1)β2

)
(−λ(tj+1)∆t) (B8)

The algorithm is summarized by pseudocode in Algorithm 3.

Algorithm 3: RL Algorithm with Power-Decaying λ

Input: Market parameters (µ, σ, r, ρ), learning rate θα, θβ, initial wealth x0, investment
horizon T , discretization ∆t, exploration rates λ0, λ1.
Initialization: i = 1, α and β
while i ≤ T

∆t do
Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj , xj); j = 0, . . . , i}
Update (α1, α2)

′
as (α1, α2)

′ − θα∇αCi(α,β) using (B6) and (B7)
Update α3 using (B5)
Update β2 as β2 − θβ∇βCi(α,β) using (B8)
Update β1 using (B4)

Update πt(u;x,α,β) as N
(
u
∣∣∣ β1x,

e−2β2−1x2

2π(t+λ1)

)
i = i+ 1

end
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