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Abstract

Target benefit (TB) plans that incorporate intergenerational risk-sharing have been demon-
strated to be welfare improving over the long term. However, there has been little discussion of
the short-term benefits for members in a Defined Benefit (DB) plan that is transitioning to TB.
In this paper, we adopt a two-step approach designed to ensure the long-term sustainability of
the new plan, without unduly sacrificing the benefit security of current retirees. We propose a
cohort-based transition plan for reducing intergenerational inequity. Our study is based on sim-
ulations using an economic scenario generator, with some theoretical results under simplified
settings.
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1 Introduction

Over the past two decades the rising costs of traditional defined benefit (DB) pension plans have
led to significant numbers of DB plan closures, and a growth in defined contribution (DC) plan
membership. However, there is growing recognition that DC plans may not be fit for purpose, due
to the lack of assurance that the resulting pension will be adequate, and the invidious burden placed
on the individual, with respect to the management of investment and longevity risk (?).

DB and DC plans can be seen as two extremes on a spectrum of potential plan designs; traditional
DB plans carry cost risk but no benefit risk, other than from insolvency. Traditional DC plans carry
benefit risk but no cost risk. The fact that both DB and DC are unsatisfactory to many stakeholders
leads us to consider non-corner solutions. Target Benefit (TB) plans (also known as Defined Am-
bition, or Intergenerational risk-sharing plans) are hybrid plans, designed to incorporate the best
features of both DB and DC plans. The term ‘Target Benefit’ covers a wide range of plans, but
all have the common feature that risk is shared across generations, which means that benefits in
payment are adjustable. Contributions may be fixed or variable. If contributions are fixed, then
the TB plan has some mechanism to hold back surplus in good times to support benefits in lean
times (otherwise it would be a DC plan). If both contributions and benefits are variable, then some
mechanism must be implemented to share surplus and deficits between workers and retirees.

Compared to a DB plan, the ability to adjust benefits allows for better risk-sharing across gen-
erations (for example, younger workers are not fully responsible to make up deficits caused by
inadequate contributions paid by the previous generations). It also means that the default risk
(particularly relevant for private sector plans) is much reduced, compared with traditional DB
plans, and that intergenerational transfers are better controlled. In addition, TB plans can provide
smoother and more predictable retirement income than conventional DC plans.

Various forms of TB plans have been proposed or implemented in various countries, including the
UK (?, ?), the Netherlands (?), the US (?) and Canada (?). For a general discussion of the TB plans
see the published reports by the Canadian Institute of Actuaries and the Society of Actuaries, ? and
?. There has also been considerable theoretical research interest, including ?, ?, ?, ?, ?, ?, and ?.
Each of these research papers concluded that TB plans are preferred to both DB and DC plans,
based on some objective function; the papers differ in their assumed benefit structure, objective
functions and solution methods. However, all of these papers study optimality on a collective basis,
which leads to a natural question on how to balance group optimality and individual optimality.
Pioneered by ?, a value-based approach is often used to evaluate the gains and losses for each
generation. In particular, ? and ? compared the value transfer across generations between DB
plans and risk-sharing pension plans. The value-based approach is clearly a zero-sum game, where
some cohorts benefit and some suffer, which suggests that not every cohort favours the TB design.
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However, our study demonstrates that pension reform is not a zero-sum game if the following
factors are taken into consideration. Firstly, the default risk in the DB plan is often neglected in
the literature, leading to significant over-estimation of the value of the DB plan for each member.
This is not a trivial detail; in practice, DB plan failures have caused misery to millions of plan
members who believed their pensions were ‘gold standard’. Secondly, the value-based approach
ignores individual cohort priorities; the risks that are most important to younger generations will
differ from older generations. Lastly, none of the aforementioned papers have incorporated any
transition procedure; the comparison is made by assuming all members will be moved into the
new plan. In this paper, we propose a phased transition strategy from a DB to a TB plan that
benefits all cohorts when default risk and time-varying preference are taken into account. We
illustrate that a commonly adopted strategy in practice, letting the older workers and retirees stay
in the (closed) DB plan while younger workers are transferred to the new plan, is a special case of
our phased transition approach.

To assess the effectiveness of the phased transition quantitatively, we adopt a simple linear risk-
sharing structure for the TB design, where both contributions and benefits are adjustable based on
the plan’s funding level. The optimal transition strategy is obtained by separating the objectives
of pension reform into long-term and short-term goals. Solving for long-term optimality provides
the risk-sharing parameters for future cohorts. Then, solving for short-term optimality, we devise
parameters for a phased transition for older members at the time of transition. We illustrate the
model and develop solutions numerically, using Monte Carlo simulation.

The remainder of the paper is structured as follows. Section 2 introduces our model. Section 3
discusses the choice of objective functions in pension reform. Section 4 provides numerical results.
Section 5 concludes.

2 Model

Our study focuses on the transition from DB to TB, therefore, it is necessary to set up models for
both the DB plan and TB plan, and highlight their structural differences. For both plans, members
have a risk from pension plan deficits. However, the TB plan applies on-going risk-sharing between
generations, while the DB plan tends to transfer deficit risk ahead. Ultimately, the DB plan may be
forced to terminate, in which case the then current members will lose some or all of their accrued
benefit, absorbing all that risk transferred forward from previous cohorts.

We describe the model for the population and economy in Sections 2.1 and 2.2. The dynamics
of the pension assets are defined in Section 2.3, and the liability calculation is given in Section
2.6. We assume the liabilities for TB are defined-benefit-like, and so they use the same valuation
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formula as the DB benefits. The stylized DB and TB designs are described in Sections 2.4 and 2.5.

2.1 Overlapping Generations

We adopt the multi-period overlapping generations (OLG) model to project the performance of the
TB plan. We assume homogeneity for all employees, such that they start their career at entry age
xe and retire at age xr, with a maximum age of ω. In the numerical examples, in later sections,
we set xe = 25, xr = 65, and ω = 115. Let tpx denote the probability that an individual aged x
survives for t years, and let lx(t) denote the number of lives aged x at time t. For simplicity, we
ignore longevity risk, and assume that the pension plan is large enough such that the mortality risk
is fully diversifiable. We also assume that the number of new entries to the plan is the same each
year. By unitizing the population, we have lx(t) = lx = xpxe . Mortality is assumed to follow the
Canadian Insured Payout Mortality 2014 (CIP2014, male), so the population consists of roughly
39 active workers and 19 retirees, representing an old-age dependency ratio of 50%.

We assume homogeneity in the population such that all employees earn one unit of currency in
real terms. Therefore, the same cohorts are earning the same nominal amount at each time. The
consumable income that active workers receive is their nominal income reduced by their assigned
pension contributions. For retirees, the individuals receive no income other than their pensions. In
addition, we assume there is no death benefit.

2.2 Economic Assumptions

Analyzing pension plans requires a long-run projection of financial risk factors and economic
variables. Economic scenario generators (ESGs) are a popular choice in the application of actuarial
risk management. Here we adopt the famous Wilkie ESG, (?) as developed and fitted in ?. The
following economic variables are generated:

1. Inflation Index It. Note that salaries are assumed to grow at the inflation rate.

2. Equity Index St.

3. Long-term bond rates Rt.

4. Short rates rt.1

An outline of the model with parameter values, is given in the Appendix A.

1The short rate is not included in ?; we adopt the original version of Wilkie’s model (?).
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It is important to point out that the simplicity of the structure of Wilkie’s model inevitably has
some disadvantages, as noted through the back-testing exercise in ?. For example, the model tends
to overestimate inflation and underestimate the total return on stocks. However, many ESGs are
not fully disclosed, and even for models that are open access, there is a lack of maintenance to
update the parameters. Some other ESGs that appear in the academic literature include: the Vector
Autoregressive Model (VAR), as studied in ? and ?, the Generic ESG constructed in ?, and the
Exponential Regressive Conditional Heteroscedasticity (ERCH) model proposed in ?.

2.3 Pension Assets

We denote by At the value of the pension assets at time t, which we assume to be invested in
three securities: one-year Treasury Bills, long-term bonds, and an equity index fund (for example,
tracking the S&P 500 index). Let bt and ct denote the actual benefit and actual contribution for

each individual at time t. The aggregate amount of contribution received at t is
xr−1∑
x=xe

lx × ct and the

aggregate amount of benefit paid at t is
ω−1∑
x=xr

lx × bt.

Since the focus of the paper is on intergenerational risk-sharing, we exclude sponsor contributions
and implicitly assume the pension is fully funded by reducing employee salaries.

The evolution of At is:

At+1 =

(
At +

xr−1∑
x=xe

lx × ct −
ω−1∑
x=xr

lx × bt

)(
πS
St+1

St
+ πBe

Rt + (1− πS − πB)ert
)

where πS and πB are the weights of the portfolio invested in equity and long-term corporate bonds,
which are assumed to be constant. The default investment strategy is an equity allocation of πS =

60%, a long term bond allocation of πB = 30%, and the remainder allocated to 1-year Treasuries.
This meets the commonly applied “60/40” rule of thumb for pension investments. To model the
dynamics of St, Rt, rt and other economic variables, we use the Wilkie ESG (see Appendix A).

2.4 Contributions and Benefits – DB plan

As we are evaluating a transition from a DB plan to a TB plan, the details of the DB plan are
relevant only insofar as we want to ensure that current retirees at transition are no worse off in the
TB plan than they would be in the DB plan, and in order to compare default risk for retirees under
the two plans.
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We assume that existing DB plan has defined benefits that are fixed in real terms, so that, if the
plan is not wound up, the actual benefit paid at t, denoted bt, is based on a fixed real rate of benefit,
b∗, rolled up for inflation. That is, bt = b∗ × It where It is the inflation index generated using the
Wilkie ESG. This benefit is funded by contributions from active employees, which are set at a rate
of c∗ for all employees, in real terms. The actual contribution at t is ct = c∗ × It.

For a given b∗, the value of c∗ is determined through a specified actuarial pricing principle. In
Section 4, we set the target real contribution rate to be c∗ = 15%, and determine b∗ such that the
median long term funding level of the DB plan is equal to 1.0, which gives a replacement rate of
b∗ = 70%.

If the DB plan becomes severely underfunded, it will be wound up. We set a funding ratio of
At/Lt = 40% as the wind-up threshold for our numerical illustrations, where Lt is the actuarial
value of the pension liability at t (see Section 2.6).2 After deducting wind-up expenses of (ep×At),
the remaining asset balance will be used to purchase annuities at market consistent prices. In our
numerical illustrations, we set ep = 10%.

For retirees, the reduced benefit payable at t+ k, given wind-up at t, for k = 0, 1, . . ., is

bt+k =
(1− u)× (1− ep)× At∑ω−1

x=xr
lx ×

∑ω−1
y=x y−xpx × (1 + it)−(y−x)

where 1−u is the proportion of assets allocated to the retirees, and it is the valuation interest rate
for the plan at time t (see Section 2.6).

To better compare the structural difference between DB and TB designs, we exclude regulatory
interventions such as Pension Benefit Guarantee payouts.

2.5 Contributions and Benefits – TB plan

The TB structure in our study has target benefits and contributions which are identical to the
benefits and contributions of the DB plan. The risk sharing mechanism is based on ?, ? and ?,
where the risk-sharing formula uses a linear allocation of the surplus or deficit to the active and
retired members. The model is similar to ? but with separate risk-sharing parameters depending on
whether the plan is in surplus or deficit. This more realistically considers management of funding
levels based on a corridor of acceptable values, with adjustments only applying when the funding
level moves outside the corridor, and with surplus management being a different issue than deficit
management.

2It would be very difficult for a DB plan to recover from such a funding level as low as 40%; see, for example, ?;
ep = 10% represents a 10% expense rate on default, or the market cost for annuitization.
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We specify the surplus and deficit sharing as follows. The target values at t for the contributions
and benefits are denoted c∗t and b∗t , respectively, and are assumed to be equal to the DB plan benefits
and contributions; that is, c∗t = c∗ × It and b∗t = b∗ × It.

The actual contributions and benefits at t are denoted ct and bt, and are adjusted from the target
values to allow for sharing of any surplus or deficit. In particular, we have

ct = c∗t − αs
(At − ψs × Lt)+

xr−1∑
x=xe

lx

+ αd
(ψd × Lt − At)+

xr−1∑
x=xe

lx

bt = b∗t + βs
(At − ψs × Lt)+

ω−1∑
x=xr

lx

− βd (ψd × Lt − At)+

ω−1∑
x=xr

lx

,

where Lt is the value at t of the pension liabilities (see Section 2.6), ψs is the funding level at
which surplus will start to be distributed to retirees and active employees, and ψd is the funding
level at which a funding deficit will be recovered through contribution and benefit adjustments.
These are assumed to be externally imposed, and may be based on regulatory constraints. The α
and β parameters represent the percentage of surplus or loss that is distributed to active employees
and retirees, respectively, with values that may differ if the plan is in surplus (αs, βs), or in deficit
(αd, βd). The default TB design in this paper uses ψs = ψd = 1, and αs 6= αd and βs 6= βd. Notice
that if we assume additionally that αs = αd and βs = βd, we recover the TB design of ?.

We have not proposed any constraints on ct and bt, which means we are allowing unlimited surplus
distribution for active workers, and unlimited deficit sharing for retirees. In principle, this could
lead to negative income for active workers, whose income at t is It − ct, or to negative income for
retirees, whose income is bt. In practice negative income did not arise in any of our simulations; if
it had we would have imposed a lower bound of zero.

Although the linear risk-sharing structure is simple, it does have theoretical support. ? and ?
formulate the risk-sharing plan as an optimal control problem in a continuous setting (albeit simpler
than used here) and both derived optimal risk-sharing structures in linear form.

2.6 The Pension Liabilities

As our TB plan is very similar to the existing DB plan, we use identical liability valuation methods
for both. We follow the traditional unit credit (TUC) approach, which means that only the accrued
benefits at t are included in the liability valuation. Let Lt denote the liability value at time t, then
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Lt = Et

[
xr−1∑
x=xe

lx︸ ︷︷ ︸
Active Workers

(
x− xe
xr − xe

b∗t︸ ︷︷ ︸
Accrued Benefit

ω−1∑
y=xr

y−xpx v
(y−x)
it︸ ︷︷ ︸

Actuarial value of annuity

)]
+ Et

[
ω−1∑
x=xr

lx︸ ︷︷ ︸
Retirees

b∗t

(
ω−1∑
y=x

y−xpx v
(y−x)
it

)
︸ ︷︷ ︸

Actuarial value of annuity

]
,

where Et is the expectation at t, conditional on the filtration generated by the ESG. The interest
rate, it (vit = 1

1+it
), depends on the type of valuation; for going-concern valuations, it is often

chosen to be the current long-term corporate bond rate; for wind-up or solvency valuations, it is
usually close to the risk-free rate. In this paper, we set the interest rate to be the long-term bond
rate plus 2% for going-concern liability (loosely representing a corporate bond yield), and the short
rate plus 2% (capped at the long-term bond rate) for the wind-up liability. See ? and ? for a short
discussion on the liability valuation techniques and discounting rate selection from a practitioner
perspective.

3 Transition from DB to TB

The flexible nature of the Target Benefit plan allows a range of risk allocations, through the param-
eters α and β. ? and ? maximize the utility of the plan participant, while ? focus on the optimal
plan structure that improves the overall welfare of all participants, and ? focus on the optimal
pension allocation between a TB plan and an annuity for each individual. In addition, ? minimize
the benefit risk, while constraining the insolvency risk of the pension fund. All papers demon-
strate the necessity of including TB plans in the retirement portfolio. However, those studies have
not addressed the potential conflict between group optimality and individual cohort optimality. ?
demonstrate that an unconstrained optimal control solution will sacrifice the interest of nearby gen-
erations for the benefit of generations in the distant future. This unfairness is amplified as the time
horizon increases. They also demonstrate that a constrained problem may mitigate the unfairness,
but does not eliminate the problem; certain cohorts may still suffer from lack of ex-ante fairness in
the TB plan design, in the sense that the optimization allocates significant risk to them, in order to
build up (on average) sufficient funds to eliminate risk for future generations. The objective of this
paper is to explore whether this ex-ante unfairness can be mitigated through design of the TB plan,
and through allowing short-term adjustments to the TB plan for members in force or in retirement
at the time of transition.

This objective suggests a two-stage procedure, with the first stage focusing on long-term optimal-
ity, and the second adjusting for the short-term transition effects.
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3.1 Long-term optimality

For long-term optimality, we adopt an objective function similar to ? and ?, under which we
minimize the squared deviation between the actual and the benchmark income, and solve for the
risk-sharing parameters, αs, αd, βs and βd. The squared deviation objective function places value
on predictability and smoothness of income. High side deviations are treated the same as low side
deviations, which means that efficiency of funding is also captured, as high income values reflect
the distribution of excess surplus. Note that, as we are not using a utility-based optimization, it
is not necessary to assume that individuals consume all their income, but for convenience we will
use the term ‘target consumption’ to mean the individual’s preferred target income.

The income of active workers in our model is the salary (modelled by the inflation index) minus
the contribution, that is, It − ct. The income of retirees is bt.

Let Cw and Cr denote the target consumption, in real terms, for active workers and retirees. The
inflation adjusted target consumption at t is then Cw

t = Cw × It for workers, and Cr
t = Cr × It

for retirees. If the target consumption matches the TB targets, then we have Cw
t = It − c∗t and

Cr
t = b∗t . However, it is also possible that the target consumption may differ from the targets within

the pension plan, and we allow for the possibility of treating Cw and Cr as external inputs to the
plan design.

The optimal TB plan parameters are set by minimizing the squared difference between the target
consumption and the actual income, in real terms, over a horizon of T years, with respect to the
parameter set θ = {αd, αs, βd, βs} ∈ Θ, where Θ is the parameter space.

Consider all generations born before time T (so that all are deceased by time T + ω). The optimal
TB plan is determined in the general case, without assuming population stationarity, as:3

arg inf
θ∈Θ

1

T
E


ω−1∑

x=xe−T

ω−1−x∑
t=max(xr−x,0)

lx+t(t)

(
bt − Cr

t

It

)2

︸ ︷︷ ︸
retirement income for person born before T

+
xr−1∑

x=xe−T

xr−x−1∑
t=max(xe−x,0)

lx+t(t)

(
It − ct − Cw

t

It

)2

︸ ︷︷ ︸
contribution for person born before T


(1)

As T →∞, if the population structure is stationary, the optimal TB plan design is:

arg inf
θ∈Θ

lim
T→∞

1

T

T∑
t=0

E

{(
ω−1∑
x=xr

lx

) (
bt − Cr

t

It

)2

+

(
xr−1∑
x=xe

lx

) (
It − ct − Cw

t

It

)2
}
. (2)

3In ?, the authors add a linear penalty terms (i.e. %r × (Cr
t − bt)). It is easy to show that in this case including the

penalty is equivalent to changing the target consumption Cr
t .
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The derivation of this formula is given in Appendix C.

? used a horizon of T = 20 years, with an additional penalty term at the terminal date. The penalty
is the squared deviation between the actual asset level and the target, which represents a weighting
function between current generations and future generations. We find that the choice of the penalty
function has a significant impact on the results. We can avoid this subjectivity by solving for the
limiting case, when T →∞. Numerical results in Section 4 demonstrate that for our examples,
the optimal pension design does converge in time, with all economic variables and the asset level
stabilized in the long run. The convergence speed depends on the initial states of the economic
variables; usually a projection period of at least 100 years is required. To ensure convergence, we
approximate the infinite time horizon study using standard Monte Carlo methods.

We note that the current workers and retirees are irrelevant in equation (2). This points to the
importance of adding another stage in the optimization, targeting their interests to achieve a fair
transition.

3.2 Relation between optimal α and β

It is interesting to explore the relationship between the risk-sharing parameters for workers and
retirees. In this section we simplify the model by setting αs = αd = α, βs = βd = β and letting
Cw
t = It − c∗t and Cr

t = b∗t . This allows us to to derive analytic results that can be compared with
the numerical results determined for the full model.

Proposition 1. Let α and β denote the risk-sharing parameters for workers and retirees respec-
tively. Then the optimal risk-sharing parameters, α̂ and β̂ satisfy:

α̂

ΣW
=

β̂

ΣR
, (3)

where ΣW =
xr−1∑
x=xe

lx is the number of workers in force at any time, and ΣR =
ω−1∑
x=xr

lx is the number

of retirees.

Proof: See Appendix B.

The proposition provides an intuitive result that for an optimal TB plan, the amount of risk borne
by any group is proportional to the group population size.

Notice that α = β = 0 is a trivial solution to the optimization problem, as the objective function
is equal to its minimum value of 0 throughout. However, with no risk sharing the long-term

10



funding level will go to either infinity or negative infinity, which is clearly infeasible. Therefore,
we construct a constrained space for the risk-sharing parameters such that Θ = {α > 0, β > 0}.4

The graph of the objective function as a function of α and β is given in Figure 1, using the bench-
mark parameters outlined in Section 4. Note that the objective function does not decrease as α
and β approach zero. This is because no matter how small the risk-sharing parameters are, as long
as they are strictly above zero, the divergence of the asset (after inflation adjustment) eventually
increases the value of the objective function.
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Figure 1: Objective function for different α and β.

3.3 The short-term problem: a fair transition criterion

The optimal plan design determined by Equation (2), in general, results in non-zero values for βd

and βs. This means that, in the long term, intergenerational risk-sharing does benefit members. For
future entrants, the advantage is measured over the total impact on income through the full working
and retired lifetimes of the members. Compared to the DB plan, the TB plan offers more stable
contributions, and better protection against default. However, for those members who have already
retired at the time of transition it is too late to benefit from the reduced contribution volatility, and
the enhanced protection from default will have little value to older members, as default is unlikely
during their remaining lifetimes. Hence, retirees have little incentive to move to the TB plan; to
force them to do so would not be permitted in many jurisdictions, and would be unfair in any
jurisdiction. However, it is possible to structure the transition without disadvantaging any groups
if transition is phased in for current retirees, to take into account the different impact of the new
risk-sharing structure on different cohorts at transition.

4One may consider a smaller feasible set by incorporating regulatory constraints, as suggested by ?.

11



In this section we consider how to ensure a fair transition from DB to TB, where we define fair to
mean that no single cohort is worse-off, and at least some are better off, after the change.5

We interpret the “not worse off” criterion based on the downside risk associated with aggregate
future retirement income after transition. In the DB plan, all downside risk comes from default
on wind-up. In the TB plan, there is much less default risk, but there is ongoing downside risk
from deficit sharing, based on the parameter βd. In the long term, all retirees share the same
value of βd, derived from optimizing the objective function in equation (2). For the short-term, in
order to ensure a fair transition for all cohorts, we derive different values of βd for each retirement
age group. Let βdx denote the deficit sharing parameter for retirees aged x at transition, where
xr ≤ x < ω. Our objective is to determine βdx such that the downside risk measure for each age
group at transition, under the TB plan, is less than or equal to the downside risk measure under the
DB plan.

Mathematically, let E(x; βdx) denote the downside risk measure for retirees aged x at the transition
date, based on the downside risk-sharing parameter βdx; we omit βdx for simplicity when there is no
confusion. Then we seek

{
βdx
}
xr≤x<ω

such that{
βdx : ETB(x; βdx) ≤ EDB(x), for all xr ≤ x < ω

}
. (4)

There may exist infinitely many transition strategies satisfying the inequality, so we consider the
most sustainable one, which is the boundary case that solves the equations:

βdx = min

{
β′x

∣∣∣∣EDB(x) = ETB(x; β′x), β
′
x ≥ 0

}
∧ βd, xr ≤ x < ω (5)

where retirees will never share more deficit than with future generations, that is, βdx ≤ βd, and,
since we assume no default risk in the TB plan, EDB(x) ≥ ETB(x; βdx = 0) which ensures that the
transition strategy is guaranteed to be beneficial to the retirees.

For the downside risk measure E(x), we use the expected remaining lifetime downside squared
deviation:

E(x) =
ω−1−x∑
t=0

tpx E

[(
(bt − Cr

t )−
It

)2
]
. (6)

Additionally, in Appendix D, we derive analytic results using the expected remaining lifetime
downside deviation:

E(x) =
ω−1−x∑
t=0

tpx E
[(

(bt − Cr
t )−

It

)]
. (7)

5This is consistent with the criteria reported by ? from a small sample interview with younger generations in the
U.S.
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We note that there exist other reasonable choices for E(x). Examples include the lower quantiles
of the retirement income, the conditional tail expectation of benefit loss, or a weighted average for
expected surplus and loss. The common idea is to introduce a phased transition where the oldest
cohorts are protected from risk through partial enrollment in the new plan, where the definition of
‘protected’ depends on the specific metric chosen. The metric used in this paper seems a reasonable
choice, as retirees value downside stability, and this measure penalises large drops in income more
severely than a series of smaller movements (?).

A different approach that is sometimes seen in practice is to introduce the new pension scheme to
all cohorts younger than the retirement age, but leave all retirees in the DB plan. This is a special
case of phased transition, which is equivalent to setting βdx = 0 for all xr ≤ x < ω. We refer to
this as the “cut-off" strategy. It clearly satisfies condition (4). In Section 4, we will compare the
two strategies and highlight the sustainability improvement of the phased transition approach.

Note that our approach involves phasing in only for the retiree group at transition; we assume
that younger members are automatically fully enrolled into the TB plan. We could extend the
optimization to include workers who are near to retirement at transition, but in our numerical
experiments it was not necessary to do so, as we show in Section 4.3.

4 Numerical Analysis

In this section, we develop numerical results to illustrate the optimal phased transition strategy
described in the previous section. In Section 4.1 we discuss the choice of target contribution and
target benefit level. Section 4.2 displays the optimal TB design in the long run. In Section 4.3 we
demonstrate the effectiveness of phased transition.

4.1 The target benefit level (b∗)

Given the target contribution level c∗ = 15%, the target benefit b∗ = 70% is determined such that
the long-term median funding ratio (Asset/Liability) of the DB plan is equal to 1.0. We assume
the same targets for the TB plan, making before-and-after comparisons more transparent. We note
however that, given the different levels of risk involved, it may be appropriate to set different
targets for the TB plan. For a sensitivity study, we include other benefit targets such that the long-
run probability of full funding is (i) 90%, (ii) 95% and (iii) 99%. The corresponding b∗ are (i) 0.54,
(ii) 0.52, (iii) 0.47.

The optimization results depend on the choice of forecasting horizon T . We found that 100 years
is sufficiently long for the optimal values to converge.
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4.2 Long-term optimal TB plan design

Table 1 presents the optimal long-term TB plan design for a range of values of b∗, and where Cr =

b∗, which means that the desired consumption matches the target benefit income in retirement. All
other assumptions remain unchanged.

b∗ βs βd αs αd

0.6984 0.0348 0.0225 0.0704 0.0455
0.5447 0.0537 0.0143 0.1086 0.0289
0.5165 0.0594 0.0131 0.1201 0.0264
0.4701 0.0667 0.0105 0.1348 0.0213

Table 1: Optimal TB plan Structure under long-term Objective; Cr = b∗

We notice monotone relationships between b∗ and each optimal risk-sharing parameter. The overall
surplus share (αs+βs) is between 10% and 20%, and the overall deficit share (αd+βd) is between
3% and 7%. Although we choose different α and β for surplus and deficit shares, Proposition 1
still roughly holds, that is

αd

βd
≈ αs

βs
≈ ΣW

ΣR
≈ 2.

We emphasize that it is not necessary for Cr and b∗ to be the same. Table 2 assumes the desired
retirement income (replacement rate) is Cr = 69.84%, but the target benefit b∗ differs. Again, we
see monotone relationships between b∗ and each risk-sharing parameter. We also see that when
b∗ is smaller than Cr, the surplus sharing parameters, βs, are driven upwards, to try to recover
more income to meet the desired income of Cr, and the deficit sharing parameters, βd fall to zero.
The deficit risk then falls wholly on the active employees, who also receive a smaller share of the
surplus.

b∗ βs βd αs αd

0.6984 0.0348 0.0225 0.0704 0.0455
0.5447 0.0629 0.0000 0.0481 0.0517
0.5165 0.0669 0.0000 0.0426 0.0553
0.4701 0.0726 0.0000 0.0345 0.1034

Table 2: Optimal TB plan Structure under long-term Objective; Cr = 0.6984

More sensitivity tests for the optimal TB design over different c∗ and b∗ are given in Figure 2. We
have also conducted sensitivity tests for the portfolio mix, with results shown in Figure 3. The
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Figure 2: The optimal risk-sharing parameters for different c∗ = 1− Cw and b∗ = Cr.

main highlight observed in both graphs is that the optimal TB design is rather robust. Only under
extreme scenarios, where the target contribution c∗ is high and the target benefit b∗ is low, does
the optimal TB plan collapse to a DB-like design. In other words, when the contribution is far
more than enough to cover the promised pension, the fund will be sustainable without any need to
distribute its deficit, and βd = αd = 0.
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Figure 4: Sensitivity tests of median benefits, contributions, funding level and default risk for
different b∗, when Cr is fixed at 0.6366.

The projected median benefit level, contribution rate, funding levels and default risk are shown in
Figure 4. We have displayed simulation results for fifty years ahead, which is as long a horizon as
most actuaries would consider relevant, but some values have not yet converged to their long-run
levels. Consider, for example, b∗ = 0.6984. For this case, the long-term median funding levels,
benefit and contributions are 0.92, 0.68 and 0.2 respectively. At the first glance, it seems that the
TB plan underperforms the DB plan, since the long term DB metrics are 1.0, 0.7, and 0.15 for
funding, benefit and contributions, respectively. However, this is explained by the fact that the TB
plan reduces the default risk by holding back surplus and reducing deficits; the impact is that the
payouts are lower than under the DB plan, most of the time, but the default risk is significantly
smaller, reducing the chance of catastrophic reduction in benefits.
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As expected, the long-term median funding level is a decreasing function of b∗. Even though the
long-term median funding level when b∗ = 0.6984 falls below 90%, the probability of default
(At < 0.4Lt) remains very small. In addition, although we did not display it here, we notice
that in the long run (T > 200) the overall median consumption level (allowing for salary minus
contributions for workers, and pension income for retirees) remains similar for different target
benefit designs; if Q0.5 denotes the median function, then the median total population income at t
is

Q0.5(bt)× ΣR +Q0.5(1− ct)× ΣW ,

and this value is roughly the same for different b∗. The choice of b∗ reflects the consumption
balance for pre- and post-retirement periods.

We note that the median benefit level is not a consistent measure with respect to our objective
function, which reflects the deviations between the target and actual income. We present the me-
dian values because they roughly match the behaviour of our objective, and the median function is
more easily interpretable than the objective function. We note also that the sustainability advantage
of the TB plan is not fully reflected in this analysis, as we have not allowed for the fact that the
defined benefit is a contractual obligation, unlike the target benefit which is fully adjustable. Ways
of allowing for this might include adjusting the default threshold to a lower value for the TB plan,
or adjusting the liability valuation assumptions for a less conservative valuation of the TB benefits.
Such questions are interesting, but beyond the scope of this paper, where we use the similarity of
the benefits, thresholds and valuation assumptions to highlight the different risks and rewards from
the TB and DB plans.

For the remaining analysis in this section, the benchmark long-term TB design is based on Cr =

b∗ = 0.6984 and Cw = 1− c∗ = 1− 0.15 = 0.85.

4.3 Cohort-based transition

In this section we develop a fair, cohort-based transition from the DB plan to the TB plan. We
measure pension sustainability for each cohort, using the expected probability of funding insol-
vency for that cohort, where insolvency is defined as having assets of less than 40% of liabilities.
We denote the probability for the cohort age x at transition as DPx, so that:

DPx =
ω−x∑
t=0

tpx E
[
1At≤0.4×Lt

∣∣As > 0.4× Ls, ∀s < t
]
. (8)

We emphasize that DPx is a downside risk measure, based on a subjective ‘insolvency’ threshold,
chosen to represent a practical lower bound for the funding level of the TB plan.
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4.3.1 Comparison of TB and DB default risk, phased transition

In Figure 5(a) the horizontal line is the optimal βd obtained from the long-term optimization,
which would determine deficit sharing for all future retirees, but which would not necessarily be
suitable for those who have already retired at transition. For current retirees, different values of βdx
are determined, where x is the age at transition, based on the downside risk measure criterion in
equation (6). These values depend on the default risk of the DB plan, which in turn depends on the
funding level at transition. The two curves shown indicate values for βdx for (i) a plan which is fully
funded at transition and (ii) a plan which is 70% funded at transition. When βdx is equal to the long-
term value, then lives aged x at transition should optimally transfer fully to the TB plan. Where
βdx is close to zero, then lives aged x at transition should retain their DB plan benefits, including
the possibility of default. We see that members of a highly under-funded DB plan will have more
incentive to participate in the TB plan, as they would significantly reduce the risk of catastrophic
default which is inherent in the DB plan. Based on our assumptions, for a 70% funded plan, full
participation in the TB plan is optimal for all cohorts except the very oldest. When the DB plan
is 100% funded at transition, partial participation in the TB plan is recommended for retirees aged
80 and above, with full transition indicated for all retirees below age 80.

In Figure 5(b) we show the lifetime plan default risk by age at transition. This demonstrates that a
phased transition to the TB plan significantly enhances benefit security for all retirees, where the
DB plan is only 70% funded, but as the default risk is low, provides little benefit for lives over age
80 where the plan is fully funded at transition. That explains why partial participation for these
lives is optimal.

To demonstrate that the phased transition strategy is still applicable for other TB structures, in
Figure 6 we show the same results for the the optimal TB structure derived in ?, where αs = αd =

0.06, βs = βd = 0.02, c∗ = 0.14 and b∗ = 0.66. The graphs show very similar results to those for
the TB plan of this paper, with phased transition for the very highest ages for 70% initial funding
level, and for ages over 82 when the initial funding level is 100%.
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Figure 5: Transition by cohort; risk sharing parameters (βdx) and lifetime default risks;
b∗ = Cr = 0.6984; 100% or 70% initial funding level.
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Figure 6: Transition by cohort for the model of ?; risk sharing parameters (βdx) and lifetime default
risks; 100% or 70% initial funding level.

4.3.2 Comparison to cut-off transition

A more straightforward way to differentiate the interests of different generations is to adopt a cut-
off strategy. Current retirees retain their full DB benefits, while all active members move to the
new TB plan. In this section we compare the efficiency of a phased transition illustrated in Figure
5, with the cut-off strategy, where the cut-off point is age 65, the retirement age.

Figure 7 presents the sustainability of the two transition methods. If the plan is fully funded
at transition, there is little difference in default risk between the cut-off and phased transition.
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However, when the plan is significantly under-funded at transition, excluding the current retirees
from the risk-sharing design exposes the plan to significant default risk.
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Figure 7: Cut-off strategy – the probability of lifetime future default for each cohort, b∗ = Cr =
0.6366.

The cut-off strategy may be optimal if the target benefit level b∗ is much smaller than the target
consumption level Cr. Recall that for the cases when b∗ ≤ 0.55 where Cr = 0.6984 in Table 2,
the optimal loss sharing for retirees is βd = 0.

4.4 Alternative phased transition strategies

Here we demonstrate that the phased transition idea can be applied in alternative ways by setting
other parameters to be cohort-based. In the previous analysis, the funding ratio thresholds for both
profit and deficit shares are assumed to be 1.0, but in reality, alternative risk-sharing thresholds
exist. For example, the inflation indexation for Dutch pension funds will be reduced if the funding
level is below 130%. Here we first perform a sensitivity test for the optimal TB design with respect
to different sets of funding thresholds, to check whether a cohort-based ψd is reasonable, see Figure
8 below.
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Figure 8: The optimal risk-sharing parameters for different sets of ψ. The upper layer represents
αs and αd and the lower layer represents βs and βd.

Immediately we notice that the profit sharing parameters (αs and βs) are barely affected by the
choice of ψd, and similarly that the deficit sharing parameters are not sensitive to the choice of
ψs. The TB parameters are monotone with respect to the choice of funding threshold, such that
increases in ψs reduce the overall distribution of surplus. Therefore, to maintain the same level of
benefit and contribution stability, the optimal TB design will increase the profit sharing parameters,
and similarly for the deficit case. The ratios between the risk-sharing parameters (αs/βs and
αd/βd) are also roughly equal to the ratio between population sizes of retirees and active workers.
The overall surplus sharing rate is kept between 10% and 15%, and the overall deficit sharing rate
is between 3% and 15%.

The monotone behaviour shown in Figure 8 suggests that a cohort-based risk-sharing threshold ψdx
is also a monotone function of x, where x is the age of the retiree. For the same deficit sharing
parameter βd but with lower ψdx, it would be intuitive to expect that a retiree aged x will be less
involved in the deficit sharing. To ensure that the transition to TB will be beneficial to all retirees,
we set a short-term transition objective using an age-based deficit threshold,

ψdx = max

{
ψ′x

∣∣∣∣EDB(x) = ETB(x;ψ′x)

}
∧ ψd, xr ≤ x < ω (9)

where we set the upper bound of ψdx as ψd, which is equal to 1.0 in our numerical illustrations;
the constraint ∧ψd ensures that current retirees will not take a larger share of deficits than future
generations. The objective function E is chosen to be the same as Equation (6). The transition
strategy results are shown in Figure 9.

The interpretation of the transition strategy is similar to that for Figure 5, in that full participation
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Figure 9: ψdx under different initial funding levels, b∗ = Cr = 0.6984. The horizontal dotted line
is the value of βd, representing the full participation in the TB plan.

in the TB plan is optimal for ages below 80, for initial funding of 70% and below 95 for initial
funding of 100%. However, we also see that ψdx behaves differently from βdx in that the oldest
generations are more involved in the new TB plan. This is due to the fact that under the TB plan,
the sustainability of the fund has been greatly improved, and the probability of extremely low
funding levels can be neglected in the short run. For a TB plan that is 100% funded initially, there
is virtually no benefit risk for the oldest generations with ψdx < 0.75.

5 Conclusion

The actuarial literature on risk-sharing pension plans has generally assumed very simple risk-
sharing structures and interest rate and investment returns. In this paper we have loosened those
assumptions to create a model that, whilst still highly simplified, at least allows for some of the
assumptions and inputs to better reflect the real world. In particular:

(1) We allow the risk-sharing parameters to differ depending on whether the plan is in surplus
or deficit.

(2) We have incorporated different valuations for funding (going-concern) and wind-up, and
allowed for additional expenses in the event of insolvency.
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(3) We have used an ESG, allowing us to include dependent models of equity returns, inflation,
and long and short-term interest rates.

(4) We have specifically addressed the issue of fairness to retiree cohorts at the transition date.

We find that the results are consistent with those from the simpler models, including for example
?. The linear risk-sharing structure proposed has some desirable properties, including long-term
convergence, as well as being very transparent for members.

Phasing in the deficit risk-sharing for older cohorts at transition can achieve a fair result, with
respect to downside deviation measures.

The plan demographics, benefit structures and valuation methods in this paper are still highly
simplified. Nevertheless, the results are sufficiently promising that it will be worthwhile to continue
exploring the linear risk-sharing hybrid pension design in a more realistic setting.
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A Economic Scenario Generator

The Wilkie ESG is described in detail in ?, ?, and ?. It is a cascade model with annual time steps.
The cascade structure that we have used is illustrated in Figure 10.

The inflation model uses an AR(1) structure for the continuously compounded force of inflation.
We have used this to generate the inflation index, It. The long interest rate series, R(t), is used to
model the yield to maturity on the long term bond part of the pension assets. The short rate, r(t)
is used to model the return on short term fixed interest investments. The interest rate processes,
R(t) and r(t), are also used to determine the pension valuation interest rates through the Monte
Carlo projections. The dividend growth process and dividend yield process are combined to create
a stock price process, which is used to model the return on the stock part of the pension assets.

Updated parameters using US data, together with a discussion of the model fit, are given in ?. We
have used the following parameters from the US 1926-2014 data. For an interpretation of these
parameters, see ? or ?.

Inflation: µq = 0.0307, aq = 0.5731, σq = 0.0337

Dividend yield: µy = 0.0309, ay = 0.9368, σy = 0.1632, wy = 0.0

Dividend growth: µd = 0.0129, dd = 0.38, bd,= −0.6004, σd = 0.1581, yd = 0.0

Long bond rate: µc = 0.0238, dc = 0.058, ac = 0.9175, σc = 0.2832, cmin = 0.005, yc = 0.0

Short rate: µl = 0.6516, al = 0.8966, σl = 0.3843

We define the probability space (Ω,F ,P) on which Z(t) = [zq(t), zy(t), zd(t), zc(t), zl(t)], and
denote the filtration as F = {Ft = σ(Z(s) : 0 ≤ s ≤ t)|t ≥ 0}. The expectation conditional on
the filtration is denoted as Et[·] = E[·|Ft].

B Proof of Proposition 1

At+1 =

[
At +

xr−1∑
x=xe

lx

(
c∗t − α

At − Lt∑xr−1
x=xe

lx

)
−

ω∑
x=xr

lx

(
b∗t + β

At − Lt∑ω
x=xr

lx

)]
Zt+1

=

[
At(1− α− β) + ΣW c∗t − ΣRb∗t + (α + β)Lt

]
Zt+1

= (1− α− β)t+1A0

t+1∏
s=1

Zs +
t∑

u=0

(1− α− β)t−u
(
ΣW c∗u − ΣRb∗u + (α + β)Lu

) t+1∏
s=u+1

Zs.
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Figure 10: The Wilkie ESG, reduced form from ?, with short rate extension from ?.

Since Cw
t = It − c∗t , the long-term objective function can be simplified as:

1

T
E

[
T∑
t=0

ΣW

(
It − ct − Cw

t

It

)2

+ ΣR

(
bt − Cr

t

It

)2
]

=
1

T
E

[
T∑
t=0

1

ΣW

(
α
At − Lt
It

)2

+
1

ΣR

(
β
At − Lt
It

)2
]
.

Notice that only At depends on the risk-sharing parameters α and β; Lt and It do not. Taking the
derivative with respect to α we have

1

T
E

[
T∑
t=0

2
1

ΣW

(
α

(
At − Lt
It

)2

+ α2∂At
∂α

1

It

At − Lt
It

)
+ 2

1

ΣR
β2

(
At − Lt
It

)
∂At
∂α

1

It

]
,

and since
∂At
∂α

=
∂At
∂β

, for the derivative with respect to β, we have

1

T
E

[
T∑
t=0

2
1

ΣW
α2∂At

∂α

1

It

At − Lt
It

+ 2
1

ΣR

(
β

(
At − Lt
It

)2

+ β2

(
At − Lt
It

)
∂At
∂α

1

It

)]
.

Setting both derivatives to zero gives:

E

[
T∑
t=0

(
α

ΣW
− β

ΣR

)(
At − Lt
It

)2
]

= 0 =⇒ α

ΣW
=

β

ΣR
.
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C Proof of Equation (2)

Here we simplify the first part of Equation (1), focusing the on the future benefit payment; the
second part can be simplified similarly. Assume a stationary population such that lx(t) = lx:

lim
T→∞

1

T
E


ω−1∑

x=xe−T

ω−1−x∑
t=max(xr−x,0)

lx+t(t)

(
bt − Cr

t

It

)2


= lim

T→∞

1

T
E

{(
xr∑

x=xe−T

ω−1−x∑
t=xr−x

+
ω−1∑

x=xr+1

ω−1−x∑
t=0

)
lx+t

(
bt − Cr

t

It

)2
}

= lim
T→∞

1

T
E

{
xr∑

x=xe−T

ω−1−x∑
t=xr−x

lx+t

(
bt − Cr

t

It

)2
}

+ lim
T→∞

1

T
E

{
ω−1∑

x=xr+1

ω−1−x∑
t=0

lx+t

(
bt − Cr

t

It

)2
}

︸ ︷︷ ︸
=0

= lim
T→∞

1

T
E

{
ω−1−xe+T∑

t=0

ω−1−t∑
x=xr−t︸ ︷︷ ︸

interchange summation

lx+t

(
bt − Cr

t

It

)2
}

= lim
T→∞

1

T
E

{
ω−1−xe+T∑

t=0

ω−1∑
z=xr

lz

(
bt − Cr

t

It

)2
}

= lim
T→∞

1

T
E

{
T∑
t=0

ω−1∑
x=xr

lx

(
bt − Cr

t

It

)2
}

+ lim
T→∞

1

T
E

{
T+1+ω−2−xe∑

t=T+1

ω−1∑
x=xr

lz

(
bt − Cr

t

It

)2
}
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=0

= lim
T→∞

1

T

T∑
t=0

E

{(
ω−1∑
x=xr

lx

)(
bt − Cr

t

It

)2
}

D Theoretical Analysis in a Simplified Setting

Equation (5) outlines the procedure in obtaining a phased transition from a DB plan to a TB plan
that ensures some benefit for all cohorts. However, the complexity makes the problem analytically
intractable. In this appendix, we simplify some of the assumptions, allowing us to develop theo-
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retical support when the objective function is the expected remaining lifetime downside payment,
as defined in equation (7), and repeated here for convenience:

E(x) =
ω−1−x∑
t=0

tpx E
[(

(bt − b∗t )−
It

)]
.

We also use the following assumptions and notation:

• We assume the liability is a constant Lt ≡ L × It. This is equivalent to an ideal situation
where the discount rate used for liability calculation is robust with respect to the market
condition, that is, dt ≡ d̂ is a constant.

• We denote the portfolio return from period t−1 to t byZt, and we assumeZt and the inflation
rate, It/It−1 − 1 are Markov processes.

• αs = αd = 0, and βs = βd = β, that is, the contribution is fixed, and we have the same
risk-sharing for surplus and loss. This is how a typical Canadian TB plan is structured (see,
for example, ?).

• We denote the real portfolio return index by Rt = E
[

Zt

It/It−1

]
, with R0 = 1, and Rt > 0 to

have an overall positive expected return.

Proposition 2. Consider a set of risk-sharing parameters βx = {βj, xr ≤ j < ω} that satisfies
condition (4) for a retiree aged x. Denote another set of risk-sharing parameters β̂x that is the
same as βx, except β̂x < βx. Then[

ω−x∏
j=1

1

Rj

− β̂x∑
x lx

ω−x∑
j=1

jpx

ω−x∏
i=j+1

1

Ri

]
> 0 =⇒ Eβx(x)− E β̂x(x) ≥ 0, (10)

where Eβx(x) is the objective function (7) under the set of risk-sharing parameters βx.

Proof. We prove the proposition through induction. For any arbitrary age x ∈ [xr, ω), letAt be the
asset process where the risk-sharing for retirees is based on βx and Ât with risk-sharing strategy
β̂x. Then, it is easy to show that:

Ât = At + ξt × Zt, t ≥ 1,
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where

ξ1 = lx

(
βx − β̂x

) A0 − L× I0∑
x lx

,

ξt+1 = ξtZt

(
1−

∑
j

lj
βj∑
x lx

+ lx+t(βx − β̂x)
1∑
x lx

)
+ lx+t(βx − β̂x)

At − L× It∑
x lx

.

To simplify the notation, we denote Σl =
∑

x lx and ΣB =
∑

j lj
βj∑
x lx

.

Next, denote by Eβx,T (x) the loss function:

Eβx,T (x) =
T∑
t=0

tpxE
[

(bt(x)− bt(x)∗)−
It

]
, T < ω − x.

Then for T = 0, we have

Eβx,0(x)− E β̂x,0(x) = 0px

(
βx − β̂x

) (A0 − L× I0)−
ΣlI0

≥ 0.

For T = 1, we have

Eβx,1(x)− E β̂x,1(x)

= 0px

[(
βx − β̂x

) (A0 − L)−
ΣlI0

]
+ 1pxE

[
βx

(
(A1 − L× I1)−

ΣlI1

)
− β̂x

(
(Â1 − L× I1)−

ΣlI1

)]

≥ 0px
−ξ1

I0lx
1ξ1<0 + 1pxE

{
β̂x

[(
(A1 − L× I1)−

ΣlI1

)
−
(

(A1 + ξ1Z1 − L× I1)−
ΣlI1

)]
1ξ1<0

}

+ 1pxE
[
(βx − β̂x)

(
(A1 − L× I1)−

ΣlI1

)]

≥ E
{[

0px
−ξ1

I0lx
+ 1pxβ̂x

ξ1Z1

ΣlI1

]
1ξ1<0

}
+ 1pxE

[
(βx − β̂x)

(
(A1 − L× I1)−

ΣlI1

)]

≥ E
{
−ξ1

[
0px
I0lx
− 1pxβ̂x

Z1

ΣlI1

]
1ξ1<0

}
+ 1pxE

[
(βx − β̂x)

(
(A1 − L× I1)−

ΣlI1

)]

= E
[
−ξ1

I0

1ξ1<0

]
E

[
0px
lx
− 1pxβ̂x

Z1

Σl
I1
I0

]
+ 1pxE

[
(βx − β̂x)

(
(A1 − L× I1)−

ΣlI1

)]
,
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which is greater than zero if

0px
I0lx
− 1pxβ̂xE

[
Z1

ΣlI1

]
> 0.

Our conjecture is that, for any t ∈ [1, ω − x], if[
t∏

j=1

1

Rj

− β̂x
Σl

t∑
j=1

jpx

t∏
i=j+1

1

Ri

]
> 0. (11)

Then

Eβx,t(x)−E β̂x,t(x) ≥ E [−ξt1ξt<0]×Rt ×

(
t∏

j=1

1

Rj

− β̂x
Σl

t∑
j=1

t∏
i=j+1

jpx
Ri

)

+ tpxE
[(
βx − β̂x

) (At − L× It)−
ΣlIt

]
≥ 0.

Clearly for t = 1, we have

Eβx,1(x)− E β̂x,1(x) ≥ E [−ξ11ξ1<0]

(
1− 1px

β̂x
Σl

×Rt

)
+ 1pxE

[
(βx − β̂x)

(
(A1 − L× I1)−

ΣlI1

)]
,

which satisfies the conjecture.

Now suppose the statement is true for 1, · · · , t, then for t+1, we have

Eβx,t+1(x)− E β̂x,t+1(x)

≥ E [−ξt1ξt<0]×Rt × E

[
t∏

j=1

1

Rj

− β̂x
Σl

t∑
j=1

jpx

t∏
i=j+1

1

Ri

]

+ tpxE
[
(βx − β̂x)

(
(At − L× It)−

ΣlIt

)]
+ t+1pxE

[
(βx − β̂x)

(
(At+1 − L× It+1)−

ΣlIt+1

)]

+ t+1pxE
[
β̂x

(
(At+1 − L× It+1)−

ΣlIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 − L× It+1)−

ΣlIt+1

)]
.

Clearly, the first three terms are always positive. For the fourth term (third line), we consider four
cases:
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• ξt > 0 ∩ At > L× It =⇒ ξt+1 > 0, which implies that:

t+1pxE
{[

β̂x

(
(At+1 − L× It+1)−

ΣlIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 − L× It+1)−

ΣlIt+1

)]
1ξt>0∩At>L×It

}
≥ 0.

• ξt > 0 ∩ At < L× It =⇒ ξt+1 > lx+t(βx − β̂x)At−L×It
Σl

(we have the constraint such that
the participants will not share more than the portfolio risk (1− ΣB) > 0). Next, we combine
with the second term to have:

E

{[
tpx(βx − β̂x)

(
(At − L× It)−

ΣlIt

)
+ t+1pxβ̂x

(
lx+t(βx − β̂x)At−L×It

Σl

ΣlIt+1

Zt+1

)]
1ξt>0∩At<L×It

}

= E

{
(βx − β̂x)

(At − L× It)−
Σl

(
tpx
It
− t+1pxlx+tβ̂x

ΣlIt+1

Zt+1

)
1ξt>0∩At<L×It

}

= E
[(
βx − β̂x

) (At − L× It)−
ΣlIt

1ξt>0∩At<L×It

]
×Rt+1 ×

(
tpx
Rt+1

− t+1pxlx+tβ̂x
Σl

)

≥ E [max(−ξt+1, 0)1ξt>0∩At<L×It ]×Rt+1 ×

(
t+1∏
j=1

1

Rj

− β̂x
Σl

t+1∑
j=1

jpx

t+1∏
i=j+1

1

Ri

)
.

The last line is due to the fact thatRt > 0 for all t such that(
tpx
Rt+1

− t+1pxlx+tβ̂x
Σl

)
>

(
t+1∏
j=1

1

Rj

− β̂x
Σl

t+1∑
j=1

jpx

t+1∏
i=j+1

1

Ri

)
.

• ξt < 0 ∩ At > L× It, implies that:

t+1pxE
{[

β̂x

(
(At+1 − L× It)−

ΣlIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 − L× It)−

ΣlIt+1

)]
1ξt<0∩At>L×It

}

≥t+1pxE


β̂x ξtZtZt+1

(
1− ΣB + lx+t

βx−β̂x
Σl

)
ΣlIt+1

1ξt<0∩At>L

 .
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Combining with the first term we have:

E

−ξtZt
It

 t∏
j=1

1

Rj

− β̂x
Σl

t∑
j=1

t∏
i=j+1

jpx
Ri

− t+1pxβ̂x
Zt+1

(
1− ΣB + lx+t

βx−β̂x
Σl

)
ΣlIt+1/It

1ξt<0∩At>L×It



≥ E

{[
−ξtZt
It

(
t∏

j=1

1

Rj

− β̂x
Σl

t∑
j=1

t∏
i=j+1

jpx
Ri

− t+1pxβ̂x
Zt+1

ΣlIt+1/It

)]
1ξt<0∩At>L×It

}

≥ E {max(−ξt+1, 0)1ξt<0∩At>L×It} ×Rt+1 ×

(
t+1∏
j=1

1

Rj

− β̂x
Σl

t+1∑
j=1

jpx

t+1∏
i=j+1

1

Ri

)
.

• ξt < 0 ∩ At < L× It =⇒ ξt+1 < 0, implies that:

t+1pxE
{[

β̂x

(
(At+1 − L× It)−

ΣlIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 − L× It)−

ΣlIt+1

)]
1ξt<0∩At<L×It

}

≥E
{
t+1pxβ̂x

ξt+1Zt+1

ΣlIt+1

1ξt<0∩At<L×It

}
.

Combined with first and second term we have

E


−ξtZt

It

 t∏
j=1

1

Rj

− β̂x
Σl

t∑
j=1

t∏
i=j+1

jpx
Ri

− t+1pxβ̂x
Zt+1

(
1− ΣB + lx+t

βx−β̂x
Σl

)
ΣlIt+1/It

1ξt<0∩At<L×It


+ E

{
(βx − β̂x)

(At − L)−
ΣlIt

(
tpx − t+1pxlx+tβ̂x

ΣlIt+1/It
Zt+1

)
1ξt<0∩At<L×It

}

where the second line is positive as we have proved for the case ξt > 0 ∩ At < L × It, and
the first time can be shown to be

≥ E {−ξt+11ξt<0∩At<L×It} ×Rt+1 ×

(
t+1∏
j=1

1

Rj

− β̂x
Σl

t+1∑
j=1

jpx

t+1∏
i=j+1

1

Ri

)
.

Notice that since

E [−ξt+11ξt<0∩At<L×It ]+E [max(−ξt+1, 0)1ξt<0∩At>L×It ] + E [max(−ξt+1, 0)1ξt>0∩At<L×It ]

=E
[
−ξt+11ξt+1<0

]
,
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together with the third term, we have:

Eβx,t+1(x)− E β̂x,t+1(x) ≥ E
{
−ξt+11ξt+1<0

}
×Rt+1 ×

(
t+1∏
j=1

1

Rj

− β̂x
Σl

t+1∑
j=1

jpx

t+1∏
i=j+1

1

Ri

)

+ t+1px × E
[
(βx − β̂x)

(
(At+1 − L)−

ΣlIt+1

)]

The proposition shows that, if β̂x satisfies equation (4), then any βx ≥ β̂x would also satisfy the
objective. In other words, a retiree aged x will always benefit when his/her corresponding deficit
sharing parameter βx is reduced. Of course this comes at a cost to other cohorts, as the risk is
shared between a smaller number of cohorts, but the monotonicity enables us to recursively solve
Equation (5) for each age.
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