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The use of random forests to classify amyloid brain PET 
 

Abstract  
 
Purpose: To evaluate random forests (RF) as a supervised machine learning algorithm to classify 
amyloid brain PET as positive or negative for amyloid deposition, and identify key regions of interest 
(ROI) for stratification.  
Materials and methods: The dataset included 57 baseline 18F-Florbetapir (Amyvid, Avid) brain PET 
scans in participants with severe white matter disease, presenting with either transient ischemic attack/ 
lacunar stroke or mild cognitive impairment from early Alzheimer’s disease, enrolled in a multi-center 
prospective observational trial. Scans were processed using the MINC toolkit to generate standardized 
uptake values ratios (SUVR), normalized to cerebellar grey matter and clinically read by two nuclear 
medicine physicians with interpretation based on consensus (35 negative, 22 positive). SUVR data and 
clinical reads were used for supervised training of an RF classifier programmed in Matlab.  
Results: A 10,000 tree RF, each tree using 15 randomly selected cases and 20 randomly selected features 
(SUVR per ROI), with 37 cases for training and 20 cases for testing, had sensitivity=86% (95% 
confidence interval (CI): 42-100%), specificity=92% (CI: 64-100%), and classification accuracy=90% 
(CI: 68-99%). The most common features at the root node (key regions for stratification) were: 1) left 
posterior cingulate (1039 trees), 2) left middle frontal gyrus (1038 trees) 3) left precuneus (857 trees), 4) 
right anterior cingulate gyrus (655 trees), and 5) right posterior cingulate (588 trees).  
Conclusions: RFs can classify brain PET as positive or negative for amyloid deposition and suggest key 
clinically relevant, regional features for classification. 
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Introduction 

Mild cognitive impairment (MCI) is defined as cognitive decline greater than expected for age 
but not interfering with the activities of daily living [1]. It is estimated that 10-15% of individuals with 
MCI annually progress to dementia along a defined temporal course [2,3]. Dementia refers to a host of 
progressive neurodegenerative conditions resulting in loss of cognitive function sufficient to disrupt daily 
living activities [4]. Alzheimer’s disease (AD), comprising amyloid plaques and tau tangles, is a frequent 
pathology in autopsies, commonly co-morbid with other proteinopathies and vasculopathies [5]. While 
the AD clinical syndrome relates, in part, to beta-amyloid (Ab) protein deposition [6,7], tau progression 
along functional neural networks is thought to better track the gradual decline in episodic memory 
followed by language, visuo-spatial and executive difficulties [8]. 

The diagnosis of MCI and AD is based on clinical evaluation; however, imaging plays a key 
supportive role. Computed tomography (CT) and magnetic resonance imaging (MRI) are often used to 
exclude vascular lesions or masses, detect cerebral atrophy and monitor disease severity. Positron 
emission tomography (PET) can detect amyloid deposition, among other biomarkers of disease. 18F-
Florbetapir (Amyvid, Lilly) is a PET radiopharmaceutical that has high sensitivity (87%), specificity 
(95%) and accuracy (90%) for detecting moderate-to-frequent cortical amyloid plaque based on 
neuropathology at autopsy [9]. Clinically, 18F-Florbetapir brain PET scans are classified as positive or 
negative for amyloid deposition based on an overall subjective interpretation, although quantitation of 
radiotracer uptake permits a more granular evaluation and could potentially pinpoint key regions of the 
brain for classification. While amyloid deposition can be seen in both normal and demented subjects [10-
12], the negative predictive value (NPV) of amyloid PET/CT is high (i.e. if the scan is negative, the 
likelihood of AD is low) [13].  

Machine learning (ML) algorithms vary widely in their complexity, approach, and applications to 
medical imaging [14]. A random forest (RF) [15] is a supervised ML algorithm that consists of a 
collection of decision trees, where a decision tree (Figure 1) is a graphical structure that starts at a root 
node and branches out, possibly in several steps, towards leaf nodes that indicate classification outcomes. 
At each branch point, a feature is inspected and a decision is made to branch left or right, based on a 
trained condition. For example, whether the feature value is less than or greater than a threshold value that 
is chosen to separate training data into two classes with greatest classification accuracy. Leaf nodes are 
labeled with classes (e.g., negative or positive), and indicate the final outcome of a tree. To train an RF, 
each tree is constructed using a randomly selected subset of training cases from the complete dataset of 
cases and a randomly selected subset of features from the complete set of features. After training, each 
new case is evaluated using the RF. Since each tree in the RF is built from a random subset of cases and 
features, it reflects a subsample of the entire training space. For each new case being evaluated, unanimity 
of decisions among all trees in the RF is uncommon. The final decision of an RF is the class that is most 
common after inspection of all trees. There are several advantages to using an RF for classifying imaging 
data. For example, RFs can provide insight on decisions through extracting features that commonly 
appear at the root node of a tree, e.g. features that are important for a classification outcome.  

In this paper, we explore the use of RFs to: 1. classify amyloid brain PET scans as positive or 
negative for amyloid deposition in a patient population with significant vascular disease, and 2. identify 
key regions of the brain for scan classification. 



 
 
Materials and Methods 

Fifty-seven subjects with severe white matter disease, presenting with mild cognitive impairment 
from early AD or transient ischemic attack/ lacunar stroke, were enrolled in a multi-center prospective 
observational trial through 9 participating sites as part of the C6 project in the Medical Imaging Network 
of Canada [16-18]. While accrual to this study is ongoing, these 57 subjects were the full patient cohort at 
the time of our analysis. Of these 57 subjects, 38 were recruited from participating memory clinics and 19 
were recruited from stroke prevention clinics. Inclusion criteria included a Mini Mental Status 
Examination (MMSE) score > 20, among other factors; significant medical or other neurological 
conditions were cause for exclusion, among other factors [17,18]. Each participant had a 18F-Florbetapir 
brain PET scan as well as a quantitative 3T MRI including 3D T1, PD/T2, FLAIR, Gradient Echo, DTI 
and resting state fMRI acquisitions. 

The 18F-Florbetapir brain PET scans were obtained using scanners available at participating sites; 
consistency of PET data across sites was maintained by adherence to a standard quality assurance 
program and use of a common imaging protocol, including the main ADNI2 structural protocol [19]. 
Specifically, the imaging protocol stipulated that 370 MBq (10 mCi +/- 10%) 18F-Florbetapir was to be 
administered intravenously followed by 20 minutes of dynamic imaging approximately 50 minutes post 
radiopharmaceutical administration consisting of four-5 minute acquisitions with attenuation and scatter 
correction. All imaging was transferred to a central site for review of quality and protocol adherence. The 
brain PET scans were clinically interpreted as positive or negative for amyloid deposition by two dual 
certified nuclear medicine physicians/ radiologists blinded to each other’s opinion and using MIM 
software (MIM Software Inc., Cleveland Ohio) with disagreement resolved through unblinded discussion 
and consensus. To obtain quantitative data, all brain PET scans were subsequently processed using a 
pipeline based on the MINC toolkit [20] (Figure 2). Where possible, the four 5-minute image acquisitions 
were averaged and then blurred to a common 7-mm full width half maximum (FWHM) to account for 
differences in camera resolution across sites. PET images were subsequently registered to the Montreal 
Neurological Institute template space using the patient MRI as an intermediate step. In template space, 
unique masks were used to calculate standardized uptake value ratios (SUVRs) for brain regions of 
interest (ROIs), normalized to cerebellar grey matter. The atlas used for the ROIs included 58 individual 
brain ROIs, as well as a composite ROI based on the prefrontal, orbitofrontal, parietal, temporal, anterior 
cingulate, and posterior cingulate/ precuneus regions (referred to as the Jack mask, often affected in AD) 
[21]. Thus, each brain PET scan was associated with 59 ROIs or a total of 59 feature values.  

The complete dataset of 57 brain PET scans was randomly divided into a training set with 37 
scans and a testing set with 20 scans (Table 1). An RF with 10,000 trees, 15 randomly selected cases (out 
of 37 training scans), and 20 randomly selected feature values (out of 59 feature values) for each tree, was 
programmed in Matlab and trained with the goal of classifying brain PET scans as negative versus 
positive for amyloid deposition. Thus, the SUVRs and clinical reads were used for supervised training of 
our RF classifier that we programmed, with two objectives: 1. To evaluate classification performance, and 
2. To determine which brain ROIs have the greatest importance for scan classification.  

 
 



Results 
Of the 57 subjects, 27 were female and 30 were male; age range was 57-91 years (median 76 

years, mean 76.6 years, standard deviation 8.6). All participants had significant white matter disease, with 
a range in white matter hyperintensity volume of 8.2-103.7cm3 (median 26.3 cm3, mean 34.7 cm3, 
standard deviation 23.4 cm3). Based on clinical interpretation, 35 brain PET scans were negative for 
amyloid deposition and 22 were positive. Based on the quantitative analysis, the SUVR over the Jack 
mask range was 0.68-2.49 (median 1.44, mean 1.49, standard deviation 0.34). 

The RF classified scans as negative or positive for amyloid deposition using SUVR data, with 
90% accuracy (95% confidence interval (CI) using exact Clopper-Pearson method: 68-99%), sensitivity 
86% (CI: 42-100%) and specificity 92% (CI: 64-100%) where the clinical scan interpretation served as 
the gold standard. The confusion matrix summarizing the RF classification results is given in Table 2. 
The 10 most common ROIs at the root nodes of the 10,000 trees (most relevant for scan classification) 
were the: 1. Left posterior cingulate (1039 trees), 2. Left middle frontal gyrus (1038 trees), 3. Left 
precuneus (857), 4. Right anterior cingulate gyrus (655 trees), 5. Right posterior cingulate (588 trees), 6. 
Right precuneus (408 trees), 7. Left anterior cingulate gyrus (342 trees), 8. Right gyrus rectus (319 trees), 
9. Left gyrus rectus (299 trees) and 10. Right middle temporal gyrus (270 trees) (Table 3). If features 
were to be assigned randomly to the root nodes in a forest (no training), we would expect that any 
individual feature would be at the root node of approximately 10,000 / 59 = 169 trees. In other words, the 
most common feature (left posterior cingulate) in the trained forest was used in 6 times more trees than 
would be expected by random chance, indicating strong relevance. The key ROIs identified by the RF on 
a surface projection of the brain are illustrated in Figure 3. 

The number of trees in the RF that returned negative and positive classifications for each test case 
is provided in Table 4. The relative frequency of positive versus negative classifications suggests an 
indication of the confidence in the final decision. We observe that the decisions for the two false 
classifications were weaker than in the majority of true classifications: 4,183 trees returning a negative 
(correct) decision versus 5,817 returning a positive (incorrect) decision for the false positive case, and 
5,426 trees returning a negative (incorrect) decision versus 4,572 trees returning a positive (correct) 
decision for the false negative case. For true positive and true negative cases, the average number of trees 
returning the correct decision was 7,420, and the average number of trees returning the incorrect decision 
was only 2,580. 

Cross-validation was performed by running 30 instances of the RF algorithm using the same 
parameters (15 cases per tree, 20 features per tree, and 10,000 trees) but where the data set was randomly 
re-split into a different breakdown of 37 training and 20 test cases. Overall, this resulted in 85% 
sensitivity, 89% specificity, and 87% classification accuracy, justifying that our initial results were close 
to the norm. 

 
 

Discussion 
Amyloid deposition and vascular disease are among the most common causes of dementia and 

often co-exist. Although the diagnosis of MCI and AD is made clinically, often based on a combination of 
a clinical examination and neuropsychological assessment, there has been a recent push to include 
imaging. Indeed, in 2016, Jack et al. proposed to use a descriptive “A/T/N” system in subjects with 



suspected dementia to avoid the lack of consensus in clinical diagnostic schemes. In this system “A” 
refers to amyloid positivity (on amyloid PET or CSF Ab42), “T” refers to tau positivity (on tau PET or 
CSF phospho tau) and “N” refers to neurodegeneration or neuronal injury (on 18F-FDG PET, MRI or CSF 
total tau) [22]. Also, the National Institute on Aging and Alzheimer’s Association (NIA-AAA) research 
framework suggested AD be defined by its underlying pathologic processes using a combination of 
biomarkers such as Ab deposition, pathologic tau and neurodegeneration, irrespective of clinical 
manifestations [23]. Although this approach may be less subjective than a combination of signs and 
symptoms, it is likely to be more expensive with difficulties in practical implementation. To date, 
establishing consensus on the best way to assess cognitive impairment remains a topic of heated debate. 
Nevertheless, there has been a push to include MRI and amyloid brain PET in the evaluation of subjects 
with suspected dementia. 

Imaging features may be predictive of clinical status in subjects with cognitive impairment. For 
example, de Vos et al. showed that brain MRI features including cortical thickness, grey matter density 
and hippocampal shape, among others, could discriminate subjects with AD from healthy controls and 
that a combination of features was more accurate than any single feature [24]. Further, MRI features have 
been combined with features from other imaging modalities such as PET in the search for predictive 
biomarkers of disease [25]. Recently, there has been an explosion in the use of ML algorithms including 
RFs for the analysis of imaging data. Often the goal of the ML algorithm is to use imaging features to 
predict clinical status. For example, Dimitriadis et al. quantified the prediction accuracy of brain MRI 
features using an RF to discriminate among health controls, early mild MCI, late MCI and AD [26]. A 
systematic review by Sarica et al. suggested RFs can be successfully used with neuroimaging data to 
predict AD [27]. The best accuracies (approximately 90%) were obtained when RFs were trained to 
distinguish AD from healthy controls using multi-modality data. Although this dropped slightly 
(approximately 80%) for distinguishing MCI from healthy controls, it improved when additional non-
imaging data such as age or the results of cognitive assessment were included. 

Our results show that a 10,000-tree RF using 15 randomly selected cases for each tree, 20 
randomly selected ROIs and a training set of 37 scans can stratify 18F-Florbetapir brain PET scans as 
negative or positive for amyloid deposition with 90% accuracy (CI: 68-99%). It was difficult to determine 
why the RF classification of certain cases was discordant with the clinical interpretation. Out of 20 test 
cases (Table 3), there was only one false positive case; case 4 was from a stroke clinic, with SUVR over 
the Jack mask of 1.74, and white matter hyperintensity volume of 22.3cm3. There was also only one false 
negative case; case 20 was from a memory clinic, with SUVR over the Jack mask of 1.50, and white 
matter hyperintensity volume of 22.9cm3. Case 18 was a true negative case but with very similar numbers 
of trees indicating negative and positive outcomes; in this case, the patient was from a stroke clinic, 
SUVR over the Jack mask was 1.71, and the white matter hyperintensity volume of 18.5cm3. 

The ROIs that were key for scan classification using this RF are consistent with those that are 
known to be associated with amyloid pathology in subjects with AD. Both imaging and pathologic studies 
have suggested that the cerebral cortical regions in which amyloid deposition is commonly found in 
subjects with AD include the: frontal lobe, parietal lobe, temporal lobe, precuneus and anterior and 
posterior cingulate gyrus regions consistent with our findings [8,28]. It has also been suggested that 
amyloid accumulation preferentially starts in the precuneus, medial orbitofrontal and posterior cingulate 



cortices [29] and that the affected cortical regions may be part of the default mode network whose 
disruption contributes to memory impairment [30].  

The main limitations of this study are the method of data labeling and the small sample size. 
Given that the inherent accuracy of clinical scan interpretation is approximately 90% [9], there could be 
errors of interpretation by the imaging experts. Also, pathology was not available for confirmation and a 
larger group of imaging experts blinded to each other’s opinion would have been time intensive and was 
beyond the scope of this feasibility study. Further, given the small size of our dataset, we could not 
effectively create a validation dataset of brain PET scans. Normally, a validation dataset can be used to 
explore hyperparameters such as the number of trees, number of cases per tree, and number of ROIs per 
tree used in the creation of the RF, possibly improving the results of the RF. However, it is noteworthy 
that even in this sample of amyloid positive cases with severe white matter disease, key hubs in the 
default mode network are detected with a hypothesis-free methodology. 

 
Conclusions 

This preliminary investigation shows that random forests can classify 18F-Florbetapir brain PET 
as positive or negative for amyloid deposition. This approach confirmed important brain ROIs (features) 
used for classification that include key nodes, part of the default node network, where amyloid deposition 
preferentially begins in the brain. 
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Legends for illustrations 
 
Figure 1: Illustration of a hypothetical tree in a RF. Decision nodes are represented by rounded rectangles 
with feature and decision threshold that best separates data into two classes based on training cases, 
starting from the root node at top. Leaf nodes are represented by the final classification as negative (NEG) 
or positive (POS). 
 
Figure 2: Illustration of image-processing pipeline using the MINC toolkit. A clinically negative case is 
shown in (A-F) and a clinically positive case is shown in (G-L). (A,G) Raw PET images with 4 
consecutive imaging sequences. (B,H) Averaged and blurred PET image. (C,I) Patient MRI. (D,J) Patient 
PET registered into template space, showing SUVR on a colour scale with blue indicating lower SUVR 
and red indicating higher SUVR. (E,K) MRI template. (F,L) Jack mask ROI superimposed on PET image. 
 
Figure 3: Illustration of key regions identified by the RF on a surface projection of the brain: anterior 
cingulate (yellow), posterior cingulate (blue), precuneus (red), and middle frontal gyrus (green). 
 



Table 1: Summary of measurements from training, test, and entire data set. 
 

Parameter Training set Testing set Overall data set 
Number of cases 37 20 57 
Sex 19 male, 18 female 12 male, 8 female 31 male, 26 female 
Age  
(min, median, max) 

(61, 76, 91) (57, 76, 88) (57, 76, 91) 

Memory/stroke 26 memory, 11 stroke 12 memory, 8 stroke 38 memory, 19 stroke 

White matter 
hyperintensity [cm3] 
(min, median, max) 

(8.2, 26.6, 103.7) (8.4, 26.1, 88.2) (8.2, 26.3, 103.7) 

SUVR  
(min, median, max) 

(1.03, 1.42, 2.49) (0.68, 1.46, 2.27) (0.68, 1.44, 2.49) 

Clinical read 22 negative, 15 positive 13 negative, 7 positive 35 negative, 22 positive 

 
 
  



Table 2: Confusion matrix summarizing classification results from the RF. 
 

  True classification 
  Negative Positive 
Predicted 
classification 

Negative 12 1 
Positive 1 6 

 
 
  



Table 3: List of features found most often at the root node in an RF with 10,000 trees trained to classify 
brain PET scans as positive or negative for amyloid deposition, using 15 randomly selected scans and 20 
randomly selected features (SUVR in brain ROIs).  
 

Region Number of instances at 
a root node 

Left posterior cingulate 1039 
Left middle frontal gyrus 1038 
Left precuneus  857 
Right anterior cingulate gyrus 655 
Right posterior cingulate  588 
Right precuneus 408 
Left anterior cingulate gyrus  342 
Right gyrus rectus 319 
Left gyrus rectus 299 
Right middle temporal gyrus 270 

 
 
  



Table 4: List of test scans, number of trees in the RF that return a negative or positive decision, and 
whether the cases are true negative (TN), false negative (FN), false positive (FP), or true positive (TP) 
using the clinical brain PET read as the gold standard. 
 

Test 
case 

Number of 
trees with 
negative 
decision 

Number of 
trees with 
positive 
decision 

Result 

1 6276 3724 TN 
2 2817 7183 TP 
3 7904 2096 TN 
4 4183 5817 FP 
5 8688 1312 TN 
6 5246 4754 TN 
7 9654 346 TN 
8 7572 2428 TN 
9 8447 1553 TN 
10 2835 7165 TP 
11 3181 6819 TP 
12 9591 409 TN 
13 8730 1270 TN 
14 9766 234 TN 
15 7907 2093 TN 
16 1687 8313 TP 
17 3634 6366 TP 
18 5023 4977 TN 
19 3501 6499 TP 
20 5426 4574 FN 

 
 
 
  



 
  



 
 
  



 


