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Abstract

Galaxies and their dark matter structures are commonly found within larger-scale struc-

tures called galaxy clusters. These clusters exhibit unique conditions to their constituent

galaxies, as they have an elevated density compared to the background Universe. Clus-

ter galaxy motion and evolution are tied very heavily to the properties of the cluster.

This is seen observationally through the large fraction of galaxies no longer forming stars

found within clusters. The dark matter structures galaxies reside in are also expected to

undergo stripping and deformation as they move through the highly dense cluster envi-

ronment. Models for the cessation of star formation in galaxies and galaxy survival times

often use the pericenter as a benchmark for the timing of these processes. Also, galaxy

orbits are used to probe the properties of the cluster itself. However, to model this ac-

curately, the exact orbit of these galaxies must be well understood, as the density of the

host system does not exactly follow the commonly assumed density profiles. The matter

distribution of the hosts is often triaxial and is frequently changed through mergers with

other systems. Mergers with other similarly sized clusters are especially likely to change

the matter distribution of the host system violently. This should change the orbital path

of constituent galaxies and thus change the predictions for galaxy quenching and evolution.

In this work, I aim to probe the validity of a semi-analytical model for the evolution of

orbits using only the basic properties of the host system. This is done using dark-matter-

only, high-resolution simulations. First, I examine the relationship between the orbital

properties at the time of merging to properties of the host system. It is found that the

distribution of infall parameters is only reasonably independent of mass ratio and that

there is clear evidence that the host’s state can significantly influence infall parameters. I

then show that predictions about the pericentric passage (radius and timing) using infall

orbital parameters are within 25% of their predicted values. However, it is found that

many orbits are kicked away from their predicted orbit, often up to 70% of the orbits that

merge at a given time. Also, orbits are often pushed deeper into the host, taking longer to

reach the pericenter than predicted. Lastly, I attempt to model the evolution of surviving

orbits using the host system’s mass assembly history (MAH). It is found that this is not
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feasible, as the effects of major mergers require more information to model correctly. Thus,

a detailed model for the evolution of orbital properties requires more information than the

general properties of the host.
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Chapter 1

Introduction

1.1 Motivation

Galaxies are important astronomical objects that harbor many unique and complex pro-

cesses, such as stars’ birth, life, and death. The population of stars within a galaxy and

the rate at which they form, known as the star formation rate, are vital probes into the

conditions of the Universe at a given time and location (Madau & Dickinson 2014a). How-

ever, we need a complete and detailed understanding of how these processes operate on

a galactic scale. The current understanding of the evolution of galaxies starts with high-

dense regions in the early Universe. As these regions evolve, they grow in mass partly by

smoothly accreting matter. A key component of this accreted matter is gas, which can cool

and clump together into high-dense regions within the galaxy. Regions with sufficiently

high pressure and temperature can then form stars. Thus, the rate at which stars are

formed is tied to the availability of gas and the prevailing physical conditions of the galaxy

and universe (Madau & Dickinson 2014b). Similarly, the life cycles of stars, especially

supernova explosions, contribute to the enrichment of the interstellar medium (Woosley &

Weaver 1995) and can introduce enough energy into the galaxy to stop star formation (see

Somerville et al. (2008)), further influencing the formation of new stars.

The total mass of stars within a galaxy is thus the cumulative effect of the birth and
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death of stars across the history of a galaxy. Examining the distribution of the stellar mass

across a population of galaxies can provide insight into the relevant processes contributing

to the population of stars in the broader context of the Universe. Galaxies will also inter-

act with their environment through mergers with other galaxies and with the density of

their surroundings. This can drastically change their morphology, eject material (including

stars), and change the dynamics relevant to the evolution of their inner regions (Lotz et al.

2008; Kauffmann et al. 2004). Thus, studying the processes relevant within a galaxy can

also describe the conditions of the Universe as a whole.

It is common to test various models of galaxy evolution by simulating a population of

galaxies using said model and then comparing the output of these simulations to astronom-

ical observations. However, the star formation within galaxies is in an interesting position

in that it has a significant effect on the population of stars found within a galaxy but is

sensitive to small-scale events, such as supernovae or feedback from supermassive black

holes (Lacey et al. 2016). This means direct simulations of star formation through gas

dynamics on scales relevant to cosmology are unfeasible, as the resolution required neces-

sitates a large amount of computational power unavailable to researchers. Semi-analytical

models (SAMs) can be used to address this. SAMs use dark-matter-only simulations, which

do not directly include the complex processes predicted to be relevant to star formation

and only directly simulate the motion of particles under the influence of gravity. Instead,

these models use mathematical descriptions to attribute star formation to the distribution

of matter, removing the need to model the dynamics relevant to star formation directly.

Models of these kinds are beneficial because they reduce the computational power required

and allow researchers to simulate populations of galaxies quickly.

1.1.1 Quenching and Galactic Orbits

An essential aspect of these models is the ability to generate the observed bimodality in the

galaxy population, such as the bimodality in galaxy color. This bimodality has profound

implications on the mechanisms at play when dealing with the star formation rate in
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galaxies and its subsequent cessation. Observationally, there is a separation between red

and blue galaxies. Figure 1.1 shows the two distinct populations of galaxies at different

colors. Since galaxies include a collection of stars gravitationally bound together, their color

indicates the population of stars present within the galaxy. Stars can be cataloged in a

Hertzsprung-Russell (HR) diagram, indicating the relationship between the luminosity and

temperature of a star. The high-temperature surface of stars emits blackbody radiation.

The equation for the spectral radiance at a given frequency and temperature, B(f, T ),

emitted by a blackbody is:

Bf (f, T ) =
2hf 3

c2
1

e
hf
kT − 1

(1.1)

where h, f, T, c, and k are the Plank constant, frequency of light emitted, object temper-

ature, speed of light, and the Boltzmann constant, respectively. At higher temperatures,

equation 1.1 peaks at a high frequency, and thus the star will be bluer in color.
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Figure 1.1: Bimodality of galaxy colour from Peng et al. (2010). This plot is generated

from a collection of galaxies from the Sloan Digital Sky Survey (Abazajian et al. 2009), of

low redshift galaxies. The vertical axis shows the difference in magnitude of the galaxies

in two different colors in the rest frame of the galaxy. A higher U-B value indicates a red

color. The horizontal axis shows the stellar mass of the galaxy. There are two clear peaks

in the distribution of color, highlighting the color bimodality.
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Figure 1.2: HR diagram from Powell (2006), generated from a collection of 22000 stars

from the Hipparcos Catalogue and 1000 low-luminosity stars from the Gliese Catalogue

of Nearby Stars. Plotted on the y-axis is the luminosity and, equivalently, the absolute

magnitude of stars. The x-axis shows the color and equivalently temperature. The color

of each data point also indicates the color of the star. Labeled in purple are different

populations of stars. Notice that the main sequence of stars extends from the upper left to

the bottom right, indicating that blue main sequence stars are significantly brighter than

red ones. There is also a population of giants and supergiants in the upper right-hand of

the plot. These non-main-sequence stars are very luminous and red. Main sequence stars

can transition to this population in the late stages of their life cycle.
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Stars start their life cycle in a population known as the main sequence. When plotted

in an HR diagram, main sequence stars populate a region indicating bluer stars have a

higher luminosity, shown in Figure 1.2. Thus, if the population of main sequence stars is

maintained, a galaxy will appear blue. However, as these stars age, they will often evolve

into different phases of their life or die. Blue stars are hotter than red ones and thus expend

their fuel quickly, giving them a shorter lifetime than redder stars. Thus, as a population

of stars ages without new stars forming to fill in the missing main sequence stars, the pop-

ulation will tend to have more red stars. Similarly, as stars leave the main sequence, they

enter a phase indicative of a high luminosity and red color, known as red giants. These

are shown as the population in the giants and supergiants region, shown in the upper

right portion in Figure 1.2. All of this leads to the understanding that an aging population

of stars in a galaxy without active star formation will be redder than a younger population.

The availability of cold gas drives the level of star formation within a galaxy. As this

gas clumps together, the density and pressure within are enough to ignite the gas in ther-

monuclear reactions, giving birth to a star. Thus, as long as a galaxy has a reserve of

regions of sufficiently dense cold gas to support star formation, new stars will continue to

be born, giving rise to a continually replenished population of main-sequence stars. This

causes the galaxy to appear blue. Once star formation stops, known as the quenching of

the galaxy, the population of blue stars quickly diminishes, and the galaxy appears red.

Because of the clear bimodality of galaxy color, there is a very small population of transient

galaxies between these two populations, indicating that the quenching mechanism occurs

quickly on a cosmic timescale.

In a study conducted by Peng et al. (2010), galaxy mass and environment are shown

to separately describe this quenching by examining a collection of galaxies found in the

seventh release of the Sloan Digital Sky Survey (SDSS) (Abazajian et al. 2009). Figure 1.3

shows galaxy mass on the horizontal axis and the density of the environment on the verti-

cal axis. The color indicates the fraction of red, non-star-forming galaxies in a particular

bin. There is a clear trend for higher-density regions to have a higher fraction of quenched

galaxies at fixed low stellar mass. Similarly, the red fraction increases with stellar mass
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at a fixed low density. They argue that this indicates two general categories of quenching

mechanisms: environmental and mass quenching. Mass quenching has been linked to in-

ternal processes of the galaxy, such as interactions with their active galactic nuclei (AGN)

or black holes (see Somerville et al. (2008) for their SAM incorporating these effects). En-

vironmental quenching is quenching caused by interactions with a galaxy’s environment,

such as ram-pressure stripping (Lotz et al. 2019). This separation is justified since the red

fraction increases solely with overdensity at low stellar mass, where we expect little mass

quenching. Similarly, the red fraction increases with stellar mass in regions of low density.

The nature of environmental quenching is also related to another key bimodality of

galaxies: central and satellite galaxies. Central galaxies are formed at the center of a

high-density region known as a dark matter halo. Since central galaxies are at the center

of these regions, they accumulate matter as other galaxies and matter fall to the region’s

center. On the other hand, satellite galaxies form in the outskirts of these halos and often

fall inward toward a central galaxy. This means satellite galaxies are lower mass than

centrals and are more susceptible to environmental quenching. Similarly, central galaxies

will accumulate more mass; mass quenching mechanisms will be the main factor stopping

star formation in a central galaxy. Generally, galaxies start as centrals and then transition

to satellites as they fall into the region around a larger central galaxy.
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Figure 1.3: From Peng et al. (2012), this plot shows that the quenched fraction of galaxies is

separable into mass and environmental quenching. There is a clear increase in the quenched

fraction at high overdensity or galaxy stellar mass. This plot was generated using 238 474

galaxies in a redshift range of 0.02 < z < 0.085 from SDSS data.

The exact mechanism that governs environmental quenching is an active area of re-

search. It is generally attributed to a galaxy’s gas reservoirs being stripped away through

interactions with its high-dense surroundings. Ram-pressure stripping is the effect that oc-

curs as a satellite galaxy moves through the highly dense environment on infall toward the

nearby central galaxy. As satellite galaxies quickly move through their dense environment

during their infall, their reservoirs of cold gas are stripped away. Tidal stripping, on the

other hand, occurs due to the tidal field present within the high-density environment. As

the galaxy falls toward the center of the matter distribution, the difference between the

forces on its different sides is large enough to cause a portion of its gas, stars, and dark
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matter to be stripped away from the galaxy.

It is also known that the orbital path of subhalos has a strong effect on their sub-

sequent evolution. Smith et al. (2022) find that pericentric location, and thus the tidal

stripping, is heavily dependant on the tangential velocity at infall. This supports the view

that structure outside the confines of the host system, which is responsible for the tangen-

tial component of velocity, plays a key role in the evolution of subhalos. van den Bosch

(2017) find that tidal forces for ejected subhalos are large enough to modify orbits. Again,

these objects’ type of orbital path plays a crucial role in their evolution. Similarly, Ogiya

et al. (2022) find that pericentric radii very close to the cluster can result in 98% loss in

subhalo mass. van den Bosch et al. (2018) also shows that tidal effects from the host are

the dominant factor in mass loss for subhalos. Thus, even without directly tracking halo

orbits, infall parameters, particularly those that predict pericentre, can predict the future

lifetime of subhalos and galaxies.

The motion of satellite galaxies as they fall to the center of their cluster is an important

aspect of galaxy quenching models. Specifically, when and where the pericenter occurs can

help quantify the level of quenching without the need for direct simulation of gas dynamics.

A model for the environmental quenching of galaxies within clusters would ideally populate

the cluster with orbits and predict quenching from these values. For simplicity, this cluster

should be defined by its growth in mass, known as its mass assembly history (MAH). This

SAM would remove the need to model the cluster other than a set of mass values in time.

The model would introduce orbits with a distribution of infall parameters, as discussed

in section 2.2, and use these to predict when and where the pericenter occurs. The first

goal of this project is to determine if such a model is feasible. Can the infall parameters

accurately predict when and where the pericenter will occur? Are the infall parameters

themselves well described? The latter is addressed in section 2.2, while I address the former

in 2.3.
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1.1.2 Distribution of Galaxy Orbits

The distribution of orbits is also very relevant to modern astronomical studies. These or-

bits act as a tracer of the underlying distribution of dark matter and thus provide insight

into its nature. Historically, this has been a large contribution to the discovery of dark

matter, as the orbital motion of galaxies did not match the distribution of baryonic matter

(). More recently, this has been used to determine the mass of galaxy clusters and other

large-scale structures (Abdullah et al. 2018). This is very relevant for cosmology, as it tests

the number density of high-mass objects.

One technique used to probe the matter distribution of disk galaxies is through rotation

curves. The rotational velocity of an object, νr, scales with the radial distance away from

the host center, R, and the mass enclosed, M(R).

νr ∝
√

M(R)

R
(1.2)

Thus, the mass profile of a cluster can be inferred through measurements of the rotational

velocities of member objects. Figure 1.4 shows an example of this for the galaxy NGC3198.

The flat curve indicates
√

M(R)/R remains constant at large radii, indicating the mass

enclosed increases with radius. However, the direct measurements of the mass of the de-

tectable matter at these regions show a clear drop in the density at higher radii. This

suggests a distribution of undetectable matter at the system’s outer edges, later called

dark matter.
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Figure 1.4: Taken from Begeman (1989), the rotational velocities for NGC3198 at various

radii is shown. The points are the rotational velocities from measurements of HI regions.

The solid lines show the predicted rotational curve from stars and gas and gas alone. The

flat curve at increasing radii suggests an extended distribution of matter is present. This

matter does not consist of stars or gas and is attributed to dark matter.

Similarly, the Caustic technique uses the distribution of galaxies to estimate cluster

masses (Diaferio & Geller 1997; Diaferio 1999). This technique relies on the observation

that there is a clear separation between the line of sight velocity of galaxies that are

members of a cluster and those that are not. This comes from member objects having left

the Hubble flow and are infalling to the halo. From the amplitude, A, of allowed velocities,

the mass profile can be estimated with the following relation:

M(< r) ∝
∫ r

0

A2(R)dR (1.3)

An example of this technique from Pizzardo et al. (2023) is shown in Figure 1.5. The blue
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curve indicates the amplitude of the distribution of velocities.

Figure 1.5: Demonstration of the caustic technique, from Pizzardo et al. (2023) The points

in yellow represent member galaxies of a host halo. The blue curve shows the system’s

amplitude, or caustic, at a given projected radius. The trumpet shape shows a clear

difference between the inner and outer portions of the host halo. These are simulated

results so that galaxy membership can be directly determined.
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Lastly, the orbital properties of member galaxies can provide insight into the history of

the host system. As the host builds up mass and increases in radii, the allowed velocities

and radii of member galaxies increase. This can lead to a stratification of orbits, where

recently merged objects lie closer to the host edge, while long-lasting orbits lie closer to

the center.

These indicate that the orbital properties of galaxies can be used as probes of their

cluster. However, these orbits change throughout the evolution of the host. The cluster

itself is a dynamic and complex distribution of matter and can interact with other large

objects, which can cause the motion of subhalos to change. Similarly, galaxies themselves

can interact with each other. The second goal of this project is to see if these effects

are required to model the evolution of orbits within galaxy clusters properly. Ideally, this

model would use only the cluster’s MAH to introduce and heat the distribution of orbits.

In Section 2.4, I discuss the evolution of orbital properties throughout an object’s orbit

and test the feasibility of modeling its evolution.
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1.2 Halos

1.2.1 Halo Origin and Evolution

In the currently accepted cosmological model, ΛCDM, the energy content of the Universe

consists of two main components: Λ, which describes the acceleration of the expansion

of the Universe, and cold dark matter (CDM), describing the main component of matter

which only acts gravitationally. Within the expanding Universe, gravity causes matter to

clump together (Alves et al. 2020). The overall expansion of the Universe is called the

Hubble flow. This picture of the Universe separates matter into two categories: baryonic

matter and dark matter. Baryonic matter refers to ordinary matter, such as that which

makes up planets, stars, and galaxies. Dark matter is the distribution of matter that only

acts gravitationally. The total matter distribution of the Universe is dominated by dark

matter, which accounts for nearly 80% of the matter distribution. On the scales relevant

to galaxies and galaxy clusters, gravity is the dominant force dictating their evolution over

long periods. Thus, the distribution of dark matter is the main consideration for structure

evolution.

Note that due to the initial hot, dense conditions of the early Universe, its components

continue to expand away from each other as the Universe evolves. The expansion rate

is accelerating at later times, driven by dark energy. This explains the observed effect

that objects appear to be moving further away from each other with time. This can be

described by the Universe’s scale factor, a, at a given time. This scale factor is set to 1

at present and decreases at earlier epochs of the Universe. For example, if the scale factor

at a particular time is 0.5, by the time the Universe evolves to the present day, distances

between objects - assuming they are not moving with respect to the overall expansion -

will increase by a factor of 2.

The scale factor is often instead described by a redshift, as it is easier to measure

observationally. Redshift (z) refers to the relative change in the wavelength of light due to
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this effect.

z =
λobsv − λemit

λemit

(1.4)

a =
1

1 + z
(1.5)

At present, z=0, which increases at earlier epochs of the Universe. Redshift is used as

a cosmic clock, where the redshift is related to the cosmological epoch. It is common to

transform distances between objects into comoving units to remove the varying distances

between objects due to this expansion.

r⃗comoving =
r⃗physical

a
(1.6)

Understanding how to identify and classify large structures in the Universe is also

essential. Gravitationally bound structures in the Universe reside within regions with a

density high enough to prevent bound objects from expanding with the Universe, causing

them to fall inward eventually. These regions are called halos and are described by their

elevated density compared to the average density of the Universe:

δ(r⃗) =
ρ(r⃗)− ρ̄

ρ̄
(1.7)

where ρ(r⃗) is the density of the halo at a position r⃗, and ρ̄ is the average density of the

Universe. Typically, a halo is defined as a region such that its over-density is 200 times

the critical density of the Universe.

Galaxy clusters indicate a halo large enough and high enough in density to have many

galaxies gravitationally bound to it. These galaxy clusters are the largest bound structures

observed in the Universe, containing up to thousands of galaxies and reaching ∼1 Mpc in

size. To keep that in perspective, the Milky Way has a radius of about 290 kpc (Deason

et al. 2020). These galaxy clusters are of particular interest, as they have a considerable

influence on the evolution of their galaxies (Kauffmann et al. 2004, 2003; Baldry et al. 2006).
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The spherical collapse model aims to describe the evolution of halos, starting from the

early Universe. It is an idealized model that starts with the density field in the early

Universe. Observations of the cosmic microwave background (CMB) have shown that the

early Universe is described by an almost entirely homogeneous and isotropic density field

of matter (Planck Collaboration et al. 2016). In spherical collapse, the assumption is that

within this density field, there are spherical regions that are higher density than the av-

erage density of the Universe, ρ̄. As noted above, the matter component is dominated by

dark matter, meaning this generally refers to a region with a high density of dark matter.

These overdense regions are described by their relative overdensity with respect to the

background Universe, using equation 1.7. Starting from the initial seed, overdense regions

in the early Universe, the overall gravitational field is expected to be pointed inward, caus-

ing the region to collapse. As the system evolves, this effect and matter in surrounding

regions falling inward toward the halo increases the region’s density.

The slow collapse of these regions leads to an essential aspect of spherical collapse:

the idea that overdense regions will gradually increase in overdensity and eventually cause

surrounding objects to leave the Hubble flow and fall back inwards. A result of this

definition is that it gives a logical boundary of the halo. To define a bound structure,

we can use the virial equation, which describes the global properties of a gravitationally

bound system. For an isolated system, this equation is:

2 < K > + < U >= −1

2

d2I

dt2

where < K > and < U > are the average kinetic and potential energy of the system

respectively. The right-hand side describes the second derivative of the momentum of

inertia, I. This is very small for slowly changing systems, as is assumed for halos. Thus it

is common for this equation to be written as:

2 < K > + < U >= 0

We can thus say that if objects on average follow this relation, they are bound to the halo

and are part of the system.
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In spherical collapse, shells of matter initially expand away from an overdense region.

They eventually reach a maximum radius away and fall back inward toward the halo.

This radius is called the turnaround radius. At this point, the shell will be still, and thus

< K >= 0. The shell will satisfy the virial equation at half this radius and be considered

part of the host halo. This location is called the virial radius, Rvir with the mass interior

to it called the virial mass, Mvir.

There are two regimes in the evolution of halos: the linear and non-linear. The linear

regime occurs when δ < 1, thus early in the evolution of a halo. The overdensity scales

linearly at this point, as linear perturbation theory describes. Once the density becomes

of order unity, linear perturbation theory no longer accurately describes the evolution of

the overdensity. The structure then collapses into a self-bound structure, where complex

interactions between the distribution of matter become relevant. N-body simulations are

required to study and fully understand halos in the non-linear regime.

Hierarchical structure formation is also an important aspect of the evolution of halos

(White & Rees 1978; Davis et al. 1985). This idea states that halos’ evolution is dominated

not only by the slow growth from spherical collapse but also by interactions with other

halos. A schematic of this process is shown in figure 1.6, showing that large structures

are formed through the complex combination of individual, smaller halos. These smaller

halos can still exist as gravitationally bound objects and can exist within their host for an

extended period. These substructures are known as subhalos. Cluster galaxies themselves

exist within a subhalo in the host halo that is the cluster. This view of structure formation

states that cluster galaxies, which exist within subhalos of the larger galaxy cluster, form

separately in the outer regions of another larger halo and eventually merge with their host.
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Figure 1.6: From Lacey & Cole (1993), indicating the evolution of a merger tree. Halos

grow through mergers of smaller halos. Each branch indicates a different halo, with the

width indicating its mass. At the bottom of the figure is the halo at the present day,

indicated by t0. tf indicates a moment in the history of the halo. The merging branches

indicate that the history of large structures at the present day are formed through smaller

halos merging to form larger ones.

These ideas leave the following picture for halo evolution. According to linear perturba-

tion theory, initial, spherical, overdense regions in the Universe collapse inward linearly. As

the density of these regions increases to the regime of δ ∼ 1, the system enters a non-linear

regime, where simulations are required to model the complex interactions relevant to the

distribution of matter. Finally, neighboring halos can fall inward toward each other and

merge. Major mergers between two similarly sized objects can cause large, sudden changes

to the matter distribution. Minor mergers between a larger host halo and a smaller sub-

halo will instead introduce a substructure to the system. The latter is the origin of the

collection of galaxies bound to galaxy clusters.
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1.2.2 Properties of Halos

Numerous studies have examined the properties of these halos in the non-linear regime.

The commonly used density profile used to describe halos is the NFW density profile

(Navarro et al. 1997). Analyzing many cosmological simulations including hierarchical

structure formation, has garnered the name of the universal density profile, as it was

determined to be consistent across all scales, epochs, and cosmologies. The density profile

and corresponding potential are as follows.

ρNFW(r) =
ρs

r
(
1 + r

Rs

)2 (1.8)

ΦNFW(r) = −4πGρsR
3
s

r
ln
(
1 +

r

Rs

)
(1.9)

where G is the gravitational constant, Rs is the scale radius, and ρs is the scale density

of the halo. Rs is the radius where the slope of the density profile in the log scale has a

sharp decrease. This is shown in Figure 1.7. ρs is the density such that the total mass,

M , of the halo follows M ∝ ρsR
3
s. Given a radius of the halo, R, we can also define the

concentration parameter, c, such that:

c =
R

Rs

(1.10)

The Einasto profile (Einasto 1965) is also often used, as it better matches the inner

structure of a host’s density. This profile uses the same parameters for the scale radius and

scale density and introduces the free parameter α, which dictates the logarithmic inner

slope of the density profile.

ρe(r) = ρs exp

(
− 2

α

[(
r

Rs

)α

− 1

])
(1.11)

In this work, I will use the NFW density profile, but as this profile mainly differs on the

innermost regions of the halo, it is expected that using this fit would remain the same. It

is also not preferred as it requires an extra fitting term α.
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Figure 1.7: NFW Density Profile Navarro et al. (1997), showing the density plotted against

the radius, scaled to Rvir. In this case, the concentration parameter is chosen to be 6. As

noted by definition, there is a clear change in the slope at Rvir/c.

Another key property of halos is the rate at which they form and grow in the Universe.

The halo mass function indicates the number density of halos of a given mass in the Uni-

verse at a given epoch (Press & Schechter 1974; Lacey & Cole 1993). The shape of this

function relies heavily on the model of structure growth and the cosmology of the Universe.

A Universe with expansion will actively prevent structure growth, decreasing the number

density at all scales. Similarly, a Universe with a matter component or a different initial

density field will change this distribution.
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Following Press-Schechter formalism (Press & Schechter 1974), the number of objects,

dN, between a mass M and M + dM is modeled by the following.

dN =

√
2

π

ρ̄δc
Mσ2

dσ

dM
exp

[
− δ2c
2σ2

]
(1.12)

Here, δc is the critical density of the Universe, σ is the standard deviation of the power

spectrum of the early Universe, and ρ̄ is the average matter density of the Universe. The

key feature of the mass function is an exponential decay in the number of halos at high

masses. The shape of this function is also expected to vary as the Universe evolves. At

lower redshifts, the structure has had more time to accrete mass. This will cause the den-

sity of higher-mass halos to increase and the total number of halos to increase. Figure 1.8

shows this for two different cosmologies at differing redshifts.

The halo mass function can also be used to describe the bimodality between starforming

and non-starforming galaxies. Galaxies themselves exist within a sufficiently large halo, so

it is expected that the stellar mass function (SMF), which is the same as the HMF but

for stellar mass, should follow a similar trend as the HMF. However, shown in Davidzon

et al. (2017), there is an apparent drop-off in the SMF at high masses. Figure 1.9 shows an

example of this. This supports the idea that mass quenching prevents high-mass galaxies

from forming stars.
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Figure 1.8: The Press-Schechter halo mass function at z=0 and z=1 for a matter only

cosmology (solid) and Ωm = 0.3 (dashed), taken from Bartlett (1997). At lower redshifts,

the number density of halos at all scales increases, and there are more high-mass halos.
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Figure 1.9: Below: The stellar mass function (magenta) plotted alongside the halo mass

function at various redshifts from Davidzon et al. (2017). The solid magenta line is from

their work, while the dashed magenta is a Press-Schechter stellar mass function. The

shaded regions show the uncertainties. The sharp drop-off in the SMF compared to the

HMF indicates a mechanism preventing high-mass galaxies from forming (mass quenching).

Their work uses a collection of data taken from the COSMOS2015 catalog (Laigle et al.

2016).
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1.2.3 Subhalo Orbits

Understanding the expected orbital path a subhalo will undergo and the properties that

go into this prediction is vital. The influence of gravity dominates the motion of these

objects, as other forces do not significantly affect the scales relevant to the orbit. According

to Poisson’s equation, we can determine the force of gravity acting on an object with the

density field of the system:

∇2Φ = 4πGρ (1.13)

g⃗ = −∇Φ (1.14)

g⃗ is the acceleration due to gravity, Φ is the potential field, and ρ is the density. Thus,

given a density field, the acceleration can be determined for each object within it.

As noted above, an important aspect of the NFW profiles used to describe the density

and potential of a halo is that they are spherically symmetric. Consequently, the orbital

energy, E, and angular momentum L⃗ are conserved throughout an orbit. These are defined

as:

E = K + U (1.15)

L⃗ = msatr⃗ × v⃗ (1.16)

where K = 1
2
msat|v⃗|2 and U here are the kinetic and potential energy associated with

an orbit. This means its energy and angular momentum can uniquely describe the orbit.

It is common to define an orbit by its circularity, ϵ. It is defined as the ratio between

the angular momentum of an orbit, L, and that of a circular orbit with the same energy,

Lcirc(E). ϵ = 1 corresponds to a completely circular orbit, while ϵ < 1 results in a more

radial orbit. It is also necessary to define a characteristic length of time for these orbits.

This is often given as Tcirc, the orbital period of a circular orbit at the virial radius of the

halo.

ϵ =
L

Lcirc(E)
(1.17)

Tcirc =

√
GMvir

Rvir

(1.18)
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where Mvir and Rvir correspond to the virial mass and radius, considered the mass and

radius defining a halo. Figure 1.10 plots the radius of an object in orbit in an NFW po-

tential against time. It shows that orbits with lower circularity fall into the system faster

and eventually reach smaller radii.

As noted previously, there is particular interest in the apsis of a subhalos orbit. The

apsis is the location in an orbit where the object is either farthest (apocenter) or nearest

(pericenter) to the center of the system. In the case of a static spherical potential, this can

be determined by solving the following equation from Binney & Tremaine (2008):

(
1

r

)2

+
2[ϕ(r)− E]

L2
= 0, (1.19)

Where r is the radial position of the object.

It is also worth noting that non-circular orbits will also precess in their orbit. This

means the angular location of the pericentre will change with each subsequent orbit. The

amount of angular precession is given by equation 3.18b in Binney & Tremaine (2008):

∆ϕ = 2L

∫ ra

ra

dr
1

r2
√
2[E − Φ(r)]− L2/r2

(1.20)

where ra and ra are the pericentric and apocentrc radii.

For quenching models especially, it is also important to understand the time it takes to

reach the pericentre, Tperi, from the moment a subhalo merges with its host, Tmerge. This

will be referred to as infall time:

Tinfall = Tperi − Tmerge (1.21)

As with all properties of an orbit in a static spherical potential, this will depend on the

energy and angular momentum of the orbit. This can be seen in Figure 1.10, as the time

it takes to reach the pericenter decreases as ϵ decreases.
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Figure 1.10: The different paths for an orbit with varying circularity. Here Rvir is the

boundary of the host halo, and Tcirc is the orbital period of a circular orbit at the Rvir.

These are generated by integrating an orbit forward starting in the same NFW potential

with the same initial energy.

The problem with these descriptions of halo orbits is that they assume a static, spheri-

cal potential. However, these are only approximately true for a subset of real systems. As

mentioned previously, halos form hierarchically. A consequence of this is that the density

of the host halo changes in complex ways as halos merge. The radius, mass, and con-

centration parameters all change as a reflection of the dynamic history of the host, thus

changing the potential (Taylor 2011). Also, these systems are not truly spherical and may

be triaxial. This will cause orbits to naturally evolve as energy and angular momentum are

not conserved. For reference, in A.1 I show various methods for defining and determining
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the density or potential in a triaxial NFW system.

Also, across the normal evolution of a host system, the host is expected to undergo

periods with a violent change in its potential and more relaxed epochs where this change

occurs smoothly. Hosts continually undergo minor mergers and accrete matter from the

surrounding region. This can contribute a large portion of the total mass accreted, up-

wards of 40% (Genel et al. 2010). This slow accumulation of matter should not introduce

significant amounts of heating to subhalo orbits but nonetheless will change the overall po-

tential of the system. According to hierarchical halo formation, another portion of matter

is expected to be accreted through minor mergers of smaller subhalos. This also should

not drastically change the orbits of constituent objects but can introduce close interactions

between neighboring subhalos.

However, during major mergers, the potential and mass distribution of the host halo

will be heavily disrupted. During this time, orbits are expected to be heated due to the

sudden influx of mass and energy. This can lead to individual orbital paths being modified

and changed. Any structure to the distribution of orbits, such as objects closer to the

center having merged earlier (Oman et al. 2013), may be changed during these events.

Thus, major mergers can act to remove any information about the accretion history of the

host left in subhalo orbits or the parameters of the host.

To best compare orbits in systems with differing host properties, energy, angular mo-

mentum, and velocity values are often scaled by a value consistent between all systems. For

energy, (1.22), this is commonly the Keplarian potential energy associated with the host

mass at the virial radius of the host. Angular momentum, (1.23), is scaled similarly by the

angular momentum of a circular orbit at the same radius. A standard scale for velocity

is the velocity of a circular orbit at the virial radius of the halo. These all scale with the

mass and radius of the host and thus can be used to compare different systems. Since both

energy and angular momentum scale linearly with the subhalo mass, the dependence on

subhalo mass is removed by dealing with the specific energy and angular momentum, that

is, the energy and angular momentum per unit mass of the subhalo.
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Evir =
GMvir

Rvir

(1.22)

Lvir =
√
GMvirRvir (1.23)

Vvir =

√
GMvir

Rvir

(1.24)
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1.3 N-Body Codes

N-body cosmological simulations provide a method to probe structure evolution through

direct analysis of the motion and distribution of particles, which is essential to under-

standing the non-linear regime of halo evolution. The purpose of these simulations is to

accurately model the motion of matter starting from initial conditions, mimicking that of

the early Universe. The general components of these simulations involve including many

particles, each with a set mass. These masses generate a potential field that can be used to

determine their subsequent motion. These simulations often require a large cosmological

volume to accurately include the interactions between other halos integral to structure

formation.

The simplest approach to generating the potential Φ is to sum over the contributions of

each particle of the simulation. Obviously, this is a large computation that can set limits

on the simulation specifications. However, many techniques are used to address this, which

are discussed below. Even with these techniques, there is a trade-off between the size of the

simulation and the number of particles. In order to maintain the same overall density of

the Universe, decreasing the number of particles equates to increasing their overall mass.

Accurate structure identification requires a minimum number of particles, often on the

order of 20. Thus, the mass resolution limits the sizes of subhalos a simulation can probe.

These simulations also include the evolution over significant cosmological times. This,

as well as the required volumes, necessitates the inclusion of the expansion of the Universe.

Including this will change the equations of motion, as the expansion acts to counter the

effect of gravity. These simulations use comoving distances rather than changing distances

and positions within the simulation at each time step. This ensures that the size of the

simulation and coordinate positions are consistent throughout the simulation. This has

the effect of changing the equations of motion to include the expansion of the Universe.

r̈ + 2
ȧ

a
ṙ = − 1

a2
∇Φ (1.25)

∇2Φ = 4πGρ̄a2δ (1.26)
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Careful consideration is required to model the boundary of these simulations accurately.

The boundary itself is a nonphysical result of simulations, as it would introduce a region of

zero density. This would generally cause all objects to condense at the center of the sim-

ulation. To account for this, periodic boundary conditions are used in most cosmological

simulations. Periodic boundary conditions, in essence, include the effect of a copy of the

simulation volume at the edge of the volume.

1.3.1 Calculating Potential

As noted in equations 1.25 and 1.26, the motion of particles can be calculated from the

potential field Φ. This, in turn, can be generated from the region’s density. In early simu-

lations, this was done by summing over the contribution from each particle. This is known

as the particle-particle (PP) method. This was sufficient for early simulations, but since

the resolution of these simulations has increased, this has become unachievable. Several

techniques have been employed to accurately include the effect of all particles while being

computationally feasible.

One standard method is to make use of meshes. In this method, the simulation is

separated into a set grid. The density of each grid is then determined from the position of

each particle. This grid is used as a sample of the density field at set intervals in simulation.

Sampling the density field in this way allows for a quick calculation of the potential, as it

can use a fast Fourier transform (FFT). This is preferred as equation 1.26 in Fourier space

can be described as:

−k2Φ(k) ∝ ρ(k) (1.27)

Thus, Fourier transforming the density values from the mesh can drastically speed up

calculations. These methods can be combined with PP interactions by calculating the

contribution from nearby particles but including the contribution from the mesh for par-

ticles farther away. Calculating meshes is also helpful in incorporating periodic boundary
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conditions.

Another common method is to use the fact that the resolution between particles further

away is not necessary to accurately determine a particle’s motion. Since gravity is a 1/r2

force, objects further away will inevitably contribute less overall force than objects nearby.

Similarly, the angular change between different positions further away diminishes. This

leads to the Hierarchical Tree method. The simulation volume is again split into different

cubic regions in these codes. The particles within each region determine its density. These

regions are generated at several resolutions at each time step, say 1/8 and 1/64 of the size

of the box. Then, for each particle, the contribution from higher resolution regions is used

for locations nearby. Contributions from regions further away then use lower resolutions.

This significantly cuts down computational times. If needed, fluid properties such as

pressure, density, and pressure can be incorporated into the simulations using smooth

particle hydrodynamics (SPH).

1.3.2 Initial conditions

It is also key for these simulations to accurately generate initial conditions that match

the expected properties of the early Universe. Any changes in the distribution of matter

can drastically affect structure formation. In the early Universe, perturbations are small

and are described by a Gaussian random field. As Gaussian random fields are completely

described by their power spectrum, the chosen cosmology for a simulation can be used to

generate initial conditions.

The issue with the initial density field is that simulations need to convert this into

a distribution of particle positions and velocities. The initial conditions for the particles

must match the initial density field. This is commonly done using the Zel’dovich approxi-

mation (Zel’dovich 1970), which relates the density at a specific location to the velocity of

a particle within it.
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The common method of generating initial conditions starts with a uniform pre-initial

distribution of particles. A density field is also constructed by taking a white noise field,

defined as a distribution with a constant power spectrum, and multiplying it in Fourier

space by the desired power spectrum, defined by the cosmology of the simulation. The

power spectrum used is generally taken to be that obtained from the CMB. This modified

white noise distribution is sampled at specific frequencies, and inverse Fourier is trans-

formed to real space. The pre-initial field is perturbed by the density distribution through

the Zel’dovich approximation, and each particle is then assigned a velocity. This generates

a particle distribution consistent with the desired power spectrum.

1.3.3 Zoom-in simulations

Zoom-in simulations aim to reconcile the issue of requiring both the large volume a halo

will interact with throughout its evolution and the high resolution needed to model smaller-

scale subhalos accurately. Particular interest to this project is using simulations capable

of resolving both small-scale subhalos and their much larger host halo. This requires both

the cosmological volume needed to simulate the evolution of the host system and the high

mass resolution to identify subhalos. As noted above, this is unfeasible with modern tech-

nology, as the number of particles would exceed current computational limits. Zoom-in

simulations combine these extremes.

To do this, we must start with a low-resolution simulation of a cosmological volume.

This should have a resolution high enough to model the evolution of the large-scale struc-

ture of interest accurately. This initial simulation identifies a structure of interest, including

all of its particles. The simulation is then rerun, where each constituent particle is split

into smaller particles. Similarly, each particle within a region surrounding the dynamical

volume traversed by the structure is split into several smaller particles. This gives an in-

creased resolution for the structure of interest without rerunning the entire simulation at a

high resolution. This process is then repeated several times until the desired resolution is

reached. Taken from one of the zoom simulations used in this project, Figure 1.11 shows

the radial position of particles of differing masses with respect to the center of the halo of
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interest. It shows clearly that the smallest mass particle occupies the regions closest to the

host center, with the highest mass particles located in regions further away.

Figure 1.11: Histogram of particle positions colored by mass for a zoom-in simulation used

in this work. The x-axis shows the distance in Mpc away from the center of the host halo.

After several iterations of zooming in, the region closest to the halo center contains mostly

low-mass particles (blue), while regions further away contain only higher-mass particles

(red). Note that there are very few mid-sized particles (orange and greed), as they lie

within the dynamical region of the host. This means the majority of them are converted

to higher-resolution particles.
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1.3.4 Simulation Outputs

The standard output files for these simulations are called snapshot files, which describe the

position and velocity of each particle, as well as the specifications of the simulation at that

time. These can include the Universe’s redshift, critical density, and scale factor at the

time of the output. These outputs must be output at a cadence sufficient for meaningful

analysis. Deciding the cadence in terms of redshift or scale factor is common, as these

track structure evolution in the linear regime. Depending on the size of the simulation,

these snapshot files can be ∼ 10Gb. It is then necessary to carefully manage the number

of snapshots to minimize space and maximize available information.

1.3.5 Halo Finders and Merger Trees

The output of simulations does not include any information about the halos that make up

large-scale structures, just the position and velocity of each particle within it. A separate

program is required to analyze these outputs to extract information about the halos present

in each file. These programs are known as halo finders. The two common methods halo

finders use are friends-of-friends (FoF) and spherical overdensities (SO). A linking length

must be chosen in FoF, usually some factor of the average particle spacing. It then links

neighboring particles if they are within this linking length. If a collection of linked particles

contains sufficient particles, it is considered a halo. Then, properties such as mass, radius,

and shape are determined using the particles that define the halo. One issue with this

method can arise as two halos approach each other during merging events. In this case,

the two separate halos can be flagged as one large structure. Thus, the linking lengths

chosen in these analyses can heavily affect these results.

SO is a different approach that often avoids the issue of choosing a linking length.

Starting from a low resolution, SO halo finders instead find regions of high density. They

then find the contours of isodense regions around these particles. Particles are then flagged

as part of a given halo if they are within an isodense region larger than 200ρc (or some other

definition of density) and are bound to the halo center. These regions are then iteratively
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examined with higher resolution until all constituent particles are identified.

Each of these approaches identifies halos in a given snapshot. Given that each simula-

tion may have hundreds of outputs, it is necessary to accurately link halos between snap-

shots to analyze the evolution of halos. This necessitates using programs that generate

merger trees containing information about a halo as it evolves throughout the simulation.

The common way this is done is to examine a given halo’s constituent particles and com-

pare them to halos found in a neighboring snapshot. If a sufficient fraction of particles

overlap between snapshots, one is labeled as the progenitor of the previous one. Note that

these halos can have substructure, meaning multiple halos will have overlapping particles

between snapshots. Generally, the halo that contains the largest fraction of particles in a

previous snapshot is chosen as the progenitor. This process will lead to a merger tree, with

a main branch following the most massive progenitors and many minor branches indicating

mergers between halos.
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Chapter 2

Modeling Subhalo Orbits

2.1 Data

This work uses a set of three zoom-in simulations for a detailed analysis of subhalo forma-

tion. The original, low-resolution simulation was carried out using GADGET2 (Springel

2005), starting from z=200 to z=0. This simulation had a box size of 140h−1, a mass

resolution of 1.7× 109M ⊙h−1, and a softening length of 5.469 kpc h−1. The initial condi-

tions were generated using the package MUSIC (Hahn & Abel 2011), with displacements

generated by the CAMB package (Lewis et al. 2000). The cosmology used is a variation

of the Plank cosmology, using Ωm,0 = 0.3, ΩΛ,0 = 0.7, H0 = 68 km/s/Mpc, σ8=0.82 and

n=0.96. Three host halos were chosen after running a FoF halo finding algorithm (Kim

& Park 2006). Following Oñorbe et al. (2013), the simulation was rerun to increase the

resolution of these host halos. The final resolution of simulations included particle mass

mp = 3.32 × 106M⊙h
−1 and a softening length of 0.683 kpc h−1. The output of these

re-simulations included 120 snapshots ranging from redshift z=9 to z=0.

To generate the halo catalogs from these simulations, Amiga Halo Finder (AHF) (Knoll-

mann & Knebe 2009) was then run on each snapshot in the set to both identify host and

subhalos and generate the halo trees of each subhalo of the hosts. AHF works by reading
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through the particle positions and velocities from a simulation. The volume is first sepa-

rated into a coarse grid called the domain grid. The domain grid is set to contain 128 cells.

If a cell has more than a set number of particles, it is chosen for refinement. This work

uses a refinement criteria of 4 particles per cell for all refinement levels. The maximum

number of cells is set to 230. Once no cell requires refinement or the maximum number of

cells is reached, the tree of nested grids is complete.

Next, starting from the finest grid, isolated regions are marked as possible regions con-

taining halos. This is done for subsequent coarser grids, where fine grids that are subsets

of coarser grids are linked as the same structure. Substructure is determined by different

isolated regions in a finer grid being linked to the same coarse grid. Each particle within

a collection of grids defined as a single halo is initially defined as bound to the halo. If

the velocity of a particle is greater than a set velocity, in this case 1.5νesc, it is considered

unbound. This process is iteratively done until there are no longer any unbound particles.

Finally, the halo properties are determined using a halo’s identified particles. The halo

center is defined as the location of the center of mass of the collection of particles. The halo

radius, Rvir, is chosen to be the maximum radius at which its density is equal to 200ρc.

From the distribution of particles, various other halo properties can be calculated. Merger

trees are also generated using the same code package. The progenitor halo is chosen from

halos in the previous snapshot if it contains the largest number of particles in common.

Thus, for each host and subhalo, its complete history is available.
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2.1.1 Energy and Angular Momentum of Subhalos

The energy and angular momentum of a subhalo are calculated in the frame of the host

system. For each snapshot, AHF outputs the velocity and position of each identified halo.

Thus, the velocity and radius of each subhalo are defined as:

r⃗subhalo,rel = r⃗host − r⃗subhalo (2.1)

v⃗subhalo,rel = r⃗host − v⃗subhalo (2.2)

AHF also outputs the mass, radius, and concentration parameter of each halo identified in

each snapshot. Using this, the NFW potential, Φnfw(r), can be calculated for each host in

each snapshot. Thus, the specific energy is calculated for each subhalo as follows:

E =
1

2
|v⃗subhalo,rel|2 + Φnfw(r⃗subhalo,rel) (2.3)

Similarly, the specific angular momentum is defined as:

L⃗ = r⃗subhalo,rel × v⃗subhalo,rel (2.4)

2.1.2 Timing of Subhalo Mergers

To investigate the properties at infall, it is necessary to have a precise definition of when

subhalos first infall into their host. If the entirety of the simulation were available for anal-

ysis, it would be ideal to use the results of a halo finder to pinpoint when a subhalo merges

with its host. However, this becomes more complicated due to the finite cadence of the

simulation output. The method used to generate this catalog of infall parameters starts

with using the output of AHF on each of the simulation outputs. As described above, this

generates the merger tree for each halo identified in the simulation. Each eventual subhalo

of a host is then flagged, and its position is tracked across the entire snapshot. At the

same time, the relevant properties of the host are also tracked at each snapshot.

The merger time is identified when a subhalo first crosses the virial radius. To determine

when this occurs, the radial position with respect to the host center is determined in each

38



snapshot. Starting from the highest redshift snapshot, the radial position of a subhalo in

pairs of subsequent snapshots is checked until Rn > Rvir,n and Rn+1 > Rvir,n+1, where n

and m are the higher and lower redshift snapshot respectively. Between these two outputs,

the subhalo must have crossed the virial radius. The radial position of the subhalos with

respect to the host center is then found in the surrounding five snapshots. Using this, a

third-degree spline is generated in redshift and solved for the redshift zinfall such that

rsubhalo,rel(z)− rvir, host(z) = 0.

Following this, a similar third-degree polynomial function of redshift is fit for other pa-

rameters, such as mass and the components of its velocity. Each function is then evaluated

at zinfall, resulting in the interpolated properties of the host at the time of infall. With

both the host and subhalo properties at zinfall, the radial and tangential velocities and the

host mass and virial radius are found. As noted above, these are used to scale the velocity

of the infalling subhalo. For the three simulations, there is a total of 46000 infall subhalos.

A commonly used parameterization of infalling properties is the velocity vector at the

time of infall. The total velocity can be used as a metric for the total energy, while

the tangential velocity describes the angular momentum. By definition, these values are

determined at the virial radius. Assuming a spherically symmetric potential field, such as a

Keplarian potential, the potential energy should always be given by equation (1.22) at the

time of merging. This means the varying component of the total specific energy between

subhalos is its specific kinetic energy, which depends solely on its velocity. Similarly, since

objects merge at the same radius, the angular momentum only depends on the tangential

or radial component of the velocity.

This can also be scaled to account for varying host properties. This is often chosen to

be the velocity of a circular orbit at the virial radius, with the radial component scaled to

the total velocity:

Vtot =
ν

Vvir

(2.5)

Vr =
νr
ν

(2.6)
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where ν and νr are the subhalo’s total and radial physical velocities at the time of the

merger.

2.1.3 Pericentric Passage

To determine the changes in the distribution of pericentric passage, as in Section 2.3, we

follow a similar process as above. We generate a catalog of pericentric passages by first

determining the relative positions and velocities of subhalos with respect to that of the

host system at each simulation output. Finding the orbital radii for each snapshot, we

find the snapshot at which it reaches a minimum. Keep in mind there are times when

the position may jump artificially, indicated by three subsequent snapshots indicating the

object is at an extremum of its orbit. In these cases, I disregard the middle snapshot and

continue with the process.

Although the snapshot corresponding to the pericentric passage is identified, this will

be of low temporal resolution, as the location of the pericentre may be between snapshots.

To address this, I create a third-degree fit in redshift using the surrounding five snapshots.

Note that creating fits in cosmic time does not change these results significantly. From these

fits, I find the redshift and the radius of the pericentric passage. Using the catalog of infall

parameters, the time between the moment of infall and pericentric passage is calculated.

The final catalog includes the time between infall and pericentric passage tInfall, and the

pericentric radii Rperi. This was calculated for each object that reached its pericentre.

Between all hosts, this corresponds to a total of ∼18000 orbits. Infall time is scaled by

Tcirc and the pericentric radii by Rvir at the time of the merger.
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2.2 Orbital Properties at Infall

The properties of a subhalo’s orbit at the time of infall are of significant interest, as they

should dictate the subsequent motion of the merging subhalo. To understand the distri-

bution of these parameters, it is important to understand the evolution of subhalos before

they cross the virial radius. In the early Universe, the host halo starts as a small overdense

perturbation in an otherwise homogeneous density field. In the simplest case, surround-

ing subhalos initially expand away from the host center and are unbound to the host.

The higher-density region of the host attracts surrounding subhalos that eventually move

against the Hubble flow and fall back toward the host system at the turnaround radius. At

this point, the subhalo’s orbital energy will be purely potential, given by GMvir/Rturn. The

potential energy will be converted to kinetic energy as it falls back toward the host. When

the subhalo crosses the virial radius, the velocity equals that of the virial velocity (1.24).

Thus, in this simple picture, the velocity at the time of the merger should be exactly the

virial velocity, regardless of host properties.

The issue with this picture is that subhalos do not evolve in isolation. During the

time prior to the crossing of the virial radius, subhalos will experience forces from other

surrounding objects. The surrounding objects will not have symmetry and thus will apply

a tidal force on the subhalo. This can have the effect of introducing or increasing the

tangential velocity of the object, in turn increasing the object’s total velocity. This should

also decrease the component of an object’s total velocity in the radial component at the

time of infall. Shown in figure 2.1 is the distribution of infall velocities from the simulations

in this work. It shows that the distribution peaks at a value slightly above the virial velocity

and that more radial orbits are more common than tangential orbits.
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Figure 2.1: On the left is the total velocity of each subhalo that infalls into each of the

three host systems, scaled by the virial velocity at the time of the merger. Similarly, to

the right is the infall radial velocity, scaled by the total velocity of a given object when it

merges with its host.

Without any assumptions about the stability of host potentials, many studies support

the conclusion that the parameters at infall relate to their subsequent motion. Tormen

(1997) find correlations between circularity at the time a subhalo merges with its host and

pericentric location. Khochfar & Burkert (2006) find that for merging galaxies, there is a

slight correlation between the predicted pericentric radii and eccentricity at the time of the

merger. Overall, it is found that the dominant predictor of pericentric radii is tangential

velocity at infall. Thus, if the potential of these systems is stable enough for the expected

orbital properties to hold, with some scatter.

This leads to the following interpretation of subhalos’ evolution before and after they

merge with their host. Subhalos initially follow the predictions of spherical collapse and

then gain tangential velocity, spin, and angular momentum through interactions with other

halos before merging. At the time of the merger, depending on their infall parameters, they

follow a path that leads to pericentre. The specific pericentric location dictates the level

of tidal stripping and galaxy quenching. Similarly, interactions with other subhalos can
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significantly change their structure. Thus, infall parameters that can predict pericenter

are necessary to predict the evolution of galaxies and subhalos.

Tracking and understanding the complex evolution of a subhalo is not feasible for all

substructures. Thus there has been a large amount of work done to identify the rela-

tionship between infall properties of substructure, and properties of host systems.(Tormen

1997; Wetzel 2011; Benson 2005; Jiang et al. 2015; Vitvitska et al. 2002). Jiang et al.

(2015) find relations between the infall velocity and host mass, and mass ratio. Wetzel

(2011) examines the relation of infall parameters to host mass, redshift, and satellite mass.

Similarly, Benson (2005) looks into mass and redshift dependence, and although they do

not discuss a physical reason, argue that their results suggest there is a redshift dependence

but cannot disentangle it from the inherent mass dependence. Tormen (1997) finds that

circularity peaks at around 0.5 and that more massive satellites have smaller pericentres

and a larger radial velocity, leading to a more eccentric orbit. Similarly, Wang et al. (2005)

finds that they lie primarily along the major axis. In this section, I examine the validity

of some of these relations and determine if they should hold across the evolution of a host

system.

2.2.1 Mass Ratio

The host-subhalo mass ratio, Ms/Mh, can predict the conditions a subhalo will experience

before and during its infall onto a host. When dealing with galaxy clusters, the hosts

are generally high mass and thus exist on the tail end of the halo mass function. This

means they are relatively rare since the low number density (see Figure 1.8). Thus, for the

infalling subhalos, the host should be among the few structures of similar sizes relevant

to its history. This would mean, especially for higher mass objects, there are expected

to be very few objects other than the host capable of introducing a significant tangential

velocity. However, as the mass ratio between the satellite and host decreases, the satellite

in question will be smaller in mass. This means the number of larger subhalos capable of

influencing its motion will be increased. Thus, objects with a low mass ratio are expected
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to have a more significant component of angular momentum, causing an increase in the

total velocity and a decrease in its radial component.

In the region surrounding the host system, the heating of a subhalo’s motion is expected

to be caused by the contribution of other halos in the immediate vicinity of the eventual

host. Lower mass subhalos are expected to be more susceptible to this heating since

the same force will cause smaller subhalos to accelerate more toward these other halos.

Similarly, at lower masses, there are expected to be more higher-mass objects in the field

that can contribute to this heating. In this picture, objects with a lower mass ratio with

their host should gain tangential velocity prior to their merger, thus increasing Vtot and

decreasing Vr. At the higher ratio end, the heating is expected to be less effective, so both

Vtot and Vr should tend toward 1.

Figure 2.2 shows the average Vtot and Vr for different bins of log10(Ms/Mh) for all merg-

ing subhalos in our simulations. To isolate the effect of mass ratio, I restrict the host mass

to 1013−14M⊙h
−1. I find that at lower mass ratios, the Vr approaches about 0.75 in the

lowest bin, and Vtot > 1.2. At high ratio bins Vtot and Vr approaches 1. This supports the

picture above, as high mass ratios tend toward lower values. This general result is also

found by Jiang et al. (2015), who find infall velocities increase for lower mass ratios for all

host masses.
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Figure 2.2: Above is plotted the average Vtot against the mass ratio of the subhalo at

infall. The error bars are generated through a bootstrap method, with a confidence level

of 0.98. Below is the same, but for the average Vr. From left to right are the different

hosts. As the mass ratio increases, the total velocity approaches Vvir. At the same time,

the Vr approaches 1.
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2.2.2 Host Mass

The total host mass can also be linked to the environmental conditions experienced by a

merging subhalo. In the picture of subhalo evolution, higher masses will dominate the local

field. Since increasing the host mass corresponds to a more significant virial velocity, as

shown in equation 1.24, the merging subhalo must gain an increasingly large velocity before

merging to see a change in the distribution. Given that it is rare for merging subhalos to

have another nearby large halo, and considering that these hosts are on the high end of

the HMF, this heating should be increasingly infrequent at higher host masses. The radial

component of the velocity can also be explained from this picture. Since higher mass hosts

are expected to dominate the potential field, the radial velocity of infalling subhalos should

be a larger component of its total velocity. This particular relation is also interesting, as

host mass is a commonly measured property defining host systems. Incorporating any

dependencies on this value can thus be useful for SAMs.

Since the mass of the host is tied heavily to the evolutionary history of the host, it

is important to separate the results for each of the three host systems. This can indicate

whether the results are consistent with an overall trend in host mass or if it is difficult to

disentangle these results from that of the specific dynamical state of the host. According

to Jiang et al. (2015), separating the population into mass ratio bins, the effect of increas-

ing host mass is very slightly in the opposite direction; increasing host mass leads to an

increase in infalling velocity.

From Figure 2.3, the expected relation to host mass is not shown. Errors are calculated

through bootstrap re-sampling with a confidence level of 0.98. Since the errors are small,

our results show a significant weak trend across host mass. This suggests that, although

possible if averaged across many halos (Wetzel 2011), the infall parameters for individual

halos do not follow the expected relation to host mass. There are also portions of the plot

where the relation seems to deviate from a smooth relation, such as when the total velocity

of the first host is a mass of about 1013M⊙h
−1. This suggests the infall velocity can depend

closely on the specific conditions of the host system.
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Figure 2.3: Above is the average Vtot plotted against the host mass at the time of the

merger. The columns separate the data into the three host halos used in this work. To the

right is the same but for average Vr. There is little dependence on host mass for both of

these quantities.
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2.2.3 Redshift

At high redshift, the Universe is highly uniform and isotropic. Due to the linear collapse

of halos, as the Universe evolves, the contrast between over-dense and under-dense regions

increases. This should increase the tidal field’s strength outside the host’s boundary and

thus change its effect on subhalos’ infalling properties. It is thus expected that as redshift

decreases, the component of the velocity in the radial direction, Vr/Vtotal, should also de-

crease. Each interaction is expected to result in the subhalo being subjected to a larger

tidal field, thus increasing the tangential velocity of its orbit. This should also have the

effect of increasing the total velocity of infalling objects.

Vtot and Vr are plotted against infall redshift for host masses of 1012−14M⊙h
−1 and

mass ratio between 10−2 and 10−5. Again, it is necessary to separate this into each of the

three hosts, as the specific history of each may change these results. The results show a

steady increase in Vtot at lower redshifts and a decrease in Vr. This supports the picture

of increasing tidal interactions discussed above. Note that Wetzel (2011) find a similar

decrease in Vr, but a consistent Vtot with decreasing redshift.

Similar to host mass, Figure 2.4 tracks the evolution of infall velocity across redshift.

Errors are calculated similarly to 2.3. Although the expected relation is generally shown,

with infall velocity increasing at low redshift, it is again clear that fitting an overall trend

line is not feasible. There are periods for each host where the infalling parameters seem to

be disconnected from surrounding data points. This again suggests that the history of the

host plays a crucial role in subhalo infall parameters. Redshift alone cannot predict the

complex conditions relevant to infall parameters.
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Figure 2.4: Above is the average Vtot plotted against the scale factor at the initial merger

time. Below is the same, but for average Vr. The total velocity increases as the scale factor

decreases, with a corresponding decrease in Vr.

49



2.2.4 Dynamical State

From the previous results, it is clear that the specific conditions of the host system may

be required to accurately predict the parameters of merging subhalos at infall. One aspect

of this should be the level to which the host is relaxed. As host systems evolve through

merging events, they will experience periods in a relaxed state, where the motion and orbit

of objects are allowed to settle. However, when a host system undergoes a major merger,

there can be a drastic change in the matter distribution of the merging systems. The

effect this may have on infalling subhalos is poorly understood. Major mergers heat the

mass distribution, causing long-lasting changes to the potential and possibly affecting the

motion of nearby subhalos.

Merging satellites also do not always merge as isolated objects. A similarly sized host

halo is expected to in itself contain subhalos. This means that there will be discrete loca-

tions of higher density along with a change in the overall density. These can cause close

interactions with other infalling objects, thereby changing the path of both.

The dynamical state of a cluster is generally quantified first through the substructure

within the host system. Over time, the substructure within the host system is expected to

become disrupted. This can be caused by interactions between subhalos, tidal stripping, or

subhalos merging with the core galaxy of the host. Two similarly sized halos merge during

major mergers, so a large portion of the halo’s matter will be in the merging element.

Thus, a common method of identifying the dynamical state of the system is simply the

total mass found within the substructure, called the substructure fraction.

K =
∑
i

Ms,i (2.7)

Following Cui et al. (2018), this does not include the mass of the largest substructure, as

the structure responsible would be the central halo of the system. K < 0.05Mvir for a

dynamically relaxed system. This fs is defined as fs = K/Mvir.
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Next, the total energy of the constituent particles should indicate the level to which

a cluster is relaxed. During major mergers, heat is expected to be imparted into the

system. This would increase the total amount of kinetic energy. Thus, another method

for determining the dynamical state is through the virial ratio η. This value measures how

well the halo follows the virial theorem. It is calculated using the total potential energy,

U , the total kinetic energy, T , and the energy associated with the surface pressure, Es.

η =
2T − Es

|U |
(2.8)

Es for collisionless particles is calculated following Shaw et al. (2006). As noted by Cui

et al. (2018), a dynamically relaxed system will have 0.85 < η < 1.15. Ideally, η approaches

1 for systems in complete virial equilibrium.

Lastly, during major mergers, the introduction of a large mass is expected to shift the

position of the center of mass. As the central position of these halos is defined as the

location of the highest density, the offset between the center of mass and this location can

also indicate major mergers. This offset, ∆r, is normalized to the virial radius of the host

halo. We follow Cui et al. (2018) and use 0.04 as the limit for a dynamically relaxed system.

Combining these three factors, we follow Haggar et al. (2020) to assign a value for

the dynamical state, χDS. χDS > 1 indicates a dynamically relaxed system. The system

becomes less dynamically relaxed as χDS → 0.

χDS =

√√√√ 3(
∆r

0.04

)2
+
(

fs
0.1

)2
+
(

|1−η|
0.15

)2 (2.9)

Using this, we can determine the dynamical state at the infall time for each subhalo and

whether infall parameters are affected by unstable periods of a host’s evolution. As this

is commonly a binary, we instead plot the distribution of infall parameters for the lowest

and highest quarter of the dynamical state. The two distributions are shown in Figure

2.5. Running a K-test comparing these distributions shows they are incompatible, with

a p-value less than 0.001 for both. Although the general shape seems consistent between
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the two distributions, it is clear that objects with a lower dynamical state peak at a lower

velocity. This suggests that during calm periods of a host’s history, the infall velocity will

approach closer to the virial velocity. This is consistent with the idea that objects that

merge during dynamically unrelaxed periods (Q4) are more heated than those of relaxed

periods. This is also supported by an increase in the number of radial orbits for objects

that merge during relaxed periods. Thus, the dynamical state is a relevant parameter for

predicting the velocity of infalling subhalos.

Figure 2.5: On the left is the distribution of Vtot for both the upper (blue) and lower 25%

(orange) of subhalos ordered by the dynamical state of the host. To the right is the same,

but for Vr. The upper 25% corresponds to the more dynamically relaxed population. There

seems to be a slight decrease in Vtot for the less relaxed objects and a slight preference for

less radial orbits.
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2.2.5 Subhalos Merging as Groups

Another consideration for the status of merging subhalos is whether they merge after merg-

ing with a different host or if they merge directly from the field. Subhalos that have merged

with a different host prior to the merger with the final host are expected to be fundamen-

tally different from objects that merge in isolation, as their potential is dominated by the

mass distribution of their previous host. We will call this population preprocessed, as this

often indicates their star formation is affected prior to the merger with the final host. This

can lead to these subhalos merging on orbits of their previous host, not just that of the

cluster. Similarly, if they are particularly bound to their previous host, they may follow

more radial orbits consistent with the higher mass of their previous host.

This can be easily found in the merger history, created from the entire simulation of

each subhalo. Figure 2.6 shows the varying distributions. A KS test shows the distribution

of Vr and Vtot is not consistent between the two populations, with a p-value of for both

total and radial velocity less than 0.001. The population of Vtot seems to have a wider dis-

tribution. Since these objects merge as part of a larger structure, it is expected that their

motion is not dominated by only the host halo, thus adding scatter to their total veloc-

ity. There does not appear to be any clear indication of a preferred direction of this scatter.
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Figure 2.6: Same as Figure 2.5, but in orange is the population of subhalos that merge

isolated, and in blue are subhalos that merge preprocessed. The population of preprocessed

subhalos has a wider distribution for the total velocity.
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2.2.6 Halo Boundary

Although it is commonly assumed for the system to be spherically symmetric, halos are

not entirely spherical and may require a triaxial system to model accurately. Extensions

to spherical collapse have led to the so-called ellipsoidal collapse model, in which the shape

of a halo is instead modeled as an ellipsoid. The ellipsoidal boundary is obtained through

the moment of inertia of the host, taking into account bound particles. The total angular

momentum naturally gives the direction of the axes of the ellipsoid. From this, the moment

inertia about these axes can be calculated. This defines an ellipsoid with an interior defined

below.

x′2

a2
+

y′2

b2
+

z′2

a2
= 1 (2.10)

where x′, y′, and z′ are the ellipsoid’s largest, middle, and smallest axes, respectively. a, b,

and c are the lengths of the semi-axes. Thus, I follow a similar approach to determine when

an object merges under this boundary, as with the spherical case. First, I run through each

snapshot to find one such that x′2

a2
+ y′2

b2
+ z′2

a2
< 1. Then, a fit function is generated using

a third-degree spline using the surrounding five snapshots for the subhalos properties and

the axes of the host halo. I then find the redshift such that it crosses this boundary and

determine the infall parameters from the fitted functions.

Lacking spherical symmetry, a system described by an ellipsoidal boundary will have

differing conditions at the time of infall. Depending on the merger’s location, the radius

at which an object merges with its host will also vary, and more importantly, the potential

will change. Another consequence of a system without spherical symmetry is that angular

momentum is no longer conserved. This means that subhalos can gain tangential velocity

from the host itself depending on the orbital path. This effect should also be more promi-

nent along the shorter axes of the ellipsoid, as more mass should be concentrated along the

largest axis. Thus, for highly triaxial systems, radial velocity distribution may also depend

on the merger’s location.
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2.2.6.1 Vtot and Vr

Figure 2.7 shows the distribution of infall velocities comparing the spherical and ellipsoidal

boundaries. A KS test run on both distributions indicates they are indeed different distri-

butions, with a p-value of less than 0.001 for both Vr and Vtot. However, there appear to

be very slight changes to their distributions. This suggests that any effect of the ellipsoidal

shape of the halo does not change the overall distribution.

However, there may still be a dependence on the merger’s location. To test this, we can

look at the infall parameters as a function of its location. Using the spherical definition, I

track where a subhalo merges with its host. Since this is expected to be dependent on the

triaxial shape of the host, I bin by cos θ, where θ is the angle between the location a subhalo

merges with its host and the largest axis of the host’s moment of inertia. This is shown

in Figure 2.8. There seems to be little dependence on the location of the merger. There

is a slight increase along the largest axes of the ellipsoid, corresponding to a subsequent

decrease in the radial component of the velocity. This suggests that objects that merge

along the largest axes have less radial orbits, although this effect is small.
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Figure 2.7: Same as Figure 2.5, but in orange are orbital properties at the time of merging

for an ellipsoidal boundary, and blue are that for a spherical boundary.

Figure 2.8: To the left is the average Vtot split into bins of | cos θ|. To the right is the same

but for average Vr. There is a slight increase in Vtot for objects that merge in the region

around the longest axes of the ellipsoid, with a corresponding decrease in the Vr. Errors

are again determined through bootstrap re-sampling with a confidence level of 0.98.
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2.2.6.2 Location of Merger

It is also worth noting where these objects merge with their host. Since the orbital prop-

erties are tied to the host system’s potential and interactions with other subhalos, it is

crucial to understand where objects merge with their host. If objects preferentially merge

along an axis, it can indicate locations with a higher density of interactions and thus add

additional heating to objects that merge along this location. This is seen from many stud-

ies of this effect, that find infalling subhalos merge along cosmic filaments (Tormen 1997;

Knebe et al. 2004), and that the shape of the host system can align with the direction of

recent mergers (Schindler 2000). Figure 2.9 plots the distribution of the location of infall

in both an ellipsoidal and spherical definition. Here, θ is the angle between the location of

infall and the largest axis of the ellipsoid that defines the host at the time of the merger.

The merger’s location is where the subhalo crosses the spherical or ellipsoidal boundary de-

fined by the host system. Running a KS test for these shows they are consistent with each

other, with a p-value of 0.43, which suggests the choice of boundary does not significantly

influence the distribution of infall location.
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Figure 2.9: The distribution of infall locations with respect to the largest axes of the

ellipsoid. In blue is the spherical boundary, and in orange is an ellipsoidal boundary.

These distributions would be flat if orbits were isotropically distributed on the surface.

Thus, there is a clear preference for orbits to merge along the largest axis of the ellipsoid.
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2.3 Measured Pericentric Passage

The initial orbital evolution from infall to the pericentre is a complex process involving

interactions between the subhalo and the host’s matter distribution. Although the density

profile of a halo can be modeled with a spherical or even triaxial potential, these do not

capture the contributions from each particle or the interactions between nearby subhalos.

In reality, the density is no longer smooth, static, or spherically symmetric, leading to

an orbit that deviates from the ideal case. Although several studies have measured the

correlation between the orbits of subhalos and their properties at infall (Tormen 1997;

Khochfar & Burkert 2006), it is clear that many processes can act to scatter orbits from

their original path.

In the simplest case, bulk changes to the potential can affect orbits in minor ways.

Suppose the potential remains as a spherical NFW. In that case, changes in the host’s

mass, concentration, and radii during a subhalo’s first orbit will still change the system’s

potential, thus deviating it from its initial path. These properties are expected to change

during mergers and generally throughout the evolution of a halo. Similarly, in triaxial

systems, the orientation of the axes of the potential can change. Even if host halos accrete

matter slowly, their distribution is expected to change in response to their history.

This does not account for the effect of violent mergers common in the hierarchical model

for structure formation. These events will cause significant, sudden changes to the system’s

potential. It can take several orbital periods before the system returns to a relaxed state.

Thus, these violent events may also change the orbits of other infalling objects. These

events may also introduce a secondary component to the potential for objects close to the

infalling large satellite, as it is expected to remain as an individual structure for a period

after the merger.

Objects also do not merge in isolation. Suppose objects merge in groups or even have

an orbital path intersecting with that of another subhalo. In that case, their local potential

is no longer well modeled by the host system alone. As the pericentre is understood to

be the location of high tidal stripping, and quenching models use it as a benchmark for

galaxy quenching, it is vital to understand whether these factors play an essential role in

the location of the first pericentre. It is also important to determine if properties at infall
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of both the subhalo and host system are sufficient to model the first pericentre.

2.3.1 Predicted Infall Time Distribution

Before examining the distribution of pericentric passage, we must understand the expected

results. Taking the orbital properties at infall and the halo properties of the host, I inte-

grated the orbit forward, assuming the potential remains static. The infall parameters are

introduced to the system assuming the Jiang et al. (2015) distribution infall distribution

given by (2.20-2.23). This will be discussed further in 2.4. The potential used is a spher-

ical NFW potential. We start with the infall parameters for each orbit and integrate the

orbit forward a static potential. The radius is tracked after each step, with a cadence of

0.002Tcirc. The radius and time of the pericenter are flagged as the moment of the first

minima in the list radius value. Figure 2.10 shows the histogram for infall time and peri-

centric radii for the predicted catalog, compared to the simulations.

Figure 2.10: On the left is the infall time for both the simulated and model distribution of

orbits. The model predicts a shorter infall time than the simulations. On the right is the

same for pericentric radii. The distributions match more closely than the infall times, but

the simulated distribution has fewer low radii orbits.

Figure 2.11 shows the dependence of infall time on its location in phase space. In
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this case, phase space is defined by circularity and total specific energy. There is a clear

boundary in phase space for allowed orbits. This reflects the fact that for a given energy,

the total velocity is set since the potential energy is constrained to that at the virial

radius. However, an object must have a corresponding tangential velocity to have a certain

circularity. Thus, an orbit will have a maximum allowed circularity at a fixed energy.

Similarly, there is a restriction in circularity for objects with low energy. At the bottom of

Figure 2.11, orbits will have nearly all their energy in potential energy, meaning they will

have a very low velocity. Orbits in this region, thus, do not have enough kinetic energy to

reach a circular orbit. The equation for the maximum circularity as a function of the infall

energy, cmax(E0), is given below:

cmax(E0) =
Rvir

√
2(E0 − Φ(Rvir))

Lcirc(E0)
(2.11)

where Φ(r) is the potential at a radius r, and Lcirc(E0) is the angular momentum of a

circular orbit with energy E0. The full derivation is given in A.2.
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Figure 2.11: The distribution of infall time plotted in phase space. Each of the 5000

points results from a different orbit forward from the virial radius until the pericenter.

The distribution of infall parameters is taken from Jiang et al. (2015).

Infall time is dependent on the energy at infall and the circularity. More negative

energy suggests the object has little kinetic energy. This dependence reflects that ob-

jects that merge with low velocities take longer to increase in speed and reach pericentre.

There is also a slight dependence on circularity in that orbits with a higher circularity

reach pericentre sooner. Figure 2.12 shows these relationships for the simulations. Despite

following a similar trend, these relations have a clear scatter. This is expected, as the

conditions used for predictions are the ideal case. Similarly, the boundary is consistent

with that found from 2.11. Since the boundary depends on the system’s potential, Φ, the

lower plots in Figure 2.12 split the infalling distribution into varying ranges of cNFW values.
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Figure 2.12: The same as figure 2.10, but for subhalo orbits taken directly from the sim-

ulations. Above is the entire population of subhalo orbits. Below is the same, but split

into the populations that merge during their host’s evolution with different concentration

parameters. From left to right, the concentration parameter of the host is cNFW<3.9,

3.9<cNFW<4.5, 4.5<cNFW. The expected boundary is recovered after these separations.
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2.3.2 Comparing Infall Times

I use the results from the orbital catalog to compare the expected and simulated infall

time. In Figure 2.13, I plot the predicted infall time against that found by the simulation

for each orbit in the catalog. If predictions are correct, all points should align with the line

y=x, shown in black. The scatter about this line should indicate the level to which these

orbits are heated during their first infall. Orbits below this line are expected to have been

pushed to the pericentre sooner than expected. This population either falls faster into

the host than expected or has a pericentre at a larger radius than predicted. Conversely,

objects above this line take longer to reach their pericentre than expected. Thus, they are

kicked to an orbit with a pericentre at a lower radius - having a longer distance to travel -

or are slowed down by some mechanism.

The figure shows most orbits lie very close to the line y=x, with scatter around the

point. For each orbit, I calculated Tdiff = Tpredicted − Tinfall. These values are scaled to

Tcirc. The distribution of these values is shown in the right plot of Figure 2.13. It is found

that 95 percent of the distribution lies between 0.05 and -0.14. The average value is -0.01.

This indicates a preference for orbits to take slightly longer to reach the pericentre than

expected.
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Figure 2.13: Taking the measured infall time of each subhalo from the simulations directly

and the time predicted by integrating the orbit forward assuming a static, spherical NFW

potential, we compare the predicted to the simulated results. Above: Simulated Infall time

vs Expected infall. Note that the contours correspond to the fraction of points outside the

boundary. These correspond to: [0.32,0.5,0.68]. To the right is the distribution of Tdiff,

which indicates a slight preference for simulated orbits to take longer to reach pericenter

than predicted.
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2.3.3 Comparing Pericentric Radii

For pericentric radii, we compare the predicted to simulated radii by generating Figure

2.14. As with Figure 2.13, the ideal case should have all points along the line y=x. Points

above this line are pushed to orbits that reach pericentre at radii larger than expected.

This should correspond to gaining angular momentum. Lower than this line, orbits are

expected to have lost angular momentum and fall further into the host than predicted from

their infall properties. Similarly, this would be explained by an increase in the host mass,

thus increasing the force inward.

To compare these results Rdiff = Rpredicted −Rperi is calculated. It is found that 95 per-

cent of the population lies between -0.15 and 0.34, with an average of 0.05. This indicates

that pericentric radii are around the expected value but tend to be pushed to orbits with

smaller pericentric radii. This may indicate an increase in the host mass, increasing the

radial force exerted on the object.
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Figure 2.14: Left: Simulated Pericentric Radii vs Expected. Note that values in

the contours display the fraction of points outside their bounds. The contours are:

[0.05,0.32,0.5,0.68]. Right: Distribution of Rdiff. These are generated in the same way

as 2.13. Both plots show predictions overestimate pericentric radii.

68



2.3.4 Discussion

Although the results from above show a general agreement between pericentric passage

predicted at infall and that simulated through the n-body simulation, some orbits do not

follow their expected path. When does this happen, and why would this occur? This

can be examined by determining the relationship between an object’s pericentric radii and

infall time when either is inaccurately measured. Figure 2.15 plots log10Rsim/Rpred against

log10 Tsim/Tpred. As expected, there is a cluster centered close to the origin. This indicates

where the simulated radii and infall time are well predicted.

However, a significant number of objects also lie far from the origin. To quantify this, I

track the population of orbits that deviate from their predicted pericentric radius or infall

time by 25 percent. This population of orbits will be called ’kicked’. This population

corresponds to 9322 out of the 18074 orbits tracked. I define the kicked population as ones

such that one of the following inequalities holds.

|Tratio − 1| > 0.25 (2.12)

|Rratio − 1| > 0.25 (2.13)

(2.14)

where Tratio=Tsim/Tpred and Rratio= Rsim/Rpred.

This definition naturally splits the population into several categories. Orbits that take

longer to reach pericentre and have smaller than expected pericentric radii will be called

the ’fallen’ population. These orbits are simply kicked to ones that fall deeper into the

host system. As their pericentric radii are now further into the system, they are expected

to take longer to reach it, as their new orbit must travel further to reach the pericentre.

This accounts for 40% of the kicked population.

Next, the population that reaches pericentre sooner than expected and at radii larger

than expected will be called the ’boosted’ population. These objects are simply pushed

to orbits with a pericentre at larger radii and thus require less time to reach them. The
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fallen and boosted populations are kicked to a different orbit, but their motion follows the

expected result. 15% of the kicked population is boosted.

There are also two other regions that should push the orbit to completely different

orbits. The lower left quadrant corresponds to a population of orbits that fall further into

the potential and take a shorter time to reach the pericentre. I will call this the ’pulled’

population. Thus, there must be a mechanism that pulls these orbits to the inner regions

of the halo. The population of pulled orbits corresponds to 25% of the total number of

kicked objects. The other population, accounting for 19%, reaches the pericentre further

out than expected, taking longer than expected. This ’bounced’ population must have

slowed down and have been kicked onto a much more circular orbit.

These values show that the largest group is the fall orbits, which take longer to reach

and fall farther into the potential. The fallen population explains the observed results

from Figures 2.13 and 2.14, which show a preference for objects to take longer to reach

pericentre and to have smaller pericentric radii. These results, however, depend on the

integration method used to determine the motion of the orbit. Since it relies heavily on

the parameters of the host, which can vary drastically between snapshots, this may not be

an accurate representation of the system at the time of the merger.
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Figure 2.15: Plotted is the distribution of orbits in the Rratio- Tratio plane. Regions outside

the black box are considered kicked. The quadrants are labeled by their distinction, as

described in the text.
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2.3.4.1 Kicked Fraction

To better understand when orbits are kicked out of their original orbit, we can first ex-

amine the nature of the infall. Figure 2.16 shows a kicked orbit’s predicted and simulated

orbital path. Since the simulated path takes longer to reach the pericenter and reaches a

radius smaller than predicted, this subhalo is in the ’fallen’ category. The orbit is shown

to deviate significantly from the predicted path.

We can also compare the fraction of kicked orbits to the properties of the host. Since

it is expected that interactions between other halos will cause this effect, I again use the

dynamical state of the host 2.9. Figure 2.17 shows the evolution of the dynamical state

and kicked fraction for a sample halo from 0 < z < 2. It is clear that both the dynamical

state and kicked fraction change during certain epochs of the host’s evolution. Also, the

kicked fraction increases during non-relaxed times (low dynamical state). This suggests

that the mechanism that prevents accurate predictions of an orbit is tied to the evolution

of the host and can last for extended periods.
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Figure 2.16: Shown here is a sample orbit of an object identified as being kicked. There

is a clear change in the orbital trajectory. This particular orbit is of the fallen population

and thus reaches the pericenter later and at a smaller radius than predicted.

Figure 2.17: The kicked fraction, with respect to redshift for a single host. In black is the

kicked fraction, and in red is the dynamical state. During times of low dynamical state,

the kicked fraction is increased.

73



This trend occurs for all three hosts used in this work. To show this more clearly, a plot

of the dynamical state vs. kicked fraction is shown in Figure 2.18. This shows a general

trend of relaxed systems having a smaller percentage of the kicked population.

Figure 2.18: Taking the orbits of merging subhalos during each snapshot, I track the

dynamical state at the time of the merger. Plotting the kicked fraction vs. the dynamical

state of the host, there is a clear trend for a higher fraction of kicked orbits during times

with low dynamical state.
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2.3.5 Infall Location

As shown in 2.2, infall parameters are weakly related to the location of the merger. Par-

ticularly, the objects that merge along the largest axes of the ellipsoid infall with slightly

less radial orbits. This should have the effect of increasing the pericentric radii of orbits

that merge along this axis. Similarly, this should put these objects on more circular orbits,

allowing them to reach pericentre sooner. Figure 2.19 below plots the average infall time

and pericentric radii against their infall location. We find no significant dependencies on

pericentric passage according to the location of their merger. Since properties at the time

of infall are shown to influence pericentric passage, and from Figure 2.8, we see infall pa-

rameters have little dependence on the location of the merger, this is reasonable to expect.

Figure 2.19: Average infall time and pericentric radii in bins of cos θ, where θ corresponds

to the angular difference between the infall location, and the largest axis of the halo if

modeled by an ellipsoid. There are no clear dependencies between these values.
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2.4 Evolution of Orbital Population

Since the population of orbits within a cluster can provide information about the proper-

ties of the host system, it is important to understand how orbits change throughout the

evolution of the host. During major mergers especially, it is reasonable to expect orbits

to be heated in response to the sudden mass influx and through shock heating and close

gravitational interactions with other subhalos.

By examining the three simulations used in this study, the bulk changes to the popu-

lation of subhalos can be related to the MAH of the host. During sudden significant mass

change, a major merger is expected to occur, causing a significant change in existing or-

bits. The interactions between pre-existing orbits and the influx of new material can cause

this. To examine the change in existing orbits, the average energy, angular momentum,

and velocity magnitude for all subhalos within a host system is plotted vs. redshift. To

avoid objects identified as being merged but quickly lost in the merger tree, I only consider

objects that survive until the final snapshot. This is shown in the top portion of Figure

2.21. The energy, angular momentum, and velocity are scaled to their characteristic values

at z=0 (equations 1.22-1.24). Figure 2.21 shows a steady decrease in the average energy

of the system and an overall increase in angular momentum and velocity. The steady de-

crease in energy is simply due to increased host mass, increasing the potential energy of

all subhalo orbits. However, the increase in angular momentum and velocity indicates a

steady heating of the system as it evolves.

However, this change in orbital parameters may be due to the introduction of new

subhalos, which increase the average infall velocity and angular momentum. This can be

seen clearly through equations 1.22-1.24, where the characteristic value for each increases

as mass increases. This is not the desired effect, as the goal is to examine how orbital

properties for individual orbits change according to the MAH. To address this, the bottom

plots in Figure 2.21 only contain information about halos that merge before z=2 and still

survive to the final snapshot. Even with these cuts, the same change in orbital properties

is observed. This indicates that both angular momentum and velocity change in response

to the MAH of the host.
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Figure 2.21: The changes in average orbital parameters for a sample host system. The

leftmost column shows the evolution of average energy. The middle column is the average

angular momentum, and the rightmost column is the average velocity. Above are all

surviving subhalos at z=0, while the bottom row includes only the subhalos that merge

in the interval z > 2. These figures show that these parameters change in response to the

MAH. At the bottom, I also include the mass of the host across this time.
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Although detailed information about the host and its subhalos, such as that available

in simulations, are sufficient to track changes to the population of orbits, it would be ideal

to have a more accurate method. If a model can be created using only bulk properties

of the host, such as its MAH, then toy models can use this to generate mock catalogs of

orbits for clusters without the need for simulations. In this section, I examine the evolution

of orbital properties of subhalos within the host system. I also discuss the validity of a

relatively simple orbital evolution model and whether the MAH is sufficient to model the

changes in subhalo orbits.
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2.4.1 Orbital Population

A data set of subhalo orbital properties across the evolution of the host must be generated

to verify the model’s validity for orbital evolution. At each output of the simulation, I

track the position and velocity of each subhalo of the host with respect to the frame of

the host center. Tracking only the output ensures that orbital properties are determined

solely from the distribution of particles rather than interpolating between snapshots. Each

subhalo is tracked starting from the first time it is identified as a subhalo of their host

halo. At the same time, the Rvir, Mvir, and the NFW concentration parameter of the host

are found. The specific energy can be calculated from the subhalo position and velocity.

Similarly, the specific angular momentum is also calculated in the same step. These are

then each scaled by the host system’s characteristic energy and angular momentum at the

z=0 snapshot. Energy and angular momentum are used to characterize each orbit.

Etot =
v2sat
2

− ϕNFW(rsat,Mvir, Rvir, c) (2.15)

L = r⃗ × v⃗ (2.16)

For each subhalo, these are saved for each snapshot the subhalo is found. I can then

track the evolution of these parameters and test whether they can be accurately modeled.

Across all three host halos, we have a total of ∼14000 surviving subhalos.
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2.4.2 Evolution Between Snapshots

To accurately model the evolution of orbital parameters according to the MAH, it is nec-

essary to understand how these parameters change between simulation outputs. As noted

before, there are two factors that need to be accounted for: the scatter due to changes in

orbital parameters and the changes in the mass of the system, leading to a change in the

potential energy of a subhalo. This can be determined by examining how these parameters

change between snapshots. From Figure 2.22, which plots the initial energy against the

final energy between subsequent snapshots, orbital parameters appear to cluster around

the line y=x, with a slight scatter. As expected, there are also times when the entire

population seems to shift in value. This reflects a change in the mass of the system.

To model how these parameters change between snapshots, the changes in orbital pa-

rameters are fit to equations 2.17 and 2.18. In this case, g is the scattering term, modeled

as a Gaussian distribution centered around 0, defined by σ, which is the standard deviation

determined from the line fit to the data. To fit this, I minimize χ2. En and En+1 corre-

spond to the energy at a given snapshot and the following snapshot. The same convention

is used for L. The slope (m) and intercept (b) values are determined from the linear fit.

En+1 = mEn + b+ gE (2.17)

Ln+1 = mLn + b+ gL (2.18)

g(σ) =
1

σ
√
2π

exp

(
−1

2

(x
σ

)2
)

(2.19)

The scatter term is chosen to be a Gaussian both due to the simplicity of using only one

fit parameter and because it is shown to capture the nature of the scatter terms. Figure

2.22 shows the energy and angular momentum changes between two subsequent snapshots.

The line corresponds to the line fit to the data. The residuals are also plotted, with the fit

Gaussian overplotted. Although a KS test does not show these are consistent (p-value of

less than 0.002), it appears to match the residuals reasonably.
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Figure 2.22: Above: an example of analyzing two subsequent snapshots from a single

host. On the left is each constituent subhalo’s initial vs. final energy. The solid black

line corresponds to the fit line for the system, while the dashed black line shows the line

y=x. On the right are the residuals to the fit line. Show in orange is the fit Gaussian

distribution. Below is the same, but for angular momentum. In both cases, the initial and

final values lie around the expected line, with a scatter that matches closely to a Gaussian

distribution.
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In an ideal case, g(n)=0, m=1, and b=0. In this case, the evolution of energy and

angular momentum are conserved between each snapshot. This corresponds to a static

and spherically symmetric host halo. Since this is an unrealistic model for halo evolution,

each of these parameters is expected to deviate from this ideal case. These cases will be

discussed in section 2.4.3.

2.4.3 Final Model

Finally, these considerations can be incorporated into a model to test whether this view

can track the changes in orbital properties for host systems. Since this model requires

information between each snapshot, this will need to be done individually for each host

halo. This semi-analytic model aims to take the MAH of a host, accurately inject orbits,

and evolve the energy and angular momentum of each. Thus, it should first accurately

describe the parameters at the time of infall.

We follow Jiang et al. (2015) and fit the distribution of infall velocity (scaled by the

virial velocity) to a Voigt profile:

Pν(x;σ, γ, µ) =

∫ +∞

−∞
PG(x

′;σ, µ)PL(x− x′; γ)dx′ (2.20)

where PL(x; γ) ≡
γ

π(x2 + γ2)
(2.21)

and PG(x;σ,mu) ≡ 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(2.22)

We also use their fit for the infalling radial velocity, scaled by the total velocity, by an

exponential:

P (νr/ν) = A

(
exp

(
Bνr
ν

)
− 1

)
(2.23)

To match the simulations used in this work, I fit new parameters for the three simula-

tions by maximizing the likelihood L = ΠiPν(xi;σ, γ, µ), where i runs over all infall orbits.

Table 2.1 shows the fit values. Host mass and mass ratio ranges without sufficient data
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(<100) are not included. Similarly, mass ratios below 10−5 are not used, as the distribution

of infall velocities cannot be fit in this form. The final distribution is shown in Figure 2.23,

which also shows the distribution from orbits from the simulations. Although a KS test

does not show these distributions are consistent with each other, their final distribution is

reasonably similar for this work. I use the parameters from Jiang et al. (see table 2 from

Jiang et al. (2015)) for the distribution of radial velocity, as it matches my distribution,

shown in 2.23. A KS test confirms this, with a p-value of 0.6.

Mhost (M⊙h
−1) Msat/Mhost γ σ µ

1012 10−5 − 10−4 0.005640 ± 0.000060 0.285587 ± 0.000252 1.207235 ± 0.000060

1012 10−4 − 0.005 0.004718 ± 0.000006 0.262540 ± 0.000024 1.263036 ± 0.000005

1013 10−6 − 10−5 0.029766 ± 0.000490 0.201715 ± 0.000782 1.267787 ± 0.000139

1013 10−5 − 10−4 0.028047 ± 0.000312 0.202807 ± 0.000230 1.291578 ± 0.000069

1013 10−4 − 0.005 0.029121 ± 0.000017 0.198714 ± 0.000029 1.285265 ± 0.000004

1014 10−6 − 10−5 0.045032 ± 0.000027 0.077459 ± 0.000010 1.296986 ± 0.000026

1014 10−5 − 10−4 0.013942 ± 0.000009 0.110674 ± 0.000016 1.301062 ± 0.000037

Table 2.1: Parameters of the fitted infall orbital parameters equations 2.20-2.23 in bins of

host halo mass and mass ratio at the time of infall. These are the maximum likelihood fits

generated from all infalling subhalos across all hosts in each bin.
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Figure 2.23: Comparisons between the distribution of infall parameters taken directly from

the simulations (blue) and when drawn from the fitted distributions (orange). These were

generated by drawing from the distribution for every infalling subhalo, with cuts described

in the text. The left is for the total velocity, and the right is for the radial component of

the velocity. The fitted parameters for the infall velocities are that of 2.1, and the radial

parameters are taken from Jiang et al. (2015).

Deciding when to introduce a new orbit can be difficult to properly incorporate since

the mass and number of infalling satellites are tied heavily to its MAH. Thus, instead of

generating a fictitious MAH for each host, an orbit is added into the system for each in-

falling subhalo in the simulation. This should give a representative distribution of infalling

orbits.

Finally, the evolution of each orbit between subsequent snapshots must be modeled

appropriately. Following equations 2.17 and 2.18, and the determined values for m, b, and

g, En is transformed to En+1. There is also a set limit on E and L at all snapshots. The

maximum energy is taken to be 0. If this model pushes an orbit to have positive energy,

these objects will be considered ejected from the system. Similarly, the minimum value for

these can be taken to be that of a stationary (in the frame of the host) object at the virial

radius. We will use the NFW potential of the host system at the time of the merger to
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determine this. Similarly, the maximum angular momentum is that of a circular orbit at

the virial radius, and its minimum is 0.

Emax = U = −GMvir

Rvir

(2.24)

Following these prescriptions for each subhalo, we obtain the following results. First,

Figure 2.25 shows the final distributions of energy and angular momentum. Across all host

systems, these appear to be consistent. From this result alone, it is unclear whether the

model accurately captures the evolution of orbits, as the population may have recently ac-

creted a large number of subhalos. The match in the final distribution may instead indicate

the distribution of infall parameters that match the simulation - which it is expected to do.

Thus, in Figure 2.24, the initial vs. final energy and angular momentum for the surviving

population are plotted. The colors in these plots indicate the infall redshift. Similarly,

Figure 2.25 shows a histogram of the final energy vs. infall redshift. It is evident that

objects that merge at 0.1 < z < 1 deviate significantly between the model and simulation.

However, at higher redshifts z > 1.2, the distribution seems to match more closely. The

intermediate period encompasses a time when many subhalos merge with the host but

quickly dissipate. Although the model correctly introduces orbits, it does not accurately

remove them from the population - on short time frames. The subhalos that merge at

higher redshifts seem to follow the expected trend.
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Figure 2.24: Top row shows each subhalo’s initial vs. final energies that survive until the

final snapshot. The color indicates the infall redshift. The bottom is the same but for

angular momentum. The left column shows the model results and the right is from the

simulations. The blue line shows y=x, indicating the expected result if orbital parameters

are conserved.
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Figure 2.25: The top row displays a 2D histogram of final energy vs. Infall redshift. On

the left is the model, and on the right is the simulation results. The bottom row shows the

final histogram for energy (left) and angular momentum (right) for both the model (blue)

and the simulation (blue).
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2.4.3.1 Determining the Intercept

In the case of a non-zero intercept in the linear fit between initial and final E or L, it

is important to examine each individually. Starting with energy, the intercept has a very

clear physical meaning. It corresponds to changes in the mass of the system. If the mass

of the host changes between snapshots, the potential energy of orbiting objects is expected

to change, even if little is changing about the orbital properties. This artificial change in

potential energy thus shifts the position of all objects. Thus, the intercept value should

scale with the changes in mass between snapshots. Figure 2.26 shows that the intercept

value decreases as the change in mass increases. Note that this effect can also introduce a

slope to the fit, as discussed below.

For angular momentum, these are expected to be relatively robust against mass changes.

A baseline change in L is expected only if each orbit is heated similarly. Although this may

be possible, this can also come from changes to the position or velocity of the host system.

This would change the values of each orbit’s relative position and velocity, thus affecting

all of them. Figure 2.26 plots the intercept against the dynamical state. It is again clear

that there is an increase in the intercept at periods of low dynamical state. This supports

the view that changes in the intercept result from mergers.
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Figure 2.26: Above shows the fit value for intercept plotted against the relative change in

mass. Below plots the intercept against the dynamical state. The left column is for energy,

and the right column is for angular momentum.
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2.4.3.2 Determining the Slope

The slope, m, in these equations, probes a unique aspect of the system between snapshots.

In these equations, it corresponds to a difference in the change in orbital properties de-

pending on the value of these orbital properties. The case of non-zero intercept and scatter

term, m ̸= 1 indicates the evolution of E or L solely depends on its magnitude. This can

have some physical interpretation. For energy, objects more loosely bound to the system

are expected to be on the system’s outskirts and are more susceptible to the effects of in-

falling objects. Depending on an orbit’s location, it may be influenced by a specific event.

Also, changes in the potential do affect each orbit differently. For example, in the simplest

Keplerian example Φ(r) ∝ M/r, doubling the mass of the host will simply double the po-

tential energy of each orbit. This would cause the intercept to be non-zero and introduce

a different slope. This is because the objects with a large potential energy will gain more

than those with a smaller. In this picture, the slope deviations should correspond to mass

deviations between snapshots. Similarly, objects with significant angular momentum are

expected to have more circular orbits and a larger radius. This would again suggest that,

on average, they would occupy different regions within the halo.

It is important to note that the slope for energy and angular momentum both tend to

values below 1. This suggests that orbits with a high magnitude of E or L are preferentially

pushed to lower magnitudes than those with lower magnitudes. Figure 2.27 shows the fit

slope value plotted against the change in mass between subsequent snapshots. In both

cases, there is little correlation between these variables. This suggests that the mechanics

that change the slope require more information about the host to model accurately. If

this is the case, I cannot simply model this by a change in the mass of the system. One

consideration is that the events that cause the slope to deviate from 1 may have long-

lasting effects on the host system. This would mean that taking only information from

the previous snapshot is insufficient to model this properly. One method to address this

is to plot the slope against the dynamical state of the host. This should capture any

relation to dynamically unrelaxed states of the host. Figure 2.27 clearly shows that for a

low dynamical state, there is a significant deviation from the expected slope.
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Figure 2.27: Same as Figure 2.26, but for the fit slope.
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2.4.3.3 Determining the Scatter

The interpretation of increased scatter is the simplest of the three fitting parameters. It in-

dicates an increased random deviation to the expected final orbital parameter. This would

describe the tendency for orbits to be unpredictably kicked away from their original orbit.

Thus, it is expected that an increase in orbital scatter, both in E and L will occur during

times of low dynamical state. This is shown clearly in the Figure 2.28. For both E and L,

we see an apparent increase in the scatter as the dynamical state parameter decreases.

It is tempting to instead model this by the change in mass between snapshots. Large

mass changes should also indicate periods of turbulent growth, which is the property of

also tracked with dynamical state. However, as seen in Figure 2.28, there seems to be little

correlation between these values. One reason this fails to capture the desired effect is that

mergers act over long periods of time. Thus, there is not enough information gained by

examining the changes in host mass. Plotting the relationship between several snapshots

in the past also does not give meaningful results. See the appendix for these plots and a

few other parameters that fail to capture these effects.
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Figure 2.28: Same as Figure 2.26, but for the fit scatter.
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Chapter 3

Summary and Conclusions

Through the analysis of three high-resolution zoom-in simulations of galaxy clusters, I ex-

amined the nature of subhalo orbits. In 2.2, I examined the properties at the time of initial

infall. Although the mass ratio has a weak relationship with infall parameters, individual

halos, redshift, and host mass do not show any clear trend in total or radial velocity. This

suggests that the specific state of the host has a large effect on the predicted infall param-

eters. It is found that infall parameters depend slightly on the location of the merger. If

the host is modeled with an ellipsoid, orbits that merge along its largest axis merge with

a slightly larger, less radial velocity.

In 2.3, I examine whether these parameters can predict pericentric passage in timing

and radii. The triaxial nature of the host, interactions with other subhalos, and the dy-

namical state of the host are expected to cause orbital parameters to change. I find that

most orbits fall within 25% of their expected pericentric passage. The fraction of merging

systems that do not fall within this criteria increases during periods in which the host is not

relaxed. This can be as high as 70%, but hovers around 30% during dynamically relaxed

epochs of the host’s evolution. This indicates that dynamic instability greatly impacts

subhalo orbits, particularly the predictions for pericentre at the initial merger time.

Lastly, in 2.4, I examine the evolution of the population of orbital properties of sub-
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halos. I find that periods of low dynamical state act to change the system as a whole

drastically. This is seen by increased orbital scatter during these times. Although the evo-

lution between subsequent snapshots appears to follow a linear relation, with the scattering

term, I cannot accurately generate a model for this evolution. The reason for this is argued

to be that to model the process that causes this disruption requires intimate knowledge of

the properties of the host, such as their dynamical state.

These results all point towards a similar picture: Subhalo orbits are tied heavily to the

state of their host. For individual hosts, infall parameters do not follow their expected

trends, and these parameters may change during specific periods of the evolution of the

host. Orbits will also often become kicked during their first orbit, which is tied to the

dynamical state of the host. Also, modeling the evolution of orbits is only accurate for

short periods with detailed information about the host. Thus, a detailed SAM of subhalo

orbits is not feasible based solely on the MAH of the host. These properties require specific

information about the state of the host, which is inaccessible from the MAH alone. The

heating and sudden change in the potential of the hose caused by major mergers and close

interactions between subhalos are key aspects not well modeled through the MAH alone.

For quenching models, predicting pericenter should include the contribution of other

subhalos and the complex nature of major mergers. These should also be relevant when

predicting the evolution of subhalo orbits. Since dynamical state should probe these aspects

of the host system, a model for these processes should aim to use a probe of the dynamical

state instead of the MAH alone. Moving forward, this analysis should be conducted on a

larger population of host systems to probe the ranges of dynamical states more accurately.

With more analysis, it may be feasible to generate a method to model the evolution of

orbital properties between subsequent snapshots properly. This method should use all

available information, such as the entire MAH before the merger.
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Appendix A

Supplemental Derivations and Plots

A.1 Triaxial Potential

Assuming an ellipsoidal mass density leads to a more complicated potential. This comes

from the extension of the spherical collapse model, where initial perturbations in the density

field are no longer assumed to be spherical, but ellipsoidal. In this more realistic case, the

NFW density is no longer a function of radial position but by a new quantity m2:

ρ(m2) =
ρ0R

3
s√

m2(Rs +
√
m2)2

where m2 = r′2 = a′2
(
x2

a′2
+

y2

b′2
+

z2

c2

)
and M2 = a′2

(
x2

a′2 + τ
+

y2

b′2 + τ
+

z2

c2 + τ

)
.

a′2, b′2, and c′2 are the lengths of the ellipsoid’s largest, middle, and smallest axis that

describes the profile’s shape. The potential has no general analytic form, but it can be nu-

merically integrated. This is done with a quantity f(m) =
∫ m2

0
dm2ρ(m2), which describes

the mass interior to a surface of constant density defined by m2.
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Solving for f(m) is shown below.

f(m) =

∫ m2

0

dm′2ρ(m′2)

=

∫ m2

0

dm′2 ρ0R
3
s√

m′2(Rs +
√
m′2)2

=
2ρ0R

3
sm

Rs(m+Rs)

=
2ρ0R

2
sm

m+Rs

.

Note that f(∞) = lim
m−→∞

2ρ0R
2
s

1 +Rs/m

= 2ρ0R
2
s

The potential from this can then be solved using f(M) instead of f(m):

ϕ(x, y, z) = −πG
b′c′

a′

∫ ∞

0

dτ
f(∞)− f(M)√

(τ + a′2)(τ + b′2)(τ + c′2)

= −πG
b′c′

a′

∫ ∞

0

dτ
2ρ0R

2
s −

2ρ0R2
sM

M+Rs√
(τ + a′2)(τ + b′2)(τ + c′2)

= −πG
2b′c′ρ0R

2
s

a′

∫ ∞

0

dτ
1− M

M+Rs√
(τ + a′2)(τ + b′2)(τ + c′2)

Numerically solving this is much easier with a change of variables. Following Buote &

Humphrey (2012), such a change is chosen to be:

s =
1√
1 + τ

ds = −1

2
s3dτ

−→ τ = s−2 − 1
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Changing the bounds accordingly, the integral describing the potential becomes:

ϕ(x, y, z) = −πG
4b′c′ρ0R

2
s

a′

∫ 1

0

ds
1− m

m+Rs

s3
√
(s−2 − 1 + a′2)(s−2 − 1 + b′2)(s−2 − 1 + c′2)

A triaxial NFW potential can alternatively describe the potential. To do this, the spher-

ical NFW-potential is modified in the same way as the spherical, r →
√

x′2 + y‘2/b2 + z‘2/c2.

This is computationally more simple, as the analytical form of the potential is readily avail-

able. However, the corresponding mass distribution is not physically motivated.
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A.2 Maximum Circularity

Figure 2.11 shows a clear boundary in phase space corresponding to these bound orbits. At

the virial radius, bound orbits have a total specific energy between 0 and Φ(Rvir). Thus,

given an initial specific energy E0 in this range, the specific kinetic energy is given as:

K = E0 − Φ(Rvir) .

Similarly, the velocity is given as:√
V 2
tan + V 2

rad

2
= E0 − Φ(Rvir) (A.1)

Vtan =
√

4(E0 − Φ(Rvir))2 − V 2
rad (A.2)

Vtan =
√

4K2 − V 2
rad (A.3)

The equation for circularity is given as:

c =
L0

Lcirc

, (A.4)

Where Lcirc is given as the angular momentum of a circular orbit with the same energy,

and L0 is the initial angular momentum. This can also apply to an orbit’s specific angular

momentum.

Note that Lcirc only depends on the orbit’s initial energy. This means the maximum

angular momentum of a bound orbit dictates the maximum circularity. Thus, in the context

of initial energy, the following equation is obtained:

cmax(E0) =
RvirV0 sin θ

Lcirc(E0)
=

RvirVtan,max

Lcirc(E0)
(A.5)

From equation A.3, Vtan,max occurs when Vrad = 0, meaning the orbit is circular. In this

case, Vtan = Vtot, and Vtot =
√

2(E0 − Φ(Rvir)). Thus, cmax is a function of only the initial

energy and parameters of the host system:

cmax(E0) =
Rvir

√
2(E0 − Φ(Rvir))

Lcirc(E0)
(A.6)
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Figure A.1: Boundary for Energy vs. Circularity Diagram. Energy is scaled to the virial

energy of the host system. This was generated using equation A.5 for two different NFW

potentials, with cNFW = 2 and 6. This shows the dependence of the shape on the potential

of the system.
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A.3 Kicked Fraction for All Hosts

Here are the same plots as in Figure 2.17for all three host halos. Across all of them, the

kicked fraction increases during low dynamical state.

Figure A.2: The evolution of the kicked fraction and dynamical state vs. redshift for all

three host halos are shown above.
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A.4 Model Results for All Hosts

Below are the model results for all three hosts. They all follow similar results as presented

in 2.4.

A.4.1 Host 1
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A.4.2 Host 2
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A.4.3 Host 3
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Figure A.3: Same as for Figures 2.25 and 2.24 for all hosts.
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